1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq * 74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 75 struct lpfc_iocbq *rspiocbq); 76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 77 struct hbq_dmabuf *); 78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 79 struct hbq_dmabuf *dmabuf); 80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 81 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 83 int); 84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 85 struct lpfc_queue *eq, 86 struct lpfc_eqe *eqe); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 uint8_t rearm) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->context_un.ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->context_un.ndlp; 1268 } else { 1269 ndlp = piocbq->context1; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 if (asig) { 1852 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1853 "6237 BW Threshold %lld%% (%lld): " 1854 "%lld%% %s: Signal Alarm: cg:%d " 1855 "Info:%u\n", 1856 bwpcent, bw, pcent, s, cg, 1857 phba->cmf_active_info); 1858 } else if (afpin) { 1859 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1860 "6238 BW Threshold %lld%% (%lld): " 1861 "%lld%% %s: FPIN Alarm: cg:%d " 1862 "Info:%u\n", 1863 bwpcent, bw, pcent, s, cg, 1864 phba->cmf_active_info); 1865 } else if (sigcnt) { 1866 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1868 "6239 BW Threshold %lld%% (%lld): " 1869 "%lld%% %s: Signal Warning: " 1870 "Cnt %d Max %d: cg:%d Info:%u\n", 1871 bwpcent, bw, pcent, s, sigcnt, 1872 wsigmax, cg, phba->cmf_active_info); 1873 } else if (fpincnt) { 1874 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6240 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Warning: " 1878 "Cnt %d Max %d: cg:%d Info:%u\n", 1879 bwpcent, bw, pcent, s, fpincnt, 1880 wfpinmax, cg, phba->cmf_active_info); 1881 } else { 1882 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1883 "6241 BW Threshold %lld%% (%lld): " 1884 "CMF %lld%% %s: cg:%d Info:%u\n", 1885 bwpcent, bw, pcent, s, cg, 1886 phba->cmf_active_info); 1887 } 1888 } else if (info) { 1889 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1890 "6246 Info Threshold %u\n", info); 1891 } 1892 1893 /* Save BW change to be picked up during next timer interrupt */ 1894 phba->cmf_last_sync_bw = bw; 1895 out: 1896 lpfc_sli_release_iocbq(phba, cmdiocb); 1897 } 1898 1899 /** 1900 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1901 * @phba: Pointer to HBA context object. 1902 * @ms: ms to set in WQE interval, 0 means use init op 1903 * @total: Total rcv bytes for this interval 1904 * 1905 * This routine is called every CMF timer interrupt. Its purpose is 1906 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1907 * that may indicate we have congestion (FPINs or Signals). Upon 1908 * completion, the firmware will indicate any BW restrictions the 1909 * driver may need to take. 1910 **/ 1911 int 1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1913 { 1914 union lpfc_wqe128 *wqe; 1915 struct lpfc_iocbq *sync_buf; 1916 unsigned long iflags; 1917 u32 ret_val; 1918 u32 atot, wtot, max; 1919 1920 /* First address any alarm / warning activity */ 1921 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1922 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1923 1924 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1925 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1926 phba->link_state == LPFC_LINK_DOWN) 1927 return 0; 1928 1929 spin_lock_irqsave(&phba->hbalock, iflags); 1930 sync_buf = __lpfc_sli_get_iocbq(phba); 1931 if (!sync_buf) { 1932 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1933 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1934 ret_val = ENOMEM; 1935 goto out_unlock; 1936 } 1937 1938 wqe = &sync_buf->wqe; 1939 1940 /* WQEs are reused. Clear stale data and set key fields to zero */ 1941 memset(wqe, 0, sizeof(*wqe)); 1942 1943 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1944 if (!ms) { 1945 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1946 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1947 phba->fc_eventTag); 1948 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1949 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1950 goto initpath; 1951 } 1952 1953 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1954 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1955 1956 /* Check for alarms / warnings */ 1957 if (atot) { 1958 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1959 /* We hit an Signal alarm condition */ 1960 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1961 } else { 1962 /* We hit a FPIN alarm condition */ 1963 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1964 } 1965 } else if (wtot) { 1966 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1967 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1968 /* We hit an Signal warning condition */ 1969 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1970 lpfc_acqe_cgn_frequency; 1971 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1972 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1973 } else { 1974 /* We hit a FPIN warning condition */ 1975 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1976 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1977 } 1978 } 1979 1980 /* Update total read blocks during previous timer interval */ 1981 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1982 1983 initpath: 1984 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1985 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1986 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1987 1988 /* Setup reqtag to match the wqe completion. */ 1989 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1990 1991 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1992 1993 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1994 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1995 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 1996 1997 sync_buf->vport = phba->pport; 1998 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 1999 sync_buf->context1 = NULL; 2000 sync_buf->context2 = NULL; 2001 sync_buf->context3 = NULL; 2002 sync_buf->sli4_xritag = NO_XRI; 2003 2004 sync_buf->cmd_flag |= LPFC_IO_CMF; 2005 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2006 if (ret_val) 2007 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2008 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2009 ret_val); 2010 out_unlock: 2011 spin_unlock_irqrestore(&phba->hbalock, iflags); 2012 return ret_val; 2013 } 2014 2015 /** 2016 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2017 * @phba: Pointer to HBA context object. 2018 * @pring: Pointer to driver SLI ring object. 2019 * 2020 * This function is called with hbalock held and the caller must post the 2021 * iocb without releasing the lock. If the caller releases the lock, 2022 * iocb slot returned by the function is not guaranteed to be available. 2023 * The function returns pointer to the next available iocb slot if there 2024 * is available slot in the ring, else it returns NULL. 2025 * If the get index of the ring is ahead of the put index, the function 2026 * will post an error attention event to the worker thread to take the 2027 * HBA to offline state. 2028 **/ 2029 static IOCB_t * 2030 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2031 { 2032 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2033 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2034 2035 lockdep_assert_held(&phba->hbalock); 2036 2037 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2038 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2039 pring->sli.sli3.next_cmdidx = 0; 2040 2041 if (unlikely(pring->sli.sli3.local_getidx == 2042 pring->sli.sli3.next_cmdidx)) { 2043 2044 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2045 2046 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2048 "0315 Ring %d issue: portCmdGet %d " 2049 "is bigger than cmd ring %d\n", 2050 pring->ringno, 2051 pring->sli.sli3.local_getidx, 2052 max_cmd_idx); 2053 2054 phba->link_state = LPFC_HBA_ERROR; 2055 /* 2056 * All error attention handlers are posted to 2057 * worker thread 2058 */ 2059 phba->work_ha |= HA_ERATT; 2060 phba->work_hs = HS_FFER3; 2061 2062 lpfc_worker_wake_up(phba); 2063 2064 return NULL; 2065 } 2066 2067 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2068 return NULL; 2069 } 2070 2071 return lpfc_cmd_iocb(phba, pring); 2072 } 2073 2074 /** 2075 * lpfc_sli_next_iotag - Get an iotag for the iocb 2076 * @phba: Pointer to HBA context object. 2077 * @iocbq: Pointer to driver iocb object. 2078 * 2079 * This function gets an iotag for the iocb. If there is no unused iotag and 2080 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2081 * array and assigns a new iotag. 2082 * The function returns the allocated iotag if successful, else returns zero. 2083 * Zero is not a valid iotag. 2084 * The caller is not required to hold any lock. 2085 **/ 2086 uint16_t 2087 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2088 { 2089 struct lpfc_iocbq **new_arr; 2090 struct lpfc_iocbq **old_arr; 2091 size_t new_len; 2092 struct lpfc_sli *psli = &phba->sli; 2093 uint16_t iotag; 2094 2095 spin_lock_irq(&phba->hbalock); 2096 iotag = psli->last_iotag; 2097 if(++iotag < psli->iocbq_lookup_len) { 2098 psli->last_iotag = iotag; 2099 psli->iocbq_lookup[iotag] = iocbq; 2100 spin_unlock_irq(&phba->hbalock); 2101 iocbq->iotag = iotag; 2102 return iotag; 2103 } else if (psli->iocbq_lookup_len < (0xffff 2104 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2105 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2106 spin_unlock_irq(&phba->hbalock); 2107 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2108 GFP_KERNEL); 2109 if (new_arr) { 2110 spin_lock_irq(&phba->hbalock); 2111 old_arr = psli->iocbq_lookup; 2112 if (new_len <= psli->iocbq_lookup_len) { 2113 /* highly unprobable case */ 2114 kfree(new_arr); 2115 iotag = psli->last_iotag; 2116 if(++iotag < psli->iocbq_lookup_len) { 2117 psli->last_iotag = iotag; 2118 psli->iocbq_lookup[iotag] = iocbq; 2119 spin_unlock_irq(&phba->hbalock); 2120 iocbq->iotag = iotag; 2121 return iotag; 2122 } 2123 spin_unlock_irq(&phba->hbalock); 2124 return 0; 2125 } 2126 if (psli->iocbq_lookup) 2127 memcpy(new_arr, old_arr, 2128 ((psli->last_iotag + 1) * 2129 sizeof (struct lpfc_iocbq *))); 2130 psli->iocbq_lookup = new_arr; 2131 psli->iocbq_lookup_len = new_len; 2132 psli->last_iotag = iotag; 2133 psli->iocbq_lookup[iotag] = iocbq; 2134 spin_unlock_irq(&phba->hbalock); 2135 iocbq->iotag = iotag; 2136 kfree(old_arr); 2137 return iotag; 2138 } 2139 } else 2140 spin_unlock_irq(&phba->hbalock); 2141 2142 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2143 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2144 psli->last_iotag); 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2151 * @phba: Pointer to HBA context object. 2152 * @pring: Pointer to driver SLI ring object. 2153 * @iocb: Pointer to iocb slot in the ring. 2154 * @nextiocb: Pointer to driver iocb object which need to be 2155 * posted to firmware. 2156 * 2157 * This function is called to post a new iocb to the firmware. This 2158 * function copies the new iocb to ring iocb slot and updates the 2159 * ring pointers. It adds the new iocb to txcmplq if there is 2160 * a completion call back for this iocb else the function will free the 2161 * iocb object. The hbalock is asserted held in the code path calling 2162 * this routine. 2163 **/ 2164 static void 2165 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2166 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2167 { 2168 /* 2169 * Set up an iotag 2170 */ 2171 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2172 2173 2174 if (pring->ringno == LPFC_ELS_RING) { 2175 lpfc_debugfs_slow_ring_trc(phba, 2176 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2177 *(((uint32_t *) &nextiocb->iocb) + 4), 2178 *(((uint32_t *) &nextiocb->iocb) + 6), 2179 *(((uint32_t *) &nextiocb->iocb) + 7)); 2180 } 2181 2182 /* 2183 * Issue iocb command to adapter 2184 */ 2185 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2186 wmb(); 2187 pring->stats.iocb_cmd++; 2188 2189 /* 2190 * If there is no completion routine to call, we can release the 2191 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2192 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2193 */ 2194 if (nextiocb->cmd_cmpl) 2195 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2196 else 2197 __lpfc_sli_release_iocbq(phba, nextiocb); 2198 2199 /* 2200 * Let the HBA know what IOCB slot will be the next one the 2201 * driver will put a command into. 2202 */ 2203 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2204 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2205 } 2206 2207 /** 2208 * lpfc_sli_update_full_ring - Update the chip attention register 2209 * @phba: Pointer to HBA context object. 2210 * @pring: Pointer to driver SLI ring object. 2211 * 2212 * The caller is not required to hold any lock for calling this function. 2213 * This function updates the chip attention bits for the ring to inform firmware 2214 * that there are pending work to be done for this ring and requests an 2215 * interrupt when there is space available in the ring. This function is 2216 * called when the driver is unable to post more iocbs to the ring due 2217 * to unavailability of space in the ring. 2218 **/ 2219 static void 2220 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2221 { 2222 int ringno = pring->ringno; 2223 2224 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2225 2226 wmb(); 2227 2228 /* 2229 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2230 * The HBA will tell us when an IOCB entry is available. 2231 */ 2232 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2233 readl(phba->CAregaddr); /* flush */ 2234 2235 pring->stats.iocb_cmd_full++; 2236 } 2237 2238 /** 2239 * lpfc_sli_update_ring - Update chip attention register 2240 * @phba: Pointer to HBA context object. 2241 * @pring: Pointer to driver SLI ring object. 2242 * 2243 * This function updates the chip attention register bit for the 2244 * given ring to inform HBA that there is more work to be done 2245 * in this ring. The caller is not required to hold any lock. 2246 **/ 2247 static void 2248 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2249 { 2250 int ringno = pring->ringno; 2251 2252 /* 2253 * Tell the HBA that there is work to do in this ring. 2254 */ 2255 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2256 wmb(); 2257 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2258 readl(phba->CAregaddr); /* flush */ 2259 } 2260 } 2261 2262 /** 2263 * lpfc_sli_resume_iocb - Process iocbs in the txq 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function is called with hbalock held to post pending iocbs 2268 * in the txq to the firmware. This function is called when driver 2269 * detects space available in the ring. 2270 **/ 2271 static void 2272 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 IOCB_t *iocb; 2275 struct lpfc_iocbq *nextiocb; 2276 2277 lockdep_assert_held(&phba->hbalock); 2278 2279 /* 2280 * Check to see if: 2281 * (a) there is anything on the txq to send 2282 * (b) link is up 2283 * (c) link attention events can be processed (fcp ring only) 2284 * (d) IOCB processing is not blocked by the outstanding mbox command. 2285 */ 2286 2287 if (lpfc_is_link_up(phba) && 2288 (!list_empty(&pring->txq)) && 2289 (pring->ringno != LPFC_FCP_RING || 2290 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2291 2292 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2293 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2294 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2295 2296 if (iocb) 2297 lpfc_sli_update_ring(phba, pring); 2298 else 2299 lpfc_sli_update_full_ring(phba, pring); 2300 } 2301 2302 return; 2303 } 2304 2305 /** 2306 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2307 * @phba: Pointer to HBA context object. 2308 * @hbqno: HBQ number. 2309 * 2310 * This function is called with hbalock held to get the next 2311 * available slot for the given HBQ. If there is free slot 2312 * available for the HBQ it will return pointer to the next available 2313 * HBQ entry else it will return NULL. 2314 **/ 2315 static struct lpfc_hbq_entry * 2316 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2317 { 2318 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2319 2320 lockdep_assert_held(&phba->hbalock); 2321 2322 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2323 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2324 hbqp->next_hbqPutIdx = 0; 2325 2326 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2327 uint32_t raw_index = phba->hbq_get[hbqno]; 2328 uint32_t getidx = le32_to_cpu(raw_index); 2329 2330 hbqp->local_hbqGetIdx = getidx; 2331 2332 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2334 "1802 HBQ %d: local_hbqGetIdx " 2335 "%u is > than hbqp->entry_count %u\n", 2336 hbqno, hbqp->local_hbqGetIdx, 2337 hbqp->entry_count); 2338 2339 phba->link_state = LPFC_HBA_ERROR; 2340 return NULL; 2341 } 2342 2343 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2344 return NULL; 2345 } 2346 2347 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2348 hbqp->hbqPutIdx; 2349 } 2350 2351 /** 2352 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2353 * @phba: Pointer to HBA context object. 2354 * 2355 * This function is called with no lock held to free all the 2356 * hbq buffers while uninitializing the SLI interface. It also 2357 * frees the HBQ buffers returned by the firmware but not yet 2358 * processed by the upper layers. 2359 **/ 2360 void 2361 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2362 { 2363 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2364 struct hbq_dmabuf *hbq_buf; 2365 unsigned long flags; 2366 int i, hbq_count; 2367 2368 hbq_count = lpfc_sli_hbq_count(); 2369 /* Return all memory used by all HBQs */ 2370 spin_lock_irqsave(&phba->hbalock, flags); 2371 for (i = 0; i < hbq_count; ++i) { 2372 list_for_each_entry_safe(dmabuf, next_dmabuf, 2373 &phba->hbqs[i].hbq_buffer_list, list) { 2374 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2375 list_del(&hbq_buf->dbuf.list); 2376 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2377 } 2378 phba->hbqs[i].buffer_count = 0; 2379 } 2380 2381 /* Mark the HBQs not in use */ 2382 phba->hbq_in_use = 0; 2383 spin_unlock_irqrestore(&phba->hbalock, flags); 2384 } 2385 2386 /** 2387 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2388 * @phba: Pointer to HBA context object. 2389 * @hbqno: HBQ number. 2390 * @hbq_buf: Pointer to HBQ buffer. 2391 * 2392 * This function is called with the hbalock held to post a 2393 * hbq buffer to the firmware. If the function finds an empty 2394 * slot in the HBQ, it will post the buffer. The function will return 2395 * pointer to the hbq entry if it successfully post the buffer 2396 * else it will return NULL. 2397 **/ 2398 static int 2399 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2400 struct hbq_dmabuf *hbq_buf) 2401 { 2402 lockdep_assert_held(&phba->hbalock); 2403 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2404 } 2405 2406 /** 2407 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2408 * @phba: Pointer to HBA context object. 2409 * @hbqno: HBQ number. 2410 * @hbq_buf: Pointer to HBQ buffer. 2411 * 2412 * This function is called with the hbalock held to post a hbq buffer to the 2413 * firmware. If the function finds an empty slot in the HBQ, it will post the 2414 * buffer and place it on the hbq_buffer_list. The function will return zero if 2415 * it successfully post the buffer else it will return an error. 2416 **/ 2417 static int 2418 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2419 struct hbq_dmabuf *hbq_buf) 2420 { 2421 struct lpfc_hbq_entry *hbqe; 2422 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2423 2424 lockdep_assert_held(&phba->hbalock); 2425 /* Get next HBQ entry slot to use */ 2426 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2427 if (hbqe) { 2428 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2429 2430 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2431 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2432 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2433 hbqe->bde.tus.f.bdeFlags = 0; 2434 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2435 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2436 /* Sync SLIM */ 2437 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2438 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2439 /* flush */ 2440 readl(phba->hbq_put + hbqno); 2441 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2442 return 0; 2443 } else 2444 return -ENOMEM; 2445 } 2446 2447 /** 2448 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2449 * @phba: Pointer to HBA context object. 2450 * @hbqno: HBQ number. 2451 * @hbq_buf: Pointer to HBQ buffer. 2452 * 2453 * This function is called with the hbalock held to post an RQE to the SLI4 2454 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2455 * the hbq_buffer_list and return zero, otherwise it will return an error. 2456 **/ 2457 static int 2458 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2459 struct hbq_dmabuf *hbq_buf) 2460 { 2461 int rc; 2462 struct lpfc_rqe hrqe; 2463 struct lpfc_rqe drqe; 2464 struct lpfc_queue *hrq; 2465 struct lpfc_queue *drq; 2466 2467 if (hbqno != LPFC_ELS_HBQ) 2468 return 1; 2469 hrq = phba->sli4_hba.hdr_rq; 2470 drq = phba->sli4_hba.dat_rq; 2471 2472 lockdep_assert_held(&phba->hbalock); 2473 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2474 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2475 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2476 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2477 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2478 if (rc < 0) 2479 return rc; 2480 hbq_buf->tag = (rc | (hbqno << 16)); 2481 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2482 return 0; 2483 } 2484 2485 /* HBQ for ELS and CT traffic. */ 2486 static struct lpfc_hbq_init lpfc_els_hbq = { 2487 .rn = 1, 2488 .entry_count = 256, 2489 .mask_count = 0, 2490 .profile = 0, 2491 .ring_mask = (1 << LPFC_ELS_RING), 2492 .buffer_count = 0, 2493 .init_count = 40, 2494 .add_count = 40, 2495 }; 2496 2497 /* Array of HBQs */ 2498 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2499 &lpfc_els_hbq, 2500 }; 2501 2502 /** 2503 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2504 * @phba: Pointer to HBA context object. 2505 * @hbqno: HBQ number. 2506 * @count: Number of HBQ buffers to be posted. 2507 * 2508 * This function is called with no lock held to post more hbq buffers to the 2509 * given HBQ. The function returns the number of HBQ buffers successfully 2510 * posted. 2511 **/ 2512 static int 2513 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2514 { 2515 uint32_t i, posted = 0; 2516 unsigned long flags; 2517 struct hbq_dmabuf *hbq_buffer; 2518 LIST_HEAD(hbq_buf_list); 2519 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2520 return 0; 2521 2522 if ((phba->hbqs[hbqno].buffer_count + count) > 2523 lpfc_hbq_defs[hbqno]->entry_count) 2524 count = lpfc_hbq_defs[hbqno]->entry_count - 2525 phba->hbqs[hbqno].buffer_count; 2526 if (!count) 2527 return 0; 2528 /* Allocate HBQ entries */ 2529 for (i = 0; i < count; i++) { 2530 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2531 if (!hbq_buffer) 2532 break; 2533 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2534 } 2535 /* Check whether HBQ is still in use */ 2536 spin_lock_irqsave(&phba->hbalock, flags); 2537 if (!phba->hbq_in_use) 2538 goto err; 2539 while (!list_empty(&hbq_buf_list)) { 2540 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2541 dbuf.list); 2542 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2543 (hbqno << 16)); 2544 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2545 phba->hbqs[hbqno].buffer_count++; 2546 posted++; 2547 } else 2548 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2549 } 2550 spin_unlock_irqrestore(&phba->hbalock, flags); 2551 return posted; 2552 err: 2553 spin_unlock_irqrestore(&phba->hbalock, flags); 2554 while (!list_empty(&hbq_buf_list)) { 2555 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2556 dbuf.list); 2557 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2558 } 2559 return 0; 2560 } 2561 2562 /** 2563 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2564 * @phba: Pointer to HBA context object. 2565 * @qno: HBQ number. 2566 * 2567 * This function posts more buffers to the HBQ. This function 2568 * is called with no lock held. The function returns the number of HBQ entries 2569 * successfully allocated. 2570 **/ 2571 int 2572 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2573 { 2574 if (phba->sli_rev == LPFC_SLI_REV4) 2575 return 0; 2576 else 2577 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2578 lpfc_hbq_defs[qno]->add_count); 2579 } 2580 2581 /** 2582 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2583 * @phba: Pointer to HBA context object. 2584 * @qno: HBQ queue number. 2585 * 2586 * This function is called from SLI initialization code path with 2587 * no lock held to post initial HBQ buffers to firmware. The 2588 * function returns the number of HBQ entries successfully allocated. 2589 **/ 2590 static int 2591 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2592 { 2593 if (phba->sli_rev == LPFC_SLI_REV4) 2594 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2595 lpfc_hbq_defs[qno]->entry_count); 2596 else 2597 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2598 lpfc_hbq_defs[qno]->init_count); 2599 } 2600 2601 /* 2602 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2603 * 2604 * This function removes the first hbq buffer on an hbq list and returns a 2605 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2606 **/ 2607 static struct hbq_dmabuf * 2608 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2609 { 2610 struct lpfc_dmabuf *d_buf; 2611 2612 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2613 if (!d_buf) 2614 return NULL; 2615 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2616 } 2617 2618 /** 2619 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2620 * @phba: Pointer to HBA context object. 2621 * @hrq: HBQ number. 2622 * 2623 * This function removes the first RQ buffer on an RQ buffer list and returns a 2624 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2625 **/ 2626 static struct rqb_dmabuf * 2627 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2628 { 2629 struct lpfc_dmabuf *h_buf; 2630 struct lpfc_rqb *rqbp; 2631 2632 rqbp = hrq->rqbp; 2633 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2634 struct lpfc_dmabuf, list); 2635 if (!h_buf) 2636 return NULL; 2637 rqbp->buffer_count--; 2638 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2639 } 2640 2641 /** 2642 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2643 * @phba: Pointer to HBA context object. 2644 * @tag: Tag of the hbq buffer. 2645 * 2646 * This function searches for the hbq buffer associated with the given tag in 2647 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2648 * otherwise it returns NULL. 2649 **/ 2650 static struct hbq_dmabuf * 2651 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2652 { 2653 struct lpfc_dmabuf *d_buf; 2654 struct hbq_dmabuf *hbq_buf; 2655 uint32_t hbqno; 2656 2657 hbqno = tag >> 16; 2658 if (hbqno >= LPFC_MAX_HBQS) 2659 return NULL; 2660 2661 spin_lock_irq(&phba->hbalock); 2662 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2663 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2664 if (hbq_buf->tag == tag) { 2665 spin_unlock_irq(&phba->hbalock); 2666 return hbq_buf; 2667 } 2668 } 2669 spin_unlock_irq(&phba->hbalock); 2670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2671 "1803 Bad hbq tag. Data: x%x x%x\n", 2672 tag, phba->hbqs[tag >> 16].buffer_count); 2673 return NULL; 2674 } 2675 2676 /** 2677 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2678 * @phba: Pointer to HBA context object. 2679 * @hbq_buffer: Pointer to HBQ buffer. 2680 * 2681 * This function is called with hbalock. This function gives back 2682 * the hbq buffer to firmware. If the HBQ does not have space to 2683 * post the buffer, it will free the buffer. 2684 **/ 2685 void 2686 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2687 { 2688 uint32_t hbqno; 2689 2690 if (hbq_buffer) { 2691 hbqno = hbq_buffer->tag >> 16; 2692 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2693 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2694 } 2695 } 2696 2697 /** 2698 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2699 * @mbxCommand: mailbox command code. 2700 * 2701 * This function is called by the mailbox event handler function to verify 2702 * that the completed mailbox command is a legitimate mailbox command. If the 2703 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2704 * and the mailbox event handler will take the HBA offline. 2705 **/ 2706 static int 2707 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2708 { 2709 uint8_t ret; 2710 2711 switch (mbxCommand) { 2712 case MBX_LOAD_SM: 2713 case MBX_READ_NV: 2714 case MBX_WRITE_NV: 2715 case MBX_WRITE_VPARMS: 2716 case MBX_RUN_BIU_DIAG: 2717 case MBX_INIT_LINK: 2718 case MBX_DOWN_LINK: 2719 case MBX_CONFIG_LINK: 2720 case MBX_CONFIG_RING: 2721 case MBX_RESET_RING: 2722 case MBX_READ_CONFIG: 2723 case MBX_READ_RCONFIG: 2724 case MBX_READ_SPARM: 2725 case MBX_READ_STATUS: 2726 case MBX_READ_RPI: 2727 case MBX_READ_XRI: 2728 case MBX_READ_REV: 2729 case MBX_READ_LNK_STAT: 2730 case MBX_REG_LOGIN: 2731 case MBX_UNREG_LOGIN: 2732 case MBX_CLEAR_LA: 2733 case MBX_DUMP_MEMORY: 2734 case MBX_DUMP_CONTEXT: 2735 case MBX_RUN_DIAGS: 2736 case MBX_RESTART: 2737 case MBX_UPDATE_CFG: 2738 case MBX_DOWN_LOAD: 2739 case MBX_DEL_LD_ENTRY: 2740 case MBX_RUN_PROGRAM: 2741 case MBX_SET_MASK: 2742 case MBX_SET_VARIABLE: 2743 case MBX_UNREG_D_ID: 2744 case MBX_KILL_BOARD: 2745 case MBX_CONFIG_FARP: 2746 case MBX_BEACON: 2747 case MBX_LOAD_AREA: 2748 case MBX_RUN_BIU_DIAG64: 2749 case MBX_CONFIG_PORT: 2750 case MBX_READ_SPARM64: 2751 case MBX_READ_RPI64: 2752 case MBX_REG_LOGIN64: 2753 case MBX_READ_TOPOLOGY: 2754 case MBX_WRITE_WWN: 2755 case MBX_SET_DEBUG: 2756 case MBX_LOAD_EXP_ROM: 2757 case MBX_ASYNCEVT_ENABLE: 2758 case MBX_REG_VPI: 2759 case MBX_UNREG_VPI: 2760 case MBX_HEARTBEAT: 2761 case MBX_PORT_CAPABILITIES: 2762 case MBX_PORT_IOV_CONTROL: 2763 case MBX_SLI4_CONFIG: 2764 case MBX_SLI4_REQ_FTRS: 2765 case MBX_REG_FCFI: 2766 case MBX_UNREG_FCFI: 2767 case MBX_REG_VFI: 2768 case MBX_UNREG_VFI: 2769 case MBX_INIT_VPI: 2770 case MBX_INIT_VFI: 2771 case MBX_RESUME_RPI: 2772 case MBX_READ_EVENT_LOG_STATUS: 2773 case MBX_READ_EVENT_LOG: 2774 case MBX_SECURITY_MGMT: 2775 case MBX_AUTH_PORT: 2776 case MBX_ACCESS_VDATA: 2777 ret = mbxCommand; 2778 break; 2779 default: 2780 ret = MBX_SHUTDOWN; 2781 break; 2782 } 2783 return ret; 2784 } 2785 2786 /** 2787 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2788 * @phba: Pointer to HBA context object. 2789 * @pmboxq: Pointer to mailbox command. 2790 * 2791 * This is completion handler function for mailbox commands issued from 2792 * lpfc_sli_issue_mbox_wait function. This function is called by the 2793 * mailbox event handler function with no lock held. This function 2794 * will wake up thread waiting on the wait queue pointed by context1 2795 * of the mailbox. 2796 **/ 2797 void 2798 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2799 { 2800 unsigned long drvr_flag; 2801 struct completion *pmbox_done; 2802 2803 /* 2804 * If pmbox_done is empty, the driver thread gave up waiting and 2805 * continued running. 2806 */ 2807 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2808 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2809 pmbox_done = (struct completion *)pmboxq->context3; 2810 if (pmbox_done) 2811 complete(pmbox_done); 2812 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2813 return; 2814 } 2815 2816 static void 2817 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2818 { 2819 unsigned long iflags; 2820 2821 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2822 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2823 spin_lock_irqsave(&ndlp->lock, iflags); 2824 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2825 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2826 spin_unlock_irqrestore(&ndlp->lock, iflags); 2827 } 2828 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2829 } 2830 2831 void 2832 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2833 { 2834 __lpfc_sli_rpi_release(vport, ndlp); 2835 } 2836 2837 /** 2838 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2839 * @phba: Pointer to HBA context object. 2840 * @pmb: Pointer to mailbox object. 2841 * 2842 * This function is the default mailbox completion handler. It 2843 * frees the memory resources associated with the completed mailbox 2844 * command. If the completed command is a REG_LOGIN mailbox command, 2845 * this function will issue a UREG_LOGIN to re-claim the RPI. 2846 **/ 2847 void 2848 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2849 { 2850 struct lpfc_vport *vport = pmb->vport; 2851 struct lpfc_dmabuf *mp; 2852 struct lpfc_nodelist *ndlp; 2853 struct Scsi_Host *shost; 2854 uint16_t rpi, vpi; 2855 int rc; 2856 2857 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2858 2859 if (mp) { 2860 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2861 kfree(mp); 2862 } 2863 2864 /* 2865 * If a REG_LOGIN succeeded after node is destroyed or node 2866 * is in re-discovery driver need to cleanup the RPI. 2867 */ 2868 if (!(phba->pport->load_flag & FC_UNLOADING) && 2869 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2870 !pmb->u.mb.mbxStatus) { 2871 rpi = pmb->u.mb.un.varWords[0]; 2872 vpi = pmb->u.mb.un.varRegLogin.vpi; 2873 if (phba->sli_rev == LPFC_SLI_REV4) 2874 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2875 lpfc_unreg_login(phba, vpi, rpi, pmb); 2876 pmb->vport = vport; 2877 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2878 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2879 if (rc != MBX_NOT_FINISHED) 2880 return; 2881 } 2882 2883 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2884 !(phba->pport->load_flag & FC_UNLOADING) && 2885 !pmb->u.mb.mbxStatus) { 2886 shost = lpfc_shost_from_vport(vport); 2887 spin_lock_irq(shost->host_lock); 2888 vport->vpi_state |= LPFC_VPI_REGISTERED; 2889 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2890 spin_unlock_irq(shost->host_lock); 2891 } 2892 2893 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2894 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2895 lpfc_nlp_put(ndlp); 2896 pmb->ctx_buf = NULL; 2897 pmb->ctx_ndlp = NULL; 2898 } 2899 2900 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2901 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2902 2903 /* Check to see if there are any deferred events to process */ 2904 if (ndlp) { 2905 lpfc_printf_vlog( 2906 vport, 2907 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2908 "1438 UNREG cmpl deferred mbox x%x " 2909 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2910 ndlp->nlp_rpi, ndlp->nlp_DID, 2911 ndlp->nlp_flag, ndlp->nlp_defer_did, 2912 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2913 2914 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2915 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2916 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2917 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2918 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2919 } else { 2920 __lpfc_sli_rpi_release(vport, ndlp); 2921 } 2922 2923 /* The unreg_login mailbox is complete and had a 2924 * reference that has to be released. The PLOGI 2925 * got its own ref. 2926 */ 2927 lpfc_nlp_put(ndlp); 2928 pmb->ctx_ndlp = NULL; 2929 } 2930 } 2931 2932 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2933 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2934 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2935 lpfc_nlp_put(ndlp); 2936 } 2937 2938 /* Check security permission status on INIT_LINK mailbox command */ 2939 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2940 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2942 "2860 SLI authentication is required " 2943 "for INIT_LINK but has not done yet\n"); 2944 2945 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2946 lpfc_sli4_mbox_cmd_free(phba, pmb); 2947 else 2948 mempool_free(pmb, phba->mbox_mem_pool); 2949 } 2950 /** 2951 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2952 * @phba: Pointer to HBA context object. 2953 * @pmb: Pointer to mailbox object. 2954 * 2955 * This function is the unreg rpi mailbox completion handler. It 2956 * frees the memory resources associated with the completed mailbox 2957 * command. An additional reference is put on the ndlp to prevent 2958 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2959 * the unreg mailbox command completes, this routine puts the 2960 * reference back. 2961 * 2962 **/ 2963 void 2964 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2965 { 2966 struct lpfc_vport *vport = pmb->vport; 2967 struct lpfc_nodelist *ndlp; 2968 2969 ndlp = pmb->ctx_ndlp; 2970 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2971 if (phba->sli_rev == LPFC_SLI_REV4 && 2972 (bf_get(lpfc_sli_intf_if_type, 2973 &phba->sli4_hba.sli_intf) >= 2974 LPFC_SLI_INTF_IF_TYPE_2)) { 2975 if (ndlp) { 2976 lpfc_printf_vlog( 2977 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2978 "0010 UNREG_LOGIN vpi:%x " 2979 "rpi:%x DID:%x defer x%x flg x%x " 2980 "x%px\n", 2981 vport->vpi, ndlp->nlp_rpi, 2982 ndlp->nlp_DID, ndlp->nlp_defer_did, 2983 ndlp->nlp_flag, 2984 ndlp); 2985 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2986 2987 /* Check to see if there are any deferred 2988 * events to process 2989 */ 2990 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2991 (ndlp->nlp_defer_did != 2992 NLP_EVT_NOTHING_PENDING)) { 2993 lpfc_printf_vlog( 2994 vport, KERN_INFO, LOG_DISCOVERY, 2995 "4111 UNREG cmpl deferred " 2996 "clr x%x on " 2997 "NPort x%x Data: x%x x%px\n", 2998 ndlp->nlp_rpi, ndlp->nlp_DID, 2999 ndlp->nlp_defer_did, ndlp); 3000 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3001 ndlp->nlp_defer_did = 3002 NLP_EVT_NOTHING_PENDING; 3003 lpfc_issue_els_plogi( 3004 vport, ndlp->nlp_DID, 0); 3005 } else { 3006 __lpfc_sli_rpi_release(vport, ndlp); 3007 } 3008 lpfc_nlp_put(ndlp); 3009 } 3010 } 3011 } 3012 3013 mempool_free(pmb, phba->mbox_mem_pool); 3014 } 3015 3016 /** 3017 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3018 * @phba: Pointer to HBA context object. 3019 * 3020 * This function is called with no lock held. This function processes all 3021 * the completed mailbox commands and gives it to upper layers. The interrupt 3022 * service routine processes mailbox completion interrupt and adds completed 3023 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3024 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3025 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3026 * function returns the mailbox commands to the upper layer by calling the 3027 * completion handler function of each mailbox. 3028 **/ 3029 int 3030 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3031 { 3032 MAILBOX_t *pmbox; 3033 LPFC_MBOXQ_t *pmb; 3034 int rc; 3035 LIST_HEAD(cmplq); 3036 3037 phba->sli.slistat.mbox_event++; 3038 3039 /* Get all completed mailboxe buffers into the cmplq */ 3040 spin_lock_irq(&phba->hbalock); 3041 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3042 spin_unlock_irq(&phba->hbalock); 3043 3044 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3045 do { 3046 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3047 if (pmb == NULL) 3048 break; 3049 3050 pmbox = &pmb->u.mb; 3051 3052 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3053 if (pmb->vport) { 3054 lpfc_debugfs_disc_trc(pmb->vport, 3055 LPFC_DISC_TRC_MBOX_VPORT, 3056 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3057 (uint32_t)pmbox->mbxCommand, 3058 pmbox->un.varWords[0], 3059 pmbox->un.varWords[1]); 3060 } 3061 else { 3062 lpfc_debugfs_disc_trc(phba->pport, 3063 LPFC_DISC_TRC_MBOX, 3064 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3065 (uint32_t)pmbox->mbxCommand, 3066 pmbox->un.varWords[0], 3067 pmbox->un.varWords[1]); 3068 } 3069 } 3070 3071 /* 3072 * It is a fatal error if unknown mbox command completion. 3073 */ 3074 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3075 MBX_SHUTDOWN) { 3076 /* Unknown mailbox command compl */ 3077 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3078 "(%d):0323 Unknown Mailbox command " 3079 "x%x (x%x/x%x) Cmpl\n", 3080 pmb->vport ? pmb->vport->vpi : 3081 LPFC_VPORT_UNKNOWN, 3082 pmbox->mbxCommand, 3083 lpfc_sli_config_mbox_subsys_get(phba, 3084 pmb), 3085 lpfc_sli_config_mbox_opcode_get(phba, 3086 pmb)); 3087 phba->link_state = LPFC_HBA_ERROR; 3088 phba->work_hs = HS_FFER3; 3089 lpfc_handle_eratt(phba); 3090 continue; 3091 } 3092 3093 if (pmbox->mbxStatus) { 3094 phba->sli.slistat.mbox_stat_err++; 3095 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3096 /* Mbox cmd cmpl error - RETRYing */ 3097 lpfc_printf_log(phba, KERN_INFO, 3098 LOG_MBOX | LOG_SLI, 3099 "(%d):0305 Mbox cmd cmpl " 3100 "error - RETRYing Data: x%x " 3101 "(x%x/x%x) x%x x%x x%x\n", 3102 pmb->vport ? pmb->vport->vpi : 3103 LPFC_VPORT_UNKNOWN, 3104 pmbox->mbxCommand, 3105 lpfc_sli_config_mbox_subsys_get(phba, 3106 pmb), 3107 lpfc_sli_config_mbox_opcode_get(phba, 3108 pmb), 3109 pmbox->mbxStatus, 3110 pmbox->un.varWords[0], 3111 pmb->vport ? pmb->vport->port_state : 3112 LPFC_VPORT_UNKNOWN); 3113 pmbox->mbxStatus = 0; 3114 pmbox->mbxOwner = OWN_HOST; 3115 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3116 if (rc != MBX_NOT_FINISHED) 3117 continue; 3118 } 3119 } 3120 3121 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3122 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3123 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3124 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3125 "x%x x%x x%x\n", 3126 pmb->vport ? pmb->vport->vpi : 0, 3127 pmbox->mbxCommand, 3128 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3129 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3130 pmb->mbox_cmpl, 3131 *((uint32_t *) pmbox), 3132 pmbox->un.varWords[0], 3133 pmbox->un.varWords[1], 3134 pmbox->un.varWords[2], 3135 pmbox->un.varWords[3], 3136 pmbox->un.varWords[4], 3137 pmbox->un.varWords[5], 3138 pmbox->un.varWords[6], 3139 pmbox->un.varWords[7], 3140 pmbox->un.varWords[8], 3141 pmbox->un.varWords[9], 3142 pmbox->un.varWords[10]); 3143 3144 if (pmb->mbox_cmpl) 3145 pmb->mbox_cmpl(phba,pmb); 3146 } while (1); 3147 return 0; 3148 } 3149 3150 /** 3151 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3152 * @phba: Pointer to HBA context object. 3153 * @pring: Pointer to driver SLI ring object. 3154 * @tag: buffer tag. 3155 * 3156 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3157 * is set in the tag the buffer is posted for a particular exchange, 3158 * the function will return the buffer without replacing the buffer. 3159 * If the buffer is for unsolicited ELS or CT traffic, this function 3160 * returns the buffer and also posts another buffer to the firmware. 3161 **/ 3162 static struct lpfc_dmabuf * 3163 lpfc_sli_get_buff(struct lpfc_hba *phba, 3164 struct lpfc_sli_ring *pring, 3165 uint32_t tag) 3166 { 3167 struct hbq_dmabuf *hbq_entry; 3168 3169 if (tag & QUE_BUFTAG_BIT) 3170 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3171 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3172 if (!hbq_entry) 3173 return NULL; 3174 return &hbq_entry->dbuf; 3175 } 3176 3177 /** 3178 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3179 * containing a NVME LS request. 3180 * @phba: pointer to lpfc hba data structure. 3181 * @piocb: pointer to the iocbq struct representing the sequence starting 3182 * frame. 3183 * 3184 * This routine initially validates the NVME LS, validates there is a login 3185 * with the port that sent the LS, and then calls the appropriate nvme host 3186 * or target LS request handler. 3187 **/ 3188 static void 3189 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3190 { 3191 struct lpfc_nodelist *ndlp; 3192 struct lpfc_dmabuf *d_buf; 3193 struct hbq_dmabuf *nvmebuf; 3194 struct fc_frame_header *fc_hdr; 3195 struct lpfc_async_xchg_ctx *axchg = NULL; 3196 char *failwhy = NULL; 3197 uint32_t oxid, sid, did, fctl, size; 3198 int ret = 1; 3199 3200 d_buf = piocb->context2; 3201 3202 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3203 fc_hdr = nvmebuf->hbuf.virt; 3204 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3205 sid = sli4_sid_from_fc_hdr(fc_hdr); 3206 did = sli4_did_from_fc_hdr(fc_hdr); 3207 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3208 fc_hdr->fh_f_ctl[1] << 8 | 3209 fc_hdr->fh_f_ctl[2]); 3210 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3211 3212 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3213 oxid, size, sid); 3214 3215 if (phba->pport->load_flag & FC_UNLOADING) { 3216 failwhy = "Driver Unloading"; 3217 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3218 failwhy = "NVME FC4 Disabled"; 3219 } else if (!phba->nvmet_support && !phba->pport->localport) { 3220 failwhy = "No Localport"; 3221 } else if (phba->nvmet_support && !phba->targetport) { 3222 failwhy = "No Targetport"; 3223 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3224 failwhy = "Bad NVME LS R_CTL"; 3225 } else if (unlikely((fctl & 0x00FF0000) != 3226 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3227 failwhy = "Bad NVME LS F_CTL"; 3228 } else { 3229 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3230 if (!axchg) 3231 failwhy = "No CTX memory"; 3232 } 3233 3234 if (unlikely(failwhy)) { 3235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3236 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3237 sid, oxid, failwhy); 3238 goto out_fail; 3239 } 3240 3241 /* validate the source of the LS is logged in */ 3242 ndlp = lpfc_findnode_did(phba->pport, sid); 3243 if (!ndlp || 3244 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3245 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3246 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3247 "6216 NVME Unsol rcv: No ndlp: " 3248 "NPort_ID x%x oxid x%x\n", 3249 sid, oxid); 3250 goto out_fail; 3251 } 3252 3253 axchg->phba = phba; 3254 axchg->ndlp = ndlp; 3255 axchg->size = size; 3256 axchg->oxid = oxid; 3257 axchg->sid = sid; 3258 axchg->wqeq = NULL; 3259 axchg->state = LPFC_NVME_STE_LS_RCV; 3260 axchg->entry_cnt = 1; 3261 axchg->rqb_buffer = (void *)nvmebuf; 3262 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3263 axchg->payload = nvmebuf->dbuf.virt; 3264 INIT_LIST_HEAD(&axchg->list); 3265 3266 if (phba->nvmet_support) { 3267 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3268 spin_lock_irq(&ndlp->lock); 3269 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3270 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3271 spin_unlock_irq(&ndlp->lock); 3272 3273 /* This reference is a single occurrence to hold the 3274 * node valid until the nvmet transport calls 3275 * host_release. 3276 */ 3277 if (!lpfc_nlp_get(ndlp)) 3278 goto out_fail; 3279 3280 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3281 "6206 NVMET unsol ls_req ndlp x%px " 3282 "DID x%x xflags x%x refcnt %d\n", 3283 ndlp, ndlp->nlp_DID, 3284 ndlp->fc4_xpt_flags, 3285 kref_read(&ndlp->kref)); 3286 } else { 3287 spin_unlock_irq(&ndlp->lock); 3288 } 3289 } else { 3290 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3291 } 3292 3293 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3294 if (!ret) 3295 return; 3296 3297 out_fail: 3298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3299 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3300 "NVMe%s handler failed %d\n", 3301 did, sid, oxid, 3302 (phba->nvmet_support) ? "T" : "I", ret); 3303 3304 /* recycle receive buffer */ 3305 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3306 3307 /* If start of new exchange, abort it */ 3308 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3309 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3310 3311 if (ret) 3312 kfree(axchg); 3313 } 3314 3315 /** 3316 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3317 * @phba: Pointer to HBA context object. 3318 * @pring: Pointer to driver SLI ring object. 3319 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3320 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3321 * @fch_type: the type for the first frame of the sequence. 3322 * 3323 * This function is called with no lock held. This function uses the r_ctl and 3324 * type of the received sequence to find the correct callback function to call 3325 * to process the sequence. 3326 **/ 3327 static int 3328 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3329 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3330 uint32_t fch_type) 3331 { 3332 int i; 3333 3334 switch (fch_type) { 3335 case FC_TYPE_NVME: 3336 lpfc_nvme_unsol_ls_handler(phba, saveq); 3337 return 1; 3338 default: 3339 break; 3340 } 3341 3342 /* unSolicited Responses */ 3343 if (pring->prt[0].profile) { 3344 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3345 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3346 saveq); 3347 return 1; 3348 } 3349 /* We must search, based on rctl / type 3350 for the right routine */ 3351 for (i = 0; i < pring->num_mask; i++) { 3352 if ((pring->prt[i].rctl == fch_r_ctl) && 3353 (pring->prt[i].type == fch_type)) { 3354 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3355 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3356 (phba, pring, saveq); 3357 return 1; 3358 } 3359 } 3360 return 0; 3361 } 3362 3363 static void 3364 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3365 struct lpfc_iocbq *saveq) 3366 { 3367 IOCB_t *irsp; 3368 union lpfc_wqe128 *wqe; 3369 u16 i = 0; 3370 3371 irsp = &saveq->iocb; 3372 wqe = &saveq->wqe; 3373 3374 /* Fill wcqe with the IOCB status fields */ 3375 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3376 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3377 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3378 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3379 3380 /* Source ID */ 3381 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3382 3383 /* rx-id of the response frame */ 3384 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3385 3386 /* ox-id of the frame */ 3387 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3388 irsp->unsli3.rcvsli3.ox_id); 3389 3390 /* DID */ 3391 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3392 irsp->un.rcvels.remoteID); 3393 3394 /* unsol data len */ 3395 for (i = 0; i < irsp->ulpBdeCount; i++) { 3396 struct lpfc_hbq_entry *hbqe = NULL; 3397 3398 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3399 if (i == 0) { 3400 hbqe = (struct lpfc_hbq_entry *) 3401 &irsp->un.ulpWord[0]; 3402 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3403 hbqe->bde.tus.f.bdeSize; 3404 } else if (i == 1) { 3405 hbqe = (struct lpfc_hbq_entry *) 3406 &irsp->unsli3.sli3Words[4]; 3407 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3408 } 3409 } 3410 } 3411 } 3412 3413 /** 3414 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3415 * @phba: Pointer to HBA context object. 3416 * @pring: Pointer to driver SLI ring object. 3417 * @saveq: Pointer to the unsolicited iocb. 3418 * 3419 * This function is called with no lock held by the ring event handler 3420 * when there is an unsolicited iocb posted to the response ring by the 3421 * firmware. This function gets the buffer associated with the iocbs 3422 * and calls the event handler for the ring. This function handles both 3423 * qring buffers and hbq buffers. 3424 * When the function returns 1 the caller can free the iocb object otherwise 3425 * upper layer functions will free the iocb objects. 3426 **/ 3427 static int 3428 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3429 struct lpfc_iocbq *saveq) 3430 { 3431 IOCB_t * irsp; 3432 WORD5 * w5p; 3433 dma_addr_t paddr; 3434 uint32_t Rctl, Type; 3435 struct lpfc_iocbq *iocbq; 3436 struct lpfc_dmabuf *dmzbuf; 3437 3438 irsp = &saveq->iocb; 3439 saveq->vport = phba->pport; 3440 3441 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3442 if (pring->lpfc_sli_rcv_async_status) 3443 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3444 else 3445 lpfc_printf_log(phba, 3446 KERN_WARNING, 3447 LOG_SLI, 3448 "0316 Ring %d handler: unexpected " 3449 "ASYNC_STATUS iocb received evt_code " 3450 "0x%x\n", 3451 pring->ringno, 3452 irsp->un.asyncstat.evt_code); 3453 return 1; 3454 } 3455 3456 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3457 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3458 if (irsp->ulpBdeCount > 0) { 3459 dmzbuf = lpfc_sli_get_buff(phba, pring, 3460 irsp->un.ulpWord[3]); 3461 lpfc_in_buf_free(phba, dmzbuf); 3462 } 3463 3464 if (irsp->ulpBdeCount > 1) { 3465 dmzbuf = lpfc_sli_get_buff(phba, pring, 3466 irsp->unsli3.sli3Words[3]); 3467 lpfc_in_buf_free(phba, dmzbuf); 3468 } 3469 3470 if (irsp->ulpBdeCount > 2) { 3471 dmzbuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->unsli3.sli3Words[7]); 3473 lpfc_in_buf_free(phba, dmzbuf); 3474 } 3475 3476 return 1; 3477 } 3478 3479 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3480 if (irsp->ulpBdeCount != 0) { 3481 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3482 irsp->un.ulpWord[3]); 3483 if (!saveq->context2) 3484 lpfc_printf_log(phba, 3485 KERN_ERR, 3486 LOG_SLI, 3487 "0341 Ring %d Cannot find buffer for " 3488 "an unsolicited iocb. tag 0x%x\n", 3489 pring->ringno, 3490 irsp->un.ulpWord[3]); 3491 } 3492 if (irsp->ulpBdeCount == 2) { 3493 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3494 irsp->unsli3.sli3Words[7]); 3495 if (!saveq->context3) 3496 lpfc_printf_log(phba, 3497 KERN_ERR, 3498 LOG_SLI, 3499 "0342 Ring %d Cannot find buffer for an" 3500 " unsolicited iocb. tag 0x%x\n", 3501 pring->ringno, 3502 irsp->unsli3.sli3Words[7]); 3503 } 3504 list_for_each_entry(iocbq, &saveq->list, list) { 3505 irsp = &iocbq->iocb; 3506 if (irsp->ulpBdeCount != 0) { 3507 iocbq->context2 = lpfc_sli_get_buff(phba, 3508 pring, 3509 irsp->un.ulpWord[3]); 3510 if (!iocbq->context2) 3511 lpfc_printf_log(phba, 3512 KERN_ERR, 3513 LOG_SLI, 3514 "0343 Ring %d Cannot find " 3515 "buffer for an unsolicited iocb" 3516 ". tag 0x%x\n", pring->ringno, 3517 irsp->un.ulpWord[3]); 3518 } 3519 if (irsp->ulpBdeCount == 2) { 3520 iocbq->context3 = lpfc_sli_get_buff(phba, 3521 pring, 3522 irsp->unsli3.sli3Words[7]); 3523 if (!iocbq->context3) 3524 lpfc_printf_log(phba, 3525 KERN_ERR, 3526 LOG_SLI, 3527 "0344 Ring %d Cannot find " 3528 "buffer for an unsolicited " 3529 "iocb. tag 0x%x\n", 3530 pring->ringno, 3531 irsp->unsli3.sli3Words[7]); 3532 } 3533 } 3534 } else { 3535 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3536 irsp->un.cont64[0].addrLow); 3537 saveq->context2 = lpfc_sli_ringpostbuf_get(phba, pring, 3538 paddr); 3539 if (irsp->ulpBdeCount == 2) { 3540 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3541 irsp->un.cont64[1].addrLow); 3542 saveq->context3 = lpfc_sli_ringpostbuf_get(phba, 3543 pring, 3544 paddr); 3545 } 3546 } 3547 3548 if (irsp->ulpBdeCount != 0 && 3549 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3550 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3551 int found = 0; 3552 3553 /* search continue save q for same XRI */ 3554 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3555 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3556 saveq->iocb.unsli3.rcvsli3.ox_id) { 3557 list_add_tail(&saveq->list, &iocbq->list); 3558 found = 1; 3559 break; 3560 } 3561 } 3562 if (!found) 3563 list_add_tail(&saveq->clist, 3564 &pring->iocb_continue_saveq); 3565 3566 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3567 list_del_init(&iocbq->clist); 3568 saveq = iocbq; 3569 irsp = &saveq->iocb; 3570 } else { 3571 return 0; 3572 } 3573 } 3574 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3575 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3576 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3577 Rctl = FC_RCTL_ELS_REQ; 3578 Type = FC_TYPE_ELS; 3579 } else { 3580 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3581 Rctl = w5p->hcsw.Rctl; 3582 Type = w5p->hcsw.Type; 3583 3584 /* Firmware Workaround */ 3585 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3586 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3587 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3588 Rctl = FC_RCTL_ELS_REQ; 3589 Type = FC_TYPE_ELS; 3590 w5p->hcsw.Rctl = Rctl; 3591 w5p->hcsw.Type = Type; 3592 } 3593 } 3594 3595 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3596 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3597 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3598 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3599 saveq->vport = phba->pport; 3600 else 3601 saveq->vport = lpfc_find_vport_by_vpid(phba, 3602 irsp->unsli3.rcvsli3.vpi); 3603 } 3604 3605 /* Prepare WQE with Unsol frame */ 3606 lpfc_sli_prep_unsol_wqe(phba, saveq); 3607 3608 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3609 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3610 "0313 Ring %d handler: unexpected Rctl x%x " 3611 "Type x%x received\n", 3612 pring->ringno, Rctl, Type); 3613 3614 return 1; 3615 } 3616 3617 /** 3618 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3619 * @phba: Pointer to HBA context object. 3620 * @pring: Pointer to driver SLI ring object. 3621 * @prspiocb: Pointer to response iocb object. 3622 * 3623 * This function looks up the iocb_lookup table to get the command iocb 3624 * corresponding to the given response iocb using the iotag of the 3625 * response iocb. The driver calls this function with the hbalock held 3626 * for SLI3 ports or the ring lock held for SLI4 ports. 3627 * This function returns the command iocb object if it finds the command 3628 * iocb else returns NULL. 3629 **/ 3630 static struct lpfc_iocbq * 3631 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3632 struct lpfc_sli_ring *pring, 3633 struct lpfc_iocbq *prspiocb) 3634 { 3635 struct lpfc_iocbq *cmd_iocb = NULL; 3636 u16 iotag; 3637 3638 if (phba->sli_rev == LPFC_SLI_REV4) 3639 iotag = get_wqe_reqtag(prspiocb); 3640 else 3641 iotag = prspiocb->iocb.ulpIoTag; 3642 3643 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3644 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3645 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3646 /* remove from txcmpl queue list */ 3647 list_del_init(&cmd_iocb->list); 3648 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3649 pring->txcmplq_cnt--; 3650 return cmd_iocb; 3651 } 3652 } 3653 3654 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3655 "0317 iotag x%x is out of " 3656 "range: max iotag x%x\n", 3657 iotag, phba->sli.last_iotag); 3658 return NULL; 3659 } 3660 3661 /** 3662 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3663 * @phba: Pointer to HBA context object. 3664 * @pring: Pointer to driver SLI ring object. 3665 * @iotag: IOCB tag. 3666 * 3667 * This function looks up the iocb_lookup table to get the command iocb 3668 * corresponding to the given iotag. The driver calls this function with 3669 * the ring lock held because this function is an SLI4 port only helper. 3670 * This function returns the command iocb object if it finds the command 3671 * iocb else returns NULL. 3672 **/ 3673 static struct lpfc_iocbq * 3674 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3675 struct lpfc_sli_ring *pring, uint16_t iotag) 3676 { 3677 struct lpfc_iocbq *cmd_iocb = NULL; 3678 3679 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3680 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3681 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3682 /* remove from txcmpl queue list */ 3683 list_del_init(&cmd_iocb->list); 3684 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3685 pring->txcmplq_cnt--; 3686 return cmd_iocb; 3687 } 3688 } 3689 3690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3691 "0372 iotag x%x lookup error: max iotag (x%x) " 3692 "cmd_flag x%x\n", 3693 iotag, phba->sli.last_iotag, 3694 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3695 return NULL; 3696 } 3697 3698 /** 3699 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3700 * @phba: Pointer to HBA context object. 3701 * @pring: Pointer to driver SLI ring object. 3702 * @saveq: Pointer to the response iocb to be processed. 3703 * 3704 * This function is called by the ring event handler for non-fcp 3705 * rings when there is a new response iocb in the response ring. 3706 * The caller is not required to hold any locks. This function 3707 * gets the command iocb associated with the response iocb and 3708 * calls the completion handler for the command iocb. If there 3709 * is no completion handler, the function will free the resources 3710 * associated with command iocb. If the response iocb is for 3711 * an already aborted command iocb, the status of the completion 3712 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3713 * This function always returns 1. 3714 **/ 3715 static int 3716 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3717 struct lpfc_iocbq *saveq) 3718 { 3719 struct lpfc_iocbq *cmdiocbp; 3720 int rc = 1; 3721 unsigned long iflag; 3722 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3723 3724 if (phba->sli_rev == LPFC_SLI_REV4) 3725 spin_lock_irqsave(&pring->ring_lock, iflag); 3726 else 3727 spin_lock_irqsave(&phba->hbalock, iflag); 3728 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3729 if (phba->sli_rev == LPFC_SLI_REV4) 3730 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3731 else 3732 spin_unlock_irqrestore(&phba->hbalock, iflag); 3733 3734 ulp_command = get_job_cmnd(phba, saveq); 3735 ulp_status = get_job_ulpstatus(phba, saveq); 3736 ulp_word4 = get_job_word4(phba, saveq); 3737 ulp_context = get_job_ulpcontext(phba, saveq); 3738 if (phba->sli_rev == LPFC_SLI_REV4) 3739 iotag = get_wqe_reqtag(saveq); 3740 else 3741 iotag = saveq->iocb.ulpIoTag; 3742 3743 if (cmdiocbp) { 3744 ulp_command = get_job_cmnd(phba, cmdiocbp); 3745 if (cmdiocbp->cmd_cmpl) { 3746 /* 3747 * If an ELS command failed send an event to mgmt 3748 * application. 3749 */ 3750 if (ulp_status && 3751 (pring->ringno == LPFC_ELS_RING) && 3752 (ulp_command == CMD_ELS_REQUEST64_CR)) 3753 lpfc_send_els_failure_event(phba, 3754 cmdiocbp, saveq); 3755 3756 /* 3757 * Post all ELS completions to the worker thread. 3758 * All other are passed to the completion callback. 3759 */ 3760 if (pring->ringno == LPFC_ELS_RING) { 3761 if ((phba->sli_rev < LPFC_SLI_REV4) && 3762 (cmdiocbp->cmd_flag & 3763 LPFC_DRIVER_ABORTED)) { 3764 spin_lock_irqsave(&phba->hbalock, 3765 iflag); 3766 cmdiocbp->cmd_flag &= 3767 ~LPFC_DRIVER_ABORTED; 3768 spin_unlock_irqrestore(&phba->hbalock, 3769 iflag); 3770 saveq->iocb.ulpStatus = 3771 IOSTAT_LOCAL_REJECT; 3772 saveq->iocb.un.ulpWord[4] = 3773 IOERR_SLI_ABORTED; 3774 3775 /* Firmware could still be in progress 3776 * of DMAing payload, so don't free data 3777 * buffer till after a hbeat. 3778 */ 3779 spin_lock_irqsave(&phba->hbalock, 3780 iflag); 3781 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3782 spin_unlock_irqrestore(&phba->hbalock, 3783 iflag); 3784 } 3785 if (phba->sli_rev == LPFC_SLI_REV4) { 3786 if (saveq->cmd_flag & 3787 LPFC_EXCHANGE_BUSY) { 3788 /* Set cmdiocb flag for the 3789 * exchange busy so sgl (xri) 3790 * will not be released until 3791 * the abort xri is received 3792 * from hba. 3793 */ 3794 spin_lock_irqsave( 3795 &phba->hbalock, iflag); 3796 cmdiocbp->cmd_flag |= 3797 LPFC_EXCHANGE_BUSY; 3798 spin_unlock_irqrestore( 3799 &phba->hbalock, iflag); 3800 } 3801 if (cmdiocbp->cmd_flag & 3802 LPFC_DRIVER_ABORTED) { 3803 /* 3804 * Clear LPFC_DRIVER_ABORTED 3805 * bit in case it was driver 3806 * initiated abort. 3807 */ 3808 spin_lock_irqsave( 3809 &phba->hbalock, iflag); 3810 cmdiocbp->cmd_flag &= 3811 ~LPFC_DRIVER_ABORTED; 3812 spin_unlock_irqrestore( 3813 &phba->hbalock, iflag); 3814 set_job_ulpstatus(cmdiocbp, 3815 IOSTAT_LOCAL_REJECT); 3816 set_job_ulpword4(cmdiocbp, 3817 IOERR_ABORT_REQUESTED); 3818 /* 3819 * For SLI4, irsiocb contains 3820 * NO_XRI in sli_xritag, it 3821 * shall not affect releasing 3822 * sgl (xri) process. 3823 */ 3824 set_job_ulpstatus(saveq, 3825 IOSTAT_LOCAL_REJECT); 3826 set_job_ulpword4(saveq, 3827 IOERR_SLI_ABORTED); 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 saveq->cmd_flag |= 3831 LPFC_DELAY_MEM_FREE; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 } 3835 } 3836 } 3837 (cmdiocbp->cmd_cmpl) (phba, cmdiocbp, saveq); 3838 } else 3839 lpfc_sli_release_iocbq(phba, cmdiocbp); 3840 } else { 3841 /* 3842 * Unknown initiating command based on the response iotag. 3843 * This could be the case on the ELS ring because of 3844 * lpfc_els_abort(). 3845 */ 3846 if (pring->ringno != LPFC_ELS_RING) { 3847 /* 3848 * Ring <ringno> handler: unexpected completion IoTag 3849 * <IoTag> 3850 */ 3851 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3852 "0322 Ring %d handler: " 3853 "unexpected completion IoTag x%x " 3854 "Data: x%x x%x x%x x%x\n", 3855 pring->ringno, iotag, ulp_status, 3856 ulp_word4, ulp_command, ulp_context); 3857 } 3858 } 3859 3860 return rc; 3861 } 3862 3863 /** 3864 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3865 * @phba: Pointer to HBA context object. 3866 * @pring: Pointer to driver SLI ring object. 3867 * 3868 * This function is called from the iocb ring event handlers when 3869 * put pointer is ahead of the get pointer for a ring. This function signal 3870 * an error attention condition to the worker thread and the worker 3871 * thread will transition the HBA to offline state. 3872 **/ 3873 static void 3874 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3875 { 3876 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3877 /* 3878 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3879 * rsp ring <portRspMax> 3880 */ 3881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3882 "0312 Ring %d handler: portRspPut %d " 3883 "is bigger than rsp ring %d\n", 3884 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3885 pring->sli.sli3.numRiocb); 3886 3887 phba->link_state = LPFC_HBA_ERROR; 3888 3889 /* 3890 * All error attention handlers are posted to 3891 * worker thread 3892 */ 3893 phba->work_ha |= HA_ERATT; 3894 phba->work_hs = HS_FFER3; 3895 3896 lpfc_worker_wake_up(phba); 3897 3898 return; 3899 } 3900 3901 /** 3902 * lpfc_poll_eratt - Error attention polling timer timeout handler 3903 * @t: Context to fetch pointer to address of HBA context object from. 3904 * 3905 * This function is invoked by the Error Attention polling timer when the 3906 * timer times out. It will check the SLI Error Attention register for 3907 * possible attention events. If so, it will post an Error Attention event 3908 * and wake up worker thread to process it. Otherwise, it will set up the 3909 * Error Attention polling timer for the next poll. 3910 **/ 3911 void lpfc_poll_eratt(struct timer_list *t) 3912 { 3913 struct lpfc_hba *phba; 3914 uint32_t eratt = 0; 3915 uint64_t sli_intr, cnt; 3916 3917 phba = from_timer(phba, t, eratt_poll); 3918 3919 /* Here we will also keep track of interrupts per sec of the hba */ 3920 sli_intr = phba->sli.slistat.sli_intr; 3921 3922 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3923 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3924 sli_intr); 3925 else 3926 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3927 3928 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3929 do_div(cnt, phba->eratt_poll_interval); 3930 phba->sli.slistat.sli_ips = cnt; 3931 3932 phba->sli.slistat.sli_prev_intr = sli_intr; 3933 3934 /* Check chip HA register for error event */ 3935 eratt = lpfc_sli_check_eratt(phba); 3936 3937 if (eratt) 3938 /* Tell the worker thread there is work to do */ 3939 lpfc_worker_wake_up(phba); 3940 else 3941 /* Restart the timer for next eratt poll */ 3942 mod_timer(&phba->eratt_poll, 3943 jiffies + 3944 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3945 return; 3946 } 3947 3948 3949 /** 3950 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3951 * @phba: Pointer to HBA context object. 3952 * @pring: Pointer to driver SLI ring object. 3953 * @mask: Host attention register mask for this ring. 3954 * 3955 * This function is called from the interrupt context when there is a ring 3956 * event for the fcp ring. The caller does not hold any lock. 3957 * The function processes each response iocb in the response ring until it 3958 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3959 * LE bit set. The function will call the completion handler of the command iocb 3960 * if the response iocb indicates a completion for a command iocb or it is 3961 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3962 * function if this is an unsolicited iocb. 3963 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3964 * to check it explicitly. 3965 */ 3966 int 3967 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3968 struct lpfc_sli_ring *pring, uint32_t mask) 3969 { 3970 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3971 IOCB_t *irsp = NULL; 3972 IOCB_t *entry = NULL; 3973 struct lpfc_iocbq *cmdiocbq = NULL; 3974 struct lpfc_iocbq rspiocbq; 3975 uint32_t status; 3976 uint32_t portRspPut, portRspMax; 3977 int rc = 1; 3978 lpfc_iocb_type type; 3979 unsigned long iflag; 3980 uint32_t rsp_cmpl = 0; 3981 3982 spin_lock_irqsave(&phba->hbalock, iflag); 3983 pring->stats.iocb_event++; 3984 3985 /* 3986 * The next available response entry should never exceed the maximum 3987 * entries. If it does, treat it as an adapter hardware error. 3988 */ 3989 portRspMax = pring->sli.sli3.numRiocb; 3990 portRspPut = le32_to_cpu(pgp->rspPutInx); 3991 if (unlikely(portRspPut >= portRspMax)) { 3992 lpfc_sli_rsp_pointers_error(phba, pring); 3993 spin_unlock_irqrestore(&phba->hbalock, iflag); 3994 return 1; 3995 } 3996 if (phba->fcp_ring_in_use) { 3997 spin_unlock_irqrestore(&phba->hbalock, iflag); 3998 return 1; 3999 } else 4000 phba->fcp_ring_in_use = 1; 4001 4002 rmb(); 4003 while (pring->sli.sli3.rspidx != portRspPut) { 4004 /* 4005 * Fetch an entry off the ring and copy it into a local data 4006 * structure. The copy involves a byte-swap since the 4007 * network byte order and pci byte orders are different. 4008 */ 4009 entry = lpfc_resp_iocb(phba, pring); 4010 phba->last_completion_time = jiffies; 4011 4012 if (++pring->sli.sli3.rspidx >= portRspMax) 4013 pring->sli.sli3.rspidx = 0; 4014 4015 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4016 (uint32_t *) &rspiocbq.iocb, 4017 phba->iocb_rsp_size); 4018 INIT_LIST_HEAD(&(rspiocbq.list)); 4019 irsp = &rspiocbq.iocb; 4020 4021 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4022 pring->stats.iocb_rsp++; 4023 rsp_cmpl++; 4024 4025 if (unlikely(irsp->ulpStatus)) { 4026 /* 4027 * If resource errors reported from HBA, reduce 4028 * queuedepths of the SCSI device. 4029 */ 4030 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4031 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4032 IOERR_NO_RESOURCES)) { 4033 spin_unlock_irqrestore(&phba->hbalock, iflag); 4034 phba->lpfc_rampdown_queue_depth(phba); 4035 spin_lock_irqsave(&phba->hbalock, iflag); 4036 } 4037 4038 /* Rsp ring <ringno> error: IOCB */ 4039 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4040 "0336 Rsp Ring %d error: IOCB Data: " 4041 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4042 pring->ringno, 4043 irsp->un.ulpWord[0], 4044 irsp->un.ulpWord[1], 4045 irsp->un.ulpWord[2], 4046 irsp->un.ulpWord[3], 4047 irsp->un.ulpWord[4], 4048 irsp->un.ulpWord[5], 4049 *(uint32_t *)&irsp->un1, 4050 *((uint32_t *)&irsp->un1 + 1)); 4051 } 4052 4053 switch (type) { 4054 case LPFC_ABORT_IOCB: 4055 case LPFC_SOL_IOCB: 4056 /* 4057 * Idle exchange closed via ABTS from port. No iocb 4058 * resources need to be recovered. 4059 */ 4060 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4061 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4062 "0333 IOCB cmd 0x%x" 4063 " processed. Skipping" 4064 " completion\n", 4065 irsp->ulpCommand); 4066 break; 4067 } 4068 4069 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4070 &rspiocbq); 4071 if (unlikely(!cmdiocbq)) 4072 break; 4073 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4074 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4075 if (cmdiocbq->cmd_cmpl) { 4076 spin_unlock_irqrestore(&phba->hbalock, iflag); 4077 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, 4078 &rspiocbq); 4079 spin_lock_irqsave(&phba->hbalock, iflag); 4080 } 4081 break; 4082 case LPFC_UNSOL_IOCB: 4083 spin_unlock_irqrestore(&phba->hbalock, iflag); 4084 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4085 spin_lock_irqsave(&phba->hbalock, iflag); 4086 break; 4087 default: 4088 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4089 char adaptermsg[LPFC_MAX_ADPTMSG]; 4090 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4091 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4092 MAX_MSG_DATA); 4093 dev_warn(&((phba->pcidev)->dev), 4094 "lpfc%d: %s\n", 4095 phba->brd_no, adaptermsg); 4096 } else { 4097 /* Unknown IOCB command */ 4098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4099 "0334 Unknown IOCB command " 4100 "Data: x%x, x%x x%x x%x x%x\n", 4101 type, irsp->ulpCommand, 4102 irsp->ulpStatus, 4103 irsp->ulpIoTag, 4104 irsp->ulpContext); 4105 } 4106 break; 4107 } 4108 4109 /* 4110 * The response IOCB has been processed. Update the ring 4111 * pointer in SLIM. If the port response put pointer has not 4112 * been updated, sync the pgp->rspPutInx and fetch the new port 4113 * response put pointer. 4114 */ 4115 writel(pring->sli.sli3.rspidx, 4116 &phba->host_gp[pring->ringno].rspGetInx); 4117 4118 if (pring->sli.sli3.rspidx == portRspPut) 4119 portRspPut = le32_to_cpu(pgp->rspPutInx); 4120 } 4121 4122 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4123 pring->stats.iocb_rsp_full++; 4124 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4125 writel(status, phba->CAregaddr); 4126 readl(phba->CAregaddr); 4127 } 4128 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4129 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4130 pring->stats.iocb_cmd_empty++; 4131 4132 /* Force update of the local copy of cmdGetInx */ 4133 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4134 lpfc_sli_resume_iocb(phba, pring); 4135 4136 if ((pring->lpfc_sli_cmd_available)) 4137 (pring->lpfc_sli_cmd_available) (phba, pring); 4138 4139 } 4140 4141 phba->fcp_ring_in_use = 0; 4142 spin_unlock_irqrestore(&phba->hbalock, iflag); 4143 return rc; 4144 } 4145 4146 /** 4147 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4148 * @phba: Pointer to HBA context object. 4149 * @pring: Pointer to driver SLI ring object. 4150 * @rspiocbp: Pointer to driver response IOCB object. 4151 * 4152 * This function is called from the worker thread when there is a slow-path 4153 * response IOCB to process. This function chains all the response iocbs until 4154 * seeing the iocb with the LE bit set. The function will call 4155 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4156 * completion of a command iocb. The function will call the 4157 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4158 * The function frees the resources or calls the completion handler if this 4159 * iocb is an abort completion. The function returns NULL when the response 4160 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4161 * this function shall chain the iocb on to the iocb_continueq and return the 4162 * response iocb passed in. 4163 **/ 4164 static struct lpfc_iocbq * 4165 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4166 struct lpfc_iocbq *rspiocbp) 4167 { 4168 struct lpfc_iocbq *saveq; 4169 struct lpfc_iocbq *cmdiocb; 4170 struct lpfc_iocbq *next_iocb; 4171 IOCB_t *irsp; 4172 uint32_t free_saveq; 4173 u8 cmd_type; 4174 lpfc_iocb_type type; 4175 unsigned long iflag; 4176 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4177 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4178 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4179 int rc; 4180 4181 spin_lock_irqsave(&phba->hbalock, iflag); 4182 /* First add the response iocb to the countinueq list */ 4183 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4184 pring->iocb_continueq_cnt++; 4185 4186 /* 4187 * By default, the driver expects to free all resources 4188 * associated with this iocb completion. 4189 */ 4190 free_saveq = 1; 4191 saveq = list_get_first(&pring->iocb_continueq, 4192 struct lpfc_iocbq, list); 4193 list_del_init(&pring->iocb_continueq); 4194 pring->iocb_continueq_cnt = 0; 4195 4196 pring->stats.iocb_rsp++; 4197 4198 /* 4199 * If resource errors reported from HBA, reduce 4200 * queuedepths of the SCSI device. 4201 */ 4202 if (ulp_status == IOSTAT_LOCAL_REJECT && 4203 ((ulp_word4 & IOERR_PARAM_MASK) == 4204 IOERR_NO_RESOURCES)) { 4205 spin_unlock_irqrestore(&phba->hbalock, iflag); 4206 phba->lpfc_rampdown_queue_depth(phba); 4207 spin_lock_irqsave(&phba->hbalock, iflag); 4208 } 4209 4210 if (ulp_status) { 4211 /* Rsp ring <ringno> error: IOCB */ 4212 if (phba->sli_rev < LPFC_SLI_REV4) { 4213 irsp = &rspiocbp->iocb; 4214 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4215 "0328 Rsp Ring %d error: ulp_status x%x " 4216 "IOCB Data: " 4217 "x%08x x%08x x%08x x%08x " 4218 "x%08x x%08x x%08x x%08x " 4219 "x%08x x%08x x%08x x%08x " 4220 "x%08x x%08x x%08x x%08x\n", 4221 pring->ringno, ulp_status, 4222 get_job_ulpword(rspiocbp, 0), 4223 get_job_ulpword(rspiocbp, 1), 4224 get_job_ulpword(rspiocbp, 2), 4225 get_job_ulpword(rspiocbp, 3), 4226 get_job_ulpword(rspiocbp, 4), 4227 get_job_ulpword(rspiocbp, 5), 4228 *(((uint32_t *)irsp) + 6), 4229 *(((uint32_t *)irsp) + 7), 4230 *(((uint32_t *)irsp) + 8), 4231 *(((uint32_t *)irsp) + 9), 4232 *(((uint32_t *)irsp) + 10), 4233 *(((uint32_t *)irsp) + 11), 4234 *(((uint32_t *)irsp) + 12), 4235 *(((uint32_t *)irsp) + 13), 4236 *(((uint32_t *)irsp) + 14), 4237 *(((uint32_t *)irsp) + 15)); 4238 } else { 4239 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4240 "0321 Rsp Ring %d error: " 4241 "IOCB Data: " 4242 "x%x x%x x%x x%x\n", 4243 pring->ringno, 4244 rspiocbp->wcqe_cmpl.word0, 4245 rspiocbp->wcqe_cmpl.total_data_placed, 4246 rspiocbp->wcqe_cmpl.parameter, 4247 rspiocbp->wcqe_cmpl.word3); 4248 } 4249 } 4250 4251 4252 /* 4253 * Fetch the iocb command type and call the correct completion 4254 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4255 * get freed back to the lpfc_iocb_list by the discovery 4256 * kernel thread. 4257 */ 4258 cmd_type = ulp_command & CMD_IOCB_MASK; 4259 type = lpfc_sli_iocb_cmd_type(cmd_type); 4260 switch (type) { 4261 case LPFC_SOL_IOCB: 4262 spin_unlock_irqrestore(&phba->hbalock, iflag); 4263 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4264 spin_lock_irqsave(&phba->hbalock, iflag); 4265 break; 4266 case LPFC_UNSOL_IOCB: 4267 spin_unlock_irqrestore(&phba->hbalock, iflag); 4268 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4269 spin_lock_irqsave(&phba->hbalock, iflag); 4270 if (!rc) 4271 free_saveq = 0; 4272 break; 4273 case LPFC_ABORT_IOCB: 4274 cmdiocb = NULL; 4275 if (ulp_command != CMD_XRI_ABORTED_CX) 4276 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4277 saveq); 4278 if (cmdiocb) { 4279 /* Call the specified completion routine */ 4280 if (cmdiocb->cmd_cmpl) { 4281 spin_unlock_irqrestore(&phba->hbalock, iflag); 4282 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4283 spin_lock_irqsave(&phba->hbalock, iflag); 4284 } else { 4285 __lpfc_sli_release_iocbq(phba, cmdiocb); 4286 } 4287 } 4288 break; 4289 case LPFC_UNKNOWN_IOCB: 4290 if (ulp_command == CMD_ADAPTER_MSG) { 4291 char adaptermsg[LPFC_MAX_ADPTMSG]; 4292 4293 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4294 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4295 MAX_MSG_DATA); 4296 dev_warn(&((phba->pcidev)->dev), 4297 "lpfc%d: %s\n", 4298 phba->brd_no, adaptermsg); 4299 } else { 4300 /* Unknown command */ 4301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4302 "0335 Unknown IOCB " 4303 "command Data: x%x " 4304 "x%x x%x x%x\n", 4305 ulp_command, 4306 ulp_status, 4307 get_wqe_reqtag(rspiocbp), 4308 get_job_ulpcontext(phba, rspiocbp)); 4309 } 4310 break; 4311 } 4312 4313 if (free_saveq) { 4314 list_for_each_entry_safe(rspiocbp, next_iocb, 4315 &saveq->list, list) { 4316 list_del_init(&rspiocbp->list); 4317 __lpfc_sli_release_iocbq(phba, rspiocbp); 4318 } 4319 __lpfc_sli_release_iocbq(phba, saveq); 4320 } 4321 rspiocbp = NULL; 4322 spin_unlock_irqrestore(&phba->hbalock, iflag); 4323 return rspiocbp; 4324 } 4325 4326 /** 4327 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4328 * @phba: Pointer to HBA context object. 4329 * @pring: Pointer to driver SLI ring object. 4330 * @mask: Host attention register mask for this ring. 4331 * 4332 * This routine wraps the actual slow_ring event process routine from the 4333 * API jump table function pointer from the lpfc_hba struct. 4334 **/ 4335 void 4336 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4337 struct lpfc_sli_ring *pring, uint32_t mask) 4338 { 4339 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4340 } 4341 4342 /** 4343 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4344 * @phba: Pointer to HBA context object. 4345 * @pring: Pointer to driver SLI ring object. 4346 * @mask: Host attention register mask for this ring. 4347 * 4348 * This function is called from the worker thread when there is a ring event 4349 * for non-fcp rings. The caller does not hold any lock. The function will 4350 * remove each response iocb in the response ring and calls the handle 4351 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4352 **/ 4353 static void 4354 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4355 struct lpfc_sli_ring *pring, uint32_t mask) 4356 { 4357 struct lpfc_pgp *pgp; 4358 IOCB_t *entry; 4359 IOCB_t *irsp = NULL; 4360 struct lpfc_iocbq *rspiocbp = NULL; 4361 uint32_t portRspPut, portRspMax; 4362 unsigned long iflag; 4363 uint32_t status; 4364 4365 pgp = &phba->port_gp[pring->ringno]; 4366 spin_lock_irqsave(&phba->hbalock, iflag); 4367 pring->stats.iocb_event++; 4368 4369 /* 4370 * The next available response entry should never exceed the maximum 4371 * entries. If it does, treat it as an adapter hardware error. 4372 */ 4373 portRspMax = pring->sli.sli3.numRiocb; 4374 portRspPut = le32_to_cpu(pgp->rspPutInx); 4375 if (portRspPut >= portRspMax) { 4376 /* 4377 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4378 * rsp ring <portRspMax> 4379 */ 4380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4381 "0303 Ring %d handler: portRspPut %d " 4382 "is bigger than rsp ring %d\n", 4383 pring->ringno, portRspPut, portRspMax); 4384 4385 phba->link_state = LPFC_HBA_ERROR; 4386 spin_unlock_irqrestore(&phba->hbalock, iflag); 4387 4388 phba->work_hs = HS_FFER3; 4389 lpfc_handle_eratt(phba); 4390 4391 return; 4392 } 4393 4394 rmb(); 4395 while (pring->sli.sli3.rspidx != portRspPut) { 4396 /* 4397 * Build a completion list and call the appropriate handler. 4398 * The process is to get the next available response iocb, get 4399 * a free iocb from the list, copy the response data into the 4400 * free iocb, insert to the continuation list, and update the 4401 * next response index to slim. This process makes response 4402 * iocb's in the ring available to DMA as fast as possible but 4403 * pays a penalty for a copy operation. Since the iocb is 4404 * only 32 bytes, this penalty is considered small relative to 4405 * the PCI reads for register values and a slim write. When 4406 * the ulpLe field is set, the entire Command has been 4407 * received. 4408 */ 4409 entry = lpfc_resp_iocb(phba, pring); 4410 4411 phba->last_completion_time = jiffies; 4412 rspiocbp = __lpfc_sli_get_iocbq(phba); 4413 if (rspiocbp == NULL) { 4414 printk(KERN_ERR "%s: out of buffers! Failing " 4415 "completion.\n", __func__); 4416 break; 4417 } 4418 4419 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4420 phba->iocb_rsp_size); 4421 irsp = &rspiocbp->iocb; 4422 4423 if (++pring->sli.sli3.rspidx >= portRspMax) 4424 pring->sli.sli3.rspidx = 0; 4425 4426 if (pring->ringno == LPFC_ELS_RING) { 4427 lpfc_debugfs_slow_ring_trc(phba, 4428 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4429 *(((uint32_t *) irsp) + 4), 4430 *(((uint32_t *) irsp) + 6), 4431 *(((uint32_t *) irsp) + 7)); 4432 } 4433 4434 writel(pring->sli.sli3.rspidx, 4435 &phba->host_gp[pring->ringno].rspGetInx); 4436 4437 spin_unlock_irqrestore(&phba->hbalock, iflag); 4438 /* Handle the response IOCB */ 4439 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4440 spin_lock_irqsave(&phba->hbalock, iflag); 4441 4442 /* 4443 * If the port response put pointer has not been updated, sync 4444 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4445 * response put pointer. 4446 */ 4447 if (pring->sli.sli3.rspidx == portRspPut) { 4448 portRspPut = le32_to_cpu(pgp->rspPutInx); 4449 } 4450 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4451 4452 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4453 /* At least one response entry has been freed */ 4454 pring->stats.iocb_rsp_full++; 4455 /* SET RxRE_RSP in Chip Att register */ 4456 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4457 writel(status, phba->CAregaddr); 4458 readl(phba->CAregaddr); /* flush */ 4459 } 4460 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4461 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4462 pring->stats.iocb_cmd_empty++; 4463 4464 /* Force update of the local copy of cmdGetInx */ 4465 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4466 lpfc_sli_resume_iocb(phba, pring); 4467 4468 if ((pring->lpfc_sli_cmd_available)) 4469 (pring->lpfc_sli_cmd_available) (phba, pring); 4470 4471 } 4472 4473 spin_unlock_irqrestore(&phba->hbalock, iflag); 4474 return; 4475 } 4476 4477 /** 4478 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4479 * @phba: Pointer to HBA context object. 4480 * @pring: Pointer to driver SLI ring object. 4481 * @mask: Host attention register mask for this ring. 4482 * 4483 * This function is called from the worker thread when there is a pending 4484 * ELS response iocb on the driver internal slow-path response iocb worker 4485 * queue. The caller does not hold any lock. The function will remove each 4486 * response iocb from the response worker queue and calls the handle 4487 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4488 **/ 4489 static void 4490 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4491 struct lpfc_sli_ring *pring, uint32_t mask) 4492 { 4493 struct lpfc_iocbq *irspiocbq; 4494 struct hbq_dmabuf *dmabuf; 4495 struct lpfc_cq_event *cq_event; 4496 unsigned long iflag; 4497 int count = 0; 4498 4499 spin_lock_irqsave(&phba->hbalock, iflag); 4500 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4501 spin_unlock_irqrestore(&phba->hbalock, iflag); 4502 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4503 /* Get the response iocb from the head of work queue */ 4504 spin_lock_irqsave(&phba->hbalock, iflag); 4505 list_remove_head(&phba->sli4_hba.sp_queue_event, 4506 cq_event, struct lpfc_cq_event, list); 4507 spin_unlock_irqrestore(&phba->hbalock, iflag); 4508 4509 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4510 case CQE_CODE_COMPL_WQE: 4511 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4512 cq_event); 4513 /* Translate ELS WCQE to response IOCBQ */ 4514 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4515 irspiocbq); 4516 if (irspiocbq) 4517 lpfc_sli_sp_handle_rspiocb(phba, pring, 4518 irspiocbq); 4519 count++; 4520 break; 4521 case CQE_CODE_RECEIVE: 4522 case CQE_CODE_RECEIVE_V1: 4523 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4524 cq_event); 4525 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4526 count++; 4527 break; 4528 default: 4529 break; 4530 } 4531 4532 /* Limit the number of events to 64 to avoid soft lockups */ 4533 if (count == 64) 4534 break; 4535 } 4536 } 4537 4538 /** 4539 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4540 * @phba: Pointer to HBA context object. 4541 * @pring: Pointer to driver SLI ring object. 4542 * 4543 * This function aborts all iocbs in the given ring and frees all the iocb 4544 * objects in txq. This function issues an abort iocb for all the iocb commands 4545 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4546 * the return of this function. The caller is not required to hold any locks. 4547 **/ 4548 void 4549 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4550 { 4551 LIST_HEAD(tx_completions); 4552 LIST_HEAD(txcmplq_completions); 4553 struct lpfc_iocbq *iocb, *next_iocb; 4554 int offline; 4555 4556 if (pring->ringno == LPFC_ELS_RING) { 4557 lpfc_fabric_abort_hba(phba); 4558 } 4559 offline = pci_channel_offline(phba->pcidev); 4560 4561 /* Error everything on txq and txcmplq 4562 * First do the txq. 4563 */ 4564 if (phba->sli_rev >= LPFC_SLI_REV4) { 4565 spin_lock_irq(&pring->ring_lock); 4566 list_splice_init(&pring->txq, &tx_completions); 4567 pring->txq_cnt = 0; 4568 4569 if (offline) { 4570 list_splice_init(&pring->txcmplq, 4571 &txcmplq_completions); 4572 } else { 4573 /* Next issue ABTS for everything on the txcmplq */ 4574 list_for_each_entry_safe(iocb, next_iocb, 4575 &pring->txcmplq, list) 4576 lpfc_sli_issue_abort_iotag(phba, pring, 4577 iocb, NULL); 4578 } 4579 spin_unlock_irq(&pring->ring_lock); 4580 } else { 4581 spin_lock_irq(&phba->hbalock); 4582 list_splice_init(&pring->txq, &tx_completions); 4583 pring->txq_cnt = 0; 4584 4585 if (offline) { 4586 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4587 } else { 4588 /* Next issue ABTS for everything on the txcmplq */ 4589 list_for_each_entry_safe(iocb, next_iocb, 4590 &pring->txcmplq, list) 4591 lpfc_sli_issue_abort_iotag(phba, pring, 4592 iocb, NULL); 4593 } 4594 spin_unlock_irq(&phba->hbalock); 4595 } 4596 4597 if (offline) { 4598 /* Cancel all the IOCBs from the completions list */ 4599 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4600 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4601 } else { 4602 /* Make sure HBA is alive */ 4603 lpfc_issue_hb_tmo(phba); 4604 } 4605 /* Cancel all the IOCBs from the completions list */ 4606 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4607 IOERR_SLI_ABORTED); 4608 } 4609 4610 /** 4611 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4612 * @phba: Pointer to HBA context object. 4613 * 4614 * This function aborts all iocbs in FCP rings and frees all the iocb 4615 * objects in txq. This function issues an abort iocb for all the iocb commands 4616 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4617 * the return of this function. The caller is not required to hold any locks. 4618 **/ 4619 void 4620 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4621 { 4622 struct lpfc_sli *psli = &phba->sli; 4623 struct lpfc_sli_ring *pring; 4624 uint32_t i; 4625 4626 /* Look on all the FCP Rings for the iotag */ 4627 if (phba->sli_rev >= LPFC_SLI_REV4) { 4628 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4629 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4630 lpfc_sli_abort_iocb_ring(phba, pring); 4631 } 4632 } else { 4633 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4634 lpfc_sli_abort_iocb_ring(phba, pring); 4635 } 4636 } 4637 4638 /** 4639 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4640 * @phba: Pointer to HBA context object. 4641 * 4642 * This function flushes all iocbs in the IO ring and frees all the iocb 4643 * objects in txq and txcmplq. This function will not issue abort iocbs 4644 * for all the iocb commands in txcmplq, they will just be returned with 4645 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4646 * slot has been permanently disabled. 4647 **/ 4648 void 4649 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4650 { 4651 LIST_HEAD(txq); 4652 LIST_HEAD(txcmplq); 4653 struct lpfc_sli *psli = &phba->sli; 4654 struct lpfc_sli_ring *pring; 4655 uint32_t i; 4656 struct lpfc_iocbq *piocb, *next_iocb; 4657 4658 spin_lock_irq(&phba->hbalock); 4659 /* Indicate the I/O queues are flushed */ 4660 phba->hba_flag |= HBA_IOQ_FLUSH; 4661 spin_unlock_irq(&phba->hbalock); 4662 4663 /* Look on all the FCP Rings for the iotag */ 4664 if (phba->sli_rev >= LPFC_SLI_REV4) { 4665 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4666 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4667 4668 spin_lock_irq(&pring->ring_lock); 4669 /* Retrieve everything on txq */ 4670 list_splice_init(&pring->txq, &txq); 4671 list_for_each_entry_safe(piocb, next_iocb, 4672 &pring->txcmplq, list) 4673 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4674 /* Retrieve everything on the txcmplq */ 4675 list_splice_init(&pring->txcmplq, &txcmplq); 4676 pring->txq_cnt = 0; 4677 pring->txcmplq_cnt = 0; 4678 spin_unlock_irq(&pring->ring_lock); 4679 4680 /* Flush the txq */ 4681 lpfc_sli_cancel_iocbs(phba, &txq, 4682 IOSTAT_LOCAL_REJECT, 4683 IOERR_SLI_DOWN); 4684 /* Flush the txcmplq */ 4685 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4686 IOSTAT_LOCAL_REJECT, 4687 IOERR_SLI_DOWN); 4688 if (unlikely(pci_channel_offline(phba->pcidev))) 4689 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4690 } 4691 } else { 4692 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4693 4694 spin_lock_irq(&phba->hbalock); 4695 /* Retrieve everything on txq */ 4696 list_splice_init(&pring->txq, &txq); 4697 list_for_each_entry_safe(piocb, next_iocb, 4698 &pring->txcmplq, list) 4699 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4700 /* Retrieve everything on the txcmplq */ 4701 list_splice_init(&pring->txcmplq, &txcmplq); 4702 pring->txq_cnt = 0; 4703 pring->txcmplq_cnt = 0; 4704 spin_unlock_irq(&phba->hbalock); 4705 4706 /* Flush the txq */ 4707 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4708 IOERR_SLI_DOWN); 4709 /* Flush the txcmpq */ 4710 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4711 IOERR_SLI_DOWN); 4712 } 4713 } 4714 4715 /** 4716 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4717 * @phba: Pointer to HBA context object. 4718 * @mask: Bit mask to be checked. 4719 * 4720 * This function reads the host status register and compares 4721 * with the provided bit mask to check if HBA completed 4722 * the restart. This function will wait in a loop for the 4723 * HBA to complete restart. If the HBA does not restart within 4724 * 15 iterations, the function will reset the HBA again. The 4725 * function returns 1 when HBA fail to restart otherwise returns 4726 * zero. 4727 **/ 4728 static int 4729 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4730 { 4731 uint32_t status; 4732 int i = 0; 4733 int retval = 0; 4734 4735 /* Read the HBA Host Status Register */ 4736 if (lpfc_readl(phba->HSregaddr, &status)) 4737 return 1; 4738 4739 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4740 4741 /* 4742 * Check status register every 100ms for 5 retries, then every 4743 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4744 * every 2.5 sec for 4. 4745 * Break our of the loop if errors occurred during init. 4746 */ 4747 while (((status & mask) != mask) && 4748 !(status & HS_FFERM) && 4749 i++ < 20) { 4750 4751 if (i <= 5) 4752 msleep(10); 4753 else if (i <= 10) 4754 msleep(500); 4755 else 4756 msleep(2500); 4757 4758 if (i == 15) { 4759 /* Do post */ 4760 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4761 lpfc_sli_brdrestart(phba); 4762 } 4763 /* Read the HBA Host Status Register */ 4764 if (lpfc_readl(phba->HSregaddr, &status)) { 4765 retval = 1; 4766 break; 4767 } 4768 } 4769 4770 /* Check to see if any errors occurred during init */ 4771 if ((status & HS_FFERM) || (i >= 20)) { 4772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4773 "2751 Adapter failed to restart, " 4774 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4775 status, 4776 readl(phba->MBslimaddr + 0xa8), 4777 readl(phba->MBslimaddr + 0xac)); 4778 phba->link_state = LPFC_HBA_ERROR; 4779 retval = 1; 4780 } 4781 4782 return retval; 4783 } 4784 4785 /** 4786 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4787 * @phba: Pointer to HBA context object. 4788 * @mask: Bit mask to be checked. 4789 * 4790 * This function checks the host status register to check if HBA is 4791 * ready. This function will wait in a loop for the HBA to be ready 4792 * If the HBA is not ready , the function will will reset the HBA PCI 4793 * function again. The function returns 1 when HBA fail to be ready 4794 * otherwise returns zero. 4795 **/ 4796 static int 4797 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4798 { 4799 uint32_t status; 4800 int retval = 0; 4801 4802 /* Read the HBA Host Status Register */ 4803 status = lpfc_sli4_post_status_check(phba); 4804 4805 if (status) { 4806 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4807 lpfc_sli_brdrestart(phba); 4808 status = lpfc_sli4_post_status_check(phba); 4809 } 4810 4811 /* Check to see if any errors occurred during init */ 4812 if (status) { 4813 phba->link_state = LPFC_HBA_ERROR; 4814 retval = 1; 4815 } else 4816 phba->sli4_hba.intr_enable = 0; 4817 4818 phba->hba_flag &= ~HBA_SETUP; 4819 return retval; 4820 } 4821 4822 /** 4823 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4824 * @phba: Pointer to HBA context object. 4825 * @mask: Bit mask to be checked. 4826 * 4827 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4828 * from the API jump table function pointer from the lpfc_hba struct. 4829 **/ 4830 int 4831 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4832 { 4833 return phba->lpfc_sli_brdready(phba, mask); 4834 } 4835 4836 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4837 4838 /** 4839 * lpfc_reset_barrier - Make HBA ready for HBA reset 4840 * @phba: Pointer to HBA context object. 4841 * 4842 * This function is called before resetting an HBA. This function is called 4843 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4844 **/ 4845 void lpfc_reset_barrier(struct lpfc_hba *phba) 4846 { 4847 uint32_t __iomem *resp_buf; 4848 uint32_t __iomem *mbox_buf; 4849 volatile struct MAILBOX_word0 mbox; 4850 uint32_t hc_copy, ha_copy, resp_data; 4851 int i; 4852 uint8_t hdrtype; 4853 4854 lockdep_assert_held(&phba->hbalock); 4855 4856 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4857 if (hdrtype != 0x80 || 4858 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4859 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4860 return; 4861 4862 /* 4863 * Tell the other part of the chip to suspend temporarily all 4864 * its DMA activity. 4865 */ 4866 resp_buf = phba->MBslimaddr; 4867 4868 /* Disable the error attention */ 4869 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4870 return; 4871 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4872 readl(phba->HCregaddr); /* flush */ 4873 phba->link_flag |= LS_IGNORE_ERATT; 4874 4875 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4876 return; 4877 if (ha_copy & HA_ERATT) { 4878 /* Clear Chip error bit */ 4879 writel(HA_ERATT, phba->HAregaddr); 4880 phba->pport->stopped = 1; 4881 } 4882 4883 mbox.word0 = 0; 4884 mbox.mbxCommand = MBX_KILL_BOARD; 4885 mbox.mbxOwner = OWN_CHIP; 4886 4887 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4888 mbox_buf = phba->MBslimaddr; 4889 writel(mbox.word0, mbox_buf); 4890 4891 for (i = 0; i < 50; i++) { 4892 if (lpfc_readl((resp_buf + 1), &resp_data)) 4893 return; 4894 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4895 mdelay(1); 4896 else 4897 break; 4898 } 4899 resp_data = 0; 4900 if (lpfc_readl((resp_buf + 1), &resp_data)) 4901 return; 4902 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4903 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4904 phba->pport->stopped) 4905 goto restore_hc; 4906 else 4907 goto clear_errat; 4908 } 4909 4910 mbox.mbxOwner = OWN_HOST; 4911 resp_data = 0; 4912 for (i = 0; i < 500; i++) { 4913 if (lpfc_readl(resp_buf, &resp_data)) 4914 return; 4915 if (resp_data != mbox.word0) 4916 mdelay(1); 4917 else 4918 break; 4919 } 4920 4921 clear_errat: 4922 4923 while (++i < 500) { 4924 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4925 return; 4926 if (!(ha_copy & HA_ERATT)) 4927 mdelay(1); 4928 else 4929 break; 4930 } 4931 4932 if (readl(phba->HAregaddr) & HA_ERATT) { 4933 writel(HA_ERATT, phba->HAregaddr); 4934 phba->pport->stopped = 1; 4935 } 4936 4937 restore_hc: 4938 phba->link_flag &= ~LS_IGNORE_ERATT; 4939 writel(hc_copy, phba->HCregaddr); 4940 readl(phba->HCregaddr); /* flush */ 4941 } 4942 4943 /** 4944 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4945 * @phba: Pointer to HBA context object. 4946 * 4947 * This function issues a kill_board mailbox command and waits for 4948 * the error attention interrupt. This function is called for stopping 4949 * the firmware processing. The caller is not required to hold any 4950 * locks. This function calls lpfc_hba_down_post function to free 4951 * any pending commands after the kill. The function will return 1 when it 4952 * fails to kill the board else will return 0. 4953 **/ 4954 int 4955 lpfc_sli_brdkill(struct lpfc_hba *phba) 4956 { 4957 struct lpfc_sli *psli; 4958 LPFC_MBOXQ_t *pmb; 4959 uint32_t status; 4960 uint32_t ha_copy; 4961 int retval; 4962 int i = 0; 4963 4964 psli = &phba->sli; 4965 4966 /* Kill HBA */ 4967 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4968 "0329 Kill HBA Data: x%x x%x\n", 4969 phba->pport->port_state, psli->sli_flag); 4970 4971 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4972 if (!pmb) 4973 return 1; 4974 4975 /* Disable the error attention */ 4976 spin_lock_irq(&phba->hbalock); 4977 if (lpfc_readl(phba->HCregaddr, &status)) { 4978 spin_unlock_irq(&phba->hbalock); 4979 mempool_free(pmb, phba->mbox_mem_pool); 4980 return 1; 4981 } 4982 status &= ~HC_ERINT_ENA; 4983 writel(status, phba->HCregaddr); 4984 readl(phba->HCregaddr); /* flush */ 4985 phba->link_flag |= LS_IGNORE_ERATT; 4986 spin_unlock_irq(&phba->hbalock); 4987 4988 lpfc_kill_board(phba, pmb); 4989 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4990 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4991 4992 if (retval != MBX_SUCCESS) { 4993 if (retval != MBX_BUSY) 4994 mempool_free(pmb, phba->mbox_mem_pool); 4995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4996 "2752 KILL_BOARD command failed retval %d\n", 4997 retval); 4998 spin_lock_irq(&phba->hbalock); 4999 phba->link_flag &= ~LS_IGNORE_ERATT; 5000 spin_unlock_irq(&phba->hbalock); 5001 return 1; 5002 } 5003 5004 spin_lock_irq(&phba->hbalock); 5005 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5006 spin_unlock_irq(&phba->hbalock); 5007 5008 mempool_free(pmb, phba->mbox_mem_pool); 5009 5010 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5011 * attention every 100ms for 3 seconds. If we don't get ERATT after 5012 * 3 seconds we still set HBA_ERROR state because the status of the 5013 * board is now undefined. 5014 */ 5015 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5016 return 1; 5017 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5018 mdelay(100); 5019 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5020 return 1; 5021 } 5022 5023 del_timer_sync(&psli->mbox_tmo); 5024 if (ha_copy & HA_ERATT) { 5025 writel(HA_ERATT, phba->HAregaddr); 5026 phba->pport->stopped = 1; 5027 } 5028 spin_lock_irq(&phba->hbalock); 5029 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5030 psli->mbox_active = NULL; 5031 phba->link_flag &= ~LS_IGNORE_ERATT; 5032 spin_unlock_irq(&phba->hbalock); 5033 5034 lpfc_hba_down_post(phba); 5035 phba->link_state = LPFC_HBA_ERROR; 5036 5037 return ha_copy & HA_ERATT ? 0 : 1; 5038 } 5039 5040 /** 5041 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5042 * @phba: Pointer to HBA context object. 5043 * 5044 * This function resets the HBA by writing HC_INITFF to the control 5045 * register. After the HBA resets, this function resets all the iocb ring 5046 * indices. This function disables PCI layer parity checking during 5047 * the reset. 5048 * This function returns 0 always. 5049 * The caller is not required to hold any locks. 5050 **/ 5051 int 5052 lpfc_sli_brdreset(struct lpfc_hba *phba) 5053 { 5054 struct lpfc_sli *psli; 5055 struct lpfc_sli_ring *pring; 5056 uint16_t cfg_value; 5057 int i; 5058 5059 psli = &phba->sli; 5060 5061 /* Reset HBA */ 5062 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5063 "0325 Reset HBA Data: x%x x%x\n", 5064 (phba->pport) ? phba->pport->port_state : 0, 5065 psli->sli_flag); 5066 5067 /* perform board reset */ 5068 phba->fc_eventTag = 0; 5069 phba->link_events = 0; 5070 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5071 if (phba->pport) { 5072 phba->pport->fc_myDID = 0; 5073 phba->pport->fc_prevDID = 0; 5074 } 5075 5076 /* Turn off parity checking and serr during the physical reset */ 5077 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5078 return -EIO; 5079 5080 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5081 (cfg_value & 5082 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5083 5084 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5085 5086 /* Now toggle INITFF bit in the Host Control Register */ 5087 writel(HC_INITFF, phba->HCregaddr); 5088 mdelay(1); 5089 readl(phba->HCregaddr); /* flush */ 5090 writel(0, phba->HCregaddr); 5091 readl(phba->HCregaddr); /* flush */ 5092 5093 /* Restore PCI cmd register */ 5094 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5095 5096 /* Initialize relevant SLI info */ 5097 for (i = 0; i < psli->num_rings; i++) { 5098 pring = &psli->sli3_ring[i]; 5099 pring->flag = 0; 5100 pring->sli.sli3.rspidx = 0; 5101 pring->sli.sli3.next_cmdidx = 0; 5102 pring->sli.sli3.local_getidx = 0; 5103 pring->sli.sli3.cmdidx = 0; 5104 pring->missbufcnt = 0; 5105 } 5106 5107 phba->link_state = LPFC_WARM_START; 5108 return 0; 5109 } 5110 5111 /** 5112 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5113 * @phba: Pointer to HBA context object. 5114 * 5115 * This function resets a SLI4 HBA. This function disables PCI layer parity 5116 * checking during resets the device. The caller is not required to hold 5117 * any locks. 5118 * 5119 * This function returns 0 on success else returns negative error code. 5120 **/ 5121 int 5122 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5123 { 5124 struct lpfc_sli *psli = &phba->sli; 5125 uint16_t cfg_value; 5126 int rc = 0; 5127 5128 /* Reset HBA */ 5129 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5130 "0295 Reset HBA Data: x%x x%x x%x\n", 5131 phba->pport->port_state, psli->sli_flag, 5132 phba->hba_flag); 5133 5134 /* perform board reset */ 5135 phba->fc_eventTag = 0; 5136 phba->link_events = 0; 5137 phba->pport->fc_myDID = 0; 5138 phba->pport->fc_prevDID = 0; 5139 phba->hba_flag &= ~HBA_SETUP; 5140 5141 spin_lock_irq(&phba->hbalock); 5142 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5143 phba->fcf.fcf_flag = 0; 5144 spin_unlock_irq(&phba->hbalock); 5145 5146 /* Now physically reset the device */ 5147 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5148 "0389 Performing PCI function reset!\n"); 5149 5150 /* Turn off parity checking and serr during the physical reset */ 5151 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5152 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5153 "3205 PCI read Config failed\n"); 5154 return -EIO; 5155 } 5156 5157 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5158 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5159 5160 /* Perform FCoE PCI function reset before freeing queue memory */ 5161 rc = lpfc_pci_function_reset(phba); 5162 5163 /* Restore PCI cmd register */ 5164 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5165 5166 return rc; 5167 } 5168 5169 /** 5170 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5171 * @phba: Pointer to HBA context object. 5172 * 5173 * This function is called in the SLI initialization code path to 5174 * restart the HBA. The caller is not required to hold any lock. 5175 * This function writes MBX_RESTART mailbox command to the SLIM and 5176 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5177 * function to free any pending commands. The function enables 5178 * POST only during the first initialization. The function returns zero. 5179 * The function does not guarantee completion of MBX_RESTART mailbox 5180 * command before the return of this function. 5181 **/ 5182 static int 5183 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5184 { 5185 volatile struct MAILBOX_word0 mb; 5186 struct lpfc_sli *psli; 5187 void __iomem *to_slim; 5188 uint32_t hba_aer_enabled; 5189 5190 spin_lock_irq(&phba->hbalock); 5191 5192 /* Take PCIe device Advanced Error Reporting (AER) state */ 5193 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5194 5195 psli = &phba->sli; 5196 5197 /* Restart HBA */ 5198 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5199 "0337 Restart HBA Data: x%x x%x\n", 5200 (phba->pport) ? phba->pport->port_state : 0, 5201 psli->sli_flag); 5202 5203 mb.word0 = 0; 5204 mb.mbxCommand = MBX_RESTART; 5205 mb.mbxHc = 1; 5206 5207 lpfc_reset_barrier(phba); 5208 5209 to_slim = phba->MBslimaddr; 5210 writel(mb.word0, to_slim); 5211 readl(to_slim); /* flush */ 5212 5213 /* Only skip post after fc_ffinit is completed */ 5214 if (phba->pport && phba->pport->port_state) 5215 mb.word0 = 1; /* This is really setting up word1 */ 5216 else 5217 mb.word0 = 0; /* This is really setting up word1 */ 5218 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5219 writel(mb.word0, to_slim); 5220 readl(to_slim); /* flush */ 5221 5222 lpfc_sli_brdreset(phba); 5223 if (phba->pport) 5224 phba->pport->stopped = 0; 5225 phba->link_state = LPFC_INIT_START; 5226 phba->hba_flag = 0; 5227 spin_unlock_irq(&phba->hbalock); 5228 5229 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5230 psli->stats_start = ktime_get_seconds(); 5231 5232 /* Give the INITFF and Post time to settle. */ 5233 mdelay(100); 5234 5235 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5236 if (hba_aer_enabled) 5237 pci_disable_pcie_error_reporting(phba->pcidev); 5238 5239 lpfc_hba_down_post(phba); 5240 5241 return 0; 5242 } 5243 5244 /** 5245 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5246 * @phba: Pointer to HBA context object. 5247 * 5248 * This function is called in the SLI initialization code path to restart 5249 * a SLI4 HBA. The caller is not required to hold any lock. 5250 * At the end of the function, it calls lpfc_hba_down_post function to 5251 * free any pending commands. 5252 **/ 5253 static int 5254 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5255 { 5256 struct lpfc_sli *psli = &phba->sli; 5257 uint32_t hba_aer_enabled; 5258 int rc; 5259 5260 /* Restart HBA */ 5261 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5262 "0296 Restart HBA Data: x%x x%x\n", 5263 phba->pport->port_state, psli->sli_flag); 5264 5265 /* Take PCIe device Advanced Error Reporting (AER) state */ 5266 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5267 5268 rc = lpfc_sli4_brdreset(phba); 5269 if (rc) { 5270 phba->link_state = LPFC_HBA_ERROR; 5271 goto hba_down_queue; 5272 } 5273 5274 spin_lock_irq(&phba->hbalock); 5275 phba->pport->stopped = 0; 5276 phba->link_state = LPFC_INIT_START; 5277 phba->hba_flag = 0; 5278 spin_unlock_irq(&phba->hbalock); 5279 5280 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5281 psli->stats_start = ktime_get_seconds(); 5282 5283 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5284 if (hba_aer_enabled) 5285 pci_disable_pcie_error_reporting(phba->pcidev); 5286 5287 hba_down_queue: 5288 lpfc_hba_down_post(phba); 5289 lpfc_sli4_queue_destroy(phba); 5290 5291 return rc; 5292 } 5293 5294 /** 5295 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5296 * @phba: Pointer to HBA context object. 5297 * 5298 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5299 * API jump table function pointer from the lpfc_hba struct. 5300 **/ 5301 int 5302 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5303 { 5304 return phba->lpfc_sli_brdrestart(phba); 5305 } 5306 5307 /** 5308 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5309 * @phba: Pointer to HBA context object. 5310 * 5311 * This function is called after a HBA restart to wait for successful 5312 * restart of the HBA. Successful restart of the HBA is indicated by 5313 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5314 * iteration, the function will restart the HBA again. The function returns 5315 * zero if HBA successfully restarted else returns negative error code. 5316 **/ 5317 int 5318 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5319 { 5320 uint32_t status, i = 0; 5321 5322 /* Read the HBA Host Status Register */ 5323 if (lpfc_readl(phba->HSregaddr, &status)) 5324 return -EIO; 5325 5326 /* Check status register to see what current state is */ 5327 i = 0; 5328 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5329 5330 /* Check every 10ms for 10 retries, then every 100ms for 90 5331 * retries, then every 1 sec for 50 retires for a total of 5332 * ~60 seconds before reset the board again and check every 5333 * 1 sec for 50 retries. The up to 60 seconds before the 5334 * board ready is required by the Falcon FIPS zeroization 5335 * complete, and any reset the board in between shall cause 5336 * restart of zeroization, further delay the board ready. 5337 */ 5338 if (i++ >= 200) { 5339 /* Adapter failed to init, timeout, status reg 5340 <status> */ 5341 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5342 "0436 Adapter failed to init, " 5343 "timeout, status reg x%x, " 5344 "FW Data: A8 x%x AC x%x\n", status, 5345 readl(phba->MBslimaddr + 0xa8), 5346 readl(phba->MBslimaddr + 0xac)); 5347 phba->link_state = LPFC_HBA_ERROR; 5348 return -ETIMEDOUT; 5349 } 5350 5351 /* Check to see if any errors occurred during init */ 5352 if (status & HS_FFERM) { 5353 /* ERROR: During chipset initialization */ 5354 /* Adapter failed to init, chipset, status reg 5355 <status> */ 5356 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5357 "0437 Adapter failed to init, " 5358 "chipset, status reg x%x, " 5359 "FW Data: A8 x%x AC x%x\n", status, 5360 readl(phba->MBslimaddr + 0xa8), 5361 readl(phba->MBslimaddr + 0xac)); 5362 phba->link_state = LPFC_HBA_ERROR; 5363 return -EIO; 5364 } 5365 5366 if (i <= 10) 5367 msleep(10); 5368 else if (i <= 100) 5369 msleep(100); 5370 else 5371 msleep(1000); 5372 5373 if (i == 150) { 5374 /* Do post */ 5375 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5376 lpfc_sli_brdrestart(phba); 5377 } 5378 /* Read the HBA Host Status Register */ 5379 if (lpfc_readl(phba->HSregaddr, &status)) 5380 return -EIO; 5381 } 5382 5383 /* Check to see if any errors occurred during init */ 5384 if (status & HS_FFERM) { 5385 /* ERROR: During chipset initialization */ 5386 /* Adapter failed to init, chipset, status reg <status> */ 5387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5388 "0438 Adapter failed to init, chipset, " 5389 "status reg x%x, " 5390 "FW Data: A8 x%x AC x%x\n", status, 5391 readl(phba->MBslimaddr + 0xa8), 5392 readl(phba->MBslimaddr + 0xac)); 5393 phba->link_state = LPFC_HBA_ERROR; 5394 return -EIO; 5395 } 5396 5397 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5398 5399 /* Clear all interrupt enable conditions */ 5400 writel(0, phba->HCregaddr); 5401 readl(phba->HCregaddr); /* flush */ 5402 5403 /* setup host attn register */ 5404 writel(0xffffffff, phba->HAregaddr); 5405 readl(phba->HAregaddr); /* flush */ 5406 return 0; 5407 } 5408 5409 /** 5410 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5411 * 5412 * This function calculates and returns the number of HBQs required to be 5413 * configured. 5414 **/ 5415 int 5416 lpfc_sli_hbq_count(void) 5417 { 5418 return ARRAY_SIZE(lpfc_hbq_defs); 5419 } 5420 5421 /** 5422 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5423 * 5424 * This function adds the number of hbq entries in every HBQ to get 5425 * the total number of hbq entries required for the HBA and returns 5426 * the total count. 5427 **/ 5428 static int 5429 lpfc_sli_hbq_entry_count(void) 5430 { 5431 int hbq_count = lpfc_sli_hbq_count(); 5432 int count = 0; 5433 int i; 5434 5435 for (i = 0; i < hbq_count; ++i) 5436 count += lpfc_hbq_defs[i]->entry_count; 5437 return count; 5438 } 5439 5440 /** 5441 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5442 * 5443 * This function calculates amount of memory required for all hbq entries 5444 * to be configured and returns the total memory required. 5445 **/ 5446 int 5447 lpfc_sli_hbq_size(void) 5448 { 5449 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5450 } 5451 5452 /** 5453 * lpfc_sli_hbq_setup - configure and initialize HBQs 5454 * @phba: Pointer to HBA context object. 5455 * 5456 * This function is called during the SLI initialization to configure 5457 * all the HBQs and post buffers to the HBQ. The caller is not 5458 * required to hold any locks. This function will return zero if successful 5459 * else it will return negative error code. 5460 **/ 5461 static int 5462 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5463 { 5464 int hbq_count = lpfc_sli_hbq_count(); 5465 LPFC_MBOXQ_t *pmb; 5466 MAILBOX_t *pmbox; 5467 uint32_t hbqno; 5468 uint32_t hbq_entry_index; 5469 5470 /* Get a Mailbox buffer to setup mailbox 5471 * commands for HBA initialization 5472 */ 5473 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5474 5475 if (!pmb) 5476 return -ENOMEM; 5477 5478 pmbox = &pmb->u.mb; 5479 5480 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5481 phba->link_state = LPFC_INIT_MBX_CMDS; 5482 phba->hbq_in_use = 1; 5483 5484 hbq_entry_index = 0; 5485 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5486 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5487 phba->hbqs[hbqno].hbqPutIdx = 0; 5488 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5489 phba->hbqs[hbqno].entry_count = 5490 lpfc_hbq_defs[hbqno]->entry_count; 5491 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5492 hbq_entry_index, pmb); 5493 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5494 5495 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5496 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5497 mbxStatus <status>, ring <num> */ 5498 5499 lpfc_printf_log(phba, KERN_ERR, 5500 LOG_SLI | LOG_VPORT, 5501 "1805 Adapter failed to init. " 5502 "Data: x%x x%x x%x\n", 5503 pmbox->mbxCommand, 5504 pmbox->mbxStatus, hbqno); 5505 5506 phba->link_state = LPFC_HBA_ERROR; 5507 mempool_free(pmb, phba->mbox_mem_pool); 5508 return -ENXIO; 5509 } 5510 } 5511 phba->hbq_count = hbq_count; 5512 5513 mempool_free(pmb, phba->mbox_mem_pool); 5514 5515 /* Initially populate or replenish the HBQs */ 5516 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5517 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5518 return 0; 5519 } 5520 5521 /** 5522 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5523 * @phba: Pointer to HBA context object. 5524 * 5525 * This function is called during the SLI initialization to configure 5526 * all the HBQs and post buffers to the HBQ. The caller is not 5527 * required to hold any locks. This function will return zero if successful 5528 * else it will return negative error code. 5529 **/ 5530 static int 5531 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5532 { 5533 phba->hbq_in_use = 1; 5534 /** 5535 * Specific case when the MDS diagnostics is enabled and supported. 5536 * The receive buffer count is truncated to manage the incoming 5537 * traffic. 5538 **/ 5539 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5540 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5541 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5542 else 5543 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5544 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5545 phba->hbq_count = 1; 5546 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5547 /* Initially populate or replenish the HBQs */ 5548 return 0; 5549 } 5550 5551 /** 5552 * lpfc_sli_config_port - Issue config port mailbox command 5553 * @phba: Pointer to HBA context object. 5554 * @sli_mode: sli mode - 2/3 5555 * 5556 * This function is called by the sli initialization code path 5557 * to issue config_port mailbox command. This function restarts the 5558 * HBA firmware and issues a config_port mailbox command to configure 5559 * the SLI interface in the sli mode specified by sli_mode 5560 * variable. The caller is not required to hold any locks. 5561 * The function returns 0 if successful, else returns negative error 5562 * code. 5563 **/ 5564 int 5565 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5566 { 5567 LPFC_MBOXQ_t *pmb; 5568 uint32_t resetcount = 0, rc = 0, done = 0; 5569 5570 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5571 if (!pmb) { 5572 phba->link_state = LPFC_HBA_ERROR; 5573 return -ENOMEM; 5574 } 5575 5576 phba->sli_rev = sli_mode; 5577 while (resetcount < 2 && !done) { 5578 spin_lock_irq(&phba->hbalock); 5579 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5580 spin_unlock_irq(&phba->hbalock); 5581 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5582 lpfc_sli_brdrestart(phba); 5583 rc = lpfc_sli_chipset_init(phba); 5584 if (rc) 5585 break; 5586 5587 spin_lock_irq(&phba->hbalock); 5588 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5589 spin_unlock_irq(&phba->hbalock); 5590 resetcount++; 5591 5592 /* Call pre CONFIG_PORT mailbox command initialization. A 5593 * value of 0 means the call was successful. Any other 5594 * nonzero value is a failure, but if ERESTART is returned, 5595 * the driver may reset the HBA and try again. 5596 */ 5597 rc = lpfc_config_port_prep(phba); 5598 if (rc == -ERESTART) { 5599 phba->link_state = LPFC_LINK_UNKNOWN; 5600 continue; 5601 } else if (rc) 5602 break; 5603 5604 phba->link_state = LPFC_INIT_MBX_CMDS; 5605 lpfc_config_port(phba, pmb); 5606 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5607 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5608 LPFC_SLI3_HBQ_ENABLED | 5609 LPFC_SLI3_CRP_ENABLED | 5610 LPFC_SLI3_DSS_ENABLED); 5611 if (rc != MBX_SUCCESS) { 5612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5613 "0442 Adapter failed to init, mbxCmd x%x " 5614 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5615 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5616 spin_lock_irq(&phba->hbalock); 5617 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5618 spin_unlock_irq(&phba->hbalock); 5619 rc = -ENXIO; 5620 } else { 5621 /* Allow asynchronous mailbox command to go through */ 5622 spin_lock_irq(&phba->hbalock); 5623 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5624 spin_unlock_irq(&phba->hbalock); 5625 done = 1; 5626 5627 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5628 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5629 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5630 "3110 Port did not grant ASABT\n"); 5631 } 5632 } 5633 if (!done) { 5634 rc = -EINVAL; 5635 goto do_prep_failed; 5636 } 5637 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5638 if (!pmb->u.mb.un.varCfgPort.cMA) { 5639 rc = -ENXIO; 5640 goto do_prep_failed; 5641 } 5642 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5643 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5644 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5645 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5646 phba->max_vpi : phba->max_vports; 5647 5648 } else 5649 phba->max_vpi = 0; 5650 if (pmb->u.mb.un.varCfgPort.gerbm) 5651 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5652 if (pmb->u.mb.un.varCfgPort.gcrp) 5653 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5654 5655 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5656 phba->port_gp = phba->mbox->us.s3_pgp.port; 5657 5658 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5659 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5660 phba->cfg_enable_bg = 0; 5661 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5662 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5663 "0443 Adapter did not grant " 5664 "BlockGuard\n"); 5665 } 5666 } 5667 } else { 5668 phba->hbq_get = NULL; 5669 phba->port_gp = phba->mbox->us.s2.port; 5670 phba->max_vpi = 0; 5671 } 5672 do_prep_failed: 5673 mempool_free(pmb, phba->mbox_mem_pool); 5674 return rc; 5675 } 5676 5677 5678 /** 5679 * lpfc_sli_hba_setup - SLI initialization function 5680 * @phba: Pointer to HBA context object. 5681 * 5682 * This function is the main SLI initialization function. This function 5683 * is called by the HBA initialization code, HBA reset code and HBA 5684 * error attention handler code. Caller is not required to hold any 5685 * locks. This function issues config_port mailbox command to configure 5686 * the SLI, setup iocb rings and HBQ rings. In the end the function 5687 * calls the config_port_post function to issue init_link mailbox 5688 * command and to start the discovery. The function will return zero 5689 * if successful, else it will return negative error code. 5690 **/ 5691 int 5692 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5693 { 5694 uint32_t rc; 5695 int i; 5696 int longs; 5697 5698 /* Enable ISR already does config_port because of config_msi mbx */ 5699 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5700 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5701 if (rc) 5702 return -EIO; 5703 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5704 } 5705 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5706 5707 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5708 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5709 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5710 if (!rc) { 5711 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5712 "2709 This device supports " 5713 "Advanced Error Reporting (AER)\n"); 5714 spin_lock_irq(&phba->hbalock); 5715 phba->hba_flag |= HBA_AER_ENABLED; 5716 spin_unlock_irq(&phba->hbalock); 5717 } else { 5718 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5719 "2708 This device does not support " 5720 "Advanced Error Reporting (AER): %d\n", 5721 rc); 5722 phba->cfg_aer_support = 0; 5723 } 5724 } 5725 5726 if (phba->sli_rev == 3) { 5727 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5728 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5729 } else { 5730 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5731 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5732 phba->sli3_options = 0; 5733 } 5734 5735 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5736 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5737 phba->sli_rev, phba->max_vpi); 5738 rc = lpfc_sli_ring_map(phba); 5739 5740 if (rc) 5741 goto lpfc_sli_hba_setup_error; 5742 5743 /* Initialize VPIs. */ 5744 if (phba->sli_rev == LPFC_SLI_REV3) { 5745 /* 5746 * The VPI bitmask and physical ID array are allocated 5747 * and initialized once only - at driver load. A port 5748 * reset doesn't need to reinitialize this memory. 5749 */ 5750 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5751 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5752 phba->vpi_bmask = kcalloc(longs, 5753 sizeof(unsigned long), 5754 GFP_KERNEL); 5755 if (!phba->vpi_bmask) { 5756 rc = -ENOMEM; 5757 goto lpfc_sli_hba_setup_error; 5758 } 5759 5760 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5761 sizeof(uint16_t), 5762 GFP_KERNEL); 5763 if (!phba->vpi_ids) { 5764 kfree(phba->vpi_bmask); 5765 rc = -ENOMEM; 5766 goto lpfc_sli_hba_setup_error; 5767 } 5768 for (i = 0; i < phba->max_vpi; i++) 5769 phba->vpi_ids[i] = i; 5770 } 5771 } 5772 5773 /* Init HBQs */ 5774 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5775 rc = lpfc_sli_hbq_setup(phba); 5776 if (rc) 5777 goto lpfc_sli_hba_setup_error; 5778 } 5779 spin_lock_irq(&phba->hbalock); 5780 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5781 spin_unlock_irq(&phba->hbalock); 5782 5783 rc = lpfc_config_port_post(phba); 5784 if (rc) 5785 goto lpfc_sli_hba_setup_error; 5786 5787 return rc; 5788 5789 lpfc_sli_hba_setup_error: 5790 phba->link_state = LPFC_HBA_ERROR; 5791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5792 "0445 Firmware initialization failed\n"); 5793 return rc; 5794 } 5795 5796 /** 5797 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5798 * @phba: Pointer to HBA context object. 5799 * 5800 * This function issue a dump mailbox command to read config region 5801 * 23 and parse the records in the region and populate driver 5802 * data structure. 5803 **/ 5804 static int 5805 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5806 { 5807 LPFC_MBOXQ_t *mboxq; 5808 struct lpfc_dmabuf *mp; 5809 struct lpfc_mqe *mqe; 5810 uint32_t data_length; 5811 int rc; 5812 5813 /* Program the default value of vlan_id and fc_map */ 5814 phba->valid_vlan = 0; 5815 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5816 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5817 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5818 5819 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5820 if (!mboxq) 5821 return -ENOMEM; 5822 5823 mqe = &mboxq->u.mqe; 5824 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5825 rc = -ENOMEM; 5826 goto out_free_mboxq; 5827 } 5828 5829 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5831 5832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5833 "(%d):2571 Mailbox cmd x%x Status x%x " 5834 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5835 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5836 "CQ: x%x x%x x%x x%x\n", 5837 mboxq->vport ? mboxq->vport->vpi : 0, 5838 bf_get(lpfc_mqe_command, mqe), 5839 bf_get(lpfc_mqe_status, mqe), 5840 mqe->un.mb_words[0], mqe->un.mb_words[1], 5841 mqe->un.mb_words[2], mqe->un.mb_words[3], 5842 mqe->un.mb_words[4], mqe->un.mb_words[5], 5843 mqe->un.mb_words[6], mqe->un.mb_words[7], 5844 mqe->un.mb_words[8], mqe->un.mb_words[9], 5845 mqe->un.mb_words[10], mqe->un.mb_words[11], 5846 mqe->un.mb_words[12], mqe->un.mb_words[13], 5847 mqe->un.mb_words[14], mqe->un.mb_words[15], 5848 mqe->un.mb_words[16], mqe->un.mb_words[50], 5849 mboxq->mcqe.word0, 5850 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5851 mboxq->mcqe.trailer); 5852 5853 if (rc) { 5854 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5855 kfree(mp); 5856 rc = -EIO; 5857 goto out_free_mboxq; 5858 } 5859 data_length = mqe->un.mb_words[5]; 5860 if (data_length > DMP_RGN23_SIZE) { 5861 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5862 kfree(mp); 5863 rc = -EIO; 5864 goto out_free_mboxq; 5865 } 5866 5867 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5868 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5869 kfree(mp); 5870 rc = 0; 5871 5872 out_free_mboxq: 5873 mempool_free(mboxq, phba->mbox_mem_pool); 5874 return rc; 5875 } 5876 5877 /** 5878 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5879 * @phba: pointer to lpfc hba data structure. 5880 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5881 * @vpd: pointer to the memory to hold resulting port vpd data. 5882 * @vpd_size: On input, the number of bytes allocated to @vpd. 5883 * On output, the number of data bytes in @vpd. 5884 * 5885 * This routine executes a READ_REV SLI4 mailbox command. In 5886 * addition, this routine gets the port vpd data. 5887 * 5888 * Return codes 5889 * 0 - successful 5890 * -ENOMEM - could not allocated memory. 5891 **/ 5892 static int 5893 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5894 uint8_t *vpd, uint32_t *vpd_size) 5895 { 5896 int rc = 0; 5897 uint32_t dma_size; 5898 struct lpfc_dmabuf *dmabuf; 5899 struct lpfc_mqe *mqe; 5900 5901 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5902 if (!dmabuf) 5903 return -ENOMEM; 5904 5905 /* 5906 * Get a DMA buffer for the vpd data resulting from the READ_REV 5907 * mailbox command. 5908 */ 5909 dma_size = *vpd_size; 5910 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5911 &dmabuf->phys, GFP_KERNEL); 5912 if (!dmabuf->virt) { 5913 kfree(dmabuf); 5914 return -ENOMEM; 5915 } 5916 5917 /* 5918 * The SLI4 implementation of READ_REV conflicts at word1, 5919 * bits 31:16 and SLI4 adds vpd functionality not present 5920 * in SLI3. This code corrects the conflicts. 5921 */ 5922 lpfc_read_rev(phba, mboxq); 5923 mqe = &mboxq->u.mqe; 5924 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5925 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5926 mqe->un.read_rev.word1 &= 0x0000FFFF; 5927 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5928 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5929 5930 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5931 if (rc) { 5932 dma_free_coherent(&phba->pcidev->dev, dma_size, 5933 dmabuf->virt, dmabuf->phys); 5934 kfree(dmabuf); 5935 return -EIO; 5936 } 5937 5938 /* 5939 * The available vpd length cannot be bigger than the 5940 * DMA buffer passed to the port. Catch the less than 5941 * case and update the caller's size. 5942 */ 5943 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5944 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5945 5946 memcpy(vpd, dmabuf->virt, *vpd_size); 5947 5948 dma_free_coherent(&phba->pcidev->dev, dma_size, 5949 dmabuf->virt, dmabuf->phys); 5950 kfree(dmabuf); 5951 return 0; 5952 } 5953 5954 /** 5955 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5956 * @phba: pointer to lpfc hba data structure. 5957 * 5958 * This routine retrieves SLI4 device physical port name this PCI function 5959 * is attached to. 5960 * 5961 * Return codes 5962 * 0 - successful 5963 * otherwise - failed to retrieve controller attributes 5964 **/ 5965 static int 5966 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5967 { 5968 LPFC_MBOXQ_t *mboxq; 5969 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5970 struct lpfc_controller_attribute *cntl_attr; 5971 void *virtaddr = NULL; 5972 uint32_t alloclen, reqlen; 5973 uint32_t shdr_status, shdr_add_status; 5974 union lpfc_sli4_cfg_shdr *shdr; 5975 int rc; 5976 5977 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5978 if (!mboxq) 5979 return -ENOMEM; 5980 5981 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5982 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5983 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5984 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5985 LPFC_SLI4_MBX_NEMBED); 5986 5987 if (alloclen < reqlen) { 5988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5989 "3084 Allocated DMA memory size (%d) is " 5990 "less than the requested DMA memory size " 5991 "(%d)\n", alloclen, reqlen); 5992 rc = -ENOMEM; 5993 goto out_free_mboxq; 5994 } 5995 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5996 virtaddr = mboxq->sge_array->addr[0]; 5997 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5998 shdr = &mbx_cntl_attr->cfg_shdr; 5999 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6000 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6001 if (shdr_status || shdr_add_status || rc) { 6002 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6003 "3085 Mailbox x%x (x%x/x%x) failed, " 6004 "rc:x%x, status:x%x, add_status:x%x\n", 6005 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6006 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6007 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6008 rc, shdr_status, shdr_add_status); 6009 rc = -ENXIO; 6010 goto out_free_mboxq; 6011 } 6012 6013 cntl_attr = &mbx_cntl_attr->cntl_attr; 6014 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6015 phba->sli4_hba.lnk_info.lnk_tp = 6016 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6017 phba->sli4_hba.lnk_info.lnk_no = 6018 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6019 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6020 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6021 6022 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6023 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6024 sizeof(phba->BIOSVersion)); 6025 6026 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6027 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6028 "flash_id: x%02x, asic_rev: x%02x\n", 6029 phba->sli4_hba.lnk_info.lnk_tp, 6030 phba->sli4_hba.lnk_info.lnk_no, 6031 phba->BIOSVersion, phba->sli4_hba.flash_id, 6032 phba->sli4_hba.asic_rev); 6033 out_free_mboxq: 6034 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6035 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6036 else 6037 mempool_free(mboxq, phba->mbox_mem_pool); 6038 return rc; 6039 } 6040 6041 /** 6042 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6043 * @phba: pointer to lpfc hba data structure. 6044 * 6045 * This routine retrieves SLI4 device physical port name this PCI function 6046 * is attached to. 6047 * 6048 * Return codes 6049 * 0 - successful 6050 * otherwise - failed to retrieve physical port name 6051 **/ 6052 static int 6053 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6054 { 6055 LPFC_MBOXQ_t *mboxq; 6056 struct lpfc_mbx_get_port_name *get_port_name; 6057 uint32_t shdr_status, shdr_add_status; 6058 union lpfc_sli4_cfg_shdr *shdr; 6059 char cport_name = 0; 6060 int rc; 6061 6062 /* We assume nothing at this point */ 6063 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6064 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6065 6066 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6067 if (!mboxq) 6068 return -ENOMEM; 6069 /* obtain link type and link number via READ_CONFIG */ 6070 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6071 lpfc_sli4_read_config(phba); 6072 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6073 goto retrieve_ppname; 6074 6075 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6076 rc = lpfc_sli4_get_ctl_attr(phba); 6077 if (rc) 6078 goto out_free_mboxq; 6079 6080 retrieve_ppname: 6081 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6082 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6083 sizeof(struct lpfc_mbx_get_port_name) - 6084 sizeof(struct lpfc_sli4_cfg_mhdr), 6085 LPFC_SLI4_MBX_EMBED); 6086 get_port_name = &mboxq->u.mqe.un.get_port_name; 6087 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6088 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6089 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6090 phba->sli4_hba.lnk_info.lnk_tp); 6091 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6092 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6093 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6094 if (shdr_status || shdr_add_status || rc) { 6095 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6096 "3087 Mailbox x%x (x%x/x%x) failed: " 6097 "rc:x%x, status:x%x, add_status:x%x\n", 6098 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6099 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6100 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6101 rc, shdr_status, shdr_add_status); 6102 rc = -ENXIO; 6103 goto out_free_mboxq; 6104 } 6105 switch (phba->sli4_hba.lnk_info.lnk_no) { 6106 case LPFC_LINK_NUMBER_0: 6107 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6108 &get_port_name->u.response); 6109 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6110 break; 6111 case LPFC_LINK_NUMBER_1: 6112 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6113 &get_port_name->u.response); 6114 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6115 break; 6116 case LPFC_LINK_NUMBER_2: 6117 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6118 &get_port_name->u.response); 6119 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6120 break; 6121 case LPFC_LINK_NUMBER_3: 6122 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6123 &get_port_name->u.response); 6124 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6125 break; 6126 default: 6127 break; 6128 } 6129 6130 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6131 phba->Port[0] = cport_name; 6132 phba->Port[1] = '\0'; 6133 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6134 "3091 SLI get port name: %s\n", phba->Port); 6135 } 6136 6137 out_free_mboxq: 6138 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6139 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6140 else 6141 mempool_free(mboxq, phba->mbox_mem_pool); 6142 return rc; 6143 } 6144 6145 /** 6146 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6147 * @phba: pointer to lpfc hba data structure. 6148 * 6149 * This routine is called to explicitly arm the SLI4 device's completion and 6150 * event queues 6151 **/ 6152 static void 6153 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6154 { 6155 int qidx; 6156 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6157 struct lpfc_sli4_hdw_queue *qp; 6158 struct lpfc_queue *eq; 6159 6160 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6161 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6162 if (sli4_hba->nvmels_cq) 6163 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6164 LPFC_QUEUE_REARM); 6165 6166 if (sli4_hba->hdwq) { 6167 /* Loop thru all Hardware Queues */ 6168 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6169 qp = &sli4_hba->hdwq[qidx]; 6170 /* ARM the corresponding CQ */ 6171 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6172 LPFC_QUEUE_REARM); 6173 } 6174 6175 /* Loop thru all IRQ vectors */ 6176 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6177 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6178 /* ARM the corresponding EQ */ 6179 sli4_hba->sli4_write_eq_db(phba, eq, 6180 0, LPFC_QUEUE_REARM); 6181 } 6182 } 6183 6184 if (phba->nvmet_support) { 6185 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6186 sli4_hba->sli4_write_cq_db(phba, 6187 sli4_hba->nvmet_cqset[qidx], 0, 6188 LPFC_QUEUE_REARM); 6189 } 6190 } 6191 } 6192 6193 /** 6194 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6195 * @phba: Pointer to HBA context object. 6196 * @type: The resource extent type. 6197 * @extnt_count: buffer to hold port available extent count. 6198 * @extnt_size: buffer to hold element count per extent. 6199 * 6200 * This function calls the port and retrievs the number of available 6201 * extents and their size for a particular extent type. 6202 * 6203 * Returns: 0 if successful. Nonzero otherwise. 6204 **/ 6205 int 6206 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6207 uint16_t *extnt_count, uint16_t *extnt_size) 6208 { 6209 int rc = 0; 6210 uint32_t length; 6211 uint32_t mbox_tmo; 6212 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6213 LPFC_MBOXQ_t *mbox; 6214 6215 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6216 if (!mbox) 6217 return -ENOMEM; 6218 6219 /* Find out how many extents are available for this resource type */ 6220 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6221 sizeof(struct lpfc_sli4_cfg_mhdr)); 6222 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6223 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6224 length, LPFC_SLI4_MBX_EMBED); 6225 6226 /* Send an extents count of 0 - the GET doesn't use it. */ 6227 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6228 LPFC_SLI4_MBX_EMBED); 6229 if (unlikely(rc)) { 6230 rc = -EIO; 6231 goto err_exit; 6232 } 6233 6234 if (!phba->sli4_hba.intr_enable) 6235 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6236 else { 6237 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6238 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6239 } 6240 if (unlikely(rc)) { 6241 rc = -EIO; 6242 goto err_exit; 6243 } 6244 6245 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6246 if (bf_get(lpfc_mbox_hdr_status, 6247 &rsrc_info->header.cfg_shdr.response)) { 6248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6249 "2930 Failed to get resource extents " 6250 "Status 0x%x Add'l Status 0x%x\n", 6251 bf_get(lpfc_mbox_hdr_status, 6252 &rsrc_info->header.cfg_shdr.response), 6253 bf_get(lpfc_mbox_hdr_add_status, 6254 &rsrc_info->header.cfg_shdr.response)); 6255 rc = -EIO; 6256 goto err_exit; 6257 } 6258 6259 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6260 &rsrc_info->u.rsp); 6261 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6262 &rsrc_info->u.rsp); 6263 6264 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6265 "3162 Retrieved extents type-%d from port: count:%d, " 6266 "size:%d\n", type, *extnt_count, *extnt_size); 6267 6268 err_exit: 6269 mempool_free(mbox, phba->mbox_mem_pool); 6270 return rc; 6271 } 6272 6273 /** 6274 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6275 * @phba: Pointer to HBA context object. 6276 * @type: The extent type to check. 6277 * 6278 * This function reads the current available extents from the port and checks 6279 * if the extent count or extent size has changed since the last access. 6280 * Callers use this routine post port reset to understand if there is a 6281 * extent reprovisioning requirement. 6282 * 6283 * Returns: 6284 * -Error: error indicates problem. 6285 * 1: Extent count or size has changed. 6286 * 0: No changes. 6287 **/ 6288 static int 6289 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6290 { 6291 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6292 uint16_t size_diff, rsrc_ext_size; 6293 int rc = 0; 6294 struct lpfc_rsrc_blks *rsrc_entry; 6295 struct list_head *rsrc_blk_list = NULL; 6296 6297 size_diff = 0; 6298 curr_ext_cnt = 0; 6299 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6300 &rsrc_ext_cnt, 6301 &rsrc_ext_size); 6302 if (unlikely(rc)) 6303 return -EIO; 6304 6305 switch (type) { 6306 case LPFC_RSC_TYPE_FCOE_RPI: 6307 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6308 break; 6309 case LPFC_RSC_TYPE_FCOE_VPI: 6310 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6311 break; 6312 case LPFC_RSC_TYPE_FCOE_XRI: 6313 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6314 break; 6315 case LPFC_RSC_TYPE_FCOE_VFI: 6316 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6317 break; 6318 default: 6319 break; 6320 } 6321 6322 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6323 curr_ext_cnt++; 6324 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6325 size_diff++; 6326 } 6327 6328 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6329 rc = 1; 6330 6331 return rc; 6332 } 6333 6334 /** 6335 * lpfc_sli4_cfg_post_extnts - 6336 * @phba: Pointer to HBA context object. 6337 * @extnt_cnt: number of available extents. 6338 * @type: the extent type (rpi, xri, vfi, vpi). 6339 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6340 * @mbox: pointer to the caller's allocated mailbox structure. 6341 * 6342 * This function executes the extents allocation request. It also 6343 * takes care of the amount of memory needed to allocate or get the 6344 * allocated extents. It is the caller's responsibility to evaluate 6345 * the response. 6346 * 6347 * Returns: 6348 * -Error: Error value describes the condition found. 6349 * 0: if successful 6350 **/ 6351 static int 6352 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6353 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6354 { 6355 int rc = 0; 6356 uint32_t req_len; 6357 uint32_t emb_len; 6358 uint32_t alloc_len, mbox_tmo; 6359 6360 /* Calculate the total requested length of the dma memory */ 6361 req_len = extnt_cnt * sizeof(uint16_t); 6362 6363 /* 6364 * Calculate the size of an embedded mailbox. The uint32_t 6365 * accounts for extents-specific word. 6366 */ 6367 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6368 sizeof(uint32_t); 6369 6370 /* 6371 * Presume the allocation and response will fit into an embedded 6372 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6373 */ 6374 *emb = LPFC_SLI4_MBX_EMBED; 6375 if (req_len > emb_len) { 6376 req_len = extnt_cnt * sizeof(uint16_t) + 6377 sizeof(union lpfc_sli4_cfg_shdr) + 6378 sizeof(uint32_t); 6379 *emb = LPFC_SLI4_MBX_NEMBED; 6380 } 6381 6382 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6383 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6384 req_len, *emb); 6385 if (alloc_len < req_len) { 6386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6387 "2982 Allocated DMA memory size (x%x) is " 6388 "less than the requested DMA memory " 6389 "size (x%x)\n", alloc_len, req_len); 6390 return -ENOMEM; 6391 } 6392 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6393 if (unlikely(rc)) 6394 return -EIO; 6395 6396 if (!phba->sli4_hba.intr_enable) 6397 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6398 else { 6399 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6400 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6401 } 6402 6403 if (unlikely(rc)) 6404 rc = -EIO; 6405 return rc; 6406 } 6407 6408 /** 6409 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6410 * @phba: Pointer to HBA context object. 6411 * @type: The resource extent type to allocate. 6412 * 6413 * This function allocates the number of elements for the specified 6414 * resource type. 6415 **/ 6416 static int 6417 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6418 { 6419 bool emb = false; 6420 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6421 uint16_t rsrc_id, rsrc_start, j, k; 6422 uint16_t *ids; 6423 int i, rc; 6424 unsigned long longs; 6425 unsigned long *bmask; 6426 struct lpfc_rsrc_blks *rsrc_blks; 6427 LPFC_MBOXQ_t *mbox; 6428 uint32_t length; 6429 struct lpfc_id_range *id_array = NULL; 6430 void *virtaddr = NULL; 6431 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6432 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6433 struct list_head *ext_blk_list; 6434 6435 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6436 &rsrc_cnt, 6437 &rsrc_size); 6438 if (unlikely(rc)) 6439 return -EIO; 6440 6441 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6443 "3009 No available Resource Extents " 6444 "for resource type 0x%x: Count: 0x%x, " 6445 "Size 0x%x\n", type, rsrc_cnt, 6446 rsrc_size); 6447 return -ENOMEM; 6448 } 6449 6450 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6451 "2903 Post resource extents type-0x%x: " 6452 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6453 6454 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6455 if (!mbox) 6456 return -ENOMEM; 6457 6458 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6459 if (unlikely(rc)) { 6460 rc = -EIO; 6461 goto err_exit; 6462 } 6463 6464 /* 6465 * Figure out where the response is located. Then get local pointers 6466 * to the response data. The port does not guarantee to respond to 6467 * all extents counts request so update the local variable with the 6468 * allocated count from the port. 6469 */ 6470 if (emb == LPFC_SLI4_MBX_EMBED) { 6471 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6472 id_array = &rsrc_ext->u.rsp.id[0]; 6473 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6474 } else { 6475 virtaddr = mbox->sge_array->addr[0]; 6476 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6477 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6478 id_array = &n_rsrc->id; 6479 } 6480 6481 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6482 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6483 6484 /* 6485 * Based on the resource size and count, correct the base and max 6486 * resource values. 6487 */ 6488 length = sizeof(struct lpfc_rsrc_blks); 6489 switch (type) { 6490 case LPFC_RSC_TYPE_FCOE_RPI: 6491 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6492 sizeof(unsigned long), 6493 GFP_KERNEL); 6494 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6495 rc = -ENOMEM; 6496 goto err_exit; 6497 } 6498 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6499 sizeof(uint16_t), 6500 GFP_KERNEL); 6501 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6502 kfree(phba->sli4_hba.rpi_bmask); 6503 rc = -ENOMEM; 6504 goto err_exit; 6505 } 6506 6507 /* 6508 * The next_rpi was initialized with the maximum available 6509 * count but the port may allocate a smaller number. Catch 6510 * that case and update the next_rpi. 6511 */ 6512 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6513 6514 /* Initialize local ptrs for common extent processing later. */ 6515 bmask = phba->sli4_hba.rpi_bmask; 6516 ids = phba->sli4_hba.rpi_ids; 6517 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6518 break; 6519 case LPFC_RSC_TYPE_FCOE_VPI: 6520 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6521 GFP_KERNEL); 6522 if (unlikely(!phba->vpi_bmask)) { 6523 rc = -ENOMEM; 6524 goto err_exit; 6525 } 6526 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6527 GFP_KERNEL); 6528 if (unlikely(!phba->vpi_ids)) { 6529 kfree(phba->vpi_bmask); 6530 rc = -ENOMEM; 6531 goto err_exit; 6532 } 6533 6534 /* Initialize local ptrs for common extent processing later. */ 6535 bmask = phba->vpi_bmask; 6536 ids = phba->vpi_ids; 6537 ext_blk_list = &phba->lpfc_vpi_blk_list; 6538 break; 6539 case LPFC_RSC_TYPE_FCOE_XRI: 6540 phba->sli4_hba.xri_bmask = kcalloc(longs, 6541 sizeof(unsigned long), 6542 GFP_KERNEL); 6543 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6544 rc = -ENOMEM; 6545 goto err_exit; 6546 } 6547 phba->sli4_hba.max_cfg_param.xri_used = 0; 6548 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6549 sizeof(uint16_t), 6550 GFP_KERNEL); 6551 if (unlikely(!phba->sli4_hba.xri_ids)) { 6552 kfree(phba->sli4_hba.xri_bmask); 6553 rc = -ENOMEM; 6554 goto err_exit; 6555 } 6556 6557 /* Initialize local ptrs for common extent processing later. */ 6558 bmask = phba->sli4_hba.xri_bmask; 6559 ids = phba->sli4_hba.xri_ids; 6560 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6561 break; 6562 case LPFC_RSC_TYPE_FCOE_VFI: 6563 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6564 sizeof(unsigned long), 6565 GFP_KERNEL); 6566 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6567 rc = -ENOMEM; 6568 goto err_exit; 6569 } 6570 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6571 sizeof(uint16_t), 6572 GFP_KERNEL); 6573 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6574 kfree(phba->sli4_hba.vfi_bmask); 6575 rc = -ENOMEM; 6576 goto err_exit; 6577 } 6578 6579 /* Initialize local ptrs for common extent processing later. */ 6580 bmask = phba->sli4_hba.vfi_bmask; 6581 ids = phba->sli4_hba.vfi_ids; 6582 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6583 break; 6584 default: 6585 /* Unsupported Opcode. Fail call. */ 6586 id_array = NULL; 6587 bmask = NULL; 6588 ids = NULL; 6589 ext_blk_list = NULL; 6590 goto err_exit; 6591 } 6592 6593 /* 6594 * Complete initializing the extent configuration with the 6595 * allocated ids assigned to this function. The bitmask serves 6596 * as an index into the array and manages the available ids. The 6597 * array just stores the ids communicated to the port via the wqes. 6598 */ 6599 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6600 if ((i % 2) == 0) 6601 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6602 &id_array[k]); 6603 else 6604 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6605 &id_array[k]); 6606 6607 rsrc_blks = kzalloc(length, GFP_KERNEL); 6608 if (unlikely(!rsrc_blks)) { 6609 rc = -ENOMEM; 6610 kfree(bmask); 6611 kfree(ids); 6612 goto err_exit; 6613 } 6614 rsrc_blks->rsrc_start = rsrc_id; 6615 rsrc_blks->rsrc_size = rsrc_size; 6616 list_add_tail(&rsrc_blks->list, ext_blk_list); 6617 rsrc_start = rsrc_id; 6618 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6619 phba->sli4_hba.io_xri_start = rsrc_start + 6620 lpfc_sli4_get_iocb_cnt(phba); 6621 } 6622 6623 while (rsrc_id < (rsrc_start + rsrc_size)) { 6624 ids[j] = rsrc_id; 6625 rsrc_id++; 6626 j++; 6627 } 6628 /* Entire word processed. Get next word.*/ 6629 if ((i % 2) == 1) 6630 k++; 6631 } 6632 err_exit: 6633 lpfc_sli4_mbox_cmd_free(phba, mbox); 6634 return rc; 6635 } 6636 6637 6638 6639 /** 6640 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6641 * @phba: Pointer to HBA context object. 6642 * @type: the extent's type. 6643 * 6644 * This function deallocates all extents of a particular resource type. 6645 * SLI4 does not allow for deallocating a particular extent range. It 6646 * is the caller's responsibility to release all kernel memory resources. 6647 **/ 6648 static int 6649 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6650 { 6651 int rc; 6652 uint32_t length, mbox_tmo = 0; 6653 LPFC_MBOXQ_t *mbox; 6654 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6655 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6656 6657 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6658 if (!mbox) 6659 return -ENOMEM; 6660 6661 /* 6662 * This function sends an embedded mailbox because it only sends the 6663 * the resource type. All extents of this type are released by the 6664 * port. 6665 */ 6666 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6667 sizeof(struct lpfc_sli4_cfg_mhdr)); 6668 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6669 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6670 length, LPFC_SLI4_MBX_EMBED); 6671 6672 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6673 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6674 LPFC_SLI4_MBX_EMBED); 6675 if (unlikely(rc)) { 6676 rc = -EIO; 6677 goto out_free_mbox; 6678 } 6679 if (!phba->sli4_hba.intr_enable) 6680 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6681 else { 6682 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6683 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6684 } 6685 if (unlikely(rc)) { 6686 rc = -EIO; 6687 goto out_free_mbox; 6688 } 6689 6690 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6691 if (bf_get(lpfc_mbox_hdr_status, 6692 &dealloc_rsrc->header.cfg_shdr.response)) { 6693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6694 "2919 Failed to release resource extents " 6695 "for type %d - Status 0x%x Add'l Status 0x%x. " 6696 "Resource memory not released.\n", 6697 type, 6698 bf_get(lpfc_mbox_hdr_status, 6699 &dealloc_rsrc->header.cfg_shdr.response), 6700 bf_get(lpfc_mbox_hdr_add_status, 6701 &dealloc_rsrc->header.cfg_shdr.response)); 6702 rc = -EIO; 6703 goto out_free_mbox; 6704 } 6705 6706 /* Release kernel memory resources for the specific type. */ 6707 switch (type) { 6708 case LPFC_RSC_TYPE_FCOE_VPI: 6709 kfree(phba->vpi_bmask); 6710 kfree(phba->vpi_ids); 6711 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6712 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6713 &phba->lpfc_vpi_blk_list, list) { 6714 list_del_init(&rsrc_blk->list); 6715 kfree(rsrc_blk); 6716 } 6717 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6718 break; 6719 case LPFC_RSC_TYPE_FCOE_XRI: 6720 kfree(phba->sli4_hba.xri_bmask); 6721 kfree(phba->sli4_hba.xri_ids); 6722 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6723 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6724 list_del_init(&rsrc_blk->list); 6725 kfree(rsrc_blk); 6726 } 6727 break; 6728 case LPFC_RSC_TYPE_FCOE_VFI: 6729 kfree(phba->sli4_hba.vfi_bmask); 6730 kfree(phba->sli4_hba.vfi_ids); 6731 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6732 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6733 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6734 list_del_init(&rsrc_blk->list); 6735 kfree(rsrc_blk); 6736 } 6737 break; 6738 case LPFC_RSC_TYPE_FCOE_RPI: 6739 /* RPI bitmask and physical id array are cleaned up earlier. */ 6740 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6741 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6742 list_del_init(&rsrc_blk->list); 6743 kfree(rsrc_blk); 6744 } 6745 break; 6746 default: 6747 break; 6748 } 6749 6750 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6751 6752 out_free_mbox: 6753 mempool_free(mbox, phba->mbox_mem_pool); 6754 return rc; 6755 } 6756 6757 static void 6758 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6759 uint32_t feature) 6760 { 6761 uint32_t len; 6762 u32 sig_freq = 0; 6763 6764 len = sizeof(struct lpfc_mbx_set_feature) - 6765 sizeof(struct lpfc_sli4_cfg_mhdr); 6766 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6767 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6768 LPFC_SLI4_MBX_EMBED); 6769 6770 switch (feature) { 6771 case LPFC_SET_UE_RECOVERY: 6772 bf_set(lpfc_mbx_set_feature_UER, 6773 &mbox->u.mqe.un.set_feature, 1); 6774 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6775 mbox->u.mqe.un.set_feature.param_len = 8; 6776 break; 6777 case LPFC_SET_MDS_DIAGS: 6778 bf_set(lpfc_mbx_set_feature_mds, 6779 &mbox->u.mqe.un.set_feature, 1); 6780 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6781 &mbox->u.mqe.un.set_feature, 1); 6782 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6783 mbox->u.mqe.un.set_feature.param_len = 8; 6784 break; 6785 case LPFC_SET_CGN_SIGNAL: 6786 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6787 sig_freq = 0; 6788 else 6789 sig_freq = phba->cgn_sig_freq; 6790 6791 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6792 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6793 &mbox->u.mqe.un.set_feature, sig_freq); 6794 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6795 &mbox->u.mqe.un.set_feature, sig_freq); 6796 } 6797 6798 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6799 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6800 &mbox->u.mqe.un.set_feature, sig_freq); 6801 6802 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6803 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6804 sig_freq = 0; 6805 else 6806 sig_freq = lpfc_acqe_cgn_frequency; 6807 6808 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6809 &mbox->u.mqe.un.set_feature, sig_freq); 6810 6811 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6812 mbox->u.mqe.un.set_feature.param_len = 12; 6813 break; 6814 case LPFC_SET_DUAL_DUMP: 6815 bf_set(lpfc_mbx_set_feature_dd, 6816 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6817 bf_set(lpfc_mbx_set_feature_ddquery, 6818 &mbox->u.mqe.un.set_feature, 0); 6819 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6820 mbox->u.mqe.un.set_feature.param_len = 4; 6821 break; 6822 case LPFC_SET_ENABLE_MI: 6823 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6824 mbox->u.mqe.un.set_feature.param_len = 4; 6825 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6826 phba->pport->cfg_lun_queue_depth); 6827 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6828 phba->sli4_hba.pc_sli4_params.mi_ver); 6829 break; 6830 case LPFC_SET_ENABLE_CMF: 6831 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6832 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6833 mbox->u.mqe.un.set_feature.param_len = 4; 6834 bf_set(lpfc_mbx_set_feature_cmf, 6835 &mbox->u.mqe.un.set_feature, 1); 6836 break; 6837 } 6838 return; 6839 } 6840 6841 /** 6842 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6843 * @phba: Pointer to HBA context object. 6844 * 6845 * Disable FW logging into host memory on the adapter. To 6846 * be done before reading logs from the host memory. 6847 **/ 6848 void 6849 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6850 { 6851 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6852 6853 spin_lock_irq(&phba->hbalock); 6854 ras_fwlog->state = INACTIVE; 6855 spin_unlock_irq(&phba->hbalock); 6856 6857 /* Disable FW logging to host memory */ 6858 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6859 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6860 6861 /* Wait 10ms for firmware to stop using DMA buffer */ 6862 usleep_range(10 * 1000, 20 * 1000); 6863 } 6864 6865 /** 6866 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6867 * @phba: Pointer to HBA context object. 6868 * 6869 * This function is called to free memory allocated for RAS FW logging 6870 * support in the driver. 6871 **/ 6872 void 6873 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6874 { 6875 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6876 struct lpfc_dmabuf *dmabuf, *next; 6877 6878 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6879 list_for_each_entry_safe(dmabuf, next, 6880 &ras_fwlog->fwlog_buff_list, 6881 list) { 6882 list_del(&dmabuf->list); 6883 dma_free_coherent(&phba->pcidev->dev, 6884 LPFC_RAS_MAX_ENTRY_SIZE, 6885 dmabuf->virt, dmabuf->phys); 6886 kfree(dmabuf); 6887 } 6888 } 6889 6890 if (ras_fwlog->lwpd.virt) { 6891 dma_free_coherent(&phba->pcidev->dev, 6892 sizeof(uint32_t) * 2, 6893 ras_fwlog->lwpd.virt, 6894 ras_fwlog->lwpd.phys); 6895 ras_fwlog->lwpd.virt = NULL; 6896 } 6897 6898 spin_lock_irq(&phba->hbalock); 6899 ras_fwlog->state = INACTIVE; 6900 spin_unlock_irq(&phba->hbalock); 6901 } 6902 6903 /** 6904 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6905 * @phba: Pointer to HBA context object. 6906 * @fwlog_buff_count: Count of buffers to be created. 6907 * 6908 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6909 * to update FW log is posted to the adapter. 6910 * Buffer count is calculated based on module param ras_fwlog_buffsize 6911 * Size of each buffer posted to FW is 64K. 6912 **/ 6913 6914 static int 6915 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6916 uint32_t fwlog_buff_count) 6917 { 6918 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6919 struct lpfc_dmabuf *dmabuf; 6920 int rc = 0, i = 0; 6921 6922 /* Initialize List */ 6923 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6924 6925 /* Allocate memory for the LWPD */ 6926 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6927 sizeof(uint32_t) * 2, 6928 &ras_fwlog->lwpd.phys, 6929 GFP_KERNEL); 6930 if (!ras_fwlog->lwpd.virt) { 6931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6932 "6185 LWPD Memory Alloc Failed\n"); 6933 6934 return -ENOMEM; 6935 } 6936 6937 ras_fwlog->fw_buffcount = fwlog_buff_count; 6938 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6939 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6940 GFP_KERNEL); 6941 if (!dmabuf) { 6942 rc = -ENOMEM; 6943 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6944 "6186 Memory Alloc failed FW logging"); 6945 goto free_mem; 6946 } 6947 6948 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6949 LPFC_RAS_MAX_ENTRY_SIZE, 6950 &dmabuf->phys, GFP_KERNEL); 6951 if (!dmabuf->virt) { 6952 kfree(dmabuf); 6953 rc = -ENOMEM; 6954 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6955 "6187 DMA Alloc Failed FW logging"); 6956 goto free_mem; 6957 } 6958 dmabuf->buffer_tag = i; 6959 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6960 } 6961 6962 free_mem: 6963 if (rc) 6964 lpfc_sli4_ras_dma_free(phba); 6965 6966 return rc; 6967 } 6968 6969 /** 6970 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6971 * @phba: pointer to lpfc hba data structure. 6972 * @pmb: pointer to the driver internal queue element for mailbox command. 6973 * 6974 * Completion handler for driver's RAS MBX command to the device. 6975 **/ 6976 static void 6977 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6978 { 6979 MAILBOX_t *mb; 6980 union lpfc_sli4_cfg_shdr *shdr; 6981 uint32_t shdr_status, shdr_add_status; 6982 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6983 6984 mb = &pmb->u.mb; 6985 6986 shdr = (union lpfc_sli4_cfg_shdr *) 6987 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6988 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6989 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6990 6991 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6993 "6188 FW LOG mailbox " 6994 "completed with status x%x add_status x%x," 6995 " mbx status x%x\n", 6996 shdr_status, shdr_add_status, mb->mbxStatus); 6997 6998 ras_fwlog->ras_hwsupport = false; 6999 goto disable_ras; 7000 } 7001 7002 spin_lock_irq(&phba->hbalock); 7003 ras_fwlog->state = ACTIVE; 7004 spin_unlock_irq(&phba->hbalock); 7005 mempool_free(pmb, phba->mbox_mem_pool); 7006 7007 return; 7008 7009 disable_ras: 7010 /* Free RAS DMA memory */ 7011 lpfc_sli4_ras_dma_free(phba); 7012 mempool_free(pmb, phba->mbox_mem_pool); 7013 } 7014 7015 /** 7016 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7017 * @phba: pointer to lpfc hba data structure. 7018 * @fwlog_level: Logging verbosity level. 7019 * @fwlog_enable: Enable/Disable logging. 7020 * 7021 * Initialize memory and post mailbox command to enable FW logging in host 7022 * memory. 7023 **/ 7024 int 7025 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7026 uint32_t fwlog_level, 7027 uint32_t fwlog_enable) 7028 { 7029 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7030 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7031 struct lpfc_dmabuf *dmabuf; 7032 LPFC_MBOXQ_t *mbox; 7033 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7034 int rc = 0; 7035 7036 spin_lock_irq(&phba->hbalock); 7037 ras_fwlog->state = INACTIVE; 7038 spin_unlock_irq(&phba->hbalock); 7039 7040 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7041 phba->cfg_ras_fwlog_buffsize); 7042 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7043 7044 /* 7045 * If re-enabling FW logging support use earlier allocated 7046 * DMA buffers while posting MBX command. 7047 **/ 7048 if (!ras_fwlog->lwpd.virt) { 7049 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7050 if (rc) { 7051 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7052 "6189 FW Log Memory Allocation Failed"); 7053 return rc; 7054 } 7055 } 7056 7057 /* Setup Mailbox command */ 7058 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7059 if (!mbox) { 7060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7061 "6190 RAS MBX Alloc Failed"); 7062 rc = -ENOMEM; 7063 goto mem_free; 7064 } 7065 7066 ras_fwlog->fw_loglevel = fwlog_level; 7067 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7068 sizeof(struct lpfc_sli4_cfg_mhdr)); 7069 7070 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7071 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7072 len, LPFC_SLI4_MBX_EMBED); 7073 7074 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7075 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7076 fwlog_enable); 7077 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7078 ras_fwlog->fw_loglevel); 7079 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7080 ras_fwlog->fw_buffcount); 7081 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7082 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7083 7084 /* Update DMA buffer address */ 7085 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7086 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7087 7088 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7089 putPaddrLow(dmabuf->phys); 7090 7091 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7092 putPaddrHigh(dmabuf->phys); 7093 } 7094 7095 /* Update LPWD address */ 7096 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7097 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7098 7099 spin_lock_irq(&phba->hbalock); 7100 ras_fwlog->state = REG_INPROGRESS; 7101 spin_unlock_irq(&phba->hbalock); 7102 mbox->vport = phba->pport; 7103 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7104 7105 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7106 7107 if (rc == MBX_NOT_FINISHED) { 7108 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7109 "6191 FW-Log Mailbox failed. " 7110 "status %d mbxStatus : x%x", rc, 7111 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7112 mempool_free(mbox, phba->mbox_mem_pool); 7113 rc = -EIO; 7114 goto mem_free; 7115 } else 7116 rc = 0; 7117 mem_free: 7118 if (rc) 7119 lpfc_sli4_ras_dma_free(phba); 7120 7121 return rc; 7122 } 7123 7124 /** 7125 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7126 * @phba: Pointer to HBA context object. 7127 * 7128 * Check if RAS is supported on the adapter and initialize it. 7129 **/ 7130 void 7131 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7132 { 7133 /* Check RAS FW Log needs to be enabled or not */ 7134 if (lpfc_check_fwlog_support(phba)) 7135 return; 7136 7137 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7138 LPFC_RAS_ENABLE_LOGGING); 7139 } 7140 7141 /** 7142 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7143 * @phba: Pointer to HBA context object. 7144 * 7145 * This function allocates all SLI4 resource identifiers. 7146 **/ 7147 int 7148 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7149 { 7150 int i, rc, error = 0; 7151 uint16_t count, base; 7152 unsigned long longs; 7153 7154 if (!phba->sli4_hba.rpi_hdrs_in_use) 7155 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7156 if (phba->sli4_hba.extents_in_use) { 7157 /* 7158 * The port supports resource extents. The XRI, VPI, VFI, RPI 7159 * resource extent count must be read and allocated before 7160 * provisioning the resource id arrays. 7161 */ 7162 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7163 LPFC_IDX_RSRC_RDY) { 7164 /* 7165 * Extent-based resources are set - the driver could 7166 * be in a port reset. Figure out if any corrective 7167 * actions need to be taken. 7168 */ 7169 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7170 LPFC_RSC_TYPE_FCOE_VFI); 7171 if (rc != 0) 7172 error++; 7173 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7174 LPFC_RSC_TYPE_FCOE_VPI); 7175 if (rc != 0) 7176 error++; 7177 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7178 LPFC_RSC_TYPE_FCOE_XRI); 7179 if (rc != 0) 7180 error++; 7181 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7182 LPFC_RSC_TYPE_FCOE_RPI); 7183 if (rc != 0) 7184 error++; 7185 7186 /* 7187 * It's possible that the number of resources 7188 * provided to this port instance changed between 7189 * resets. Detect this condition and reallocate 7190 * resources. Otherwise, there is no action. 7191 */ 7192 if (error) { 7193 lpfc_printf_log(phba, KERN_INFO, 7194 LOG_MBOX | LOG_INIT, 7195 "2931 Detected extent resource " 7196 "change. Reallocating all " 7197 "extents.\n"); 7198 rc = lpfc_sli4_dealloc_extent(phba, 7199 LPFC_RSC_TYPE_FCOE_VFI); 7200 rc = lpfc_sli4_dealloc_extent(phba, 7201 LPFC_RSC_TYPE_FCOE_VPI); 7202 rc = lpfc_sli4_dealloc_extent(phba, 7203 LPFC_RSC_TYPE_FCOE_XRI); 7204 rc = lpfc_sli4_dealloc_extent(phba, 7205 LPFC_RSC_TYPE_FCOE_RPI); 7206 } else 7207 return 0; 7208 } 7209 7210 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7211 if (unlikely(rc)) 7212 goto err_exit; 7213 7214 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7215 if (unlikely(rc)) 7216 goto err_exit; 7217 7218 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7219 if (unlikely(rc)) 7220 goto err_exit; 7221 7222 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7223 if (unlikely(rc)) 7224 goto err_exit; 7225 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7226 LPFC_IDX_RSRC_RDY); 7227 return rc; 7228 } else { 7229 /* 7230 * The port does not support resource extents. The XRI, VPI, 7231 * VFI, RPI resource ids were determined from READ_CONFIG. 7232 * Just allocate the bitmasks and provision the resource id 7233 * arrays. If a port reset is active, the resources don't 7234 * need any action - just exit. 7235 */ 7236 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7237 LPFC_IDX_RSRC_RDY) { 7238 lpfc_sli4_dealloc_resource_identifiers(phba); 7239 lpfc_sli4_remove_rpis(phba); 7240 } 7241 /* RPIs. */ 7242 count = phba->sli4_hba.max_cfg_param.max_rpi; 7243 if (count <= 0) { 7244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7245 "3279 Invalid provisioning of " 7246 "rpi:%d\n", count); 7247 rc = -EINVAL; 7248 goto err_exit; 7249 } 7250 base = phba->sli4_hba.max_cfg_param.rpi_base; 7251 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7252 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7253 sizeof(unsigned long), 7254 GFP_KERNEL); 7255 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7256 rc = -ENOMEM; 7257 goto err_exit; 7258 } 7259 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7260 GFP_KERNEL); 7261 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7262 rc = -ENOMEM; 7263 goto free_rpi_bmask; 7264 } 7265 7266 for (i = 0; i < count; i++) 7267 phba->sli4_hba.rpi_ids[i] = base + i; 7268 7269 /* VPIs. */ 7270 count = phba->sli4_hba.max_cfg_param.max_vpi; 7271 if (count <= 0) { 7272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7273 "3280 Invalid provisioning of " 7274 "vpi:%d\n", count); 7275 rc = -EINVAL; 7276 goto free_rpi_ids; 7277 } 7278 base = phba->sli4_hba.max_cfg_param.vpi_base; 7279 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7280 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7281 GFP_KERNEL); 7282 if (unlikely(!phba->vpi_bmask)) { 7283 rc = -ENOMEM; 7284 goto free_rpi_ids; 7285 } 7286 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7287 GFP_KERNEL); 7288 if (unlikely(!phba->vpi_ids)) { 7289 rc = -ENOMEM; 7290 goto free_vpi_bmask; 7291 } 7292 7293 for (i = 0; i < count; i++) 7294 phba->vpi_ids[i] = base + i; 7295 7296 /* XRIs. */ 7297 count = phba->sli4_hba.max_cfg_param.max_xri; 7298 if (count <= 0) { 7299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7300 "3281 Invalid provisioning of " 7301 "xri:%d\n", count); 7302 rc = -EINVAL; 7303 goto free_vpi_ids; 7304 } 7305 base = phba->sli4_hba.max_cfg_param.xri_base; 7306 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7307 phba->sli4_hba.xri_bmask = kcalloc(longs, 7308 sizeof(unsigned long), 7309 GFP_KERNEL); 7310 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7311 rc = -ENOMEM; 7312 goto free_vpi_ids; 7313 } 7314 phba->sli4_hba.max_cfg_param.xri_used = 0; 7315 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7316 GFP_KERNEL); 7317 if (unlikely(!phba->sli4_hba.xri_ids)) { 7318 rc = -ENOMEM; 7319 goto free_xri_bmask; 7320 } 7321 7322 for (i = 0; i < count; i++) 7323 phba->sli4_hba.xri_ids[i] = base + i; 7324 7325 /* VFIs. */ 7326 count = phba->sli4_hba.max_cfg_param.max_vfi; 7327 if (count <= 0) { 7328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7329 "3282 Invalid provisioning of " 7330 "vfi:%d\n", count); 7331 rc = -EINVAL; 7332 goto free_xri_ids; 7333 } 7334 base = phba->sli4_hba.max_cfg_param.vfi_base; 7335 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7336 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7337 sizeof(unsigned long), 7338 GFP_KERNEL); 7339 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7340 rc = -ENOMEM; 7341 goto free_xri_ids; 7342 } 7343 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7344 GFP_KERNEL); 7345 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7346 rc = -ENOMEM; 7347 goto free_vfi_bmask; 7348 } 7349 7350 for (i = 0; i < count; i++) 7351 phba->sli4_hba.vfi_ids[i] = base + i; 7352 7353 /* 7354 * Mark all resources ready. An HBA reset doesn't need 7355 * to reset the initialization. 7356 */ 7357 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7358 LPFC_IDX_RSRC_RDY); 7359 return 0; 7360 } 7361 7362 free_vfi_bmask: 7363 kfree(phba->sli4_hba.vfi_bmask); 7364 phba->sli4_hba.vfi_bmask = NULL; 7365 free_xri_ids: 7366 kfree(phba->sli4_hba.xri_ids); 7367 phba->sli4_hba.xri_ids = NULL; 7368 free_xri_bmask: 7369 kfree(phba->sli4_hba.xri_bmask); 7370 phba->sli4_hba.xri_bmask = NULL; 7371 free_vpi_ids: 7372 kfree(phba->vpi_ids); 7373 phba->vpi_ids = NULL; 7374 free_vpi_bmask: 7375 kfree(phba->vpi_bmask); 7376 phba->vpi_bmask = NULL; 7377 free_rpi_ids: 7378 kfree(phba->sli4_hba.rpi_ids); 7379 phba->sli4_hba.rpi_ids = NULL; 7380 free_rpi_bmask: 7381 kfree(phba->sli4_hba.rpi_bmask); 7382 phba->sli4_hba.rpi_bmask = NULL; 7383 err_exit: 7384 return rc; 7385 } 7386 7387 /** 7388 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7389 * @phba: Pointer to HBA context object. 7390 * 7391 * This function allocates the number of elements for the specified 7392 * resource type. 7393 **/ 7394 int 7395 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7396 { 7397 if (phba->sli4_hba.extents_in_use) { 7398 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7399 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7400 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7401 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7402 } else { 7403 kfree(phba->vpi_bmask); 7404 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7405 kfree(phba->vpi_ids); 7406 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7407 kfree(phba->sli4_hba.xri_bmask); 7408 kfree(phba->sli4_hba.xri_ids); 7409 kfree(phba->sli4_hba.vfi_bmask); 7410 kfree(phba->sli4_hba.vfi_ids); 7411 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7412 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7413 } 7414 7415 return 0; 7416 } 7417 7418 /** 7419 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7420 * @phba: Pointer to HBA context object. 7421 * @type: The resource extent type. 7422 * @extnt_cnt: buffer to hold port extent count response 7423 * @extnt_size: buffer to hold port extent size response. 7424 * 7425 * This function calls the port to read the host allocated extents 7426 * for a particular type. 7427 **/ 7428 int 7429 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7430 uint16_t *extnt_cnt, uint16_t *extnt_size) 7431 { 7432 bool emb; 7433 int rc = 0; 7434 uint16_t curr_blks = 0; 7435 uint32_t req_len, emb_len; 7436 uint32_t alloc_len, mbox_tmo; 7437 struct list_head *blk_list_head; 7438 struct lpfc_rsrc_blks *rsrc_blk; 7439 LPFC_MBOXQ_t *mbox; 7440 void *virtaddr = NULL; 7441 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7442 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7443 union lpfc_sli4_cfg_shdr *shdr; 7444 7445 switch (type) { 7446 case LPFC_RSC_TYPE_FCOE_VPI: 7447 blk_list_head = &phba->lpfc_vpi_blk_list; 7448 break; 7449 case LPFC_RSC_TYPE_FCOE_XRI: 7450 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7451 break; 7452 case LPFC_RSC_TYPE_FCOE_VFI: 7453 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7454 break; 7455 case LPFC_RSC_TYPE_FCOE_RPI: 7456 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7457 break; 7458 default: 7459 return -EIO; 7460 } 7461 7462 /* Count the number of extents currently allocatd for this type. */ 7463 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7464 if (curr_blks == 0) { 7465 /* 7466 * The GET_ALLOCATED mailbox does not return the size, 7467 * just the count. The size should be just the size 7468 * stored in the current allocated block and all sizes 7469 * for an extent type are the same so set the return 7470 * value now. 7471 */ 7472 *extnt_size = rsrc_blk->rsrc_size; 7473 } 7474 curr_blks++; 7475 } 7476 7477 /* 7478 * Calculate the size of an embedded mailbox. The uint32_t 7479 * accounts for extents-specific word. 7480 */ 7481 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7482 sizeof(uint32_t); 7483 7484 /* 7485 * Presume the allocation and response will fit into an embedded 7486 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7487 */ 7488 emb = LPFC_SLI4_MBX_EMBED; 7489 req_len = emb_len; 7490 if (req_len > emb_len) { 7491 req_len = curr_blks * sizeof(uint16_t) + 7492 sizeof(union lpfc_sli4_cfg_shdr) + 7493 sizeof(uint32_t); 7494 emb = LPFC_SLI4_MBX_NEMBED; 7495 } 7496 7497 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7498 if (!mbox) 7499 return -ENOMEM; 7500 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7501 7502 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7503 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7504 req_len, emb); 7505 if (alloc_len < req_len) { 7506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7507 "2983 Allocated DMA memory size (x%x) is " 7508 "less than the requested DMA memory " 7509 "size (x%x)\n", alloc_len, req_len); 7510 rc = -ENOMEM; 7511 goto err_exit; 7512 } 7513 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7514 if (unlikely(rc)) { 7515 rc = -EIO; 7516 goto err_exit; 7517 } 7518 7519 if (!phba->sli4_hba.intr_enable) 7520 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7521 else { 7522 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7523 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7524 } 7525 7526 if (unlikely(rc)) { 7527 rc = -EIO; 7528 goto err_exit; 7529 } 7530 7531 /* 7532 * Figure out where the response is located. Then get local pointers 7533 * to the response data. The port does not guarantee to respond to 7534 * all extents counts request so update the local variable with the 7535 * allocated count from the port. 7536 */ 7537 if (emb == LPFC_SLI4_MBX_EMBED) { 7538 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7539 shdr = &rsrc_ext->header.cfg_shdr; 7540 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7541 } else { 7542 virtaddr = mbox->sge_array->addr[0]; 7543 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7544 shdr = &n_rsrc->cfg_shdr; 7545 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7546 } 7547 7548 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7550 "2984 Failed to read allocated resources " 7551 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7552 type, 7553 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7554 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7555 rc = -EIO; 7556 goto err_exit; 7557 } 7558 err_exit: 7559 lpfc_sli4_mbox_cmd_free(phba, mbox); 7560 return rc; 7561 } 7562 7563 /** 7564 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7565 * @phba: pointer to lpfc hba data structure. 7566 * @sgl_list: linked link of sgl buffers to post 7567 * @cnt: number of linked list buffers 7568 * 7569 * This routine walks the list of buffers that have been allocated and 7570 * repost them to the port by using SGL block post. This is needed after a 7571 * pci_function_reset/warm_start or start. It attempts to construct blocks 7572 * of buffer sgls which contains contiguous xris and uses the non-embedded 7573 * SGL block post mailbox commands to post them to the port. For single 7574 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7575 * mailbox command for posting. 7576 * 7577 * Returns: 0 = success, non-zero failure. 7578 **/ 7579 static int 7580 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7581 struct list_head *sgl_list, int cnt) 7582 { 7583 struct lpfc_sglq *sglq_entry = NULL; 7584 struct lpfc_sglq *sglq_entry_next = NULL; 7585 struct lpfc_sglq *sglq_entry_first = NULL; 7586 int status, total_cnt; 7587 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7588 int last_xritag = NO_XRI; 7589 LIST_HEAD(prep_sgl_list); 7590 LIST_HEAD(blck_sgl_list); 7591 LIST_HEAD(allc_sgl_list); 7592 LIST_HEAD(post_sgl_list); 7593 LIST_HEAD(free_sgl_list); 7594 7595 spin_lock_irq(&phba->hbalock); 7596 spin_lock(&phba->sli4_hba.sgl_list_lock); 7597 list_splice_init(sgl_list, &allc_sgl_list); 7598 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7599 spin_unlock_irq(&phba->hbalock); 7600 7601 total_cnt = cnt; 7602 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7603 &allc_sgl_list, list) { 7604 list_del_init(&sglq_entry->list); 7605 block_cnt++; 7606 if ((last_xritag != NO_XRI) && 7607 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7608 /* a hole in xri block, form a sgl posting block */ 7609 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7610 post_cnt = block_cnt - 1; 7611 /* prepare list for next posting block */ 7612 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7613 block_cnt = 1; 7614 } else { 7615 /* prepare list for next posting block */ 7616 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7617 /* enough sgls for non-embed sgl mbox command */ 7618 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7619 list_splice_init(&prep_sgl_list, 7620 &blck_sgl_list); 7621 post_cnt = block_cnt; 7622 block_cnt = 0; 7623 } 7624 } 7625 num_posted++; 7626 7627 /* keep track of last sgl's xritag */ 7628 last_xritag = sglq_entry->sli4_xritag; 7629 7630 /* end of repost sgl list condition for buffers */ 7631 if (num_posted == total_cnt) { 7632 if (post_cnt == 0) { 7633 list_splice_init(&prep_sgl_list, 7634 &blck_sgl_list); 7635 post_cnt = block_cnt; 7636 } else if (block_cnt == 1) { 7637 status = lpfc_sli4_post_sgl(phba, 7638 sglq_entry->phys, 0, 7639 sglq_entry->sli4_xritag); 7640 if (!status) { 7641 /* successful, put sgl to posted list */ 7642 list_add_tail(&sglq_entry->list, 7643 &post_sgl_list); 7644 } else { 7645 /* Failure, put sgl to free list */ 7646 lpfc_printf_log(phba, KERN_WARNING, 7647 LOG_SLI, 7648 "3159 Failed to post " 7649 "sgl, xritag:x%x\n", 7650 sglq_entry->sli4_xritag); 7651 list_add_tail(&sglq_entry->list, 7652 &free_sgl_list); 7653 total_cnt--; 7654 } 7655 } 7656 } 7657 7658 /* continue until a nembed page worth of sgls */ 7659 if (post_cnt == 0) 7660 continue; 7661 7662 /* post the buffer list sgls as a block */ 7663 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7664 post_cnt); 7665 7666 if (!status) { 7667 /* success, put sgl list to posted sgl list */ 7668 list_splice_init(&blck_sgl_list, &post_sgl_list); 7669 } else { 7670 /* Failure, put sgl list to free sgl list */ 7671 sglq_entry_first = list_first_entry(&blck_sgl_list, 7672 struct lpfc_sglq, 7673 list); 7674 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7675 "3160 Failed to post sgl-list, " 7676 "xritag:x%x-x%x\n", 7677 sglq_entry_first->sli4_xritag, 7678 (sglq_entry_first->sli4_xritag + 7679 post_cnt - 1)); 7680 list_splice_init(&blck_sgl_list, &free_sgl_list); 7681 total_cnt -= post_cnt; 7682 } 7683 7684 /* don't reset xirtag due to hole in xri block */ 7685 if (block_cnt == 0) 7686 last_xritag = NO_XRI; 7687 7688 /* reset sgl post count for next round of posting */ 7689 post_cnt = 0; 7690 } 7691 7692 /* free the sgls failed to post */ 7693 lpfc_free_sgl_list(phba, &free_sgl_list); 7694 7695 /* push sgls posted to the available list */ 7696 if (!list_empty(&post_sgl_list)) { 7697 spin_lock_irq(&phba->hbalock); 7698 spin_lock(&phba->sli4_hba.sgl_list_lock); 7699 list_splice_init(&post_sgl_list, sgl_list); 7700 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7701 spin_unlock_irq(&phba->hbalock); 7702 } else { 7703 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7704 "3161 Failure to post sgl to port.\n"); 7705 return -EIO; 7706 } 7707 7708 /* return the number of XRIs actually posted */ 7709 return total_cnt; 7710 } 7711 7712 /** 7713 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7714 * @phba: pointer to lpfc hba data structure. 7715 * 7716 * This routine walks the list of nvme buffers that have been allocated and 7717 * repost them to the port by using SGL block post. This is needed after a 7718 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7719 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7720 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7721 * 7722 * Returns: 0 = success, non-zero failure. 7723 **/ 7724 static int 7725 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7726 { 7727 LIST_HEAD(post_nblist); 7728 int num_posted, rc = 0; 7729 7730 /* get all NVME buffers need to repost to a local list */ 7731 lpfc_io_buf_flush(phba, &post_nblist); 7732 7733 /* post the list of nvme buffer sgls to port if available */ 7734 if (!list_empty(&post_nblist)) { 7735 num_posted = lpfc_sli4_post_io_sgl_list( 7736 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7737 /* failed to post any nvme buffer, return error */ 7738 if (num_posted == 0) 7739 rc = -EIO; 7740 } 7741 return rc; 7742 } 7743 7744 static void 7745 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7746 { 7747 uint32_t len; 7748 7749 len = sizeof(struct lpfc_mbx_set_host_data) - 7750 sizeof(struct lpfc_sli4_cfg_mhdr); 7751 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7752 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7753 LPFC_SLI4_MBX_EMBED); 7754 7755 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7756 mbox->u.mqe.un.set_host_data.param_len = 7757 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7758 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7759 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7760 "Linux %s v"LPFC_DRIVER_VERSION, 7761 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7762 } 7763 7764 int 7765 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7766 struct lpfc_queue *drq, int count, int idx) 7767 { 7768 int rc, i; 7769 struct lpfc_rqe hrqe; 7770 struct lpfc_rqe drqe; 7771 struct lpfc_rqb *rqbp; 7772 unsigned long flags; 7773 struct rqb_dmabuf *rqb_buffer; 7774 LIST_HEAD(rqb_buf_list); 7775 7776 rqbp = hrq->rqbp; 7777 for (i = 0; i < count; i++) { 7778 spin_lock_irqsave(&phba->hbalock, flags); 7779 /* IF RQ is already full, don't bother */ 7780 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7781 spin_unlock_irqrestore(&phba->hbalock, flags); 7782 break; 7783 } 7784 spin_unlock_irqrestore(&phba->hbalock, flags); 7785 7786 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7787 if (!rqb_buffer) 7788 break; 7789 rqb_buffer->hrq = hrq; 7790 rqb_buffer->drq = drq; 7791 rqb_buffer->idx = idx; 7792 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7793 } 7794 7795 spin_lock_irqsave(&phba->hbalock, flags); 7796 while (!list_empty(&rqb_buf_list)) { 7797 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7798 hbuf.list); 7799 7800 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7801 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7802 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7803 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7804 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7805 if (rc < 0) { 7806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7807 "6421 Cannot post to HRQ %d: %x %x %x " 7808 "DRQ %x %x\n", 7809 hrq->queue_id, 7810 hrq->host_index, 7811 hrq->hba_index, 7812 hrq->entry_count, 7813 drq->host_index, 7814 drq->hba_index); 7815 rqbp->rqb_free_buffer(phba, rqb_buffer); 7816 } else { 7817 list_add_tail(&rqb_buffer->hbuf.list, 7818 &rqbp->rqb_buffer_list); 7819 rqbp->buffer_count++; 7820 } 7821 } 7822 spin_unlock_irqrestore(&phba->hbalock, flags); 7823 return 1; 7824 } 7825 7826 static void 7827 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7828 { 7829 struct lpfc_vport *vport = pmb->vport; 7830 union lpfc_sli4_cfg_shdr *shdr; 7831 u32 shdr_status, shdr_add_status; 7832 u32 sig, acqe; 7833 7834 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7835 * is done. (2) Mailbox failed and send FPIN support only. 7836 */ 7837 shdr = (union lpfc_sli4_cfg_shdr *) 7838 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7839 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7840 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7841 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7842 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7843 "2516 CGN SET_FEATURE mbox failed with " 7844 "status x%x add_status x%x, mbx status x%x " 7845 "Reset Congestion to FPINs only\n", 7846 shdr_status, shdr_add_status, 7847 pmb->u.mb.mbxStatus); 7848 /* If there is a mbox error, move on to RDF */ 7849 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7850 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7851 goto out; 7852 } 7853 7854 /* Zero out Congestion Signal ACQE counter */ 7855 phba->cgn_acqe_cnt = 0; 7856 7857 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7858 &pmb->u.mqe.un.set_feature); 7859 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7860 &pmb->u.mqe.un.set_feature); 7861 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7862 "4620 SET_FEATURES Success: Freq: %ds %dms " 7863 " Reg: x%x x%x\n", acqe, sig, 7864 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7865 out: 7866 mempool_free(pmb, phba->mbox_mem_pool); 7867 7868 /* Register for FPIN events from the fabric now that the 7869 * EDC common_set_features has completed. 7870 */ 7871 lpfc_issue_els_rdf(vport, 0); 7872 } 7873 7874 int 7875 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7876 { 7877 LPFC_MBOXQ_t *mboxq; 7878 u32 rc; 7879 7880 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7881 if (!mboxq) 7882 goto out_rdf; 7883 7884 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7885 mboxq->vport = phba->pport; 7886 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7887 7888 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7889 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7890 "Reg: x%x x%x\n", 7891 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7892 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7893 7894 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7895 if (rc == MBX_NOT_FINISHED) 7896 goto out; 7897 return 0; 7898 7899 out: 7900 mempool_free(mboxq, phba->mbox_mem_pool); 7901 out_rdf: 7902 /* If there is a mbox error, move on to RDF */ 7903 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7904 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7905 lpfc_issue_els_rdf(phba->pport, 0); 7906 return -EIO; 7907 } 7908 7909 /** 7910 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7911 * @phba: pointer to lpfc hba data structure. 7912 * 7913 * This routine initializes the per-cq idle_stat to dynamically dictate 7914 * polling decisions. 7915 * 7916 * Return codes: 7917 * None 7918 **/ 7919 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7920 { 7921 int i; 7922 struct lpfc_sli4_hdw_queue *hdwq; 7923 struct lpfc_queue *cq; 7924 struct lpfc_idle_stat *idle_stat; 7925 u64 wall; 7926 7927 for_each_present_cpu(i) { 7928 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7929 cq = hdwq->io_cq; 7930 7931 /* Skip if we've already handled this cq's primary CPU */ 7932 if (cq->chann != i) 7933 continue; 7934 7935 idle_stat = &phba->sli4_hba.idle_stat[i]; 7936 7937 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7938 idle_stat->prev_wall = wall; 7939 7940 if (phba->nvmet_support || 7941 phba->cmf_active_mode != LPFC_CFG_OFF) 7942 cq->poll_mode = LPFC_QUEUE_WORK; 7943 else 7944 cq->poll_mode = LPFC_IRQ_POLL; 7945 } 7946 7947 if (!phba->nvmet_support) 7948 schedule_delayed_work(&phba->idle_stat_delay_work, 7949 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7950 } 7951 7952 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7953 { 7954 uint32_t if_type; 7955 7956 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7957 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7958 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7959 struct lpfc_register reg_data; 7960 7961 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7962 ®_data.word0)) 7963 return; 7964 7965 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7966 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7967 "2904 Firmware Dump Image Present" 7968 " on Adapter"); 7969 } 7970 } 7971 7972 /** 7973 * lpfc_cmf_setup - Initialize idle_stat tracking 7974 * @phba: Pointer to HBA context object. 7975 * 7976 * This is called from HBA setup during driver load or when the HBA 7977 * comes online. this does all the initialization to support CMF and MI. 7978 **/ 7979 static int 7980 lpfc_cmf_setup(struct lpfc_hba *phba) 7981 { 7982 LPFC_MBOXQ_t *mboxq; 7983 struct lpfc_dmabuf *mp; 7984 struct lpfc_pc_sli4_params *sli4_params; 7985 int rc, cmf, mi_ver; 7986 7987 rc = lpfc_sli4_refresh_params(phba); 7988 if (unlikely(rc)) 7989 return rc; 7990 7991 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7992 if (!mboxq) 7993 return -ENOMEM; 7994 7995 sli4_params = &phba->sli4_hba.pc_sli4_params; 7996 7997 /* Are we forcing MI off via module parameter? */ 7998 if (!phba->cfg_enable_mi) 7999 sli4_params->mi_ver = 0; 8000 8001 /* Always try to enable MI feature if we can */ 8002 if (sli4_params->mi_ver) { 8003 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8004 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8005 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8006 &mboxq->u.mqe.un.set_feature); 8007 8008 if (rc == MBX_SUCCESS) { 8009 if (mi_ver) { 8010 lpfc_printf_log(phba, 8011 KERN_WARNING, LOG_CGN_MGMT, 8012 "6215 MI is enabled\n"); 8013 sli4_params->mi_ver = mi_ver; 8014 } else { 8015 lpfc_printf_log(phba, 8016 KERN_WARNING, LOG_CGN_MGMT, 8017 "6338 MI is disabled\n"); 8018 sli4_params->mi_ver = 0; 8019 } 8020 } else { 8021 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8022 lpfc_printf_log(phba, KERN_INFO, 8023 LOG_CGN_MGMT | LOG_INIT, 8024 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8025 "failed, rc:x%x mi:x%x\n", 8026 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8027 lpfc_sli_config_mbox_subsys_get 8028 (phba, mboxq), 8029 lpfc_sli_config_mbox_opcode_get 8030 (phba, mboxq), 8031 rc, sli4_params->mi_ver); 8032 } 8033 } else { 8034 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8035 "6217 MI is disabled\n"); 8036 } 8037 8038 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8039 if (sli4_params->mi_ver) 8040 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8041 8042 /* Always try to enable CMF feature if we can */ 8043 if (sli4_params->cmf) { 8044 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8045 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8046 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8047 &mboxq->u.mqe.un.set_feature); 8048 if (rc == MBX_SUCCESS && cmf) { 8049 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8050 "6218 CMF is enabled: mode %d\n", 8051 phba->cmf_active_mode); 8052 } else { 8053 lpfc_printf_log(phba, KERN_WARNING, 8054 LOG_CGN_MGMT | LOG_INIT, 8055 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8056 "failed, rc:x%x dd:x%x\n", 8057 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8058 lpfc_sli_config_mbox_subsys_get 8059 (phba, mboxq), 8060 lpfc_sli_config_mbox_opcode_get 8061 (phba, mboxq), 8062 rc, cmf); 8063 sli4_params->cmf = 0; 8064 phba->cmf_active_mode = LPFC_CFG_OFF; 8065 goto no_cmf; 8066 } 8067 8068 /* Allocate Congestion Information Buffer */ 8069 if (!phba->cgn_i) { 8070 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8071 if (mp) 8072 mp->virt = dma_alloc_coherent 8073 (&phba->pcidev->dev, 8074 sizeof(struct lpfc_cgn_info), 8075 &mp->phys, GFP_KERNEL); 8076 if (!mp || !mp->virt) { 8077 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8078 "2640 Failed to alloc memory " 8079 "for Congestion Info\n"); 8080 kfree(mp); 8081 sli4_params->cmf = 0; 8082 phba->cmf_active_mode = LPFC_CFG_OFF; 8083 goto no_cmf; 8084 } 8085 phba->cgn_i = mp; 8086 8087 /* initialize congestion buffer info */ 8088 lpfc_init_congestion_buf(phba); 8089 lpfc_init_congestion_stat(phba); 8090 8091 /* Zero out Congestion Signal counters */ 8092 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8093 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8094 } 8095 8096 rc = lpfc_sli4_cgn_params_read(phba); 8097 if (rc < 0) { 8098 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8099 "6242 Error reading Cgn Params (%d)\n", 8100 rc); 8101 /* Ensure CGN Mode is off */ 8102 sli4_params->cmf = 0; 8103 } else if (!rc) { 8104 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8105 "6243 CGN Event empty object.\n"); 8106 /* Ensure CGN Mode is off */ 8107 sli4_params->cmf = 0; 8108 } 8109 } else { 8110 no_cmf: 8111 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8112 "6220 CMF is disabled\n"); 8113 } 8114 8115 /* Only register congestion buffer with firmware if BOTH 8116 * CMF and E2E are enabled. 8117 */ 8118 if (sli4_params->cmf && sli4_params->mi_ver) { 8119 rc = lpfc_reg_congestion_buf(phba); 8120 if (rc) { 8121 dma_free_coherent(&phba->pcidev->dev, 8122 sizeof(struct lpfc_cgn_info), 8123 phba->cgn_i->virt, phba->cgn_i->phys); 8124 kfree(phba->cgn_i); 8125 phba->cgn_i = NULL; 8126 /* Ensure CGN Mode is off */ 8127 phba->cmf_active_mode = LPFC_CFG_OFF; 8128 return 0; 8129 } 8130 } 8131 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8132 "6470 Setup MI version %d CMF %d mode %d\n", 8133 sli4_params->mi_ver, sli4_params->cmf, 8134 phba->cmf_active_mode); 8135 8136 mempool_free(mboxq, phba->mbox_mem_pool); 8137 8138 /* Initialize atomic counters */ 8139 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8140 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8141 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8142 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8143 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8144 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8145 atomic64_set(&phba->cgn_latency_evt, 0); 8146 8147 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8148 8149 /* Allocate RX Monitor Buffer */ 8150 if (!phba->rxtable) { 8151 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8152 sizeof(struct rxtable_entry), 8153 GFP_KERNEL); 8154 if (!phba->rxtable) { 8155 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8156 "2644 Failed to alloc memory " 8157 "for RX Monitor Buffer\n"); 8158 return -ENOMEM; 8159 } 8160 } 8161 atomic_set(&phba->rxtable_idx_head, 0); 8162 atomic_set(&phba->rxtable_idx_tail, 0); 8163 return 0; 8164 } 8165 8166 static int 8167 lpfc_set_host_tm(struct lpfc_hba *phba) 8168 { 8169 LPFC_MBOXQ_t *mboxq; 8170 uint32_t len, rc; 8171 struct timespec64 cur_time; 8172 struct tm broken; 8173 uint32_t month, day, year; 8174 uint32_t hour, minute, second; 8175 struct lpfc_mbx_set_host_date_time *tm; 8176 8177 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8178 if (!mboxq) 8179 return -ENOMEM; 8180 8181 len = sizeof(struct lpfc_mbx_set_host_data) - 8182 sizeof(struct lpfc_sli4_cfg_mhdr); 8183 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8184 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8185 LPFC_SLI4_MBX_EMBED); 8186 8187 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8188 mboxq->u.mqe.un.set_host_data.param_len = 8189 sizeof(struct lpfc_mbx_set_host_date_time); 8190 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8191 ktime_get_real_ts64(&cur_time); 8192 time64_to_tm(cur_time.tv_sec, 0, &broken); 8193 month = broken.tm_mon + 1; 8194 day = broken.tm_mday; 8195 year = broken.tm_year - 100; 8196 hour = broken.tm_hour; 8197 minute = broken.tm_min; 8198 second = broken.tm_sec; 8199 bf_set(lpfc_mbx_set_host_month, tm, month); 8200 bf_set(lpfc_mbx_set_host_day, tm, day); 8201 bf_set(lpfc_mbx_set_host_year, tm, year); 8202 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8203 bf_set(lpfc_mbx_set_host_min, tm, minute); 8204 bf_set(lpfc_mbx_set_host_sec, tm, second); 8205 8206 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8207 mempool_free(mboxq, phba->mbox_mem_pool); 8208 return rc; 8209 } 8210 8211 /** 8212 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8213 * @phba: Pointer to HBA context object. 8214 * 8215 * This function is the main SLI4 device initialization PCI function. This 8216 * function is called by the HBA initialization code, HBA reset code and 8217 * HBA error attention handler code. Caller is not required to hold any 8218 * locks. 8219 **/ 8220 int 8221 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8222 { 8223 int rc, i, cnt, len, dd; 8224 LPFC_MBOXQ_t *mboxq; 8225 struct lpfc_mqe *mqe; 8226 uint8_t *vpd; 8227 uint32_t vpd_size; 8228 uint32_t ftr_rsp = 0; 8229 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8230 struct lpfc_vport *vport = phba->pport; 8231 struct lpfc_dmabuf *mp; 8232 struct lpfc_rqb *rqbp; 8233 u32 flg; 8234 8235 /* Perform a PCI function reset to start from clean */ 8236 rc = lpfc_pci_function_reset(phba); 8237 if (unlikely(rc)) 8238 return -ENODEV; 8239 8240 /* Check the HBA Host Status Register for readyness */ 8241 rc = lpfc_sli4_post_status_check(phba); 8242 if (unlikely(rc)) 8243 return -ENODEV; 8244 else { 8245 spin_lock_irq(&phba->hbalock); 8246 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8247 flg = phba->sli.sli_flag; 8248 spin_unlock_irq(&phba->hbalock); 8249 /* Allow a little time after setting SLI_ACTIVE for any polled 8250 * MBX commands to complete via BSG. 8251 */ 8252 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8253 msleep(20); 8254 spin_lock_irq(&phba->hbalock); 8255 flg = phba->sli.sli_flag; 8256 spin_unlock_irq(&phba->hbalock); 8257 } 8258 } 8259 8260 lpfc_sli4_dip(phba); 8261 8262 /* 8263 * Allocate a single mailbox container for initializing the 8264 * port. 8265 */ 8266 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8267 if (!mboxq) 8268 return -ENOMEM; 8269 8270 /* Issue READ_REV to collect vpd and FW information. */ 8271 vpd_size = SLI4_PAGE_SIZE; 8272 vpd = kzalloc(vpd_size, GFP_KERNEL); 8273 if (!vpd) { 8274 rc = -ENOMEM; 8275 goto out_free_mbox; 8276 } 8277 8278 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8279 if (unlikely(rc)) { 8280 kfree(vpd); 8281 goto out_free_mbox; 8282 } 8283 8284 mqe = &mboxq->u.mqe; 8285 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8286 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8287 phba->hba_flag |= HBA_FCOE_MODE; 8288 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8289 } else { 8290 phba->hba_flag &= ~HBA_FCOE_MODE; 8291 } 8292 8293 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8294 LPFC_DCBX_CEE_MODE) 8295 phba->hba_flag |= HBA_FIP_SUPPORT; 8296 else 8297 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8298 8299 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8300 8301 if (phba->sli_rev != LPFC_SLI_REV4) { 8302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8303 "0376 READ_REV Error. SLI Level %d " 8304 "FCoE enabled %d\n", 8305 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8306 rc = -EIO; 8307 kfree(vpd); 8308 goto out_free_mbox; 8309 } 8310 8311 rc = lpfc_set_host_tm(phba); 8312 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8313 "6468 Set host date / time: Status x%x:\n", rc); 8314 8315 /* 8316 * Continue initialization with default values even if driver failed 8317 * to read FCoE param config regions, only read parameters if the 8318 * board is FCoE 8319 */ 8320 if (phba->hba_flag & HBA_FCOE_MODE && 8321 lpfc_sli4_read_fcoe_params(phba)) 8322 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8323 "2570 Failed to read FCoE parameters\n"); 8324 8325 /* 8326 * Retrieve sli4 device physical port name, failure of doing it 8327 * is considered as non-fatal. 8328 */ 8329 rc = lpfc_sli4_retrieve_pport_name(phba); 8330 if (!rc) 8331 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8332 "3080 Successful retrieving SLI4 device " 8333 "physical port name: %s.\n", phba->Port); 8334 8335 rc = lpfc_sli4_get_ctl_attr(phba); 8336 if (!rc) 8337 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8338 "8351 Successful retrieving SLI4 device " 8339 "CTL ATTR\n"); 8340 8341 /* 8342 * Evaluate the read rev and vpd data. Populate the driver 8343 * state with the results. If this routine fails, the failure 8344 * is not fatal as the driver will use generic values. 8345 */ 8346 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8347 if (unlikely(!rc)) { 8348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8349 "0377 Error %d parsing vpd. " 8350 "Using defaults.\n", rc); 8351 rc = 0; 8352 } 8353 kfree(vpd); 8354 8355 /* Save information as VPD data */ 8356 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8357 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8358 8359 /* 8360 * This is because first G7 ASIC doesn't support the standard 8361 * 0x5a NVME cmd descriptor type/subtype 8362 */ 8363 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8364 LPFC_SLI_INTF_IF_TYPE_6) && 8365 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8366 (phba->vpd.rev.smRev == 0) && 8367 (phba->cfg_nvme_embed_cmd == 1)) 8368 phba->cfg_nvme_embed_cmd = 0; 8369 8370 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8371 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8372 &mqe->un.read_rev); 8373 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8374 &mqe->un.read_rev); 8375 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8376 &mqe->un.read_rev); 8377 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8378 &mqe->un.read_rev); 8379 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8380 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8381 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8382 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8383 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8384 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8385 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8386 "(%d):0380 READ_REV Status x%x " 8387 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8388 mboxq->vport ? mboxq->vport->vpi : 0, 8389 bf_get(lpfc_mqe_status, mqe), 8390 phba->vpd.rev.opFwName, 8391 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8392 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8393 8394 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8395 LPFC_SLI_INTF_IF_TYPE_0) { 8396 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8397 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8398 if (rc == MBX_SUCCESS) { 8399 phba->hba_flag |= HBA_RECOVERABLE_UE; 8400 /* Set 1Sec interval to detect UE */ 8401 phba->eratt_poll_interval = 1; 8402 phba->sli4_hba.ue_to_sr = bf_get( 8403 lpfc_mbx_set_feature_UESR, 8404 &mboxq->u.mqe.un.set_feature); 8405 phba->sli4_hba.ue_to_rp = bf_get( 8406 lpfc_mbx_set_feature_UERP, 8407 &mboxq->u.mqe.un.set_feature); 8408 } 8409 } 8410 8411 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8412 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8413 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8414 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8415 if (rc != MBX_SUCCESS) 8416 phba->mds_diags_support = 0; 8417 } 8418 8419 /* 8420 * Discover the port's supported feature set and match it against the 8421 * hosts requests. 8422 */ 8423 lpfc_request_features(phba, mboxq); 8424 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8425 if (unlikely(rc)) { 8426 rc = -EIO; 8427 goto out_free_mbox; 8428 } 8429 8430 /* Disable VMID if app header is not supported */ 8431 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8432 &mqe->un.req_ftrs))) { 8433 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8434 phba->cfg_vmid_app_header = 0; 8435 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8436 "1242 vmid feature not supported\n"); 8437 } 8438 8439 /* 8440 * The port must support FCP initiator mode as this is the 8441 * only mode running in the host. 8442 */ 8443 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8444 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8445 "0378 No support for fcpi mode.\n"); 8446 ftr_rsp++; 8447 } 8448 8449 /* Performance Hints are ONLY for FCoE */ 8450 if (phba->hba_flag & HBA_FCOE_MODE) { 8451 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8452 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8453 else 8454 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8455 } 8456 8457 /* 8458 * If the port cannot support the host's requested features 8459 * then turn off the global config parameters to disable the 8460 * feature in the driver. This is not a fatal error. 8461 */ 8462 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8463 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8464 phba->cfg_enable_bg = 0; 8465 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8466 ftr_rsp++; 8467 } 8468 } 8469 8470 if (phba->max_vpi && phba->cfg_enable_npiv && 8471 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8472 ftr_rsp++; 8473 8474 if (ftr_rsp) { 8475 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8476 "0379 Feature Mismatch Data: x%08x %08x " 8477 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8478 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8479 phba->cfg_enable_npiv, phba->max_vpi); 8480 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8481 phba->cfg_enable_bg = 0; 8482 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8483 phba->cfg_enable_npiv = 0; 8484 } 8485 8486 /* These SLI3 features are assumed in SLI4 */ 8487 spin_lock_irq(&phba->hbalock); 8488 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8489 spin_unlock_irq(&phba->hbalock); 8490 8491 /* Always try to enable dual dump feature if we can */ 8492 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8493 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8494 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8495 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8496 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8497 "6448 Dual Dump is enabled\n"); 8498 else 8499 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8500 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8501 "rc:x%x dd:x%x\n", 8502 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8503 lpfc_sli_config_mbox_subsys_get( 8504 phba, mboxq), 8505 lpfc_sli_config_mbox_opcode_get( 8506 phba, mboxq), 8507 rc, dd); 8508 /* 8509 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8510 * calls depends on these resources to complete port setup. 8511 */ 8512 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8513 if (rc) { 8514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8515 "2920 Failed to alloc Resource IDs " 8516 "rc = x%x\n", rc); 8517 goto out_free_mbox; 8518 } 8519 8520 lpfc_set_host_data(phba, mboxq); 8521 8522 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8523 if (rc) { 8524 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8525 "2134 Failed to set host os driver version %x", 8526 rc); 8527 } 8528 8529 /* Read the port's service parameters. */ 8530 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8531 if (rc) { 8532 phba->link_state = LPFC_HBA_ERROR; 8533 rc = -ENOMEM; 8534 goto out_free_mbox; 8535 } 8536 8537 mboxq->vport = vport; 8538 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8539 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8540 if (rc == MBX_SUCCESS) { 8541 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8542 rc = 0; 8543 } 8544 8545 /* 8546 * This memory was allocated by the lpfc_read_sparam routine. Release 8547 * it to the mbuf pool. 8548 */ 8549 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8550 kfree(mp); 8551 mboxq->ctx_buf = NULL; 8552 if (unlikely(rc)) { 8553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8554 "0382 READ_SPARAM command failed " 8555 "status %d, mbxStatus x%x\n", 8556 rc, bf_get(lpfc_mqe_status, mqe)); 8557 phba->link_state = LPFC_HBA_ERROR; 8558 rc = -EIO; 8559 goto out_free_mbox; 8560 } 8561 8562 lpfc_update_vport_wwn(vport); 8563 8564 /* Update the fc_host data structures with new wwn. */ 8565 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8566 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8567 8568 /* Create all the SLI4 queues */ 8569 rc = lpfc_sli4_queue_create(phba); 8570 if (rc) { 8571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8572 "3089 Failed to allocate queues\n"); 8573 rc = -ENODEV; 8574 goto out_free_mbox; 8575 } 8576 /* Set up all the queues to the device */ 8577 rc = lpfc_sli4_queue_setup(phba); 8578 if (unlikely(rc)) { 8579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8580 "0381 Error %d during queue setup.\n ", rc); 8581 goto out_stop_timers; 8582 } 8583 /* Initialize the driver internal SLI layer lists. */ 8584 lpfc_sli4_setup(phba); 8585 lpfc_sli4_queue_init(phba); 8586 8587 /* update host els xri-sgl sizes and mappings */ 8588 rc = lpfc_sli4_els_sgl_update(phba); 8589 if (unlikely(rc)) { 8590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8591 "1400 Failed to update xri-sgl size and " 8592 "mapping: %d\n", rc); 8593 goto out_destroy_queue; 8594 } 8595 8596 /* register the els sgl pool to the port */ 8597 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8598 phba->sli4_hba.els_xri_cnt); 8599 if (unlikely(rc < 0)) { 8600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8601 "0582 Error %d during els sgl post " 8602 "operation\n", rc); 8603 rc = -ENODEV; 8604 goto out_destroy_queue; 8605 } 8606 phba->sli4_hba.els_xri_cnt = rc; 8607 8608 if (phba->nvmet_support) { 8609 /* update host nvmet xri-sgl sizes and mappings */ 8610 rc = lpfc_sli4_nvmet_sgl_update(phba); 8611 if (unlikely(rc)) { 8612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8613 "6308 Failed to update nvmet-sgl size " 8614 "and mapping: %d\n", rc); 8615 goto out_destroy_queue; 8616 } 8617 8618 /* register the nvmet sgl pool to the port */ 8619 rc = lpfc_sli4_repost_sgl_list( 8620 phba, 8621 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8622 phba->sli4_hba.nvmet_xri_cnt); 8623 if (unlikely(rc < 0)) { 8624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8625 "3117 Error %d during nvmet " 8626 "sgl post\n", rc); 8627 rc = -ENODEV; 8628 goto out_destroy_queue; 8629 } 8630 phba->sli4_hba.nvmet_xri_cnt = rc; 8631 8632 /* We allocate an iocbq for every receive context SGL. 8633 * The additional allocation is for abort and ls handling. 8634 */ 8635 cnt = phba->sli4_hba.nvmet_xri_cnt + 8636 phba->sli4_hba.max_cfg_param.max_xri; 8637 } else { 8638 /* update host common xri-sgl sizes and mappings */ 8639 rc = lpfc_sli4_io_sgl_update(phba); 8640 if (unlikely(rc)) { 8641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8642 "6082 Failed to update nvme-sgl size " 8643 "and mapping: %d\n", rc); 8644 goto out_destroy_queue; 8645 } 8646 8647 /* register the allocated common sgl pool to the port */ 8648 rc = lpfc_sli4_repost_io_sgl_list(phba); 8649 if (unlikely(rc)) { 8650 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8651 "6116 Error %d during nvme sgl post " 8652 "operation\n", rc); 8653 /* Some NVME buffers were moved to abort nvme list */ 8654 /* A pci function reset will repost them */ 8655 rc = -ENODEV; 8656 goto out_destroy_queue; 8657 } 8658 /* Each lpfc_io_buf job structure has an iocbq element. 8659 * This cnt provides for abort, els, ct and ls requests. 8660 */ 8661 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8662 } 8663 8664 if (!phba->sli.iocbq_lookup) { 8665 /* Initialize and populate the iocb list per host */ 8666 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8667 "2821 initialize iocb list with %d entries\n", 8668 cnt); 8669 rc = lpfc_init_iocb_list(phba, cnt); 8670 if (rc) { 8671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8672 "1413 Failed to init iocb list.\n"); 8673 goto out_destroy_queue; 8674 } 8675 } 8676 8677 if (phba->nvmet_support) 8678 lpfc_nvmet_create_targetport(phba); 8679 8680 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8681 /* Post initial buffers to all RQs created */ 8682 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8683 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8684 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8685 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8686 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8687 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8688 rqbp->buffer_count = 0; 8689 8690 lpfc_post_rq_buffer( 8691 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8692 phba->sli4_hba.nvmet_mrq_data[i], 8693 phba->cfg_nvmet_mrq_post, i); 8694 } 8695 } 8696 8697 /* Post the rpi header region to the device. */ 8698 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8699 if (unlikely(rc)) { 8700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8701 "0393 Error %d during rpi post operation\n", 8702 rc); 8703 rc = -ENODEV; 8704 goto out_free_iocblist; 8705 } 8706 lpfc_sli4_node_prep(phba); 8707 8708 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8709 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8710 /* 8711 * The FC Port needs to register FCFI (index 0) 8712 */ 8713 lpfc_reg_fcfi(phba, mboxq); 8714 mboxq->vport = phba->pport; 8715 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8716 if (rc != MBX_SUCCESS) 8717 goto out_unset_queue; 8718 rc = 0; 8719 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8720 &mboxq->u.mqe.un.reg_fcfi); 8721 } else { 8722 /* We are a NVME Target mode with MRQ > 1 */ 8723 8724 /* First register the FCFI */ 8725 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8726 mboxq->vport = phba->pport; 8727 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8728 if (rc != MBX_SUCCESS) 8729 goto out_unset_queue; 8730 rc = 0; 8731 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8732 &mboxq->u.mqe.un.reg_fcfi_mrq); 8733 8734 /* Next register the MRQs */ 8735 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8736 mboxq->vport = phba->pport; 8737 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8738 if (rc != MBX_SUCCESS) 8739 goto out_unset_queue; 8740 rc = 0; 8741 } 8742 /* Check if the port is configured to be disabled */ 8743 lpfc_sli_read_link_ste(phba); 8744 } 8745 8746 /* Don't post more new bufs if repost already recovered 8747 * the nvme sgls. 8748 */ 8749 if (phba->nvmet_support == 0) { 8750 if (phba->sli4_hba.io_xri_cnt == 0) { 8751 len = lpfc_new_io_buf( 8752 phba, phba->sli4_hba.io_xri_max); 8753 if (len == 0) { 8754 rc = -ENOMEM; 8755 goto out_unset_queue; 8756 } 8757 8758 if (phba->cfg_xri_rebalancing) 8759 lpfc_create_multixri_pools(phba); 8760 } 8761 } else { 8762 phba->cfg_xri_rebalancing = 0; 8763 } 8764 8765 /* Allow asynchronous mailbox command to go through */ 8766 spin_lock_irq(&phba->hbalock); 8767 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8768 spin_unlock_irq(&phba->hbalock); 8769 8770 /* Post receive buffers to the device */ 8771 lpfc_sli4_rb_setup(phba); 8772 8773 /* Reset HBA FCF states after HBA reset */ 8774 phba->fcf.fcf_flag = 0; 8775 phba->fcf.current_rec.flag = 0; 8776 8777 /* Start the ELS watchdog timer */ 8778 mod_timer(&vport->els_tmofunc, 8779 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8780 8781 /* Start heart beat timer */ 8782 mod_timer(&phba->hb_tmofunc, 8783 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8784 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8785 phba->last_completion_time = jiffies; 8786 8787 /* start eq_delay heartbeat */ 8788 if (phba->cfg_auto_imax) 8789 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8790 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8791 8792 /* start per phba idle_stat_delay heartbeat */ 8793 lpfc_init_idle_stat_hb(phba); 8794 8795 /* Start error attention (ERATT) polling timer */ 8796 mod_timer(&phba->eratt_poll, 8797 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8798 8799 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8800 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8801 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8802 if (!rc) { 8803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8804 "2829 This device supports " 8805 "Advanced Error Reporting (AER)\n"); 8806 spin_lock_irq(&phba->hbalock); 8807 phba->hba_flag |= HBA_AER_ENABLED; 8808 spin_unlock_irq(&phba->hbalock); 8809 } else { 8810 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8811 "2830 This device does not support " 8812 "Advanced Error Reporting (AER)\n"); 8813 phba->cfg_aer_support = 0; 8814 } 8815 rc = 0; 8816 } 8817 8818 /* 8819 * The port is ready, set the host's link state to LINK_DOWN 8820 * in preparation for link interrupts. 8821 */ 8822 spin_lock_irq(&phba->hbalock); 8823 phba->link_state = LPFC_LINK_DOWN; 8824 8825 /* Check if physical ports are trunked */ 8826 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8827 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8828 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8829 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8830 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8831 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8832 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8833 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8834 spin_unlock_irq(&phba->hbalock); 8835 8836 /* Arm the CQs and then EQs on device */ 8837 lpfc_sli4_arm_cqeq_intr(phba); 8838 8839 /* Indicate device interrupt mode */ 8840 phba->sli4_hba.intr_enable = 1; 8841 8842 /* Setup CMF after HBA is initialized */ 8843 lpfc_cmf_setup(phba); 8844 8845 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8846 (phba->hba_flag & LINK_DISABLED)) { 8847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8848 "3103 Adapter Link is disabled.\n"); 8849 lpfc_down_link(phba, mboxq); 8850 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8851 if (rc != MBX_SUCCESS) { 8852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8853 "3104 Adapter failed to issue " 8854 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8855 goto out_io_buff_free; 8856 } 8857 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8858 /* don't perform init_link on SLI4 FC port loopback test */ 8859 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8860 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8861 if (rc) 8862 goto out_io_buff_free; 8863 } 8864 } 8865 mempool_free(mboxq, phba->mbox_mem_pool); 8866 8867 phba->hba_flag |= HBA_SETUP; 8868 return rc; 8869 8870 out_io_buff_free: 8871 /* Free allocated IO Buffers */ 8872 lpfc_io_free(phba); 8873 out_unset_queue: 8874 /* Unset all the queues set up in this routine when error out */ 8875 lpfc_sli4_queue_unset(phba); 8876 out_free_iocblist: 8877 lpfc_free_iocb_list(phba); 8878 out_destroy_queue: 8879 lpfc_sli4_queue_destroy(phba); 8880 out_stop_timers: 8881 lpfc_stop_hba_timers(phba); 8882 out_free_mbox: 8883 mempool_free(mboxq, phba->mbox_mem_pool); 8884 return rc; 8885 } 8886 8887 /** 8888 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8889 * @t: Context to fetch pointer to hba structure from. 8890 * 8891 * This is the callback function for mailbox timer. The mailbox 8892 * timer is armed when a new mailbox command is issued and the timer 8893 * is deleted when the mailbox complete. The function is called by 8894 * the kernel timer code when a mailbox does not complete within 8895 * expected time. This function wakes up the worker thread to 8896 * process the mailbox timeout and returns. All the processing is 8897 * done by the worker thread function lpfc_mbox_timeout_handler. 8898 **/ 8899 void 8900 lpfc_mbox_timeout(struct timer_list *t) 8901 { 8902 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8903 unsigned long iflag; 8904 uint32_t tmo_posted; 8905 8906 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8907 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8908 if (!tmo_posted) 8909 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8910 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8911 8912 if (!tmo_posted) 8913 lpfc_worker_wake_up(phba); 8914 return; 8915 } 8916 8917 /** 8918 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8919 * are pending 8920 * @phba: Pointer to HBA context object. 8921 * 8922 * This function checks if any mailbox completions are present on the mailbox 8923 * completion queue. 8924 **/ 8925 static bool 8926 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8927 { 8928 8929 uint32_t idx; 8930 struct lpfc_queue *mcq; 8931 struct lpfc_mcqe *mcqe; 8932 bool pending_completions = false; 8933 uint8_t qe_valid; 8934 8935 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8936 return false; 8937 8938 /* Check for completions on mailbox completion queue */ 8939 8940 mcq = phba->sli4_hba.mbx_cq; 8941 idx = mcq->hba_index; 8942 qe_valid = mcq->qe_valid; 8943 while (bf_get_le32(lpfc_cqe_valid, 8944 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8945 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8946 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8947 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8948 pending_completions = true; 8949 break; 8950 } 8951 idx = (idx + 1) % mcq->entry_count; 8952 if (mcq->hba_index == idx) 8953 break; 8954 8955 /* if the index wrapped around, toggle the valid bit */ 8956 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8957 qe_valid = (qe_valid) ? 0 : 1; 8958 } 8959 return pending_completions; 8960 8961 } 8962 8963 /** 8964 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8965 * that were missed. 8966 * @phba: Pointer to HBA context object. 8967 * 8968 * For sli4, it is possible to miss an interrupt. As such mbox completions 8969 * maybe missed causing erroneous mailbox timeouts to occur. This function 8970 * checks to see if mbox completions are on the mailbox completion queue 8971 * and will process all the completions associated with the eq for the 8972 * mailbox completion queue. 8973 **/ 8974 static bool 8975 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8976 { 8977 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8978 uint32_t eqidx; 8979 struct lpfc_queue *fpeq = NULL; 8980 struct lpfc_queue *eq; 8981 bool mbox_pending; 8982 8983 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8984 return false; 8985 8986 /* Find the EQ associated with the mbox CQ */ 8987 if (sli4_hba->hdwq) { 8988 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8989 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8990 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8991 fpeq = eq; 8992 break; 8993 } 8994 } 8995 } 8996 if (!fpeq) 8997 return false; 8998 8999 /* Turn off interrupts from this EQ */ 9000 9001 sli4_hba->sli4_eq_clr_intr(fpeq); 9002 9003 /* Check to see if a mbox completion is pending */ 9004 9005 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9006 9007 /* 9008 * If a mbox completion is pending, process all the events on EQ 9009 * associated with the mbox completion queue (this could include 9010 * mailbox commands, async events, els commands, receive queue data 9011 * and fcp commands) 9012 */ 9013 9014 if (mbox_pending) 9015 /* process and rearm the EQ */ 9016 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 9017 else 9018 /* Always clear and re-arm the EQ */ 9019 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9020 9021 return mbox_pending; 9022 9023 } 9024 9025 /** 9026 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9027 * @phba: Pointer to HBA context object. 9028 * 9029 * This function is called from worker thread when a mailbox command times out. 9030 * The caller is not required to hold any locks. This function will reset the 9031 * HBA and recover all the pending commands. 9032 **/ 9033 void 9034 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9035 { 9036 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9037 MAILBOX_t *mb = NULL; 9038 9039 struct lpfc_sli *psli = &phba->sli; 9040 9041 /* If the mailbox completed, process the completion */ 9042 lpfc_sli4_process_missed_mbox_completions(phba); 9043 9044 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9045 return; 9046 9047 if (pmbox != NULL) 9048 mb = &pmbox->u.mb; 9049 /* Check the pmbox pointer first. There is a race condition 9050 * between the mbox timeout handler getting executed in the 9051 * worklist and the mailbox actually completing. When this 9052 * race condition occurs, the mbox_active will be NULL. 9053 */ 9054 spin_lock_irq(&phba->hbalock); 9055 if (pmbox == NULL) { 9056 lpfc_printf_log(phba, KERN_WARNING, 9057 LOG_MBOX | LOG_SLI, 9058 "0353 Active Mailbox cleared - mailbox timeout " 9059 "exiting\n"); 9060 spin_unlock_irq(&phba->hbalock); 9061 return; 9062 } 9063 9064 /* Mbox cmd <mbxCommand> timeout */ 9065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9066 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9067 mb->mbxCommand, 9068 phba->pport->port_state, 9069 phba->sli.sli_flag, 9070 phba->sli.mbox_active); 9071 spin_unlock_irq(&phba->hbalock); 9072 9073 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9074 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9075 * it to fail all outstanding SCSI IO. 9076 */ 9077 spin_lock_irq(&phba->pport->work_port_lock); 9078 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9079 spin_unlock_irq(&phba->pport->work_port_lock); 9080 spin_lock_irq(&phba->hbalock); 9081 phba->link_state = LPFC_LINK_UNKNOWN; 9082 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9083 spin_unlock_irq(&phba->hbalock); 9084 9085 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9086 "0345 Resetting board due to mailbox timeout\n"); 9087 9088 /* Reset the HBA device */ 9089 lpfc_reset_hba(phba); 9090 } 9091 9092 /** 9093 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9094 * @phba: Pointer to HBA context object. 9095 * @pmbox: Pointer to mailbox object. 9096 * @flag: Flag indicating how the mailbox need to be processed. 9097 * 9098 * This function is called by discovery code and HBA management code 9099 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9100 * function gets the hbalock to protect the data structures. 9101 * The mailbox command can be submitted in polling mode, in which case 9102 * this function will wait in a polling loop for the completion of the 9103 * mailbox. 9104 * If the mailbox is submitted in no_wait mode (not polling) the 9105 * function will submit the command and returns immediately without waiting 9106 * for the mailbox completion. The no_wait is supported only when HBA 9107 * is in SLI2/SLI3 mode - interrupts are enabled. 9108 * The SLI interface allows only one mailbox pending at a time. If the 9109 * mailbox is issued in polling mode and there is already a mailbox 9110 * pending, then the function will return an error. If the mailbox is issued 9111 * in NO_WAIT mode and there is a mailbox pending already, the function 9112 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9113 * The sli layer owns the mailbox object until the completion of mailbox 9114 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9115 * return codes the caller owns the mailbox command after the return of 9116 * the function. 9117 **/ 9118 static int 9119 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9120 uint32_t flag) 9121 { 9122 MAILBOX_t *mbx; 9123 struct lpfc_sli *psli = &phba->sli; 9124 uint32_t status, evtctr; 9125 uint32_t ha_copy, hc_copy; 9126 int i; 9127 unsigned long timeout; 9128 unsigned long drvr_flag = 0; 9129 uint32_t word0, ldata; 9130 void __iomem *to_slim; 9131 int processing_queue = 0; 9132 9133 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9134 if (!pmbox) { 9135 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9136 /* processing mbox queue from intr_handler */ 9137 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9138 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9139 return MBX_SUCCESS; 9140 } 9141 processing_queue = 1; 9142 pmbox = lpfc_mbox_get(phba); 9143 if (!pmbox) { 9144 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9145 return MBX_SUCCESS; 9146 } 9147 } 9148 9149 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9150 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9151 if(!pmbox->vport) { 9152 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9153 lpfc_printf_log(phba, KERN_ERR, 9154 LOG_MBOX | LOG_VPORT, 9155 "1806 Mbox x%x failed. No vport\n", 9156 pmbox->u.mb.mbxCommand); 9157 dump_stack(); 9158 goto out_not_finished; 9159 } 9160 } 9161 9162 /* If the PCI channel is in offline state, do not post mbox. */ 9163 if (unlikely(pci_channel_offline(phba->pcidev))) { 9164 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9165 goto out_not_finished; 9166 } 9167 9168 /* If HBA has a deferred error attention, fail the iocb. */ 9169 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9170 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9171 goto out_not_finished; 9172 } 9173 9174 psli = &phba->sli; 9175 9176 mbx = &pmbox->u.mb; 9177 status = MBX_SUCCESS; 9178 9179 if (phba->link_state == LPFC_HBA_ERROR) { 9180 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9181 9182 /* Mbox command <mbxCommand> cannot issue */ 9183 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9184 "(%d):0311 Mailbox command x%x cannot " 9185 "issue Data: x%x x%x\n", 9186 pmbox->vport ? pmbox->vport->vpi : 0, 9187 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9188 goto out_not_finished; 9189 } 9190 9191 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9192 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9193 !(hc_copy & HC_MBINT_ENA)) { 9194 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9196 "(%d):2528 Mailbox command x%x cannot " 9197 "issue Data: x%x x%x\n", 9198 pmbox->vport ? pmbox->vport->vpi : 0, 9199 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9200 goto out_not_finished; 9201 } 9202 } 9203 9204 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9205 /* Polling for a mbox command when another one is already active 9206 * is not allowed in SLI. Also, the driver must have established 9207 * SLI2 mode to queue and process multiple mbox commands. 9208 */ 9209 9210 if (flag & MBX_POLL) { 9211 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9212 9213 /* Mbox command <mbxCommand> cannot issue */ 9214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9215 "(%d):2529 Mailbox command x%x " 9216 "cannot issue Data: x%x x%x\n", 9217 pmbox->vport ? pmbox->vport->vpi : 0, 9218 pmbox->u.mb.mbxCommand, 9219 psli->sli_flag, flag); 9220 goto out_not_finished; 9221 } 9222 9223 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9224 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9225 /* Mbox command <mbxCommand> cannot issue */ 9226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9227 "(%d):2530 Mailbox command x%x " 9228 "cannot issue Data: x%x x%x\n", 9229 pmbox->vport ? pmbox->vport->vpi : 0, 9230 pmbox->u.mb.mbxCommand, 9231 psli->sli_flag, flag); 9232 goto out_not_finished; 9233 } 9234 9235 /* Another mailbox command is still being processed, queue this 9236 * command to be processed later. 9237 */ 9238 lpfc_mbox_put(phba, pmbox); 9239 9240 /* Mbox cmd issue - BUSY */ 9241 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9242 "(%d):0308 Mbox cmd issue - BUSY Data: " 9243 "x%x x%x x%x x%x\n", 9244 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9245 mbx->mbxCommand, 9246 phba->pport ? phba->pport->port_state : 0xff, 9247 psli->sli_flag, flag); 9248 9249 psli->slistat.mbox_busy++; 9250 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9251 9252 if (pmbox->vport) { 9253 lpfc_debugfs_disc_trc(pmbox->vport, 9254 LPFC_DISC_TRC_MBOX_VPORT, 9255 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9256 (uint32_t)mbx->mbxCommand, 9257 mbx->un.varWords[0], mbx->un.varWords[1]); 9258 } 9259 else { 9260 lpfc_debugfs_disc_trc(phba->pport, 9261 LPFC_DISC_TRC_MBOX, 9262 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9263 (uint32_t)mbx->mbxCommand, 9264 mbx->un.varWords[0], mbx->un.varWords[1]); 9265 } 9266 9267 return MBX_BUSY; 9268 } 9269 9270 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9271 9272 /* If we are not polling, we MUST be in SLI2 mode */ 9273 if (flag != MBX_POLL) { 9274 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9275 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9276 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9277 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9278 /* Mbox command <mbxCommand> cannot issue */ 9279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9280 "(%d):2531 Mailbox command x%x " 9281 "cannot issue Data: x%x x%x\n", 9282 pmbox->vport ? pmbox->vport->vpi : 0, 9283 pmbox->u.mb.mbxCommand, 9284 psli->sli_flag, flag); 9285 goto out_not_finished; 9286 } 9287 /* timeout active mbox command */ 9288 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9289 1000); 9290 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9291 } 9292 9293 /* Mailbox cmd <cmd> issue */ 9294 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9295 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9296 "x%x\n", 9297 pmbox->vport ? pmbox->vport->vpi : 0, 9298 mbx->mbxCommand, 9299 phba->pport ? phba->pport->port_state : 0xff, 9300 psli->sli_flag, flag); 9301 9302 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9303 if (pmbox->vport) { 9304 lpfc_debugfs_disc_trc(pmbox->vport, 9305 LPFC_DISC_TRC_MBOX_VPORT, 9306 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9307 (uint32_t)mbx->mbxCommand, 9308 mbx->un.varWords[0], mbx->un.varWords[1]); 9309 } 9310 else { 9311 lpfc_debugfs_disc_trc(phba->pport, 9312 LPFC_DISC_TRC_MBOX, 9313 "MBOX Send: cmd:x%x mb:x%x x%x", 9314 (uint32_t)mbx->mbxCommand, 9315 mbx->un.varWords[0], mbx->un.varWords[1]); 9316 } 9317 } 9318 9319 psli->slistat.mbox_cmd++; 9320 evtctr = psli->slistat.mbox_event; 9321 9322 /* next set own bit for the adapter and copy over command word */ 9323 mbx->mbxOwner = OWN_CHIP; 9324 9325 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9326 /* Populate mbox extension offset word. */ 9327 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9328 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9329 = (uint8_t *)phba->mbox_ext 9330 - (uint8_t *)phba->mbox; 9331 } 9332 9333 /* Copy the mailbox extension data */ 9334 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9335 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9336 (uint8_t *)phba->mbox_ext, 9337 pmbox->in_ext_byte_len); 9338 } 9339 /* Copy command data to host SLIM area */ 9340 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9341 } else { 9342 /* Populate mbox extension offset word. */ 9343 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9344 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9345 = MAILBOX_HBA_EXT_OFFSET; 9346 9347 /* Copy the mailbox extension data */ 9348 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9349 lpfc_memcpy_to_slim(phba->MBslimaddr + 9350 MAILBOX_HBA_EXT_OFFSET, 9351 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9352 9353 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9354 /* copy command data into host mbox for cmpl */ 9355 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9356 MAILBOX_CMD_SIZE); 9357 9358 /* First copy mbox command data to HBA SLIM, skip past first 9359 word */ 9360 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9361 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9362 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9363 9364 /* Next copy over first word, with mbxOwner set */ 9365 ldata = *((uint32_t *)mbx); 9366 to_slim = phba->MBslimaddr; 9367 writel(ldata, to_slim); 9368 readl(to_slim); /* flush */ 9369 9370 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9371 /* switch over to host mailbox */ 9372 psli->sli_flag |= LPFC_SLI_ACTIVE; 9373 } 9374 9375 wmb(); 9376 9377 switch (flag) { 9378 case MBX_NOWAIT: 9379 /* Set up reference to mailbox command */ 9380 psli->mbox_active = pmbox; 9381 /* Interrupt board to do it */ 9382 writel(CA_MBATT, phba->CAregaddr); 9383 readl(phba->CAregaddr); /* flush */ 9384 /* Don't wait for it to finish, just return */ 9385 break; 9386 9387 case MBX_POLL: 9388 /* Set up null reference to mailbox command */ 9389 psli->mbox_active = NULL; 9390 /* Interrupt board to do it */ 9391 writel(CA_MBATT, phba->CAregaddr); 9392 readl(phba->CAregaddr); /* flush */ 9393 9394 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9395 /* First read mbox status word */ 9396 word0 = *((uint32_t *)phba->mbox); 9397 word0 = le32_to_cpu(word0); 9398 } else { 9399 /* First read mbox status word */ 9400 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9401 spin_unlock_irqrestore(&phba->hbalock, 9402 drvr_flag); 9403 goto out_not_finished; 9404 } 9405 } 9406 9407 /* Read the HBA Host Attention Register */ 9408 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9409 spin_unlock_irqrestore(&phba->hbalock, 9410 drvr_flag); 9411 goto out_not_finished; 9412 } 9413 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9414 1000) + jiffies; 9415 i = 0; 9416 /* Wait for command to complete */ 9417 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9418 (!(ha_copy & HA_MBATT) && 9419 (phba->link_state > LPFC_WARM_START))) { 9420 if (time_after(jiffies, timeout)) { 9421 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9422 spin_unlock_irqrestore(&phba->hbalock, 9423 drvr_flag); 9424 goto out_not_finished; 9425 } 9426 9427 /* Check if we took a mbox interrupt while we were 9428 polling */ 9429 if (((word0 & OWN_CHIP) != OWN_CHIP) 9430 && (evtctr != psli->slistat.mbox_event)) 9431 break; 9432 9433 if (i++ > 10) { 9434 spin_unlock_irqrestore(&phba->hbalock, 9435 drvr_flag); 9436 msleep(1); 9437 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9438 } 9439 9440 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9441 /* First copy command data */ 9442 word0 = *((uint32_t *)phba->mbox); 9443 word0 = le32_to_cpu(word0); 9444 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9445 MAILBOX_t *slimmb; 9446 uint32_t slimword0; 9447 /* Check real SLIM for any errors */ 9448 slimword0 = readl(phba->MBslimaddr); 9449 slimmb = (MAILBOX_t *) & slimword0; 9450 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9451 && slimmb->mbxStatus) { 9452 psli->sli_flag &= 9453 ~LPFC_SLI_ACTIVE; 9454 word0 = slimword0; 9455 } 9456 } 9457 } else { 9458 /* First copy command data */ 9459 word0 = readl(phba->MBslimaddr); 9460 } 9461 /* Read the HBA Host Attention Register */ 9462 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9463 spin_unlock_irqrestore(&phba->hbalock, 9464 drvr_flag); 9465 goto out_not_finished; 9466 } 9467 } 9468 9469 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9470 /* copy results back to user */ 9471 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9472 MAILBOX_CMD_SIZE); 9473 /* Copy the mailbox extension data */ 9474 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9475 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9476 pmbox->ctx_buf, 9477 pmbox->out_ext_byte_len); 9478 } 9479 } else { 9480 /* First copy command data */ 9481 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9482 MAILBOX_CMD_SIZE); 9483 /* Copy the mailbox extension data */ 9484 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9485 lpfc_memcpy_from_slim( 9486 pmbox->ctx_buf, 9487 phba->MBslimaddr + 9488 MAILBOX_HBA_EXT_OFFSET, 9489 pmbox->out_ext_byte_len); 9490 } 9491 } 9492 9493 writel(HA_MBATT, phba->HAregaddr); 9494 readl(phba->HAregaddr); /* flush */ 9495 9496 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9497 status = mbx->mbxStatus; 9498 } 9499 9500 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9501 return status; 9502 9503 out_not_finished: 9504 if (processing_queue) { 9505 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9506 lpfc_mbox_cmpl_put(phba, pmbox); 9507 } 9508 return MBX_NOT_FINISHED; 9509 } 9510 9511 /** 9512 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9513 * @phba: Pointer to HBA context object. 9514 * 9515 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9516 * the driver internal pending mailbox queue. It will then try to wait out the 9517 * possible outstanding mailbox command before return. 9518 * 9519 * Returns: 9520 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9521 * the outstanding mailbox command timed out. 9522 **/ 9523 static int 9524 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9525 { 9526 struct lpfc_sli *psli = &phba->sli; 9527 LPFC_MBOXQ_t *mboxq; 9528 int rc = 0; 9529 unsigned long timeout = 0; 9530 u32 sli_flag; 9531 u8 cmd, subsys, opcode; 9532 9533 /* Mark the asynchronous mailbox command posting as blocked */ 9534 spin_lock_irq(&phba->hbalock); 9535 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9536 /* Determine how long we might wait for the active mailbox 9537 * command to be gracefully completed by firmware. 9538 */ 9539 if (phba->sli.mbox_active) 9540 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9541 phba->sli.mbox_active) * 9542 1000) + jiffies; 9543 spin_unlock_irq(&phba->hbalock); 9544 9545 /* Make sure the mailbox is really active */ 9546 if (timeout) 9547 lpfc_sli4_process_missed_mbox_completions(phba); 9548 9549 /* Wait for the outstanding mailbox command to complete */ 9550 while (phba->sli.mbox_active) { 9551 /* Check active mailbox complete status every 2ms */ 9552 msleep(2); 9553 if (time_after(jiffies, timeout)) { 9554 /* Timeout, mark the outstanding cmd not complete */ 9555 9556 /* Sanity check sli.mbox_active has not completed or 9557 * cancelled from another context during last 2ms sleep, 9558 * so take hbalock to be sure before logging. 9559 */ 9560 spin_lock_irq(&phba->hbalock); 9561 if (phba->sli.mbox_active) { 9562 mboxq = phba->sli.mbox_active; 9563 cmd = mboxq->u.mb.mbxCommand; 9564 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9565 mboxq); 9566 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9567 mboxq); 9568 sli_flag = psli->sli_flag; 9569 spin_unlock_irq(&phba->hbalock); 9570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9571 "2352 Mailbox command x%x " 9572 "(x%x/x%x) sli_flag x%x could " 9573 "not complete\n", 9574 cmd, subsys, opcode, 9575 sli_flag); 9576 } else { 9577 spin_unlock_irq(&phba->hbalock); 9578 } 9579 9580 rc = 1; 9581 break; 9582 } 9583 } 9584 9585 /* Can not cleanly block async mailbox command, fails it */ 9586 if (rc) { 9587 spin_lock_irq(&phba->hbalock); 9588 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9589 spin_unlock_irq(&phba->hbalock); 9590 } 9591 return rc; 9592 } 9593 9594 /** 9595 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9596 * @phba: Pointer to HBA context object. 9597 * 9598 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9599 * commands from the driver internal pending mailbox queue. It makes sure 9600 * that there is no outstanding mailbox command before resuming posting 9601 * asynchronous mailbox commands. If, for any reason, there is outstanding 9602 * mailbox command, it will try to wait it out before resuming asynchronous 9603 * mailbox command posting. 9604 **/ 9605 static void 9606 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9607 { 9608 struct lpfc_sli *psli = &phba->sli; 9609 9610 spin_lock_irq(&phba->hbalock); 9611 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9612 /* Asynchronous mailbox posting is not blocked, do nothing */ 9613 spin_unlock_irq(&phba->hbalock); 9614 return; 9615 } 9616 9617 /* Outstanding synchronous mailbox command is guaranteed to be done, 9618 * successful or timeout, after timing-out the outstanding mailbox 9619 * command shall always be removed, so just unblock posting async 9620 * mailbox command and resume 9621 */ 9622 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9623 spin_unlock_irq(&phba->hbalock); 9624 9625 /* wake up worker thread to post asynchronous mailbox command */ 9626 lpfc_worker_wake_up(phba); 9627 } 9628 9629 /** 9630 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9631 * @phba: Pointer to HBA context object. 9632 * @mboxq: Pointer to mailbox object. 9633 * 9634 * The function waits for the bootstrap mailbox register ready bit from 9635 * port for twice the regular mailbox command timeout value. 9636 * 9637 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9638 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9639 **/ 9640 static int 9641 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9642 { 9643 uint32_t db_ready; 9644 unsigned long timeout; 9645 struct lpfc_register bmbx_reg; 9646 9647 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9648 * 1000) + jiffies; 9649 9650 do { 9651 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9652 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9653 if (!db_ready) 9654 mdelay(2); 9655 9656 if (time_after(jiffies, timeout)) 9657 return MBXERR_ERROR; 9658 } while (!db_ready); 9659 9660 return 0; 9661 } 9662 9663 /** 9664 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9665 * @phba: Pointer to HBA context object. 9666 * @mboxq: Pointer to mailbox object. 9667 * 9668 * The function posts a mailbox to the port. The mailbox is expected 9669 * to be comletely filled in and ready for the port to operate on it. 9670 * This routine executes a synchronous completion operation on the 9671 * mailbox by polling for its completion. 9672 * 9673 * The caller must not be holding any locks when calling this routine. 9674 * 9675 * Returns: 9676 * MBX_SUCCESS - mailbox posted successfully 9677 * Any of the MBX error values. 9678 **/ 9679 static int 9680 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9681 { 9682 int rc = MBX_SUCCESS; 9683 unsigned long iflag; 9684 uint32_t mcqe_status; 9685 uint32_t mbx_cmnd; 9686 struct lpfc_sli *psli = &phba->sli; 9687 struct lpfc_mqe *mb = &mboxq->u.mqe; 9688 struct lpfc_bmbx_create *mbox_rgn; 9689 struct dma_address *dma_address; 9690 9691 /* 9692 * Only one mailbox can be active to the bootstrap mailbox region 9693 * at a time and there is no queueing provided. 9694 */ 9695 spin_lock_irqsave(&phba->hbalock, iflag); 9696 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9697 spin_unlock_irqrestore(&phba->hbalock, iflag); 9698 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9699 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9700 "cannot issue Data: x%x x%x\n", 9701 mboxq->vport ? mboxq->vport->vpi : 0, 9702 mboxq->u.mb.mbxCommand, 9703 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9704 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9705 psli->sli_flag, MBX_POLL); 9706 return MBXERR_ERROR; 9707 } 9708 /* The server grabs the token and owns it until release */ 9709 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9710 phba->sli.mbox_active = mboxq; 9711 spin_unlock_irqrestore(&phba->hbalock, iflag); 9712 9713 /* wait for bootstrap mbox register for readyness */ 9714 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9715 if (rc) 9716 goto exit; 9717 /* 9718 * Initialize the bootstrap memory region to avoid stale data areas 9719 * in the mailbox post. Then copy the caller's mailbox contents to 9720 * the bmbx mailbox region. 9721 */ 9722 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9723 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9724 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9725 sizeof(struct lpfc_mqe)); 9726 9727 /* Post the high mailbox dma address to the port and wait for ready. */ 9728 dma_address = &phba->sli4_hba.bmbx.dma_address; 9729 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9730 9731 /* wait for bootstrap mbox register for hi-address write done */ 9732 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9733 if (rc) 9734 goto exit; 9735 9736 /* Post the low mailbox dma address to the port. */ 9737 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9738 9739 /* wait for bootstrap mbox register for low address write done */ 9740 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9741 if (rc) 9742 goto exit; 9743 9744 /* 9745 * Read the CQ to ensure the mailbox has completed. 9746 * If so, update the mailbox status so that the upper layers 9747 * can complete the request normally. 9748 */ 9749 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9750 sizeof(struct lpfc_mqe)); 9751 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9752 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9753 sizeof(struct lpfc_mcqe)); 9754 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9755 /* 9756 * When the CQE status indicates a failure and the mailbox status 9757 * indicates success then copy the CQE status into the mailbox status 9758 * (and prefix it with x4000). 9759 */ 9760 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9761 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9762 bf_set(lpfc_mqe_status, mb, 9763 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9764 rc = MBXERR_ERROR; 9765 } else 9766 lpfc_sli4_swap_str(phba, mboxq); 9767 9768 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9769 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9770 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9771 " x%x x%x CQ: x%x x%x x%x x%x\n", 9772 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9773 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9774 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9775 bf_get(lpfc_mqe_status, mb), 9776 mb->un.mb_words[0], mb->un.mb_words[1], 9777 mb->un.mb_words[2], mb->un.mb_words[3], 9778 mb->un.mb_words[4], mb->un.mb_words[5], 9779 mb->un.mb_words[6], mb->un.mb_words[7], 9780 mb->un.mb_words[8], mb->un.mb_words[9], 9781 mb->un.mb_words[10], mb->un.mb_words[11], 9782 mb->un.mb_words[12], mboxq->mcqe.word0, 9783 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9784 mboxq->mcqe.trailer); 9785 exit: 9786 /* We are holding the token, no needed for lock when release */ 9787 spin_lock_irqsave(&phba->hbalock, iflag); 9788 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9789 phba->sli.mbox_active = NULL; 9790 spin_unlock_irqrestore(&phba->hbalock, iflag); 9791 return rc; 9792 } 9793 9794 /** 9795 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9796 * @phba: Pointer to HBA context object. 9797 * @mboxq: Pointer to mailbox object. 9798 * @flag: Flag indicating how the mailbox need to be processed. 9799 * 9800 * This function is called by discovery code and HBA management code to submit 9801 * a mailbox command to firmware with SLI-4 interface spec. 9802 * 9803 * Return codes the caller owns the mailbox command after the return of the 9804 * function. 9805 **/ 9806 static int 9807 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9808 uint32_t flag) 9809 { 9810 struct lpfc_sli *psli = &phba->sli; 9811 unsigned long iflags; 9812 int rc; 9813 9814 /* dump from issue mailbox command if setup */ 9815 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9816 9817 rc = lpfc_mbox_dev_check(phba); 9818 if (unlikely(rc)) { 9819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9820 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9821 "cannot issue Data: x%x x%x\n", 9822 mboxq->vport ? mboxq->vport->vpi : 0, 9823 mboxq->u.mb.mbxCommand, 9824 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9825 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9826 psli->sli_flag, flag); 9827 goto out_not_finished; 9828 } 9829 9830 /* Detect polling mode and jump to a handler */ 9831 if (!phba->sli4_hba.intr_enable) { 9832 if (flag == MBX_POLL) 9833 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9834 else 9835 rc = -EIO; 9836 if (rc != MBX_SUCCESS) 9837 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9838 "(%d):2541 Mailbox command x%x " 9839 "(x%x/x%x) failure: " 9840 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9841 "Data: x%x x%x\n", 9842 mboxq->vport ? mboxq->vport->vpi : 0, 9843 mboxq->u.mb.mbxCommand, 9844 lpfc_sli_config_mbox_subsys_get(phba, 9845 mboxq), 9846 lpfc_sli_config_mbox_opcode_get(phba, 9847 mboxq), 9848 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9849 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9850 bf_get(lpfc_mcqe_ext_status, 9851 &mboxq->mcqe), 9852 psli->sli_flag, flag); 9853 return rc; 9854 } else if (flag == MBX_POLL) { 9855 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9856 "(%d):2542 Try to issue mailbox command " 9857 "x%x (x%x/x%x) synchronously ahead of async " 9858 "mailbox command queue: x%x x%x\n", 9859 mboxq->vport ? mboxq->vport->vpi : 0, 9860 mboxq->u.mb.mbxCommand, 9861 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9862 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9863 psli->sli_flag, flag); 9864 /* Try to block the asynchronous mailbox posting */ 9865 rc = lpfc_sli4_async_mbox_block(phba); 9866 if (!rc) { 9867 /* Successfully blocked, now issue sync mbox cmd */ 9868 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9869 if (rc != MBX_SUCCESS) 9870 lpfc_printf_log(phba, KERN_WARNING, 9871 LOG_MBOX | LOG_SLI, 9872 "(%d):2597 Sync Mailbox command " 9873 "x%x (x%x/x%x) failure: " 9874 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9875 "Data: x%x x%x\n", 9876 mboxq->vport ? mboxq->vport->vpi : 0, 9877 mboxq->u.mb.mbxCommand, 9878 lpfc_sli_config_mbox_subsys_get(phba, 9879 mboxq), 9880 lpfc_sli_config_mbox_opcode_get(phba, 9881 mboxq), 9882 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9883 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9884 bf_get(lpfc_mcqe_ext_status, 9885 &mboxq->mcqe), 9886 psli->sli_flag, flag); 9887 /* Unblock the async mailbox posting afterward */ 9888 lpfc_sli4_async_mbox_unblock(phba); 9889 } 9890 return rc; 9891 } 9892 9893 /* Now, interrupt mode asynchronous mailbox command */ 9894 rc = lpfc_mbox_cmd_check(phba, mboxq); 9895 if (rc) { 9896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9897 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9898 "cannot issue Data: x%x x%x\n", 9899 mboxq->vport ? mboxq->vport->vpi : 0, 9900 mboxq->u.mb.mbxCommand, 9901 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9902 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9903 psli->sli_flag, flag); 9904 goto out_not_finished; 9905 } 9906 9907 /* Put the mailbox command to the driver internal FIFO */ 9908 psli->slistat.mbox_busy++; 9909 spin_lock_irqsave(&phba->hbalock, iflags); 9910 lpfc_mbox_put(phba, mboxq); 9911 spin_unlock_irqrestore(&phba->hbalock, iflags); 9912 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9913 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9914 "x%x (x%x/x%x) x%x x%x x%x\n", 9915 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9916 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9917 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9918 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9919 phba->pport->port_state, 9920 psli->sli_flag, MBX_NOWAIT); 9921 /* Wake up worker thread to transport mailbox command from head */ 9922 lpfc_worker_wake_up(phba); 9923 9924 return MBX_BUSY; 9925 9926 out_not_finished: 9927 return MBX_NOT_FINISHED; 9928 } 9929 9930 /** 9931 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9932 * @phba: Pointer to HBA context object. 9933 * 9934 * This function is called by worker thread to send a mailbox command to 9935 * SLI4 HBA firmware. 9936 * 9937 **/ 9938 int 9939 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9940 { 9941 struct lpfc_sli *psli = &phba->sli; 9942 LPFC_MBOXQ_t *mboxq; 9943 int rc = MBX_SUCCESS; 9944 unsigned long iflags; 9945 struct lpfc_mqe *mqe; 9946 uint32_t mbx_cmnd; 9947 9948 /* Check interrupt mode before post async mailbox command */ 9949 if (unlikely(!phba->sli4_hba.intr_enable)) 9950 return MBX_NOT_FINISHED; 9951 9952 /* Check for mailbox command service token */ 9953 spin_lock_irqsave(&phba->hbalock, iflags); 9954 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9955 spin_unlock_irqrestore(&phba->hbalock, iflags); 9956 return MBX_NOT_FINISHED; 9957 } 9958 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9959 spin_unlock_irqrestore(&phba->hbalock, iflags); 9960 return MBX_NOT_FINISHED; 9961 } 9962 if (unlikely(phba->sli.mbox_active)) { 9963 spin_unlock_irqrestore(&phba->hbalock, iflags); 9964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9965 "0384 There is pending active mailbox cmd\n"); 9966 return MBX_NOT_FINISHED; 9967 } 9968 /* Take the mailbox command service token */ 9969 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9970 9971 /* Get the next mailbox command from head of queue */ 9972 mboxq = lpfc_mbox_get(phba); 9973 9974 /* If no more mailbox command waiting for post, we're done */ 9975 if (!mboxq) { 9976 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9977 spin_unlock_irqrestore(&phba->hbalock, iflags); 9978 return MBX_SUCCESS; 9979 } 9980 phba->sli.mbox_active = mboxq; 9981 spin_unlock_irqrestore(&phba->hbalock, iflags); 9982 9983 /* Check device readiness for posting mailbox command */ 9984 rc = lpfc_mbox_dev_check(phba); 9985 if (unlikely(rc)) 9986 /* Driver clean routine will clean up pending mailbox */ 9987 goto out_not_finished; 9988 9989 /* Prepare the mbox command to be posted */ 9990 mqe = &mboxq->u.mqe; 9991 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9992 9993 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9994 mod_timer(&psli->mbox_tmo, (jiffies + 9995 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9996 9997 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9998 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9999 "x%x x%x\n", 10000 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10001 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10002 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10003 phba->pport->port_state, psli->sli_flag); 10004 10005 if (mbx_cmnd != MBX_HEARTBEAT) { 10006 if (mboxq->vport) { 10007 lpfc_debugfs_disc_trc(mboxq->vport, 10008 LPFC_DISC_TRC_MBOX_VPORT, 10009 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10010 mbx_cmnd, mqe->un.mb_words[0], 10011 mqe->un.mb_words[1]); 10012 } else { 10013 lpfc_debugfs_disc_trc(phba->pport, 10014 LPFC_DISC_TRC_MBOX, 10015 "MBOX Send: cmd:x%x mb:x%x x%x", 10016 mbx_cmnd, mqe->un.mb_words[0], 10017 mqe->un.mb_words[1]); 10018 } 10019 } 10020 psli->slistat.mbox_cmd++; 10021 10022 /* Post the mailbox command to the port */ 10023 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10024 if (rc != MBX_SUCCESS) { 10025 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10026 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10027 "cannot issue Data: x%x x%x\n", 10028 mboxq->vport ? mboxq->vport->vpi : 0, 10029 mboxq->u.mb.mbxCommand, 10030 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10031 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10032 psli->sli_flag, MBX_NOWAIT); 10033 goto out_not_finished; 10034 } 10035 10036 return rc; 10037 10038 out_not_finished: 10039 spin_lock_irqsave(&phba->hbalock, iflags); 10040 if (phba->sli.mbox_active) { 10041 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10042 __lpfc_mbox_cmpl_put(phba, mboxq); 10043 /* Release the token */ 10044 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10045 phba->sli.mbox_active = NULL; 10046 } 10047 spin_unlock_irqrestore(&phba->hbalock, iflags); 10048 10049 return MBX_NOT_FINISHED; 10050 } 10051 10052 /** 10053 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10054 * @phba: Pointer to HBA context object. 10055 * @pmbox: Pointer to mailbox object. 10056 * @flag: Flag indicating how the mailbox need to be processed. 10057 * 10058 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10059 * the API jump table function pointer from the lpfc_hba struct. 10060 * 10061 * Return codes the caller owns the mailbox command after the return of the 10062 * function. 10063 **/ 10064 int 10065 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10066 { 10067 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10068 } 10069 10070 /** 10071 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10072 * @phba: The hba struct for which this call is being executed. 10073 * @dev_grp: The HBA PCI-Device group number. 10074 * 10075 * This routine sets up the mbox interface API function jump table in @phba 10076 * struct. 10077 * Returns: 0 - success, -ENODEV - failure. 10078 **/ 10079 int 10080 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10081 { 10082 10083 switch (dev_grp) { 10084 case LPFC_PCI_DEV_LP: 10085 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10086 phba->lpfc_sli_handle_slow_ring_event = 10087 lpfc_sli_handle_slow_ring_event_s3; 10088 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10089 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10090 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10091 break; 10092 case LPFC_PCI_DEV_OC: 10093 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10094 phba->lpfc_sli_handle_slow_ring_event = 10095 lpfc_sli_handle_slow_ring_event_s4; 10096 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10097 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10098 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10099 break; 10100 default: 10101 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10102 "1420 Invalid HBA PCI-device group: 0x%x\n", 10103 dev_grp); 10104 return -ENODEV; 10105 } 10106 return 0; 10107 } 10108 10109 /** 10110 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10111 * @phba: Pointer to HBA context object. 10112 * @pring: Pointer to driver SLI ring object. 10113 * @piocb: Pointer to address of newly added command iocb. 10114 * 10115 * This function is called with hbalock held for SLI3 ports or 10116 * the ring lock held for SLI4 ports to add a command 10117 * iocb to the txq when SLI layer cannot submit the command iocb 10118 * to the ring. 10119 **/ 10120 void 10121 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10122 struct lpfc_iocbq *piocb) 10123 { 10124 if (phba->sli_rev == LPFC_SLI_REV4) 10125 lockdep_assert_held(&pring->ring_lock); 10126 else 10127 lockdep_assert_held(&phba->hbalock); 10128 /* Insert the caller's iocb in the txq tail for later processing. */ 10129 list_add_tail(&piocb->list, &pring->txq); 10130 } 10131 10132 /** 10133 * lpfc_sli_next_iocb - Get the next iocb in the txq 10134 * @phba: Pointer to HBA context object. 10135 * @pring: Pointer to driver SLI ring object. 10136 * @piocb: Pointer to address of newly added command iocb. 10137 * 10138 * This function is called with hbalock held before a new 10139 * iocb is submitted to the firmware. This function checks 10140 * txq to flush the iocbs in txq to Firmware before 10141 * submitting new iocbs to the Firmware. 10142 * If there are iocbs in the txq which need to be submitted 10143 * to firmware, lpfc_sli_next_iocb returns the first element 10144 * of the txq after dequeuing it from txq. 10145 * If there is no iocb in the txq then the function will return 10146 * *piocb and *piocb is set to NULL. Caller needs to check 10147 * *piocb to find if there are more commands in the txq. 10148 **/ 10149 static struct lpfc_iocbq * 10150 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10151 struct lpfc_iocbq **piocb) 10152 { 10153 struct lpfc_iocbq * nextiocb; 10154 10155 lockdep_assert_held(&phba->hbalock); 10156 10157 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10158 if (!nextiocb) { 10159 nextiocb = *piocb; 10160 *piocb = NULL; 10161 } 10162 10163 return nextiocb; 10164 } 10165 10166 /** 10167 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10168 * @phba: Pointer to HBA context object. 10169 * @ring_number: SLI ring number to issue iocb on. 10170 * @piocb: Pointer to command iocb. 10171 * @flag: Flag indicating if this command can be put into txq. 10172 * 10173 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10174 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10175 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10176 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10177 * this function allows only iocbs for posting buffers. This function finds 10178 * next available slot in the command ring and posts the command to the 10179 * available slot and writes the port attention register to request HBA start 10180 * processing new iocb. If there is no slot available in the ring and 10181 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10182 * the function returns IOCB_BUSY. 10183 * 10184 * This function is called with hbalock held. The function will return success 10185 * after it successfully submit the iocb to firmware or after adding to the 10186 * txq. 10187 **/ 10188 static int 10189 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10190 struct lpfc_iocbq *piocb, uint32_t flag) 10191 { 10192 struct lpfc_iocbq *nextiocb; 10193 IOCB_t *iocb; 10194 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10195 10196 lockdep_assert_held(&phba->hbalock); 10197 10198 if (piocb->cmd_cmpl && (!piocb->vport) && 10199 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10200 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10202 "1807 IOCB x%x failed. No vport\n", 10203 piocb->iocb.ulpCommand); 10204 dump_stack(); 10205 return IOCB_ERROR; 10206 } 10207 10208 10209 /* If the PCI channel is in offline state, do not post iocbs. */ 10210 if (unlikely(pci_channel_offline(phba->pcidev))) 10211 return IOCB_ERROR; 10212 10213 /* If HBA has a deferred error attention, fail the iocb. */ 10214 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10215 return IOCB_ERROR; 10216 10217 /* 10218 * We should never get an IOCB if we are in a < LINK_DOWN state 10219 */ 10220 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10221 return IOCB_ERROR; 10222 10223 /* 10224 * Check to see if we are blocking IOCB processing because of a 10225 * outstanding event. 10226 */ 10227 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10228 goto iocb_busy; 10229 10230 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10231 /* 10232 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10233 * can be issued if the link is not up. 10234 */ 10235 switch (piocb->iocb.ulpCommand) { 10236 case CMD_GEN_REQUEST64_CR: 10237 case CMD_GEN_REQUEST64_CX: 10238 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10239 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10240 FC_RCTL_DD_UNSOL_CMD) || 10241 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10242 MENLO_TRANSPORT_TYPE)) 10243 10244 goto iocb_busy; 10245 break; 10246 case CMD_QUE_RING_BUF_CN: 10247 case CMD_QUE_RING_BUF64_CN: 10248 /* 10249 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10250 * completion, cmd_cmpl MUST be 0. 10251 */ 10252 if (piocb->cmd_cmpl) 10253 piocb->cmd_cmpl = NULL; 10254 fallthrough; 10255 case CMD_CREATE_XRI_CR: 10256 case CMD_CLOSE_XRI_CN: 10257 case CMD_CLOSE_XRI_CX: 10258 break; 10259 default: 10260 goto iocb_busy; 10261 } 10262 10263 /* 10264 * For FCP commands, we must be in a state where we can process link 10265 * attention events. 10266 */ 10267 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10268 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10269 goto iocb_busy; 10270 } 10271 10272 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10273 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10274 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10275 10276 if (iocb) 10277 lpfc_sli_update_ring(phba, pring); 10278 else 10279 lpfc_sli_update_full_ring(phba, pring); 10280 10281 if (!piocb) 10282 return IOCB_SUCCESS; 10283 10284 goto out_busy; 10285 10286 iocb_busy: 10287 pring->stats.iocb_cmd_delay++; 10288 10289 out_busy: 10290 10291 if (!(flag & SLI_IOCB_RET_IOCB)) { 10292 __lpfc_sli_ringtx_put(phba, pring, piocb); 10293 return IOCB_SUCCESS; 10294 } 10295 10296 return IOCB_BUSY; 10297 } 10298 10299 /** 10300 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10301 * @phba: Pointer to HBA context object. 10302 * @ring_number: SLI ring number to issue wqe on. 10303 * @piocb: Pointer to command iocb. 10304 * @flag: Flag indicating if this command can be put into txq. 10305 * 10306 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10307 * send an iocb command to an HBA with SLI-4 interface spec. 10308 * 10309 * This function takes the hbalock before invoking the lockless version. 10310 * The function will return success after it successfully submit the wqe to 10311 * firmware or after adding to the txq. 10312 **/ 10313 static int 10314 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10315 struct lpfc_iocbq *piocb, uint32_t flag) 10316 { 10317 unsigned long iflags; 10318 int rc; 10319 10320 spin_lock_irqsave(&phba->hbalock, iflags); 10321 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10322 spin_unlock_irqrestore(&phba->hbalock, iflags); 10323 10324 return rc; 10325 } 10326 10327 /** 10328 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10329 * @phba: Pointer to HBA context object. 10330 * @ring_number: SLI ring number to issue wqe on. 10331 * @piocb: Pointer to command iocb. 10332 * @flag: Flag indicating if this command can be put into txq. 10333 * 10334 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10335 * an wqe command to an HBA with SLI-4 interface spec. 10336 * 10337 * This function is a lockless version. The function will return success 10338 * after it successfully submit the wqe to firmware or after adding to the 10339 * txq. 10340 **/ 10341 static int 10342 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10343 struct lpfc_iocbq *piocb, uint32_t flag) 10344 { 10345 int rc; 10346 struct lpfc_io_buf *lpfc_cmd = 10347 (struct lpfc_io_buf *)piocb->context1; 10348 10349 lpfc_prep_embed_io(phba, lpfc_cmd); 10350 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10351 return rc; 10352 } 10353 10354 void 10355 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10356 { 10357 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10358 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10359 struct sli4_sge *sgl; 10360 10361 /* 128 byte wqe support here */ 10362 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10363 10364 if (phba->fcp_embed_io) { 10365 struct fcp_cmnd *fcp_cmnd; 10366 u32 *ptr; 10367 10368 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10369 10370 /* Word 0-2 - FCP_CMND */ 10371 wqe->generic.bde.tus.f.bdeFlags = 10372 BUFF_TYPE_BDE_IMMED; 10373 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10374 wqe->generic.bde.addrHigh = 0; 10375 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10376 10377 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10378 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10379 10380 /* Word 22-29 FCP CMND Payload */ 10381 ptr = &wqe->words[22]; 10382 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10383 } else { 10384 /* Word 0-2 - Inline BDE */ 10385 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10386 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10387 wqe->generic.bde.addrHigh = sgl->addr_hi; 10388 wqe->generic.bde.addrLow = sgl->addr_lo; 10389 10390 /* Word 10 */ 10391 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10392 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10393 } 10394 10395 /* add the VMID tags as per switch response */ 10396 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10397 if (phba->pport->vmid_priority_tagging) { 10398 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10399 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10400 (piocb->vmid_tag.cs_ctl_vmid)); 10401 } else { 10402 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10403 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10404 wqe->words[31] = piocb->vmid_tag.app_id; 10405 } 10406 } 10407 } 10408 10409 /** 10410 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10411 * @phba: Pointer to HBA context object. 10412 * @ring_number: SLI ring number to issue iocb on. 10413 * @piocb: Pointer to command iocb. 10414 * @flag: Flag indicating if this command can be put into txq. 10415 * 10416 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10417 * an iocb command to an HBA with SLI-4 interface spec. 10418 * 10419 * This function is called with ringlock held. The function will return success 10420 * after it successfully submit the iocb to firmware or after adding to the 10421 * txq. 10422 **/ 10423 static int 10424 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10425 struct lpfc_iocbq *piocb, uint32_t flag) 10426 { 10427 struct lpfc_sglq *sglq; 10428 union lpfc_wqe128 *wqe; 10429 struct lpfc_queue *wq; 10430 struct lpfc_sli_ring *pring; 10431 u32 ulp_command = get_job_cmnd(phba, piocb); 10432 10433 /* Get the WQ */ 10434 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10435 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10436 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10437 } else { 10438 wq = phba->sli4_hba.els_wq; 10439 } 10440 10441 /* Get corresponding ring */ 10442 pring = wq->pring; 10443 10444 /* 10445 * The WQE can be either 64 or 128 bytes, 10446 */ 10447 10448 lockdep_assert_held(&pring->ring_lock); 10449 wqe = &piocb->wqe; 10450 if (piocb->sli4_xritag == NO_XRI) { 10451 if (ulp_command == CMD_ABORT_XRI_CX) 10452 sglq = NULL; 10453 else { 10454 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10455 if (!sglq) { 10456 if (!(flag & SLI_IOCB_RET_IOCB)) { 10457 __lpfc_sli_ringtx_put(phba, 10458 pring, 10459 piocb); 10460 return IOCB_SUCCESS; 10461 } else { 10462 return IOCB_BUSY; 10463 } 10464 } 10465 } 10466 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10467 /* These IO's already have an XRI and a mapped sgl. */ 10468 sglq = NULL; 10469 } 10470 else { 10471 /* 10472 * This is a continuation of a commandi,(CX) so this 10473 * sglq is on the active list 10474 */ 10475 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10476 if (!sglq) 10477 return IOCB_ERROR; 10478 } 10479 10480 if (sglq) { 10481 piocb->sli4_lxritag = sglq->sli4_lxritag; 10482 piocb->sli4_xritag = sglq->sli4_xritag; 10483 10484 /* ABTS sent by initiator to CT exchange, the 10485 * RX_ID field will be filled with the newly 10486 * allocated responder XRI. 10487 */ 10488 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10489 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10490 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10491 piocb->sli4_xritag); 10492 10493 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10494 piocb->sli4_xritag); 10495 10496 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10497 return IOCB_ERROR; 10498 } 10499 10500 if (lpfc_sli4_wq_put(wq, wqe)) 10501 return IOCB_ERROR; 10502 10503 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10504 10505 return 0; 10506 } 10507 10508 /* 10509 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10510 * 10511 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10512 * or IOCB for sli-3 function. 10513 * pointer from the lpfc_hba struct. 10514 * 10515 * Return codes: 10516 * IOCB_ERROR - Error 10517 * IOCB_SUCCESS - Success 10518 * IOCB_BUSY - Busy 10519 **/ 10520 int 10521 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10522 struct lpfc_iocbq *piocb, uint32_t flag) 10523 { 10524 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10525 } 10526 10527 /* 10528 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10529 * 10530 * This routine wraps the actual lockless version for issusing IOCB function 10531 * pointer from the lpfc_hba struct. 10532 * 10533 * Return codes: 10534 * IOCB_ERROR - Error 10535 * IOCB_SUCCESS - Success 10536 * IOCB_BUSY - Busy 10537 **/ 10538 int 10539 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10540 struct lpfc_iocbq *piocb, uint32_t flag) 10541 { 10542 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10543 } 10544 10545 static void 10546 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10547 struct lpfc_vport *vport, 10548 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10549 u32 elscmd, u8 tmo, u8 expect_rsp) 10550 { 10551 struct lpfc_hba *phba = vport->phba; 10552 IOCB_t *cmd; 10553 10554 cmd = &cmdiocbq->iocb; 10555 memset(cmd, 0, sizeof(*cmd)); 10556 10557 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10558 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10559 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10560 10561 if (expect_rsp) { 10562 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10563 cmd->un.elsreq64.remoteID = did; /* DID */ 10564 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10565 cmd->ulpTimeout = tmo; 10566 } else { 10567 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10568 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10569 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10570 } 10571 cmd->ulpBdeCount = 1; 10572 cmd->ulpLe = 1; 10573 cmd->ulpClass = CLASS3; 10574 10575 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10576 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10577 if (expect_rsp) { 10578 cmd->un.elsreq64.myID = vport->fc_myDID; 10579 10580 /* For ELS_REQUEST64_CR, use the VPI by default */ 10581 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10582 } 10583 10584 cmd->ulpCt_h = 0; 10585 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10586 if (elscmd == ELS_CMD_ECHO) 10587 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10588 else 10589 cmd->ulpCt_l = 1; /* context = VPI */ 10590 } 10591 } 10592 10593 static void 10594 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10595 struct lpfc_vport *vport, 10596 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10597 u32 elscmd, u8 tmo, u8 expect_rsp) 10598 { 10599 struct lpfc_hba *phba = vport->phba; 10600 union lpfc_wqe128 *wqe; 10601 struct ulp_bde64_le *bde; 10602 10603 wqe = &cmdiocbq->wqe; 10604 memset(wqe, 0, sizeof(*wqe)); 10605 10606 /* Word 0 - 2 BDE */ 10607 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10608 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10609 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10610 bde->type_size = cpu_to_le32(cmd_size); 10611 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10612 10613 if (expect_rsp) { 10614 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_CR); 10615 10616 /* Transfer length */ 10617 wqe->els_req.payload_len = cmd_size; 10618 wqe->els_req.max_response_payload_len = FCELSSIZE; 10619 10620 /* DID */ 10621 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10622 } else { 10623 /* DID */ 10624 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10625 10626 /* Transfer length */ 10627 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10628 10629 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10630 CMD_XMIT_ELS_RSP64_CX); 10631 } 10632 10633 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10634 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10635 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10636 10637 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10638 * For SLI4, since the driver controls VPIs we also want to include 10639 * all ELS pt2pt protocol traffic as well. 10640 */ 10641 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10642 (vport->fc_flag & FC_PT2PT)) { 10643 if (expect_rsp) { 10644 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10645 10646 /* For ELS_REQUEST64_CR, use the VPI by default */ 10647 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10648 phba->vpi_ids[vport->vpi]); 10649 } 10650 10651 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10652 if (elscmd == ELS_CMD_ECHO) 10653 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10654 else 10655 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10656 } 10657 } 10658 10659 void 10660 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10661 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10662 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10663 u8 expect_rsp) 10664 { 10665 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10666 elscmd, tmo, expect_rsp); 10667 } 10668 10669 static void 10670 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10671 u16 rpi, u32 num_entry, u8 tmo) 10672 { 10673 IOCB_t *cmd; 10674 10675 cmd = &cmdiocbq->iocb; 10676 memset(cmd, 0, sizeof(*cmd)); 10677 10678 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10679 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10680 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10681 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10682 10683 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10684 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10685 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10686 10687 cmd->ulpContext = rpi; 10688 cmd->ulpClass = CLASS3; 10689 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10690 cmd->ulpBdeCount = 1; 10691 cmd->ulpLe = 1; 10692 cmd->ulpOwner = OWN_CHIP; 10693 cmd->ulpTimeout = tmo; 10694 } 10695 10696 static void 10697 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10698 u16 rpi, u32 num_entry, u8 tmo) 10699 { 10700 union lpfc_wqe128 *cmdwqe; 10701 struct ulp_bde64_le *bde, *bpl; 10702 u32 xmit_len = 0, total_len = 0, size, type, i; 10703 10704 cmdwqe = &cmdiocbq->wqe; 10705 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10706 10707 /* Calculate total_len and xmit_len */ 10708 bpl = (struct ulp_bde64_le *)bmp->virt; 10709 for (i = 0; i < num_entry; i++) { 10710 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10711 total_len += size; 10712 } 10713 for (i = 0; i < num_entry; i++) { 10714 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10715 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10716 if (type != ULP_BDE64_TYPE_BDE_64) 10717 break; 10718 xmit_len += size; 10719 } 10720 10721 /* Words 0 - 2 */ 10722 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10723 bde->addr_low = bpl->addr_low; 10724 bde->addr_high = bpl->addr_high; 10725 bde->type_size = cpu_to_le32(xmit_len); 10726 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10727 10728 /* Word 3 */ 10729 cmdwqe->gen_req.request_payload_len = xmit_len; 10730 10731 /* Word 5 */ 10732 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10733 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10734 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10735 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10736 10737 /* Word 6 */ 10738 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10739 10740 /* Word 7 */ 10741 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10742 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10743 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10744 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10745 10746 /* Word 12 */ 10747 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10748 } 10749 10750 void 10751 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10752 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10753 { 10754 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10755 } 10756 10757 static void 10758 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 10759 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10760 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10761 { 10762 IOCB_t *icmd; 10763 10764 icmd = &cmdiocbq->iocb; 10765 memset(icmd, 0, sizeof(*icmd)); 10766 10767 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10768 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 10769 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10770 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 10771 icmd->un.xseq64.w5.hcsw.Fctl = LA; 10772 if (last_seq) 10773 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 10774 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 10775 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 10776 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 10777 10778 icmd->ulpBdeCount = 1; 10779 icmd->ulpLe = 1; 10780 icmd->ulpClass = CLASS3; 10781 10782 switch (cr_cx_cmd) { 10783 case CMD_XMIT_SEQUENCE64_CR: 10784 icmd->ulpContext = rpi; 10785 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 10786 break; 10787 case CMD_XMIT_SEQUENCE64_CX: 10788 icmd->ulpContext = ox_id; 10789 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 10790 break; 10791 default: 10792 break; 10793 } 10794 } 10795 10796 static void 10797 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 10798 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10799 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10800 { 10801 union lpfc_wqe128 *wqe; 10802 struct ulp_bde64 *bpl; 10803 struct ulp_bde64_le *bde; 10804 10805 wqe = &cmdiocbq->wqe; 10806 memset(wqe, 0, sizeof(*wqe)); 10807 10808 /* Words 0 - 2 */ 10809 bpl = (struct ulp_bde64 *)bmp->virt; 10810 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 10811 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 10812 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 10813 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 10814 } else { 10815 bde = (struct ulp_bde64_le *)&wqe->xmit_sequence.bde; 10816 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10817 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10818 bde->type_size = cpu_to_le32(bpl->tus.f.bdeSize); 10819 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10820 } 10821 10822 /* Word 5 */ 10823 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 10824 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 10825 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 10826 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 10827 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 10828 10829 /* Word 6 */ 10830 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 10831 10832 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 10833 CMD_XMIT_SEQUENCE64_WQE); 10834 10835 /* Word 7 */ 10836 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 10837 10838 /* Word 9 */ 10839 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 10840 10841 /* Word 12 */ 10842 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 10843 wqe->xmit_sequence.xmit_len = full_size; 10844 else 10845 wqe->xmit_sequence.xmit_len = 10846 wqe->xmit_sequence.bde.tus.f.bdeSize; 10847 } 10848 10849 void 10850 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10851 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10852 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10853 { 10854 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 10855 rctl, last_seq, cr_cx_cmd); 10856 } 10857 10858 static void 10859 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10860 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10861 { 10862 IOCB_t *icmd = NULL; 10863 10864 icmd = &cmdiocbq->iocb; 10865 memset(icmd, 0, sizeof(*icmd)); 10866 10867 /* Word 5 */ 10868 icmd->un.acxri.abortContextTag = ulp_context; 10869 icmd->un.acxri.abortIoTag = iotag; 10870 10871 if (ia) { 10872 /* Word 7 */ 10873 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 10874 } else { 10875 /* Word 3 */ 10876 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 10877 10878 /* Word 7 */ 10879 icmd->ulpClass = ulp_class; 10880 icmd->ulpCommand = CMD_ABORT_XRI_CN; 10881 } 10882 10883 /* Word 7 */ 10884 icmd->ulpLe = 1; 10885 } 10886 10887 static void 10888 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10889 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10890 { 10891 union lpfc_wqe128 *wqe; 10892 10893 wqe = &cmdiocbq->wqe; 10894 memset(wqe, 0, sizeof(*wqe)); 10895 10896 /* Word 3 */ 10897 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10898 if (ia) 10899 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10900 else 10901 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10902 10903 /* Word 7 */ 10904 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 10905 10906 /* Word 8 */ 10907 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 10908 10909 /* Word 9 */ 10910 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 10911 10912 /* Word 10 */ 10913 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10914 10915 /* Word 11 */ 10916 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 10917 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10918 } 10919 10920 void 10921 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10922 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 10923 bool ia) 10924 { 10925 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 10926 cqid, ia); 10927 } 10928 10929 /** 10930 * lpfc_sli_api_table_setup - Set up sli api function jump table 10931 * @phba: The hba struct for which this call is being executed. 10932 * @dev_grp: The HBA PCI-Device group number. 10933 * 10934 * This routine sets up the SLI interface API function jump table in @phba 10935 * struct. 10936 * Returns: 0 - success, -ENODEV - failure. 10937 **/ 10938 int 10939 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10940 { 10941 10942 switch (dev_grp) { 10943 case LPFC_PCI_DEV_LP: 10944 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10945 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10946 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10947 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 10948 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 10949 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 10950 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 10951 break; 10952 case LPFC_PCI_DEV_OC: 10953 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10954 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10955 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10956 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 10957 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 10958 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 10959 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 10960 break; 10961 default: 10962 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10963 "1419 Invalid HBA PCI-device group: 0x%x\n", 10964 dev_grp); 10965 return -ENODEV; 10966 } 10967 return 0; 10968 } 10969 10970 /** 10971 * lpfc_sli4_calc_ring - Calculates which ring to use 10972 * @phba: Pointer to HBA context object. 10973 * @piocb: Pointer to command iocb. 10974 * 10975 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10976 * hba_wqidx, thus we need to calculate the corresponding ring. 10977 * Since ABORTS must go on the same WQ of the command they are 10978 * aborting, we use command's hba_wqidx. 10979 */ 10980 struct lpfc_sli_ring * 10981 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10982 { 10983 struct lpfc_io_buf *lpfc_cmd; 10984 10985 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10986 if (unlikely(!phba->sli4_hba.hdwq)) 10987 return NULL; 10988 /* 10989 * for abort iocb hba_wqidx should already 10990 * be setup based on what work queue we used. 10991 */ 10992 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10993 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10994 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10995 } 10996 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10997 } else { 10998 if (unlikely(!phba->sli4_hba.els_wq)) 10999 return NULL; 11000 piocb->hba_wqidx = 0; 11001 return phba->sli4_hba.els_wq->pring; 11002 } 11003 } 11004 11005 /** 11006 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11007 * @phba: Pointer to HBA context object. 11008 * @ring_number: Ring number 11009 * @piocb: Pointer to command iocb. 11010 * @flag: Flag indicating if this command can be put into txq. 11011 * 11012 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11013 * function. This function gets the hbalock and calls 11014 * __lpfc_sli_issue_iocb function and will return the error returned 11015 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11016 * functions which do not hold hbalock. 11017 **/ 11018 int 11019 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11020 struct lpfc_iocbq *piocb, uint32_t flag) 11021 { 11022 struct lpfc_sli_ring *pring; 11023 struct lpfc_queue *eq; 11024 unsigned long iflags; 11025 int rc; 11026 11027 /* If the PCI channel is in offline state, do not post iocbs. */ 11028 if (unlikely(pci_channel_offline(phba->pcidev))) 11029 return IOCB_ERROR; 11030 11031 if (phba->sli_rev == LPFC_SLI_REV4) { 11032 lpfc_sli_prep_wqe(phba, piocb); 11033 11034 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11035 11036 pring = lpfc_sli4_calc_ring(phba, piocb); 11037 if (unlikely(pring == NULL)) 11038 return IOCB_ERROR; 11039 11040 spin_lock_irqsave(&pring->ring_lock, iflags); 11041 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11042 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11043 11044 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11045 } else { 11046 /* For now, SLI2/3 will still use hbalock */ 11047 spin_lock_irqsave(&phba->hbalock, iflags); 11048 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11049 spin_unlock_irqrestore(&phba->hbalock, iflags); 11050 } 11051 return rc; 11052 } 11053 11054 /** 11055 * lpfc_extra_ring_setup - Extra ring setup function 11056 * @phba: Pointer to HBA context object. 11057 * 11058 * This function is called while driver attaches with the 11059 * HBA to setup the extra ring. The extra ring is used 11060 * only when driver needs to support target mode functionality 11061 * or IP over FC functionalities. 11062 * 11063 * This function is called with no lock held. SLI3 only. 11064 **/ 11065 static int 11066 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11067 { 11068 struct lpfc_sli *psli; 11069 struct lpfc_sli_ring *pring; 11070 11071 psli = &phba->sli; 11072 11073 /* Adjust cmd/rsp ring iocb entries more evenly */ 11074 11075 /* Take some away from the FCP ring */ 11076 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11077 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11078 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11079 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11080 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11081 11082 /* and give them to the extra ring */ 11083 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11084 11085 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11086 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11087 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11088 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11089 11090 /* Setup default profile for this ring */ 11091 pring->iotag_max = 4096; 11092 pring->num_mask = 1; 11093 pring->prt[0].profile = 0; /* Mask 0 */ 11094 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11095 pring->prt[0].type = phba->cfg_multi_ring_type; 11096 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11097 return 0; 11098 } 11099 11100 static void 11101 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11102 struct lpfc_nodelist *ndlp) 11103 { 11104 unsigned long iflags; 11105 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11106 11107 spin_lock_irqsave(&phba->hbalock, iflags); 11108 if (!list_empty(&evtp->evt_listp)) { 11109 spin_unlock_irqrestore(&phba->hbalock, iflags); 11110 return; 11111 } 11112 11113 /* Incrementing the reference count until the queued work is done. */ 11114 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11115 if (!evtp->evt_arg1) { 11116 spin_unlock_irqrestore(&phba->hbalock, iflags); 11117 return; 11118 } 11119 evtp->evt = LPFC_EVT_RECOVER_PORT; 11120 list_add_tail(&evtp->evt_listp, &phba->work_list); 11121 spin_unlock_irqrestore(&phba->hbalock, iflags); 11122 11123 lpfc_worker_wake_up(phba); 11124 } 11125 11126 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11127 * @phba: Pointer to HBA context object. 11128 * @iocbq: Pointer to iocb object. 11129 * 11130 * The async_event handler calls this routine when it receives 11131 * an ASYNC_STATUS_CN event from the port. The port generates 11132 * this event when an Abort Sequence request to an rport fails 11133 * twice in succession. The abort could be originated by the 11134 * driver or by the port. The ABTS could have been for an ELS 11135 * or FCP IO. The port only generates this event when an ABTS 11136 * fails to complete after one retry. 11137 */ 11138 static void 11139 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11140 struct lpfc_iocbq *iocbq) 11141 { 11142 struct lpfc_nodelist *ndlp = NULL; 11143 uint16_t rpi = 0, vpi = 0; 11144 struct lpfc_vport *vport = NULL; 11145 11146 /* The rpi in the ulpContext is vport-sensitive. */ 11147 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11148 rpi = iocbq->iocb.ulpContext; 11149 11150 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11151 "3092 Port generated ABTS async event " 11152 "on vpi %d rpi %d status 0x%x\n", 11153 vpi, rpi, iocbq->iocb.ulpStatus); 11154 11155 vport = lpfc_find_vport_by_vpid(phba, vpi); 11156 if (!vport) 11157 goto err_exit; 11158 ndlp = lpfc_findnode_rpi(vport, rpi); 11159 if (!ndlp) 11160 goto err_exit; 11161 11162 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11163 lpfc_sli_abts_recover_port(vport, ndlp); 11164 return; 11165 11166 err_exit: 11167 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11168 "3095 Event Context not found, no " 11169 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11170 vpi, rpi, iocbq->iocb.ulpStatus, 11171 iocbq->iocb.ulpContext); 11172 } 11173 11174 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11175 * @phba: pointer to HBA context object. 11176 * @ndlp: nodelist pointer for the impacted rport. 11177 * @axri: pointer to the wcqe containing the failed exchange. 11178 * 11179 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11180 * port. The port generates this event when an abort exchange request to an 11181 * rport fails twice in succession with no reply. The abort could be originated 11182 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11183 */ 11184 void 11185 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11186 struct lpfc_nodelist *ndlp, 11187 struct sli4_wcqe_xri_aborted *axri) 11188 { 11189 uint32_t ext_status = 0; 11190 11191 if (!ndlp) { 11192 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11193 "3115 Node Context not found, driver " 11194 "ignoring abts err event\n"); 11195 return; 11196 } 11197 11198 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11199 "3116 Port generated FCP XRI ABORT event on " 11200 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11201 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11202 bf_get(lpfc_wcqe_xa_xri, axri), 11203 bf_get(lpfc_wcqe_xa_status, axri), 11204 axri->parameter); 11205 11206 /* 11207 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11208 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11209 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11210 */ 11211 ext_status = axri->parameter & IOERR_PARAM_MASK; 11212 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11213 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11214 lpfc_sli_post_recovery_event(phba, ndlp); 11215 } 11216 11217 /** 11218 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11219 * @phba: Pointer to HBA context object. 11220 * @pring: Pointer to driver SLI ring object. 11221 * @iocbq: Pointer to iocb object. 11222 * 11223 * This function is called by the slow ring event handler 11224 * function when there is an ASYNC event iocb in the ring. 11225 * This function is called with no lock held. 11226 * Currently this function handles only temperature related 11227 * ASYNC events. The function decodes the temperature sensor 11228 * event message and posts events for the management applications. 11229 **/ 11230 static void 11231 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11232 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11233 { 11234 IOCB_t *icmd; 11235 uint16_t evt_code; 11236 struct temp_event temp_event_data; 11237 struct Scsi_Host *shost; 11238 uint32_t *iocb_w; 11239 11240 icmd = &iocbq->iocb; 11241 evt_code = icmd->un.asyncstat.evt_code; 11242 11243 switch (evt_code) { 11244 case ASYNC_TEMP_WARN: 11245 case ASYNC_TEMP_SAFE: 11246 temp_event_data.data = (uint32_t) icmd->ulpContext; 11247 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11248 if (evt_code == ASYNC_TEMP_WARN) { 11249 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11251 "0347 Adapter is very hot, please take " 11252 "corrective action. temperature : %d Celsius\n", 11253 (uint32_t) icmd->ulpContext); 11254 } else { 11255 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11257 "0340 Adapter temperature is OK now. " 11258 "temperature : %d Celsius\n", 11259 (uint32_t) icmd->ulpContext); 11260 } 11261 11262 /* Send temperature change event to applications */ 11263 shost = lpfc_shost_from_vport(phba->pport); 11264 fc_host_post_vendor_event(shost, fc_get_event_number(), 11265 sizeof(temp_event_data), (char *) &temp_event_data, 11266 LPFC_NL_VENDOR_ID); 11267 break; 11268 case ASYNC_STATUS_CN: 11269 lpfc_sli_abts_err_handler(phba, iocbq); 11270 break; 11271 default: 11272 iocb_w = (uint32_t *) icmd; 11273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11274 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11275 " evt_code 0x%x\n" 11276 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11277 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11278 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11279 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11280 pring->ringno, icmd->un.asyncstat.evt_code, 11281 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11282 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11283 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11284 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11285 11286 break; 11287 } 11288 } 11289 11290 11291 /** 11292 * lpfc_sli4_setup - SLI ring setup function 11293 * @phba: Pointer to HBA context object. 11294 * 11295 * lpfc_sli_setup sets up rings of the SLI interface with 11296 * number of iocbs per ring and iotags. This function is 11297 * called while driver attach to the HBA and before the 11298 * interrupts are enabled. So there is no need for locking. 11299 * 11300 * This function always returns 0. 11301 **/ 11302 int 11303 lpfc_sli4_setup(struct lpfc_hba *phba) 11304 { 11305 struct lpfc_sli_ring *pring; 11306 11307 pring = phba->sli4_hba.els_wq->pring; 11308 pring->num_mask = LPFC_MAX_RING_MASK; 11309 pring->prt[0].profile = 0; /* Mask 0 */ 11310 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11311 pring->prt[0].type = FC_TYPE_ELS; 11312 pring->prt[0].lpfc_sli_rcv_unsol_event = 11313 lpfc_els_unsol_event; 11314 pring->prt[1].profile = 0; /* Mask 1 */ 11315 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11316 pring->prt[1].type = FC_TYPE_ELS; 11317 pring->prt[1].lpfc_sli_rcv_unsol_event = 11318 lpfc_els_unsol_event; 11319 pring->prt[2].profile = 0; /* Mask 2 */ 11320 /* NameServer Inquiry */ 11321 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11322 /* NameServer */ 11323 pring->prt[2].type = FC_TYPE_CT; 11324 pring->prt[2].lpfc_sli_rcv_unsol_event = 11325 lpfc_ct_unsol_event; 11326 pring->prt[3].profile = 0; /* Mask 3 */ 11327 /* NameServer response */ 11328 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11329 /* NameServer */ 11330 pring->prt[3].type = FC_TYPE_CT; 11331 pring->prt[3].lpfc_sli_rcv_unsol_event = 11332 lpfc_ct_unsol_event; 11333 return 0; 11334 } 11335 11336 /** 11337 * lpfc_sli_setup - SLI ring setup function 11338 * @phba: Pointer to HBA context object. 11339 * 11340 * lpfc_sli_setup sets up rings of the SLI interface with 11341 * number of iocbs per ring and iotags. This function is 11342 * called while driver attach to the HBA and before the 11343 * interrupts are enabled. So there is no need for locking. 11344 * 11345 * This function always returns 0. SLI3 only. 11346 **/ 11347 int 11348 lpfc_sli_setup(struct lpfc_hba *phba) 11349 { 11350 int i, totiocbsize = 0; 11351 struct lpfc_sli *psli = &phba->sli; 11352 struct lpfc_sli_ring *pring; 11353 11354 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11355 psli->sli_flag = 0; 11356 11357 psli->iocbq_lookup = NULL; 11358 psli->iocbq_lookup_len = 0; 11359 psli->last_iotag = 0; 11360 11361 for (i = 0; i < psli->num_rings; i++) { 11362 pring = &psli->sli3_ring[i]; 11363 switch (i) { 11364 case LPFC_FCP_RING: /* ring 0 - FCP */ 11365 /* numCiocb and numRiocb are used in config_port */ 11366 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11367 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11368 pring->sli.sli3.numCiocb += 11369 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11370 pring->sli.sli3.numRiocb += 11371 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11372 pring->sli.sli3.numCiocb += 11373 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11374 pring->sli.sli3.numRiocb += 11375 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11376 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11377 SLI3_IOCB_CMD_SIZE : 11378 SLI2_IOCB_CMD_SIZE; 11379 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11380 SLI3_IOCB_RSP_SIZE : 11381 SLI2_IOCB_RSP_SIZE; 11382 pring->iotag_ctr = 0; 11383 pring->iotag_max = 11384 (phba->cfg_hba_queue_depth * 2); 11385 pring->fast_iotag = pring->iotag_max; 11386 pring->num_mask = 0; 11387 break; 11388 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11389 /* numCiocb and numRiocb are used in config_port */ 11390 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11391 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11392 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11393 SLI3_IOCB_CMD_SIZE : 11394 SLI2_IOCB_CMD_SIZE; 11395 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11396 SLI3_IOCB_RSP_SIZE : 11397 SLI2_IOCB_RSP_SIZE; 11398 pring->iotag_max = phba->cfg_hba_queue_depth; 11399 pring->num_mask = 0; 11400 break; 11401 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11402 /* numCiocb and numRiocb are used in config_port */ 11403 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11404 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11405 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11406 SLI3_IOCB_CMD_SIZE : 11407 SLI2_IOCB_CMD_SIZE; 11408 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11409 SLI3_IOCB_RSP_SIZE : 11410 SLI2_IOCB_RSP_SIZE; 11411 pring->fast_iotag = 0; 11412 pring->iotag_ctr = 0; 11413 pring->iotag_max = 4096; 11414 pring->lpfc_sli_rcv_async_status = 11415 lpfc_sli_async_event_handler; 11416 pring->num_mask = LPFC_MAX_RING_MASK; 11417 pring->prt[0].profile = 0; /* Mask 0 */ 11418 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11419 pring->prt[0].type = FC_TYPE_ELS; 11420 pring->prt[0].lpfc_sli_rcv_unsol_event = 11421 lpfc_els_unsol_event; 11422 pring->prt[1].profile = 0; /* Mask 1 */ 11423 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11424 pring->prt[1].type = FC_TYPE_ELS; 11425 pring->prt[1].lpfc_sli_rcv_unsol_event = 11426 lpfc_els_unsol_event; 11427 pring->prt[2].profile = 0; /* Mask 2 */ 11428 /* NameServer Inquiry */ 11429 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11430 /* NameServer */ 11431 pring->prt[2].type = FC_TYPE_CT; 11432 pring->prt[2].lpfc_sli_rcv_unsol_event = 11433 lpfc_ct_unsol_event; 11434 pring->prt[3].profile = 0; /* Mask 3 */ 11435 /* NameServer response */ 11436 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11437 /* NameServer */ 11438 pring->prt[3].type = FC_TYPE_CT; 11439 pring->prt[3].lpfc_sli_rcv_unsol_event = 11440 lpfc_ct_unsol_event; 11441 break; 11442 } 11443 totiocbsize += (pring->sli.sli3.numCiocb * 11444 pring->sli.sli3.sizeCiocb) + 11445 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11446 } 11447 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11448 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11449 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11450 "SLI2 SLIM Data: x%x x%lx\n", 11451 phba->brd_no, totiocbsize, 11452 (unsigned long) MAX_SLIM_IOCB_SIZE); 11453 } 11454 if (phba->cfg_multi_ring_support == 2) 11455 lpfc_extra_ring_setup(phba); 11456 11457 return 0; 11458 } 11459 11460 /** 11461 * lpfc_sli4_queue_init - Queue initialization function 11462 * @phba: Pointer to HBA context object. 11463 * 11464 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11465 * ring. This function also initializes ring indices of each ring. 11466 * This function is called during the initialization of the SLI 11467 * interface of an HBA. 11468 * This function is called with no lock held and always returns 11469 * 1. 11470 **/ 11471 void 11472 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11473 { 11474 struct lpfc_sli *psli; 11475 struct lpfc_sli_ring *pring; 11476 int i; 11477 11478 psli = &phba->sli; 11479 spin_lock_irq(&phba->hbalock); 11480 INIT_LIST_HEAD(&psli->mboxq); 11481 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11482 /* Initialize list headers for txq and txcmplq as double linked lists */ 11483 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11484 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11485 pring->flag = 0; 11486 pring->ringno = LPFC_FCP_RING; 11487 pring->txcmplq_cnt = 0; 11488 INIT_LIST_HEAD(&pring->txq); 11489 INIT_LIST_HEAD(&pring->txcmplq); 11490 INIT_LIST_HEAD(&pring->iocb_continueq); 11491 spin_lock_init(&pring->ring_lock); 11492 } 11493 pring = phba->sli4_hba.els_wq->pring; 11494 pring->flag = 0; 11495 pring->ringno = LPFC_ELS_RING; 11496 pring->txcmplq_cnt = 0; 11497 INIT_LIST_HEAD(&pring->txq); 11498 INIT_LIST_HEAD(&pring->txcmplq); 11499 INIT_LIST_HEAD(&pring->iocb_continueq); 11500 spin_lock_init(&pring->ring_lock); 11501 11502 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11503 pring = phba->sli4_hba.nvmels_wq->pring; 11504 pring->flag = 0; 11505 pring->ringno = LPFC_ELS_RING; 11506 pring->txcmplq_cnt = 0; 11507 INIT_LIST_HEAD(&pring->txq); 11508 INIT_LIST_HEAD(&pring->txcmplq); 11509 INIT_LIST_HEAD(&pring->iocb_continueq); 11510 spin_lock_init(&pring->ring_lock); 11511 } 11512 11513 spin_unlock_irq(&phba->hbalock); 11514 } 11515 11516 /** 11517 * lpfc_sli_queue_init - Queue initialization function 11518 * @phba: Pointer to HBA context object. 11519 * 11520 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11521 * ring. This function also initializes ring indices of each ring. 11522 * This function is called during the initialization of the SLI 11523 * interface of an HBA. 11524 * This function is called with no lock held and always returns 11525 * 1. 11526 **/ 11527 void 11528 lpfc_sli_queue_init(struct lpfc_hba *phba) 11529 { 11530 struct lpfc_sli *psli; 11531 struct lpfc_sli_ring *pring; 11532 int i; 11533 11534 psli = &phba->sli; 11535 spin_lock_irq(&phba->hbalock); 11536 INIT_LIST_HEAD(&psli->mboxq); 11537 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11538 /* Initialize list headers for txq and txcmplq as double linked lists */ 11539 for (i = 0; i < psli->num_rings; i++) { 11540 pring = &psli->sli3_ring[i]; 11541 pring->ringno = i; 11542 pring->sli.sli3.next_cmdidx = 0; 11543 pring->sli.sli3.local_getidx = 0; 11544 pring->sli.sli3.cmdidx = 0; 11545 INIT_LIST_HEAD(&pring->iocb_continueq); 11546 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11547 INIT_LIST_HEAD(&pring->postbufq); 11548 pring->flag = 0; 11549 INIT_LIST_HEAD(&pring->txq); 11550 INIT_LIST_HEAD(&pring->txcmplq); 11551 spin_lock_init(&pring->ring_lock); 11552 } 11553 spin_unlock_irq(&phba->hbalock); 11554 } 11555 11556 /** 11557 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11558 * @phba: Pointer to HBA context object. 11559 * 11560 * This routine flushes the mailbox command subsystem. It will unconditionally 11561 * flush all the mailbox commands in the three possible stages in the mailbox 11562 * command sub-system: pending mailbox command queue; the outstanding mailbox 11563 * command; and completed mailbox command queue. It is caller's responsibility 11564 * to make sure that the driver is in the proper state to flush the mailbox 11565 * command sub-system. Namely, the posting of mailbox commands into the 11566 * pending mailbox command queue from the various clients must be stopped; 11567 * either the HBA is in a state that it will never works on the outstanding 11568 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11569 * mailbox command has been completed. 11570 **/ 11571 static void 11572 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11573 { 11574 LIST_HEAD(completions); 11575 struct lpfc_sli *psli = &phba->sli; 11576 LPFC_MBOXQ_t *pmb; 11577 unsigned long iflag; 11578 11579 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11580 local_bh_disable(); 11581 11582 /* Flush all the mailbox commands in the mbox system */ 11583 spin_lock_irqsave(&phba->hbalock, iflag); 11584 11585 /* The pending mailbox command queue */ 11586 list_splice_init(&phba->sli.mboxq, &completions); 11587 /* The outstanding active mailbox command */ 11588 if (psli->mbox_active) { 11589 list_add_tail(&psli->mbox_active->list, &completions); 11590 psli->mbox_active = NULL; 11591 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11592 } 11593 /* The completed mailbox command queue */ 11594 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11595 spin_unlock_irqrestore(&phba->hbalock, iflag); 11596 11597 /* Enable softirqs again, done with phba->hbalock */ 11598 local_bh_enable(); 11599 11600 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11601 while (!list_empty(&completions)) { 11602 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11603 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11604 if (pmb->mbox_cmpl) 11605 pmb->mbox_cmpl(phba, pmb); 11606 } 11607 } 11608 11609 /** 11610 * lpfc_sli_host_down - Vport cleanup function 11611 * @vport: Pointer to virtual port object. 11612 * 11613 * lpfc_sli_host_down is called to clean up the resources 11614 * associated with a vport before destroying virtual 11615 * port data structures. 11616 * This function does following operations: 11617 * - Free discovery resources associated with this virtual 11618 * port. 11619 * - Free iocbs associated with this virtual port in 11620 * the txq. 11621 * - Send abort for all iocb commands associated with this 11622 * vport in txcmplq. 11623 * 11624 * This function is called with no lock held and always returns 1. 11625 **/ 11626 int 11627 lpfc_sli_host_down(struct lpfc_vport *vport) 11628 { 11629 LIST_HEAD(completions); 11630 struct lpfc_hba *phba = vport->phba; 11631 struct lpfc_sli *psli = &phba->sli; 11632 struct lpfc_queue *qp = NULL; 11633 struct lpfc_sli_ring *pring; 11634 struct lpfc_iocbq *iocb, *next_iocb; 11635 int i; 11636 unsigned long flags = 0; 11637 uint16_t prev_pring_flag; 11638 11639 lpfc_cleanup_discovery_resources(vport); 11640 11641 spin_lock_irqsave(&phba->hbalock, flags); 11642 11643 /* 11644 * Error everything on the txq since these iocbs 11645 * have not been given to the FW yet. 11646 * Also issue ABTS for everything on the txcmplq 11647 */ 11648 if (phba->sli_rev != LPFC_SLI_REV4) { 11649 for (i = 0; i < psli->num_rings; i++) { 11650 pring = &psli->sli3_ring[i]; 11651 prev_pring_flag = pring->flag; 11652 /* Only slow rings */ 11653 if (pring->ringno == LPFC_ELS_RING) { 11654 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11655 /* Set the lpfc data pending flag */ 11656 set_bit(LPFC_DATA_READY, &phba->data_flags); 11657 } 11658 list_for_each_entry_safe(iocb, next_iocb, 11659 &pring->txq, list) { 11660 if (iocb->vport != vport) 11661 continue; 11662 list_move_tail(&iocb->list, &completions); 11663 } 11664 list_for_each_entry_safe(iocb, next_iocb, 11665 &pring->txcmplq, list) { 11666 if (iocb->vport != vport) 11667 continue; 11668 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11669 NULL); 11670 } 11671 pring->flag = prev_pring_flag; 11672 } 11673 } else { 11674 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11675 pring = qp->pring; 11676 if (!pring) 11677 continue; 11678 if (pring == phba->sli4_hba.els_wq->pring) { 11679 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11680 /* Set the lpfc data pending flag */ 11681 set_bit(LPFC_DATA_READY, &phba->data_flags); 11682 } 11683 prev_pring_flag = pring->flag; 11684 spin_lock(&pring->ring_lock); 11685 list_for_each_entry_safe(iocb, next_iocb, 11686 &pring->txq, list) { 11687 if (iocb->vport != vport) 11688 continue; 11689 list_move_tail(&iocb->list, &completions); 11690 } 11691 spin_unlock(&pring->ring_lock); 11692 list_for_each_entry_safe(iocb, next_iocb, 11693 &pring->txcmplq, list) { 11694 if (iocb->vport != vport) 11695 continue; 11696 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11697 NULL); 11698 } 11699 pring->flag = prev_pring_flag; 11700 } 11701 } 11702 spin_unlock_irqrestore(&phba->hbalock, flags); 11703 11704 /* Make sure HBA is alive */ 11705 lpfc_issue_hb_tmo(phba); 11706 11707 /* Cancel all the IOCBs from the completions list */ 11708 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11709 IOERR_SLI_DOWN); 11710 return 1; 11711 } 11712 11713 /** 11714 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11715 * @phba: Pointer to HBA context object. 11716 * 11717 * This function cleans up all iocb, buffers, mailbox commands 11718 * while shutting down the HBA. This function is called with no 11719 * lock held and always returns 1. 11720 * This function does the following to cleanup driver resources: 11721 * - Free discovery resources for each virtual port 11722 * - Cleanup any pending fabric iocbs 11723 * - Iterate through the iocb txq and free each entry 11724 * in the list. 11725 * - Free up any buffer posted to the HBA 11726 * - Free mailbox commands in the mailbox queue. 11727 **/ 11728 int 11729 lpfc_sli_hba_down(struct lpfc_hba *phba) 11730 { 11731 LIST_HEAD(completions); 11732 struct lpfc_sli *psli = &phba->sli; 11733 struct lpfc_queue *qp = NULL; 11734 struct lpfc_sli_ring *pring; 11735 struct lpfc_dmabuf *buf_ptr; 11736 unsigned long flags = 0; 11737 int i; 11738 11739 /* Shutdown the mailbox command sub-system */ 11740 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11741 11742 lpfc_hba_down_prep(phba); 11743 11744 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11745 local_bh_disable(); 11746 11747 lpfc_fabric_abort_hba(phba); 11748 11749 spin_lock_irqsave(&phba->hbalock, flags); 11750 11751 /* 11752 * Error everything on the txq since these iocbs 11753 * have not been given to the FW yet. 11754 */ 11755 if (phba->sli_rev != LPFC_SLI_REV4) { 11756 for (i = 0; i < psli->num_rings; i++) { 11757 pring = &psli->sli3_ring[i]; 11758 /* Only slow rings */ 11759 if (pring->ringno == LPFC_ELS_RING) { 11760 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11761 /* Set the lpfc data pending flag */ 11762 set_bit(LPFC_DATA_READY, &phba->data_flags); 11763 } 11764 list_splice_init(&pring->txq, &completions); 11765 } 11766 } else { 11767 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11768 pring = qp->pring; 11769 if (!pring) 11770 continue; 11771 spin_lock(&pring->ring_lock); 11772 list_splice_init(&pring->txq, &completions); 11773 spin_unlock(&pring->ring_lock); 11774 if (pring == phba->sli4_hba.els_wq->pring) { 11775 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11776 /* Set the lpfc data pending flag */ 11777 set_bit(LPFC_DATA_READY, &phba->data_flags); 11778 } 11779 } 11780 } 11781 spin_unlock_irqrestore(&phba->hbalock, flags); 11782 11783 /* Cancel all the IOCBs from the completions list */ 11784 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11785 IOERR_SLI_DOWN); 11786 11787 spin_lock_irqsave(&phba->hbalock, flags); 11788 list_splice_init(&phba->elsbuf, &completions); 11789 phba->elsbuf_cnt = 0; 11790 phba->elsbuf_prev_cnt = 0; 11791 spin_unlock_irqrestore(&phba->hbalock, flags); 11792 11793 while (!list_empty(&completions)) { 11794 list_remove_head(&completions, buf_ptr, 11795 struct lpfc_dmabuf, list); 11796 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11797 kfree(buf_ptr); 11798 } 11799 11800 /* Enable softirqs again, done with phba->hbalock */ 11801 local_bh_enable(); 11802 11803 /* Return any active mbox cmds */ 11804 del_timer_sync(&psli->mbox_tmo); 11805 11806 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11807 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11808 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11809 11810 return 1; 11811 } 11812 11813 /** 11814 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11815 * @srcp: Source memory pointer. 11816 * @destp: Destination memory pointer. 11817 * @cnt: Number of words required to be copied. 11818 * 11819 * This function is used for copying data between driver memory 11820 * and the SLI memory. This function also changes the endianness 11821 * of each word if native endianness is different from SLI 11822 * endianness. This function can be called with or without 11823 * lock. 11824 **/ 11825 void 11826 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11827 { 11828 uint32_t *src = srcp; 11829 uint32_t *dest = destp; 11830 uint32_t ldata; 11831 int i; 11832 11833 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11834 ldata = *src; 11835 ldata = le32_to_cpu(ldata); 11836 *dest = ldata; 11837 src++; 11838 dest++; 11839 } 11840 } 11841 11842 11843 /** 11844 * lpfc_sli_bemem_bcopy - SLI memory copy function 11845 * @srcp: Source memory pointer. 11846 * @destp: Destination memory pointer. 11847 * @cnt: Number of words required to be copied. 11848 * 11849 * This function is used for copying data between a data structure 11850 * with big endian representation to local endianness. 11851 * This function can be called with or without lock. 11852 **/ 11853 void 11854 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11855 { 11856 uint32_t *src = srcp; 11857 uint32_t *dest = destp; 11858 uint32_t ldata; 11859 int i; 11860 11861 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11862 ldata = *src; 11863 ldata = be32_to_cpu(ldata); 11864 *dest = ldata; 11865 src++; 11866 dest++; 11867 } 11868 } 11869 11870 /** 11871 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11872 * @phba: Pointer to HBA context object. 11873 * @pring: Pointer to driver SLI ring object. 11874 * @mp: Pointer to driver buffer object. 11875 * 11876 * This function is called with no lock held. 11877 * It always return zero after adding the buffer to the postbufq 11878 * buffer list. 11879 **/ 11880 int 11881 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11882 struct lpfc_dmabuf *mp) 11883 { 11884 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11885 later */ 11886 spin_lock_irq(&phba->hbalock); 11887 list_add_tail(&mp->list, &pring->postbufq); 11888 pring->postbufq_cnt++; 11889 spin_unlock_irq(&phba->hbalock); 11890 return 0; 11891 } 11892 11893 /** 11894 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11895 * @phba: Pointer to HBA context object. 11896 * 11897 * When HBQ is enabled, buffers are searched based on tags. This function 11898 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11899 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11900 * does not conflict with tags of buffer posted for unsolicited events. 11901 * The function returns the allocated tag. The function is called with 11902 * no locks held. 11903 **/ 11904 uint32_t 11905 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11906 { 11907 spin_lock_irq(&phba->hbalock); 11908 phba->buffer_tag_count++; 11909 /* 11910 * Always set the QUE_BUFTAG_BIT to distiguish between 11911 * a tag assigned by HBQ. 11912 */ 11913 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11914 spin_unlock_irq(&phba->hbalock); 11915 return phba->buffer_tag_count; 11916 } 11917 11918 /** 11919 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11920 * @phba: Pointer to HBA context object. 11921 * @pring: Pointer to driver SLI ring object. 11922 * @tag: Buffer tag. 11923 * 11924 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11925 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11926 * iocb is posted to the response ring with the tag of the buffer. 11927 * This function searches the pring->postbufq list using the tag 11928 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11929 * iocb. If the buffer is found then lpfc_dmabuf object of the 11930 * buffer is returned to the caller else NULL is returned. 11931 * This function is called with no lock held. 11932 **/ 11933 struct lpfc_dmabuf * 11934 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11935 uint32_t tag) 11936 { 11937 struct lpfc_dmabuf *mp, *next_mp; 11938 struct list_head *slp = &pring->postbufq; 11939 11940 /* Search postbufq, from the beginning, looking for a match on tag */ 11941 spin_lock_irq(&phba->hbalock); 11942 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11943 if (mp->buffer_tag == tag) { 11944 list_del_init(&mp->list); 11945 pring->postbufq_cnt--; 11946 spin_unlock_irq(&phba->hbalock); 11947 return mp; 11948 } 11949 } 11950 11951 spin_unlock_irq(&phba->hbalock); 11952 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11953 "0402 Cannot find virtual addr for buffer tag on " 11954 "ring %d Data x%lx x%px x%px x%x\n", 11955 pring->ringno, (unsigned long) tag, 11956 slp->next, slp->prev, pring->postbufq_cnt); 11957 11958 return NULL; 11959 } 11960 11961 /** 11962 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11963 * @phba: Pointer to HBA context object. 11964 * @pring: Pointer to driver SLI ring object. 11965 * @phys: DMA address of the buffer. 11966 * 11967 * This function searches the buffer list using the dma_address 11968 * of unsolicited event to find the driver's lpfc_dmabuf object 11969 * corresponding to the dma_address. The function returns the 11970 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11971 * This function is called by the ct and els unsolicited event 11972 * handlers to get the buffer associated with the unsolicited 11973 * event. 11974 * 11975 * This function is called with no lock held. 11976 **/ 11977 struct lpfc_dmabuf * 11978 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11979 dma_addr_t phys) 11980 { 11981 struct lpfc_dmabuf *mp, *next_mp; 11982 struct list_head *slp = &pring->postbufq; 11983 11984 /* Search postbufq, from the beginning, looking for a match on phys */ 11985 spin_lock_irq(&phba->hbalock); 11986 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11987 if (mp->phys == phys) { 11988 list_del_init(&mp->list); 11989 pring->postbufq_cnt--; 11990 spin_unlock_irq(&phba->hbalock); 11991 return mp; 11992 } 11993 } 11994 11995 spin_unlock_irq(&phba->hbalock); 11996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11997 "0410 Cannot find virtual addr for mapped buf on " 11998 "ring %d Data x%llx x%px x%px x%x\n", 11999 pring->ringno, (unsigned long long)phys, 12000 slp->next, slp->prev, pring->postbufq_cnt); 12001 return NULL; 12002 } 12003 12004 /** 12005 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12006 * @phba: Pointer to HBA context object. 12007 * @cmdiocb: Pointer to driver command iocb object. 12008 * @rspiocb: Pointer to driver response iocb object. 12009 * 12010 * This function is the completion handler for the abort iocbs for 12011 * ELS commands. This function is called from the ELS ring event 12012 * handler with no lock held. This function frees memory resources 12013 * associated with the abort iocb. 12014 **/ 12015 static void 12016 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12017 struct lpfc_iocbq *rspiocb) 12018 { 12019 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12020 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12021 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12022 12023 if (ulp_status) { 12024 /* 12025 * Assume that the port already completed and returned, or 12026 * will return the iocb. Just Log the message. 12027 */ 12028 if (phba->sli_rev < LPFC_SLI_REV4) { 12029 if (cmnd == CMD_ABORT_XRI_CX && 12030 ulp_status == IOSTAT_LOCAL_REJECT && 12031 ulp_word4 == IOERR_ABORT_REQUESTED) { 12032 goto release_iocb; 12033 } 12034 } 12035 12036 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12037 "0327 Cannot abort els iocb x%px " 12038 "with io cmd xri %x abort tag : x%x, " 12039 "abort status %x abort code %x\n", 12040 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12041 (phba->sli_rev == LPFC_SLI_REV4) ? 12042 get_wqe_reqtag(cmdiocb) : 12043 cmdiocb->iocb.un.acxri.abortContextTag, 12044 ulp_status, ulp_word4); 12045 12046 } 12047 release_iocb: 12048 lpfc_sli_release_iocbq(phba, cmdiocb); 12049 return; 12050 } 12051 12052 /** 12053 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12054 * @phba: Pointer to HBA context object. 12055 * @cmdiocb: Pointer to driver command iocb object. 12056 * @rspiocb: Pointer to driver response iocb object. 12057 * 12058 * The function is called from SLI ring event handler with no 12059 * lock held. This function is the completion handler for ELS commands 12060 * which are aborted. The function frees memory resources used for 12061 * the aborted ELS commands. 12062 **/ 12063 void 12064 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12065 struct lpfc_iocbq *rspiocb) 12066 { 12067 struct lpfc_nodelist *ndlp = NULL; 12068 IOCB_t *irsp; 12069 u32 ulp_command, ulp_status, ulp_word4, iotag; 12070 12071 ulp_command = get_job_cmnd(phba, cmdiocb); 12072 ulp_status = get_job_ulpstatus(phba, rspiocb); 12073 ulp_word4 = get_job_word4(phba, rspiocb); 12074 12075 if (phba->sli_rev == LPFC_SLI_REV4) { 12076 iotag = get_wqe_reqtag(cmdiocb); 12077 } else { 12078 irsp = &rspiocb->iocb; 12079 iotag = irsp->ulpIoTag; 12080 } 12081 12082 /* ELS cmd tag <ulpIoTag> completes */ 12083 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12084 "0139 Ignoring ELS cmd code x%x completion Data: " 12085 "x%x x%x x%x\n", 12086 ulp_command, ulp_status, ulp_word4, iotag); 12087 12088 /* 12089 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12090 * if exchange is busy. 12091 */ 12092 if (ulp_command == CMD_GEN_REQUEST64_CR) { 12093 ndlp = cmdiocb->context_un.ndlp; 12094 lpfc_ct_free_iocb(phba, cmdiocb); 12095 } else { 12096 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12097 lpfc_els_free_iocb(phba, cmdiocb); 12098 } 12099 12100 lpfc_nlp_put(ndlp); 12101 } 12102 12103 /** 12104 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12105 * @phba: Pointer to HBA context object. 12106 * @pring: Pointer to driver SLI ring object. 12107 * @cmdiocb: Pointer to driver command iocb object. 12108 * @cmpl: completion function. 12109 * 12110 * This function issues an abort iocb for the provided command iocb. In case 12111 * of unloading, the abort iocb will not be issued to commands on the ELS 12112 * ring. Instead, the callback function shall be changed to those commands 12113 * so that nothing happens when them finishes. This function is called with 12114 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12115 * when the command iocb is an abort request. 12116 * 12117 **/ 12118 int 12119 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12120 struct lpfc_iocbq *cmdiocb, void *cmpl) 12121 { 12122 struct lpfc_vport *vport = cmdiocb->vport; 12123 struct lpfc_iocbq *abtsiocbp; 12124 int retval = IOCB_ERROR; 12125 unsigned long iflags; 12126 struct lpfc_nodelist *ndlp = NULL; 12127 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12128 u16 ulp_context, iotag; 12129 bool ia; 12130 12131 /* 12132 * There are certain command types we don't want to abort. And we 12133 * don't want to abort commands that are already in the process of 12134 * being aborted. 12135 */ 12136 if (ulp_command == CMD_ABORT_XRI_WQE || 12137 ulp_command == CMD_ABORT_XRI_CN || 12138 ulp_command == CMD_CLOSE_XRI_CN || 12139 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12140 return IOCB_ABORTING; 12141 12142 if (!pring) { 12143 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12144 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12145 else 12146 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12147 return retval; 12148 } 12149 12150 /* 12151 * If we're unloading, don't abort iocb on the ELS ring, but change 12152 * the callback so that nothing happens when it finishes. 12153 */ 12154 if ((vport->load_flag & FC_UNLOADING) && 12155 pring->ringno == LPFC_ELS_RING) { 12156 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12157 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12158 else 12159 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12160 return retval; 12161 } 12162 12163 /* issue ABTS for this IOCB based on iotag */ 12164 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12165 if (abtsiocbp == NULL) 12166 return IOCB_NORESOURCE; 12167 12168 /* This signals the response to set the correct status 12169 * before calling the completion handler 12170 */ 12171 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12172 12173 if (phba->sli_rev == LPFC_SLI_REV4) { 12174 ulp_context = cmdiocb->sli4_xritag; 12175 iotag = abtsiocbp->iotag; 12176 } else { 12177 iotag = cmdiocb->iocb.ulpIoTag; 12178 if (pring->ringno == LPFC_ELS_RING) { 12179 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12180 ulp_context = ndlp->nlp_rpi; 12181 } else { 12182 ulp_context = cmdiocb->iocb.ulpContext; 12183 } 12184 } 12185 12186 if (phba->link_state < LPFC_LINK_UP || 12187 (phba->sli_rev == LPFC_SLI_REV4 && 12188 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN)) 12189 ia = true; 12190 else 12191 ia = false; 12192 12193 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12194 cmdiocb->iocb.ulpClass, 12195 LPFC_WQE_CQ_ID_DEFAULT, ia); 12196 12197 abtsiocbp->vport = vport; 12198 12199 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12200 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12201 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12202 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12203 12204 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12205 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12206 12207 if (cmpl) 12208 abtsiocbp->cmd_cmpl = cmpl; 12209 else 12210 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12211 abtsiocbp->vport = vport; 12212 12213 if (phba->sli_rev == LPFC_SLI_REV4) { 12214 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12215 if (unlikely(pring == NULL)) 12216 goto abort_iotag_exit; 12217 /* Note: both hbalock and ring_lock need to be set here */ 12218 spin_lock_irqsave(&pring->ring_lock, iflags); 12219 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12220 abtsiocbp, 0); 12221 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12222 } else { 12223 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12224 abtsiocbp, 0); 12225 } 12226 12227 abort_iotag_exit: 12228 12229 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12230 "0339 Abort IO XRI x%x, Original iotag x%x, " 12231 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12232 "retval x%x\n", 12233 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12234 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12235 retval); 12236 if (retval) { 12237 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12238 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12239 } 12240 12241 /* 12242 * Caller to this routine should check for IOCB_ERROR 12243 * and handle it properly. This routine no longer removes 12244 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12245 */ 12246 return retval; 12247 } 12248 12249 /** 12250 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12251 * @phba: pointer to lpfc HBA data structure. 12252 * 12253 * This routine will abort all pending and outstanding iocbs to an HBA. 12254 **/ 12255 void 12256 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12257 { 12258 struct lpfc_sli *psli = &phba->sli; 12259 struct lpfc_sli_ring *pring; 12260 struct lpfc_queue *qp = NULL; 12261 int i; 12262 12263 if (phba->sli_rev != LPFC_SLI_REV4) { 12264 for (i = 0; i < psli->num_rings; i++) { 12265 pring = &psli->sli3_ring[i]; 12266 lpfc_sli_abort_iocb_ring(phba, pring); 12267 } 12268 return; 12269 } 12270 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12271 pring = qp->pring; 12272 if (!pring) 12273 continue; 12274 lpfc_sli_abort_iocb_ring(phba, pring); 12275 } 12276 } 12277 12278 /** 12279 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12280 * @iocbq: Pointer to iocb object. 12281 * @vport: Pointer to driver virtual port object. 12282 * 12283 * This function acts as an iocb filter for functions which abort FCP iocbs. 12284 * 12285 * Return values 12286 * -ENODEV, if a null iocb or vport ptr is encountered 12287 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12288 * driver already started the abort process, or is an abort iocb itself 12289 * 0, passes criteria for aborting the FCP I/O iocb 12290 **/ 12291 static int 12292 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12293 struct lpfc_vport *vport) 12294 { 12295 u8 ulp_command; 12296 12297 /* No null ptr vports */ 12298 if (!iocbq || iocbq->vport != vport) 12299 return -ENODEV; 12300 12301 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12302 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12303 */ 12304 ulp_command = get_job_cmnd(vport->phba, iocbq); 12305 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12306 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12307 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12308 (ulp_command == CMD_ABORT_XRI_CN || 12309 ulp_command == CMD_CLOSE_XRI_CN || 12310 ulp_command == CMD_ABORT_XRI_WQE)) 12311 return -EINVAL; 12312 12313 return 0; 12314 } 12315 12316 /** 12317 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12318 * @iocbq: Pointer to driver iocb object. 12319 * @vport: Pointer to driver virtual port object. 12320 * @tgt_id: SCSI ID of the target. 12321 * @lun_id: LUN ID of the scsi device. 12322 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12323 * 12324 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12325 * host. 12326 * 12327 * It will return 12328 * 0 if the filtering criteria is met for the given iocb and will return 12329 * 1 if the filtering criteria is not met. 12330 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12331 * given iocb is for the SCSI device specified by vport, tgt_id and 12332 * lun_id parameter. 12333 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12334 * given iocb is for the SCSI target specified by vport and tgt_id 12335 * parameters. 12336 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12337 * given iocb is for the SCSI host associated with the given vport. 12338 * This function is called with no locks held. 12339 **/ 12340 static int 12341 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12342 uint16_t tgt_id, uint64_t lun_id, 12343 lpfc_ctx_cmd ctx_cmd) 12344 { 12345 struct lpfc_io_buf *lpfc_cmd; 12346 int rc = 1; 12347 12348 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12349 12350 if (lpfc_cmd->pCmd == NULL) 12351 return rc; 12352 12353 switch (ctx_cmd) { 12354 case LPFC_CTX_LUN: 12355 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12356 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12357 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12358 rc = 0; 12359 break; 12360 case LPFC_CTX_TGT: 12361 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12362 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12363 rc = 0; 12364 break; 12365 case LPFC_CTX_HOST: 12366 rc = 0; 12367 break; 12368 default: 12369 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12370 __func__, ctx_cmd); 12371 break; 12372 } 12373 12374 return rc; 12375 } 12376 12377 /** 12378 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12379 * @vport: Pointer to virtual port. 12380 * @tgt_id: SCSI ID of the target. 12381 * @lun_id: LUN ID of the scsi device. 12382 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12383 * 12384 * This function returns number of FCP commands pending for the vport. 12385 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12386 * commands pending on the vport associated with SCSI device specified 12387 * by tgt_id and lun_id parameters. 12388 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12389 * commands pending on the vport associated with SCSI target specified 12390 * by tgt_id parameter. 12391 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12392 * commands pending on the vport. 12393 * This function returns the number of iocbs which satisfy the filter. 12394 * This function is called without any lock held. 12395 **/ 12396 int 12397 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12398 lpfc_ctx_cmd ctx_cmd) 12399 { 12400 struct lpfc_hba *phba = vport->phba; 12401 struct lpfc_iocbq *iocbq; 12402 int sum, i; 12403 unsigned long iflags; 12404 u8 ulp_command; 12405 12406 spin_lock_irqsave(&phba->hbalock, iflags); 12407 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12408 iocbq = phba->sli.iocbq_lookup[i]; 12409 12410 if (!iocbq || iocbq->vport != vport) 12411 continue; 12412 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12413 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12414 continue; 12415 12416 /* Include counting outstanding aborts */ 12417 ulp_command = get_job_cmnd(phba, iocbq); 12418 if (ulp_command == CMD_ABORT_XRI_CN || 12419 ulp_command == CMD_CLOSE_XRI_CN || 12420 ulp_command == CMD_ABORT_XRI_WQE) { 12421 sum++; 12422 continue; 12423 } 12424 12425 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12426 ctx_cmd) == 0) 12427 sum++; 12428 } 12429 spin_unlock_irqrestore(&phba->hbalock, iflags); 12430 12431 return sum; 12432 } 12433 12434 /** 12435 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12436 * @phba: Pointer to HBA context object 12437 * @cmdiocb: Pointer to command iocb object. 12438 * @rspiocb: Pointer to response iocb object. 12439 * 12440 * This function is called when an aborted FCP iocb completes. This 12441 * function is called by the ring event handler with no lock held. 12442 * This function frees the iocb. 12443 **/ 12444 void 12445 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12446 struct lpfc_iocbq *rspiocb) 12447 { 12448 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12449 "3096 ABORT_XRI_CX completing on rpi x%x " 12450 "original iotag x%x, abort cmd iotag x%x " 12451 "status 0x%x, reason 0x%x\n", 12452 (phba->sli_rev == LPFC_SLI_REV4) ? 12453 cmdiocb->sli4_xritag : 12454 cmdiocb->iocb.un.acxri.abortContextTag, 12455 get_job_abtsiotag(phba, cmdiocb), 12456 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12457 get_job_word4(phba, rspiocb)); 12458 lpfc_sli_release_iocbq(phba, cmdiocb); 12459 return; 12460 } 12461 12462 /** 12463 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12464 * @vport: Pointer to virtual port. 12465 * @tgt_id: SCSI ID of the target. 12466 * @lun_id: LUN ID of the scsi device. 12467 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12468 * 12469 * This function sends an abort command for every SCSI command 12470 * associated with the given virtual port pending on the ring 12471 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12472 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12473 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12474 * followed by lpfc_sli_validate_fcp_iocb. 12475 * 12476 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12477 * FCP iocbs associated with lun specified by tgt_id and lun_id 12478 * parameters 12479 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12480 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12481 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12482 * FCP iocbs associated with virtual port. 12483 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12484 * lpfc_sli4_calc_ring is used. 12485 * This function returns number of iocbs it failed to abort. 12486 * This function is called with no locks held. 12487 **/ 12488 int 12489 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12490 lpfc_ctx_cmd abort_cmd) 12491 { 12492 struct lpfc_hba *phba = vport->phba; 12493 struct lpfc_sli_ring *pring = NULL; 12494 struct lpfc_iocbq *iocbq; 12495 int errcnt = 0, ret_val = 0; 12496 unsigned long iflags; 12497 int i; 12498 12499 /* all I/Os are in process of being flushed */ 12500 if (phba->hba_flag & HBA_IOQ_FLUSH) 12501 return errcnt; 12502 12503 for (i = 1; i <= phba->sli.last_iotag; i++) { 12504 iocbq = phba->sli.iocbq_lookup[i]; 12505 12506 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12507 continue; 12508 12509 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12510 abort_cmd) != 0) 12511 continue; 12512 12513 spin_lock_irqsave(&phba->hbalock, iflags); 12514 if (phba->sli_rev == LPFC_SLI_REV3) { 12515 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12516 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12517 pring = lpfc_sli4_calc_ring(phba, iocbq); 12518 } 12519 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12520 lpfc_sli_abort_fcp_cmpl); 12521 spin_unlock_irqrestore(&phba->hbalock, iflags); 12522 if (ret_val != IOCB_SUCCESS) 12523 errcnt++; 12524 } 12525 12526 return errcnt; 12527 } 12528 12529 /** 12530 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12531 * @vport: Pointer to virtual port. 12532 * @pring: Pointer to driver SLI ring object. 12533 * @tgt_id: SCSI ID of the target. 12534 * @lun_id: LUN ID of the scsi device. 12535 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12536 * 12537 * This function sends an abort command for every SCSI command 12538 * associated with the given virtual port pending on the ring 12539 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12540 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12541 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12542 * followed by lpfc_sli_validate_fcp_iocb. 12543 * 12544 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12545 * FCP iocbs associated with lun specified by tgt_id and lun_id 12546 * parameters 12547 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12548 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12549 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12550 * FCP iocbs associated with virtual port. 12551 * This function returns number of iocbs it aborted . 12552 * This function is called with no locks held right after a taskmgmt 12553 * command is sent. 12554 **/ 12555 int 12556 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12557 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12558 { 12559 struct lpfc_hba *phba = vport->phba; 12560 struct lpfc_io_buf *lpfc_cmd; 12561 struct lpfc_iocbq *abtsiocbq; 12562 struct lpfc_nodelist *ndlp = NULL; 12563 struct lpfc_iocbq *iocbq; 12564 int sum, i, ret_val; 12565 unsigned long iflags; 12566 struct lpfc_sli_ring *pring_s4 = NULL; 12567 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12568 bool ia; 12569 12570 spin_lock_irqsave(&phba->hbalock, iflags); 12571 12572 /* all I/Os are in process of being flushed */ 12573 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12574 spin_unlock_irqrestore(&phba->hbalock, iflags); 12575 return 0; 12576 } 12577 sum = 0; 12578 12579 for (i = 1; i <= phba->sli.last_iotag; i++) { 12580 iocbq = phba->sli.iocbq_lookup[i]; 12581 12582 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12583 continue; 12584 12585 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12586 cmd) != 0) 12587 continue; 12588 12589 /* Guard against IO completion being called at same time */ 12590 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12591 spin_lock(&lpfc_cmd->buf_lock); 12592 12593 if (!lpfc_cmd->pCmd) { 12594 spin_unlock(&lpfc_cmd->buf_lock); 12595 continue; 12596 } 12597 12598 if (phba->sli_rev == LPFC_SLI_REV4) { 12599 pring_s4 = 12600 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12601 if (!pring_s4) { 12602 spin_unlock(&lpfc_cmd->buf_lock); 12603 continue; 12604 } 12605 /* Note: both hbalock and ring_lock must be set here */ 12606 spin_lock(&pring_s4->ring_lock); 12607 } 12608 12609 /* 12610 * If the iocbq is already being aborted, don't take a second 12611 * action, but do count it. 12612 */ 12613 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12614 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12615 if (phba->sli_rev == LPFC_SLI_REV4) 12616 spin_unlock(&pring_s4->ring_lock); 12617 spin_unlock(&lpfc_cmd->buf_lock); 12618 continue; 12619 } 12620 12621 /* issue ABTS for this IOCB based on iotag */ 12622 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12623 if (!abtsiocbq) { 12624 if (phba->sli_rev == LPFC_SLI_REV4) 12625 spin_unlock(&pring_s4->ring_lock); 12626 spin_unlock(&lpfc_cmd->buf_lock); 12627 continue; 12628 } 12629 12630 if (phba->sli_rev == LPFC_SLI_REV4) { 12631 iotag = abtsiocbq->iotag; 12632 ulp_context = iocbq->sli4_xritag; 12633 cqid = lpfc_cmd->hdwq->io_cq_map; 12634 } else { 12635 iotag = iocbq->iocb.ulpIoTag; 12636 if (pring->ringno == LPFC_ELS_RING) { 12637 ndlp = (struct lpfc_nodelist *)(iocbq->context1); 12638 ulp_context = ndlp->nlp_rpi; 12639 } else { 12640 ulp_context = iocbq->iocb.ulpContext; 12641 } 12642 } 12643 12644 ndlp = lpfc_cmd->rdata->pnode; 12645 12646 if (lpfc_is_link_up(phba) && 12647 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12648 ia = false; 12649 else 12650 ia = true; 12651 12652 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12653 iocbq->iocb.ulpClass, cqid, 12654 ia); 12655 12656 abtsiocbq->vport = vport; 12657 12658 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12659 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12660 if (iocbq->cmd_flag & LPFC_IO_FCP) 12661 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12662 if (iocbq->cmd_flag & LPFC_IO_FOF) 12663 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12664 12665 /* Setup callback routine and issue the command. */ 12666 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12667 12668 /* 12669 * Indicate the IO is being aborted by the driver and set 12670 * the caller's flag into the aborted IO. 12671 */ 12672 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12673 12674 if (phba->sli_rev == LPFC_SLI_REV4) { 12675 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12676 abtsiocbq, 0); 12677 spin_unlock(&pring_s4->ring_lock); 12678 } else { 12679 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12680 abtsiocbq, 0); 12681 } 12682 12683 spin_unlock(&lpfc_cmd->buf_lock); 12684 12685 if (ret_val == IOCB_ERROR) 12686 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12687 else 12688 sum++; 12689 } 12690 spin_unlock_irqrestore(&phba->hbalock, iflags); 12691 return sum; 12692 } 12693 12694 /** 12695 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12696 * @phba: Pointer to HBA context object. 12697 * @cmdiocbq: Pointer to command iocb. 12698 * @rspiocbq: Pointer to response iocb. 12699 * 12700 * This function is the completion handler for iocbs issued using 12701 * lpfc_sli_issue_iocb_wait function. This function is called by the 12702 * ring event handler function without any lock held. This function 12703 * can be called from both worker thread context and interrupt 12704 * context. This function also can be called from other thread which 12705 * cleans up the SLI layer objects. 12706 * This function copy the contents of the response iocb to the 12707 * response iocb memory object provided by the caller of 12708 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12709 * sleeps for the iocb completion. 12710 **/ 12711 static void 12712 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12713 struct lpfc_iocbq *cmdiocbq, 12714 struct lpfc_iocbq *rspiocbq) 12715 { 12716 wait_queue_head_t *pdone_q; 12717 unsigned long iflags; 12718 struct lpfc_io_buf *lpfc_cmd; 12719 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12720 12721 spin_lock_irqsave(&phba->hbalock, iflags); 12722 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12723 12724 /* 12725 * A time out has occurred for the iocb. If a time out 12726 * completion handler has been supplied, call it. Otherwise, 12727 * just free the iocbq. 12728 */ 12729 12730 spin_unlock_irqrestore(&phba->hbalock, iflags); 12731 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 12732 cmdiocbq->wait_cmd_cmpl = NULL; 12733 if (cmdiocbq->cmd_cmpl) 12734 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, NULL); 12735 else 12736 lpfc_sli_release_iocbq(phba, cmdiocbq); 12737 return; 12738 } 12739 12740 /* Copy the contents of the local rspiocb into the caller's buffer. */ 12741 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 12742 if (cmdiocbq->context2 && rspiocbq) 12743 memcpy((char *)cmdiocbq->context2 + offset, 12744 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 12745 12746 /* Set the exchange busy flag for task management commands */ 12747 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 12748 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 12749 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12750 cur_iocbq); 12751 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 12752 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12753 else 12754 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12755 } 12756 12757 pdone_q = cmdiocbq->context_un.wait_queue; 12758 if (pdone_q) 12759 wake_up(pdone_q); 12760 spin_unlock_irqrestore(&phba->hbalock, iflags); 12761 return; 12762 } 12763 12764 /** 12765 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12766 * @phba: Pointer to HBA context object.. 12767 * @piocbq: Pointer to command iocb. 12768 * @flag: Flag to test. 12769 * 12770 * This routine grabs the hbalock and then test the cmd_flag to 12771 * see if the passed in flag is set. 12772 * Returns: 12773 * 1 if flag is set. 12774 * 0 if flag is not set. 12775 **/ 12776 static int 12777 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12778 struct lpfc_iocbq *piocbq, uint32_t flag) 12779 { 12780 unsigned long iflags; 12781 int ret; 12782 12783 spin_lock_irqsave(&phba->hbalock, iflags); 12784 ret = piocbq->cmd_flag & flag; 12785 spin_unlock_irqrestore(&phba->hbalock, iflags); 12786 return ret; 12787 12788 } 12789 12790 /** 12791 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12792 * @phba: Pointer to HBA context object.. 12793 * @ring_number: Ring number 12794 * @piocb: Pointer to command iocb. 12795 * @prspiocbq: Pointer to response iocb. 12796 * @timeout: Timeout in number of seconds. 12797 * 12798 * This function issues the iocb to firmware and waits for the 12799 * iocb to complete. The cmd_cmpl field of the shall be used 12800 * to handle iocbs which time out. If the field is NULL, the 12801 * function shall free the iocbq structure. If more clean up is 12802 * needed, the caller is expected to provide a completion function 12803 * that will provide the needed clean up. If the iocb command is 12804 * not completed within timeout seconds, the function will either 12805 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 12806 * completion function set in the cmd_cmpl field and then return 12807 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12808 * resources if this function returns IOCB_TIMEDOUT. 12809 * The function waits for the iocb completion using an 12810 * non-interruptible wait. 12811 * This function will sleep while waiting for iocb completion. 12812 * So, this function should not be called from any context which 12813 * does not allow sleeping. Due to the same reason, this function 12814 * cannot be called with interrupt disabled. 12815 * This function assumes that the iocb completions occur while 12816 * this function sleep. So, this function cannot be called from 12817 * the thread which process iocb completion for this ring. 12818 * This function clears the cmd_flag of the iocb object before 12819 * issuing the iocb and the iocb completion handler sets this 12820 * flag and wakes this thread when the iocb completes. 12821 * The contents of the response iocb will be copied to prspiocbq 12822 * by the completion handler when the command completes. 12823 * This function returns IOCB_SUCCESS when success. 12824 * This function is called with no lock held. 12825 **/ 12826 int 12827 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12828 uint32_t ring_number, 12829 struct lpfc_iocbq *piocb, 12830 struct lpfc_iocbq *prspiocbq, 12831 uint32_t timeout) 12832 { 12833 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12834 long timeleft, timeout_req = 0; 12835 int retval = IOCB_SUCCESS; 12836 uint32_t creg_val; 12837 struct lpfc_iocbq *iocb; 12838 int txq_cnt = 0; 12839 int txcmplq_cnt = 0; 12840 struct lpfc_sli_ring *pring; 12841 unsigned long iflags; 12842 bool iocb_completed = true; 12843 12844 if (phba->sli_rev >= LPFC_SLI_REV4) { 12845 lpfc_sli_prep_wqe(phba, piocb); 12846 12847 pring = lpfc_sli4_calc_ring(phba, piocb); 12848 } else 12849 pring = &phba->sli.sli3_ring[ring_number]; 12850 /* 12851 * If the caller has provided a response iocbq buffer, then context2 12852 * is NULL or its an error. 12853 */ 12854 if (prspiocbq) { 12855 if (piocb->context2) 12856 return IOCB_ERROR; 12857 piocb->context2 = prspiocbq; 12858 } 12859 12860 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 12861 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 12862 piocb->context_un.wait_queue = &done_q; 12863 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12864 12865 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12866 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12867 return IOCB_ERROR; 12868 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12869 writel(creg_val, phba->HCregaddr); 12870 readl(phba->HCregaddr); /* flush */ 12871 } 12872 12873 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12874 SLI_IOCB_RET_IOCB); 12875 if (retval == IOCB_SUCCESS) { 12876 timeout_req = msecs_to_jiffies(timeout * 1000); 12877 timeleft = wait_event_timeout(done_q, 12878 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12879 timeout_req); 12880 spin_lock_irqsave(&phba->hbalock, iflags); 12881 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 12882 12883 /* 12884 * IOCB timed out. Inform the wake iocb wait 12885 * completion function and set local status 12886 */ 12887 12888 iocb_completed = false; 12889 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 12890 } 12891 spin_unlock_irqrestore(&phba->hbalock, iflags); 12892 if (iocb_completed) { 12893 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12894 "0331 IOCB wake signaled\n"); 12895 /* Note: we are not indicating if the IOCB has a success 12896 * status or not - that's for the caller to check. 12897 * IOCB_SUCCESS means just that the command was sent and 12898 * completed. Not that it completed successfully. 12899 * */ 12900 } else if (timeleft == 0) { 12901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12902 "0338 IOCB wait timeout error - no " 12903 "wake response Data x%x\n", timeout); 12904 retval = IOCB_TIMEDOUT; 12905 } else { 12906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12907 "0330 IOCB wake NOT set, " 12908 "Data x%x x%lx\n", 12909 timeout, (timeleft / jiffies)); 12910 retval = IOCB_TIMEDOUT; 12911 } 12912 } else if (retval == IOCB_BUSY) { 12913 if (phba->cfg_log_verbose & LOG_SLI) { 12914 list_for_each_entry(iocb, &pring->txq, list) { 12915 txq_cnt++; 12916 } 12917 list_for_each_entry(iocb, &pring->txcmplq, list) { 12918 txcmplq_cnt++; 12919 } 12920 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12921 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12922 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12923 } 12924 return retval; 12925 } else { 12926 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12927 "0332 IOCB wait issue failed, Data x%x\n", 12928 retval); 12929 retval = IOCB_ERROR; 12930 } 12931 12932 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12933 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12934 return IOCB_ERROR; 12935 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12936 writel(creg_val, phba->HCregaddr); 12937 readl(phba->HCregaddr); /* flush */ 12938 } 12939 12940 if (prspiocbq) 12941 piocb->context2 = NULL; 12942 12943 piocb->context_un.wait_queue = NULL; 12944 piocb->cmd_cmpl = NULL; 12945 return retval; 12946 } 12947 12948 /** 12949 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12950 * @phba: Pointer to HBA context object. 12951 * @pmboxq: Pointer to driver mailbox object. 12952 * @timeout: Timeout in number of seconds. 12953 * 12954 * This function issues the mailbox to firmware and waits for the 12955 * mailbox command to complete. If the mailbox command is not 12956 * completed within timeout seconds, it returns MBX_TIMEOUT. 12957 * The function waits for the mailbox completion using an 12958 * interruptible wait. If the thread is woken up due to a 12959 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12960 * should not free the mailbox resources, if this function returns 12961 * MBX_TIMEOUT. 12962 * This function will sleep while waiting for mailbox completion. 12963 * So, this function should not be called from any context which 12964 * does not allow sleeping. Due to the same reason, this function 12965 * cannot be called with interrupt disabled. 12966 * This function assumes that the mailbox completion occurs while 12967 * this function sleep. So, this function cannot be called from 12968 * the worker thread which processes mailbox completion. 12969 * This function is called in the context of HBA management 12970 * applications. 12971 * This function returns MBX_SUCCESS when successful. 12972 * This function is called with no lock held. 12973 **/ 12974 int 12975 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12976 uint32_t timeout) 12977 { 12978 struct completion mbox_done; 12979 int retval; 12980 unsigned long flag; 12981 12982 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12983 /* setup wake call as IOCB callback */ 12984 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12985 12986 /* setup context3 field to pass wait_queue pointer to wake function */ 12987 init_completion(&mbox_done); 12988 pmboxq->context3 = &mbox_done; 12989 /* now issue the command */ 12990 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12991 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12992 wait_for_completion_timeout(&mbox_done, 12993 msecs_to_jiffies(timeout * 1000)); 12994 12995 spin_lock_irqsave(&phba->hbalock, flag); 12996 pmboxq->context3 = NULL; 12997 /* 12998 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12999 * else do not free the resources. 13000 */ 13001 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13002 retval = MBX_SUCCESS; 13003 } else { 13004 retval = MBX_TIMEOUT; 13005 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13006 } 13007 spin_unlock_irqrestore(&phba->hbalock, flag); 13008 } 13009 return retval; 13010 } 13011 13012 /** 13013 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13014 * @phba: Pointer to HBA context. 13015 * @mbx_action: Mailbox shutdown options. 13016 * 13017 * This function is called to shutdown the driver's mailbox sub-system. 13018 * It first marks the mailbox sub-system is in a block state to prevent 13019 * the asynchronous mailbox command from issued off the pending mailbox 13020 * command queue. If the mailbox command sub-system shutdown is due to 13021 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13022 * the mailbox sub-system flush routine to forcefully bring down the 13023 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13024 * as with offline or HBA function reset), this routine will wait for the 13025 * outstanding mailbox command to complete before invoking the mailbox 13026 * sub-system flush routine to gracefully bring down mailbox sub-system. 13027 **/ 13028 void 13029 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13030 { 13031 struct lpfc_sli *psli = &phba->sli; 13032 unsigned long timeout; 13033 13034 if (mbx_action == LPFC_MBX_NO_WAIT) { 13035 /* delay 100ms for port state */ 13036 msleep(100); 13037 lpfc_sli_mbox_sys_flush(phba); 13038 return; 13039 } 13040 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13041 13042 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13043 local_bh_disable(); 13044 13045 spin_lock_irq(&phba->hbalock); 13046 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13047 13048 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13049 /* Determine how long we might wait for the active mailbox 13050 * command to be gracefully completed by firmware. 13051 */ 13052 if (phba->sli.mbox_active) 13053 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13054 phba->sli.mbox_active) * 13055 1000) + jiffies; 13056 spin_unlock_irq(&phba->hbalock); 13057 13058 /* Enable softirqs again, done with phba->hbalock */ 13059 local_bh_enable(); 13060 13061 while (phba->sli.mbox_active) { 13062 /* Check active mailbox complete status every 2ms */ 13063 msleep(2); 13064 if (time_after(jiffies, timeout)) 13065 /* Timeout, let the mailbox flush routine to 13066 * forcefully release active mailbox command 13067 */ 13068 break; 13069 } 13070 } else { 13071 spin_unlock_irq(&phba->hbalock); 13072 13073 /* Enable softirqs again, done with phba->hbalock */ 13074 local_bh_enable(); 13075 } 13076 13077 lpfc_sli_mbox_sys_flush(phba); 13078 } 13079 13080 /** 13081 * lpfc_sli_eratt_read - read sli-3 error attention events 13082 * @phba: Pointer to HBA context. 13083 * 13084 * This function is called to read the SLI3 device error attention registers 13085 * for possible error attention events. The caller must hold the hostlock 13086 * with spin_lock_irq(). 13087 * 13088 * This function returns 1 when there is Error Attention in the Host Attention 13089 * Register and returns 0 otherwise. 13090 **/ 13091 static int 13092 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13093 { 13094 uint32_t ha_copy; 13095 13096 /* Read chip Host Attention (HA) register */ 13097 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13098 goto unplug_err; 13099 13100 if (ha_copy & HA_ERATT) { 13101 /* Read host status register to retrieve error event */ 13102 if (lpfc_sli_read_hs(phba)) 13103 goto unplug_err; 13104 13105 /* Check if there is a deferred error condition is active */ 13106 if ((HS_FFER1 & phba->work_hs) && 13107 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13108 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13109 phba->hba_flag |= DEFER_ERATT; 13110 /* Clear all interrupt enable conditions */ 13111 writel(0, phba->HCregaddr); 13112 readl(phba->HCregaddr); 13113 } 13114 13115 /* Set the driver HA work bitmap */ 13116 phba->work_ha |= HA_ERATT; 13117 /* Indicate polling handles this ERATT */ 13118 phba->hba_flag |= HBA_ERATT_HANDLED; 13119 return 1; 13120 } 13121 return 0; 13122 13123 unplug_err: 13124 /* Set the driver HS work bitmap */ 13125 phba->work_hs |= UNPLUG_ERR; 13126 /* Set the driver HA work bitmap */ 13127 phba->work_ha |= HA_ERATT; 13128 /* Indicate polling handles this ERATT */ 13129 phba->hba_flag |= HBA_ERATT_HANDLED; 13130 return 1; 13131 } 13132 13133 /** 13134 * lpfc_sli4_eratt_read - read sli-4 error attention events 13135 * @phba: Pointer to HBA context. 13136 * 13137 * This function is called to read the SLI4 device error attention registers 13138 * for possible error attention events. The caller must hold the hostlock 13139 * with spin_lock_irq(). 13140 * 13141 * This function returns 1 when there is Error Attention in the Host Attention 13142 * Register and returns 0 otherwise. 13143 **/ 13144 static int 13145 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13146 { 13147 uint32_t uerr_sta_hi, uerr_sta_lo; 13148 uint32_t if_type, portsmphr; 13149 struct lpfc_register portstat_reg; 13150 u32 logmask; 13151 13152 /* 13153 * For now, use the SLI4 device internal unrecoverable error 13154 * registers for error attention. This can be changed later. 13155 */ 13156 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13157 switch (if_type) { 13158 case LPFC_SLI_INTF_IF_TYPE_0: 13159 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13160 &uerr_sta_lo) || 13161 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13162 &uerr_sta_hi)) { 13163 phba->work_hs |= UNPLUG_ERR; 13164 phba->work_ha |= HA_ERATT; 13165 phba->hba_flag |= HBA_ERATT_HANDLED; 13166 return 1; 13167 } 13168 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13169 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13171 "1423 HBA Unrecoverable error: " 13172 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13173 "ue_mask_lo_reg=0x%x, " 13174 "ue_mask_hi_reg=0x%x\n", 13175 uerr_sta_lo, uerr_sta_hi, 13176 phba->sli4_hba.ue_mask_lo, 13177 phba->sli4_hba.ue_mask_hi); 13178 phba->work_status[0] = uerr_sta_lo; 13179 phba->work_status[1] = uerr_sta_hi; 13180 phba->work_ha |= HA_ERATT; 13181 phba->hba_flag |= HBA_ERATT_HANDLED; 13182 return 1; 13183 } 13184 break; 13185 case LPFC_SLI_INTF_IF_TYPE_2: 13186 case LPFC_SLI_INTF_IF_TYPE_6: 13187 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13188 &portstat_reg.word0) || 13189 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13190 &portsmphr)){ 13191 phba->work_hs |= UNPLUG_ERR; 13192 phba->work_ha |= HA_ERATT; 13193 phba->hba_flag |= HBA_ERATT_HANDLED; 13194 return 1; 13195 } 13196 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13197 phba->work_status[0] = 13198 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13199 phba->work_status[1] = 13200 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13201 logmask = LOG_TRACE_EVENT; 13202 if (phba->work_status[0] == 13203 SLIPORT_ERR1_REG_ERR_CODE_2 && 13204 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13205 logmask = LOG_SLI; 13206 lpfc_printf_log(phba, KERN_ERR, logmask, 13207 "2885 Port Status Event: " 13208 "port status reg 0x%x, " 13209 "port smphr reg 0x%x, " 13210 "error 1=0x%x, error 2=0x%x\n", 13211 portstat_reg.word0, 13212 portsmphr, 13213 phba->work_status[0], 13214 phba->work_status[1]); 13215 phba->work_ha |= HA_ERATT; 13216 phba->hba_flag |= HBA_ERATT_HANDLED; 13217 return 1; 13218 } 13219 break; 13220 case LPFC_SLI_INTF_IF_TYPE_1: 13221 default: 13222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13223 "2886 HBA Error Attention on unsupported " 13224 "if type %d.", if_type); 13225 return 1; 13226 } 13227 13228 return 0; 13229 } 13230 13231 /** 13232 * lpfc_sli_check_eratt - check error attention events 13233 * @phba: Pointer to HBA context. 13234 * 13235 * This function is called from timer soft interrupt context to check HBA's 13236 * error attention register bit for error attention events. 13237 * 13238 * This function returns 1 when there is Error Attention in the Host Attention 13239 * Register and returns 0 otherwise. 13240 **/ 13241 int 13242 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13243 { 13244 uint32_t ha_copy; 13245 13246 /* If somebody is waiting to handle an eratt, don't process it 13247 * here. The brdkill function will do this. 13248 */ 13249 if (phba->link_flag & LS_IGNORE_ERATT) 13250 return 0; 13251 13252 /* Check if interrupt handler handles this ERATT */ 13253 spin_lock_irq(&phba->hbalock); 13254 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13255 /* Interrupt handler has handled ERATT */ 13256 spin_unlock_irq(&phba->hbalock); 13257 return 0; 13258 } 13259 13260 /* 13261 * If there is deferred error attention, do not check for error 13262 * attention 13263 */ 13264 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13265 spin_unlock_irq(&phba->hbalock); 13266 return 0; 13267 } 13268 13269 /* If PCI channel is offline, don't process it */ 13270 if (unlikely(pci_channel_offline(phba->pcidev))) { 13271 spin_unlock_irq(&phba->hbalock); 13272 return 0; 13273 } 13274 13275 switch (phba->sli_rev) { 13276 case LPFC_SLI_REV2: 13277 case LPFC_SLI_REV3: 13278 /* Read chip Host Attention (HA) register */ 13279 ha_copy = lpfc_sli_eratt_read(phba); 13280 break; 13281 case LPFC_SLI_REV4: 13282 /* Read device Uncoverable Error (UERR) registers */ 13283 ha_copy = lpfc_sli4_eratt_read(phba); 13284 break; 13285 default: 13286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13287 "0299 Invalid SLI revision (%d)\n", 13288 phba->sli_rev); 13289 ha_copy = 0; 13290 break; 13291 } 13292 spin_unlock_irq(&phba->hbalock); 13293 13294 return ha_copy; 13295 } 13296 13297 /** 13298 * lpfc_intr_state_check - Check device state for interrupt handling 13299 * @phba: Pointer to HBA context. 13300 * 13301 * This inline routine checks whether a device or its PCI slot is in a state 13302 * that the interrupt should be handled. 13303 * 13304 * This function returns 0 if the device or the PCI slot is in a state that 13305 * interrupt should be handled, otherwise -EIO. 13306 */ 13307 static inline int 13308 lpfc_intr_state_check(struct lpfc_hba *phba) 13309 { 13310 /* If the pci channel is offline, ignore all the interrupts */ 13311 if (unlikely(pci_channel_offline(phba->pcidev))) 13312 return -EIO; 13313 13314 /* Update device level interrupt statistics */ 13315 phba->sli.slistat.sli_intr++; 13316 13317 /* Ignore all interrupts during initialization. */ 13318 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13319 return -EIO; 13320 13321 return 0; 13322 } 13323 13324 /** 13325 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13326 * @irq: Interrupt number. 13327 * @dev_id: The device context pointer. 13328 * 13329 * This function is directly called from the PCI layer as an interrupt 13330 * service routine when device with SLI-3 interface spec is enabled with 13331 * MSI-X multi-message interrupt mode and there are slow-path events in 13332 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13333 * interrupt mode, this function is called as part of the device-level 13334 * interrupt handler. When the PCI slot is in error recovery or the HBA 13335 * is undergoing initialization, the interrupt handler will not process 13336 * the interrupt. The link attention and ELS ring attention events are 13337 * handled by the worker thread. The interrupt handler signals the worker 13338 * thread and returns for these events. This function is called without 13339 * any lock held. It gets the hbalock to access and update SLI data 13340 * structures. 13341 * 13342 * This function returns IRQ_HANDLED when interrupt is handled else it 13343 * returns IRQ_NONE. 13344 **/ 13345 irqreturn_t 13346 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13347 { 13348 struct lpfc_hba *phba; 13349 uint32_t ha_copy, hc_copy; 13350 uint32_t work_ha_copy; 13351 unsigned long status; 13352 unsigned long iflag; 13353 uint32_t control; 13354 13355 MAILBOX_t *mbox, *pmbox; 13356 struct lpfc_vport *vport; 13357 struct lpfc_nodelist *ndlp; 13358 struct lpfc_dmabuf *mp; 13359 LPFC_MBOXQ_t *pmb; 13360 int rc; 13361 13362 /* 13363 * Get the driver's phba structure from the dev_id and 13364 * assume the HBA is not interrupting. 13365 */ 13366 phba = (struct lpfc_hba *)dev_id; 13367 13368 if (unlikely(!phba)) 13369 return IRQ_NONE; 13370 13371 /* 13372 * Stuff needs to be attented to when this function is invoked as an 13373 * individual interrupt handler in MSI-X multi-message interrupt mode 13374 */ 13375 if (phba->intr_type == MSIX) { 13376 /* Check device state for handling interrupt */ 13377 if (lpfc_intr_state_check(phba)) 13378 return IRQ_NONE; 13379 /* Need to read HA REG for slow-path events */ 13380 spin_lock_irqsave(&phba->hbalock, iflag); 13381 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13382 goto unplug_error; 13383 /* If somebody is waiting to handle an eratt don't process it 13384 * here. The brdkill function will do this. 13385 */ 13386 if (phba->link_flag & LS_IGNORE_ERATT) 13387 ha_copy &= ~HA_ERATT; 13388 /* Check the need for handling ERATT in interrupt handler */ 13389 if (ha_copy & HA_ERATT) { 13390 if (phba->hba_flag & HBA_ERATT_HANDLED) 13391 /* ERATT polling has handled ERATT */ 13392 ha_copy &= ~HA_ERATT; 13393 else 13394 /* Indicate interrupt handler handles ERATT */ 13395 phba->hba_flag |= HBA_ERATT_HANDLED; 13396 } 13397 13398 /* 13399 * If there is deferred error attention, do not check for any 13400 * interrupt. 13401 */ 13402 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13403 spin_unlock_irqrestore(&phba->hbalock, iflag); 13404 return IRQ_NONE; 13405 } 13406 13407 /* Clear up only attention source related to slow-path */ 13408 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13409 goto unplug_error; 13410 13411 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13412 HC_LAINT_ENA | HC_ERINT_ENA), 13413 phba->HCregaddr); 13414 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13415 phba->HAregaddr); 13416 writel(hc_copy, phba->HCregaddr); 13417 readl(phba->HAregaddr); /* flush */ 13418 spin_unlock_irqrestore(&phba->hbalock, iflag); 13419 } else 13420 ha_copy = phba->ha_copy; 13421 13422 work_ha_copy = ha_copy & phba->work_ha_mask; 13423 13424 if (work_ha_copy) { 13425 if (work_ha_copy & HA_LATT) { 13426 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13427 /* 13428 * Turn off Link Attention interrupts 13429 * until CLEAR_LA done 13430 */ 13431 spin_lock_irqsave(&phba->hbalock, iflag); 13432 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13433 if (lpfc_readl(phba->HCregaddr, &control)) 13434 goto unplug_error; 13435 control &= ~HC_LAINT_ENA; 13436 writel(control, phba->HCregaddr); 13437 readl(phba->HCregaddr); /* flush */ 13438 spin_unlock_irqrestore(&phba->hbalock, iflag); 13439 } 13440 else 13441 work_ha_copy &= ~HA_LATT; 13442 } 13443 13444 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13445 /* 13446 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13447 * the only slow ring. 13448 */ 13449 status = (work_ha_copy & 13450 (HA_RXMASK << (4*LPFC_ELS_RING))); 13451 status >>= (4*LPFC_ELS_RING); 13452 if (status & HA_RXMASK) { 13453 spin_lock_irqsave(&phba->hbalock, iflag); 13454 if (lpfc_readl(phba->HCregaddr, &control)) 13455 goto unplug_error; 13456 13457 lpfc_debugfs_slow_ring_trc(phba, 13458 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13459 control, status, 13460 (uint32_t)phba->sli.slistat.sli_intr); 13461 13462 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13463 lpfc_debugfs_slow_ring_trc(phba, 13464 "ISR Disable ring:" 13465 "pwork:x%x hawork:x%x wait:x%x", 13466 phba->work_ha, work_ha_copy, 13467 (uint32_t)((unsigned long) 13468 &phba->work_waitq)); 13469 13470 control &= 13471 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13472 writel(control, phba->HCregaddr); 13473 readl(phba->HCregaddr); /* flush */ 13474 } 13475 else { 13476 lpfc_debugfs_slow_ring_trc(phba, 13477 "ISR slow ring: pwork:" 13478 "x%x hawork:x%x wait:x%x", 13479 phba->work_ha, work_ha_copy, 13480 (uint32_t)((unsigned long) 13481 &phba->work_waitq)); 13482 } 13483 spin_unlock_irqrestore(&phba->hbalock, iflag); 13484 } 13485 } 13486 spin_lock_irqsave(&phba->hbalock, iflag); 13487 if (work_ha_copy & HA_ERATT) { 13488 if (lpfc_sli_read_hs(phba)) 13489 goto unplug_error; 13490 /* 13491 * Check if there is a deferred error condition 13492 * is active 13493 */ 13494 if ((HS_FFER1 & phba->work_hs) && 13495 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13496 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13497 phba->work_hs)) { 13498 phba->hba_flag |= DEFER_ERATT; 13499 /* Clear all interrupt enable conditions */ 13500 writel(0, phba->HCregaddr); 13501 readl(phba->HCregaddr); 13502 } 13503 } 13504 13505 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13506 pmb = phba->sli.mbox_active; 13507 pmbox = &pmb->u.mb; 13508 mbox = phba->mbox; 13509 vport = pmb->vport; 13510 13511 /* First check out the status word */ 13512 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13513 if (pmbox->mbxOwner != OWN_HOST) { 13514 spin_unlock_irqrestore(&phba->hbalock, iflag); 13515 /* 13516 * Stray Mailbox Interrupt, mbxCommand <cmd> 13517 * mbxStatus <status> 13518 */ 13519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13520 "(%d):0304 Stray Mailbox " 13521 "Interrupt mbxCommand x%x " 13522 "mbxStatus x%x\n", 13523 (vport ? vport->vpi : 0), 13524 pmbox->mbxCommand, 13525 pmbox->mbxStatus); 13526 /* clear mailbox attention bit */ 13527 work_ha_copy &= ~HA_MBATT; 13528 } else { 13529 phba->sli.mbox_active = NULL; 13530 spin_unlock_irqrestore(&phba->hbalock, iflag); 13531 phba->last_completion_time = jiffies; 13532 del_timer(&phba->sli.mbox_tmo); 13533 if (pmb->mbox_cmpl) { 13534 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13535 MAILBOX_CMD_SIZE); 13536 if (pmb->out_ext_byte_len && 13537 pmb->ctx_buf) 13538 lpfc_sli_pcimem_bcopy( 13539 phba->mbox_ext, 13540 pmb->ctx_buf, 13541 pmb->out_ext_byte_len); 13542 } 13543 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13544 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13545 13546 lpfc_debugfs_disc_trc(vport, 13547 LPFC_DISC_TRC_MBOX_VPORT, 13548 "MBOX dflt rpi: : " 13549 "status:x%x rpi:x%x", 13550 (uint32_t)pmbox->mbxStatus, 13551 pmbox->un.varWords[0], 0); 13552 13553 if (!pmbox->mbxStatus) { 13554 mp = (struct lpfc_dmabuf *) 13555 (pmb->ctx_buf); 13556 ndlp = (struct lpfc_nodelist *) 13557 pmb->ctx_ndlp; 13558 13559 /* Reg_LOGIN of dflt RPI was 13560 * successful. new lets get 13561 * rid of the RPI using the 13562 * same mbox buffer. 13563 */ 13564 lpfc_unreg_login(phba, 13565 vport->vpi, 13566 pmbox->un.varWords[0], 13567 pmb); 13568 pmb->mbox_cmpl = 13569 lpfc_mbx_cmpl_dflt_rpi; 13570 pmb->ctx_buf = mp; 13571 pmb->ctx_ndlp = ndlp; 13572 pmb->vport = vport; 13573 rc = lpfc_sli_issue_mbox(phba, 13574 pmb, 13575 MBX_NOWAIT); 13576 if (rc != MBX_BUSY) 13577 lpfc_printf_log(phba, 13578 KERN_ERR, 13579 LOG_TRACE_EVENT, 13580 "0350 rc should have" 13581 "been MBX_BUSY\n"); 13582 if (rc != MBX_NOT_FINISHED) 13583 goto send_current_mbox; 13584 } 13585 } 13586 spin_lock_irqsave( 13587 &phba->pport->work_port_lock, 13588 iflag); 13589 phba->pport->work_port_events &= 13590 ~WORKER_MBOX_TMO; 13591 spin_unlock_irqrestore( 13592 &phba->pport->work_port_lock, 13593 iflag); 13594 13595 /* Do NOT queue MBX_HEARTBEAT to the worker 13596 * thread for processing. 13597 */ 13598 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13599 /* Process mbox now */ 13600 phba->sli.mbox_active = NULL; 13601 phba->sli.sli_flag &= 13602 ~LPFC_SLI_MBOX_ACTIVE; 13603 if (pmb->mbox_cmpl) 13604 pmb->mbox_cmpl(phba, pmb); 13605 } else { 13606 /* Queue to worker thread to process */ 13607 lpfc_mbox_cmpl_put(phba, pmb); 13608 } 13609 } 13610 } else 13611 spin_unlock_irqrestore(&phba->hbalock, iflag); 13612 13613 if ((work_ha_copy & HA_MBATT) && 13614 (phba->sli.mbox_active == NULL)) { 13615 send_current_mbox: 13616 /* Process next mailbox command if there is one */ 13617 do { 13618 rc = lpfc_sli_issue_mbox(phba, NULL, 13619 MBX_NOWAIT); 13620 } while (rc == MBX_NOT_FINISHED); 13621 if (rc != MBX_SUCCESS) 13622 lpfc_printf_log(phba, KERN_ERR, 13623 LOG_TRACE_EVENT, 13624 "0349 rc should be " 13625 "MBX_SUCCESS\n"); 13626 } 13627 13628 spin_lock_irqsave(&phba->hbalock, iflag); 13629 phba->work_ha |= work_ha_copy; 13630 spin_unlock_irqrestore(&phba->hbalock, iflag); 13631 lpfc_worker_wake_up(phba); 13632 } 13633 return IRQ_HANDLED; 13634 unplug_error: 13635 spin_unlock_irqrestore(&phba->hbalock, iflag); 13636 return IRQ_HANDLED; 13637 13638 } /* lpfc_sli_sp_intr_handler */ 13639 13640 /** 13641 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13642 * @irq: Interrupt number. 13643 * @dev_id: The device context pointer. 13644 * 13645 * This function is directly called from the PCI layer as an interrupt 13646 * service routine when device with SLI-3 interface spec is enabled with 13647 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13648 * ring event in the HBA. However, when the device is enabled with either 13649 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13650 * device-level interrupt handler. When the PCI slot is in error recovery 13651 * or the HBA is undergoing initialization, the interrupt handler will not 13652 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13653 * the intrrupt context. This function is called without any lock held. 13654 * It gets the hbalock to access and update SLI data structures. 13655 * 13656 * This function returns IRQ_HANDLED when interrupt is handled else it 13657 * returns IRQ_NONE. 13658 **/ 13659 irqreturn_t 13660 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13661 { 13662 struct lpfc_hba *phba; 13663 uint32_t ha_copy; 13664 unsigned long status; 13665 unsigned long iflag; 13666 struct lpfc_sli_ring *pring; 13667 13668 /* Get the driver's phba structure from the dev_id and 13669 * assume the HBA is not interrupting. 13670 */ 13671 phba = (struct lpfc_hba *) dev_id; 13672 13673 if (unlikely(!phba)) 13674 return IRQ_NONE; 13675 13676 /* 13677 * Stuff needs to be attented to when this function is invoked as an 13678 * individual interrupt handler in MSI-X multi-message interrupt mode 13679 */ 13680 if (phba->intr_type == MSIX) { 13681 /* Check device state for handling interrupt */ 13682 if (lpfc_intr_state_check(phba)) 13683 return IRQ_NONE; 13684 /* Need to read HA REG for FCP ring and other ring events */ 13685 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13686 return IRQ_HANDLED; 13687 /* Clear up only attention source related to fast-path */ 13688 spin_lock_irqsave(&phba->hbalock, iflag); 13689 /* 13690 * If there is deferred error attention, do not check for 13691 * any interrupt. 13692 */ 13693 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13694 spin_unlock_irqrestore(&phba->hbalock, iflag); 13695 return IRQ_NONE; 13696 } 13697 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13698 phba->HAregaddr); 13699 readl(phba->HAregaddr); /* flush */ 13700 spin_unlock_irqrestore(&phba->hbalock, iflag); 13701 } else 13702 ha_copy = phba->ha_copy; 13703 13704 /* 13705 * Process all events on FCP ring. Take the optimized path for FCP IO. 13706 */ 13707 ha_copy &= ~(phba->work_ha_mask); 13708 13709 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13710 status >>= (4*LPFC_FCP_RING); 13711 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13712 if (status & HA_RXMASK) 13713 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13714 13715 if (phba->cfg_multi_ring_support == 2) { 13716 /* 13717 * Process all events on extra ring. Take the optimized path 13718 * for extra ring IO. 13719 */ 13720 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13721 status >>= (4*LPFC_EXTRA_RING); 13722 if (status & HA_RXMASK) { 13723 lpfc_sli_handle_fast_ring_event(phba, 13724 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13725 status); 13726 } 13727 } 13728 return IRQ_HANDLED; 13729 } /* lpfc_sli_fp_intr_handler */ 13730 13731 /** 13732 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13733 * @irq: Interrupt number. 13734 * @dev_id: The device context pointer. 13735 * 13736 * This function is the HBA device-level interrupt handler to device with 13737 * SLI-3 interface spec, called from the PCI layer when either MSI or 13738 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13739 * requires driver attention. This function invokes the slow-path interrupt 13740 * attention handling function and fast-path interrupt attention handling 13741 * function in turn to process the relevant HBA attention events. This 13742 * function is called without any lock held. It gets the hbalock to access 13743 * and update SLI data structures. 13744 * 13745 * This function returns IRQ_HANDLED when interrupt is handled, else it 13746 * returns IRQ_NONE. 13747 **/ 13748 irqreturn_t 13749 lpfc_sli_intr_handler(int irq, void *dev_id) 13750 { 13751 struct lpfc_hba *phba; 13752 irqreturn_t sp_irq_rc, fp_irq_rc; 13753 unsigned long status1, status2; 13754 uint32_t hc_copy; 13755 13756 /* 13757 * Get the driver's phba structure from the dev_id and 13758 * assume the HBA is not interrupting. 13759 */ 13760 phba = (struct lpfc_hba *) dev_id; 13761 13762 if (unlikely(!phba)) 13763 return IRQ_NONE; 13764 13765 /* Check device state for handling interrupt */ 13766 if (lpfc_intr_state_check(phba)) 13767 return IRQ_NONE; 13768 13769 spin_lock(&phba->hbalock); 13770 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13771 spin_unlock(&phba->hbalock); 13772 return IRQ_HANDLED; 13773 } 13774 13775 if (unlikely(!phba->ha_copy)) { 13776 spin_unlock(&phba->hbalock); 13777 return IRQ_NONE; 13778 } else if (phba->ha_copy & HA_ERATT) { 13779 if (phba->hba_flag & HBA_ERATT_HANDLED) 13780 /* ERATT polling has handled ERATT */ 13781 phba->ha_copy &= ~HA_ERATT; 13782 else 13783 /* Indicate interrupt handler handles ERATT */ 13784 phba->hba_flag |= HBA_ERATT_HANDLED; 13785 } 13786 13787 /* 13788 * If there is deferred error attention, do not check for any interrupt. 13789 */ 13790 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13791 spin_unlock(&phba->hbalock); 13792 return IRQ_NONE; 13793 } 13794 13795 /* Clear attention sources except link and error attentions */ 13796 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13797 spin_unlock(&phba->hbalock); 13798 return IRQ_HANDLED; 13799 } 13800 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13801 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13802 phba->HCregaddr); 13803 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13804 writel(hc_copy, phba->HCregaddr); 13805 readl(phba->HAregaddr); /* flush */ 13806 spin_unlock(&phba->hbalock); 13807 13808 /* 13809 * Invokes slow-path host attention interrupt handling as appropriate. 13810 */ 13811 13812 /* status of events with mailbox and link attention */ 13813 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13814 13815 /* status of events with ELS ring */ 13816 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13817 status2 >>= (4*LPFC_ELS_RING); 13818 13819 if (status1 || (status2 & HA_RXMASK)) 13820 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13821 else 13822 sp_irq_rc = IRQ_NONE; 13823 13824 /* 13825 * Invoke fast-path host attention interrupt handling as appropriate. 13826 */ 13827 13828 /* status of events with FCP ring */ 13829 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13830 status1 >>= (4*LPFC_FCP_RING); 13831 13832 /* status of events with extra ring */ 13833 if (phba->cfg_multi_ring_support == 2) { 13834 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13835 status2 >>= (4*LPFC_EXTRA_RING); 13836 } else 13837 status2 = 0; 13838 13839 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13840 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13841 else 13842 fp_irq_rc = IRQ_NONE; 13843 13844 /* Return device-level interrupt handling status */ 13845 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13846 } /* lpfc_sli_intr_handler */ 13847 13848 /** 13849 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13850 * @phba: pointer to lpfc hba data structure. 13851 * 13852 * This routine is invoked by the worker thread to process all the pending 13853 * SLI4 els abort xri events. 13854 **/ 13855 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13856 { 13857 struct lpfc_cq_event *cq_event; 13858 unsigned long iflags; 13859 13860 /* First, declare the els xri abort event has been handled */ 13861 spin_lock_irqsave(&phba->hbalock, iflags); 13862 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13863 spin_unlock_irqrestore(&phba->hbalock, iflags); 13864 13865 /* Now, handle all the els xri abort events */ 13866 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13867 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13868 /* Get the first event from the head of the event queue */ 13869 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13870 cq_event, struct lpfc_cq_event, list); 13871 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13872 iflags); 13873 /* Notify aborted XRI for ELS work queue */ 13874 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13875 13876 /* Free the event processed back to the free pool */ 13877 lpfc_sli4_cq_event_release(phba, cq_event); 13878 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13879 iflags); 13880 } 13881 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13882 } 13883 13884 /** 13885 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 13886 * @phba: Pointer to HBA context object. 13887 * @irspiocbq: Pointer to work-queue completion queue entry. 13888 * 13889 * This routine handles an ELS work-queue completion event and construct 13890 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13891 * discovery engine to handle. 13892 * 13893 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13894 **/ 13895 static struct lpfc_iocbq * 13896 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 13897 struct lpfc_iocbq *irspiocbq) 13898 { 13899 struct lpfc_sli_ring *pring; 13900 struct lpfc_iocbq *cmdiocbq; 13901 struct lpfc_wcqe_complete *wcqe; 13902 unsigned long iflags; 13903 13904 pring = lpfc_phba_elsring(phba); 13905 if (unlikely(!pring)) 13906 return NULL; 13907 13908 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13909 spin_lock_irqsave(&pring->ring_lock, iflags); 13910 pring->stats.iocb_event++; 13911 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13912 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13913 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13914 if (unlikely(!cmdiocbq)) { 13915 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13916 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13917 "0386 ELS complete with no corresponding " 13918 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13919 wcqe->word0, wcqe->total_data_placed, 13920 wcqe->parameter, wcqe->word3); 13921 lpfc_sli_release_iocbq(phba, irspiocbq); 13922 return NULL; 13923 } 13924 13925 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 13926 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 13927 13928 /* Put the iocb back on the txcmplq */ 13929 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13930 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13931 13932 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13933 spin_lock_irqsave(&phba->hbalock, iflags); 13934 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 13935 spin_unlock_irqrestore(&phba->hbalock, iflags); 13936 } 13937 13938 return irspiocbq; 13939 } 13940 13941 inline struct lpfc_cq_event * 13942 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13943 { 13944 struct lpfc_cq_event *cq_event; 13945 13946 /* Allocate a new internal CQ_EVENT entry */ 13947 cq_event = lpfc_sli4_cq_event_alloc(phba); 13948 if (!cq_event) { 13949 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13950 "0602 Failed to alloc CQ_EVENT entry\n"); 13951 return NULL; 13952 } 13953 13954 /* Move the CQE into the event */ 13955 memcpy(&cq_event->cqe, entry, size); 13956 return cq_event; 13957 } 13958 13959 /** 13960 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13961 * @phba: Pointer to HBA context object. 13962 * @mcqe: Pointer to mailbox completion queue entry. 13963 * 13964 * This routine process a mailbox completion queue entry with asynchronous 13965 * event. 13966 * 13967 * Return: true if work posted to worker thread, otherwise false. 13968 **/ 13969 static bool 13970 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13971 { 13972 struct lpfc_cq_event *cq_event; 13973 unsigned long iflags; 13974 13975 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13976 "0392 Async Event: word0:x%x, word1:x%x, " 13977 "word2:x%x, word3:x%x\n", mcqe->word0, 13978 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13979 13980 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13981 if (!cq_event) 13982 return false; 13983 13984 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13985 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13986 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13987 13988 /* Set the async event flag */ 13989 spin_lock_irqsave(&phba->hbalock, iflags); 13990 phba->hba_flag |= ASYNC_EVENT; 13991 spin_unlock_irqrestore(&phba->hbalock, iflags); 13992 13993 return true; 13994 } 13995 13996 /** 13997 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13998 * @phba: Pointer to HBA context object. 13999 * @mcqe: Pointer to mailbox completion queue entry. 14000 * 14001 * This routine process a mailbox completion queue entry with mailbox 14002 * completion event. 14003 * 14004 * Return: true if work posted to worker thread, otherwise false. 14005 **/ 14006 static bool 14007 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14008 { 14009 uint32_t mcqe_status; 14010 MAILBOX_t *mbox, *pmbox; 14011 struct lpfc_mqe *mqe; 14012 struct lpfc_vport *vport; 14013 struct lpfc_nodelist *ndlp; 14014 struct lpfc_dmabuf *mp; 14015 unsigned long iflags; 14016 LPFC_MBOXQ_t *pmb; 14017 bool workposted = false; 14018 int rc; 14019 14020 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14021 if (!bf_get(lpfc_trailer_completed, mcqe)) 14022 goto out_no_mqe_complete; 14023 14024 /* Get the reference to the active mbox command */ 14025 spin_lock_irqsave(&phba->hbalock, iflags); 14026 pmb = phba->sli.mbox_active; 14027 if (unlikely(!pmb)) { 14028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14029 "1832 No pending MBOX command to handle\n"); 14030 spin_unlock_irqrestore(&phba->hbalock, iflags); 14031 goto out_no_mqe_complete; 14032 } 14033 spin_unlock_irqrestore(&phba->hbalock, iflags); 14034 mqe = &pmb->u.mqe; 14035 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14036 mbox = phba->mbox; 14037 vport = pmb->vport; 14038 14039 /* Reset heartbeat timer */ 14040 phba->last_completion_time = jiffies; 14041 del_timer(&phba->sli.mbox_tmo); 14042 14043 /* Move mbox data to caller's mailbox region, do endian swapping */ 14044 if (pmb->mbox_cmpl && mbox) 14045 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14046 14047 /* 14048 * For mcqe errors, conditionally move a modified error code to 14049 * the mbox so that the error will not be missed. 14050 */ 14051 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14052 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14053 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14054 bf_set(lpfc_mqe_status, mqe, 14055 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14056 } 14057 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14058 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14059 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14060 "MBOX dflt rpi: status:x%x rpi:x%x", 14061 mcqe_status, 14062 pmbox->un.varWords[0], 0); 14063 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14064 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14065 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14066 14067 /* Reg_LOGIN of dflt RPI was successful. Mark the 14068 * node as having an UNREG_LOGIN in progress to stop 14069 * an unsolicited PLOGI from the same NPortId from 14070 * starting another mailbox transaction. 14071 */ 14072 spin_lock_irqsave(&ndlp->lock, iflags); 14073 ndlp->nlp_flag |= NLP_UNREG_INP; 14074 spin_unlock_irqrestore(&ndlp->lock, iflags); 14075 lpfc_unreg_login(phba, vport->vpi, 14076 pmbox->un.varWords[0], pmb); 14077 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14078 pmb->ctx_buf = mp; 14079 14080 /* No reference taken here. This is a default 14081 * RPI reg/immediate unreg cycle. The reference was 14082 * taken in the reg rpi path and is released when 14083 * this mailbox completes. 14084 */ 14085 pmb->ctx_ndlp = ndlp; 14086 pmb->vport = vport; 14087 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14088 if (rc != MBX_BUSY) 14089 lpfc_printf_log(phba, KERN_ERR, 14090 LOG_TRACE_EVENT, 14091 "0385 rc should " 14092 "have been MBX_BUSY\n"); 14093 if (rc != MBX_NOT_FINISHED) 14094 goto send_current_mbox; 14095 } 14096 } 14097 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14098 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14099 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14100 14101 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14102 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14103 spin_lock_irqsave(&phba->hbalock, iflags); 14104 /* Release the mailbox command posting token */ 14105 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14106 phba->sli.mbox_active = NULL; 14107 if (bf_get(lpfc_trailer_consumed, mcqe)) 14108 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14109 spin_unlock_irqrestore(&phba->hbalock, iflags); 14110 14111 /* Post the next mbox command, if there is one */ 14112 lpfc_sli4_post_async_mbox(phba); 14113 14114 /* Process cmpl now */ 14115 if (pmb->mbox_cmpl) 14116 pmb->mbox_cmpl(phba, pmb); 14117 return false; 14118 } 14119 14120 /* There is mailbox completion work to queue to the worker thread */ 14121 spin_lock_irqsave(&phba->hbalock, iflags); 14122 __lpfc_mbox_cmpl_put(phba, pmb); 14123 phba->work_ha |= HA_MBATT; 14124 spin_unlock_irqrestore(&phba->hbalock, iflags); 14125 workposted = true; 14126 14127 send_current_mbox: 14128 spin_lock_irqsave(&phba->hbalock, iflags); 14129 /* Release the mailbox command posting token */ 14130 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14131 /* Setting active mailbox pointer need to be in sync to flag clear */ 14132 phba->sli.mbox_active = NULL; 14133 if (bf_get(lpfc_trailer_consumed, mcqe)) 14134 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14135 spin_unlock_irqrestore(&phba->hbalock, iflags); 14136 /* Wake up worker thread to post the next pending mailbox command */ 14137 lpfc_worker_wake_up(phba); 14138 return workposted; 14139 14140 out_no_mqe_complete: 14141 spin_lock_irqsave(&phba->hbalock, iflags); 14142 if (bf_get(lpfc_trailer_consumed, mcqe)) 14143 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14144 spin_unlock_irqrestore(&phba->hbalock, iflags); 14145 return false; 14146 } 14147 14148 /** 14149 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14150 * @phba: Pointer to HBA context object. 14151 * @cq: Pointer to associated CQ 14152 * @cqe: Pointer to mailbox completion queue entry. 14153 * 14154 * This routine process a mailbox completion queue entry, it invokes the 14155 * proper mailbox complete handling or asynchronous event handling routine 14156 * according to the MCQE's async bit. 14157 * 14158 * Return: true if work posted to worker thread, otherwise false. 14159 **/ 14160 static bool 14161 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14162 struct lpfc_cqe *cqe) 14163 { 14164 struct lpfc_mcqe mcqe; 14165 bool workposted; 14166 14167 cq->CQ_mbox++; 14168 14169 /* Copy the mailbox MCQE and convert endian order as needed */ 14170 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14171 14172 /* Invoke the proper event handling routine */ 14173 if (!bf_get(lpfc_trailer_async, &mcqe)) 14174 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14175 else 14176 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14177 return workposted; 14178 } 14179 14180 /** 14181 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14182 * @phba: Pointer to HBA context object. 14183 * @cq: Pointer to associated CQ 14184 * @wcqe: Pointer to work-queue completion queue entry. 14185 * 14186 * This routine handles an ELS work-queue completion event. 14187 * 14188 * Return: true if work posted to worker thread, otherwise false. 14189 **/ 14190 static bool 14191 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14192 struct lpfc_wcqe_complete *wcqe) 14193 { 14194 struct lpfc_iocbq *irspiocbq; 14195 unsigned long iflags; 14196 struct lpfc_sli_ring *pring = cq->pring; 14197 int txq_cnt = 0; 14198 int txcmplq_cnt = 0; 14199 14200 /* Check for response status */ 14201 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14202 /* Log the error status */ 14203 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14204 "0357 ELS CQE error: status=x%x: " 14205 "CQE: %08x %08x %08x %08x\n", 14206 bf_get(lpfc_wcqe_c_status, wcqe), 14207 wcqe->word0, wcqe->total_data_placed, 14208 wcqe->parameter, wcqe->word3); 14209 } 14210 14211 /* Get an irspiocbq for later ELS response processing use */ 14212 irspiocbq = lpfc_sli_get_iocbq(phba); 14213 if (!irspiocbq) { 14214 if (!list_empty(&pring->txq)) 14215 txq_cnt++; 14216 if (!list_empty(&pring->txcmplq)) 14217 txcmplq_cnt++; 14218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14219 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14220 "els_txcmplq_cnt=%d\n", 14221 txq_cnt, phba->iocb_cnt, 14222 txcmplq_cnt); 14223 return false; 14224 } 14225 14226 /* Save off the slow-path queue event for work thread to process */ 14227 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14228 spin_lock_irqsave(&phba->hbalock, iflags); 14229 list_add_tail(&irspiocbq->cq_event.list, 14230 &phba->sli4_hba.sp_queue_event); 14231 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14232 spin_unlock_irqrestore(&phba->hbalock, iflags); 14233 14234 return true; 14235 } 14236 14237 /** 14238 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14239 * @phba: Pointer to HBA context object. 14240 * @wcqe: Pointer to work-queue completion queue entry. 14241 * 14242 * This routine handles slow-path WQ entry consumed event by invoking the 14243 * proper WQ release routine to the slow-path WQ. 14244 **/ 14245 static void 14246 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14247 struct lpfc_wcqe_release *wcqe) 14248 { 14249 /* sanity check on queue memory */ 14250 if (unlikely(!phba->sli4_hba.els_wq)) 14251 return; 14252 /* Check for the slow-path ELS work queue */ 14253 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14254 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14255 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14256 else 14257 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14258 "2579 Slow-path wqe consume event carries " 14259 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14260 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14261 phba->sli4_hba.els_wq->queue_id); 14262 } 14263 14264 /** 14265 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14266 * @phba: Pointer to HBA context object. 14267 * @cq: Pointer to a WQ completion queue. 14268 * @wcqe: Pointer to work-queue completion queue entry. 14269 * 14270 * This routine handles an XRI abort event. 14271 * 14272 * Return: true if work posted to worker thread, otherwise false. 14273 **/ 14274 static bool 14275 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14276 struct lpfc_queue *cq, 14277 struct sli4_wcqe_xri_aborted *wcqe) 14278 { 14279 bool workposted = false; 14280 struct lpfc_cq_event *cq_event; 14281 unsigned long iflags; 14282 14283 switch (cq->subtype) { 14284 case LPFC_IO: 14285 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14286 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14287 /* Notify aborted XRI for NVME work queue */ 14288 if (phba->nvmet_support) 14289 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14290 } 14291 workposted = false; 14292 break; 14293 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14294 case LPFC_ELS: 14295 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14296 if (!cq_event) { 14297 workposted = false; 14298 break; 14299 } 14300 cq_event->hdwq = cq->hdwq; 14301 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14302 iflags); 14303 list_add_tail(&cq_event->list, 14304 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14305 /* Set the els xri abort event flag */ 14306 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14307 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14308 iflags); 14309 workposted = true; 14310 break; 14311 default: 14312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14313 "0603 Invalid CQ subtype %d: " 14314 "%08x %08x %08x %08x\n", 14315 cq->subtype, wcqe->word0, wcqe->parameter, 14316 wcqe->word2, wcqe->word3); 14317 workposted = false; 14318 break; 14319 } 14320 return workposted; 14321 } 14322 14323 #define FC_RCTL_MDS_DIAGS 0xF4 14324 14325 /** 14326 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14327 * @phba: Pointer to HBA context object. 14328 * @rcqe: Pointer to receive-queue completion queue entry. 14329 * 14330 * This routine process a receive-queue completion queue entry. 14331 * 14332 * Return: true if work posted to worker thread, otherwise false. 14333 **/ 14334 static bool 14335 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14336 { 14337 bool workposted = false; 14338 struct fc_frame_header *fc_hdr; 14339 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14340 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14341 struct lpfc_nvmet_tgtport *tgtp; 14342 struct hbq_dmabuf *dma_buf; 14343 uint32_t status, rq_id; 14344 unsigned long iflags; 14345 14346 /* sanity check on queue memory */ 14347 if (unlikely(!hrq) || unlikely(!drq)) 14348 return workposted; 14349 14350 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14351 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14352 else 14353 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14354 if (rq_id != hrq->queue_id) 14355 goto out; 14356 14357 status = bf_get(lpfc_rcqe_status, rcqe); 14358 switch (status) { 14359 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14361 "2537 Receive Frame Truncated!!\n"); 14362 fallthrough; 14363 case FC_STATUS_RQ_SUCCESS: 14364 spin_lock_irqsave(&phba->hbalock, iflags); 14365 lpfc_sli4_rq_release(hrq, drq); 14366 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14367 if (!dma_buf) { 14368 hrq->RQ_no_buf_found++; 14369 spin_unlock_irqrestore(&phba->hbalock, iflags); 14370 goto out; 14371 } 14372 hrq->RQ_rcv_buf++; 14373 hrq->RQ_buf_posted--; 14374 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14375 14376 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14377 14378 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14379 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14380 spin_unlock_irqrestore(&phba->hbalock, iflags); 14381 /* Handle MDS Loopback frames */ 14382 if (!(phba->pport->load_flag & FC_UNLOADING)) 14383 lpfc_sli4_handle_mds_loopback(phba->pport, 14384 dma_buf); 14385 else 14386 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14387 break; 14388 } 14389 14390 /* save off the frame for the work thread to process */ 14391 list_add_tail(&dma_buf->cq_event.list, 14392 &phba->sli4_hba.sp_queue_event); 14393 /* Frame received */ 14394 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14395 spin_unlock_irqrestore(&phba->hbalock, iflags); 14396 workposted = true; 14397 break; 14398 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14399 if (phba->nvmet_support) { 14400 tgtp = phba->targetport->private; 14401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14402 "6402 RQE Error x%x, posted %d err_cnt " 14403 "%d: %x %x %x\n", 14404 status, hrq->RQ_buf_posted, 14405 hrq->RQ_no_posted_buf, 14406 atomic_read(&tgtp->rcv_fcp_cmd_in), 14407 atomic_read(&tgtp->rcv_fcp_cmd_out), 14408 atomic_read(&tgtp->xmt_fcp_release)); 14409 } 14410 fallthrough; 14411 14412 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14413 hrq->RQ_no_posted_buf++; 14414 /* Post more buffers if possible */ 14415 spin_lock_irqsave(&phba->hbalock, iflags); 14416 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14417 spin_unlock_irqrestore(&phba->hbalock, iflags); 14418 workposted = true; 14419 break; 14420 } 14421 out: 14422 return workposted; 14423 } 14424 14425 /** 14426 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14427 * @phba: Pointer to HBA context object. 14428 * @cq: Pointer to the completion queue. 14429 * @cqe: Pointer to a completion queue entry. 14430 * 14431 * This routine process a slow-path work-queue or receive queue completion queue 14432 * entry. 14433 * 14434 * Return: true if work posted to worker thread, otherwise false. 14435 **/ 14436 static bool 14437 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14438 struct lpfc_cqe *cqe) 14439 { 14440 struct lpfc_cqe cqevt; 14441 bool workposted = false; 14442 14443 /* Copy the work queue CQE and convert endian order if needed */ 14444 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14445 14446 /* Check and process for different type of WCQE and dispatch */ 14447 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14448 case CQE_CODE_COMPL_WQE: 14449 /* Process the WQ/RQ complete event */ 14450 phba->last_completion_time = jiffies; 14451 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14452 (struct lpfc_wcqe_complete *)&cqevt); 14453 break; 14454 case CQE_CODE_RELEASE_WQE: 14455 /* Process the WQ release event */ 14456 lpfc_sli4_sp_handle_rel_wcqe(phba, 14457 (struct lpfc_wcqe_release *)&cqevt); 14458 break; 14459 case CQE_CODE_XRI_ABORTED: 14460 /* Process the WQ XRI abort event */ 14461 phba->last_completion_time = jiffies; 14462 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14463 (struct sli4_wcqe_xri_aborted *)&cqevt); 14464 break; 14465 case CQE_CODE_RECEIVE: 14466 case CQE_CODE_RECEIVE_V1: 14467 /* Process the RQ event */ 14468 phba->last_completion_time = jiffies; 14469 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14470 (struct lpfc_rcqe *)&cqevt); 14471 break; 14472 default: 14473 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14474 "0388 Not a valid WCQE code: x%x\n", 14475 bf_get(lpfc_cqe_code, &cqevt)); 14476 break; 14477 } 14478 return workposted; 14479 } 14480 14481 /** 14482 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14483 * @phba: Pointer to HBA context object. 14484 * @eqe: Pointer to fast-path event queue entry. 14485 * @speq: Pointer to slow-path event queue. 14486 * 14487 * This routine process a event queue entry from the slow-path event queue. 14488 * It will check the MajorCode and MinorCode to determine this is for a 14489 * completion event on a completion queue, if not, an error shall be logged 14490 * and just return. Otherwise, it will get to the corresponding completion 14491 * queue and process all the entries on that completion queue, rearm the 14492 * completion queue, and then return. 14493 * 14494 **/ 14495 static void 14496 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14497 struct lpfc_queue *speq) 14498 { 14499 struct lpfc_queue *cq = NULL, *childq; 14500 uint16_t cqid; 14501 int ret = 0; 14502 14503 /* Get the reference to the corresponding CQ */ 14504 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14505 14506 list_for_each_entry(childq, &speq->child_list, list) { 14507 if (childq->queue_id == cqid) { 14508 cq = childq; 14509 break; 14510 } 14511 } 14512 if (unlikely(!cq)) { 14513 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14515 "0365 Slow-path CQ identifier " 14516 "(%d) does not exist\n", cqid); 14517 return; 14518 } 14519 14520 /* Save EQ associated with this CQ */ 14521 cq->assoc_qp = speq; 14522 14523 if (is_kdump_kernel()) 14524 ret = queue_work(phba->wq, &cq->spwork); 14525 else 14526 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14527 14528 if (!ret) 14529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14530 "0390 Cannot schedule queue work " 14531 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14532 cqid, cq->queue_id, raw_smp_processor_id()); 14533 } 14534 14535 /** 14536 * __lpfc_sli4_process_cq - Process elements of a CQ 14537 * @phba: Pointer to HBA context object. 14538 * @cq: Pointer to CQ to be processed 14539 * @handler: Routine to process each cqe 14540 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14541 * @poll_mode: Polling mode we were called from 14542 * 14543 * This routine processes completion queue entries in a CQ. While a valid 14544 * queue element is found, the handler is called. During processing checks 14545 * are made for periodic doorbell writes to let the hardware know of 14546 * element consumption. 14547 * 14548 * If the max limit on cqes to process is hit, or there are no more valid 14549 * entries, the loop stops. If we processed a sufficient number of elements, 14550 * meaning there is sufficient load, rather than rearming and generating 14551 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14552 * indicates no rescheduling. 14553 * 14554 * Returns True if work scheduled, False otherwise. 14555 **/ 14556 static bool 14557 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14558 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14559 struct lpfc_cqe *), unsigned long *delay, 14560 enum lpfc_poll_mode poll_mode) 14561 { 14562 struct lpfc_cqe *cqe; 14563 bool workposted = false; 14564 int count = 0, consumed = 0; 14565 bool arm = true; 14566 14567 /* default - no reschedule */ 14568 *delay = 0; 14569 14570 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14571 goto rearm_and_exit; 14572 14573 /* Process all the entries to the CQ */ 14574 cq->q_flag = 0; 14575 cqe = lpfc_sli4_cq_get(cq); 14576 while (cqe) { 14577 workposted |= handler(phba, cq, cqe); 14578 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14579 14580 consumed++; 14581 if (!(++count % cq->max_proc_limit)) 14582 break; 14583 14584 if (!(count % cq->notify_interval)) { 14585 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14586 LPFC_QUEUE_NOARM); 14587 consumed = 0; 14588 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14589 } 14590 14591 if (count == LPFC_NVMET_CQ_NOTIFY) 14592 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14593 14594 cqe = lpfc_sli4_cq_get(cq); 14595 } 14596 if (count >= phba->cfg_cq_poll_threshold) { 14597 *delay = 1; 14598 arm = false; 14599 } 14600 14601 /* Note: complete the irq_poll softirq before rearming CQ */ 14602 if (poll_mode == LPFC_IRQ_POLL) 14603 irq_poll_complete(&cq->iop); 14604 14605 /* Track the max number of CQEs processed in 1 EQ */ 14606 if (count > cq->CQ_max_cqe) 14607 cq->CQ_max_cqe = count; 14608 14609 cq->assoc_qp->EQ_cqe_cnt += count; 14610 14611 /* Catch the no cq entry condition */ 14612 if (unlikely(count == 0)) 14613 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14614 "0369 No entry from completion queue " 14615 "qid=%d\n", cq->queue_id); 14616 14617 xchg(&cq->queue_claimed, 0); 14618 14619 rearm_and_exit: 14620 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14621 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14622 14623 return workposted; 14624 } 14625 14626 /** 14627 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14628 * @cq: pointer to CQ to process 14629 * 14630 * This routine calls the cq processing routine with a handler specific 14631 * to the type of queue bound to it. 14632 * 14633 * The CQ routine returns two values: the first is the calling status, 14634 * which indicates whether work was queued to the background discovery 14635 * thread. If true, the routine should wakeup the discovery thread; 14636 * the second is the delay parameter. If non-zero, rather than rearming 14637 * the CQ and yet another interrupt, the CQ handler should be queued so 14638 * that it is processed in a subsequent polling action. The value of 14639 * the delay indicates when to reschedule it. 14640 **/ 14641 static void 14642 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14643 { 14644 struct lpfc_hba *phba = cq->phba; 14645 unsigned long delay; 14646 bool workposted = false; 14647 int ret = 0; 14648 14649 /* Process and rearm the CQ */ 14650 switch (cq->type) { 14651 case LPFC_MCQ: 14652 workposted |= __lpfc_sli4_process_cq(phba, cq, 14653 lpfc_sli4_sp_handle_mcqe, 14654 &delay, LPFC_QUEUE_WORK); 14655 break; 14656 case LPFC_WCQ: 14657 if (cq->subtype == LPFC_IO) 14658 workposted |= __lpfc_sli4_process_cq(phba, cq, 14659 lpfc_sli4_fp_handle_cqe, 14660 &delay, LPFC_QUEUE_WORK); 14661 else 14662 workposted |= __lpfc_sli4_process_cq(phba, cq, 14663 lpfc_sli4_sp_handle_cqe, 14664 &delay, LPFC_QUEUE_WORK); 14665 break; 14666 default: 14667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14668 "0370 Invalid completion queue type (%d)\n", 14669 cq->type); 14670 return; 14671 } 14672 14673 if (delay) { 14674 if (is_kdump_kernel()) 14675 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14676 delay); 14677 else 14678 ret = queue_delayed_work_on(cq->chann, phba->wq, 14679 &cq->sched_spwork, delay); 14680 if (!ret) 14681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14682 "0394 Cannot schedule queue work " 14683 "for cqid=%d on CPU %d\n", 14684 cq->queue_id, cq->chann); 14685 } 14686 14687 /* wake up worker thread if there are works to be done */ 14688 if (workposted) 14689 lpfc_worker_wake_up(phba); 14690 } 14691 14692 /** 14693 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14694 * interrupt 14695 * @work: pointer to work element 14696 * 14697 * translates from the work handler and calls the slow-path handler. 14698 **/ 14699 static void 14700 lpfc_sli4_sp_process_cq(struct work_struct *work) 14701 { 14702 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14703 14704 __lpfc_sli4_sp_process_cq(cq); 14705 } 14706 14707 /** 14708 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14709 * @work: pointer to work element 14710 * 14711 * translates from the work handler and calls the slow-path handler. 14712 **/ 14713 static void 14714 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14715 { 14716 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14717 struct lpfc_queue, sched_spwork); 14718 14719 __lpfc_sli4_sp_process_cq(cq); 14720 } 14721 14722 /** 14723 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14724 * @phba: Pointer to HBA context object. 14725 * @cq: Pointer to associated CQ 14726 * @wcqe: Pointer to work-queue completion queue entry. 14727 * 14728 * This routine process a fast-path work queue completion entry from fast-path 14729 * event queue for FCP command response completion. 14730 **/ 14731 static void 14732 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14733 struct lpfc_wcqe_complete *wcqe) 14734 { 14735 struct lpfc_sli_ring *pring = cq->pring; 14736 struct lpfc_iocbq *cmdiocbq; 14737 unsigned long iflags; 14738 14739 /* Check for response status */ 14740 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14741 /* If resource errors reported from HBA, reduce queue 14742 * depth of the SCSI device. 14743 */ 14744 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14745 IOSTAT_LOCAL_REJECT)) && 14746 ((wcqe->parameter & IOERR_PARAM_MASK) == 14747 IOERR_NO_RESOURCES)) 14748 phba->lpfc_rampdown_queue_depth(phba); 14749 14750 /* Log the cmpl status */ 14751 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14752 "0373 FCP CQE cmpl: status=x%x: " 14753 "CQE: %08x %08x %08x %08x\n", 14754 bf_get(lpfc_wcqe_c_status, wcqe), 14755 wcqe->word0, wcqe->total_data_placed, 14756 wcqe->parameter, wcqe->word3); 14757 } 14758 14759 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14760 spin_lock_irqsave(&pring->ring_lock, iflags); 14761 pring->stats.iocb_event++; 14762 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14763 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14764 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14765 if (unlikely(!cmdiocbq)) { 14766 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14767 "0374 FCP complete with no corresponding " 14768 "cmdiocb: iotag (%d)\n", 14769 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14770 return; 14771 } 14772 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14773 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14774 #endif 14775 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14776 spin_lock_irqsave(&phba->hbalock, iflags); 14777 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14778 spin_unlock_irqrestore(&phba->hbalock, iflags); 14779 } 14780 14781 if (cmdiocbq->cmd_cmpl) { 14782 /* For FCP the flag is cleared in cmd_cmpl */ 14783 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 14784 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 14785 spin_lock_irqsave(&phba->hbalock, iflags); 14786 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 14787 spin_unlock_irqrestore(&phba->hbalock, iflags); 14788 } 14789 14790 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14791 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 14792 sizeof(struct lpfc_wcqe_complete)); 14793 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, cmdiocbq); 14794 } else { 14795 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14796 "0375 FCP cmdiocb not callback function " 14797 "iotag: (%d)\n", 14798 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14799 } 14800 } 14801 14802 /** 14803 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14804 * @phba: Pointer to HBA context object. 14805 * @cq: Pointer to completion queue. 14806 * @wcqe: Pointer to work-queue completion queue entry. 14807 * 14808 * This routine handles an fast-path WQ entry consumed event by invoking the 14809 * proper WQ release routine to the slow-path WQ. 14810 **/ 14811 static void 14812 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14813 struct lpfc_wcqe_release *wcqe) 14814 { 14815 struct lpfc_queue *childwq; 14816 bool wqid_matched = false; 14817 uint16_t hba_wqid; 14818 14819 /* Check for fast-path FCP work queue release */ 14820 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14821 list_for_each_entry(childwq, &cq->child_list, list) { 14822 if (childwq->queue_id == hba_wqid) { 14823 lpfc_sli4_wq_release(childwq, 14824 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14825 if (childwq->q_flag & HBA_NVMET_WQFULL) 14826 lpfc_nvmet_wqfull_process(phba, childwq); 14827 wqid_matched = true; 14828 break; 14829 } 14830 } 14831 /* Report warning log message if no match found */ 14832 if (wqid_matched != true) 14833 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14834 "2580 Fast-path wqe consume event carries " 14835 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14836 } 14837 14838 /** 14839 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14840 * @phba: Pointer to HBA context object. 14841 * @cq: Pointer to completion queue. 14842 * @rcqe: Pointer to receive-queue completion queue entry. 14843 * 14844 * This routine process a receive-queue completion queue entry. 14845 * 14846 * Return: true if work posted to worker thread, otherwise false. 14847 **/ 14848 static bool 14849 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14850 struct lpfc_rcqe *rcqe) 14851 { 14852 bool workposted = false; 14853 struct lpfc_queue *hrq; 14854 struct lpfc_queue *drq; 14855 struct rqb_dmabuf *dma_buf; 14856 struct fc_frame_header *fc_hdr; 14857 struct lpfc_nvmet_tgtport *tgtp; 14858 uint32_t status, rq_id; 14859 unsigned long iflags; 14860 uint32_t fctl, idx; 14861 14862 if ((phba->nvmet_support == 0) || 14863 (phba->sli4_hba.nvmet_cqset == NULL)) 14864 return workposted; 14865 14866 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14867 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14868 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14869 14870 /* sanity check on queue memory */ 14871 if (unlikely(!hrq) || unlikely(!drq)) 14872 return workposted; 14873 14874 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14875 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14876 else 14877 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14878 14879 if ((phba->nvmet_support == 0) || 14880 (rq_id != hrq->queue_id)) 14881 return workposted; 14882 14883 status = bf_get(lpfc_rcqe_status, rcqe); 14884 switch (status) { 14885 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14887 "6126 Receive Frame Truncated!!\n"); 14888 fallthrough; 14889 case FC_STATUS_RQ_SUCCESS: 14890 spin_lock_irqsave(&phba->hbalock, iflags); 14891 lpfc_sli4_rq_release(hrq, drq); 14892 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14893 if (!dma_buf) { 14894 hrq->RQ_no_buf_found++; 14895 spin_unlock_irqrestore(&phba->hbalock, iflags); 14896 goto out; 14897 } 14898 spin_unlock_irqrestore(&phba->hbalock, iflags); 14899 hrq->RQ_rcv_buf++; 14900 hrq->RQ_buf_posted--; 14901 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14902 14903 /* Just some basic sanity checks on FCP Command frame */ 14904 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14905 fc_hdr->fh_f_ctl[1] << 8 | 14906 fc_hdr->fh_f_ctl[2]); 14907 if (((fctl & 14908 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14909 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14910 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14911 goto drop; 14912 14913 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14914 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14915 lpfc_nvmet_unsol_fcp_event( 14916 phba, idx, dma_buf, cq->isr_timestamp, 14917 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14918 return false; 14919 } 14920 drop: 14921 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14922 break; 14923 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14924 if (phba->nvmet_support) { 14925 tgtp = phba->targetport->private; 14926 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14927 "6401 RQE Error x%x, posted %d err_cnt " 14928 "%d: %x %x %x\n", 14929 status, hrq->RQ_buf_posted, 14930 hrq->RQ_no_posted_buf, 14931 atomic_read(&tgtp->rcv_fcp_cmd_in), 14932 atomic_read(&tgtp->rcv_fcp_cmd_out), 14933 atomic_read(&tgtp->xmt_fcp_release)); 14934 } 14935 fallthrough; 14936 14937 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14938 hrq->RQ_no_posted_buf++; 14939 /* Post more buffers if possible */ 14940 break; 14941 } 14942 out: 14943 return workposted; 14944 } 14945 14946 /** 14947 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14948 * @phba: adapter with cq 14949 * @cq: Pointer to the completion queue. 14950 * @cqe: Pointer to fast-path completion queue entry. 14951 * 14952 * This routine process a fast-path work queue completion entry from fast-path 14953 * event queue for FCP command response completion. 14954 * 14955 * Return: true if work posted to worker thread, otherwise false. 14956 **/ 14957 static bool 14958 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14959 struct lpfc_cqe *cqe) 14960 { 14961 struct lpfc_wcqe_release wcqe; 14962 bool workposted = false; 14963 14964 /* Copy the work queue CQE and convert endian order if needed */ 14965 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14966 14967 /* Check and process for different type of WCQE and dispatch */ 14968 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14969 case CQE_CODE_COMPL_WQE: 14970 case CQE_CODE_NVME_ERSP: 14971 cq->CQ_wq++; 14972 /* Process the WQ complete event */ 14973 phba->last_completion_time = jiffies; 14974 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14975 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14976 (struct lpfc_wcqe_complete *)&wcqe); 14977 break; 14978 case CQE_CODE_RELEASE_WQE: 14979 cq->CQ_release_wqe++; 14980 /* Process the WQ release event */ 14981 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14982 (struct lpfc_wcqe_release *)&wcqe); 14983 break; 14984 case CQE_CODE_XRI_ABORTED: 14985 cq->CQ_xri_aborted++; 14986 /* Process the WQ XRI abort event */ 14987 phba->last_completion_time = jiffies; 14988 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14989 (struct sli4_wcqe_xri_aborted *)&wcqe); 14990 break; 14991 case CQE_CODE_RECEIVE_V1: 14992 case CQE_CODE_RECEIVE: 14993 phba->last_completion_time = jiffies; 14994 if (cq->subtype == LPFC_NVMET) { 14995 workposted = lpfc_sli4_nvmet_handle_rcqe( 14996 phba, cq, (struct lpfc_rcqe *)&wcqe); 14997 } 14998 break; 14999 default: 15000 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15001 "0144 Not a valid CQE code: x%x\n", 15002 bf_get(lpfc_wcqe_c_code, &wcqe)); 15003 break; 15004 } 15005 return workposted; 15006 } 15007 15008 /** 15009 * lpfc_sli4_sched_cq_work - Schedules cq work 15010 * @phba: Pointer to HBA context object. 15011 * @cq: Pointer to CQ 15012 * @cqid: CQ ID 15013 * 15014 * This routine checks the poll mode of the CQ corresponding to 15015 * cq->chann, then either schedules a softirq or queue_work to complete 15016 * cq work. 15017 * 15018 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15019 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15020 * 15021 **/ 15022 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15023 struct lpfc_queue *cq, uint16_t cqid) 15024 { 15025 int ret = 0; 15026 15027 switch (cq->poll_mode) { 15028 case LPFC_IRQ_POLL: 15029 /* CGN mgmt is mutually exclusive from softirq processing */ 15030 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15031 irq_poll_sched(&cq->iop); 15032 break; 15033 } 15034 fallthrough; 15035 case LPFC_QUEUE_WORK: 15036 default: 15037 if (is_kdump_kernel()) 15038 ret = queue_work(phba->wq, &cq->irqwork); 15039 else 15040 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15041 if (!ret) 15042 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15043 "0383 Cannot schedule queue work " 15044 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15045 cqid, cq->queue_id, 15046 raw_smp_processor_id()); 15047 } 15048 } 15049 15050 /** 15051 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15052 * @phba: Pointer to HBA context object. 15053 * @eq: Pointer to the queue structure. 15054 * @eqe: Pointer to fast-path event queue entry. 15055 * 15056 * This routine process a event queue entry from the fast-path event queue. 15057 * It will check the MajorCode and MinorCode to determine this is for a 15058 * completion event on a completion queue, if not, an error shall be logged 15059 * and just return. Otherwise, it will get to the corresponding completion 15060 * queue and process all the entries on the completion queue, rearm the 15061 * completion queue, and then return. 15062 **/ 15063 static void 15064 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15065 struct lpfc_eqe *eqe) 15066 { 15067 struct lpfc_queue *cq = NULL; 15068 uint32_t qidx = eq->hdwq; 15069 uint16_t cqid, id; 15070 15071 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15073 "0366 Not a valid completion " 15074 "event: majorcode=x%x, minorcode=x%x\n", 15075 bf_get_le32(lpfc_eqe_major_code, eqe), 15076 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15077 return; 15078 } 15079 15080 /* Get the reference to the corresponding CQ */ 15081 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15082 15083 /* Use the fast lookup method first */ 15084 if (cqid <= phba->sli4_hba.cq_max) { 15085 cq = phba->sli4_hba.cq_lookup[cqid]; 15086 if (cq) 15087 goto work_cq; 15088 } 15089 15090 /* Next check for NVMET completion */ 15091 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15092 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15093 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15094 /* Process NVMET unsol rcv */ 15095 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15096 goto process_cq; 15097 } 15098 } 15099 15100 if (phba->sli4_hba.nvmels_cq && 15101 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15102 /* Process NVME unsol rcv */ 15103 cq = phba->sli4_hba.nvmels_cq; 15104 } 15105 15106 /* Otherwise this is a Slow path event */ 15107 if (cq == NULL) { 15108 lpfc_sli4_sp_handle_eqe(phba, eqe, 15109 phba->sli4_hba.hdwq[qidx].hba_eq); 15110 return; 15111 } 15112 15113 process_cq: 15114 if (unlikely(cqid != cq->queue_id)) { 15115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15116 "0368 Miss-matched fast-path completion " 15117 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15118 cqid, cq->queue_id); 15119 return; 15120 } 15121 15122 work_cq: 15123 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15124 if (phba->ktime_on) 15125 cq->isr_timestamp = ktime_get_ns(); 15126 else 15127 cq->isr_timestamp = 0; 15128 #endif 15129 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15130 } 15131 15132 /** 15133 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15134 * @cq: Pointer to CQ to be processed 15135 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15136 * 15137 * This routine calls the cq processing routine with the handler for 15138 * fast path CQEs. 15139 * 15140 * The CQ routine returns two values: the first is the calling status, 15141 * which indicates whether work was queued to the background discovery 15142 * thread. If true, the routine should wakeup the discovery thread; 15143 * the second is the delay parameter. If non-zero, rather than rearming 15144 * the CQ and yet another interrupt, the CQ handler should be queued so 15145 * that it is processed in a subsequent polling action. The value of 15146 * the delay indicates when to reschedule it. 15147 **/ 15148 static void 15149 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15150 enum lpfc_poll_mode poll_mode) 15151 { 15152 struct lpfc_hba *phba = cq->phba; 15153 unsigned long delay; 15154 bool workposted = false; 15155 int ret = 0; 15156 15157 /* process and rearm the CQ */ 15158 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15159 &delay, poll_mode); 15160 15161 if (delay) { 15162 if (is_kdump_kernel()) 15163 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15164 delay); 15165 else 15166 ret = queue_delayed_work_on(cq->chann, phba->wq, 15167 &cq->sched_irqwork, delay); 15168 if (!ret) 15169 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15170 "0367 Cannot schedule queue work " 15171 "for cqid=%d on CPU %d\n", 15172 cq->queue_id, cq->chann); 15173 } 15174 15175 /* wake up worker thread if there are works to be done */ 15176 if (workposted) 15177 lpfc_worker_wake_up(phba); 15178 } 15179 15180 /** 15181 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15182 * interrupt 15183 * @work: pointer to work element 15184 * 15185 * translates from the work handler and calls the fast-path handler. 15186 **/ 15187 static void 15188 lpfc_sli4_hba_process_cq(struct work_struct *work) 15189 { 15190 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15191 15192 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15193 } 15194 15195 /** 15196 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15197 * @work: pointer to work element 15198 * 15199 * translates from the work handler and calls the fast-path handler. 15200 **/ 15201 static void 15202 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15203 { 15204 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15205 struct lpfc_queue, sched_irqwork); 15206 15207 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15208 } 15209 15210 /** 15211 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15212 * @irq: Interrupt number. 15213 * @dev_id: The device context pointer. 15214 * 15215 * This function is directly called from the PCI layer as an interrupt 15216 * service routine when device with SLI-4 interface spec is enabled with 15217 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15218 * ring event in the HBA. However, when the device is enabled with either 15219 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15220 * device-level interrupt handler. When the PCI slot is in error recovery 15221 * or the HBA is undergoing initialization, the interrupt handler will not 15222 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15223 * the intrrupt context. This function is called without any lock held. 15224 * It gets the hbalock to access and update SLI data structures. Note that, 15225 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15226 * equal to that of FCP CQ index. 15227 * 15228 * The link attention and ELS ring attention events are handled 15229 * by the worker thread. The interrupt handler signals the worker thread 15230 * and returns for these events. This function is called without any lock 15231 * held. It gets the hbalock to access and update SLI data structures. 15232 * 15233 * This function returns IRQ_HANDLED when interrupt is handled else it 15234 * returns IRQ_NONE. 15235 **/ 15236 irqreturn_t 15237 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15238 { 15239 struct lpfc_hba *phba; 15240 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15241 struct lpfc_queue *fpeq; 15242 unsigned long iflag; 15243 int ecount = 0; 15244 int hba_eqidx; 15245 struct lpfc_eq_intr_info *eqi; 15246 15247 /* Get the driver's phba structure from the dev_id */ 15248 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15249 phba = hba_eq_hdl->phba; 15250 hba_eqidx = hba_eq_hdl->idx; 15251 15252 if (unlikely(!phba)) 15253 return IRQ_NONE; 15254 if (unlikely(!phba->sli4_hba.hdwq)) 15255 return IRQ_NONE; 15256 15257 /* Get to the EQ struct associated with this vector */ 15258 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15259 if (unlikely(!fpeq)) 15260 return IRQ_NONE; 15261 15262 /* Check device state for handling interrupt */ 15263 if (unlikely(lpfc_intr_state_check(phba))) { 15264 /* Check again for link_state with lock held */ 15265 spin_lock_irqsave(&phba->hbalock, iflag); 15266 if (phba->link_state < LPFC_LINK_DOWN) 15267 /* Flush, clear interrupt, and rearm the EQ */ 15268 lpfc_sli4_eqcq_flush(phba, fpeq); 15269 spin_unlock_irqrestore(&phba->hbalock, iflag); 15270 return IRQ_NONE; 15271 } 15272 15273 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15274 eqi->icnt++; 15275 15276 fpeq->last_cpu = raw_smp_processor_id(); 15277 15278 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15279 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15280 phba->cfg_auto_imax && 15281 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15282 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15283 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15284 15285 /* process and rearm the EQ */ 15286 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15287 15288 if (unlikely(ecount == 0)) { 15289 fpeq->EQ_no_entry++; 15290 if (phba->intr_type == MSIX) 15291 /* MSI-X treated interrupt served as no EQ share INT */ 15292 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15293 "0358 MSI-X interrupt with no EQE\n"); 15294 else 15295 /* Non MSI-X treated on interrupt as EQ share INT */ 15296 return IRQ_NONE; 15297 } 15298 15299 return IRQ_HANDLED; 15300 } /* lpfc_sli4_hba_intr_handler */ 15301 15302 /** 15303 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15304 * @irq: Interrupt number. 15305 * @dev_id: The device context pointer. 15306 * 15307 * This function is the device-level interrupt handler to device with SLI-4 15308 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15309 * interrupt mode is enabled and there is an event in the HBA which requires 15310 * driver attention. This function invokes the slow-path interrupt attention 15311 * handling function and fast-path interrupt attention handling function in 15312 * turn to process the relevant HBA attention events. This function is called 15313 * without any lock held. It gets the hbalock to access and update SLI data 15314 * structures. 15315 * 15316 * This function returns IRQ_HANDLED when interrupt is handled, else it 15317 * returns IRQ_NONE. 15318 **/ 15319 irqreturn_t 15320 lpfc_sli4_intr_handler(int irq, void *dev_id) 15321 { 15322 struct lpfc_hba *phba; 15323 irqreturn_t hba_irq_rc; 15324 bool hba_handled = false; 15325 int qidx; 15326 15327 /* Get the driver's phba structure from the dev_id */ 15328 phba = (struct lpfc_hba *)dev_id; 15329 15330 if (unlikely(!phba)) 15331 return IRQ_NONE; 15332 15333 /* 15334 * Invoke fast-path host attention interrupt handling as appropriate. 15335 */ 15336 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15337 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15338 &phba->sli4_hba.hba_eq_hdl[qidx]); 15339 if (hba_irq_rc == IRQ_HANDLED) 15340 hba_handled |= true; 15341 } 15342 15343 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15344 } /* lpfc_sli4_intr_handler */ 15345 15346 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15347 { 15348 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15349 struct lpfc_queue *eq; 15350 int i = 0; 15351 15352 rcu_read_lock(); 15353 15354 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15355 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15356 if (!list_empty(&phba->poll_list)) 15357 mod_timer(&phba->cpuhp_poll_timer, 15358 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15359 15360 rcu_read_unlock(); 15361 } 15362 15363 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15364 { 15365 struct lpfc_hba *phba = eq->phba; 15366 int i = 0; 15367 15368 /* 15369 * Unlocking an irq is one of the entry point to check 15370 * for re-schedule, but we are good for io submission 15371 * path as midlayer does a get_cpu to glue us in. Flush 15372 * out the invalidate queue so we can see the updated 15373 * value for flag. 15374 */ 15375 smp_rmb(); 15376 15377 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15378 /* We will not likely get the completion for the caller 15379 * during this iteration but i guess that's fine. 15380 * Future io's coming on this eq should be able to 15381 * pick it up. As for the case of single io's, they 15382 * will be handled through a sched from polling timer 15383 * function which is currently triggered every 1msec. 15384 */ 15385 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15386 15387 return i; 15388 } 15389 15390 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15391 { 15392 struct lpfc_hba *phba = eq->phba; 15393 15394 /* kickstart slowpath processing if needed */ 15395 if (list_empty(&phba->poll_list)) 15396 mod_timer(&phba->cpuhp_poll_timer, 15397 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15398 15399 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15400 synchronize_rcu(); 15401 } 15402 15403 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15404 { 15405 struct lpfc_hba *phba = eq->phba; 15406 15407 /* Disable slowpath processing for this eq. Kick start the eq 15408 * by RE-ARMING the eq's ASAP 15409 */ 15410 list_del_rcu(&eq->_poll_list); 15411 synchronize_rcu(); 15412 15413 if (list_empty(&phba->poll_list)) 15414 del_timer_sync(&phba->cpuhp_poll_timer); 15415 } 15416 15417 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15418 { 15419 struct lpfc_queue *eq, *next; 15420 15421 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15422 list_del(&eq->_poll_list); 15423 15424 INIT_LIST_HEAD(&phba->poll_list); 15425 synchronize_rcu(); 15426 } 15427 15428 static inline void 15429 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15430 { 15431 if (mode == eq->mode) 15432 return; 15433 /* 15434 * currently this function is only called during a hotplug 15435 * event and the cpu on which this function is executing 15436 * is going offline. By now the hotplug has instructed 15437 * the scheduler to remove this cpu from cpu active mask. 15438 * So we don't need to work about being put aside by the 15439 * scheduler for a high priority process. Yes, the inte- 15440 * rrupts could come but they are known to retire ASAP. 15441 */ 15442 15443 /* Disable polling in the fastpath */ 15444 WRITE_ONCE(eq->mode, mode); 15445 /* flush out the store buffer */ 15446 smp_wmb(); 15447 15448 /* 15449 * Add this eq to the polling list and start polling. For 15450 * a grace period both interrupt handler and poller will 15451 * try to process the eq _but_ that's fine. We have a 15452 * synchronization mechanism in place (queue_claimed) to 15453 * deal with it. This is just a draining phase for int- 15454 * errupt handler (not eq's) as we have guranteed through 15455 * barrier that all the CPUs have seen the new CQ_POLLED 15456 * state. which will effectively disable the REARMING of 15457 * the EQ. The whole idea is eq's die off eventually as 15458 * we are not rearming EQ's anymore. 15459 */ 15460 mode ? lpfc_sli4_add_to_poll_list(eq) : 15461 lpfc_sli4_remove_from_poll_list(eq); 15462 } 15463 15464 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15465 { 15466 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15467 } 15468 15469 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15470 { 15471 struct lpfc_hba *phba = eq->phba; 15472 15473 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15474 15475 /* Kick start for the pending io's in h/w. 15476 * Once we switch back to interrupt processing on a eq 15477 * the io path completion will only arm eq's when it 15478 * receives a completion. But since eq's are in disa- 15479 * rmed state it doesn't receive a completion. This 15480 * creates a deadlock scenaro. 15481 */ 15482 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15483 } 15484 15485 /** 15486 * lpfc_sli4_queue_free - free a queue structure and associated memory 15487 * @queue: The queue structure to free. 15488 * 15489 * This function frees a queue structure and the DMAable memory used for 15490 * the host resident queue. This function must be called after destroying the 15491 * queue on the HBA. 15492 **/ 15493 void 15494 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15495 { 15496 struct lpfc_dmabuf *dmabuf; 15497 15498 if (!queue) 15499 return; 15500 15501 if (!list_empty(&queue->wq_list)) 15502 list_del(&queue->wq_list); 15503 15504 while (!list_empty(&queue->page_list)) { 15505 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15506 list); 15507 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15508 dmabuf->virt, dmabuf->phys); 15509 kfree(dmabuf); 15510 } 15511 if (queue->rqbp) { 15512 lpfc_free_rq_buffer(queue->phba, queue); 15513 kfree(queue->rqbp); 15514 } 15515 15516 if (!list_empty(&queue->cpu_list)) 15517 list_del(&queue->cpu_list); 15518 15519 kfree(queue); 15520 return; 15521 } 15522 15523 /** 15524 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15525 * @phba: The HBA that this queue is being created on. 15526 * @page_size: The size of a queue page 15527 * @entry_size: The size of each queue entry for this queue. 15528 * @entry_count: The number of entries that this queue will handle. 15529 * @cpu: The cpu that will primarily utilize this queue. 15530 * 15531 * This function allocates a queue structure and the DMAable memory used for 15532 * the host resident queue. This function must be called before creating the 15533 * queue on the HBA. 15534 **/ 15535 struct lpfc_queue * 15536 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15537 uint32_t entry_size, uint32_t entry_count, int cpu) 15538 { 15539 struct lpfc_queue *queue; 15540 struct lpfc_dmabuf *dmabuf; 15541 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15542 uint16_t x, pgcnt; 15543 15544 if (!phba->sli4_hba.pc_sli4_params.supported) 15545 hw_page_size = page_size; 15546 15547 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15548 15549 /* If needed, Adjust page count to match the max the adapter supports */ 15550 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15551 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15552 15553 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15554 GFP_KERNEL, cpu_to_node(cpu)); 15555 if (!queue) 15556 return NULL; 15557 15558 INIT_LIST_HEAD(&queue->list); 15559 INIT_LIST_HEAD(&queue->_poll_list); 15560 INIT_LIST_HEAD(&queue->wq_list); 15561 INIT_LIST_HEAD(&queue->wqfull_list); 15562 INIT_LIST_HEAD(&queue->page_list); 15563 INIT_LIST_HEAD(&queue->child_list); 15564 INIT_LIST_HEAD(&queue->cpu_list); 15565 15566 /* Set queue parameters now. If the system cannot provide memory 15567 * resources, the free routine needs to know what was allocated. 15568 */ 15569 queue->page_count = pgcnt; 15570 queue->q_pgs = (void **)&queue[1]; 15571 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15572 queue->entry_size = entry_size; 15573 queue->entry_count = entry_count; 15574 queue->page_size = hw_page_size; 15575 queue->phba = phba; 15576 15577 for (x = 0; x < queue->page_count; x++) { 15578 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15579 dev_to_node(&phba->pcidev->dev)); 15580 if (!dmabuf) 15581 goto out_fail; 15582 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15583 hw_page_size, &dmabuf->phys, 15584 GFP_KERNEL); 15585 if (!dmabuf->virt) { 15586 kfree(dmabuf); 15587 goto out_fail; 15588 } 15589 dmabuf->buffer_tag = x; 15590 list_add_tail(&dmabuf->list, &queue->page_list); 15591 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15592 queue->q_pgs[x] = dmabuf->virt; 15593 } 15594 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15595 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15596 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15597 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15598 15599 /* notify_interval will be set during q creation */ 15600 15601 return queue; 15602 out_fail: 15603 lpfc_sli4_queue_free(queue); 15604 return NULL; 15605 } 15606 15607 /** 15608 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15609 * @phba: HBA structure that indicates port to create a queue on. 15610 * @pci_barset: PCI BAR set flag. 15611 * 15612 * This function shall perform iomap of the specified PCI BAR address to host 15613 * memory address if not already done so and return it. The returned host 15614 * memory address can be NULL. 15615 */ 15616 static void __iomem * 15617 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15618 { 15619 if (!phba->pcidev) 15620 return NULL; 15621 15622 switch (pci_barset) { 15623 case WQ_PCI_BAR_0_AND_1: 15624 return phba->pci_bar0_memmap_p; 15625 case WQ_PCI_BAR_2_AND_3: 15626 return phba->pci_bar2_memmap_p; 15627 case WQ_PCI_BAR_4_AND_5: 15628 return phba->pci_bar4_memmap_p; 15629 default: 15630 break; 15631 } 15632 return NULL; 15633 } 15634 15635 /** 15636 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15637 * @phba: HBA structure that EQs are on. 15638 * @startq: The starting EQ index to modify 15639 * @numq: The number of EQs (consecutive indexes) to modify 15640 * @usdelay: amount of delay 15641 * 15642 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15643 * is set either by writing to a register (if supported by the SLI Port) 15644 * or by mailbox command. The mailbox command allows several EQs to be 15645 * updated at once. 15646 * 15647 * The @phba struct is used to send a mailbox command to HBA. The @startq 15648 * is used to get the starting EQ index to change. The @numq value is 15649 * used to specify how many consecutive EQ indexes, starting at EQ index, 15650 * are to be changed. This function is asynchronous and will wait for any 15651 * mailbox commands to finish before returning. 15652 * 15653 * On success this function will return a zero. If unable to allocate 15654 * enough memory this function will return -ENOMEM. If a mailbox command 15655 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15656 * have had their delay multipler changed. 15657 **/ 15658 void 15659 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15660 uint32_t numq, uint32_t usdelay) 15661 { 15662 struct lpfc_mbx_modify_eq_delay *eq_delay; 15663 LPFC_MBOXQ_t *mbox; 15664 struct lpfc_queue *eq; 15665 int cnt = 0, rc, length; 15666 uint32_t shdr_status, shdr_add_status; 15667 uint32_t dmult; 15668 int qidx; 15669 union lpfc_sli4_cfg_shdr *shdr; 15670 15671 if (startq >= phba->cfg_irq_chann) 15672 return; 15673 15674 if (usdelay > 0xFFFF) { 15675 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15676 "6429 usdelay %d too large. Scaled down to " 15677 "0xFFFF.\n", usdelay); 15678 usdelay = 0xFFFF; 15679 } 15680 15681 /* set values by EQ_DELAY register if supported */ 15682 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15683 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15684 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15685 if (!eq) 15686 continue; 15687 15688 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15689 15690 if (++cnt >= numq) 15691 break; 15692 } 15693 return; 15694 } 15695 15696 /* Otherwise, set values by mailbox cmd */ 15697 15698 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15699 if (!mbox) { 15700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15701 "6428 Failed allocating mailbox cmd buffer." 15702 " EQ delay was not set.\n"); 15703 return; 15704 } 15705 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15706 sizeof(struct lpfc_sli4_cfg_mhdr)); 15707 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15708 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15709 length, LPFC_SLI4_MBX_EMBED); 15710 eq_delay = &mbox->u.mqe.un.eq_delay; 15711 15712 /* Calculate delay multiper from maximum interrupt per second */ 15713 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15714 if (dmult) 15715 dmult--; 15716 if (dmult > LPFC_DMULT_MAX) 15717 dmult = LPFC_DMULT_MAX; 15718 15719 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15720 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15721 if (!eq) 15722 continue; 15723 eq->q_mode = usdelay; 15724 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15725 eq_delay->u.request.eq[cnt].phase = 0; 15726 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15727 15728 if (++cnt >= numq) 15729 break; 15730 } 15731 eq_delay->u.request.num_eq = cnt; 15732 15733 mbox->vport = phba->pport; 15734 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15735 mbox->ctx_buf = NULL; 15736 mbox->ctx_ndlp = NULL; 15737 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15738 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15739 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15740 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15741 if (shdr_status || shdr_add_status || rc) { 15742 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15743 "2512 MODIFY_EQ_DELAY mailbox failed with " 15744 "status x%x add_status x%x, mbx status x%x\n", 15745 shdr_status, shdr_add_status, rc); 15746 } 15747 mempool_free(mbox, phba->mbox_mem_pool); 15748 return; 15749 } 15750 15751 /** 15752 * lpfc_eq_create - Create an Event Queue on the HBA 15753 * @phba: HBA structure that indicates port to create a queue on. 15754 * @eq: The queue structure to use to create the event queue. 15755 * @imax: The maximum interrupt per second limit. 15756 * 15757 * This function creates an event queue, as detailed in @eq, on a port, 15758 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15759 * 15760 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15761 * is used to get the entry count and entry size that are necessary to 15762 * determine the number of pages to allocate and use for this queue. This 15763 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15764 * event queue. This function is asynchronous and will wait for the mailbox 15765 * command to finish before continuing. 15766 * 15767 * On success this function will return a zero. If unable to allocate enough 15768 * memory this function will return -ENOMEM. If the queue create mailbox command 15769 * fails this function will return -ENXIO. 15770 **/ 15771 int 15772 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15773 { 15774 struct lpfc_mbx_eq_create *eq_create; 15775 LPFC_MBOXQ_t *mbox; 15776 int rc, length, status = 0; 15777 struct lpfc_dmabuf *dmabuf; 15778 uint32_t shdr_status, shdr_add_status; 15779 union lpfc_sli4_cfg_shdr *shdr; 15780 uint16_t dmult; 15781 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15782 15783 /* sanity check on queue memory */ 15784 if (!eq) 15785 return -ENODEV; 15786 if (!phba->sli4_hba.pc_sli4_params.supported) 15787 hw_page_size = SLI4_PAGE_SIZE; 15788 15789 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15790 if (!mbox) 15791 return -ENOMEM; 15792 length = (sizeof(struct lpfc_mbx_eq_create) - 15793 sizeof(struct lpfc_sli4_cfg_mhdr)); 15794 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15795 LPFC_MBOX_OPCODE_EQ_CREATE, 15796 length, LPFC_SLI4_MBX_EMBED); 15797 eq_create = &mbox->u.mqe.un.eq_create; 15798 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15799 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15800 eq->page_count); 15801 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15802 LPFC_EQE_SIZE); 15803 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15804 15805 /* Use version 2 of CREATE_EQ if eqav is set */ 15806 if (phba->sli4_hba.pc_sli4_params.eqav) { 15807 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15808 LPFC_Q_CREATE_VERSION_2); 15809 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15810 phba->sli4_hba.pc_sli4_params.eqav); 15811 } 15812 15813 /* don't setup delay multiplier using EQ_CREATE */ 15814 dmult = 0; 15815 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15816 dmult); 15817 switch (eq->entry_count) { 15818 default: 15819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15820 "0360 Unsupported EQ count. (%d)\n", 15821 eq->entry_count); 15822 if (eq->entry_count < 256) { 15823 status = -EINVAL; 15824 goto out; 15825 } 15826 fallthrough; /* otherwise default to smallest count */ 15827 case 256: 15828 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15829 LPFC_EQ_CNT_256); 15830 break; 15831 case 512: 15832 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15833 LPFC_EQ_CNT_512); 15834 break; 15835 case 1024: 15836 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15837 LPFC_EQ_CNT_1024); 15838 break; 15839 case 2048: 15840 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15841 LPFC_EQ_CNT_2048); 15842 break; 15843 case 4096: 15844 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15845 LPFC_EQ_CNT_4096); 15846 break; 15847 } 15848 list_for_each_entry(dmabuf, &eq->page_list, list) { 15849 memset(dmabuf->virt, 0, hw_page_size); 15850 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15851 putPaddrLow(dmabuf->phys); 15852 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15853 putPaddrHigh(dmabuf->phys); 15854 } 15855 mbox->vport = phba->pport; 15856 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15857 mbox->ctx_buf = NULL; 15858 mbox->ctx_ndlp = NULL; 15859 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15860 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15861 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15862 if (shdr_status || shdr_add_status || rc) { 15863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15864 "2500 EQ_CREATE mailbox failed with " 15865 "status x%x add_status x%x, mbx status x%x\n", 15866 shdr_status, shdr_add_status, rc); 15867 status = -ENXIO; 15868 } 15869 eq->type = LPFC_EQ; 15870 eq->subtype = LPFC_NONE; 15871 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15872 if (eq->queue_id == 0xFFFF) 15873 status = -ENXIO; 15874 eq->host_index = 0; 15875 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15876 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15877 out: 15878 mempool_free(mbox, phba->mbox_mem_pool); 15879 return status; 15880 } 15881 15882 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15883 { 15884 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15885 15886 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15887 15888 return 1; 15889 } 15890 15891 /** 15892 * lpfc_cq_create - Create a Completion Queue on the HBA 15893 * @phba: HBA structure that indicates port to create a queue on. 15894 * @cq: The queue structure to use to create the completion queue. 15895 * @eq: The event queue to bind this completion queue to. 15896 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15897 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15898 * 15899 * This function creates a completion queue, as detailed in @wq, on a port, 15900 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15901 * 15902 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15903 * is used to get the entry count and entry size that are necessary to 15904 * determine the number of pages to allocate and use for this queue. The @eq 15905 * is used to indicate which event queue to bind this completion queue to. This 15906 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15907 * completion queue. This function is asynchronous and will wait for the mailbox 15908 * command to finish before continuing. 15909 * 15910 * On success this function will return a zero. If unable to allocate enough 15911 * memory this function will return -ENOMEM. If the queue create mailbox command 15912 * fails this function will return -ENXIO. 15913 **/ 15914 int 15915 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15916 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15917 { 15918 struct lpfc_mbx_cq_create *cq_create; 15919 struct lpfc_dmabuf *dmabuf; 15920 LPFC_MBOXQ_t *mbox; 15921 int rc, length, status = 0; 15922 uint32_t shdr_status, shdr_add_status; 15923 union lpfc_sli4_cfg_shdr *shdr; 15924 15925 /* sanity check on queue memory */ 15926 if (!cq || !eq) 15927 return -ENODEV; 15928 15929 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15930 if (!mbox) 15931 return -ENOMEM; 15932 length = (sizeof(struct lpfc_mbx_cq_create) - 15933 sizeof(struct lpfc_sli4_cfg_mhdr)); 15934 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15935 LPFC_MBOX_OPCODE_CQ_CREATE, 15936 length, LPFC_SLI4_MBX_EMBED); 15937 cq_create = &mbox->u.mqe.un.cq_create; 15938 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15939 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15940 cq->page_count); 15941 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15942 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15943 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15944 phba->sli4_hba.pc_sli4_params.cqv); 15945 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15946 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15947 (cq->page_size / SLI4_PAGE_SIZE)); 15948 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15949 eq->queue_id); 15950 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15951 phba->sli4_hba.pc_sli4_params.cqav); 15952 } else { 15953 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15954 eq->queue_id); 15955 } 15956 switch (cq->entry_count) { 15957 case 2048: 15958 case 4096: 15959 if (phba->sli4_hba.pc_sli4_params.cqv == 15960 LPFC_Q_CREATE_VERSION_2) { 15961 cq_create->u.request.context.lpfc_cq_context_count = 15962 cq->entry_count; 15963 bf_set(lpfc_cq_context_count, 15964 &cq_create->u.request.context, 15965 LPFC_CQ_CNT_WORD7); 15966 break; 15967 } 15968 fallthrough; 15969 default: 15970 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15971 "0361 Unsupported CQ count: " 15972 "entry cnt %d sz %d pg cnt %d\n", 15973 cq->entry_count, cq->entry_size, 15974 cq->page_count); 15975 if (cq->entry_count < 256) { 15976 status = -EINVAL; 15977 goto out; 15978 } 15979 fallthrough; /* otherwise default to smallest count */ 15980 case 256: 15981 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15982 LPFC_CQ_CNT_256); 15983 break; 15984 case 512: 15985 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15986 LPFC_CQ_CNT_512); 15987 break; 15988 case 1024: 15989 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15990 LPFC_CQ_CNT_1024); 15991 break; 15992 } 15993 list_for_each_entry(dmabuf, &cq->page_list, list) { 15994 memset(dmabuf->virt, 0, cq->page_size); 15995 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15996 putPaddrLow(dmabuf->phys); 15997 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15998 putPaddrHigh(dmabuf->phys); 15999 } 16000 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16001 16002 /* The IOCTL status is embedded in the mailbox subheader. */ 16003 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16004 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16005 if (shdr_status || shdr_add_status || rc) { 16006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16007 "2501 CQ_CREATE mailbox failed with " 16008 "status x%x add_status x%x, mbx status x%x\n", 16009 shdr_status, shdr_add_status, rc); 16010 status = -ENXIO; 16011 goto out; 16012 } 16013 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16014 if (cq->queue_id == 0xFFFF) { 16015 status = -ENXIO; 16016 goto out; 16017 } 16018 /* link the cq onto the parent eq child list */ 16019 list_add_tail(&cq->list, &eq->child_list); 16020 /* Set up completion queue's type and subtype */ 16021 cq->type = type; 16022 cq->subtype = subtype; 16023 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16024 cq->assoc_qid = eq->queue_id; 16025 cq->assoc_qp = eq; 16026 cq->host_index = 0; 16027 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16028 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16029 16030 if (cq->queue_id > phba->sli4_hba.cq_max) 16031 phba->sli4_hba.cq_max = cq->queue_id; 16032 16033 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16034 out: 16035 mempool_free(mbox, phba->mbox_mem_pool); 16036 return status; 16037 } 16038 16039 /** 16040 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16041 * @phba: HBA structure that indicates port to create a queue on. 16042 * @cqp: The queue structure array to use to create the completion queues. 16043 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16044 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16045 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16046 * 16047 * This function creates a set of completion queue, s to support MRQ 16048 * as detailed in @cqp, on a port, 16049 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16050 * 16051 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16052 * is used to get the entry count and entry size that are necessary to 16053 * determine the number of pages to allocate and use for this queue. The @eq 16054 * is used to indicate which event queue to bind this completion queue to. This 16055 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16056 * completion queue. This function is asynchronous and will wait for the mailbox 16057 * command to finish before continuing. 16058 * 16059 * On success this function will return a zero. If unable to allocate enough 16060 * memory this function will return -ENOMEM. If the queue create mailbox command 16061 * fails this function will return -ENXIO. 16062 **/ 16063 int 16064 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16065 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16066 uint32_t subtype) 16067 { 16068 struct lpfc_queue *cq; 16069 struct lpfc_queue *eq; 16070 struct lpfc_mbx_cq_create_set *cq_set; 16071 struct lpfc_dmabuf *dmabuf; 16072 LPFC_MBOXQ_t *mbox; 16073 int rc, length, alloclen, status = 0; 16074 int cnt, idx, numcq, page_idx = 0; 16075 uint32_t shdr_status, shdr_add_status; 16076 union lpfc_sli4_cfg_shdr *shdr; 16077 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16078 16079 /* sanity check on queue memory */ 16080 numcq = phba->cfg_nvmet_mrq; 16081 if (!cqp || !hdwq || !numcq) 16082 return -ENODEV; 16083 16084 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16085 if (!mbox) 16086 return -ENOMEM; 16087 16088 length = sizeof(struct lpfc_mbx_cq_create_set); 16089 length += ((numcq * cqp[0]->page_count) * 16090 sizeof(struct dma_address)); 16091 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16092 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16093 LPFC_SLI4_MBX_NEMBED); 16094 if (alloclen < length) { 16095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16096 "3098 Allocated DMA memory size (%d) is " 16097 "less than the requested DMA memory size " 16098 "(%d)\n", alloclen, length); 16099 status = -ENOMEM; 16100 goto out; 16101 } 16102 cq_set = mbox->sge_array->addr[0]; 16103 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16104 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16105 16106 for (idx = 0; idx < numcq; idx++) { 16107 cq = cqp[idx]; 16108 eq = hdwq[idx].hba_eq; 16109 if (!cq || !eq) { 16110 status = -ENOMEM; 16111 goto out; 16112 } 16113 if (!phba->sli4_hba.pc_sli4_params.supported) 16114 hw_page_size = cq->page_size; 16115 16116 switch (idx) { 16117 case 0: 16118 bf_set(lpfc_mbx_cq_create_set_page_size, 16119 &cq_set->u.request, 16120 (hw_page_size / SLI4_PAGE_SIZE)); 16121 bf_set(lpfc_mbx_cq_create_set_num_pages, 16122 &cq_set->u.request, cq->page_count); 16123 bf_set(lpfc_mbx_cq_create_set_evt, 16124 &cq_set->u.request, 1); 16125 bf_set(lpfc_mbx_cq_create_set_valid, 16126 &cq_set->u.request, 1); 16127 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16128 &cq_set->u.request, 0); 16129 bf_set(lpfc_mbx_cq_create_set_num_cq, 16130 &cq_set->u.request, numcq); 16131 bf_set(lpfc_mbx_cq_create_set_autovalid, 16132 &cq_set->u.request, 16133 phba->sli4_hba.pc_sli4_params.cqav); 16134 switch (cq->entry_count) { 16135 case 2048: 16136 case 4096: 16137 if (phba->sli4_hba.pc_sli4_params.cqv == 16138 LPFC_Q_CREATE_VERSION_2) { 16139 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16140 &cq_set->u.request, 16141 cq->entry_count); 16142 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16143 &cq_set->u.request, 16144 LPFC_CQ_CNT_WORD7); 16145 break; 16146 } 16147 fallthrough; 16148 default: 16149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16150 "3118 Bad CQ count. (%d)\n", 16151 cq->entry_count); 16152 if (cq->entry_count < 256) { 16153 status = -EINVAL; 16154 goto out; 16155 } 16156 fallthrough; /* otherwise default to smallest */ 16157 case 256: 16158 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16159 &cq_set->u.request, LPFC_CQ_CNT_256); 16160 break; 16161 case 512: 16162 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16163 &cq_set->u.request, LPFC_CQ_CNT_512); 16164 break; 16165 case 1024: 16166 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16167 &cq_set->u.request, LPFC_CQ_CNT_1024); 16168 break; 16169 } 16170 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16171 &cq_set->u.request, eq->queue_id); 16172 break; 16173 case 1: 16174 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16175 &cq_set->u.request, eq->queue_id); 16176 break; 16177 case 2: 16178 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16179 &cq_set->u.request, eq->queue_id); 16180 break; 16181 case 3: 16182 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16183 &cq_set->u.request, eq->queue_id); 16184 break; 16185 case 4: 16186 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16187 &cq_set->u.request, eq->queue_id); 16188 break; 16189 case 5: 16190 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16191 &cq_set->u.request, eq->queue_id); 16192 break; 16193 case 6: 16194 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16195 &cq_set->u.request, eq->queue_id); 16196 break; 16197 case 7: 16198 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16199 &cq_set->u.request, eq->queue_id); 16200 break; 16201 case 8: 16202 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16203 &cq_set->u.request, eq->queue_id); 16204 break; 16205 case 9: 16206 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16207 &cq_set->u.request, eq->queue_id); 16208 break; 16209 case 10: 16210 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16211 &cq_set->u.request, eq->queue_id); 16212 break; 16213 case 11: 16214 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16215 &cq_set->u.request, eq->queue_id); 16216 break; 16217 case 12: 16218 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16219 &cq_set->u.request, eq->queue_id); 16220 break; 16221 case 13: 16222 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16223 &cq_set->u.request, eq->queue_id); 16224 break; 16225 case 14: 16226 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16227 &cq_set->u.request, eq->queue_id); 16228 break; 16229 case 15: 16230 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16231 &cq_set->u.request, eq->queue_id); 16232 break; 16233 } 16234 16235 /* link the cq onto the parent eq child list */ 16236 list_add_tail(&cq->list, &eq->child_list); 16237 /* Set up completion queue's type and subtype */ 16238 cq->type = type; 16239 cq->subtype = subtype; 16240 cq->assoc_qid = eq->queue_id; 16241 cq->assoc_qp = eq; 16242 cq->host_index = 0; 16243 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16244 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16245 cq->entry_count); 16246 cq->chann = idx; 16247 16248 rc = 0; 16249 list_for_each_entry(dmabuf, &cq->page_list, list) { 16250 memset(dmabuf->virt, 0, hw_page_size); 16251 cnt = page_idx + dmabuf->buffer_tag; 16252 cq_set->u.request.page[cnt].addr_lo = 16253 putPaddrLow(dmabuf->phys); 16254 cq_set->u.request.page[cnt].addr_hi = 16255 putPaddrHigh(dmabuf->phys); 16256 rc++; 16257 } 16258 page_idx += rc; 16259 } 16260 16261 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16262 16263 /* The IOCTL status is embedded in the mailbox subheader. */ 16264 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16265 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16266 if (shdr_status || shdr_add_status || rc) { 16267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16268 "3119 CQ_CREATE_SET mailbox failed with " 16269 "status x%x add_status x%x, mbx status x%x\n", 16270 shdr_status, shdr_add_status, rc); 16271 status = -ENXIO; 16272 goto out; 16273 } 16274 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16275 if (rc == 0xFFFF) { 16276 status = -ENXIO; 16277 goto out; 16278 } 16279 16280 for (idx = 0; idx < numcq; idx++) { 16281 cq = cqp[idx]; 16282 cq->queue_id = rc + idx; 16283 if (cq->queue_id > phba->sli4_hba.cq_max) 16284 phba->sli4_hba.cq_max = cq->queue_id; 16285 } 16286 16287 out: 16288 lpfc_sli4_mbox_cmd_free(phba, mbox); 16289 return status; 16290 } 16291 16292 /** 16293 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16294 * @phba: HBA structure that indicates port to create a queue on. 16295 * @mq: The queue structure to use to create the mailbox queue. 16296 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16297 * @cq: The completion queue to associate with this cq. 16298 * 16299 * This function provides failback (fb) functionality when the 16300 * mq_create_ext fails on older FW generations. It's purpose is identical 16301 * to mq_create_ext otherwise. 16302 * 16303 * This routine cannot fail as all attributes were previously accessed and 16304 * initialized in mq_create_ext. 16305 **/ 16306 static void 16307 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16308 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16309 { 16310 struct lpfc_mbx_mq_create *mq_create; 16311 struct lpfc_dmabuf *dmabuf; 16312 int length; 16313 16314 length = (sizeof(struct lpfc_mbx_mq_create) - 16315 sizeof(struct lpfc_sli4_cfg_mhdr)); 16316 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16317 LPFC_MBOX_OPCODE_MQ_CREATE, 16318 length, LPFC_SLI4_MBX_EMBED); 16319 mq_create = &mbox->u.mqe.un.mq_create; 16320 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16321 mq->page_count); 16322 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16323 cq->queue_id); 16324 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16325 switch (mq->entry_count) { 16326 case 16: 16327 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16328 LPFC_MQ_RING_SIZE_16); 16329 break; 16330 case 32: 16331 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16332 LPFC_MQ_RING_SIZE_32); 16333 break; 16334 case 64: 16335 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16336 LPFC_MQ_RING_SIZE_64); 16337 break; 16338 case 128: 16339 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16340 LPFC_MQ_RING_SIZE_128); 16341 break; 16342 } 16343 list_for_each_entry(dmabuf, &mq->page_list, list) { 16344 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16345 putPaddrLow(dmabuf->phys); 16346 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16347 putPaddrHigh(dmabuf->phys); 16348 } 16349 } 16350 16351 /** 16352 * lpfc_mq_create - Create a mailbox Queue on the HBA 16353 * @phba: HBA structure that indicates port to create a queue on. 16354 * @mq: The queue structure to use to create the mailbox queue. 16355 * @cq: The completion queue to associate with this cq. 16356 * @subtype: The queue's subtype. 16357 * 16358 * This function creates a mailbox queue, as detailed in @mq, on a port, 16359 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16360 * 16361 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16362 * is used to get the entry count and entry size that are necessary to 16363 * determine the number of pages to allocate and use for this queue. This 16364 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16365 * mailbox queue. This function is asynchronous and will wait for the mailbox 16366 * command to finish before continuing. 16367 * 16368 * On success this function will return a zero. If unable to allocate enough 16369 * memory this function will return -ENOMEM. If the queue create mailbox command 16370 * fails this function will return -ENXIO. 16371 **/ 16372 int32_t 16373 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16374 struct lpfc_queue *cq, uint32_t subtype) 16375 { 16376 struct lpfc_mbx_mq_create *mq_create; 16377 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16378 struct lpfc_dmabuf *dmabuf; 16379 LPFC_MBOXQ_t *mbox; 16380 int rc, length, status = 0; 16381 uint32_t shdr_status, shdr_add_status; 16382 union lpfc_sli4_cfg_shdr *shdr; 16383 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16384 16385 /* sanity check on queue memory */ 16386 if (!mq || !cq) 16387 return -ENODEV; 16388 if (!phba->sli4_hba.pc_sli4_params.supported) 16389 hw_page_size = SLI4_PAGE_SIZE; 16390 16391 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16392 if (!mbox) 16393 return -ENOMEM; 16394 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16395 sizeof(struct lpfc_sli4_cfg_mhdr)); 16396 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16397 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16398 length, LPFC_SLI4_MBX_EMBED); 16399 16400 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16401 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16402 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16403 &mq_create_ext->u.request, mq->page_count); 16404 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16405 &mq_create_ext->u.request, 1); 16406 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16407 &mq_create_ext->u.request, 1); 16408 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16409 &mq_create_ext->u.request, 1); 16410 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16411 &mq_create_ext->u.request, 1); 16412 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16413 &mq_create_ext->u.request, 1); 16414 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16415 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16416 phba->sli4_hba.pc_sli4_params.mqv); 16417 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16418 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16419 cq->queue_id); 16420 else 16421 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16422 cq->queue_id); 16423 switch (mq->entry_count) { 16424 default: 16425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16426 "0362 Unsupported MQ count. (%d)\n", 16427 mq->entry_count); 16428 if (mq->entry_count < 16) { 16429 status = -EINVAL; 16430 goto out; 16431 } 16432 fallthrough; /* otherwise default to smallest count */ 16433 case 16: 16434 bf_set(lpfc_mq_context_ring_size, 16435 &mq_create_ext->u.request.context, 16436 LPFC_MQ_RING_SIZE_16); 16437 break; 16438 case 32: 16439 bf_set(lpfc_mq_context_ring_size, 16440 &mq_create_ext->u.request.context, 16441 LPFC_MQ_RING_SIZE_32); 16442 break; 16443 case 64: 16444 bf_set(lpfc_mq_context_ring_size, 16445 &mq_create_ext->u.request.context, 16446 LPFC_MQ_RING_SIZE_64); 16447 break; 16448 case 128: 16449 bf_set(lpfc_mq_context_ring_size, 16450 &mq_create_ext->u.request.context, 16451 LPFC_MQ_RING_SIZE_128); 16452 break; 16453 } 16454 list_for_each_entry(dmabuf, &mq->page_list, list) { 16455 memset(dmabuf->virt, 0, hw_page_size); 16456 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16457 putPaddrLow(dmabuf->phys); 16458 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16459 putPaddrHigh(dmabuf->phys); 16460 } 16461 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16462 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16463 &mq_create_ext->u.response); 16464 if (rc != MBX_SUCCESS) { 16465 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16466 "2795 MQ_CREATE_EXT failed with " 16467 "status x%x. Failback to MQ_CREATE.\n", 16468 rc); 16469 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16470 mq_create = &mbox->u.mqe.un.mq_create; 16471 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16472 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16473 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16474 &mq_create->u.response); 16475 } 16476 16477 /* The IOCTL status is embedded in the mailbox subheader. */ 16478 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16479 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16480 if (shdr_status || shdr_add_status || rc) { 16481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16482 "2502 MQ_CREATE mailbox failed with " 16483 "status x%x add_status x%x, mbx status x%x\n", 16484 shdr_status, shdr_add_status, rc); 16485 status = -ENXIO; 16486 goto out; 16487 } 16488 if (mq->queue_id == 0xFFFF) { 16489 status = -ENXIO; 16490 goto out; 16491 } 16492 mq->type = LPFC_MQ; 16493 mq->assoc_qid = cq->queue_id; 16494 mq->subtype = subtype; 16495 mq->host_index = 0; 16496 mq->hba_index = 0; 16497 16498 /* link the mq onto the parent cq child list */ 16499 list_add_tail(&mq->list, &cq->child_list); 16500 out: 16501 mempool_free(mbox, phba->mbox_mem_pool); 16502 return status; 16503 } 16504 16505 /** 16506 * lpfc_wq_create - Create a Work Queue on the HBA 16507 * @phba: HBA structure that indicates port to create a queue on. 16508 * @wq: The queue structure to use to create the work queue. 16509 * @cq: The completion queue to bind this work queue to. 16510 * @subtype: The subtype of the work queue indicating its functionality. 16511 * 16512 * This function creates a work queue, as detailed in @wq, on a port, described 16513 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16514 * 16515 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16516 * is used to get the entry count and entry size that are necessary to 16517 * determine the number of pages to allocate and use for this queue. The @cq 16518 * is used to indicate which completion queue to bind this work queue to. This 16519 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16520 * work queue. This function is asynchronous and will wait for the mailbox 16521 * command to finish before continuing. 16522 * 16523 * On success this function will return a zero. If unable to allocate enough 16524 * memory this function will return -ENOMEM. If the queue create mailbox command 16525 * fails this function will return -ENXIO. 16526 **/ 16527 int 16528 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16529 struct lpfc_queue *cq, uint32_t subtype) 16530 { 16531 struct lpfc_mbx_wq_create *wq_create; 16532 struct lpfc_dmabuf *dmabuf; 16533 LPFC_MBOXQ_t *mbox; 16534 int rc, length, status = 0; 16535 uint32_t shdr_status, shdr_add_status; 16536 union lpfc_sli4_cfg_shdr *shdr; 16537 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16538 struct dma_address *page; 16539 void __iomem *bar_memmap_p; 16540 uint32_t db_offset; 16541 uint16_t pci_barset; 16542 uint8_t dpp_barset; 16543 uint32_t dpp_offset; 16544 uint8_t wq_create_version; 16545 #ifdef CONFIG_X86 16546 unsigned long pg_addr; 16547 #endif 16548 16549 /* sanity check on queue memory */ 16550 if (!wq || !cq) 16551 return -ENODEV; 16552 if (!phba->sli4_hba.pc_sli4_params.supported) 16553 hw_page_size = wq->page_size; 16554 16555 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16556 if (!mbox) 16557 return -ENOMEM; 16558 length = (sizeof(struct lpfc_mbx_wq_create) - 16559 sizeof(struct lpfc_sli4_cfg_mhdr)); 16560 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16561 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16562 length, LPFC_SLI4_MBX_EMBED); 16563 wq_create = &mbox->u.mqe.un.wq_create; 16564 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16565 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16566 wq->page_count); 16567 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16568 cq->queue_id); 16569 16570 /* wqv is the earliest version supported, NOT the latest */ 16571 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16572 phba->sli4_hba.pc_sli4_params.wqv); 16573 16574 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16575 (wq->page_size > SLI4_PAGE_SIZE)) 16576 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16577 else 16578 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16579 16580 switch (wq_create_version) { 16581 case LPFC_Q_CREATE_VERSION_1: 16582 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16583 wq->entry_count); 16584 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16585 LPFC_Q_CREATE_VERSION_1); 16586 16587 switch (wq->entry_size) { 16588 default: 16589 case 64: 16590 bf_set(lpfc_mbx_wq_create_wqe_size, 16591 &wq_create->u.request_1, 16592 LPFC_WQ_WQE_SIZE_64); 16593 break; 16594 case 128: 16595 bf_set(lpfc_mbx_wq_create_wqe_size, 16596 &wq_create->u.request_1, 16597 LPFC_WQ_WQE_SIZE_128); 16598 break; 16599 } 16600 /* Request DPP by default */ 16601 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16602 bf_set(lpfc_mbx_wq_create_page_size, 16603 &wq_create->u.request_1, 16604 (wq->page_size / SLI4_PAGE_SIZE)); 16605 page = wq_create->u.request_1.page; 16606 break; 16607 default: 16608 page = wq_create->u.request.page; 16609 break; 16610 } 16611 16612 list_for_each_entry(dmabuf, &wq->page_list, list) { 16613 memset(dmabuf->virt, 0, hw_page_size); 16614 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16615 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16616 } 16617 16618 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16619 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16620 16621 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16622 /* The IOCTL status is embedded in the mailbox subheader. */ 16623 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16624 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16625 if (shdr_status || shdr_add_status || rc) { 16626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16627 "2503 WQ_CREATE mailbox failed with " 16628 "status x%x add_status x%x, mbx status x%x\n", 16629 shdr_status, shdr_add_status, rc); 16630 status = -ENXIO; 16631 goto out; 16632 } 16633 16634 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16635 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16636 &wq_create->u.response); 16637 else 16638 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16639 &wq_create->u.response_1); 16640 16641 if (wq->queue_id == 0xFFFF) { 16642 status = -ENXIO; 16643 goto out; 16644 } 16645 16646 wq->db_format = LPFC_DB_LIST_FORMAT; 16647 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16648 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16649 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16650 &wq_create->u.response); 16651 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16652 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16654 "3265 WQ[%d] doorbell format " 16655 "not supported: x%x\n", 16656 wq->queue_id, wq->db_format); 16657 status = -EINVAL; 16658 goto out; 16659 } 16660 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16661 &wq_create->u.response); 16662 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16663 pci_barset); 16664 if (!bar_memmap_p) { 16665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16666 "3263 WQ[%d] failed to memmap " 16667 "pci barset:x%x\n", 16668 wq->queue_id, pci_barset); 16669 status = -ENOMEM; 16670 goto out; 16671 } 16672 db_offset = wq_create->u.response.doorbell_offset; 16673 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16674 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16676 "3252 WQ[%d] doorbell offset " 16677 "not supported: x%x\n", 16678 wq->queue_id, db_offset); 16679 status = -EINVAL; 16680 goto out; 16681 } 16682 wq->db_regaddr = bar_memmap_p + db_offset; 16683 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16684 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16685 "format:x%x\n", wq->queue_id, 16686 pci_barset, db_offset, wq->db_format); 16687 } else 16688 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16689 } else { 16690 /* Check if DPP was honored by the firmware */ 16691 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16692 &wq_create->u.response_1); 16693 if (wq->dpp_enable) { 16694 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16695 &wq_create->u.response_1); 16696 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16697 pci_barset); 16698 if (!bar_memmap_p) { 16699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16700 "3267 WQ[%d] failed to memmap " 16701 "pci barset:x%x\n", 16702 wq->queue_id, pci_barset); 16703 status = -ENOMEM; 16704 goto out; 16705 } 16706 db_offset = wq_create->u.response_1.doorbell_offset; 16707 wq->db_regaddr = bar_memmap_p + db_offset; 16708 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16709 &wq_create->u.response_1); 16710 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16711 &wq_create->u.response_1); 16712 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16713 dpp_barset); 16714 if (!bar_memmap_p) { 16715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16716 "3268 WQ[%d] failed to memmap " 16717 "pci barset:x%x\n", 16718 wq->queue_id, dpp_barset); 16719 status = -ENOMEM; 16720 goto out; 16721 } 16722 dpp_offset = wq_create->u.response_1.dpp_offset; 16723 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16724 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16725 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16726 "dpp_id:x%x dpp_barset:x%x " 16727 "dpp_offset:x%x\n", 16728 wq->queue_id, pci_barset, db_offset, 16729 wq->dpp_id, dpp_barset, dpp_offset); 16730 16731 #ifdef CONFIG_X86 16732 /* Enable combined writes for DPP aperture */ 16733 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16734 rc = set_memory_wc(pg_addr, 1); 16735 if (rc) { 16736 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16737 "3272 Cannot setup Combined " 16738 "Write on WQ[%d] - disable DPP\n", 16739 wq->queue_id); 16740 phba->cfg_enable_dpp = 0; 16741 } 16742 #else 16743 phba->cfg_enable_dpp = 0; 16744 #endif 16745 } else 16746 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16747 } 16748 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16749 if (wq->pring == NULL) { 16750 status = -ENOMEM; 16751 goto out; 16752 } 16753 wq->type = LPFC_WQ; 16754 wq->assoc_qid = cq->queue_id; 16755 wq->subtype = subtype; 16756 wq->host_index = 0; 16757 wq->hba_index = 0; 16758 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16759 16760 /* link the wq onto the parent cq child list */ 16761 list_add_tail(&wq->list, &cq->child_list); 16762 out: 16763 mempool_free(mbox, phba->mbox_mem_pool); 16764 return status; 16765 } 16766 16767 /** 16768 * lpfc_rq_create - Create a Receive Queue on the HBA 16769 * @phba: HBA structure that indicates port to create a queue on. 16770 * @hrq: The queue structure to use to create the header receive queue. 16771 * @drq: The queue structure to use to create the data receive queue. 16772 * @cq: The completion queue to bind this work queue to. 16773 * @subtype: The subtype of the work queue indicating its functionality. 16774 * 16775 * This function creates a receive buffer queue pair , as detailed in @hrq and 16776 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16777 * to the HBA. 16778 * 16779 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16780 * struct is used to get the entry count that is necessary to determine the 16781 * number of pages to use for this queue. The @cq is used to indicate which 16782 * completion queue to bind received buffers that are posted to these queues to. 16783 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16784 * receive queue pair. This function is asynchronous and will wait for the 16785 * mailbox command to finish before continuing. 16786 * 16787 * On success this function will return a zero. If unable to allocate enough 16788 * memory this function will return -ENOMEM. If the queue create mailbox command 16789 * fails this function will return -ENXIO. 16790 **/ 16791 int 16792 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16793 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16794 { 16795 struct lpfc_mbx_rq_create *rq_create; 16796 struct lpfc_dmabuf *dmabuf; 16797 LPFC_MBOXQ_t *mbox; 16798 int rc, length, status = 0; 16799 uint32_t shdr_status, shdr_add_status; 16800 union lpfc_sli4_cfg_shdr *shdr; 16801 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16802 void __iomem *bar_memmap_p; 16803 uint32_t db_offset; 16804 uint16_t pci_barset; 16805 16806 /* sanity check on queue memory */ 16807 if (!hrq || !drq || !cq) 16808 return -ENODEV; 16809 if (!phba->sli4_hba.pc_sli4_params.supported) 16810 hw_page_size = SLI4_PAGE_SIZE; 16811 16812 if (hrq->entry_count != drq->entry_count) 16813 return -EINVAL; 16814 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16815 if (!mbox) 16816 return -ENOMEM; 16817 length = (sizeof(struct lpfc_mbx_rq_create) - 16818 sizeof(struct lpfc_sli4_cfg_mhdr)); 16819 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16820 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16821 length, LPFC_SLI4_MBX_EMBED); 16822 rq_create = &mbox->u.mqe.un.rq_create; 16823 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16824 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16825 phba->sli4_hba.pc_sli4_params.rqv); 16826 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16827 bf_set(lpfc_rq_context_rqe_count_1, 16828 &rq_create->u.request.context, 16829 hrq->entry_count); 16830 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16831 bf_set(lpfc_rq_context_rqe_size, 16832 &rq_create->u.request.context, 16833 LPFC_RQE_SIZE_8); 16834 bf_set(lpfc_rq_context_page_size, 16835 &rq_create->u.request.context, 16836 LPFC_RQ_PAGE_SIZE_4096); 16837 } else { 16838 switch (hrq->entry_count) { 16839 default: 16840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16841 "2535 Unsupported RQ count. (%d)\n", 16842 hrq->entry_count); 16843 if (hrq->entry_count < 512) { 16844 status = -EINVAL; 16845 goto out; 16846 } 16847 fallthrough; /* otherwise default to smallest count */ 16848 case 512: 16849 bf_set(lpfc_rq_context_rqe_count, 16850 &rq_create->u.request.context, 16851 LPFC_RQ_RING_SIZE_512); 16852 break; 16853 case 1024: 16854 bf_set(lpfc_rq_context_rqe_count, 16855 &rq_create->u.request.context, 16856 LPFC_RQ_RING_SIZE_1024); 16857 break; 16858 case 2048: 16859 bf_set(lpfc_rq_context_rqe_count, 16860 &rq_create->u.request.context, 16861 LPFC_RQ_RING_SIZE_2048); 16862 break; 16863 case 4096: 16864 bf_set(lpfc_rq_context_rqe_count, 16865 &rq_create->u.request.context, 16866 LPFC_RQ_RING_SIZE_4096); 16867 break; 16868 } 16869 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16870 LPFC_HDR_BUF_SIZE); 16871 } 16872 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16873 cq->queue_id); 16874 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16875 hrq->page_count); 16876 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16877 memset(dmabuf->virt, 0, hw_page_size); 16878 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16879 putPaddrLow(dmabuf->phys); 16880 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16881 putPaddrHigh(dmabuf->phys); 16882 } 16883 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16884 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16885 16886 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16887 /* The IOCTL status is embedded in the mailbox subheader. */ 16888 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16889 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16890 if (shdr_status || shdr_add_status || rc) { 16891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16892 "2504 RQ_CREATE mailbox failed with " 16893 "status x%x add_status x%x, mbx status x%x\n", 16894 shdr_status, shdr_add_status, rc); 16895 status = -ENXIO; 16896 goto out; 16897 } 16898 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16899 if (hrq->queue_id == 0xFFFF) { 16900 status = -ENXIO; 16901 goto out; 16902 } 16903 16904 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16905 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16906 &rq_create->u.response); 16907 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16908 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16910 "3262 RQ [%d] doorbell format not " 16911 "supported: x%x\n", hrq->queue_id, 16912 hrq->db_format); 16913 status = -EINVAL; 16914 goto out; 16915 } 16916 16917 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16918 &rq_create->u.response); 16919 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16920 if (!bar_memmap_p) { 16921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16922 "3269 RQ[%d] failed to memmap pci " 16923 "barset:x%x\n", hrq->queue_id, 16924 pci_barset); 16925 status = -ENOMEM; 16926 goto out; 16927 } 16928 16929 db_offset = rq_create->u.response.doorbell_offset; 16930 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16931 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16933 "3270 RQ[%d] doorbell offset not " 16934 "supported: x%x\n", hrq->queue_id, 16935 db_offset); 16936 status = -EINVAL; 16937 goto out; 16938 } 16939 hrq->db_regaddr = bar_memmap_p + db_offset; 16940 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16941 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16942 "format:x%x\n", hrq->queue_id, pci_barset, 16943 db_offset, hrq->db_format); 16944 } else { 16945 hrq->db_format = LPFC_DB_RING_FORMAT; 16946 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16947 } 16948 hrq->type = LPFC_HRQ; 16949 hrq->assoc_qid = cq->queue_id; 16950 hrq->subtype = subtype; 16951 hrq->host_index = 0; 16952 hrq->hba_index = 0; 16953 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16954 16955 /* now create the data queue */ 16956 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16957 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16958 length, LPFC_SLI4_MBX_EMBED); 16959 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16960 phba->sli4_hba.pc_sli4_params.rqv); 16961 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16962 bf_set(lpfc_rq_context_rqe_count_1, 16963 &rq_create->u.request.context, hrq->entry_count); 16964 if (subtype == LPFC_NVMET) 16965 rq_create->u.request.context.buffer_size = 16966 LPFC_NVMET_DATA_BUF_SIZE; 16967 else 16968 rq_create->u.request.context.buffer_size = 16969 LPFC_DATA_BUF_SIZE; 16970 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16971 LPFC_RQE_SIZE_8); 16972 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16973 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16974 } else { 16975 switch (drq->entry_count) { 16976 default: 16977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16978 "2536 Unsupported RQ count. (%d)\n", 16979 drq->entry_count); 16980 if (drq->entry_count < 512) { 16981 status = -EINVAL; 16982 goto out; 16983 } 16984 fallthrough; /* otherwise default to smallest count */ 16985 case 512: 16986 bf_set(lpfc_rq_context_rqe_count, 16987 &rq_create->u.request.context, 16988 LPFC_RQ_RING_SIZE_512); 16989 break; 16990 case 1024: 16991 bf_set(lpfc_rq_context_rqe_count, 16992 &rq_create->u.request.context, 16993 LPFC_RQ_RING_SIZE_1024); 16994 break; 16995 case 2048: 16996 bf_set(lpfc_rq_context_rqe_count, 16997 &rq_create->u.request.context, 16998 LPFC_RQ_RING_SIZE_2048); 16999 break; 17000 case 4096: 17001 bf_set(lpfc_rq_context_rqe_count, 17002 &rq_create->u.request.context, 17003 LPFC_RQ_RING_SIZE_4096); 17004 break; 17005 } 17006 if (subtype == LPFC_NVMET) 17007 bf_set(lpfc_rq_context_buf_size, 17008 &rq_create->u.request.context, 17009 LPFC_NVMET_DATA_BUF_SIZE); 17010 else 17011 bf_set(lpfc_rq_context_buf_size, 17012 &rq_create->u.request.context, 17013 LPFC_DATA_BUF_SIZE); 17014 } 17015 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17016 cq->queue_id); 17017 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17018 drq->page_count); 17019 list_for_each_entry(dmabuf, &drq->page_list, list) { 17020 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17021 putPaddrLow(dmabuf->phys); 17022 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17023 putPaddrHigh(dmabuf->phys); 17024 } 17025 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17026 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17027 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17028 /* The IOCTL status is embedded in the mailbox subheader. */ 17029 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17030 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17031 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17032 if (shdr_status || shdr_add_status || rc) { 17033 status = -ENXIO; 17034 goto out; 17035 } 17036 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17037 if (drq->queue_id == 0xFFFF) { 17038 status = -ENXIO; 17039 goto out; 17040 } 17041 drq->type = LPFC_DRQ; 17042 drq->assoc_qid = cq->queue_id; 17043 drq->subtype = subtype; 17044 drq->host_index = 0; 17045 drq->hba_index = 0; 17046 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17047 17048 /* link the header and data RQs onto the parent cq child list */ 17049 list_add_tail(&hrq->list, &cq->child_list); 17050 list_add_tail(&drq->list, &cq->child_list); 17051 17052 out: 17053 mempool_free(mbox, phba->mbox_mem_pool); 17054 return status; 17055 } 17056 17057 /** 17058 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17059 * @phba: HBA structure that indicates port to create a queue on. 17060 * @hrqp: The queue structure array to use to create the header receive queues. 17061 * @drqp: The queue structure array to use to create the data receive queues. 17062 * @cqp: The completion queue array to bind these receive queues to. 17063 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17064 * 17065 * This function creates a receive buffer queue pair , as detailed in @hrq and 17066 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17067 * to the HBA. 17068 * 17069 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17070 * struct is used to get the entry count that is necessary to determine the 17071 * number of pages to use for this queue. The @cq is used to indicate which 17072 * completion queue to bind received buffers that are posted to these queues to. 17073 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17074 * receive queue pair. This function is asynchronous and will wait for the 17075 * mailbox command to finish before continuing. 17076 * 17077 * On success this function will return a zero. If unable to allocate enough 17078 * memory this function will return -ENOMEM. If the queue create mailbox command 17079 * fails this function will return -ENXIO. 17080 **/ 17081 int 17082 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17083 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17084 uint32_t subtype) 17085 { 17086 struct lpfc_queue *hrq, *drq, *cq; 17087 struct lpfc_mbx_rq_create_v2 *rq_create; 17088 struct lpfc_dmabuf *dmabuf; 17089 LPFC_MBOXQ_t *mbox; 17090 int rc, length, alloclen, status = 0; 17091 int cnt, idx, numrq, page_idx = 0; 17092 uint32_t shdr_status, shdr_add_status; 17093 union lpfc_sli4_cfg_shdr *shdr; 17094 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17095 17096 numrq = phba->cfg_nvmet_mrq; 17097 /* sanity check on array memory */ 17098 if (!hrqp || !drqp || !cqp || !numrq) 17099 return -ENODEV; 17100 if (!phba->sli4_hba.pc_sli4_params.supported) 17101 hw_page_size = SLI4_PAGE_SIZE; 17102 17103 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17104 if (!mbox) 17105 return -ENOMEM; 17106 17107 length = sizeof(struct lpfc_mbx_rq_create_v2); 17108 length += ((2 * numrq * hrqp[0]->page_count) * 17109 sizeof(struct dma_address)); 17110 17111 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17112 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17113 LPFC_SLI4_MBX_NEMBED); 17114 if (alloclen < length) { 17115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17116 "3099 Allocated DMA memory size (%d) is " 17117 "less than the requested DMA memory size " 17118 "(%d)\n", alloclen, length); 17119 status = -ENOMEM; 17120 goto out; 17121 } 17122 17123 17124 17125 rq_create = mbox->sge_array->addr[0]; 17126 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17127 17128 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17129 cnt = 0; 17130 17131 for (idx = 0; idx < numrq; idx++) { 17132 hrq = hrqp[idx]; 17133 drq = drqp[idx]; 17134 cq = cqp[idx]; 17135 17136 /* sanity check on queue memory */ 17137 if (!hrq || !drq || !cq) { 17138 status = -ENODEV; 17139 goto out; 17140 } 17141 17142 if (hrq->entry_count != drq->entry_count) { 17143 status = -EINVAL; 17144 goto out; 17145 } 17146 17147 if (idx == 0) { 17148 bf_set(lpfc_mbx_rq_create_num_pages, 17149 &rq_create->u.request, 17150 hrq->page_count); 17151 bf_set(lpfc_mbx_rq_create_rq_cnt, 17152 &rq_create->u.request, (numrq * 2)); 17153 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17154 1); 17155 bf_set(lpfc_rq_context_base_cq, 17156 &rq_create->u.request.context, 17157 cq->queue_id); 17158 bf_set(lpfc_rq_context_data_size, 17159 &rq_create->u.request.context, 17160 LPFC_NVMET_DATA_BUF_SIZE); 17161 bf_set(lpfc_rq_context_hdr_size, 17162 &rq_create->u.request.context, 17163 LPFC_HDR_BUF_SIZE); 17164 bf_set(lpfc_rq_context_rqe_count_1, 17165 &rq_create->u.request.context, 17166 hrq->entry_count); 17167 bf_set(lpfc_rq_context_rqe_size, 17168 &rq_create->u.request.context, 17169 LPFC_RQE_SIZE_8); 17170 bf_set(lpfc_rq_context_page_size, 17171 &rq_create->u.request.context, 17172 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17173 } 17174 rc = 0; 17175 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17176 memset(dmabuf->virt, 0, hw_page_size); 17177 cnt = page_idx + dmabuf->buffer_tag; 17178 rq_create->u.request.page[cnt].addr_lo = 17179 putPaddrLow(dmabuf->phys); 17180 rq_create->u.request.page[cnt].addr_hi = 17181 putPaddrHigh(dmabuf->phys); 17182 rc++; 17183 } 17184 page_idx += rc; 17185 17186 rc = 0; 17187 list_for_each_entry(dmabuf, &drq->page_list, list) { 17188 memset(dmabuf->virt, 0, hw_page_size); 17189 cnt = page_idx + dmabuf->buffer_tag; 17190 rq_create->u.request.page[cnt].addr_lo = 17191 putPaddrLow(dmabuf->phys); 17192 rq_create->u.request.page[cnt].addr_hi = 17193 putPaddrHigh(dmabuf->phys); 17194 rc++; 17195 } 17196 page_idx += rc; 17197 17198 hrq->db_format = LPFC_DB_RING_FORMAT; 17199 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17200 hrq->type = LPFC_HRQ; 17201 hrq->assoc_qid = cq->queue_id; 17202 hrq->subtype = subtype; 17203 hrq->host_index = 0; 17204 hrq->hba_index = 0; 17205 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17206 17207 drq->db_format = LPFC_DB_RING_FORMAT; 17208 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17209 drq->type = LPFC_DRQ; 17210 drq->assoc_qid = cq->queue_id; 17211 drq->subtype = subtype; 17212 drq->host_index = 0; 17213 drq->hba_index = 0; 17214 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17215 17216 list_add_tail(&hrq->list, &cq->child_list); 17217 list_add_tail(&drq->list, &cq->child_list); 17218 } 17219 17220 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17221 /* The IOCTL status is embedded in the mailbox subheader. */ 17222 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17223 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17224 if (shdr_status || shdr_add_status || rc) { 17225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17226 "3120 RQ_CREATE mailbox failed with " 17227 "status x%x add_status x%x, mbx status x%x\n", 17228 shdr_status, shdr_add_status, rc); 17229 status = -ENXIO; 17230 goto out; 17231 } 17232 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17233 if (rc == 0xFFFF) { 17234 status = -ENXIO; 17235 goto out; 17236 } 17237 17238 /* Initialize all RQs with associated queue id */ 17239 for (idx = 0; idx < numrq; idx++) { 17240 hrq = hrqp[idx]; 17241 hrq->queue_id = rc + (2 * idx); 17242 drq = drqp[idx]; 17243 drq->queue_id = rc + (2 * idx) + 1; 17244 } 17245 17246 out: 17247 lpfc_sli4_mbox_cmd_free(phba, mbox); 17248 return status; 17249 } 17250 17251 /** 17252 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17253 * @phba: HBA structure that indicates port to destroy a queue on. 17254 * @eq: The queue structure associated with the queue to destroy. 17255 * 17256 * This function destroys a queue, as detailed in @eq by sending an mailbox 17257 * command, specific to the type of queue, to the HBA. 17258 * 17259 * The @eq struct is used to get the queue ID of the queue to destroy. 17260 * 17261 * On success this function will return a zero. If the queue destroy mailbox 17262 * command fails this function will return -ENXIO. 17263 **/ 17264 int 17265 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17266 { 17267 LPFC_MBOXQ_t *mbox; 17268 int rc, length, status = 0; 17269 uint32_t shdr_status, shdr_add_status; 17270 union lpfc_sli4_cfg_shdr *shdr; 17271 17272 /* sanity check on queue memory */ 17273 if (!eq) 17274 return -ENODEV; 17275 17276 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17277 if (!mbox) 17278 return -ENOMEM; 17279 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17280 sizeof(struct lpfc_sli4_cfg_mhdr)); 17281 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17282 LPFC_MBOX_OPCODE_EQ_DESTROY, 17283 length, LPFC_SLI4_MBX_EMBED); 17284 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17285 eq->queue_id); 17286 mbox->vport = eq->phba->pport; 17287 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17288 17289 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17290 /* The IOCTL status is embedded in the mailbox subheader. */ 17291 shdr = (union lpfc_sli4_cfg_shdr *) 17292 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17293 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17294 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17295 if (shdr_status || shdr_add_status || rc) { 17296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17297 "2505 EQ_DESTROY mailbox failed with " 17298 "status x%x add_status x%x, mbx status x%x\n", 17299 shdr_status, shdr_add_status, rc); 17300 status = -ENXIO; 17301 } 17302 17303 /* Remove eq from any list */ 17304 list_del_init(&eq->list); 17305 mempool_free(mbox, eq->phba->mbox_mem_pool); 17306 return status; 17307 } 17308 17309 /** 17310 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17311 * @phba: HBA structure that indicates port to destroy a queue on. 17312 * @cq: The queue structure associated with the queue to destroy. 17313 * 17314 * This function destroys a queue, as detailed in @cq by sending an mailbox 17315 * command, specific to the type of queue, to the HBA. 17316 * 17317 * The @cq struct is used to get the queue ID of the queue to destroy. 17318 * 17319 * On success this function will return a zero. If the queue destroy mailbox 17320 * command fails this function will return -ENXIO. 17321 **/ 17322 int 17323 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17324 { 17325 LPFC_MBOXQ_t *mbox; 17326 int rc, length, status = 0; 17327 uint32_t shdr_status, shdr_add_status; 17328 union lpfc_sli4_cfg_shdr *shdr; 17329 17330 /* sanity check on queue memory */ 17331 if (!cq) 17332 return -ENODEV; 17333 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17334 if (!mbox) 17335 return -ENOMEM; 17336 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17337 sizeof(struct lpfc_sli4_cfg_mhdr)); 17338 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17339 LPFC_MBOX_OPCODE_CQ_DESTROY, 17340 length, LPFC_SLI4_MBX_EMBED); 17341 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17342 cq->queue_id); 17343 mbox->vport = cq->phba->pport; 17344 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17345 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17346 /* The IOCTL status is embedded in the mailbox subheader. */ 17347 shdr = (union lpfc_sli4_cfg_shdr *) 17348 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17349 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17350 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17351 if (shdr_status || shdr_add_status || rc) { 17352 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17353 "2506 CQ_DESTROY mailbox failed with " 17354 "status x%x add_status x%x, mbx status x%x\n", 17355 shdr_status, shdr_add_status, rc); 17356 status = -ENXIO; 17357 } 17358 /* Remove cq from any list */ 17359 list_del_init(&cq->list); 17360 mempool_free(mbox, cq->phba->mbox_mem_pool); 17361 return status; 17362 } 17363 17364 /** 17365 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17366 * @phba: HBA structure that indicates port to destroy a queue on. 17367 * @mq: The queue structure associated with the queue to destroy. 17368 * 17369 * This function destroys a queue, as detailed in @mq by sending an mailbox 17370 * command, specific to the type of queue, to the HBA. 17371 * 17372 * The @mq struct is used to get the queue ID of the queue to destroy. 17373 * 17374 * On success this function will return a zero. If the queue destroy mailbox 17375 * command fails this function will return -ENXIO. 17376 **/ 17377 int 17378 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17379 { 17380 LPFC_MBOXQ_t *mbox; 17381 int rc, length, status = 0; 17382 uint32_t shdr_status, shdr_add_status; 17383 union lpfc_sli4_cfg_shdr *shdr; 17384 17385 /* sanity check on queue memory */ 17386 if (!mq) 17387 return -ENODEV; 17388 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17389 if (!mbox) 17390 return -ENOMEM; 17391 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17392 sizeof(struct lpfc_sli4_cfg_mhdr)); 17393 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17394 LPFC_MBOX_OPCODE_MQ_DESTROY, 17395 length, LPFC_SLI4_MBX_EMBED); 17396 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17397 mq->queue_id); 17398 mbox->vport = mq->phba->pport; 17399 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17400 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17401 /* The IOCTL status is embedded in the mailbox subheader. */ 17402 shdr = (union lpfc_sli4_cfg_shdr *) 17403 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17404 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17405 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17406 if (shdr_status || shdr_add_status || rc) { 17407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17408 "2507 MQ_DESTROY mailbox failed with " 17409 "status x%x add_status x%x, mbx status x%x\n", 17410 shdr_status, shdr_add_status, rc); 17411 status = -ENXIO; 17412 } 17413 /* Remove mq from any list */ 17414 list_del_init(&mq->list); 17415 mempool_free(mbox, mq->phba->mbox_mem_pool); 17416 return status; 17417 } 17418 17419 /** 17420 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17421 * @phba: HBA structure that indicates port to destroy a queue on. 17422 * @wq: The queue structure associated with the queue to destroy. 17423 * 17424 * This function destroys a queue, as detailed in @wq by sending an mailbox 17425 * command, specific to the type of queue, to the HBA. 17426 * 17427 * The @wq struct is used to get the queue ID of the queue to destroy. 17428 * 17429 * On success this function will return a zero. If the queue destroy mailbox 17430 * command fails this function will return -ENXIO. 17431 **/ 17432 int 17433 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17434 { 17435 LPFC_MBOXQ_t *mbox; 17436 int rc, length, status = 0; 17437 uint32_t shdr_status, shdr_add_status; 17438 union lpfc_sli4_cfg_shdr *shdr; 17439 17440 /* sanity check on queue memory */ 17441 if (!wq) 17442 return -ENODEV; 17443 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17444 if (!mbox) 17445 return -ENOMEM; 17446 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17447 sizeof(struct lpfc_sli4_cfg_mhdr)); 17448 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17449 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17450 length, LPFC_SLI4_MBX_EMBED); 17451 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17452 wq->queue_id); 17453 mbox->vport = wq->phba->pport; 17454 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17455 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17456 shdr = (union lpfc_sli4_cfg_shdr *) 17457 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17458 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17459 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17460 if (shdr_status || shdr_add_status || rc) { 17461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17462 "2508 WQ_DESTROY mailbox failed with " 17463 "status x%x add_status x%x, mbx status x%x\n", 17464 shdr_status, shdr_add_status, rc); 17465 status = -ENXIO; 17466 } 17467 /* Remove wq from any list */ 17468 list_del_init(&wq->list); 17469 kfree(wq->pring); 17470 wq->pring = NULL; 17471 mempool_free(mbox, wq->phba->mbox_mem_pool); 17472 return status; 17473 } 17474 17475 /** 17476 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17477 * @phba: HBA structure that indicates port to destroy a queue on. 17478 * @hrq: The queue structure associated with the queue to destroy. 17479 * @drq: The queue structure associated with the queue to destroy. 17480 * 17481 * This function destroys a queue, as detailed in @rq by sending an mailbox 17482 * command, specific to the type of queue, to the HBA. 17483 * 17484 * The @rq struct is used to get the queue ID of the queue to destroy. 17485 * 17486 * On success this function will return a zero. If the queue destroy mailbox 17487 * command fails this function will return -ENXIO. 17488 **/ 17489 int 17490 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17491 struct lpfc_queue *drq) 17492 { 17493 LPFC_MBOXQ_t *mbox; 17494 int rc, length, status = 0; 17495 uint32_t shdr_status, shdr_add_status; 17496 union lpfc_sli4_cfg_shdr *shdr; 17497 17498 /* sanity check on queue memory */ 17499 if (!hrq || !drq) 17500 return -ENODEV; 17501 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17502 if (!mbox) 17503 return -ENOMEM; 17504 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17505 sizeof(struct lpfc_sli4_cfg_mhdr)); 17506 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17507 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17508 length, LPFC_SLI4_MBX_EMBED); 17509 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17510 hrq->queue_id); 17511 mbox->vport = hrq->phba->pport; 17512 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17513 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17514 /* The IOCTL status is embedded in the mailbox subheader. */ 17515 shdr = (union lpfc_sli4_cfg_shdr *) 17516 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17517 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17518 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17519 if (shdr_status || shdr_add_status || rc) { 17520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17521 "2509 RQ_DESTROY mailbox failed with " 17522 "status x%x add_status x%x, mbx status x%x\n", 17523 shdr_status, shdr_add_status, rc); 17524 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17525 return -ENXIO; 17526 } 17527 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17528 drq->queue_id); 17529 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17530 shdr = (union lpfc_sli4_cfg_shdr *) 17531 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17532 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17533 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17534 if (shdr_status || shdr_add_status || rc) { 17535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17536 "2510 RQ_DESTROY mailbox failed with " 17537 "status x%x add_status x%x, mbx status x%x\n", 17538 shdr_status, shdr_add_status, rc); 17539 status = -ENXIO; 17540 } 17541 list_del_init(&hrq->list); 17542 list_del_init(&drq->list); 17543 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17544 return status; 17545 } 17546 17547 /** 17548 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17549 * @phba: The virtual port for which this call being executed. 17550 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17551 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17552 * @xritag: the xritag that ties this io to the SGL pages. 17553 * 17554 * This routine will post the sgl pages for the IO that has the xritag 17555 * that is in the iocbq structure. The xritag is assigned during iocbq 17556 * creation and persists for as long as the driver is loaded. 17557 * if the caller has fewer than 256 scatter gather segments to map then 17558 * pdma_phys_addr1 should be 0. 17559 * If the caller needs to map more than 256 scatter gather segment then 17560 * pdma_phys_addr1 should be a valid physical address. 17561 * physical address for SGLs must be 64 byte aligned. 17562 * If you are going to map 2 SGL's then the first one must have 256 entries 17563 * the second sgl can have between 1 and 256 entries. 17564 * 17565 * Return codes: 17566 * 0 - Success 17567 * -ENXIO, -ENOMEM - Failure 17568 **/ 17569 int 17570 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17571 dma_addr_t pdma_phys_addr0, 17572 dma_addr_t pdma_phys_addr1, 17573 uint16_t xritag) 17574 { 17575 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17576 LPFC_MBOXQ_t *mbox; 17577 int rc; 17578 uint32_t shdr_status, shdr_add_status; 17579 uint32_t mbox_tmo; 17580 union lpfc_sli4_cfg_shdr *shdr; 17581 17582 if (xritag == NO_XRI) { 17583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17584 "0364 Invalid param:\n"); 17585 return -EINVAL; 17586 } 17587 17588 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17589 if (!mbox) 17590 return -ENOMEM; 17591 17592 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17593 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17594 sizeof(struct lpfc_mbx_post_sgl_pages) - 17595 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17596 17597 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17598 &mbox->u.mqe.un.post_sgl_pages; 17599 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17600 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17601 17602 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17603 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17604 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17605 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17606 17607 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17608 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17609 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17610 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17611 if (!phba->sli4_hba.intr_enable) 17612 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17613 else { 17614 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17615 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17616 } 17617 /* The IOCTL status is embedded in the mailbox subheader. */ 17618 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17619 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17620 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17621 if (!phba->sli4_hba.intr_enable) 17622 mempool_free(mbox, phba->mbox_mem_pool); 17623 else if (rc != MBX_TIMEOUT) 17624 mempool_free(mbox, phba->mbox_mem_pool); 17625 if (shdr_status || shdr_add_status || rc) { 17626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17627 "2511 POST_SGL mailbox failed with " 17628 "status x%x add_status x%x, mbx status x%x\n", 17629 shdr_status, shdr_add_status, rc); 17630 } 17631 return 0; 17632 } 17633 17634 /** 17635 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17636 * @phba: pointer to lpfc hba data structure. 17637 * 17638 * This routine is invoked to post rpi header templates to the 17639 * HBA consistent with the SLI-4 interface spec. This routine 17640 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17641 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17642 * 17643 * Returns 17644 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17645 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17646 **/ 17647 static uint16_t 17648 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17649 { 17650 unsigned long xri; 17651 17652 /* 17653 * Fetch the next logical xri. Because this index is logical, 17654 * the driver starts at 0 each time. 17655 */ 17656 spin_lock_irq(&phba->hbalock); 17657 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17658 phba->sli4_hba.max_cfg_param.max_xri); 17659 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17660 spin_unlock_irq(&phba->hbalock); 17661 return NO_XRI; 17662 } else { 17663 set_bit(xri, phba->sli4_hba.xri_bmask); 17664 phba->sli4_hba.max_cfg_param.xri_used++; 17665 } 17666 spin_unlock_irq(&phba->hbalock); 17667 return xri; 17668 } 17669 17670 /** 17671 * __lpfc_sli4_free_xri - Release an xri for reuse. 17672 * @phba: pointer to lpfc hba data structure. 17673 * @xri: xri to release. 17674 * 17675 * This routine is invoked to release an xri to the pool of 17676 * available rpis maintained by the driver. 17677 **/ 17678 static void 17679 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17680 { 17681 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17682 phba->sli4_hba.max_cfg_param.xri_used--; 17683 } 17684 } 17685 17686 /** 17687 * lpfc_sli4_free_xri - Release an xri for reuse. 17688 * @phba: pointer to lpfc hba data structure. 17689 * @xri: xri to release. 17690 * 17691 * This routine is invoked to release an xri to the pool of 17692 * available rpis maintained by the driver. 17693 **/ 17694 void 17695 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17696 { 17697 spin_lock_irq(&phba->hbalock); 17698 __lpfc_sli4_free_xri(phba, xri); 17699 spin_unlock_irq(&phba->hbalock); 17700 } 17701 17702 /** 17703 * lpfc_sli4_next_xritag - Get an xritag for the io 17704 * @phba: Pointer to HBA context object. 17705 * 17706 * This function gets an xritag for the iocb. If there is no unused xritag 17707 * it will return 0xffff. 17708 * The function returns the allocated xritag if successful, else returns zero. 17709 * Zero is not a valid xritag. 17710 * The caller is not required to hold any lock. 17711 **/ 17712 uint16_t 17713 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17714 { 17715 uint16_t xri_index; 17716 17717 xri_index = lpfc_sli4_alloc_xri(phba); 17718 if (xri_index == NO_XRI) 17719 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17720 "2004 Failed to allocate XRI.last XRITAG is %d" 17721 " Max XRI is %d, Used XRI is %d\n", 17722 xri_index, 17723 phba->sli4_hba.max_cfg_param.max_xri, 17724 phba->sli4_hba.max_cfg_param.xri_used); 17725 return xri_index; 17726 } 17727 17728 /** 17729 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17730 * @phba: pointer to lpfc hba data structure. 17731 * @post_sgl_list: pointer to els sgl entry list. 17732 * @post_cnt: number of els sgl entries on the list. 17733 * 17734 * This routine is invoked to post a block of driver's sgl pages to the 17735 * HBA using non-embedded mailbox command. No Lock is held. This routine 17736 * is only called when the driver is loading and after all IO has been 17737 * stopped. 17738 **/ 17739 static int 17740 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17741 struct list_head *post_sgl_list, 17742 int post_cnt) 17743 { 17744 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17745 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17746 struct sgl_page_pairs *sgl_pg_pairs; 17747 void *viraddr; 17748 LPFC_MBOXQ_t *mbox; 17749 uint32_t reqlen, alloclen, pg_pairs; 17750 uint32_t mbox_tmo; 17751 uint16_t xritag_start = 0; 17752 int rc = 0; 17753 uint32_t shdr_status, shdr_add_status; 17754 union lpfc_sli4_cfg_shdr *shdr; 17755 17756 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17757 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17758 if (reqlen > SLI4_PAGE_SIZE) { 17759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17760 "2559 Block sgl registration required DMA " 17761 "size (%d) great than a page\n", reqlen); 17762 return -ENOMEM; 17763 } 17764 17765 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17766 if (!mbox) 17767 return -ENOMEM; 17768 17769 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17770 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17771 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17772 LPFC_SLI4_MBX_NEMBED); 17773 17774 if (alloclen < reqlen) { 17775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17776 "0285 Allocated DMA memory size (%d) is " 17777 "less than the requested DMA memory " 17778 "size (%d)\n", alloclen, reqlen); 17779 lpfc_sli4_mbox_cmd_free(phba, mbox); 17780 return -ENOMEM; 17781 } 17782 /* Set up the SGL pages in the non-embedded DMA pages */ 17783 viraddr = mbox->sge_array->addr[0]; 17784 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17785 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17786 17787 pg_pairs = 0; 17788 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17789 /* Set up the sge entry */ 17790 sgl_pg_pairs->sgl_pg0_addr_lo = 17791 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17792 sgl_pg_pairs->sgl_pg0_addr_hi = 17793 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17794 sgl_pg_pairs->sgl_pg1_addr_lo = 17795 cpu_to_le32(putPaddrLow(0)); 17796 sgl_pg_pairs->sgl_pg1_addr_hi = 17797 cpu_to_le32(putPaddrHigh(0)); 17798 17799 /* Keep the first xritag on the list */ 17800 if (pg_pairs == 0) 17801 xritag_start = sglq_entry->sli4_xritag; 17802 sgl_pg_pairs++; 17803 pg_pairs++; 17804 } 17805 17806 /* Complete initialization and perform endian conversion. */ 17807 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17808 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17809 sgl->word0 = cpu_to_le32(sgl->word0); 17810 17811 if (!phba->sli4_hba.intr_enable) 17812 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17813 else { 17814 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17815 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17816 } 17817 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17818 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17819 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17820 if (!phba->sli4_hba.intr_enable) 17821 lpfc_sli4_mbox_cmd_free(phba, mbox); 17822 else if (rc != MBX_TIMEOUT) 17823 lpfc_sli4_mbox_cmd_free(phba, mbox); 17824 if (shdr_status || shdr_add_status || rc) { 17825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17826 "2513 POST_SGL_BLOCK mailbox command failed " 17827 "status x%x add_status x%x mbx status x%x\n", 17828 shdr_status, shdr_add_status, rc); 17829 rc = -ENXIO; 17830 } 17831 return rc; 17832 } 17833 17834 /** 17835 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17836 * @phba: pointer to lpfc hba data structure. 17837 * @nblist: pointer to nvme buffer list. 17838 * @count: number of scsi buffers on the list. 17839 * 17840 * This routine is invoked to post a block of @count scsi sgl pages from a 17841 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17842 * No Lock is held. 17843 * 17844 **/ 17845 static int 17846 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17847 int count) 17848 { 17849 struct lpfc_io_buf *lpfc_ncmd; 17850 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17851 struct sgl_page_pairs *sgl_pg_pairs; 17852 void *viraddr; 17853 LPFC_MBOXQ_t *mbox; 17854 uint32_t reqlen, alloclen, pg_pairs; 17855 uint32_t mbox_tmo; 17856 uint16_t xritag_start = 0; 17857 int rc = 0; 17858 uint32_t shdr_status, shdr_add_status; 17859 dma_addr_t pdma_phys_bpl1; 17860 union lpfc_sli4_cfg_shdr *shdr; 17861 17862 /* Calculate the requested length of the dma memory */ 17863 reqlen = count * sizeof(struct sgl_page_pairs) + 17864 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17865 if (reqlen > SLI4_PAGE_SIZE) { 17866 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17867 "6118 Block sgl registration required DMA " 17868 "size (%d) great than a page\n", reqlen); 17869 return -ENOMEM; 17870 } 17871 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17872 if (!mbox) { 17873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17874 "6119 Failed to allocate mbox cmd memory\n"); 17875 return -ENOMEM; 17876 } 17877 17878 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17879 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17880 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17881 reqlen, LPFC_SLI4_MBX_NEMBED); 17882 17883 if (alloclen < reqlen) { 17884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17885 "6120 Allocated DMA memory size (%d) is " 17886 "less than the requested DMA memory " 17887 "size (%d)\n", alloclen, reqlen); 17888 lpfc_sli4_mbox_cmd_free(phba, mbox); 17889 return -ENOMEM; 17890 } 17891 17892 /* Get the first SGE entry from the non-embedded DMA memory */ 17893 viraddr = mbox->sge_array->addr[0]; 17894 17895 /* Set up the SGL pages in the non-embedded DMA pages */ 17896 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17897 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17898 17899 pg_pairs = 0; 17900 list_for_each_entry(lpfc_ncmd, nblist, list) { 17901 /* Set up the sge entry */ 17902 sgl_pg_pairs->sgl_pg0_addr_lo = 17903 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17904 sgl_pg_pairs->sgl_pg0_addr_hi = 17905 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17906 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17907 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17908 SGL_PAGE_SIZE; 17909 else 17910 pdma_phys_bpl1 = 0; 17911 sgl_pg_pairs->sgl_pg1_addr_lo = 17912 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17913 sgl_pg_pairs->sgl_pg1_addr_hi = 17914 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17915 /* Keep the first xritag on the list */ 17916 if (pg_pairs == 0) 17917 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17918 sgl_pg_pairs++; 17919 pg_pairs++; 17920 } 17921 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17922 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17923 /* Perform endian conversion if necessary */ 17924 sgl->word0 = cpu_to_le32(sgl->word0); 17925 17926 if (!phba->sli4_hba.intr_enable) { 17927 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17928 } else { 17929 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17930 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17931 } 17932 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17933 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17934 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17935 if (!phba->sli4_hba.intr_enable) 17936 lpfc_sli4_mbox_cmd_free(phba, mbox); 17937 else if (rc != MBX_TIMEOUT) 17938 lpfc_sli4_mbox_cmd_free(phba, mbox); 17939 if (shdr_status || shdr_add_status || rc) { 17940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17941 "6125 POST_SGL_BLOCK mailbox command failed " 17942 "status x%x add_status x%x mbx status x%x\n", 17943 shdr_status, shdr_add_status, rc); 17944 rc = -ENXIO; 17945 } 17946 return rc; 17947 } 17948 17949 /** 17950 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17951 * @phba: pointer to lpfc hba data structure. 17952 * @post_nblist: pointer to the nvme buffer list. 17953 * @sb_count: number of nvme buffers. 17954 * 17955 * This routine walks a list of nvme buffers that was passed in. It attempts 17956 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17957 * uses the non-embedded SGL block post mailbox commands to post to the port. 17958 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17959 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17960 * must be local list, thus no lock is needed when manipulate the list. 17961 * 17962 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17963 **/ 17964 int 17965 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17966 struct list_head *post_nblist, int sb_count) 17967 { 17968 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17969 int status, sgl_size; 17970 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17971 dma_addr_t pdma_phys_sgl1; 17972 int last_xritag = NO_XRI; 17973 int cur_xritag; 17974 LIST_HEAD(prep_nblist); 17975 LIST_HEAD(blck_nblist); 17976 LIST_HEAD(nvme_nblist); 17977 17978 /* sanity check */ 17979 if (sb_count <= 0) 17980 return -EINVAL; 17981 17982 sgl_size = phba->cfg_sg_dma_buf_size; 17983 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17984 list_del_init(&lpfc_ncmd->list); 17985 block_cnt++; 17986 if ((last_xritag != NO_XRI) && 17987 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17988 /* a hole in xri block, form a sgl posting block */ 17989 list_splice_init(&prep_nblist, &blck_nblist); 17990 post_cnt = block_cnt - 1; 17991 /* prepare list for next posting block */ 17992 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17993 block_cnt = 1; 17994 } else { 17995 /* prepare list for next posting block */ 17996 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17997 /* enough sgls for non-embed sgl mbox command */ 17998 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17999 list_splice_init(&prep_nblist, &blck_nblist); 18000 post_cnt = block_cnt; 18001 block_cnt = 0; 18002 } 18003 } 18004 num_posting++; 18005 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18006 18007 /* end of repost sgl list condition for NVME buffers */ 18008 if (num_posting == sb_count) { 18009 if (post_cnt == 0) { 18010 /* last sgl posting block */ 18011 list_splice_init(&prep_nblist, &blck_nblist); 18012 post_cnt = block_cnt; 18013 } else if (block_cnt == 1) { 18014 /* last single sgl with non-contiguous xri */ 18015 if (sgl_size > SGL_PAGE_SIZE) 18016 pdma_phys_sgl1 = 18017 lpfc_ncmd->dma_phys_sgl + 18018 SGL_PAGE_SIZE; 18019 else 18020 pdma_phys_sgl1 = 0; 18021 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18022 status = lpfc_sli4_post_sgl( 18023 phba, lpfc_ncmd->dma_phys_sgl, 18024 pdma_phys_sgl1, cur_xritag); 18025 if (status) { 18026 /* Post error. Buffer unavailable. */ 18027 lpfc_ncmd->flags |= 18028 LPFC_SBUF_NOT_POSTED; 18029 } else { 18030 /* Post success. Bffer available. */ 18031 lpfc_ncmd->flags &= 18032 ~LPFC_SBUF_NOT_POSTED; 18033 lpfc_ncmd->status = IOSTAT_SUCCESS; 18034 num_posted++; 18035 } 18036 /* success, put on NVME buffer sgl list */ 18037 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18038 } 18039 } 18040 18041 /* continue until a nembed page worth of sgls */ 18042 if (post_cnt == 0) 18043 continue; 18044 18045 /* post block of NVME buffer list sgls */ 18046 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18047 post_cnt); 18048 18049 /* don't reset xirtag due to hole in xri block */ 18050 if (block_cnt == 0) 18051 last_xritag = NO_XRI; 18052 18053 /* reset NVME buffer post count for next round of posting */ 18054 post_cnt = 0; 18055 18056 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18057 while (!list_empty(&blck_nblist)) { 18058 list_remove_head(&blck_nblist, lpfc_ncmd, 18059 struct lpfc_io_buf, list); 18060 if (status) { 18061 /* Post error. Mark buffer unavailable. */ 18062 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18063 } else { 18064 /* Post success, Mark buffer available. */ 18065 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18066 lpfc_ncmd->status = IOSTAT_SUCCESS; 18067 num_posted++; 18068 } 18069 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18070 } 18071 } 18072 /* Push NVME buffers with sgl posted to the available list */ 18073 lpfc_io_buf_replenish(phba, &nvme_nblist); 18074 18075 return num_posted; 18076 } 18077 18078 /** 18079 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18080 * @phba: pointer to lpfc_hba struct that the frame was received on 18081 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18082 * 18083 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18084 * valid type of frame that the LPFC driver will handle. This function will 18085 * return a zero if the frame is a valid frame or a non zero value when the 18086 * frame does not pass the check. 18087 **/ 18088 static int 18089 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18090 { 18091 /* make rctl_names static to save stack space */ 18092 struct fc_vft_header *fc_vft_hdr; 18093 uint32_t *header = (uint32_t *) fc_hdr; 18094 18095 #define FC_RCTL_MDS_DIAGS 0xF4 18096 18097 switch (fc_hdr->fh_r_ctl) { 18098 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18099 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18100 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18101 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18102 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18103 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18104 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18105 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18106 case FC_RCTL_ELS_REQ: /* extended link services request */ 18107 case FC_RCTL_ELS_REP: /* extended link services reply */ 18108 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18109 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18110 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18111 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18112 case FC_RCTL_BA_RMC: /* remove connection */ 18113 case FC_RCTL_BA_ACC: /* basic accept */ 18114 case FC_RCTL_BA_RJT: /* basic reject */ 18115 case FC_RCTL_BA_PRMT: 18116 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18117 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18118 case FC_RCTL_P_RJT: /* port reject */ 18119 case FC_RCTL_F_RJT: /* fabric reject */ 18120 case FC_RCTL_P_BSY: /* port busy */ 18121 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18122 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18123 case FC_RCTL_LCR: /* link credit reset */ 18124 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18125 case FC_RCTL_END: /* end */ 18126 break; 18127 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18128 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18129 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18130 return lpfc_fc_frame_check(phba, fc_hdr); 18131 default: 18132 goto drop; 18133 } 18134 18135 switch (fc_hdr->fh_type) { 18136 case FC_TYPE_BLS: 18137 case FC_TYPE_ELS: 18138 case FC_TYPE_FCP: 18139 case FC_TYPE_CT: 18140 case FC_TYPE_NVME: 18141 break; 18142 case FC_TYPE_IP: 18143 case FC_TYPE_ILS: 18144 default: 18145 goto drop; 18146 } 18147 18148 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18149 "2538 Received frame rctl:x%x, type:x%x, " 18150 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18151 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18152 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18153 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18154 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18155 be32_to_cpu(header[6])); 18156 return 0; 18157 drop: 18158 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18159 "2539 Dropped frame rctl:x%x type:x%x\n", 18160 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18161 return 1; 18162 } 18163 18164 /** 18165 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18166 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18167 * 18168 * This function processes the FC header to retrieve the VFI from the VF 18169 * header, if one exists. This function will return the VFI if one exists 18170 * or 0 if no VSAN Header exists. 18171 **/ 18172 static uint32_t 18173 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18174 { 18175 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18176 18177 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18178 return 0; 18179 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18180 } 18181 18182 /** 18183 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18184 * @phba: Pointer to the HBA structure to search for the vport on 18185 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18186 * @fcfi: The FC Fabric ID that the frame came from 18187 * @did: Destination ID to match against 18188 * 18189 * This function searches the @phba for a vport that matches the content of the 18190 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18191 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18192 * returns the matching vport pointer or NULL if unable to match frame to a 18193 * vport. 18194 **/ 18195 static struct lpfc_vport * 18196 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18197 uint16_t fcfi, uint32_t did) 18198 { 18199 struct lpfc_vport **vports; 18200 struct lpfc_vport *vport = NULL; 18201 int i; 18202 18203 if (did == Fabric_DID) 18204 return phba->pport; 18205 if ((phba->pport->fc_flag & FC_PT2PT) && 18206 !(phba->link_state == LPFC_HBA_READY)) 18207 return phba->pport; 18208 18209 vports = lpfc_create_vport_work_array(phba); 18210 if (vports != NULL) { 18211 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18212 if (phba->fcf.fcfi == fcfi && 18213 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18214 vports[i]->fc_myDID == did) { 18215 vport = vports[i]; 18216 break; 18217 } 18218 } 18219 } 18220 lpfc_destroy_vport_work_array(phba, vports); 18221 return vport; 18222 } 18223 18224 /** 18225 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18226 * @vport: The vport to work on. 18227 * 18228 * This function updates the receive sequence time stamp for this vport. The 18229 * receive sequence time stamp indicates the time that the last frame of the 18230 * the sequence that has been idle for the longest amount of time was received. 18231 * the driver uses this time stamp to indicate if any received sequences have 18232 * timed out. 18233 **/ 18234 static void 18235 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18236 { 18237 struct lpfc_dmabuf *h_buf; 18238 struct hbq_dmabuf *dmabuf = NULL; 18239 18240 /* get the oldest sequence on the rcv list */ 18241 h_buf = list_get_first(&vport->rcv_buffer_list, 18242 struct lpfc_dmabuf, list); 18243 if (!h_buf) 18244 return; 18245 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18246 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18247 } 18248 18249 /** 18250 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18251 * @vport: The vport that the received sequences were sent to. 18252 * 18253 * This function cleans up all outstanding received sequences. This is called 18254 * by the driver when a link event or user action invalidates all the received 18255 * sequences. 18256 **/ 18257 void 18258 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18259 { 18260 struct lpfc_dmabuf *h_buf, *hnext; 18261 struct lpfc_dmabuf *d_buf, *dnext; 18262 struct hbq_dmabuf *dmabuf = NULL; 18263 18264 /* start with the oldest sequence on the rcv list */ 18265 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18266 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18267 list_del_init(&dmabuf->hbuf.list); 18268 list_for_each_entry_safe(d_buf, dnext, 18269 &dmabuf->dbuf.list, list) { 18270 list_del_init(&d_buf->list); 18271 lpfc_in_buf_free(vport->phba, d_buf); 18272 } 18273 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18274 } 18275 } 18276 18277 /** 18278 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18279 * @vport: The vport that the received sequences were sent to. 18280 * 18281 * This function determines whether any received sequences have timed out by 18282 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18283 * indicates that there is at least one timed out sequence this routine will 18284 * go through the received sequences one at a time from most inactive to most 18285 * active to determine which ones need to be cleaned up. Once it has determined 18286 * that a sequence needs to be cleaned up it will simply free up the resources 18287 * without sending an abort. 18288 **/ 18289 void 18290 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18291 { 18292 struct lpfc_dmabuf *h_buf, *hnext; 18293 struct lpfc_dmabuf *d_buf, *dnext; 18294 struct hbq_dmabuf *dmabuf = NULL; 18295 unsigned long timeout; 18296 int abort_count = 0; 18297 18298 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18299 vport->rcv_buffer_time_stamp); 18300 if (list_empty(&vport->rcv_buffer_list) || 18301 time_before(jiffies, timeout)) 18302 return; 18303 /* start with the oldest sequence on the rcv list */ 18304 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18305 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18306 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18307 dmabuf->time_stamp); 18308 if (time_before(jiffies, timeout)) 18309 break; 18310 abort_count++; 18311 list_del_init(&dmabuf->hbuf.list); 18312 list_for_each_entry_safe(d_buf, dnext, 18313 &dmabuf->dbuf.list, list) { 18314 list_del_init(&d_buf->list); 18315 lpfc_in_buf_free(vport->phba, d_buf); 18316 } 18317 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18318 } 18319 if (abort_count) 18320 lpfc_update_rcv_time_stamp(vport); 18321 } 18322 18323 /** 18324 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18325 * @vport: pointer to a vitural port 18326 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18327 * 18328 * This function searches through the existing incomplete sequences that have 18329 * been sent to this @vport. If the frame matches one of the incomplete 18330 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18331 * make up that sequence. If no sequence is found that matches this frame then 18332 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18333 * This function returns a pointer to the first dmabuf in the sequence list that 18334 * the frame was linked to. 18335 **/ 18336 static struct hbq_dmabuf * 18337 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18338 { 18339 struct fc_frame_header *new_hdr; 18340 struct fc_frame_header *temp_hdr; 18341 struct lpfc_dmabuf *d_buf; 18342 struct lpfc_dmabuf *h_buf; 18343 struct hbq_dmabuf *seq_dmabuf = NULL; 18344 struct hbq_dmabuf *temp_dmabuf = NULL; 18345 uint8_t found = 0; 18346 18347 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18348 dmabuf->time_stamp = jiffies; 18349 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18350 18351 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18352 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18353 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18354 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18355 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18356 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18357 continue; 18358 /* found a pending sequence that matches this frame */ 18359 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18360 break; 18361 } 18362 if (!seq_dmabuf) { 18363 /* 18364 * This indicates first frame received for this sequence. 18365 * Queue the buffer on the vport's rcv_buffer_list. 18366 */ 18367 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18368 lpfc_update_rcv_time_stamp(vport); 18369 return dmabuf; 18370 } 18371 temp_hdr = seq_dmabuf->hbuf.virt; 18372 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18373 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18374 list_del_init(&seq_dmabuf->hbuf.list); 18375 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18376 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18377 lpfc_update_rcv_time_stamp(vport); 18378 return dmabuf; 18379 } 18380 /* move this sequence to the tail to indicate a young sequence */ 18381 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18382 seq_dmabuf->time_stamp = jiffies; 18383 lpfc_update_rcv_time_stamp(vport); 18384 if (list_empty(&seq_dmabuf->dbuf.list)) { 18385 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18386 return seq_dmabuf; 18387 } 18388 /* find the correct place in the sequence to insert this frame */ 18389 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18390 while (!found) { 18391 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18392 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18393 /* 18394 * If the frame's sequence count is greater than the frame on 18395 * the list then insert the frame right after this frame 18396 */ 18397 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18398 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18399 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18400 found = 1; 18401 break; 18402 } 18403 18404 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18405 break; 18406 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18407 } 18408 18409 if (found) 18410 return seq_dmabuf; 18411 return NULL; 18412 } 18413 18414 /** 18415 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18416 * @vport: pointer to a vitural port 18417 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18418 * 18419 * This function tries to abort from the partially assembed sequence, described 18420 * by the information from basic abbort @dmabuf. It checks to see whether such 18421 * partially assembled sequence held by the driver. If so, it shall free up all 18422 * the frames from the partially assembled sequence. 18423 * 18424 * Return 18425 * true -- if there is matching partially assembled sequence present and all 18426 * the frames freed with the sequence; 18427 * false -- if there is no matching partially assembled sequence present so 18428 * nothing got aborted in the lower layer driver 18429 **/ 18430 static bool 18431 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18432 struct hbq_dmabuf *dmabuf) 18433 { 18434 struct fc_frame_header *new_hdr; 18435 struct fc_frame_header *temp_hdr; 18436 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18437 struct hbq_dmabuf *seq_dmabuf = NULL; 18438 18439 /* Use the hdr_buf to find the sequence that matches this frame */ 18440 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18441 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18442 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18443 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18444 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18445 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18446 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18447 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18448 continue; 18449 /* found a pending sequence that matches this frame */ 18450 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18451 break; 18452 } 18453 18454 /* Free up all the frames from the partially assembled sequence */ 18455 if (seq_dmabuf) { 18456 list_for_each_entry_safe(d_buf, n_buf, 18457 &seq_dmabuf->dbuf.list, list) { 18458 list_del_init(&d_buf->list); 18459 lpfc_in_buf_free(vport->phba, d_buf); 18460 } 18461 return true; 18462 } 18463 return false; 18464 } 18465 18466 /** 18467 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18468 * @vport: pointer to a vitural port 18469 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18470 * 18471 * This function tries to abort from the assembed sequence from upper level 18472 * protocol, described by the information from basic abbort @dmabuf. It 18473 * checks to see whether such pending context exists at upper level protocol. 18474 * If so, it shall clean up the pending context. 18475 * 18476 * Return 18477 * true -- if there is matching pending context of the sequence cleaned 18478 * at ulp; 18479 * false -- if there is no matching pending context of the sequence present 18480 * at ulp. 18481 **/ 18482 static bool 18483 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18484 { 18485 struct lpfc_hba *phba = vport->phba; 18486 int handled; 18487 18488 /* Accepting abort at ulp with SLI4 only */ 18489 if (phba->sli_rev < LPFC_SLI_REV4) 18490 return false; 18491 18492 /* Register all caring upper level protocols to attend abort */ 18493 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18494 if (handled) 18495 return true; 18496 18497 return false; 18498 } 18499 18500 /** 18501 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18502 * @phba: Pointer to HBA context object. 18503 * @cmd_iocbq: pointer to the command iocbq structure. 18504 * @rsp_iocbq: pointer to the response iocbq structure. 18505 * 18506 * This function handles the sequence abort response iocb command complete 18507 * event. It properly releases the memory allocated to the sequence abort 18508 * accept iocb. 18509 **/ 18510 static void 18511 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18512 struct lpfc_iocbq *cmd_iocbq, 18513 struct lpfc_iocbq *rsp_iocbq) 18514 { 18515 struct lpfc_nodelist *ndlp; 18516 18517 if (cmd_iocbq) { 18518 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18519 lpfc_nlp_put(ndlp); 18520 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18521 } 18522 18523 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18524 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18526 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18527 get_job_ulpstatus(phba, rsp_iocbq), 18528 get_job_word4(phba, rsp_iocbq)); 18529 } 18530 18531 /** 18532 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18533 * @phba: Pointer to HBA context object. 18534 * @xri: xri id in transaction. 18535 * 18536 * This function validates the xri maps to the known range of XRIs allocated an 18537 * used by the driver. 18538 **/ 18539 uint16_t 18540 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18541 uint16_t xri) 18542 { 18543 uint16_t i; 18544 18545 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18546 if (xri == phba->sli4_hba.xri_ids[i]) 18547 return i; 18548 } 18549 return NO_XRI; 18550 } 18551 18552 /** 18553 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18554 * @vport: pointer to a virtual port. 18555 * @fc_hdr: pointer to a FC frame header. 18556 * @aborted: was the partially assembled receive sequence successfully aborted 18557 * 18558 * This function sends a basic response to a previous unsol sequence abort 18559 * event after aborting the sequence handling. 18560 **/ 18561 void 18562 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18563 struct fc_frame_header *fc_hdr, bool aborted) 18564 { 18565 struct lpfc_hba *phba = vport->phba; 18566 struct lpfc_iocbq *ctiocb = NULL; 18567 struct lpfc_nodelist *ndlp; 18568 uint16_t oxid, rxid, xri, lxri; 18569 uint32_t sid, fctl; 18570 union lpfc_wqe128 *icmd; 18571 int rc; 18572 18573 if (!lpfc_is_link_up(phba)) 18574 return; 18575 18576 sid = sli4_sid_from_fc_hdr(fc_hdr); 18577 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18578 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18579 18580 ndlp = lpfc_findnode_did(vport, sid); 18581 if (!ndlp) { 18582 ndlp = lpfc_nlp_init(vport, sid); 18583 if (!ndlp) { 18584 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18585 "1268 Failed to allocate ndlp for " 18586 "oxid:x%x SID:x%x\n", oxid, sid); 18587 return; 18588 } 18589 /* Put ndlp onto pport node list */ 18590 lpfc_enqueue_node(vport, ndlp); 18591 } 18592 18593 /* Allocate buffer for rsp iocb */ 18594 ctiocb = lpfc_sli_get_iocbq(phba); 18595 if (!ctiocb) 18596 return; 18597 18598 icmd = &ctiocb->wqe; 18599 18600 /* Extract the F_CTL field from FC_HDR */ 18601 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18602 18603 ctiocb->context1 = lpfc_nlp_get(ndlp); 18604 if (!ctiocb->context1) { 18605 lpfc_sli_release_iocbq(phba, ctiocb); 18606 return; 18607 } 18608 18609 ctiocb->vport = phba->pport; 18610 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18611 ctiocb->sli4_lxritag = NO_XRI; 18612 ctiocb->sli4_xritag = NO_XRI; 18613 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18614 18615 if (fctl & FC_FC_EX_CTX) 18616 /* Exchange responder sent the abort so we 18617 * own the oxid. 18618 */ 18619 xri = oxid; 18620 else 18621 xri = rxid; 18622 lxri = lpfc_sli4_xri_inrange(phba, xri); 18623 if (lxri != NO_XRI) 18624 lpfc_set_rrq_active(phba, ndlp, lxri, 18625 (xri == oxid) ? rxid : oxid, 0); 18626 /* For BA_ABTS from exchange responder, if the logical xri with 18627 * the oxid maps to the FCP XRI range, the port no longer has 18628 * that exchange context, send a BLS_RJT. Override the IOCB for 18629 * a BA_RJT. 18630 */ 18631 if ((fctl & FC_FC_EX_CTX) && 18632 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18633 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18634 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18635 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18636 FC_BA_RJT_INV_XID); 18637 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18638 FC_BA_RJT_UNABLE); 18639 } 18640 18641 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18642 * the driver no longer has that exchange, send a BLS_RJT. Override 18643 * the IOCB for a BA_RJT. 18644 */ 18645 if (aborted == false) { 18646 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18647 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18648 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18649 FC_BA_RJT_INV_XID); 18650 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18651 FC_BA_RJT_UNABLE); 18652 } 18653 18654 if (fctl & FC_FC_EX_CTX) { 18655 /* ABTS sent by responder to CT exchange, construction 18656 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18657 * field and RX_ID from ABTS for RX_ID field. 18658 */ 18659 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18660 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18661 } else { 18662 /* ABTS sent by initiator to CT exchange, construction 18663 * of BA_ACC will need to allocate a new XRI as for the 18664 * XRI_TAG field. 18665 */ 18666 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18667 } 18668 18669 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18670 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18671 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18672 18673 /* Use CT=VPI */ 18674 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18675 ndlp->nlp_DID); 18676 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18677 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18678 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18679 18680 18681 /* Xmit CT abts response on exchange <xid> */ 18682 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18683 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18684 ctiocb->abort_rctl, oxid, phba->link_state); 18685 18686 lpfc_sli_prep_wqe(phba, ctiocb); 18687 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18688 if (rc == IOCB_ERROR) { 18689 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18690 "2925 Failed to issue CT ABTS RSP x%x on " 18691 "xri x%x, Data x%x\n", 18692 ctiocb->abort_rctl, oxid, 18693 phba->link_state); 18694 lpfc_nlp_put(ndlp); 18695 ctiocb->context1 = NULL; 18696 lpfc_sli_release_iocbq(phba, ctiocb); 18697 } 18698 } 18699 18700 /** 18701 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18702 * @vport: Pointer to the vport on which this sequence was received 18703 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18704 * 18705 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18706 * receive sequence is only partially assembed by the driver, it shall abort 18707 * the partially assembled frames for the sequence. Otherwise, if the 18708 * unsolicited receive sequence has been completely assembled and passed to 18709 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18710 * unsolicited sequence has been aborted. After that, it will issue a basic 18711 * accept to accept the abort. 18712 **/ 18713 static void 18714 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18715 struct hbq_dmabuf *dmabuf) 18716 { 18717 struct lpfc_hba *phba = vport->phba; 18718 struct fc_frame_header fc_hdr; 18719 uint32_t fctl; 18720 bool aborted; 18721 18722 /* Make a copy of fc_hdr before the dmabuf being released */ 18723 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18724 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18725 18726 if (fctl & FC_FC_EX_CTX) { 18727 /* ABTS by responder to exchange, no cleanup needed */ 18728 aborted = true; 18729 } else { 18730 /* ABTS by initiator to exchange, need to do cleanup */ 18731 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18732 if (aborted == false) 18733 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18734 } 18735 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18736 18737 if (phba->nvmet_support) { 18738 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18739 return; 18740 } 18741 18742 /* Respond with BA_ACC or BA_RJT accordingly */ 18743 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18744 } 18745 18746 /** 18747 * lpfc_seq_complete - Indicates if a sequence is complete 18748 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18749 * 18750 * This function checks the sequence, starting with the frame described by 18751 * @dmabuf, to see if all the frames associated with this sequence are present. 18752 * the frames associated with this sequence are linked to the @dmabuf using the 18753 * dbuf list. This function looks for two major things. 1) That the first frame 18754 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18755 * set. 3) That there are no holes in the sequence count. The function will 18756 * return 1 when the sequence is complete, otherwise it will return 0. 18757 **/ 18758 static int 18759 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18760 { 18761 struct fc_frame_header *hdr; 18762 struct lpfc_dmabuf *d_buf; 18763 struct hbq_dmabuf *seq_dmabuf; 18764 uint32_t fctl; 18765 int seq_count = 0; 18766 18767 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18768 /* make sure first fame of sequence has a sequence count of zero */ 18769 if (hdr->fh_seq_cnt != seq_count) 18770 return 0; 18771 fctl = (hdr->fh_f_ctl[0] << 16 | 18772 hdr->fh_f_ctl[1] << 8 | 18773 hdr->fh_f_ctl[2]); 18774 /* If last frame of sequence we can return success. */ 18775 if (fctl & FC_FC_END_SEQ) 18776 return 1; 18777 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18778 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18779 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18780 /* If there is a hole in the sequence count then fail. */ 18781 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18782 return 0; 18783 fctl = (hdr->fh_f_ctl[0] << 16 | 18784 hdr->fh_f_ctl[1] << 8 | 18785 hdr->fh_f_ctl[2]); 18786 /* If last frame of sequence we can return success. */ 18787 if (fctl & FC_FC_END_SEQ) 18788 return 1; 18789 } 18790 return 0; 18791 } 18792 18793 /** 18794 * lpfc_prep_seq - Prep sequence for ULP processing 18795 * @vport: Pointer to the vport on which this sequence was received 18796 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18797 * 18798 * This function takes a sequence, described by a list of frames, and creates 18799 * a list of iocbq structures to describe the sequence. This iocbq list will be 18800 * used to issue to the generic unsolicited sequence handler. This routine 18801 * returns a pointer to the first iocbq in the list. If the function is unable 18802 * to allocate an iocbq then it throw out the received frames that were not 18803 * able to be described and return a pointer to the first iocbq. If unable to 18804 * allocate any iocbqs (including the first) this function will return NULL. 18805 **/ 18806 static struct lpfc_iocbq * 18807 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18808 { 18809 struct hbq_dmabuf *hbq_buf; 18810 struct lpfc_dmabuf *d_buf, *n_buf; 18811 struct lpfc_iocbq *first_iocbq, *iocbq; 18812 struct fc_frame_header *fc_hdr; 18813 uint32_t sid; 18814 uint32_t len, tot_len; 18815 18816 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18817 /* remove from receive buffer list */ 18818 list_del_init(&seq_dmabuf->hbuf.list); 18819 lpfc_update_rcv_time_stamp(vport); 18820 /* get the Remote Port's SID */ 18821 sid = sli4_sid_from_fc_hdr(fc_hdr); 18822 tot_len = 0; 18823 /* Get an iocbq struct to fill in. */ 18824 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18825 if (first_iocbq) { 18826 /* Initialize the first IOCB. */ 18827 first_iocbq->wcqe_cmpl.total_data_placed = 0; 18828 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 18829 IOSTAT_SUCCESS); 18830 first_iocbq->vport = vport; 18831 18832 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18833 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18834 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 18835 sli4_did_from_fc_hdr(fc_hdr)); 18836 } 18837 18838 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18839 NO_XRI); 18840 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18841 be16_to_cpu(fc_hdr->fh_ox_id)); 18842 18843 /* put the first buffer into the first iocb */ 18844 tot_len = bf_get(lpfc_rcqe_length, 18845 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18846 18847 first_iocbq->context2 = &seq_dmabuf->dbuf; 18848 first_iocbq->context3 = NULL; 18849 /* Keep track of the BDE count */ 18850 first_iocbq->wcqe_cmpl.word3 = 1; 18851 18852 if (tot_len > LPFC_DATA_BUF_SIZE) 18853 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 18854 LPFC_DATA_BUF_SIZE; 18855 else 18856 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 18857 18858 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 18859 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 18860 sid); 18861 } 18862 iocbq = first_iocbq; 18863 /* 18864 * Each IOCBq can have two Buffers assigned, so go through the list 18865 * of buffers for this sequence and save two buffers in each IOCBq 18866 */ 18867 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18868 if (!iocbq) { 18869 lpfc_in_buf_free(vport->phba, d_buf); 18870 continue; 18871 } 18872 if (!iocbq->context3) { 18873 iocbq->context3 = d_buf; 18874 iocbq->wcqe_cmpl.word3++; 18875 /* We need to get the size out of the right CQE */ 18876 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18877 len = bf_get(lpfc_rcqe_length, 18878 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18879 iocbq->unsol_rcv_len = len; 18880 iocbq->wcqe_cmpl.total_data_placed += len; 18881 tot_len += len; 18882 } else { 18883 iocbq = lpfc_sli_get_iocbq(vport->phba); 18884 if (!iocbq) { 18885 if (first_iocbq) { 18886 bf_set(lpfc_wcqe_c_status, 18887 &first_iocbq->wcqe_cmpl, 18888 IOSTAT_SUCCESS); 18889 first_iocbq->wcqe_cmpl.parameter = 18890 IOERR_NO_RESOURCES; 18891 } 18892 lpfc_in_buf_free(vport->phba, d_buf); 18893 continue; 18894 } 18895 /* We need to get the size out of the right CQE */ 18896 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18897 len = bf_get(lpfc_rcqe_length, 18898 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18899 iocbq->context2 = d_buf; 18900 iocbq->context3 = NULL; 18901 iocbq->wcqe_cmpl.word3 = 1; 18902 18903 if (len > LPFC_DATA_BUF_SIZE) 18904 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18905 LPFC_DATA_BUF_SIZE; 18906 else 18907 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18908 len; 18909 18910 tot_len += len; 18911 iocbq->wcqe_cmpl.total_data_placed = tot_len; 18912 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 18913 sid); 18914 list_add_tail(&iocbq->list, &first_iocbq->list); 18915 } 18916 } 18917 /* Free the sequence's header buffer */ 18918 if (!first_iocbq) 18919 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18920 18921 return first_iocbq; 18922 } 18923 18924 static void 18925 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18926 struct hbq_dmabuf *seq_dmabuf) 18927 { 18928 struct fc_frame_header *fc_hdr; 18929 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18930 struct lpfc_hba *phba = vport->phba; 18931 18932 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18933 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18934 if (!iocbq) { 18935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18936 "2707 Ring %d handler: Failed to allocate " 18937 "iocb Rctl x%x Type x%x received\n", 18938 LPFC_ELS_RING, 18939 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18940 return; 18941 } 18942 if (!lpfc_complete_unsol_iocb(phba, 18943 phba->sli4_hba.els_wq->pring, 18944 iocbq, fc_hdr->fh_r_ctl, 18945 fc_hdr->fh_type)) 18946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18947 "2540 Ring %d handler: unexpected Rctl " 18948 "x%x Type x%x received\n", 18949 LPFC_ELS_RING, 18950 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18951 18952 /* Free iocb created in lpfc_prep_seq */ 18953 list_for_each_entry_safe(curr_iocb, next_iocb, 18954 &iocbq->list, list) { 18955 list_del_init(&curr_iocb->list); 18956 lpfc_sli_release_iocbq(phba, curr_iocb); 18957 } 18958 lpfc_sli_release_iocbq(phba, iocbq); 18959 } 18960 18961 static void 18962 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18963 struct lpfc_iocbq *rspiocb) 18964 { 18965 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18966 18967 if (pcmd && pcmd->virt) 18968 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18969 kfree(pcmd); 18970 lpfc_sli_release_iocbq(phba, cmdiocb); 18971 lpfc_drain_txq(phba); 18972 } 18973 18974 static void 18975 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18976 struct hbq_dmabuf *dmabuf) 18977 { 18978 struct fc_frame_header *fc_hdr; 18979 struct lpfc_hba *phba = vport->phba; 18980 struct lpfc_iocbq *iocbq = NULL; 18981 union lpfc_wqe128 *pwqe; 18982 struct lpfc_dmabuf *pcmd = NULL; 18983 uint32_t frame_len; 18984 int rc; 18985 unsigned long iflags; 18986 18987 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18988 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18989 18990 /* Send the received frame back */ 18991 iocbq = lpfc_sli_get_iocbq(phba); 18992 if (!iocbq) { 18993 /* Queue cq event and wakeup worker thread to process it */ 18994 spin_lock_irqsave(&phba->hbalock, iflags); 18995 list_add_tail(&dmabuf->cq_event.list, 18996 &phba->sli4_hba.sp_queue_event); 18997 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18998 spin_unlock_irqrestore(&phba->hbalock, iflags); 18999 lpfc_worker_wake_up(phba); 19000 return; 19001 } 19002 19003 /* Allocate buffer for command payload */ 19004 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19005 if (pcmd) 19006 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19007 &pcmd->phys); 19008 if (!pcmd || !pcmd->virt) 19009 goto exit; 19010 19011 INIT_LIST_HEAD(&pcmd->list); 19012 19013 /* copyin the payload */ 19014 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19015 19016 iocbq->context2 = pcmd; 19017 iocbq->vport = vport; 19018 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19019 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19020 iocbq->num_bdes = 0; 19021 19022 pwqe = &iocbq->wqe; 19023 /* fill in BDE's for command */ 19024 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19025 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19026 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19027 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19028 19029 pwqe->send_frame.frame_len = frame_len; 19030 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19031 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19032 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19033 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19034 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19035 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19036 19037 pwqe->generic.wqe_com.word7 = 0; 19038 pwqe->generic.wqe_com.word10 = 0; 19039 19040 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19041 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19042 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19043 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19044 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19045 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19046 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19047 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19048 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19049 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19050 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19051 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19052 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19053 19054 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19055 19056 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19057 if (rc == IOCB_ERROR) 19058 goto exit; 19059 19060 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19061 return; 19062 19063 exit: 19064 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19065 "2023 Unable to process MDS loopback frame\n"); 19066 if (pcmd && pcmd->virt) 19067 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19068 kfree(pcmd); 19069 if (iocbq) 19070 lpfc_sli_release_iocbq(phba, iocbq); 19071 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19072 } 19073 19074 /** 19075 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19076 * @phba: Pointer to HBA context object. 19077 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19078 * 19079 * This function is called with no lock held. This function processes all 19080 * the received buffers and gives it to upper layers when a received buffer 19081 * indicates that it is the final frame in the sequence. The interrupt 19082 * service routine processes received buffers at interrupt contexts. 19083 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19084 * appropriate receive function when the final frame in a sequence is received. 19085 **/ 19086 void 19087 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19088 struct hbq_dmabuf *dmabuf) 19089 { 19090 struct hbq_dmabuf *seq_dmabuf; 19091 struct fc_frame_header *fc_hdr; 19092 struct lpfc_vport *vport; 19093 uint32_t fcfi; 19094 uint32_t did; 19095 19096 /* Process each received buffer */ 19097 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19098 19099 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19100 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19101 vport = phba->pport; 19102 /* Handle MDS Loopback frames */ 19103 if (!(phba->pport->load_flag & FC_UNLOADING)) 19104 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19105 else 19106 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19107 return; 19108 } 19109 19110 /* check to see if this a valid type of frame */ 19111 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19112 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19113 return; 19114 } 19115 19116 if ((bf_get(lpfc_cqe_code, 19117 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19118 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19119 &dmabuf->cq_event.cqe.rcqe_cmpl); 19120 else 19121 fcfi = bf_get(lpfc_rcqe_fcf_id, 19122 &dmabuf->cq_event.cqe.rcqe_cmpl); 19123 19124 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19125 vport = phba->pport; 19126 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19127 "2023 MDS Loopback %d bytes\n", 19128 bf_get(lpfc_rcqe_length, 19129 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19130 /* Handle MDS Loopback frames */ 19131 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19132 return; 19133 } 19134 19135 /* d_id this frame is directed to */ 19136 did = sli4_did_from_fc_hdr(fc_hdr); 19137 19138 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19139 if (!vport) { 19140 /* throw out the frame */ 19141 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19142 return; 19143 } 19144 19145 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19146 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19147 (did != Fabric_DID)) { 19148 /* 19149 * Throw out the frame if we are not pt2pt. 19150 * The pt2pt protocol allows for discovery frames 19151 * to be received without a registered VPI. 19152 */ 19153 if (!(vport->fc_flag & FC_PT2PT) || 19154 (phba->link_state == LPFC_HBA_READY)) { 19155 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19156 return; 19157 } 19158 } 19159 19160 /* Handle the basic abort sequence (BA_ABTS) event */ 19161 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19162 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19163 return; 19164 } 19165 19166 /* Link this frame */ 19167 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19168 if (!seq_dmabuf) { 19169 /* unable to add frame to vport - throw it out */ 19170 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19171 return; 19172 } 19173 /* If not last frame in sequence continue processing frames. */ 19174 if (!lpfc_seq_complete(seq_dmabuf)) 19175 return; 19176 19177 /* Send the complete sequence to the upper layer protocol */ 19178 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19179 } 19180 19181 /** 19182 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19183 * @phba: pointer to lpfc hba data structure. 19184 * 19185 * This routine is invoked to post rpi header templates to the 19186 * HBA consistent with the SLI-4 interface spec. This routine 19187 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19188 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19189 * 19190 * This routine does not require any locks. It's usage is expected 19191 * to be driver load or reset recovery when the driver is 19192 * sequential. 19193 * 19194 * Return codes 19195 * 0 - successful 19196 * -EIO - The mailbox failed to complete successfully. 19197 * When this error occurs, the driver is not guaranteed 19198 * to have any rpi regions posted to the device and 19199 * must either attempt to repost the regions or take a 19200 * fatal error. 19201 **/ 19202 int 19203 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19204 { 19205 struct lpfc_rpi_hdr *rpi_page; 19206 uint32_t rc = 0; 19207 uint16_t lrpi = 0; 19208 19209 /* SLI4 ports that support extents do not require RPI headers. */ 19210 if (!phba->sli4_hba.rpi_hdrs_in_use) 19211 goto exit; 19212 if (phba->sli4_hba.extents_in_use) 19213 return -EIO; 19214 19215 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19216 /* 19217 * Assign the rpi headers a physical rpi only if the driver 19218 * has not initialized those resources. A port reset only 19219 * needs the headers posted. 19220 */ 19221 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19222 LPFC_RPI_RSRC_RDY) 19223 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19224 19225 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19226 if (rc != MBX_SUCCESS) { 19227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19228 "2008 Error %d posting all rpi " 19229 "headers\n", rc); 19230 rc = -EIO; 19231 break; 19232 } 19233 } 19234 19235 exit: 19236 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19237 LPFC_RPI_RSRC_RDY); 19238 return rc; 19239 } 19240 19241 /** 19242 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19243 * @phba: pointer to lpfc hba data structure. 19244 * @rpi_page: pointer to the rpi memory region. 19245 * 19246 * This routine is invoked to post a single rpi header to the 19247 * HBA consistent with the SLI-4 interface spec. This memory region 19248 * maps up to 64 rpi context regions. 19249 * 19250 * Return codes 19251 * 0 - successful 19252 * -ENOMEM - No available memory 19253 * -EIO - The mailbox failed to complete successfully. 19254 **/ 19255 int 19256 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19257 { 19258 LPFC_MBOXQ_t *mboxq; 19259 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19260 uint32_t rc = 0; 19261 uint32_t shdr_status, shdr_add_status; 19262 union lpfc_sli4_cfg_shdr *shdr; 19263 19264 /* SLI4 ports that support extents do not require RPI headers. */ 19265 if (!phba->sli4_hba.rpi_hdrs_in_use) 19266 return rc; 19267 if (phba->sli4_hba.extents_in_use) 19268 return -EIO; 19269 19270 /* The port is notified of the header region via a mailbox command. */ 19271 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19272 if (!mboxq) { 19273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19274 "2001 Unable to allocate memory for issuing " 19275 "SLI_CONFIG_SPECIAL mailbox command\n"); 19276 return -ENOMEM; 19277 } 19278 19279 /* Post all rpi memory regions to the port. */ 19280 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19281 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19282 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19283 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19284 sizeof(struct lpfc_sli4_cfg_mhdr), 19285 LPFC_SLI4_MBX_EMBED); 19286 19287 19288 /* Post the physical rpi to the port for this rpi header. */ 19289 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19290 rpi_page->start_rpi); 19291 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19292 hdr_tmpl, rpi_page->page_count); 19293 19294 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19295 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19296 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19297 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19298 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19299 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19300 mempool_free(mboxq, phba->mbox_mem_pool); 19301 if (shdr_status || shdr_add_status || rc) { 19302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19303 "2514 POST_RPI_HDR mailbox failed with " 19304 "status x%x add_status x%x, mbx status x%x\n", 19305 shdr_status, shdr_add_status, rc); 19306 rc = -ENXIO; 19307 } else { 19308 /* 19309 * The next_rpi stores the next logical module-64 rpi value used 19310 * to post physical rpis in subsequent rpi postings. 19311 */ 19312 spin_lock_irq(&phba->hbalock); 19313 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19314 spin_unlock_irq(&phba->hbalock); 19315 } 19316 return rc; 19317 } 19318 19319 /** 19320 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19321 * @phba: pointer to lpfc hba data structure. 19322 * 19323 * This routine is invoked to post rpi header templates to the 19324 * HBA consistent with the SLI-4 interface spec. This routine 19325 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19326 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19327 * 19328 * Returns 19329 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19330 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19331 **/ 19332 int 19333 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19334 { 19335 unsigned long rpi; 19336 uint16_t max_rpi, rpi_limit; 19337 uint16_t rpi_remaining, lrpi = 0; 19338 struct lpfc_rpi_hdr *rpi_hdr; 19339 unsigned long iflag; 19340 19341 /* 19342 * Fetch the next logical rpi. Because this index is logical, 19343 * the driver starts at 0 each time. 19344 */ 19345 spin_lock_irqsave(&phba->hbalock, iflag); 19346 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19347 rpi_limit = phba->sli4_hba.next_rpi; 19348 19349 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19350 if (rpi >= rpi_limit) 19351 rpi = LPFC_RPI_ALLOC_ERROR; 19352 else { 19353 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19354 phba->sli4_hba.max_cfg_param.rpi_used++; 19355 phba->sli4_hba.rpi_count++; 19356 } 19357 lpfc_printf_log(phba, KERN_INFO, 19358 LOG_NODE | LOG_DISCOVERY, 19359 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19360 (int) rpi, max_rpi, rpi_limit); 19361 19362 /* 19363 * Don't try to allocate more rpi header regions if the device limit 19364 * has been exhausted. 19365 */ 19366 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19367 (phba->sli4_hba.rpi_count >= max_rpi)) { 19368 spin_unlock_irqrestore(&phba->hbalock, iflag); 19369 return rpi; 19370 } 19371 19372 /* 19373 * RPI header postings are not required for SLI4 ports capable of 19374 * extents. 19375 */ 19376 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19377 spin_unlock_irqrestore(&phba->hbalock, iflag); 19378 return rpi; 19379 } 19380 19381 /* 19382 * If the driver is running low on rpi resources, allocate another 19383 * page now. Note that the next_rpi value is used because 19384 * it represents how many are actually in use whereas max_rpi notes 19385 * how many are supported max by the device. 19386 */ 19387 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19388 spin_unlock_irqrestore(&phba->hbalock, iflag); 19389 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19390 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19391 if (!rpi_hdr) { 19392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19393 "2002 Error Could not grow rpi " 19394 "count\n"); 19395 } else { 19396 lrpi = rpi_hdr->start_rpi; 19397 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19398 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19399 } 19400 } 19401 19402 return rpi; 19403 } 19404 19405 /** 19406 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19407 * @phba: pointer to lpfc hba data structure. 19408 * @rpi: rpi to free 19409 * 19410 * This routine is invoked to release an rpi to the pool of 19411 * available rpis maintained by the driver. 19412 **/ 19413 static void 19414 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19415 { 19416 /* 19417 * if the rpi value indicates a prior unreg has already 19418 * been done, skip the unreg. 19419 */ 19420 if (rpi == LPFC_RPI_ALLOC_ERROR) 19421 return; 19422 19423 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19424 phba->sli4_hba.rpi_count--; 19425 phba->sli4_hba.max_cfg_param.rpi_used--; 19426 } else { 19427 lpfc_printf_log(phba, KERN_INFO, 19428 LOG_NODE | LOG_DISCOVERY, 19429 "2016 rpi %x not inuse\n", 19430 rpi); 19431 } 19432 } 19433 19434 /** 19435 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19436 * @phba: pointer to lpfc hba data structure. 19437 * @rpi: rpi to free 19438 * 19439 * This routine is invoked to release an rpi to the pool of 19440 * available rpis maintained by the driver. 19441 **/ 19442 void 19443 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19444 { 19445 spin_lock_irq(&phba->hbalock); 19446 __lpfc_sli4_free_rpi(phba, rpi); 19447 spin_unlock_irq(&phba->hbalock); 19448 } 19449 19450 /** 19451 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19452 * @phba: pointer to lpfc hba data structure. 19453 * 19454 * This routine is invoked to remove the memory region that 19455 * provided rpi via a bitmask. 19456 **/ 19457 void 19458 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19459 { 19460 kfree(phba->sli4_hba.rpi_bmask); 19461 kfree(phba->sli4_hba.rpi_ids); 19462 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19463 } 19464 19465 /** 19466 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19467 * @ndlp: pointer to lpfc nodelist data structure. 19468 * @cmpl: completion call-back. 19469 * @arg: data to load as MBox 'caller buffer information' 19470 * 19471 * This routine is invoked to remove the memory region that 19472 * provided rpi via a bitmask. 19473 **/ 19474 int 19475 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19476 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19477 { 19478 LPFC_MBOXQ_t *mboxq; 19479 struct lpfc_hba *phba = ndlp->phba; 19480 int rc; 19481 19482 /* The port is notified of the header region via a mailbox command. */ 19483 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19484 if (!mboxq) 19485 return -ENOMEM; 19486 19487 /* If cmpl assigned, then this nlp_get pairs with 19488 * lpfc_mbx_cmpl_resume_rpi. 19489 * 19490 * Else cmpl is NULL, then this nlp_get pairs with 19491 * lpfc_sli_def_mbox_cmpl. 19492 */ 19493 if (!lpfc_nlp_get(ndlp)) { 19494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19495 "2122 %s: Failed to get nlp ref\n", 19496 __func__); 19497 mempool_free(mboxq, phba->mbox_mem_pool); 19498 return -EIO; 19499 } 19500 19501 /* Post all rpi memory regions to the port. */ 19502 lpfc_resume_rpi(mboxq, ndlp); 19503 if (cmpl) { 19504 mboxq->mbox_cmpl = cmpl; 19505 mboxq->ctx_buf = arg; 19506 } else 19507 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19508 mboxq->ctx_ndlp = ndlp; 19509 mboxq->vport = ndlp->vport; 19510 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19511 if (rc == MBX_NOT_FINISHED) { 19512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19513 "2010 Resume RPI Mailbox failed " 19514 "status %d, mbxStatus x%x\n", rc, 19515 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19516 lpfc_nlp_put(ndlp); 19517 mempool_free(mboxq, phba->mbox_mem_pool); 19518 return -EIO; 19519 } 19520 return 0; 19521 } 19522 19523 /** 19524 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19525 * @vport: Pointer to the vport for which the vpi is being initialized 19526 * 19527 * This routine is invoked to activate a vpi with the port. 19528 * 19529 * Returns: 19530 * 0 success 19531 * -Evalue otherwise 19532 **/ 19533 int 19534 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19535 { 19536 LPFC_MBOXQ_t *mboxq; 19537 int rc = 0; 19538 int retval = MBX_SUCCESS; 19539 uint32_t mbox_tmo; 19540 struct lpfc_hba *phba = vport->phba; 19541 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19542 if (!mboxq) 19543 return -ENOMEM; 19544 lpfc_init_vpi(phba, mboxq, vport->vpi); 19545 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19546 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19547 if (rc != MBX_SUCCESS) { 19548 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19549 "2022 INIT VPI Mailbox failed " 19550 "status %d, mbxStatus x%x\n", rc, 19551 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19552 retval = -EIO; 19553 } 19554 if (rc != MBX_TIMEOUT) 19555 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19556 19557 return retval; 19558 } 19559 19560 /** 19561 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19562 * @phba: pointer to lpfc hba data structure. 19563 * @mboxq: Pointer to mailbox object. 19564 * 19565 * This routine is invoked to manually add a single FCF record. The caller 19566 * must pass a completely initialized FCF_Record. This routine takes 19567 * care of the nonembedded mailbox operations. 19568 **/ 19569 static void 19570 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19571 { 19572 void *virt_addr; 19573 union lpfc_sli4_cfg_shdr *shdr; 19574 uint32_t shdr_status, shdr_add_status; 19575 19576 virt_addr = mboxq->sge_array->addr[0]; 19577 /* The IOCTL status is embedded in the mailbox subheader. */ 19578 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19579 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19580 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19581 19582 if ((shdr_status || shdr_add_status) && 19583 (shdr_status != STATUS_FCF_IN_USE)) 19584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19585 "2558 ADD_FCF_RECORD mailbox failed with " 19586 "status x%x add_status x%x\n", 19587 shdr_status, shdr_add_status); 19588 19589 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19590 } 19591 19592 /** 19593 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19594 * @phba: pointer to lpfc hba data structure. 19595 * @fcf_record: pointer to the initialized fcf record to add. 19596 * 19597 * This routine is invoked to manually add a single FCF record. The caller 19598 * must pass a completely initialized FCF_Record. This routine takes 19599 * care of the nonembedded mailbox operations. 19600 **/ 19601 int 19602 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19603 { 19604 int rc = 0; 19605 LPFC_MBOXQ_t *mboxq; 19606 uint8_t *bytep; 19607 void *virt_addr; 19608 struct lpfc_mbx_sge sge; 19609 uint32_t alloc_len, req_len; 19610 uint32_t fcfindex; 19611 19612 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19613 if (!mboxq) { 19614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19615 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19616 return -ENOMEM; 19617 } 19618 19619 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19620 sizeof(uint32_t); 19621 19622 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19623 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19624 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19625 req_len, LPFC_SLI4_MBX_NEMBED); 19626 if (alloc_len < req_len) { 19627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19628 "2523 Allocated DMA memory size (x%x) is " 19629 "less than the requested DMA memory " 19630 "size (x%x)\n", alloc_len, req_len); 19631 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19632 return -ENOMEM; 19633 } 19634 19635 /* 19636 * Get the first SGE entry from the non-embedded DMA memory. This 19637 * routine only uses a single SGE. 19638 */ 19639 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19640 virt_addr = mboxq->sge_array->addr[0]; 19641 /* 19642 * Configure the FCF record for FCFI 0. This is the driver's 19643 * hardcoded default and gets used in nonFIP mode. 19644 */ 19645 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19646 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19647 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19648 19649 /* 19650 * Copy the fcf_index and the FCF Record Data. The data starts after 19651 * the FCoE header plus word10. The data copy needs to be endian 19652 * correct. 19653 */ 19654 bytep += sizeof(uint32_t); 19655 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19656 mboxq->vport = phba->pport; 19657 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19658 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19659 if (rc == MBX_NOT_FINISHED) { 19660 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19661 "2515 ADD_FCF_RECORD mailbox failed with " 19662 "status 0x%x\n", rc); 19663 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19664 rc = -EIO; 19665 } else 19666 rc = 0; 19667 19668 return rc; 19669 } 19670 19671 /** 19672 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19673 * @phba: pointer to lpfc hba data structure. 19674 * @fcf_record: pointer to the fcf record to write the default data. 19675 * @fcf_index: FCF table entry index. 19676 * 19677 * This routine is invoked to build the driver's default FCF record. The 19678 * values used are hardcoded. This routine handles memory initialization. 19679 * 19680 **/ 19681 void 19682 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19683 struct fcf_record *fcf_record, 19684 uint16_t fcf_index) 19685 { 19686 memset(fcf_record, 0, sizeof(struct fcf_record)); 19687 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19688 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19689 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19690 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19691 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19692 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19693 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19694 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19695 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19696 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19697 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19698 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19699 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19700 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19701 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19702 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19703 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19704 /* Set the VLAN bit map */ 19705 if (phba->valid_vlan) { 19706 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19707 = 1 << (phba->vlan_id % 8); 19708 } 19709 } 19710 19711 /** 19712 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19713 * @phba: pointer to lpfc hba data structure. 19714 * @fcf_index: FCF table entry offset. 19715 * 19716 * This routine is invoked to scan the entire FCF table by reading FCF 19717 * record and processing it one at a time starting from the @fcf_index 19718 * for initial FCF discovery or fast FCF failover rediscovery. 19719 * 19720 * Return 0 if the mailbox command is submitted successfully, none 0 19721 * otherwise. 19722 **/ 19723 int 19724 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19725 { 19726 int rc = 0, error; 19727 LPFC_MBOXQ_t *mboxq; 19728 19729 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19730 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19731 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19732 if (!mboxq) { 19733 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19734 "2000 Failed to allocate mbox for " 19735 "READ_FCF cmd\n"); 19736 error = -ENOMEM; 19737 goto fail_fcf_scan; 19738 } 19739 /* Construct the read FCF record mailbox command */ 19740 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19741 if (rc) { 19742 error = -EINVAL; 19743 goto fail_fcf_scan; 19744 } 19745 /* Issue the mailbox command asynchronously */ 19746 mboxq->vport = phba->pport; 19747 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19748 19749 spin_lock_irq(&phba->hbalock); 19750 phba->hba_flag |= FCF_TS_INPROG; 19751 spin_unlock_irq(&phba->hbalock); 19752 19753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19754 if (rc == MBX_NOT_FINISHED) 19755 error = -EIO; 19756 else { 19757 /* Reset eligible FCF count for new scan */ 19758 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19759 phba->fcf.eligible_fcf_cnt = 0; 19760 error = 0; 19761 } 19762 fail_fcf_scan: 19763 if (error) { 19764 if (mboxq) 19765 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19766 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19767 spin_lock_irq(&phba->hbalock); 19768 phba->hba_flag &= ~FCF_TS_INPROG; 19769 spin_unlock_irq(&phba->hbalock); 19770 } 19771 return error; 19772 } 19773 19774 /** 19775 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19776 * @phba: pointer to lpfc hba data structure. 19777 * @fcf_index: FCF table entry offset. 19778 * 19779 * This routine is invoked to read an FCF record indicated by @fcf_index 19780 * and to use it for FLOGI roundrobin FCF failover. 19781 * 19782 * Return 0 if the mailbox command is submitted successfully, none 0 19783 * otherwise. 19784 **/ 19785 int 19786 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19787 { 19788 int rc = 0, error; 19789 LPFC_MBOXQ_t *mboxq; 19790 19791 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19792 if (!mboxq) { 19793 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19794 "2763 Failed to allocate mbox for " 19795 "READ_FCF cmd\n"); 19796 error = -ENOMEM; 19797 goto fail_fcf_read; 19798 } 19799 /* Construct the read FCF record mailbox command */ 19800 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19801 if (rc) { 19802 error = -EINVAL; 19803 goto fail_fcf_read; 19804 } 19805 /* Issue the mailbox command asynchronously */ 19806 mboxq->vport = phba->pport; 19807 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19808 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19809 if (rc == MBX_NOT_FINISHED) 19810 error = -EIO; 19811 else 19812 error = 0; 19813 19814 fail_fcf_read: 19815 if (error && mboxq) 19816 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19817 return error; 19818 } 19819 19820 /** 19821 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19822 * @phba: pointer to lpfc hba data structure. 19823 * @fcf_index: FCF table entry offset. 19824 * 19825 * This routine is invoked to read an FCF record indicated by @fcf_index to 19826 * determine whether it's eligible for FLOGI roundrobin failover list. 19827 * 19828 * Return 0 if the mailbox command is submitted successfully, none 0 19829 * otherwise. 19830 **/ 19831 int 19832 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19833 { 19834 int rc = 0, error; 19835 LPFC_MBOXQ_t *mboxq; 19836 19837 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19838 if (!mboxq) { 19839 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19840 "2758 Failed to allocate mbox for " 19841 "READ_FCF cmd\n"); 19842 error = -ENOMEM; 19843 goto fail_fcf_read; 19844 } 19845 /* Construct the read FCF record mailbox command */ 19846 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19847 if (rc) { 19848 error = -EINVAL; 19849 goto fail_fcf_read; 19850 } 19851 /* Issue the mailbox command asynchronously */ 19852 mboxq->vport = phba->pport; 19853 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19854 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19855 if (rc == MBX_NOT_FINISHED) 19856 error = -EIO; 19857 else 19858 error = 0; 19859 19860 fail_fcf_read: 19861 if (error && mboxq) 19862 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19863 return error; 19864 } 19865 19866 /** 19867 * lpfc_check_next_fcf_pri_level 19868 * @phba: pointer to the lpfc_hba struct for this port. 19869 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19870 * routine when the rr_bmask is empty. The FCF indecies are put into the 19871 * rr_bmask based on their priority level. Starting from the highest priority 19872 * to the lowest. The most likely FCF candidate will be in the highest 19873 * priority group. When this routine is called it searches the fcf_pri list for 19874 * next lowest priority group and repopulates the rr_bmask with only those 19875 * fcf_indexes. 19876 * returns: 19877 * 1=success 0=failure 19878 **/ 19879 static int 19880 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19881 { 19882 uint16_t next_fcf_pri; 19883 uint16_t last_index; 19884 struct lpfc_fcf_pri *fcf_pri; 19885 int rc; 19886 int ret = 0; 19887 19888 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19889 LPFC_SLI4_FCF_TBL_INDX_MAX); 19890 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19891 "3060 Last IDX %d\n", last_index); 19892 19893 /* Verify the priority list has 2 or more entries */ 19894 spin_lock_irq(&phba->hbalock); 19895 if (list_empty(&phba->fcf.fcf_pri_list) || 19896 list_is_singular(&phba->fcf.fcf_pri_list)) { 19897 spin_unlock_irq(&phba->hbalock); 19898 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19899 "3061 Last IDX %d\n", last_index); 19900 return 0; /* Empty rr list */ 19901 } 19902 spin_unlock_irq(&phba->hbalock); 19903 19904 next_fcf_pri = 0; 19905 /* 19906 * Clear the rr_bmask and set all of the bits that are at this 19907 * priority. 19908 */ 19909 memset(phba->fcf.fcf_rr_bmask, 0, 19910 sizeof(*phba->fcf.fcf_rr_bmask)); 19911 spin_lock_irq(&phba->hbalock); 19912 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19913 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19914 continue; 19915 /* 19916 * the 1st priority that has not FLOGI failed 19917 * will be the highest. 19918 */ 19919 if (!next_fcf_pri) 19920 next_fcf_pri = fcf_pri->fcf_rec.priority; 19921 spin_unlock_irq(&phba->hbalock); 19922 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19923 rc = lpfc_sli4_fcf_rr_index_set(phba, 19924 fcf_pri->fcf_rec.fcf_index); 19925 if (rc) 19926 return 0; 19927 } 19928 spin_lock_irq(&phba->hbalock); 19929 } 19930 /* 19931 * if next_fcf_pri was not set above and the list is not empty then 19932 * we have failed flogis on all of them. So reset flogi failed 19933 * and start at the beginning. 19934 */ 19935 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19936 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19937 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19938 /* 19939 * the 1st priority that has not FLOGI failed 19940 * will be the highest. 19941 */ 19942 if (!next_fcf_pri) 19943 next_fcf_pri = fcf_pri->fcf_rec.priority; 19944 spin_unlock_irq(&phba->hbalock); 19945 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19946 rc = lpfc_sli4_fcf_rr_index_set(phba, 19947 fcf_pri->fcf_rec.fcf_index); 19948 if (rc) 19949 return 0; 19950 } 19951 spin_lock_irq(&phba->hbalock); 19952 } 19953 } else 19954 ret = 1; 19955 spin_unlock_irq(&phba->hbalock); 19956 19957 return ret; 19958 } 19959 /** 19960 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19961 * @phba: pointer to lpfc hba data structure. 19962 * 19963 * This routine is to get the next eligible FCF record index in a round 19964 * robin fashion. If the next eligible FCF record index equals to the 19965 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19966 * shall be returned, otherwise, the next eligible FCF record's index 19967 * shall be returned. 19968 **/ 19969 uint16_t 19970 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19971 { 19972 uint16_t next_fcf_index; 19973 19974 initial_priority: 19975 /* Search start from next bit of currently registered FCF index */ 19976 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19977 19978 next_priority: 19979 /* Determine the next fcf index to check */ 19980 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19981 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19982 LPFC_SLI4_FCF_TBL_INDX_MAX, 19983 next_fcf_index); 19984 19985 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19986 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19987 /* 19988 * If we have wrapped then we need to clear the bits that 19989 * have been tested so that we can detect when we should 19990 * change the priority level. 19991 */ 19992 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19993 LPFC_SLI4_FCF_TBL_INDX_MAX); 19994 } 19995 19996 19997 /* Check roundrobin failover list empty condition */ 19998 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19999 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20000 /* 20001 * If next fcf index is not found check if there are lower 20002 * Priority level fcf's in the fcf_priority list. 20003 * Set up the rr_bmask with all of the avaiable fcf bits 20004 * at that level and continue the selection process. 20005 */ 20006 if (lpfc_check_next_fcf_pri_level(phba)) 20007 goto initial_priority; 20008 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20009 "2844 No roundrobin failover FCF available\n"); 20010 20011 return LPFC_FCOE_FCF_NEXT_NONE; 20012 } 20013 20014 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20015 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20016 LPFC_FCF_FLOGI_FAILED) { 20017 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20018 return LPFC_FCOE_FCF_NEXT_NONE; 20019 20020 goto next_priority; 20021 } 20022 20023 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20024 "2845 Get next roundrobin failover FCF (x%x)\n", 20025 next_fcf_index); 20026 20027 return next_fcf_index; 20028 } 20029 20030 /** 20031 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20032 * @phba: pointer to lpfc hba data structure. 20033 * @fcf_index: index into the FCF table to 'set' 20034 * 20035 * This routine sets the FCF record index in to the eligible bmask for 20036 * roundrobin failover search. It checks to make sure that the index 20037 * does not go beyond the range of the driver allocated bmask dimension 20038 * before setting the bit. 20039 * 20040 * Returns 0 if the index bit successfully set, otherwise, it returns 20041 * -EINVAL. 20042 **/ 20043 int 20044 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20045 { 20046 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20047 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20048 "2610 FCF (x%x) reached driver's book " 20049 "keeping dimension:x%x\n", 20050 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20051 return -EINVAL; 20052 } 20053 /* Set the eligible FCF record index bmask */ 20054 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20055 20056 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20057 "2790 Set FCF (x%x) to roundrobin FCF failover " 20058 "bmask\n", fcf_index); 20059 20060 return 0; 20061 } 20062 20063 /** 20064 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20065 * @phba: pointer to lpfc hba data structure. 20066 * @fcf_index: index into the FCF table to 'clear' 20067 * 20068 * This routine clears the FCF record index from the eligible bmask for 20069 * roundrobin failover search. It checks to make sure that the index 20070 * does not go beyond the range of the driver allocated bmask dimension 20071 * before clearing the bit. 20072 **/ 20073 void 20074 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20075 { 20076 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20077 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20078 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20079 "2762 FCF (x%x) reached driver's book " 20080 "keeping dimension:x%x\n", 20081 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20082 return; 20083 } 20084 /* Clear the eligible FCF record index bmask */ 20085 spin_lock_irq(&phba->hbalock); 20086 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20087 list) { 20088 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20089 list_del_init(&fcf_pri->list); 20090 break; 20091 } 20092 } 20093 spin_unlock_irq(&phba->hbalock); 20094 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20095 20096 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20097 "2791 Clear FCF (x%x) from roundrobin failover " 20098 "bmask\n", fcf_index); 20099 } 20100 20101 /** 20102 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20103 * @phba: pointer to lpfc hba data structure. 20104 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20105 * 20106 * This routine is the completion routine for the rediscover FCF table mailbox 20107 * command. If the mailbox command returned failure, it will try to stop the 20108 * FCF rediscover wait timer. 20109 **/ 20110 static void 20111 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20112 { 20113 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20114 uint32_t shdr_status, shdr_add_status; 20115 20116 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20117 20118 shdr_status = bf_get(lpfc_mbox_hdr_status, 20119 &redisc_fcf->header.cfg_shdr.response); 20120 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20121 &redisc_fcf->header.cfg_shdr.response); 20122 if (shdr_status || shdr_add_status) { 20123 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20124 "2746 Requesting for FCF rediscovery failed " 20125 "status x%x add_status x%x\n", 20126 shdr_status, shdr_add_status); 20127 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20128 spin_lock_irq(&phba->hbalock); 20129 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20130 spin_unlock_irq(&phba->hbalock); 20131 /* 20132 * CVL event triggered FCF rediscover request failed, 20133 * last resort to re-try current registered FCF entry. 20134 */ 20135 lpfc_retry_pport_discovery(phba); 20136 } else { 20137 spin_lock_irq(&phba->hbalock); 20138 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20139 spin_unlock_irq(&phba->hbalock); 20140 /* 20141 * DEAD FCF event triggered FCF rediscover request 20142 * failed, last resort to fail over as a link down 20143 * to FCF registration. 20144 */ 20145 lpfc_sli4_fcf_dead_failthrough(phba); 20146 } 20147 } else { 20148 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20149 "2775 Start FCF rediscover quiescent timer\n"); 20150 /* 20151 * Start FCF rediscovery wait timer for pending FCF 20152 * before rescan FCF record table. 20153 */ 20154 lpfc_fcf_redisc_wait_start_timer(phba); 20155 } 20156 20157 mempool_free(mbox, phba->mbox_mem_pool); 20158 } 20159 20160 /** 20161 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20162 * @phba: pointer to lpfc hba data structure. 20163 * 20164 * This routine is invoked to request for rediscovery of the entire FCF table 20165 * by the port. 20166 **/ 20167 int 20168 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20169 { 20170 LPFC_MBOXQ_t *mbox; 20171 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20172 int rc, length; 20173 20174 /* Cancel retry delay timers to all vports before FCF rediscover */ 20175 lpfc_cancel_all_vport_retry_delay_timer(phba); 20176 20177 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20178 if (!mbox) { 20179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20180 "2745 Failed to allocate mbox for " 20181 "requesting FCF rediscover.\n"); 20182 return -ENOMEM; 20183 } 20184 20185 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20186 sizeof(struct lpfc_sli4_cfg_mhdr)); 20187 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20188 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20189 length, LPFC_SLI4_MBX_EMBED); 20190 20191 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20192 /* Set count to 0 for invalidating the entire FCF database */ 20193 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20194 20195 /* Issue the mailbox command asynchronously */ 20196 mbox->vport = phba->pport; 20197 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20198 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20199 20200 if (rc == MBX_NOT_FINISHED) { 20201 mempool_free(mbox, phba->mbox_mem_pool); 20202 return -EIO; 20203 } 20204 return 0; 20205 } 20206 20207 /** 20208 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20209 * @phba: pointer to lpfc hba data structure. 20210 * 20211 * This function is the failover routine as a last resort to the FCF DEAD 20212 * event when driver failed to perform fast FCF failover. 20213 **/ 20214 void 20215 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20216 { 20217 uint32_t link_state; 20218 20219 /* 20220 * Last resort as FCF DEAD event failover will treat this as 20221 * a link down, but save the link state because we don't want 20222 * it to be changed to Link Down unless it is already down. 20223 */ 20224 link_state = phba->link_state; 20225 lpfc_linkdown(phba); 20226 phba->link_state = link_state; 20227 20228 /* Unregister FCF if no devices connected to it */ 20229 lpfc_unregister_unused_fcf(phba); 20230 } 20231 20232 /** 20233 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20234 * @phba: pointer to lpfc hba data structure. 20235 * @rgn23_data: pointer to configure region 23 data. 20236 * 20237 * This function gets SLI3 port configure region 23 data through memory dump 20238 * mailbox command. When it successfully retrieves data, the size of the data 20239 * will be returned, otherwise, 0 will be returned. 20240 **/ 20241 static uint32_t 20242 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20243 { 20244 LPFC_MBOXQ_t *pmb = NULL; 20245 MAILBOX_t *mb; 20246 uint32_t offset = 0; 20247 int rc; 20248 20249 if (!rgn23_data) 20250 return 0; 20251 20252 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20253 if (!pmb) { 20254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20255 "2600 failed to allocate mailbox memory\n"); 20256 return 0; 20257 } 20258 mb = &pmb->u.mb; 20259 20260 do { 20261 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20262 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20263 20264 if (rc != MBX_SUCCESS) { 20265 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20266 "2601 failed to read config " 20267 "region 23, rc 0x%x Status 0x%x\n", 20268 rc, mb->mbxStatus); 20269 mb->un.varDmp.word_cnt = 0; 20270 } 20271 /* 20272 * dump mem may return a zero when finished or we got a 20273 * mailbox error, either way we are done. 20274 */ 20275 if (mb->un.varDmp.word_cnt == 0) 20276 break; 20277 20278 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20279 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20280 20281 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20282 rgn23_data + offset, 20283 mb->un.varDmp.word_cnt); 20284 offset += mb->un.varDmp.word_cnt; 20285 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20286 20287 mempool_free(pmb, phba->mbox_mem_pool); 20288 return offset; 20289 } 20290 20291 /** 20292 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20293 * @phba: pointer to lpfc hba data structure. 20294 * @rgn23_data: pointer to configure region 23 data. 20295 * 20296 * This function gets SLI4 port configure region 23 data through memory dump 20297 * mailbox command. When it successfully retrieves data, the size of the data 20298 * will be returned, otherwise, 0 will be returned. 20299 **/ 20300 static uint32_t 20301 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20302 { 20303 LPFC_MBOXQ_t *mboxq = NULL; 20304 struct lpfc_dmabuf *mp = NULL; 20305 struct lpfc_mqe *mqe; 20306 uint32_t data_length = 0; 20307 int rc; 20308 20309 if (!rgn23_data) 20310 return 0; 20311 20312 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20313 if (!mboxq) { 20314 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20315 "3105 failed to allocate mailbox memory\n"); 20316 return 0; 20317 } 20318 20319 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20320 goto out; 20321 mqe = &mboxq->u.mqe; 20322 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20323 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20324 if (rc) 20325 goto out; 20326 data_length = mqe->un.mb_words[5]; 20327 if (data_length == 0) 20328 goto out; 20329 if (data_length > DMP_RGN23_SIZE) { 20330 data_length = 0; 20331 goto out; 20332 } 20333 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20334 out: 20335 mempool_free(mboxq, phba->mbox_mem_pool); 20336 if (mp) { 20337 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20338 kfree(mp); 20339 } 20340 return data_length; 20341 } 20342 20343 /** 20344 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20345 * @phba: pointer to lpfc hba data structure. 20346 * 20347 * This function read region 23 and parse TLV for port status to 20348 * decide if the user disaled the port. If the TLV indicates the 20349 * port is disabled, the hba_flag is set accordingly. 20350 **/ 20351 void 20352 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20353 { 20354 uint8_t *rgn23_data = NULL; 20355 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20356 uint32_t offset = 0; 20357 20358 /* Get adapter Region 23 data */ 20359 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20360 if (!rgn23_data) 20361 goto out; 20362 20363 if (phba->sli_rev < LPFC_SLI_REV4) 20364 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20365 else { 20366 if_type = bf_get(lpfc_sli_intf_if_type, 20367 &phba->sli4_hba.sli_intf); 20368 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20369 goto out; 20370 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20371 } 20372 20373 if (!data_size) 20374 goto out; 20375 20376 /* Check the region signature first */ 20377 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20379 "2619 Config region 23 has bad signature\n"); 20380 goto out; 20381 } 20382 offset += 4; 20383 20384 /* Check the data structure version */ 20385 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20387 "2620 Config region 23 has bad version\n"); 20388 goto out; 20389 } 20390 offset += 4; 20391 20392 /* Parse TLV entries in the region */ 20393 while (offset < data_size) { 20394 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20395 break; 20396 /* 20397 * If the TLV is not driver specific TLV or driver id is 20398 * not linux driver id, skip the record. 20399 */ 20400 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20401 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20402 (rgn23_data[offset + 3] != 0)) { 20403 offset += rgn23_data[offset + 1] * 4 + 4; 20404 continue; 20405 } 20406 20407 /* Driver found a driver specific TLV in the config region */ 20408 sub_tlv_len = rgn23_data[offset + 1] * 4; 20409 offset += 4; 20410 tlv_offset = 0; 20411 20412 /* 20413 * Search for configured port state sub-TLV. 20414 */ 20415 while ((offset < data_size) && 20416 (tlv_offset < sub_tlv_len)) { 20417 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20418 offset += 4; 20419 tlv_offset += 4; 20420 break; 20421 } 20422 if (rgn23_data[offset] != PORT_STE_TYPE) { 20423 offset += rgn23_data[offset + 1] * 4 + 4; 20424 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20425 continue; 20426 } 20427 20428 /* This HBA contains PORT_STE configured */ 20429 if (!rgn23_data[offset + 2]) 20430 phba->hba_flag |= LINK_DISABLED; 20431 20432 goto out; 20433 } 20434 } 20435 20436 out: 20437 kfree(rgn23_data); 20438 return; 20439 } 20440 20441 /** 20442 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20443 * @phba: pointer to lpfc hba data structure 20444 * @shdr_status: wr_object rsp's status field 20445 * @shdr_add_status: wr_object rsp's add_status field 20446 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20447 * @shdr_change_status: wr_object rsp's change_status field 20448 * @shdr_csf: wr_object rsp's csf bit 20449 * 20450 * This routine is intended to be called after a firmware write completes. 20451 * It will log next action items to be performed by the user to instantiate 20452 * the newly downloaded firmware or reason for incompatibility. 20453 **/ 20454 static void 20455 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20456 u32 shdr_add_status, u32 shdr_add_status_2, 20457 u32 shdr_change_status, u32 shdr_csf) 20458 { 20459 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20460 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20461 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20462 "change_status x%02x, csf %01x\n", __func__, 20463 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20464 shdr_status, shdr_add_status, shdr_add_status_2, 20465 shdr_change_status, shdr_csf); 20466 20467 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20468 switch (shdr_add_status_2) { 20469 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20470 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20471 "4199 Firmware write failed: " 20472 "image incompatible with flash x%02x\n", 20473 phba->sli4_hba.flash_id); 20474 break; 20475 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20476 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20477 "4200 Firmware write failed: " 20478 "image incompatible with ASIC " 20479 "architecture x%02x\n", 20480 phba->sli4_hba.asic_rev); 20481 break; 20482 default: 20483 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20484 "4210 Firmware write failed: " 20485 "add_status_2 x%02x\n", 20486 shdr_add_status_2); 20487 break; 20488 } 20489 } else if (!shdr_status && !shdr_add_status) { 20490 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20491 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20492 if (shdr_csf) 20493 shdr_change_status = 20494 LPFC_CHANGE_STATUS_PCI_RESET; 20495 } 20496 20497 switch (shdr_change_status) { 20498 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20499 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20500 "3198 Firmware write complete: System " 20501 "reboot required to instantiate\n"); 20502 break; 20503 case (LPFC_CHANGE_STATUS_FW_RESET): 20504 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20505 "3199 Firmware write complete: " 20506 "Firmware reset required to " 20507 "instantiate\n"); 20508 break; 20509 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20510 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20511 "3200 Firmware write complete: Port " 20512 "Migration or PCI Reset required to " 20513 "instantiate\n"); 20514 break; 20515 case (LPFC_CHANGE_STATUS_PCI_RESET): 20516 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20517 "3201 Firmware write complete: PCI " 20518 "Reset required to instantiate\n"); 20519 break; 20520 default: 20521 break; 20522 } 20523 } 20524 } 20525 20526 /** 20527 * lpfc_wr_object - write an object to the firmware 20528 * @phba: HBA structure that indicates port to create a queue on. 20529 * @dmabuf_list: list of dmabufs to write to the port. 20530 * @size: the total byte value of the objects to write to the port. 20531 * @offset: the current offset to be used to start the transfer. 20532 * 20533 * This routine will create a wr_object mailbox command to send to the port. 20534 * the mailbox command will be constructed using the dma buffers described in 20535 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20536 * BDEs that the imbedded mailbox can support. The @offset variable will be 20537 * used to indicate the starting offset of the transfer and will also return 20538 * the offset after the write object mailbox has completed. @size is used to 20539 * determine the end of the object and whether the eof bit should be set. 20540 * 20541 * Return 0 is successful and offset will contain the the new offset to use 20542 * for the next write. 20543 * Return negative value for error cases. 20544 **/ 20545 int 20546 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20547 uint32_t size, uint32_t *offset) 20548 { 20549 struct lpfc_mbx_wr_object *wr_object; 20550 LPFC_MBOXQ_t *mbox; 20551 int rc = 0, i = 0; 20552 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20553 uint32_t shdr_change_status = 0, shdr_csf = 0; 20554 uint32_t mbox_tmo; 20555 struct lpfc_dmabuf *dmabuf; 20556 uint32_t written = 0; 20557 bool check_change_status = false; 20558 20559 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20560 if (!mbox) 20561 return -ENOMEM; 20562 20563 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20564 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20565 sizeof(struct lpfc_mbx_wr_object) - 20566 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20567 20568 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20569 wr_object->u.request.write_offset = *offset; 20570 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20571 wr_object->u.request.object_name[0] = 20572 cpu_to_le32(wr_object->u.request.object_name[0]); 20573 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20574 list_for_each_entry(dmabuf, dmabuf_list, list) { 20575 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20576 break; 20577 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20578 wr_object->u.request.bde[i].addrHigh = 20579 putPaddrHigh(dmabuf->phys); 20580 if (written + SLI4_PAGE_SIZE >= size) { 20581 wr_object->u.request.bde[i].tus.f.bdeSize = 20582 (size - written); 20583 written += (size - written); 20584 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20585 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20586 check_change_status = true; 20587 } else { 20588 wr_object->u.request.bde[i].tus.f.bdeSize = 20589 SLI4_PAGE_SIZE; 20590 written += SLI4_PAGE_SIZE; 20591 } 20592 i++; 20593 } 20594 wr_object->u.request.bde_count = i; 20595 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20596 if (!phba->sli4_hba.intr_enable) 20597 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20598 else { 20599 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20600 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20601 } 20602 /* The IOCTL status is embedded in the mailbox subheader. */ 20603 shdr_status = bf_get(lpfc_mbox_hdr_status, 20604 &wr_object->header.cfg_shdr.response); 20605 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20606 &wr_object->header.cfg_shdr.response); 20607 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20608 &wr_object->header.cfg_shdr.response); 20609 if (check_change_status) { 20610 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20611 &wr_object->u.response); 20612 shdr_csf = bf_get(lpfc_wr_object_csf, 20613 &wr_object->u.response); 20614 } 20615 20616 if (!phba->sli4_hba.intr_enable) 20617 mempool_free(mbox, phba->mbox_mem_pool); 20618 else if (rc != MBX_TIMEOUT) 20619 mempool_free(mbox, phba->mbox_mem_pool); 20620 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20622 "3025 Write Object mailbox failed with " 20623 "status x%x add_status x%x, add_status_2 x%x, " 20624 "mbx status x%x\n", 20625 shdr_status, shdr_add_status, shdr_add_status_2, 20626 rc); 20627 rc = -ENXIO; 20628 *offset = shdr_add_status; 20629 } else { 20630 *offset += wr_object->u.response.actual_write_length; 20631 } 20632 20633 if (rc || check_change_status) 20634 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20635 shdr_add_status_2, shdr_change_status, 20636 shdr_csf); 20637 return rc; 20638 } 20639 20640 /** 20641 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20642 * @vport: pointer to vport data structure. 20643 * 20644 * This function iterate through the mailboxq and clean up all REG_LOGIN 20645 * and REG_VPI mailbox commands associated with the vport. This function 20646 * is called when driver want to restart discovery of the vport due to 20647 * a Clear Virtual Link event. 20648 **/ 20649 void 20650 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20651 { 20652 struct lpfc_hba *phba = vport->phba; 20653 LPFC_MBOXQ_t *mb, *nextmb; 20654 struct lpfc_dmabuf *mp; 20655 struct lpfc_nodelist *ndlp; 20656 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20657 LIST_HEAD(mbox_cmd_list); 20658 uint8_t restart_loop; 20659 20660 /* Clean up internally queued mailbox commands with the vport */ 20661 spin_lock_irq(&phba->hbalock); 20662 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20663 if (mb->vport != vport) 20664 continue; 20665 20666 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20667 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20668 continue; 20669 20670 list_move_tail(&mb->list, &mbox_cmd_list); 20671 } 20672 /* Clean up active mailbox command with the vport */ 20673 mb = phba->sli.mbox_active; 20674 if (mb && (mb->vport == vport)) { 20675 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20676 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20677 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20678 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20679 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20680 /* Put reference count for delayed processing */ 20681 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20682 /* Unregister the RPI when mailbox complete */ 20683 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20684 } 20685 } 20686 /* Cleanup any mailbox completions which are not yet processed */ 20687 do { 20688 restart_loop = 0; 20689 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20690 /* 20691 * If this mailox is already processed or it is 20692 * for another vport ignore it. 20693 */ 20694 if ((mb->vport != vport) || 20695 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20696 continue; 20697 20698 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20699 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20700 continue; 20701 20702 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20703 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20704 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20705 /* Unregister the RPI when mailbox complete */ 20706 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20707 restart_loop = 1; 20708 spin_unlock_irq(&phba->hbalock); 20709 spin_lock(&ndlp->lock); 20710 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20711 spin_unlock(&ndlp->lock); 20712 spin_lock_irq(&phba->hbalock); 20713 break; 20714 } 20715 } 20716 } while (restart_loop); 20717 20718 spin_unlock_irq(&phba->hbalock); 20719 20720 /* Release the cleaned-up mailbox commands */ 20721 while (!list_empty(&mbox_cmd_list)) { 20722 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20723 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20724 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20725 if (mp) { 20726 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20727 kfree(mp); 20728 } 20729 mb->ctx_buf = NULL; 20730 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20731 mb->ctx_ndlp = NULL; 20732 if (ndlp) { 20733 spin_lock(&ndlp->lock); 20734 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20735 spin_unlock(&ndlp->lock); 20736 lpfc_nlp_put(ndlp); 20737 } 20738 } 20739 mempool_free(mb, phba->mbox_mem_pool); 20740 } 20741 20742 /* Release the ndlp with the cleaned-up active mailbox command */ 20743 if (act_mbx_ndlp) { 20744 spin_lock(&act_mbx_ndlp->lock); 20745 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20746 spin_unlock(&act_mbx_ndlp->lock); 20747 lpfc_nlp_put(act_mbx_ndlp); 20748 } 20749 } 20750 20751 /** 20752 * lpfc_drain_txq - Drain the txq 20753 * @phba: Pointer to HBA context object. 20754 * 20755 * This function attempt to submit IOCBs on the txq 20756 * to the adapter. For SLI4 adapters, the txq contains 20757 * ELS IOCBs that have been deferred because the there 20758 * are no SGLs. This congestion can occur with large 20759 * vport counts during node discovery. 20760 **/ 20761 20762 uint32_t 20763 lpfc_drain_txq(struct lpfc_hba *phba) 20764 { 20765 LIST_HEAD(completions); 20766 struct lpfc_sli_ring *pring; 20767 struct lpfc_iocbq *piocbq = NULL; 20768 unsigned long iflags = 0; 20769 char *fail_msg = NULL; 20770 uint32_t txq_cnt = 0; 20771 struct lpfc_queue *wq; 20772 int ret = 0; 20773 20774 if (phba->link_flag & LS_MDS_LOOPBACK) { 20775 /* MDS WQE are posted only to first WQ*/ 20776 wq = phba->sli4_hba.hdwq[0].io_wq; 20777 if (unlikely(!wq)) 20778 return 0; 20779 pring = wq->pring; 20780 } else { 20781 wq = phba->sli4_hba.els_wq; 20782 if (unlikely(!wq)) 20783 return 0; 20784 pring = lpfc_phba_elsring(phba); 20785 } 20786 20787 if (unlikely(!pring) || list_empty(&pring->txq)) 20788 return 0; 20789 20790 spin_lock_irqsave(&pring->ring_lock, iflags); 20791 list_for_each_entry(piocbq, &pring->txq, list) { 20792 txq_cnt++; 20793 } 20794 20795 if (txq_cnt > pring->txq_max) 20796 pring->txq_max = txq_cnt; 20797 20798 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20799 20800 while (!list_empty(&pring->txq)) { 20801 spin_lock_irqsave(&pring->ring_lock, iflags); 20802 20803 piocbq = lpfc_sli_ringtx_get(phba, pring); 20804 if (!piocbq) { 20805 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20807 "2823 txq empty and txq_cnt is %d\n ", 20808 txq_cnt); 20809 break; 20810 } 20811 txq_cnt--; 20812 20813 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 20814 20815 if (ret && ret != IOCB_BUSY) { 20816 fail_msg = " - Cannot send IO "; 20817 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 20818 } 20819 if (fail_msg) { 20820 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 20821 /* Failed means we can't issue and need to cancel */ 20822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20823 "2822 IOCB failed %s iotag 0x%x " 20824 "xri 0x%x %d flg x%x\n", 20825 fail_msg, piocbq->iotag, 20826 piocbq->sli4_xritag, ret, 20827 piocbq->cmd_flag); 20828 list_add_tail(&piocbq->list, &completions); 20829 fail_msg = NULL; 20830 } 20831 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20832 if (txq_cnt == 0 || ret == IOCB_BUSY) 20833 break; 20834 } 20835 /* Cancel all the IOCBs that cannot be issued */ 20836 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20837 IOERR_SLI_ABORTED); 20838 20839 return txq_cnt; 20840 } 20841 20842 /** 20843 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20844 * @phba: Pointer to HBA context object. 20845 * @pwqeq: Pointer to command WQE. 20846 * @sglq: Pointer to the scatter gather queue object. 20847 * 20848 * This routine converts the bpl or bde that is in the WQE 20849 * to a sgl list for the sli4 hardware. The physical address 20850 * of the bpl/bde is converted back to a virtual address. 20851 * If the WQE contains a BPL then the list of BDE's is 20852 * converted to sli4_sge's. If the WQE contains a single 20853 * BDE then it is converted to a single sli_sge. 20854 * The WQE is still in cpu endianness so the contents of 20855 * the bpl can be used without byte swapping. 20856 * 20857 * Returns valid XRI = Success, NO_XRI = Failure. 20858 */ 20859 static uint16_t 20860 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20861 struct lpfc_sglq *sglq) 20862 { 20863 uint16_t xritag = NO_XRI; 20864 struct ulp_bde64 *bpl = NULL; 20865 struct ulp_bde64 bde; 20866 struct sli4_sge *sgl = NULL; 20867 struct lpfc_dmabuf *dmabuf; 20868 union lpfc_wqe128 *wqe; 20869 int numBdes = 0; 20870 int i = 0; 20871 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20872 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20873 uint32_t cmd; 20874 20875 if (!pwqeq || !sglq) 20876 return xritag; 20877 20878 sgl = (struct sli4_sge *)sglq->sgl; 20879 wqe = &pwqeq->wqe; 20880 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20881 20882 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20883 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20884 return sglq->sli4_xritag; 20885 numBdes = pwqeq->num_bdes; 20886 if (numBdes) { 20887 /* The addrHigh and addrLow fields within the WQE 20888 * have not been byteswapped yet so there is no 20889 * need to swap them back. 20890 */ 20891 if (pwqeq->context3) 20892 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20893 else 20894 return xritag; 20895 20896 bpl = (struct ulp_bde64 *)dmabuf->virt; 20897 if (!bpl) 20898 return xritag; 20899 20900 for (i = 0; i < numBdes; i++) { 20901 /* Should already be byte swapped. */ 20902 sgl->addr_hi = bpl->addrHigh; 20903 sgl->addr_lo = bpl->addrLow; 20904 20905 sgl->word2 = le32_to_cpu(sgl->word2); 20906 if ((i+1) == numBdes) 20907 bf_set(lpfc_sli4_sge_last, sgl, 1); 20908 else 20909 bf_set(lpfc_sli4_sge_last, sgl, 0); 20910 /* swap the size field back to the cpu so we 20911 * can assign it to the sgl. 20912 */ 20913 bde.tus.w = le32_to_cpu(bpl->tus.w); 20914 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20915 /* The offsets in the sgl need to be accumulated 20916 * separately for the request and reply lists. 20917 * The request is always first, the reply follows. 20918 */ 20919 switch (cmd) { 20920 case CMD_GEN_REQUEST64_WQE: 20921 /* add up the reply sg entries */ 20922 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20923 inbound++; 20924 /* first inbound? reset the offset */ 20925 if (inbound == 1) 20926 offset = 0; 20927 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20928 bf_set(lpfc_sli4_sge_type, sgl, 20929 LPFC_SGE_TYPE_DATA); 20930 offset += bde.tus.f.bdeSize; 20931 break; 20932 case CMD_FCP_TRSP64_WQE: 20933 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20934 bf_set(lpfc_sli4_sge_type, sgl, 20935 LPFC_SGE_TYPE_DATA); 20936 break; 20937 case CMD_FCP_TSEND64_WQE: 20938 case CMD_FCP_TRECEIVE64_WQE: 20939 bf_set(lpfc_sli4_sge_type, sgl, 20940 bpl->tus.f.bdeFlags); 20941 if (i < 3) 20942 offset = 0; 20943 else 20944 offset += bde.tus.f.bdeSize; 20945 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20946 break; 20947 } 20948 sgl->word2 = cpu_to_le32(sgl->word2); 20949 bpl++; 20950 sgl++; 20951 } 20952 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20953 /* The addrHigh and addrLow fields of the BDE have not 20954 * been byteswapped yet so they need to be swapped 20955 * before putting them in the sgl. 20956 */ 20957 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20958 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20959 sgl->word2 = le32_to_cpu(sgl->word2); 20960 bf_set(lpfc_sli4_sge_last, sgl, 1); 20961 sgl->word2 = cpu_to_le32(sgl->word2); 20962 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20963 } 20964 return sglq->sli4_xritag; 20965 } 20966 20967 /** 20968 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20969 * @phba: Pointer to HBA context object. 20970 * @qp: Pointer to HDW queue. 20971 * @pwqe: Pointer to command WQE. 20972 **/ 20973 int 20974 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20975 struct lpfc_iocbq *pwqe) 20976 { 20977 union lpfc_wqe128 *wqe = &pwqe->wqe; 20978 struct lpfc_async_xchg_ctx *ctxp; 20979 struct lpfc_queue *wq; 20980 struct lpfc_sglq *sglq; 20981 struct lpfc_sli_ring *pring; 20982 unsigned long iflags; 20983 uint32_t ret = 0; 20984 20985 /* NVME_LS and NVME_LS ABTS requests. */ 20986 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 20987 pring = phba->sli4_hba.nvmels_wq->pring; 20988 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20989 qp, wq_access); 20990 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20991 if (!sglq) { 20992 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20993 return WQE_BUSY; 20994 } 20995 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20996 pwqe->sli4_xritag = sglq->sli4_xritag; 20997 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20998 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20999 return WQE_ERROR; 21000 } 21001 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21002 pwqe->sli4_xritag); 21003 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21004 if (ret) { 21005 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21006 return ret; 21007 } 21008 21009 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21010 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21011 21012 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21013 return 0; 21014 } 21015 21016 /* NVME_FCREQ and NVME_ABTS requests */ 21017 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21018 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21019 wq = qp->io_wq; 21020 pring = wq->pring; 21021 21022 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21023 21024 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21025 qp, wq_access); 21026 ret = lpfc_sli4_wq_put(wq, wqe); 21027 if (ret) { 21028 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21029 return ret; 21030 } 21031 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21032 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21033 21034 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21035 return 0; 21036 } 21037 21038 /* NVMET requests */ 21039 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21040 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21041 wq = qp->io_wq; 21042 pring = wq->pring; 21043 21044 ctxp = pwqe->context2; 21045 sglq = ctxp->ctxbuf->sglq; 21046 if (pwqe->sli4_xritag == NO_XRI) { 21047 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21048 pwqe->sli4_xritag = sglq->sli4_xritag; 21049 } 21050 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21051 pwqe->sli4_xritag); 21052 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21053 21054 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21055 qp, wq_access); 21056 ret = lpfc_sli4_wq_put(wq, wqe); 21057 if (ret) { 21058 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21059 return ret; 21060 } 21061 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21062 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21063 21064 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21065 return 0; 21066 } 21067 return WQE_ERROR; 21068 } 21069 21070 /** 21071 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21072 * @phba: Pointer to HBA context object. 21073 * @cmdiocb: Pointer to driver command iocb object. 21074 * @cmpl: completion function. 21075 * 21076 * Fill the appropriate fields for the abort WQE and call 21077 * internal routine lpfc_sli4_issue_wqe to send the WQE 21078 * This function is called with hbalock held and no ring_lock held. 21079 * 21080 * RETURNS 0 - SUCCESS 21081 **/ 21082 21083 int 21084 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21085 void *cmpl) 21086 { 21087 struct lpfc_vport *vport = cmdiocb->vport; 21088 struct lpfc_iocbq *abtsiocb = NULL; 21089 union lpfc_wqe128 *abtswqe; 21090 struct lpfc_io_buf *lpfc_cmd; 21091 int retval = IOCB_ERROR; 21092 u16 xritag = cmdiocb->sli4_xritag; 21093 21094 /* 21095 * The scsi command can not be in txq and it is in flight because the 21096 * pCmd is still pointing at the SCSI command we have to abort. There 21097 * is no need to search the txcmplq. Just send an abort to the FW. 21098 */ 21099 21100 abtsiocb = __lpfc_sli_get_iocbq(phba); 21101 if (!abtsiocb) 21102 return WQE_NORESOURCE; 21103 21104 /* Indicate the IO is being aborted by the driver. */ 21105 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21106 21107 abtswqe = &abtsiocb->wqe; 21108 memset(abtswqe, 0, sizeof(*abtswqe)); 21109 21110 if (!lpfc_is_link_up(phba)) 21111 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21112 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21113 abtswqe->abort_cmd.rsrvd5 = 0; 21114 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21115 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21116 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21117 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21118 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21119 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21120 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21121 21122 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21123 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21124 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21125 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21126 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21127 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21128 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21129 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21130 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21131 abtsiocb->vport = vport; 21132 abtsiocb->cmd_cmpl = cmpl; 21133 21134 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21135 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21136 21137 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21138 "0359 Abort xri x%x, original iotag x%x, " 21139 "abort cmd iotag x%x retval x%x\n", 21140 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21141 21142 if (retval) { 21143 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21144 __lpfc_sli_release_iocbq(phba, abtsiocb); 21145 } 21146 21147 return retval; 21148 } 21149 21150 #ifdef LPFC_MXP_STAT 21151 /** 21152 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21153 * @phba: pointer to lpfc hba data structure. 21154 * @hwqid: belong to which HWQ. 21155 * 21156 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21157 * 15 seconds after a test case is running. 21158 * 21159 * The user should call lpfc_debugfs_multixripools_write before running a test 21160 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21161 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21162 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21163 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21164 **/ 21165 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21166 { 21167 struct lpfc_sli4_hdw_queue *qp; 21168 struct lpfc_multixri_pool *multixri_pool; 21169 struct lpfc_pvt_pool *pvt_pool; 21170 struct lpfc_pbl_pool *pbl_pool; 21171 u32 txcmplq_cnt; 21172 21173 qp = &phba->sli4_hba.hdwq[hwqid]; 21174 multixri_pool = qp->p_multixri_pool; 21175 if (!multixri_pool) 21176 return; 21177 21178 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21179 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21180 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21181 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21182 21183 multixri_pool->stat_pbl_count = pbl_pool->count; 21184 multixri_pool->stat_pvt_count = pvt_pool->count; 21185 multixri_pool->stat_busy_count = txcmplq_cnt; 21186 } 21187 21188 multixri_pool->stat_snapshot_taken++; 21189 } 21190 #endif 21191 21192 /** 21193 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21194 * @phba: pointer to lpfc hba data structure. 21195 * @hwqid: belong to which HWQ. 21196 * 21197 * This routine moves some XRIs from private to public pool when private pool 21198 * is not busy. 21199 **/ 21200 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21201 { 21202 struct lpfc_multixri_pool *multixri_pool; 21203 u32 io_req_count; 21204 u32 prev_io_req_count; 21205 21206 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21207 if (!multixri_pool) 21208 return; 21209 io_req_count = multixri_pool->io_req_count; 21210 prev_io_req_count = multixri_pool->prev_io_req_count; 21211 21212 if (prev_io_req_count != io_req_count) { 21213 /* Private pool is busy */ 21214 multixri_pool->prev_io_req_count = io_req_count; 21215 } else { 21216 /* Private pool is not busy. 21217 * Move XRIs from private to public pool. 21218 */ 21219 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21220 } 21221 } 21222 21223 /** 21224 * lpfc_adjust_high_watermark - Adjust high watermark 21225 * @phba: pointer to lpfc hba data structure. 21226 * @hwqid: belong to which HWQ. 21227 * 21228 * This routine sets high watermark as number of outstanding XRIs, 21229 * but make sure the new value is between xri_limit/2 and xri_limit. 21230 **/ 21231 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21232 { 21233 u32 new_watermark; 21234 u32 watermark_max; 21235 u32 watermark_min; 21236 u32 xri_limit; 21237 u32 txcmplq_cnt; 21238 u32 abts_io_bufs; 21239 struct lpfc_multixri_pool *multixri_pool; 21240 struct lpfc_sli4_hdw_queue *qp; 21241 21242 qp = &phba->sli4_hba.hdwq[hwqid]; 21243 multixri_pool = qp->p_multixri_pool; 21244 if (!multixri_pool) 21245 return; 21246 xri_limit = multixri_pool->xri_limit; 21247 21248 watermark_max = xri_limit; 21249 watermark_min = xri_limit / 2; 21250 21251 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21252 abts_io_bufs = qp->abts_scsi_io_bufs; 21253 abts_io_bufs += qp->abts_nvme_io_bufs; 21254 21255 new_watermark = txcmplq_cnt + abts_io_bufs; 21256 new_watermark = min(watermark_max, new_watermark); 21257 new_watermark = max(watermark_min, new_watermark); 21258 multixri_pool->pvt_pool.high_watermark = new_watermark; 21259 21260 #ifdef LPFC_MXP_STAT 21261 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21262 new_watermark); 21263 #endif 21264 } 21265 21266 /** 21267 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21268 * @phba: pointer to lpfc hba data structure. 21269 * @hwqid: belong to which HWQ. 21270 * 21271 * This routine is called from hearbeat timer when pvt_pool is idle. 21272 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21273 * The first step moves (all - low_watermark) amount of XRIs. 21274 * The second step moves the rest of XRIs. 21275 **/ 21276 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21277 { 21278 struct lpfc_pbl_pool *pbl_pool; 21279 struct lpfc_pvt_pool *pvt_pool; 21280 struct lpfc_sli4_hdw_queue *qp; 21281 struct lpfc_io_buf *lpfc_ncmd; 21282 struct lpfc_io_buf *lpfc_ncmd_next; 21283 unsigned long iflag; 21284 struct list_head tmp_list; 21285 u32 tmp_count; 21286 21287 qp = &phba->sli4_hba.hdwq[hwqid]; 21288 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21289 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21290 tmp_count = 0; 21291 21292 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21293 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21294 21295 if (pvt_pool->count > pvt_pool->low_watermark) { 21296 /* Step 1: move (all - low_watermark) from pvt_pool 21297 * to pbl_pool 21298 */ 21299 21300 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21301 INIT_LIST_HEAD(&tmp_list); 21302 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21303 &pvt_pool->list, list) { 21304 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21305 tmp_count++; 21306 if (tmp_count >= pvt_pool->low_watermark) 21307 break; 21308 } 21309 21310 /* Move all bufs from pvt_pool to pbl_pool */ 21311 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21312 21313 /* Move all bufs from tmp_list to pvt_pool */ 21314 list_splice(&tmp_list, &pvt_pool->list); 21315 21316 pbl_pool->count += (pvt_pool->count - tmp_count); 21317 pvt_pool->count = tmp_count; 21318 } else { 21319 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21320 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21321 pbl_pool->count += pvt_pool->count; 21322 pvt_pool->count = 0; 21323 } 21324 21325 spin_unlock(&pvt_pool->lock); 21326 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21327 } 21328 21329 /** 21330 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21331 * @phba: pointer to lpfc hba data structure 21332 * @qp: pointer to HDW queue 21333 * @pbl_pool: specified public free XRI pool 21334 * @pvt_pool: specified private free XRI pool 21335 * @count: number of XRIs to move 21336 * 21337 * This routine tries to move some free common bufs from the specified pbl_pool 21338 * to the specified pvt_pool. It might move less than count XRIs if there's not 21339 * enough in public pool. 21340 * 21341 * Return: 21342 * true - if XRIs are successfully moved from the specified pbl_pool to the 21343 * specified pvt_pool 21344 * false - if the specified pbl_pool is empty or locked by someone else 21345 **/ 21346 static bool 21347 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21348 struct lpfc_pbl_pool *pbl_pool, 21349 struct lpfc_pvt_pool *pvt_pool, u32 count) 21350 { 21351 struct lpfc_io_buf *lpfc_ncmd; 21352 struct lpfc_io_buf *lpfc_ncmd_next; 21353 unsigned long iflag; 21354 int ret; 21355 21356 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21357 if (ret) { 21358 if (pbl_pool->count) { 21359 /* Move a batch of XRIs from public to private pool */ 21360 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21361 list_for_each_entry_safe(lpfc_ncmd, 21362 lpfc_ncmd_next, 21363 &pbl_pool->list, 21364 list) { 21365 list_move_tail(&lpfc_ncmd->list, 21366 &pvt_pool->list); 21367 pvt_pool->count++; 21368 pbl_pool->count--; 21369 count--; 21370 if (count == 0) 21371 break; 21372 } 21373 21374 spin_unlock(&pvt_pool->lock); 21375 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21376 return true; 21377 } 21378 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21379 } 21380 21381 return false; 21382 } 21383 21384 /** 21385 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21386 * @phba: pointer to lpfc hba data structure. 21387 * @hwqid: belong to which HWQ. 21388 * @count: number of XRIs to move 21389 * 21390 * This routine tries to find some free common bufs in one of public pools with 21391 * Round Robin method. The search always starts from local hwqid, then the next 21392 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21393 * a batch of free common bufs are moved to private pool on hwqid. 21394 * It might move less than count XRIs if there's not enough in public pool. 21395 **/ 21396 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21397 { 21398 struct lpfc_multixri_pool *multixri_pool; 21399 struct lpfc_multixri_pool *next_multixri_pool; 21400 struct lpfc_pvt_pool *pvt_pool; 21401 struct lpfc_pbl_pool *pbl_pool; 21402 struct lpfc_sli4_hdw_queue *qp; 21403 u32 next_hwqid; 21404 u32 hwq_count; 21405 int ret; 21406 21407 qp = &phba->sli4_hba.hdwq[hwqid]; 21408 multixri_pool = qp->p_multixri_pool; 21409 pvt_pool = &multixri_pool->pvt_pool; 21410 pbl_pool = &multixri_pool->pbl_pool; 21411 21412 /* Check if local pbl_pool is available */ 21413 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21414 if (ret) { 21415 #ifdef LPFC_MXP_STAT 21416 multixri_pool->local_pbl_hit_count++; 21417 #endif 21418 return; 21419 } 21420 21421 hwq_count = phba->cfg_hdw_queue; 21422 21423 /* Get the next hwqid which was found last time */ 21424 next_hwqid = multixri_pool->rrb_next_hwqid; 21425 21426 do { 21427 /* Go to next hwq */ 21428 next_hwqid = (next_hwqid + 1) % hwq_count; 21429 21430 next_multixri_pool = 21431 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21432 pbl_pool = &next_multixri_pool->pbl_pool; 21433 21434 /* Check if the public free xri pool is available */ 21435 ret = _lpfc_move_xri_pbl_to_pvt( 21436 phba, qp, pbl_pool, pvt_pool, count); 21437 21438 /* Exit while-loop if success or all hwqid are checked */ 21439 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21440 21441 /* Starting point for the next time */ 21442 multixri_pool->rrb_next_hwqid = next_hwqid; 21443 21444 if (!ret) { 21445 /* stats: all public pools are empty*/ 21446 multixri_pool->pbl_empty_count++; 21447 } 21448 21449 #ifdef LPFC_MXP_STAT 21450 if (ret) { 21451 if (next_hwqid == hwqid) 21452 multixri_pool->local_pbl_hit_count++; 21453 else 21454 multixri_pool->other_pbl_hit_count++; 21455 } 21456 #endif 21457 } 21458 21459 /** 21460 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21461 * @phba: pointer to lpfc hba data structure. 21462 * @hwqid: belong to which HWQ. 21463 * 21464 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21465 * low watermark. 21466 **/ 21467 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21468 { 21469 struct lpfc_multixri_pool *multixri_pool; 21470 struct lpfc_pvt_pool *pvt_pool; 21471 21472 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21473 pvt_pool = &multixri_pool->pvt_pool; 21474 21475 if (pvt_pool->count < pvt_pool->low_watermark) 21476 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21477 } 21478 21479 /** 21480 * lpfc_release_io_buf - Return one IO buf back to free pool 21481 * @phba: pointer to lpfc hba data structure. 21482 * @lpfc_ncmd: IO buf to be returned. 21483 * @qp: belong to which HWQ. 21484 * 21485 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21486 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21487 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21488 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21489 * lpfc_io_buf_list_put. 21490 **/ 21491 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21492 struct lpfc_sli4_hdw_queue *qp) 21493 { 21494 unsigned long iflag; 21495 struct lpfc_pbl_pool *pbl_pool; 21496 struct lpfc_pvt_pool *pvt_pool; 21497 struct lpfc_epd_pool *epd_pool; 21498 u32 txcmplq_cnt; 21499 u32 xri_owned; 21500 u32 xri_limit; 21501 u32 abts_io_bufs; 21502 21503 /* MUST zero fields if buffer is reused by another protocol */ 21504 lpfc_ncmd->nvmeCmd = NULL; 21505 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21506 21507 if (phba->cfg_xpsgl && !phba->nvmet_support && 21508 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21509 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21510 21511 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21512 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21513 21514 if (phba->cfg_xri_rebalancing) { 21515 if (lpfc_ncmd->expedite) { 21516 /* Return to expedite pool */ 21517 epd_pool = &phba->epd_pool; 21518 spin_lock_irqsave(&epd_pool->lock, iflag); 21519 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21520 epd_pool->count++; 21521 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21522 return; 21523 } 21524 21525 /* Avoid invalid access if an IO sneaks in and is being rejected 21526 * just _after_ xri pools are destroyed in lpfc_offline. 21527 * Nothing much can be done at this point. 21528 */ 21529 if (!qp->p_multixri_pool) 21530 return; 21531 21532 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21533 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21534 21535 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21536 abts_io_bufs = qp->abts_scsi_io_bufs; 21537 abts_io_bufs += qp->abts_nvme_io_bufs; 21538 21539 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21540 xri_limit = qp->p_multixri_pool->xri_limit; 21541 21542 #ifdef LPFC_MXP_STAT 21543 if (xri_owned <= xri_limit) 21544 qp->p_multixri_pool->below_limit_count++; 21545 else 21546 qp->p_multixri_pool->above_limit_count++; 21547 #endif 21548 21549 /* XRI goes to either public or private free xri pool 21550 * based on watermark and xri_limit 21551 */ 21552 if ((pvt_pool->count < pvt_pool->low_watermark) || 21553 (xri_owned < xri_limit && 21554 pvt_pool->count < pvt_pool->high_watermark)) { 21555 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21556 qp, free_pvt_pool); 21557 list_add_tail(&lpfc_ncmd->list, 21558 &pvt_pool->list); 21559 pvt_pool->count++; 21560 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21561 } else { 21562 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21563 qp, free_pub_pool); 21564 list_add_tail(&lpfc_ncmd->list, 21565 &pbl_pool->list); 21566 pbl_pool->count++; 21567 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21568 } 21569 } else { 21570 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21571 qp, free_xri); 21572 list_add_tail(&lpfc_ncmd->list, 21573 &qp->lpfc_io_buf_list_put); 21574 qp->put_io_bufs++; 21575 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21576 iflag); 21577 } 21578 } 21579 21580 /** 21581 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21582 * @phba: pointer to lpfc hba data structure. 21583 * @qp: pointer to HDW queue 21584 * @pvt_pool: pointer to private pool data structure. 21585 * @ndlp: pointer to lpfc nodelist data structure. 21586 * 21587 * This routine tries to get one free IO buf from private pool. 21588 * 21589 * Return: 21590 * pointer to one free IO buf - if private pool is not empty 21591 * NULL - if private pool is empty 21592 **/ 21593 static struct lpfc_io_buf * 21594 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21595 struct lpfc_sli4_hdw_queue *qp, 21596 struct lpfc_pvt_pool *pvt_pool, 21597 struct lpfc_nodelist *ndlp) 21598 { 21599 struct lpfc_io_buf *lpfc_ncmd; 21600 struct lpfc_io_buf *lpfc_ncmd_next; 21601 unsigned long iflag; 21602 21603 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21604 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21605 &pvt_pool->list, list) { 21606 if (lpfc_test_rrq_active( 21607 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21608 continue; 21609 list_del(&lpfc_ncmd->list); 21610 pvt_pool->count--; 21611 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21612 return lpfc_ncmd; 21613 } 21614 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21615 21616 return NULL; 21617 } 21618 21619 /** 21620 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21621 * @phba: pointer to lpfc hba data structure. 21622 * 21623 * This routine tries to get one free IO buf from expedite pool. 21624 * 21625 * Return: 21626 * pointer to one free IO buf - if expedite pool is not empty 21627 * NULL - if expedite pool is empty 21628 **/ 21629 static struct lpfc_io_buf * 21630 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21631 { 21632 struct lpfc_io_buf *lpfc_ncmd; 21633 struct lpfc_io_buf *lpfc_ncmd_next; 21634 unsigned long iflag; 21635 struct lpfc_epd_pool *epd_pool; 21636 21637 epd_pool = &phba->epd_pool; 21638 lpfc_ncmd = NULL; 21639 21640 spin_lock_irqsave(&epd_pool->lock, iflag); 21641 if (epd_pool->count > 0) { 21642 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21643 &epd_pool->list, list) { 21644 list_del(&lpfc_ncmd->list); 21645 epd_pool->count--; 21646 break; 21647 } 21648 } 21649 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21650 21651 return lpfc_ncmd; 21652 } 21653 21654 /** 21655 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21656 * @phba: pointer to lpfc hba data structure. 21657 * @ndlp: pointer to lpfc nodelist data structure. 21658 * @hwqid: belong to which HWQ 21659 * @expedite: 1 means this request is urgent. 21660 * 21661 * This routine will do the following actions and then return a pointer to 21662 * one free IO buf. 21663 * 21664 * 1. If private free xri count is empty, move some XRIs from public to 21665 * private pool. 21666 * 2. Get one XRI from private free xri pool. 21667 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21668 * get one free xri from expedite pool. 21669 * 21670 * Note: ndlp is only used on SCSI side for RRQ testing. 21671 * The caller should pass NULL for ndlp on NVME side. 21672 * 21673 * Return: 21674 * pointer to one free IO buf - if private pool is not empty 21675 * NULL - if private pool is empty 21676 **/ 21677 static struct lpfc_io_buf * 21678 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21679 struct lpfc_nodelist *ndlp, 21680 int hwqid, int expedite) 21681 { 21682 struct lpfc_sli4_hdw_queue *qp; 21683 struct lpfc_multixri_pool *multixri_pool; 21684 struct lpfc_pvt_pool *pvt_pool; 21685 struct lpfc_io_buf *lpfc_ncmd; 21686 21687 qp = &phba->sli4_hba.hdwq[hwqid]; 21688 lpfc_ncmd = NULL; 21689 if (!qp) { 21690 lpfc_printf_log(phba, KERN_INFO, 21691 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21692 "5556 NULL qp for hwqid x%x\n", hwqid); 21693 return lpfc_ncmd; 21694 } 21695 multixri_pool = qp->p_multixri_pool; 21696 if (!multixri_pool) { 21697 lpfc_printf_log(phba, KERN_INFO, 21698 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21699 "5557 NULL multixri for hwqid x%x\n", hwqid); 21700 return lpfc_ncmd; 21701 } 21702 pvt_pool = &multixri_pool->pvt_pool; 21703 if (!pvt_pool) { 21704 lpfc_printf_log(phba, KERN_INFO, 21705 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21706 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21707 return lpfc_ncmd; 21708 } 21709 multixri_pool->io_req_count++; 21710 21711 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21712 if (pvt_pool->count == 0) 21713 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21714 21715 /* Get one XRI from private free xri pool */ 21716 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21717 21718 if (lpfc_ncmd) { 21719 lpfc_ncmd->hdwq = qp; 21720 lpfc_ncmd->hdwq_no = hwqid; 21721 } else if (expedite) { 21722 /* If we fail to get one from pvt_pool and this is an expedite 21723 * request, get one free xri from expedite pool. 21724 */ 21725 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21726 } 21727 21728 return lpfc_ncmd; 21729 } 21730 21731 static inline struct lpfc_io_buf * 21732 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21733 { 21734 struct lpfc_sli4_hdw_queue *qp; 21735 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21736 21737 qp = &phba->sli4_hba.hdwq[idx]; 21738 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21739 &qp->lpfc_io_buf_list_get, list) { 21740 if (lpfc_test_rrq_active(phba, ndlp, 21741 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21742 continue; 21743 21744 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21745 continue; 21746 21747 list_del_init(&lpfc_cmd->list); 21748 qp->get_io_bufs--; 21749 lpfc_cmd->hdwq = qp; 21750 lpfc_cmd->hdwq_no = idx; 21751 return lpfc_cmd; 21752 } 21753 return NULL; 21754 } 21755 21756 /** 21757 * lpfc_get_io_buf - Get one IO buffer from free pool 21758 * @phba: The HBA for which this call is being executed. 21759 * @ndlp: pointer to lpfc nodelist data structure. 21760 * @hwqid: belong to which HWQ 21761 * @expedite: 1 means this request is urgent. 21762 * 21763 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21764 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21765 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21766 * 21767 * Note: ndlp is only used on SCSI side for RRQ testing. 21768 * The caller should pass NULL for ndlp on NVME side. 21769 * 21770 * Return codes: 21771 * NULL - Error 21772 * Pointer to lpfc_io_buf - Success 21773 **/ 21774 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21775 struct lpfc_nodelist *ndlp, 21776 u32 hwqid, int expedite) 21777 { 21778 struct lpfc_sli4_hdw_queue *qp; 21779 unsigned long iflag; 21780 struct lpfc_io_buf *lpfc_cmd; 21781 21782 qp = &phba->sli4_hba.hdwq[hwqid]; 21783 lpfc_cmd = NULL; 21784 if (!qp) { 21785 lpfc_printf_log(phba, KERN_WARNING, 21786 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21787 "5555 NULL qp for hwqid x%x\n", hwqid); 21788 return lpfc_cmd; 21789 } 21790 21791 if (phba->cfg_xri_rebalancing) 21792 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21793 phba, ndlp, hwqid, expedite); 21794 else { 21795 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21796 qp, alloc_xri_get); 21797 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21798 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21799 if (!lpfc_cmd) { 21800 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21801 qp, alloc_xri_put); 21802 list_splice(&qp->lpfc_io_buf_list_put, 21803 &qp->lpfc_io_buf_list_get); 21804 qp->get_io_bufs += qp->put_io_bufs; 21805 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21806 qp->put_io_bufs = 0; 21807 spin_unlock(&qp->io_buf_list_put_lock); 21808 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21809 expedite) 21810 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21811 } 21812 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21813 } 21814 21815 return lpfc_cmd; 21816 } 21817 21818 /** 21819 * lpfc_read_object - Retrieve object data from HBA 21820 * @phba: The HBA for which this call is being executed. 21821 * @rdobject: Pathname of object data we want to read. 21822 * @datap: Pointer to where data will be copied to. 21823 * @datasz: size of data area 21824 * 21825 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 21826 * The data will be truncated if datasz is not large enough. 21827 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 21828 * Returns the actual bytes read from the object. 21829 */ 21830 int 21831 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 21832 uint32_t datasz) 21833 { 21834 struct lpfc_mbx_read_object *read_object; 21835 LPFC_MBOXQ_t *mbox; 21836 int rc, length, eof, j, byte_cnt = 0; 21837 uint32_t shdr_status, shdr_add_status; 21838 union lpfc_sli4_cfg_shdr *shdr; 21839 struct lpfc_dmabuf *pcmd; 21840 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 21841 21842 /* sanity check on queue memory */ 21843 if (!datap) 21844 return -ENODEV; 21845 21846 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 21847 if (!mbox) 21848 return -ENOMEM; 21849 length = (sizeof(struct lpfc_mbx_read_object) - 21850 sizeof(struct lpfc_sli4_cfg_mhdr)); 21851 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 21852 LPFC_MBOX_OPCODE_READ_OBJECT, 21853 length, LPFC_SLI4_MBX_EMBED); 21854 read_object = &mbox->u.mqe.un.read_object; 21855 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 21856 21857 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 21858 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 21859 read_object->u.request.rd_object_offset = 0; 21860 read_object->u.request.rd_object_cnt = 1; 21861 21862 memset((void *)read_object->u.request.rd_object_name, 0, 21863 LPFC_OBJ_NAME_SZ); 21864 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 21865 for (j = 0; j < strlen(rdobject); j++) 21866 read_object->u.request.rd_object_name[j] = 21867 cpu_to_le32(rd_object_name[j]); 21868 21869 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 21870 if (pcmd) 21871 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 21872 if (!pcmd || !pcmd->virt) { 21873 kfree(pcmd); 21874 mempool_free(mbox, phba->mbox_mem_pool); 21875 return -ENOMEM; 21876 } 21877 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 21878 read_object->u.request.rd_object_hbuf[0].pa_lo = 21879 putPaddrLow(pcmd->phys); 21880 read_object->u.request.rd_object_hbuf[0].pa_hi = 21881 putPaddrHigh(pcmd->phys); 21882 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 21883 21884 mbox->vport = phba->pport; 21885 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21886 mbox->ctx_buf = NULL; 21887 mbox->ctx_ndlp = NULL; 21888 21889 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 21890 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 21891 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 21892 21893 if (shdr_status == STATUS_FAILED && 21894 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 21895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21896 "4674 No port cfg file in FW.\n"); 21897 byte_cnt = -ENOENT; 21898 } else if (shdr_status || shdr_add_status || rc) { 21899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21900 "2625 READ_OBJECT mailbox failed with " 21901 "status x%x add_status x%x, mbx status x%x\n", 21902 shdr_status, shdr_add_status, rc); 21903 byte_cnt = -ENXIO; 21904 } else { 21905 /* Success */ 21906 length = read_object->u.response.rd_object_actual_rlen; 21907 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 21908 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 21909 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 21910 length, datasz, eof); 21911 21912 /* Detect the port config file exists but is empty */ 21913 if (!length && eof) { 21914 byte_cnt = 0; 21915 goto exit; 21916 } 21917 21918 byte_cnt = length; 21919 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 21920 } 21921 21922 exit: 21923 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 21924 kfree(pcmd); 21925 mempool_free(mbox, phba->mbox_mem_pool); 21926 return byte_cnt; 21927 } 21928 21929 /** 21930 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21931 * @phba: The HBA for which this call is being executed. 21932 * @lpfc_buf: IO buf structure to append the SGL chunk 21933 * 21934 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21935 * and will allocate an SGL chunk if the pool is empty. 21936 * 21937 * Return codes: 21938 * NULL - Error 21939 * Pointer to sli4_hybrid_sgl - Success 21940 **/ 21941 struct sli4_hybrid_sgl * 21942 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21943 { 21944 struct sli4_hybrid_sgl *list_entry = NULL; 21945 struct sli4_hybrid_sgl *tmp = NULL; 21946 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21947 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21948 struct list_head *buf_list = &hdwq->sgl_list; 21949 unsigned long iflags; 21950 21951 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21952 21953 if (likely(!list_empty(buf_list))) { 21954 /* break off 1 chunk from the sgl_list */ 21955 list_for_each_entry_safe(list_entry, tmp, 21956 buf_list, list_node) { 21957 list_move_tail(&list_entry->list_node, 21958 &lpfc_buf->dma_sgl_xtra_list); 21959 break; 21960 } 21961 } else { 21962 /* allocate more */ 21963 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21964 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21965 cpu_to_node(hdwq->io_wq->chann)); 21966 if (!tmp) { 21967 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21968 "8353 error kmalloc memory for HDWQ " 21969 "%d %s\n", 21970 lpfc_buf->hdwq_no, __func__); 21971 return NULL; 21972 } 21973 21974 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21975 GFP_ATOMIC, &tmp->dma_phys_sgl); 21976 if (!tmp->dma_sgl) { 21977 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21978 "8354 error pool_alloc memory for HDWQ " 21979 "%d %s\n", 21980 lpfc_buf->hdwq_no, __func__); 21981 kfree(tmp); 21982 return NULL; 21983 } 21984 21985 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21986 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21987 } 21988 21989 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21990 struct sli4_hybrid_sgl, 21991 list_node); 21992 21993 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21994 21995 return allocated_sgl; 21996 } 21997 21998 /** 21999 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22000 * @phba: The HBA for which this call is being executed. 22001 * @lpfc_buf: IO buf structure with the SGL chunk 22002 * 22003 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22004 * 22005 * Return codes: 22006 * 0 - Success 22007 * -EINVAL - Error 22008 **/ 22009 int 22010 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22011 { 22012 int rc = 0; 22013 struct sli4_hybrid_sgl *list_entry = NULL; 22014 struct sli4_hybrid_sgl *tmp = NULL; 22015 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22016 struct list_head *buf_list = &hdwq->sgl_list; 22017 unsigned long iflags; 22018 22019 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22020 22021 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22022 list_for_each_entry_safe(list_entry, tmp, 22023 &lpfc_buf->dma_sgl_xtra_list, 22024 list_node) { 22025 list_move_tail(&list_entry->list_node, 22026 buf_list); 22027 } 22028 } else { 22029 rc = -EINVAL; 22030 } 22031 22032 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22033 return rc; 22034 } 22035 22036 /** 22037 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22038 * @phba: phba object 22039 * @hdwq: hdwq to cleanup sgl buff resources on 22040 * 22041 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22042 * 22043 * Return codes: 22044 * None 22045 **/ 22046 void 22047 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22048 struct lpfc_sli4_hdw_queue *hdwq) 22049 { 22050 struct list_head *buf_list = &hdwq->sgl_list; 22051 struct sli4_hybrid_sgl *list_entry = NULL; 22052 struct sli4_hybrid_sgl *tmp = NULL; 22053 unsigned long iflags; 22054 22055 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22056 22057 /* Free sgl pool */ 22058 list_for_each_entry_safe(list_entry, tmp, 22059 buf_list, list_node) { 22060 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22061 list_entry->dma_sgl, 22062 list_entry->dma_phys_sgl); 22063 list_del(&list_entry->list_node); 22064 kfree(list_entry); 22065 } 22066 22067 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22068 } 22069 22070 /** 22071 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22072 * @phba: The HBA for which this call is being executed. 22073 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22074 * 22075 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22076 * and will allocate an CMD/RSP buffer if the pool is empty. 22077 * 22078 * Return codes: 22079 * NULL - Error 22080 * Pointer to fcp_cmd_rsp_buf - Success 22081 **/ 22082 struct fcp_cmd_rsp_buf * 22083 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22084 struct lpfc_io_buf *lpfc_buf) 22085 { 22086 struct fcp_cmd_rsp_buf *list_entry = NULL; 22087 struct fcp_cmd_rsp_buf *tmp = NULL; 22088 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22089 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22090 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22091 unsigned long iflags; 22092 22093 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22094 22095 if (likely(!list_empty(buf_list))) { 22096 /* break off 1 chunk from the list */ 22097 list_for_each_entry_safe(list_entry, tmp, 22098 buf_list, 22099 list_node) { 22100 list_move_tail(&list_entry->list_node, 22101 &lpfc_buf->dma_cmd_rsp_list); 22102 break; 22103 } 22104 } else { 22105 /* allocate more */ 22106 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22107 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22108 cpu_to_node(hdwq->io_wq->chann)); 22109 if (!tmp) { 22110 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22111 "8355 error kmalloc memory for HDWQ " 22112 "%d %s\n", 22113 lpfc_buf->hdwq_no, __func__); 22114 return NULL; 22115 } 22116 22117 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22118 GFP_ATOMIC, 22119 &tmp->fcp_cmd_rsp_dma_handle); 22120 22121 if (!tmp->fcp_cmnd) { 22122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22123 "8356 error pool_alloc memory for HDWQ " 22124 "%d %s\n", 22125 lpfc_buf->hdwq_no, __func__); 22126 kfree(tmp); 22127 return NULL; 22128 } 22129 22130 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22131 sizeof(struct fcp_cmnd)); 22132 22133 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22134 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22135 } 22136 22137 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22138 struct fcp_cmd_rsp_buf, 22139 list_node); 22140 22141 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22142 22143 return allocated_buf; 22144 } 22145 22146 /** 22147 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22148 * @phba: The HBA for which this call is being executed. 22149 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22150 * 22151 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22152 * 22153 * Return codes: 22154 * 0 - Success 22155 * -EINVAL - Error 22156 **/ 22157 int 22158 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22159 struct lpfc_io_buf *lpfc_buf) 22160 { 22161 int rc = 0; 22162 struct fcp_cmd_rsp_buf *list_entry = NULL; 22163 struct fcp_cmd_rsp_buf *tmp = NULL; 22164 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22165 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22166 unsigned long iflags; 22167 22168 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22169 22170 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22171 list_for_each_entry_safe(list_entry, tmp, 22172 &lpfc_buf->dma_cmd_rsp_list, 22173 list_node) { 22174 list_move_tail(&list_entry->list_node, 22175 buf_list); 22176 } 22177 } else { 22178 rc = -EINVAL; 22179 } 22180 22181 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22182 return rc; 22183 } 22184 22185 /** 22186 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22187 * @phba: phba object 22188 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22189 * 22190 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22191 * 22192 * Return codes: 22193 * None 22194 **/ 22195 void 22196 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22197 struct lpfc_sli4_hdw_queue *hdwq) 22198 { 22199 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22200 struct fcp_cmd_rsp_buf *list_entry = NULL; 22201 struct fcp_cmd_rsp_buf *tmp = NULL; 22202 unsigned long iflags; 22203 22204 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22205 22206 /* Free cmd_rsp buf pool */ 22207 list_for_each_entry_safe(list_entry, tmp, 22208 buf_list, 22209 list_node) { 22210 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22211 list_entry->fcp_cmnd, 22212 list_entry->fcp_cmd_rsp_dma_handle); 22213 list_del(&list_entry->list_node); 22214 kfree(list_entry); 22215 } 22216 22217 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22218 } 22219 22220 /** 22221 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22222 * @phba: phba object 22223 * @job: job entry of the command to be posted. 22224 * 22225 * Fill the common fields of the wqe for each of the command. 22226 * 22227 * Return codes: 22228 * None 22229 **/ 22230 void 22231 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22232 { 22233 u8 cmnd; 22234 u32 *pcmd; 22235 u32 if_type = 0; 22236 u32 fip, abort_tag; 22237 struct lpfc_nodelist *ndlp = NULL; 22238 union lpfc_wqe128 *wqe = &job->wqe; 22239 struct lpfc_dmabuf *context2; 22240 u32 els_id = LPFC_ELS_ID_DEFAULT; 22241 u8 command_type = ELS_COMMAND_NON_FIP; 22242 22243 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22244 /* The fcp commands will set command type */ 22245 if (job->cmd_flag & LPFC_IO_FCP) 22246 command_type = FCP_COMMAND; 22247 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22248 command_type = ELS_COMMAND_FIP; 22249 else 22250 command_type = ELS_COMMAND_NON_FIP; 22251 22252 abort_tag = job->iotag; 22253 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22254 22255 switch (cmnd) { 22256 case CMD_ELS_REQUEST64_WQE: 22257 if (job->cmd_flag & LPFC_IO_LIBDFC) 22258 ndlp = job->context_un.ndlp; 22259 else 22260 ndlp = (struct lpfc_nodelist *)job->context1; 22261 22262 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 22263 if (command_type == ELS_COMMAND_FIP) 22264 els_id = ((job->cmd_flag & LPFC_FIP_ELS_ID_MASK) 22265 >> LPFC_FIP_ELS_ID_SHIFT); 22266 22267 if_type = bf_get(lpfc_sli_intf_if_type, 22268 &phba->sli4_hba.sli_intf); 22269 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22270 context2 = (struct lpfc_dmabuf *)job->context2; 22271 pcmd = (u32 *)context2->virt; 22272 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22273 *pcmd == ELS_CMD_SCR || 22274 *pcmd == ELS_CMD_RDF || 22275 *pcmd == ELS_CMD_EDC || 22276 *pcmd == ELS_CMD_RSCN_XMT || 22277 *pcmd == ELS_CMD_FDISC || 22278 *pcmd == ELS_CMD_LOGO || 22279 *pcmd == ELS_CMD_QFPA || 22280 *pcmd == ELS_CMD_UVEM || 22281 *pcmd == ELS_CMD_PLOGI)) { 22282 bf_set(els_req64_sp, &wqe->els_req, 1); 22283 bf_set(els_req64_sid, &wqe->els_req, 22284 job->vport->fc_myDID); 22285 22286 if ((*pcmd == ELS_CMD_FLOGI) && 22287 !(phba->fc_topology == 22288 LPFC_TOPOLOGY_LOOP)) 22289 bf_set(els_req64_sid, &wqe->els_req, 0); 22290 22291 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22292 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22293 phba->vpi_ids[job->vport->vpi]); 22294 } else if (pcmd) { 22295 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22296 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22297 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22298 } 22299 } 22300 22301 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22302 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22303 22304 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 22305 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22306 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22307 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22308 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22309 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22310 break; 22311 case CMD_XMIT_ELS_RSP64_WQE: 22312 ndlp = (struct lpfc_nodelist *)job->context1; 22313 22314 /* word4 */ 22315 wqe->xmit_els_rsp.word4 = 0; 22316 22317 if_type = bf_get(lpfc_sli_intf_if_type, 22318 &phba->sli4_hba.sli_intf); 22319 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22320 if (job->vport->fc_flag & FC_PT2PT) { 22321 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22322 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22323 job->vport->fc_myDID); 22324 if (job->vport->fc_myDID == Fabric_DID) { 22325 bf_set(wqe_els_did, 22326 &wqe->xmit_els_rsp.wqe_dest, 0); 22327 } 22328 } 22329 } 22330 22331 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22332 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22333 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22334 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22335 LPFC_WQE_LENLOC_WORD3); 22336 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22337 22338 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22339 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22340 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22341 job->vport->fc_myDID); 22342 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22343 } 22344 22345 if (phba->sli_rev == LPFC_SLI_REV4) { 22346 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22347 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22348 22349 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22350 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22351 phba->vpi_ids[job->vport->vpi]); 22352 } 22353 command_type = OTHER_COMMAND; 22354 break; 22355 case CMD_GEN_REQUEST64_WQE: 22356 /* Word 10 */ 22357 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22358 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22359 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22360 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22361 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22362 command_type = OTHER_COMMAND; 22363 break; 22364 case CMD_XMIT_SEQUENCE64_WQE: 22365 if (phba->link_flag & LS_LOOPBACK_MODE) 22366 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22367 22368 wqe->xmit_sequence.rsvd3 = 0; 22369 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22370 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22371 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22372 LPFC_WQE_IOD_WRITE); 22373 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22374 LPFC_WQE_LENLOC_WORD12); 22375 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22376 command_type = OTHER_COMMAND; 22377 break; 22378 case CMD_XMIT_BLS_RSP64_WQE: 22379 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22380 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22381 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22382 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22383 phba->vpi_ids[phba->pport->vpi]); 22384 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22385 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22386 LPFC_WQE_LENLOC_NONE); 22387 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22388 command_type = OTHER_COMMAND; 22389 break; 22390 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22391 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22392 case CMD_SEND_FRAME: /* mds loopback */ 22393 /* cases already formatted for sli4 wqe - no chgs necessary */ 22394 return; 22395 default: 22396 dump_stack(); 22397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22398 "6207 Invalid command 0x%x\n", 22399 cmnd); 22400 break; 22401 } 22402 22403 wqe->generic.wqe_com.abort_tag = abort_tag; 22404 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22405 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22406 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22407 } 22408