1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1773 * @phba: Pointer to HBA context object. 1774 * @pring: Pointer to driver SLI ring object. 1775 * 1776 * This function is called with hbalock held and the caller must post the 1777 * iocb without releasing the lock. If the caller releases the lock, 1778 * iocb slot returned by the function is not guaranteed to be available. 1779 * The function returns pointer to the next available iocb slot if there 1780 * is available slot in the ring, else it returns NULL. 1781 * If the get index of the ring is ahead of the put index, the function 1782 * will post an error attention event to the worker thread to take the 1783 * HBA to offline state. 1784 **/ 1785 static IOCB_t * 1786 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1787 { 1788 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1789 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1790 1791 lockdep_assert_held(&phba->hbalock); 1792 1793 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1794 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1795 pring->sli.sli3.next_cmdidx = 0; 1796 1797 if (unlikely(pring->sli.sli3.local_getidx == 1798 pring->sli.sli3.next_cmdidx)) { 1799 1800 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1801 1802 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1804 "0315 Ring %d issue: portCmdGet %d " 1805 "is bigger than cmd ring %d\n", 1806 pring->ringno, 1807 pring->sli.sli3.local_getidx, 1808 max_cmd_idx); 1809 1810 phba->link_state = LPFC_HBA_ERROR; 1811 /* 1812 * All error attention handlers are posted to 1813 * worker thread 1814 */ 1815 phba->work_ha |= HA_ERATT; 1816 phba->work_hs = HS_FFER3; 1817 1818 lpfc_worker_wake_up(phba); 1819 1820 return NULL; 1821 } 1822 1823 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1824 return NULL; 1825 } 1826 1827 return lpfc_cmd_iocb(phba, pring); 1828 } 1829 1830 /** 1831 * lpfc_sli_next_iotag - Get an iotag for the iocb 1832 * @phba: Pointer to HBA context object. 1833 * @iocbq: Pointer to driver iocb object. 1834 * 1835 * This function gets an iotag for the iocb. If there is no unused iotag and 1836 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1837 * array and assigns a new iotag. 1838 * The function returns the allocated iotag if successful, else returns zero. 1839 * Zero is not a valid iotag. 1840 * The caller is not required to hold any lock. 1841 **/ 1842 uint16_t 1843 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1844 { 1845 struct lpfc_iocbq **new_arr; 1846 struct lpfc_iocbq **old_arr; 1847 size_t new_len; 1848 struct lpfc_sli *psli = &phba->sli; 1849 uint16_t iotag; 1850 1851 spin_lock_irq(&phba->hbalock); 1852 iotag = psli->last_iotag; 1853 if(++iotag < psli->iocbq_lookup_len) { 1854 psli->last_iotag = iotag; 1855 psli->iocbq_lookup[iotag] = iocbq; 1856 spin_unlock_irq(&phba->hbalock); 1857 iocbq->iotag = iotag; 1858 return iotag; 1859 } else if (psli->iocbq_lookup_len < (0xffff 1860 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1861 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1862 spin_unlock_irq(&phba->hbalock); 1863 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1864 GFP_KERNEL); 1865 if (new_arr) { 1866 spin_lock_irq(&phba->hbalock); 1867 old_arr = psli->iocbq_lookup; 1868 if (new_len <= psli->iocbq_lookup_len) { 1869 /* highly unprobable case */ 1870 kfree(new_arr); 1871 iotag = psli->last_iotag; 1872 if(++iotag < psli->iocbq_lookup_len) { 1873 psli->last_iotag = iotag; 1874 psli->iocbq_lookup[iotag] = iocbq; 1875 spin_unlock_irq(&phba->hbalock); 1876 iocbq->iotag = iotag; 1877 return iotag; 1878 } 1879 spin_unlock_irq(&phba->hbalock); 1880 return 0; 1881 } 1882 if (psli->iocbq_lookup) 1883 memcpy(new_arr, old_arr, 1884 ((psli->last_iotag + 1) * 1885 sizeof (struct lpfc_iocbq *))); 1886 psli->iocbq_lookup = new_arr; 1887 psli->iocbq_lookup_len = new_len; 1888 psli->last_iotag = iotag; 1889 psli->iocbq_lookup[iotag] = iocbq; 1890 spin_unlock_irq(&phba->hbalock); 1891 iocbq->iotag = iotag; 1892 kfree(old_arr); 1893 return iotag; 1894 } 1895 } else 1896 spin_unlock_irq(&phba->hbalock); 1897 1898 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1899 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1900 psli->last_iotag); 1901 1902 return 0; 1903 } 1904 1905 /** 1906 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1907 * @phba: Pointer to HBA context object. 1908 * @pring: Pointer to driver SLI ring object. 1909 * @iocb: Pointer to iocb slot in the ring. 1910 * @nextiocb: Pointer to driver iocb object which need to be 1911 * posted to firmware. 1912 * 1913 * This function is called to post a new iocb to the firmware. This 1914 * function copies the new iocb to ring iocb slot and updates the 1915 * ring pointers. It adds the new iocb to txcmplq if there is 1916 * a completion call back for this iocb else the function will free the 1917 * iocb object. The hbalock is asserted held in the code path calling 1918 * this routine. 1919 **/ 1920 static void 1921 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1922 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1923 { 1924 /* 1925 * Set up an iotag 1926 */ 1927 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1928 1929 1930 if (pring->ringno == LPFC_ELS_RING) { 1931 lpfc_debugfs_slow_ring_trc(phba, 1932 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1933 *(((uint32_t *) &nextiocb->iocb) + 4), 1934 *(((uint32_t *) &nextiocb->iocb) + 6), 1935 *(((uint32_t *) &nextiocb->iocb) + 7)); 1936 } 1937 1938 /* 1939 * Issue iocb command to adapter 1940 */ 1941 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1942 wmb(); 1943 pring->stats.iocb_cmd++; 1944 1945 /* 1946 * If there is no completion routine to call, we can release the 1947 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1948 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1949 */ 1950 if (nextiocb->iocb_cmpl) 1951 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1952 else 1953 __lpfc_sli_release_iocbq(phba, nextiocb); 1954 1955 /* 1956 * Let the HBA know what IOCB slot will be the next one the 1957 * driver will put a command into. 1958 */ 1959 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1960 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1961 } 1962 1963 /** 1964 * lpfc_sli_update_full_ring - Update the chip attention register 1965 * @phba: Pointer to HBA context object. 1966 * @pring: Pointer to driver SLI ring object. 1967 * 1968 * The caller is not required to hold any lock for calling this function. 1969 * This function updates the chip attention bits for the ring to inform firmware 1970 * that there are pending work to be done for this ring and requests an 1971 * interrupt when there is space available in the ring. This function is 1972 * called when the driver is unable to post more iocbs to the ring due 1973 * to unavailability of space in the ring. 1974 **/ 1975 static void 1976 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1977 { 1978 int ringno = pring->ringno; 1979 1980 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1981 1982 wmb(); 1983 1984 /* 1985 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1986 * The HBA will tell us when an IOCB entry is available. 1987 */ 1988 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1989 readl(phba->CAregaddr); /* flush */ 1990 1991 pring->stats.iocb_cmd_full++; 1992 } 1993 1994 /** 1995 * lpfc_sli_update_ring - Update chip attention register 1996 * @phba: Pointer to HBA context object. 1997 * @pring: Pointer to driver SLI ring object. 1998 * 1999 * This function updates the chip attention register bit for the 2000 * given ring to inform HBA that there is more work to be done 2001 * in this ring. The caller is not required to hold any lock. 2002 **/ 2003 static void 2004 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2005 { 2006 int ringno = pring->ringno; 2007 2008 /* 2009 * Tell the HBA that there is work to do in this ring. 2010 */ 2011 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2012 wmb(); 2013 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2014 readl(phba->CAregaddr); /* flush */ 2015 } 2016 } 2017 2018 /** 2019 * lpfc_sli_resume_iocb - Process iocbs in the txq 2020 * @phba: Pointer to HBA context object. 2021 * @pring: Pointer to driver SLI ring object. 2022 * 2023 * This function is called with hbalock held to post pending iocbs 2024 * in the txq to the firmware. This function is called when driver 2025 * detects space available in the ring. 2026 **/ 2027 static void 2028 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2029 { 2030 IOCB_t *iocb; 2031 struct lpfc_iocbq *nextiocb; 2032 2033 lockdep_assert_held(&phba->hbalock); 2034 2035 /* 2036 * Check to see if: 2037 * (a) there is anything on the txq to send 2038 * (b) link is up 2039 * (c) link attention events can be processed (fcp ring only) 2040 * (d) IOCB processing is not blocked by the outstanding mbox command. 2041 */ 2042 2043 if (lpfc_is_link_up(phba) && 2044 (!list_empty(&pring->txq)) && 2045 (pring->ringno != LPFC_FCP_RING || 2046 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2047 2048 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2049 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2050 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2051 2052 if (iocb) 2053 lpfc_sli_update_ring(phba, pring); 2054 else 2055 lpfc_sli_update_full_ring(phba, pring); 2056 } 2057 2058 return; 2059 } 2060 2061 /** 2062 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2063 * @phba: Pointer to HBA context object. 2064 * @hbqno: HBQ number. 2065 * 2066 * This function is called with hbalock held to get the next 2067 * available slot for the given HBQ. If there is free slot 2068 * available for the HBQ it will return pointer to the next available 2069 * HBQ entry else it will return NULL. 2070 **/ 2071 static struct lpfc_hbq_entry * 2072 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2073 { 2074 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2075 2076 lockdep_assert_held(&phba->hbalock); 2077 2078 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2079 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2080 hbqp->next_hbqPutIdx = 0; 2081 2082 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2083 uint32_t raw_index = phba->hbq_get[hbqno]; 2084 uint32_t getidx = le32_to_cpu(raw_index); 2085 2086 hbqp->local_hbqGetIdx = getidx; 2087 2088 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2090 "1802 HBQ %d: local_hbqGetIdx " 2091 "%u is > than hbqp->entry_count %u\n", 2092 hbqno, hbqp->local_hbqGetIdx, 2093 hbqp->entry_count); 2094 2095 phba->link_state = LPFC_HBA_ERROR; 2096 return NULL; 2097 } 2098 2099 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2100 return NULL; 2101 } 2102 2103 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2104 hbqp->hbqPutIdx; 2105 } 2106 2107 /** 2108 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2109 * @phba: Pointer to HBA context object. 2110 * 2111 * This function is called with no lock held to free all the 2112 * hbq buffers while uninitializing the SLI interface. It also 2113 * frees the HBQ buffers returned by the firmware but not yet 2114 * processed by the upper layers. 2115 **/ 2116 void 2117 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2118 { 2119 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2120 struct hbq_dmabuf *hbq_buf; 2121 unsigned long flags; 2122 int i, hbq_count; 2123 2124 hbq_count = lpfc_sli_hbq_count(); 2125 /* Return all memory used by all HBQs */ 2126 spin_lock_irqsave(&phba->hbalock, flags); 2127 for (i = 0; i < hbq_count; ++i) { 2128 list_for_each_entry_safe(dmabuf, next_dmabuf, 2129 &phba->hbqs[i].hbq_buffer_list, list) { 2130 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2131 list_del(&hbq_buf->dbuf.list); 2132 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2133 } 2134 phba->hbqs[i].buffer_count = 0; 2135 } 2136 2137 /* Mark the HBQs not in use */ 2138 phba->hbq_in_use = 0; 2139 spin_unlock_irqrestore(&phba->hbalock, flags); 2140 } 2141 2142 /** 2143 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2144 * @phba: Pointer to HBA context object. 2145 * @hbqno: HBQ number. 2146 * @hbq_buf: Pointer to HBQ buffer. 2147 * 2148 * This function is called with the hbalock held to post a 2149 * hbq buffer to the firmware. If the function finds an empty 2150 * slot in the HBQ, it will post the buffer. The function will return 2151 * pointer to the hbq entry if it successfully post the buffer 2152 * else it will return NULL. 2153 **/ 2154 static int 2155 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2156 struct hbq_dmabuf *hbq_buf) 2157 { 2158 lockdep_assert_held(&phba->hbalock); 2159 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2160 } 2161 2162 /** 2163 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2164 * @phba: Pointer to HBA context object. 2165 * @hbqno: HBQ number. 2166 * @hbq_buf: Pointer to HBQ buffer. 2167 * 2168 * This function is called with the hbalock held to post a hbq buffer to the 2169 * firmware. If the function finds an empty slot in the HBQ, it will post the 2170 * buffer and place it on the hbq_buffer_list. The function will return zero if 2171 * it successfully post the buffer else it will return an error. 2172 **/ 2173 static int 2174 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2175 struct hbq_dmabuf *hbq_buf) 2176 { 2177 struct lpfc_hbq_entry *hbqe; 2178 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2179 2180 lockdep_assert_held(&phba->hbalock); 2181 /* Get next HBQ entry slot to use */ 2182 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2183 if (hbqe) { 2184 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2185 2186 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2187 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2188 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2189 hbqe->bde.tus.f.bdeFlags = 0; 2190 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2191 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2192 /* Sync SLIM */ 2193 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2194 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2195 /* flush */ 2196 readl(phba->hbq_put + hbqno); 2197 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2198 return 0; 2199 } else 2200 return -ENOMEM; 2201 } 2202 2203 /** 2204 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2205 * @phba: Pointer to HBA context object. 2206 * @hbqno: HBQ number. 2207 * @hbq_buf: Pointer to HBQ buffer. 2208 * 2209 * This function is called with the hbalock held to post an RQE to the SLI4 2210 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2211 * the hbq_buffer_list and return zero, otherwise it will return an error. 2212 **/ 2213 static int 2214 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2215 struct hbq_dmabuf *hbq_buf) 2216 { 2217 int rc; 2218 struct lpfc_rqe hrqe; 2219 struct lpfc_rqe drqe; 2220 struct lpfc_queue *hrq; 2221 struct lpfc_queue *drq; 2222 2223 if (hbqno != LPFC_ELS_HBQ) 2224 return 1; 2225 hrq = phba->sli4_hba.hdr_rq; 2226 drq = phba->sli4_hba.dat_rq; 2227 2228 lockdep_assert_held(&phba->hbalock); 2229 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2230 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2231 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2232 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2233 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2234 if (rc < 0) 2235 return rc; 2236 hbq_buf->tag = (rc | (hbqno << 16)); 2237 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2238 return 0; 2239 } 2240 2241 /* HBQ for ELS and CT traffic. */ 2242 static struct lpfc_hbq_init lpfc_els_hbq = { 2243 .rn = 1, 2244 .entry_count = 256, 2245 .mask_count = 0, 2246 .profile = 0, 2247 .ring_mask = (1 << LPFC_ELS_RING), 2248 .buffer_count = 0, 2249 .init_count = 40, 2250 .add_count = 40, 2251 }; 2252 2253 /* Array of HBQs */ 2254 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2255 &lpfc_els_hbq, 2256 }; 2257 2258 /** 2259 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2260 * @phba: Pointer to HBA context object. 2261 * @hbqno: HBQ number. 2262 * @count: Number of HBQ buffers to be posted. 2263 * 2264 * This function is called with no lock held to post more hbq buffers to the 2265 * given HBQ. The function returns the number of HBQ buffers successfully 2266 * posted. 2267 **/ 2268 static int 2269 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2270 { 2271 uint32_t i, posted = 0; 2272 unsigned long flags; 2273 struct hbq_dmabuf *hbq_buffer; 2274 LIST_HEAD(hbq_buf_list); 2275 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2276 return 0; 2277 2278 if ((phba->hbqs[hbqno].buffer_count + count) > 2279 lpfc_hbq_defs[hbqno]->entry_count) 2280 count = lpfc_hbq_defs[hbqno]->entry_count - 2281 phba->hbqs[hbqno].buffer_count; 2282 if (!count) 2283 return 0; 2284 /* Allocate HBQ entries */ 2285 for (i = 0; i < count; i++) { 2286 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2287 if (!hbq_buffer) 2288 break; 2289 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2290 } 2291 /* Check whether HBQ is still in use */ 2292 spin_lock_irqsave(&phba->hbalock, flags); 2293 if (!phba->hbq_in_use) 2294 goto err; 2295 while (!list_empty(&hbq_buf_list)) { 2296 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2297 dbuf.list); 2298 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2299 (hbqno << 16)); 2300 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2301 phba->hbqs[hbqno].buffer_count++; 2302 posted++; 2303 } else 2304 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2305 } 2306 spin_unlock_irqrestore(&phba->hbalock, flags); 2307 return posted; 2308 err: 2309 spin_unlock_irqrestore(&phba->hbalock, flags); 2310 while (!list_empty(&hbq_buf_list)) { 2311 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2312 dbuf.list); 2313 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2314 } 2315 return 0; 2316 } 2317 2318 /** 2319 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2320 * @phba: Pointer to HBA context object. 2321 * @qno: HBQ number. 2322 * 2323 * This function posts more buffers to the HBQ. This function 2324 * is called with no lock held. The function returns the number of HBQ entries 2325 * successfully allocated. 2326 **/ 2327 int 2328 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2329 { 2330 if (phba->sli_rev == LPFC_SLI_REV4) 2331 return 0; 2332 else 2333 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2334 lpfc_hbq_defs[qno]->add_count); 2335 } 2336 2337 /** 2338 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2339 * @phba: Pointer to HBA context object. 2340 * @qno: HBQ queue number. 2341 * 2342 * This function is called from SLI initialization code path with 2343 * no lock held to post initial HBQ buffers to firmware. The 2344 * function returns the number of HBQ entries successfully allocated. 2345 **/ 2346 static int 2347 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2348 { 2349 if (phba->sli_rev == LPFC_SLI_REV4) 2350 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2351 lpfc_hbq_defs[qno]->entry_count); 2352 else 2353 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2354 lpfc_hbq_defs[qno]->init_count); 2355 } 2356 2357 /* 2358 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2359 * 2360 * This function removes the first hbq buffer on an hbq list and returns a 2361 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2362 **/ 2363 static struct hbq_dmabuf * 2364 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2365 { 2366 struct lpfc_dmabuf *d_buf; 2367 2368 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2369 if (!d_buf) 2370 return NULL; 2371 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2372 } 2373 2374 /** 2375 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2376 * @phba: Pointer to HBA context object. 2377 * @hrq: HBQ number. 2378 * 2379 * This function removes the first RQ buffer on an RQ buffer list and returns a 2380 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2381 **/ 2382 static struct rqb_dmabuf * 2383 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2384 { 2385 struct lpfc_dmabuf *h_buf; 2386 struct lpfc_rqb *rqbp; 2387 2388 rqbp = hrq->rqbp; 2389 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2390 struct lpfc_dmabuf, list); 2391 if (!h_buf) 2392 return NULL; 2393 rqbp->buffer_count--; 2394 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2395 } 2396 2397 /** 2398 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2399 * @phba: Pointer to HBA context object. 2400 * @tag: Tag of the hbq buffer. 2401 * 2402 * This function searches for the hbq buffer associated with the given tag in 2403 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2404 * otherwise it returns NULL. 2405 **/ 2406 static struct hbq_dmabuf * 2407 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2408 { 2409 struct lpfc_dmabuf *d_buf; 2410 struct hbq_dmabuf *hbq_buf; 2411 uint32_t hbqno; 2412 2413 hbqno = tag >> 16; 2414 if (hbqno >= LPFC_MAX_HBQS) 2415 return NULL; 2416 2417 spin_lock_irq(&phba->hbalock); 2418 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2419 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2420 if (hbq_buf->tag == tag) { 2421 spin_unlock_irq(&phba->hbalock); 2422 return hbq_buf; 2423 } 2424 } 2425 spin_unlock_irq(&phba->hbalock); 2426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2427 "1803 Bad hbq tag. Data: x%x x%x\n", 2428 tag, phba->hbqs[tag >> 16].buffer_count); 2429 return NULL; 2430 } 2431 2432 /** 2433 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbq_buffer: Pointer to HBQ buffer. 2436 * 2437 * This function is called with hbalock. This function gives back 2438 * the hbq buffer to firmware. If the HBQ does not have space to 2439 * post the buffer, it will free the buffer. 2440 **/ 2441 void 2442 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2443 { 2444 uint32_t hbqno; 2445 2446 if (hbq_buffer) { 2447 hbqno = hbq_buffer->tag >> 16; 2448 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2449 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2450 } 2451 } 2452 2453 /** 2454 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2455 * @mbxCommand: mailbox command code. 2456 * 2457 * This function is called by the mailbox event handler function to verify 2458 * that the completed mailbox command is a legitimate mailbox command. If the 2459 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2460 * and the mailbox event handler will take the HBA offline. 2461 **/ 2462 static int 2463 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2464 { 2465 uint8_t ret; 2466 2467 switch (mbxCommand) { 2468 case MBX_LOAD_SM: 2469 case MBX_READ_NV: 2470 case MBX_WRITE_NV: 2471 case MBX_WRITE_VPARMS: 2472 case MBX_RUN_BIU_DIAG: 2473 case MBX_INIT_LINK: 2474 case MBX_DOWN_LINK: 2475 case MBX_CONFIG_LINK: 2476 case MBX_CONFIG_RING: 2477 case MBX_RESET_RING: 2478 case MBX_READ_CONFIG: 2479 case MBX_READ_RCONFIG: 2480 case MBX_READ_SPARM: 2481 case MBX_READ_STATUS: 2482 case MBX_READ_RPI: 2483 case MBX_READ_XRI: 2484 case MBX_READ_REV: 2485 case MBX_READ_LNK_STAT: 2486 case MBX_REG_LOGIN: 2487 case MBX_UNREG_LOGIN: 2488 case MBX_CLEAR_LA: 2489 case MBX_DUMP_MEMORY: 2490 case MBX_DUMP_CONTEXT: 2491 case MBX_RUN_DIAGS: 2492 case MBX_RESTART: 2493 case MBX_UPDATE_CFG: 2494 case MBX_DOWN_LOAD: 2495 case MBX_DEL_LD_ENTRY: 2496 case MBX_RUN_PROGRAM: 2497 case MBX_SET_MASK: 2498 case MBX_SET_VARIABLE: 2499 case MBX_UNREG_D_ID: 2500 case MBX_KILL_BOARD: 2501 case MBX_CONFIG_FARP: 2502 case MBX_BEACON: 2503 case MBX_LOAD_AREA: 2504 case MBX_RUN_BIU_DIAG64: 2505 case MBX_CONFIG_PORT: 2506 case MBX_READ_SPARM64: 2507 case MBX_READ_RPI64: 2508 case MBX_REG_LOGIN64: 2509 case MBX_READ_TOPOLOGY: 2510 case MBX_WRITE_WWN: 2511 case MBX_SET_DEBUG: 2512 case MBX_LOAD_EXP_ROM: 2513 case MBX_ASYNCEVT_ENABLE: 2514 case MBX_REG_VPI: 2515 case MBX_UNREG_VPI: 2516 case MBX_HEARTBEAT: 2517 case MBX_PORT_CAPABILITIES: 2518 case MBX_PORT_IOV_CONTROL: 2519 case MBX_SLI4_CONFIG: 2520 case MBX_SLI4_REQ_FTRS: 2521 case MBX_REG_FCFI: 2522 case MBX_UNREG_FCFI: 2523 case MBX_REG_VFI: 2524 case MBX_UNREG_VFI: 2525 case MBX_INIT_VPI: 2526 case MBX_INIT_VFI: 2527 case MBX_RESUME_RPI: 2528 case MBX_READ_EVENT_LOG_STATUS: 2529 case MBX_READ_EVENT_LOG: 2530 case MBX_SECURITY_MGMT: 2531 case MBX_AUTH_PORT: 2532 case MBX_ACCESS_VDATA: 2533 ret = mbxCommand; 2534 break; 2535 default: 2536 ret = MBX_SHUTDOWN; 2537 break; 2538 } 2539 return ret; 2540 } 2541 2542 /** 2543 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2544 * @phba: Pointer to HBA context object. 2545 * @pmboxq: Pointer to mailbox command. 2546 * 2547 * This is completion handler function for mailbox commands issued from 2548 * lpfc_sli_issue_mbox_wait function. This function is called by the 2549 * mailbox event handler function with no lock held. This function 2550 * will wake up thread waiting on the wait queue pointed by context1 2551 * of the mailbox. 2552 **/ 2553 void 2554 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2555 { 2556 unsigned long drvr_flag; 2557 struct completion *pmbox_done; 2558 2559 /* 2560 * If pmbox_done is empty, the driver thread gave up waiting and 2561 * continued running. 2562 */ 2563 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2564 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2565 pmbox_done = (struct completion *)pmboxq->context3; 2566 if (pmbox_done) 2567 complete(pmbox_done); 2568 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2569 return; 2570 } 2571 2572 static void 2573 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2574 { 2575 unsigned long iflags; 2576 2577 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2578 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2579 spin_lock_irqsave(&ndlp->lock, iflags); 2580 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2581 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2582 spin_unlock_irqrestore(&ndlp->lock, iflags); 2583 } 2584 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2585 } 2586 2587 /** 2588 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2589 * @phba: Pointer to HBA context object. 2590 * @pmb: Pointer to mailbox object. 2591 * 2592 * This function is the default mailbox completion handler. It 2593 * frees the memory resources associated with the completed mailbox 2594 * command. If the completed command is a REG_LOGIN mailbox command, 2595 * this function will issue a UREG_LOGIN to re-claim the RPI. 2596 **/ 2597 void 2598 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2599 { 2600 struct lpfc_vport *vport = pmb->vport; 2601 struct lpfc_dmabuf *mp; 2602 struct lpfc_nodelist *ndlp; 2603 struct Scsi_Host *shost; 2604 uint16_t rpi, vpi; 2605 int rc; 2606 2607 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2608 2609 if (mp) { 2610 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2611 kfree(mp); 2612 } 2613 2614 /* 2615 * If a REG_LOGIN succeeded after node is destroyed or node 2616 * is in re-discovery driver need to cleanup the RPI. 2617 */ 2618 if (!(phba->pport->load_flag & FC_UNLOADING) && 2619 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2620 !pmb->u.mb.mbxStatus) { 2621 rpi = pmb->u.mb.un.varWords[0]; 2622 vpi = pmb->u.mb.un.varRegLogin.vpi; 2623 if (phba->sli_rev == LPFC_SLI_REV4) 2624 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2625 lpfc_unreg_login(phba, vpi, rpi, pmb); 2626 pmb->vport = vport; 2627 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2628 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2629 if (rc != MBX_NOT_FINISHED) 2630 return; 2631 } 2632 2633 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2634 !(phba->pport->load_flag & FC_UNLOADING) && 2635 !pmb->u.mb.mbxStatus) { 2636 shost = lpfc_shost_from_vport(vport); 2637 spin_lock_irq(shost->host_lock); 2638 vport->vpi_state |= LPFC_VPI_REGISTERED; 2639 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2640 spin_unlock_irq(shost->host_lock); 2641 } 2642 2643 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2644 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2645 lpfc_nlp_put(ndlp); 2646 pmb->ctx_buf = NULL; 2647 pmb->ctx_ndlp = NULL; 2648 } 2649 2650 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2651 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2652 2653 /* Check to see if there are any deferred events to process */ 2654 if (ndlp) { 2655 lpfc_printf_vlog( 2656 vport, 2657 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2658 "1438 UNREG cmpl deferred mbox x%x " 2659 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2660 ndlp->nlp_rpi, ndlp->nlp_DID, 2661 ndlp->nlp_flag, ndlp->nlp_defer_did, 2662 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2663 2664 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2665 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2666 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2667 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2668 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2669 } else { 2670 __lpfc_sli_rpi_release(vport, ndlp); 2671 } 2672 2673 /* The unreg_login mailbox is complete and had a 2674 * reference that has to be released. The PLOGI 2675 * got its own ref. 2676 */ 2677 lpfc_nlp_put(ndlp); 2678 pmb->ctx_ndlp = NULL; 2679 } 2680 } 2681 2682 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2683 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2684 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2685 lpfc_nlp_put(ndlp); 2686 } 2687 2688 /* Check security permission status on INIT_LINK mailbox command */ 2689 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2690 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2692 "2860 SLI authentication is required " 2693 "for INIT_LINK but has not done yet\n"); 2694 2695 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2696 lpfc_sli4_mbox_cmd_free(phba, pmb); 2697 else 2698 mempool_free(pmb, phba->mbox_mem_pool); 2699 } 2700 /** 2701 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2702 * @phba: Pointer to HBA context object. 2703 * @pmb: Pointer to mailbox object. 2704 * 2705 * This function is the unreg rpi mailbox completion handler. It 2706 * frees the memory resources associated with the completed mailbox 2707 * command. An additional reference is put on the ndlp to prevent 2708 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2709 * the unreg mailbox command completes, this routine puts the 2710 * reference back. 2711 * 2712 **/ 2713 void 2714 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2715 { 2716 struct lpfc_vport *vport = pmb->vport; 2717 struct lpfc_nodelist *ndlp; 2718 2719 ndlp = pmb->ctx_ndlp; 2720 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2721 if (phba->sli_rev == LPFC_SLI_REV4 && 2722 (bf_get(lpfc_sli_intf_if_type, 2723 &phba->sli4_hba.sli_intf) >= 2724 LPFC_SLI_INTF_IF_TYPE_2)) { 2725 if (ndlp) { 2726 lpfc_printf_vlog( 2727 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2728 "0010 UNREG_LOGIN vpi:%x " 2729 "rpi:%x DID:%x defer x%x flg x%x " 2730 "x%px\n", 2731 vport->vpi, ndlp->nlp_rpi, 2732 ndlp->nlp_DID, ndlp->nlp_defer_did, 2733 ndlp->nlp_flag, 2734 ndlp); 2735 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2736 2737 /* Check to see if there are any deferred 2738 * events to process 2739 */ 2740 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2741 (ndlp->nlp_defer_did != 2742 NLP_EVT_NOTHING_PENDING)) { 2743 lpfc_printf_vlog( 2744 vport, KERN_INFO, LOG_DISCOVERY, 2745 "4111 UNREG cmpl deferred " 2746 "clr x%x on " 2747 "NPort x%x Data: x%x x%px\n", 2748 ndlp->nlp_rpi, ndlp->nlp_DID, 2749 ndlp->nlp_defer_did, ndlp); 2750 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2751 ndlp->nlp_defer_did = 2752 NLP_EVT_NOTHING_PENDING; 2753 lpfc_issue_els_plogi( 2754 vport, ndlp->nlp_DID, 0); 2755 } else { 2756 __lpfc_sli_rpi_release(vport, ndlp); 2757 } 2758 lpfc_nlp_put(ndlp); 2759 } 2760 } 2761 } 2762 2763 mempool_free(pmb, phba->mbox_mem_pool); 2764 } 2765 2766 /** 2767 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2768 * @phba: Pointer to HBA context object. 2769 * 2770 * This function is called with no lock held. This function processes all 2771 * the completed mailbox commands and gives it to upper layers. The interrupt 2772 * service routine processes mailbox completion interrupt and adds completed 2773 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2774 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2775 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2776 * function returns the mailbox commands to the upper layer by calling the 2777 * completion handler function of each mailbox. 2778 **/ 2779 int 2780 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2781 { 2782 MAILBOX_t *pmbox; 2783 LPFC_MBOXQ_t *pmb; 2784 int rc; 2785 LIST_HEAD(cmplq); 2786 2787 phba->sli.slistat.mbox_event++; 2788 2789 /* Get all completed mailboxe buffers into the cmplq */ 2790 spin_lock_irq(&phba->hbalock); 2791 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2792 spin_unlock_irq(&phba->hbalock); 2793 2794 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2795 do { 2796 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2797 if (pmb == NULL) 2798 break; 2799 2800 pmbox = &pmb->u.mb; 2801 2802 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2803 if (pmb->vport) { 2804 lpfc_debugfs_disc_trc(pmb->vport, 2805 LPFC_DISC_TRC_MBOX_VPORT, 2806 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2807 (uint32_t)pmbox->mbxCommand, 2808 pmbox->un.varWords[0], 2809 pmbox->un.varWords[1]); 2810 } 2811 else { 2812 lpfc_debugfs_disc_trc(phba->pport, 2813 LPFC_DISC_TRC_MBOX, 2814 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2815 (uint32_t)pmbox->mbxCommand, 2816 pmbox->un.varWords[0], 2817 pmbox->un.varWords[1]); 2818 } 2819 } 2820 2821 /* 2822 * It is a fatal error if unknown mbox command completion. 2823 */ 2824 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2825 MBX_SHUTDOWN) { 2826 /* Unknown mailbox command compl */ 2827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2828 "(%d):0323 Unknown Mailbox command " 2829 "x%x (x%x/x%x) Cmpl\n", 2830 pmb->vport ? pmb->vport->vpi : 2831 LPFC_VPORT_UNKNOWN, 2832 pmbox->mbxCommand, 2833 lpfc_sli_config_mbox_subsys_get(phba, 2834 pmb), 2835 lpfc_sli_config_mbox_opcode_get(phba, 2836 pmb)); 2837 phba->link_state = LPFC_HBA_ERROR; 2838 phba->work_hs = HS_FFER3; 2839 lpfc_handle_eratt(phba); 2840 continue; 2841 } 2842 2843 if (pmbox->mbxStatus) { 2844 phba->sli.slistat.mbox_stat_err++; 2845 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2846 /* Mbox cmd cmpl error - RETRYing */ 2847 lpfc_printf_log(phba, KERN_INFO, 2848 LOG_MBOX | LOG_SLI, 2849 "(%d):0305 Mbox cmd cmpl " 2850 "error - RETRYing Data: x%x " 2851 "(x%x/x%x) x%x x%x x%x\n", 2852 pmb->vport ? pmb->vport->vpi : 2853 LPFC_VPORT_UNKNOWN, 2854 pmbox->mbxCommand, 2855 lpfc_sli_config_mbox_subsys_get(phba, 2856 pmb), 2857 lpfc_sli_config_mbox_opcode_get(phba, 2858 pmb), 2859 pmbox->mbxStatus, 2860 pmbox->un.varWords[0], 2861 pmb->vport ? pmb->vport->port_state : 2862 LPFC_VPORT_UNKNOWN); 2863 pmbox->mbxStatus = 0; 2864 pmbox->mbxOwner = OWN_HOST; 2865 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2866 if (rc != MBX_NOT_FINISHED) 2867 continue; 2868 } 2869 } 2870 2871 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2872 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2873 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2874 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2875 "x%x x%x x%x\n", 2876 pmb->vport ? pmb->vport->vpi : 0, 2877 pmbox->mbxCommand, 2878 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2879 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2880 pmb->mbox_cmpl, 2881 *((uint32_t *) pmbox), 2882 pmbox->un.varWords[0], 2883 pmbox->un.varWords[1], 2884 pmbox->un.varWords[2], 2885 pmbox->un.varWords[3], 2886 pmbox->un.varWords[4], 2887 pmbox->un.varWords[5], 2888 pmbox->un.varWords[6], 2889 pmbox->un.varWords[7], 2890 pmbox->un.varWords[8], 2891 pmbox->un.varWords[9], 2892 pmbox->un.varWords[10]); 2893 2894 if (pmb->mbox_cmpl) 2895 pmb->mbox_cmpl(phba,pmb); 2896 } while (1); 2897 return 0; 2898 } 2899 2900 /** 2901 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2902 * @phba: Pointer to HBA context object. 2903 * @pring: Pointer to driver SLI ring object. 2904 * @tag: buffer tag. 2905 * 2906 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2907 * is set in the tag the buffer is posted for a particular exchange, 2908 * the function will return the buffer without replacing the buffer. 2909 * If the buffer is for unsolicited ELS or CT traffic, this function 2910 * returns the buffer and also posts another buffer to the firmware. 2911 **/ 2912 static struct lpfc_dmabuf * 2913 lpfc_sli_get_buff(struct lpfc_hba *phba, 2914 struct lpfc_sli_ring *pring, 2915 uint32_t tag) 2916 { 2917 struct hbq_dmabuf *hbq_entry; 2918 2919 if (tag & QUE_BUFTAG_BIT) 2920 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2921 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2922 if (!hbq_entry) 2923 return NULL; 2924 return &hbq_entry->dbuf; 2925 } 2926 2927 /** 2928 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2929 * containing a NVME LS request. 2930 * @phba: pointer to lpfc hba data structure. 2931 * @piocb: pointer to the iocbq struct representing the sequence starting 2932 * frame. 2933 * 2934 * This routine initially validates the NVME LS, validates there is a login 2935 * with the port that sent the LS, and then calls the appropriate nvme host 2936 * or target LS request handler. 2937 **/ 2938 static void 2939 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2940 { 2941 struct lpfc_nodelist *ndlp; 2942 struct lpfc_dmabuf *d_buf; 2943 struct hbq_dmabuf *nvmebuf; 2944 struct fc_frame_header *fc_hdr; 2945 struct lpfc_async_xchg_ctx *axchg = NULL; 2946 char *failwhy = NULL; 2947 uint32_t oxid, sid, did, fctl, size; 2948 int ret = 1; 2949 2950 d_buf = piocb->context2; 2951 2952 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2953 fc_hdr = nvmebuf->hbuf.virt; 2954 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2955 sid = sli4_sid_from_fc_hdr(fc_hdr); 2956 did = sli4_did_from_fc_hdr(fc_hdr); 2957 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2958 fc_hdr->fh_f_ctl[1] << 8 | 2959 fc_hdr->fh_f_ctl[2]); 2960 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2961 2962 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2963 oxid, size, sid); 2964 2965 if (phba->pport->load_flag & FC_UNLOADING) { 2966 failwhy = "Driver Unloading"; 2967 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2968 failwhy = "NVME FC4 Disabled"; 2969 } else if (!phba->nvmet_support && !phba->pport->localport) { 2970 failwhy = "No Localport"; 2971 } else if (phba->nvmet_support && !phba->targetport) { 2972 failwhy = "No Targetport"; 2973 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2974 failwhy = "Bad NVME LS R_CTL"; 2975 } else if (unlikely((fctl & 0x00FF0000) != 2976 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2977 failwhy = "Bad NVME LS F_CTL"; 2978 } else { 2979 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2980 if (!axchg) 2981 failwhy = "No CTX memory"; 2982 } 2983 2984 if (unlikely(failwhy)) { 2985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2986 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2987 sid, oxid, failwhy); 2988 goto out_fail; 2989 } 2990 2991 /* validate the source of the LS is logged in */ 2992 ndlp = lpfc_findnode_did(phba->pport, sid); 2993 if (!ndlp || 2994 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2995 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2996 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2997 "6216 NVME Unsol rcv: No ndlp: " 2998 "NPort_ID x%x oxid x%x\n", 2999 sid, oxid); 3000 goto out_fail; 3001 } 3002 3003 axchg->phba = phba; 3004 axchg->ndlp = ndlp; 3005 axchg->size = size; 3006 axchg->oxid = oxid; 3007 axchg->sid = sid; 3008 axchg->wqeq = NULL; 3009 axchg->state = LPFC_NVME_STE_LS_RCV; 3010 axchg->entry_cnt = 1; 3011 axchg->rqb_buffer = (void *)nvmebuf; 3012 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3013 axchg->payload = nvmebuf->dbuf.virt; 3014 INIT_LIST_HEAD(&axchg->list); 3015 3016 if (phba->nvmet_support) { 3017 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3018 spin_lock_irq(&ndlp->lock); 3019 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3020 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3021 spin_unlock_irq(&ndlp->lock); 3022 3023 /* This reference is a single occurrence to hold the 3024 * node valid until the nvmet transport calls 3025 * host_release. 3026 */ 3027 if (!lpfc_nlp_get(ndlp)) 3028 goto out_fail; 3029 3030 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3031 "6206 NVMET unsol ls_req ndlp x%px " 3032 "DID x%x xflags x%x refcnt %d\n", 3033 ndlp, ndlp->nlp_DID, 3034 ndlp->fc4_xpt_flags, 3035 kref_read(&ndlp->kref)); 3036 } else { 3037 spin_unlock_irq(&ndlp->lock); 3038 } 3039 } else { 3040 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3041 } 3042 3043 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3044 if (!ret) 3045 return; 3046 3047 out_fail: 3048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3049 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3050 "NVMe%s handler failed %d\n", 3051 did, sid, oxid, 3052 (phba->nvmet_support) ? "T" : "I", ret); 3053 3054 /* recycle receive buffer */ 3055 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3056 3057 /* If start of new exchange, abort it */ 3058 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3059 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3060 3061 if (ret) 3062 kfree(axchg); 3063 } 3064 3065 /** 3066 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3067 * @phba: Pointer to HBA context object. 3068 * @pring: Pointer to driver SLI ring object. 3069 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3070 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3071 * @fch_type: the type for the first frame of the sequence. 3072 * 3073 * This function is called with no lock held. This function uses the r_ctl and 3074 * type of the received sequence to find the correct callback function to call 3075 * to process the sequence. 3076 **/ 3077 static int 3078 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3079 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3080 uint32_t fch_type) 3081 { 3082 int i; 3083 3084 switch (fch_type) { 3085 case FC_TYPE_NVME: 3086 lpfc_nvme_unsol_ls_handler(phba, saveq); 3087 return 1; 3088 default: 3089 break; 3090 } 3091 3092 /* unSolicited Responses */ 3093 if (pring->prt[0].profile) { 3094 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3095 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3096 saveq); 3097 return 1; 3098 } 3099 /* We must search, based on rctl / type 3100 for the right routine */ 3101 for (i = 0; i < pring->num_mask; i++) { 3102 if ((pring->prt[i].rctl == fch_r_ctl) && 3103 (pring->prt[i].type == fch_type)) { 3104 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3105 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3106 (phba, pring, saveq); 3107 return 1; 3108 } 3109 } 3110 return 0; 3111 } 3112 3113 /** 3114 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3115 * @phba: Pointer to HBA context object. 3116 * @pring: Pointer to driver SLI ring object. 3117 * @saveq: Pointer to the unsolicited iocb. 3118 * 3119 * This function is called with no lock held by the ring event handler 3120 * when there is an unsolicited iocb posted to the response ring by the 3121 * firmware. This function gets the buffer associated with the iocbs 3122 * and calls the event handler for the ring. This function handles both 3123 * qring buffers and hbq buffers. 3124 * When the function returns 1 the caller can free the iocb object otherwise 3125 * upper layer functions will free the iocb objects. 3126 **/ 3127 static int 3128 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3129 struct lpfc_iocbq *saveq) 3130 { 3131 IOCB_t * irsp; 3132 WORD5 * w5p; 3133 uint32_t Rctl, Type; 3134 struct lpfc_iocbq *iocbq; 3135 struct lpfc_dmabuf *dmzbuf; 3136 3137 irsp = &(saveq->iocb); 3138 3139 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3140 if (pring->lpfc_sli_rcv_async_status) 3141 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3142 else 3143 lpfc_printf_log(phba, 3144 KERN_WARNING, 3145 LOG_SLI, 3146 "0316 Ring %d handler: unexpected " 3147 "ASYNC_STATUS iocb received evt_code " 3148 "0x%x\n", 3149 pring->ringno, 3150 irsp->un.asyncstat.evt_code); 3151 return 1; 3152 } 3153 3154 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3155 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3156 if (irsp->ulpBdeCount > 0) { 3157 dmzbuf = lpfc_sli_get_buff(phba, pring, 3158 irsp->un.ulpWord[3]); 3159 lpfc_in_buf_free(phba, dmzbuf); 3160 } 3161 3162 if (irsp->ulpBdeCount > 1) { 3163 dmzbuf = lpfc_sli_get_buff(phba, pring, 3164 irsp->unsli3.sli3Words[3]); 3165 lpfc_in_buf_free(phba, dmzbuf); 3166 } 3167 3168 if (irsp->ulpBdeCount > 2) { 3169 dmzbuf = lpfc_sli_get_buff(phba, pring, 3170 irsp->unsli3.sli3Words[7]); 3171 lpfc_in_buf_free(phba, dmzbuf); 3172 } 3173 3174 return 1; 3175 } 3176 3177 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3178 if (irsp->ulpBdeCount != 0) { 3179 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3180 irsp->un.ulpWord[3]); 3181 if (!saveq->context2) 3182 lpfc_printf_log(phba, 3183 KERN_ERR, 3184 LOG_SLI, 3185 "0341 Ring %d Cannot find buffer for " 3186 "an unsolicited iocb. tag 0x%x\n", 3187 pring->ringno, 3188 irsp->un.ulpWord[3]); 3189 } 3190 if (irsp->ulpBdeCount == 2) { 3191 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3192 irsp->unsli3.sli3Words[7]); 3193 if (!saveq->context3) 3194 lpfc_printf_log(phba, 3195 KERN_ERR, 3196 LOG_SLI, 3197 "0342 Ring %d Cannot find buffer for an" 3198 " unsolicited iocb. tag 0x%x\n", 3199 pring->ringno, 3200 irsp->unsli3.sli3Words[7]); 3201 } 3202 list_for_each_entry(iocbq, &saveq->list, list) { 3203 irsp = &(iocbq->iocb); 3204 if (irsp->ulpBdeCount != 0) { 3205 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3206 irsp->un.ulpWord[3]); 3207 if (!iocbq->context2) 3208 lpfc_printf_log(phba, 3209 KERN_ERR, 3210 LOG_SLI, 3211 "0343 Ring %d Cannot find " 3212 "buffer for an unsolicited iocb" 3213 ". tag 0x%x\n", pring->ringno, 3214 irsp->un.ulpWord[3]); 3215 } 3216 if (irsp->ulpBdeCount == 2) { 3217 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3218 irsp->unsli3.sli3Words[7]); 3219 if (!iocbq->context3) 3220 lpfc_printf_log(phba, 3221 KERN_ERR, 3222 LOG_SLI, 3223 "0344 Ring %d Cannot find " 3224 "buffer for an unsolicited " 3225 "iocb. tag 0x%x\n", 3226 pring->ringno, 3227 irsp->unsli3.sli3Words[7]); 3228 } 3229 } 3230 } 3231 if (irsp->ulpBdeCount != 0 && 3232 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3233 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3234 int found = 0; 3235 3236 /* search continue save q for same XRI */ 3237 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3238 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3239 saveq->iocb.unsli3.rcvsli3.ox_id) { 3240 list_add_tail(&saveq->list, &iocbq->list); 3241 found = 1; 3242 break; 3243 } 3244 } 3245 if (!found) 3246 list_add_tail(&saveq->clist, 3247 &pring->iocb_continue_saveq); 3248 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3249 list_del_init(&iocbq->clist); 3250 saveq = iocbq; 3251 irsp = &(saveq->iocb); 3252 } else 3253 return 0; 3254 } 3255 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3256 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3257 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3258 Rctl = FC_RCTL_ELS_REQ; 3259 Type = FC_TYPE_ELS; 3260 } else { 3261 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3262 Rctl = w5p->hcsw.Rctl; 3263 Type = w5p->hcsw.Type; 3264 3265 /* Firmware Workaround */ 3266 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3267 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3268 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3269 Rctl = FC_RCTL_ELS_REQ; 3270 Type = FC_TYPE_ELS; 3271 w5p->hcsw.Rctl = Rctl; 3272 w5p->hcsw.Type = Type; 3273 } 3274 } 3275 3276 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3277 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3278 "0313 Ring %d handler: unexpected Rctl x%x " 3279 "Type x%x received\n", 3280 pring->ringno, Rctl, Type); 3281 3282 return 1; 3283 } 3284 3285 /** 3286 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3287 * @phba: Pointer to HBA context object. 3288 * @pring: Pointer to driver SLI ring object. 3289 * @prspiocb: Pointer to response iocb object. 3290 * 3291 * This function looks up the iocb_lookup table to get the command iocb 3292 * corresponding to the given response iocb using the iotag of the 3293 * response iocb. The driver calls this function with the hbalock held 3294 * for SLI3 ports or the ring lock held for SLI4 ports. 3295 * This function returns the command iocb object if it finds the command 3296 * iocb else returns NULL. 3297 **/ 3298 static struct lpfc_iocbq * 3299 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3300 struct lpfc_sli_ring *pring, 3301 struct lpfc_iocbq *prspiocb) 3302 { 3303 struct lpfc_iocbq *cmd_iocb = NULL; 3304 uint16_t iotag; 3305 spinlock_t *temp_lock = NULL; 3306 unsigned long iflag = 0; 3307 3308 if (phba->sli_rev == LPFC_SLI_REV4) 3309 temp_lock = &pring->ring_lock; 3310 else 3311 temp_lock = &phba->hbalock; 3312 3313 spin_lock_irqsave(temp_lock, iflag); 3314 iotag = prspiocb->iocb.ulpIoTag; 3315 3316 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3317 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3318 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3319 /* remove from txcmpl queue list */ 3320 list_del_init(&cmd_iocb->list); 3321 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3322 pring->txcmplq_cnt--; 3323 spin_unlock_irqrestore(temp_lock, iflag); 3324 return cmd_iocb; 3325 } 3326 } 3327 3328 spin_unlock_irqrestore(temp_lock, iflag); 3329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3330 "0317 iotag x%x is out of " 3331 "range: max iotag x%x wd0 x%x\n", 3332 iotag, phba->sli.last_iotag, 3333 *(((uint32_t *) &prspiocb->iocb) + 7)); 3334 return NULL; 3335 } 3336 3337 /** 3338 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3339 * @phba: Pointer to HBA context object. 3340 * @pring: Pointer to driver SLI ring object. 3341 * @iotag: IOCB tag. 3342 * 3343 * This function looks up the iocb_lookup table to get the command iocb 3344 * corresponding to the given iotag. The driver calls this function with 3345 * the ring lock held because this function is an SLI4 port only helper. 3346 * This function returns the command iocb object if it finds the command 3347 * iocb else returns NULL. 3348 **/ 3349 static struct lpfc_iocbq * 3350 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3351 struct lpfc_sli_ring *pring, uint16_t iotag) 3352 { 3353 struct lpfc_iocbq *cmd_iocb = NULL; 3354 spinlock_t *temp_lock = NULL; 3355 unsigned long iflag = 0; 3356 3357 if (phba->sli_rev == LPFC_SLI_REV4) 3358 temp_lock = &pring->ring_lock; 3359 else 3360 temp_lock = &phba->hbalock; 3361 3362 spin_lock_irqsave(temp_lock, iflag); 3363 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3364 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3365 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3366 /* remove from txcmpl queue list */ 3367 list_del_init(&cmd_iocb->list); 3368 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3369 pring->txcmplq_cnt--; 3370 spin_unlock_irqrestore(temp_lock, iflag); 3371 return cmd_iocb; 3372 } 3373 } 3374 3375 spin_unlock_irqrestore(temp_lock, iflag); 3376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3377 "0372 iotag x%x lookup error: max iotag (x%x) " 3378 "iocb_flag x%x\n", 3379 iotag, phba->sli.last_iotag, 3380 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3381 return NULL; 3382 } 3383 3384 /** 3385 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3386 * @phba: Pointer to HBA context object. 3387 * @pring: Pointer to driver SLI ring object. 3388 * @saveq: Pointer to the response iocb to be processed. 3389 * 3390 * This function is called by the ring event handler for non-fcp 3391 * rings when there is a new response iocb in the response ring. 3392 * The caller is not required to hold any locks. This function 3393 * gets the command iocb associated with the response iocb and 3394 * calls the completion handler for the command iocb. If there 3395 * is no completion handler, the function will free the resources 3396 * associated with command iocb. If the response iocb is for 3397 * an already aborted command iocb, the status of the completion 3398 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3399 * This function always returns 1. 3400 **/ 3401 static int 3402 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3403 struct lpfc_iocbq *saveq) 3404 { 3405 struct lpfc_iocbq *cmdiocbp; 3406 int rc = 1; 3407 unsigned long iflag; 3408 3409 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3410 if (cmdiocbp) { 3411 if (cmdiocbp->iocb_cmpl) { 3412 /* 3413 * If an ELS command failed send an event to mgmt 3414 * application. 3415 */ 3416 if (saveq->iocb.ulpStatus && 3417 (pring->ringno == LPFC_ELS_RING) && 3418 (cmdiocbp->iocb.ulpCommand == 3419 CMD_ELS_REQUEST64_CR)) 3420 lpfc_send_els_failure_event(phba, 3421 cmdiocbp, saveq); 3422 3423 /* 3424 * Post all ELS completions to the worker thread. 3425 * All other are passed to the completion callback. 3426 */ 3427 if (pring->ringno == LPFC_ELS_RING) { 3428 if ((phba->sli_rev < LPFC_SLI_REV4) && 3429 (cmdiocbp->iocb_flag & 3430 LPFC_DRIVER_ABORTED)) { 3431 spin_lock_irqsave(&phba->hbalock, 3432 iflag); 3433 cmdiocbp->iocb_flag &= 3434 ~LPFC_DRIVER_ABORTED; 3435 spin_unlock_irqrestore(&phba->hbalock, 3436 iflag); 3437 saveq->iocb.ulpStatus = 3438 IOSTAT_LOCAL_REJECT; 3439 saveq->iocb.un.ulpWord[4] = 3440 IOERR_SLI_ABORTED; 3441 3442 /* Firmware could still be in progress 3443 * of DMAing payload, so don't free data 3444 * buffer till after a hbeat. 3445 */ 3446 spin_lock_irqsave(&phba->hbalock, 3447 iflag); 3448 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3449 spin_unlock_irqrestore(&phba->hbalock, 3450 iflag); 3451 } 3452 if (phba->sli_rev == LPFC_SLI_REV4) { 3453 if (saveq->iocb_flag & 3454 LPFC_EXCHANGE_BUSY) { 3455 /* Set cmdiocb flag for the 3456 * exchange busy so sgl (xri) 3457 * will not be released until 3458 * the abort xri is received 3459 * from hba. 3460 */ 3461 spin_lock_irqsave( 3462 &phba->hbalock, iflag); 3463 cmdiocbp->iocb_flag |= 3464 LPFC_EXCHANGE_BUSY; 3465 spin_unlock_irqrestore( 3466 &phba->hbalock, iflag); 3467 } 3468 if (cmdiocbp->iocb_flag & 3469 LPFC_DRIVER_ABORTED) { 3470 /* 3471 * Clear LPFC_DRIVER_ABORTED 3472 * bit in case it was driver 3473 * initiated abort. 3474 */ 3475 spin_lock_irqsave( 3476 &phba->hbalock, iflag); 3477 cmdiocbp->iocb_flag &= 3478 ~LPFC_DRIVER_ABORTED; 3479 spin_unlock_irqrestore( 3480 &phba->hbalock, iflag); 3481 cmdiocbp->iocb.ulpStatus = 3482 IOSTAT_LOCAL_REJECT; 3483 cmdiocbp->iocb.un.ulpWord[4] = 3484 IOERR_ABORT_REQUESTED; 3485 /* 3486 * For SLI4, irsiocb contains 3487 * NO_XRI in sli_xritag, it 3488 * shall not affect releasing 3489 * sgl (xri) process. 3490 */ 3491 saveq->iocb.ulpStatus = 3492 IOSTAT_LOCAL_REJECT; 3493 saveq->iocb.un.ulpWord[4] = 3494 IOERR_SLI_ABORTED; 3495 spin_lock_irqsave( 3496 &phba->hbalock, iflag); 3497 saveq->iocb_flag |= 3498 LPFC_DELAY_MEM_FREE; 3499 spin_unlock_irqrestore( 3500 &phba->hbalock, iflag); 3501 } 3502 } 3503 } 3504 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3505 } else 3506 lpfc_sli_release_iocbq(phba, cmdiocbp); 3507 } else { 3508 /* 3509 * Unknown initiating command based on the response iotag. 3510 * This could be the case on the ELS ring because of 3511 * lpfc_els_abort(). 3512 */ 3513 if (pring->ringno != LPFC_ELS_RING) { 3514 /* 3515 * Ring <ringno> handler: unexpected completion IoTag 3516 * <IoTag> 3517 */ 3518 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3519 "0322 Ring %d handler: " 3520 "unexpected completion IoTag x%x " 3521 "Data: x%x x%x x%x x%x\n", 3522 pring->ringno, 3523 saveq->iocb.ulpIoTag, 3524 saveq->iocb.ulpStatus, 3525 saveq->iocb.un.ulpWord[4], 3526 saveq->iocb.ulpCommand, 3527 saveq->iocb.ulpContext); 3528 } 3529 } 3530 3531 return rc; 3532 } 3533 3534 /** 3535 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * 3539 * This function is called from the iocb ring event handlers when 3540 * put pointer is ahead of the get pointer for a ring. This function signal 3541 * an error attention condition to the worker thread and the worker 3542 * thread will transition the HBA to offline state. 3543 **/ 3544 static void 3545 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3546 { 3547 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3548 /* 3549 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3550 * rsp ring <portRspMax> 3551 */ 3552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3553 "0312 Ring %d handler: portRspPut %d " 3554 "is bigger than rsp ring %d\n", 3555 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3556 pring->sli.sli3.numRiocb); 3557 3558 phba->link_state = LPFC_HBA_ERROR; 3559 3560 /* 3561 * All error attention handlers are posted to 3562 * worker thread 3563 */ 3564 phba->work_ha |= HA_ERATT; 3565 phba->work_hs = HS_FFER3; 3566 3567 lpfc_worker_wake_up(phba); 3568 3569 return; 3570 } 3571 3572 /** 3573 * lpfc_poll_eratt - Error attention polling timer timeout handler 3574 * @t: Context to fetch pointer to address of HBA context object from. 3575 * 3576 * This function is invoked by the Error Attention polling timer when the 3577 * timer times out. It will check the SLI Error Attention register for 3578 * possible attention events. If so, it will post an Error Attention event 3579 * and wake up worker thread to process it. Otherwise, it will set up the 3580 * Error Attention polling timer for the next poll. 3581 **/ 3582 void lpfc_poll_eratt(struct timer_list *t) 3583 { 3584 struct lpfc_hba *phba; 3585 uint32_t eratt = 0; 3586 uint64_t sli_intr, cnt; 3587 3588 phba = from_timer(phba, t, eratt_poll); 3589 3590 /* Here we will also keep track of interrupts per sec of the hba */ 3591 sli_intr = phba->sli.slistat.sli_intr; 3592 3593 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3594 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3595 sli_intr); 3596 else 3597 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3598 3599 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3600 do_div(cnt, phba->eratt_poll_interval); 3601 phba->sli.slistat.sli_ips = cnt; 3602 3603 phba->sli.slistat.sli_prev_intr = sli_intr; 3604 3605 /* Check chip HA register for error event */ 3606 eratt = lpfc_sli_check_eratt(phba); 3607 3608 if (eratt) 3609 /* Tell the worker thread there is work to do */ 3610 lpfc_worker_wake_up(phba); 3611 else 3612 /* Restart the timer for next eratt poll */ 3613 mod_timer(&phba->eratt_poll, 3614 jiffies + 3615 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3616 return; 3617 } 3618 3619 3620 /** 3621 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3622 * @phba: Pointer to HBA context object. 3623 * @pring: Pointer to driver SLI ring object. 3624 * @mask: Host attention register mask for this ring. 3625 * 3626 * This function is called from the interrupt context when there is a ring 3627 * event for the fcp ring. The caller does not hold any lock. 3628 * The function processes each response iocb in the response ring until it 3629 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3630 * LE bit set. The function will call the completion handler of the command iocb 3631 * if the response iocb indicates a completion for a command iocb or it is 3632 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3633 * function if this is an unsolicited iocb. 3634 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3635 * to check it explicitly. 3636 */ 3637 int 3638 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3639 struct lpfc_sli_ring *pring, uint32_t mask) 3640 { 3641 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3642 IOCB_t *irsp = NULL; 3643 IOCB_t *entry = NULL; 3644 struct lpfc_iocbq *cmdiocbq = NULL; 3645 struct lpfc_iocbq rspiocbq; 3646 uint32_t status; 3647 uint32_t portRspPut, portRspMax; 3648 int rc = 1; 3649 lpfc_iocb_type type; 3650 unsigned long iflag; 3651 uint32_t rsp_cmpl = 0; 3652 3653 spin_lock_irqsave(&phba->hbalock, iflag); 3654 pring->stats.iocb_event++; 3655 3656 /* 3657 * The next available response entry should never exceed the maximum 3658 * entries. If it does, treat it as an adapter hardware error. 3659 */ 3660 portRspMax = pring->sli.sli3.numRiocb; 3661 portRspPut = le32_to_cpu(pgp->rspPutInx); 3662 if (unlikely(portRspPut >= portRspMax)) { 3663 lpfc_sli_rsp_pointers_error(phba, pring); 3664 spin_unlock_irqrestore(&phba->hbalock, iflag); 3665 return 1; 3666 } 3667 if (phba->fcp_ring_in_use) { 3668 spin_unlock_irqrestore(&phba->hbalock, iflag); 3669 return 1; 3670 } else 3671 phba->fcp_ring_in_use = 1; 3672 3673 rmb(); 3674 while (pring->sli.sli3.rspidx != portRspPut) { 3675 /* 3676 * Fetch an entry off the ring and copy it into a local data 3677 * structure. The copy involves a byte-swap since the 3678 * network byte order and pci byte orders are different. 3679 */ 3680 entry = lpfc_resp_iocb(phba, pring); 3681 phba->last_completion_time = jiffies; 3682 3683 if (++pring->sli.sli3.rspidx >= portRspMax) 3684 pring->sli.sli3.rspidx = 0; 3685 3686 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3687 (uint32_t *) &rspiocbq.iocb, 3688 phba->iocb_rsp_size); 3689 INIT_LIST_HEAD(&(rspiocbq.list)); 3690 irsp = &rspiocbq.iocb; 3691 3692 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3693 pring->stats.iocb_rsp++; 3694 rsp_cmpl++; 3695 3696 if (unlikely(irsp->ulpStatus)) { 3697 /* 3698 * If resource errors reported from HBA, reduce 3699 * queuedepths of the SCSI device. 3700 */ 3701 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3702 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3703 IOERR_NO_RESOURCES)) { 3704 spin_unlock_irqrestore(&phba->hbalock, iflag); 3705 phba->lpfc_rampdown_queue_depth(phba); 3706 spin_lock_irqsave(&phba->hbalock, iflag); 3707 } 3708 3709 /* Rsp ring <ringno> error: IOCB */ 3710 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3711 "0336 Rsp Ring %d error: IOCB Data: " 3712 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3713 pring->ringno, 3714 irsp->un.ulpWord[0], 3715 irsp->un.ulpWord[1], 3716 irsp->un.ulpWord[2], 3717 irsp->un.ulpWord[3], 3718 irsp->un.ulpWord[4], 3719 irsp->un.ulpWord[5], 3720 *(uint32_t *)&irsp->un1, 3721 *((uint32_t *)&irsp->un1 + 1)); 3722 } 3723 3724 switch (type) { 3725 case LPFC_ABORT_IOCB: 3726 case LPFC_SOL_IOCB: 3727 /* 3728 * Idle exchange closed via ABTS from port. No iocb 3729 * resources need to be recovered. 3730 */ 3731 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3732 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3733 "0333 IOCB cmd 0x%x" 3734 " processed. Skipping" 3735 " completion\n", 3736 irsp->ulpCommand); 3737 break; 3738 } 3739 3740 spin_unlock_irqrestore(&phba->hbalock, iflag); 3741 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3742 &rspiocbq); 3743 spin_lock_irqsave(&phba->hbalock, iflag); 3744 if (unlikely(!cmdiocbq)) 3745 break; 3746 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3747 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3748 if (cmdiocbq->iocb_cmpl) { 3749 spin_unlock_irqrestore(&phba->hbalock, iflag); 3750 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3751 &rspiocbq); 3752 spin_lock_irqsave(&phba->hbalock, iflag); 3753 } 3754 break; 3755 case LPFC_UNSOL_IOCB: 3756 spin_unlock_irqrestore(&phba->hbalock, iflag); 3757 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3758 spin_lock_irqsave(&phba->hbalock, iflag); 3759 break; 3760 default: 3761 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3762 char adaptermsg[LPFC_MAX_ADPTMSG]; 3763 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3764 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3765 MAX_MSG_DATA); 3766 dev_warn(&((phba->pcidev)->dev), 3767 "lpfc%d: %s\n", 3768 phba->brd_no, adaptermsg); 3769 } else { 3770 /* Unknown IOCB command */ 3771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3772 "0334 Unknown IOCB command " 3773 "Data: x%x, x%x x%x x%x x%x\n", 3774 type, irsp->ulpCommand, 3775 irsp->ulpStatus, 3776 irsp->ulpIoTag, 3777 irsp->ulpContext); 3778 } 3779 break; 3780 } 3781 3782 /* 3783 * The response IOCB has been processed. Update the ring 3784 * pointer in SLIM. If the port response put pointer has not 3785 * been updated, sync the pgp->rspPutInx and fetch the new port 3786 * response put pointer. 3787 */ 3788 writel(pring->sli.sli3.rspidx, 3789 &phba->host_gp[pring->ringno].rspGetInx); 3790 3791 if (pring->sli.sli3.rspidx == portRspPut) 3792 portRspPut = le32_to_cpu(pgp->rspPutInx); 3793 } 3794 3795 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3796 pring->stats.iocb_rsp_full++; 3797 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3798 writel(status, phba->CAregaddr); 3799 readl(phba->CAregaddr); 3800 } 3801 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3802 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3803 pring->stats.iocb_cmd_empty++; 3804 3805 /* Force update of the local copy of cmdGetInx */ 3806 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3807 lpfc_sli_resume_iocb(phba, pring); 3808 3809 if ((pring->lpfc_sli_cmd_available)) 3810 (pring->lpfc_sli_cmd_available) (phba, pring); 3811 3812 } 3813 3814 phba->fcp_ring_in_use = 0; 3815 spin_unlock_irqrestore(&phba->hbalock, iflag); 3816 return rc; 3817 } 3818 3819 /** 3820 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3821 * @phba: Pointer to HBA context object. 3822 * @pring: Pointer to driver SLI ring object. 3823 * @rspiocbp: Pointer to driver response IOCB object. 3824 * 3825 * This function is called from the worker thread when there is a slow-path 3826 * response IOCB to process. This function chains all the response iocbs until 3827 * seeing the iocb with the LE bit set. The function will call 3828 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3829 * completion of a command iocb. The function will call the 3830 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3831 * The function frees the resources or calls the completion handler if this 3832 * iocb is an abort completion. The function returns NULL when the response 3833 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3834 * this function shall chain the iocb on to the iocb_continueq and return the 3835 * response iocb passed in. 3836 **/ 3837 static struct lpfc_iocbq * 3838 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3839 struct lpfc_iocbq *rspiocbp) 3840 { 3841 struct lpfc_iocbq *saveq; 3842 struct lpfc_iocbq *cmdiocbp; 3843 struct lpfc_iocbq *next_iocb; 3844 IOCB_t *irsp = NULL; 3845 uint32_t free_saveq; 3846 uint8_t iocb_cmd_type; 3847 lpfc_iocb_type type; 3848 unsigned long iflag; 3849 int rc; 3850 3851 spin_lock_irqsave(&phba->hbalock, iflag); 3852 /* First add the response iocb to the countinueq list */ 3853 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3854 pring->iocb_continueq_cnt++; 3855 3856 /* Now, determine whether the list is completed for processing */ 3857 irsp = &rspiocbp->iocb; 3858 if (irsp->ulpLe) { 3859 /* 3860 * By default, the driver expects to free all resources 3861 * associated with this iocb completion. 3862 */ 3863 free_saveq = 1; 3864 saveq = list_get_first(&pring->iocb_continueq, 3865 struct lpfc_iocbq, list); 3866 irsp = &(saveq->iocb); 3867 list_del_init(&pring->iocb_continueq); 3868 pring->iocb_continueq_cnt = 0; 3869 3870 pring->stats.iocb_rsp++; 3871 3872 /* 3873 * If resource errors reported from HBA, reduce 3874 * queuedepths of the SCSI device. 3875 */ 3876 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3877 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3878 IOERR_NO_RESOURCES)) { 3879 spin_unlock_irqrestore(&phba->hbalock, iflag); 3880 phba->lpfc_rampdown_queue_depth(phba); 3881 spin_lock_irqsave(&phba->hbalock, iflag); 3882 } 3883 3884 if (irsp->ulpStatus) { 3885 /* Rsp ring <ringno> error: IOCB */ 3886 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3887 "0328 Rsp Ring %d error: " 3888 "IOCB Data: " 3889 "x%x x%x x%x x%x " 3890 "x%x x%x x%x x%x " 3891 "x%x x%x x%x x%x " 3892 "x%x x%x x%x x%x\n", 3893 pring->ringno, 3894 irsp->un.ulpWord[0], 3895 irsp->un.ulpWord[1], 3896 irsp->un.ulpWord[2], 3897 irsp->un.ulpWord[3], 3898 irsp->un.ulpWord[4], 3899 irsp->un.ulpWord[5], 3900 *(((uint32_t *) irsp) + 6), 3901 *(((uint32_t *) irsp) + 7), 3902 *(((uint32_t *) irsp) + 8), 3903 *(((uint32_t *) irsp) + 9), 3904 *(((uint32_t *) irsp) + 10), 3905 *(((uint32_t *) irsp) + 11), 3906 *(((uint32_t *) irsp) + 12), 3907 *(((uint32_t *) irsp) + 13), 3908 *(((uint32_t *) irsp) + 14), 3909 *(((uint32_t *) irsp) + 15)); 3910 } 3911 3912 /* 3913 * Fetch the IOCB command type and call the correct completion 3914 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3915 * get freed back to the lpfc_iocb_list by the discovery 3916 * kernel thread. 3917 */ 3918 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3919 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3920 switch (type) { 3921 case LPFC_SOL_IOCB: 3922 spin_unlock_irqrestore(&phba->hbalock, iflag); 3923 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3924 spin_lock_irqsave(&phba->hbalock, iflag); 3925 break; 3926 3927 case LPFC_UNSOL_IOCB: 3928 spin_unlock_irqrestore(&phba->hbalock, iflag); 3929 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3930 spin_lock_irqsave(&phba->hbalock, iflag); 3931 if (!rc) 3932 free_saveq = 0; 3933 break; 3934 3935 case LPFC_ABORT_IOCB: 3936 cmdiocbp = NULL; 3937 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3938 spin_unlock_irqrestore(&phba->hbalock, iflag); 3939 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3940 saveq); 3941 spin_lock_irqsave(&phba->hbalock, iflag); 3942 } 3943 if (cmdiocbp) { 3944 /* Call the specified completion routine */ 3945 if (cmdiocbp->iocb_cmpl) { 3946 spin_unlock_irqrestore(&phba->hbalock, 3947 iflag); 3948 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3949 saveq); 3950 spin_lock_irqsave(&phba->hbalock, 3951 iflag); 3952 } else 3953 __lpfc_sli_release_iocbq(phba, 3954 cmdiocbp); 3955 } 3956 break; 3957 3958 case LPFC_UNKNOWN_IOCB: 3959 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3960 char adaptermsg[LPFC_MAX_ADPTMSG]; 3961 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3962 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3963 MAX_MSG_DATA); 3964 dev_warn(&((phba->pcidev)->dev), 3965 "lpfc%d: %s\n", 3966 phba->brd_no, adaptermsg); 3967 } else { 3968 /* Unknown IOCB command */ 3969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3970 "0335 Unknown IOCB " 3971 "command Data: x%x " 3972 "x%x x%x x%x\n", 3973 irsp->ulpCommand, 3974 irsp->ulpStatus, 3975 irsp->ulpIoTag, 3976 irsp->ulpContext); 3977 } 3978 break; 3979 } 3980 3981 if (free_saveq) { 3982 list_for_each_entry_safe(rspiocbp, next_iocb, 3983 &saveq->list, list) { 3984 list_del_init(&rspiocbp->list); 3985 __lpfc_sli_release_iocbq(phba, rspiocbp); 3986 } 3987 __lpfc_sli_release_iocbq(phba, saveq); 3988 } 3989 rspiocbp = NULL; 3990 } 3991 spin_unlock_irqrestore(&phba->hbalock, iflag); 3992 return rspiocbp; 3993 } 3994 3995 /** 3996 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3997 * @phba: Pointer to HBA context object. 3998 * @pring: Pointer to driver SLI ring object. 3999 * @mask: Host attention register mask for this ring. 4000 * 4001 * This routine wraps the actual slow_ring event process routine from the 4002 * API jump table function pointer from the lpfc_hba struct. 4003 **/ 4004 void 4005 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4006 struct lpfc_sli_ring *pring, uint32_t mask) 4007 { 4008 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4009 } 4010 4011 /** 4012 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4013 * @phba: Pointer to HBA context object. 4014 * @pring: Pointer to driver SLI ring object. 4015 * @mask: Host attention register mask for this ring. 4016 * 4017 * This function is called from the worker thread when there is a ring event 4018 * for non-fcp rings. The caller does not hold any lock. The function will 4019 * remove each response iocb in the response ring and calls the handle 4020 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4021 **/ 4022 static void 4023 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4024 struct lpfc_sli_ring *pring, uint32_t mask) 4025 { 4026 struct lpfc_pgp *pgp; 4027 IOCB_t *entry; 4028 IOCB_t *irsp = NULL; 4029 struct lpfc_iocbq *rspiocbp = NULL; 4030 uint32_t portRspPut, portRspMax; 4031 unsigned long iflag; 4032 uint32_t status; 4033 4034 pgp = &phba->port_gp[pring->ringno]; 4035 spin_lock_irqsave(&phba->hbalock, iflag); 4036 pring->stats.iocb_event++; 4037 4038 /* 4039 * The next available response entry should never exceed the maximum 4040 * entries. If it does, treat it as an adapter hardware error. 4041 */ 4042 portRspMax = pring->sli.sli3.numRiocb; 4043 portRspPut = le32_to_cpu(pgp->rspPutInx); 4044 if (portRspPut >= portRspMax) { 4045 /* 4046 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4047 * rsp ring <portRspMax> 4048 */ 4049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4050 "0303 Ring %d handler: portRspPut %d " 4051 "is bigger than rsp ring %d\n", 4052 pring->ringno, portRspPut, portRspMax); 4053 4054 phba->link_state = LPFC_HBA_ERROR; 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 4057 phba->work_hs = HS_FFER3; 4058 lpfc_handle_eratt(phba); 4059 4060 return; 4061 } 4062 4063 rmb(); 4064 while (pring->sli.sli3.rspidx != portRspPut) { 4065 /* 4066 * Build a completion list and call the appropriate handler. 4067 * The process is to get the next available response iocb, get 4068 * a free iocb from the list, copy the response data into the 4069 * free iocb, insert to the continuation list, and update the 4070 * next response index to slim. This process makes response 4071 * iocb's in the ring available to DMA as fast as possible but 4072 * pays a penalty for a copy operation. Since the iocb is 4073 * only 32 bytes, this penalty is considered small relative to 4074 * the PCI reads for register values and a slim write. When 4075 * the ulpLe field is set, the entire Command has been 4076 * received. 4077 */ 4078 entry = lpfc_resp_iocb(phba, pring); 4079 4080 phba->last_completion_time = jiffies; 4081 rspiocbp = __lpfc_sli_get_iocbq(phba); 4082 if (rspiocbp == NULL) { 4083 printk(KERN_ERR "%s: out of buffers! Failing " 4084 "completion.\n", __func__); 4085 break; 4086 } 4087 4088 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4089 phba->iocb_rsp_size); 4090 irsp = &rspiocbp->iocb; 4091 4092 if (++pring->sli.sli3.rspidx >= portRspMax) 4093 pring->sli.sli3.rspidx = 0; 4094 4095 if (pring->ringno == LPFC_ELS_RING) { 4096 lpfc_debugfs_slow_ring_trc(phba, 4097 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4098 *(((uint32_t *) irsp) + 4), 4099 *(((uint32_t *) irsp) + 6), 4100 *(((uint32_t *) irsp) + 7)); 4101 } 4102 4103 writel(pring->sli.sli3.rspidx, 4104 &phba->host_gp[pring->ringno].rspGetInx); 4105 4106 spin_unlock_irqrestore(&phba->hbalock, iflag); 4107 /* Handle the response IOCB */ 4108 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4109 spin_lock_irqsave(&phba->hbalock, iflag); 4110 4111 /* 4112 * If the port response put pointer has not been updated, sync 4113 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4114 * response put pointer. 4115 */ 4116 if (pring->sli.sli3.rspidx == portRspPut) { 4117 portRspPut = le32_to_cpu(pgp->rspPutInx); 4118 } 4119 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4120 4121 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4122 /* At least one response entry has been freed */ 4123 pring->stats.iocb_rsp_full++; 4124 /* SET RxRE_RSP in Chip Att register */ 4125 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4126 writel(status, phba->CAregaddr); 4127 readl(phba->CAregaddr); /* flush */ 4128 } 4129 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4130 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4131 pring->stats.iocb_cmd_empty++; 4132 4133 /* Force update of the local copy of cmdGetInx */ 4134 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4135 lpfc_sli_resume_iocb(phba, pring); 4136 4137 if ((pring->lpfc_sli_cmd_available)) 4138 (pring->lpfc_sli_cmd_available) (phba, pring); 4139 4140 } 4141 4142 spin_unlock_irqrestore(&phba->hbalock, iflag); 4143 return; 4144 } 4145 4146 /** 4147 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4148 * @phba: Pointer to HBA context object. 4149 * @pring: Pointer to driver SLI ring object. 4150 * @mask: Host attention register mask for this ring. 4151 * 4152 * This function is called from the worker thread when there is a pending 4153 * ELS response iocb on the driver internal slow-path response iocb worker 4154 * queue. The caller does not hold any lock. The function will remove each 4155 * response iocb from the response worker queue and calls the handle 4156 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4157 **/ 4158 static void 4159 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4160 struct lpfc_sli_ring *pring, uint32_t mask) 4161 { 4162 struct lpfc_iocbq *irspiocbq; 4163 struct hbq_dmabuf *dmabuf; 4164 struct lpfc_cq_event *cq_event; 4165 unsigned long iflag; 4166 int count = 0; 4167 4168 spin_lock_irqsave(&phba->hbalock, iflag); 4169 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4172 /* Get the response iocb from the head of work queue */ 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 list_remove_head(&phba->sli4_hba.sp_queue_event, 4175 cq_event, struct lpfc_cq_event, list); 4176 spin_unlock_irqrestore(&phba->hbalock, iflag); 4177 4178 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4179 case CQE_CODE_COMPL_WQE: 4180 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4181 cq_event); 4182 /* Translate ELS WCQE to response IOCBQ */ 4183 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4184 irspiocbq); 4185 if (irspiocbq) 4186 lpfc_sli_sp_handle_rspiocb(phba, pring, 4187 irspiocbq); 4188 count++; 4189 break; 4190 case CQE_CODE_RECEIVE: 4191 case CQE_CODE_RECEIVE_V1: 4192 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4193 cq_event); 4194 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4195 count++; 4196 break; 4197 default: 4198 break; 4199 } 4200 4201 /* Limit the number of events to 64 to avoid soft lockups */ 4202 if (count == 64) 4203 break; 4204 } 4205 } 4206 4207 /** 4208 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4209 * @phba: Pointer to HBA context object. 4210 * @pring: Pointer to driver SLI ring object. 4211 * 4212 * This function aborts all iocbs in the given ring and frees all the iocb 4213 * objects in txq. This function issues an abort iocb for all the iocb commands 4214 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4215 * the return of this function. The caller is not required to hold any locks. 4216 **/ 4217 void 4218 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4219 { 4220 LIST_HEAD(completions); 4221 struct lpfc_iocbq *iocb, *next_iocb; 4222 4223 if (pring->ringno == LPFC_ELS_RING) { 4224 lpfc_fabric_abort_hba(phba); 4225 } 4226 4227 /* Error everything on txq and txcmplq 4228 * First do the txq. 4229 */ 4230 if (phba->sli_rev >= LPFC_SLI_REV4) { 4231 spin_lock_irq(&pring->ring_lock); 4232 list_splice_init(&pring->txq, &completions); 4233 pring->txq_cnt = 0; 4234 spin_unlock_irq(&pring->ring_lock); 4235 4236 spin_lock_irq(&phba->hbalock); 4237 /* Next issue ABTS for everything on the txcmplq */ 4238 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4239 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4240 spin_unlock_irq(&phba->hbalock); 4241 } else { 4242 spin_lock_irq(&phba->hbalock); 4243 list_splice_init(&pring->txq, &completions); 4244 pring->txq_cnt = 0; 4245 4246 /* Next issue ABTS for everything on the txcmplq */ 4247 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4248 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4249 spin_unlock_irq(&phba->hbalock); 4250 } 4251 /* Make sure HBA is alive */ 4252 lpfc_issue_hb_tmo(phba); 4253 4254 /* Cancel all the IOCBs from the completions list */ 4255 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4256 IOERR_SLI_ABORTED); 4257 } 4258 4259 /** 4260 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4261 * @phba: Pointer to HBA context object. 4262 * 4263 * This function aborts all iocbs in FCP rings and frees all the iocb 4264 * objects in txq. This function issues an abort iocb for all the iocb commands 4265 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4266 * the return of this function. The caller is not required to hold any locks. 4267 **/ 4268 void 4269 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4270 { 4271 struct lpfc_sli *psli = &phba->sli; 4272 struct lpfc_sli_ring *pring; 4273 uint32_t i; 4274 4275 /* Look on all the FCP Rings for the iotag */ 4276 if (phba->sli_rev >= LPFC_SLI_REV4) { 4277 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4278 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4279 lpfc_sli_abort_iocb_ring(phba, pring); 4280 } 4281 } else { 4282 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4283 lpfc_sli_abort_iocb_ring(phba, pring); 4284 } 4285 } 4286 4287 /** 4288 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4289 * @phba: Pointer to HBA context object. 4290 * 4291 * This function flushes all iocbs in the IO ring and frees all the iocb 4292 * objects in txq and txcmplq. This function will not issue abort iocbs 4293 * for all the iocb commands in txcmplq, they will just be returned with 4294 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4295 * slot has been permanently disabled. 4296 **/ 4297 void 4298 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4299 { 4300 LIST_HEAD(txq); 4301 LIST_HEAD(txcmplq); 4302 struct lpfc_sli *psli = &phba->sli; 4303 struct lpfc_sli_ring *pring; 4304 uint32_t i; 4305 struct lpfc_iocbq *piocb, *next_iocb; 4306 4307 spin_lock_irq(&phba->hbalock); 4308 if (phba->hba_flag & HBA_IOQ_FLUSH || 4309 !phba->sli4_hba.hdwq) { 4310 spin_unlock_irq(&phba->hbalock); 4311 return; 4312 } 4313 /* Indicate the I/O queues are flushed */ 4314 phba->hba_flag |= HBA_IOQ_FLUSH; 4315 spin_unlock_irq(&phba->hbalock); 4316 4317 /* Look on all the FCP Rings for the iotag */ 4318 if (phba->sli_rev >= LPFC_SLI_REV4) { 4319 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4320 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4321 4322 spin_lock_irq(&pring->ring_lock); 4323 /* Retrieve everything on txq */ 4324 list_splice_init(&pring->txq, &txq); 4325 list_for_each_entry_safe(piocb, next_iocb, 4326 &pring->txcmplq, list) 4327 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4328 /* Retrieve everything on the txcmplq */ 4329 list_splice_init(&pring->txcmplq, &txcmplq); 4330 pring->txq_cnt = 0; 4331 pring->txcmplq_cnt = 0; 4332 spin_unlock_irq(&pring->ring_lock); 4333 4334 /* Flush the txq */ 4335 lpfc_sli_cancel_iocbs(phba, &txq, 4336 IOSTAT_LOCAL_REJECT, 4337 IOERR_SLI_DOWN); 4338 /* Flush the txcmpq */ 4339 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4340 IOSTAT_LOCAL_REJECT, 4341 IOERR_SLI_DOWN); 4342 } 4343 } else { 4344 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4345 4346 spin_lock_irq(&phba->hbalock); 4347 /* Retrieve everything on txq */ 4348 list_splice_init(&pring->txq, &txq); 4349 list_for_each_entry_safe(piocb, next_iocb, 4350 &pring->txcmplq, list) 4351 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4352 /* Retrieve everything on the txcmplq */ 4353 list_splice_init(&pring->txcmplq, &txcmplq); 4354 pring->txq_cnt = 0; 4355 pring->txcmplq_cnt = 0; 4356 spin_unlock_irq(&phba->hbalock); 4357 4358 /* Flush the txq */ 4359 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4360 IOERR_SLI_DOWN); 4361 /* Flush the txcmpq */ 4362 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4363 IOERR_SLI_DOWN); 4364 } 4365 } 4366 4367 /** 4368 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4369 * @phba: Pointer to HBA context object. 4370 * @mask: Bit mask to be checked. 4371 * 4372 * This function reads the host status register and compares 4373 * with the provided bit mask to check if HBA completed 4374 * the restart. This function will wait in a loop for the 4375 * HBA to complete restart. If the HBA does not restart within 4376 * 15 iterations, the function will reset the HBA again. The 4377 * function returns 1 when HBA fail to restart otherwise returns 4378 * zero. 4379 **/ 4380 static int 4381 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4382 { 4383 uint32_t status; 4384 int i = 0; 4385 int retval = 0; 4386 4387 /* Read the HBA Host Status Register */ 4388 if (lpfc_readl(phba->HSregaddr, &status)) 4389 return 1; 4390 4391 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4392 4393 /* 4394 * Check status register every 100ms for 5 retries, then every 4395 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4396 * every 2.5 sec for 4. 4397 * Break our of the loop if errors occurred during init. 4398 */ 4399 while (((status & mask) != mask) && 4400 !(status & HS_FFERM) && 4401 i++ < 20) { 4402 4403 if (i <= 5) 4404 msleep(10); 4405 else if (i <= 10) 4406 msleep(500); 4407 else 4408 msleep(2500); 4409 4410 if (i == 15) { 4411 /* Do post */ 4412 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4413 lpfc_sli_brdrestart(phba); 4414 } 4415 /* Read the HBA Host Status Register */ 4416 if (lpfc_readl(phba->HSregaddr, &status)) { 4417 retval = 1; 4418 break; 4419 } 4420 } 4421 4422 /* Check to see if any errors occurred during init */ 4423 if ((status & HS_FFERM) || (i >= 20)) { 4424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4425 "2751 Adapter failed to restart, " 4426 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4427 status, 4428 readl(phba->MBslimaddr + 0xa8), 4429 readl(phba->MBslimaddr + 0xac)); 4430 phba->link_state = LPFC_HBA_ERROR; 4431 retval = 1; 4432 } 4433 4434 return retval; 4435 } 4436 4437 /** 4438 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4439 * @phba: Pointer to HBA context object. 4440 * @mask: Bit mask to be checked. 4441 * 4442 * This function checks the host status register to check if HBA is 4443 * ready. This function will wait in a loop for the HBA to be ready 4444 * If the HBA is not ready , the function will will reset the HBA PCI 4445 * function again. The function returns 1 when HBA fail to be ready 4446 * otherwise returns zero. 4447 **/ 4448 static int 4449 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4450 { 4451 uint32_t status; 4452 int retval = 0; 4453 4454 /* Read the HBA Host Status Register */ 4455 status = lpfc_sli4_post_status_check(phba); 4456 4457 if (status) { 4458 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4459 lpfc_sli_brdrestart(phba); 4460 status = lpfc_sli4_post_status_check(phba); 4461 } 4462 4463 /* Check to see if any errors occurred during init */ 4464 if (status) { 4465 phba->link_state = LPFC_HBA_ERROR; 4466 retval = 1; 4467 } else 4468 phba->sli4_hba.intr_enable = 0; 4469 4470 return retval; 4471 } 4472 4473 /** 4474 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4475 * @phba: Pointer to HBA context object. 4476 * @mask: Bit mask to be checked. 4477 * 4478 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4479 * from the API jump table function pointer from the lpfc_hba struct. 4480 **/ 4481 int 4482 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4483 { 4484 return phba->lpfc_sli_brdready(phba, mask); 4485 } 4486 4487 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4488 4489 /** 4490 * lpfc_reset_barrier - Make HBA ready for HBA reset 4491 * @phba: Pointer to HBA context object. 4492 * 4493 * This function is called before resetting an HBA. This function is called 4494 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4495 **/ 4496 void lpfc_reset_barrier(struct lpfc_hba *phba) 4497 { 4498 uint32_t __iomem *resp_buf; 4499 uint32_t __iomem *mbox_buf; 4500 volatile uint32_t mbox; 4501 uint32_t hc_copy, ha_copy, resp_data; 4502 int i; 4503 uint8_t hdrtype; 4504 4505 lockdep_assert_held(&phba->hbalock); 4506 4507 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4508 if (hdrtype != 0x80 || 4509 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4510 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4511 return; 4512 4513 /* 4514 * Tell the other part of the chip to suspend temporarily all 4515 * its DMA activity. 4516 */ 4517 resp_buf = phba->MBslimaddr; 4518 4519 /* Disable the error attention */ 4520 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4521 return; 4522 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4523 readl(phba->HCregaddr); /* flush */ 4524 phba->link_flag |= LS_IGNORE_ERATT; 4525 4526 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4527 return; 4528 if (ha_copy & HA_ERATT) { 4529 /* Clear Chip error bit */ 4530 writel(HA_ERATT, phba->HAregaddr); 4531 phba->pport->stopped = 1; 4532 } 4533 4534 mbox = 0; 4535 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4536 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4537 4538 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4539 mbox_buf = phba->MBslimaddr; 4540 writel(mbox, mbox_buf); 4541 4542 for (i = 0; i < 50; i++) { 4543 if (lpfc_readl((resp_buf + 1), &resp_data)) 4544 return; 4545 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4546 mdelay(1); 4547 else 4548 break; 4549 } 4550 resp_data = 0; 4551 if (lpfc_readl((resp_buf + 1), &resp_data)) 4552 return; 4553 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4554 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4555 phba->pport->stopped) 4556 goto restore_hc; 4557 else 4558 goto clear_errat; 4559 } 4560 4561 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4562 resp_data = 0; 4563 for (i = 0; i < 500; i++) { 4564 if (lpfc_readl(resp_buf, &resp_data)) 4565 return; 4566 if (resp_data != mbox) 4567 mdelay(1); 4568 else 4569 break; 4570 } 4571 4572 clear_errat: 4573 4574 while (++i < 500) { 4575 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4576 return; 4577 if (!(ha_copy & HA_ERATT)) 4578 mdelay(1); 4579 else 4580 break; 4581 } 4582 4583 if (readl(phba->HAregaddr) & HA_ERATT) { 4584 writel(HA_ERATT, phba->HAregaddr); 4585 phba->pport->stopped = 1; 4586 } 4587 4588 restore_hc: 4589 phba->link_flag &= ~LS_IGNORE_ERATT; 4590 writel(hc_copy, phba->HCregaddr); 4591 readl(phba->HCregaddr); /* flush */ 4592 } 4593 4594 /** 4595 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4596 * @phba: Pointer to HBA context object. 4597 * 4598 * This function issues a kill_board mailbox command and waits for 4599 * the error attention interrupt. This function is called for stopping 4600 * the firmware processing. The caller is not required to hold any 4601 * locks. This function calls lpfc_hba_down_post function to free 4602 * any pending commands after the kill. The function will return 1 when it 4603 * fails to kill the board else will return 0. 4604 **/ 4605 int 4606 lpfc_sli_brdkill(struct lpfc_hba *phba) 4607 { 4608 struct lpfc_sli *psli; 4609 LPFC_MBOXQ_t *pmb; 4610 uint32_t status; 4611 uint32_t ha_copy; 4612 int retval; 4613 int i = 0; 4614 4615 psli = &phba->sli; 4616 4617 /* Kill HBA */ 4618 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4619 "0329 Kill HBA Data: x%x x%x\n", 4620 phba->pport->port_state, psli->sli_flag); 4621 4622 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4623 if (!pmb) 4624 return 1; 4625 4626 /* Disable the error attention */ 4627 spin_lock_irq(&phba->hbalock); 4628 if (lpfc_readl(phba->HCregaddr, &status)) { 4629 spin_unlock_irq(&phba->hbalock); 4630 mempool_free(pmb, phba->mbox_mem_pool); 4631 return 1; 4632 } 4633 status &= ~HC_ERINT_ENA; 4634 writel(status, phba->HCregaddr); 4635 readl(phba->HCregaddr); /* flush */ 4636 phba->link_flag |= LS_IGNORE_ERATT; 4637 spin_unlock_irq(&phba->hbalock); 4638 4639 lpfc_kill_board(phba, pmb); 4640 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4641 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4642 4643 if (retval != MBX_SUCCESS) { 4644 if (retval != MBX_BUSY) 4645 mempool_free(pmb, phba->mbox_mem_pool); 4646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4647 "2752 KILL_BOARD command failed retval %d\n", 4648 retval); 4649 spin_lock_irq(&phba->hbalock); 4650 phba->link_flag &= ~LS_IGNORE_ERATT; 4651 spin_unlock_irq(&phba->hbalock); 4652 return 1; 4653 } 4654 4655 spin_lock_irq(&phba->hbalock); 4656 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4657 spin_unlock_irq(&phba->hbalock); 4658 4659 mempool_free(pmb, phba->mbox_mem_pool); 4660 4661 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4662 * attention every 100ms for 3 seconds. If we don't get ERATT after 4663 * 3 seconds we still set HBA_ERROR state because the status of the 4664 * board is now undefined. 4665 */ 4666 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4667 return 1; 4668 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4669 mdelay(100); 4670 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4671 return 1; 4672 } 4673 4674 del_timer_sync(&psli->mbox_tmo); 4675 if (ha_copy & HA_ERATT) { 4676 writel(HA_ERATT, phba->HAregaddr); 4677 phba->pport->stopped = 1; 4678 } 4679 spin_lock_irq(&phba->hbalock); 4680 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4681 psli->mbox_active = NULL; 4682 phba->link_flag &= ~LS_IGNORE_ERATT; 4683 spin_unlock_irq(&phba->hbalock); 4684 4685 lpfc_hba_down_post(phba); 4686 phba->link_state = LPFC_HBA_ERROR; 4687 4688 return ha_copy & HA_ERATT ? 0 : 1; 4689 } 4690 4691 /** 4692 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4693 * @phba: Pointer to HBA context object. 4694 * 4695 * This function resets the HBA by writing HC_INITFF to the control 4696 * register. After the HBA resets, this function resets all the iocb ring 4697 * indices. This function disables PCI layer parity checking during 4698 * the reset. 4699 * This function returns 0 always. 4700 * The caller is not required to hold any locks. 4701 **/ 4702 int 4703 lpfc_sli_brdreset(struct lpfc_hba *phba) 4704 { 4705 struct lpfc_sli *psli; 4706 struct lpfc_sli_ring *pring; 4707 uint16_t cfg_value; 4708 int i; 4709 4710 psli = &phba->sli; 4711 4712 /* Reset HBA */ 4713 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4714 "0325 Reset HBA Data: x%x x%x\n", 4715 (phba->pport) ? phba->pport->port_state : 0, 4716 psli->sli_flag); 4717 4718 /* perform board reset */ 4719 phba->fc_eventTag = 0; 4720 phba->link_events = 0; 4721 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4722 if (phba->pport) { 4723 phba->pport->fc_myDID = 0; 4724 phba->pport->fc_prevDID = 0; 4725 } 4726 4727 /* Turn off parity checking and serr during the physical reset */ 4728 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4729 return -EIO; 4730 4731 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4732 (cfg_value & 4733 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4734 4735 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4736 4737 /* Now toggle INITFF bit in the Host Control Register */ 4738 writel(HC_INITFF, phba->HCregaddr); 4739 mdelay(1); 4740 readl(phba->HCregaddr); /* flush */ 4741 writel(0, phba->HCregaddr); 4742 readl(phba->HCregaddr); /* flush */ 4743 4744 /* Restore PCI cmd register */ 4745 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4746 4747 /* Initialize relevant SLI info */ 4748 for (i = 0; i < psli->num_rings; i++) { 4749 pring = &psli->sli3_ring[i]; 4750 pring->flag = 0; 4751 pring->sli.sli3.rspidx = 0; 4752 pring->sli.sli3.next_cmdidx = 0; 4753 pring->sli.sli3.local_getidx = 0; 4754 pring->sli.sli3.cmdidx = 0; 4755 pring->missbufcnt = 0; 4756 } 4757 4758 phba->link_state = LPFC_WARM_START; 4759 return 0; 4760 } 4761 4762 /** 4763 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4764 * @phba: Pointer to HBA context object. 4765 * 4766 * This function resets a SLI4 HBA. This function disables PCI layer parity 4767 * checking during resets the device. The caller is not required to hold 4768 * any locks. 4769 * 4770 * This function returns 0 on success else returns negative error code. 4771 **/ 4772 int 4773 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4774 { 4775 struct lpfc_sli *psli = &phba->sli; 4776 uint16_t cfg_value; 4777 int rc = 0; 4778 4779 /* Reset HBA */ 4780 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4781 "0295 Reset HBA Data: x%x x%x x%x\n", 4782 phba->pport->port_state, psli->sli_flag, 4783 phba->hba_flag); 4784 4785 /* perform board reset */ 4786 phba->fc_eventTag = 0; 4787 phba->link_events = 0; 4788 phba->pport->fc_myDID = 0; 4789 phba->pport->fc_prevDID = 0; 4790 4791 spin_lock_irq(&phba->hbalock); 4792 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4793 phba->fcf.fcf_flag = 0; 4794 spin_unlock_irq(&phba->hbalock); 4795 4796 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4797 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4798 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4799 return rc; 4800 } 4801 4802 /* Now physically reset the device */ 4803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4804 "0389 Performing PCI function reset!\n"); 4805 4806 /* Turn off parity checking and serr during the physical reset */ 4807 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4808 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4809 "3205 PCI read Config failed\n"); 4810 return -EIO; 4811 } 4812 4813 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4814 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4815 4816 /* Perform FCoE PCI function reset before freeing queue memory */ 4817 rc = lpfc_pci_function_reset(phba); 4818 4819 /* Restore PCI cmd register */ 4820 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4821 4822 return rc; 4823 } 4824 4825 /** 4826 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4827 * @phba: Pointer to HBA context object. 4828 * 4829 * This function is called in the SLI initialization code path to 4830 * restart the HBA. The caller is not required to hold any lock. 4831 * This function writes MBX_RESTART mailbox command to the SLIM and 4832 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4833 * function to free any pending commands. The function enables 4834 * POST only during the first initialization. The function returns zero. 4835 * The function does not guarantee completion of MBX_RESTART mailbox 4836 * command before the return of this function. 4837 **/ 4838 static int 4839 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4840 { 4841 MAILBOX_t *mb; 4842 struct lpfc_sli *psli; 4843 volatile uint32_t word0; 4844 void __iomem *to_slim; 4845 uint32_t hba_aer_enabled; 4846 4847 spin_lock_irq(&phba->hbalock); 4848 4849 /* Take PCIe device Advanced Error Reporting (AER) state */ 4850 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4851 4852 psli = &phba->sli; 4853 4854 /* Restart HBA */ 4855 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4856 "0337 Restart HBA Data: x%x x%x\n", 4857 (phba->pport) ? phba->pport->port_state : 0, 4858 psli->sli_flag); 4859 4860 word0 = 0; 4861 mb = (MAILBOX_t *) &word0; 4862 mb->mbxCommand = MBX_RESTART; 4863 mb->mbxHc = 1; 4864 4865 lpfc_reset_barrier(phba); 4866 4867 to_slim = phba->MBslimaddr; 4868 writel(*(uint32_t *) mb, to_slim); 4869 readl(to_slim); /* flush */ 4870 4871 /* Only skip post after fc_ffinit is completed */ 4872 if (phba->pport && phba->pport->port_state) 4873 word0 = 1; /* This is really setting up word1 */ 4874 else 4875 word0 = 0; /* This is really setting up word1 */ 4876 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4877 writel(*(uint32_t *) mb, to_slim); 4878 readl(to_slim); /* flush */ 4879 4880 lpfc_sli_brdreset(phba); 4881 if (phba->pport) 4882 phba->pport->stopped = 0; 4883 phba->link_state = LPFC_INIT_START; 4884 phba->hba_flag = 0; 4885 spin_unlock_irq(&phba->hbalock); 4886 4887 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4888 psli->stats_start = ktime_get_seconds(); 4889 4890 /* Give the INITFF and Post time to settle. */ 4891 mdelay(100); 4892 4893 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4894 if (hba_aer_enabled) 4895 pci_disable_pcie_error_reporting(phba->pcidev); 4896 4897 lpfc_hba_down_post(phba); 4898 4899 return 0; 4900 } 4901 4902 /** 4903 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4904 * @phba: Pointer to HBA context object. 4905 * 4906 * This function is called in the SLI initialization code path to restart 4907 * a SLI4 HBA. The caller is not required to hold any lock. 4908 * At the end of the function, it calls lpfc_hba_down_post function to 4909 * free any pending commands. 4910 **/ 4911 static int 4912 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4913 { 4914 struct lpfc_sli *psli = &phba->sli; 4915 uint32_t hba_aer_enabled; 4916 int rc; 4917 4918 /* Restart HBA */ 4919 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4920 "0296 Restart HBA Data: x%x x%x\n", 4921 phba->pport->port_state, psli->sli_flag); 4922 4923 /* Take PCIe device Advanced Error Reporting (AER) state */ 4924 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4925 4926 rc = lpfc_sli4_brdreset(phba); 4927 if (rc) { 4928 phba->link_state = LPFC_HBA_ERROR; 4929 goto hba_down_queue; 4930 } 4931 4932 spin_lock_irq(&phba->hbalock); 4933 phba->pport->stopped = 0; 4934 phba->link_state = LPFC_INIT_START; 4935 phba->hba_flag = 0; 4936 spin_unlock_irq(&phba->hbalock); 4937 4938 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4939 psli->stats_start = ktime_get_seconds(); 4940 4941 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4942 if (hba_aer_enabled) 4943 pci_disable_pcie_error_reporting(phba->pcidev); 4944 4945 hba_down_queue: 4946 lpfc_hba_down_post(phba); 4947 lpfc_sli4_queue_destroy(phba); 4948 4949 return rc; 4950 } 4951 4952 /** 4953 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4954 * @phba: Pointer to HBA context object. 4955 * 4956 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4957 * API jump table function pointer from the lpfc_hba struct. 4958 **/ 4959 int 4960 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4961 { 4962 return phba->lpfc_sli_brdrestart(phba); 4963 } 4964 4965 /** 4966 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4967 * @phba: Pointer to HBA context object. 4968 * 4969 * This function is called after a HBA restart to wait for successful 4970 * restart of the HBA. Successful restart of the HBA is indicated by 4971 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4972 * iteration, the function will restart the HBA again. The function returns 4973 * zero if HBA successfully restarted else returns negative error code. 4974 **/ 4975 int 4976 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4977 { 4978 uint32_t status, i = 0; 4979 4980 /* Read the HBA Host Status Register */ 4981 if (lpfc_readl(phba->HSregaddr, &status)) 4982 return -EIO; 4983 4984 /* Check status register to see what current state is */ 4985 i = 0; 4986 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4987 4988 /* Check every 10ms for 10 retries, then every 100ms for 90 4989 * retries, then every 1 sec for 50 retires for a total of 4990 * ~60 seconds before reset the board again and check every 4991 * 1 sec for 50 retries. The up to 60 seconds before the 4992 * board ready is required by the Falcon FIPS zeroization 4993 * complete, and any reset the board in between shall cause 4994 * restart of zeroization, further delay the board ready. 4995 */ 4996 if (i++ >= 200) { 4997 /* Adapter failed to init, timeout, status reg 4998 <status> */ 4999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5000 "0436 Adapter failed to init, " 5001 "timeout, status reg x%x, " 5002 "FW Data: A8 x%x AC x%x\n", status, 5003 readl(phba->MBslimaddr + 0xa8), 5004 readl(phba->MBslimaddr + 0xac)); 5005 phba->link_state = LPFC_HBA_ERROR; 5006 return -ETIMEDOUT; 5007 } 5008 5009 /* Check to see if any errors occurred during init */ 5010 if (status & HS_FFERM) { 5011 /* ERROR: During chipset initialization */ 5012 /* Adapter failed to init, chipset, status reg 5013 <status> */ 5014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5015 "0437 Adapter failed to init, " 5016 "chipset, status reg x%x, " 5017 "FW Data: A8 x%x AC x%x\n", status, 5018 readl(phba->MBslimaddr + 0xa8), 5019 readl(phba->MBslimaddr + 0xac)); 5020 phba->link_state = LPFC_HBA_ERROR; 5021 return -EIO; 5022 } 5023 5024 if (i <= 10) 5025 msleep(10); 5026 else if (i <= 100) 5027 msleep(100); 5028 else 5029 msleep(1000); 5030 5031 if (i == 150) { 5032 /* Do post */ 5033 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5034 lpfc_sli_brdrestart(phba); 5035 } 5036 /* Read the HBA Host Status Register */ 5037 if (lpfc_readl(phba->HSregaddr, &status)) 5038 return -EIO; 5039 } 5040 5041 /* Check to see if any errors occurred during init */ 5042 if (status & HS_FFERM) { 5043 /* ERROR: During chipset initialization */ 5044 /* Adapter failed to init, chipset, status reg <status> */ 5045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5046 "0438 Adapter failed to init, chipset, " 5047 "status reg x%x, " 5048 "FW Data: A8 x%x AC x%x\n", status, 5049 readl(phba->MBslimaddr + 0xa8), 5050 readl(phba->MBslimaddr + 0xac)); 5051 phba->link_state = LPFC_HBA_ERROR; 5052 return -EIO; 5053 } 5054 5055 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5056 5057 /* Clear all interrupt enable conditions */ 5058 writel(0, phba->HCregaddr); 5059 readl(phba->HCregaddr); /* flush */ 5060 5061 /* setup host attn register */ 5062 writel(0xffffffff, phba->HAregaddr); 5063 readl(phba->HAregaddr); /* flush */ 5064 return 0; 5065 } 5066 5067 /** 5068 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5069 * 5070 * This function calculates and returns the number of HBQs required to be 5071 * configured. 5072 **/ 5073 int 5074 lpfc_sli_hbq_count(void) 5075 { 5076 return ARRAY_SIZE(lpfc_hbq_defs); 5077 } 5078 5079 /** 5080 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5081 * 5082 * This function adds the number of hbq entries in every HBQ to get 5083 * the total number of hbq entries required for the HBA and returns 5084 * the total count. 5085 **/ 5086 static int 5087 lpfc_sli_hbq_entry_count(void) 5088 { 5089 int hbq_count = lpfc_sli_hbq_count(); 5090 int count = 0; 5091 int i; 5092 5093 for (i = 0; i < hbq_count; ++i) 5094 count += lpfc_hbq_defs[i]->entry_count; 5095 return count; 5096 } 5097 5098 /** 5099 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5100 * 5101 * This function calculates amount of memory required for all hbq entries 5102 * to be configured and returns the total memory required. 5103 **/ 5104 int 5105 lpfc_sli_hbq_size(void) 5106 { 5107 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5108 } 5109 5110 /** 5111 * lpfc_sli_hbq_setup - configure and initialize HBQs 5112 * @phba: Pointer to HBA context object. 5113 * 5114 * This function is called during the SLI initialization to configure 5115 * all the HBQs and post buffers to the HBQ. The caller is not 5116 * required to hold any locks. This function will return zero if successful 5117 * else it will return negative error code. 5118 **/ 5119 static int 5120 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5121 { 5122 int hbq_count = lpfc_sli_hbq_count(); 5123 LPFC_MBOXQ_t *pmb; 5124 MAILBOX_t *pmbox; 5125 uint32_t hbqno; 5126 uint32_t hbq_entry_index; 5127 5128 /* Get a Mailbox buffer to setup mailbox 5129 * commands for HBA initialization 5130 */ 5131 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5132 5133 if (!pmb) 5134 return -ENOMEM; 5135 5136 pmbox = &pmb->u.mb; 5137 5138 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5139 phba->link_state = LPFC_INIT_MBX_CMDS; 5140 phba->hbq_in_use = 1; 5141 5142 hbq_entry_index = 0; 5143 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5144 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5145 phba->hbqs[hbqno].hbqPutIdx = 0; 5146 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5147 phba->hbqs[hbqno].entry_count = 5148 lpfc_hbq_defs[hbqno]->entry_count; 5149 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5150 hbq_entry_index, pmb); 5151 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5152 5153 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5154 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5155 mbxStatus <status>, ring <num> */ 5156 5157 lpfc_printf_log(phba, KERN_ERR, 5158 LOG_SLI | LOG_VPORT, 5159 "1805 Adapter failed to init. " 5160 "Data: x%x x%x x%x\n", 5161 pmbox->mbxCommand, 5162 pmbox->mbxStatus, hbqno); 5163 5164 phba->link_state = LPFC_HBA_ERROR; 5165 mempool_free(pmb, phba->mbox_mem_pool); 5166 return -ENXIO; 5167 } 5168 } 5169 phba->hbq_count = hbq_count; 5170 5171 mempool_free(pmb, phba->mbox_mem_pool); 5172 5173 /* Initially populate or replenish the HBQs */ 5174 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5175 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5176 return 0; 5177 } 5178 5179 /** 5180 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5181 * @phba: Pointer to HBA context object. 5182 * 5183 * This function is called during the SLI initialization to configure 5184 * all the HBQs and post buffers to the HBQ. The caller is not 5185 * required to hold any locks. This function will return zero if successful 5186 * else it will return negative error code. 5187 **/ 5188 static int 5189 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5190 { 5191 phba->hbq_in_use = 1; 5192 /** 5193 * Specific case when the MDS diagnostics is enabled and supported. 5194 * The receive buffer count is truncated to manage the incoming 5195 * traffic. 5196 **/ 5197 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5198 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5199 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5200 else 5201 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5202 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5203 phba->hbq_count = 1; 5204 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5205 /* Initially populate or replenish the HBQs */ 5206 return 0; 5207 } 5208 5209 /** 5210 * lpfc_sli_config_port - Issue config port mailbox command 5211 * @phba: Pointer to HBA context object. 5212 * @sli_mode: sli mode - 2/3 5213 * 5214 * This function is called by the sli initialization code path 5215 * to issue config_port mailbox command. This function restarts the 5216 * HBA firmware and issues a config_port mailbox command to configure 5217 * the SLI interface in the sli mode specified by sli_mode 5218 * variable. The caller is not required to hold any locks. 5219 * The function returns 0 if successful, else returns negative error 5220 * code. 5221 **/ 5222 int 5223 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5224 { 5225 LPFC_MBOXQ_t *pmb; 5226 uint32_t resetcount = 0, rc = 0, done = 0; 5227 5228 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5229 if (!pmb) { 5230 phba->link_state = LPFC_HBA_ERROR; 5231 return -ENOMEM; 5232 } 5233 5234 phba->sli_rev = sli_mode; 5235 while (resetcount < 2 && !done) { 5236 spin_lock_irq(&phba->hbalock); 5237 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5238 spin_unlock_irq(&phba->hbalock); 5239 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5240 lpfc_sli_brdrestart(phba); 5241 rc = lpfc_sli_chipset_init(phba); 5242 if (rc) 5243 break; 5244 5245 spin_lock_irq(&phba->hbalock); 5246 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5247 spin_unlock_irq(&phba->hbalock); 5248 resetcount++; 5249 5250 /* Call pre CONFIG_PORT mailbox command initialization. A 5251 * value of 0 means the call was successful. Any other 5252 * nonzero value is a failure, but if ERESTART is returned, 5253 * the driver may reset the HBA and try again. 5254 */ 5255 rc = lpfc_config_port_prep(phba); 5256 if (rc == -ERESTART) { 5257 phba->link_state = LPFC_LINK_UNKNOWN; 5258 continue; 5259 } else if (rc) 5260 break; 5261 5262 phba->link_state = LPFC_INIT_MBX_CMDS; 5263 lpfc_config_port(phba, pmb); 5264 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5265 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5266 LPFC_SLI3_HBQ_ENABLED | 5267 LPFC_SLI3_CRP_ENABLED | 5268 LPFC_SLI3_DSS_ENABLED); 5269 if (rc != MBX_SUCCESS) { 5270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5271 "0442 Adapter failed to init, mbxCmd x%x " 5272 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5273 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5274 spin_lock_irq(&phba->hbalock); 5275 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5276 spin_unlock_irq(&phba->hbalock); 5277 rc = -ENXIO; 5278 } else { 5279 /* Allow asynchronous mailbox command to go through */ 5280 spin_lock_irq(&phba->hbalock); 5281 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5282 spin_unlock_irq(&phba->hbalock); 5283 done = 1; 5284 5285 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5286 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5287 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5288 "3110 Port did not grant ASABT\n"); 5289 } 5290 } 5291 if (!done) { 5292 rc = -EINVAL; 5293 goto do_prep_failed; 5294 } 5295 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5296 if (!pmb->u.mb.un.varCfgPort.cMA) { 5297 rc = -ENXIO; 5298 goto do_prep_failed; 5299 } 5300 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5301 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5302 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5303 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5304 phba->max_vpi : phba->max_vports; 5305 5306 } else 5307 phba->max_vpi = 0; 5308 if (pmb->u.mb.un.varCfgPort.gerbm) 5309 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5310 if (pmb->u.mb.un.varCfgPort.gcrp) 5311 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5312 5313 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5314 phba->port_gp = phba->mbox->us.s3_pgp.port; 5315 5316 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5317 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5318 phba->cfg_enable_bg = 0; 5319 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5321 "0443 Adapter did not grant " 5322 "BlockGuard\n"); 5323 } 5324 } 5325 } else { 5326 phba->hbq_get = NULL; 5327 phba->port_gp = phba->mbox->us.s2.port; 5328 phba->max_vpi = 0; 5329 } 5330 do_prep_failed: 5331 mempool_free(pmb, phba->mbox_mem_pool); 5332 return rc; 5333 } 5334 5335 5336 /** 5337 * lpfc_sli_hba_setup - SLI initialization function 5338 * @phba: Pointer to HBA context object. 5339 * 5340 * This function is the main SLI initialization function. This function 5341 * is called by the HBA initialization code, HBA reset code and HBA 5342 * error attention handler code. Caller is not required to hold any 5343 * locks. This function issues config_port mailbox command to configure 5344 * the SLI, setup iocb rings and HBQ rings. In the end the function 5345 * calls the config_port_post function to issue init_link mailbox 5346 * command and to start the discovery. The function will return zero 5347 * if successful, else it will return negative error code. 5348 **/ 5349 int 5350 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5351 { 5352 uint32_t rc; 5353 int i; 5354 int longs; 5355 5356 /* Enable ISR already does config_port because of config_msi mbx */ 5357 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5358 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5359 if (rc) 5360 return -EIO; 5361 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5362 } 5363 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5364 5365 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5366 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5367 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5368 if (!rc) { 5369 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5370 "2709 This device supports " 5371 "Advanced Error Reporting (AER)\n"); 5372 spin_lock_irq(&phba->hbalock); 5373 phba->hba_flag |= HBA_AER_ENABLED; 5374 spin_unlock_irq(&phba->hbalock); 5375 } else { 5376 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5377 "2708 This device does not support " 5378 "Advanced Error Reporting (AER): %d\n", 5379 rc); 5380 phba->cfg_aer_support = 0; 5381 } 5382 } 5383 5384 if (phba->sli_rev == 3) { 5385 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5386 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5387 } else { 5388 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5389 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5390 phba->sli3_options = 0; 5391 } 5392 5393 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5394 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5395 phba->sli_rev, phba->max_vpi); 5396 rc = lpfc_sli_ring_map(phba); 5397 5398 if (rc) 5399 goto lpfc_sli_hba_setup_error; 5400 5401 /* Initialize VPIs. */ 5402 if (phba->sli_rev == LPFC_SLI_REV3) { 5403 /* 5404 * The VPI bitmask and physical ID array are allocated 5405 * and initialized once only - at driver load. A port 5406 * reset doesn't need to reinitialize this memory. 5407 */ 5408 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5409 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5410 phba->vpi_bmask = kcalloc(longs, 5411 sizeof(unsigned long), 5412 GFP_KERNEL); 5413 if (!phba->vpi_bmask) { 5414 rc = -ENOMEM; 5415 goto lpfc_sli_hba_setup_error; 5416 } 5417 5418 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5419 sizeof(uint16_t), 5420 GFP_KERNEL); 5421 if (!phba->vpi_ids) { 5422 kfree(phba->vpi_bmask); 5423 rc = -ENOMEM; 5424 goto lpfc_sli_hba_setup_error; 5425 } 5426 for (i = 0; i < phba->max_vpi; i++) 5427 phba->vpi_ids[i] = i; 5428 } 5429 } 5430 5431 /* Init HBQs */ 5432 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5433 rc = lpfc_sli_hbq_setup(phba); 5434 if (rc) 5435 goto lpfc_sli_hba_setup_error; 5436 } 5437 spin_lock_irq(&phba->hbalock); 5438 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5439 spin_unlock_irq(&phba->hbalock); 5440 5441 rc = lpfc_config_port_post(phba); 5442 if (rc) 5443 goto lpfc_sli_hba_setup_error; 5444 5445 return rc; 5446 5447 lpfc_sli_hba_setup_error: 5448 phba->link_state = LPFC_HBA_ERROR; 5449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5450 "0445 Firmware initialization failed\n"); 5451 return rc; 5452 } 5453 5454 /** 5455 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5456 * @phba: Pointer to HBA context object. 5457 * 5458 * This function issue a dump mailbox command to read config region 5459 * 23 and parse the records in the region and populate driver 5460 * data structure. 5461 **/ 5462 static int 5463 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5464 { 5465 LPFC_MBOXQ_t *mboxq; 5466 struct lpfc_dmabuf *mp; 5467 struct lpfc_mqe *mqe; 5468 uint32_t data_length; 5469 int rc; 5470 5471 /* Program the default value of vlan_id and fc_map */ 5472 phba->valid_vlan = 0; 5473 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5474 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5475 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5476 5477 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5478 if (!mboxq) 5479 return -ENOMEM; 5480 5481 mqe = &mboxq->u.mqe; 5482 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5483 rc = -ENOMEM; 5484 goto out_free_mboxq; 5485 } 5486 5487 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5488 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5489 5490 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5491 "(%d):2571 Mailbox cmd x%x Status x%x " 5492 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5493 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5494 "CQ: x%x x%x x%x x%x\n", 5495 mboxq->vport ? mboxq->vport->vpi : 0, 5496 bf_get(lpfc_mqe_command, mqe), 5497 bf_get(lpfc_mqe_status, mqe), 5498 mqe->un.mb_words[0], mqe->un.mb_words[1], 5499 mqe->un.mb_words[2], mqe->un.mb_words[3], 5500 mqe->un.mb_words[4], mqe->un.mb_words[5], 5501 mqe->un.mb_words[6], mqe->un.mb_words[7], 5502 mqe->un.mb_words[8], mqe->un.mb_words[9], 5503 mqe->un.mb_words[10], mqe->un.mb_words[11], 5504 mqe->un.mb_words[12], mqe->un.mb_words[13], 5505 mqe->un.mb_words[14], mqe->un.mb_words[15], 5506 mqe->un.mb_words[16], mqe->un.mb_words[50], 5507 mboxq->mcqe.word0, 5508 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5509 mboxq->mcqe.trailer); 5510 5511 if (rc) { 5512 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5513 kfree(mp); 5514 rc = -EIO; 5515 goto out_free_mboxq; 5516 } 5517 data_length = mqe->un.mb_words[5]; 5518 if (data_length > DMP_RGN23_SIZE) { 5519 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5520 kfree(mp); 5521 rc = -EIO; 5522 goto out_free_mboxq; 5523 } 5524 5525 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5526 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5527 kfree(mp); 5528 rc = 0; 5529 5530 out_free_mboxq: 5531 mempool_free(mboxq, phba->mbox_mem_pool); 5532 return rc; 5533 } 5534 5535 /** 5536 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5537 * @phba: pointer to lpfc hba data structure. 5538 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5539 * @vpd: pointer to the memory to hold resulting port vpd data. 5540 * @vpd_size: On input, the number of bytes allocated to @vpd. 5541 * On output, the number of data bytes in @vpd. 5542 * 5543 * This routine executes a READ_REV SLI4 mailbox command. In 5544 * addition, this routine gets the port vpd data. 5545 * 5546 * Return codes 5547 * 0 - successful 5548 * -ENOMEM - could not allocated memory. 5549 **/ 5550 static int 5551 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5552 uint8_t *vpd, uint32_t *vpd_size) 5553 { 5554 int rc = 0; 5555 uint32_t dma_size; 5556 struct lpfc_dmabuf *dmabuf; 5557 struct lpfc_mqe *mqe; 5558 5559 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5560 if (!dmabuf) 5561 return -ENOMEM; 5562 5563 /* 5564 * Get a DMA buffer for the vpd data resulting from the READ_REV 5565 * mailbox command. 5566 */ 5567 dma_size = *vpd_size; 5568 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5569 &dmabuf->phys, GFP_KERNEL); 5570 if (!dmabuf->virt) { 5571 kfree(dmabuf); 5572 return -ENOMEM; 5573 } 5574 5575 /* 5576 * The SLI4 implementation of READ_REV conflicts at word1, 5577 * bits 31:16 and SLI4 adds vpd functionality not present 5578 * in SLI3. This code corrects the conflicts. 5579 */ 5580 lpfc_read_rev(phba, mboxq); 5581 mqe = &mboxq->u.mqe; 5582 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5583 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5584 mqe->un.read_rev.word1 &= 0x0000FFFF; 5585 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5586 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5587 5588 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5589 if (rc) { 5590 dma_free_coherent(&phba->pcidev->dev, dma_size, 5591 dmabuf->virt, dmabuf->phys); 5592 kfree(dmabuf); 5593 return -EIO; 5594 } 5595 5596 /* 5597 * The available vpd length cannot be bigger than the 5598 * DMA buffer passed to the port. Catch the less than 5599 * case and update the caller's size. 5600 */ 5601 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5602 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5603 5604 memcpy(vpd, dmabuf->virt, *vpd_size); 5605 5606 dma_free_coherent(&phba->pcidev->dev, dma_size, 5607 dmabuf->virt, dmabuf->phys); 5608 kfree(dmabuf); 5609 return 0; 5610 } 5611 5612 /** 5613 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5614 * @phba: pointer to lpfc hba data structure. 5615 * 5616 * This routine retrieves SLI4 device physical port name this PCI function 5617 * is attached to. 5618 * 5619 * Return codes 5620 * 0 - successful 5621 * otherwise - failed to retrieve controller attributes 5622 **/ 5623 static int 5624 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5625 { 5626 LPFC_MBOXQ_t *mboxq; 5627 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5628 struct lpfc_controller_attribute *cntl_attr; 5629 void *virtaddr = NULL; 5630 uint32_t alloclen, reqlen; 5631 uint32_t shdr_status, shdr_add_status; 5632 union lpfc_sli4_cfg_shdr *shdr; 5633 int rc; 5634 5635 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5636 if (!mboxq) 5637 return -ENOMEM; 5638 5639 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5640 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5641 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5642 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5643 LPFC_SLI4_MBX_NEMBED); 5644 5645 if (alloclen < reqlen) { 5646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5647 "3084 Allocated DMA memory size (%d) is " 5648 "less than the requested DMA memory size " 5649 "(%d)\n", alloclen, reqlen); 5650 rc = -ENOMEM; 5651 goto out_free_mboxq; 5652 } 5653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5654 virtaddr = mboxq->sge_array->addr[0]; 5655 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5656 shdr = &mbx_cntl_attr->cfg_shdr; 5657 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5658 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5659 if (shdr_status || shdr_add_status || rc) { 5660 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5661 "3085 Mailbox x%x (x%x/x%x) failed, " 5662 "rc:x%x, status:x%x, add_status:x%x\n", 5663 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5664 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5665 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5666 rc, shdr_status, shdr_add_status); 5667 rc = -ENXIO; 5668 goto out_free_mboxq; 5669 } 5670 5671 cntl_attr = &mbx_cntl_attr->cntl_attr; 5672 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5673 phba->sli4_hba.lnk_info.lnk_tp = 5674 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5675 phba->sli4_hba.lnk_info.lnk_no = 5676 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5677 5678 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5679 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5680 sizeof(phba->BIOSVersion)); 5681 5682 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5683 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5684 phba->sli4_hba.lnk_info.lnk_tp, 5685 phba->sli4_hba.lnk_info.lnk_no, 5686 phba->BIOSVersion); 5687 out_free_mboxq: 5688 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5689 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5690 else 5691 mempool_free(mboxq, phba->mbox_mem_pool); 5692 return rc; 5693 } 5694 5695 /** 5696 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5697 * @phba: pointer to lpfc hba data structure. 5698 * 5699 * This routine retrieves SLI4 device physical port name this PCI function 5700 * is attached to. 5701 * 5702 * Return codes 5703 * 0 - successful 5704 * otherwise - failed to retrieve physical port name 5705 **/ 5706 static int 5707 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5708 { 5709 LPFC_MBOXQ_t *mboxq; 5710 struct lpfc_mbx_get_port_name *get_port_name; 5711 uint32_t shdr_status, shdr_add_status; 5712 union lpfc_sli4_cfg_shdr *shdr; 5713 char cport_name = 0; 5714 int rc; 5715 5716 /* We assume nothing at this point */ 5717 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5718 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5719 5720 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5721 if (!mboxq) 5722 return -ENOMEM; 5723 /* obtain link type and link number via READ_CONFIG */ 5724 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5725 lpfc_sli4_read_config(phba); 5726 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5727 goto retrieve_ppname; 5728 5729 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5730 rc = lpfc_sli4_get_ctl_attr(phba); 5731 if (rc) 5732 goto out_free_mboxq; 5733 5734 retrieve_ppname: 5735 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5736 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5737 sizeof(struct lpfc_mbx_get_port_name) - 5738 sizeof(struct lpfc_sli4_cfg_mhdr), 5739 LPFC_SLI4_MBX_EMBED); 5740 get_port_name = &mboxq->u.mqe.un.get_port_name; 5741 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5742 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5743 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5744 phba->sli4_hba.lnk_info.lnk_tp); 5745 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5746 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5747 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5748 if (shdr_status || shdr_add_status || rc) { 5749 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5750 "3087 Mailbox x%x (x%x/x%x) failed: " 5751 "rc:x%x, status:x%x, add_status:x%x\n", 5752 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5753 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5754 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5755 rc, shdr_status, shdr_add_status); 5756 rc = -ENXIO; 5757 goto out_free_mboxq; 5758 } 5759 switch (phba->sli4_hba.lnk_info.lnk_no) { 5760 case LPFC_LINK_NUMBER_0: 5761 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5762 &get_port_name->u.response); 5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5764 break; 5765 case LPFC_LINK_NUMBER_1: 5766 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5767 &get_port_name->u.response); 5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5769 break; 5770 case LPFC_LINK_NUMBER_2: 5771 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5772 &get_port_name->u.response); 5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5774 break; 5775 case LPFC_LINK_NUMBER_3: 5776 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5777 &get_port_name->u.response); 5778 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5779 break; 5780 default: 5781 break; 5782 } 5783 5784 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5785 phba->Port[0] = cport_name; 5786 phba->Port[1] = '\0'; 5787 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5788 "3091 SLI get port name: %s\n", phba->Port); 5789 } 5790 5791 out_free_mboxq: 5792 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5793 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5794 else 5795 mempool_free(mboxq, phba->mbox_mem_pool); 5796 return rc; 5797 } 5798 5799 /** 5800 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5801 * @phba: pointer to lpfc hba data structure. 5802 * 5803 * This routine is called to explicitly arm the SLI4 device's completion and 5804 * event queues 5805 **/ 5806 static void 5807 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5808 { 5809 int qidx; 5810 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5811 struct lpfc_sli4_hdw_queue *qp; 5812 struct lpfc_queue *eq; 5813 5814 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5815 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5816 if (sli4_hba->nvmels_cq) 5817 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5818 LPFC_QUEUE_REARM); 5819 5820 if (sli4_hba->hdwq) { 5821 /* Loop thru all Hardware Queues */ 5822 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5823 qp = &sli4_hba->hdwq[qidx]; 5824 /* ARM the corresponding CQ */ 5825 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5826 LPFC_QUEUE_REARM); 5827 } 5828 5829 /* Loop thru all IRQ vectors */ 5830 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5831 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5832 /* ARM the corresponding EQ */ 5833 sli4_hba->sli4_write_eq_db(phba, eq, 5834 0, LPFC_QUEUE_REARM); 5835 } 5836 } 5837 5838 if (phba->nvmet_support) { 5839 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5840 sli4_hba->sli4_write_cq_db(phba, 5841 sli4_hba->nvmet_cqset[qidx], 0, 5842 LPFC_QUEUE_REARM); 5843 } 5844 } 5845 } 5846 5847 /** 5848 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5849 * @phba: Pointer to HBA context object. 5850 * @type: The resource extent type. 5851 * @extnt_count: buffer to hold port available extent count. 5852 * @extnt_size: buffer to hold element count per extent. 5853 * 5854 * This function calls the port and retrievs the number of available 5855 * extents and their size for a particular extent type. 5856 * 5857 * Returns: 0 if successful. Nonzero otherwise. 5858 **/ 5859 int 5860 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5861 uint16_t *extnt_count, uint16_t *extnt_size) 5862 { 5863 int rc = 0; 5864 uint32_t length; 5865 uint32_t mbox_tmo; 5866 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5867 LPFC_MBOXQ_t *mbox; 5868 5869 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5870 if (!mbox) 5871 return -ENOMEM; 5872 5873 /* Find out how many extents are available for this resource type */ 5874 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5875 sizeof(struct lpfc_sli4_cfg_mhdr)); 5876 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5877 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5878 length, LPFC_SLI4_MBX_EMBED); 5879 5880 /* Send an extents count of 0 - the GET doesn't use it. */ 5881 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5882 LPFC_SLI4_MBX_EMBED); 5883 if (unlikely(rc)) { 5884 rc = -EIO; 5885 goto err_exit; 5886 } 5887 5888 if (!phba->sli4_hba.intr_enable) 5889 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5890 else { 5891 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5892 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5893 } 5894 if (unlikely(rc)) { 5895 rc = -EIO; 5896 goto err_exit; 5897 } 5898 5899 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5900 if (bf_get(lpfc_mbox_hdr_status, 5901 &rsrc_info->header.cfg_shdr.response)) { 5902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5903 "2930 Failed to get resource extents " 5904 "Status 0x%x Add'l Status 0x%x\n", 5905 bf_get(lpfc_mbox_hdr_status, 5906 &rsrc_info->header.cfg_shdr.response), 5907 bf_get(lpfc_mbox_hdr_add_status, 5908 &rsrc_info->header.cfg_shdr.response)); 5909 rc = -EIO; 5910 goto err_exit; 5911 } 5912 5913 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5914 &rsrc_info->u.rsp); 5915 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5916 &rsrc_info->u.rsp); 5917 5918 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5919 "3162 Retrieved extents type-%d from port: count:%d, " 5920 "size:%d\n", type, *extnt_count, *extnt_size); 5921 5922 err_exit: 5923 mempool_free(mbox, phba->mbox_mem_pool); 5924 return rc; 5925 } 5926 5927 /** 5928 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5929 * @phba: Pointer to HBA context object. 5930 * @type: The extent type to check. 5931 * 5932 * This function reads the current available extents from the port and checks 5933 * if the extent count or extent size has changed since the last access. 5934 * Callers use this routine post port reset to understand if there is a 5935 * extent reprovisioning requirement. 5936 * 5937 * Returns: 5938 * -Error: error indicates problem. 5939 * 1: Extent count or size has changed. 5940 * 0: No changes. 5941 **/ 5942 static int 5943 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5944 { 5945 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5946 uint16_t size_diff, rsrc_ext_size; 5947 int rc = 0; 5948 struct lpfc_rsrc_blks *rsrc_entry; 5949 struct list_head *rsrc_blk_list = NULL; 5950 5951 size_diff = 0; 5952 curr_ext_cnt = 0; 5953 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5954 &rsrc_ext_cnt, 5955 &rsrc_ext_size); 5956 if (unlikely(rc)) 5957 return -EIO; 5958 5959 switch (type) { 5960 case LPFC_RSC_TYPE_FCOE_RPI: 5961 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5962 break; 5963 case LPFC_RSC_TYPE_FCOE_VPI: 5964 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5965 break; 5966 case LPFC_RSC_TYPE_FCOE_XRI: 5967 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5968 break; 5969 case LPFC_RSC_TYPE_FCOE_VFI: 5970 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5971 break; 5972 default: 5973 break; 5974 } 5975 5976 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5977 curr_ext_cnt++; 5978 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5979 size_diff++; 5980 } 5981 5982 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5983 rc = 1; 5984 5985 return rc; 5986 } 5987 5988 /** 5989 * lpfc_sli4_cfg_post_extnts - 5990 * @phba: Pointer to HBA context object. 5991 * @extnt_cnt: number of available extents. 5992 * @type: the extent type (rpi, xri, vfi, vpi). 5993 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5994 * @mbox: pointer to the caller's allocated mailbox structure. 5995 * 5996 * This function executes the extents allocation request. It also 5997 * takes care of the amount of memory needed to allocate or get the 5998 * allocated extents. It is the caller's responsibility to evaluate 5999 * the response. 6000 * 6001 * Returns: 6002 * -Error: Error value describes the condition found. 6003 * 0: if successful 6004 **/ 6005 static int 6006 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6007 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6008 { 6009 int rc = 0; 6010 uint32_t req_len; 6011 uint32_t emb_len; 6012 uint32_t alloc_len, mbox_tmo; 6013 6014 /* Calculate the total requested length of the dma memory */ 6015 req_len = extnt_cnt * sizeof(uint16_t); 6016 6017 /* 6018 * Calculate the size of an embedded mailbox. The uint32_t 6019 * accounts for extents-specific word. 6020 */ 6021 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6022 sizeof(uint32_t); 6023 6024 /* 6025 * Presume the allocation and response will fit into an embedded 6026 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6027 */ 6028 *emb = LPFC_SLI4_MBX_EMBED; 6029 if (req_len > emb_len) { 6030 req_len = extnt_cnt * sizeof(uint16_t) + 6031 sizeof(union lpfc_sli4_cfg_shdr) + 6032 sizeof(uint32_t); 6033 *emb = LPFC_SLI4_MBX_NEMBED; 6034 } 6035 6036 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6037 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6038 req_len, *emb); 6039 if (alloc_len < req_len) { 6040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6041 "2982 Allocated DMA memory size (x%x) is " 6042 "less than the requested DMA memory " 6043 "size (x%x)\n", alloc_len, req_len); 6044 return -ENOMEM; 6045 } 6046 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6047 if (unlikely(rc)) 6048 return -EIO; 6049 6050 if (!phba->sli4_hba.intr_enable) 6051 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6052 else { 6053 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6054 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6055 } 6056 6057 if (unlikely(rc)) 6058 rc = -EIO; 6059 return rc; 6060 } 6061 6062 /** 6063 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6064 * @phba: Pointer to HBA context object. 6065 * @type: The resource extent type to allocate. 6066 * 6067 * This function allocates the number of elements for the specified 6068 * resource type. 6069 **/ 6070 static int 6071 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6072 { 6073 bool emb = false; 6074 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6075 uint16_t rsrc_id, rsrc_start, j, k; 6076 uint16_t *ids; 6077 int i, rc; 6078 unsigned long longs; 6079 unsigned long *bmask; 6080 struct lpfc_rsrc_blks *rsrc_blks; 6081 LPFC_MBOXQ_t *mbox; 6082 uint32_t length; 6083 struct lpfc_id_range *id_array = NULL; 6084 void *virtaddr = NULL; 6085 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6086 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6087 struct list_head *ext_blk_list; 6088 6089 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6090 &rsrc_cnt, 6091 &rsrc_size); 6092 if (unlikely(rc)) 6093 return -EIO; 6094 6095 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6097 "3009 No available Resource Extents " 6098 "for resource type 0x%x: Count: 0x%x, " 6099 "Size 0x%x\n", type, rsrc_cnt, 6100 rsrc_size); 6101 return -ENOMEM; 6102 } 6103 6104 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6105 "2903 Post resource extents type-0x%x: " 6106 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6107 6108 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6109 if (!mbox) 6110 return -ENOMEM; 6111 6112 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6113 if (unlikely(rc)) { 6114 rc = -EIO; 6115 goto err_exit; 6116 } 6117 6118 /* 6119 * Figure out where the response is located. Then get local pointers 6120 * to the response data. The port does not guarantee to respond to 6121 * all extents counts request so update the local variable with the 6122 * allocated count from the port. 6123 */ 6124 if (emb == LPFC_SLI4_MBX_EMBED) { 6125 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6126 id_array = &rsrc_ext->u.rsp.id[0]; 6127 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6128 } else { 6129 virtaddr = mbox->sge_array->addr[0]; 6130 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6131 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6132 id_array = &n_rsrc->id; 6133 } 6134 6135 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6136 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6137 6138 /* 6139 * Based on the resource size and count, correct the base and max 6140 * resource values. 6141 */ 6142 length = sizeof(struct lpfc_rsrc_blks); 6143 switch (type) { 6144 case LPFC_RSC_TYPE_FCOE_RPI: 6145 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6146 sizeof(unsigned long), 6147 GFP_KERNEL); 6148 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6149 rc = -ENOMEM; 6150 goto err_exit; 6151 } 6152 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6153 sizeof(uint16_t), 6154 GFP_KERNEL); 6155 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6156 kfree(phba->sli4_hba.rpi_bmask); 6157 rc = -ENOMEM; 6158 goto err_exit; 6159 } 6160 6161 /* 6162 * The next_rpi was initialized with the maximum available 6163 * count but the port may allocate a smaller number. Catch 6164 * that case and update the next_rpi. 6165 */ 6166 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6167 6168 /* Initialize local ptrs for common extent processing later. */ 6169 bmask = phba->sli4_hba.rpi_bmask; 6170 ids = phba->sli4_hba.rpi_ids; 6171 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6172 break; 6173 case LPFC_RSC_TYPE_FCOE_VPI: 6174 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6175 GFP_KERNEL); 6176 if (unlikely(!phba->vpi_bmask)) { 6177 rc = -ENOMEM; 6178 goto err_exit; 6179 } 6180 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6181 GFP_KERNEL); 6182 if (unlikely(!phba->vpi_ids)) { 6183 kfree(phba->vpi_bmask); 6184 rc = -ENOMEM; 6185 goto err_exit; 6186 } 6187 6188 /* Initialize local ptrs for common extent processing later. */ 6189 bmask = phba->vpi_bmask; 6190 ids = phba->vpi_ids; 6191 ext_blk_list = &phba->lpfc_vpi_blk_list; 6192 break; 6193 case LPFC_RSC_TYPE_FCOE_XRI: 6194 phba->sli4_hba.xri_bmask = kcalloc(longs, 6195 sizeof(unsigned long), 6196 GFP_KERNEL); 6197 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6198 rc = -ENOMEM; 6199 goto err_exit; 6200 } 6201 phba->sli4_hba.max_cfg_param.xri_used = 0; 6202 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6203 sizeof(uint16_t), 6204 GFP_KERNEL); 6205 if (unlikely(!phba->sli4_hba.xri_ids)) { 6206 kfree(phba->sli4_hba.xri_bmask); 6207 rc = -ENOMEM; 6208 goto err_exit; 6209 } 6210 6211 /* Initialize local ptrs for common extent processing later. */ 6212 bmask = phba->sli4_hba.xri_bmask; 6213 ids = phba->sli4_hba.xri_ids; 6214 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6215 break; 6216 case LPFC_RSC_TYPE_FCOE_VFI: 6217 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6218 sizeof(unsigned long), 6219 GFP_KERNEL); 6220 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6221 rc = -ENOMEM; 6222 goto err_exit; 6223 } 6224 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6225 sizeof(uint16_t), 6226 GFP_KERNEL); 6227 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6228 kfree(phba->sli4_hba.vfi_bmask); 6229 rc = -ENOMEM; 6230 goto err_exit; 6231 } 6232 6233 /* Initialize local ptrs for common extent processing later. */ 6234 bmask = phba->sli4_hba.vfi_bmask; 6235 ids = phba->sli4_hba.vfi_ids; 6236 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6237 break; 6238 default: 6239 /* Unsupported Opcode. Fail call. */ 6240 id_array = NULL; 6241 bmask = NULL; 6242 ids = NULL; 6243 ext_blk_list = NULL; 6244 goto err_exit; 6245 } 6246 6247 /* 6248 * Complete initializing the extent configuration with the 6249 * allocated ids assigned to this function. The bitmask serves 6250 * as an index into the array and manages the available ids. The 6251 * array just stores the ids communicated to the port via the wqes. 6252 */ 6253 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6254 if ((i % 2) == 0) 6255 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6256 &id_array[k]); 6257 else 6258 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6259 &id_array[k]); 6260 6261 rsrc_blks = kzalloc(length, GFP_KERNEL); 6262 if (unlikely(!rsrc_blks)) { 6263 rc = -ENOMEM; 6264 kfree(bmask); 6265 kfree(ids); 6266 goto err_exit; 6267 } 6268 rsrc_blks->rsrc_start = rsrc_id; 6269 rsrc_blks->rsrc_size = rsrc_size; 6270 list_add_tail(&rsrc_blks->list, ext_blk_list); 6271 rsrc_start = rsrc_id; 6272 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6273 phba->sli4_hba.io_xri_start = rsrc_start + 6274 lpfc_sli4_get_iocb_cnt(phba); 6275 } 6276 6277 while (rsrc_id < (rsrc_start + rsrc_size)) { 6278 ids[j] = rsrc_id; 6279 rsrc_id++; 6280 j++; 6281 } 6282 /* Entire word processed. Get next word.*/ 6283 if ((i % 2) == 1) 6284 k++; 6285 } 6286 err_exit: 6287 lpfc_sli4_mbox_cmd_free(phba, mbox); 6288 return rc; 6289 } 6290 6291 6292 6293 /** 6294 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6295 * @phba: Pointer to HBA context object. 6296 * @type: the extent's type. 6297 * 6298 * This function deallocates all extents of a particular resource type. 6299 * SLI4 does not allow for deallocating a particular extent range. It 6300 * is the caller's responsibility to release all kernel memory resources. 6301 **/ 6302 static int 6303 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6304 { 6305 int rc; 6306 uint32_t length, mbox_tmo = 0; 6307 LPFC_MBOXQ_t *mbox; 6308 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6309 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6310 6311 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6312 if (!mbox) 6313 return -ENOMEM; 6314 6315 /* 6316 * This function sends an embedded mailbox because it only sends the 6317 * the resource type. All extents of this type are released by the 6318 * port. 6319 */ 6320 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6321 sizeof(struct lpfc_sli4_cfg_mhdr)); 6322 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6323 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6324 length, LPFC_SLI4_MBX_EMBED); 6325 6326 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6327 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6328 LPFC_SLI4_MBX_EMBED); 6329 if (unlikely(rc)) { 6330 rc = -EIO; 6331 goto out_free_mbox; 6332 } 6333 if (!phba->sli4_hba.intr_enable) 6334 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6335 else { 6336 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6337 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6338 } 6339 if (unlikely(rc)) { 6340 rc = -EIO; 6341 goto out_free_mbox; 6342 } 6343 6344 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6345 if (bf_get(lpfc_mbox_hdr_status, 6346 &dealloc_rsrc->header.cfg_shdr.response)) { 6347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6348 "2919 Failed to release resource extents " 6349 "for type %d - Status 0x%x Add'l Status 0x%x. " 6350 "Resource memory not released.\n", 6351 type, 6352 bf_get(lpfc_mbox_hdr_status, 6353 &dealloc_rsrc->header.cfg_shdr.response), 6354 bf_get(lpfc_mbox_hdr_add_status, 6355 &dealloc_rsrc->header.cfg_shdr.response)); 6356 rc = -EIO; 6357 goto out_free_mbox; 6358 } 6359 6360 /* Release kernel memory resources for the specific type. */ 6361 switch (type) { 6362 case LPFC_RSC_TYPE_FCOE_VPI: 6363 kfree(phba->vpi_bmask); 6364 kfree(phba->vpi_ids); 6365 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6366 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6367 &phba->lpfc_vpi_blk_list, list) { 6368 list_del_init(&rsrc_blk->list); 6369 kfree(rsrc_blk); 6370 } 6371 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6372 break; 6373 case LPFC_RSC_TYPE_FCOE_XRI: 6374 kfree(phba->sli4_hba.xri_bmask); 6375 kfree(phba->sli4_hba.xri_ids); 6376 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6377 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6378 list_del_init(&rsrc_blk->list); 6379 kfree(rsrc_blk); 6380 } 6381 break; 6382 case LPFC_RSC_TYPE_FCOE_VFI: 6383 kfree(phba->sli4_hba.vfi_bmask); 6384 kfree(phba->sli4_hba.vfi_ids); 6385 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6386 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6387 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6388 list_del_init(&rsrc_blk->list); 6389 kfree(rsrc_blk); 6390 } 6391 break; 6392 case LPFC_RSC_TYPE_FCOE_RPI: 6393 /* RPI bitmask and physical id array are cleaned up earlier. */ 6394 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6395 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6396 list_del_init(&rsrc_blk->list); 6397 kfree(rsrc_blk); 6398 } 6399 break; 6400 default: 6401 break; 6402 } 6403 6404 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6405 6406 out_free_mbox: 6407 mempool_free(mbox, phba->mbox_mem_pool); 6408 return rc; 6409 } 6410 6411 static void 6412 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6413 uint32_t feature) 6414 { 6415 uint32_t len; 6416 6417 len = sizeof(struct lpfc_mbx_set_feature) - 6418 sizeof(struct lpfc_sli4_cfg_mhdr); 6419 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6420 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6421 LPFC_SLI4_MBX_EMBED); 6422 6423 switch (feature) { 6424 case LPFC_SET_UE_RECOVERY: 6425 bf_set(lpfc_mbx_set_feature_UER, 6426 &mbox->u.mqe.un.set_feature, 1); 6427 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6428 mbox->u.mqe.un.set_feature.param_len = 8; 6429 break; 6430 case LPFC_SET_MDS_DIAGS: 6431 bf_set(lpfc_mbx_set_feature_mds, 6432 &mbox->u.mqe.un.set_feature, 1); 6433 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6434 &mbox->u.mqe.un.set_feature, 1); 6435 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6436 mbox->u.mqe.un.set_feature.param_len = 8; 6437 break; 6438 case LPFC_SET_DUAL_DUMP: 6439 bf_set(lpfc_mbx_set_feature_dd, 6440 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6441 bf_set(lpfc_mbx_set_feature_ddquery, 6442 &mbox->u.mqe.un.set_feature, 0); 6443 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6444 mbox->u.mqe.un.set_feature.param_len = 4; 6445 break; 6446 } 6447 6448 return; 6449 } 6450 6451 /** 6452 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6453 * @phba: Pointer to HBA context object. 6454 * 6455 * Disable FW logging into host memory on the adapter. To 6456 * be done before reading logs from the host memory. 6457 **/ 6458 void 6459 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6460 { 6461 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6462 6463 spin_lock_irq(&phba->hbalock); 6464 ras_fwlog->state = INACTIVE; 6465 spin_unlock_irq(&phba->hbalock); 6466 6467 /* Disable FW logging to host memory */ 6468 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6469 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6470 6471 /* Wait 10ms for firmware to stop using DMA buffer */ 6472 usleep_range(10 * 1000, 20 * 1000); 6473 } 6474 6475 /** 6476 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6477 * @phba: Pointer to HBA context object. 6478 * 6479 * This function is called to free memory allocated for RAS FW logging 6480 * support in the driver. 6481 **/ 6482 void 6483 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6484 { 6485 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6486 struct lpfc_dmabuf *dmabuf, *next; 6487 6488 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6489 list_for_each_entry_safe(dmabuf, next, 6490 &ras_fwlog->fwlog_buff_list, 6491 list) { 6492 list_del(&dmabuf->list); 6493 dma_free_coherent(&phba->pcidev->dev, 6494 LPFC_RAS_MAX_ENTRY_SIZE, 6495 dmabuf->virt, dmabuf->phys); 6496 kfree(dmabuf); 6497 } 6498 } 6499 6500 if (ras_fwlog->lwpd.virt) { 6501 dma_free_coherent(&phba->pcidev->dev, 6502 sizeof(uint32_t) * 2, 6503 ras_fwlog->lwpd.virt, 6504 ras_fwlog->lwpd.phys); 6505 ras_fwlog->lwpd.virt = NULL; 6506 } 6507 6508 spin_lock_irq(&phba->hbalock); 6509 ras_fwlog->state = INACTIVE; 6510 spin_unlock_irq(&phba->hbalock); 6511 } 6512 6513 /** 6514 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6515 * @phba: Pointer to HBA context object. 6516 * @fwlog_buff_count: Count of buffers to be created. 6517 * 6518 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6519 * to update FW log is posted to the adapter. 6520 * Buffer count is calculated based on module param ras_fwlog_buffsize 6521 * Size of each buffer posted to FW is 64K. 6522 **/ 6523 6524 static int 6525 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6526 uint32_t fwlog_buff_count) 6527 { 6528 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6529 struct lpfc_dmabuf *dmabuf; 6530 int rc = 0, i = 0; 6531 6532 /* Initialize List */ 6533 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6534 6535 /* Allocate memory for the LWPD */ 6536 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6537 sizeof(uint32_t) * 2, 6538 &ras_fwlog->lwpd.phys, 6539 GFP_KERNEL); 6540 if (!ras_fwlog->lwpd.virt) { 6541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6542 "6185 LWPD Memory Alloc Failed\n"); 6543 6544 return -ENOMEM; 6545 } 6546 6547 ras_fwlog->fw_buffcount = fwlog_buff_count; 6548 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6549 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6550 GFP_KERNEL); 6551 if (!dmabuf) { 6552 rc = -ENOMEM; 6553 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6554 "6186 Memory Alloc failed FW logging"); 6555 goto free_mem; 6556 } 6557 6558 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6559 LPFC_RAS_MAX_ENTRY_SIZE, 6560 &dmabuf->phys, GFP_KERNEL); 6561 if (!dmabuf->virt) { 6562 kfree(dmabuf); 6563 rc = -ENOMEM; 6564 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6565 "6187 DMA Alloc Failed FW logging"); 6566 goto free_mem; 6567 } 6568 dmabuf->buffer_tag = i; 6569 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6570 } 6571 6572 free_mem: 6573 if (rc) 6574 lpfc_sli4_ras_dma_free(phba); 6575 6576 return rc; 6577 } 6578 6579 /** 6580 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6581 * @phba: pointer to lpfc hba data structure. 6582 * @pmb: pointer to the driver internal queue element for mailbox command. 6583 * 6584 * Completion handler for driver's RAS MBX command to the device. 6585 **/ 6586 static void 6587 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6588 { 6589 MAILBOX_t *mb; 6590 union lpfc_sli4_cfg_shdr *shdr; 6591 uint32_t shdr_status, shdr_add_status; 6592 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6593 6594 mb = &pmb->u.mb; 6595 6596 shdr = (union lpfc_sli4_cfg_shdr *) 6597 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6598 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6600 6601 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6603 "6188 FW LOG mailbox " 6604 "completed with status x%x add_status x%x," 6605 " mbx status x%x\n", 6606 shdr_status, shdr_add_status, mb->mbxStatus); 6607 6608 ras_fwlog->ras_hwsupport = false; 6609 goto disable_ras; 6610 } 6611 6612 spin_lock_irq(&phba->hbalock); 6613 ras_fwlog->state = ACTIVE; 6614 spin_unlock_irq(&phba->hbalock); 6615 mempool_free(pmb, phba->mbox_mem_pool); 6616 6617 return; 6618 6619 disable_ras: 6620 /* Free RAS DMA memory */ 6621 lpfc_sli4_ras_dma_free(phba); 6622 mempool_free(pmb, phba->mbox_mem_pool); 6623 } 6624 6625 /** 6626 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6627 * @phba: pointer to lpfc hba data structure. 6628 * @fwlog_level: Logging verbosity level. 6629 * @fwlog_enable: Enable/Disable logging. 6630 * 6631 * Initialize memory and post mailbox command to enable FW logging in host 6632 * memory. 6633 **/ 6634 int 6635 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6636 uint32_t fwlog_level, 6637 uint32_t fwlog_enable) 6638 { 6639 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6640 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6641 struct lpfc_dmabuf *dmabuf; 6642 LPFC_MBOXQ_t *mbox; 6643 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6644 int rc = 0; 6645 6646 spin_lock_irq(&phba->hbalock); 6647 ras_fwlog->state = INACTIVE; 6648 spin_unlock_irq(&phba->hbalock); 6649 6650 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6651 phba->cfg_ras_fwlog_buffsize); 6652 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6653 6654 /* 6655 * If re-enabling FW logging support use earlier allocated 6656 * DMA buffers while posting MBX command. 6657 **/ 6658 if (!ras_fwlog->lwpd.virt) { 6659 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6660 if (rc) { 6661 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6662 "6189 FW Log Memory Allocation Failed"); 6663 return rc; 6664 } 6665 } 6666 6667 /* Setup Mailbox command */ 6668 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6669 if (!mbox) { 6670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6671 "6190 RAS MBX Alloc Failed"); 6672 rc = -ENOMEM; 6673 goto mem_free; 6674 } 6675 6676 ras_fwlog->fw_loglevel = fwlog_level; 6677 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6678 sizeof(struct lpfc_sli4_cfg_mhdr)); 6679 6680 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6681 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6682 len, LPFC_SLI4_MBX_EMBED); 6683 6684 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6685 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6686 fwlog_enable); 6687 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6688 ras_fwlog->fw_loglevel); 6689 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6690 ras_fwlog->fw_buffcount); 6691 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6692 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6693 6694 /* Update DMA buffer address */ 6695 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6696 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6697 6698 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6699 putPaddrLow(dmabuf->phys); 6700 6701 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6702 putPaddrHigh(dmabuf->phys); 6703 } 6704 6705 /* Update LPWD address */ 6706 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6707 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6708 6709 spin_lock_irq(&phba->hbalock); 6710 ras_fwlog->state = REG_INPROGRESS; 6711 spin_unlock_irq(&phba->hbalock); 6712 mbox->vport = phba->pport; 6713 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6714 6715 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6716 6717 if (rc == MBX_NOT_FINISHED) { 6718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6719 "6191 FW-Log Mailbox failed. " 6720 "status %d mbxStatus : x%x", rc, 6721 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6722 mempool_free(mbox, phba->mbox_mem_pool); 6723 rc = -EIO; 6724 goto mem_free; 6725 } else 6726 rc = 0; 6727 mem_free: 6728 if (rc) 6729 lpfc_sli4_ras_dma_free(phba); 6730 6731 return rc; 6732 } 6733 6734 /** 6735 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6736 * @phba: Pointer to HBA context object. 6737 * 6738 * Check if RAS is supported on the adapter and initialize it. 6739 **/ 6740 void 6741 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6742 { 6743 /* Check RAS FW Log needs to be enabled or not */ 6744 if (lpfc_check_fwlog_support(phba)) 6745 return; 6746 6747 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6748 LPFC_RAS_ENABLE_LOGGING); 6749 } 6750 6751 /** 6752 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6753 * @phba: Pointer to HBA context object. 6754 * 6755 * This function allocates all SLI4 resource identifiers. 6756 **/ 6757 int 6758 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6759 { 6760 int i, rc, error = 0; 6761 uint16_t count, base; 6762 unsigned long longs; 6763 6764 if (!phba->sli4_hba.rpi_hdrs_in_use) 6765 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6766 if (phba->sli4_hba.extents_in_use) { 6767 /* 6768 * The port supports resource extents. The XRI, VPI, VFI, RPI 6769 * resource extent count must be read and allocated before 6770 * provisioning the resource id arrays. 6771 */ 6772 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6773 LPFC_IDX_RSRC_RDY) { 6774 /* 6775 * Extent-based resources are set - the driver could 6776 * be in a port reset. Figure out if any corrective 6777 * actions need to be taken. 6778 */ 6779 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6780 LPFC_RSC_TYPE_FCOE_VFI); 6781 if (rc != 0) 6782 error++; 6783 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6784 LPFC_RSC_TYPE_FCOE_VPI); 6785 if (rc != 0) 6786 error++; 6787 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6788 LPFC_RSC_TYPE_FCOE_XRI); 6789 if (rc != 0) 6790 error++; 6791 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6792 LPFC_RSC_TYPE_FCOE_RPI); 6793 if (rc != 0) 6794 error++; 6795 6796 /* 6797 * It's possible that the number of resources 6798 * provided to this port instance changed between 6799 * resets. Detect this condition and reallocate 6800 * resources. Otherwise, there is no action. 6801 */ 6802 if (error) { 6803 lpfc_printf_log(phba, KERN_INFO, 6804 LOG_MBOX | LOG_INIT, 6805 "2931 Detected extent resource " 6806 "change. Reallocating all " 6807 "extents.\n"); 6808 rc = lpfc_sli4_dealloc_extent(phba, 6809 LPFC_RSC_TYPE_FCOE_VFI); 6810 rc = lpfc_sli4_dealloc_extent(phba, 6811 LPFC_RSC_TYPE_FCOE_VPI); 6812 rc = lpfc_sli4_dealloc_extent(phba, 6813 LPFC_RSC_TYPE_FCOE_XRI); 6814 rc = lpfc_sli4_dealloc_extent(phba, 6815 LPFC_RSC_TYPE_FCOE_RPI); 6816 } else 6817 return 0; 6818 } 6819 6820 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6821 if (unlikely(rc)) 6822 goto err_exit; 6823 6824 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6825 if (unlikely(rc)) 6826 goto err_exit; 6827 6828 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6829 if (unlikely(rc)) 6830 goto err_exit; 6831 6832 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6833 if (unlikely(rc)) 6834 goto err_exit; 6835 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6836 LPFC_IDX_RSRC_RDY); 6837 return rc; 6838 } else { 6839 /* 6840 * The port does not support resource extents. The XRI, VPI, 6841 * VFI, RPI resource ids were determined from READ_CONFIG. 6842 * Just allocate the bitmasks and provision the resource id 6843 * arrays. If a port reset is active, the resources don't 6844 * need any action - just exit. 6845 */ 6846 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6847 LPFC_IDX_RSRC_RDY) { 6848 lpfc_sli4_dealloc_resource_identifiers(phba); 6849 lpfc_sli4_remove_rpis(phba); 6850 } 6851 /* RPIs. */ 6852 count = phba->sli4_hba.max_cfg_param.max_rpi; 6853 if (count <= 0) { 6854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6855 "3279 Invalid provisioning of " 6856 "rpi:%d\n", count); 6857 rc = -EINVAL; 6858 goto err_exit; 6859 } 6860 base = phba->sli4_hba.max_cfg_param.rpi_base; 6861 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6862 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6863 sizeof(unsigned long), 6864 GFP_KERNEL); 6865 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6866 rc = -ENOMEM; 6867 goto err_exit; 6868 } 6869 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6870 GFP_KERNEL); 6871 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6872 rc = -ENOMEM; 6873 goto free_rpi_bmask; 6874 } 6875 6876 for (i = 0; i < count; i++) 6877 phba->sli4_hba.rpi_ids[i] = base + i; 6878 6879 /* VPIs. */ 6880 count = phba->sli4_hba.max_cfg_param.max_vpi; 6881 if (count <= 0) { 6882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6883 "3280 Invalid provisioning of " 6884 "vpi:%d\n", count); 6885 rc = -EINVAL; 6886 goto free_rpi_ids; 6887 } 6888 base = phba->sli4_hba.max_cfg_param.vpi_base; 6889 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6890 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6891 GFP_KERNEL); 6892 if (unlikely(!phba->vpi_bmask)) { 6893 rc = -ENOMEM; 6894 goto free_rpi_ids; 6895 } 6896 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6897 GFP_KERNEL); 6898 if (unlikely(!phba->vpi_ids)) { 6899 rc = -ENOMEM; 6900 goto free_vpi_bmask; 6901 } 6902 6903 for (i = 0; i < count; i++) 6904 phba->vpi_ids[i] = base + i; 6905 6906 /* XRIs. */ 6907 count = phba->sli4_hba.max_cfg_param.max_xri; 6908 if (count <= 0) { 6909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6910 "3281 Invalid provisioning of " 6911 "xri:%d\n", count); 6912 rc = -EINVAL; 6913 goto free_vpi_ids; 6914 } 6915 base = phba->sli4_hba.max_cfg_param.xri_base; 6916 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6917 phba->sli4_hba.xri_bmask = kcalloc(longs, 6918 sizeof(unsigned long), 6919 GFP_KERNEL); 6920 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6921 rc = -ENOMEM; 6922 goto free_vpi_ids; 6923 } 6924 phba->sli4_hba.max_cfg_param.xri_used = 0; 6925 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6926 GFP_KERNEL); 6927 if (unlikely(!phba->sli4_hba.xri_ids)) { 6928 rc = -ENOMEM; 6929 goto free_xri_bmask; 6930 } 6931 6932 for (i = 0; i < count; i++) 6933 phba->sli4_hba.xri_ids[i] = base + i; 6934 6935 /* VFIs. */ 6936 count = phba->sli4_hba.max_cfg_param.max_vfi; 6937 if (count <= 0) { 6938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6939 "3282 Invalid provisioning of " 6940 "vfi:%d\n", count); 6941 rc = -EINVAL; 6942 goto free_xri_ids; 6943 } 6944 base = phba->sli4_hba.max_cfg_param.vfi_base; 6945 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6946 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6947 sizeof(unsigned long), 6948 GFP_KERNEL); 6949 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6950 rc = -ENOMEM; 6951 goto free_xri_ids; 6952 } 6953 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6954 GFP_KERNEL); 6955 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6956 rc = -ENOMEM; 6957 goto free_vfi_bmask; 6958 } 6959 6960 for (i = 0; i < count; i++) 6961 phba->sli4_hba.vfi_ids[i] = base + i; 6962 6963 /* 6964 * Mark all resources ready. An HBA reset doesn't need 6965 * to reset the initialization. 6966 */ 6967 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6968 LPFC_IDX_RSRC_RDY); 6969 return 0; 6970 } 6971 6972 free_vfi_bmask: 6973 kfree(phba->sli4_hba.vfi_bmask); 6974 phba->sli4_hba.vfi_bmask = NULL; 6975 free_xri_ids: 6976 kfree(phba->sli4_hba.xri_ids); 6977 phba->sli4_hba.xri_ids = NULL; 6978 free_xri_bmask: 6979 kfree(phba->sli4_hba.xri_bmask); 6980 phba->sli4_hba.xri_bmask = NULL; 6981 free_vpi_ids: 6982 kfree(phba->vpi_ids); 6983 phba->vpi_ids = NULL; 6984 free_vpi_bmask: 6985 kfree(phba->vpi_bmask); 6986 phba->vpi_bmask = NULL; 6987 free_rpi_ids: 6988 kfree(phba->sli4_hba.rpi_ids); 6989 phba->sli4_hba.rpi_ids = NULL; 6990 free_rpi_bmask: 6991 kfree(phba->sli4_hba.rpi_bmask); 6992 phba->sli4_hba.rpi_bmask = NULL; 6993 err_exit: 6994 return rc; 6995 } 6996 6997 /** 6998 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6999 * @phba: Pointer to HBA context object. 7000 * 7001 * This function allocates the number of elements for the specified 7002 * resource type. 7003 **/ 7004 int 7005 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7006 { 7007 if (phba->sli4_hba.extents_in_use) { 7008 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7009 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7010 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7011 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7012 } else { 7013 kfree(phba->vpi_bmask); 7014 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7015 kfree(phba->vpi_ids); 7016 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7017 kfree(phba->sli4_hba.xri_bmask); 7018 kfree(phba->sli4_hba.xri_ids); 7019 kfree(phba->sli4_hba.vfi_bmask); 7020 kfree(phba->sli4_hba.vfi_ids); 7021 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7022 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7023 } 7024 7025 return 0; 7026 } 7027 7028 /** 7029 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7030 * @phba: Pointer to HBA context object. 7031 * @type: The resource extent type. 7032 * @extnt_cnt: buffer to hold port extent count response 7033 * @extnt_size: buffer to hold port extent size response. 7034 * 7035 * This function calls the port to read the host allocated extents 7036 * for a particular type. 7037 **/ 7038 int 7039 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7040 uint16_t *extnt_cnt, uint16_t *extnt_size) 7041 { 7042 bool emb; 7043 int rc = 0; 7044 uint16_t curr_blks = 0; 7045 uint32_t req_len, emb_len; 7046 uint32_t alloc_len, mbox_tmo; 7047 struct list_head *blk_list_head; 7048 struct lpfc_rsrc_blks *rsrc_blk; 7049 LPFC_MBOXQ_t *mbox; 7050 void *virtaddr = NULL; 7051 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7052 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7053 union lpfc_sli4_cfg_shdr *shdr; 7054 7055 switch (type) { 7056 case LPFC_RSC_TYPE_FCOE_VPI: 7057 blk_list_head = &phba->lpfc_vpi_blk_list; 7058 break; 7059 case LPFC_RSC_TYPE_FCOE_XRI: 7060 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7061 break; 7062 case LPFC_RSC_TYPE_FCOE_VFI: 7063 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7064 break; 7065 case LPFC_RSC_TYPE_FCOE_RPI: 7066 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7067 break; 7068 default: 7069 return -EIO; 7070 } 7071 7072 /* Count the number of extents currently allocatd for this type. */ 7073 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7074 if (curr_blks == 0) { 7075 /* 7076 * The GET_ALLOCATED mailbox does not return the size, 7077 * just the count. The size should be just the size 7078 * stored in the current allocated block and all sizes 7079 * for an extent type are the same so set the return 7080 * value now. 7081 */ 7082 *extnt_size = rsrc_blk->rsrc_size; 7083 } 7084 curr_blks++; 7085 } 7086 7087 /* 7088 * Calculate the size of an embedded mailbox. The uint32_t 7089 * accounts for extents-specific word. 7090 */ 7091 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7092 sizeof(uint32_t); 7093 7094 /* 7095 * Presume the allocation and response will fit into an embedded 7096 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7097 */ 7098 emb = LPFC_SLI4_MBX_EMBED; 7099 req_len = emb_len; 7100 if (req_len > emb_len) { 7101 req_len = curr_blks * sizeof(uint16_t) + 7102 sizeof(union lpfc_sli4_cfg_shdr) + 7103 sizeof(uint32_t); 7104 emb = LPFC_SLI4_MBX_NEMBED; 7105 } 7106 7107 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7108 if (!mbox) 7109 return -ENOMEM; 7110 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7111 7112 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7113 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7114 req_len, emb); 7115 if (alloc_len < req_len) { 7116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7117 "2983 Allocated DMA memory size (x%x) is " 7118 "less than the requested DMA memory " 7119 "size (x%x)\n", alloc_len, req_len); 7120 rc = -ENOMEM; 7121 goto err_exit; 7122 } 7123 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7124 if (unlikely(rc)) { 7125 rc = -EIO; 7126 goto err_exit; 7127 } 7128 7129 if (!phba->sli4_hba.intr_enable) 7130 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7131 else { 7132 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7133 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7134 } 7135 7136 if (unlikely(rc)) { 7137 rc = -EIO; 7138 goto err_exit; 7139 } 7140 7141 /* 7142 * Figure out where the response is located. Then get local pointers 7143 * to the response data. The port does not guarantee to respond to 7144 * all extents counts request so update the local variable with the 7145 * allocated count from the port. 7146 */ 7147 if (emb == LPFC_SLI4_MBX_EMBED) { 7148 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7149 shdr = &rsrc_ext->header.cfg_shdr; 7150 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7151 } else { 7152 virtaddr = mbox->sge_array->addr[0]; 7153 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7154 shdr = &n_rsrc->cfg_shdr; 7155 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7156 } 7157 7158 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7160 "2984 Failed to read allocated resources " 7161 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7162 type, 7163 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7164 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7165 rc = -EIO; 7166 goto err_exit; 7167 } 7168 err_exit: 7169 lpfc_sli4_mbox_cmd_free(phba, mbox); 7170 return rc; 7171 } 7172 7173 /** 7174 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7175 * @phba: pointer to lpfc hba data structure. 7176 * @sgl_list: linked link of sgl buffers to post 7177 * @cnt: number of linked list buffers 7178 * 7179 * This routine walks the list of buffers that have been allocated and 7180 * repost them to the port by using SGL block post. This is needed after a 7181 * pci_function_reset/warm_start or start. It attempts to construct blocks 7182 * of buffer sgls which contains contiguous xris and uses the non-embedded 7183 * SGL block post mailbox commands to post them to the port. For single 7184 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7185 * mailbox command for posting. 7186 * 7187 * Returns: 0 = success, non-zero failure. 7188 **/ 7189 static int 7190 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7191 struct list_head *sgl_list, int cnt) 7192 { 7193 struct lpfc_sglq *sglq_entry = NULL; 7194 struct lpfc_sglq *sglq_entry_next = NULL; 7195 struct lpfc_sglq *sglq_entry_first = NULL; 7196 int status, total_cnt; 7197 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7198 int last_xritag = NO_XRI; 7199 LIST_HEAD(prep_sgl_list); 7200 LIST_HEAD(blck_sgl_list); 7201 LIST_HEAD(allc_sgl_list); 7202 LIST_HEAD(post_sgl_list); 7203 LIST_HEAD(free_sgl_list); 7204 7205 spin_lock_irq(&phba->hbalock); 7206 spin_lock(&phba->sli4_hba.sgl_list_lock); 7207 list_splice_init(sgl_list, &allc_sgl_list); 7208 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7209 spin_unlock_irq(&phba->hbalock); 7210 7211 total_cnt = cnt; 7212 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7213 &allc_sgl_list, list) { 7214 list_del_init(&sglq_entry->list); 7215 block_cnt++; 7216 if ((last_xritag != NO_XRI) && 7217 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7218 /* a hole in xri block, form a sgl posting block */ 7219 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7220 post_cnt = block_cnt - 1; 7221 /* prepare list for next posting block */ 7222 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7223 block_cnt = 1; 7224 } else { 7225 /* prepare list for next posting block */ 7226 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7227 /* enough sgls for non-embed sgl mbox command */ 7228 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7229 list_splice_init(&prep_sgl_list, 7230 &blck_sgl_list); 7231 post_cnt = block_cnt; 7232 block_cnt = 0; 7233 } 7234 } 7235 num_posted++; 7236 7237 /* keep track of last sgl's xritag */ 7238 last_xritag = sglq_entry->sli4_xritag; 7239 7240 /* end of repost sgl list condition for buffers */ 7241 if (num_posted == total_cnt) { 7242 if (post_cnt == 0) { 7243 list_splice_init(&prep_sgl_list, 7244 &blck_sgl_list); 7245 post_cnt = block_cnt; 7246 } else if (block_cnt == 1) { 7247 status = lpfc_sli4_post_sgl(phba, 7248 sglq_entry->phys, 0, 7249 sglq_entry->sli4_xritag); 7250 if (!status) { 7251 /* successful, put sgl to posted list */ 7252 list_add_tail(&sglq_entry->list, 7253 &post_sgl_list); 7254 } else { 7255 /* Failure, put sgl to free list */ 7256 lpfc_printf_log(phba, KERN_WARNING, 7257 LOG_SLI, 7258 "3159 Failed to post " 7259 "sgl, xritag:x%x\n", 7260 sglq_entry->sli4_xritag); 7261 list_add_tail(&sglq_entry->list, 7262 &free_sgl_list); 7263 total_cnt--; 7264 } 7265 } 7266 } 7267 7268 /* continue until a nembed page worth of sgls */ 7269 if (post_cnt == 0) 7270 continue; 7271 7272 /* post the buffer list sgls as a block */ 7273 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7274 post_cnt); 7275 7276 if (!status) { 7277 /* success, put sgl list to posted sgl list */ 7278 list_splice_init(&blck_sgl_list, &post_sgl_list); 7279 } else { 7280 /* Failure, put sgl list to free sgl list */ 7281 sglq_entry_first = list_first_entry(&blck_sgl_list, 7282 struct lpfc_sglq, 7283 list); 7284 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7285 "3160 Failed to post sgl-list, " 7286 "xritag:x%x-x%x\n", 7287 sglq_entry_first->sli4_xritag, 7288 (sglq_entry_first->sli4_xritag + 7289 post_cnt - 1)); 7290 list_splice_init(&blck_sgl_list, &free_sgl_list); 7291 total_cnt -= post_cnt; 7292 } 7293 7294 /* don't reset xirtag due to hole in xri block */ 7295 if (block_cnt == 0) 7296 last_xritag = NO_XRI; 7297 7298 /* reset sgl post count for next round of posting */ 7299 post_cnt = 0; 7300 } 7301 7302 /* free the sgls failed to post */ 7303 lpfc_free_sgl_list(phba, &free_sgl_list); 7304 7305 /* push sgls posted to the available list */ 7306 if (!list_empty(&post_sgl_list)) { 7307 spin_lock_irq(&phba->hbalock); 7308 spin_lock(&phba->sli4_hba.sgl_list_lock); 7309 list_splice_init(&post_sgl_list, sgl_list); 7310 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7311 spin_unlock_irq(&phba->hbalock); 7312 } else { 7313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7314 "3161 Failure to post sgl to port.\n"); 7315 return -EIO; 7316 } 7317 7318 /* return the number of XRIs actually posted */ 7319 return total_cnt; 7320 } 7321 7322 /** 7323 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7324 * @phba: pointer to lpfc hba data structure. 7325 * 7326 * This routine walks the list of nvme buffers that have been allocated and 7327 * repost them to the port by using SGL block post. This is needed after a 7328 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7329 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7330 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7331 * 7332 * Returns: 0 = success, non-zero failure. 7333 **/ 7334 static int 7335 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7336 { 7337 LIST_HEAD(post_nblist); 7338 int num_posted, rc = 0; 7339 7340 /* get all NVME buffers need to repost to a local list */ 7341 lpfc_io_buf_flush(phba, &post_nblist); 7342 7343 /* post the list of nvme buffer sgls to port if available */ 7344 if (!list_empty(&post_nblist)) { 7345 num_posted = lpfc_sli4_post_io_sgl_list( 7346 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7347 /* failed to post any nvme buffer, return error */ 7348 if (num_posted == 0) 7349 rc = -EIO; 7350 } 7351 return rc; 7352 } 7353 7354 static void 7355 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7356 { 7357 uint32_t len; 7358 7359 len = sizeof(struct lpfc_mbx_set_host_data) - 7360 sizeof(struct lpfc_sli4_cfg_mhdr); 7361 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7362 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7363 LPFC_SLI4_MBX_EMBED); 7364 7365 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7366 mbox->u.mqe.un.set_host_data.param_len = 7367 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7368 snprintf(mbox->u.mqe.un.set_host_data.data, 7369 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7370 "Linux %s v"LPFC_DRIVER_VERSION, 7371 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7372 } 7373 7374 int 7375 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7376 struct lpfc_queue *drq, int count, int idx) 7377 { 7378 int rc, i; 7379 struct lpfc_rqe hrqe; 7380 struct lpfc_rqe drqe; 7381 struct lpfc_rqb *rqbp; 7382 unsigned long flags; 7383 struct rqb_dmabuf *rqb_buffer; 7384 LIST_HEAD(rqb_buf_list); 7385 7386 rqbp = hrq->rqbp; 7387 for (i = 0; i < count; i++) { 7388 spin_lock_irqsave(&phba->hbalock, flags); 7389 /* IF RQ is already full, don't bother */ 7390 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7391 spin_unlock_irqrestore(&phba->hbalock, flags); 7392 break; 7393 } 7394 spin_unlock_irqrestore(&phba->hbalock, flags); 7395 7396 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7397 if (!rqb_buffer) 7398 break; 7399 rqb_buffer->hrq = hrq; 7400 rqb_buffer->drq = drq; 7401 rqb_buffer->idx = idx; 7402 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7403 } 7404 7405 spin_lock_irqsave(&phba->hbalock, flags); 7406 while (!list_empty(&rqb_buf_list)) { 7407 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7408 hbuf.list); 7409 7410 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7411 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7412 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7413 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7414 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7415 if (rc < 0) { 7416 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7417 "6421 Cannot post to HRQ %d: %x %x %x " 7418 "DRQ %x %x\n", 7419 hrq->queue_id, 7420 hrq->host_index, 7421 hrq->hba_index, 7422 hrq->entry_count, 7423 drq->host_index, 7424 drq->hba_index); 7425 rqbp->rqb_free_buffer(phba, rqb_buffer); 7426 } else { 7427 list_add_tail(&rqb_buffer->hbuf.list, 7428 &rqbp->rqb_buffer_list); 7429 rqbp->buffer_count++; 7430 } 7431 } 7432 spin_unlock_irqrestore(&phba->hbalock, flags); 7433 return 1; 7434 } 7435 7436 /** 7437 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7438 * @phba: pointer to lpfc hba data structure. 7439 * 7440 * This routine initializes the per-cq idle_stat to dynamically dictate 7441 * polling decisions. 7442 * 7443 * Return codes: 7444 * None 7445 **/ 7446 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7447 { 7448 int i; 7449 struct lpfc_sli4_hdw_queue *hdwq; 7450 struct lpfc_queue *cq; 7451 struct lpfc_idle_stat *idle_stat; 7452 u64 wall; 7453 7454 for_each_present_cpu(i) { 7455 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7456 cq = hdwq->io_cq; 7457 7458 /* Skip if we've already handled this cq's primary CPU */ 7459 if (cq->chann != i) 7460 continue; 7461 7462 idle_stat = &phba->sli4_hba.idle_stat[i]; 7463 7464 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7465 idle_stat->prev_wall = wall; 7466 7467 if (phba->nvmet_support) 7468 cq->poll_mode = LPFC_QUEUE_WORK; 7469 else 7470 cq->poll_mode = LPFC_IRQ_POLL; 7471 } 7472 7473 if (!phba->nvmet_support) 7474 schedule_delayed_work(&phba->idle_stat_delay_work, 7475 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7476 } 7477 7478 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7479 { 7480 uint32_t if_type; 7481 7482 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7483 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7484 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7485 struct lpfc_register reg_data; 7486 7487 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7488 ®_data.word0)) 7489 return; 7490 7491 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7492 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7493 "2904 Firmware Dump Image Present" 7494 " on Adapter"); 7495 } 7496 } 7497 7498 /** 7499 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7500 * @phba: Pointer to HBA context object. 7501 * 7502 * This function is the main SLI4 device initialization PCI function. This 7503 * function is called by the HBA initialization code, HBA reset code and 7504 * HBA error attention handler code. Caller is not required to hold any 7505 * locks. 7506 **/ 7507 int 7508 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7509 { 7510 int rc, i, cnt, len, dd; 7511 LPFC_MBOXQ_t *mboxq; 7512 struct lpfc_mqe *mqe; 7513 uint8_t *vpd; 7514 uint32_t vpd_size; 7515 uint32_t ftr_rsp = 0; 7516 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7517 struct lpfc_vport *vport = phba->pport; 7518 struct lpfc_dmabuf *mp; 7519 struct lpfc_rqb *rqbp; 7520 7521 /* Perform a PCI function reset to start from clean */ 7522 rc = lpfc_pci_function_reset(phba); 7523 if (unlikely(rc)) 7524 return -ENODEV; 7525 7526 /* Check the HBA Host Status Register for readyness */ 7527 rc = lpfc_sli4_post_status_check(phba); 7528 if (unlikely(rc)) 7529 return -ENODEV; 7530 else { 7531 spin_lock_irq(&phba->hbalock); 7532 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7533 spin_unlock_irq(&phba->hbalock); 7534 } 7535 7536 lpfc_sli4_dip(phba); 7537 7538 /* 7539 * Allocate a single mailbox container for initializing the 7540 * port. 7541 */ 7542 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7543 if (!mboxq) 7544 return -ENOMEM; 7545 7546 /* Issue READ_REV to collect vpd and FW information. */ 7547 vpd_size = SLI4_PAGE_SIZE; 7548 vpd = kzalloc(vpd_size, GFP_KERNEL); 7549 if (!vpd) { 7550 rc = -ENOMEM; 7551 goto out_free_mbox; 7552 } 7553 7554 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7555 if (unlikely(rc)) { 7556 kfree(vpd); 7557 goto out_free_mbox; 7558 } 7559 7560 mqe = &mboxq->u.mqe; 7561 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7562 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7563 phba->hba_flag |= HBA_FCOE_MODE; 7564 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7565 } else { 7566 phba->hba_flag &= ~HBA_FCOE_MODE; 7567 } 7568 7569 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7570 LPFC_DCBX_CEE_MODE) 7571 phba->hba_flag |= HBA_FIP_SUPPORT; 7572 else 7573 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7574 7575 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7576 7577 if (phba->sli_rev != LPFC_SLI_REV4) { 7578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7579 "0376 READ_REV Error. SLI Level %d " 7580 "FCoE enabled %d\n", 7581 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7582 rc = -EIO; 7583 kfree(vpd); 7584 goto out_free_mbox; 7585 } 7586 7587 /* 7588 * Continue initialization with default values even if driver failed 7589 * to read FCoE param config regions, only read parameters if the 7590 * board is FCoE 7591 */ 7592 if (phba->hba_flag & HBA_FCOE_MODE && 7593 lpfc_sli4_read_fcoe_params(phba)) 7594 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7595 "2570 Failed to read FCoE parameters\n"); 7596 7597 /* 7598 * Retrieve sli4 device physical port name, failure of doing it 7599 * is considered as non-fatal. 7600 */ 7601 rc = lpfc_sli4_retrieve_pport_name(phba); 7602 if (!rc) 7603 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7604 "3080 Successful retrieving SLI4 device " 7605 "physical port name: %s.\n", phba->Port); 7606 7607 rc = lpfc_sli4_get_ctl_attr(phba); 7608 if (!rc) 7609 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7610 "8351 Successful retrieving SLI4 device " 7611 "CTL ATTR\n"); 7612 7613 /* 7614 * Evaluate the read rev and vpd data. Populate the driver 7615 * state with the results. If this routine fails, the failure 7616 * is not fatal as the driver will use generic values. 7617 */ 7618 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7619 if (unlikely(!rc)) { 7620 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7621 "0377 Error %d parsing vpd. " 7622 "Using defaults.\n", rc); 7623 rc = 0; 7624 } 7625 kfree(vpd); 7626 7627 /* Save information as VPD data */ 7628 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7629 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7630 7631 /* 7632 * This is because first G7 ASIC doesn't support the standard 7633 * 0x5a NVME cmd descriptor type/subtype 7634 */ 7635 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7636 LPFC_SLI_INTF_IF_TYPE_6) && 7637 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7638 (phba->vpd.rev.smRev == 0) && 7639 (phba->cfg_nvme_embed_cmd == 1)) 7640 phba->cfg_nvme_embed_cmd = 0; 7641 7642 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7643 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7644 &mqe->un.read_rev); 7645 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7646 &mqe->un.read_rev); 7647 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7648 &mqe->un.read_rev); 7649 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7650 &mqe->un.read_rev); 7651 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7652 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7653 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7654 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7655 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7656 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7657 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7658 "(%d):0380 READ_REV Status x%x " 7659 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7660 mboxq->vport ? mboxq->vport->vpi : 0, 7661 bf_get(lpfc_mqe_status, mqe), 7662 phba->vpd.rev.opFwName, 7663 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7664 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7665 7666 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7667 LPFC_SLI_INTF_IF_TYPE_0) { 7668 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7669 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7670 if (rc == MBX_SUCCESS) { 7671 phba->hba_flag |= HBA_RECOVERABLE_UE; 7672 /* Set 1Sec interval to detect UE */ 7673 phba->eratt_poll_interval = 1; 7674 phba->sli4_hba.ue_to_sr = bf_get( 7675 lpfc_mbx_set_feature_UESR, 7676 &mboxq->u.mqe.un.set_feature); 7677 phba->sli4_hba.ue_to_rp = bf_get( 7678 lpfc_mbx_set_feature_UERP, 7679 &mboxq->u.mqe.un.set_feature); 7680 } 7681 } 7682 7683 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7684 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7685 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7686 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7687 if (rc != MBX_SUCCESS) 7688 phba->mds_diags_support = 0; 7689 } 7690 7691 /* 7692 * Discover the port's supported feature set and match it against the 7693 * hosts requests. 7694 */ 7695 lpfc_request_features(phba, mboxq); 7696 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7697 if (unlikely(rc)) { 7698 rc = -EIO; 7699 goto out_free_mbox; 7700 } 7701 7702 /* 7703 * The port must support FCP initiator mode as this is the 7704 * only mode running in the host. 7705 */ 7706 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7707 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7708 "0378 No support for fcpi mode.\n"); 7709 ftr_rsp++; 7710 } 7711 7712 /* Performance Hints are ONLY for FCoE */ 7713 if (phba->hba_flag & HBA_FCOE_MODE) { 7714 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7715 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7716 else 7717 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7718 } 7719 7720 /* 7721 * If the port cannot support the host's requested features 7722 * then turn off the global config parameters to disable the 7723 * feature in the driver. This is not a fatal error. 7724 */ 7725 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7726 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7727 phba->cfg_enable_bg = 0; 7728 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7729 ftr_rsp++; 7730 } 7731 } 7732 7733 if (phba->max_vpi && phba->cfg_enable_npiv && 7734 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7735 ftr_rsp++; 7736 7737 if (ftr_rsp) { 7738 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7739 "0379 Feature Mismatch Data: x%08x %08x " 7740 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7741 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7742 phba->cfg_enable_npiv, phba->max_vpi); 7743 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7744 phba->cfg_enable_bg = 0; 7745 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7746 phba->cfg_enable_npiv = 0; 7747 } 7748 7749 /* These SLI3 features are assumed in SLI4 */ 7750 spin_lock_irq(&phba->hbalock); 7751 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7752 spin_unlock_irq(&phba->hbalock); 7753 7754 /* Always try to enable dual dump feature if we can */ 7755 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7756 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7757 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7758 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7759 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7760 "6448 Dual Dump is enabled\n"); 7761 else 7762 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7763 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7764 "rc:x%x dd:x%x\n", 7765 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7766 lpfc_sli_config_mbox_subsys_get( 7767 phba, mboxq), 7768 lpfc_sli_config_mbox_opcode_get( 7769 phba, mboxq), 7770 rc, dd); 7771 /* 7772 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7773 * calls depends on these resources to complete port setup. 7774 */ 7775 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7776 if (rc) { 7777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7778 "2920 Failed to alloc Resource IDs " 7779 "rc = x%x\n", rc); 7780 goto out_free_mbox; 7781 } 7782 7783 lpfc_set_host_data(phba, mboxq); 7784 7785 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7786 if (rc) { 7787 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7788 "2134 Failed to set host os driver version %x", 7789 rc); 7790 } 7791 7792 /* Read the port's service parameters. */ 7793 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7794 if (rc) { 7795 phba->link_state = LPFC_HBA_ERROR; 7796 rc = -ENOMEM; 7797 goto out_free_mbox; 7798 } 7799 7800 mboxq->vport = vport; 7801 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7802 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7803 if (rc == MBX_SUCCESS) { 7804 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7805 rc = 0; 7806 } 7807 7808 /* 7809 * This memory was allocated by the lpfc_read_sparam routine. Release 7810 * it to the mbuf pool. 7811 */ 7812 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7813 kfree(mp); 7814 mboxq->ctx_buf = NULL; 7815 if (unlikely(rc)) { 7816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7817 "0382 READ_SPARAM command failed " 7818 "status %d, mbxStatus x%x\n", 7819 rc, bf_get(lpfc_mqe_status, mqe)); 7820 phba->link_state = LPFC_HBA_ERROR; 7821 rc = -EIO; 7822 goto out_free_mbox; 7823 } 7824 7825 lpfc_update_vport_wwn(vport); 7826 7827 /* Update the fc_host data structures with new wwn. */ 7828 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7829 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7830 7831 /* Create all the SLI4 queues */ 7832 rc = lpfc_sli4_queue_create(phba); 7833 if (rc) { 7834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7835 "3089 Failed to allocate queues\n"); 7836 rc = -ENODEV; 7837 goto out_free_mbox; 7838 } 7839 /* Set up all the queues to the device */ 7840 rc = lpfc_sli4_queue_setup(phba); 7841 if (unlikely(rc)) { 7842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7843 "0381 Error %d during queue setup.\n ", rc); 7844 goto out_stop_timers; 7845 } 7846 /* Initialize the driver internal SLI layer lists. */ 7847 lpfc_sli4_setup(phba); 7848 lpfc_sli4_queue_init(phba); 7849 7850 /* update host els xri-sgl sizes and mappings */ 7851 rc = lpfc_sli4_els_sgl_update(phba); 7852 if (unlikely(rc)) { 7853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7854 "1400 Failed to update xri-sgl size and " 7855 "mapping: %d\n", rc); 7856 goto out_destroy_queue; 7857 } 7858 7859 /* register the els sgl pool to the port */ 7860 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7861 phba->sli4_hba.els_xri_cnt); 7862 if (unlikely(rc < 0)) { 7863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7864 "0582 Error %d during els sgl post " 7865 "operation\n", rc); 7866 rc = -ENODEV; 7867 goto out_destroy_queue; 7868 } 7869 phba->sli4_hba.els_xri_cnt = rc; 7870 7871 if (phba->nvmet_support) { 7872 /* update host nvmet xri-sgl sizes and mappings */ 7873 rc = lpfc_sli4_nvmet_sgl_update(phba); 7874 if (unlikely(rc)) { 7875 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7876 "6308 Failed to update nvmet-sgl size " 7877 "and mapping: %d\n", rc); 7878 goto out_destroy_queue; 7879 } 7880 7881 /* register the nvmet sgl pool to the port */ 7882 rc = lpfc_sli4_repost_sgl_list( 7883 phba, 7884 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7885 phba->sli4_hba.nvmet_xri_cnt); 7886 if (unlikely(rc < 0)) { 7887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7888 "3117 Error %d during nvmet " 7889 "sgl post\n", rc); 7890 rc = -ENODEV; 7891 goto out_destroy_queue; 7892 } 7893 phba->sli4_hba.nvmet_xri_cnt = rc; 7894 7895 /* We allocate an iocbq for every receive context SGL. 7896 * The additional allocation is for abort and ls handling. 7897 */ 7898 cnt = phba->sli4_hba.nvmet_xri_cnt + 7899 phba->sli4_hba.max_cfg_param.max_xri; 7900 } else { 7901 /* update host common xri-sgl sizes and mappings */ 7902 rc = lpfc_sli4_io_sgl_update(phba); 7903 if (unlikely(rc)) { 7904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7905 "6082 Failed to update nvme-sgl size " 7906 "and mapping: %d\n", rc); 7907 goto out_destroy_queue; 7908 } 7909 7910 /* register the allocated common sgl pool to the port */ 7911 rc = lpfc_sli4_repost_io_sgl_list(phba); 7912 if (unlikely(rc)) { 7913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7914 "6116 Error %d during nvme sgl post " 7915 "operation\n", rc); 7916 /* Some NVME buffers were moved to abort nvme list */ 7917 /* A pci function reset will repost them */ 7918 rc = -ENODEV; 7919 goto out_destroy_queue; 7920 } 7921 /* Each lpfc_io_buf job structure has an iocbq element. 7922 * This cnt provides for abort, els, ct and ls requests. 7923 */ 7924 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7925 } 7926 7927 if (!phba->sli.iocbq_lookup) { 7928 /* Initialize and populate the iocb list per host */ 7929 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7930 "2821 initialize iocb list with %d entries\n", 7931 cnt); 7932 rc = lpfc_init_iocb_list(phba, cnt); 7933 if (rc) { 7934 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7935 "1413 Failed to init iocb list.\n"); 7936 goto out_destroy_queue; 7937 } 7938 } 7939 7940 if (phba->nvmet_support) 7941 lpfc_nvmet_create_targetport(phba); 7942 7943 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7944 /* Post initial buffers to all RQs created */ 7945 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7946 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7947 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7948 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7949 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7950 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7951 rqbp->buffer_count = 0; 7952 7953 lpfc_post_rq_buffer( 7954 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7955 phba->sli4_hba.nvmet_mrq_data[i], 7956 phba->cfg_nvmet_mrq_post, i); 7957 } 7958 } 7959 7960 /* Post the rpi header region to the device. */ 7961 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7962 if (unlikely(rc)) { 7963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7964 "0393 Error %d during rpi post operation\n", 7965 rc); 7966 rc = -ENODEV; 7967 goto out_free_iocblist; 7968 } 7969 lpfc_sli4_node_prep(phba); 7970 7971 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7972 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7973 /* 7974 * The FC Port needs to register FCFI (index 0) 7975 */ 7976 lpfc_reg_fcfi(phba, mboxq); 7977 mboxq->vport = phba->pport; 7978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7979 if (rc != MBX_SUCCESS) 7980 goto out_unset_queue; 7981 rc = 0; 7982 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7983 &mboxq->u.mqe.un.reg_fcfi); 7984 } else { 7985 /* We are a NVME Target mode with MRQ > 1 */ 7986 7987 /* First register the FCFI */ 7988 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7989 mboxq->vport = phba->pport; 7990 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7991 if (rc != MBX_SUCCESS) 7992 goto out_unset_queue; 7993 rc = 0; 7994 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7995 &mboxq->u.mqe.un.reg_fcfi_mrq); 7996 7997 /* Next register the MRQs */ 7998 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7999 mboxq->vport = phba->pport; 8000 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8001 if (rc != MBX_SUCCESS) 8002 goto out_unset_queue; 8003 rc = 0; 8004 } 8005 /* Check if the port is configured to be disabled */ 8006 lpfc_sli_read_link_ste(phba); 8007 } 8008 8009 /* Don't post more new bufs if repost already recovered 8010 * the nvme sgls. 8011 */ 8012 if (phba->nvmet_support == 0) { 8013 if (phba->sli4_hba.io_xri_cnt == 0) { 8014 len = lpfc_new_io_buf( 8015 phba, phba->sli4_hba.io_xri_max); 8016 if (len == 0) { 8017 rc = -ENOMEM; 8018 goto out_unset_queue; 8019 } 8020 8021 if (phba->cfg_xri_rebalancing) 8022 lpfc_create_multixri_pools(phba); 8023 } 8024 } else { 8025 phba->cfg_xri_rebalancing = 0; 8026 } 8027 8028 /* Allow asynchronous mailbox command to go through */ 8029 spin_lock_irq(&phba->hbalock); 8030 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8031 spin_unlock_irq(&phba->hbalock); 8032 8033 /* Post receive buffers to the device */ 8034 lpfc_sli4_rb_setup(phba); 8035 8036 /* Reset HBA FCF states after HBA reset */ 8037 phba->fcf.fcf_flag = 0; 8038 phba->fcf.current_rec.flag = 0; 8039 8040 /* Start the ELS watchdog timer */ 8041 mod_timer(&vport->els_tmofunc, 8042 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8043 8044 /* Start heart beat timer */ 8045 mod_timer(&phba->hb_tmofunc, 8046 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8047 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8048 phba->last_completion_time = jiffies; 8049 8050 /* start eq_delay heartbeat */ 8051 if (phba->cfg_auto_imax) 8052 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8053 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8054 8055 /* start per phba idle_stat_delay heartbeat */ 8056 lpfc_init_idle_stat_hb(phba); 8057 8058 /* Start error attention (ERATT) polling timer */ 8059 mod_timer(&phba->eratt_poll, 8060 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8061 8062 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8063 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8064 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8065 if (!rc) { 8066 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8067 "2829 This device supports " 8068 "Advanced Error Reporting (AER)\n"); 8069 spin_lock_irq(&phba->hbalock); 8070 phba->hba_flag |= HBA_AER_ENABLED; 8071 spin_unlock_irq(&phba->hbalock); 8072 } else { 8073 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8074 "2830 This device does not support " 8075 "Advanced Error Reporting (AER)\n"); 8076 phba->cfg_aer_support = 0; 8077 } 8078 rc = 0; 8079 } 8080 8081 /* 8082 * The port is ready, set the host's link state to LINK_DOWN 8083 * in preparation for link interrupts. 8084 */ 8085 spin_lock_irq(&phba->hbalock); 8086 phba->link_state = LPFC_LINK_DOWN; 8087 8088 /* Check if physical ports are trunked */ 8089 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8090 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8091 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8092 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8093 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8094 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8095 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8096 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8097 spin_unlock_irq(&phba->hbalock); 8098 8099 /* Arm the CQs and then EQs on device */ 8100 lpfc_sli4_arm_cqeq_intr(phba); 8101 8102 /* Indicate device interrupt mode */ 8103 phba->sli4_hba.intr_enable = 1; 8104 8105 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8106 (phba->hba_flag & LINK_DISABLED)) { 8107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8108 "3103 Adapter Link is disabled.\n"); 8109 lpfc_down_link(phba, mboxq); 8110 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8111 if (rc != MBX_SUCCESS) { 8112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8113 "3104 Adapter failed to issue " 8114 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8115 goto out_io_buff_free; 8116 } 8117 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8118 /* don't perform init_link on SLI4 FC port loopback test */ 8119 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8120 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8121 if (rc) 8122 goto out_io_buff_free; 8123 } 8124 } 8125 mempool_free(mboxq, phba->mbox_mem_pool); 8126 return rc; 8127 out_io_buff_free: 8128 /* Free allocated IO Buffers */ 8129 lpfc_io_free(phba); 8130 out_unset_queue: 8131 /* Unset all the queues set up in this routine when error out */ 8132 lpfc_sli4_queue_unset(phba); 8133 out_free_iocblist: 8134 lpfc_free_iocb_list(phba); 8135 out_destroy_queue: 8136 lpfc_sli4_queue_destroy(phba); 8137 out_stop_timers: 8138 lpfc_stop_hba_timers(phba); 8139 out_free_mbox: 8140 mempool_free(mboxq, phba->mbox_mem_pool); 8141 return rc; 8142 } 8143 8144 /** 8145 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8146 * @t: Context to fetch pointer to hba structure from. 8147 * 8148 * This is the callback function for mailbox timer. The mailbox 8149 * timer is armed when a new mailbox command is issued and the timer 8150 * is deleted when the mailbox complete. The function is called by 8151 * the kernel timer code when a mailbox does not complete within 8152 * expected time. This function wakes up the worker thread to 8153 * process the mailbox timeout and returns. All the processing is 8154 * done by the worker thread function lpfc_mbox_timeout_handler. 8155 **/ 8156 void 8157 lpfc_mbox_timeout(struct timer_list *t) 8158 { 8159 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8160 unsigned long iflag; 8161 uint32_t tmo_posted; 8162 8163 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8164 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8165 if (!tmo_posted) 8166 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8167 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8168 8169 if (!tmo_posted) 8170 lpfc_worker_wake_up(phba); 8171 return; 8172 } 8173 8174 /** 8175 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8176 * are pending 8177 * @phba: Pointer to HBA context object. 8178 * 8179 * This function checks if any mailbox completions are present on the mailbox 8180 * completion queue. 8181 **/ 8182 static bool 8183 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8184 { 8185 8186 uint32_t idx; 8187 struct lpfc_queue *mcq; 8188 struct lpfc_mcqe *mcqe; 8189 bool pending_completions = false; 8190 uint8_t qe_valid; 8191 8192 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8193 return false; 8194 8195 /* Check for completions on mailbox completion queue */ 8196 8197 mcq = phba->sli4_hba.mbx_cq; 8198 idx = mcq->hba_index; 8199 qe_valid = mcq->qe_valid; 8200 while (bf_get_le32(lpfc_cqe_valid, 8201 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8202 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8203 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8204 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8205 pending_completions = true; 8206 break; 8207 } 8208 idx = (idx + 1) % mcq->entry_count; 8209 if (mcq->hba_index == idx) 8210 break; 8211 8212 /* if the index wrapped around, toggle the valid bit */ 8213 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8214 qe_valid = (qe_valid) ? 0 : 1; 8215 } 8216 return pending_completions; 8217 8218 } 8219 8220 /** 8221 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8222 * that were missed. 8223 * @phba: Pointer to HBA context object. 8224 * 8225 * For sli4, it is possible to miss an interrupt. As such mbox completions 8226 * maybe missed causing erroneous mailbox timeouts to occur. This function 8227 * checks to see if mbox completions are on the mailbox completion queue 8228 * and will process all the completions associated with the eq for the 8229 * mailbox completion queue. 8230 **/ 8231 static bool 8232 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8233 { 8234 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8235 uint32_t eqidx; 8236 struct lpfc_queue *fpeq = NULL; 8237 struct lpfc_queue *eq; 8238 bool mbox_pending; 8239 8240 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8241 return false; 8242 8243 /* Find the EQ associated with the mbox CQ */ 8244 if (sli4_hba->hdwq) { 8245 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8246 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8247 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8248 fpeq = eq; 8249 break; 8250 } 8251 } 8252 } 8253 if (!fpeq) 8254 return false; 8255 8256 /* Turn off interrupts from this EQ */ 8257 8258 sli4_hba->sli4_eq_clr_intr(fpeq); 8259 8260 /* Check to see if a mbox completion is pending */ 8261 8262 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8263 8264 /* 8265 * If a mbox completion is pending, process all the events on EQ 8266 * associated with the mbox completion queue (this could include 8267 * mailbox commands, async events, els commands, receive queue data 8268 * and fcp commands) 8269 */ 8270 8271 if (mbox_pending) 8272 /* process and rearm the EQ */ 8273 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8274 else 8275 /* Always clear and re-arm the EQ */ 8276 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8277 8278 return mbox_pending; 8279 8280 } 8281 8282 /** 8283 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8284 * @phba: Pointer to HBA context object. 8285 * 8286 * This function is called from worker thread when a mailbox command times out. 8287 * The caller is not required to hold any locks. This function will reset the 8288 * HBA and recover all the pending commands. 8289 **/ 8290 void 8291 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8292 { 8293 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8294 MAILBOX_t *mb = NULL; 8295 8296 struct lpfc_sli *psli = &phba->sli; 8297 8298 /* If the mailbox completed, process the completion */ 8299 lpfc_sli4_process_missed_mbox_completions(phba); 8300 8301 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8302 return; 8303 8304 if (pmbox != NULL) 8305 mb = &pmbox->u.mb; 8306 /* Check the pmbox pointer first. There is a race condition 8307 * between the mbox timeout handler getting executed in the 8308 * worklist and the mailbox actually completing. When this 8309 * race condition occurs, the mbox_active will be NULL. 8310 */ 8311 spin_lock_irq(&phba->hbalock); 8312 if (pmbox == NULL) { 8313 lpfc_printf_log(phba, KERN_WARNING, 8314 LOG_MBOX | LOG_SLI, 8315 "0353 Active Mailbox cleared - mailbox timeout " 8316 "exiting\n"); 8317 spin_unlock_irq(&phba->hbalock); 8318 return; 8319 } 8320 8321 /* Mbox cmd <mbxCommand> timeout */ 8322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8323 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8324 mb->mbxCommand, 8325 phba->pport->port_state, 8326 phba->sli.sli_flag, 8327 phba->sli.mbox_active); 8328 spin_unlock_irq(&phba->hbalock); 8329 8330 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8331 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8332 * it to fail all outstanding SCSI IO. 8333 */ 8334 spin_lock_irq(&phba->pport->work_port_lock); 8335 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8336 spin_unlock_irq(&phba->pport->work_port_lock); 8337 spin_lock_irq(&phba->hbalock); 8338 phba->link_state = LPFC_LINK_UNKNOWN; 8339 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8340 spin_unlock_irq(&phba->hbalock); 8341 8342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8343 "0345 Resetting board due to mailbox timeout\n"); 8344 8345 /* Reset the HBA device */ 8346 lpfc_reset_hba(phba); 8347 } 8348 8349 /** 8350 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8351 * @phba: Pointer to HBA context object. 8352 * @pmbox: Pointer to mailbox object. 8353 * @flag: Flag indicating how the mailbox need to be processed. 8354 * 8355 * This function is called by discovery code and HBA management code 8356 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8357 * function gets the hbalock to protect the data structures. 8358 * The mailbox command can be submitted in polling mode, in which case 8359 * this function will wait in a polling loop for the completion of the 8360 * mailbox. 8361 * If the mailbox is submitted in no_wait mode (not polling) the 8362 * function will submit the command and returns immediately without waiting 8363 * for the mailbox completion. The no_wait is supported only when HBA 8364 * is in SLI2/SLI3 mode - interrupts are enabled. 8365 * The SLI interface allows only one mailbox pending at a time. If the 8366 * mailbox is issued in polling mode and there is already a mailbox 8367 * pending, then the function will return an error. If the mailbox is issued 8368 * in NO_WAIT mode and there is a mailbox pending already, the function 8369 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8370 * The sli layer owns the mailbox object until the completion of mailbox 8371 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8372 * return codes the caller owns the mailbox command after the return of 8373 * the function. 8374 **/ 8375 static int 8376 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8377 uint32_t flag) 8378 { 8379 MAILBOX_t *mbx; 8380 struct lpfc_sli *psli = &phba->sli; 8381 uint32_t status, evtctr; 8382 uint32_t ha_copy, hc_copy; 8383 int i; 8384 unsigned long timeout; 8385 unsigned long drvr_flag = 0; 8386 uint32_t word0, ldata; 8387 void __iomem *to_slim; 8388 int processing_queue = 0; 8389 8390 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8391 if (!pmbox) { 8392 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8393 /* processing mbox queue from intr_handler */ 8394 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8396 return MBX_SUCCESS; 8397 } 8398 processing_queue = 1; 8399 pmbox = lpfc_mbox_get(phba); 8400 if (!pmbox) { 8401 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8402 return MBX_SUCCESS; 8403 } 8404 } 8405 8406 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8407 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8408 if(!pmbox->vport) { 8409 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8410 lpfc_printf_log(phba, KERN_ERR, 8411 LOG_MBOX | LOG_VPORT, 8412 "1806 Mbox x%x failed. No vport\n", 8413 pmbox->u.mb.mbxCommand); 8414 dump_stack(); 8415 goto out_not_finished; 8416 } 8417 } 8418 8419 /* If the PCI channel is in offline state, do not post mbox. */ 8420 if (unlikely(pci_channel_offline(phba->pcidev))) { 8421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8422 goto out_not_finished; 8423 } 8424 8425 /* If HBA has a deferred error attention, fail the iocb. */ 8426 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8427 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8428 goto out_not_finished; 8429 } 8430 8431 psli = &phba->sli; 8432 8433 mbx = &pmbox->u.mb; 8434 status = MBX_SUCCESS; 8435 8436 if (phba->link_state == LPFC_HBA_ERROR) { 8437 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8438 8439 /* Mbox command <mbxCommand> cannot issue */ 8440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8441 "(%d):0311 Mailbox command x%x cannot " 8442 "issue Data: x%x x%x\n", 8443 pmbox->vport ? pmbox->vport->vpi : 0, 8444 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8445 goto out_not_finished; 8446 } 8447 8448 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8449 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8450 !(hc_copy & HC_MBINT_ENA)) { 8451 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8453 "(%d):2528 Mailbox command x%x cannot " 8454 "issue Data: x%x x%x\n", 8455 pmbox->vport ? pmbox->vport->vpi : 0, 8456 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8457 goto out_not_finished; 8458 } 8459 } 8460 8461 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8462 /* Polling for a mbox command when another one is already active 8463 * is not allowed in SLI. Also, the driver must have established 8464 * SLI2 mode to queue and process multiple mbox commands. 8465 */ 8466 8467 if (flag & MBX_POLL) { 8468 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8469 8470 /* Mbox command <mbxCommand> cannot issue */ 8471 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8472 "(%d):2529 Mailbox command x%x " 8473 "cannot issue Data: x%x x%x\n", 8474 pmbox->vport ? pmbox->vport->vpi : 0, 8475 pmbox->u.mb.mbxCommand, 8476 psli->sli_flag, flag); 8477 goto out_not_finished; 8478 } 8479 8480 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8481 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8482 /* Mbox command <mbxCommand> cannot issue */ 8483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8484 "(%d):2530 Mailbox command x%x " 8485 "cannot issue Data: x%x x%x\n", 8486 pmbox->vport ? pmbox->vport->vpi : 0, 8487 pmbox->u.mb.mbxCommand, 8488 psli->sli_flag, flag); 8489 goto out_not_finished; 8490 } 8491 8492 /* Another mailbox command is still being processed, queue this 8493 * command to be processed later. 8494 */ 8495 lpfc_mbox_put(phba, pmbox); 8496 8497 /* Mbox cmd issue - BUSY */ 8498 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8499 "(%d):0308 Mbox cmd issue - BUSY Data: " 8500 "x%x x%x x%x x%x\n", 8501 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8502 mbx->mbxCommand, 8503 phba->pport ? phba->pport->port_state : 0xff, 8504 psli->sli_flag, flag); 8505 8506 psli->slistat.mbox_busy++; 8507 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8508 8509 if (pmbox->vport) { 8510 lpfc_debugfs_disc_trc(pmbox->vport, 8511 LPFC_DISC_TRC_MBOX_VPORT, 8512 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8513 (uint32_t)mbx->mbxCommand, 8514 mbx->un.varWords[0], mbx->un.varWords[1]); 8515 } 8516 else { 8517 lpfc_debugfs_disc_trc(phba->pport, 8518 LPFC_DISC_TRC_MBOX, 8519 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8520 (uint32_t)mbx->mbxCommand, 8521 mbx->un.varWords[0], mbx->un.varWords[1]); 8522 } 8523 8524 return MBX_BUSY; 8525 } 8526 8527 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8528 8529 /* If we are not polling, we MUST be in SLI2 mode */ 8530 if (flag != MBX_POLL) { 8531 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8532 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8533 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8534 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8535 /* Mbox command <mbxCommand> cannot issue */ 8536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8537 "(%d):2531 Mailbox command x%x " 8538 "cannot issue Data: x%x x%x\n", 8539 pmbox->vport ? pmbox->vport->vpi : 0, 8540 pmbox->u.mb.mbxCommand, 8541 psli->sli_flag, flag); 8542 goto out_not_finished; 8543 } 8544 /* timeout active mbox command */ 8545 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8546 1000); 8547 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8548 } 8549 8550 /* Mailbox cmd <cmd> issue */ 8551 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8552 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8553 "x%x\n", 8554 pmbox->vport ? pmbox->vport->vpi : 0, 8555 mbx->mbxCommand, 8556 phba->pport ? phba->pport->port_state : 0xff, 8557 psli->sli_flag, flag); 8558 8559 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8560 if (pmbox->vport) { 8561 lpfc_debugfs_disc_trc(pmbox->vport, 8562 LPFC_DISC_TRC_MBOX_VPORT, 8563 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8564 (uint32_t)mbx->mbxCommand, 8565 mbx->un.varWords[0], mbx->un.varWords[1]); 8566 } 8567 else { 8568 lpfc_debugfs_disc_trc(phba->pport, 8569 LPFC_DISC_TRC_MBOX, 8570 "MBOX Send: cmd:x%x mb:x%x x%x", 8571 (uint32_t)mbx->mbxCommand, 8572 mbx->un.varWords[0], mbx->un.varWords[1]); 8573 } 8574 } 8575 8576 psli->slistat.mbox_cmd++; 8577 evtctr = psli->slistat.mbox_event; 8578 8579 /* next set own bit for the adapter and copy over command word */ 8580 mbx->mbxOwner = OWN_CHIP; 8581 8582 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8583 /* Populate mbox extension offset word. */ 8584 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8585 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8586 = (uint8_t *)phba->mbox_ext 8587 - (uint8_t *)phba->mbox; 8588 } 8589 8590 /* Copy the mailbox extension data */ 8591 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8592 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8593 (uint8_t *)phba->mbox_ext, 8594 pmbox->in_ext_byte_len); 8595 } 8596 /* Copy command data to host SLIM area */ 8597 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8598 } else { 8599 /* Populate mbox extension offset word. */ 8600 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8601 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8602 = MAILBOX_HBA_EXT_OFFSET; 8603 8604 /* Copy the mailbox extension data */ 8605 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8606 lpfc_memcpy_to_slim(phba->MBslimaddr + 8607 MAILBOX_HBA_EXT_OFFSET, 8608 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8609 8610 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8611 /* copy command data into host mbox for cmpl */ 8612 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8613 MAILBOX_CMD_SIZE); 8614 8615 /* First copy mbox command data to HBA SLIM, skip past first 8616 word */ 8617 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8618 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8619 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8620 8621 /* Next copy over first word, with mbxOwner set */ 8622 ldata = *((uint32_t *)mbx); 8623 to_slim = phba->MBslimaddr; 8624 writel(ldata, to_slim); 8625 readl(to_slim); /* flush */ 8626 8627 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8628 /* switch over to host mailbox */ 8629 psli->sli_flag |= LPFC_SLI_ACTIVE; 8630 } 8631 8632 wmb(); 8633 8634 switch (flag) { 8635 case MBX_NOWAIT: 8636 /* Set up reference to mailbox command */ 8637 psli->mbox_active = pmbox; 8638 /* Interrupt board to do it */ 8639 writel(CA_MBATT, phba->CAregaddr); 8640 readl(phba->CAregaddr); /* flush */ 8641 /* Don't wait for it to finish, just return */ 8642 break; 8643 8644 case MBX_POLL: 8645 /* Set up null reference to mailbox command */ 8646 psli->mbox_active = NULL; 8647 /* Interrupt board to do it */ 8648 writel(CA_MBATT, phba->CAregaddr); 8649 readl(phba->CAregaddr); /* flush */ 8650 8651 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8652 /* First read mbox status word */ 8653 word0 = *((uint32_t *)phba->mbox); 8654 word0 = le32_to_cpu(word0); 8655 } else { 8656 /* First read mbox status word */ 8657 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8658 spin_unlock_irqrestore(&phba->hbalock, 8659 drvr_flag); 8660 goto out_not_finished; 8661 } 8662 } 8663 8664 /* Read the HBA Host Attention Register */ 8665 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8666 spin_unlock_irqrestore(&phba->hbalock, 8667 drvr_flag); 8668 goto out_not_finished; 8669 } 8670 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8671 1000) + jiffies; 8672 i = 0; 8673 /* Wait for command to complete */ 8674 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8675 (!(ha_copy & HA_MBATT) && 8676 (phba->link_state > LPFC_WARM_START))) { 8677 if (time_after(jiffies, timeout)) { 8678 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8679 spin_unlock_irqrestore(&phba->hbalock, 8680 drvr_flag); 8681 goto out_not_finished; 8682 } 8683 8684 /* Check if we took a mbox interrupt while we were 8685 polling */ 8686 if (((word0 & OWN_CHIP) != OWN_CHIP) 8687 && (evtctr != psli->slistat.mbox_event)) 8688 break; 8689 8690 if (i++ > 10) { 8691 spin_unlock_irqrestore(&phba->hbalock, 8692 drvr_flag); 8693 msleep(1); 8694 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8695 } 8696 8697 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8698 /* First copy command data */ 8699 word0 = *((uint32_t *)phba->mbox); 8700 word0 = le32_to_cpu(word0); 8701 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8702 MAILBOX_t *slimmb; 8703 uint32_t slimword0; 8704 /* Check real SLIM for any errors */ 8705 slimword0 = readl(phba->MBslimaddr); 8706 slimmb = (MAILBOX_t *) & slimword0; 8707 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8708 && slimmb->mbxStatus) { 8709 psli->sli_flag &= 8710 ~LPFC_SLI_ACTIVE; 8711 word0 = slimword0; 8712 } 8713 } 8714 } else { 8715 /* First copy command data */ 8716 word0 = readl(phba->MBslimaddr); 8717 } 8718 /* Read the HBA Host Attention Register */ 8719 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8720 spin_unlock_irqrestore(&phba->hbalock, 8721 drvr_flag); 8722 goto out_not_finished; 8723 } 8724 } 8725 8726 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8727 /* copy results back to user */ 8728 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8729 MAILBOX_CMD_SIZE); 8730 /* Copy the mailbox extension data */ 8731 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8732 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8733 pmbox->ctx_buf, 8734 pmbox->out_ext_byte_len); 8735 } 8736 } else { 8737 /* First copy command data */ 8738 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8739 MAILBOX_CMD_SIZE); 8740 /* Copy the mailbox extension data */ 8741 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8742 lpfc_memcpy_from_slim( 8743 pmbox->ctx_buf, 8744 phba->MBslimaddr + 8745 MAILBOX_HBA_EXT_OFFSET, 8746 pmbox->out_ext_byte_len); 8747 } 8748 } 8749 8750 writel(HA_MBATT, phba->HAregaddr); 8751 readl(phba->HAregaddr); /* flush */ 8752 8753 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8754 status = mbx->mbxStatus; 8755 } 8756 8757 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8758 return status; 8759 8760 out_not_finished: 8761 if (processing_queue) { 8762 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8763 lpfc_mbox_cmpl_put(phba, pmbox); 8764 } 8765 return MBX_NOT_FINISHED; 8766 } 8767 8768 /** 8769 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8770 * @phba: Pointer to HBA context object. 8771 * 8772 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8773 * the driver internal pending mailbox queue. It will then try to wait out the 8774 * possible outstanding mailbox command before return. 8775 * 8776 * Returns: 8777 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8778 * the outstanding mailbox command timed out. 8779 **/ 8780 static int 8781 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8782 { 8783 struct lpfc_sli *psli = &phba->sli; 8784 int rc = 0; 8785 unsigned long timeout = 0; 8786 8787 /* Mark the asynchronous mailbox command posting as blocked */ 8788 spin_lock_irq(&phba->hbalock); 8789 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8790 /* Determine how long we might wait for the active mailbox 8791 * command to be gracefully completed by firmware. 8792 */ 8793 if (phba->sli.mbox_active) 8794 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8795 phba->sli.mbox_active) * 8796 1000) + jiffies; 8797 spin_unlock_irq(&phba->hbalock); 8798 8799 /* Make sure the mailbox is really active */ 8800 if (timeout) 8801 lpfc_sli4_process_missed_mbox_completions(phba); 8802 8803 /* Wait for the outstnading mailbox command to complete */ 8804 while (phba->sli.mbox_active) { 8805 /* Check active mailbox complete status every 2ms */ 8806 msleep(2); 8807 if (time_after(jiffies, timeout)) { 8808 /* Timeout, marked the outstanding cmd not complete */ 8809 rc = 1; 8810 break; 8811 } 8812 } 8813 8814 /* Can not cleanly block async mailbox command, fails it */ 8815 if (rc) { 8816 spin_lock_irq(&phba->hbalock); 8817 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8818 spin_unlock_irq(&phba->hbalock); 8819 } 8820 return rc; 8821 } 8822 8823 /** 8824 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8825 * @phba: Pointer to HBA context object. 8826 * 8827 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8828 * commands from the driver internal pending mailbox queue. It makes sure 8829 * that there is no outstanding mailbox command before resuming posting 8830 * asynchronous mailbox commands. If, for any reason, there is outstanding 8831 * mailbox command, it will try to wait it out before resuming asynchronous 8832 * mailbox command posting. 8833 **/ 8834 static void 8835 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8836 { 8837 struct lpfc_sli *psli = &phba->sli; 8838 8839 spin_lock_irq(&phba->hbalock); 8840 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8841 /* Asynchronous mailbox posting is not blocked, do nothing */ 8842 spin_unlock_irq(&phba->hbalock); 8843 return; 8844 } 8845 8846 /* Outstanding synchronous mailbox command is guaranteed to be done, 8847 * successful or timeout, after timing-out the outstanding mailbox 8848 * command shall always be removed, so just unblock posting async 8849 * mailbox command and resume 8850 */ 8851 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8852 spin_unlock_irq(&phba->hbalock); 8853 8854 /* wake up worker thread to post asynchronous mailbox command */ 8855 lpfc_worker_wake_up(phba); 8856 } 8857 8858 /** 8859 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8860 * @phba: Pointer to HBA context object. 8861 * @mboxq: Pointer to mailbox object. 8862 * 8863 * The function waits for the bootstrap mailbox register ready bit from 8864 * port for twice the regular mailbox command timeout value. 8865 * 8866 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8867 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8868 **/ 8869 static int 8870 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8871 { 8872 uint32_t db_ready; 8873 unsigned long timeout; 8874 struct lpfc_register bmbx_reg; 8875 8876 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8877 * 1000) + jiffies; 8878 8879 do { 8880 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8881 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8882 if (!db_ready) 8883 mdelay(2); 8884 8885 if (time_after(jiffies, timeout)) 8886 return MBXERR_ERROR; 8887 } while (!db_ready); 8888 8889 return 0; 8890 } 8891 8892 /** 8893 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8894 * @phba: Pointer to HBA context object. 8895 * @mboxq: Pointer to mailbox object. 8896 * 8897 * The function posts a mailbox to the port. The mailbox is expected 8898 * to be comletely filled in and ready for the port to operate on it. 8899 * This routine executes a synchronous completion operation on the 8900 * mailbox by polling for its completion. 8901 * 8902 * The caller must not be holding any locks when calling this routine. 8903 * 8904 * Returns: 8905 * MBX_SUCCESS - mailbox posted successfully 8906 * Any of the MBX error values. 8907 **/ 8908 static int 8909 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8910 { 8911 int rc = MBX_SUCCESS; 8912 unsigned long iflag; 8913 uint32_t mcqe_status; 8914 uint32_t mbx_cmnd; 8915 struct lpfc_sli *psli = &phba->sli; 8916 struct lpfc_mqe *mb = &mboxq->u.mqe; 8917 struct lpfc_bmbx_create *mbox_rgn; 8918 struct dma_address *dma_address; 8919 8920 /* 8921 * Only one mailbox can be active to the bootstrap mailbox region 8922 * at a time and there is no queueing provided. 8923 */ 8924 spin_lock_irqsave(&phba->hbalock, iflag); 8925 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8926 spin_unlock_irqrestore(&phba->hbalock, iflag); 8927 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8928 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8929 "cannot issue Data: x%x x%x\n", 8930 mboxq->vport ? mboxq->vport->vpi : 0, 8931 mboxq->u.mb.mbxCommand, 8932 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8933 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8934 psli->sli_flag, MBX_POLL); 8935 return MBXERR_ERROR; 8936 } 8937 /* The server grabs the token and owns it until release */ 8938 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8939 phba->sli.mbox_active = mboxq; 8940 spin_unlock_irqrestore(&phba->hbalock, iflag); 8941 8942 /* wait for bootstrap mbox register for readyness */ 8943 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8944 if (rc) 8945 goto exit; 8946 /* 8947 * Initialize the bootstrap memory region to avoid stale data areas 8948 * in the mailbox post. Then copy the caller's mailbox contents to 8949 * the bmbx mailbox region. 8950 */ 8951 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8952 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8953 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8954 sizeof(struct lpfc_mqe)); 8955 8956 /* Post the high mailbox dma address to the port and wait for ready. */ 8957 dma_address = &phba->sli4_hba.bmbx.dma_address; 8958 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8959 8960 /* wait for bootstrap mbox register for hi-address write done */ 8961 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8962 if (rc) 8963 goto exit; 8964 8965 /* Post the low mailbox dma address to the port. */ 8966 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8967 8968 /* wait for bootstrap mbox register for low address write done */ 8969 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8970 if (rc) 8971 goto exit; 8972 8973 /* 8974 * Read the CQ to ensure the mailbox has completed. 8975 * If so, update the mailbox status so that the upper layers 8976 * can complete the request normally. 8977 */ 8978 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8979 sizeof(struct lpfc_mqe)); 8980 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8981 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8982 sizeof(struct lpfc_mcqe)); 8983 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8984 /* 8985 * When the CQE status indicates a failure and the mailbox status 8986 * indicates success then copy the CQE status into the mailbox status 8987 * (and prefix it with x4000). 8988 */ 8989 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8990 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8991 bf_set(lpfc_mqe_status, mb, 8992 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8993 rc = MBXERR_ERROR; 8994 } else 8995 lpfc_sli4_swap_str(phba, mboxq); 8996 8997 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8998 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8999 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9000 " x%x x%x CQ: x%x x%x x%x x%x\n", 9001 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9002 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9003 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9004 bf_get(lpfc_mqe_status, mb), 9005 mb->un.mb_words[0], mb->un.mb_words[1], 9006 mb->un.mb_words[2], mb->un.mb_words[3], 9007 mb->un.mb_words[4], mb->un.mb_words[5], 9008 mb->un.mb_words[6], mb->un.mb_words[7], 9009 mb->un.mb_words[8], mb->un.mb_words[9], 9010 mb->un.mb_words[10], mb->un.mb_words[11], 9011 mb->un.mb_words[12], mboxq->mcqe.word0, 9012 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9013 mboxq->mcqe.trailer); 9014 exit: 9015 /* We are holding the token, no needed for lock when release */ 9016 spin_lock_irqsave(&phba->hbalock, iflag); 9017 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9018 phba->sli.mbox_active = NULL; 9019 spin_unlock_irqrestore(&phba->hbalock, iflag); 9020 return rc; 9021 } 9022 9023 /** 9024 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9025 * @phba: Pointer to HBA context object. 9026 * @mboxq: Pointer to mailbox object. 9027 * @flag: Flag indicating how the mailbox need to be processed. 9028 * 9029 * This function is called by discovery code and HBA management code to submit 9030 * a mailbox command to firmware with SLI-4 interface spec. 9031 * 9032 * Return codes the caller owns the mailbox command after the return of the 9033 * function. 9034 **/ 9035 static int 9036 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9037 uint32_t flag) 9038 { 9039 struct lpfc_sli *psli = &phba->sli; 9040 unsigned long iflags; 9041 int rc; 9042 9043 /* dump from issue mailbox command if setup */ 9044 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9045 9046 rc = lpfc_mbox_dev_check(phba); 9047 if (unlikely(rc)) { 9048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9049 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9050 "cannot issue Data: x%x x%x\n", 9051 mboxq->vport ? mboxq->vport->vpi : 0, 9052 mboxq->u.mb.mbxCommand, 9053 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9054 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9055 psli->sli_flag, flag); 9056 goto out_not_finished; 9057 } 9058 9059 /* Detect polling mode and jump to a handler */ 9060 if (!phba->sli4_hba.intr_enable) { 9061 if (flag == MBX_POLL) 9062 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9063 else 9064 rc = -EIO; 9065 if (rc != MBX_SUCCESS) 9066 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9067 "(%d):2541 Mailbox command x%x " 9068 "(x%x/x%x) failure: " 9069 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9070 "Data: x%x x%x\n,", 9071 mboxq->vport ? mboxq->vport->vpi : 0, 9072 mboxq->u.mb.mbxCommand, 9073 lpfc_sli_config_mbox_subsys_get(phba, 9074 mboxq), 9075 lpfc_sli_config_mbox_opcode_get(phba, 9076 mboxq), 9077 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9078 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9079 bf_get(lpfc_mcqe_ext_status, 9080 &mboxq->mcqe), 9081 psli->sli_flag, flag); 9082 return rc; 9083 } else if (flag == MBX_POLL) { 9084 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9085 "(%d):2542 Try to issue mailbox command " 9086 "x%x (x%x/x%x) synchronously ahead of async " 9087 "mailbox command queue: x%x x%x\n", 9088 mboxq->vport ? mboxq->vport->vpi : 0, 9089 mboxq->u.mb.mbxCommand, 9090 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9091 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9092 psli->sli_flag, flag); 9093 /* Try to block the asynchronous mailbox posting */ 9094 rc = lpfc_sli4_async_mbox_block(phba); 9095 if (!rc) { 9096 /* Successfully blocked, now issue sync mbox cmd */ 9097 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9098 if (rc != MBX_SUCCESS) 9099 lpfc_printf_log(phba, KERN_WARNING, 9100 LOG_MBOX | LOG_SLI, 9101 "(%d):2597 Sync Mailbox command " 9102 "x%x (x%x/x%x) failure: " 9103 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9104 "Data: x%x x%x\n,", 9105 mboxq->vport ? mboxq->vport->vpi : 0, 9106 mboxq->u.mb.mbxCommand, 9107 lpfc_sli_config_mbox_subsys_get(phba, 9108 mboxq), 9109 lpfc_sli_config_mbox_opcode_get(phba, 9110 mboxq), 9111 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9112 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9113 bf_get(lpfc_mcqe_ext_status, 9114 &mboxq->mcqe), 9115 psli->sli_flag, flag); 9116 /* Unblock the async mailbox posting afterward */ 9117 lpfc_sli4_async_mbox_unblock(phba); 9118 } 9119 return rc; 9120 } 9121 9122 /* Now, interrupt mode asynchronous mailbox command */ 9123 rc = lpfc_mbox_cmd_check(phba, mboxq); 9124 if (rc) { 9125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9126 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9127 "cannot issue Data: x%x x%x\n", 9128 mboxq->vport ? mboxq->vport->vpi : 0, 9129 mboxq->u.mb.mbxCommand, 9130 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9131 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9132 psli->sli_flag, flag); 9133 goto out_not_finished; 9134 } 9135 9136 /* Put the mailbox command to the driver internal FIFO */ 9137 psli->slistat.mbox_busy++; 9138 spin_lock_irqsave(&phba->hbalock, iflags); 9139 lpfc_mbox_put(phba, mboxq); 9140 spin_unlock_irqrestore(&phba->hbalock, iflags); 9141 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9142 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9143 "x%x (x%x/x%x) x%x x%x x%x\n", 9144 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9145 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9146 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9147 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9148 phba->pport->port_state, 9149 psli->sli_flag, MBX_NOWAIT); 9150 /* Wake up worker thread to transport mailbox command from head */ 9151 lpfc_worker_wake_up(phba); 9152 9153 return MBX_BUSY; 9154 9155 out_not_finished: 9156 return MBX_NOT_FINISHED; 9157 } 9158 9159 /** 9160 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9161 * @phba: Pointer to HBA context object. 9162 * 9163 * This function is called by worker thread to send a mailbox command to 9164 * SLI4 HBA firmware. 9165 * 9166 **/ 9167 int 9168 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9169 { 9170 struct lpfc_sli *psli = &phba->sli; 9171 LPFC_MBOXQ_t *mboxq; 9172 int rc = MBX_SUCCESS; 9173 unsigned long iflags; 9174 struct lpfc_mqe *mqe; 9175 uint32_t mbx_cmnd; 9176 9177 /* Check interrupt mode before post async mailbox command */ 9178 if (unlikely(!phba->sli4_hba.intr_enable)) 9179 return MBX_NOT_FINISHED; 9180 9181 /* Check for mailbox command service token */ 9182 spin_lock_irqsave(&phba->hbalock, iflags); 9183 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9184 spin_unlock_irqrestore(&phba->hbalock, iflags); 9185 return MBX_NOT_FINISHED; 9186 } 9187 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9188 spin_unlock_irqrestore(&phba->hbalock, iflags); 9189 return MBX_NOT_FINISHED; 9190 } 9191 if (unlikely(phba->sli.mbox_active)) { 9192 spin_unlock_irqrestore(&phba->hbalock, iflags); 9193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9194 "0384 There is pending active mailbox cmd\n"); 9195 return MBX_NOT_FINISHED; 9196 } 9197 /* Take the mailbox command service token */ 9198 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9199 9200 /* Get the next mailbox command from head of queue */ 9201 mboxq = lpfc_mbox_get(phba); 9202 9203 /* If no more mailbox command waiting for post, we're done */ 9204 if (!mboxq) { 9205 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9206 spin_unlock_irqrestore(&phba->hbalock, iflags); 9207 return MBX_SUCCESS; 9208 } 9209 phba->sli.mbox_active = mboxq; 9210 spin_unlock_irqrestore(&phba->hbalock, iflags); 9211 9212 /* Check device readiness for posting mailbox command */ 9213 rc = lpfc_mbox_dev_check(phba); 9214 if (unlikely(rc)) 9215 /* Driver clean routine will clean up pending mailbox */ 9216 goto out_not_finished; 9217 9218 /* Prepare the mbox command to be posted */ 9219 mqe = &mboxq->u.mqe; 9220 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9221 9222 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9223 mod_timer(&psli->mbox_tmo, (jiffies + 9224 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9225 9226 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9227 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9228 "x%x x%x\n", 9229 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9230 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9231 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9232 phba->pport->port_state, psli->sli_flag); 9233 9234 if (mbx_cmnd != MBX_HEARTBEAT) { 9235 if (mboxq->vport) { 9236 lpfc_debugfs_disc_trc(mboxq->vport, 9237 LPFC_DISC_TRC_MBOX_VPORT, 9238 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9239 mbx_cmnd, mqe->un.mb_words[0], 9240 mqe->un.mb_words[1]); 9241 } else { 9242 lpfc_debugfs_disc_trc(phba->pport, 9243 LPFC_DISC_TRC_MBOX, 9244 "MBOX Send: cmd:x%x mb:x%x x%x", 9245 mbx_cmnd, mqe->un.mb_words[0], 9246 mqe->un.mb_words[1]); 9247 } 9248 } 9249 psli->slistat.mbox_cmd++; 9250 9251 /* Post the mailbox command to the port */ 9252 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9253 if (rc != MBX_SUCCESS) { 9254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9255 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9256 "cannot issue Data: x%x x%x\n", 9257 mboxq->vport ? mboxq->vport->vpi : 0, 9258 mboxq->u.mb.mbxCommand, 9259 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9260 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9261 psli->sli_flag, MBX_NOWAIT); 9262 goto out_not_finished; 9263 } 9264 9265 return rc; 9266 9267 out_not_finished: 9268 spin_lock_irqsave(&phba->hbalock, iflags); 9269 if (phba->sli.mbox_active) { 9270 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9271 __lpfc_mbox_cmpl_put(phba, mboxq); 9272 /* Release the token */ 9273 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9274 phba->sli.mbox_active = NULL; 9275 } 9276 spin_unlock_irqrestore(&phba->hbalock, iflags); 9277 9278 return MBX_NOT_FINISHED; 9279 } 9280 9281 /** 9282 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9283 * @phba: Pointer to HBA context object. 9284 * @pmbox: Pointer to mailbox object. 9285 * @flag: Flag indicating how the mailbox need to be processed. 9286 * 9287 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9288 * the API jump table function pointer from the lpfc_hba struct. 9289 * 9290 * Return codes the caller owns the mailbox command after the return of the 9291 * function. 9292 **/ 9293 int 9294 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9295 { 9296 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9297 } 9298 9299 /** 9300 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9301 * @phba: The hba struct for which this call is being executed. 9302 * @dev_grp: The HBA PCI-Device group number. 9303 * 9304 * This routine sets up the mbox interface API function jump table in @phba 9305 * struct. 9306 * Returns: 0 - success, -ENODEV - failure. 9307 **/ 9308 int 9309 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9310 { 9311 9312 switch (dev_grp) { 9313 case LPFC_PCI_DEV_LP: 9314 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9315 phba->lpfc_sli_handle_slow_ring_event = 9316 lpfc_sli_handle_slow_ring_event_s3; 9317 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9318 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9319 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9320 break; 9321 case LPFC_PCI_DEV_OC: 9322 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9323 phba->lpfc_sli_handle_slow_ring_event = 9324 lpfc_sli_handle_slow_ring_event_s4; 9325 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9326 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9327 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9328 break; 9329 default: 9330 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9331 "1420 Invalid HBA PCI-device group: 0x%x\n", 9332 dev_grp); 9333 return -ENODEV; 9334 } 9335 return 0; 9336 } 9337 9338 /** 9339 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9340 * @phba: Pointer to HBA context object. 9341 * @pring: Pointer to driver SLI ring object. 9342 * @piocb: Pointer to address of newly added command iocb. 9343 * 9344 * This function is called with hbalock held for SLI3 ports or 9345 * the ring lock held for SLI4 ports to add a command 9346 * iocb to the txq when SLI layer cannot submit the command iocb 9347 * to the ring. 9348 **/ 9349 void 9350 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9351 struct lpfc_iocbq *piocb) 9352 { 9353 if (phba->sli_rev == LPFC_SLI_REV4) 9354 lockdep_assert_held(&pring->ring_lock); 9355 else 9356 lockdep_assert_held(&phba->hbalock); 9357 /* Insert the caller's iocb in the txq tail for later processing. */ 9358 list_add_tail(&piocb->list, &pring->txq); 9359 } 9360 9361 /** 9362 * lpfc_sli_next_iocb - Get the next iocb in the txq 9363 * @phba: Pointer to HBA context object. 9364 * @pring: Pointer to driver SLI ring object. 9365 * @piocb: Pointer to address of newly added command iocb. 9366 * 9367 * This function is called with hbalock held before a new 9368 * iocb is submitted to the firmware. This function checks 9369 * txq to flush the iocbs in txq to Firmware before 9370 * submitting new iocbs to the Firmware. 9371 * If there are iocbs in the txq which need to be submitted 9372 * to firmware, lpfc_sli_next_iocb returns the first element 9373 * of the txq after dequeuing it from txq. 9374 * If there is no iocb in the txq then the function will return 9375 * *piocb and *piocb is set to NULL. Caller needs to check 9376 * *piocb to find if there are more commands in the txq. 9377 **/ 9378 static struct lpfc_iocbq * 9379 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9380 struct lpfc_iocbq **piocb) 9381 { 9382 struct lpfc_iocbq * nextiocb; 9383 9384 lockdep_assert_held(&phba->hbalock); 9385 9386 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9387 if (!nextiocb) { 9388 nextiocb = *piocb; 9389 *piocb = NULL; 9390 } 9391 9392 return nextiocb; 9393 } 9394 9395 /** 9396 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9397 * @phba: Pointer to HBA context object. 9398 * @ring_number: SLI ring number to issue iocb on. 9399 * @piocb: Pointer to command iocb. 9400 * @flag: Flag indicating if this command can be put into txq. 9401 * 9402 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9403 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9404 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9405 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9406 * this function allows only iocbs for posting buffers. This function finds 9407 * next available slot in the command ring and posts the command to the 9408 * available slot and writes the port attention register to request HBA start 9409 * processing new iocb. If there is no slot available in the ring and 9410 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9411 * the function returns IOCB_BUSY. 9412 * 9413 * This function is called with hbalock held. The function will return success 9414 * after it successfully submit the iocb to firmware or after adding to the 9415 * txq. 9416 **/ 9417 static int 9418 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9419 struct lpfc_iocbq *piocb, uint32_t flag) 9420 { 9421 struct lpfc_iocbq *nextiocb; 9422 IOCB_t *iocb; 9423 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9424 9425 lockdep_assert_held(&phba->hbalock); 9426 9427 if (piocb->iocb_cmpl && (!piocb->vport) && 9428 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9429 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9431 "1807 IOCB x%x failed. No vport\n", 9432 piocb->iocb.ulpCommand); 9433 dump_stack(); 9434 return IOCB_ERROR; 9435 } 9436 9437 9438 /* If the PCI channel is in offline state, do not post iocbs. */ 9439 if (unlikely(pci_channel_offline(phba->pcidev))) 9440 return IOCB_ERROR; 9441 9442 /* If HBA has a deferred error attention, fail the iocb. */ 9443 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9444 return IOCB_ERROR; 9445 9446 /* 9447 * We should never get an IOCB if we are in a < LINK_DOWN state 9448 */ 9449 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9450 return IOCB_ERROR; 9451 9452 /* 9453 * Check to see if we are blocking IOCB processing because of a 9454 * outstanding event. 9455 */ 9456 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9457 goto iocb_busy; 9458 9459 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9460 /* 9461 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9462 * can be issued if the link is not up. 9463 */ 9464 switch (piocb->iocb.ulpCommand) { 9465 case CMD_GEN_REQUEST64_CR: 9466 case CMD_GEN_REQUEST64_CX: 9467 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9468 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9469 FC_RCTL_DD_UNSOL_CMD) || 9470 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9471 MENLO_TRANSPORT_TYPE)) 9472 9473 goto iocb_busy; 9474 break; 9475 case CMD_QUE_RING_BUF_CN: 9476 case CMD_QUE_RING_BUF64_CN: 9477 /* 9478 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9479 * completion, iocb_cmpl MUST be 0. 9480 */ 9481 if (piocb->iocb_cmpl) 9482 piocb->iocb_cmpl = NULL; 9483 fallthrough; 9484 case CMD_CREATE_XRI_CR: 9485 case CMD_CLOSE_XRI_CN: 9486 case CMD_CLOSE_XRI_CX: 9487 break; 9488 default: 9489 goto iocb_busy; 9490 } 9491 9492 /* 9493 * For FCP commands, we must be in a state where we can process link 9494 * attention events. 9495 */ 9496 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9497 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9498 goto iocb_busy; 9499 } 9500 9501 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9502 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9503 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9504 9505 if (iocb) 9506 lpfc_sli_update_ring(phba, pring); 9507 else 9508 lpfc_sli_update_full_ring(phba, pring); 9509 9510 if (!piocb) 9511 return IOCB_SUCCESS; 9512 9513 goto out_busy; 9514 9515 iocb_busy: 9516 pring->stats.iocb_cmd_delay++; 9517 9518 out_busy: 9519 9520 if (!(flag & SLI_IOCB_RET_IOCB)) { 9521 __lpfc_sli_ringtx_put(phba, pring, piocb); 9522 return IOCB_SUCCESS; 9523 } 9524 9525 return IOCB_BUSY; 9526 } 9527 9528 /** 9529 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9530 * @phba: Pointer to HBA context object. 9531 * @piocbq: Pointer to command iocb. 9532 * @sglq: Pointer to the scatter gather queue object. 9533 * 9534 * This routine converts the bpl or bde that is in the IOCB 9535 * to a sgl list for the sli4 hardware. The physical address 9536 * of the bpl/bde is converted back to a virtual address. 9537 * If the IOCB contains a BPL then the list of BDE's is 9538 * converted to sli4_sge's. If the IOCB contains a single 9539 * BDE then it is converted to a single sli_sge. 9540 * The IOCB is still in cpu endianess so the contents of 9541 * the bpl can be used without byte swapping. 9542 * 9543 * Returns valid XRI = Success, NO_XRI = Failure. 9544 **/ 9545 static uint16_t 9546 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9547 struct lpfc_sglq *sglq) 9548 { 9549 uint16_t xritag = NO_XRI; 9550 struct ulp_bde64 *bpl = NULL; 9551 struct ulp_bde64 bde; 9552 struct sli4_sge *sgl = NULL; 9553 struct lpfc_dmabuf *dmabuf; 9554 IOCB_t *icmd; 9555 int numBdes = 0; 9556 int i = 0; 9557 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9558 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9559 9560 if (!piocbq || !sglq) 9561 return xritag; 9562 9563 sgl = (struct sli4_sge *)sglq->sgl; 9564 icmd = &piocbq->iocb; 9565 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9566 return sglq->sli4_xritag; 9567 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9568 numBdes = icmd->un.genreq64.bdl.bdeSize / 9569 sizeof(struct ulp_bde64); 9570 /* The addrHigh and addrLow fields within the IOCB 9571 * have not been byteswapped yet so there is no 9572 * need to swap them back. 9573 */ 9574 if (piocbq->context3) 9575 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9576 else 9577 return xritag; 9578 9579 bpl = (struct ulp_bde64 *)dmabuf->virt; 9580 if (!bpl) 9581 return xritag; 9582 9583 for (i = 0; i < numBdes; i++) { 9584 /* Should already be byte swapped. */ 9585 sgl->addr_hi = bpl->addrHigh; 9586 sgl->addr_lo = bpl->addrLow; 9587 9588 sgl->word2 = le32_to_cpu(sgl->word2); 9589 if ((i+1) == numBdes) 9590 bf_set(lpfc_sli4_sge_last, sgl, 1); 9591 else 9592 bf_set(lpfc_sli4_sge_last, sgl, 0); 9593 /* swap the size field back to the cpu so we 9594 * can assign it to the sgl. 9595 */ 9596 bde.tus.w = le32_to_cpu(bpl->tus.w); 9597 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9598 /* The offsets in the sgl need to be accumulated 9599 * separately for the request and reply lists. 9600 * The request is always first, the reply follows. 9601 */ 9602 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9603 /* add up the reply sg entries */ 9604 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9605 inbound++; 9606 /* first inbound? reset the offset */ 9607 if (inbound == 1) 9608 offset = 0; 9609 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9610 bf_set(lpfc_sli4_sge_type, sgl, 9611 LPFC_SGE_TYPE_DATA); 9612 offset += bde.tus.f.bdeSize; 9613 } 9614 sgl->word2 = cpu_to_le32(sgl->word2); 9615 bpl++; 9616 sgl++; 9617 } 9618 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9619 /* The addrHigh and addrLow fields of the BDE have not 9620 * been byteswapped yet so they need to be swapped 9621 * before putting them in the sgl. 9622 */ 9623 sgl->addr_hi = 9624 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9625 sgl->addr_lo = 9626 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9627 sgl->word2 = le32_to_cpu(sgl->word2); 9628 bf_set(lpfc_sli4_sge_last, sgl, 1); 9629 sgl->word2 = cpu_to_le32(sgl->word2); 9630 sgl->sge_len = 9631 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9632 } 9633 return sglq->sli4_xritag; 9634 } 9635 9636 /** 9637 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 9638 * @phba: Pointer to HBA context object. 9639 * @iocbq: Pointer to command iocb. 9640 * @wqe: Pointer to the work queue entry. 9641 * 9642 * This routine converts the iocb command to its Work Queue Entry 9643 * equivalent. The wqe pointer should not have any fields set when 9644 * this routine is called because it will memcpy over them. 9645 * This routine does not set the CQ_ID or the WQEC bits in the 9646 * wqe. 9647 * 9648 * Returns: 0 = Success, IOCB_ERROR = Failure. 9649 **/ 9650 static int 9651 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9652 union lpfc_wqe128 *wqe) 9653 { 9654 uint32_t xmit_len = 0, total_len = 0; 9655 uint8_t ct = 0; 9656 uint32_t fip; 9657 uint32_t abort_tag; 9658 uint8_t command_type = ELS_COMMAND_NON_FIP; 9659 uint8_t cmnd; 9660 uint16_t xritag; 9661 uint16_t abrt_iotag; 9662 struct lpfc_iocbq *abrtiocbq; 9663 struct ulp_bde64 *bpl = NULL; 9664 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9665 int numBdes, i; 9666 struct ulp_bde64 bde; 9667 struct lpfc_nodelist *ndlp; 9668 uint32_t *pcmd; 9669 uint32_t if_type; 9670 9671 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9672 /* The fcp commands will set command type */ 9673 if (iocbq->iocb_flag & LPFC_IO_FCP) 9674 command_type = FCP_COMMAND; 9675 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9676 command_type = ELS_COMMAND_FIP; 9677 else 9678 command_type = ELS_COMMAND_NON_FIP; 9679 9680 if (phba->fcp_embed_io) 9681 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9682 /* Some of the fields are in the right position already */ 9683 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9684 /* The ct field has moved so reset */ 9685 wqe->generic.wqe_com.word7 = 0; 9686 wqe->generic.wqe_com.word10 = 0; 9687 9688 abort_tag = (uint32_t) iocbq->iotag; 9689 xritag = iocbq->sli4_xritag; 9690 /* words0-2 bpl convert bde */ 9691 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9692 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9693 sizeof(struct ulp_bde64); 9694 bpl = (struct ulp_bde64 *) 9695 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9696 if (!bpl) 9697 return IOCB_ERROR; 9698 9699 /* Should already be byte swapped. */ 9700 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9701 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9702 /* swap the size field back to the cpu so we 9703 * can assign it to the sgl. 9704 */ 9705 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9706 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9707 total_len = 0; 9708 for (i = 0; i < numBdes; i++) { 9709 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9710 total_len += bde.tus.f.bdeSize; 9711 } 9712 } else 9713 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9714 9715 iocbq->iocb.ulpIoTag = iocbq->iotag; 9716 cmnd = iocbq->iocb.ulpCommand; 9717 9718 switch (iocbq->iocb.ulpCommand) { 9719 case CMD_ELS_REQUEST64_CR: 9720 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9721 ndlp = iocbq->context_un.ndlp; 9722 else 9723 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9724 if (!iocbq->iocb.ulpLe) { 9725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9726 "2007 Only Limited Edition cmd Format" 9727 " supported 0x%x\n", 9728 iocbq->iocb.ulpCommand); 9729 return IOCB_ERROR; 9730 } 9731 9732 wqe->els_req.payload_len = xmit_len; 9733 /* Els_reguest64 has a TMO */ 9734 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9735 iocbq->iocb.ulpTimeout); 9736 /* Need a VF for word 4 set the vf bit*/ 9737 bf_set(els_req64_vf, &wqe->els_req, 0); 9738 /* And a VFID for word 12 */ 9739 bf_set(els_req64_vfid, &wqe->els_req, 0); 9740 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9741 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9742 iocbq->iocb.ulpContext); 9743 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9744 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9745 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9746 if (command_type == ELS_COMMAND_FIP) 9747 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9748 >> LPFC_FIP_ELS_ID_SHIFT); 9749 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9750 iocbq->context2)->virt); 9751 if_type = bf_get(lpfc_sli_intf_if_type, 9752 &phba->sli4_hba.sli_intf); 9753 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9754 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9755 *pcmd == ELS_CMD_SCR || 9756 *pcmd == ELS_CMD_RDF || 9757 *pcmd == ELS_CMD_RSCN_XMT || 9758 *pcmd == ELS_CMD_FDISC || 9759 *pcmd == ELS_CMD_LOGO || 9760 *pcmd == ELS_CMD_PLOGI)) { 9761 bf_set(els_req64_sp, &wqe->els_req, 1); 9762 bf_set(els_req64_sid, &wqe->els_req, 9763 iocbq->vport->fc_myDID); 9764 if ((*pcmd == ELS_CMD_FLOGI) && 9765 !(phba->fc_topology == 9766 LPFC_TOPOLOGY_LOOP)) 9767 bf_set(els_req64_sid, &wqe->els_req, 0); 9768 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9769 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9770 phba->vpi_ids[iocbq->vport->vpi]); 9771 } else if (pcmd && iocbq->context1) { 9772 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9773 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9774 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9775 } 9776 } 9777 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9778 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9779 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9780 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9781 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9782 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9783 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9784 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9785 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9786 break; 9787 case CMD_XMIT_SEQUENCE64_CX: 9788 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9789 iocbq->iocb.un.ulpWord[3]); 9790 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9791 iocbq->iocb.unsli3.rcvsli3.ox_id); 9792 /* The entire sequence is transmitted for this IOCB */ 9793 xmit_len = total_len; 9794 cmnd = CMD_XMIT_SEQUENCE64_CR; 9795 if (phba->link_flag & LS_LOOPBACK_MODE) 9796 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9797 fallthrough; 9798 case CMD_XMIT_SEQUENCE64_CR: 9799 /* word3 iocb=io_tag32 wqe=reserved */ 9800 wqe->xmit_sequence.rsvd3 = 0; 9801 /* word4 relative_offset memcpy */ 9802 /* word5 r_ctl/df_ctl memcpy */ 9803 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9804 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9805 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9806 LPFC_WQE_IOD_WRITE); 9807 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9808 LPFC_WQE_LENLOC_WORD12); 9809 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9810 wqe->xmit_sequence.xmit_len = xmit_len; 9811 command_type = OTHER_COMMAND; 9812 break; 9813 case CMD_XMIT_BCAST64_CN: 9814 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9815 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9816 /* word4 iocb=rsvd wqe=rsvd */ 9817 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9818 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9819 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9820 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9821 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9822 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9823 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9824 LPFC_WQE_LENLOC_WORD3); 9825 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9826 break; 9827 case CMD_FCP_IWRITE64_CR: 9828 command_type = FCP_COMMAND_DATA_OUT; 9829 /* word3 iocb=iotag wqe=payload_offset_len */ 9830 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9831 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9832 xmit_len + sizeof(struct fcp_rsp)); 9833 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9834 0); 9835 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9836 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9837 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9838 iocbq->iocb.ulpFCP2Rcvy); 9839 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9840 /* Always open the exchange */ 9841 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9842 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9843 LPFC_WQE_LENLOC_WORD4); 9844 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9845 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9846 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9847 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9848 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9849 if (iocbq->priority) { 9850 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9851 (iocbq->priority << 1)); 9852 } else { 9853 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9854 (phba->cfg_XLanePriority << 1)); 9855 } 9856 } 9857 /* Note, word 10 is already initialized to 0 */ 9858 9859 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9860 if (phba->cfg_enable_pbde) 9861 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9862 else 9863 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9864 9865 if (phba->fcp_embed_io) { 9866 struct lpfc_io_buf *lpfc_cmd; 9867 struct sli4_sge *sgl; 9868 struct fcp_cmnd *fcp_cmnd; 9869 uint32_t *ptr; 9870 9871 /* 128 byte wqe support here */ 9872 9873 lpfc_cmd = iocbq->context1; 9874 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9875 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9876 9877 /* Word 0-2 - FCP_CMND */ 9878 wqe->generic.bde.tus.f.bdeFlags = 9879 BUFF_TYPE_BDE_IMMED; 9880 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9881 wqe->generic.bde.addrHigh = 0; 9882 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9883 9884 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9885 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9886 9887 /* Word 22-29 FCP CMND Payload */ 9888 ptr = &wqe->words[22]; 9889 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9890 } 9891 break; 9892 case CMD_FCP_IREAD64_CR: 9893 /* word3 iocb=iotag wqe=payload_offset_len */ 9894 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9895 bf_set(payload_offset_len, &wqe->fcp_iread, 9896 xmit_len + sizeof(struct fcp_rsp)); 9897 bf_set(cmd_buff_len, &wqe->fcp_iread, 9898 0); 9899 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9900 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9901 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9902 iocbq->iocb.ulpFCP2Rcvy); 9903 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9904 /* Always open the exchange */ 9905 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9906 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9907 LPFC_WQE_LENLOC_WORD4); 9908 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9909 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9910 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9911 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9912 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9913 if (iocbq->priority) { 9914 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9915 (iocbq->priority << 1)); 9916 } else { 9917 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9918 (phba->cfg_XLanePriority << 1)); 9919 } 9920 } 9921 /* Note, word 10 is already initialized to 0 */ 9922 9923 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9924 if (phba->cfg_enable_pbde) 9925 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9926 else 9927 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9928 9929 if (phba->fcp_embed_io) { 9930 struct lpfc_io_buf *lpfc_cmd; 9931 struct sli4_sge *sgl; 9932 struct fcp_cmnd *fcp_cmnd; 9933 uint32_t *ptr; 9934 9935 /* 128 byte wqe support here */ 9936 9937 lpfc_cmd = iocbq->context1; 9938 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9939 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9940 9941 /* Word 0-2 - FCP_CMND */ 9942 wqe->generic.bde.tus.f.bdeFlags = 9943 BUFF_TYPE_BDE_IMMED; 9944 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9945 wqe->generic.bde.addrHigh = 0; 9946 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9947 9948 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9949 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9950 9951 /* Word 22-29 FCP CMND Payload */ 9952 ptr = &wqe->words[22]; 9953 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9954 } 9955 break; 9956 case CMD_FCP_ICMND64_CR: 9957 /* word3 iocb=iotag wqe=payload_offset_len */ 9958 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9959 bf_set(payload_offset_len, &wqe->fcp_icmd, 9960 xmit_len + sizeof(struct fcp_rsp)); 9961 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9962 0); 9963 /* word3 iocb=IO_TAG wqe=reserved */ 9964 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9965 /* Always open the exchange */ 9966 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9967 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9968 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9969 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9970 LPFC_WQE_LENLOC_NONE); 9971 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9972 iocbq->iocb.ulpFCP2Rcvy); 9973 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9974 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9975 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9976 if (iocbq->priority) { 9977 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9978 (iocbq->priority << 1)); 9979 } else { 9980 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9981 (phba->cfg_XLanePriority << 1)); 9982 } 9983 } 9984 /* Note, word 10 is already initialized to 0 */ 9985 9986 if (phba->fcp_embed_io) { 9987 struct lpfc_io_buf *lpfc_cmd; 9988 struct sli4_sge *sgl; 9989 struct fcp_cmnd *fcp_cmnd; 9990 uint32_t *ptr; 9991 9992 /* 128 byte wqe support here */ 9993 9994 lpfc_cmd = iocbq->context1; 9995 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9996 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9997 9998 /* Word 0-2 - FCP_CMND */ 9999 wqe->generic.bde.tus.f.bdeFlags = 10000 BUFF_TYPE_BDE_IMMED; 10001 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10002 wqe->generic.bde.addrHigh = 0; 10003 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10004 10005 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10006 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10007 10008 /* Word 22-29 FCP CMND Payload */ 10009 ptr = &wqe->words[22]; 10010 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10011 } 10012 break; 10013 case CMD_GEN_REQUEST64_CR: 10014 /* For this command calculate the xmit length of the 10015 * request bde. 10016 */ 10017 xmit_len = 0; 10018 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10019 sizeof(struct ulp_bde64); 10020 for (i = 0; i < numBdes; i++) { 10021 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10022 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10023 break; 10024 xmit_len += bde.tus.f.bdeSize; 10025 } 10026 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10027 wqe->gen_req.request_payload_len = xmit_len; 10028 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10029 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10030 /* word6 context tag copied in memcpy */ 10031 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10032 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10034 "2015 Invalid CT %x command 0x%x\n", 10035 ct, iocbq->iocb.ulpCommand); 10036 return IOCB_ERROR; 10037 } 10038 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10039 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10040 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10041 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10042 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10043 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10044 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10045 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10046 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10047 command_type = OTHER_COMMAND; 10048 break; 10049 case CMD_XMIT_ELS_RSP64_CX: 10050 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10051 /* words0-2 BDE memcpy */ 10052 /* word3 iocb=iotag32 wqe=response_payload_len */ 10053 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10054 /* word4 */ 10055 wqe->xmit_els_rsp.word4 = 0; 10056 /* word5 iocb=rsvd wge=did */ 10057 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10058 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10059 10060 if_type = bf_get(lpfc_sli_intf_if_type, 10061 &phba->sli4_hba.sli_intf); 10062 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10063 if (iocbq->vport->fc_flag & FC_PT2PT) { 10064 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10065 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10066 iocbq->vport->fc_myDID); 10067 if (iocbq->vport->fc_myDID == Fabric_DID) { 10068 bf_set(wqe_els_did, 10069 &wqe->xmit_els_rsp.wqe_dest, 0); 10070 } 10071 } 10072 } 10073 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10074 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10075 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10076 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10077 iocbq->iocb.unsli3.rcvsli3.ox_id); 10078 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10079 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10080 phba->vpi_ids[iocbq->vport->vpi]); 10081 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10082 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10083 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10084 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10085 LPFC_WQE_LENLOC_WORD3); 10086 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10087 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10088 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10089 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10090 iocbq->context2)->virt); 10091 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10092 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10093 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10094 iocbq->vport->fc_myDID); 10095 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10096 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10097 phba->vpi_ids[phba->pport->vpi]); 10098 } 10099 command_type = OTHER_COMMAND; 10100 break; 10101 case CMD_CLOSE_XRI_CN: 10102 case CMD_ABORT_XRI_CN: 10103 case CMD_ABORT_XRI_CX: 10104 /* words 0-2 memcpy should be 0 rserved */ 10105 /* port will send abts */ 10106 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10107 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10108 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10109 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10110 } else 10111 fip = 0; 10112 10113 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10114 /* 10115 * The link is down, or the command was ELS_FIP 10116 * so the fw does not need to send abts 10117 * on the wire. 10118 */ 10119 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10120 else 10121 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10122 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10123 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10124 wqe->abort_cmd.rsrvd5 = 0; 10125 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10126 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10127 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10128 /* 10129 * The abort handler will send us CMD_ABORT_XRI_CN or 10130 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10131 */ 10132 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10133 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10134 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10135 LPFC_WQE_LENLOC_NONE); 10136 cmnd = CMD_ABORT_XRI_CX; 10137 command_type = OTHER_COMMAND; 10138 xritag = 0; 10139 break; 10140 case CMD_XMIT_BLS_RSP64_CX: 10141 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10142 /* As BLS ABTS RSP WQE is very different from other WQEs, 10143 * we re-construct this WQE here based on information in 10144 * iocbq from scratch. 10145 */ 10146 memset(wqe, 0, sizeof(*wqe)); 10147 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10148 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10149 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10150 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10151 LPFC_ABTS_UNSOL_INT) { 10152 /* ABTS sent by initiator to CT exchange, the 10153 * RX_ID field will be filled with the newly 10154 * allocated responder XRI. 10155 */ 10156 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10157 iocbq->sli4_xritag); 10158 } else { 10159 /* ABTS sent by responder to CT exchange, the 10160 * RX_ID field will be filled with the responder 10161 * RX_ID from ABTS. 10162 */ 10163 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10164 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10165 } 10166 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10167 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10168 10169 /* Use CT=VPI */ 10170 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10171 ndlp->nlp_DID); 10172 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10173 iocbq->iocb.ulpContext); 10174 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10175 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10176 phba->vpi_ids[phba->pport->vpi]); 10177 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10178 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10179 LPFC_WQE_LENLOC_NONE); 10180 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10181 command_type = OTHER_COMMAND; 10182 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10183 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10184 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10185 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10186 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10187 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10188 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10189 } 10190 10191 break; 10192 case CMD_SEND_FRAME: 10193 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10194 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10195 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10196 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10197 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10198 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10199 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10200 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10201 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10202 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10203 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10204 return 0; 10205 case CMD_XRI_ABORTED_CX: 10206 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10207 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10208 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10209 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10210 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10211 default: 10212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10213 "2014 Invalid command 0x%x\n", 10214 iocbq->iocb.ulpCommand); 10215 return IOCB_ERROR; 10216 } 10217 10218 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10219 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10220 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10221 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10222 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10223 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10224 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10225 LPFC_IO_DIF_INSERT); 10226 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10227 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10228 wqe->generic.wqe_com.abort_tag = abort_tag; 10229 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10230 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10231 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10232 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10233 return 0; 10234 } 10235 10236 /** 10237 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10238 * @phba: Pointer to HBA context object. 10239 * @ring_number: SLI ring number to issue wqe on. 10240 * @piocb: Pointer to command iocb. 10241 * @flag: Flag indicating if this command can be put into txq. 10242 * 10243 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10244 * send an iocb command to an HBA with SLI-4 interface spec. 10245 * 10246 * This function takes the hbalock before invoking the lockless version. 10247 * The function will return success after it successfully submit the wqe to 10248 * firmware or after adding to the txq. 10249 **/ 10250 static int 10251 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10252 struct lpfc_iocbq *piocb, uint32_t flag) 10253 { 10254 unsigned long iflags; 10255 int rc; 10256 10257 spin_lock_irqsave(&phba->hbalock, iflags); 10258 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10259 spin_unlock_irqrestore(&phba->hbalock, iflags); 10260 10261 return rc; 10262 } 10263 10264 /** 10265 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10266 * @phba: Pointer to HBA context object. 10267 * @ring_number: SLI ring number to issue wqe on. 10268 * @piocb: Pointer to command iocb. 10269 * @flag: Flag indicating if this command can be put into txq. 10270 * 10271 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10272 * an wqe command to an HBA with SLI-4 interface spec. 10273 * 10274 * This function is a lockless version. The function will return success 10275 * after it successfully submit the wqe to firmware or after adding to the 10276 * txq. 10277 **/ 10278 static int 10279 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10280 struct lpfc_iocbq *piocb, uint32_t flag) 10281 { 10282 int rc; 10283 struct lpfc_io_buf *lpfc_cmd = 10284 (struct lpfc_io_buf *)piocb->context1; 10285 union lpfc_wqe128 *wqe = &piocb->wqe; 10286 struct sli4_sge *sgl; 10287 10288 /* 128 byte wqe support here */ 10289 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10290 10291 if (phba->fcp_embed_io) { 10292 struct fcp_cmnd *fcp_cmnd; 10293 u32 *ptr; 10294 10295 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10296 10297 /* Word 0-2 - FCP_CMND */ 10298 wqe->generic.bde.tus.f.bdeFlags = 10299 BUFF_TYPE_BDE_IMMED; 10300 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10301 wqe->generic.bde.addrHigh = 0; 10302 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10303 10304 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10305 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10306 10307 /* Word 22-29 FCP CMND Payload */ 10308 ptr = &wqe->words[22]; 10309 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10310 } else { 10311 /* Word 0-2 - Inline BDE */ 10312 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10313 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10314 wqe->generic.bde.addrHigh = sgl->addr_hi; 10315 wqe->generic.bde.addrLow = sgl->addr_lo; 10316 10317 /* Word 10 */ 10318 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10319 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10320 } 10321 10322 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10323 return rc; 10324 } 10325 10326 /** 10327 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10328 * @phba: Pointer to HBA context object. 10329 * @ring_number: SLI ring number to issue iocb on. 10330 * @piocb: Pointer to command iocb. 10331 * @flag: Flag indicating if this command can be put into txq. 10332 * 10333 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10334 * an iocb command to an HBA with SLI-4 interface spec. 10335 * 10336 * This function is called with ringlock held. The function will return success 10337 * after it successfully submit the iocb to firmware or after adding to the 10338 * txq. 10339 **/ 10340 static int 10341 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10342 struct lpfc_iocbq *piocb, uint32_t flag) 10343 { 10344 struct lpfc_sglq *sglq; 10345 union lpfc_wqe128 wqe; 10346 struct lpfc_queue *wq; 10347 struct lpfc_sli_ring *pring; 10348 10349 /* Get the WQ */ 10350 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10351 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10352 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10353 } else { 10354 wq = phba->sli4_hba.els_wq; 10355 } 10356 10357 /* Get corresponding ring */ 10358 pring = wq->pring; 10359 10360 /* 10361 * The WQE can be either 64 or 128 bytes, 10362 */ 10363 10364 lockdep_assert_held(&pring->ring_lock); 10365 10366 if (piocb->sli4_xritag == NO_XRI) { 10367 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10368 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10369 sglq = NULL; 10370 else { 10371 if (!list_empty(&pring->txq)) { 10372 if (!(flag & SLI_IOCB_RET_IOCB)) { 10373 __lpfc_sli_ringtx_put(phba, 10374 pring, piocb); 10375 return IOCB_SUCCESS; 10376 } else { 10377 return IOCB_BUSY; 10378 } 10379 } else { 10380 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10381 if (!sglq) { 10382 if (!(flag & SLI_IOCB_RET_IOCB)) { 10383 __lpfc_sli_ringtx_put(phba, 10384 pring, 10385 piocb); 10386 return IOCB_SUCCESS; 10387 } else 10388 return IOCB_BUSY; 10389 } 10390 } 10391 } 10392 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10393 /* These IO's already have an XRI and a mapped sgl. */ 10394 sglq = NULL; 10395 } 10396 else { 10397 /* 10398 * This is a continuation of a commandi,(CX) so this 10399 * sglq is on the active list 10400 */ 10401 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10402 if (!sglq) 10403 return IOCB_ERROR; 10404 } 10405 10406 if (sglq) { 10407 piocb->sli4_lxritag = sglq->sli4_lxritag; 10408 piocb->sli4_xritag = sglq->sli4_xritag; 10409 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10410 return IOCB_ERROR; 10411 } 10412 10413 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10414 return IOCB_ERROR; 10415 10416 if (lpfc_sli4_wq_put(wq, &wqe)) 10417 return IOCB_ERROR; 10418 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10419 10420 return 0; 10421 } 10422 10423 /* 10424 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10425 * 10426 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10427 * or IOCB for sli-3 function. 10428 * pointer from the lpfc_hba struct. 10429 * 10430 * Return codes: 10431 * IOCB_ERROR - Error 10432 * IOCB_SUCCESS - Success 10433 * IOCB_BUSY - Busy 10434 **/ 10435 int 10436 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10437 struct lpfc_iocbq *piocb, uint32_t flag) 10438 { 10439 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10440 } 10441 10442 /* 10443 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10444 * 10445 * This routine wraps the actual lockless version for issusing IOCB function 10446 * pointer from the lpfc_hba struct. 10447 * 10448 * Return codes: 10449 * IOCB_ERROR - Error 10450 * IOCB_SUCCESS - Success 10451 * IOCB_BUSY - Busy 10452 **/ 10453 int 10454 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10455 struct lpfc_iocbq *piocb, uint32_t flag) 10456 { 10457 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10458 } 10459 10460 /** 10461 * lpfc_sli_api_table_setup - Set up sli api function jump table 10462 * @phba: The hba struct for which this call is being executed. 10463 * @dev_grp: The HBA PCI-Device group number. 10464 * 10465 * This routine sets up the SLI interface API function jump table in @phba 10466 * struct. 10467 * Returns: 0 - success, -ENODEV - failure. 10468 **/ 10469 int 10470 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10471 { 10472 10473 switch (dev_grp) { 10474 case LPFC_PCI_DEV_LP: 10475 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10476 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10477 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10478 break; 10479 case LPFC_PCI_DEV_OC: 10480 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10481 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10482 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10483 break; 10484 default: 10485 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10486 "1419 Invalid HBA PCI-device group: 0x%x\n", 10487 dev_grp); 10488 return -ENODEV; 10489 } 10490 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10491 return 0; 10492 } 10493 10494 /** 10495 * lpfc_sli4_calc_ring - Calculates which ring to use 10496 * @phba: Pointer to HBA context object. 10497 * @piocb: Pointer to command iocb. 10498 * 10499 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10500 * hba_wqidx, thus we need to calculate the corresponding ring. 10501 * Since ABORTS must go on the same WQ of the command they are 10502 * aborting, we use command's hba_wqidx. 10503 */ 10504 struct lpfc_sli_ring * 10505 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10506 { 10507 struct lpfc_io_buf *lpfc_cmd; 10508 10509 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10510 if (unlikely(!phba->sli4_hba.hdwq)) 10511 return NULL; 10512 /* 10513 * for abort iocb hba_wqidx should already 10514 * be setup based on what work queue we used. 10515 */ 10516 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10517 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10518 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10519 } 10520 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10521 } else { 10522 if (unlikely(!phba->sli4_hba.els_wq)) 10523 return NULL; 10524 piocb->hba_wqidx = 0; 10525 return phba->sli4_hba.els_wq->pring; 10526 } 10527 } 10528 10529 /** 10530 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10531 * @phba: Pointer to HBA context object. 10532 * @ring_number: Ring number 10533 * @piocb: Pointer to command iocb. 10534 * @flag: Flag indicating if this command can be put into txq. 10535 * 10536 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10537 * function. This function gets the hbalock and calls 10538 * __lpfc_sli_issue_iocb function and will return the error returned 10539 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10540 * functions which do not hold hbalock. 10541 **/ 10542 int 10543 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10544 struct lpfc_iocbq *piocb, uint32_t flag) 10545 { 10546 struct lpfc_sli_ring *pring; 10547 struct lpfc_queue *eq; 10548 unsigned long iflags; 10549 int rc; 10550 10551 if (phba->sli_rev == LPFC_SLI_REV4) { 10552 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10553 10554 pring = lpfc_sli4_calc_ring(phba, piocb); 10555 if (unlikely(pring == NULL)) 10556 return IOCB_ERROR; 10557 10558 spin_lock_irqsave(&pring->ring_lock, iflags); 10559 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10560 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10561 10562 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10563 } else { 10564 /* For now, SLI2/3 will still use hbalock */ 10565 spin_lock_irqsave(&phba->hbalock, iflags); 10566 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10567 spin_unlock_irqrestore(&phba->hbalock, iflags); 10568 } 10569 return rc; 10570 } 10571 10572 /** 10573 * lpfc_extra_ring_setup - Extra ring setup function 10574 * @phba: Pointer to HBA context object. 10575 * 10576 * This function is called while driver attaches with the 10577 * HBA to setup the extra ring. The extra ring is used 10578 * only when driver needs to support target mode functionality 10579 * or IP over FC functionalities. 10580 * 10581 * This function is called with no lock held. SLI3 only. 10582 **/ 10583 static int 10584 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10585 { 10586 struct lpfc_sli *psli; 10587 struct lpfc_sli_ring *pring; 10588 10589 psli = &phba->sli; 10590 10591 /* Adjust cmd/rsp ring iocb entries more evenly */ 10592 10593 /* Take some away from the FCP ring */ 10594 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10595 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10596 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10597 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10598 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10599 10600 /* and give them to the extra ring */ 10601 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10602 10603 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10604 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10605 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10606 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10607 10608 /* Setup default profile for this ring */ 10609 pring->iotag_max = 4096; 10610 pring->num_mask = 1; 10611 pring->prt[0].profile = 0; /* Mask 0 */ 10612 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10613 pring->prt[0].type = phba->cfg_multi_ring_type; 10614 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10615 return 0; 10616 } 10617 10618 static void 10619 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10620 struct lpfc_nodelist *ndlp) 10621 { 10622 unsigned long iflags; 10623 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10624 10625 spin_lock_irqsave(&phba->hbalock, iflags); 10626 if (!list_empty(&evtp->evt_listp)) { 10627 spin_unlock_irqrestore(&phba->hbalock, iflags); 10628 return; 10629 } 10630 10631 /* Incrementing the reference count until the queued work is done. */ 10632 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10633 if (!evtp->evt_arg1) { 10634 spin_unlock_irqrestore(&phba->hbalock, iflags); 10635 return; 10636 } 10637 evtp->evt = LPFC_EVT_RECOVER_PORT; 10638 list_add_tail(&evtp->evt_listp, &phba->work_list); 10639 spin_unlock_irqrestore(&phba->hbalock, iflags); 10640 10641 lpfc_worker_wake_up(phba); 10642 } 10643 10644 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10645 * @phba: Pointer to HBA context object. 10646 * @iocbq: Pointer to iocb object. 10647 * 10648 * The async_event handler calls this routine when it receives 10649 * an ASYNC_STATUS_CN event from the port. The port generates 10650 * this event when an Abort Sequence request to an rport fails 10651 * twice in succession. The abort could be originated by the 10652 * driver or by the port. The ABTS could have been for an ELS 10653 * or FCP IO. The port only generates this event when an ABTS 10654 * fails to complete after one retry. 10655 */ 10656 static void 10657 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10658 struct lpfc_iocbq *iocbq) 10659 { 10660 struct lpfc_nodelist *ndlp = NULL; 10661 uint16_t rpi = 0, vpi = 0; 10662 struct lpfc_vport *vport = NULL; 10663 10664 /* The rpi in the ulpContext is vport-sensitive. */ 10665 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10666 rpi = iocbq->iocb.ulpContext; 10667 10668 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10669 "3092 Port generated ABTS async event " 10670 "on vpi %d rpi %d status 0x%x\n", 10671 vpi, rpi, iocbq->iocb.ulpStatus); 10672 10673 vport = lpfc_find_vport_by_vpid(phba, vpi); 10674 if (!vport) 10675 goto err_exit; 10676 ndlp = lpfc_findnode_rpi(vport, rpi); 10677 if (!ndlp) 10678 goto err_exit; 10679 10680 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10681 lpfc_sli_abts_recover_port(vport, ndlp); 10682 return; 10683 10684 err_exit: 10685 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10686 "3095 Event Context not found, no " 10687 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10688 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10689 vpi, rpi); 10690 } 10691 10692 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10693 * @phba: pointer to HBA context object. 10694 * @ndlp: nodelist pointer for the impacted rport. 10695 * @axri: pointer to the wcqe containing the failed exchange. 10696 * 10697 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10698 * port. The port generates this event when an abort exchange request to an 10699 * rport fails twice in succession with no reply. The abort could be originated 10700 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10701 */ 10702 void 10703 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10704 struct lpfc_nodelist *ndlp, 10705 struct sli4_wcqe_xri_aborted *axri) 10706 { 10707 uint32_t ext_status = 0; 10708 10709 if (!ndlp) { 10710 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10711 "3115 Node Context not found, driver " 10712 "ignoring abts err event\n"); 10713 return; 10714 } 10715 10716 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10717 "3116 Port generated FCP XRI ABORT event on " 10718 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10719 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10720 bf_get(lpfc_wcqe_xa_xri, axri), 10721 bf_get(lpfc_wcqe_xa_status, axri), 10722 axri->parameter); 10723 10724 /* 10725 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10726 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10727 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10728 */ 10729 ext_status = axri->parameter & IOERR_PARAM_MASK; 10730 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10731 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10732 lpfc_sli_post_recovery_event(phba, ndlp); 10733 } 10734 10735 /** 10736 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10737 * @phba: Pointer to HBA context object. 10738 * @pring: Pointer to driver SLI ring object. 10739 * @iocbq: Pointer to iocb object. 10740 * 10741 * This function is called by the slow ring event handler 10742 * function when there is an ASYNC event iocb in the ring. 10743 * This function is called with no lock held. 10744 * Currently this function handles only temperature related 10745 * ASYNC events. The function decodes the temperature sensor 10746 * event message and posts events for the management applications. 10747 **/ 10748 static void 10749 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10750 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10751 { 10752 IOCB_t *icmd; 10753 uint16_t evt_code; 10754 struct temp_event temp_event_data; 10755 struct Scsi_Host *shost; 10756 uint32_t *iocb_w; 10757 10758 icmd = &iocbq->iocb; 10759 evt_code = icmd->un.asyncstat.evt_code; 10760 10761 switch (evt_code) { 10762 case ASYNC_TEMP_WARN: 10763 case ASYNC_TEMP_SAFE: 10764 temp_event_data.data = (uint32_t) icmd->ulpContext; 10765 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10766 if (evt_code == ASYNC_TEMP_WARN) { 10767 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10769 "0347 Adapter is very hot, please take " 10770 "corrective action. temperature : %d Celsius\n", 10771 (uint32_t) icmd->ulpContext); 10772 } else { 10773 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10775 "0340 Adapter temperature is OK now. " 10776 "temperature : %d Celsius\n", 10777 (uint32_t) icmd->ulpContext); 10778 } 10779 10780 /* Send temperature change event to applications */ 10781 shost = lpfc_shost_from_vport(phba->pport); 10782 fc_host_post_vendor_event(shost, fc_get_event_number(), 10783 sizeof(temp_event_data), (char *) &temp_event_data, 10784 LPFC_NL_VENDOR_ID); 10785 break; 10786 case ASYNC_STATUS_CN: 10787 lpfc_sli_abts_err_handler(phba, iocbq); 10788 break; 10789 default: 10790 iocb_w = (uint32_t *) icmd; 10791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10792 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10793 " evt_code 0x%x\n" 10794 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10795 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10796 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10797 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10798 pring->ringno, icmd->un.asyncstat.evt_code, 10799 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10800 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10801 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10802 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10803 10804 break; 10805 } 10806 } 10807 10808 10809 /** 10810 * lpfc_sli4_setup - SLI ring setup function 10811 * @phba: Pointer to HBA context object. 10812 * 10813 * lpfc_sli_setup sets up rings of the SLI interface with 10814 * number of iocbs per ring and iotags. This function is 10815 * called while driver attach to the HBA and before the 10816 * interrupts are enabled. So there is no need for locking. 10817 * 10818 * This function always returns 0. 10819 **/ 10820 int 10821 lpfc_sli4_setup(struct lpfc_hba *phba) 10822 { 10823 struct lpfc_sli_ring *pring; 10824 10825 pring = phba->sli4_hba.els_wq->pring; 10826 pring->num_mask = LPFC_MAX_RING_MASK; 10827 pring->prt[0].profile = 0; /* Mask 0 */ 10828 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10829 pring->prt[0].type = FC_TYPE_ELS; 10830 pring->prt[0].lpfc_sli_rcv_unsol_event = 10831 lpfc_els_unsol_event; 10832 pring->prt[1].profile = 0; /* Mask 1 */ 10833 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10834 pring->prt[1].type = FC_TYPE_ELS; 10835 pring->prt[1].lpfc_sli_rcv_unsol_event = 10836 lpfc_els_unsol_event; 10837 pring->prt[2].profile = 0; /* Mask 2 */ 10838 /* NameServer Inquiry */ 10839 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10840 /* NameServer */ 10841 pring->prt[2].type = FC_TYPE_CT; 10842 pring->prt[2].lpfc_sli_rcv_unsol_event = 10843 lpfc_ct_unsol_event; 10844 pring->prt[3].profile = 0; /* Mask 3 */ 10845 /* NameServer response */ 10846 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10847 /* NameServer */ 10848 pring->prt[3].type = FC_TYPE_CT; 10849 pring->prt[3].lpfc_sli_rcv_unsol_event = 10850 lpfc_ct_unsol_event; 10851 return 0; 10852 } 10853 10854 /** 10855 * lpfc_sli_setup - SLI ring setup function 10856 * @phba: Pointer to HBA context object. 10857 * 10858 * lpfc_sli_setup sets up rings of the SLI interface with 10859 * number of iocbs per ring and iotags. This function is 10860 * called while driver attach to the HBA and before the 10861 * interrupts are enabled. So there is no need for locking. 10862 * 10863 * This function always returns 0. SLI3 only. 10864 **/ 10865 int 10866 lpfc_sli_setup(struct lpfc_hba *phba) 10867 { 10868 int i, totiocbsize = 0; 10869 struct lpfc_sli *psli = &phba->sli; 10870 struct lpfc_sli_ring *pring; 10871 10872 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10873 psli->sli_flag = 0; 10874 10875 psli->iocbq_lookup = NULL; 10876 psli->iocbq_lookup_len = 0; 10877 psli->last_iotag = 0; 10878 10879 for (i = 0; i < psli->num_rings; i++) { 10880 pring = &psli->sli3_ring[i]; 10881 switch (i) { 10882 case LPFC_FCP_RING: /* ring 0 - FCP */ 10883 /* numCiocb and numRiocb are used in config_port */ 10884 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10885 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10886 pring->sli.sli3.numCiocb += 10887 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10888 pring->sli.sli3.numRiocb += 10889 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10890 pring->sli.sli3.numCiocb += 10891 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10892 pring->sli.sli3.numRiocb += 10893 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10894 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10895 SLI3_IOCB_CMD_SIZE : 10896 SLI2_IOCB_CMD_SIZE; 10897 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10898 SLI3_IOCB_RSP_SIZE : 10899 SLI2_IOCB_RSP_SIZE; 10900 pring->iotag_ctr = 0; 10901 pring->iotag_max = 10902 (phba->cfg_hba_queue_depth * 2); 10903 pring->fast_iotag = pring->iotag_max; 10904 pring->num_mask = 0; 10905 break; 10906 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10907 /* numCiocb and numRiocb are used in config_port */ 10908 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10909 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10910 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10911 SLI3_IOCB_CMD_SIZE : 10912 SLI2_IOCB_CMD_SIZE; 10913 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10914 SLI3_IOCB_RSP_SIZE : 10915 SLI2_IOCB_RSP_SIZE; 10916 pring->iotag_max = phba->cfg_hba_queue_depth; 10917 pring->num_mask = 0; 10918 break; 10919 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10920 /* numCiocb and numRiocb are used in config_port */ 10921 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10922 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10923 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10924 SLI3_IOCB_CMD_SIZE : 10925 SLI2_IOCB_CMD_SIZE; 10926 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10927 SLI3_IOCB_RSP_SIZE : 10928 SLI2_IOCB_RSP_SIZE; 10929 pring->fast_iotag = 0; 10930 pring->iotag_ctr = 0; 10931 pring->iotag_max = 4096; 10932 pring->lpfc_sli_rcv_async_status = 10933 lpfc_sli_async_event_handler; 10934 pring->num_mask = LPFC_MAX_RING_MASK; 10935 pring->prt[0].profile = 0; /* Mask 0 */ 10936 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10937 pring->prt[0].type = FC_TYPE_ELS; 10938 pring->prt[0].lpfc_sli_rcv_unsol_event = 10939 lpfc_els_unsol_event; 10940 pring->prt[1].profile = 0; /* Mask 1 */ 10941 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10942 pring->prt[1].type = FC_TYPE_ELS; 10943 pring->prt[1].lpfc_sli_rcv_unsol_event = 10944 lpfc_els_unsol_event; 10945 pring->prt[2].profile = 0; /* Mask 2 */ 10946 /* NameServer Inquiry */ 10947 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10948 /* NameServer */ 10949 pring->prt[2].type = FC_TYPE_CT; 10950 pring->prt[2].lpfc_sli_rcv_unsol_event = 10951 lpfc_ct_unsol_event; 10952 pring->prt[3].profile = 0; /* Mask 3 */ 10953 /* NameServer response */ 10954 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10955 /* NameServer */ 10956 pring->prt[3].type = FC_TYPE_CT; 10957 pring->prt[3].lpfc_sli_rcv_unsol_event = 10958 lpfc_ct_unsol_event; 10959 break; 10960 } 10961 totiocbsize += (pring->sli.sli3.numCiocb * 10962 pring->sli.sli3.sizeCiocb) + 10963 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10964 } 10965 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10966 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10967 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10968 "SLI2 SLIM Data: x%x x%lx\n", 10969 phba->brd_no, totiocbsize, 10970 (unsigned long) MAX_SLIM_IOCB_SIZE); 10971 } 10972 if (phba->cfg_multi_ring_support == 2) 10973 lpfc_extra_ring_setup(phba); 10974 10975 return 0; 10976 } 10977 10978 /** 10979 * lpfc_sli4_queue_init - Queue initialization function 10980 * @phba: Pointer to HBA context object. 10981 * 10982 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10983 * ring. This function also initializes ring indices of each ring. 10984 * This function is called during the initialization of the SLI 10985 * interface of an HBA. 10986 * This function is called with no lock held and always returns 10987 * 1. 10988 **/ 10989 void 10990 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10991 { 10992 struct lpfc_sli *psli; 10993 struct lpfc_sli_ring *pring; 10994 int i; 10995 10996 psli = &phba->sli; 10997 spin_lock_irq(&phba->hbalock); 10998 INIT_LIST_HEAD(&psli->mboxq); 10999 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11000 /* Initialize list headers for txq and txcmplq as double linked lists */ 11001 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11002 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11003 pring->flag = 0; 11004 pring->ringno = LPFC_FCP_RING; 11005 pring->txcmplq_cnt = 0; 11006 INIT_LIST_HEAD(&pring->txq); 11007 INIT_LIST_HEAD(&pring->txcmplq); 11008 INIT_LIST_HEAD(&pring->iocb_continueq); 11009 spin_lock_init(&pring->ring_lock); 11010 } 11011 pring = phba->sli4_hba.els_wq->pring; 11012 pring->flag = 0; 11013 pring->ringno = LPFC_ELS_RING; 11014 pring->txcmplq_cnt = 0; 11015 INIT_LIST_HEAD(&pring->txq); 11016 INIT_LIST_HEAD(&pring->txcmplq); 11017 INIT_LIST_HEAD(&pring->iocb_continueq); 11018 spin_lock_init(&pring->ring_lock); 11019 11020 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11021 pring = phba->sli4_hba.nvmels_wq->pring; 11022 pring->flag = 0; 11023 pring->ringno = LPFC_ELS_RING; 11024 pring->txcmplq_cnt = 0; 11025 INIT_LIST_HEAD(&pring->txq); 11026 INIT_LIST_HEAD(&pring->txcmplq); 11027 INIT_LIST_HEAD(&pring->iocb_continueq); 11028 spin_lock_init(&pring->ring_lock); 11029 } 11030 11031 spin_unlock_irq(&phba->hbalock); 11032 } 11033 11034 /** 11035 * lpfc_sli_queue_init - Queue initialization function 11036 * @phba: Pointer to HBA context object. 11037 * 11038 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11039 * ring. This function also initializes ring indices of each ring. 11040 * This function is called during the initialization of the SLI 11041 * interface of an HBA. 11042 * This function is called with no lock held and always returns 11043 * 1. 11044 **/ 11045 void 11046 lpfc_sli_queue_init(struct lpfc_hba *phba) 11047 { 11048 struct lpfc_sli *psli; 11049 struct lpfc_sli_ring *pring; 11050 int i; 11051 11052 psli = &phba->sli; 11053 spin_lock_irq(&phba->hbalock); 11054 INIT_LIST_HEAD(&psli->mboxq); 11055 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11056 /* Initialize list headers for txq and txcmplq as double linked lists */ 11057 for (i = 0; i < psli->num_rings; i++) { 11058 pring = &psli->sli3_ring[i]; 11059 pring->ringno = i; 11060 pring->sli.sli3.next_cmdidx = 0; 11061 pring->sli.sli3.local_getidx = 0; 11062 pring->sli.sli3.cmdidx = 0; 11063 INIT_LIST_HEAD(&pring->iocb_continueq); 11064 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11065 INIT_LIST_HEAD(&pring->postbufq); 11066 pring->flag = 0; 11067 INIT_LIST_HEAD(&pring->txq); 11068 INIT_LIST_HEAD(&pring->txcmplq); 11069 spin_lock_init(&pring->ring_lock); 11070 } 11071 spin_unlock_irq(&phba->hbalock); 11072 } 11073 11074 /** 11075 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11076 * @phba: Pointer to HBA context object. 11077 * 11078 * This routine flushes the mailbox command subsystem. It will unconditionally 11079 * flush all the mailbox commands in the three possible stages in the mailbox 11080 * command sub-system: pending mailbox command queue; the outstanding mailbox 11081 * command; and completed mailbox command queue. It is caller's responsibility 11082 * to make sure that the driver is in the proper state to flush the mailbox 11083 * command sub-system. Namely, the posting of mailbox commands into the 11084 * pending mailbox command queue from the various clients must be stopped; 11085 * either the HBA is in a state that it will never works on the outstanding 11086 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11087 * mailbox command has been completed. 11088 **/ 11089 static void 11090 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11091 { 11092 LIST_HEAD(completions); 11093 struct lpfc_sli *psli = &phba->sli; 11094 LPFC_MBOXQ_t *pmb; 11095 unsigned long iflag; 11096 11097 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11098 local_bh_disable(); 11099 11100 /* Flush all the mailbox commands in the mbox system */ 11101 spin_lock_irqsave(&phba->hbalock, iflag); 11102 11103 /* The pending mailbox command queue */ 11104 list_splice_init(&phba->sli.mboxq, &completions); 11105 /* The outstanding active mailbox command */ 11106 if (psli->mbox_active) { 11107 list_add_tail(&psli->mbox_active->list, &completions); 11108 psli->mbox_active = NULL; 11109 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11110 } 11111 /* The completed mailbox command queue */ 11112 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11113 spin_unlock_irqrestore(&phba->hbalock, iflag); 11114 11115 /* Enable softirqs again, done with phba->hbalock */ 11116 local_bh_enable(); 11117 11118 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11119 while (!list_empty(&completions)) { 11120 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11121 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11122 if (pmb->mbox_cmpl) 11123 pmb->mbox_cmpl(phba, pmb); 11124 } 11125 } 11126 11127 /** 11128 * lpfc_sli_host_down - Vport cleanup function 11129 * @vport: Pointer to virtual port object. 11130 * 11131 * lpfc_sli_host_down is called to clean up the resources 11132 * associated with a vport before destroying virtual 11133 * port data structures. 11134 * This function does following operations: 11135 * - Free discovery resources associated with this virtual 11136 * port. 11137 * - Free iocbs associated with this virtual port in 11138 * the txq. 11139 * - Send abort for all iocb commands associated with this 11140 * vport in txcmplq. 11141 * 11142 * This function is called with no lock held and always returns 1. 11143 **/ 11144 int 11145 lpfc_sli_host_down(struct lpfc_vport *vport) 11146 { 11147 LIST_HEAD(completions); 11148 struct lpfc_hba *phba = vport->phba; 11149 struct lpfc_sli *psli = &phba->sli; 11150 struct lpfc_queue *qp = NULL; 11151 struct lpfc_sli_ring *pring; 11152 struct lpfc_iocbq *iocb, *next_iocb; 11153 int i; 11154 unsigned long flags = 0; 11155 uint16_t prev_pring_flag; 11156 11157 lpfc_cleanup_discovery_resources(vport); 11158 11159 spin_lock_irqsave(&phba->hbalock, flags); 11160 11161 /* 11162 * Error everything on the txq since these iocbs 11163 * have not been given to the FW yet. 11164 * Also issue ABTS for everything on the txcmplq 11165 */ 11166 if (phba->sli_rev != LPFC_SLI_REV4) { 11167 for (i = 0; i < psli->num_rings; i++) { 11168 pring = &psli->sli3_ring[i]; 11169 prev_pring_flag = pring->flag; 11170 /* Only slow rings */ 11171 if (pring->ringno == LPFC_ELS_RING) { 11172 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11173 /* Set the lpfc data pending flag */ 11174 set_bit(LPFC_DATA_READY, &phba->data_flags); 11175 } 11176 list_for_each_entry_safe(iocb, next_iocb, 11177 &pring->txq, list) { 11178 if (iocb->vport != vport) 11179 continue; 11180 list_move_tail(&iocb->list, &completions); 11181 } 11182 list_for_each_entry_safe(iocb, next_iocb, 11183 &pring->txcmplq, list) { 11184 if (iocb->vport != vport) 11185 continue; 11186 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11187 NULL); 11188 } 11189 pring->flag = prev_pring_flag; 11190 } 11191 } else { 11192 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11193 pring = qp->pring; 11194 if (!pring) 11195 continue; 11196 if (pring == phba->sli4_hba.els_wq->pring) { 11197 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11198 /* Set the lpfc data pending flag */ 11199 set_bit(LPFC_DATA_READY, &phba->data_flags); 11200 } 11201 prev_pring_flag = pring->flag; 11202 spin_lock(&pring->ring_lock); 11203 list_for_each_entry_safe(iocb, next_iocb, 11204 &pring->txq, list) { 11205 if (iocb->vport != vport) 11206 continue; 11207 list_move_tail(&iocb->list, &completions); 11208 } 11209 spin_unlock(&pring->ring_lock); 11210 list_for_each_entry_safe(iocb, next_iocb, 11211 &pring->txcmplq, list) { 11212 if (iocb->vport != vport) 11213 continue; 11214 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11215 NULL); 11216 } 11217 pring->flag = prev_pring_flag; 11218 } 11219 } 11220 spin_unlock_irqrestore(&phba->hbalock, flags); 11221 11222 /* Make sure HBA is alive */ 11223 lpfc_issue_hb_tmo(phba); 11224 11225 /* Cancel all the IOCBs from the completions list */ 11226 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11227 IOERR_SLI_DOWN); 11228 return 1; 11229 } 11230 11231 /** 11232 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11233 * @phba: Pointer to HBA context object. 11234 * 11235 * This function cleans up all iocb, buffers, mailbox commands 11236 * while shutting down the HBA. This function is called with no 11237 * lock held and always returns 1. 11238 * This function does the following to cleanup driver resources: 11239 * - Free discovery resources for each virtual port 11240 * - Cleanup any pending fabric iocbs 11241 * - Iterate through the iocb txq and free each entry 11242 * in the list. 11243 * - Free up any buffer posted to the HBA 11244 * - Free mailbox commands in the mailbox queue. 11245 **/ 11246 int 11247 lpfc_sli_hba_down(struct lpfc_hba *phba) 11248 { 11249 LIST_HEAD(completions); 11250 struct lpfc_sli *psli = &phba->sli; 11251 struct lpfc_queue *qp = NULL; 11252 struct lpfc_sli_ring *pring; 11253 struct lpfc_dmabuf *buf_ptr; 11254 unsigned long flags = 0; 11255 int i; 11256 11257 /* Shutdown the mailbox command sub-system */ 11258 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11259 11260 lpfc_hba_down_prep(phba); 11261 11262 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11263 local_bh_disable(); 11264 11265 lpfc_fabric_abort_hba(phba); 11266 11267 spin_lock_irqsave(&phba->hbalock, flags); 11268 11269 /* 11270 * Error everything on the txq since these iocbs 11271 * have not been given to the FW yet. 11272 */ 11273 if (phba->sli_rev != LPFC_SLI_REV4) { 11274 for (i = 0; i < psli->num_rings; i++) { 11275 pring = &psli->sli3_ring[i]; 11276 /* Only slow rings */ 11277 if (pring->ringno == LPFC_ELS_RING) { 11278 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11279 /* Set the lpfc data pending flag */ 11280 set_bit(LPFC_DATA_READY, &phba->data_flags); 11281 } 11282 list_splice_init(&pring->txq, &completions); 11283 } 11284 } else { 11285 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11286 pring = qp->pring; 11287 if (!pring) 11288 continue; 11289 spin_lock(&pring->ring_lock); 11290 list_splice_init(&pring->txq, &completions); 11291 spin_unlock(&pring->ring_lock); 11292 if (pring == phba->sli4_hba.els_wq->pring) { 11293 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11294 /* Set the lpfc data pending flag */ 11295 set_bit(LPFC_DATA_READY, &phba->data_flags); 11296 } 11297 } 11298 } 11299 spin_unlock_irqrestore(&phba->hbalock, flags); 11300 11301 /* Cancel all the IOCBs from the completions list */ 11302 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11303 IOERR_SLI_DOWN); 11304 11305 spin_lock_irqsave(&phba->hbalock, flags); 11306 list_splice_init(&phba->elsbuf, &completions); 11307 phba->elsbuf_cnt = 0; 11308 phba->elsbuf_prev_cnt = 0; 11309 spin_unlock_irqrestore(&phba->hbalock, flags); 11310 11311 while (!list_empty(&completions)) { 11312 list_remove_head(&completions, buf_ptr, 11313 struct lpfc_dmabuf, list); 11314 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11315 kfree(buf_ptr); 11316 } 11317 11318 /* Enable softirqs again, done with phba->hbalock */ 11319 local_bh_enable(); 11320 11321 /* Return any active mbox cmds */ 11322 del_timer_sync(&psli->mbox_tmo); 11323 11324 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11325 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11326 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11327 11328 return 1; 11329 } 11330 11331 /** 11332 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11333 * @srcp: Source memory pointer. 11334 * @destp: Destination memory pointer. 11335 * @cnt: Number of words required to be copied. 11336 * 11337 * This function is used for copying data between driver memory 11338 * and the SLI memory. This function also changes the endianness 11339 * of each word if native endianness is different from SLI 11340 * endianness. This function can be called with or without 11341 * lock. 11342 **/ 11343 void 11344 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11345 { 11346 uint32_t *src = srcp; 11347 uint32_t *dest = destp; 11348 uint32_t ldata; 11349 int i; 11350 11351 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11352 ldata = *src; 11353 ldata = le32_to_cpu(ldata); 11354 *dest = ldata; 11355 src++; 11356 dest++; 11357 } 11358 } 11359 11360 11361 /** 11362 * lpfc_sli_bemem_bcopy - SLI memory copy function 11363 * @srcp: Source memory pointer. 11364 * @destp: Destination memory pointer. 11365 * @cnt: Number of words required to be copied. 11366 * 11367 * This function is used for copying data between a data structure 11368 * with big endian representation to local endianness. 11369 * This function can be called with or without lock. 11370 **/ 11371 void 11372 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11373 { 11374 uint32_t *src = srcp; 11375 uint32_t *dest = destp; 11376 uint32_t ldata; 11377 int i; 11378 11379 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11380 ldata = *src; 11381 ldata = be32_to_cpu(ldata); 11382 *dest = ldata; 11383 src++; 11384 dest++; 11385 } 11386 } 11387 11388 /** 11389 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11390 * @phba: Pointer to HBA context object. 11391 * @pring: Pointer to driver SLI ring object. 11392 * @mp: Pointer to driver buffer object. 11393 * 11394 * This function is called with no lock held. 11395 * It always return zero after adding the buffer to the postbufq 11396 * buffer list. 11397 **/ 11398 int 11399 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11400 struct lpfc_dmabuf *mp) 11401 { 11402 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11403 later */ 11404 spin_lock_irq(&phba->hbalock); 11405 list_add_tail(&mp->list, &pring->postbufq); 11406 pring->postbufq_cnt++; 11407 spin_unlock_irq(&phba->hbalock); 11408 return 0; 11409 } 11410 11411 /** 11412 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11413 * @phba: Pointer to HBA context object. 11414 * 11415 * When HBQ is enabled, buffers are searched based on tags. This function 11416 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11417 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11418 * does not conflict with tags of buffer posted for unsolicited events. 11419 * The function returns the allocated tag. The function is called with 11420 * no locks held. 11421 **/ 11422 uint32_t 11423 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11424 { 11425 spin_lock_irq(&phba->hbalock); 11426 phba->buffer_tag_count++; 11427 /* 11428 * Always set the QUE_BUFTAG_BIT to distiguish between 11429 * a tag assigned by HBQ. 11430 */ 11431 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11432 spin_unlock_irq(&phba->hbalock); 11433 return phba->buffer_tag_count; 11434 } 11435 11436 /** 11437 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11438 * @phba: Pointer to HBA context object. 11439 * @pring: Pointer to driver SLI ring object. 11440 * @tag: Buffer tag. 11441 * 11442 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11443 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11444 * iocb is posted to the response ring with the tag of the buffer. 11445 * This function searches the pring->postbufq list using the tag 11446 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11447 * iocb. If the buffer is found then lpfc_dmabuf object of the 11448 * buffer is returned to the caller else NULL is returned. 11449 * This function is called with no lock held. 11450 **/ 11451 struct lpfc_dmabuf * 11452 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11453 uint32_t tag) 11454 { 11455 struct lpfc_dmabuf *mp, *next_mp; 11456 struct list_head *slp = &pring->postbufq; 11457 11458 /* Search postbufq, from the beginning, looking for a match on tag */ 11459 spin_lock_irq(&phba->hbalock); 11460 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11461 if (mp->buffer_tag == tag) { 11462 list_del_init(&mp->list); 11463 pring->postbufq_cnt--; 11464 spin_unlock_irq(&phba->hbalock); 11465 return mp; 11466 } 11467 } 11468 11469 spin_unlock_irq(&phba->hbalock); 11470 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11471 "0402 Cannot find virtual addr for buffer tag on " 11472 "ring %d Data x%lx x%px x%px x%x\n", 11473 pring->ringno, (unsigned long) tag, 11474 slp->next, slp->prev, pring->postbufq_cnt); 11475 11476 return NULL; 11477 } 11478 11479 /** 11480 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11481 * @phba: Pointer to HBA context object. 11482 * @pring: Pointer to driver SLI ring object. 11483 * @phys: DMA address of the buffer. 11484 * 11485 * This function searches the buffer list using the dma_address 11486 * of unsolicited event to find the driver's lpfc_dmabuf object 11487 * corresponding to the dma_address. The function returns the 11488 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11489 * This function is called by the ct and els unsolicited event 11490 * handlers to get the buffer associated with the unsolicited 11491 * event. 11492 * 11493 * This function is called with no lock held. 11494 **/ 11495 struct lpfc_dmabuf * 11496 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11497 dma_addr_t phys) 11498 { 11499 struct lpfc_dmabuf *mp, *next_mp; 11500 struct list_head *slp = &pring->postbufq; 11501 11502 /* Search postbufq, from the beginning, looking for a match on phys */ 11503 spin_lock_irq(&phba->hbalock); 11504 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11505 if (mp->phys == phys) { 11506 list_del_init(&mp->list); 11507 pring->postbufq_cnt--; 11508 spin_unlock_irq(&phba->hbalock); 11509 return mp; 11510 } 11511 } 11512 11513 spin_unlock_irq(&phba->hbalock); 11514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11515 "0410 Cannot find virtual addr for mapped buf on " 11516 "ring %d Data x%llx x%px x%px x%x\n", 11517 pring->ringno, (unsigned long long)phys, 11518 slp->next, slp->prev, pring->postbufq_cnt); 11519 return NULL; 11520 } 11521 11522 /** 11523 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11524 * @phba: Pointer to HBA context object. 11525 * @cmdiocb: Pointer to driver command iocb object. 11526 * @rspiocb: Pointer to driver response iocb object. 11527 * 11528 * This function is the completion handler for the abort iocbs for 11529 * ELS commands. This function is called from the ELS ring event 11530 * handler with no lock held. This function frees memory resources 11531 * associated with the abort iocb. 11532 **/ 11533 static void 11534 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11535 struct lpfc_iocbq *rspiocb) 11536 { 11537 IOCB_t *irsp = &rspiocb->iocb; 11538 uint16_t abort_iotag, abort_context; 11539 struct lpfc_iocbq *abort_iocb = NULL; 11540 11541 if (irsp->ulpStatus) { 11542 11543 /* 11544 * Assume that the port already completed and returned, or 11545 * will return the iocb. Just Log the message. 11546 */ 11547 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11548 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11549 11550 spin_lock_irq(&phba->hbalock); 11551 if (phba->sli_rev < LPFC_SLI_REV4) { 11552 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11553 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11554 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11555 spin_unlock_irq(&phba->hbalock); 11556 goto release_iocb; 11557 } 11558 if (abort_iotag != 0 && 11559 abort_iotag <= phba->sli.last_iotag) 11560 abort_iocb = 11561 phba->sli.iocbq_lookup[abort_iotag]; 11562 } else 11563 /* For sli4 the abort_tag is the XRI, 11564 * so the abort routine puts the iotag of the iocb 11565 * being aborted in the context field of the abort 11566 * IOCB. 11567 */ 11568 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11569 11570 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11571 "0327 Cannot abort els iocb x%px " 11572 "with tag %x context %x, abort status %x, " 11573 "abort code %x\n", 11574 abort_iocb, abort_iotag, abort_context, 11575 irsp->ulpStatus, irsp->un.ulpWord[4]); 11576 11577 spin_unlock_irq(&phba->hbalock); 11578 } 11579 release_iocb: 11580 lpfc_sli_release_iocbq(phba, cmdiocb); 11581 return; 11582 } 11583 11584 /** 11585 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11586 * @phba: Pointer to HBA context object. 11587 * @cmdiocb: Pointer to driver command iocb object. 11588 * @rspiocb: Pointer to driver response iocb object. 11589 * 11590 * The function is called from SLI ring event handler with no 11591 * lock held. This function is the completion handler for ELS commands 11592 * which are aborted. The function frees memory resources used for 11593 * the aborted ELS commands. 11594 **/ 11595 void 11596 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11597 struct lpfc_iocbq *rspiocb) 11598 { 11599 IOCB_t *irsp = &rspiocb->iocb; 11600 11601 /* ELS cmd tag <ulpIoTag> completes */ 11602 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11603 "0139 Ignoring ELS cmd tag x%x completion Data: " 11604 "x%x x%x x%x\n", 11605 irsp->ulpIoTag, irsp->ulpStatus, 11606 irsp->un.ulpWord[4], irsp->ulpTimeout); 11607 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1); 11608 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11609 lpfc_ct_free_iocb(phba, cmdiocb); 11610 else 11611 lpfc_els_free_iocb(phba, cmdiocb); 11612 } 11613 11614 /** 11615 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11616 * @phba: Pointer to HBA context object. 11617 * @pring: Pointer to driver SLI ring object. 11618 * @cmdiocb: Pointer to driver command iocb object. 11619 * @cmpl: completion function. 11620 * 11621 * This function issues an abort iocb for the provided command iocb. In case 11622 * of unloading, the abort iocb will not be issued to commands on the ELS 11623 * ring. Instead, the callback function shall be changed to those commands 11624 * so that nothing happens when them finishes. This function is called with 11625 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11626 * when the command iocb is an abort request. 11627 * 11628 **/ 11629 int 11630 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11631 struct lpfc_iocbq *cmdiocb, void *cmpl) 11632 { 11633 struct lpfc_vport *vport = cmdiocb->vport; 11634 struct lpfc_iocbq *abtsiocbp; 11635 IOCB_t *icmd = NULL; 11636 IOCB_t *iabt = NULL; 11637 int retval = IOCB_ERROR; 11638 unsigned long iflags; 11639 struct lpfc_nodelist *ndlp; 11640 11641 /* 11642 * There are certain command types we don't want to abort. And we 11643 * don't want to abort commands that are already in the process of 11644 * being aborted. 11645 */ 11646 icmd = &cmdiocb->iocb; 11647 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11648 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11649 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 11650 return IOCB_ABORTING; 11651 11652 if (!pring) { 11653 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11654 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11655 else 11656 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11657 return retval; 11658 } 11659 11660 /* 11661 * If we're unloading, don't abort iocb on the ELS ring, but change 11662 * the callback so that nothing happens when it finishes. 11663 */ 11664 if ((vport->load_flag & FC_UNLOADING) && 11665 pring->ringno == LPFC_ELS_RING) { 11666 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11667 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11668 else 11669 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11670 return retval; 11671 } 11672 11673 /* issue ABTS for this IOCB based on iotag */ 11674 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11675 if (abtsiocbp == NULL) 11676 return IOCB_NORESOURCE; 11677 11678 /* This signals the response to set the correct status 11679 * before calling the completion handler 11680 */ 11681 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11682 11683 iabt = &abtsiocbp->iocb; 11684 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11685 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11686 if (phba->sli_rev == LPFC_SLI_REV4) { 11687 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11688 if (pring->ringno == LPFC_ELS_RING) 11689 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11690 } else { 11691 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11692 if (pring->ringno == LPFC_ELS_RING) { 11693 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11694 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11695 } 11696 } 11697 iabt->ulpLe = 1; 11698 iabt->ulpClass = icmd->ulpClass; 11699 11700 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11701 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11702 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11703 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11704 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11705 } 11706 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11707 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11708 11709 if (phba->link_state >= LPFC_LINK_UP) 11710 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11711 else 11712 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11713 11714 if (cmpl) 11715 abtsiocbp->iocb_cmpl = cmpl; 11716 else 11717 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11718 abtsiocbp->vport = vport; 11719 11720 if (phba->sli_rev == LPFC_SLI_REV4) { 11721 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11722 if (unlikely(pring == NULL)) 11723 goto abort_iotag_exit; 11724 /* Note: both hbalock and ring_lock need to be set here */ 11725 spin_lock_irqsave(&pring->ring_lock, iflags); 11726 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11727 abtsiocbp, 0); 11728 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11729 } else { 11730 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11731 abtsiocbp, 0); 11732 } 11733 11734 abort_iotag_exit: 11735 11736 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11737 "0339 Abort xri x%x, original iotag x%x, " 11738 "abort cmd iotag x%x retval x%x\n", 11739 iabt->un.acxri.abortIoTag, 11740 iabt->un.acxri.abortContextTag, 11741 abtsiocbp->iotag, retval); 11742 11743 if (retval) { 11744 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11745 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11746 } 11747 11748 /* 11749 * Caller to this routine should check for IOCB_ERROR 11750 * and handle it properly. This routine no longer removes 11751 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11752 */ 11753 return retval; 11754 } 11755 11756 /** 11757 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11758 * @phba: pointer to lpfc HBA data structure. 11759 * 11760 * This routine will abort all pending and outstanding iocbs to an HBA. 11761 **/ 11762 void 11763 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11764 { 11765 struct lpfc_sli *psli = &phba->sli; 11766 struct lpfc_sli_ring *pring; 11767 struct lpfc_queue *qp = NULL; 11768 int i; 11769 11770 if (phba->sli_rev != LPFC_SLI_REV4) { 11771 for (i = 0; i < psli->num_rings; i++) { 11772 pring = &psli->sli3_ring[i]; 11773 lpfc_sli_abort_iocb_ring(phba, pring); 11774 } 11775 return; 11776 } 11777 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11778 pring = qp->pring; 11779 if (!pring) 11780 continue; 11781 lpfc_sli_abort_iocb_ring(phba, pring); 11782 } 11783 } 11784 11785 /** 11786 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11787 * @iocbq: Pointer to driver iocb object. 11788 * @vport: Pointer to driver virtual port object. 11789 * @tgt_id: SCSI ID of the target. 11790 * @lun_id: LUN ID of the scsi device. 11791 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11792 * 11793 * This function acts as an iocb filter for functions which abort or count 11794 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11795 * 0 if the filtering criteria is met for the given iocb and will return 11796 * 1 if the filtering criteria is not met. 11797 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11798 * given iocb is for the SCSI device specified by vport, tgt_id and 11799 * lun_id parameter. 11800 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11801 * given iocb is for the SCSI target specified by vport and tgt_id 11802 * parameters. 11803 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11804 * given iocb is for the SCSI host associated with the given vport. 11805 * This function is called with no locks held. 11806 **/ 11807 static int 11808 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11809 uint16_t tgt_id, uint64_t lun_id, 11810 lpfc_ctx_cmd ctx_cmd) 11811 { 11812 struct lpfc_io_buf *lpfc_cmd; 11813 IOCB_t *icmd = NULL; 11814 int rc = 1; 11815 11816 if (!iocbq || iocbq->vport != vport) 11817 return rc; 11818 11819 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11820 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 11821 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11822 return rc; 11823 11824 icmd = &iocbq->iocb; 11825 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11826 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 11827 return rc; 11828 11829 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11830 11831 if (lpfc_cmd->pCmd == NULL) 11832 return rc; 11833 11834 switch (ctx_cmd) { 11835 case LPFC_CTX_LUN: 11836 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11837 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11838 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11839 rc = 0; 11840 break; 11841 case LPFC_CTX_TGT: 11842 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11843 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11844 rc = 0; 11845 break; 11846 case LPFC_CTX_HOST: 11847 rc = 0; 11848 break; 11849 default: 11850 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11851 __func__, ctx_cmd); 11852 break; 11853 } 11854 11855 return rc; 11856 } 11857 11858 /** 11859 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11860 * @vport: Pointer to virtual port. 11861 * @tgt_id: SCSI ID of the target. 11862 * @lun_id: LUN ID of the scsi device. 11863 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11864 * 11865 * This function returns number of FCP commands pending for the vport. 11866 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11867 * commands pending on the vport associated with SCSI device specified 11868 * by tgt_id and lun_id parameters. 11869 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11870 * commands pending on the vport associated with SCSI target specified 11871 * by tgt_id parameter. 11872 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11873 * commands pending on the vport. 11874 * This function returns the number of iocbs which satisfy the filter. 11875 * This function is called without any lock held. 11876 **/ 11877 int 11878 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11879 lpfc_ctx_cmd ctx_cmd) 11880 { 11881 struct lpfc_hba *phba = vport->phba; 11882 struct lpfc_iocbq *iocbq; 11883 int sum, i; 11884 11885 spin_lock_irq(&phba->hbalock); 11886 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11887 iocbq = phba->sli.iocbq_lookup[i]; 11888 11889 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11890 ctx_cmd) == 0) 11891 sum++; 11892 } 11893 spin_unlock_irq(&phba->hbalock); 11894 11895 return sum; 11896 } 11897 11898 /** 11899 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11900 * @phba: Pointer to HBA context object 11901 * @cmdiocb: Pointer to command iocb object. 11902 * @wcqe: pointer to the complete wcqe 11903 * 11904 * This function is called when an aborted FCP iocb completes. This 11905 * function is called by the ring event handler with no lock held. 11906 * This function frees the iocb. It is called for sli-4 adapters. 11907 **/ 11908 void 11909 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11910 struct lpfc_wcqe_complete *wcqe) 11911 { 11912 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11913 "3017 ABORT_XRI_CN completing on rpi x%x " 11914 "original iotag x%x, abort cmd iotag x%x " 11915 "status 0x%x, reason 0x%x\n", 11916 cmdiocb->iocb.un.acxri.abortContextTag, 11917 cmdiocb->iocb.un.acxri.abortIoTag, 11918 cmdiocb->iotag, 11919 (bf_get(lpfc_wcqe_c_status, wcqe) 11920 & LPFC_IOCB_STATUS_MASK), 11921 wcqe->parameter); 11922 lpfc_sli_release_iocbq(phba, cmdiocb); 11923 } 11924 11925 /** 11926 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11927 * @phba: Pointer to HBA context object 11928 * @cmdiocb: Pointer to command iocb object. 11929 * @rspiocb: Pointer to response iocb object. 11930 * 11931 * This function is called when an aborted FCP iocb completes. This 11932 * function is called by the ring event handler with no lock held. 11933 * This function frees the iocb. 11934 **/ 11935 void 11936 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11937 struct lpfc_iocbq *rspiocb) 11938 { 11939 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11940 "3096 ABORT_XRI_CN completing on rpi x%x " 11941 "original iotag x%x, abort cmd iotag x%x " 11942 "status 0x%x, reason 0x%x\n", 11943 cmdiocb->iocb.un.acxri.abortContextTag, 11944 cmdiocb->iocb.un.acxri.abortIoTag, 11945 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11946 rspiocb->iocb.un.ulpWord[4]); 11947 lpfc_sli_release_iocbq(phba, cmdiocb); 11948 return; 11949 } 11950 11951 /** 11952 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11953 * @vport: Pointer to virtual port. 11954 * @tgt_id: SCSI ID of the target. 11955 * @lun_id: LUN ID of the scsi device. 11956 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11957 * 11958 * This function sends an abort command for every SCSI command 11959 * associated with the given virtual port pending on the ring 11960 * filtered by lpfc_sli_validate_fcp_iocb function. 11961 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11962 * FCP iocbs associated with lun specified by tgt_id and lun_id 11963 * parameters 11964 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11965 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11966 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11967 * FCP iocbs associated with virtual port. 11968 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 11969 * lpfc_sli4_calc_ring is used. 11970 * This function returns number of iocbs it failed to abort. 11971 * This function is called with no locks held. 11972 **/ 11973 int 11974 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 11975 lpfc_ctx_cmd abort_cmd) 11976 { 11977 struct lpfc_hba *phba = vport->phba; 11978 struct lpfc_sli_ring *pring = NULL; 11979 struct lpfc_iocbq *iocbq; 11980 int errcnt = 0, ret_val = 0; 11981 unsigned long iflags; 11982 int i; 11983 void *fcp_cmpl = NULL; 11984 11985 /* all I/Os are in process of being flushed */ 11986 if (phba->hba_flag & HBA_IOQ_FLUSH) 11987 return errcnt; 11988 11989 for (i = 1; i <= phba->sli.last_iotag; i++) { 11990 iocbq = phba->sli.iocbq_lookup[i]; 11991 11992 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11993 abort_cmd) != 0) 11994 continue; 11995 11996 spin_lock_irqsave(&phba->hbalock, iflags); 11997 if (phba->sli_rev == LPFC_SLI_REV3) { 11998 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 11999 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12000 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12001 pring = lpfc_sli4_calc_ring(phba, iocbq); 12002 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12003 } 12004 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12005 fcp_cmpl); 12006 spin_unlock_irqrestore(&phba->hbalock, iflags); 12007 if (ret_val != IOCB_SUCCESS) 12008 errcnt++; 12009 } 12010 12011 return errcnt; 12012 } 12013 12014 /** 12015 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12016 * @vport: Pointer to virtual port. 12017 * @pring: Pointer to driver SLI ring object. 12018 * @tgt_id: SCSI ID of the target. 12019 * @lun_id: LUN ID of the scsi device. 12020 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12021 * 12022 * This function sends an abort command for every SCSI command 12023 * associated with the given virtual port pending on the ring 12024 * filtered by lpfc_sli_validate_fcp_iocb function. 12025 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12026 * FCP iocbs associated with lun specified by tgt_id and lun_id 12027 * parameters 12028 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12029 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12030 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12031 * FCP iocbs associated with virtual port. 12032 * This function returns number of iocbs it aborted . 12033 * This function is called with no locks held right after a taskmgmt 12034 * command is sent. 12035 **/ 12036 int 12037 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12038 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12039 { 12040 struct lpfc_hba *phba = vport->phba; 12041 struct lpfc_io_buf *lpfc_cmd; 12042 struct lpfc_iocbq *abtsiocbq; 12043 struct lpfc_nodelist *ndlp; 12044 struct lpfc_iocbq *iocbq; 12045 IOCB_t *icmd; 12046 int sum, i, ret_val; 12047 unsigned long iflags; 12048 struct lpfc_sli_ring *pring_s4 = NULL; 12049 12050 spin_lock_irqsave(&phba->hbalock, iflags); 12051 12052 /* all I/Os are in process of being flushed */ 12053 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12054 spin_unlock_irqrestore(&phba->hbalock, iflags); 12055 return 0; 12056 } 12057 sum = 0; 12058 12059 for (i = 1; i <= phba->sli.last_iotag; i++) { 12060 iocbq = phba->sli.iocbq_lookup[i]; 12061 12062 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12063 cmd) != 0) 12064 continue; 12065 12066 /* Guard against IO completion being called at same time */ 12067 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12068 spin_lock(&lpfc_cmd->buf_lock); 12069 12070 if (!lpfc_cmd->pCmd) { 12071 spin_unlock(&lpfc_cmd->buf_lock); 12072 continue; 12073 } 12074 12075 if (phba->sli_rev == LPFC_SLI_REV4) { 12076 pring_s4 = 12077 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12078 if (!pring_s4) { 12079 spin_unlock(&lpfc_cmd->buf_lock); 12080 continue; 12081 } 12082 /* Note: both hbalock and ring_lock must be set here */ 12083 spin_lock(&pring_s4->ring_lock); 12084 } 12085 12086 /* 12087 * If the iocbq is already being aborted, don't take a second 12088 * action, but do count it. 12089 */ 12090 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12091 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12092 if (phba->sli_rev == LPFC_SLI_REV4) 12093 spin_unlock(&pring_s4->ring_lock); 12094 spin_unlock(&lpfc_cmd->buf_lock); 12095 continue; 12096 } 12097 12098 /* issue ABTS for this IOCB based on iotag */ 12099 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12100 if (!abtsiocbq) { 12101 if (phba->sli_rev == LPFC_SLI_REV4) 12102 spin_unlock(&pring_s4->ring_lock); 12103 spin_unlock(&lpfc_cmd->buf_lock); 12104 continue; 12105 } 12106 12107 icmd = &iocbq->iocb; 12108 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12109 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12110 if (phba->sli_rev == LPFC_SLI_REV4) 12111 abtsiocbq->iocb.un.acxri.abortIoTag = 12112 iocbq->sli4_xritag; 12113 else 12114 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12115 abtsiocbq->iocb.ulpLe = 1; 12116 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12117 abtsiocbq->vport = vport; 12118 12119 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12120 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12121 if (iocbq->iocb_flag & LPFC_IO_FCP) 12122 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12123 if (iocbq->iocb_flag & LPFC_IO_FOF) 12124 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12125 12126 ndlp = lpfc_cmd->rdata->pnode; 12127 12128 if (lpfc_is_link_up(phba) && 12129 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12130 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12131 else 12132 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12133 12134 /* Setup callback routine and issue the command. */ 12135 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12136 12137 /* 12138 * Indicate the IO is being aborted by the driver and set 12139 * the caller's flag into the aborted IO. 12140 */ 12141 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12142 12143 if (phba->sli_rev == LPFC_SLI_REV4) { 12144 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12145 abtsiocbq, 0); 12146 spin_unlock(&pring_s4->ring_lock); 12147 } else { 12148 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12149 abtsiocbq, 0); 12150 } 12151 12152 spin_unlock(&lpfc_cmd->buf_lock); 12153 12154 if (ret_val == IOCB_ERROR) 12155 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12156 else 12157 sum++; 12158 } 12159 spin_unlock_irqrestore(&phba->hbalock, iflags); 12160 return sum; 12161 } 12162 12163 /** 12164 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12165 * @phba: Pointer to HBA context object. 12166 * @cmdiocbq: Pointer to command iocb. 12167 * @rspiocbq: Pointer to response iocb. 12168 * 12169 * This function is the completion handler for iocbs issued using 12170 * lpfc_sli_issue_iocb_wait function. This function is called by the 12171 * ring event handler function without any lock held. This function 12172 * can be called from both worker thread context and interrupt 12173 * context. This function also can be called from other thread which 12174 * cleans up the SLI layer objects. 12175 * This function copy the contents of the response iocb to the 12176 * response iocb memory object provided by the caller of 12177 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12178 * sleeps for the iocb completion. 12179 **/ 12180 static void 12181 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12182 struct lpfc_iocbq *cmdiocbq, 12183 struct lpfc_iocbq *rspiocbq) 12184 { 12185 wait_queue_head_t *pdone_q; 12186 unsigned long iflags; 12187 struct lpfc_io_buf *lpfc_cmd; 12188 12189 spin_lock_irqsave(&phba->hbalock, iflags); 12190 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12191 12192 /* 12193 * A time out has occurred for the iocb. If a time out 12194 * completion handler has been supplied, call it. Otherwise, 12195 * just free the iocbq. 12196 */ 12197 12198 spin_unlock_irqrestore(&phba->hbalock, iflags); 12199 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12200 cmdiocbq->wait_iocb_cmpl = NULL; 12201 if (cmdiocbq->iocb_cmpl) 12202 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12203 else 12204 lpfc_sli_release_iocbq(phba, cmdiocbq); 12205 return; 12206 } 12207 12208 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12209 if (cmdiocbq->context2 && rspiocbq) 12210 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12211 &rspiocbq->iocb, sizeof(IOCB_t)); 12212 12213 /* Set the exchange busy flag for task management commands */ 12214 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12215 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12216 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12217 cur_iocbq); 12218 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12219 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12220 else 12221 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12222 } 12223 12224 pdone_q = cmdiocbq->context_un.wait_queue; 12225 if (pdone_q) 12226 wake_up(pdone_q); 12227 spin_unlock_irqrestore(&phba->hbalock, iflags); 12228 return; 12229 } 12230 12231 /** 12232 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12233 * @phba: Pointer to HBA context object.. 12234 * @piocbq: Pointer to command iocb. 12235 * @flag: Flag to test. 12236 * 12237 * This routine grabs the hbalock and then test the iocb_flag to 12238 * see if the passed in flag is set. 12239 * Returns: 12240 * 1 if flag is set. 12241 * 0 if flag is not set. 12242 **/ 12243 static int 12244 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12245 struct lpfc_iocbq *piocbq, uint32_t flag) 12246 { 12247 unsigned long iflags; 12248 int ret; 12249 12250 spin_lock_irqsave(&phba->hbalock, iflags); 12251 ret = piocbq->iocb_flag & flag; 12252 spin_unlock_irqrestore(&phba->hbalock, iflags); 12253 return ret; 12254 12255 } 12256 12257 /** 12258 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12259 * @phba: Pointer to HBA context object.. 12260 * @ring_number: Ring number 12261 * @piocb: Pointer to command iocb. 12262 * @prspiocbq: Pointer to response iocb. 12263 * @timeout: Timeout in number of seconds. 12264 * 12265 * This function issues the iocb to firmware and waits for the 12266 * iocb to complete. The iocb_cmpl field of the shall be used 12267 * to handle iocbs which time out. If the field is NULL, the 12268 * function shall free the iocbq structure. If more clean up is 12269 * needed, the caller is expected to provide a completion function 12270 * that will provide the needed clean up. If the iocb command is 12271 * not completed within timeout seconds, the function will either 12272 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12273 * completion function set in the iocb_cmpl field and then return 12274 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12275 * resources if this function returns IOCB_TIMEDOUT. 12276 * The function waits for the iocb completion using an 12277 * non-interruptible wait. 12278 * This function will sleep while waiting for iocb completion. 12279 * So, this function should not be called from any context which 12280 * does not allow sleeping. Due to the same reason, this function 12281 * cannot be called with interrupt disabled. 12282 * This function assumes that the iocb completions occur while 12283 * this function sleep. So, this function cannot be called from 12284 * the thread which process iocb completion for this ring. 12285 * This function clears the iocb_flag of the iocb object before 12286 * issuing the iocb and the iocb completion handler sets this 12287 * flag and wakes this thread when the iocb completes. 12288 * The contents of the response iocb will be copied to prspiocbq 12289 * by the completion handler when the command completes. 12290 * This function returns IOCB_SUCCESS when success. 12291 * This function is called with no lock held. 12292 **/ 12293 int 12294 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12295 uint32_t ring_number, 12296 struct lpfc_iocbq *piocb, 12297 struct lpfc_iocbq *prspiocbq, 12298 uint32_t timeout) 12299 { 12300 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12301 long timeleft, timeout_req = 0; 12302 int retval = IOCB_SUCCESS; 12303 uint32_t creg_val; 12304 struct lpfc_iocbq *iocb; 12305 int txq_cnt = 0; 12306 int txcmplq_cnt = 0; 12307 struct lpfc_sli_ring *pring; 12308 unsigned long iflags; 12309 bool iocb_completed = true; 12310 12311 if (phba->sli_rev >= LPFC_SLI_REV4) 12312 pring = lpfc_sli4_calc_ring(phba, piocb); 12313 else 12314 pring = &phba->sli.sli3_ring[ring_number]; 12315 /* 12316 * If the caller has provided a response iocbq buffer, then context2 12317 * is NULL or its an error. 12318 */ 12319 if (prspiocbq) { 12320 if (piocb->context2) 12321 return IOCB_ERROR; 12322 piocb->context2 = prspiocbq; 12323 } 12324 12325 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12326 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12327 piocb->context_un.wait_queue = &done_q; 12328 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12329 12330 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12331 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12332 return IOCB_ERROR; 12333 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12334 writel(creg_val, phba->HCregaddr); 12335 readl(phba->HCregaddr); /* flush */ 12336 } 12337 12338 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12339 SLI_IOCB_RET_IOCB); 12340 if (retval == IOCB_SUCCESS) { 12341 timeout_req = msecs_to_jiffies(timeout * 1000); 12342 timeleft = wait_event_timeout(done_q, 12343 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12344 timeout_req); 12345 spin_lock_irqsave(&phba->hbalock, iflags); 12346 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12347 12348 /* 12349 * IOCB timed out. Inform the wake iocb wait 12350 * completion function and set local status 12351 */ 12352 12353 iocb_completed = false; 12354 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12355 } 12356 spin_unlock_irqrestore(&phba->hbalock, iflags); 12357 if (iocb_completed) { 12358 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12359 "0331 IOCB wake signaled\n"); 12360 /* Note: we are not indicating if the IOCB has a success 12361 * status or not - that's for the caller to check. 12362 * IOCB_SUCCESS means just that the command was sent and 12363 * completed. Not that it completed successfully. 12364 * */ 12365 } else if (timeleft == 0) { 12366 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12367 "0338 IOCB wait timeout error - no " 12368 "wake response Data x%x\n", timeout); 12369 retval = IOCB_TIMEDOUT; 12370 } else { 12371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12372 "0330 IOCB wake NOT set, " 12373 "Data x%x x%lx\n", 12374 timeout, (timeleft / jiffies)); 12375 retval = IOCB_TIMEDOUT; 12376 } 12377 } else if (retval == IOCB_BUSY) { 12378 if (phba->cfg_log_verbose & LOG_SLI) { 12379 list_for_each_entry(iocb, &pring->txq, list) { 12380 txq_cnt++; 12381 } 12382 list_for_each_entry(iocb, &pring->txcmplq, list) { 12383 txcmplq_cnt++; 12384 } 12385 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12386 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12387 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12388 } 12389 return retval; 12390 } else { 12391 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12392 "0332 IOCB wait issue failed, Data x%x\n", 12393 retval); 12394 retval = IOCB_ERROR; 12395 } 12396 12397 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12398 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12399 return IOCB_ERROR; 12400 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12401 writel(creg_val, phba->HCregaddr); 12402 readl(phba->HCregaddr); /* flush */ 12403 } 12404 12405 if (prspiocbq) 12406 piocb->context2 = NULL; 12407 12408 piocb->context_un.wait_queue = NULL; 12409 piocb->iocb_cmpl = NULL; 12410 return retval; 12411 } 12412 12413 /** 12414 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12415 * @phba: Pointer to HBA context object. 12416 * @pmboxq: Pointer to driver mailbox object. 12417 * @timeout: Timeout in number of seconds. 12418 * 12419 * This function issues the mailbox to firmware and waits for the 12420 * mailbox command to complete. If the mailbox command is not 12421 * completed within timeout seconds, it returns MBX_TIMEOUT. 12422 * The function waits for the mailbox completion using an 12423 * interruptible wait. If the thread is woken up due to a 12424 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12425 * should not free the mailbox resources, if this function returns 12426 * MBX_TIMEOUT. 12427 * This function will sleep while waiting for mailbox completion. 12428 * So, this function should not be called from any context which 12429 * does not allow sleeping. Due to the same reason, this function 12430 * cannot be called with interrupt disabled. 12431 * This function assumes that the mailbox completion occurs while 12432 * this function sleep. So, this function cannot be called from 12433 * the worker thread which processes mailbox completion. 12434 * This function is called in the context of HBA management 12435 * applications. 12436 * This function returns MBX_SUCCESS when successful. 12437 * This function is called with no lock held. 12438 **/ 12439 int 12440 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12441 uint32_t timeout) 12442 { 12443 struct completion mbox_done; 12444 int retval; 12445 unsigned long flag; 12446 12447 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12448 /* setup wake call as IOCB callback */ 12449 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12450 12451 /* setup context3 field to pass wait_queue pointer to wake function */ 12452 init_completion(&mbox_done); 12453 pmboxq->context3 = &mbox_done; 12454 /* now issue the command */ 12455 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12456 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12457 wait_for_completion_timeout(&mbox_done, 12458 msecs_to_jiffies(timeout * 1000)); 12459 12460 spin_lock_irqsave(&phba->hbalock, flag); 12461 pmboxq->context3 = NULL; 12462 /* 12463 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12464 * else do not free the resources. 12465 */ 12466 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12467 retval = MBX_SUCCESS; 12468 } else { 12469 retval = MBX_TIMEOUT; 12470 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12471 } 12472 spin_unlock_irqrestore(&phba->hbalock, flag); 12473 } 12474 return retval; 12475 } 12476 12477 /** 12478 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12479 * @phba: Pointer to HBA context. 12480 * @mbx_action: Mailbox shutdown options. 12481 * 12482 * This function is called to shutdown the driver's mailbox sub-system. 12483 * It first marks the mailbox sub-system is in a block state to prevent 12484 * the asynchronous mailbox command from issued off the pending mailbox 12485 * command queue. If the mailbox command sub-system shutdown is due to 12486 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12487 * the mailbox sub-system flush routine to forcefully bring down the 12488 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12489 * as with offline or HBA function reset), this routine will wait for the 12490 * outstanding mailbox command to complete before invoking the mailbox 12491 * sub-system flush routine to gracefully bring down mailbox sub-system. 12492 **/ 12493 void 12494 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12495 { 12496 struct lpfc_sli *psli = &phba->sli; 12497 unsigned long timeout; 12498 12499 if (mbx_action == LPFC_MBX_NO_WAIT) { 12500 /* delay 100ms for port state */ 12501 msleep(100); 12502 lpfc_sli_mbox_sys_flush(phba); 12503 return; 12504 } 12505 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12506 12507 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12508 local_bh_disable(); 12509 12510 spin_lock_irq(&phba->hbalock); 12511 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12512 12513 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12514 /* Determine how long we might wait for the active mailbox 12515 * command to be gracefully completed by firmware. 12516 */ 12517 if (phba->sli.mbox_active) 12518 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12519 phba->sli.mbox_active) * 12520 1000) + jiffies; 12521 spin_unlock_irq(&phba->hbalock); 12522 12523 /* Enable softirqs again, done with phba->hbalock */ 12524 local_bh_enable(); 12525 12526 while (phba->sli.mbox_active) { 12527 /* Check active mailbox complete status every 2ms */ 12528 msleep(2); 12529 if (time_after(jiffies, timeout)) 12530 /* Timeout, let the mailbox flush routine to 12531 * forcefully release active mailbox command 12532 */ 12533 break; 12534 } 12535 } else { 12536 spin_unlock_irq(&phba->hbalock); 12537 12538 /* Enable softirqs again, done with phba->hbalock */ 12539 local_bh_enable(); 12540 } 12541 12542 lpfc_sli_mbox_sys_flush(phba); 12543 } 12544 12545 /** 12546 * lpfc_sli_eratt_read - read sli-3 error attention events 12547 * @phba: Pointer to HBA context. 12548 * 12549 * This function is called to read the SLI3 device error attention registers 12550 * for possible error attention events. The caller must hold the hostlock 12551 * with spin_lock_irq(). 12552 * 12553 * This function returns 1 when there is Error Attention in the Host Attention 12554 * Register and returns 0 otherwise. 12555 **/ 12556 static int 12557 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12558 { 12559 uint32_t ha_copy; 12560 12561 /* Read chip Host Attention (HA) register */ 12562 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12563 goto unplug_err; 12564 12565 if (ha_copy & HA_ERATT) { 12566 /* Read host status register to retrieve error event */ 12567 if (lpfc_sli_read_hs(phba)) 12568 goto unplug_err; 12569 12570 /* Check if there is a deferred error condition is active */ 12571 if ((HS_FFER1 & phba->work_hs) && 12572 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12573 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12574 phba->hba_flag |= DEFER_ERATT; 12575 /* Clear all interrupt enable conditions */ 12576 writel(0, phba->HCregaddr); 12577 readl(phba->HCregaddr); 12578 } 12579 12580 /* Set the driver HA work bitmap */ 12581 phba->work_ha |= HA_ERATT; 12582 /* Indicate polling handles this ERATT */ 12583 phba->hba_flag |= HBA_ERATT_HANDLED; 12584 return 1; 12585 } 12586 return 0; 12587 12588 unplug_err: 12589 /* Set the driver HS work bitmap */ 12590 phba->work_hs |= UNPLUG_ERR; 12591 /* Set the driver HA work bitmap */ 12592 phba->work_ha |= HA_ERATT; 12593 /* Indicate polling handles this ERATT */ 12594 phba->hba_flag |= HBA_ERATT_HANDLED; 12595 return 1; 12596 } 12597 12598 /** 12599 * lpfc_sli4_eratt_read - read sli-4 error attention events 12600 * @phba: Pointer to HBA context. 12601 * 12602 * This function is called to read the SLI4 device error attention registers 12603 * for possible error attention events. The caller must hold the hostlock 12604 * with spin_lock_irq(). 12605 * 12606 * This function returns 1 when there is Error Attention in the Host Attention 12607 * Register and returns 0 otherwise. 12608 **/ 12609 static int 12610 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12611 { 12612 uint32_t uerr_sta_hi, uerr_sta_lo; 12613 uint32_t if_type, portsmphr; 12614 struct lpfc_register portstat_reg; 12615 12616 /* 12617 * For now, use the SLI4 device internal unrecoverable error 12618 * registers for error attention. This can be changed later. 12619 */ 12620 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12621 switch (if_type) { 12622 case LPFC_SLI_INTF_IF_TYPE_0: 12623 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12624 &uerr_sta_lo) || 12625 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12626 &uerr_sta_hi)) { 12627 phba->work_hs |= UNPLUG_ERR; 12628 phba->work_ha |= HA_ERATT; 12629 phba->hba_flag |= HBA_ERATT_HANDLED; 12630 return 1; 12631 } 12632 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12633 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12635 "1423 HBA Unrecoverable error: " 12636 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12637 "ue_mask_lo_reg=0x%x, " 12638 "ue_mask_hi_reg=0x%x\n", 12639 uerr_sta_lo, uerr_sta_hi, 12640 phba->sli4_hba.ue_mask_lo, 12641 phba->sli4_hba.ue_mask_hi); 12642 phba->work_status[0] = uerr_sta_lo; 12643 phba->work_status[1] = uerr_sta_hi; 12644 phba->work_ha |= HA_ERATT; 12645 phba->hba_flag |= HBA_ERATT_HANDLED; 12646 return 1; 12647 } 12648 break; 12649 case LPFC_SLI_INTF_IF_TYPE_2: 12650 case LPFC_SLI_INTF_IF_TYPE_6: 12651 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12652 &portstat_reg.word0) || 12653 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12654 &portsmphr)){ 12655 phba->work_hs |= UNPLUG_ERR; 12656 phba->work_ha |= HA_ERATT; 12657 phba->hba_flag |= HBA_ERATT_HANDLED; 12658 return 1; 12659 } 12660 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12661 phba->work_status[0] = 12662 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12663 phba->work_status[1] = 12664 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12666 "2885 Port Status Event: " 12667 "port status reg 0x%x, " 12668 "port smphr reg 0x%x, " 12669 "error 1=0x%x, error 2=0x%x\n", 12670 portstat_reg.word0, 12671 portsmphr, 12672 phba->work_status[0], 12673 phba->work_status[1]); 12674 phba->work_ha |= HA_ERATT; 12675 phba->hba_flag |= HBA_ERATT_HANDLED; 12676 return 1; 12677 } 12678 break; 12679 case LPFC_SLI_INTF_IF_TYPE_1: 12680 default: 12681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12682 "2886 HBA Error Attention on unsupported " 12683 "if type %d.", if_type); 12684 return 1; 12685 } 12686 12687 return 0; 12688 } 12689 12690 /** 12691 * lpfc_sli_check_eratt - check error attention events 12692 * @phba: Pointer to HBA context. 12693 * 12694 * This function is called from timer soft interrupt context to check HBA's 12695 * error attention register bit for error attention events. 12696 * 12697 * This function returns 1 when there is Error Attention in the Host Attention 12698 * Register and returns 0 otherwise. 12699 **/ 12700 int 12701 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12702 { 12703 uint32_t ha_copy; 12704 12705 /* If somebody is waiting to handle an eratt, don't process it 12706 * here. The brdkill function will do this. 12707 */ 12708 if (phba->link_flag & LS_IGNORE_ERATT) 12709 return 0; 12710 12711 /* Check if interrupt handler handles this ERATT */ 12712 spin_lock_irq(&phba->hbalock); 12713 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12714 /* Interrupt handler has handled ERATT */ 12715 spin_unlock_irq(&phba->hbalock); 12716 return 0; 12717 } 12718 12719 /* 12720 * If there is deferred error attention, do not check for error 12721 * attention 12722 */ 12723 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12724 spin_unlock_irq(&phba->hbalock); 12725 return 0; 12726 } 12727 12728 /* If PCI channel is offline, don't process it */ 12729 if (unlikely(pci_channel_offline(phba->pcidev))) { 12730 spin_unlock_irq(&phba->hbalock); 12731 return 0; 12732 } 12733 12734 switch (phba->sli_rev) { 12735 case LPFC_SLI_REV2: 12736 case LPFC_SLI_REV3: 12737 /* Read chip Host Attention (HA) register */ 12738 ha_copy = lpfc_sli_eratt_read(phba); 12739 break; 12740 case LPFC_SLI_REV4: 12741 /* Read device Uncoverable Error (UERR) registers */ 12742 ha_copy = lpfc_sli4_eratt_read(phba); 12743 break; 12744 default: 12745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12746 "0299 Invalid SLI revision (%d)\n", 12747 phba->sli_rev); 12748 ha_copy = 0; 12749 break; 12750 } 12751 spin_unlock_irq(&phba->hbalock); 12752 12753 return ha_copy; 12754 } 12755 12756 /** 12757 * lpfc_intr_state_check - Check device state for interrupt handling 12758 * @phba: Pointer to HBA context. 12759 * 12760 * This inline routine checks whether a device or its PCI slot is in a state 12761 * that the interrupt should be handled. 12762 * 12763 * This function returns 0 if the device or the PCI slot is in a state that 12764 * interrupt should be handled, otherwise -EIO. 12765 */ 12766 static inline int 12767 lpfc_intr_state_check(struct lpfc_hba *phba) 12768 { 12769 /* If the pci channel is offline, ignore all the interrupts */ 12770 if (unlikely(pci_channel_offline(phba->pcidev))) 12771 return -EIO; 12772 12773 /* Update device level interrupt statistics */ 12774 phba->sli.slistat.sli_intr++; 12775 12776 /* Ignore all interrupts during initialization. */ 12777 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12778 return -EIO; 12779 12780 return 0; 12781 } 12782 12783 /** 12784 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12785 * @irq: Interrupt number. 12786 * @dev_id: The device context pointer. 12787 * 12788 * This function is directly called from the PCI layer as an interrupt 12789 * service routine when device with SLI-3 interface spec is enabled with 12790 * MSI-X multi-message interrupt mode and there are slow-path events in 12791 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12792 * interrupt mode, this function is called as part of the device-level 12793 * interrupt handler. When the PCI slot is in error recovery or the HBA 12794 * is undergoing initialization, the interrupt handler will not process 12795 * the interrupt. The link attention and ELS ring attention events are 12796 * handled by the worker thread. The interrupt handler signals the worker 12797 * thread and returns for these events. This function is called without 12798 * any lock held. It gets the hbalock to access and update SLI data 12799 * structures. 12800 * 12801 * This function returns IRQ_HANDLED when interrupt is handled else it 12802 * returns IRQ_NONE. 12803 **/ 12804 irqreturn_t 12805 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12806 { 12807 struct lpfc_hba *phba; 12808 uint32_t ha_copy, hc_copy; 12809 uint32_t work_ha_copy; 12810 unsigned long status; 12811 unsigned long iflag; 12812 uint32_t control; 12813 12814 MAILBOX_t *mbox, *pmbox; 12815 struct lpfc_vport *vport; 12816 struct lpfc_nodelist *ndlp; 12817 struct lpfc_dmabuf *mp; 12818 LPFC_MBOXQ_t *pmb; 12819 int rc; 12820 12821 /* 12822 * Get the driver's phba structure from the dev_id and 12823 * assume the HBA is not interrupting. 12824 */ 12825 phba = (struct lpfc_hba *)dev_id; 12826 12827 if (unlikely(!phba)) 12828 return IRQ_NONE; 12829 12830 /* 12831 * Stuff needs to be attented to when this function is invoked as an 12832 * individual interrupt handler in MSI-X multi-message interrupt mode 12833 */ 12834 if (phba->intr_type == MSIX) { 12835 /* Check device state for handling interrupt */ 12836 if (lpfc_intr_state_check(phba)) 12837 return IRQ_NONE; 12838 /* Need to read HA REG for slow-path events */ 12839 spin_lock_irqsave(&phba->hbalock, iflag); 12840 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12841 goto unplug_error; 12842 /* If somebody is waiting to handle an eratt don't process it 12843 * here. The brdkill function will do this. 12844 */ 12845 if (phba->link_flag & LS_IGNORE_ERATT) 12846 ha_copy &= ~HA_ERATT; 12847 /* Check the need for handling ERATT in interrupt handler */ 12848 if (ha_copy & HA_ERATT) { 12849 if (phba->hba_flag & HBA_ERATT_HANDLED) 12850 /* ERATT polling has handled ERATT */ 12851 ha_copy &= ~HA_ERATT; 12852 else 12853 /* Indicate interrupt handler handles ERATT */ 12854 phba->hba_flag |= HBA_ERATT_HANDLED; 12855 } 12856 12857 /* 12858 * If there is deferred error attention, do not check for any 12859 * interrupt. 12860 */ 12861 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12862 spin_unlock_irqrestore(&phba->hbalock, iflag); 12863 return IRQ_NONE; 12864 } 12865 12866 /* Clear up only attention source related to slow-path */ 12867 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12868 goto unplug_error; 12869 12870 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12871 HC_LAINT_ENA | HC_ERINT_ENA), 12872 phba->HCregaddr); 12873 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12874 phba->HAregaddr); 12875 writel(hc_copy, phba->HCregaddr); 12876 readl(phba->HAregaddr); /* flush */ 12877 spin_unlock_irqrestore(&phba->hbalock, iflag); 12878 } else 12879 ha_copy = phba->ha_copy; 12880 12881 work_ha_copy = ha_copy & phba->work_ha_mask; 12882 12883 if (work_ha_copy) { 12884 if (work_ha_copy & HA_LATT) { 12885 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12886 /* 12887 * Turn off Link Attention interrupts 12888 * until CLEAR_LA done 12889 */ 12890 spin_lock_irqsave(&phba->hbalock, iflag); 12891 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12892 if (lpfc_readl(phba->HCregaddr, &control)) 12893 goto unplug_error; 12894 control &= ~HC_LAINT_ENA; 12895 writel(control, phba->HCregaddr); 12896 readl(phba->HCregaddr); /* flush */ 12897 spin_unlock_irqrestore(&phba->hbalock, iflag); 12898 } 12899 else 12900 work_ha_copy &= ~HA_LATT; 12901 } 12902 12903 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12904 /* 12905 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12906 * the only slow ring. 12907 */ 12908 status = (work_ha_copy & 12909 (HA_RXMASK << (4*LPFC_ELS_RING))); 12910 status >>= (4*LPFC_ELS_RING); 12911 if (status & HA_RXMASK) { 12912 spin_lock_irqsave(&phba->hbalock, iflag); 12913 if (lpfc_readl(phba->HCregaddr, &control)) 12914 goto unplug_error; 12915 12916 lpfc_debugfs_slow_ring_trc(phba, 12917 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12918 control, status, 12919 (uint32_t)phba->sli.slistat.sli_intr); 12920 12921 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12922 lpfc_debugfs_slow_ring_trc(phba, 12923 "ISR Disable ring:" 12924 "pwork:x%x hawork:x%x wait:x%x", 12925 phba->work_ha, work_ha_copy, 12926 (uint32_t)((unsigned long) 12927 &phba->work_waitq)); 12928 12929 control &= 12930 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12931 writel(control, phba->HCregaddr); 12932 readl(phba->HCregaddr); /* flush */ 12933 } 12934 else { 12935 lpfc_debugfs_slow_ring_trc(phba, 12936 "ISR slow ring: pwork:" 12937 "x%x hawork:x%x wait:x%x", 12938 phba->work_ha, work_ha_copy, 12939 (uint32_t)((unsigned long) 12940 &phba->work_waitq)); 12941 } 12942 spin_unlock_irqrestore(&phba->hbalock, iflag); 12943 } 12944 } 12945 spin_lock_irqsave(&phba->hbalock, iflag); 12946 if (work_ha_copy & HA_ERATT) { 12947 if (lpfc_sli_read_hs(phba)) 12948 goto unplug_error; 12949 /* 12950 * Check if there is a deferred error condition 12951 * is active 12952 */ 12953 if ((HS_FFER1 & phba->work_hs) && 12954 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12955 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12956 phba->work_hs)) { 12957 phba->hba_flag |= DEFER_ERATT; 12958 /* Clear all interrupt enable conditions */ 12959 writel(0, phba->HCregaddr); 12960 readl(phba->HCregaddr); 12961 } 12962 } 12963 12964 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12965 pmb = phba->sli.mbox_active; 12966 pmbox = &pmb->u.mb; 12967 mbox = phba->mbox; 12968 vport = pmb->vport; 12969 12970 /* First check out the status word */ 12971 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12972 if (pmbox->mbxOwner != OWN_HOST) { 12973 spin_unlock_irqrestore(&phba->hbalock, iflag); 12974 /* 12975 * Stray Mailbox Interrupt, mbxCommand <cmd> 12976 * mbxStatus <status> 12977 */ 12978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12979 "(%d):0304 Stray Mailbox " 12980 "Interrupt mbxCommand x%x " 12981 "mbxStatus x%x\n", 12982 (vport ? vport->vpi : 0), 12983 pmbox->mbxCommand, 12984 pmbox->mbxStatus); 12985 /* clear mailbox attention bit */ 12986 work_ha_copy &= ~HA_MBATT; 12987 } else { 12988 phba->sli.mbox_active = NULL; 12989 spin_unlock_irqrestore(&phba->hbalock, iflag); 12990 phba->last_completion_time = jiffies; 12991 del_timer(&phba->sli.mbox_tmo); 12992 if (pmb->mbox_cmpl) { 12993 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12994 MAILBOX_CMD_SIZE); 12995 if (pmb->out_ext_byte_len && 12996 pmb->ctx_buf) 12997 lpfc_sli_pcimem_bcopy( 12998 phba->mbox_ext, 12999 pmb->ctx_buf, 13000 pmb->out_ext_byte_len); 13001 } 13002 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13003 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13004 13005 lpfc_debugfs_disc_trc(vport, 13006 LPFC_DISC_TRC_MBOX_VPORT, 13007 "MBOX dflt rpi: : " 13008 "status:x%x rpi:x%x", 13009 (uint32_t)pmbox->mbxStatus, 13010 pmbox->un.varWords[0], 0); 13011 13012 if (!pmbox->mbxStatus) { 13013 mp = (struct lpfc_dmabuf *) 13014 (pmb->ctx_buf); 13015 ndlp = (struct lpfc_nodelist *) 13016 pmb->ctx_ndlp; 13017 13018 /* Reg_LOGIN of dflt RPI was 13019 * successful. new lets get 13020 * rid of the RPI using the 13021 * same mbox buffer. 13022 */ 13023 lpfc_unreg_login(phba, 13024 vport->vpi, 13025 pmbox->un.varWords[0], 13026 pmb); 13027 pmb->mbox_cmpl = 13028 lpfc_mbx_cmpl_dflt_rpi; 13029 pmb->ctx_buf = mp; 13030 pmb->ctx_ndlp = ndlp; 13031 pmb->vport = vport; 13032 rc = lpfc_sli_issue_mbox(phba, 13033 pmb, 13034 MBX_NOWAIT); 13035 if (rc != MBX_BUSY) 13036 lpfc_printf_log(phba, 13037 KERN_ERR, 13038 LOG_TRACE_EVENT, 13039 "0350 rc should have" 13040 "been MBX_BUSY\n"); 13041 if (rc != MBX_NOT_FINISHED) 13042 goto send_current_mbox; 13043 } 13044 } 13045 spin_lock_irqsave( 13046 &phba->pport->work_port_lock, 13047 iflag); 13048 phba->pport->work_port_events &= 13049 ~WORKER_MBOX_TMO; 13050 spin_unlock_irqrestore( 13051 &phba->pport->work_port_lock, 13052 iflag); 13053 13054 /* Do NOT queue MBX_HEARTBEAT to the worker 13055 * thread for processing. 13056 */ 13057 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13058 /* Process mbox now */ 13059 phba->sli.mbox_active = NULL; 13060 phba->sli.sli_flag &= 13061 ~LPFC_SLI_MBOX_ACTIVE; 13062 if (pmb->mbox_cmpl) 13063 pmb->mbox_cmpl(phba, pmb); 13064 } else { 13065 /* Queue to worker thread to process */ 13066 lpfc_mbox_cmpl_put(phba, pmb); 13067 } 13068 } 13069 } else 13070 spin_unlock_irqrestore(&phba->hbalock, iflag); 13071 13072 if ((work_ha_copy & HA_MBATT) && 13073 (phba->sli.mbox_active == NULL)) { 13074 send_current_mbox: 13075 /* Process next mailbox command if there is one */ 13076 do { 13077 rc = lpfc_sli_issue_mbox(phba, NULL, 13078 MBX_NOWAIT); 13079 } while (rc == MBX_NOT_FINISHED); 13080 if (rc != MBX_SUCCESS) 13081 lpfc_printf_log(phba, KERN_ERR, 13082 LOG_TRACE_EVENT, 13083 "0349 rc should be " 13084 "MBX_SUCCESS\n"); 13085 } 13086 13087 spin_lock_irqsave(&phba->hbalock, iflag); 13088 phba->work_ha |= work_ha_copy; 13089 spin_unlock_irqrestore(&phba->hbalock, iflag); 13090 lpfc_worker_wake_up(phba); 13091 } 13092 return IRQ_HANDLED; 13093 unplug_error: 13094 spin_unlock_irqrestore(&phba->hbalock, iflag); 13095 return IRQ_HANDLED; 13096 13097 } /* lpfc_sli_sp_intr_handler */ 13098 13099 /** 13100 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13101 * @irq: Interrupt number. 13102 * @dev_id: The device context pointer. 13103 * 13104 * This function is directly called from the PCI layer as an interrupt 13105 * service routine when device with SLI-3 interface spec is enabled with 13106 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13107 * ring event in the HBA. However, when the device is enabled with either 13108 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13109 * device-level interrupt handler. When the PCI slot is in error recovery 13110 * or the HBA is undergoing initialization, the interrupt handler will not 13111 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13112 * the intrrupt context. This function is called without any lock held. 13113 * It gets the hbalock to access and update SLI data structures. 13114 * 13115 * This function returns IRQ_HANDLED when interrupt is handled else it 13116 * returns IRQ_NONE. 13117 **/ 13118 irqreturn_t 13119 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13120 { 13121 struct lpfc_hba *phba; 13122 uint32_t ha_copy; 13123 unsigned long status; 13124 unsigned long iflag; 13125 struct lpfc_sli_ring *pring; 13126 13127 /* Get the driver's phba structure from the dev_id and 13128 * assume the HBA is not interrupting. 13129 */ 13130 phba = (struct lpfc_hba *) dev_id; 13131 13132 if (unlikely(!phba)) 13133 return IRQ_NONE; 13134 13135 /* 13136 * Stuff needs to be attented to when this function is invoked as an 13137 * individual interrupt handler in MSI-X multi-message interrupt mode 13138 */ 13139 if (phba->intr_type == MSIX) { 13140 /* Check device state for handling interrupt */ 13141 if (lpfc_intr_state_check(phba)) 13142 return IRQ_NONE; 13143 /* Need to read HA REG for FCP ring and other ring events */ 13144 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13145 return IRQ_HANDLED; 13146 /* Clear up only attention source related to fast-path */ 13147 spin_lock_irqsave(&phba->hbalock, iflag); 13148 /* 13149 * If there is deferred error attention, do not check for 13150 * any interrupt. 13151 */ 13152 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13153 spin_unlock_irqrestore(&phba->hbalock, iflag); 13154 return IRQ_NONE; 13155 } 13156 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13157 phba->HAregaddr); 13158 readl(phba->HAregaddr); /* flush */ 13159 spin_unlock_irqrestore(&phba->hbalock, iflag); 13160 } else 13161 ha_copy = phba->ha_copy; 13162 13163 /* 13164 * Process all events on FCP ring. Take the optimized path for FCP IO. 13165 */ 13166 ha_copy &= ~(phba->work_ha_mask); 13167 13168 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13169 status >>= (4*LPFC_FCP_RING); 13170 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13171 if (status & HA_RXMASK) 13172 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13173 13174 if (phba->cfg_multi_ring_support == 2) { 13175 /* 13176 * Process all events on extra ring. Take the optimized path 13177 * for extra ring IO. 13178 */ 13179 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13180 status >>= (4*LPFC_EXTRA_RING); 13181 if (status & HA_RXMASK) { 13182 lpfc_sli_handle_fast_ring_event(phba, 13183 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13184 status); 13185 } 13186 } 13187 return IRQ_HANDLED; 13188 } /* lpfc_sli_fp_intr_handler */ 13189 13190 /** 13191 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13192 * @irq: Interrupt number. 13193 * @dev_id: The device context pointer. 13194 * 13195 * This function is the HBA device-level interrupt handler to device with 13196 * SLI-3 interface spec, called from the PCI layer when either MSI or 13197 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13198 * requires driver attention. This function invokes the slow-path interrupt 13199 * attention handling function and fast-path interrupt attention handling 13200 * function in turn to process the relevant HBA attention events. This 13201 * function is called without any lock held. It gets the hbalock to access 13202 * and update SLI data structures. 13203 * 13204 * This function returns IRQ_HANDLED when interrupt is handled, else it 13205 * returns IRQ_NONE. 13206 **/ 13207 irqreturn_t 13208 lpfc_sli_intr_handler(int irq, void *dev_id) 13209 { 13210 struct lpfc_hba *phba; 13211 irqreturn_t sp_irq_rc, fp_irq_rc; 13212 unsigned long status1, status2; 13213 uint32_t hc_copy; 13214 13215 /* 13216 * Get the driver's phba structure from the dev_id and 13217 * assume the HBA is not interrupting. 13218 */ 13219 phba = (struct lpfc_hba *) dev_id; 13220 13221 if (unlikely(!phba)) 13222 return IRQ_NONE; 13223 13224 /* Check device state for handling interrupt */ 13225 if (lpfc_intr_state_check(phba)) 13226 return IRQ_NONE; 13227 13228 spin_lock(&phba->hbalock); 13229 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13230 spin_unlock(&phba->hbalock); 13231 return IRQ_HANDLED; 13232 } 13233 13234 if (unlikely(!phba->ha_copy)) { 13235 spin_unlock(&phba->hbalock); 13236 return IRQ_NONE; 13237 } else if (phba->ha_copy & HA_ERATT) { 13238 if (phba->hba_flag & HBA_ERATT_HANDLED) 13239 /* ERATT polling has handled ERATT */ 13240 phba->ha_copy &= ~HA_ERATT; 13241 else 13242 /* Indicate interrupt handler handles ERATT */ 13243 phba->hba_flag |= HBA_ERATT_HANDLED; 13244 } 13245 13246 /* 13247 * If there is deferred error attention, do not check for any interrupt. 13248 */ 13249 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13250 spin_unlock(&phba->hbalock); 13251 return IRQ_NONE; 13252 } 13253 13254 /* Clear attention sources except link and error attentions */ 13255 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13256 spin_unlock(&phba->hbalock); 13257 return IRQ_HANDLED; 13258 } 13259 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13260 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13261 phba->HCregaddr); 13262 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13263 writel(hc_copy, phba->HCregaddr); 13264 readl(phba->HAregaddr); /* flush */ 13265 spin_unlock(&phba->hbalock); 13266 13267 /* 13268 * Invokes slow-path host attention interrupt handling as appropriate. 13269 */ 13270 13271 /* status of events with mailbox and link attention */ 13272 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13273 13274 /* status of events with ELS ring */ 13275 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13276 status2 >>= (4*LPFC_ELS_RING); 13277 13278 if (status1 || (status2 & HA_RXMASK)) 13279 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13280 else 13281 sp_irq_rc = IRQ_NONE; 13282 13283 /* 13284 * Invoke fast-path host attention interrupt handling as appropriate. 13285 */ 13286 13287 /* status of events with FCP ring */ 13288 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13289 status1 >>= (4*LPFC_FCP_RING); 13290 13291 /* status of events with extra ring */ 13292 if (phba->cfg_multi_ring_support == 2) { 13293 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13294 status2 >>= (4*LPFC_EXTRA_RING); 13295 } else 13296 status2 = 0; 13297 13298 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13299 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13300 else 13301 fp_irq_rc = IRQ_NONE; 13302 13303 /* Return device-level interrupt handling status */ 13304 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13305 } /* lpfc_sli_intr_handler */ 13306 13307 /** 13308 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13309 * @phba: pointer to lpfc hba data structure. 13310 * 13311 * This routine is invoked by the worker thread to process all the pending 13312 * SLI4 els abort xri events. 13313 **/ 13314 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13315 { 13316 struct lpfc_cq_event *cq_event; 13317 unsigned long iflags; 13318 13319 /* First, declare the els xri abort event has been handled */ 13320 spin_lock_irqsave(&phba->hbalock, iflags); 13321 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13322 spin_unlock_irqrestore(&phba->hbalock, iflags); 13323 13324 /* Now, handle all the els xri abort events */ 13325 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13326 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13327 /* Get the first event from the head of the event queue */ 13328 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13329 cq_event, struct lpfc_cq_event, list); 13330 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13331 iflags); 13332 /* Notify aborted XRI for ELS work queue */ 13333 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13334 13335 /* Free the event processed back to the free pool */ 13336 lpfc_sli4_cq_event_release(phba, cq_event); 13337 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13338 iflags); 13339 } 13340 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13341 } 13342 13343 /** 13344 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13345 * @phba: pointer to lpfc hba data structure 13346 * @pIocbIn: pointer to the rspiocbq 13347 * @pIocbOut: pointer to the cmdiocbq 13348 * @wcqe: pointer to the complete wcqe 13349 * 13350 * This routine transfers the fields of a command iocbq to a response iocbq 13351 * by copying all the IOCB fields from command iocbq and transferring the 13352 * completion status information from the complete wcqe. 13353 **/ 13354 static void 13355 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13356 struct lpfc_iocbq *pIocbIn, 13357 struct lpfc_iocbq *pIocbOut, 13358 struct lpfc_wcqe_complete *wcqe) 13359 { 13360 int numBdes, i; 13361 unsigned long iflags; 13362 uint32_t status, max_response; 13363 struct lpfc_dmabuf *dmabuf; 13364 struct ulp_bde64 *bpl, bde; 13365 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13366 13367 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13368 sizeof(struct lpfc_iocbq) - offset); 13369 /* Map WCQE parameters into irspiocb parameters */ 13370 status = bf_get(lpfc_wcqe_c_status, wcqe); 13371 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13372 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13373 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13374 pIocbIn->iocb.un.fcpi.fcpi_parm = 13375 pIocbOut->iocb.un.fcpi.fcpi_parm - 13376 wcqe->total_data_placed; 13377 else 13378 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13379 else { 13380 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13381 switch (pIocbOut->iocb.ulpCommand) { 13382 case CMD_ELS_REQUEST64_CR: 13383 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13384 bpl = (struct ulp_bde64 *)dmabuf->virt; 13385 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13386 max_response = bde.tus.f.bdeSize; 13387 break; 13388 case CMD_GEN_REQUEST64_CR: 13389 max_response = 0; 13390 if (!pIocbOut->context3) 13391 break; 13392 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13393 sizeof(struct ulp_bde64); 13394 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13395 bpl = (struct ulp_bde64 *)dmabuf->virt; 13396 for (i = 0; i < numBdes; i++) { 13397 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13398 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13399 max_response += bde.tus.f.bdeSize; 13400 } 13401 break; 13402 default: 13403 max_response = wcqe->total_data_placed; 13404 break; 13405 } 13406 if (max_response < wcqe->total_data_placed) 13407 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13408 else 13409 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13410 wcqe->total_data_placed; 13411 } 13412 13413 /* Convert BG errors for completion status */ 13414 if (status == CQE_STATUS_DI_ERROR) { 13415 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13416 13417 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13418 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13419 else 13420 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13421 13422 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13423 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13424 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13425 BGS_GUARD_ERR_MASK; 13426 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13427 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13428 BGS_APPTAG_ERR_MASK; 13429 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13430 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13431 BGS_REFTAG_ERR_MASK; 13432 13433 /* Check to see if there was any good data before the error */ 13434 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13435 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13436 BGS_HI_WATER_MARK_PRESENT_MASK; 13437 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13438 wcqe->total_data_placed; 13439 } 13440 13441 /* 13442 * Set ALL the error bits to indicate we don't know what 13443 * type of error it is. 13444 */ 13445 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13446 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13447 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13448 BGS_GUARD_ERR_MASK); 13449 } 13450 13451 /* Pick up HBA exchange busy condition */ 13452 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13453 spin_lock_irqsave(&phba->hbalock, iflags); 13454 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13455 spin_unlock_irqrestore(&phba->hbalock, iflags); 13456 } 13457 } 13458 13459 /** 13460 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13461 * @phba: Pointer to HBA context object. 13462 * @irspiocbq: Pointer to work-queue completion queue entry. 13463 * 13464 * This routine handles an ELS work-queue completion event and construct 13465 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13466 * discovery engine to handle. 13467 * 13468 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13469 **/ 13470 static struct lpfc_iocbq * 13471 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13472 struct lpfc_iocbq *irspiocbq) 13473 { 13474 struct lpfc_sli_ring *pring; 13475 struct lpfc_iocbq *cmdiocbq; 13476 struct lpfc_wcqe_complete *wcqe; 13477 unsigned long iflags; 13478 13479 pring = lpfc_phba_elsring(phba); 13480 if (unlikely(!pring)) 13481 return NULL; 13482 13483 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13484 pring->stats.iocb_event++; 13485 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13486 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13487 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13488 if (unlikely(!cmdiocbq)) { 13489 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13490 "0386 ELS complete with no corresponding " 13491 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13492 wcqe->word0, wcqe->total_data_placed, 13493 wcqe->parameter, wcqe->word3); 13494 lpfc_sli_release_iocbq(phba, irspiocbq); 13495 return NULL; 13496 } 13497 13498 spin_lock_irqsave(&pring->ring_lock, iflags); 13499 /* Put the iocb back on the txcmplq */ 13500 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13501 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13502 13503 /* Fake the irspiocbq and copy necessary response information */ 13504 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13505 13506 return irspiocbq; 13507 } 13508 13509 inline struct lpfc_cq_event * 13510 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13511 { 13512 struct lpfc_cq_event *cq_event; 13513 13514 /* Allocate a new internal CQ_EVENT entry */ 13515 cq_event = lpfc_sli4_cq_event_alloc(phba); 13516 if (!cq_event) { 13517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13518 "0602 Failed to alloc CQ_EVENT entry\n"); 13519 return NULL; 13520 } 13521 13522 /* Move the CQE into the event */ 13523 memcpy(&cq_event->cqe, entry, size); 13524 return cq_event; 13525 } 13526 13527 /** 13528 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13529 * @phba: Pointer to HBA context object. 13530 * @mcqe: Pointer to mailbox completion queue entry. 13531 * 13532 * This routine process a mailbox completion queue entry with asynchronous 13533 * event. 13534 * 13535 * Return: true if work posted to worker thread, otherwise false. 13536 **/ 13537 static bool 13538 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13539 { 13540 struct lpfc_cq_event *cq_event; 13541 unsigned long iflags; 13542 13543 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13544 "0392 Async Event: word0:x%x, word1:x%x, " 13545 "word2:x%x, word3:x%x\n", mcqe->word0, 13546 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13547 13548 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13549 if (!cq_event) 13550 return false; 13551 13552 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13553 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13554 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13555 13556 /* Set the async event flag */ 13557 spin_lock_irqsave(&phba->hbalock, iflags); 13558 phba->hba_flag |= ASYNC_EVENT; 13559 spin_unlock_irqrestore(&phba->hbalock, iflags); 13560 13561 return true; 13562 } 13563 13564 /** 13565 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13566 * @phba: Pointer to HBA context object. 13567 * @mcqe: Pointer to mailbox completion queue entry. 13568 * 13569 * This routine process a mailbox completion queue entry with mailbox 13570 * completion event. 13571 * 13572 * Return: true if work posted to worker thread, otherwise false. 13573 **/ 13574 static bool 13575 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13576 { 13577 uint32_t mcqe_status; 13578 MAILBOX_t *mbox, *pmbox; 13579 struct lpfc_mqe *mqe; 13580 struct lpfc_vport *vport; 13581 struct lpfc_nodelist *ndlp; 13582 struct lpfc_dmabuf *mp; 13583 unsigned long iflags; 13584 LPFC_MBOXQ_t *pmb; 13585 bool workposted = false; 13586 int rc; 13587 13588 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13589 if (!bf_get(lpfc_trailer_completed, mcqe)) 13590 goto out_no_mqe_complete; 13591 13592 /* Get the reference to the active mbox command */ 13593 spin_lock_irqsave(&phba->hbalock, iflags); 13594 pmb = phba->sli.mbox_active; 13595 if (unlikely(!pmb)) { 13596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13597 "1832 No pending MBOX command to handle\n"); 13598 spin_unlock_irqrestore(&phba->hbalock, iflags); 13599 goto out_no_mqe_complete; 13600 } 13601 spin_unlock_irqrestore(&phba->hbalock, iflags); 13602 mqe = &pmb->u.mqe; 13603 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13604 mbox = phba->mbox; 13605 vport = pmb->vport; 13606 13607 /* Reset heartbeat timer */ 13608 phba->last_completion_time = jiffies; 13609 del_timer(&phba->sli.mbox_tmo); 13610 13611 /* Move mbox data to caller's mailbox region, do endian swapping */ 13612 if (pmb->mbox_cmpl && mbox) 13613 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13614 13615 /* 13616 * For mcqe errors, conditionally move a modified error code to 13617 * the mbox so that the error will not be missed. 13618 */ 13619 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13620 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13621 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13622 bf_set(lpfc_mqe_status, mqe, 13623 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13624 } 13625 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13626 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13627 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13628 "MBOX dflt rpi: status:x%x rpi:x%x", 13629 mcqe_status, 13630 pmbox->un.varWords[0], 0); 13631 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13632 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13633 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13634 13635 /* Reg_LOGIN of dflt RPI was successful. Mark the 13636 * node as having an UNREG_LOGIN in progress to stop 13637 * an unsolicited PLOGI from the same NPortId from 13638 * starting another mailbox transaction. 13639 */ 13640 spin_lock_irqsave(&ndlp->lock, iflags); 13641 ndlp->nlp_flag |= NLP_UNREG_INP; 13642 spin_unlock_irqrestore(&ndlp->lock, iflags); 13643 lpfc_unreg_login(phba, vport->vpi, 13644 pmbox->un.varWords[0], pmb); 13645 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13646 pmb->ctx_buf = mp; 13647 13648 /* No reference taken here. This is a default 13649 * RPI reg/immediate unreg cycle. The reference was 13650 * taken in the reg rpi path and is released when 13651 * this mailbox completes. 13652 */ 13653 pmb->ctx_ndlp = ndlp; 13654 pmb->vport = vport; 13655 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13656 if (rc != MBX_BUSY) 13657 lpfc_printf_log(phba, KERN_ERR, 13658 LOG_TRACE_EVENT, 13659 "0385 rc should " 13660 "have been MBX_BUSY\n"); 13661 if (rc != MBX_NOT_FINISHED) 13662 goto send_current_mbox; 13663 } 13664 } 13665 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13666 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13667 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13668 13669 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 13670 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13671 spin_lock_irqsave(&phba->hbalock, iflags); 13672 /* Release the mailbox command posting token */ 13673 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13674 phba->sli.mbox_active = NULL; 13675 if (bf_get(lpfc_trailer_consumed, mcqe)) 13676 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13677 spin_unlock_irqrestore(&phba->hbalock, iflags); 13678 13679 /* Post the next mbox command, if there is one */ 13680 lpfc_sli4_post_async_mbox(phba); 13681 13682 /* Process cmpl now */ 13683 if (pmb->mbox_cmpl) 13684 pmb->mbox_cmpl(phba, pmb); 13685 return false; 13686 } 13687 13688 /* There is mailbox completion work to queue to the worker thread */ 13689 spin_lock_irqsave(&phba->hbalock, iflags); 13690 __lpfc_mbox_cmpl_put(phba, pmb); 13691 phba->work_ha |= HA_MBATT; 13692 spin_unlock_irqrestore(&phba->hbalock, iflags); 13693 workposted = true; 13694 13695 send_current_mbox: 13696 spin_lock_irqsave(&phba->hbalock, iflags); 13697 /* Release the mailbox command posting token */ 13698 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13699 /* Setting active mailbox pointer need to be in sync to flag clear */ 13700 phba->sli.mbox_active = NULL; 13701 if (bf_get(lpfc_trailer_consumed, mcqe)) 13702 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13703 spin_unlock_irqrestore(&phba->hbalock, iflags); 13704 /* Wake up worker thread to post the next pending mailbox command */ 13705 lpfc_worker_wake_up(phba); 13706 return workposted; 13707 13708 out_no_mqe_complete: 13709 spin_lock_irqsave(&phba->hbalock, iflags); 13710 if (bf_get(lpfc_trailer_consumed, mcqe)) 13711 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13712 spin_unlock_irqrestore(&phba->hbalock, iflags); 13713 return false; 13714 } 13715 13716 /** 13717 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13718 * @phba: Pointer to HBA context object. 13719 * @cq: Pointer to associated CQ 13720 * @cqe: Pointer to mailbox completion queue entry. 13721 * 13722 * This routine process a mailbox completion queue entry, it invokes the 13723 * proper mailbox complete handling or asynchronous event handling routine 13724 * according to the MCQE's async bit. 13725 * 13726 * Return: true if work posted to worker thread, otherwise false. 13727 **/ 13728 static bool 13729 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13730 struct lpfc_cqe *cqe) 13731 { 13732 struct lpfc_mcqe mcqe; 13733 bool workposted; 13734 13735 cq->CQ_mbox++; 13736 13737 /* Copy the mailbox MCQE and convert endian order as needed */ 13738 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13739 13740 /* Invoke the proper event handling routine */ 13741 if (!bf_get(lpfc_trailer_async, &mcqe)) 13742 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13743 else 13744 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13745 return workposted; 13746 } 13747 13748 /** 13749 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13750 * @phba: Pointer to HBA context object. 13751 * @cq: Pointer to associated CQ 13752 * @wcqe: Pointer to work-queue completion queue entry. 13753 * 13754 * This routine handles an ELS work-queue completion event. 13755 * 13756 * Return: true if work posted to worker thread, otherwise false. 13757 **/ 13758 static bool 13759 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13760 struct lpfc_wcqe_complete *wcqe) 13761 { 13762 struct lpfc_iocbq *irspiocbq; 13763 unsigned long iflags; 13764 struct lpfc_sli_ring *pring = cq->pring; 13765 int txq_cnt = 0; 13766 int txcmplq_cnt = 0; 13767 13768 /* Check for response status */ 13769 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13770 /* Log the error status */ 13771 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13772 "0357 ELS CQE error: status=x%x: " 13773 "CQE: %08x %08x %08x %08x\n", 13774 bf_get(lpfc_wcqe_c_status, wcqe), 13775 wcqe->word0, wcqe->total_data_placed, 13776 wcqe->parameter, wcqe->word3); 13777 } 13778 13779 /* Get an irspiocbq for later ELS response processing use */ 13780 irspiocbq = lpfc_sli_get_iocbq(phba); 13781 if (!irspiocbq) { 13782 if (!list_empty(&pring->txq)) 13783 txq_cnt++; 13784 if (!list_empty(&pring->txcmplq)) 13785 txcmplq_cnt++; 13786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13787 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13788 "els_txcmplq_cnt=%d\n", 13789 txq_cnt, phba->iocb_cnt, 13790 txcmplq_cnt); 13791 return false; 13792 } 13793 13794 /* Save off the slow-path queue event for work thread to process */ 13795 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13796 spin_lock_irqsave(&phba->hbalock, iflags); 13797 list_add_tail(&irspiocbq->cq_event.list, 13798 &phba->sli4_hba.sp_queue_event); 13799 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13800 spin_unlock_irqrestore(&phba->hbalock, iflags); 13801 13802 return true; 13803 } 13804 13805 /** 13806 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13807 * @phba: Pointer to HBA context object. 13808 * @wcqe: Pointer to work-queue completion queue entry. 13809 * 13810 * This routine handles slow-path WQ entry consumed event by invoking the 13811 * proper WQ release routine to the slow-path WQ. 13812 **/ 13813 static void 13814 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13815 struct lpfc_wcqe_release *wcqe) 13816 { 13817 /* sanity check on queue memory */ 13818 if (unlikely(!phba->sli4_hba.els_wq)) 13819 return; 13820 /* Check for the slow-path ELS work queue */ 13821 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13822 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13823 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13824 else 13825 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13826 "2579 Slow-path wqe consume event carries " 13827 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13828 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13829 phba->sli4_hba.els_wq->queue_id); 13830 } 13831 13832 /** 13833 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13834 * @phba: Pointer to HBA context object. 13835 * @cq: Pointer to a WQ completion queue. 13836 * @wcqe: Pointer to work-queue completion queue entry. 13837 * 13838 * This routine handles an XRI abort event. 13839 * 13840 * Return: true if work posted to worker thread, otherwise false. 13841 **/ 13842 static bool 13843 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13844 struct lpfc_queue *cq, 13845 struct sli4_wcqe_xri_aborted *wcqe) 13846 { 13847 bool workposted = false; 13848 struct lpfc_cq_event *cq_event; 13849 unsigned long iflags; 13850 13851 switch (cq->subtype) { 13852 case LPFC_IO: 13853 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13854 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13855 /* Notify aborted XRI for NVME work queue */ 13856 if (phba->nvmet_support) 13857 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13858 } 13859 workposted = false; 13860 break; 13861 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13862 case LPFC_ELS: 13863 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13864 if (!cq_event) { 13865 workposted = false; 13866 break; 13867 } 13868 cq_event->hdwq = cq->hdwq; 13869 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13870 iflags); 13871 list_add_tail(&cq_event->list, 13872 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13873 /* Set the els xri abort event flag */ 13874 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13875 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13876 iflags); 13877 workposted = true; 13878 break; 13879 default: 13880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13881 "0603 Invalid CQ subtype %d: " 13882 "%08x %08x %08x %08x\n", 13883 cq->subtype, wcqe->word0, wcqe->parameter, 13884 wcqe->word2, wcqe->word3); 13885 workposted = false; 13886 break; 13887 } 13888 return workposted; 13889 } 13890 13891 #define FC_RCTL_MDS_DIAGS 0xF4 13892 13893 /** 13894 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13895 * @phba: Pointer to HBA context object. 13896 * @rcqe: Pointer to receive-queue completion queue entry. 13897 * 13898 * This routine process a receive-queue completion queue entry. 13899 * 13900 * Return: true if work posted to worker thread, otherwise false. 13901 **/ 13902 static bool 13903 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13904 { 13905 bool workposted = false; 13906 struct fc_frame_header *fc_hdr; 13907 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13908 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13909 struct lpfc_nvmet_tgtport *tgtp; 13910 struct hbq_dmabuf *dma_buf; 13911 uint32_t status, rq_id; 13912 unsigned long iflags; 13913 13914 /* sanity check on queue memory */ 13915 if (unlikely(!hrq) || unlikely(!drq)) 13916 return workposted; 13917 13918 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13919 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13920 else 13921 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13922 if (rq_id != hrq->queue_id) 13923 goto out; 13924 13925 status = bf_get(lpfc_rcqe_status, rcqe); 13926 switch (status) { 13927 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13929 "2537 Receive Frame Truncated!!\n"); 13930 fallthrough; 13931 case FC_STATUS_RQ_SUCCESS: 13932 spin_lock_irqsave(&phba->hbalock, iflags); 13933 lpfc_sli4_rq_release(hrq, drq); 13934 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13935 if (!dma_buf) { 13936 hrq->RQ_no_buf_found++; 13937 spin_unlock_irqrestore(&phba->hbalock, iflags); 13938 goto out; 13939 } 13940 hrq->RQ_rcv_buf++; 13941 hrq->RQ_buf_posted--; 13942 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13943 13944 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13945 13946 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13947 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13948 spin_unlock_irqrestore(&phba->hbalock, iflags); 13949 /* Handle MDS Loopback frames */ 13950 if (!(phba->pport->load_flag & FC_UNLOADING)) 13951 lpfc_sli4_handle_mds_loopback(phba->pport, 13952 dma_buf); 13953 else 13954 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13955 break; 13956 } 13957 13958 /* save off the frame for the work thread to process */ 13959 list_add_tail(&dma_buf->cq_event.list, 13960 &phba->sli4_hba.sp_queue_event); 13961 /* Frame received */ 13962 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13963 spin_unlock_irqrestore(&phba->hbalock, iflags); 13964 workposted = true; 13965 break; 13966 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13967 if (phba->nvmet_support) { 13968 tgtp = phba->targetport->private; 13969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13970 "6402 RQE Error x%x, posted %d err_cnt " 13971 "%d: %x %x %x\n", 13972 status, hrq->RQ_buf_posted, 13973 hrq->RQ_no_posted_buf, 13974 atomic_read(&tgtp->rcv_fcp_cmd_in), 13975 atomic_read(&tgtp->rcv_fcp_cmd_out), 13976 atomic_read(&tgtp->xmt_fcp_release)); 13977 } 13978 fallthrough; 13979 13980 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13981 hrq->RQ_no_posted_buf++; 13982 /* Post more buffers if possible */ 13983 spin_lock_irqsave(&phba->hbalock, iflags); 13984 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13985 spin_unlock_irqrestore(&phba->hbalock, iflags); 13986 workposted = true; 13987 break; 13988 } 13989 out: 13990 return workposted; 13991 } 13992 13993 /** 13994 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13995 * @phba: Pointer to HBA context object. 13996 * @cq: Pointer to the completion queue. 13997 * @cqe: Pointer to a completion queue entry. 13998 * 13999 * This routine process a slow-path work-queue or receive queue completion queue 14000 * entry. 14001 * 14002 * Return: true if work posted to worker thread, otherwise false. 14003 **/ 14004 static bool 14005 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14006 struct lpfc_cqe *cqe) 14007 { 14008 struct lpfc_cqe cqevt; 14009 bool workposted = false; 14010 14011 /* Copy the work queue CQE and convert endian order if needed */ 14012 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14013 14014 /* Check and process for different type of WCQE and dispatch */ 14015 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14016 case CQE_CODE_COMPL_WQE: 14017 /* Process the WQ/RQ complete event */ 14018 phba->last_completion_time = jiffies; 14019 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14020 (struct lpfc_wcqe_complete *)&cqevt); 14021 break; 14022 case CQE_CODE_RELEASE_WQE: 14023 /* Process the WQ release event */ 14024 lpfc_sli4_sp_handle_rel_wcqe(phba, 14025 (struct lpfc_wcqe_release *)&cqevt); 14026 break; 14027 case CQE_CODE_XRI_ABORTED: 14028 /* Process the WQ XRI abort event */ 14029 phba->last_completion_time = jiffies; 14030 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14031 (struct sli4_wcqe_xri_aborted *)&cqevt); 14032 break; 14033 case CQE_CODE_RECEIVE: 14034 case CQE_CODE_RECEIVE_V1: 14035 /* Process the RQ event */ 14036 phba->last_completion_time = jiffies; 14037 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14038 (struct lpfc_rcqe *)&cqevt); 14039 break; 14040 default: 14041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14042 "0388 Not a valid WCQE code: x%x\n", 14043 bf_get(lpfc_cqe_code, &cqevt)); 14044 break; 14045 } 14046 return workposted; 14047 } 14048 14049 /** 14050 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14051 * @phba: Pointer to HBA context object. 14052 * @eqe: Pointer to fast-path event queue entry. 14053 * @speq: Pointer to slow-path event queue. 14054 * 14055 * This routine process a event queue entry from the slow-path event queue. 14056 * It will check the MajorCode and MinorCode to determine this is for a 14057 * completion event on a completion queue, if not, an error shall be logged 14058 * and just return. Otherwise, it will get to the corresponding completion 14059 * queue and process all the entries on that completion queue, rearm the 14060 * completion queue, and then return. 14061 * 14062 **/ 14063 static void 14064 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14065 struct lpfc_queue *speq) 14066 { 14067 struct lpfc_queue *cq = NULL, *childq; 14068 uint16_t cqid; 14069 int ret = 0; 14070 14071 /* Get the reference to the corresponding CQ */ 14072 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14073 14074 list_for_each_entry(childq, &speq->child_list, list) { 14075 if (childq->queue_id == cqid) { 14076 cq = childq; 14077 break; 14078 } 14079 } 14080 if (unlikely(!cq)) { 14081 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14082 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14083 "0365 Slow-path CQ identifier " 14084 "(%d) does not exist\n", cqid); 14085 return; 14086 } 14087 14088 /* Save EQ associated with this CQ */ 14089 cq->assoc_qp = speq; 14090 14091 if (is_kdump_kernel()) 14092 ret = queue_work(phba->wq, &cq->spwork); 14093 else 14094 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14095 14096 if (!ret) 14097 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14098 "0390 Cannot schedule queue work " 14099 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14100 cqid, cq->queue_id, raw_smp_processor_id()); 14101 } 14102 14103 /** 14104 * __lpfc_sli4_process_cq - Process elements of a CQ 14105 * @phba: Pointer to HBA context object. 14106 * @cq: Pointer to CQ to be processed 14107 * @handler: Routine to process each cqe 14108 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14109 * @poll_mode: Polling mode we were called from 14110 * 14111 * This routine processes completion queue entries in a CQ. While a valid 14112 * queue element is found, the handler is called. During processing checks 14113 * are made for periodic doorbell writes to let the hardware know of 14114 * element consumption. 14115 * 14116 * If the max limit on cqes to process is hit, or there are no more valid 14117 * entries, the loop stops. If we processed a sufficient number of elements, 14118 * meaning there is sufficient load, rather than rearming and generating 14119 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14120 * indicates no rescheduling. 14121 * 14122 * Returns True if work scheduled, False otherwise. 14123 **/ 14124 static bool 14125 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14126 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14127 struct lpfc_cqe *), unsigned long *delay, 14128 enum lpfc_poll_mode poll_mode) 14129 { 14130 struct lpfc_cqe *cqe; 14131 bool workposted = false; 14132 int count = 0, consumed = 0; 14133 bool arm = true; 14134 14135 /* default - no reschedule */ 14136 *delay = 0; 14137 14138 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14139 goto rearm_and_exit; 14140 14141 /* Process all the entries to the CQ */ 14142 cq->q_flag = 0; 14143 cqe = lpfc_sli4_cq_get(cq); 14144 while (cqe) { 14145 workposted |= handler(phba, cq, cqe); 14146 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14147 14148 consumed++; 14149 if (!(++count % cq->max_proc_limit)) 14150 break; 14151 14152 if (!(count % cq->notify_interval)) { 14153 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14154 LPFC_QUEUE_NOARM); 14155 consumed = 0; 14156 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14157 } 14158 14159 if (count == LPFC_NVMET_CQ_NOTIFY) 14160 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14161 14162 cqe = lpfc_sli4_cq_get(cq); 14163 } 14164 if (count >= phba->cfg_cq_poll_threshold) { 14165 *delay = 1; 14166 arm = false; 14167 } 14168 14169 /* Note: complete the irq_poll softirq before rearming CQ */ 14170 if (poll_mode == LPFC_IRQ_POLL) 14171 irq_poll_complete(&cq->iop); 14172 14173 /* Track the max number of CQEs processed in 1 EQ */ 14174 if (count > cq->CQ_max_cqe) 14175 cq->CQ_max_cqe = count; 14176 14177 cq->assoc_qp->EQ_cqe_cnt += count; 14178 14179 /* Catch the no cq entry condition */ 14180 if (unlikely(count == 0)) 14181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14182 "0369 No entry from completion queue " 14183 "qid=%d\n", cq->queue_id); 14184 14185 xchg(&cq->queue_claimed, 0); 14186 14187 rearm_and_exit: 14188 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14189 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14190 14191 return workposted; 14192 } 14193 14194 /** 14195 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14196 * @cq: pointer to CQ to process 14197 * 14198 * This routine calls the cq processing routine with a handler specific 14199 * to the type of queue bound to it. 14200 * 14201 * The CQ routine returns two values: the first is the calling status, 14202 * which indicates whether work was queued to the background discovery 14203 * thread. If true, the routine should wakeup the discovery thread; 14204 * the second is the delay parameter. If non-zero, rather than rearming 14205 * the CQ and yet another interrupt, the CQ handler should be queued so 14206 * that it is processed in a subsequent polling action. The value of 14207 * the delay indicates when to reschedule it. 14208 **/ 14209 static void 14210 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14211 { 14212 struct lpfc_hba *phba = cq->phba; 14213 unsigned long delay; 14214 bool workposted = false; 14215 int ret = 0; 14216 14217 /* Process and rearm the CQ */ 14218 switch (cq->type) { 14219 case LPFC_MCQ: 14220 workposted |= __lpfc_sli4_process_cq(phba, cq, 14221 lpfc_sli4_sp_handle_mcqe, 14222 &delay, LPFC_QUEUE_WORK); 14223 break; 14224 case LPFC_WCQ: 14225 if (cq->subtype == LPFC_IO) 14226 workposted |= __lpfc_sli4_process_cq(phba, cq, 14227 lpfc_sli4_fp_handle_cqe, 14228 &delay, LPFC_QUEUE_WORK); 14229 else 14230 workposted |= __lpfc_sli4_process_cq(phba, cq, 14231 lpfc_sli4_sp_handle_cqe, 14232 &delay, LPFC_QUEUE_WORK); 14233 break; 14234 default: 14235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14236 "0370 Invalid completion queue type (%d)\n", 14237 cq->type); 14238 return; 14239 } 14240 14241 if (delay) { 14242 if (is_kdump_kernel()) 14243 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14244 delay); 14245 else 14246 ret = queue_delayed_work_on(cq->chann, phba->wq, 14247 &cq->sched_spwork, delay); 14248 if (!ret) 14249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14250 "0394 Cannot schedule queue work " 14251 "for cqid=%d on CPU %d\n", 14252 cq->queue_id, cq->chann); 14253 } 14254 14255 /* wake up worker thread if there are works to be done */ 14256 if (workposted) 14257 lpfc_worker_wake_up(phba); 14258 } 14259 14260 /** 14261 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14262 * interrupt 14263 * @work: pointer to work element 14264 * 14265 * translates from the work handler and calls the slow-path handler. 14266 **/ 14267 static void 14268 lpfc_sli4_sp_process_cq(struct work_struct *work) 14269 { 14270 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14271 14272 __lpfc_sli4_sp_process_cq(cq); 14273 } 14274 14275 /** 14276 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14277 * @work: pointer to work element 14278 * 14279 * translates from the work handler and calls the slow-path handler. 14280 **/ 14281 static void 14282 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14283 { 14284 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14285 struct lpfc_queue, sched_spwork); 14286 14287 __lpfc_sli4_sp_process_cq(cq); 14288 } 14289 14290 /** 14291 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14292 * @phba: Pointer to HBA context object. 14293 * @cq: Pointer to associated CQ 14294 * @wcqe: Pointer to work-queue completion queue entry. 14295 * 14296 * This routine process a fast-path work queue completion entry from fast-path 14297 * event queue for FCP command response completion. 14298 **/ 14299 static void 14300 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14301 struct lpfc_wcqe_complete *wcqe) 14302 { 14303 struct lpfc_sli_ring *pring = cq->pring; 14304 struct lpfc_iocbq *cmdiocbq; 14305 struct lpfc_iocbq irspiocbq; 14306 unsigned long iflags; 14307 14308 /* Check for response status */ 14309 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14310 /* If resource errors reported from HBA, reduce queue 14311 * depth of the SCSI device. 14312 */ 14313 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14314 IOSTAT_LOCAL_REJECT)) && 14315 ((wcqe->parameter & IOERR_PARAM_MASK) == 14316 IOERR_NO_RESOURCES)) 14317 phba->lpfc_rampdown_queue_depth(phba); 14318 14319 /* Log the cmpl status */ 14320 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14321 "0373 FCP CQE cmpl: status=x%x: " 14322 "CQE: %08x %08x %08x %08x\n", 14323 bf_get(lpfc_wcqe_c_status, wcqe), 14324 wcqe->word0, wcqe->total_data_placed, 14325 wcqe->parameter, wcqe->word3); 14326 } 14327 14328 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14329 spin_lock_irqsave(&pring->ring_lock, iflags); 14330 pring->stats.iocb_event++; 14331 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14332 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14333 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14334 if (unlikely(!cmdiocbq)) { 14335 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14336 "0374 FCP complete with no corresponding " 14337 "cmdiocb: iotag (%d)\n", 14338 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14339 return; 14340 } 14341 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14342 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14343 #endif 14344 if (cmdiocbq->iocb_cmpl == NULL) { 14345 if (cmdiocbq->wqe_cmpl) { 14346 /* For FCP the flag is cleared in wqe_cmpl */ 14347 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14348 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14349 spin_lock_irqsave(&phba->hbalock, iflags); 14350 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14351 spin_unlock_irqrestore(&phba->hbalock, iflags); 14352 } 14353 14354 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14355 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14356 return; 14357 } 14358 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14359 "0375 FCP cmdiocb not callback function " 14360 "iotag: (%d)\n", 14361 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14362 return; 14363 } 14364 14365 /* Only SLI4 non-IO commands stil use IOCB */ 14366 /* Fake the irspiocb and copy necessary response information */ 14367 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14368 14369 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14370 spin_lock_irqsave(&phba->hbalock, iflags); 14371 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14372 spin_unlock_irqrestore(&phba->hbalock, iflags); 14373 } 14374 14375 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14376 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14377 } 14378 14379 /** 14380 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14381 * @phba: Pointer to HBA context object. 14382 * @cq: Pointer to completion queue. 14383 * @wcqe: Pointer to work-queue completion queue entry. 14384 * 14385 * This routine handles an fast-path WQ entry consumed event by invoking the 14386 * proper WQ release routine to the slow-path WQ. 14387 **/ 14388 static void 14389 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14390 struct lpfc_wcqe_release *wcqe) 14391 { 14392 struct lpfc_queue *childwq; 14393 bool wqid_matched = false; 14394 uint16_t hba_wqid; 14395 14396 /* Check for fast-path FCP work queue release */ 14397 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14398 list_for_each_entry(childwq, &cq->child_list, list) { 14399 if (childwq->queue_id == hba_wqid) { 14400 lpfc_sli4_wq_release(childwq, 14401 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14402 if (childwq->q_flag & HBA_NVMET_WQFULL) 14403 lpfc_nvmet_wqfull_process(phba, childwq); 14404 wqid_matched = true; 14405 break; 14406 } 14407 } 14408 /* Report warning log message if no match found */ 14409 if (wqid_matched != true) 14410 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14411 "2580 Fast-path wqe consume event carries " 14412 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14413 } 14414 14415 /** 14416 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14417 * @phba: Pointer to HBA context object. 14418 * @cq: Pointer to completion queue. 14419 * @rcqe: Pointer to receive-queue completion queue entry. 14420 * 14421 * This routine process a receive-queue completion queue entry. 14422 * 14423 * Return: true if work posted to worker thread, otherwise false. 14424 **/ 14425 static bool 14426 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14427 struct lpfc_rcqe *rcqe) 14428 { 14429 bool workposted = false; 14430 struct lpfc_queue *hrq; 14431 struct lpfc_queue *drq; 14432 struct rqb_dmabuf *dma_buf; 14433 struct fc_frame_header *fc_hdr; 14434 struct lpfc_nvmet_tgtport *tgtp; 14435 uint32_t status, rq_id; 14436 unsigned long iflags; 14437 uint32_t fctl, idx; 14438 14439 if ((phba->nvmet_support == 0) || 14440 (phba->sli4_hba.nvmet_cqset == NULL)) 14441 return workposted; 14442 14443 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14444 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14445 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14446 14447 /* sanity check on queue memory */ 14448 if (unlikely(!hrq) || unlikely(!drq)) 14449 return workposted; 14450 14451 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14452 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14453 else 14454 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14455 14456 if ((phba->nvmet_support == 0) || 14457 (rq_id != hrq->queue_id)) 14458 return workposted; 14459 14460 status = bf_get(lpfc_rcqe_status, rcqe); 14461 switch (status) { 14462 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14464 "6126 Receive Frame Truncated!!\n"); 14465 fallthrough; 14466 case FC_STATUS_RQ_SUCCESS: 14467 spin_lock_irqsave(&phba->hbalock, iflags); 14468 lpfc_sli4_rq_release(hrq, drq); 14469 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14470 if (!dma_buf) { 14471 hrq->RQ_no_buf_found++; 14472 spin_unlock_irqrestore(&phba->hbalock, iflags); 14473 goto out; 14474 } 14475 spin_unlock_irqrestore(&phba->hbalock, iflags); 14476 hrq->RQ_rcv_buf++; 14477 hrq->RQ_buf_posted--; 14478 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14479 14480 /* Just some basic sanity checks on FCP Command frame */ 14481 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14482 fc_hdr->fh_f_ctl[1] << 8 | 14483 fc_hdr->fh_f_ctl[2]); 14484 if (((fctl & 14485 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14486 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14487 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14488 goto drop; 14489 14490 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14491 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14492 lpfc_nvmet_unsol_fcp_event( 14493 phba, idx, dma_buf, cq->isr_timestamp, 14494 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14495 return false; 14496 } 14497 drop: 14498 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14499 break; 14500 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14501 if (phba->nvmet_support) { 14502 tgtp = phba->targetport->private; 14503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14504 "6401 RQE Error x%x, posted %d err_cnt " 14505 "%d: %x %x %x\n", 14506 status, hrq->RQ_buf_posted, 14507 hrq->RQ_no_posted_buf, 14508 atomic_read(&tgtp->rcv_fcp_cmd_in), 14509 atomic_read(&tgtp->rcv_fcp_cmd_out), 14510 atomic_read(&tgtp->xmt_fcp_release)); 14511 } 14512 fallthrough; 14513 14514 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14515 hrq->RQ_no_posted_buf++; 14516 /* Post more buffers if possible */ 14517 break; 14518 } 14519 out: 14520 return workposted; 14521 } 14522 14523 /** 14524 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14525 * @phba: adapter with cq 14526 * @cq: Pointer to the completion queue. 14527 * @cqe: Pointer to fast-path completion queue entry. 14528 * 14529 * This routine process a fast-path work queue completion entry from fast-path 14530 * event queue for FCP command response completion. 14531 * 14532 * Return: true if work posted to worker thread, otherwise false. 14533 **/ 14534 static bool 14535 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14536 struct lpfc_cqe *cqe) 14537 { 14538 struct lpfc_wcqe_release wcqe; 14539 bool workposted = false; 14540 14541 /* Copy the work queue CQE and convert endian order if needed */ 14542 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14543 14544 /* Check and process for different type of WCQE and dispatch */ 14545 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14546 case CQE_CODE_COMPL_WQE: 14547 case CQE_CODE_NVME_ERSP: 14548 cq->CQ_wq++; 14549 /* Process the WQ complete event */ 14550 phba->last_completion_time = jiffies; 14551 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14552 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14553 (struct lpfc_wcqe_complete *)&wcqe); 14554 break; 14555 case CQE_CODE_RELEASE_WQE: 14556 cq->CQ_release_wqe++; 14557 /* Process the WQ release event */ 14558 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14559 (struct lpfc_wcqe_release *)&wcqe); 14560 break; 14561 case CQE_CODE_XRI_ABORTED: 14562 cq->CQ_xri_aborted++; 14563 /* Process the WQ XRI abort event */ 14564 phba->last_completion_time = jiffies; 14565 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14566 (struct sli4_wcqe_xri_aborted *)&wcqe); 14567 break; 14568 case CQE_CODE_RECEIVE_V1: 14569 case CQE_CODE_RECEIVE: 14570 phba->last_completion_time = jiffies; 14571 if (cq->subtype == LPFC_NVMET) { 14572 workposted = lpfc_sli4_nvmet_handle_rcqe( 14573 phba, cq, (struct lpfc_rcqe *)&wcqe); 14574 } 14575 break; 14576 default: 14577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14578 "0144 Not a valid CQE code: x%x\n", 14579 bf_get(lpfc_wcqe_c_code, &wcqe)); 14580 break; 14581 } 14582 return workposted; 14583 } 14584 14585 /** 14586 * lpfc_sli4_sched_cq_work - Schedules cq work 14587 * @phba: Pointer to HBA context object. 14588 * @cq: Pointer to CQ 14589 * @cqid: CQ ID 14590 * 14591 * This routine checks the poll mode of the CQ corresponding to 14592 * cq->chann, then either schedules a softirq or queue_work to complete 14593 * cq work. 14594 * 14595 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14596 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14597 * 14598 **/ 14599 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14600 struct lpfc_queue *cq, uint16_t cqid) 14601 { 14602 int ret = 0; 14603 14604 switch (cq->poll_mode) { 14605 case LPFC_IRQ_POLL: 14606 irq_poll_sched(&cq->iop); 14607 break; 14608 case LPFC_QUEUE_WORK: 14609 default: 14610 if (is_kdump_kernel()) 14611 ret = queue_work(phba->wq, &cq->irqwork); 14612 else 14613 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14614 if (!ret) 14615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14616 "0383 Cannot schedule queue work " 14617 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14618 cqid, cq->queue_id, 14619 raw_smp_processor_id()); 14620 } 14621 } 14622 14623 /** 14624 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14625 * @phba: Pointer to HBA context object. 14626 * @eq: Pointer to the queue structure. 14627 * @eqe: Pointer to fast-path event queue entry. 14628 * 14629 * This routine process a event queue entry from the fast-path event queue. 14630 * It will check the MajorCode and MinorCode to determine this is for a 14631 * completion event on a completion queue, if not, an error shall be logged 14632 * and just return. Otherwise, it will get to the corresponding completion 14633 * queue and process all the entries on the completion queue, rearm the 14634 * completion queue, and then return. 14635 **/ 14636 static void 14637 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14638 struct lpfc_eqe *eqe) 14639 { 14640 struct lpfc_queue *cq = NULL; 14641 uint32_t qidx = eq->hdwq; 14642 uint16_t cqid, id; 14643 14644 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14645 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14646 "0366 Not a valid completion " 14647 "event: majorcode=x%x, minorcode=x%x\n", 14648 bf_get_le32(lpfc_eqe_major_code, eqe), 14649 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14650 return; 14651 } 14652 14653 /* Get the reference to the corresponding CQ */ 14654 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14655 14656 /* Use the fast lookup method first */ 14657 if (cqid <= phba->sli4_hba.cq_max) { 14658 cq = phba->sli4_hba.cq_lookup[cqid]; 14659 if (cq) 14660 goto work_cq; 14661 } 14662 14663 /* Next check for NVMET completion */ 14664 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14665 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14666 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14667 /* Process NVMET unsol rcv */ 14668 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14669 goto process_cq; 14670 } 14671 } 14672 14673 if (phba->sli4_hba.nvmels_cq && 14674 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14675 /* Process NVME unsol rcv */ 14676 cq = phba->sli4_hba.nvmels_cq; 14677 } 14678 14679 /* Otherwise this is a Slow path event */ 14680 if (cq == NULL) { 14681 lpfc_sli4_sp_handle_eqe(phba, eqe, 14682 phba->sli4_hba.hdwq[qidx].hba_eq); 14683 return; 14684 } 14685 14686 process_cq: 14687 if (unlikely(cqid != cq->queue_id)) { 14688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14689 "0368 Miss-matched fast-path completion " 14690 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14691 cqid, cq->queue_id); 14692 return; 14693 } 14694 14695 work_cq: 14696 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14697 if (phba->ktime_on) 14698 cq->isr_timestamp = ktime_get_ns(); 14699 else 14700 cq->isr_timestamp = 0; 14701 #endif 14702 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14703 } 14704 14705 /** 14706 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14707 * @cq: Pointer to CQ to be processed 14708 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14709 * 14710 * This routine calls the cq processing routine with the handler for 14711 * fast path CQEs. 14712 * 14713 * The CQ routine returns two values: the first is the calling status, 14714 * which indicates whether work was queued to the background discovery 14715 * thread. If true, the routine should wakeup the discovery thread; 14716 * the second is the delay parameter. If non-zero, rather than rearming 14717 * the CQ and yet another interrupt, the CQ handler should be queued so 14718 * that it is processed in a subsequent polling action. The value of 14719 * the delay indicates when to reschedule it. 14720 **/ 14721 static void 14722 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14723 enum lpfc_poll_mode poll_mode) 14724 { 14725 struct lpfc_hba *phba = cq->phba; 14726 unsigned long delay; 14727 bool workposted = false; 14728 int ret = 0; 14729 14730 /* process and rearm the CQ */ 14731 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14732 &delay, poll_mode); 14733 14734 if (delay) { 14735 if (is_kdump_kernel()) 14736 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14737 delay); 14738 else 14739 ret = queue_delayed_work_on(cq->chann, phba->wq, 14740 &cq->sched_irqwork, delay); 14741 if (!ret) 14742 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14743 "0367 Cannot schedule queue work " 14744 "for cqid=%d on CPU %d\n", 14745 cq->queue_id, cq->chann); 14746 } 14747 14748 /* wake up worker thread if there are works to be done */ 14749 if (workposted) 14750 lpfc_worker_wake_up(phba); 14751 } 14752 14753 /** 14754 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14755 * interrupt 14756 * @work: pointer to work element 14757 * 14758 * translates from the work handler and calls the fast-path handler. 14759 **/ 14760 static void 14761 lpfc_sli4_hba_process_cq(struct work_struct *work) 14762 { 14763 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14764 14765 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14766 } 14767 14768 /** 14769 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 14770 * @work: pointer to work element 14771 * 14772 * translates from the work handler and calls the fast-path handler. 14773 **/ 14774 static void 14775 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14776 { 14777 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14778 struct lpfc_queue, sched_irqwork); 14779 14780 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14781 } 14782 14783 /** 14784 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14785 * @irq: Interrupt number. 14786 * @dev_id: The device context pointer. 14787 * 14788 * This function is directly called from the PCI layer as an interrupt 14789 * service routine when device with SLI-4 interface spec is enabled with 14790 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14791 * ring event in the HBA. However, when the device is enabled with either 14792 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14793 * device-level interrupt handler. When the PCI slot is in error recovery 14794 * or the HBA is undergoing initialization, the interrupt handler will not 14795 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14796 * the intrrupt context. This function is called without any lock held. 14797 * It gets the hbalock to access and update SLI data structures. Note that, 14798 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14799 * equal to that of FCP CQ index. 14800 * 14801 * The link attention and ELS ring attention events are handled 14802 * by the worker thread. The interrupt handler signals the worker thread 14803 * and returns for these events. This function is called without any lock 14804 * held. It gets the hbalock to access and update SLI data structures. 14805 * 14806 * This function returns IRQ_HANDLED when interrupt is handled else it 14807 * returns IRQ_NONE. 14808 **/ 14809 irqreturn_t 14810 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14811 { 14812 struct lpfc_hba *phba; 14813 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14814 struct lpfc_queue *fpeq; 14815 unsigned long iflag; 14816 int ecount = 0; 14817 int hba_eqidx; 14818 struct lpfc_eq_intr_info *eqi; 14819 14820 /* Get the driver's phba structure from the dev_id */ 14821 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14822 phba = hba_eq_hdl->phba; 14823 hba_eqidx = hba_eq_hdl->idx; 14824 14825 if (unlikely(!phba)) 14826 return IRQ_NONE; 14827 if (unlikely(!phba->sli4_hba.hdwq)) 14828 return IRQ_NONE; 14829 14830 /* Get to the EQ struct associated with this vector */ 14831 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14832 if (unlikely(!fpeq)) 14833 return IRQ_NONE; 14834 14835 /* Check device state for handling interrupt */ 14836 if (unlikely(lpfc_intr_state_check(phba))) { 14837 /* Check again for link_state with lock held */ 14838 spin_lock_irqsave(&phba->hbalock, iflag); 14839 if (phba->link_state < LPFC_LINK_DOWN) 14840 /* Flush, clear interrupt, and rearm the EQ */ 14841 lpfc_sli4_eqcq_flush(phba, fpeq); 14842 spin_unlock_irqrestore(&phba->hbalock, iflag); 14843 return IRQ_NONE; 14844 } 14845 14846 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14847 eqi->icnt++; 14848 14849 fpeq->last_cpu = raw_smp_processor_id(); 14850 14851 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14852 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14853 phba->cfg_auto_imax && 14854 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14855 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14856 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14857 14858 /* process and rearm the EQ */ 14859 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14860 14861 if (unlikely(ecount == 0)) { 14862 fpeq->EQ_no_entry++; 14863 if (phba->intr_type == MSIX) 14864 /* MSI-X treated interrupt served as no EQ share INT */ 14865 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14866 "0358 MSI-X interrupt with no EQE\n"); 14867 else 14868 /* Non MSI-X treated on interrupt as EQ share INT */ 14869 return IRQ_NONE; 14870 } 14871 14872 return IRQ_HANDLED; 14873 } /* lpfc_sli4_hba_intr_handler */ 14874 14875 /** 14876 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14877 * @irq: Interrupt number. 14878 * @dev_id: The device context pointer. 14879 * 14880 * This function is the device-level interrupt handler to device with SLI-4 14881 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14882 * interrupt mode is enabled and there is an event in the HBA which requires 14883 * driver attention. This function invokes the slow-path interrupt attention 14884 * handling function and fast-path interrupt attention handling function in 14885 * turn to process the relevant HBA attention events. This function is called 14886 * without any lock held. It gets the hbalock to access and update SLI data 14887 * structures. 14888 * 14889 * This function returns IRQ_HANDLED when interrupt is handled, else it 14890 * returns IRQ_NONE. 14891 **/ 14892 irqreturn_t 14893 lpfc_sli4_intr_handler(int irq, void *dev_id) 14894 { 14895 struct lpfc_hba *phba; 14896 irqreturn_t hba_irq_rc; 14897 bool hba_handled = false; 14898 int qidx; 14899 14900 /* Get the driver's phba structure from the dev_id */ 14901 phba = (struct lpfc_hba *)dev_id; 14902 14903 if (unlikely(!phba)) 14904 return IRQ_NONE; 14905 14906 /* 14907 * Invoke fast-path host attention interrupt handling as appropriate. 14908 */ 14909 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14910 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14911 &phba->sli4_hba.hba_eq_hdl[qidx]); 14912 if (hba_irq_rc == IRQ_HANDLED) 14913 hba_handled |= true; 14914 } 14915 14916 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14917 } /* lpfc_sli4_intr_handler */ 14918 14919 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14920 { 14921 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14922 struct lpfc_queue *eq; 14923 int i = 0; 14924 14925 rcu_read_lock(); 14926 14927 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14928 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14929 if (!list_empty(&phba->poll_list)) 14930 mod_timer(&phba->cpuhp_poll_timer, 14931 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14932 14933 rcu_read_unlock(); 14934 } 14935 14936 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14937 { 14938 struct lpfc_hba *phba = eq->phba; 14939 int i = 0; 14940 14941 /* 14942 * Unlocking an irq is one of the entry point to check 14943 * for re-schedule, but we are good for io submission 14944 * path as midlayer does a get_cpu to glue us in. Flush 14945 * out the invalidate queue so we can see the updated 14946 * value for flag. 14947 */ 14948 smp_rmb(); 14949 14950 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14951 /* We will not likely get the completion for the caller 14952 * during this iteration but i guess that's fine. 14953 * Future io's coming on this eq should be able to 14954 * pick it up. As for the case of single io's, they 14955 * will be handled through a sched from polling timer 14956 * function which is currently triggered every 1msec. 14957 */ 14958 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14959 14960 return i; 14961 } 14962 14963 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14964 { 14965 struct lpfc_hba *phba = eq->phba; 14966 14967 /* kickstart slowpath processing if needed */ 14968 if (list_empty(&phba->poll_list)) 14969 mod_timer(&phba->cpuhp_poll_timer, 14970 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14971 14972 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14973 synchronize_rcu(); 14974 } 14975 14976 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14977 { 14978 struct lpfc_hba *phba = eq->phba; 14979 14980 /* Disable slowpath processing for this eq. Kick start the eq 14981 * by RE-ARMING the eq's ASAP 14982 */ 14983 list_del_rcu(&eq->_poll_list); 14984 synchronize_rcu(); 14985 14986 if (list_empty(&phba->poll_list)) 14987 del_timer_sync(&phba->cpuhp_poll_timer); 14988 } 14989 14990 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14991 { 14992 struct lpfc_queue *eq, *next; 14993 14994 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14995 list_del(&eq->_poll_list); 14996 14997 INIT_LIST_HEAD(&phba->poll_list); 14998 synchronize_rcu(); 14999 } 15000 15001 static inline void 15002 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15003 { 15004 if (mode == eq->mode) 15005 return; 15006 /* 15007 * currently this function is only called during a hotplug 15008 * event and the cpu on which this function is executing 15009 * is going offline. By now the hotplug has instructed 15010 * the scheduler to remove this cpu from cpu active mask. 15011 * So we don't need to work about being put aside by the 15012 * scheduler for a high priority process. Yes, the inte- 15013 * rrupts could come but they are known to retire ASAP. 15014 */ 15015 15016 /* Disable polling in the fastpath */ 15017 WRITE_ONCE(eq->mode, mode); 15018 /* flush out the store buffer */ 15019 smp_wmb(); 15020 15021 /* 15022 * Add this eq to the polling list and start polling. For 15023 * a grace period both interrupt handler and poller will 15024 * try to process the eq _but_ that's fine. We have a 15025 * synchronization mechanism in place (queue_claimed) to 15026 * deal with it. This is just a draining phase for int- 15027 * errupt handler (not eq's) as we have guranteed through 15028 * barrier that all the CPUs have seen the new CQ_POLLED 15029 * state. which will effectively disable the REARMING of 15030 * the EQ. The whole idea is eq's die off eventually as 15031 * we are not rearming EQ's anymore. 15032 */ 15033 mode ? lpfc_sli4_add_to_poll_list(eq) : 15034 lpfc_sli4_remove_from_poll_list(eq); 15035 } 15036 15037 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15038 { 15039 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15040 } 15041 15042 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15043 { 15044 struct lpfc_hba *phba = eq->phba; 15045 15046 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15047 15048 /* Kick start for the pending io's in h/w. 15049 * Once we switch back to interrupt processing on a eq 15050 * the io path completion will only arm eq's when it 15051 * receives a completion. But since eq's are in disa- 15052 * rmed state it doesn't receive a completion. This 15053 * creates a deadlock scenaro. 15054 */ 15055 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15056 } 15057 15058 /** 15059 * lpfc_sli4_queue_free - free a queue structure and associated memory 15060 * @queue: The queue structure to free. 15061 * 15062 * This function frees a queue structure and the DMAable memory used for 15063 * the host resident queue. This function must be called after destroying the 15064 * queue on the HBA. 15065 **/ 15066 void 15067 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15068 { 15069 struct lpfc_dmabuf *dmabuf; 15070 15071 if (!queue) 15072 return; 15073 15074 if (!list_empty(&queue->wq_list)) 15075 list_del(&queue->wq_list); 15076 15077 while (!list_empty(&queue->page_list)) { 15078 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15079 list); 15080 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15081 dmabuf->virt, dmabuf->phys); 15082 kfree(dmabuf); 15083 } 15084 if (queue->rqbp) { 15085 lpfc_free_rq_buffer(queue->phba, queue); 15086 kfree(queue->rqbp); 15087 } 15088 15089 if (!list_empty(&queue->cpu_list)) 15090 list_del(&queue->cpu_list); 15091 15092 kfree(queue); 15093 return; 15094 } 15095 15096 /** 15097 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15098 * @phba: The HBA that this queue is being created on. 15099 * @page_size: The size of a queue page 15100 * @entry_size: The size of each queue entry for this queue. 15101 * @entry_count: The number of entries that this queue will handle. 15102 * @cpu: The cpu that will primarily utilize this queue. 15103 * 15104 * This function allocates a queue structure and the DMAable memory used for 15105 * the host resident queue. This function must be called before creating the 15106 * queue on the HBA. 15107 **/ 15108 struct lpfc_queue * 15109 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15110 uint32_t entry_size, uint32_t entry_count, int cpu) 15111 { 15112 struct lpfc_queue *queue; 15113 struct lpfc_dmabuf *dmabuf; 15114 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15115 uint16_t x, pgcnt; 15116 15117 if (!phba->sli4_hba.pc_sli4_params.supported) 15118 hw_page_size = page_size; 15119 15120 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15121 15122 /* If needed, Adjust page count to match the max the adapter supports */ 15123 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15124 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15125 15126 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15127 GFP_KERNEL, cpu_to_node(cpu)); 15128 if (!queue) 15129 return NULL; 15130 15131 INIT_LIST_HEAD(&queue->list); 15132 INIT_LIST_HEAD(&queue->_poll_list); 15133 INIT_LIST_HEAD(&queue->wq_list); 15134 INIT_LIST_HEAD(&queue->wqfull_list); 15135 INIT_LIST_HEAD(&queue->page_list); 15136 INIT_LIST_HEAD(&queue->child_list); 15137 INIT_LIST_HEAD(&queue->cpu_list); 15138 15139 /* Set queue parameters now. If the system cannot provide memory 15140 * resources, the free routine needs to know what was allocated. 15141 */ 15142 queue->page_count = pgcnt; 15143 queue->q_pgs = (void **)&queue[1]; 15144 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15145 queue->entry_size = entry_size; 15146 queue->entry_count = entry_count; 15147 queue->page_size = hw_page_size; 15148 queue->phba = phba; 15149 15150 for (x = 0; x < queue->page_count; x++) { 15151 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15152 dev_to_node(&phba->pcidev->dev)); 15153 if (!dmabuf) 15154 goto out_fail; 15155 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15156 hw_page_size, &dmabuf->phys, 15157 GFP_KERNEL); 15158 if (!dmabuf->virt) { 15159 kfree(dmabuf); 15160 goto out_fail; 15161 } 15162 dmabuf->buffer_tag = x; 15163 list_add_tail(&dmabuf->list, &queue->page_list); 15164 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15165 queue->q_pgs[x] = dmabuf->virt; 15166 } 15167 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15168 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15169 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15170 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15171 15172 /* notify_interval will be set during q creation */ 15173 15174 return queue; 15175 out_fail: 15176 lpfc_sli4_queue_free(queue); 15177 return NULL; 15178 } 15179 15180 /** 15181 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15182 * @phba: HBA structure that indicates port to create a queue on. 15183 * @pci_barset: PCI BAR set flag. 15184 * 15185 * This function shall perform iomap of the specified PCI BAR address to host 15186 * memory address if not already done so and return it. The returned host 15187 * memory address can be NULL. 15188 */ 15189 static void __iomem * 15190 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15191 { 15192 if (!phba->pcidev) 15193 return NULL; 15194 15195 switch (pci_barset) { 15196 case WQ_PCI_BAR_0_AND_1: 15197 return phba->pci_bar0_memmap_p; 15198 case WQ_PCI_BAR_2_AND_3: 15199 return phba->pci_bar2_memmap_p; 15200 case WQ_PCI_BAR_4_AND_5: 15201 return phba->pci_bar4_memmap_p; 15202 default: 15203 break; 15204 } 15205 return NULL; 15206 } 15207 15208 /** 15209 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15210 * @phba: HBA structure that EQs are on. 15211 * @startq: The starting EQ index to modify 15212 * @numq: The number of EQs (consecutive indexes) to modify 15213 * @usdelay: amount of delay 15214 * 15215 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15216 * is set either by writing to a register (if supported by the SLI Port) 15217 * or by mailbox command. The mailbox command allows several EQs to be 15218 * updated at once. 15219 * 15220 * The @phba struct is used to send a mailbox command to HBA. The @startq 15221 * is used to get the starting EQ index to change. The @numq value is 15222 * used to specify how many consecutive EQ indexes, starting at EQ index, 15223 * are to be changed. This function is asynchronous and will wait for any 15224 * mailbox commands to finish before returning. 15225 * 15226 * On success this function will return a zero. If unable to allocate 15227 * enough memory this function will return -ENOMEM. If a mailbox command 15228 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15229 * have had their delay multipler changed. 15230 **/ 15231 void 15232 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15233 uint32_t numq, uint32_t usdelay) 15234 { 15235 struct lpfc_mbx_modify_eq_delay *eq_delay; 15236 LPFC_MBOXQ_t *mbox; 15237 struct lpfc_queue *eq; 15238 int cnt = 0, rc, length; 15239 uint32_t shdr_status, shdr_add_status; 15240 uint32_t dmult; 15241 int qidx; 15242 union lpfc_sli4_cfg_shdr *shdr; 15243 15244 if (startq >= phba->cfg_irq_chann) 15245 return; 15246 15247 if (usdelay > 0xFFFF) { 15248 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15249 "6429 usdelay %d too large. Scaled down to " 15250 "0xFFFF.\n", usdelay); 15251 usdelay = 0xFFFF; 15252 } 15253 15254 /* set values by EQ_DELAY register if supported */ 15255 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15256 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15257 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15258 if (!eq) 15259 continue; 15260 15261 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15262 15263 if (++cnt >= numq) 15264 break; 15265 } 15266 return; 15267 } 15268 15269 /* Otherwise, set values by mailbox cmd */ 15270 15271 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15272 if (!mbox) { 15273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15274 "6428 Failed allocating mailbox cmd buffer." 15275 " EQ delay was not set.\n"); 15276 return; 15277 } 15278 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15279 sizeof(struct lpfc_sli4_cfg_mhdr)); 15280 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15281 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15282 length, LPFC_SLI4_MBX_EMBED); 15283 eq_delay = &mbox->u.mqe.un.eq_delay; 15284 15285 /* Calculate delay multiper from maximum interrupt per second */ 15286 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15287 if (dmult) 15288 dmult--; 15289 if (dmult > LPFC_DMULT_MAX) 15290 dmult = LPFC_DMULT_MAX; 15291 15292 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15293 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15294 if (!eq) 15295 continue; 15296 eq->q_mode = usdelay; 15297 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15298 eq_delay->u.request.eq[cnt].phase = 0; 15299 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15300 15301 if (++cnt >= numq) 15302 break; 15303 } 15304 eq_delay->u.request.num_eq = cnt; 15305 15306 mbox->vport = phba->pport; 15307 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15308 mbox->ctx_buf = NULL; 15309 mbox->ctx_ndlp = NULL; 15310 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15311 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15312 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15313 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15314 if (shdr_status || shdr_add_status || rc) { 15315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15316 "2512 MODIFY_EQ_DELAY mailbox failed with " 15317 "status x%x add_status x%x, mbx status x%x\n", 15318 shdr_status, shdr_add_status, rc); 15319 } 15320 mempool_free(mbox, phba->mbox_mem_pool); 15321 return; 15322 } 15323 15324 /** 15325 * lpfc_eq_create - Create an Event Queue on the HBA 15326 * @phba: HBA structure that indicates port to create a queue on. 15327 * @eq: The queue structure to use to create the event queue. 15328 * @imax: The maximum interrupt per second limit. 15329 * 15330 * This function creates an event queue, as detailed in @eq, on a port, 15331 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15332 * 15333 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15334 * is used to get the entry count and entry size that are necessary to 15335 * determine the number of pages to allocate and use for this queue. This 15336 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15337 * event queue. This function is asynchronous and will wait for the mailbox 15338 * command to finish before continuing. 15339 * 15340 * On success this function will return a zero. If unable to allocate enough 15341 * memory this function will return -ENOMEM. If the queue create mailbox command 15342 * fails this function will return -ENXIO. 15343 **/ 15344 int 15345 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15346 { 15347 struct lpfc_mbx_eq_create *eq_create; 15348 LPFC_MBOXQ_t *mbox; 15349 int rc, length, status = 0; 15350 struct lpfc_dmabuf *dmabuf; 15351 uint32_t shdr_status, shdr_add_status; 15352 union lpfc_sli4_cfg_shdr *shdr; 15353 uint16_t dmult; 15354 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15355 15356 /* sanity check on queue memory */ 15357 if (!eq) 15358 return -ENODEV; 15359 if (!phba->sli4_hba.pc_sli4_params.supported) 15360 hw_page_size = SLI4_PAGE_SIZE; 15361 15362 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15363 if (!mbox) 15364 return -ENOMEM; 15365 length = (sizeof(struct lpfc_mbx_eq_create) - 15366 sizeof(struct lpfc_sli4_cfg_mhdr)); 15367 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15368 LPFC_MBOX_OPCODE_EQ_CREATE, 15369 length, LPFC_SLI4_MBX_EMBED); 15370 eq_create = &mbox->u.mqe.un.eq_create; 15371 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15372 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15373 eq->page_count); 15374 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15375 LPFC_EQE_SIZE); 15376 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15377 15378 /* Use version 2 of CREATE_EQ if eqav is set */ 15379 if (phba->sli4_hba.pc_sli4_params.eqav) { 15380 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15381 LPFC_Q_CREATE_VERSION_2); 15382 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15383 phba->sli4_hba.pc_sli4_params.eqav); 15384 } 15385 15386 /* don't setup delay multiplier using EQ_CREATE */ 15387 dmult = 0; 15388 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15389 dmult); 15390 switch (eq->entry_count) { 15391 default: 15392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15393 "0360 Unsupported EQ count. (%d)\n", 15394 eq->entry_count); 15395 if (eq->entry_count < 256) { 15396 status = -EINVAL; 15397 goto out; 15398 } 15399 fallthrough; /* otherwise default to smallest count */ 15400 case 256: 15401 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15402 LPFC_EQ_CNT_256); 15403 break; 15404 case 512: 15405 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15406 LPFC_EQ_CNT_512); 15407 break; 15408 case 1024: 15409 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15410 LPFC_EQ_CNT_1024); 15411 break; 15412 case 2048: 15413 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15414 LPFC_EQ_CNT_2048); 15415 break; 15416 case 4096: 15417 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15418 LPFC_EQ_CNT_4096); 15419 break; 15420 } 15421 list_for_each_entry(dmabuf, &eq->page_list, list) { 15422 memset(dmabuf->virt, 0, hw_page_size); 15423 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15424 putPaddrLow(dmabuf->phys); 15425 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15426 putPaddrHigh(dmabuf->phys); 15427 } 15428 mbox->vport = phba->pport; 15429 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15430 mbox->ctx_buf = NULL; 15431 mbox->ctx_ndlp = NULL; 15432 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15433 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15434 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15435 if (shdr_status || shdr_add_status || rc) { 15436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15437 "2500 EQ_CREATE mailbox failed with " 15438 "status x%x add_status x%x, mbx status x%x\n", 15439 shdr_status, shdr_add_status, rc); 15440 status = -ENXIO; 15441 } 15442 eq->type = LPFC_EQ; 15443 eq->subtype = LPFC_NONE; 15444 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15445 if (eq->queue_id == 0xFFFF) 15446 status = -ENXIO; 15447 eq->host_index = 0; 15448 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15449 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15450 out: 15451 mempool_free(mbox, phba->mbox_mem_pool); 15452 return status; 15453 } 15454 15455 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15456 { 15457 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15458 15459 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15460 15461 return 1; 15462 } 15463 15464 /** 15465 * lpfc_cq_create - Create a Completion Queue on the HBA 15466 * @phba: HBA structure that indicates port to create a queue on. 15467 * @cq: The queue structure to use to create the completion queue. 15468 * @eq: The event queue to bind this completion queue to. 15469 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15470 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15471 * 15472 * This function creates a completion queue, as detailed in @wq, on a port, 15473 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15474 * 15475 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15476 * is used to get the entry count and entry size that are necessary to 15477 * determine the number of pages to allocate and use for this queue. The @eq 15478 * is used to indicate which event queue to bind this completion queue to. This 15479 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15480 * completion queue. This function is asynchronous and will wait for the mailbox 15481 * command to finish before continuing. 15482 * 15483 * On success this function will return a zero. If unable to allocate enough 15484 * memory this function will return -ENOMEM. If the queue create mailbox command 15485 * fails this function will return -ENXIO. 15486 **/ 15487 int 15488 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15489 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15490 { 15491 struct lpfc_mbx_cq_create *cq_create; 15492 struct lpfc_dmabuf *dmabuf; 15493 LPFC_MBOXQ_t *mbox; 15494 int rc, length, status = 0; 15495 uint32_t shdr_status, shdr_add_status; 15496 union lpfc_sli4_cfg_shdr *shdr; 15497 15498 /* sanity check on queue memory */ 15499 if (!cq || !eq) 15500 return -ENODEV; 15501 15502 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15503 if (!mbox) 15504 return -ENOMEM; 15505 length = (sizeof(struct lpfc_mbx_cq_create) - 15506 sizeof(struct lpfc_sli4_cfg_mhdr)); 15507 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15508 LPFC_MBOX_OPCODE_CQ_CREATE, 15509 length, LPFC_SLI4_MBX_EMBED); 15510 cq_create = &mbox->u.mqe.un.cq_create; 15511 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15512 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15513 cq->page_count); 15514 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15515 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15516 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15517 phba->sli4_hba.pc_sli4_params.cqv); 15518 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15519 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15520 (cq->page_size / SLI4_PAGE_SIZE)); 15521 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15522 eq->queue_id); 15523 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15524 phba->sli4_hba.pc_sli4_params.cqav); 15525 } else { 15526 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15527 eq->queue_id); 15528 } 15529 switch (cq->entry_count) { 15530 case 2048: 15531 case 4096: 15532 if (phba->sli4_hba.pc_sli4_params.cqv == 15533 LPFC_Q_CREATE_VERSION_2) { 15534 cq_create->u.request.context.lpfc_cq_context_count = 15535 cq->entry_count; 15536 bf_set(lpfc_cq_context_count, 15537 &cq_create->u.request.context, 15538 LPFC_CQ_CNT_WORD7); 15539 break; 15540 } 15541 fallthrough; 15542 default: 15543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15544 "0361 Unsupported CQ count: " 15545 "entry cnt %d sz %d pg cnt %d\n", 15546 cq->entry_count, cq->entry_size, 15547 cq->page_count); 15548 if (cq->entry_count < 256) { 15549 status = -EINVAL; 15550 goto out; 15551 } 15552 fallthrough; /* otherwise default to smallest count */ 15553 case 256: 15554 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15555 LPFC_CQ_CNT_256); 15556 break; 15557 case 512: 15558 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15559 LPFC_CQ_CNT_512); 15560 break; 15561 case 1024: 15562 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15563 LPFC_CQ_CNT_1024); 15564 break; 15565 } 15566 list_for_each_entry(dmabuf, &cq->page_list, list) { 15567 memset(dmabuf->virt, 0, cq->page_size); 15568 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15569 putPaddrLow(dmabuf->phys); 15570 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15571 putPaddrHigh(dmabuf->phys); 15572 } 15573 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15574 15575 /* The IOCTL status is embedded in the mailbox subheader. */ 15576 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15577 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15578 if (shdr_status || shdr_add_status || rc) { 15579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15580 "2501 CQ_CREATE mailbox failed with " 15581 "status x%x add_status x%x, mbx status x%x\n", 15582 shdr_status, shdr_add_status, rc); 15583 status = -ENXIO; 15584 goto out; 15585 } 15586 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15587 if (cq->queue_id == 0xFFFF) { 15588 status = -ENXIO; 15589 goto out; 15590 } 15591 /* link the cq onto the parent eq child list */ 15592 list_add_tail(&cq->list, &eq->child_list); 15593 /* Set up completion queue's type and subtype */ 15594 cq->type = type; 15595 cq->subtype = subtype; 15596 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15597 cq->assoc_qid = eq->queue_id; 15598 cq->assoc_qp = eq; 15599 cq->host_index = 0; 15600 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15601 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15602 15603 if (cq->queue_id > phba->sli4_hba.cq_max) 15604 phba->sli4_hba.cq_max = cq->queue_id; 15605 15606 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15607 out: 15608 mempool_free(mbox, phba->mbox_mem_pool); 15609 return status; 15610 } 15611 15612 /** 15613 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15614 * @phba: HBA structure that indicates port to create a queue on. 15615 * @cqp: The queue structure array to use to create the completion queues. 15616 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15617 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15618 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15619 * 15620 * This function creates a set of completion queue, s to support MRQ 15621 * as detailed in @cqp, on a port, 15622 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15623 * 15624 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15625 * is used to get the entry count and entry size that are necessary to 15626 * determine the number of pages to allocate and use for this queue. The @eq 15627 * is used to indicate which event queue to bind this completion queue to. This 15628 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15629 * completion queue. This function is asynchronous and will wait for the mailbox 15630 * command to finish before continuing. 15631 * 15632 * On success this function will return a zero. If unable to allocate enough 15633 * memory this function will return -ENOMEM. If the queue create mailbox command 15634 * fails this function will return -ENXIO. 15635 **/ 15636 int 15637 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15638 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15639 uint32_t subtype) 15640 { 15641 struct lpfc_queue *cq; 15642 struct lpfc_queue *eq; 15643 struct lpfc_mbx_cq_create_set *cq_set; 15644 struct lpfc_dmabuf *dmabuf; 15645 LPFC_MBOXQ_t *mbox; 15646 int rc, length, alloclen, status = 0; 15647 int cnt, idx, numcq, page_idx = 0; 15648 uint32_t shdr_status, shdr_add_status; 15649 union lpfc_sli4_cfg_shdr *shdr; 15650 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15651 15652 /* sanity check on queue memory */ 15653 numcq = phba->cfg_nvmet_mrq; 15654 if (!cqp || !hdwq || !numcq) 15655 return -ENODEV; 15656 15657 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15658 if (!mbox) 15659 return -ENOMEM; 15660 15661 length = sizeof(struct lpfc_mbx_cq_create_set); 15662 length += ((numcq * cqp[0]->page_count) * 15663 sizeof(struct dma_address)); 15664 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15665 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15666 LPFC_SLI4_MBX_NEMBED); 15667 if (alloclen < length) { 15668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15669 "3098 Allocated DMA memory size (%d) is " 15670 "less than the requested DMA memory size " 15671 "(%d)\n", alloclen, length); 15672 status = -ENOMEM; 15673 goto out; 15674 } 15675 cq_set = mbox->sge_array->addr[0]; 15676 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15677 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15678 15679 for (idx = 0; idx < numcq; idx++) { 15680 cq = cqp[idx]; 15681 eq = hdwq[idx].hba_eq; 15682 if (!cq || !eq) { 15683 status = -ENOMEM; 15684 goto out; 15685 } 15686 if (!phba->sli4_hba.pc_sli4_params.supported) 15687 hw_page_size = cq->page_size; 15688 15689 switch (idx) { 15690 case 0: 15691 bf_set(lpfc_mbx_cq_create_set_page_size, 15692 &cq_set->u.request, 15693 (hw_page_size / SLI4_PAGE_SIZE)); 15694 bf_set(lpfc_mbx_cq_create_set_num_pages, 15695 &cq_set->u.request, cq->page_count); 15696 bf_set(lpfc_mbx_cq_create_set_evt, 15697 &cq_set->u.request, 1); 15698 bf_set(lpfc_mbx_cq_create_set_valid, 15699 &cq_set->u.request, 1); 15700 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15701 &cq_set->u.request, 0); 15702 bf_set(lpfc_mbx_cq_create_set_num_cq, 15703 &cq_set->u.request, numcq); 15704 bf_set(lpfc_mbx_cq_create_set_autovalid, 15705 &cq_set->u.request, 15706 phba->sli4_hba.pc_sli4_params.cqav); 15707 switch (cq->entry_count) { 15708 case 2048: 15709 case 4096: 15710 if (phba->sli4_hba.pc_sli4_params.cqv == 15711 LPFC_Q_CREATE_VERSION_2) { 15712 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15713 &cq_set->u.request, 15714 cq->entry_count); 15715 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15716 &cq_set->u.request, 15717 LPFC_CQ_CNT_WORD7); 15718 break; 15719 } 15720 fallthrough; 15721 default: 15722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15723 "3118 Bad CQ count. (%d)\n", 15724 cq->entry_count); 15725 if (cq->entry_count < 256) { 15726 status = -EINVAL; 15727 goto out; 15728 } 15729 fallthrough; /* otherwise default to smallest */ 15730 case 256: 15731 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15732 &cq_set->u.request, LPFC_CQ_CNT_256); 15733 break; 15734 case 512: 15735 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15736 &cq_set->u.request, LPFC_CQ_CNT_512); 15737 break; 15738 case 1024: 15739 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15740 &cq_set->u.request, LPFC_CQ_CNT_1024); 15741 break; 15742 } 15743 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15744 &cq_set->u.request, eq->queue_id); 15745 break; 15746 case 1: 15747 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15748 &cq_set->u.request, eq->queue_id); 15749 break; 15750 case 2: 15751 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15752 &cq_set->u.request, eq->queue_id); 15753 break; 15754 case 3: 15755 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15756 &cq_set->u.request, eq->queue_id); 15757 break; 15758 case 4: 15759 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15760 &cq_set->u.request, eq->queue_id); 15761 break; 15762 case 5: 15763 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15764 &cq_set->u.request, eq->queue_id); 15765 break; 15766 case 6: 15767 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15768 &cq_set->u.request, eq->queue_id); 15769 break; 15770 case 7: 15771 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15772 &cq_set->u.request, eq->queue_id); 15773 break; 15774 case 8: 15775 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15776 &cq_set->u.request, eq->queue_id); 15777 break; 15778 case 9: 15779 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15780 &cq_set->u.request, eq->queue_id); 15781 break; 15782 case 10: 15783 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15784 &cq_set->u.request, eq->queue_id); 15785 break; 15786 case 11: 15787 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15788 &cq_set->u.request, eq->queue_id); 15789 break; 15790 case 12: 15791 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15792 &cq_set->u.request, eq->queue_id); 15793 break; 15794 case 13: 15795 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15796 &cq_set->u.request, eq->queue_id); 15797 break; 15798 case 14: 15799 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15800 &cq_set->u.request, eq->queue_id); 15801 break; 15802 case 15: 15803 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15804 &cq_set->u.request, eq->queue_id); 15805 break; 15806 } 15807 15808 /* link the cq onto the parent eq child list */ 15809 list_add_tail(&cq->list, &eq->child_list); 15810 /* Set up completion queue's type and subtype */ 15811 cq->type = type; 15812 cq->subtype = subtype; 15813 cq->assoc_qid = eq->queue_id; 15814 cq->assoc_qp = eq; 15815 cq->host_index = 0; 15816 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15817 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15818 cq->entry_count); 15819 cq->chann = idx; 15820 15821 rc = 0; 15822 list_for_each_entry(dmabuf, &cq->page_list, list) { 15823 memset(dmabuf->virt, 0, hw_page_size); 15824 cnt = page_idx + dmabuf->buffer_tag; 15825 cq_set->u.request.page[cnt].addr_lo = 15826 putPaddrLow(dmabuf->phys); 15827 cq_set->u.request.page[cnt].addr_hi = 15828 putPaddrHigh(dmabuf->phys); 15829 rc++; 15830 } 15831 page_idx += rc; 15832 } 15833 15834 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15835 15836 /* The IOCTL status is embedded in the mailbox subheader. */ 15837 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15838 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15839 if (shdr_status || shdr_add_status || rc) { 15840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15841 "3119 CQ_CREATE_SET mailbox failed with " 15842 "status x%x add_status x%x, mbx status x%x\n", 15843 shdr_status, shdr_add_status, rc); 15844 status = -ENXIO; 15845 goto out; 15846 } 15847 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15848 if (rc == 0xFFFF) { 15849 status = -ENXIO; 15850 goto out; 15851 } 15852 15853 for (idx = 0; idx < numcq; idx++) { 15854 cq = cqp[idx]; 15855 cq->queue_id = rc + idx; 15856 if (cq->queue_id > phba->sli4_hba.cq_max) 15857 phba->sli4_hba.cq_max = cq->queue_id; 15858 } 15859 15860 out: 15861 lpfc_sli4_mbox_cmd_free(phba, mbox); 15862 return status; 15863 } 15864 15865 /** 15866 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15867 * @phba: HBA structure that indicates port to create a queue on. 15868 * @mq: The queue structure to use to create the mailbox queue. 15869 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15870 * @cq: The completion queue to associate with this cq. 15871 * 15872 * This function provides failback (fb) functionality when the 15873 * mq_create_ext fails on older FW generations. It's purpose is identical 15874 * to mq_create_ext otherwise. 15875 * 15876 * This routine cannot fail as all attributes were previously accessed and 15877 * initialized in mq_create_ext. 15878 **/ 15879 static void 15880 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15881 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15882 { 15883 struct lpfc_mbx_mq_create *mq_create; 15884 struct lpfc_dmabuf *dmabuf; 15885 int length; 15886 15887 length = (sizeof(struct lpfc_mbx_mq_create) - 15888 sizeof(struct lpfc_sli4_cfg_mhdr)); 15889 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15890 LPFC_MBOX_OPCODE_MQ_CREATE, 15891 length, LPFC_SLI4_MBX_EMBED); 15892 mq_create = &mbox->u.mqe.un.mq_create; 15893 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15894 mq->page_count); 15895 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15896 cq->queue_id); 15897 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15898 switch (mq->entry_count) { 15899 case 16: 15900 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15901 LPFC_MQ_RING_SIZE_16); 15902 break; 15903 case 32: 15904 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15905 LPFC_MQ_RING_SIZE_32); 15906 break; 15907 case 64: 15908 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15909 LPFC_MQ_RING_SIZE_64); 15910 break; 15911 case 128: 15912 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15913 LPFC_MQ_RING_SIZE_128); 15914 break; 15915 } 15916 list_for_each_entry(dmabuf, &mq->page_list, list) { 15917 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15918 putPaddrLow(dmabuf->phys); 15919 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15920 putPaddrHigh(dmabuf->phys); 15921 } 15922 } 15923 15924 /** 15925 * lpfc_mq_create - Create a mailbox Queue on the HBA 15926 * @phba: HBA structure that indicates port to create a queue on. 15927 * @mq: The queue structure to use to create the mailbox queue. 15928 * @cq: The completion queue to associate with this cq. 15929 * @subtype: The queue's subtype. 15930 * 15931 * This function creates a mailbox queue, as detailed in @mq, on a port, 15932 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15933 * 15934 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15935 * is used to get the entry count and entry size that are necessary to 15936 * determine the number of pages to allocate and use for this queue. This 15937 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15938 * mailbox queue. This function is asynchronous and will wait for the mailbox 15939 * command to finish before continuing. 15940 * 15941 * On success this function will return a zero. If unable to allocate enough 15942 * memory this function will return -ENOMEM. If the queue create mailbox command 15943 * fails this function will return -ENXIO. 15944 **/ 15945 int32_t 15946 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15947 struct lpfc_queue *cq, uint32_t subtype) 15948 { 15949 struct lpfc_mbx_mq_create *mq_create; 15950 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15951 struct lpfc_dmabuf *dmabuf; 15952 LPFC_MBOXQ_t *mbox; 15953 int rc, length, status = 0; 15954 uint32_t shdr_status, shdr_add_status; 15955 union lpfc_sli4_cfg_shdr *shdr; 15956 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15957 15958 /* sanity check on queue memory */ 15959 if (!mq || !cq) 15960 return -ENODEV; 15961 if (!phba->sli4_hba.pc_sli4_params.supported) 15962 hw_page_size = SLI4_PAGE_SIZE; 15963 15964 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15965 if (!mbox) 15966 return -ENOMEM; 15967 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15968 sizeof(struct lpfc_sli4_cfg_mhdr)); 15969 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15970 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15971 length, LPFC_SLI4_MBX_EMBED); 15972 15973 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15974 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15975 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15976 &mq_create_ext->u.request, mq->page_count); 15977 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15978 &mq_create_ext->u.request, 1); 15979 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15980 &mq_create_ext->u.request, 1); 15981 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15982 &mq_create_ext->u.request, 1); 15983 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15984 &mq_create_ext->u.request, 1); 15985 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15986 &mq_create_ext->u.request, 1); 15987 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15988 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15989 phba->sli4_hba.pc_sli4_params.mqv); 15990 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15991 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15992 cq->queue_id); 15993 else 15994 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15995 cq->queue_id); 15996 switch (mq->entry_count) { 15997 default: 15998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15999 "0362 Unsupported MQ count. (%d)\n", 16000 mq->entry_count); 16001 if (mq->entry_count < 16) { 16002 status = -EINVAL; 16003 goto out; 16004 } 16005 fallthrough; /* otherwise default to smallest count */ 16006 case 16: 16007 bf_set(lpfc_mq_context_ring_size, 16008 &mq_create_ext->u.request.context, 16009 LPFC_MQ_RING_SIZE_16); 16010 break; 16011 case 32: 16012 bf_set(lpfc_mq_context_ring_size, 16013 &mq_create_ext->u.request.context, 16014 LPFC_MQ_RING_SIZE_32); 16015 break; 16016 case 64: 16017 bf_set(lpfc_mq_context_ring_size, 16018 &mq_create_ext->u.request.context, 16019 LPFC_MQ_RING_SIZE_64); 16020 break; 16021 case 128: 16022 bf_set(lpfc_mq_context_ring_size, 16023 &mq_create_ext->u.request.context, 16024 LPFC_MQ_RING_SIZE_128); 16025 break; 16026 } 16027 list_for_each_entry(dmabuf, &mq->page_list, list) { 16028 memset(dmabuf->virt, 0, hw_page_size); 16029 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16030 putPaddrLow(dmabuf->phys); 16031 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16032 putPaddrHigh(dmabuf->phys); 16033 } 16034 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16035 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16036 &mq_create_ext->u.response); 16037 if (rc != MBX_SUCCESS) { 16038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16039 "2795 MQ_CREATE_EXT failed with " 16040 "status x%x. Failback to MQ_CREATE.\n", 16041 rc); 16042 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16043 mq_create = &mbox->u.mqe.un.mq_create; 16044 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16045 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16046 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16047 &mq_create->u.response); 16048 } 16049 16050 /* The IOCTL status is embedded in the mailbox subheader. */ 16051 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16052 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16053 if (shdr_status || shdr_add_status || rc) { 16054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16055 "2502 MQ_CREATE mailbox failed with " 16056 "status x%x add_status x%x, mbx status x%x\n", 16057 shdr_status, shdr_add_status, rc); 16058 status = -ENXIO; 16059 goto out; 16060 } 16061 if (mq->queue_id == 0xFFFF) { 16062 status = -ENXIO; 16063 goto out; 16064 } 16065 mq->type = LPFC_MQ; 16066 mq->assoc_qid = cq->queue_id; 16067 mq->subtype = subtype; 16068 mq->host_index = 0; 16069 mq->hba_index = 0; 16070 16071 /* link the mq onto the parent cq child list */ 16072 list_add_tail(&mq->list, &cq->child_list); 16073 out: 16074 mempool_free(mbox, phba->mbox_mem_pool); 16075 return status; 16076 } 16077 16078 /** 16079 * lpfc_wq_create - Create a Work Queue on the HBA 16080 * @phba: HBA structure that indicates port to create a queue on. 16081 * @wq: The queue structure to use to create the work queue. 16082 * @cq: The completion queue to bind this work queue to. 16083 * @subtype: The subtype of the work queue indicating its functionality. 16084 * 16085 * This function creates a work queue, as detailed in @wq, on a port, described 16086 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16087 * 16088 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16089 * is used to get the entry count and entry size that are necessary to 16090 * determine the number of pages to allocate and use for this queue. The @cq 16091 * is used to indicate which completion queue to bind this work queue to. This 16092 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16093 * work queue. This function is asynchronous and will wait for the mailbox 16094 * command to finish before continuing. 16095 * 16096 * On success this function will return a zero. If unable to allocate enough 16097 * memory this function will return -ENOMEM. If the queue create mailbox command 16098 * fails this function will return -ENXIO. 16099 **/ 16100 int 16101 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16102 struct lpfc_queue *cq, uint32_t subtype) 16103 { 16104 struct lpfc_mbx_wq_create *wq_create; 16105 struct lpfc_dmabuf *dmabuf; 16106 LPFC_MBOXQ_t *mbox; 16107 int rc, length, status = 0; 16108 uint32_t shdr_status, shdr_add_status; 16109 union lpfc_sli4_cfg_shdr *shdr; 16110 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16111 struct dma_address *page; 16112 void __iomem *bar_memmap_p; 16113 uint32_t db_offset; 16114 uint16_t pci_barset; 16115 uint8_t dpp_barset; 16116 uint32_t dpp_offset; 16117 uint8_t wq_create_version; 16118 #ifdef CONFIG_X86 16119 unsigned long pg_addr; 16120 #endif 16121 16122 /* sanity check on queue memory */ 16123 if (!wq || !cq) 16124 return -ENODEV; 16125 if (!phba->sli4_hba.pc_sli4_params.supported) 16126 hw_page_size = wq->page_size; 16127 16128 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16129 if (!mbox) 16130 return -ENOMEM; 16131 length = (sizeof(struct lpfc_mbx_wq_create) - 16132 sizeof(struct lpfc_sli4_cfg_mhdr)); 16133 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16134 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16135 length, LPFC_SLI4_MBX_EMBED); 16136 wq_create = &mbox->u.mqe.un.wq_create; 16137 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16138 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16139 wq->page_count); 16140 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16141 cq->queue_id); 16142 16143 /* wqv is the earliest version supported, NOT the latest */ 16144 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16145 phba->sli4_hba.pc_sli4_params.wqv); 16146 16147 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16148 (wq->page_size > SLI4_PAGE_SIZE)) 16149 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16150 else 16151 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16152 16153 switch (wq_create_version) { 16154 case LPFC_Q_CREATE_VERSION_1: 16155 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16156 wq->entry_count); 16157 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16158 LPFC_Q_CREATE_VERSION_1); 16159 16160 switch (wq->entry_size) { 16161 default: 16162 case 64: 16163 bf_set(lpfc_mbx_wq_create_wqe_size, 16164 &wq_create->u.request_1, 16165 LPFC_WQ_WQE_SIZE_64); 16166 break; 16167 case 128: 16168 bf_set(lpfc_mbx_wq_create_wqe_size, 16169 &wq_create->u.request_1, 16170 LPFC_WQ_WQE_SIZE_128); 16171 break; 16172 } 16173 /* Request DPP by default */ 16174 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16175 bf_set(lpfc_mbx_wq_create_page_size, 16176 &wq_create->u.request_1, 16177 (wq->page_size / SLI4_PAGE_SIZE)); 16178 page = wq_create->u.request_1.page; 16179 break; 16180 default: 16181 page = wq_create->u.request.page; 16182 break; 16183 } 16184 16185 list_for_each_entry(dmabuf, &wq->page_list, list) { 16186 memset(dmabuf->virt, 0, hw_page_size); 16187 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16188 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16189 } 16190 16191 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16192 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16193 16194 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16195 /* The IOCTL status is embedded in the mailbox subheader. */ 16196 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16197 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16198 if (shdr_status || shdr_add_status || rc) { 16199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16200 "2503 WQ_CREATE mailbox failed with " 16201 "status x%x add_status x%x, mbx status x%x\n", 16202 shdr_status, shdr_add_status, rc); 16203 status = -ENXIO; 16204 goto out; 16205 } 16206 16207 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16208 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16209 &wq_create->u.response); 16210 else 16211 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16212 &wq_create->u.response_1); 16213 16214 if (wq->queue_id == 0xFFFF) { 16215 status = -ENXIO; 16216 goto out; 16217 } 16218 16219 wq->db_format = LPFC_DB_LIST_FORMAT; 16220 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16221 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16222 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16223 &wq_create->u.response); 16224 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16225 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16227 "3265 WQ[%d] doorbell format " 16228 "not supported: x%x\n", 16229 wq->queue_id, wq->db_format); 16230 status = -EINVAL; 16231 goto out; 16232 } 16233 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16234 &wq_create->u.response); 16235 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16236 pci_barset); 16237 if (!bar_memmap_p) { 16238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16239 "3263 WQ[%d] failed to memmap " 16240 "pci barset:x%x\n", 16241 wq->queue_id, pci_barset); 16242 status = -ENOMEM; 16243 goto out; 16244 } 16245 db_offset = wq_create->u.response.doorbell_offset; 16246 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16247 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16249 "3252 WQ[%d] doorbell offset " 16250 "not supported: x%x\n", 16251 wq->queue_id, db_offset); 16252 status = -EINVAL; 16253 goto out; 16254 } 16255 wq->db_regaddr = bar_memmap_p + db_offset; 16256 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16257 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16258 "format:x%x\n", wq->queue_id, 16259 pci_barset, db_offset, wq->db_format); 16260 } else 16261 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16262 } else { 16263 /* Check if DPP was honored by the firmware */ 16264 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16265 &wq_create->u.response_1); 16266 if (wq->dpp_enable) { 16267 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16268 &wq_create->u.response_1); 16269 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16270 pci_barset); 16271 if (!bar_memmap_p) { 16272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16273 "3267 WQ[%d] failed to memmap " 16274 "pci barset:x%x\n", 16275 wq->queue_id, pci_barset); 16276 status = -ENOMEM; 16277 goto out; 16278 } 16279 db_offset = wq_create->u.response_1.doorbell_offset; 16280 wq->db_regaddr = bar_memmap_p + db_offset; 16281 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16282 &wq_create->u.response_1); 16283 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16284 &wq_create->u.response_1); 16285 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16286 dpp_barset); 16287 if (!bar_memmap_p) { 16288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16289 "3268 WQ[%d] failed to memmap " 16290 "pci barset:x%x\n", 16291 wq->queue_id, dpp_barset); 16292 status = -ENOMEM; 16293 goto out; 16294 } 16295 dpp_offset = wq_create->u.response_1.dpp_offset; 16296 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16297 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16298 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16299 "dpp_id:x%x dpp_barset:x%x " 16300 "dpp_offset:x%x\n", 16301 wq->queue_id, pci_barset, db_offset, 16302 wq->dpp_id, dpp_barset, dpp_offset); 16303 16304 #ifdef CONFIG_X86 16305 /* Enable combined writes for DPP aperture */ 16306 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16307 rc = set_memory_wc(pg_addr, 1); 16308 if (rc) { 16309 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16310 "3272 Cannot setup Combined " 16311 "Write on WQ[%d] - disable DPP\n", 16312 wq->queue_id); 16313 phba->cfg_enable_dpp = 0; 16314 } 16315 #else 16316 phba->cfg_enable_dpp = 0; 16317 #endif 16318 } else 16319 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16320 } 16321 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16322 if (wq->pring == NULL) { 16323 status = -ENOMEM; 16324 goto out; 16325 } 16326 wq->type = LPFC_WQ; 16327 wq->assoc_qid = cq->queue_id; 16328 wq->subtype = subtype; 16329 wq->host_index = 0; 16330 wq->hba_index = 0; 16331 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16332 16333 /* link the wq onto the parent cq child list */ 16334 list_add_tail(&wq->list, &cq->child_list); 16335 out: 16336 mempool_free(mbox, phba->mbox_mem_pool); 16337 return status; 16338 } 16339 16340 /** 16341 * lpfc_rq_create - Create a Receive Queue on the HBA 16342 * @phba: HBA structure that indicates port to create a queue on. 16343 * @hrq: The queue structure to use to create the header receive queue. 16344 * @drq: The queue structure to use to create the data receive queue. 16345 * @cq: The completion queue to bind this work queue to. 16346 * @subtype: The subtype of the work queue indicating its functionality. 16347 * 16348 * This function creates a receive buffer queue pair , as detailed in @hrq and 16349 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16350 * to the HBA. 16351 * 16352 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16353 * struct is used to get the entry count that is necessary to determine the 16354 * number of pages to use for this queue. The @cq is used to indicate which 16355 * completion queue to bind received buffers that are posted to these queues to. 16356 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16357 * receive queue pair. This function is asynchronous and will wait for the 16358 * mailbox command to finish before continuing. 16359 * 16360 * On success this function will return a zero. If unable to allocate enough 16361 * memory this function will return -ENOMEM. If the queue create mailbox command 16362 * fails this function will return -ENXIO. 16363 **/ 16364 int 16365 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16366 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16367 { 16368 struct lpfc_mbx_rq_create *rq_create; 16369 struct lpfc_dmabuf *dmabuf; 16370 LPFC_MBOXQ_t *mbox; 16371 int rc, length, status = 0; 16372 uint32_t shdr_status, shdr_add_status; 16373 union lpfc_sli4_cfg_shdr *shdr; 16374 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16375 void __iomem *bar_memmap_p; 16376 uint32_t db_offset; 16377 uint16_t pci_barset; 16378 16379 /* sanity check on queue memory */ 16380 if (!hrq || !drq || !cq) 16381 return -ENODEV; 16382 if (!phba->sli4_hba.pc_sli4_params.supported) 16383 hw_page_size = SLI4_PAGE_SIZE; 16384 16385 if (hrq->entry_count != drq->entry_count) 16386 return -EINVAL; 16387 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16388 if (!mbox) 16389 return -ENOMEM; 16390 length = (sizeof(struct lpfc_mbx_rq_create) - 16391 sizeof(struct lpfc_sli4_cfg_mhdr)); 16392 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16393 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16394 length, LPFC_SLI4_MBX_EMBED); 16395 rq_create = &mbox->u.mqe.un.rq_create; 16396 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16397 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16398 phba->sli4_hba.pc_sli4_params.rqv); 16399 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16400 bf_set(lpfc_rq_context_rqe_count_1, 16401 &rq_create->u.request.context, 16402 hrq->entry_count); 16403 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16404 bf_set(lpfc_rq_context_rqe_size, 16405 &rq_create->u.request.context, 16406 LPFC_RQE_SIZE_8); 16407 bf_set(lpfc_rq_context_page_size, 16408 &rq_create->u.request.context, 16409 LPFC_RQ_PAGE_SIZE_4096); 16410 } else { 16411 switch (hrq->entry_count) { 16412 default: 16413 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16414 "2535 Unsupported RQ count. (%d)\n", 16415 hrq->entry_count); 16416 if (hrq->entry_count < 512) { 16417 status = -EINVAL; 16418 goto out; 16419 } 16420 fallthrough; /* otherwise default to smallest count */ 16421 case 512: 16422 bf_set(lpfc_rq_context_rqe_count, 16423 &rq_create->u.request.context, 16424 LPFC_RQ_RING_SIZE_512); 16425 break; 16426 case 1024: 16427 bf_set(lpfc_rq_context_rqe_count, 16428 &rq_create->u.request.context, 16429 LPFC_RQ_RING_SIZE_1024); 16430 break; 16431 case 2048: 16432 bf_set(lpfc_rq_context_rqe_count, 16433 &rq_create->u.request.context, 16434 LPFC_RQ_RING_SIZE_2048); 16435 break; 16436 case 4096: 16437 bf_set(lpfc_rq_context_rqe_count, 16438 &rq_create->u.request.context, 16439 LPFC_RQ_RING_SIZE_4096); 16440 break; 16441 } 16442 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16443 LPFC_HDR_BUF_SIZE); 16444 } 16445 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16446 cq->queue_id); 16447 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16448 hrq->page_count); 16449 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16450 memset(dmabuf->virt, 0, hw_page_size); 16451 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16452 putPaddrLow(dmabuf->phys); 16453 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16454 putPaddrHigh(dmabuf->phys); 16455 } 16456 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16457 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16458 16459 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16460 /* The IOCTL status is embedded in the mailbox subheader. */ 16461 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16462 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16463 if (shdr_status || shdr_add_status || rc) { 16464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16465 "2504 RQ_CREATE mailbox failed with " 16466 "status x%x add_status x%x, mbx status x%x\n", 16467 shdr_status, shdr_add_status, rc); 16468 status = -ENXIO; 16469 goto out; 16470 } 16471 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16472 if (hrq->queue_id == 0xFFFF) { 16473 status = -ENXIO; 16474 goto out; 16475 } 16476 16477 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16478 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16479 &rq_create->u.response); 16480 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16481 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16483 "3262 RQ [%d] doorbell format not " 16484 "supported: x%x\n", hrq->queue_id, 16485 hrq->db_format); 16486 status = -EINVAL; 16487 goto out; 16488 } 16489 16490 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16491 &rq_create->u.response); 16492 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16493 if (!bar_memmap_p) { 16494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16495 "3269 RQ[%d] failed to memmap pci " 16496 "barset:x%x\n", hrq->queue_id, 16497 pci_barset); 16498 status = -ENOMEM; 16499 goto out; 16500 } 16501 16502 db_offset = rq_create->u.response.doorbell_offset; 16503 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16504 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16506 "3270 RQ[%d] doorbell offset not " 16507 "supported: x%x\n", hrq->queue_id, 16508 db_offset); 16509 status = -EINVAL; 16510 goto out; 16511 } 16512 hrq->db_regaddr = bar_memmap_p + db_offset; 16513 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16514 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16515 "format:x%x\n", hrq->queue_id, pci_barset, 16516 db_offset, hrq->db_format); 16517 } else { 16518 hrq->db_format = LPFC_DB_RING_FORMAT; 16519 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16520 } 16521 hrq->type = LPFC_HRQ; 16522 hrq->assoc_qid = cq->queue_id; 16523 hrq->subtype = subtype; 16524 hrq->host_index = 0; 16525 hrq->hba_index = 0; 16526 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16527 16528 /* now create the data queue */ 16529 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16530 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16531 length, LPFC_SLI4_MBX_EMBED); 16532 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16533 phba->sli4_hba.pc_sli4_params.rqv); 16534 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16535 bf_set(lpfc_rq_context_rqe_count_1, 16536 &rq_create->u.request.context, hrq->entry_count); 16537 if (subtype == LPFC_NVMET) 16538 rq_create->u.request.context.buffer_size = 16539 LPFC_NVMET_DATA_BUF_SIZE; 16540 else 16541 rq_create->u.request.context.buffer_size = 16542 LPFC_DATA_BUF_SIZE; 16543 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16544 LPFC_RQE_SIZE_8); 16545 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16546 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16547 } else { 16548 switch (drq->entry_count) { 16549 default: 16550 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16551 "2536 Unsupported RQ count. (%d)\n", 16552 drq->entry_count); 16553 if (drq->entry_count < 512) { 16554 status = -EINVAL; 16555 goto out; 16556 } 16557 fallthrough; /* otherwise default to smallest count */ 16558 case 512: 16559 bf_set(lpfc_rq_context_rqe_count, 16560 &rq_create->u.request.context, 16561 LPFC_RQ_RING_SIZE_512); 16562 break; 16563 case 1024: 16564 bf_set(lpfc_rq_context_rqe_count, 16565 &rq_create->u.request.context, 16566 LPFC_RQ_RING_SIZE_1024); 16567 break; 16568 case 2048: 16569 bf_set(lpfc_rq_context_rqe_count, 16570 &rq_create->u.request.context, 16571 LPFC_RQ_RING_SIZE_2048); 16572 break; 16573 case 4096: 16574 bf_set(lpfc_rq_context_rqe_count, 16575 &rq_create->u.request.context, 16576 LPFC_RQ_RING_SIZE_4096); 16577 break; 16578 } 16579 if (subtype == LPFC_NVMET) 16580 bf_set(lpfc_rq_context_buf_size, 16581 &rq_create->u.request.context, 16582 LPFC_NVMET_DATA_BUF_SIZE); 16583 else 16584 bf_set(lpfc_rq_context_buf_size, 16585 &rq_create->u.request.context, 16586 LPFC_DATA_BUF_SIZE); 16587 } 16588 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16589 cq->queue_id); 16590 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16591 drq->page_count); 16592 list_for_each_entry(dmabuf, &drq->page_list, list) { 16593 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16594 putPaddrLow(dmabuf->phys); 16595 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16596 putPaddrHigh(dmabuf->phys); 16597 } 16598 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16599 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16600 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16601 /* The IOCTL status is embedded in the mailbox subheader. */ 16602 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16603 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16604 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16605 if (shdr_status || shdr_add_status || rc) { 16606 status = -ENXIO; 16607 goto out; 16608 } 16609 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16610 if (drq->queue_id == 0xFFFF) { 16611 status = -ENXIO; 16612 goto out; 16613 } 16614 drq->type = LPFC_DRQ; 16615 drq->assoc_qid = cq->queue_id; 16616 drq->subtype = subtype; 16617 drq->host_index = 0; 16618 drq->hba_index = 0; 16619 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16620 16621 /* link the header and data RQs onto the parent cq child list */ 16622 list_add_tail(&hrq->list, &cq->child_list); 16623 list_add_tail(&drq->list, &cq->child_list); 16624 16625 out: 16626 mempool_free(mbox, phba->mbox_mem_pool); 16627 return status; 16628 } 16629 16630 /** 16631 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16632 * @phba: HBA structure that indicates port to create a queue on. 16633 * @hrqp: The queue structure array to use to create the header receive queues. 16634 * @drqp: The queue structure array to use to create the data receive queues. 16635 * @cqp: The completion queue array to bind these receive queues to. 16636 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16637 * 16638 * This function creates a receive buffer queue pair , as detailed in @hrq and 16639 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16640 * to the HBA. 16641 * 16642 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16643 * struct is used to get the entry count that is necessary to determine the 16644 * number of pages to use for this queue. The @cq is used to indicate which 16645 * completion queue to bind received buffers that are posted to these queues to. 16646 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16647 * receive queue pair. This function is asynchronous and will wait for the 16648 * mailbox command to finish before continuing. 16649 * 16650 * On success this function will return a zero. If unable to allocate enough 16651 * memory this function will return -ENOMEM. If the queue create mailbox command 16652 * fails this function will return -ENXIO. 16653 **/ 16654 int 16655 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16656 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16657 uint32_t subtype) 16658 { 16659 struct lpfc_queue *hrq, *drq, *cq; 16660 struct lpfc_mbx_rq_create_v2 *rq_create; 16661 struct lpfc_dmabuf *dmabuf; 16662 LPFC_MBOXQ_t *mbox; 16663 int rc, length, alloclen, status = 0; 16664 int cnt, idx, numrq, page_idx = 0; 16665 uint32_t shdr_status, shdr_add_status; 16666 union lpfc_sli4_cfg_shdr *shdr; 16667 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16668 16669 numrq = phba->cfg_nvmet_mrq; 16670 /* sanity check on array memory */ 16671 if (!hrqp || !drqp || !cqp || !numrq) 16672 return -ENODEV; 16673 if (!phba->sli4_hba.pc_sli4_params.supported) 16674 hw_page_size = SLI4_PAGE_SIZE; 16675 16676 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16677 if (!mbox) 16678 return -ENOMEM; 16679 16680 length = sizeof(struct lpfc_mbx_rq_create_v2); 16681 length += ((2 * numrq * hrqp[0]->page_count) * 16682 sizeof(struct dma_address)); 16683 16684 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16685 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16686 LPFC_SLI4_MBX_NEMBED); 16687 if (alloclen < length) { 16688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16689 "3099 Allocated DMA memory size (%d) is " 16690 "less than the requested DMA memory size " 16691 "(%d)\n", alloclen, length); 16692 status = -ENOMEM; 16693 goto out; 16694 } 16695 16696 16697 16698 rq_create = mbox->sge_array->addr[0]; 16699 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16700 16701 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16702 cnt = 0; 16703 16704 for (idx = 0; idx < numrq; idx++) { 16705 hrq = hrqp[idx]; 16706 drq = drqp[idx]; 16707 cq = cqp[idx]; 16708 16709 /* sanity check on queue memory */ 16710 if (!hrq || !drq || !cq) { 16711 status = -ENODEV; 16712 goto out; 16713 } 16714 16715 if (hrq->entry_count != drq->entry_count) { 16716 status = -EINVAL; 16717 goto out; 16718 } 16719 16720 if (idx == 0) { 16721 bf_set(lpfc_mbx_rq_create_num_pages, 16722 &rq_create->u.request, 16723 hrq->page_count); 16724 bf_set(lpfc_mbx_rq_create_rq_cnt, 16725 &rq_create->u.request, (numrq * 2)); 16726 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16727 1); 16728 bf_set(lpfc_rq_context_base_cq, 16729 &rq_create->u.request.context, 16730 cq->queue_id); 16731 bf_set(lpfc_rq_context_data_size, 16732 &rq_create->u.request.context, 16733 LPFC_NVMET_DATA_BUF_SIZE); 16734 bf_set(lpfc_rq_context_hdr_size, 16735 &rq_create->u.request.context, 16736 LPFC_HDR_BUF_SIZE); 16737 bf_set(lpfc_rq_context_rqe_count_1, 16738 &rq_create->u.request.context, 16739 hrq->entry_count); 16740 bf_set(lpfc_rq_context_rqe_size, 16741 &rq_create->u.request.context, 16742 LPFC_RQE_SIZE_8); 16743 bf_set(lpfc_rq_context_page_size, 16744 &rq_create->u.request.context, 16745 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16746 } 16747 rc = 0; 16748 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16749 memset(dmabuf->virt, 0, hw_page_size); 16750 cnt = page_idx + dmabuf->buffer_tag; 16751 rq_create->u.request.page[cnt].addr_lo = 16752 putPaddrLow(dmabuf->phys); 16753 rq_create->u.request.page[cnt].addr_hi = 16754 putPaddrHigh(dmabuf->phys); 16755 rc++; 16756 } 16757 page_idx += rc; 16758 16759 rc = 0; 16760 list_for_each_entry(dmabuf, &drq->page_list, list) { 16761 memset(dmabuf->virt, 0, hw_page_size); 16762 cnt = page_idx + dmabuf->buffer_tag; 16763 rq_create->u.request.page[cnt].addr_lo = 16764 putPaddrLow(dmabuf->phys); 16765 rq_create->u.request.page[cnt].addr_hi = 16766 putPaddrHigh(dmabuf->phys); 16767 rc++; 16768 } 16769 page_idx += rc; 16770 16771 hrq->db_format = LPFC_DB_RING_FORMAT; 16772 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16773 hrq->type = LPFC_HRQ; 16774 hrq->assoc_qid = cq->queue_id; 16775 hrq->subtype = subtype; 16776 hrq->host_index = 0; 16777 hrq->hba_index = 0; 16778 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16779 16780 drq->db_format = LPFC_DB_RING_FORMAT; 16781 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16782 drq->type = LPFC_DRQ; 16783 drq->assoc_qid = cq->queue_id; 16784 drq->subtype = subtype; 16785 drq->host_index = 0; 16786 drq->hba_index = 0; 16787 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16788 16789 list_add_tail(&hrq->list, &cq->child_list); 16790 list_add_tail(&drq->list, &cq->child_list); 16791 } 16792 16793 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16794 /* The IOCTL status is embedded in the mailbox subheader. */ 16795 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16796 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16797 if (shdr_status || shdr_add_status || rc) { 16798 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16799 "3120 RQ_CREATE mailbox failed with " 16800 "status x%x add_status x%x, mbx status x%x\n", 16801 shdr_status, shdr_add_status, rc); 16802 status = -ENXIO; 16803 goto out; 16804 } 16805 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16806 if (rc == 0xFFFF) { 16807 status = -ENXIO; 16808 goto out; 16809 } 16810 16811 /* Initialize all RQs with associated queue id */ 16812 for (idx = 0; idx < numrq; idx++) { 16813 hrq = hrqp[idx]; 16814 hrq->queue_id = rc + (2 * idx); 16815 drq = drqp[idx]; 16816 drq->queue_id = rc + (2 * idx) + 1; 16817 } 16818 16819 out: 16820 lpfc_sli4_mbox_cmd_free(phba, mbox); 16821 return status; 16822 } 16823 16824 /** 16825 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16826 * @phba: HBA structure that indicates port to destroy a queue on. 16827 * @eq: The queue structure associated with the queue to destroy. 16828 * 16829 * This function destroys a queue, as detailed in @eq by sending an mailbox 16830 * command, specific to the type of queue, to the HBA. 16831 * 16832 * The @eq struct is used to get the queue ID of the queue to destroy. 16833 * 16834 * On success this function will return a zero. If the queue destroy mailbox 16835 * command fails this function will return -ENXIO. 16836 **/ 16837 int 16838 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16839 { 16840 LPFC_MBOXQ_t *mbox; 16841 int rc, length, status = 0; 16842 uint32_t shdr_status, shdr_add_status; 16843 union lpfc_sli4_cfg_shdr *shdr; 16844 16845 /* sanity check on queue memory */ 16846 if (!eq) 16847 return -ENODEV; 16848 16849 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16850 if (!mbox) 16851 return -ENOMEM; 16852 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16853 sizeof(struct lpfc_sli4_cfg_mhdr)); 16854 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16855 LPFC_MBOX_OPCODE_EQ_DESTROY, 16856 length, LPFC_SLI4_MBX_EMBED); 16857 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16858 eq->queue_id); 16859 mbox->vport = eq->phba->pport; 16860 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16861 16862 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16863 /* The IOCTL status is embedded in the mailbox subheader. */ 16864 shdr = (union lpfc_sli4_cfg_shdr *) 16865 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16866 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16867 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16868 if (shdr_status || shdr_add_status || rc) { 16869 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16870 "2505 EQ_DESTROY mailbox failed with " 16871 "status x%x add_status x%x, mbx status x%x\n", 16872 shdr_status, shdr_add_status, rc); 16873 status = -ENXIO; 16874 } 16875 16876 /* Remove eq from any list */ 16877 list_del_init(&eq->list); 16878 mempool_free(mbox, eq->phba->mbox_mem_pool); 16879 return status; 16880 } 16881 16882 /** 16883 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16884 * @phba: HBA structure that indicates port to destroy a queue on. 16885 * @cq: The queue structure associated with the queue to destroy. 16886 * 16887 * This function destroys a queue, as detailed in @cq by sending an mailbox 16888 * command, specific to the type of queue, to the HBA. 16889 * 16890 * The @cq struct is used to get the queue ID of the queue to destroy. 16891 * 16892 * On success this function will return a zero. If the queue destroy mailbox 16893 * command fails this function will return -ENXIO. 16894 **/ 16895 int 16896 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16897 { 16898 LPFC_MBOXQ_t *mbox; 16899 int rc, length, status = 0; 16900 uint32_t shdr_status, shdr_add_status; 16901 union lpfc_sli4_cfg_shdr *shdr; 16902 16903 /* sanity check on queue memory */ 16904 if (!cq) 16905 return -ENODEV; 16906 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16907 if (!mbox) 16908 return -ENOMEM; 16909 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16910 sizeof(struct lpfc_sli4_cfg_mhdr)); 16911 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16912 LPFC_MBOX_OPCODE_CQ_DESTROY, 16913 length, LPFC_SLI4_MBX_EMBED); 16914 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16915 cq->queue_id); 16916 mbox->vport = cq->phba->pport; 16917 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16918 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16919 /* The IOCTL status is embedded in the mailbox subheader. */ 16920 shdr = (union lpfc_sli4_cfg_shdr *) 16921 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16922 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16923 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16924 if (shdr_status || shdr_add_status || rc) { 16925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16926 "2506 CQ_DESTROY mailbox failed with " 16927 "status x%x add_status x%x, mbx status x%x\n", 16928 shdr_status, shdr_add_status, rc); 16929 status = -ENXIO; 16930 } 16931 /* Remove cq from any list */ 16932 list_del_init(&cq->list); 16933 mempool_free(mbox, cq->phba->mbox_mem_pool); 16934 return status; 16935 } 16936 16937 /** 16938 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16939 * @phba: HBA structure that indicates port to destroy a queue on. 16940 * @mq: The queue structure associated with the queue to destroy. 16941 * 16942 * This function destroys a queue, as detailed in @mq by sending an mailbox 16943 * command, specific to the type of queue, to the HBA. 16944 * 16945 * The @mq struct is used to get the queue ID of the queue to destroy. 16946 * 16947 * On success this function will return a zero. If the queue destroy mailbox 16948 * command fails this function will return -ENXIO. 16949 **/ 16950 int 16951 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16952 { 16953 LPFC_MBOXQ_t *mbox; 16954 int rc, length, status = 0; 16955 uint32_t shdr_status, shdr_add_status; 16956 union lpfc_sli4_cfg_shdr *shdr; 16957 16958 /* sanity check on queue memory */ 16959 if (!mq) 16960 return -ENODEV; 16961 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16962 if (!mbox) 16963 return -ENOMEM; 16964 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16965 sizeof(struct lpfc_sli4_cfg_mhdr)); 16966 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16967 LPFC_MBOX_OPCODE_MQ_DESTROY, 16968 length, LPFC_SLI4_MBX_EMBED); 16969 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16970 mq->queue_id); 16971 mbox->vport = mq->phba->pport; 16972 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16973 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16974 /* The IOCTL status is embedded in the mailbox subheader. */ 16975 shdr = (union lpfc_sli4_cfg_shdr *) 16976 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16977 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16978 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16979 if (shdr_status || shdr_add_status || rc) { 16980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16981 "2507 MQ_DESTROY mailbox failed with " 16982 "status x%x add_status x%x, mbx status x%x\n", 16983 shdr_status, shdr_add_status, rc); 16984 status = -ENXIO; 16985 } 16986 /* Remove mq from any list */ 16987 list_del_init(&mq->list); 16988 mempool_free(mbox, mq->phba->mbox_mem_pool); 16989 return status; 16990 } 16991 16992 /** 16993 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16994 * @phba: HBA structure that indicates port to destroy a queue on. 16995 * @wq: The queue structure associated with the queue to destroy. 16996 * 16997 * This function destroys a queue, as detailed in @wq by sending an mailbox 16998 * command, specific to the type of queue, to the HBA. 16999 * 17000 * The @wq struct is used to get the queue ID of the queue to destroy. 17001 * 17002 * On success this function will return a zero. If the queue destroy mailbox 17003 * command fails this function will return -ENXIO. 17004 **/ 17005 int 17006 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17007 { 17008 LPFC_MBOXQ_t *mbox; 17009 int rc, length, status = 0; 17010 uint32_t shdr_status, shdr_add_status; 17011 union lpfc_sli4_cfg_shdr *shdr; 17012 17013 /* sanity check on queue memory */ 17014 if (!wq) 17015 return -ENODEV; 17016 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17017 if (!mbox) 17018 return -ENOMEM; 17019 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17020 sizeof(struct lpfc_sli4_cfg_mhdr)); 17021 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17022 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17023 length, LPFC_SLI4_MBX_EMBED); 17024 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17025 wq->queue_id); 17026 mbox->vport = wq->phba->pport; 17027 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17028 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17029 shdr = (union lpfc_sli4_cfg_shdr *) 17030 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17031 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17032 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17033 if (shdr_status || shdr_add_status || rc) { 17034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17035 "2508 WQ_DESTROY mailbox failed with " 17036 "status x%x add_status x%x, mbx status x%x\n", 17037 shdr_status, shdr_add_status, rc); 17038 status = -ENXIO; 17039 } 17040 /* Remove wq from any list */ 17041 list_del_init(&wq->list); 17042 kfree(wq->pring); 17043 wq->pring = NULL; 17044 mempool_free(mbox, wq->phba->mbox_mem_pool); 17045 return status; 17046 } 17047 17048 /** 17049 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17050 * @phba: HBA structure that indicates port to destroy a queue on. 17051 * @hrq: The queue structure associated with the queue to destroy. 17052 * @drq: The queue structure associated with the queue to destroy. 17053 * 17054 * This function destroys a queue, as detailed in @rq by sending an mailbox 17055 * command, specific to the type of queue, to the HBA. 17056 * 17057 * The @rq struct is used to get the queue ID of the queue to destroy. 17058 * 17059 * On success this function will return a zero. If the queue destroy mailbox 17060 * command fails this function will return -ENXIO. 17061 **/ 17062 int 17063 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17064 struct lpfc_queue *drq) 17065 { 17066 LPFC_MBOXQ_t *mbox; 17067 int rc, length, status = 0; 17068 uint32_t shdr_status, shdr_add_status; 17069 union lpfc_sli4_cfg_shdr *shdr; 17070 17071 /* sanity check on queue memory */ 17072 if (!hrq || !drq) 17073 return -ENODEV; 17074 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17075 if (!mbox) 17076 return -ENOMEM; 17077 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17078 sizeof(struct lpfc_sli4_cfg_mhdr)); 17079 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17080 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17081 length, LPFC_SLI4_MBX_EMBED); 17082 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17083 hrq->queue_id); 17084 mbox->vport = hrq->phba->pport; 17085 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17086 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17087 /* The IOCTL status is embedded in the mailbox subheader. */ 17088 shdr = (union lpfc_sli4_cfg_shdr *) 17089 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17090 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17091 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17092 if (shdr_status || shdr_add_status || rc) { 17093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17094 "2509 RQ_DESTROY mailbox failed with " 17095 "status x%x add_status x%x, mbx status x%x\n", 17096 shdr_status, shdr_add_status, rc); 17097 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17098 return -ENXIO; 17099 } 17100 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17101 drq->queue_id); 17102 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17103 shdr = (union lpfc_sli4_cfg_shdr *) 17104 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17105 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17106 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17107 if (shdr_status || shdr_add_status || rc) { 17108 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17109 "2510 RQ_DESTROY mailbox failed with " 17110 "status x%x add_status x%x, mbx status x%x\n", 17111 shdr_status, shdr_add_status, rc); 17112 status = -ENXIO; 17113 } 17114 list_del_init(&hrq->list); 17115 list_del_init(&drq->list); 17116 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17117 return status; 17118 } 17119 17120 /** 17121 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17122 * @phba: The virtual port for which this call being executed. 17123 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17124 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17125 * @xritag: the xritag that ties this io to the SGL pages. 17126 * 17127 * This routine will post the sgl pages for the IO that has the xritag 17128 * that is in the iocbq structure. The xritag is assigned during iocbq 17129 * creation and persists for as long as the driver is loaded. 17130 * if the caller has fewer than 256 scatter gather segments to map then 17131 * pdma_phys_addr1 should be 0. 17132 * If the caller needs to map more than 256 scatter gather segment then 17133 * pdma_phys_addr1 should be a valid physical address. 17134 * physical address for SGLs must be 64 byte aligned. 17135 * If you are going to map 2 SGL's then the first one must have 256 entries 17136 * the second sgl can have between 1 and 256 entries. 17137 * 17138 * Return codes: 17139 * 0 - Success 17140 * -ENXIO, -ENOMEM - Failure 17141 **/ 17142 int 17143 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17144 dma_addr_t pdma_phys_addr0, 17145 dma_addr_t pdma_phys_addr1, 17146 uint16_t xritag) 17147 { 17148 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17149 LPFC_MBOXQ_t *mbox; 17150 int rc; 17151 uint32_t shdr_status, shdr_add_status; 17152 uint32_t mbox_tmo; 17153 union lpfc_sli4_cfg_shdr *shdr; 17154 17155 if (xritag == NO_XRI) { 17156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17157 "0364 Invalid param:\n"); 17158 return -EINVAL; 17159 } 17160 17161 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17162 if (!mbox) 17163 return -ENOMEM; 17164 17165 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17166 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17167 sizeof(struct lpfc_mbx_post_sgl_pages) - 17168 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17169 17170 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17171 &mbox->u.mqe.un.post_sgl_pages; 17172 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17173 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17174 17175 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17176 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17177 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17178 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17179 17180 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17181 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17182 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17183 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17184 if (!phba->sli4_hba.intr_enable) 17185 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17186 else { 17187 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17188 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17189 } 17190 /* The IOCTL status is embedded in the mailbox subheader. */ 17191 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17192 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17193 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17194 if (!phba->sli4_hba.intr_enable) 17195 mempool_free(mbox, phba->mbox_mem_pool); 17196 else if (rc != MBX_TIMEOUT) 17197 mempool_free(mbox, phba->mbox_mem_pool); 17198 if (shdr_status || shdr_add_status || rc) { 17199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17200 "2511 POST_SGL mailbox failed with " 17201 "status x%x add_status x%x, mbx status x%x\n", 17202 shdr_status, shdr_add_status, rc); 17203 } 17204 return 0; 17205 } 17206 17207 /** 17208 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17209 * @phba: pointer to lpfc hba data structure. 17210 * 17211 * This routine is invoked to post rpi header templates to the 17212 * HBA consistent with the SLI-4 interface spec. This routine 17213 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17214 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17215 * 17216 * Returns 17217 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17218 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17219 **/ 17220 static uint16_t 17221 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17222 { 17223 unsigned long xri; 17224 17225 /* 17226 * Fetch the next logical xri. Because this index is logical, 17227 * the driver starts at 0 each time. 17228 */ 17229 spin_lock_irq(&phba->hbalock); 17230 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17231 phba->sli4_hba.max_cfg_param.max_xri, 0); 17232 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17233 spin_unlock_irq(&phba->hbalock); 17234 return NO_XRI; 17235 } else { 17236 set_bit(xri, phba->sli4_hba.xri_bmask); 17237 phba->sli4_hba.max_cfg_param.xri_used++; 17238 } 17239 spin_unlock_irq(&phba->hbalock); 17240 return xri; 17241 } 17242 17243 /** 17244 * __lpfc_sli4_free_xri - Release an xri for reuse. 17245 * @phba: pointer to lpfc hba data structure. 17246 * @xri: xri to release. 17247 * 17248 * This routine is invoked to release an xri to the pool of 17249 * available rpis maintained by the driver. 17250 **/ 17251 static void 17252 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17253 { 17254 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17255 phba->sli4_hba.max_cfg_param.xri_used--; 17256 } 17257 } 17258 17259 /** 17260 * lpfc_sli4_free_xri - Release an xri for reuse. 17261 * @phba: pointer to lpfc hba data structure. 17262 * @xri: xri to release. 17263 * 17264 * This routine is invoked to release an xri to the pool of 17265 * available rpis maintained by the driver. 17266 **/ 17267 void 17268 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17269 { 17270 spin_lock_irq(&phba->hbalock); 17271 __lpfc_sli4_free_xri(phba, xri); 17272 spin_unlock_irq(&phba->hbalock); 17273 } 17274 17275 /** 17276 * lpfc_sli4_next_xritag - Get an xritag for the io 17277 * @phba: Pointer to HBA context object. 17278 * 17279 * This function gets an xritag for the iocb. If there is no unused xritag 17280 * it will return 0xffff. 17281 * The function returns the allocated xritag if successful, else returns zero. 17282 * Zero is not a valid xritag. 17283 * The caller is not required to hold any lock. 17284 **/ 17285 uint16_t 17286 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17287 { 17288 uint16_t xri_index; 17289 17290 xri_index = lpfc_sli4_alloc_xri(phba); 17291 if (xri_index == NO_XRI) 17292 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17293 "2004 Failed to allocate XRI.last XRITAG is %d" 17294 " Max XRI is %d, Used XRI is %d\n", 17295 xri_index, 17296 phba->sli4_hba.max_cfg_param.max_xri, 17297 phba->sli4_hba.max_cfg_param.xri_used); 17298 return xri_index; 17299 } 17300 17301 /** 17302 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17303 * @phba: pointer to lpfc hba data structure. 17304 * @post_sgl_list: pointer to els sgl entry list. 17305 * @post_cnt: number of els sgl entries on the list. 17306 * 17307 * This routine is invoked to post a block of driver's sgl pages to the 17308 * HBA using non-embedded mailbox command. No Lock is held. This routine 17309 * is only called when the driver is loading and after all IO has been 17310 * stopped. 17311 **/ 17312 static int 17313 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17314 struct list_head *post_sgl_list, 17315 int post_cnt) 17316 { 17317 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17318 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17319 struct sgl_page_pairs *sgl_pg_pairs; 17320 void *viraddr; 17321 LPFC_MBOXQ_t *mbox; 17322 uint32_t reqlen, alloclen, pg_pairs; 17323 uint32_t mbox_tmo; 17324 uint16_t xritag_start = 0; 17325 int rc = 0; 17326 uint32_t shdr_status, shdr_add_status; 17327 union lpfc_sli4_cfg_shdr *shdr; 17328 17329 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17330 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17331 if (reqlen > SLI4_PAGE_SIZE) { 17332 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17333 "2559 Block sgl registration required DMA " 17334 "size (%d) great than a page\n", reqlen); 17335 return -ENOMEM; 17336 } 17337 17338 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17339 if (!mbox) 17340 return -ENOMEM; 17341 17342 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17343 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17344 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17345 LPFC_SLI4_MBX_NEMBED); 17346 17347 if (alloclen < reqlen) { 17348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17349 "0285 Allocated DMA memory size (%d) is " 17350 "less than the requested DMA memory " 17351 "size (%d)\n", alloclen, reqlen); 17352 lpfc_sli4_mbox_cmd_free(phba, mbox); 17353 return -ENOMEM; 17354 } 17355 /* Set up the SGL pages in the non-embedded DMA pages */ 17356 viraddr = mbox->sge_array->addr[0]; 17357 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17358 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17359 17360 pg_pairs = 0; 17361 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17362 /* Set up the sge entry */ 17363 sgl_pg_pairs->sgl_pg0_addr_lo = 17364 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17365 sgl_pg_pairs->sgl_pg0_addr_hi = 17366 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17367 sgl_pg_pairs->sgl_pg1_addr_lo = 17368 cpu_to_le32(putPaddrLow(0)); 17369 sgl_pg_pairs->sgl_pg1_addr_hi = 17370 cpu_to_le32(putPaddrHigh(0)); 17371 17372 /* Keep the first xritag on the list */ 17373 if (pg_pairs == 0) 17374 xritag_start = sglq_entry->sli4_xritag; 17375 sgl_pg_pairs++; 17376 pg_pairs++; 17377 } 17378 17379 /* Complete initialization and perform endian conversion. */ 17380 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17381 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17382 sgl->word0 = cpu_to_le32(sgl->word0); 17383 17384 if (!phba->sli4_hba.intr_enable) 17385 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17386 else { 17387 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17388 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17389 } 17390 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17391 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17392 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17393 if (!phba->sli4_hba.intr_enable) 17394 lpfc_sli4_mbox_cmd_free(phba, mbox); 17395 else if (rc != MBX_TIMEOUT) 17396 lpfc_sli4_mbox_cmd_free(phba, mbox); 17397 if (shdr_status || shdr_add_status || rc) { 17398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17399 "2513 POST_SGL_BLOCK mailbox command failed " 17400 "status x%x add_status x%x mbx status x%x\n", 17401 shdr_status, shdr_add_status, rc); 17402 rc = -ENXIO; 17403 } 17404 return rc; 17405 } 17406 17407 /** 17408 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17409 * @phba: pointer to lpfc hba data structure. 17410 * @nblist: pointer to nvme buffer list. 17411 * @count: number of scsi buffers on the list. 17412 * 17413 * This routine is invoked to post a block of @count scsi sgl pages from a 17414 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17415 * No Lock is held. 17416 * 17417 **/ 17418 static int 17419 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17420 int count) 17421 { 17422 struct lpfc_io_buf *lpfc_ncmd; 17423 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17424 struct sgl_page_pairs *sgl_pg_pairs; 17425 void *viraddr; 17426 LPFC_MBOXQ_t *mbox; 17427 uint32_t reqlen, alloclen, pg_pairs; 17428 uint32_t mbox_tmo; 17429 uint16_t xritag_start = 0; 17430 int rc = 0; 17431 uint32_t shdr_status, shdr_add_status; 17432 dma_addr_t pdma_phys_bpl1; 17433 union lpfc_sli4_cfg_shdr *shdr; 17434 17435 /* Calculate the requested length of the dma memory */ 17436 reqlen = count * sizeof(struct sgl_page_pairs) + 17437 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17438 if (reqlen > SLI4_PAGE_SIZE) { 17439 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17440 "6118 Block sgl registration required DMA " 17441 "size (%d) great than a page\n", reqlen); 17442 return -ENOMEM; 17443 } 17444 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17445 if (!mbox) { 17446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17447 "6119 Failed to allocate mbox cmd memory\n"); 17448 return -ENOMEM; 17449 } 17450 17451 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17452 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17453 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17454 reqlen, LPFC_SLI4_MBX_NEMBED); 17455 17456 if (alloclen < reqlen) { 17457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17458 "6120 Allocated DMA memory size (%d) is " 17459 "less than the requested DMA memory " 17460 "size (%d)\n", alloclen, reqlen); 17461 lpfc_sli4_mbox_cmd_free(phba, mbox); 17462 return -ENOMEM; 17463 } 17464 17465 /* Get the first SGE entry from the non-embedded DMA memory */ 17466 viraddr = mbox->sge_array->addr[0]; 17467 17468 /* Set up the SGL pages in the non-embedded DMA pages */ 17469 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17470 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17471 17472 pg_pairs = 0; 17473 list_for_each_entry(lpfc_ncmd, nblist, list) { 17474 /* Set up the sge entry */ 17475 sgl_pg_pairs->sgl_pg0_addr_lo = 17476 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17477 sgl_pg_pairs->sgl_pg0_addr_hi = 17478 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17479 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17480 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17481 SGL_PAGE_SIZE; 17482 else 17483 pdma_phys_bpl1 = 0; 17484 sgl_pg_pairs->sgl_pg1_addr_lo = 17485 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17486 sgl_pg_pairs->sgl_pg1_addr_hi = 17487 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17488 /* Keep the first xritag on the list */ 17489 if (pg_pairs == 0) 17490 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17491 sgl_pg_pairs++; 17492 pg_pairs++; 17493 } 17494 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17495 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17496 /* Perform endian conversion if necessary */ 17497 sgl->word0 = cpu_to_le32(sgl->word0); 17498 17499 if (!phba->sli4_hba.intr_enable) { 17500 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17501 } else { 17502 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17503 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17504 } 17505 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17506 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17507 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17508 if (!phba->sli4_hba.intr_enable) 17509 lpfc_sli4_mbox_cmd_free(phba, mbox); 17510 else if (rc != MBX_TIMEOUT) 17511 lpfc_sli4_mbox_cmd_free(phba, mbox); 17512 if (shdr_status || shdr_add_status || rc) { 17513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17514 "6125 POST_SGL_BLOCK mailbox command failed " 17515 "status x%x add_status x%x mbx status x%x\n", 17516 shdr_status, shdr_add_status, rc); 17517 rc = -ENXIO; 17518 } 17519 return rc; 17520 } 17521 17522 /** 17523 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17524 * @phba: pointer to lpfc hba data structure. 17525 * @post_nblist: pointer to the nvme buffer list. 17526 * @sb_count: number of nvme buffers. 17527 * 17528 * This routine walks a list of nvme buffers that was passed in. It attempts 17529 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17530 * uses the non-embedded SGL block post mailbox commands to post to the port. 17531 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17532 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17533 * must be local list, thus no lock is needed when manipulate the list. 17534 * 17535 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17536 **/ 17537 int 17538 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17539 struct list_head *post_nblist, int sb_count) 17540 { 17541 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17542 int status, sgl_size; 17543 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17544 dma_addr_t pdma_phys_sgl1; 17545 int last_xritag = NO_XRI; 17546 int cur_xritag; 17547 LIST_HEAD(prep_nblist); 17548 LIST_HEAD(blck_nblist); 17549 LIST_HEAD(nvme_nblist); 17550 17551 /* sanity check */ 17552 if (sb_count <= 0) 17553 return -EINVAL; 17554 17555 sgl_size = phba->cfg_sg_dma_buf_size; 17556 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17557 list_del_init(&lpfc_ncmd->list); 17558 block_cnt++; 17559 if ((last_xritag != NO_XRI) && 17560 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17561 /* a hole in xri block, form a sgl posting block */ 17562 list_splice_init(&prep_nblist, &blck_nblist); 17563 post_cnt = block_cnt - 1; 17564 /* prepare list for next posting block */ 17565 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17566 block_cnt = 1; 17567 } else { 17568 /* prepare list for next posting block */ 17569 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17570 /* enough sgls for non-embed sgl mbox command */ 17571 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17572 list_splice_init(&prep_nblist, &blck_nblist); 17573 post_cnt = block_cnt; 17574 block_cnt = 0; 17575 } 17576 } 17577 num_posting++; 17578 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17579 17580 /* end of repost sgl list condition for NVME buffers */ 17581 if (num_posting == sb_count) { 17582 if (post_cnt == 0) { 17583 /* last sgl posting block */ 17584 list_splice_init(&prep_nblist, &blck_nblist); 17585 post_cnt = block_cnt; 17586 } else if (block_cnt == 1) { 17587 /* last single sgl with non-contiguous xri */ 17588 if (sgl_size > SGL_PAGE_SIZE) 17589 pdma_phys_sgl1 = 17590 lpfc_ncmd->dma_phys_sgl + 17591 SGL_PAGE_SIZE; 17592 else 17593 pdma_phys_sgl1 = 0; 17594 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17595 status = lpfc_sli4_post_sgl( 17596 phba, lpfc_ncmd->dma_phys_sgl, 17597 pdma_phys_sgl1, cur_xritag); 17598 if (status) { 17599 /* Post error. Buffer unavailable. */ 17600 lpfc_ncmd->flags |= 17601 LPFC_SBUF_NOT_POSTED; 17602 } else { 17603 /* Post success. Bffer available. */ 17604 lpfc_ncmd->flags &= 17605 ~LPFC_SBUF_NOT_POSTED; 17606 lpfc_ncmd->status = IOSTAT_SUCCESS; 17607 num_posted++; 17608 } 17609 /* success, put on NVME buffer sgl list */ 17610 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17611 } 17612 } 17613 17614 /* continue until a nembed page worth of sgls */ 17615 if (post_cnt == 0) 17616 continue; 17617 17618 /* post block of NVME buffer list sgls */ 17619 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17620 post_cnt); 17621 17622 /* don't reset xirtag due to hole in xri block */ 17623 if (block_cnt == 0) 17624 last_xritag = NO_XRI; 17625 17626 /* reset NVME buffer post count for next round of posting */ 17627 post_cnt = 0; 17628 17629 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17630 while (!list_empty(&blck_nblist)) { 17631 list_remove_head(&blck_nblist, lpfc_ncmd, 17632 struct lpfc_io_buf, list); 17633 if (status) { 17634 /* Post error. Mark buffer unavailable. */ 17635 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17636 } else { 17637 /* Post success, Mark buffer available. */ 17638 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17639 lpfc_ncmd->status = IOSTAT_SUCCESS; 17640 num_posted++; 17641 } 17642 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17643 } 17644 } 17645 /* Push NVME buffers with sgl posted to the available list */ 17646 lpfc_io_buf_replenish(phba, &nvme_nblist); 17647 17648 return num_posted; 17649 } 17650 17651 /** 17652 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17653 * @phba: pointer to lpfc_hba struct that the frame was received on 17654 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17655 * 17656 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17657 * valid type of frame that the LPFC driver will handle. This function will 17658 * return a zero if the frame is a valid frame or a non zero value when the 17659 * frame does not pass the check. 17660 **/ 17661 static int 17662 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17663 { 17664 /* make rctl_names static to save stack space */ 17665 struct fc_vft_header *fc_vft_hdr; 17666 uint32_t *header = (uint32_t *) fc_hdr; 17667 17668 #define FC_RCTL_MDS_DIAGS 0xF4 17669 17670 switch (fc_hdr->fh_r_ctl) { 17671 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17672 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17673 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17674 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17675 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17676 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17677 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17678 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17679 case FC_RCTL_ELS_REQ: /* extended link services request */ 17680 case FC_RCTL_ELS_REP: /* extended link services reply */ 17681 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17682 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17683 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17684 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17685 case FC_RCTL_BA_RMC: /* remove connection */ 17686 case FC_RCTL_BA_ACC: /* basic accept */ 17687 case FC_RCTL_BA_RJT: /* basic reject */ 17688 case FC_RCTL_BA_PRMT: 17689 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17690 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17691 case FC_RCTL_P_RJT: /* port reject */ 17692 case FC_RCTL_F_RJT: /* fabric reject */ 17693 case FC_RCTL_P_BSY: /* port busy */ 17694 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17695 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17696 case FC_RCTL_LCR: /* link credit reset */ 17697 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17698 case FC_RCTL_END: /* end */ 17699 break; 17700 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17701 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17702 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17703 return lpfc_fc_frame_check(phba, fc_hdr); 17704 default: 17705 goto drop; 17706 } 17707 17708 switch (fc_hdr->fh_type) { 17709 case FC_TYPE_BLS: 17710 case FC_TYPE_ELS: 17711 case FC_TYPE_FCP: 17712 case FC_TYPE_CT: 17713 case FC_TYPE_NVME: 17714 break; 17715 case FC_TYPE_IP: 17716 case FC_TYPE_ILS: 17717 default: 17718 goto drop; 17719 } 17720 17721 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17722 "2538 Received frame rctl:x%x, type:x%x, " 17723 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17724 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17725 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17726 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17727 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17728 be32_to_cpu(header[6])); 17729 return 0; 17730 drop: 17731 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17732 "2539 Dropped frame rctl:x%x type:x%x\n", 17733 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17734 return 1; 17735 } 17736 17737 /** 17738 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17739 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17740 * 17741 * This function processes the FC header to retrieve the VFI from the VF 17742 * header, if one exists. This function will return the VFI if one exists 17743 * or 0 if no VSAN Header exists. 17744 **/ 17745 static uint32_t 17746 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17747 { 17748 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17749 17750 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17751 return 0; 17752 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17753 } 17754 17755 /** 17756 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17757 * @phba: Pointer to the HBA structure to search for the vport on 17758 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17759 * @fcfi: The FC Fabric ID that the frame came from 17760 * @did: Destination ID to match against 17761 * 17762 * This function searches the @phba for a vport that matches the content of the 17763 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17764 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17765 * returns the matching vport pointer or NULL if unable to match frame to a 17766 * vport. 17767 **/ 17768 static struct lpfc_vport * 17769 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17770 uint16_t fcfi, uint32_t did) 17771 { 17772 struct lpfc_vport **vports; 17773 struct lpfc_vport *vport = NULL; 17774 int i; 17775 17776 if (did == Fabric_DID) 17777 return phba->pport; 17778 if ((phba->pport->fc_flag & FC_PT2PT) && 17779 !(phba->link_state == LPFC_HBA_READY)) 17780 return phba->pport; 17781 17782 vports = lpfc_create_vport_work_array(phba); 17783 if (vports != NULL) { 17784 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17785 if (phba->fcf.fcfi == fcfi && 17786 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17787 vports[i]->fc_myDID == did) { 17788 vport = vports[i]; 17789 break; 17790 } 17791 } 17792 } 17793 lpfc_destroy_vport_work_array(phba, vports); 17794 return vport; 17795 } 17796 17797 /** 17798 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17799 * @vport: The vport to work on. 17800 * 17801 * This function updates the receive sequence time stamp for this vport. The 17802 * receive sequence time stamp indicates the time that the last frame of the 17803 * the sequence that has been idle for the longest amount of time was received. 17804 * the driver uses this time stamp to indicate if any received sequences have 17805 * timed out. 17806 **/ 17807 static void 17808 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17809 { 17810 struct lpfc_dmabuf *h_buf; 17811 struct hbq_dmabuf *dmabuf = NULL; 17812 17813 /* get the oldest sequence on the rcv list */ 17814 h_buf = list_get_first(&vport->rcv_buffer_list, 17815 struct lpfc_dmabuf, list); 17816 if (!h_buf) 17817 return; 17818 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17819 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17820 } 17821 17822 /** 17823 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17824 * @vport: The vport that the received sequences were sent to. 17825 * 17826 * This function cleans up all outstanding received sequences. This is called 17827 * by the driver when a link event or user action invalidates all the received 17828 * sequences. 17829 **/ 17830 void 17831 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17832 { 17833 struct lpfc_dmabuf *h_buf, *hnext; 17834 struct lpfc_dmabuf *d_buf, *dnext; 17835 struct hbq_dmabuf *dmabuf = NULL; 17836 17837 /* start with the oldest sequence on the rcv list */ 17838 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17839 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17840 list_del_init(&dmabuf->hbuf.list); 17841 list_for_each_entry_safe(d_buf, dnext, 17842 &dmabuf->dbuf.list, list) { 17843 list_del_init(&d_buf->list); 17844 lpfc_in_buf_free(vport->phba, d_buf); 17845 } 17846 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17847 } 17848 } 17849 17850 /** 17851 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17852 * @vport: The vport that the received sequences were sent to. 17853 * 17854 * This function determines whether any received sequences have timed out by 17855 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17856 * indicates that there is at least one timed out sequence this routine will 17857 * go through the received sequences one at a time from most inactive to most 17858 * active to determine which ones need to be cleaned up. Once it has determined 17859 * that a sequence needs to be cleaned up it will simply free up the resources 17860 * without sending an abort. 17861 **/ 17862 void 17863 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17864 { 17865 struct lpfc_dmabuf *h_buf, *hnext; 17866 struct lpfc_dmabuf *d_buf, *dnext; 17867 struct hbq_dmabuf *dmabuf = NULL; 17868 unsigned long timeout; 17869 int abort_count = 0; 17870 17871 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17872 vport->rcv_buffer_time_stamp); 17873 if (list_empty(&vport->rcv_buffer_list) || 17874 time_before(jiffies, timeout)) 17875 return; 17876 /* start with the oldest sequence on the rcv list */ 17877 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17878 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17879 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17880 dmabuf->time_stamp); 17881 if (time_before(jiffies, timeout)) 17882 break; 17883 abort_count++; 17884 list_del_init(&dmabuf->hbuf.list); 17885 list_for_each_entry_safe(d_buf, dnext, 17886 &dmabuf->dbuf.list, list) { 17887 list_del_init(&d_buf->list); 17888 lpfc_in_buf_free(vport->phba, d_buf); 17889 } 17890 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17891 } 17892 if (abort_count) 17893 lpfc_update_rcv_time_stamp(vport); 17894 } 17895 17896 /** 17897 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17898 * @vport: pointer to a vitural port 17899 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17900 * 17901 * This function searches through the existing incomplete sequences that have 17902 * been sent to this @vport. If the frame matches one of the incomplete 17903 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17904 * make up that sequence. If no sequence is found that matches this frame then 17905 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17906 * This function returns a pointer to the first dmabuf in the sequence list that 17907 * the frame was linked to. 17908 **/ 17909 static struct hbq_dmabuf * 17910 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17911 { 17912 struct fc_frame_header *new_hdr; 17913 struct fc_frame_header *temp_hdr; 17914 struct lpfc_dmabuf *d_buf; 17915 struct lpfc_dmabuf *h_buf; 17916 struct hbq_dmabuf *seq_dmabuf = NULL; 17917 struct hbq_dmabuf *temp_dmabuf = NULL; 17918 uint8_t found = 0; 17919 17920 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17921 dmabuf->time_stamp = jiffies; 17922 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17923 17924 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17925 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17926 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17927 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17928 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17929 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17930 continue; 17931 /* found a pending sequence that matches this frame */ 17932 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17933 break; 17934 } 17935 if (!seq_dmabuf) { 17936 /* 17937 * This indicates first frame received for this sequence. 17938 * Queue the buffer on the vport's rcv_buffer_list. 17939 */ 17940 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17941 lpfc_update_rcv_time_stamp(vport); 17942 return dmabuf; 17943 } 17944 temp_hdr = seq_dmabuf->hbuf.virt; 17945 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17946 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17947 list_del_init(&seq_dmabuf->hbuf.list); 17948 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17949 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17950 lpfc_update_rcv_time_stamp(vport); 17951 return dmabuf; 17952 } 17953 /* move this sequence to the tail to indicate a young sequence */ 17954 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17955 seq_dmabuf->time_stamp = jiffies; 17956 lpfc_update_rcv_time_stamp(vport); 17957 if (list_empty(&seq_dmabuf->dbuf.list)) { 17958 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17959 return seq_dmabuf; 17960 } 17961 /* find the correct place in the sequence to insert this frame */ 17962 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17963 while (!found) { 17964 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17965 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17966 /* 17967 * If the frame's sequence count is greater than the frame on 17968 * the list then insert the frame right after this frame 17969 */ 17970 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17971 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17972 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17973 found = 1; 17974 break; 17975 } 17976 17977 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17978 break; 17979 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17980 } 17981 17982 if (found) 17983 return seq_dmabuf; 17984 return NULL; 17985 } 17986 17987 /** 17988 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17989 * @vport: pointer to a vitural port 17990 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17991 * 17992 * This function tries to abort from the partially assembed sequence, described 17993 * by the information from basic abbort @dmabuf. It checks to see whether such 17994 * partially assembled sequence held by the driver. If so, it shall free up all 17995 * the frames from the partially assembled sequence. 17996 * 17997 * Return 17998 * true -- if there is matching partially assembled sequence present and all 17999 * the frames freed with the sequence; 18000 * false -- if there is no matching partially assembled sequence present so 18001 * nothing got aborted in the lower layer driver 18002 **/ 18003 static bool 18004 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18005 struct hbq_dmabuf *dmabuf) 18006 { 18007 struct fc_frame_header *new_hdr; 18008 struct fc_frame_header *temp_hdr; 18009 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18010 struct hbq_dmabuf *seq_dmabuf = NULL; 18011 18012 /* Use the hdr_buf to find the sequence that matches this frame */ 18013 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18014 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18015 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18016 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18017 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18018 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18019 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18020 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18021 continue; 18022 /* found a pending sequence that matches this frame */ 18023 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18024 break; 18025 } 18026 18027 /* Free up all the frames from the partially assembled sequence */ 18028 if (seq_dmabuf) { 18029 list_for_each_entry_safe(d_buf, n_buf, 18030 &seq_dmabuf->dbuf.list, list) { 18031 list_del_init(&d_buf->list); 18032 lpfc_in_buf_free(vport->phba, d_buf); 18033 } 18034 return true; 18035 } 18036 return false; 18037 } 18038 18039 /** 18040 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18041 * @vport: pointer to a vitural port 18042 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18043 * 18044 * This function tries to abort from the assembed sequence from upper level 18045 * protocol, described by the information from basic abbort @dmabuf. It 18046 * checks to see whether such pending context exists at upper level protocol. 18047 * If so, it shall clean up the pending context. 18048 * 18049 * Return 18050 * true -- if there is matching pending context of the sequence cleaned 18051 * at ulp; 18052 * false -- if there is no matching pending context of the sequence present 18053 * at ulp. 18054 **/ 18055 static bool 18056 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18057 { 18058 struct lpfc_hba *phba = vport->phba; 18059 int handled; 18060 18061 /* Accepting abort at ulp with SLI4 only */ 18062 if (phba->sli_rev < LPFC_SLI_REV4) 18063 return false; 18064 18065 /* Register all caring upper level protocols to attend abort */ 18066 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18067 if (handled) 18068 return true; 18069 18070 return false; 18071 } 18072 18073 /** 18074 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18075 * @phba: Pointer to HBA context object. 18076 * @cmd_iocbq: pointer to the command iocbq structure. 18077 * @rsp_iocbq: pointer to the response iocbq structure. 18078 * 18079 * This function handles the sequence abort response iocb command complete 18080 * event. It properly releases the memory allocated to the sequence abort 18081 * accept iocb. 18082 **/ 18083 static void 18084 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18085 struct lpfc_iocbq *cmd_iocbq, 18086 struct lpfc_iocbq *rsp_iocbq) 18087 { 18088 struct lpfc_nodelist *ndlp; 18089 18090 if (cmd_iocbq) { 18091 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18092 lpfc_nlp_put(ndlp); 18093 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18094 } 18095 18096 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18097 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18099 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18100 rsp_iocbq->iocb.ulpStatus, 18101 rsp_iocbq->iocb.un.ulpWord[4]); 18102 } 18103 18104 /** 18105 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18106 * @phba: Pointer to HBA context object. 18107 * @xri: xri id in transaction. 18108 * 18109 * This function validates the xri maps to the known range of XRIs allocated an 18110 * used by the driver. 18111 **/ 18112 uint16_t 18113 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18114 uint16_t xri) 18115 { 18116 uint16_t i; 18117 18118 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18119 if (xri == phba->sli4_hba.xri_ids[i]) 18120 return i; 18121 } 18122 return NO_XRI; 18123 } 18124 18125 /** 18126 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18127 * @vport: pointer to a virtual port. 18128 * @fc_hdr: pointer to a FC frame header. 18129 * @aborted: was the partially assembled receive sequence successfully aborted 18130 * 18131 * This function sends a basic response to a previous unsol sequence abort 18132 * event after aborting the sequence handling. 18133 **/ 18134 void 18135 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18136 struct fc_frame_header *fc_hdr, bool aborted) 18137 { 18138 struct lpfc_hba *phba = vport->phba; 18139 struct lpfc_iocbq *ctiocb = NULL; 18140 struct lpfc_nodelist *ndlp; 18141 uint16_t oxid, rxid, xri, lxri; 18142 uint32_t sid, fctl; 18143 IOCB_t *icmd; 18144 int rc; 18145 18146 if (!lpfc_is_link_up(phba)) 18147 return; 18148 18149 sid = sli4_sid_from_fc_hdr(fc_hdr); 18150 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18151 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18152 18153 ndlp = lpfc_findnode_did(vport, sid); 18154 if (!ndlp) { 18155 ndlp = lpfc_nlp_init(vport, sid); 18156 if (!ndlp) { 18157 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18158 "1268 Failed to allocate ndlp for " 18159 "oxid:x%x SID:x%x\n", oxid, sid); 18160 return; 18161 } 18162 /* Put ndlp onto pport node list */ 18163 lpfc_enqueue_node(vport, ndlp); 18164 } 18165 18166 /* Allocate buffer for rsp iocb */ 18167 ctiocb = lpfc_sli_get_iocbq(phba); 18168 if (!ctiocb) 18169 return; 18170 18171 /* Extract the F_CTL field from FC_HDR */ 18172 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18173 18174 icmd = &ctiocb->iocb; 18175 icmd->un.xseq64.bdl.bdeSize = 0; 18176 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18177 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18178 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18179 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18180 18181 /* Fill in the rest of iocb fields */ 18182 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18183 icmd->ulpBdeCount = 0; 18184 icmd->ulpLe = 1; 18185 icmd->ulpClass = CLASS3; 18186 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18187 ctiocb->context1 = lpfc_nlp_get(ndlp); 18188 if (!ctiocb->context1) { 18189 lpfc_sli_release_iocbq(phba, ctiocb); 18190 return; 18191 } 18192 18193 ctiocb->vport = phba->pport; 18194 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18195 ctiocb->sli4_lxritag = NO_XRI; 18196 ctiocb->sli4_xritag = NO_XRI; 18197 18198 if (fctl & FC_FC_EX_CTX) 18199 /* Exchange responder sent the abort so we 18200 * own the oxid. 18201 */ 18202 xri = oxid; 18203 else 18204 xri = rxid; 18205 lxri = lpfc_sli4_xri_inrange(phba, xri); 18206 if (lxri != NO_XRI) 18207 lpfc_set_rrq_active(phba, ndlp, lxri, 18208 (xri == oxid) ? rxid : oxid, 0); 18209 /* For BA_ABTS from exchange responder, if the logical xri with 18210 * the oxid maps to the FCP XRI range, the port no longer has 18211 * that exchange context, send a BLS_RJT. Override the IOCB for 18212 * a BA_RJT. 18213 */ 18214 if ((fctl & FC_FC_EX_CTX) && 18215 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18216 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18217 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18218 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18219 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18220 } 18221 18222 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18223 * the driver no longer has that exchange, send a BLS_RJT. Override 18224 * the IOCB for a BA_RJT. 18225 */ 18226 if (aborted == false) { 18227 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18228 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18229 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18230 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18231 } 18232 18233 if (fctl & FC_FC_EX_CTX) { 18234 /* ABTS sent by responder to CT exchange, construction 18235 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18236 * field and RX_ID from ABTS for RX_ID field. 18237 */ 18238 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18239 } else { 18240 /* ABTS sent by initiator to CT exchange, construction 18241 * of BA_ACC will need to allocate a new XRI as for the 18242 * XRI_TAG field. 18243 */ 18244 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18245 } 18246 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18247 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18248 18249 /* Xmit CT abts response on exchange <xid> */ 18250 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18251 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18252 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18253 18254 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18255 if (rc == IOCB_ERROR) { 18256 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18257 "2925 Failed to issue CT ABTS RSP x%x on " 18258 "xri x%x, Data x%x\n", 18259 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18260 phba->link_state); 18261 lpfc_nlp_put(ndlp); 18262 ctiocb->context1 = NULL; 18263 lpfc_sli_release_iocbq(phba, ctiocb); 18264 } 18265 } 18266 18267 /** 18268 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18269 * @vport: Pointer to the vport on which this sequence was received 18270 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18271 * 18272 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18273 * receive sequence is only partially assembed by the driver, it shall abort 18274 * the partially assembled frames for the sequence. Otherwise, if the 18275 * unsolicited receive sequence has been completely assembled and passed to 18276 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18277 * unsolicited sequence has been aborted. After that, it will issue a basic 18278 * accept to accept the abort. 18279 **/ 18280 static void 18281 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18282 struct hbq_dmabuf *dmabuf) 18283 { 18284 struct lpfc_hba *phba = vport->phba; 18285 struct fc_frame_header fc_hdr; 18286 uint32_t fctl; 18287 bool aborted; 18288 18289 /* Make a copy of fc_hdr before the dmabuf being released */ 18290 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18291 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18292 18293 if (fctl & FC_FC_EX_CTX) { 18294 /* ABTS by responder to exchange, no cleanup needed */ 18295 aborted = true; 18296 } else { 18297 /* ABTS by initiator to exchange, need to do cleanup */ 18298 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18299 if (aborted == false) 18300 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18301 } 18302 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18303 18304 if (phba->nvmet_support) { 18305 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18306 return; 18307 } 18308 18309 /* Respond with BA_ACC or BA_RJT accordingly */ 18310 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18311 } 18312 18313 /** 18314 * lpfc_seq_complete - Indicates if a sequence is complete 18315 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18316 * 18317 * This function checks the sequence, starting with the frame described by 18318 * @dmabuf, to see if all the frames associated with this sequence are present. 18319 * the frames associated with this sequence are linked to the @dmabuf using the 18320 * dbuf list. This function looks for two major things. 1) That the first frame 18321 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18322 * set. 3) That there are no holes in the sequence count. The function will 18323 * return 1 when the sequence is complete, otherwise it will return 0. 18324 **/ 18325 static int 18326 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18327 { 18328 struct fc_frame_header *hdr; 18329 struct lpfc_dmabuf *d_buf; 18330 struct hbq_dmabuf *seq_dmabuf; 18331 uint32_t fctl; 18332 int seq_count = 0; 18333 18334 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18335 /* make sure first fame of sequence has a sequence count of zero */ 18336 if (hdr->fh_seq_cnt != seq_count) 18337 return 0; 18338 fctl = (hdr->fh_f_ctl[0] << 16 | 18339 hdr->fh_f_ctl[1] << 8 | 18340 hdr->fh_f_ctl[2]); 18341 /* If last frame of sequence we can return success. */ 18342 if (fctl & FC_FC_END_SEQ) 18343 return 1; 18344 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18345 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18346 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18347 /* If there is a hole in the sequence count then fail. */ 18348 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18349 return 0; 18350 fctl = (hdr->fh_f_ctl[0] << 16 | 18351 hdr->fh_f_ctl[1] << 8 | 18352 hdr->fh_f_ctl[2]); 18353 /* If last frame of sequence we can return success. */ 18354 if (fctl & FC_FC_END_SEQ) 18355 return 1; 18356 } 18357 return 0; 18358 } 18359 18360 /** 18361 * lpfc_prep_seq - Prep sequence for ULP processing 18362 * @vport: Pointer to the vport on which this sequence was received 18363 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18364 * 18365 * This function takes a sequence, described by a list of frames, and creates 18366 * a list of iocbq structures to describe the sequence. This iocbq list will be 18367 * used to issue to the generic unsolicited sequence handler. This routine 18368 * returns a pointer to the first iocbq in the list. If the function is unable 18369 * to allocate an iocbq then it throw out the received frames that were not 18370 * able to be described and return a pointer to the first iocbq. If unable to 18371 * allocate any iocbqs (including the first) this function will return NULL. 18372 **/ 18373 static struct lpfc_iocbq * 18374 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18375 { 18376 struct hbq_dmabuf *hbq_buf; 18377 struct lpfc_dmabuf *d_buf, *n_buf; 18378 struct lpfc_iocbq *first_iocbq, *iocbq; 18379 struct fc_frame_header *fc_hdr; 18380 uint32_t sid; 18381 uint32_t len, tot_len; 18382 struct ulp_bde64 *pbde; 18383 18384 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18385 /* remove from receive buffer list */ 18386 list_del_init(&seq_dmabuf->hbuf.list); 18387 lpfc_update_rcv_time_stamp(vport); 18388 /* get the Remote Port's SID */ 18389 sid = sli4_sid_from_fc_hdr(fc_hdr); 18390 tot_len = 0; 18391 /* Get an iocbq struct to fill in. */ 18392 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18393 if (first_iocbq) { 18394 /* Initialize the first IOCB. */ 18395 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18396 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18397 first_iocbq->vport = vport; 18398 18399 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18400 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18401 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18402 first_iocbq->iocb.un.rcvels.parmRo = 18403 sli4_did_from_fc_hdr(fc_hdr); 18404 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18405 } else 18406 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18407 first_iocbq->iocb.ulpContext = NO_XRI; 18408 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18409 be16_to_cpu(fc_hdr->fh_ox_id); 18410 /* iocbq is prepped for internal consumption. Physical vpi. */ 18411 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18412 vport->phba->vpi_ids[vport->vpi]; 18413 /* put the first buffer into the first IOCBq */ 18414 tot_len = bf_get(lpfc_rcqe_length, 18415 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18416 18417 first_iocbq->context2 = &seq_dmabuf->dbuf; 18418 first_iocbq->context3 = NULL; 18419 first_iocbq->iocb.ulpBdeCount = 1; 18420 if (tot_len > LPFC_DATA_BUF_SIZE) 18421 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18422 LPFC_DATA_BUF_SIZE; 18423 else 18424 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18425 18426 first_iocbq->iocb.un.rcvels.remoteID = sid; 18427 18428 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18429 } 18430 iocbq = first_iocbq; 18431 /* 18432 * Each IOCBq can have two Buffers assigned, so go through the list 18433 * of buffers for this sequence and save two buffers in each IOCBq 18434 */ 18435 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18436 if (!iocbq) { 18437 lpfc_in_buf_free(vport->phba, d_buf); 18438 continue; 18439 } 18440 if (!iocbq->context3) { 18441 iocbq->context3 = d_buf; 18442 iocbq->iocb.ulpBdeCount++; 18443 /* We need to get the size out of the right CQE */ 18444 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18445 len = bf_get(lpfc_rcqe_length, 18446 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18447 pbde = (struct ulp_bde64 *) 18448 &iocbq->iocb.unsli3.sli3Words[4]; 18449 if (len > LPFC_DATA_BUF_SIZE) 18450 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18451 else 18452 pbde->tus.f.bdeSize = len; 18453 18454 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18455 tot_len += len; 18456 } else { 18457 iocbq = lpfc_sli_get_iocbq(vport->phba); 18458 if (!iocbq) { 18459 if (first_iocbq) { 18460 first_iocbq->iocb.ulpStatus = 18461 IOSTAT_FCP_RSP_ERROR; 18462 first_iocbq->iocb.un.ulpWord[4] = 18463 IOERR_NO_RESOURCES; 18464 } 18465 lpfc_in_buf_free(vport->phba, d_buf); 18466 continue; 18467 } 18468 /* We need to get the size out of the right CQE */ 18469 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18470 len = bf_get(lpfc_rcqe_length, 18471 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18472 iocbq->context2 = d_buf; 18473 iocbq->context3 = NULL; 18474 iocbq->iocb.ulpBdeCount = 1; 18475 if (len > LPFC_DATA_BUF_SIZE) 18476 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18477 LPFC_DATA_BUF_SIZE; 18478 else 18479 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18480 18481 tot_len += len; 18482 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18483 18484 iocbq->iocb.un.rcvels.remoteID = sid; 18485 list_add_tail(&iocbq->list, &first_iocbq->list); 18486 } 18487 } 18488 /* Free the sequence's header buffer */ 18489 if (!first_iocbq) 18490 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18491 18492 return first_iocbq; 18493 } 18494 18495 static void 18496 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18497 struct hbq_dmabuf *seq_dmabuf) 18498 { 18499 struct fc_frame_header *fc_hdr; 18500 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18501 struct lpfc_hba *phba = vport->phba; 18502 18503 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18504 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18505 if (!iocbq) { 18506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18507 "2707 Ring %d handler: Failed to allocate " 18508 "iocb Rctl x%x Type x%x received\n", 18509 LPFC_ELS_RING, 18510 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18511 return; 18512 } 18513 if (!lpfc_complete_unsol_iocb(phba, 18514 phba->sli4_hba.els_wq->pring, 18515 iocbq, fc_hdr->fh_r_ctl, 18516 fc_hdr->fh_type)) 18517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18518 "2540 Ring %d handler: unexpected Rctl " 18519 "x%x Type x%x received\n", 18520 LPFC_ELS_RING, 18521 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18522 18523 /* Free iocb created in lpfc_prep_seq */ 18524 list_for_each_entry_safe(curr_iocb, next_iocb, 18525 &iocbq->list, list) { 18526 list_del_init(&curr_iocb->list); 18527 lpfc_sli_release_iocbq(phba, curr_iocb); 18528 } 18529 lpfc_sli_release_iocbq(phba, iocbq); 18530 } 18531 18532 static void 18533 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18534 struct lpfc_iocbq *rspiocb) 18535 { 18536 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18537 18538 if (pcmd && pcmd->virt) 18539 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18540 kfree(pcmd); 18541 lpfc_sli_release_iocbq(phba, cmdiocb); 18542 lpfc_drain_txq(phba); 18543 } 18544 18545 static void 18546 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18547 struct hbq_dmabuf *dmabuf) 18548 { 18549 struct fc_frame_header *fc_hdr; 18550 struct lpfc_hba *phba = vport->phba; 18551 struct lpfc_iocbq *iocbq = NULL; 18552 union lpfc_wqe *wqe; 18553 struct lpfc_dmabuf *pcmd = NULL; 18554 uint32_t frame_len; 18555 int rc; 18556 unsigned long iflags; 18557 18558 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18559 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18560 18561 /* Send the received frame back */ 18562 iocbq = lpfc_sli_get_iocbq(phba); 18563 if (!iocbq) { 18564 /* Queue cq event and wakeup worker thread to process it */ 18565 spin_lock_irqsave(&phba->hbalock, iflags); 18566 list_add_tail(&dmabuf->cq_event.list, 18567 &phba->sli4_hba.sp_queue_event); 18568 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18569 spin_unlock_irqrestore(&phba->hbalock, iflags); 18570 lpfc_worker_wake_up(phba); 18571 return; 18572 } 18573 18574 /* Allocate buffer for command payload */ 18575 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18576 if (pcmd) 18577 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18578 &pcmd->phys); 18579 if (!pcmd || !pcmd->virt) 18580 goto exit; 18581 18582 INIT_LIST_HEAD(&pcmd->list); 18583 18584 /* copyin the payload */ 18585 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18586 18587 /* fill in BDE's for command */ 18588 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18589 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18590 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18591 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18592 18593 iocbq->context2 = pcmd; 18594 iocbq->vport = vport; 18595 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18596 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18597 18598 /* 18599 * Setup rest of the iocb as though it were a WQE 18600 * Build the SEND_FRAME WQE 18601 */ 18602 wqe = (union lpfc_wqe *)&iocbq->iocb; 18603 18604 wqe->send_frame.frame_len = frame_len; 18605 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18606 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18607 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18608 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18609 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18610 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18611 18612 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18613 iocbq->iocb.ulpLe = 1; 18614 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18615 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18616 if (rc == IOCB_ERROR) 18617 goto exit; 18618 18619 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18620 return; 18621 18622 exit: 18623 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18624 "2023 Unable to process MDS loopback frame\n"); 18625 if (pcmd && pcmd->virt) 18626 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18627 kfree(pcmd); 18628 if (iocbq) 18629 lpfc_sli_release_iocbq(phba, iocbq); 18630 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18631 } 18632 18633 /** 18634 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18635 * @phba: Pointer to HBA context object. 18636 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18637 * 18638 * This function is called with no lock held. This function processes all 18639 * the received buffers and gives it to upper layers when a received buffer 18640 * indicates that it is the final frame in the sequence. The interrupt 18641 * service routine processes received buffers at interrupt contexts. 18642 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18643 * appropriate receive function when the final frame in a sequence is received. 18644 **/ 18645 void 18646 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18647 struct hbq_dmabuf *dmabuf) 18648 { 18649 struct hbq_dmabuf *seq_dmabuf; 18650 struct fc_frame_header *fc_hdr; 18651 struct lpfc_vport *vport; 18652 uint32_t fcfi; 18653 uint32_t did; 18654 18655 /* Process each received buffer */ 18656 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18657 18658 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18659 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18660 vport = phba->pport; 18661 /* Handle MDS Loopback frames */ 18662 if (!(phba->pport->load_flag & FC_UNLOADING)) 18663 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18664 else 18665 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18666 return; 18667 } 18668 18669 /* check to see if this a valid type of frame */ 18670 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18671 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18672 return; 18673 } 18674 18675 if ((bf_get(lpfc_cqe_code, 18676 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18677 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18678 &dmabuf->cq_event.cqe.rcqe_cmpl); 18679 else 18680 fcfi = bf_get(lpfc_rcqe_fcf_id, 18681 &dmabuf->cq_event.cqe.rcqe_cmpl); 18682 18683 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18684 vport = phba->pport; 18685 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18686 "2023 MDS Loopback %d bytes\n", 18687 bf_get(lpfc_rcqe_length, 18688 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18689 /* Handle MDS Loopback frames */ 18690 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18691 return; 18692 } 18693 18694 /* d_id this frame is directed to */ 18695 did = sli4_did_from_fc_hdr(fc_hdr); 18696 18697 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18698 if (!vport) { 18699 /* throw out the frame */ 18700 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18701 return; 18702 } 18703 18704 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18705 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18706 (did != Fabric_DID)) { 18707 /* 18708 * Throw out the frame if we are not pt2pt. 18709 * The pt2pt protocol allows for discovery frames 18710 * to be received without a registered VPI. 18711 */ 18712 if (!(vport->fc_flag & FC_PT2PT) || 18713 (phba->link_state == LPFC_HBA_READY)) { 18714 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18715 return; 18716 } 18717 } 18718 18719 /* Handle the basic abort sequence (BA_ABTS) event */ 18720 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18721 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18722 return; 18723 } 18724 18725 /* Link this frame */ 18726 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18727 if (!seq_dmabuf) { 18728 /* unable to add frame to vport - throw it out */ 18729 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18730 return; 18731 } 18732 /* If not last frame in sequence continue processing frames. */ 18733 if (!lpfc_seq_complete(seq_dmabuf)) 18734 return; 18735 18736 /* Send the complete sequence to the upper layer protocol */ 18737 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18738 } 18739 18740 /** 18741 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18742 * @phba: pointer to lpfc hba data structure. 18743 * 18744 * This routine is invoked to post rpi header templates to the 18745 * HBA consistent with the SLI-4 interface spec. This routine 18746 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18747 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18748 * 18749 * This routine does not require any locks. It's usage is expected 18750 * to be driver load or reset recovery when the driver is 18751 * sequential. 18752 * 18753 * Return codes 18754 * 0 - successful 18755 * -EIO - The mailbox failed to complete successfully. 18756 * When this error occurs, the driver is not guaranteed 18757 * to have any rpi regions posted to the device and 18758 * must either attempt to repost the regions or take a 18759 * fatal error. 18760 **/ 18761 int 18762 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18763 { 18764 struct lpfc_rpi_hdr *rpi_page; 18765 uint32_t rc = 0; 18766 uint16_t lrpi = 0; 18767 18768 /* SLI4 ports that support extents do not require RPI headers. */ 18769 if (!phba->sli4_hba.rpi_hdrs_in_use) 18770 goto exit; 18771 if (phba->sli4_hba.extents_in_use) 18772 return -EIO; 18773 18774 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18775 /* 18776 * Assign the rpi headers a physical rpi only if the driver 18777 * has not initialized those resources. A port reset only 18778 * needs the headers posted. 18779 */ 18780 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18781 LPFC_RPI_RSRC_RDY) 18782 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18783 18784 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18785 if (rc != MBX_SUCCESS) { 18786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18787 "2008 Error %d posting all rpi " 18788 "headers\n", rc); 18789 rc = -EIO; 18790 break; 18791 } 18792 } 18793 18794 exit: 18795 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18796 LPFC_RPI_RSRC_RDY); 18797 return rc; 18798 } 18799 18800 /** 18801 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18802 * @phba: pointer to lpfc hba data structure. 18803 * @rpi_page: pointer to the rpi memory region. 18804 * 18805 * This routine is invoked to post a single rpi header to the 18806 * HBA consistent with the SLI-4 interface spec. This memory region 18807 * maps up to 64 rpi context regions. 18808 * 18809 * Return codes 18810 * 0 - successful 18811 * -ENOMEM - No available memory 18812 * -EIO - The mailbox failed to complete successfully. 18813 **/ 18814 int 18815 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18816 { 18817 LPFC_MBOXQ_t *mboxq; 18818 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18819 uint32_t rc = 0; 18820 uint32_t shdr_status, shdr_add_status; 18821 union lpfc_sli4_cfg_shdr *shdr; 18822 18823 /* SLI4 ports that support extents do not require RPI headers. */ 18824 if (!phba->sli4_hba.rpi_hdrs_in_use) 18825 return rc; 18826 if (phba->sli4_hba.extents_in_use) 18827 return -EIO; 18828 18829 /* The port is notified of the header region via a mailbox command. */ 18830 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18831 if (!mboxq) { 18832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18833 "2001 Unable to allocate memory for issuing " 18834 "SLI_CONFIG_SPECIAL mailbox command\n"); 18835 return -ENOMEM; 18836 } 18837 18838 /* Post all rpi memory regions to the port. */ 18839 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18840 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18841 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18842 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18843 sizeof(struct lpfc_sli4_cfg_mhdr), 18844 LPFC_SLI4_MBX_EMBED); 18845 18846 18847 /* Post the physical rpi to the port for this rpi header. */ 18848 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18849 rpi_page->start_rpi); 18850 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18851 hdr_tmpl, rpi_page->page_count); 18852 18853 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18854 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18855 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18856 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18857 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18858 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18859 mempool_free(mboxq, phba->mbox_mem_pool); 18860 if (shdr_status || shdr_add_status || rc) { 18861 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18862 "2514 POST_RPI_HDR mailbox failed with " 18863 "status x%x add_status x%x, mbx status x%x\n", 18864 shdr_status, shdr_add_status, rc); 18865 rc = -ENXIO; 18866 } else { 18867 /* 18868 * The next_rpi stores the next logical module-64 rpi value used 18869 * to post physical rpis in subsequent rpi postings. 18870 */ 18871 spin_lock_irq(&phba->hbalock); 18872 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18873 spin_unlock_irq(&phba->hbalock); 18874 } 18875 return rc; 18876 } 18877 18878 /** 18879 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18880 * @phba: pointer to lpfc hba data structure. 18881 * 18882 * This routine is invoked to post rpi header templates to the 18883 * HBA consistent with the SLI-4 interface spec. This routine 18884 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18885 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18886 * 18887 * Returns 18888 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18889 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18890 **/ 18891 int 18892 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18893 { 18894 unsigned long rpi; 18895 uint16_t max_rpi, rpi_limit; 18896 uint16_t rpi_remaining, lrpi = 0; 18897 struct lpfc_rpi_hdr *rpi_hdr; 18898 unsigned long iflag; 18899 18900 /* 18901 * Fetch the next logical rpi. Because this index is logical, 18902 * the driver starts at 0 each time. 18903 */ 18904 spin_lock_irqsave(&phba->hbalock, iflag); 18905 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18906 rpi_limit = phba->sli4_hba.next_rpi; 18907 18908 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18909 if (rpi >= rpi_limit) 18910 rpi = LPFC_RPI_ALLOC_ERROR; 18911 else { 18912 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18913 phba->sli4_hba.max_cfg_param.rpi_used++; 18914 phba->sli4_hba.rpi_count++; 18915 } 18916 lpfc_printf_log(phba, KERN_INFO, 18917 LOG_NODE | LOG_DISCOVERY, 18918 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18919 (int) rpi, max_rpi, rpi_limit); 18920 18921 /* 18922 * Don't try to allocate more rpi header regions if the device limit 18923 * has been exhausted. 18924 */ 18925 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18926 (phba->sli4_hba.rpi_count >= max_rpi)) { 18927 spin_unlock_irqrestore(&phba->hbalock, iflag); 18928 return rpi; 18929 } 18930 18931 /* 18932 * RPI header postings are not required for SLI4 ports capable of 18933 * extents. 18934 */ 18935 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18936 spin_unlock_irqrestore(&phba->hbalock, iflag); 18937 return rpi; 18938 } 18939 18940 /* 18941 * If the driver is running low on rpi resources, allocate another 18942 * page now. Note that the next_rpi value is used because 18943 * it represents how many are actually in use whereas max_rpi notes 18944 * how many are supported max by the device. 18945 */ 18946 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18947 spin_unlock_irqrestore(&phba->hbalock, iflag); 18948 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18949 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18950 if (!rpi_hdr) { 18951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18952 "2002 Error Could not grow rpi " 18953 "count\n"); 18954 } else { 18955 lrpi = rpi_hdr->start_rpi; 18956 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18957 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18958 } 18959 } 18960 18961 return rpi; 18962 } 18963 18964 /** 18965 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 18966 * @phba: pointer to lpfc hba data structure. 18967 * @rpi: rpi to free 18968 * 18969 * This routine is invoked to release an rpi to the pool of 18970 * available rpis maintained by the driver. 18971 **/ 18972 static void 18973 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18974 { 18975 /* 18976 * if the rpi value indicates a prior unreg has already 18977 * been done, skip the unreg. 18978 */ 18979 if (rpi == LPFC_RPI_ALLOC_ERROR) 18980 return; 18981 18982 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18983 phba->sli4_hba.rpi_count--; 18984 phba->sli4_hba.max_cfg_param.rpi_used--; 18985 } else { 18986 lpfc_printf_log(phba, KERN_INFO, 18987 LOG_NODE | LOG_DISCOVERY, 18988 "2016 rpi %x not inuse\n", 18989 rpi); 18990 } 18991 } 18992 18993 /** 18994 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18995 * @phba: pointer to lpfc hba data structure. 18996 * @rpi: rpi to free 18997 * 18998 * This routine is invoked to release an rpi to the pool of 18999 * available rpis maintained by the driver. 19000 **/ 19001 void 19002 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19003 { 19004 spin_lock_irq(&phba->hbalock); 19005 __lpfc_sli4_free_rpi(phba, rpi); 19006 spin_unlock_irq(&phba->hbalock); 19007 } 19008 19009 /** 19010 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19011 * @phba: pointer to lpfc hba data structure. 19012 * 19013 * This routine is invoked to remove the memory region that 19014 * provided rpi via a bitmask. 19015 **/ 19016 void 19017 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19018 { 19019 kfree(phba->sli4_hba.rpi_bmask); 19020 kfree(phba->sli4_hba.rpi_ids); 19021 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19022 } 19023 19024 /** 19025 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19026 * @ndlp: pointer to lpfc nodelist data structure. 19027 * @cmpl: completion call-back. 19028 * @arg: data to load as MBox 'caller buffer information' 19029 * 19030 * This routine is invoked to remove the memory region that 19031 * provided rpi via a bitmask. 19032 **/ 19033 int 19034 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19035 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19036 { 19037 LPFC_MBOXQ_t *mboxq; 19038 struct lpfc_hba *phba = ndlp->phba; 19039 int rc; 19040 19041 /* The port is notified of the header region via a mailbox command. */ 19042 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19043 if (!mboxq) 19044 return -ENOMEM; 19045 19046 /* If cmpl assigned, then this nlp_get pairs with 19047 * lpfc_mbx_cmpl_resume_rpi. 19048 * 19049 * Else cmpl is NULL, then this nlp_get pairs with 19050 * lpfc_sli_def_mbox_cmpl. 19051 */ 19052 if (!lpfc_nlp_get(ndlp)) { 19053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19054 "2122 %s: Failed to get nlp ref\n", 19055 __func__); 19056 mempool_free(mboxq, phba->mbox_mem_pool); 19057 return -EIO; 19058 } 19059 19060 /* Post all rpi memory regions to the port. */ 19061 lpfc_resume_rpi(mboxq, ndlp); 19062 if (cmpl) { 19063 mboxq->mbox_cmpl = cmpl; 19064 mboxq->ctx_buf = arg; 19065 } else 19066 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19067 mboxq->ctx_ndlp = ndlp; 19068 mboxq->vport = ndlp->vport; 19069 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19070 if (rc == MBX_NOT_FINISHED) { 19071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19072 "2010 Resume RPI Mailbox failed " 19073 "status %d, mbxStatus x%x\n", rc, 19074 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19075 lpfc_nlp_put(ndlp); 19076 mempool_free(mboxq, phba->mbox_mem_pool); 19077 return -EIO; 19078 } 19079 return 0; 19080 } 19081 19082 /** 19083 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19084 * @vport: Pointer to the vport for which the vpi is being initialized 19085 * 19086 * This routine is invoked to activate a vpi with the port. 19087 * 19088 * Returns: 19089 * 0 success 19090 * -Evalue otherwise 19091 **/ 19092 int 19093 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19094 { 19095 LPFC_MBOXQ_t *mboxq; 19096 int rc = 0; 19097 int retval = MBX_SUCCESS; 19098 uint32_t mbox_tmo; 19099 struct lpfc_hba *phba = vport->phba; 19100 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19101 if (!mboxq) 19102 return -ENOMEM; 19103 lpfc_init_vpi(phba, mboxq, vport->vpi); 19104 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19105 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19106 if (rc != MBX_SUCCESS) { 19107 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19108 "2022 INIT VPI Mailbox failed " 19109 "status %d, mbxStatus x%x\n", rc, 19110 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19111 retval = -EIO; 19112 } 19113 if (rc != MBX_TIMEOUT) 19114 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19115 19116 return retval; 19117 } 19118 19119 /** 19120 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19121 * @phba: pointer to lpfc hba data structure. 19122 * @mboxq: Pointer to mailbox object. 19123 * 19124 * This routine is invoked to manually add a single FCF record. The caller 19125 * must pass a completely initialized FCF_Record. This routine takes 19126 * care of the nonembedded mailbox operations. 19127 **/ 19128 static void 19129 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19130 { 19131 void *virt_addr; 19132 union lpfc_sli4_cfg_shdr *shdr; 19133 uint32_t shdr_status, shdr_add_status; 19134 19135 virt_addr = mboxq->sge_array->addr[0]; 19136 /* The IOCTL status is embedded in the mailbox subheader. */ 19137 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19138 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19139 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19140 19141 if ((shdr_status || shdr_add_status) && 19142 (shdr_status != STATUS_FCF_IN_USE)) 19143 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19144 "2558 ADD_FCF_RECORD mailbox failed with " 19145 "status x%x add_status x%x\n", 19146 shdr_status, shdr_add_status); 19147 19148 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19149 } 19150 19151 /** 19152 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19153 * @phba: pointer to lpfc hba data structure. 19154 * @fcf_record: pointer to the initialized fcf record to add. 19155 * 19156 * This routine is invoked to manually add a single FCF record. The caller 19157 * must pass a completely initialized FCF_Record. This routine takes 19158 * care of the nonembedded mailbox operations. 19159 **/ 19160 int 19161 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19162 { 19163 int rc = 0; 19164 LPFC_MBOXQ_t *mboxq; 19165 uint8_t *bytep; 19166 void *virt_addr; 19167 struct lpfc_mbx_sge sge; 19168 uint32_t alloc_len, req_len; 19169 uint32_t fcfindex; 19170 19171 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19172 if (!mboxq) { 19173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19174 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19175 return -ENOMEM; 19176 } 19177 19178 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19179 sizeof(uint32_t); 19180 19181 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19182 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19183 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19184 req_len, LPFC_SLI4_MBX_NEMBED); 19185 if (alloc_len < req_len) { 19186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19187 "2523 Allocated DMA memory size (x%x) is " 19188 "less than the requested DMA memory " 19189 "size (x%x)\n", alloc_len, req_len); 19190 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19191 return -ENOMEM; 19192 } 19193 19194 /* 19195 * Get the first SGE entry from the non-embedded DMA memory. This 19196 * routine only uses a single SGE. 19197 */ 19198 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19199 virt_addr = mboxq->sge_array->addr[0]; 19200 /* 19201 * Configure the FCF record for FCFI 0. This is the driver's 19202 * hardcoded default and gets used in nonFIP mode. 19203 */ 19204 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19205 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19206 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19207 19208 /* 19209 * Copy the fcf_index and the FCF Record Data. The data starts after 19210 * the FCoE header plus word10. The data copy needs to be endian 19211 * correct. 19212 */ 19213 bytep += sizeof(uint32_t); 19214 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19215 mboxq->vport = phba->pport; 19216 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19217 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19218 if (rc == MBX_NOT_FINISHED) { 19219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19220 "2515 ADD_FCF_RECORD mailbox failed with " 19221 "status 0x%x\n", rc); 19222 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19223 rc = -EIO; 19224 } else 19225 rc = 0; 19226 19227 return rc; 19228 } 19229 19230 /** 19231 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19232 * @phba: pointer to lpfc hba data structure. 19233 * @fcf_record: pointer to the fcf record to write the default data. 19234 * @fcf_index: FCF table entry index. 19235 * 19236 * This routine is invoked to build the driver's default FCF record. The 19237 * values used are hardcoded. This routine handles memory initialization. 19238 * 19239 **/ 19240 void 19241 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19242 struct fcf_record *fcf_record, 19243 uint16_t fcf_index) 19244 { 19245 memset(fcf_record, 0, sizeof(struct fcf_record)); 19246 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19247 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19248 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19249 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19250 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19251 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19252 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19253 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19254 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19255 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19256 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19257 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19258 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19259 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19260 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19261 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19262 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19263 /* Set the VLAN bit map */ 19264 if (phba->valid_vlan) { 19265 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19266 = 1 << (phba->vlan_id % 8); 19267 } 19268 } 19269 19270 /** 19271 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19272 * @phba: pointer to lpfc hba data structure. 19273 * @fcf_index: FCF table entry offset. 19274 * 19275 * This routine is invoked to scan the entire FCF table by reading FCF 19276 * record and processing it one at a time starting from the @fcf_index 19277 * for initial FCF discovery or fast FCF failover rediscovery. 19278 * 19279 * Return 0 if the mailbox command is submitted successfully, none 0 19280 * otherwise. 19281 **/ 19282 int 19283 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19284 { 19285 int rc = 0, error; 19286 LPFC_MBOXQ_t *mboxq; 19287 19288 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19289 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19290 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19291 if (!mboxq) { 19292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19293 "2000 Failed to allocate mbox for " 19294 "READ_FCF cmd\n"); 19295 error = -ENOMEM; 19296 goto fail_fcf_scan; 19297 } 19298 /* Construct the read FCF record mailbox command */ 19299 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19300 if (rc) { 19301 error = -EINVAL; 19302 goto fail_fcf_scan; 19303 } 19304 /* Issue the mailbox command asynchronously */ 19305 mboxq->vport = phba->pport; 19306 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19307 19308 spin_lock_irq(&phba->hbalock); 19309 phba->hba_flag |= FCF_TS_INPROG; 19310 spin_unlock_irq(&phba->hbalock); 19311 19312 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19313 if (rc == MBX_NOT_FINISHED) 19314 error = -EIO; 19315 else { 19316 /* Reset eligible FCF count for new scan */ 19317 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19318 phba->fcf.eligible_fcf_cnt = 0; 19319 error = 0; 19320 } 19321 fail_fcf_scan: 19322 if (error) { 19323 if (mboxq) 19324 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19325 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19326 spin_lock_irq(&phba->hbalock); 19327 phba->hba_flag &= ~FCF_TS_INPROG; 19328 spin_unlock_irq(&phba->hbalock); 19329 } 19330 return error; 19331 } 19332 19333 /** 19334 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19335 * @phba: pointer to lpfc hba data structure. 19336 * @fcf_index: FCF table entry offset. 19337 * 19338 * This routine is invoked to read an FCF record indicated by @fcf_index 19339 * and to use it for FLOGI roundrobin FCF failover. 19340 * 19341 * Return 0 if the mailbox command is submitted successfully, none 0 19342 * otherwise. 19343 **/ 19344 int 19345 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19346 { 19347 int rc = 0, error; 19348 LPFC_MBOXQ_t *mboxq; 19349 19350 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19351 if (!mboxq) { 19352 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19353 "2763 Failed to allocate mbox for " 19354 "READ_FCF cmd\n"); 19355 error = -ENOMEM; 19356 goto fail_fcf_read; 19357 } 19358 /* Construct the read FCF record mailbox command */ 19359 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19360 if (rc) { 19361 error = -EINVAL; 19362 goto fail_fcf_read; 19363 } 19364 /* Issue the mailbox command asynchronously */ 19365 mboxq->vport = phba->pport; 19366 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19367 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19368 if (rc == MBX_NOT_FINISHED) 19369 error = -EIO; 19370 else 19371 error = 0; 19372 19373 fail_fcf_read: 19374 if (error && mboxq) 19375 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19376 return error; 19377 } 19378 19379 /** 19380 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19381 * @phba: pointer to lpfc hba data structure. 19382 * @fcf_index: FCF table entry offset. 19383 * 19384 * This routine is invoked to read an FCF record indicated by @fcf_index to 19385 * determine whether it's eligible for FLOGI roundrobin failover list. 19386 * 19387 * Return 0 if the mailbox command is submitted successfully, none 0 19388 * otherwise. 19389 **/ 19390 int 19391 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19392 { 19393 int rc = 0, error; 19394 LPFC_MBOXQ_t *mboxq; 19395 19396 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19397 if (!mboxq) { 19398 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19399 "2758 Failed to allocate mbox for " 19400 "READ_FCF cmd\n"); 19401 error = -ENOMEM; 19402 goto fail_fcf_read; 19403 } 19404 /* Construct the read FCF record mailbox command */ 19405 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19406 if (rc) { 19407 error = -EINVAL; 19408 goto fail_fcf_read; 19409 } 19410 /* Issue the mailbox command asynchronously */ 19411 mboxq->vport = phba->pport; 19412 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19413 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19414 if (rc == MBX_NOT_FINISHED) 19415 error = -EIO; 19416 else 19417 error = 0; 19418 19419 fail_fcf_read: 19420 if (error && mboxq) 19421 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19422 return error; 19423 } 19424 19425 /** 19426 * lpfc_check_next_fcf_pri_level 19427 * @phba: pointer to the lpfc_hba struct for this port. 19428 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19429 * routine when the rr_bmask is empty. The FCF indecies are put into the 19430 * rr_bmask based on their priority level. Starting from the highest priority 19431 * to the lowest. The most likely FCF candidate will be in the highest 19432 * priority group. When this routine is called it searches the fcf_pri list for 19433 * next lowest priority group and repopulates the rr_bmask with only those 19434 * fcf_indexes. 19435 * returns: 19436 * 1=success 0=failure 19437 **/ 19438 static int 19439 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19440 { 19441 uint16_t next_fcf_pri; 19442 uint16_t last_index; 19443 struct lpfc_fcf_pri *fcf_pri; 19444 int rc; 19445 int ret = 0; 19446 19447 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19448 LPFC_SLI4_FCF_TBL_INDX_MAX); 19449 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19450 "3060 Last IDX %d\n", last_index); 19451 19452 /* Verify the priority list has 2 or more entries */ 19453 spin_lock_irq(&phba->hbalock); 19454 if (list_empty(&phba->fcf.fcf_pri_list) || 19455 list_is_singular(&phba->fcf.fcf_pri_list)) { 19456 spin_unlock_irq(&phba->hbalock); 19457 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19458 "3061 Last IDX %d\n", last_index); 19459 return 0; /* Empty rr list */ 19460 } 19461 spin_unlock_irq(&phba->hbalock); 19462 19463 next_fcf_pri = 0; 19464 /* 19465 * Clear the rr_bmask and set all of the bits that are at this 19466 * priority. 19467 */ 19468 memset(phba->fcf.fcf_rr_bmask, 0, 19469 sizeof(*phba->fcf.fcf_rr_bmask)); 19470 spin_lock_irq(&phba->hbalock); 19471 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19472 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19473 continue; 19474 /* 19475 * the 1st priority that has not FLOGI failed 19476 * will be the highest. 19477 */ 19478 if (!next_fcf_pri) 19479 next_fcf_pri = fcf_pri->fcf_rec.priority; 19480 spin_unlock_irq(&phba->hbalock); 19481 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19482 rc = lpfc_sli4_fcf_rr_index_set(phba, 19483 fcf_pri->fcf_rec.fcf_index); 19484 if (rc) 19485 return 0; 19486 } 19487 spin_lock_irq(&phba->hbalock); 19488 } 19489 /* 19490 * if next_fcf_pri was not set above and the list is not empty then 19491 * we have failed flogis on all of them. So reset flogi failed 19492 * and start at the beginning. 19493 */ 19494 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19495 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19496 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19497 /* 19498 * the 1st priority that has not FLOGI failed 19499 * will be the highest. 19500 */ 19501 if (!next_fcf_pri) 19502 next_fcf_pri = fcf_pri->fcf_rec.priority; 19503 spin_unlock_irq(&phba->hbalock); 19504 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19505 rc = lpfc_sli4_fcf_rr_index_set(phba, 19506 fcf_pri->fcf_rec.fcf_index); 19507 if (rc) 19508 return 0; 19509 } 19510 spin_lock_irq(&phba->hbalock); 19511 } 19512 } else 19513 ret = 1; 19514 spin_unlock_irq(&phba->hbalock); 19515 19516 return ret; 19517 } 19518 /** 19519 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19520 * @phba: pointer to lpfc hba data structure. 19521 * 19522 * This routine is to get the next eligible FCF record index in a round 19523 * robin fashion. If the next eligible FCF record index equals to the 19524 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19525 * shall be returned, otherwise, the next eligible FCF record's index 19526 * shall be returned. 19527 **/ 19528 uint16_t 19529 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19530 { 19531 uint16_t next_fcf_index; 19532 19533 initial_priority: 19534 /* Search start from next bit of currently registered FCF index */ 19535 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19536 19537 next_priority: 19538 /* Determine the next fcf index to check */ 19539 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19540 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19541 LPFC_SLI4_FCF_TBL_INDX_MAX, 19542 next_fcf_index); 19543 19544 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19545 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19546 /* 19547 * If we have wrapped then we need to clear the bits that 19548 * have been tested so that we can detect when we should 19549 * change the priority level. 19550 */ 19551 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19552 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19553 } 19554 19555 19556 /* Check roundrobin failover list empty condition */ 19557 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19558 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19559 /* 19560 * If next fcf index is not found check if there are lower 19561 * Priority level fcf's in the fcf_priority list. 19562 * Set up the rr_bmask with all of the avaiable fcf bits 19563 * at that level and continue the selection process. 19564 */ 19565 if (lpfc_check_next_fcf_pri_level(phba)) 19566 goto initial_priority; 19567 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19568 "2844 No roundrobin failover FCF available\n"); 19569 19570 return LPFC_FCOE_FCF_NEXT_NONE; 19571 } 19572 19573 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19574 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19575 LPFC_FCF_FLOGI_FAILED) { 19576 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19577 return LPFC_FCOE_FCF_NEXT_NONE; 19578 19579 goto next_priority; 19580 } 19581 19582 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19583 "2845 Get next roundrobin failover FCF (x%x)\n", 19584 next_fcf_index); 19585 19586 return next_fcf_index; 19587 } 19588 19589 /** 19590 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19591 * @phba: pointer to lpfc hba data structure. 19592 * @fcf_index: index into the FCF table to 'set' 19593 * 19594 * This routine sets the FCF record index in to the eligible bmask for 19595 * roundrobin failover search. It checks to make sure that the index 19596 * does not go beyond the range of the driver allocated bmask dimension 19597 * before setting the bit. 19598 * 19599 * Returns 0 if the index bit successfully set, otherwise, it returns 19600 * -EINVAL. 19601 **/ 19602 int 19603 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19604 { 19605 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19606 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19607 "2610 FCF (x%x) reached driver's book " 19608 "keeping dimension:x%x\n", 19609 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19610 return -EINVAL; 19611 } 19612 /* Set the eligible FCF record index bmask */ 19613 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19614 19615 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19616 "2790 Set FCF (x%x) to roundrobin FCF failover " 19617 "bmask\n", fcf_index); 19618 19619 return 0; 19620 } 19621 19622 /** 19623 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19624 * @phba: pointer to lpfc hba data structure. 19625 * @fcf_index: index into the FCF table to 'clear' 19626 * 19627 * This routine clears the FCF record index from the eligible bmask for 19628 * roundrobin failover search. It checks to make sure that the index 19629 * does not go beyond the range of the driver allocated bmask dimension 19630 * before clearing the bit. 19631 **/ 19632 void 19633 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19634 { 19635 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19636 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19637 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19638 "2762 FCF (x%x) reached driver's book " 19639 "keeping dimension:x%x\n", 19640 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19641 return; 19642 } 19643 /* Clear the eligible FCF record index bmask */ 19644 spin_lock_irq(&phba->hbalock); 19645 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19646 list) { 19647 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19648 list_del_init(&fcf_pri->list); 19649 break; 19650 } 19651 } 19652 spin_unlock_irq(&phba->hbalock); 19653 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19654 19655 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19656 "2791 Clear FCF (x%x) from roundrobin failover " 19657 "bmask\n", fcf_index); 19658 } 19659 19660 /** 19661 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19662 * @phba: pointer to lpfc hba data structure. 19663 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19664 * 19665 * This routine is the completion routine for the rediscover FCF table mailbox 19666 * command. If the mailbox command returned failure, it will try to stop the 19667 * FCF rediscover wait timer. 19668 **/ 19669 static void 19670 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19671 { 19672 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19673 uint32_t shdr_status, shdr_add_status; 19674 19675 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19676 19677 shdr_status = bf_get(lpfc_mbox_hdr_status, 19678 &redisc_fcf->header.cfg_shdr.response); 19679 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19680 &redisc_fcf->header.cfg_shdr.response); 19681 if (shdr_status || shdr_add_status) { 19682 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19683 "2746 Requesting for FCF rediscovery failed " 19684 "status x%x add_status x%x\n", 19685 shdr_status, shdr_add_status); 19686 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19687 spin_lock_irq(&phba->hbalock); 19688 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19689 spin_unlock_irq(&phba->hbalock); 19690 /* 19691 * CVL event triggered FCF rediscover request failed, 19692 * last resort to re-try current registered FCF entry. 19693 */ 19694 lpfc_retry_pport_discovery(phba); 19695 } else { 19696 spin_lock_irq(&phba->hbalock); 19697 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19698 spin_unlock_irq(&phba->hbalock); 19699 /* 19700 * DEAD FCF event triggered FCF rediscover request 19701 * failed, last resort to fail over as a link down 19702 * to FCF registration. 19703 */ 19704 lpfc_sli4_fcf_dead_failthrough(phba); 19705 } 19706 } else { 19707 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19708 "2775 Start FCF rediscover quiescent timer\n"); 19709 /* 19710 * Start FCF rediscovery wait timer for pending FCF 19711 * before rescan FCF record table. 19712 */ 19713 lpfc_fcf_redisc_wait_start_timer(phba); 19714 } 19715 19716 mempool_free(mbox, phba->mbox_mem_pool); 19717 } 19718 19719 /** 19720 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19721 * @phba: pointer to lpfc hba data structure. 19722 * 19723 * This routine is invoked to request for rediscovery of the entire FCF table 19724 * by the port. 19725 **/ 19726 int 19727 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19728 { 19729 LPFC_MBOXQ_t *mbox; 19730 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19731 int rc, length; 19732 19733 /* Cancel retry delay timers to all vports before FCF rediscover */ 19734 lpfc_cancel_all_vport_retry_delay_timer(phba); 19735 19736 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19737 if (!mbox) { 19738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19739 "2745 Failed to allocate mbox for " 19740 "requesting FCF rediscover.\n"); 19741 return -ENOMEM; 19742 } 19743 19744 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19745 sizeof(struct lpfc_sli4_cfg_mhdr)); 19746 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19747 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19748 length, LPFC_SLI4_MBX_EMBED); 19749 19750 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19751 /* Set count to 0 for invalidating the entire FCF database */ 19752 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19753 19754 /* Issue the mailbox command asynchronously */ 19755 mbox->vport = phba->pport; 19756 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19757 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19758 19759 if (rc == MBX_NOT_FINISHED) { 19760 mempool_free(mbox, phba->mbox_mem_pool); 19761 return -EIO; 19762 } 19763 return 0; 19764 } 19765 19766 /** 19767 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19768 * @phba: pointer to lpfc hba data structure. 19769 * 19770 * This function is the failover routine as a last resort to the FCF DEAD 19771 * event when driver failed to perform fast FCF failover. 19772 **/ 19773 void 19774 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19775 { 19776 uint32_t link_state; 19777 19778 /* 19779 * Last resort as FCF DEAD event failover will treat this as 19780 * a link down, but save the link state because we don't want 19781 * it to be changed to Link Down unless it is already down. 19782 */ 19783 link_state = phba->link_state; 19784 lpfc_linkdown(phba); 19785 phba->link_state = link_state; 19786 19787 /* Unregister FCF if no devices connected to it */ 19788 lpfc_unregister_unused_fcf(phba); 19789 } 19790 19791 /** 19792 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19793 * @phba: pointer to lpfc hba data structure. 19794 * @rgn23_data: pointer to configure region 23 data. 19795 * 19796 * This function gets SLI3 port configure region 23 data through memory dump 19797 * mailbox command. When it successfully retrieves data, the size of the data 19798 * will be returned, otherwise, 0 will be returned. 19799 **/ 19800 static uint32_t 19801 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19802 { 19803 LPFC_MBOXQ_t *pmb = NULL; 19804 MAILBOX_t *mb; 19805 uint32_t offset = 0; 19806 int rc; 19807 19808 if (!rgn23_data) 19809 return 0; 19810 19811 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19812 if (!pmb) { 19813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19814 "2600 failed to allocate mailbox memory\n"); 19815 return 0; 19816 } 19817 mb = &pmb->u.mb; 19818 19819 do { 19820 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19821 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19822 19823 if (rc != MBX_SUCCESS) { 19824 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19825 "2601 failed to read config " 19826 "region 23, rc 0x%x Status 0x%x\n", 19827 rc, mb->mbxStatus); 19828 mb->un.varDmp.word_cnt = 0; 19829 } 19830 /* 19831 * dump mem may return a zero when finished or we got a 19832 * mailbox error, either way we are done. 19833 */ 19834 if (mb->un.varDmp.word_cnt == 0) 19835 break; 19836 19837 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19838 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19839 19840 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19841 rgn23_data + offset, 19842 mb->un.varDmp.word_cnt); 19843 offset += mb->un.varDmp.word_cnt; 19844 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19845 19846 mempool_free(pmb, phba->mbox_mem_pool); 19847 return offset; 19848 } 19849 19850 /** 19851 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19852 * @phba: pointer to lpfc hba data structure. 19853 * @rgn23_data: pointer to configure region 23 data. 19854 * 19855 * This function gets SLI4 port configure region 23 data through memory dump 19856 * mailbox command. When it successfully retrieves data, the size of the data 19857 * will be returned, otherwise, 0 will be returned. 19858 **/ 19859 static uint32_t 19860 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19861 { 19862 LPFC_MBOXQ_t *mboxq = NULL; 19863 struct lpfc_dmabuf *mp = NULL; 19864 struct lpfc_mqe *mqe; 19865 uint32_t data_length = 0; 19866 int rc; 19867 19868 if (!rgn23_data) 19869 return 0; 19870 19871 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19872 if (!mboxq) { 19873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19874 "3105 failed to allocate mailbox memory\n"); 19875 return 0; 19876 } 19877 19878 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19879 goto out; 19880 mqe = &mboxq->u.mqe; 19881 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19882 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19883 if (rc) 19884 goto out; 19885 data_length = mqe->un.mb_words[5]; 19886 if (data_length == 0) 19887 goto out; 19888 if (data_length > DMP_RGN23_SIZE) { 19889 data_length = 0; 19890 goto out; 19891 } 19892 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19893 out: 19894 mempool_free(mboxq, phba->mbox_mem_pool); 19895 if (mp) { 19896 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19897 kfree(mp); 19898 } 19899 return data_length; 19900 } 19901 19902 /** 19903 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19904 * @phba: pointer to lpfc hba data structure. 19905 * 19906 * This function read region 23 and parse TLV for port status to 19907 * decide if the user disaled the port. If the TLV indicates the 19908 * port is disabled, the hba_flag is set accordingly. 19909 **/ 19910 void 19911 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19912 { 19913 uint8_t *rgn23_data = NULL; 19914 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19915 uint32_t offset = 0; 19916 19917 /* Get adapter Region 23 data */ 19918 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19919 if (!rgn23_data) 19920 goto out; 19921 19922 if (phba->sli_rev < LPFC_SLI_REV4) 19923 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19924 else { 19925 if_type = bf_get(lpfc_sli_intf_if_type, 19926 &phba->sli4_hba.sli_intf); 19927 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19928 goto out; 19929 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19930 } 19931 19932 if (!data_size) 19933 goto out; 19934 19935 /* Check the region signature first */ 19936 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19938 "2619 Config region 23 has bad signature\n"); 19939 goto out; 19940 } 19941 offset += 4; 19942 19943 /* Check the data structure version */ 19944 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19945 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19946 "2620 Config region 23 has bad version\n"); 19947 goto out; 19948 } 19949 offset += 4; 19950 19951 /* Parse TLV entries in the region */ 19952 while (offset < data_size) { 19953 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19954 break; 19955 /* 19956 * If the TLV is not driver specific TLV or driver id is 19957 * not linux driver id, skip the record. 19958 */ 19959 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19960 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19961 (rgn23_data[offset + 3] != 0)) { 19962 offset += rgn23_data[offset + 1] * 4 + 4; 19963 continue; 19964 } 19965 19966 /* Driver found a driver specific TLV in the config region */ 19967 sub_tlv_len = rgn23_data[offset + 1] * 4; 19968 offset += 4; 19969 tlv_offset = 0; 19970 19971 /* 19972 * Search for configured port state sub-TLV. 19973 */ 19974 while ((offset < data_size) && 19975 (tlv_offset < sub_tlv_len)) { 19976 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19977 offset += 4; 19978 tlv_offset += 4; 19979 break; 19980 } 19981 if (rgn23_data[offset] != PORT_STE_TYPE) { 19982 offset += rgn23_data[offset + 1] * 4 + 4; 19983 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19984 continue; 19985 } 19986 19987 /* This HBA contains PORT_STE configured */ 19988 if (!rgn23_data[offset + 2]) 19989 phba->hba_flag |= LINK_DISABLED; 19990 19991 goto out; 19992 } 19993 } 19994 19995 out: 19996 kfree(rgn23_data); 19997 return; 19998 } 19999 20000 /** 20001 * lpfc_wr_object - write an object to the firmware 20002 * @phba: HBA structure that indicates port to create a queue on. 20003 * @dmabuf_list: list of dmabufs to write to the port. 20004 * @size: the total byte value of the objects to write to the port. 20005 * @offset: the current offset to be used to start the transfer. 20006 * 20007 * This routine will create a wr_object mailbox command to send to the port. 20008 * the mailbox command will be constructed using the dma buffers described in 20009 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20010 * BDEs that the imbedded mailbox can support. The @offset variable will be 20011 * used to indicate the starting offset of the transfer and will also return 20012 * the offset after the write object mailbox has completed. @size is used to 20013 * determine the end of the object and whether the eof bit should be set. 20014 * 20015 * Return 0 is successful and offset will contain the the new offset to use 20016 * for the next write. 20017 * Return negative value for error cases. 20018 **/ 20019 int 20020 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20021 uint32_t size, uint32_t *offset) 20022 { 20023 struct lpfc_mbx_wr_object *wr_object; 20024 LPFC_MBOXQ_t *mbox; 20025 int rc = 0, i = 0; 20026 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 20027 uint32_t mbox_tmo; 20028 struct lpfc_dmabuf *dmabuf; 20029 uint32_t written = 0; 20030 bool check_change_status = false; 20031 20032 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20033 if (!mbox) 20034 return -ENOMEM; 20035 20036 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20037 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20038 sizeof(struct lpfc_mbx_wr_object) - 20039 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20040 20041 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20042 wr_object->u.request.write_offset = *offset; 20043 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20044 wr_object->u.request.object_name[0] = 20045 cpu_to_le32(wr_object->u.request.object_name[0]); 20046 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20047 list_for_each_entry(dmabuf, dmabuf_list, list) { 20048 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20049 break; 20050 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20051 wr_object->u.request.bde[i].addrHigh = 20052 putPaddrHigh(dmabuf->phys); 20053 if (written + SLI4_PAGE_SIZE >= size) { 20054 wr_object->u.request.bde[i].tus.f.bdeSize = 20055 (size - written); 20056 written += (size - written); 20057 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20058 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20059 check_change_status = true; 20060 } else { 20061 wr_object->u.request.bde[i].tus.f.bdeSize = 20062 SLI4_PAGE_SIZE; 20063 written += SLI4_PAGE_SIZE; 20064 } 20065 i++; 20066 } 20067 wr_object->u.request.bde_count = i; 20068 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20069 if (!phba->sli4_hba.intr_enable) 20070 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20071 else { 20072 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20073 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20074 } 20075 /* The IOCTL status is embedded in the mailbox subheader. */ 20076 shdr_status = bf_get(lpfc_mbox_hdr_status, 20077 &wr_object->header.cfg_shdr.response); 20078 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20079 &wr_object->header.cfg_shdr.response); 20080 if (check_change_status) { 20081 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20082 &wr_object->u.response); 20083 20084 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20085 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20086 shdr_csf = bf_get(lpfc_wr_object_csf, 20087 &wr_object->u.response); 20088 if (shdr_csf) 20089 shdr_change_status = 20090 LPFC_CHANGE_STATUS_PCI_RESET; 20091 } 20092 20093 switch (shdr_change_status) { 20094 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20095 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20096 "3198 Firmware write complete: System " 20097 "reboot required to instantiate\n"); 20098 break; 20099 case (LPFC_CHANGE_STATUS_FW_RESET): 20100 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20101 "3199 Firmware write complete: Firmware" 20102 " reset required to instantiate\n"); 20103 break; 20104 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20105 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20106 "3200 Firmware write complete: Port " 20107 "Migration or PCI Reset required to " 20108 "instantiate\n"); 20109 break; 20110 case (LPFC_CHANGE_STATUS_PCI_RESET): 20111 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20112 "3201 Firmware write complete: PCI " 20113 "Reset required to instantiate\n"); 20114 break; 20115 default: 20116 break; 20117 } 20118 } 20119 if (!phba->sli4_hba.intr_enable) 20120 mempool_free(mbox, phba->mbox_mem_pool); 20121 else if (rc != MBX_TIMEOUT) 20122 mempool_free(mbox, phba->mbox_mem_pool); 20123 if (shdr_status || shdr_add_status || rc) { 20124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20125 "3025 Write Object mailbox failed with " 20126 "status x%x add_status x%x, mbx status x%x\n", 20127 shdr_status, shdr_add_status, rc); 20128 rc = -ENXIO; 20129 *offset = shdr_add_status; 20130 } else 20131 *offset += wr_object->u.response.actual_write_length; 20132 return rc; 20133 } 20134 20135 /** 20136 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20137 * @vport: pointer to vport data structure. 20138 * 20139 * This function iterate through the mailboxq and clean up all REG_LOGIN 20140 * and REG_VPI mailbox commands associated with the vport. This function 20141 * is called when driver want to restart discovery of the vport due to 20142 * a Clear Virtual Link event. 20143 **/ 20144 void 20145 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20146 { 20147 struct lpfc_hba *phba = vport->phba; 20148 LPFC_MBOXQ_t *mb, *nextmb; 20149 struct lpfc_dmabuf *mp; 20150 struct lpfc_nodelist *ndlp; 20151 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20152 LIST_HEAD(mbox_cmd_list); 20153 uint8_t restart_loop; 20154 20155 /* Clean up internally queued mailbox commands with the vport */ 20156 spin_lock_irq(&phba->hbalock); 20157 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20158 if (mb->vport != vport) 20159 continue; 20160 20161 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20162 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20163 continue; 20164 20165 list_del(&mb->list); 20166 list_add_tail(&mb->list, &mbox_cmd_list); 20167 } 20168 /* Clean up active mailbox command with the vport */ 20169 mb = phba->sli.mbox_active; 20170 if (mb && (mb->vport == vport)) { 20171 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20172 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20173 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20174 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20175 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20176 /* Put reference count for delayed processing */ 20177 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20178 /* Unregister the RPI when mailbox complete */ 20179 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20180 } 20181 } 20182 /* Cleanup any mailbox completions which are not yet processed */ 20183 do { 20184 restart_loop = 0; 20185 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20186 /* 20187 * If this mailox is already processed or it is 20188 * for another vport ignore it. 20189 */ 20190 if ((mb->vport != vport) || 20191 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20192 continue; 20193 20194 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20195 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20196 continue; 20197 20198 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20199 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20200 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20201 /* Unregister the RPI when mailbox complete */ 20202 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20203 restart_loop = 1; 20204 spin_unlock_irq(&phba->hbalock); 20205 spin_lock(&ndlp->lock); 20206 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20207 spin_unlock(&ndlp->lock); 20208 spin_lock_irq(&phba->hbalock); 20209 break; 20210 } 20211 } 20212 } while (restart_loop); 20213 20214 spin_unlock_irq(&phba->hbalock); 20215 20216 /* Release the cleaned-up mailbox commands */ 20217 while (!list_empty(&mbox_cmd_list)) { 20218 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20219 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20220 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20221 if (mp) { 20222 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20223 kfree(mp); 20224 } 20225 mb->ctx_buf = NULL; 20226 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20227 mb->ctx_ndlp = NULL; 20228 if (ndlp) { 20229 spin_lock(&ndlp->lock); 20230 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20231 spin_unlock(&ndlp->lock); 20232 lpfc_nlp_put(ndlp); 20233 } 20234 } 20235 mempool_free(mb, phba->mbox_mem_pool); 20236 } 20237 20238 /* Release the ndlp with the cleaned-up active mailbox command */ 20239 if (act_mbx_ndlp) { 20240 spin_lock(&act_mbx_ndlp->lock); 20241 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20242 spin_unlock(&act_mbx_ndlp->lock); 20243 lpfc_nlp_put(act_mbx_ndlp); 20244 } 20245 } 20246 20247 /** 20248 * lpfc_drain_txq - Drain the txq 20249 * @phba: Pointer to HBA context object. 20250 * 20251 * This function attempt to submit IOCBs on the txq 20252 * to the adapter. For SLI4 adapters, the txq contains 20253 * ELS IOCBs that have been deferred because the there 20254 * are no SGLs. This congestion can occur with large 20255 * vport counts during node discovery. 20256 **/ 20257 20258 uint32_t 20259 lpfc_drain_txq(struct lpfc_hba *phba) 20260 { 20261 LIST_HEAD(completions); 20262 struct lpfc_sli_ring *pring; 20263 struct lpfc_iocbq *piocbq = NULL; 20264 unsigned long iflags = 0; 20265 char *fail_msg = NULL; 20266 struct lpfc_sglq *sglq; 20267 union lpfc_wqe128 wqe; 20268 uint32_t txq_cnt = 0; 20269 struct lpfc_queue *wq; 20270 20271 if (phba->link_flag & LS_MDS_LOOPBACK) { 20272 /* MDS WQE are posted only to first WQ*/ 20273 wq = phba->sli4_hba.hdwq[0].io_wq; 20274 if (unlikely(!wq)) 20275 return 0; 20276 pring = wq->pring; 20277 } else { 20278 wq = phba->sli4_hba.els_wq; 20279 if (unlikely(!wq)) 20280 return 0; 20281 pring = lpfc_phba_elsring(phba); 20282 } 20283 20284 if (unlikely(!pring) || list_empty(&pring->txq)) 20285 return 0; 20286 20287 spin_lock_irqsave(&pring->ring_lock, iflags); 20288 list_for_each_entry(piocbq, &pring->txq, list) { 20289 txq_cnt++; 20290 } 20291 20292 if (txq_cnt > pring->txq_max) 20293 pring->txq_max = txq_cnt; 20294 20295 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20296 20297 while (!list_empty(&pring->txq)) { 20298 spin_lock_irqsave(&pring->ring_lock, iflags); 20299 20300 piocbq = lpfc_sli_ringtx_get(phba, pring); 20301 if (!piocbq) { 20302 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20304 "2823 txq empty and txq_cnt is %d\n ", 20305 txq_cnt); 20306 break; 20307 } 20308 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20309 if (!sglq) { 20310 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20311 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20312 break; 20313 } 20314 txq_cnt--; 20315 20316 /* The xri and iocb resources secured, 20317 * attempt to issue request 20318 */ 20319 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20320 piocbq->sli4_xritag = sglq->sli4_xritag; 20321 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20322 fail_msg = "to convert bpl to sgl"; 20323 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20324 fail_msg = "to convert iocb to wqe"; 20325 else if (lpfc_sli4_wq_put(wq, &wqe)) 20326 fail_msg = " - Wq is full"; 20327 else 20328 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20329 20330 if (fail_msg) { 20331 /* Failed means we can't issue and need to cancel */ 20332 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20333 "2822 IOCB failed %s iotag 0x%x " 20334 "xri 0x%x\n", 20335 fail_msg, 20336 piocbq->iotag, piocbq->sli4_xritag); 20337 list_add_tail(&piocbq->list, &completions); 20338 } 20339 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20340 } 20341 20342 /* Cancel all the IOCBs that cannot be issued */ 20343 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20344 IOERR_SLI_ABORTED); 20345 20346 return txq_cnt; 20347 } 20348 20349 /** 20350 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20351 * @phba: Pointer to HBA context object. 20352 * @pwqeq: Pointer to command WQE. 20353 * @sglq: Pointer to the scatter gather queue object. 20354 * 20355 * This routine converts the bpl or bde that is in the WQE 20356 * to a sgl list for the sli4 hardware. The physical address 20357 * of the bpl/bde is converted back to a virtual address. 20358 * If the WQE contains a BPL then the list of BDE's is 20359 * converted to sli4_sge's. If the WQE contains a single 20360 * BDE then it is converted to a single sli_sge. 20361 * The WQE is still in cpu endianness so the contents of 20362 * the bpl can be used without byte swapping. 20363 * 20364 * Returns valid XRI = Success, NO_XRI = Failure. 20365 */ 20366 static uint16_t 20367 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20368 struct lpfc_sglq *sglq) 20369 { 20370 uint16_t xritag = NO_XRI; 20371 struct ulp_bde64 *bpl = NULL; 20372 struct ulp_bde64 bde; 20373 struct sli4_sge *sgl = NULL; 20374 struct lpfc_dmabuf *dmabuf; 20375 union lpfc_wqe128 *wqe; 20376 int numBdes = 0; 20377 int i = 0; 20378 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20379 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20380 uint32_t cmd; 20381 20382 if (!pwqeq || !sglq) 20383 return xritag; 20384 20385 sgl = (struct sli4_sge *)sglq->sgl; 20386 wqe = &pwqeq->wqe; 20387 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20388 20389 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20390 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20391 return sglq->sli4_xritag; 20392 numBdes = pwqeq->rsvd2; 20393 if (numBdes) { 20394 /* The addrHigh and addrLow fields within the WQE 20395 * have not been byteswapped yet so there is no 20396 * need to swap them back. 20397 */ 20398 if (pwqeq->context3) 20399 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20400 else 20401 return xritag; 20402 20403 bpl = (struct ulp_bde64 *)dmabuf->virt; 20404 if (!bpl) 20405 return xritag; 20406 20407 for (i = 0; i < numBdes; i++) { 20408 /* Should already be byte swapped. */ 20409 sgl->addr_hi = bpl->addrHigh; 20410 sgl->addr_lo = bpl->addrLow; 20411 20412 sgl->word2 = le32_to_cpu(sgl->word2); 20413 if ((i+1) == numBdes) 20414 bf_set(lpfc_sli4_sge_last, sgl, 1); 20415 else 20416 bf_set(lpfc_sli4_sge_last, sgl, 0); 20417 /* swap the size field back to the cpu so we 20418 * can assign it to the sgl. 20419 */ 20420 bde.tus.w = le32_to_cpu(bpl->tus.w); 20421 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20422 /* The offsets in the sgl need to be accumulated 20423 * separately for the request and reply lists. 20424 * The request is always first, the reply follows. 20425 */ 20426 switch (cmd) { 20427 case CMD_GEN_REQUEST64_WQE: 20428 /* add up the reply sg entries */ 20429 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20430 inbound++; 20431 /* first inbound? reset the offset */ 20432 if (inbound == 1) 20433 offset = 0; 20434 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20435 bf_set(lpfc_sli4_sge_type, sgl, 20436 LPFC_SGE_TYPE_DATA); 20437 offset += bde.tus.f.bdeSize; 20438 break; 20439 case CMD_FCP_TRSP64_WQE: 20440 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20441 bf_set(lpfc_sli4_sge_type, sgl, 20442 LPFC_SGE_TYPE_DATA); 20443 break; 20444 case CMD_FCP_TSEND64_WQE: 20445 case CMD_FCP_TRECEIVE64_WQE: 20446 bf_set(lpfc_sli4_sge_type, sgl, 20447 bpl->tus.f.bdeFlags); 20448 if (i < 3) 20449 offset = 0; 20450 else 20451 offset += bde.tus.f.bdeSize; 20452 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20453 break; 20454 } 20455 sgl->word2 = cpu_to_le32(sgl->word2); 20456 bpl++; 20457 sgl++; 20458 } 20459 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20460 /* The addrHigh and addrLow fields of the BDE have not 20461 * been byteswapped yet so they need to be swapped 20462 * before putting them in the sgl. 20463 */ 20464 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20465 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20466 sgl->word2 = le32_to_cpu(sgl->word2); 20467 bf_set(lpfc_sli4_sge_last, sgl, 1); 20468 sgl->word2 = cpu_to_le32(sgl->word2); 20469 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20470 } 20471 return sglq->sli4_xritag; 20472 } 20473 20474 /** 20475 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20476 * @phba: Pointer to HBA context object. 20477 * @qp: Pointer to HDW queue. 20478 * @pwqe: Pointer to command WQE. 20479 **/ 20480 int 20481 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20482 struct lpfc_iocbq *pwqe) 20483 { 20484 union lpfc_wqe128 *wqe = &pwqe->wqe; 20485 struct lpfc_async_xchg_ctx *ctxp; 20486 struct lpfc_queue *wq; 20487 struct lpfc_sglq *sglq; 20488 struct lpfc_sli_ring *pring; 20489 unsigned long iflags; 20490 uint32_t ret = 0; 20491 20492 /* NVME_LS and NVME_LS ABTS requests. */ 20493 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20494 pring = phba->sli4_hba.nvmels_wq->pring; 20495 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20496 qp, wq_access); 20497 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20498 if (!sglq) { 20499 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20500 return WQE_BUSY; 20501 } 20502 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20503 pwqe->sli4_xritag = sglq->sli4_xritag; 20504 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20505 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20506 return WQE_ERROR; 20507 } 20508 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20509 pwqe->sli4_xritag); 20510 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20511 if (ret) { 20512 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20513 return ret; 20514 } 20515 20516 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20517 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20518 20519 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20520 return 0; 20521 } 20522 20523 /* NVME_FCREQ and NVME_ABTS requests */ 20524 if (pwqe->iocb_flag & LPFC_IO_NVME || 20525 pwqe->iocb_flag & LPFC_IO_FCP) { 20526 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20527 wq = qp->io_wq; 20528 pring = wq->pring; 20529 20530 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20531 20532 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20533 qp, wq_access); 20534 ret = lpfc_sli4_wq_put(wq, wqe); 20535 if (ret) { 20536 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20537 return ret; 20538 } 20539 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20540 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20541 20542 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20543 return 0; 20544 } 20545 20546 /* NVMET requests */ 20547 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20548 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20549 wq = qp->io_wq; 20550 pring = wq->pring; 20551 20552 ctxp = pwqe->context2; 20553 sglq = ctxp->ctxbuf->sglq; 20554 if (pwqe->sli4_xritag == NO_XRI) { 20555 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20556 pwqe->sli4_xritag = sglq->sli4_xritag; 20557 } 20558 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20559 pwqe->sli4_xritag); 20560 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20561 20562 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20563 qp, wq_access); 20564 ret = lpfc_sli4_wq_put(wq, wqe); 20565 if (ret) { 20566 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20567 return ret; 20568 } 20569 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20570 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20571 20572 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20573 return 0; 20574 } 20575 return WQE_ERROR; 20576 } 20577 20578 /** 20579 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20580 * @phba: Pointer to HBA context object. 20581 * @cmdiocb: Pointer to driver command iocb object. 20582 * @cmpl: completion function. 20583 * 20584 * Fill the appropriate fields for the abort WQE and call 20585 * internal routine lpfc_sli4_issue_wqe to send the WQE 20586 * This function is called with hbalock held and no ring_lock held. 20587 * 20588 * RETURNS 0 - SUCCESS 20589 **/ 20590 20591 int 20592 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20593 void *cmpl) 20594 { 20595 struct lpfc_vport *vport = cmdiocb->vport; 20596 struct lpfc_iocbq *abtsiocb = NULL; 20597 union lpfc_wqe128 *abtswqe; 20598 struct lpfc_io_buf *lpfc_cmd; 20599 int retval = IOCB_ERROR; 20600 u16 xritag = cmdiocb->sli4_xritag; 20601 20602 /* 20603 * The scsi command can not be in txq and it is in flight because the 20604 * pCmd is still pointing at the SCSI command we have to abort. There 20605 * is no need to search the txcmplq. Just send an abort to the FW. 20606 */ 20607 20608 abtsiocb = __lpfc_sli_get_iocbq(phba); 20609 if (!abtsiocb) 20610 return WQE_NORESOURCE; 20611 20612 /* Indicate the IO is being aborted by the driver. */ 20613 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20614 20615 abtswqe = &abtsiocb->wqe; 20616 memset(abtswqe, 0, sizeof(*abtswqe)); 20617 20618 if (lpfc_is_link_up(phba)) 20619 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20620 else 20621 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0); 20622 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20623 abtswqe->abort_cmd.rsrvd5 = 0; 20624 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20625 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20626 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20627 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20628 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20629 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20630 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20631 20632 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20633 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20634 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20635 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20636 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20637 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20638 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20639 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20640 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20641 abtsiocb->vport = vport; 20642 abtsiocb->wqe_cmpl = cmpl; 20643 20644 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20645 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20646 20647 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20648 "0359 Abort xri x%x, original iotag x%x, " 20649 "abort cmd iotag x%x retval x%x\n", 20650 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20651 20652 if (retval) { 20653 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20654 __lpfc_sli_release_iocbq(phba, abtsiocb); 20655 } 20656 20657 return retval; 20658 } 20659 20660 #ifdef LPFC_MXP_STAT 20661 /** 20662 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20663 * @phba: pointer to lpfc hba data structure. 20664 * @hwqid: belong to which HWQ. 20665 * 20666 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20667 * 15 seconds after a test case is running. 20668 * 20669 * The user should call lpfc_debugfs_multixripools_write before running a test 20670 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20671 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20672 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20673 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20674 **/ 20675 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20676 { 20677 struct lpfc_sli4_hdw_queue *qp; 20678 struct lpfc_multixri_pool *multixri_pool; 20679 struct lpfc_pvt_pool *pvt_pool; 20680 struct lpfc_pbl_pool *pbl_pool; 20681 u32 txcmplq_cnt; 20682 20683 qp = &phba->sli4_hba.hdwq[hwqid]; 20684 multixri_pool = qp->p_multixri_pool; 20685 if (!multixri_pool) 20686 return; 20687 20688 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20689 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20690 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20691 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20692 20693 multixri_pool->stat_pbl_count = pbl_pool->count; 20694 multixri_pool->stat_pvt_count = pvt_pool->count; 20695 multixri_pool->stat_busy_count = txcmplq_cnt; 20696 } 20697 20698 multixri_pool->stat_snapshot_taken++; 20699 } 20700 #endif 20701 20702 /** 20703 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20704 * @phba: pointer to lpfc hba data structure. 20705 * @hwqid: belong to which HWQ. 20706 * 20707 * This routine moves some XRIs from private to public pool when private pool 20708 * is not busy. 20709 **/ 20710 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20711 { 20712 struct lpfc_multixri_pool *multixri_pool; 20713 u32 io_req_count; 20714 u32 prev_io_req_count; 20715 20716 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20717 if (!multixri_pool) 20718 return; 20719 io_req_count = multixri_pool->io_req_count; 20720 prev_io_req_count = multixri_pool->prev_io_req_count; 20721 20722 if (prev_io_req_count != io_req_count) { 20723 /* Private pool is busy */ 20724 multixri_pool->prev_io_req_count = io_req_count; 20725 } else { 20726 /* Private pool is not busy. 20727 * Move XRIs from private to public pool. 20728 */ 20729 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20730 } 20731 } 20732 20733 /** 20734 * lpfc_adjust_high_watermark - Adjust high watermark 20735 * @phba: pointer to lpfc hba data structure. 20736 * @hwqid: belong to which HWQ. 20737 * 20738 * This routine sets high watermark as number of outstanding XRIs, 20739 * but make sure the new value is between xri_limit/2 and xri_limit. 20740 **/ 20741 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20742 { 20743 u32 new_watermark; 20744 u32 watermark_max; 20745 u32 watermark_min; 20746 u32 xri_limit; 20747 u32 txcmplq_cnt; 20748 u32 abts_io_bufs; 20749 struct lpfc_multixri_pool *multixri_pool; 20750 struct lpfc_sli4_hdw_queue *qp; 20751 20752 qp = &phba->sli4_hba.hdwq[hwqid]; 20753 multixri_pool = qp->p_multixri_pool; 20754 if (!multixri_pool) 20755 return; 20756 xri_limit = multixri_pool->xri_limit; 20757 20758 watermark_max = xri_limit; 20759 watermark_min = xri_limit / 2; 20760 20761 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20762 abts_io_bufs = qp->abts_scsi_io_bufs; 20763 abts_io_bufs += qp->abts_nvme_io_bufs; 20764 20765 new_watermark = txcmplq_cnt + abts_io_bufs; 20766 new_watermark = min(watermark_max, new_watermark); 20767 new_watermark = max(watermark_min, new_watermark); 20768 multixri_pool->pvt_pool.high_watermark = new_watermark; 20769 20770 #ifdef LPFC_MXP_STAT 20771 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20772 new_watermark); 20773 #endif 20774 } 20775 20776 /** 20777 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20778 * @phba: pointer to lpfc hba data structure. 20779 * @hwqid: belong to which HWQ. 20780 * 20781 * This routine is called from hearbeat timer when pvt_pool is idle. 20782 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20783 * The first step moves (all - low_watermark) amount of XRIs. 20784 * The second step moves the rest of XRIs. 20785 **/ 20786 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20787 { 20788 struct lpfc_pbl_pool *pbl_pool; 20789 struct lpfc_pvt_pool *pvt_pool; 20790 struct lpfc_sli4_hdw_queue *qp; 20791 struct lpfc_io_buf *lpfc_ncmd; 20792 struct lpfc_io_buf *lpfc_ncmd_next; 20793 unsigned long iflag; 20794 struct list_head tmp_list; 20795 u32 tmp_count; 20796 20797 qp = &phba->sli4_hba.hdwq[hwqid]; 20798 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20799 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20800 tmp_count = 0; 20801 20802 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20803 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20804 20805 if (pvt_pool->count > pvt_pool->low_watermark) { 20806 /* Step 1: move (all - low_watermark) from pvt_pool 20807 * to pbl_pool 20808 */ 20809 20810 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20811 INIT_LIST_HEAD(&tmp_list); 20812 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20813 &pvt_pool->list, list) { 20814 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20815 tmp_count++; 20816 if (tmp_count >= pvt_pool->low_watermark) 20817 break; 20818 } 20819 20820 /* Move all bufs from pvt_pool to pbl_pool */ 20821 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20822 20823 /* Move all bufs from tmp_list to pvt_pool */ 20824 list_splice(&tmp_list, &pvt_pool->list); 20825 20826 pbl_pool->count += (pvt_pool->count - tmp_count); 20827 pvt_pool->count = tmp_count; 20828 } else { 20829 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20830 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20831 pbl_pool->count += pvt_pool->count; 20832 pvt_pool->count = 0; 20833 } 20834 20835 spin_unlock(&pvt_pool->lock); 20836 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20837 } 20838 20839 /** 20840 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20841 * @phba: pointer to lpfc hba data structure 20842 * @qp: pointer to HDW queue 20843 * @pbl_pool: specified public free XRI pool 20844 * @pvt_pool: specified private free XRI pool 20845 * @count: number of XRIs to move 20846 * 20847 * This routine tries to move some free common bufs from the specified pbl_pool 20848 * to the specified pvt_pool. It might move less than count XRIs if there's not 20849 * enough in public pool. 20850 * 20851 * Return: 20852 * true - if XRIs are successfully moved from the specified pbl_pool to the 20853 * specified pvt_pool 20854 * false - if the specified pbl_pool is empty or locked by someone else 20855 **/ 20856 static bool 20857 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20858 struct lpfc_pbl_pool *pbl_pool, 20859 struct lpfc_pvt_pool *pvt_pool, u32 count) 20860 { 20861 struct lpfc_io_buf *lpfc_ncmd; 20862 struct lpfc_io_buf *lpfc_ncmd_next; 20863 unsigned long iflag; 20864 int ret; 20865 20866 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20867 if (ret) { 20868 if (pbl_pool->count) { 20869 /* Move a batch of XRIs from public to private pool */ 20870 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20871 list_for_each_entry_safe(lpfc_ncmd, 20872 lpfc_ncmd_next, 20873 &pbl_pool->list, 20874 list) { 20875 list_move_tail(&lpfc_ncmd->list, 20876 &pvt_pool->list); 20877 pvt_pool->count++; 20878 pbl_pool->count--; 20879 count--; 20880 if (count == 0) 20881 break; 20882 } 20883 20884 spin_unlock(&pvt_pool->lock); 20885 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20886 return true; 20887 } 20888 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20889 } 20890 20891 return false; 20892 } 20893 20894 /** 20895 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20896 * @phba: pointer to lpfc hba data structure. 20897 * @hwqid: belong to which HWQ. 20898 * @count: number of XRIs to move 20899 * 20900 * This routine tries to find some free common bufs in one of public pools with 20901 * Round Robin method. The search always starts from local hwqid, then the next 20902 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20903 * a batch of free common bufs are moved to private pool on hwqid. 20904 * It might move less than count XRIs if there's not enough in public pool. 20905 **/ 20906 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20907 { 20908 struct lpfc_multixri_pool *multixri_pool; 20909 struct lpfc_multixri_pool *next_multixri_pool; 20910 struct lpfc_pvt_pool *pvt_pool; 20911 struct lpfc_pbl_pool *pbl_pool; 20912 struct lpfc_sli4_hdw_queue *qp; 20913 u32 next_hwqid; 20914 u32 hwq_count; 20915 int ret; 20916 20917 qp = &phba->sli4_hba.hdwq[hwqid]; 20918 multixri_pool = qp->p_multixri_pool; 20919 pvt_pool = &multixri_pool->pvt_pool; 20920 pbl_pool = &multixri_pool->pbl_pool; 20921 20922 /* Check if local pbl_pool is available */ 20923 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20924 if (ret) { 20925 #ifdef LPFC_MXP_STAT 20926 multixri_pool->local_pbl_hit_count++; 20927 #endif 20928 return; 20929 } 20930 20931 hwq_count = phba->cfg_hdw_queue; 20932 20933 /* Get the next hwqid which was found last time */ 20934 next_hwqid = multixri_pool->rrb_next_hwqid; 20935 20936 do { 20937 /* Go to next hwq */ 20938 next_hwqid = (next_hwqid + 1) % hwq_count; 20939 20940 next_multixri_pool = 20941 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20942 pbl_pool = &next_multixri_pool->pbl_pool; 20943 20944 /* Check if the public free xri pool is available */ 20945 ret = _lpfc_move_xri_pbl_to_pvt( 20946 phba, qp, pbl_pool, pvt_pool, count); 20947 20948 /* Exit while-loop if success or all hwqid are checked */ 20949 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20950 20951 /* Starting point for the next time */ 20952 multixri_pool->rrb_next_hwqid = next_hwqid; 20953 20954 if (!ret) { 20955 /* stats: all public pools are empty*/ 20956 multixri_pool->pbl_empty_count++; 20957 } 20958 20959 #ifdef LPFC_MXP_STAT 20960 if (ret) { 20961 if (next_hwqid == hwqid) 20962 multixri_pool->local_pbl_hit_count++; 20963 else 20964 multixri_pool->other_pbl_hit_count++; 20965 } 20966 #endif 20967 } 20968 20969 /** 20970 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20971 * @phba: pointer to lpfc hba data structure. 20972 * @hwqid: belong to which HWQ. 20973 * 20974 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20975 * low watermark. 20976 **/ 20977 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20978 { 20979 struct lpfc_multixri_pool *multixri_pool; 20980 struct lpfc_pvt_pool *pvt_pool; 20981 20982 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20983 pvt_pool = &multixri_pool->pvt_pool; 20984 20985 if (pvt_pool->count < pvt_pool->low_watermark) 20986 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20987 } 20988 20989 /** 20990 * lpfc_release_io_buf - Return one IO buf back to free pool 20991 * @phba: pointer to lpfc hba data structure. 20992 * @lpfc_ncmd: IO buf to be returned. 20993 * @qp: belong to which HWQ. 20994 * 20995 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20996 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20997 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20998 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20999 * lpfc_io_buf_list_put. 21000 **/ 21001 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21002 struct lpfc_sli4_hdw_queue *qp) 21003 { 21004 unsigned long iflag; 21005 struct lpfc_pbl_pool *pbl_pool; 21006 struct lpfc_pvt_pool *pvt_pool; 21007 struct lpfc_epd_pool *epd_pool; 21008 u32 txcmplq_cnt; 21009 u32 xri_owned; 21010 u32 xri_limit; 21011 u32 abts_io_bufs; 21012 21013 /* MUST zero fields if buffer is reused by another protocol */ 21014 lpfc_ncmd->nvmeCmd = NULL; 21015 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21016 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21017 21018 if (phba->cfg_xpsgl && !phba->nvmet_support && 21019 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21020 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21021 21022 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21023 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21024 21025 if (phba->cfg_xri_rebalancing) { 21026 if (lpfc_ncmd->expedite) { 21027 /* Return to expedite pool */ 21028 epd_pool = &phba->epd_pool; 21029 spin_lock_irqsave(&epd_pool->lock, iflag); 21030 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21031 epd_pool->count++; 21032 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21033 return; 21034 } 21035 21036 /* Avoid invalid access if an IO sneaks in and is being rejected 21037 * just _after_ xri pools are destroyed in lpfc_offline. 21038 * Nothing much can be done at this point. 21039 */ 21040 if (!qp->p_multixri_pool) 21041 return; 21042 21043 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21044 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21045 21046 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21047 abts_io_bufs = qp->abts_scsi_io_bufs; 21048 abts_io_bufs += qp->abts_nvme_io_bufs; 21049 21050 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21051 xri_limit = qp->p_multixri_pool->xri_limit; 21052 21053 #ifdef LPFC_MXP_STAT 21054 if (xri_owned <= xri_limit) 21055 qp->p_multixri_pool->below_limit_count++; 21056 else 21057 qp->p_multixri_pool->above_limit_count++; 21058 #endif 21059 21060 /* XRI goes to either public or private free xri pool 21061 * based on watermark and xri_limit 21062 */ 21063 if ((pvt_pool->count < pvt_pool->low_watermark) || 21064 (xri_owned < xri_limit && 21065 pvt_pool->count < pvt_pool->high_watermark)) { 21066 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21067 qp, free_pvt_pool); 21068 list_add_tail(&lpfc_ncmd->list, 21069 &pvt_pool->list); 21070 pvt_pool->count++; 21071 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21072 } else { 21073 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21074 qp, free_pub_pool); 21075 list_add_tail(&lpfc_ncmd->list, 21076 &pbl_pool->list); 21077 pbl_pool->count++; 21078 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21079 } 21080 } else { 21081 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21082 qp, free_xri); 21083 list_add_tail(&lpfc_ncmd->list, 21084 &qp->lpfc_io_buf_list_put); 21085 qp->put_io_bufs++; 21086 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21087 iflag); 21088 } 21089 } 21090 21091 /** 21092 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21093 * @phba: pointer to lpfc hba data structure. 21094 * @qp: pointer to HDW queue 21095 * @pvt_pool: pointer to private pool data structure. 21096 * @ndlp: pointer to lpfc nodelist data structure. 21097 * 21098 * This routine tries to get one free IO buf from private pool. 21099 * 21100 * Return: 21101 * pointer to one free IO buf - if private pool is not empty 21102 * NULL - if private pool is empty 21103 **/ 21104 static struct lpfc_io_buf * 21105 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21106 struct lpfc_sli4_hdw_queue *qp, 21107 struct lpfc_pvt_pool *pvt_pool, 21108 struct lpfc_nodelist *ndlp) 21109 { 21110 struct lpfc_io_buf *lpfc_ncmd; 21111 struct lpfc_io_buf *lpfc_ncmd_next; 21112 unsigned long iflag; 21113 21114 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21115 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21116 &pvt_pool->list, list) { 21117 if (lpfc_test_rrq_active( 21118 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21119 continue; 21120 list_del(&lpfc_ncmd->list); 21121 pvt_pool->count--; 21122 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21123 return lpfc_ncmd; 21124 } 21125 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21126 21127 return NULL; 21128 } 21129 21130 /** 21131 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21132 * @phba: pointer to lpfc hba data structure. 21133 * 21134 * This routine tries to get one free IO buf from expedite pool. 21135 * 21136 * Return: 21137 * pointer to one free IO buf - if expedite pool is not empty 21138 * NULL - if expedite pool is empty 21139 **/ 21140 static struct lpfc_io_buf * 21141 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21142 { 21143 struct lpfc_io_buf *lpfc_ncmd; 21144 struct lpfc_io_buf *lpfc_ncmd_next; 21145 unsigned long iflag; 21146 struct lpfc_epd_pool *epd_pool; 21147 21148 epd_pool = &phba->epd_pool; 21149 lpfc_ncmd = NULL; 21150 21151 spin_lock_irqsave(&epd_pool->lock, iflag); 21152 if (epd_pool->count > 0) { 21153 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21154 &epd_pool->list, list) { 21155 list_del(&lpfc_ncmd->list); 21156 epd_pool->count--; 21157 break; 21158 } 21159 } 21160 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21161 21162 return lpfc_ncmd; 21163 } 21164 21165 /** 21166 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21167 * @phba: pointer to lpfc hba data structure. 21168 * @ndlp: pointer to lpfc nodelist data structure. 21169 * @hwqid: belong to which HWQ 21170 * @expedite: 1 means this request is urgent. 21171 * 21172 * This routine will do the following actions and then return a pointer to 21173 * one free IO buf. 21174 * 21175 * 1. If private free xri count is empty, move some XRIs from public to 21176 * private pool. 21177 * 2. Get one XRI from private free xri pool. 21178 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21179 * get one free xri from expedite pool. 21180 * 21181 * Note: ndlp is only used on SCSI side for RRQ testing. 21182 * The caller should pass NULL for ndlp on NVME side. 21183 * 21184 * Return: 21185 * pointer to one free IO buf - if private pool is not empty 21186 * NULL - if private pool is empty 21187 **/ 21188 static struct lpfc_io_buf * 21189 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21190 struct lpfc_nodelist *ndlp, 21191 int hwqid, int expedite) 21192 { 21193 struct lpfc_sli4_hdw_queue *qp; 21194 struct lpfc_multixri_pool *multixri_pool; 21195 struct lpfc_pvt_pool *pvt_pool; 21196 struct lpfc_io_buf *lpfc_ncmd; 21197 21198 qp = &phba->sli4_hba.hdwq[hwqid]; 21199 lpfc_ncmd = NULL; 21200 multixri_pool = qp->p_multixri_pool; 21201 pvt_pool = &multixri_pool->pvt_pool; 21202 multixri_pool->io_req_count++; 21203 21204 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21205 if (pvt_pool->count == 0) 21206 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21207 21208 /* Get one XRI from private free xri pool */ 21209 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21210 21211 if (lpfc_ncmd) { 21212 lpfc_ncmd->hdwq = qp; 21213 lpfc_ncmd->hdwq_no = hwqid; 21214 } else if (expedite) { 21215 /* If we fail to get one from pvt_pool and this is an expedite 21216 * request, get one free xri from expedite pool. 21217 */ 21218 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21219 } 21220 21221 return lpfc_ncmd; 21222 } 21223 21224 static inline struct lpfc_io_buf * 21225 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21226 { 21227 struct lpfc_sli4_hdw_queue *qp; 21228 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21229 21230 qp = &phba->sli4_hba.hdwq[idx]; 21231 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21232 &qp->lpfc_io_buf_list_get, list) { 21233 if (lpfc_test_rrq_active(phba, ndlp, 21234 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21235 continue; 21236 21237 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21238 continue; 21239 21240 list_del_init(&lpfc_cmd->list); 21241 qp->get_io_bufs--; 21242 lpfc_cmd->hdwq = qp; 21243 lpfc_cmd->hdwq_no = idx; 21244 return lpfc_cmd; 21245 } 21246 return NULL; 21247 } 21248 21249 /** 21250 * lpfc_get_io_buf - Get one IO buffer from free pool 21251 * @phba: The HBA for which this call is being executed. 21252 * @ndlp: pointer to lpfc nodelist data structure. 21253 * @hwqid: belong to which HWQ 21254 * @expedite: 1 means this request is urgent. 21255 * 21256 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21257 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21258 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21259 * 21260 * Note: ndlp is only used on SCSI side for RRQ testing. 21261 * The caller should pass NULL for ndlp on NVME side. 21262 * 21263 * Return codes: 21264 * NULL - Error 21265 * Pointer to lpfc_io_buf - Success 21266 **/ 21267 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21268 struct lpfc_nodelist *ndlp, 21269 u32 hwqid, int expedite) 21270 { 21271 struct lpfc_sli4_hdw_queue *qp; 21272 unsigned long iflag; 21273 struct lpfc_io_buf *lpfc_cmd; 21274 21275 qp = &phba->sli4_hba.hdwq[hwqid]; 21276 lpfc_cmd = NULL; 21277 21278 if (phba->cfg_xri_rebalancing) 21279 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21280 phba, ndlp, hwqid, expedite); 21281 else { 21282 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21283 qp, alloc_xri_get); 21284 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21285 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21286 if (!lpfc_cmd) { 21287 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21288 qp, alloc_xri_put); 21289 list_splice(&qp->lpfc_io_buf_list_put, 21290 &qp->lpfc_io_buf_list_get); 21291 qp->get_io_bufs += qp->put_io_bufs; 21292 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21293 qp->put_io_bufs = 0; 21294 spin_unlock(&qp->io_buf_list_put_lock); 21295 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21296 expedite) 21297 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21298 } 21299 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21300 } 21301 21302 return lpfc_cmd; 21303 } 21304 21305 /** 21306 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21307 * @phba: The HBA for which this call is being executed. 21308 * @lpfc_buf: IO buf structure to append the SGL chunk 21309 * 21310 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21311 * and will allocate an SGL chunk if the pool is empty. 21312 * 21313 * Return codes: 21314 * NULL - Error 21315 * Pointer to sli4_hybrid_sgl - Success 21316 **/ 21317 struct sli4_hybrid_sgl * 21318 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21319 { 21320 struct sli4_hybrid_sgl *list_entry = NULL; 21321 struct sli4_hybrid_sgl *tmp = NULL; 21322 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21323 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21324 struct list_head *buf_list = &hdwq->sgl_list; 21325 unsigned long iflags; 21326 21327 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21328 21329 if (likely(!list_empty(buf_list))) { 21330 /* break off 1 chunk from the sgl_list */ 21331 list_for_each_entry_safe(list_entry, tmp, 21332 buf_list, list_node) { 21333 list_move_tail(&list_entry->list_node, 21334 &lpfc_buf->dma_sgl_xtra_list); 21335 break; 21336 } 21337 } else { 21338 /* allocate more */ 21339 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21340 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21341 cpu_to_node(hdwq->io_wq->chann)); 21342 if (!tmp) { 21343 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21344 "8353 error kmalloc memory for HDWQ " 21345 "%d %s\n", 21346 lpfc_buf->hdwq_no, __func__); 21347 return NULL; 21348 } 21349 21350 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21351 GFP_ATOMIC, &tmp->dma_phys_sgl); 21352 if (!tmp->dma_sgl) { 21353 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21354 "8354 error pool_alloc memory for HDWQ " 21355 "%d %s\n", 21356 lpfc_buf->hdwq_no, __func__); 21357 kfree(tmp); 21358 return NULL; 21359 } 21360 21361 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21362 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21363 } 21364 21365 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21366 struct sli4_hybrid_sgl, 21367 list_node); 21368 21369 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21370 21371 return allocated_sgl; 21372 } 21373 21374 /** 21375 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21376 * @phba: The HBA for which this call is being executed. 21377 * @lpfc_buf: IO buf structure with the SGL chunk 21378 * 21379 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21380 * 21381 * Return codes: 21382 * 0 - Success 21383 * -EINVAL - Error 21384 **/ 21385 int 21386 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21387 { 21388 int rc = 0; 21389 struct sli4_hybrid_sgl *list_entry = NULL; 21390 struct sli4_hybrid_sgl *tmp = NULL; 21391 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21392 struct list_head *buf_list = &hdwq->sgl_list; 21393 unsigned long iflags; 21394 21395 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21396 21397 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21398 list_for_each_entry_safe(list_entry, tmp, 21399 &lpfc_buf->dma_sgl_xtra_list, 21400 list_node) { 21401 list_move_tail(&list_entry->list_node, 21402 buf_list); 21403 } 21404 } else { 21405 rc = -EINVAL; 21406 } 21407 21408 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21409 return rc; 21410 } 21411 21412 /** 21413 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21414 * @phba: phba object 21415 * @hdwq: hdwq to cleanup sgl buff resources on 21416 * 21417 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21418 * 21419 * Return codes: 21420 * None 21421 **/ 21422 void 21423 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21424 struct lpfc_sli4_hdw_queue *hdwq) 21425 { 21426 struct list_head *buf_list = &hdwq->sgl_list; 21427 struct sli4_hybrid_sgl *list_entry = NULL; 21428 struct sli4_hybrid_sgl *tmp = NULL; 21429 unsigned long iflags; 21430 21431 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21432 21433 /* Free sgl pool */ 21434 list_for_each_entry_safe(list_entry, tmp, 21435 buf_list, list_node) { 21436 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21437 list_entry->dma_sgl, 21438 list_entry->dma_phys_sgl); 21439 list_del(&list_entry->list_node); 21440 kfree(list_entry); 21441 } 21442 21443 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21444 } 21445 21446 /** 21447 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21448 * @phba: The HBA for which this call is being executed. 21449 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21450 * 21451 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21452 * and will allocate an CMD/RSP buffer if the pool is empty. 21453 * 21454 * Return codes: 21455 * NULL - Error 21456 * Pointer to fcp_cmd_rsp_buf - Success 21457 **/ 21458 struct fcp_cmd_rsp_buf * 21459 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21460 struct lpfc_io_buf *lpfc_buf) 21461 { 21462 struct fcp_cmd_rsp_buf *list_entry = NULL; 21463 struct fcp_cmd_rsp_buf *tmp = NULL; 21464 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21465 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21466 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21467 unsigned long iflags; 21468 21469 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21470 21471 if (likely(!list_empty(buf_list))) { 21472 /* break off 1 chunk from the list */ 21473 list_for_each_entry_safe(list_entry, tmp, 21474 buf_list, 21475 list_node) { 21476 list_move_tail(&list_entry->list_node, 21477 &lpfc_buf->dma_cmd_rsp_list); 21478 break; 21479 } 21480 } else { 21481 /* allocate more */ 21482 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21483 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21484 cpu_to_node(hdwq->io_wq->chann)); 21485 if (!tmp) { 21486 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21487 "8355 error kmalloc memory for HDWQ " 21488 "%d %s\n", 21489 lpfc_buf->hdwq_no, __func__); 21490 return NULL; 21491 } 21492 21493 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21494 GFP_ATOMIC, 21495 &tmp->fcp_cmd_rsp_dma_handle); 21496 21497 if (!tmp->fcp_cmnd) { 21498 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21499 "8356 error pool_alloc memory for HDWQ " 21500 "%d %s\n", 21501 lpfc_buf->hdwq_no, __func__); 21502 kfree(tmp); 21503 return NULL; 21504 } 21505 21506 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21507 sizeof(struct fcp_cmnd)); 21508 21509 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21510 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21511 } 21512 21513 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21514 struct fcp_cmd_rsp_buf, 21515 list_node); 21516 21517 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21518 21519 return allocated_buf; 21520 } 21521 21522 /** 21523 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21524 * @phba: The HBA for which this call is being executed. 21525 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21526 * 21527 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21528 * 21529 * Return codes: 21530 * 0 - Success 21531 * -EINVAL - Error 21532 **/ 21533 int 21534 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21535 struct lpfc_io_buf *lpfc_buf) 21536 { 21537 int rc = 0; 21538 struct fcp_cmd_rsp_buf *list_entry = NULL; 21539 struct fcp_cmd_rsp_buf *tmp = NULL; 21540 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21541 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21542 unsigned long iflags; 21543 21544 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21545 21546 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21547 list_for_each_entry_safe(list_entry, tmp, 21548 &lpfc_buf->dma_cmd_rsp_list, 21549 list_node) { 21550 list_move_tail(&list_entry->list_node, 21551 buf_list); 21552 } 21553 } else { 21554 rc = -EINVAL; 21555 } 21556 21557 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21558 return rc; 21559 } 21560 21561 /** 21562 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21563 * @phba: phba object 21564 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21565 * 21566 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21567 * 21568 * Return codes: 21569 * None 21570 **/ 21571 void 21572 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21573 struct lpfc_sli4_hdw_queue *hdwq) 21574 { 21575 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21576 struct fcp_cmd_rsp_buf *list_entry = NULL; 21577 struct fcp_cmd_rsp_buf *tmp = NULL; 21578 unsigned long iflags; 21579 21580 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21581 21582 /* Free cmd_rsp buf pool */ 21583 list_for_each_entry_safe(list_entry, tmp, 21584 buf_list, 21585 list_node) { 21586 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21587 list_entry->fcp_cmnd, 21588 list_entry->fcp_cmd_rsp_dma_handle); 21589 list_del(&list_entry->list_node); 21590 kfree(list_entry); 21591 } 21592 21593 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21594 } 21595