1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq * 74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 75 struct lpfc_iocbq *rspiocbq); 76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 77 struct hbq_dmabuf *); 78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 79 struct hbq_dmabuf *dmabuf); 80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 81 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 83 int); 84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 85 struct lpfc_queue *eq, 86 struct lpfc_eqe *eqe); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 uint8_t rearm) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 size_t start_clean = offsetof(struct lpfc_iocbq, wqe); 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 if (asig) { 1852 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1853 "6237 BW Threshold %lld%% (%lld): " 1854 "%lld%% %s: Signal Alarm: cg:%d " 1855 "Info:%u\n", 1856 bwpcent, bw, pcent, s, cg, 1857 phba->cmf_active_info); 1858 } else if (afpin) { 1859 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1860 "6238 BW Threshold %lld%% (%lld): " 1861 "%lld%% %s: FPIN Alarm: cg:%d " 1862 "Info:%u\n", 1863 bwpcent, bw, pcent, s, cg, 1864 phba->cmf_active_info); 1865 } else if (sigcnt) { 1866 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1868 "6239 BW Threshold %lld%% (%lld): " 1869 "%lld%% %s: Signal Warning: " 1870 "Cnt %d Max %d: cg:%d Info:%u\n", 1871 bwpcent, bw, pcent, s, sigcnt, 1872 wsigmax, cg, phba->cmf_active_info); 1873 } else if (fpincnt) { 1874 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6240 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Warning: " 1878 "Cnt %d Max %d: cg:%d Info:%u\n", 1879 bwpcent, bw, pcent, s, fpincnt, 1880 wfpinmax, cg, phba->cmf_active_info); 1881 } else { 1882 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1883 "6241 BW Threshold %lld%% (%lld): " 1884 "CMF %lld%% %s: cg:%d Info:%u\n", 1885 bwpcent, bw, pcent, s, cg, 1886 phba->cmf_active_info); 1887 } 1888 } else if (info) { 1889 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1890 "6246 Info Threshold %u\n", info); 1891 } 1892 1893 /* Save BW change to be picked up during next timer interrupt */ 1894 phba->cmf_last_sync_bw = bw; 1895 out: 1896 lpfc_sli_release_iocbq(phba, cmdiocb); 1897 } 1898 1899 /** 1900 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1901 * @phba: Pointer to HBA context object. 1902 * @ms: ms to set in WQE interval, 0 means use init op 1903 * @total: Total rcv bytes for this interval 1904 * 1905 * This routine is called every CMF timer interrupt. Its purpose is 1906 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1907 * that may indicate we have congestion (FPINs or Signals). Upon 1908 * completion, the firmware will indicate any BW restrictions the 1909 * driver may need to take. 1910 **/ 1911 int 1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1913 { 1914 union lpfc_wqe128 *wqe; 1915 struct lpfc_iocbq *sync_buf; 1916 unsigned long iflags; 1917 u32 ret_val; 1918 u32 atot, wtot, max; 1919 1920 /* First address any alarm / warning activity */ 1921 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1922 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1923 1924 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1925 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1926 phba->link_state == LPFC_LINK_DOWN) 1927 return 0; 1928 1929 spin_lock_irqsave(&phba->hbalock, iflags); 1930 sync_buf = __lpfc_sli_get_iocbq(phba); 1931 if (!sync_buf) { 1932 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1933 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1934 ret_val = ENOMEM; 1935 goto out_unlock; 1936 } 1937 1938 wqe = &sync_buf->wqe; 1939 1940 /* WQEs are reused. Clear stale data and set key fields to zero */ 1941 memset(wqe, 0, sizeof(*wqe)); 1942 1943 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1944 if (!ms) { 1945 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1946 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1947 phba->fc_eventTag); 1948 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1949 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1950 goto initpath; 1951 } 1952 1953 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1954 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1955 1956 /* Check for alarms / warnings */ 1957 if (atot) { 1958 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1959 /* We hit an Signal alarm condition */ 1960 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1961 } else { 1962 /* We hit a FPIN alarm condition */ 1963 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1964 } 1965 } else if (wtot) { 1966 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1967 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1968 /* We hit an Signal warning condition */ 1969 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1970 lpfc_acqe_cgn_frequency; 1971 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1972 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1973 } else { 1974 /* We hit a FPIN warning condition */ 1975 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1976 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1977 } 1978 } 1979 1980 /* Update total read blocks during previous timer interval */ 1981 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1982 1983 initpath: 1984 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1985 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1986 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1987 1988 /* Setup reqtag to match the wqe completion. */ 1989 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1990 1991 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1992 1993 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1994 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1995 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 1996 1997 sync_buf->vport = phba->pport; 1998 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 1999 sync_buf->cmd_dmabuf = NULL; 2000 sync_buf->rsp_dmabuf = NULL; 2001 sync_buf->bpl_dmabuf = NULL; 2002 sync_buf->sli4_xritag = NO_XRI; 2003 2004 sync_buf->cmd_flag |= LPFC_IO_CMF; 2005 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2006 if (ret_val) 2007 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2008 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2009 ret_val); 2010 out_unlock: 2011 spin_unlock_irqrestore(&phba->hbalock, iflags); 2012 return ret_val; 2013 } 2014 2015 /** 2016 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2017 * @phba: Pointer to HBA context object. 2018 * @pring: Pointer to driver SLI ring object. 2019 * 2020 * This function is called with hbalock held and the caller must post the 2021 * iocb without releasing the lock. If the caller releases the lock, 2022 * iocb slot returned by the function is not guaranteed to be available. 2023 * The function returns pointer to the next available iocb slot if there 2024 * is available slot in the ring, else it returns NULL. 2025 * If the get index of the ring is ahead of the put index, the function 2026 * will post an error attention event to the worker thread to take the 2027 * HBA to offline state. 2028 **/ 2029 static IOCB_t * 2030 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2031 { 2032 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2033 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2034 2035 lockdep_assert_held(&phba->hbalock); 2036 2037 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2038 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2039 pring->sli.sli3.next_cmdidx = 0; 2040 2041 if (unlikely(pring->sli.sli3.local_getidx == 2042 pring->sli.sli3.next_cmdidx)) { 2043 2044 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2045 2046 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2048 "0315 Ring %d issue: portCmdGet %d " 2049 "is bigger than cmd ring %d\n", 2050 pring->ringno, 2051 pring->sli.sli3.local_getidx, 2052 max_cmd_idx); 2053 2054 phba->link_state = LPFC_HBA_ERROR; 2055 /* 2056 * All error attention handlers are posted to 2057 * worker thread 2058 */ 2059 phba->work_ha |= HA_ERATT; 2060 phba->work_hs = HS_FFER3; 2061 2062 lpfc_worker_wake_up(phba); 2063 2064 return NULL; 2065 } 2066 2067 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2068 return NULL; 2069 } 2070 2071 return lpfc_cmd_iocb(phba, pring); 2072 } 2073 2074 /** 2075 * lpfc_sli_next_iotag - Get an iotag for the iocb 2076 * @phba: Pointer to HBA context object. 2077 * @iocbq: Pointer to driver iocb object. 2078 * 2079 * This function gets an iotag for the iocb. If there is no unused iotag and 2080 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2081 * array and assigns a new iotag. 2082 * The function returns the allocated iotag if successful, else returns zero. 2083 * Zero is not a valid iotag. 2084 * The caller is not required to hold any lock. 2085 **/ 2086 uint16_t 2087 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2088 { 2089 struct lpfc_iocbq **new_arr; 2090 struct lpfc_iocbq **old_arr; 2091 size_t new_len; 2092 struct lpfc_sli *psli = &phba->sli; 2093 uint16_t iotag; 2094 2095 spin_lock_irq(&phba->hbalock); 2096 iotag = psli->last_iotag; 2097 if(++iotag < psli->iocbq_lookup_len) { 2098 psli->last_iotag = iotag; 2099 psli->iocbq_lookup[iotag] = iocbq; 2100 spin_unlock_irq(&phba->hbalock); 2101 iocbq->iotag = iotag; 2102 return iotag; 2103 } else if (psli->iocbq_lookup_len < (0xffff 2104 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2105 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2106 spin_unlock_irq(&phba->hbalock); 2107 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2108 GFP_KERNEL); 2109 if (new_arr) { 2110 spin_lock_irq(&phba->hbalock); 2111 old_arr = psli->iocbq_lookup; 2112 if (new_len <= psli->iocbq_lookup_len) { 2113 /* highly unprobable case */ 2114 kfree(new_arr); 2115 iotag = psli->last_iotag; 2116 if(++iotag < psli->iocbq_lookup_len) { 2117 psli->last_iotag = iotag; 2118 psli->iocbq_lookup[iotag] = iocbq; 2119 spin_unlock_irq(&phba->hbalock); 2120 iocbq->iotag = iotag; 2121 return iotag; 2122 } 2123 spin_unlock_irq(&phba->hbalock); 2124 return 0; 2125 } 2126 if (psli->iocbq_lookup) 2127 memcpy(new_arr, old_arr, 2128 ((psli->last_iotag + 1) * 2129 sizeof (struct lpfc_iocbq *))); 2130 psli->iocbq_lookup = new_arr; 2131 psli->iocbq_lookup_len = new_len; 2132 psli->last_iotag = iotag; 2133 psli->iocbq_lookup[iotag] = iocbq; 2134 spin_unlock_irq(&phba->hbalock); 2135 iocbq->iotag = iotag; 2136 kfree(old_arr); 2137 return iotag; 2138 } 2139 } else 2140 spin_unlock_irq(&phba->hbalock); 2141 2142 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2143 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2144 psli->last_iotag); 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2151 * @phba: Pointer to HBA context object. 2152 * @pring: Pointer to driver SLI ring object. 2153 * @iocb: Pointer to iocb slot in the ring. 2154 * @nextiocb: Pointer to driver iocb object which need to be 2155 * posted to firmware. 2156 * 2157 * This function is called to post a new iocb to the firmware. This 2158 * function copies the new iocb to ring iocb slot and updates the 2159 * ring pointers. It adds the new iocb to txcmplq if there is 2160 * a completion call back for this iocb else the function will free the 2161 * iocb object. The hbalock is asserted held in the code path calling 2162 * this routine. 2163 **/ 2164 static void 2165 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2166 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2167 { 2168 /* 2169 * Set up an iotag 2170 */ 2171 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2172 2173 2174 if (pring->ringno == LPFC_ELS_RING) { 2175 lpfc_debugfs_slow_ring_trc(phba, 2176 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2177 *(((uint32_t *) &nextiocb->iocb) + 4), 2178 *(((uint32_t *) &nextiocb->iocb) + 6), 2179 *(((uint32_t *) &nextiocb->iocb) + 7)); 2180 } 2181 2182 /* 2183 * Issue iocb command to adapter 2184 */ 2185 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2186 wmb(); 2187 pring->stats.iocb_cmd++; 2188 2189 /* 2190 * If there is no completion routine to call, we can release the 2191 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2192 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2193 */ 2194 if (nextiocb->cmd_cmpl) 2195 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2196 else 2197 __lpfc_sli_release_iocbq(phba, nextiocb); 2198 2199 /* 2200 * Let the HBA know what IOCB slot will be the next one the 2201 * driver will put a command into. 2202 */ 2203 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2204 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2205 } 2206 2207 /** 2208 * lpfc_sli_update_full_ring - Update the chip attention register 2209 * @phba: Pointer to HBA context object. 2210 * @pring: Pointer to driver SLI ring object. 2211 * 2212 * The caller is not required to hold any lock for calling this function. 2213 * This function updates the chip attention bits for the ring to inform firmware 2214 * that there are pending work to be done for this ring and requests an 2215 * interrupt when there is space available in the ring. This function is 2216 * called when the driver is unable to post more iocbs to the ring due 2217 * to unavailability of space in the ring. 2218 **/ 2219 static void 2220 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2221 { 2222 int ringno = pring->ringno; 2223 2224 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2225 2226 wmb(); 2227 2228 /* 2229 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2230 * The HBA will tell us when an IOCB entry is available. 2231 */ 2232 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2233 readl(phba->CAregaddr); /* flush */ 2234 2235 pring->stats.iocb_cmd_full++; 2236 } 2237 2238 /** 2239 * lpfc_sli_update_ring - Update chip attention register 2240 * @phba: Pointer to HBA context object. 2241 * @pring: Pointer to driver SLI ring object. 2242 * 2243 * This function updates the chip attention register bit for the 2244 * given ring to inform HBA that there is more work to be done 2245 * in this ring. The caller is not required to hold any lock. 2246 **/ 2247 static void 2248 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2249 { 2250 int ringno = pring->ringno; 2251 2252 /* 2253 * Tell the HBA that there is work to do in this ring. 2254 */ 2255 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2256 wmb(); 2257 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2258 readl(phba->CAregaddr); /* flush */ 2259 } 2260 } 2261 2262 /** 2263 * lpfc_sli_resume_iocb - Process iocbs in the txq 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function is called with hbalock held to post pending iocbs 2268 * in the txq to the firmware. This function is called when driver 2269 * detects space available in the ring. 2270 **/ 2271 static void 2272 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 IOCB_t *iocb; 2275 struct lpfc_iocbq *nextiocb; 2276 2277 lockdep_assert_held(&phba->hbalock); 2278 2279 /* 2280 * Check to see if: 2281 * (a) there is anything on the txq to send 2282 * (b) link is up 2283 * (c) link attention events can be processed (fcp ring only) 2284 * (d) IOCB processing is not blocked by the outstanding mbox command. 2285 */ 2286 2287 if (lpfc_is_link_up(phba) && 2288 (!list_empty(&pring->txq)) && 2289 (pring->ringno != LPFC_FCP_RING || 2290 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2291 2292 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2293 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2294 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2295 2296 if (iocb) 2297 lpfc_sli_update_ring(phba, pring); 2298 else 2299 lpfc_sli_update_full_ring(phba, pring); 2300 } 2301 2302 return; 2303 } 2304 2305 /** 2306 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2307 * @phba: Pointer to HBA context object. 2308 * @hbqno: HBQ number. 2309 * 2310 * This function is called with hbalock held to get the next 2311 * available slot for the given HBQ. If there is free slot 2312 * available for the HBQ it will return pointer to the next available 2313 * HBQ entry else it will return NULL. 2314 **/ 2315 static struct lpfc_hbq_entry * 2316 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2317 { 2318 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2319 2320 lockdep_assert_held(&phba->hbalock); 2321 2322 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2323 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2324 hbqp->next_hbqPutIdx = 0; 2325 2326 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2327 uint32_t raw_index = phba->hbq_get[hbqno]; 2328 uint32_t getidx = le32_to_cpu(raw_index); 2329 2330 hbqp->local_hbqGetIdx = getidx; 2331 2332 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2334 "1802 HBQ %d: local_hbqGetIdx " 2335 "%u is > than hbqp->entry_count %u\n", 2336 hbqno, hbqp->local_hbqGetIdx, 2337 hbqp->entry_count); 2338 2339 phba->link_state = LPFC_HBA_ERROR; 2340 return NULL; 2341 } 2342 2343 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2344 return NULL; 2345 } 2346 2347 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2348 hbqp->hbqPutIdx; 2349 } 2350 2351 /** 2352 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2353 * @phba: Pointer to HBA context object. 2354 * 2355 * This function is called with no lock held to free all the 2356 * hbq buffers while uninitializing the SLI interface. It also 2357 * frees the HBQ buffers returned by the firmware but not yet 2358 * processed by the upper layers. 2359 **/ 2360 void 2361 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2362 { 2363 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2364 struct hbq_dmabuf *hbq_buf; 2365 unsigned long flags; 2366 int i, hbq_count; 2367 2368 hbq_count = lpfc_sli_hbq_count(); 2369 /* Return all memory used by all HBQs */ 2370 spin_lock_irqsave(&phba->hbalock, flags); 2371 for (i = 0; i < hbq_count; ++i) { 2372 list_for_each_entry_safe(dmabuf, next_dmabuf, 2373 &phba->hbqs[i].hbq_buffer_list, list) { 2374 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2375 list_del(&hbq_buf->dbuf.list); 2376 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2377 } 2378 phba->hbqs[i].buffer_count = 0; 2379 } 2380 2381 /* Mark the HBQs not in use */ 2382 phba->hbq_in_use = 0; 2383 spin_unlock_irqrestore(&phba->hbalock, flags); 2384 } 2385 2386 /** 2387 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2388 * @phba: Pointer to HBA context object. 2389 * @hbqno: HBQ number. 2390 * @hbq_buf: Pointer to HBQ buffer. 2391 * 2392 * This function is called with the hbalock held to post a 2393 * hbq buffer to the firmware. If the function finds an empty 2394 * slot in the HBQ, it will post the buffer. The function will return 2395 * pointer to the hbq entry if it successfully post the buffer 2396 * else it will return NULL. 2397 **/ 2398 static int 2399 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2400 struct hbq_dmabuf *hbq_buf) 2401 { 2402 lockdep_assert_held(&phba->hbalock); 2403 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2404 } 2405 2406 /** 2407 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2408 * @phba: Pointer to HBA context object. 2409 * @hbqno: HBQ number. 2410 * @hbq_buf: Pointer to HBQ buffer. 2411 * 2412 * This function is called with the hbalock held to post a hbq buffer to the 2413 * firmware. If the function finds an empty slot in the HBQ, it will post the 2414 * buffer and place it on the hbq_buffer_list. The function will return zero if 2415 * it successfully post the buffer else it will return an error. 2416 **/ 2417 static int 2418 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2419 struct hbq_dmabuf *hbq_buf) 2420 { 2421 struct lpfc_hbq_entry *hbqe; 2422 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2423 2424 lockdep_assert_held(&phba->hbalock); 2425 /* Get next HBQ entry slot to use */ 2426 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2427 if (hbqe) { 2428 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2429 2430 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2431 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2432 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2433 hbqe->bde.tus.f.bdeFlags = 0; 2434 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2435 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2436 /* Sync SLIM */ 2437 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2438 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2439 /* flush */ 2440 readl(phba->hbq_put + hbqno); 2441 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2442 return 0; 2443 } else 2444 return -ENOMEM; 2445 } 2446 2447 /** 2448 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2449 * @phba: Pointer to HBA context object. 2450 * @hbqno: HBQ number. 2451 * @hbq_buf: Pointer to HBQ buffer. 2452 * 2453 * This function is called with the hbalock held to post an RQE to the SLI4 2454 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2455 * the hbq_buffer_list and return zero, otherwise it will return an error. 2456 **/ 2457 static int 2458 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2459 struct hbq_dmabuf *hbq_buf) 2460 { 2461 int rc; 2462 struct lpfc_rqe hrqe; 2463 struct lpfc_rqe drqe; 2464 struct lpfc_queue *hrq; 2465 struct lpfc_queue *drq; 2466 2467 if (hbqno != LPFC_ELS_HBQ) 2468 return 1; 2469 hrq = phba->sli4_hba.hdr_rq; 2470 drq = phba->sli4_hba.dat_rq; 2471 2472 lockdep_assert_held(&phba->hbalock); 2473 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2474 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2475 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2476 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2477 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2478 if (rc < 0) 2479 return rc; 2480 hbq_buf->tag = (rc | (hbqno << 16)); 2481 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2482 return 0; 2483 } 2484 2485 /* HBQ for ELS and CT traffic. */ 2486 static struct lpfc_hbq_init lpfc_els_hbq = { 2487 .rn = 1, 2488 .entry_count = 256, 2489 .mask_count = 0, 2490 .profile = 0, 2491 .ring_mask = (1 << LPFC_ELS_RING), 2492 .buffer_count = 0, 2493 .init_count = 40, 2494 .add_count = 40, 2495 }; 2496 2497 /* Array of HBQs */ 2498 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2499 &lpfc_els_hbq, 2500 }; 2501 2502 /** 2503 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2504 * @phba: Pointer to HBA context object. 2505 * @hbqno: HBQ number. 2506 * @count: Number of HBQ buffers to be posted. 2507 * 2508 * This function is called with no lock held to post more hbq buffers to the 2509 * given HBQ. The function returns the number of HBQ buffers successfully 2510 * posted. 2511 **/ 2512 static int 2513 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2514 { 2515 uint32_t i, posted = 0; 2516 unsigned long flags; 2517 struct hbq_dmabuf *hbq_buffer; 2518 LIST_HEAD(hbq_buf_list); 2519 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2520 return 0; 2521 2522 if ((phba->hbqs[hbqno].buffer_count + count) > 2523 lpfc_hbq_defs[hbqno]->entry_count) 2524 count = lpfc_hbq_defs[hbqno]->entry_count - 2525 phba->hbqs[hbqno].buffer_count; 2526 if (!count) 2527 return 0; 2528 /* Allocate HBQ entries */ 2529 for (i = 0; i < count; i++) { 2530 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2531 if (!hbq_buffer) 2532 break; 2533 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2534 } 2535 /* Check whether HBQ is still in use */ 2536 spin_lock_irqsave(&phba->hbalock, flags); 2537 if (!phba->hbq_in_use) 2538 goto err; 2539 while (!list_empty(&hbq_buf_list)) { 2540 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2541 dbuf.list); 2542 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2543 (hbqno << 16)); 2544 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2545 phba->hbqs[hbqno].buffer_count++; 2546 posted++; 2547 } else 2548 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2549 } 2550 spin_unlock_irqrestore(&phba->hbalock, flags); 2551 return posted; 2552 err: 2553 spin_unlock_irqrestore(&phba->hbalock, flags); 2554 while (!list_empty(&hbq_buf_list)) { 2555 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2556 dbuf.list); 2557 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2558 } 2559 return 0; 2560 } 2561 2562 /** 2563 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2564 * @phba: Pointer to HBA context object. 2565 * @qno: HBQ number. 2566 * 2567 * This function posts more buffers to the HBQ. This function 2568 * is called with no lock held. The function returns the number of HBQ entries 2569 * successfully allocated. 2570 **/ 2571 int 2572 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2573 { 2574 if (phba->sli_rev == LPFC_SLI_REV4) 2575 return 0; 2576 else 2577 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2578 lpfc_hbq_defs[qno]->add_count); 2579 } 2580 2581 /** 2582 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2583 * @phba: Pointer to HBA context object. 2584 * @qno: HBQ queue number. 2585 * 2586 * This function is called from SLI initialization code path with 2587 * no lock held to post initial HBQ buffers to firmware. The 2588 * function returns the number of HBQ entries successfully allocated. 2589 **/ 2590 static int 2591 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2592 { 2593 if (phba->sli_rev == LPFC_SLI_REV4) 2594 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2595 lpfc_hbq_defs[qno]->entry_count); 2596 else 2597 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2598 lpfc_hbq_defs[qno]->init_count); 2599 } 2600 2601 /* 2602 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2603 * 2604 * This function removes the first hbq buffer on an hbq list and returns a 2605 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2606 **/ 2607 static struct hbq_dmabuf * 2608 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2609 { 2610 struct lpfc_dmabuf *d_buf; 2611 2612 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2613 if (!d_buf) 2614 return NULL; 2615 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2616 } 2617 2618 /** 2619 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2620 * @phba: Pointer to HBA context object. 2621 * @hrq: HBQ number. 2622 * 2623 * This function removes the first RQ buffer on an RQ buffer list and returns a 2624 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2625 **/ 2626 static struct rqb_dmabuf * 2627 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2628 { 2629 struct lpfc_dmabuf *h_buf; 2630 struct lpfc_rqb *rqbp; 2631 2632 rqbp = hrq->rqbp; 2633 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2634 struct lpfc_dmabuf, list); 2635 if (!h_buf) 2636 return NULL; 2637 rqbp->buffer_count--; 2638 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2639 } 2640 2641 /** 2642 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2643 * @phba: Pointer to HBA context object. 2644 * @tag: Tag of the hbq buffer. 2645 * 2646 * This function searches for the hbq buffer associated with the given tag in 2647 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2648 * otherwise it returns NULL. 2649 **/ 2650 static struct hbq_dmabuf * 2651 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2652 { 2653 struct lpfc_dmabuf *d_buf; 2654 struct hbq_dmabuf *hbq_buf; 2655 uint32_t hbqno; 2656 2657 hbqno = tag >> 16; 2658 if (hbqno >= LPFC_MAX_HBQS) 2659 return NULL; 2660 2661 spin_lock_irq(&phba->hbalock); 2662 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2663 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2664 if (hbq_buf->tag == tag) { 2665 spin_unlock_irq(&phba->hbalock); 2666 return hbq_buf; 2667 } 2668 } 2669 spin_unlock_irq(&phba->hbalock); 2670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2671 "1803 Bad hbq tag. Data: x%x x%x\n", 2672 tag, phba->hbqs[tag >> 16].buffer_count); 2673 return NULL; 2674 } 2675 2676 /** 2677 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2678 * @phba: Pointer to HBA context object. 2679 * @hbq_buffer: Pointer to HBQ buffer. 2680 * 2681 * This function is called with hbalock. This function gives back 2682 * the hbq buffer to firmware. If the HBQ does not have space to 2683 * post the buffer, it will free the buffer. 2684 **/ 2685 void 2686 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2687 { 2688 uint32_t hbqno; 2689 2690 if (hbq_buffer) { 2691 hbqno = hbq_buffer->tag >> 16; 2692 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2693 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2694 } 2695 } 2696 2697 /** 2698 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2699 * @mbxCommand: mailbox command code. 2700 * 2701 * This function is called by the mailbox event handler function to verify 2702 * that the completed mailbox command is a legitimate mailbox command. If the 2703 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2704 * and the mailbox event handler will take the HBA offline. 2705 **/ 2706 static int 2707 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2708 { 2709 uint8_t ret; 2710 2711 switch (mbxCommand) { 2712 case MBX_LOAD_SM: 2713 case MBX_READ_NV: 2714 case MBX_WRITE_NV: 2715 case MBX_WRITE_VPARMS: 2716 case MBX_RUN_BIU_DIAG: 2717 case MBX_INIT_LINK: 2718 case MBX_DOWN_LINK: 2719 case MBX_CONFIG_LINK: 2720 case MBX_CONFIG_RING: 2721 case MBX_RESET_RING: 2722 case MBX_READ_CONFIG: 2723 case MBX_READ_RCONFIG: 2724 case MBX_READ_SPARM: 2725 case MBX_READ_STATUS: 2726 case MBX_READ_RPI: 2727 case MBX_READ_XRI: 2728 case MBX_READ_REV: 2729 case MBX_READ_LNK_STAT: 2730 case MBX_REG_LOGIN: 2731 case MBX_UNREG_LOGIN: 2732 case MBX_CLEAR_LA: 2733 case MBX_DUMP_MEMORY: 2734 case MBX_DUMP_CONTEXT: 2735 case MBX_RUN_DIAGS: 2736 case MBX_RESTART: 2737 case MBX_UPDATE_CFG: 2738 case MBX_DOWN_LOAD: 2739 case MBX_DEL_LD_ENTRY: 2740 case MBX_RUN_PROGRAM: 2741 case MBX_SET_MASK: 2742 case MBX_SET_VARIABLE: 2743 case MBX_UNREG_D_ID: 2744 case MBX_KILL_BOARD: 2745 case MBX_CONFIG_FARP: 2746 case MBX_BEACON: 2747 case MBX_LOAD_AREA: 2748 case MBX_RUN_BIU_DIAG64: 2749 case MBX_CONFIG_PORT: 2750 case MBX_READ_SPARM64: 2751 case MBX_READ_RPI64: 2752 case MBX_REG_LOGIN64: 2753 case MBX_READ_TOPOLOGY: 2754 case MBX_WRITE_WWN: 2755 case MBX_SET_DEBUG: 2756 case MBX_LOAD_EXP_ROM: 2757 case MBX_ASYNCEVT_ENABLE: 2758 case MBX_REG_VPI: 2759 case MBX_UNREG_VPI: 2760 case MBX_HEARTBEAT: 2761 case MBX_PORT_CAPABILITIES: 2762 case MBX_PORT_IOV_CONTROL: 2763 case MBX_SLI4_CONFIG: 2764 case MBX_SLI4_REQ_FTRS: 2765 case MBX_REG_FCFI: 2766 case MBX_UNREG_FCFI: 2767 case MBX_REG_VFI: 2768 case MBX_UNREG_VFI: 2769 case MBX_INIT_VPI: 2770 case MBX_INIT_VFI: 2771 case MBX_RESUME_RPI: 2772 case MBX_READ_EVENT_LOG_STATUS: 2773 case MBX_READ_EVENT_LOG: 2774 case MBX_SECURITY_MGMT: 2775 case MBX_AUTH_PORT: 2776 case MBX_ACCESS_VDATA: 2777 ret = mbxCommand; 2778 break; 2779 default: 2780 ret = MBX_SHUTDOWN; 2781 break; 2782 } 2783 return ret; 2784 } 2785 2786 /** 2787 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2788 * @phba: Pointer to HBA context object. 2789 * @pmboxq: Pointer to mailbox command. 2790 * 2791 * This is completion handler function for mailbox commands issued from 2792 * lpfc_sli_issue_mbox_wait function. This function is called by the 2793 * mailbox event handler function with no lock held. This function 2794 * will wake up thread waiting on the wait queue pointed by context1 2795 * of the mailbox. 2796 **/ 2797 void 2798 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2799 { 2800 unsigned long drvr_flag; 2801 struct completion *pmbox_done; 2802 2803 /* 2804 * If pmbox_done is empty, the driver thread gave up waiting and 2805 * continued running. 2806 */ 2807 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2808 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2809 pmbox_done = (struct completion *)pmboxq->context3; 2810 if (pmbox_done) 2811 complete(pmbox_done); 2812 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2813 return; 2814 } 2815 2816 static void 2817 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2818 { 2819 unsigned long iflags; 2820 2821 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2822 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2823 spin_lock_irqsave(&ndlp->lock, iflags); 2824 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2825 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2826 spin_unlock_irqrestore(&ndlp->lock, iflags); 2827 } 2828 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2829 } 2830 2831 void 2832 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2833 { 2834 __lpfc_sli_rpi_release(vport, ndlp); 2835 } 2836 2837 /** 2838 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2839 * @phba: Pointer to HBA context object. 2840 * @pmb: Pointer to mailbox object. 2841 * 2842 * This function is the default mailbox completion handler. It 2843 * frees the memory resources associated with the completed mailbox 2844 * command. If the completed command is a REG_LOGIN mailbox command, 2845 * this function will issue a UREG_LOGIN to re-claim the RPI. 2846 **/ 2847 void 2848 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2849 { 2850 struct lpfc_vport *vport = pmb->vport; 2851 struct lpfc_nodelist *ndlp; 2852 struct Scsi_Host *shost; 2853 uint16_t rpi, vpi; 2854 int rc; 2855 2856 /* 2857 * If a REG_LOGIN succeeded after node is destroyed or node 2858 * is in re-discovery driver need to cleanup the RPI. 2859 */ 2860 if (!(phba->pport->load_flag & FC_UNLOADING) && 2861 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2862 !pmb->u.mb.mbxStatus) { 2863 rpi = pmb->u.mb.un.varWords[0]; 2864 vpi = pmb->u.mb.un.varRegLogin.vpi; 2865 if (phba->sli_rev == LPFC_SLI_REV4) 2866 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2867 lpfc_unreg_login(phba, vpi, rpi, pmb); 2868 pmb->vport = vport; 2869 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2870 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2871 if (rc != MBX_NOT_FINISHED) 2872 return; 2873 } 2874 2875 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2876 !(phba->pport->load_flag & FC_UNLOADING) && 2877 !pmb->u.mb.mbxStatus) { 2878 shost = lpfc_shost_from_vport(vport); 2879 spin_lock_irq(shost->host_lock); 2880 vport->vpi_state |= LPFC_VPI_REGISTERED; 2881 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2882 spin_unlock_irq(shost->host_lock); 2883 } 2884 2885 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2886 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2887 lpfc_nlp_put(ndlp); 2888 } 2889 2890 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2891 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2892 2893 /* Check to see if there are any deferred events to process */ 2894 if (ndlp) { 2895 lpfc_printf_vlog( 2896 vport, 2897 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2898 "1438 UNREG cmpl deferred mbox x%x " 2899 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2900 ndlp->nlp_rpi, ndlp->nlp_DID, 2901 ndlp->nlp_flag, ndlp->nlp_defer_did, 2902 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2903 2904 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2905 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2906 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2907 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2908 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2909 } else { 2910 __lpfc_sli_rpi_release(vport, ndlp); 2911 } 2912 2913 /* The unreg_login mailbox is complete and had a 2914 * reference that has to be released. The PLOGI 2915 * got its own ref. 2916 */ 2917 lpfc_nlp_put(ndlp); 2918 pmb->ctx_ndlp = NULL; 2919 } 2920 } 2921 2922 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2923 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2924 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2925 lpfc_nlp_put(ndlp); 2926 } 2927 2928 /* Check security permission status on INIT_LINK mailbox command */ 2929 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2930 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2932 "2860 SLI authentication is required " 2933 "for INIT_LINK but has not done yet\n"); 2934 2935 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2936 lpfc_sli4_mbox_cmd_free(phba, pmb); 2937 else 2938 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2939 } 2940 /** 2941 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2942 * @phba: Pointer to HBA context object. 2943 * @pmb: Pointer to mailbox object. 2944 * 2945 * This function is the unreg rpi mailbox completion handler. It 2946 * frees the memory resources associated with the completed mailbox 2947 * command. An additional reference is put on the ndlp to prevent 2948 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2949 * the unreg mailbox command completes, this routine puts the 2950 * reference back. 2951 * 2952 **/ 2953 void 2954 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2955 { 2956 struct lpfc_vport *vport = pmb->vport; 2957 struct lpfc_nodelist *ndlp; 2958 2959 ndlp = pmb->ctx_ndlp; 2960 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2961 if (phba->sli_rev == LPFC_SLI_REV4 && 2962 (bf_get(lpfc_sli_intf_if_type, 2963 &phba->sli4_hba.sli_intf) >= 2964 LPFC_SLI_INTF_IF_TYPE_2)) { 2965 if (ndlp) { 2966 lpfc_printf_vlog( 2967 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2968 "0010 UNREG_LOGIN vpi:%x " 2969 "rpi:%x DID:%x defer x%x flg x%x " 2970 "x%px\n", 2971 vport->vpi, ndlp->nlp_rpi, 2972 ndlp->nlp_DID, ndlp->nlp_defer_did, 2973 ndlp->nlp_flag, 2974 ndlp); 2975 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2976 2977 /* Check to see if there are any deferred 2978 * events to process 2979 */ 2980 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2981 (ndlp->nlp_defer_did != 2982 NLP_EVT_NOTHING_PENDING)) { 2983 lpfc_printf_vlog( 2984 vport, KERN_INFO, LOG_DISCOVERY, 2985 "4111 UNREG cmpl deferred " 2986 "clr x%x on " 2987 "NPort x%x Data: x%x x%px\n", 2988 ndlp->nlp_rpi, ndlp->nlp_DID, 2989 ndlp->nlp_defer_did, ndlp); 2990 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2991 ndlp->nlp_defer_did = 2992 NLP_EVT_NOTHING_PENDING; 2993 lpfc_issue_els_plogi( 2994 vport, ndlp->nlp_DID, 0); 2995 } else { 2996 __lpfc_sli_rpi_release(vport, ndlp); 2997 } 2998 lpfc_nlp_put(ndlp); 2999 } 3000 } 3001 } 3002 3003 mempool_free(pmb, phba->mbox_mem_pool); 3004 } 3005 3006 /** 3007 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3008 * @phba: Pointer to HBA context object. 3009 * 3010 * This function is called with no lock held. This function processes all 3011 * the completed mailbox commands and gives it to upper layers. The interrupt 3012 * service routine processes mailbox completion interrupt and adds completed 3013 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3014 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3015 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3016 * function returns the mailbox commands to the upper layer by calling the 3017 * completion handler function of each mailbox. 3018 **/ 3019 int 3020 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3021 { 3022 MAILBOX_t *pmbox; 3023 LPFC_MBOXQ_t *pmb; 3024 int rc; 3025 LIST_HEAD(cmplq); 3026 3027 phba->sli.slistat.mbox_event++; 3028 3029 /* Get all completed mailboxe buffers into the cmplq */ 3030 spin_lock_irq(&phba->hbalock); 3031 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3032 spin_unlock_irq(&phba->hbalock); 3033 3034 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3035 do { 3036 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3037 if (pmb == NULL) 3038 break; 3039 3040 pmbox = &pmb->u.mb; 3041 3042 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3043 if (pmb->vport) { 3044 lpfc_debugfs_disc_trc(pmb->vport, 3045 LPFC_DISC_TRC_MBOX_VPORT, 3046 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3047 (uint32_t)pmbox->mbxCommand, 3048 pmbox->un.varWords[0], 3049 pmbox->un.varWords[1]); 3050 } 3051 else { 3052 lpfc_debugfs_disc_trc(phba->pport, 3053 LPFC_DISC_TRC_MBOX, 3054 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3055 (uint32_t)pmbox->mbxCommand, 3056 pmbox->un.varWords[0], 3057 pmbox->un.varWords[1]); 3058 } 3059 } 3060 3061 /* 3062 * It is a fatal error if unknown mbox command completion. 3063 */ 3064 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3065 MBX_SHUTDOWN) { 3066 /* Unknown mailbox command compl */ 3067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3068 "(%d):0323 Unknown Mailbox command " 3069 "x%x (x%x/x%x) Cmpl\n", 3070 pmb->vport ? pmb->vport->vpi : 3071 LPFC_VPORT_UNKNOWN, 3072 pmbox->mbxCommand, 3073 lpfc_sli_config_mbox_subsys_get(phba, 3074 pmb), 3075 lpfc_sli_config_mbox_opcode_get(phba, 3076 pmb)); 3077 phba->link_state = LPFC_HBA_ERROR; 3078 phba->work_hs = HS_FFER3; 3079 lpfc_handle_eratt(phba); 3080 continue; 3081 } 3082 3083 if (pmbox->mbxStatus) { 3084 phba->sli.slistat.mbox_stat_err++; 3085 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3086 /* Mbox cmd cmpl error - RETRYing */ 3087 lpfc_printf_log(phba, KERN_INFO, 3088 LOG_MBOX | LOG_SLI, 3089 "(%d):0305 Mbox cmd cmpl " 3090 "error - RETRYing Data: x%x " 3091 "(x%x/x%x) x%x x%x x%x\n", 3092 pmb->vport ? pmb->vport->vpi : 3093 LPFC_VPORT_UNKNOWN, 3094 pmbox->mbxCommand, 3095 lpfc_sli_config_mbox_subsys_get(phba, 3096 pmb), 3097 lpfc_sli_config_mbox_opcode_get(phba, 3098 pmb), 3099 pmbox->mbxStatus, 3100 pmbox->un.varWords[0], 3101 pmb->vport ? pmb->vport->port_state : 3102 LPFC_VPORT_UNKNOWN); 3103 pmbox->mbxStatus = 0; 3104 pmbox->mbxOwner = OWN_HOST; 3105 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3106 if (rc != MBX_NOT_FINISHED) 3107 continue; 3108 } 3109 } 3110 3111 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3112 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3113 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3114 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3115 "x%x x%x x%x\n", 3116 pmb->vport ? pmb->vport->vpi : 0, 3117 pmbox->mbxCommand, 3118 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3119 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3120 pmb->mbox_cmpl, 3121 *((uint32_t *) pmbox), 3122 pmbox->un.varWords[0], 3123 pmbox->un.varWords[1], 3124 pmbox->un.varWords[2], 3125 pmbox->un.varWords[3], 3126 pmbox->un.varWords[4], 3127 pmbox->un.varWords[5], 3128 pmbox->un.varWords[6], 3129 pmbox->un.varWords[7], 3130 pmbox->un.varWords[8], 3131 pmbox->un.varWords[9], 3132 pmbox->un.varWords[10]); 3133 3134 if (pmb->mbox_cmpl) 3135 pmb->mbox_cmpl(phba,pmb); 3136 } while (1); 3137 return 0; 3138 } 3139 3140 /** 3141 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3142 * @phba: Pointer to HBA context object. 3143 * @pring: Pointer to driver SLI ring object. 3144 * @tag: buffer tag. 3145 * 3146 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3147 * is set in the tag the buffer is posted for a particular exchange, 3148 * the function will return the buffer without replacing the buffer. 3149 * If the buffer is for unsolicited ELS or CT traffic, this function 3150 * returns the buffer and also posts another buffer to the firmware. 3151 **/ 3152 static struct lpfc_dmabuf * 3153 lpfc_sli_get_buff(struct lpfc_hba *phba, 3154 struct lpfc_sli_ring *pring, 3155 uint32_t tag) 3156 { 3157 struct hbq_dmabuf *hbq_entry; 3158 3159 if (tag & QUE_BUFTAG_BIT) 3160 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3161 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3162 if (!hbq_entry) 3163 return NULL; 3164 return &hbq_entry->dbuf; 3165 } 3166 3167 /** 3168 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3169 * containing a NVME LS request. 3170 * @phba: pointer to lpfc hba data structure. 3171 * @piocb: pointer to the iocbq struct representing the sequence starting 3172 * frame. 3173 * 3174 * This routine initially validates the NVME LS, validates there is a login 3175 * with the port that sent the LS, and then calls the appropriate nvme host 3176 * or target LS request handler. 3177 **/ 3178 static void 3179 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3180 { 3181 struct lpfc_nodelist *ndlp; 3182 struct lpfc_dmabuf *d_buf; 3183 struct hbq_dmabuf *nvmebuf; 3184 struct fc_frame_header *fc_hdr; 3185 struct lpfc_async_xchg_ctx *axchg = NULL; 3186 char *failwhy = NULL; 3187 uint32_t oxid, sid, did, fctl, size; 3188 int ret = 1; 3189 3190 d_buf = piocb->cmd_dmabuf; 3191 3192 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3193 fc_hdr = nvmebuf->hbuf.virt; 3194 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3195 sid = sli4_sid_from_fc_hdr(fc_hdr); 3196 did = sli4_did_from_fc_hdr(fc_hdr); 3197 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3198 fc_hdr->fh_f_ctl[1] << 8 | 3199 fc_hdr->fh_f_ctl[2]); 3200 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3201 3202 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3203 oxid, size, sid); 3204 3205 if (phba->pport->load_flag & FC_UNLOADING) { 3206 failwhy = "Driver Unloading"; 3207 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3208 failwhy = "NVME FC4 Disabled"; 3209 } else if (!phba->nvmet_support && !phba->pport->localport) { 3210 failwhy = "No Localport"; 3211 } else if (phba->nvmet_support && !phba->targetport) { 3212 failwhy = "No Targetport"; 3213 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3214 failwhy = "Bad NVME LS R_CTL"; 3215 } else if (unlikely((fctl & 0x00FF0000) != 3216 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3217 failwhy = "Bad NVME LS F_CTL"; 3218 } else { 3219 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3220 if (!axchg) 3221 failwhy = "No CTX memory"; 3222 } 3223 3224 if (unlikely(failwhy)) { 3225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3226 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3227 sid, oxid, failwhy); 3228 goto out_fail; 3229 } 3230 3231 /* validate the source of the LS is logged in */ 3232 ndlp = lpfc_findnode_did(phba->pport, sid); 3233 if (!ndlp || 3234 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3235 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3236 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3237 "6216 NVME Unsol rcv: No ndlp: " 3238 "NPort_ID x%x oxid x%x\n", 3239 sid, oxid); 3240 goto out_fail; 3241 } 3242 3243 axchg->phba = phba; 3244 axchg->ndlp = ndlp; 3245 axchg->size = size; 3246 axchg->oxid = oxid; 3247 axchg->sid = sid; 3248 axchg->wqeq = NULL; 3249 axchg->state = LPFC_NVME_STE_LS_RCV; 3250 axchg->entry_cnt = 1; 3251 axchg->rqb_buffer = (void *)nvmebuf; 3252 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3253 axchg->payload = nvmebuf->dbuf.virt; 3254 INIT_LIST_HEAD(&axchg->list); 3255 3256 if (phba->nvmet_support) { 3257 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3258 spin_lock_irq(&ndlp->lock); 3259 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3260 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3261 spin_unlock_irq(&ndlp->lock); 3262 3263 /* This reference is a single occurrence to hold the 3264 * node valid until the nvmet transport calls 3265 * host_release. 3266 */ 3267 if (!lpfc_nlp_get(ndlp)) 3268 goto out_fail; 3269 3270 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3271 "6206 NVMET unsol ls_req ndlp x%px " 3272 "DID x%x xflags x%x refcnt %d\n", 3273 ndlp, ndlp->nlp_DID, 3274 ndlp->fc4_xpt_flags, 3275 kref_read(&ndlp->kref)); 3276 } else { 3277 spin_unlock_irq(&ndlp->lock); 3278 } 3279 } else { 3280 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3281 } 3282 3283 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3284 if (!ret) 3285 return; 3286 3287 out_fail: 3288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3289 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3290 "NVMe%s handler failed %d\n", 3291 did, sid, oxid, 3292 (phba->nvmet_support) ? "T" : "I", ret); 3293 3294 /* recycle receive buffer */ 3295 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3296 3297 /* If start of new exchange, abort it */ 3298 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3299 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3300 3301 if (ret) 3302 kfree(axchg); 3303 } 3304 3305 /** 3306 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3307 * @phba: Pointer to HBA context object. 3308 * @pring: Pointer to driver SLI ring object. 3309 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3310 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3311 * @fch_type: the type for the first frame of the sequence. 3312 * 3313 * This function is called with no lock held. This function uses the r_ctl and 3314 * type of the received sequence to find the correct callback function to call 3315 * to process the sequence. 3316 **/ 3317 static int 3318 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3319 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3320 uint32_t fch_type) 3321 { 3322 int i; 3323 3324 switch (fch_type) { 3325 case FC_TYPE_NVME: 3326 lpfc_nvme_unsol_ls_handler(phba, saveq); 3327 return 1; 3328 default: 3329 break; 3330 } 3331 3332 /* unSolicited Responses */ 3333 if (pring->prt[0].profile) { 3334 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3335 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3336 saveq); 3337 return 1; 3338 } 3339 /* We must search, based on rctl / type 3340 for the right routine */ 3341 for (i = 0; i < pring->num_mask; i++) { 3342 if ((pring->prt[i].rctl == fch_r_ctl) && 3343 (pring->prt[i].type == fch_type)) { 3344 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3345 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3346 (phba, pring, saveq); 3347 return 1; 3348 } 3349 } 3350 return 0; 3351 } 3352 3353 static void 3354 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3355 struct lpfc_iocbq *saveq) 3356 { 3357 IOCB_t *irsp; 3358 union lpfc_wqe128 *wqe; 3359 u16 i = 0; 3360 3361 irsp = &saveq->iocb; 3362 wqe = &saveq->wqe; 3363 3364 /* Fill wcqe with the IOCB status fields */ 3365 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3366 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3367 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3368 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3369 3370 /* Source ID */ 3371 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3372 3373 /* rx-id of the response frame */ 3374 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3375 3376 /* ox-id of the frame */ 3377 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3378 irsp->unsli3.rcvsli3.ox_id); 3379 3380 /* DID */ 3381 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3382 irsp->un.rcvels.remoteID); 3383 3384 /* unsol data len */ 3385 for (i = 0; i < irsp->ulpBdeCount; i++) { 3386 struct lpfc_hbq_entry *hbqe = NULL; 3387 3388 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3389 if (i == 0) { 3390 hbqe = (struct lpfc_hbq_entry *) 3391 &irsp->un.ulpWord[0]; 3392 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3393 hbqe->bde.tus.f.bdeSize; 3394 } else if (i == 1) { 3395 hbqe = (struct lpfc_hbq_entry *) 3396 &irsp->unsli3.sli3Words[4]; 3397 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3398 } 3399 } 3400 } 3401 } 3402 3403 /** 3404 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3405 * @phba: Pointer to HBA context object. 3406 * @pring: Pointer to driver SLI ring object. 3407 * @saveq: Pointer to the unsolicited iocb. 3408 * 3409 * This function is called with no lock held by the ring event handler 3410 * when there is an unsolicited iocb posted to the response ring by the 3411 * firmware. This function gets the buffer associated with the iocbs 3412 * and calls the event handler for the ring. This function handles both 3413 * qring buffers and hbq buffers. 3414 * When the function returns 1 the caller can free the iocb object otherwise 3415 * upper layer functions will free the iocb objects. 3416 **/ 3417 static int 3418 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3419 struct lpfc_iocbq *saveq) 3420 { 3421 IOCB_t * irsp; 3422 WORD5 * w5p; 3423 dma_addr_t paddr; 3424 uint32_t Rctl, Type; 3425 struct lpfc_iocbq *iocbq; 3426 struct lpfc_dmabuf *dmzbuf; 3427 3428 irsp = &saveq->iocb; 3429 saveq->vport = phba->pport; 3430 3431 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3432 if (pring->lpfc_sli_rcv_async_status) 3433 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3434 else 3435 lpfc_printf_log(phba, 3436 KERN_WARNING, 3437 LOG_SLI, 3438 "0316 Ring %d handler: unexpected " 3439 "ASYNC_STATUS iocb received evt_code " 3440 "0x%x\n", 3441 pring->ringno, 3442 irsp->un.asyncstat.evt_code); 3443 return 1; 3444 } 3445 3446 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3447 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3448 if (irsp->ulpBdeCount > 0) { 3449 dmzbuf = lpfc_sli_get_buff(phba, pring, 3450 irsp->un.ulpWord[3]); 3451 lpfc_in_buf_free(phba, dmzbuf); 3452 } 3453 3454 if (irsp->ulpBdeCount > 1) { 3455 dmzbuf = lpfc_sli_get_buff(phba, pring, 3456 irsp->unsli3.sli3Words[3]); 3457 lpfc_in_buf_free(phba, dmzbuf); 3458 } 3459 3460 if (irsp->ulpBdeCount > 2) { 3461 dmzbuf = lpfc_sli_get_buff(phba, pring, 3462 irsp->unsli3.sli3Words[7]); 3463 lpfc_in_buf_free(phba, dmzbuf); 3464 } 3465 3466 return 1; 3467 } 3468 3469 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3470 if (irsp->ulpBdeCount != 0) { 3471 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->un.ulpWord[3]); 3473 if (!saveq->cmd_dmabuf) 3474 lpfc_printf_log(phba, 3475 KERN_ERR, 3476 LOG_SLI, 3477 "0341 Ring %d Cannot find buffer for " 3478 "an unsolicited iocb. tag 0x%x\n", 3479 pring->ringno, 3480 irsp->un.ulpWord[3]); 3481 } 3482 if (irsp->ulpBdeCount == 2) { 3483 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3484 irsp->unsli3.sli3Words[7]); 3485 if (!saveq->bpl_dmabuf) 3486 lpfc_printf_log(phba, 3487 KERN_ERR, 3488 LOG_SLI, 3489 "0342 Ring %d Cannot find buffer for an" 3490 " unsolicited iocb. tag 0x%x\n", 3491 pring->ringno, 3492 irsp->unsli3.sli3Words[7]); 3493 } 3494 list_for_each_entry(iocbq, &saveq->list, list) { 3495 irsp = &iocbq->iocb; 3496 if (irsp->ulpBdeCount != 0) { 3497 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3498 pring, 3499 irsp->un.ulpWord[3]); 3500 if (!iocbq->cmd_dmabuf) 3501 lpfc_printf_log(phba, 3502 KERN_ERR, 3503 LOG_SLI, 3504 "0343 Ring %d Cannot find " 3505 "buffer for an unsolicited iocb" 3506 ". tag 0x%x\n", pring->ringno, 3507 irsp->un.ulpWord[3]); 3508 } 3509 if (irsp->ulpBdeCount == 2) { 3510 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3511 pring, 3512 irsp->unsli3.sli3Words[7]); 3513 if (!iocbq->bpl_dmabuf) 3514 lpfc_printf_log(phba, 3515 KERN_ERR, 3516 LOG_SLI, 3517 "0344 Ring %d Cannot find " 3518 "buffer for an unsolicited " 3519 "iocb. tag 0x%x\n", 3520 pring->ringno, 3521 irsp->unsli3.sli3Words[7]); 3522 } 3523 } 3524 } else { 3525 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3526 irsp->un.cont64[0].addrLow); 3527 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3528 paddr); 3529 if (irsp->ulpBdeCount == 2) { 3530 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3531 irsp->un.cont64[1].addrLow); 3532 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3533 pring, 3534 paddr); 3535 } 3536 } 3537 3538 if (irsp->ulpBdeCount != 0 && 3539 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3540 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3541 int found = 0; 3542 3543 /* search continue save q for same XRI */ 3544 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3545 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3546 saveq->iocb.unsli3.rcvsli3.ox_id) { 3547 list_add_tail(&saveq->list, &iocbq->list); 3548 found = 1; 3549 break; 3550 } 3551 } 3552 if (!found) 3553 list_add_tail(&saveq->clist, 3554 &pring->iocb_continue_saveq); 3555 3556 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3557 list_del_init(&iocbq->clist); 3558 saveq = iocbq; 3559 irsp = &saveq->iocb; 3560 } else { 3561 return 0; 3562 } 3563 } 3564 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3565 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3566 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3567 Rctl = FC_RCTL_ELS_REQ; 3568 Type = FC_TYPE_ELS; 3569 } else { 3570 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3571 Rctl = w5p->hcsw.Rctl; 3572 Type = w5p->hcsw.Type; 3573 3574 /* Firmware Workaround */ 3575 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3576 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3577 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3578 Rctl = FC_RCTL_ELS_REQ; 3579 Type = FC_TYPE_ELS; 3580 w5p->hcsw.Rctl = Rctl; 3581 w5p->hcsw.Type = Type; 3582 } 3583 } 3584 3585 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3586 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3587 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3588 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3589 saveq->vport = phba->pport; 3590 else 3591 saveq->vport = lpfc_find_vport_by_vpid(phba, 3592 irsp->unsli3.rcvsli3.vpi); 3593 } 3594 3595 /* Prepare WQE with Unsol frame */ 3596 lpfc_sli_prep_unsol_wqe(phba, saveq); 3597 3598 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3599 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3600 "0313 Ring %d handler: unexpected Rctl x%x " 3601 "Type x%x received\n", 3602 pring->ringno, Rctl, Type); 3603 3604 return 1; 3605 } 3606 3607 /** 3608 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3609 * @phba: Pointer to HBA context object. 3610 * @pring: Pointer to driver SLI ring object. 3611 * @prspiocb: Pointer to response iocb object. 3612 * 3613 * This function looks up the iocb_lookup table to get the command iocb 3614 * corresponding to the given response iocb using the iotag of the 3615 * response iocb. The driver calls this function with the hbalock held 3616 * for SLI3 ports or the ring lock held for SLI4 ports. 3617 * This function returns the command iocb object if it finds the command 3618 * iocb else returns NULL. 3619 **/ 3620 static struct lpfc_iocbq * 3621 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3622 struct lpfc_sli_ring *pring, 3623 struct lpfc_iocbq *prspiocb) 3624 { 3625 struct lpfc_iocbq *cmd_iocb = NULL; 3626 u16 iotag; 3627 3628 if (phba->sli_rev == LPFC_SLI_REV4) 3629 iotag = get_wqe_reqtag(prspiocb); 3630 else 3631 iotag = prspiocb->iocb.ulpIoTag; 3632 3633 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3634 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3635 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3636 /* remove from txcmpl queue list */ 3637 list_del_init(&cmd_iocb->list); 3638 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3639 pring->txcmplq_cnt--; 3640 return cmd_iocb; 3641 } 3642 } 3643 3644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3645 "0317 iotag x%x is out of " 3646 "range: max iotag x%x\n", 3647 iotag, phba->sli.last_iotag); 3648 return NULL; 3649 } 3650 3651 /** 3652 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3653 * @phba: Pointer to HBA context object. 3654 * @pring: Pointer to driver SLI ring object. 3655 * @iotag: IOCB tag. 3656 * 3657 * This function looks up the iocb_lookup table to get the command iocb 3658 * corresponding to the given iotag. The driver calls this function with 3659 * the ring lock held because this function is an SLI4 port only helper. 3660 * This function returns the command iocb object if it finds the command 3661 * iocb else returns NULL. 3662 **/ 3663 static struct lpfc_iocbq * 3664 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3665 struct lpfc_sli_ring *pring, uint16_t iotag) 3666 { 3667 struct lpfc_iocbq *cmd_iocb = NULL; 3668 3669 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3670 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3671 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3672 /* remove from txcmpl queue list */ 3673 list_del_init(&cmd_iocb->list); 3674 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3675 pring->txcmplq_cnt--; 3676 return cmd_iocb; 3677 } 3678 } 3679 3680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3681 "0372 iotag x%x lookup error: max iotag (x%x) " 3682 "cmd_flag x%x\n", 3683 iotag, phba->sli.last_iotag, 3684 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3685 return NULL; 3686 } 3687 3688 /** 3689 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3690 * @phba: Pointer to HBA context object. 3691 * @pring: Pointer to driver SLI ring object. 3692 * @saveq: Pointer to the response iocb to be processed. 3693 * 3694 * This function is called by the ring event handler for non-fcp 3695 * rings when there is a new response iocb in the response ring. 3696 * The caller is not required to hold any locks. This function 3697 * gets the command iocb associated with the response iocb and 3698 * calls the completion handler for the command iocb. If there 3699 * is no completion handler, the function will free the resources 3700 * associated with command iocb. If the response iocb is for 3701 * an already aborted command iocb, the status of the completion 3702 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3703 * This function always returns 1. 3704 **/ 3705 static int 3706 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3707 struct lpfc_iocbq *saveq) 3708 { 3709 struct lpfc_iocbq *cmdiocbp; 3710 unsigned long iflag; 3711 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3712 3713 if (phba->sli_rev == LPFC_SLI_REV4) 3714 spin_lock_irqsave(&pring->ring_lock, iflag); 3715 else 3716 spin_lock_irqsave(&phba->hbalock, iflag); 3717 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3718 if (phba->sli_rev == LPFC_SLI_REV4) 3719 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3720 else 3721 spin_unlock_irqrestore(&phba->hbalock, iflag); 3722 3723 ulp_command = get_job_cmnd(phba, saveq); 3724 ulp_status = get_job_ulpstatus(phba, saveq); 3725 ulp_word4 = get_job_word4(phba, saveq); 3726 ulp_context = get_job_ulpcontext(phba, saveq); 3727 if (phba->sli_rev == LPFC_SLI_REV4) 3728 iotag = get_wqe_reqtag(saveq); 3729 else 3730 iotag = saveq->iocb.ulpIoTag; 3731 3732 if (cmdiocbp) { 3733 ulp_command = get_job_cmnd(phba, cmdiocbp); 3734 if (cmdiocbp->cmd_cmpl) { 3735 /* 3736 * If an ELS command failed send an event to mgmt 3737 * application. 3738 */ 3739 if (ulp_status && 3740 (pring->ringno == LPFC_ELS_RING) && 3741 (ulp_command == CMD_ELS_REQUEST64_CR)) 3742 lpfc_send_els_failure_event(phba, 3743 cmdiocbp, saveq); 3744 3745 /* 3746 * Post all ELS completions to the worker thread. 3747 * All other are passed to the completion callback. 3748 */ 3749 if (pring->ringno == LPFC_ELS_RING) { 3750 if ((phba->sli_rev < LPFC_SLI_REV4) && 3751 (cmdiocbp->cmd_flag & 3752 LPFC_DRIVER_ABORTED)) { 3753 spin_lock_irqsave(&phba->hbalock, 3754 iflag); 3755 cmdiocbp->cmd_flag &= 3756 ~LPFC_DRIVER_ABORTED; 3757 spin_unlock_irqrestore(&phba->hbalock, 3758 iflag); 3759 saveq->iocb.ulpStatus = 3760 IOSTAT_LOCAL_REJECT; 3761 saveq->iocb.un.ulpWord[4] = 3762 IOERR_SLI_ABORTED; 3763 3764 /* Firmware could still be in progress 3765 * of DMAing payload, so don't free data 3766 * buffer till after a hbeat. 3767 */ 3768 spin_lock_irqsave(&phba->hbalock, 3769 iflag); 3770 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3771 spin_unlock_irqrestore(&phba->hbalock, 3772 iflag); 3773 } 3774 if (phba->sli_rev == LPFC_SLI_REV4) { 3775 if (saveq->cmd_flag & 3776 LPFC_EXCHANGE_BUSY) { 3777 /* Set cmdiocb flag for the 3778 * exchange busy so sgl (xri) 3779 * will not be released until 3780 * the abort xri is received 3781 * from hba. 3782 */ 3783 spin_lock_irqsave( 3784 &phba->hbalock, iflag); 3785 cmdiocbp->cmd_flag |= 3786 LPFC_EXCHANGE_BUSY; 3787 spin_unlock_irqrestore( 3788 &phba->hbalock, iflag); 3789 } 3790 if (cmdiocbp->cmd_flag & 3791 LPFC_DRIVER_ABORTED) { 3792 /* 3793 * Clear LPFC_DRIVER_ABORTED 3794 * bit in case it was driver 3795 * initiated abort. 3796 */ 3797 spin_lock_irqsave( 3798 &phba->hbalock, iflag); 3799 cmdiocbp->cmd_flag &= 3800 ~LPFC_DRIVER_ABORTED; 3801 spin_unlock_irqrestore( 3802 &phba->hbalock, iflag); 3803 set_job_ulpstatus(cmdiocbp, 3804 IOSTAT_LOCAL_REJECT); 3805 set_job_ulpword4(cmdiocbp, 3806 IOERR_ABORT_REQUESTED); 3807 /* 3808 * For SLI4, irspiocb contains 3809 * NO_XRI in sli_xritag, it 3810 * shall not affect releasing 3811 * sgl (xri) process. 3812 */ 3813 set_job_ulpstatus(saveq, 3814 IOSTAT_LOCAL_REJECT); 3815 set_job_ulpword4(saveq, 3816 IOERR_SLI_ABORTED); 3817 spin_lock_irqsave( 3818 &phba->hbalock, iflag); 3819 saveq->cmd_flag |= 3820 LPFC_DELAY_MEM_FREE; 3821 spin_unlock_irqrestore( 3822 &phba->hbalock, iflag); 3823 } 3824 } 3825 } 3826 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3827 } else 3828 lpfc_sli_release_iocbq(phba, cmdiocbp); 3829 } else { 3830 /* 3831 * Unknown initiating command based on the response iotag. 3832 * This could be the case on the ELS ring because of 3833 * lpfc_els_abort(). 3834 */ 3835 if (pring->ringno != LPFC_ELS_RING) { 3836 /* 3837 * Ring <ringno> handler: unexpected completion IoTag 3838 * <IoTag> 3839 */ 3840 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3841 "0322 Ring %d handler: " 3842 "unexpected completion IoTag x%x " 3843 "Data: x%x x%x x%x x%x\n", 3844 pring->ringno, iotag, ulp_status, 3845 ulp_word4, ulp_command, ulp_context); 3846 } 3847 } 3848 3849 return 1; 3850 } 3851 3852 /** 3853 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3854 * @phba: Pointer to HBA context object. 3855 * @pring: Pointer to driver SLI ring object. 3856 * 3857 * This function is called from the iocb ring event handlers when 3858 * put pointer is ahead of the get pointer for a ring. This function signal 3859 * an error attention condition to the worker thread and the worker 3860 * thread will transition the HBA to offline state. 3861 **/ 3862 static void 3863 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3864 { 3865 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3866 /* 3867 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3868 * rsp ring <portRspMax> 3869 */ 3870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3871 "0312 Ring %d handler: portRspPut %d " 3872 "is bigger than rsp ring %d\n", 3873 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3874 pring->sli.sli3.numRiocb); 3875 3876 phba->link_state = LPFC_HBA_ERROR; 3877 3878 /* 3879 * All error attention handlers are posted to 3880 * worker thread 3881 */ 3882 phba->work_ha |= HA_ERATT; 3883 phba->work_hs = HS_FFER3; 3884 3885 lpfc_worker_wake_up(phba); 3886 3887 return; 3888 } 3889 3890 /** 3891 * lpfc_poll_eratt - Error attention polling timer timeout handler 3892 * @t: Context to fetch pointer to address of HBA context object from. 3893 * 3894 * This function is invoked by the Error Attention polling timer when the 3895 * timer times out. It will check the SLI Error Attention register for 3896 * possible attention events. If so, it will post an Error Attention event 3897 * and wake up worker thread to process it. Otherwise, it will set up the 3898 * Error Attention polling timer for the next poll. 3899 **/ 3900 void lpfc_poll_eratt(struct timer_list *t) 3901 { 3902 struct lpfc_hba *phba; 3903 uint32_t eratt = 0; 3904 uint64_t sli_intr, cnt; 3905 3906 phba = from_timer(phba, t, eratt_poll); 3907 3908 /* Here we will also keep track of interrupts per sec of the hba */ 3909 sli_intr = phba->sli.slistat.sli_intr; 3910 3911 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3912 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3913 sli_intr); 3914 else 3915 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3916 3917 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3918 do_div(cnt, phba->eratt_poll_interval); 3919 phba->sli.slistat.sli_ips = cnt; 3920 3921 phba->sli.slistat.sli_prev_intr = sli_intr; 3922 3923 /* Check chip HA register for error event */ 3924 eratt = lpfc_sli_check_eratt(phba); 3925 3926 if (eratt) 3927 /* Tell the worker thread there is work to do */ 3928 lpfc_worker_wake_up(phba); 3929 else 3930 /* Restart the timer for next eratt poll */ 3931 mod_timer(&phba->eratt_poll, 3932 jiffies + 3933 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3934 return; 3935 } 3936 3937 3938 /** 3939 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3940 * @phba: Pointer to HBA context object. 3941 * @pring: Pointer to driver SLI ring object. 3942 * @mask: Host attention register mask for this ring. 3943 * 3944 * This function is called from the interrupt context when there is a ring 3945 * event for the fcp ring. The caller does not hold any lock. 3946 * The function processes each response iocb in the response ring until it 3947 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3948 * LE bit set. The function will call the completion handler of the command iocb 3949 * if the response iocb indicates a completion for a command iocb or it is 3950 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3951 * function if this is an unsolicited iocb. 3952 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3953 * to check it explicitly. 3954 */ 3955 int 3956 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3957 struct lpfc_sli_ring *pring, uint32_t mask) 3958 { 3959 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3960 IOCB_t *irsp = NULL; 3961 IOCB_t *entry = NULL; 3962 struct lpfc_iocbq *cmdiocbq = NULL; 3963 struct lpfc_iocbq rspiocbq; 3964 uint32_t status; 3965 uint32_t portRspPut, portRspMax; 3966 int rc = 1; 3967 lpfc_iocb_type type; 3968 unsigned long iflag; 3969 uint32_t rsp_cmpl = 0; 3970 3971 spin_lock_irqsave(&phba->hbalock, iflag); 3972 pring->stats.iocb_event++; 3973 3974 /* 3975 * The next available response entry should never exceed the maximum 3976 * entries. If it does, treat it as an adapter hardware error. 3977 */ 3978 portRspMax = pring->sli.sli3.numRiocb; 3979 portRspPut = le32_to_cpu(pgp->rspPutInx); 3980 if (unlikely(portRspPut >= portRspMax)) { 3981 lpfc_sli_rsp_pointers_error(phba, pring); 3982 spin_unlock_irqrestore(&phba->hbalock, iflag); 3983 return 1; 3984 } 3985 if (phba->fcp_ring_in_use) { 3986 spin_unlock_irqrestore(&phba->hbalock, iflag); 3987 return 1; 3988 } else 3989 phba->fcp_ring_in_use = 1; 3990 3991 rmb(); 3992 while (pring->sli.sli3.rspidx != portRspPut) { 3993 /* 3994 * Fetch an entry off the ring and copy it into a local data 3995 * structure. The copy involves a byte-swap since the 3996 * network byte order and pci byte orders are different. 3997 */ 3998 entry = lpfc_resp_iocb(phba, pring); 3999 phba->last_completion_time = jiffies; 4000 4001 if (++pring->sli.sli3.rspidx >= portRspMax) 4002 pring->sli.sli3.rspidx = 0; 4003 4004 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4005 (uint32_t *) &rspiocbq.iocb, 4006 phba->iocb_rsp_size); 4007 INIT_LIST_HEAD(&(rspiocbq.list)); 4008 irsp = &rspiocbq.iocb; 4009 4010 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4011 pring->stats.iocb_rsp++; 4012 rsp_cmpl++; 4013 4014 if (unlikely(irsp->ulpStatus)) { 4015 /* 4016 * If resource errors reported from HBA, reduce 4017 * queuedepths of the SCSI device. 4018 */ 4019 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4020 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4021 IOERR_NO_RESOURCES)) { 4022 spin_unlock_irqrestore(&phba->hbalock, iflag); 4023 phba->lpfc_rampdown_queue_depth(phba); 4024 spin_lock_irqsave(&phba->hbalock, iflag); 4025 } 4026 4027 /* Rsp ring <ringno> error: IOCB */ 4028 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4029 "0336 Rsp Ring %d error: IOCB Data: " 4030 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4031 pring->ringno, 4032 irsp->un.ulpWord[0], 4033 irsp->un.ulpWord[1], 4034 irsp->un.ulpWord[2], 4035 irsp->un.ulpWord[3], 4036 irsp->un.ulpWord[4], 4037 irsp->un.ulpWord[5], 4038 *(uint32_t *)&irsp->un1, 4039 *((uint32_t *)&irsp->un1 + 1)); 4040 } 4041 4042 switch (type) { 4043 case LPFC_ABORT_IOCB: 4044 case LPFC_SOL_IOCB: 4045 /* 4046 * Idle exchange closed via ABTS from port. No iocb 4047 * resources need to be recovered. 4048 */ 4049 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4050 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4051 "0333 IOCB cmd 0x%x" 4052 " processed. Skipping" 4053 " completion\n", 4054 irsp->ulpCommand); 4055 break; 4056 } 4057 4058 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4059 &rspiocbq); 4060 if (unlikely(!cmdiocbq)) 4061 break; 4062 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4063 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4064 if (cmdiocbq->cmd_cmpl) { 4065 spin_unlock_irqrestore(&phba->hbalock, iflag); 4066 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4067 spin_lock_irqsave(&phba->hbalock, iflag); 4068 } 4069 break; 4070 case LPFC_UNSOL_IOCB: 4071 spin_unlock_irqrestore(&phba->hbalock, iflag); 4072 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4073 spin_lock_irqsave(&phba->hbalock, iflag); 4074 break; 4075 default: 4076 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4077 char adaptermsg[LPFC_MAX_ADPTMSG]; 4078 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4079 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4080 MAX_MSG_DATA); 4081 dev_warn(&((phba->pcidev)->dev), 4082 "lpfc%d: %s\n", 4083 phba->brd_no, adaptermsg); 4084 } else { 4085 /* Unknown IOCB command */ 4086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4087 "0334 Unknown IOCB command " 4088 "Data: x%x, x%x x%x x%x x%x\n", 4089 type, irsp->ulpCommand, 4090 irsp->ulpStatus, 4091 irsp->ulpIoTag, 4092 irsp->ulpContext); 4093 } 4094 break; 4095 } 4096 4097 /* 4098 * The response IOCB has been processed. Update the ring 4099 * pointer in SLIM. If the port response put pointer has not 4100 * been updated, sync the pgp->rspPutInx and fetch the new port 4101 * response put pointer. 4102 */ 4103 writel(pring->sli.sli3.rspidx, 4104 &phba->host_gp[pring->ringno].rspGetInx); 4105 4106 if (pring->sli.sli3.rspidx == portRspPut) 4107 portRspPut = le32_to_cpu(pgp->rspPutInx); 4108 } 4109 4110 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4111 pring->stats.iocb_rsp_full++; 4112 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4113 writel(status, phba->CAregaddr); 4114 readl(phba->CAregaddr); 4115 } 4116 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4117 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4118 pring->stats.iocb_cmd_empty++; 4119 4120 /* Force update of the local copy of cmdGetInx */ 4121 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4122 lpfc_sli_resume_iocb(phba, pring); 4123 4124 if ((pring->lpfc_sli_cmd_available)) 4125 (pring->lpfc_sli_cmd_available) (phba, pring); 4126 4127 } 4128 4129 phba->fcp_ring_in_use = 0; 4130 spin_unlock_irqrestore(&phba->hbalock, iflag); 4131 return rc; 4132 } 4133 4134 /** 4135 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4136 * @phba: Pointer to HBA context object. 4137 * @pring: Pointer to driver SLI ring object. 4138 * @rspiocbp: Pointer to driver response IOCB object. 4139 * 4140 * This function is called from the worker thread when there is a slow-path 4141 * response IOCB to process. This function chains all the response iocbs until 4142 * seeing the iocb with the LE bit set. The function will call 4143 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4144 * completion of a command iocb. The function will call the 4145 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4146 * The function frees the resources or calls the completion handler if this 4147 * iocb is an abort completion. The function returns NULL when the response 4148 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4149 * this function shall chain the iocb on to the iocb_continueq and return the 4150 * response iocb passed in. 4151 **/ 4152 static struct lpfc_iocbq * 4153 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4154 struct lpfc_iocbq *rspiocbp) 4155 { 4156 struct lpfc_iocbq *saveq; 4157 struct lpfc_iocbq *cmdiocb; 4158 struct lpfc_iocbq *next_iocb; 4159 IOCB_t *irsp; 4160 uint32_t free_saveq; 4161 u8 cmd_type; 4162 lpfc_iocb_type type; 4163 unsigned long iflag; 4164 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4165 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4166 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4167 int rc; 4168 4169 spin_lock_irqsave(&phba->hbalock, iflag); 4170 /* First add the response iocb to the countinueq list */ 4171 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4172 pring->iocb_continueq_cnt++; 4173 4174 /* 4175 * By default, the driver expects to free all resources 4176 * associated with this iocb completion. 4177 */ 4178 free_saveq = 1; 4179 saveq = list_get_first(&pring->iocb_continueq, 4180 struct lpfc_iocbq, list); 4181 list_del_init(&pring->iocb_continueq); 4182 pring->iocb_continueq_cnt = 0; 4183 4184 pring->stats.iocb_rsp++; 4185 4186 /* 4187 * If resource errors reported from HBA, reduce 4188 * queuedepths of the SCSI device. 4189 */ 4190 if (ulp_status == IOSTAT_LOCAL_REJECT && 4191 ((ulp_word4 & IOERR_PARAM_MASK) == 4192 IOERR_NO_RESOURCES)) { 4193 spin_unlock_irqrestore(&phba->hbalock, iflag); 4194 phba->lpfc_rampdown_queue_depth(phba); 4195 spin_lock_irqsave(&phba->hbalock, iflag); 4196 } 4197 4198 if (ulp_status) { 4199 /* Rsp ring <ringno> error: IOCB */ 4200 if (phba->sli_rev < LPFC_SLI_REV4) { 4201 irsp = &rspiocbp->iocb; 4202 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4203 "0328 Rsp Ring %d error: ulp_status x%x " 4204 "IOCB Data: " 4205 "x%08x x%08x x%08x x%08x " 4206 "x%08x x%08x x%08x x%08x " 4207 "x%08x x%08x x%08x x%08x " 4208 "x%08x x%08x x%08x x%08x\n", 4209 pring->ringno, ulp_status, 4210 get_job_ulpword(rspiocbp, 0), 4211 get_job_ulpword(rspiocbp, 1), 4212 get_job_ulpword(rspiocbp, 2), 4213 get_job_ulpword(rspiocbp, 3), 4214 get_job_ulpword(rspiocbp, 4), 4215 get_job_ulpword(rspiocbp, 5), 4216 *(((uint32_t *)irsp) + 6), 4217 *(((uint32_t *)irsp) + 7), 4218 *(((uint32_t *)irsp) + 8), 4219 *(((uint32_t *)irsp) + 9), 4220 *(((uint32_t *)irsp) + 10), 4221 *(((uint32_t *)irsp) + 11), 4222 *(((uint32_t *)irsp) + 12), 4223 *(((uint32_t *)irsp) + 13), 4224 *(((uint32_t *)irsp) + 14), 4225 *(((uint32_t *)irsp) + 15)); 4226 } else { 4227 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4228 "0321 Rsp Ring %d error: " 4229 "IOCB Data: " 4230 "x%x x%x x%x x%x\n", 4231 pring->ringno, 4232 rspiocbp->wcqe_cmpl.word0, 4233 rspiocbp->wcqe_cmpl.total_data_placed, 4234 rspiocbp->wcqe_cmpl.parameter, 4235 rspiocbp->wcqe_cmpl.word3); 4236 } 4237 } 4238 4239 4240 /* 4241 * Fetch the iocb command type and call the correct completion 4242 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4243 * get freed back to the lpfc_iocb_list by the discovery 4244 * kernel thread. 4245 */ 4246 cmd_type = ulp_command & CMD_IOCB_MASK; 4247 type = lpfc_sli_iocb_cmd_type(cmd_type); 4248 switch (type) { 4249 case LPFC_SOL_IOCB: 4250 spin_unlock_irqrestore(&phba->hbalock, iflag); 4251 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4252 spin_lock_irqsave(&phba->hbalock, iflag); 4253 break; 4254 case LPFC_UNSOL_IOCB: 4255 spin_unlock_irqrestore(&phba->hbalock, iflag); 4256 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4257 spin_lock_irqsave(&phba->hbalock, iflag); 4258 if (!rc) 4259 free_saveq = 0; 4260 break; 4261 case LPFC_ABORT_IOCB: 4262 cmdiocb = NULL; 4263 if (ulp_command != CMD_XRI_ABORTED_CX) 4264 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4265 saveq); 4266 if (cmdiocb) { 4267 /* Call the specified completion routine */ 4268 if (cmdiocb->cmd_cmpl) { 4269 spin_unlock_irqrestore(&phba->hbalock, iflag); 4270 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4271 spin_lock_irqsave(&phba->hbalock, iflag); 4272 } else { 4273 __lpfc_sli_release_iocbq(phba, cmdiocb); 4274 } 4275 } 4276 break; 4277 case LPFC_UNKNOWN_IOCB: 4278 if (ulp_command == CMD_ADAPTER_MSG) { 4279 char adaptermsg[LPFC_MAX_ADPTMSG]; 4280 4281 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4282 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4283 MAX_MSG_DATA); 4284 dev_warn(&((phba->pcidev)->dev), 4285 "lpfc%d: %s\n", 4286 phba->brd_no, adaptermsg); 4287 } else { 4288 /* Unknown command */ 4289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4290 "0335 Unknown IOCB " 4291 "command Data: x%x " 4292 "x%x x%x x%x\n", 4293 ulp_command, 4294 ulp_status, 4295 get_wqe_reqtag(rspiocbp), 4296 get_job_ulpcontext(phba, rspiocbp)); 4297 } 4298 break; 4299 } 4300 4301 if (free_saveq) { 4302 list_for_each_entry_safe(rspiocbp, next_iocb, 4303 &saveq->list, list) { 4304 list_del_init(&rspiocbp->list); 4305 __lpfc_sli_release_iocbq(phba, rspiocbp); 4306 } 4307 __lpfc_sli_release_iocbq(phba, saveq); 4308 } 4309 rspiocbp = NULL; 4310 spin_unlock_irqrestore(&phba->hbalock, iflag); 4311 return rspiocbp; 4312 } 4313 4314 /** 4315 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4316 * @phba: Pointer to HBA context object. 4317 * @pring: Pointer to driver SLI ring object. 4318 * @mask: Host attention register mask for this ring. 4319 * 4320 * This routine wraps the actual slow_ring event process routine from the 4321 * API jump table function pointer from the lpfc_hba struct. 4322 **/ 4323 void 4324 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4325 struct lpfc_sli_ring *pring, uint32_t mask) 4326 { 4327 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4328 } 4329 4330 /** 4331 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4332 * @phba: Pointer to HBA context object. 4333 * @pring: Pointer to driver SLI ring object. 4334 * @mask: Host attention register mask for this ring. 4335 * 4336 * This function is called from the worker thread when there is a ring event 4337 * for non-fcp rings. The caller does not hold any lock. The function will 4338 * remove each response iocb in the response ring and calls the handle 4339 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4340 **/ 4341 static void 4342 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4343 struct lpfc_sli_ring *pring, uint32_t mask) 4344 { 4345 struct lpfc_pgp *pgp; 4346 IOCB_t *entry; 4347 IOCB_t *irsp = NULL; 4348 struct lpfc_iocbq *rspiocbp = NULL; 4349 uint32_t portRspPut, portRspMax; 4350 unsigned long iflag; 4351 uint32_t status; 4352 4353 pgp = &phba->port_gp[pring->ringno]; 4354 spin_lock_irqsave(&phba->hbalock, iflag); 4355 pring->stats.iocb_event++; 4356 4357 /* 4358 * The next available response entry should never exceed the maximum 4359 * entries. If it does, treat it as an adapter hardware error. 4360 */ 4361 portRspMax = pring->sli.sli3.numRiocb; 4362 portRspPut = le32_to_cpu(pgp->rspPutInx); 4363 if (portRspPut >= portRspMax) { 4364 /* 4365 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4366 * rsp ring <portRspMax> 4367 */ 4368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4369 "0303 Ring %d handler: portRspPut %d " 4370 "is bigger than rsp ring %d\n", 4371 pring->ringno, portRspPut, portRspMax); 4372 4373 phba->link_state = LPFC_HBA_ERROR; 4374 spin_unlock_irqrestore(&phba->hbalock, iflag); 4375 4376 phba->work_hs = HS_FFER3; 4377 lpfc_handle_eratt(phba); 4378 4379 return; 4380 } 4381 4382 rmb(); 4383 while (pring->sli.sli3.rspidx != portRspPut) { 4384 /* 4385 * Build a completion list and call the appropriate handler. 4386 * The process is to get the next available response iocb, get 4387 * a free iocb from the list, copy the response data into the 4388 * free iocb, insert to the continuation list, and update the 4389 * next response index to slim. This process makes response 4390 * iocb's in the ring available to DMA as fast as possible but 4391 * pays a penalty for a copy operation. Since the iocb is 4392 * only 32 bytes, this penalty is considered small relative to 4393 * the PCI reads for register values and a slim write. When 4394 * the ulpLe field is set, the entire Command has been 4395 * received. 4396 */ 4397 entry = lpfc_resp_iocb(phba, pring); 4398 4399 phba->last_completion_time = jiffies; 4400 rspiocbp = __lpfc_sli_get_iocbq(phba); 4401 if (rspiocbp == NULL) { 4402 printk(KERN_ERR "%s: out of buffers! Failing " 4403 "completion.\n", __func__); 4404 break; 4405 } 4406 4407 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4408 phba->iocb_rsp_size); 4409 irsp = &rspiocbp->iocb; 4410 4411 if (++pring->sli.sli3.rspidx >= portRspMax) 4412 pring->sli.sli3.rspidx = 0; 4413 4414 if (pring->ringno == LPFC_ELS_RING) { 4415 lpfc_debugfs_slow_ring_trc(phba, 4416 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4417 *(((uint32_t *) irsp) + 4), 4418 *(((uint32_t *) irsp) + 6), 4419 *(((uint32_t *) irsp) + 7)); 4420 } 4421 4422 writel(pring->sli.sli3.rspidx, 4423 &phba->host_gp[pring->ringno].rspGetInx); 4424 4425 spin_unlock_irqrestore(&phba->hbalock, iflag); 4426 /* Handle the response IOCB */ 4427 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4428 spin_lock_irqsave(&phba->hbalock, iflag); 4429 4430 /* 4431 * If the port response put pointer has not been updated, sync 4432 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4433 * response put pointer. 4434 */ 4435 if (pring->sli.sli3.rspidx == portRspPut) { 4436 portRspPut = le32_to_cpu(pgp->rspPutInx); 4437 } 4438 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4439 4440 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4441 /* At least one response entry has been freed */ 4442 pring->stats.iocb_rsp_full++; 4443 /* SET RxRE_RSP in Chip Att register */ 4444 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4445 writel(status, phba->CAregaddr); 4446 readl(phba->CAregaddr); /* flush */ 4447 } 4448 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4449 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4450 pring->stats.iocb_cmd_empty++; 4451 4452 /* Force update of the local copy of cmdGetInx */ 4453 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4454 lpfc_sli_resume_iocb(phba, pring); 4455 4456 if ((pring->lpfc_sli_cmd_available)) 4457 (pring->lpfc_sli_cmd_available) (phba, pring); 4458 4459 } 4460 4461 spin_unlock_irqrestore(&phba->hbalock, iflag); 4462 return; 4463 } 4464 4465 /** 4466 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4467 * @phba: Pointer to HBA context object. 4468 * @pring: Pointer to driver SLI ring object. 4469 * @mask: Host attention register mask for this ring. 4470 * 4471 * This function is called from the worker thread when there is a pending 4472 * ELS response iocb on the driver internal slow-path response iocb worker 4473 * queue. The caller does not hold any lock. The function will remove each 4474 * response iocb from the response worker queue and calls the handle 4475 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4476 **/ 4477 static void 4478 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4479 struct lpfc_sli_ring *pring, uint32_t mask) 4480 { 4481 struct lpfc_iocbq *irspiocbq; 4482 struct hbq_dmabuf *dmabuf; 4483 struct lpfc_cq_event *cq_event; 4484 unsigned long iflag; 4485 int count = 0; 4486 4487 spin_lock_irqsave(&phba->hbalock, iflag); 4488 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4489 spin_unlock_irqrestore(&phba->hbalock, iflag); 4490 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4491 /* Get the response iocb from the head of work queue */ 4492 spin_lock_irqsave(&phba->hbalock, iflag); 4493 list_remove_head(&phba->sli4_hba.sp_queue_event, 4494 cq_event, struct lpfc_cq_event, list); 4495 spin_unlock_irqrestore(&phba->hbalock, iflag); 4496 4497 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4498 case CQE_CODE_COMPL_WQE: 4499 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4500 cq_event); 4501 /* Translate ELS WCQE to response IOCBQ */ 4502 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4503 irspiocbq); 4504 if (irspiocbq) 4505 lpfc_sli_sp_handle_rspiocb(phba, pring, 4506 irspiocbq); 4507 count++; 4508 break; 4509 case CQE_CODE_RECEIVE: 4510 case CQE_CODE_RECEIVE_V1: 4511 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4512 cq_event); 4513 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4514 count++; 4515 break; 4516 default: 4517 break; 4518 } 4519 4520 /* Limit the number of events to 64 to avoid soft lockups */ 4521 if (count == 64) 4522 break; 4523 } 4524 } 4525 4526 /** 4527 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4528 * @phba: Pointer to HBA context object. 4529 * @pring: Pointer to driver SLI ring object. 4530 * 4531 * This function aborts all iocbs in the given ring and frees all the iocb 4532 * objects in txq. This function issues an abort iocb for all the iocb commands 4533 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4534 * the return of this function. The caller is not required to hold any locks. 4535 **/ 4536 void 4537 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4538 { 4539 LIST_HEAD(tx_completions); 4540 LIST_HEAD(txcmplq_completions); 4541 struct lpfc_iocbq *iocb, *next_iocb; 4542 int offline; 4543 4544 if (pring->ringno == LPFC_ELS_RING) { 4545 lpfc_fabric_abort_hba(phba); 4546 } 4547 offline = pci_channel_offline(phba->pcidev); 4548 4549 /* Error everything on txq and txcmplq 4550 * First do the txq. 4551 */ 4552 if (phba->sli_rev >= LPFC_SLI_REV4) { 4553 spin_lock_irq(&pring->ring_lock); 4554 list_splice_init(&pring->txq, &tx_completions); 4555 pring->txq_cnt = 0; 4556 4557 if (offline) { 4558 list_splice_init(&pring->txcmplq, 4559 &txcmplq_completions); 4560 } else { 4561 /* Next issue ABTS for everything on the txcmplq */ 4562 list_for_each_entry_safe(iocb, next_iocb, 4563 &pring->txcmplq, list) 4564 lpfc_sli_issue_abort_iotag(phba, pring, 4565 iocb, NULL); 4566 } 4567 spin_unlock_irq(&pring->ring_lock); 4568 } else { 4569 spin_lock_irq(&phba->hbalock); 4570 list_splice_init(&pring->txq, &tx_completions); 4571 pring->txq_cnt = 0; 4572 4573 if (offline) { 4574 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4575 } else { 4576 /* Next issue ABTS for everything on the txcmplq */ 4577 list_for_each_entry_safe(iocb, next_iocb, 4578 &pring->txcmplq, list) 4579 lpfc_sli_issue_abort_iotag(phba, pring, 4580 iocb, NULL); 4581 } 4582 spin_unlock_irq(&phba->hbalock); 4583 } 4584 4585 if (offline) { 4586 /* Cancel all the IOCBs from the completions list */ 4587 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4588 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4589 } else { 4590 /* Make sure HBA is alive */ 4591 lpfc_issue_hb_tmo(phba); 4592 } 4593 /* Cancel all the IOCBs from the completions list */ 4594 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4595 IOERR_SLI_ABORTED); 4596 } 4597 4598 /** 4599 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4600 * @phba: Pointer to HBA context object. 4601 * 4602 * This function aborts all iocbs in FCP rings and frees all the iocb 4603 * objects in txq. This function issues an abort iocb for all the iocb commands 4604 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4605 * the return of this function. The caller is not required to hold any locks. 4606 **/ 4607 void 4608 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4609 { 4610 struct lpfc_sli *psli = &phba->sli; 4611 struct lpfc_sli_ring *pring; 4612 uint32_t i; 4613 4614 /* Look on all the FCP Rings for the iotag */ 4615 if (phba->sli_rev >= LPFC_SLI_REV4) { 4616 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4617 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4618 lpfc_sli_abort_iocb_ring(phba, pring); 4619 } 4620 } else { 4621 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4622 lpfc_sli_abort_iocb_ring(phba, pring); 4623 } 4624 } 4625 4626 /** 4627 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4628 * @phba: Pointer to HBA context object. 4629 * 4630 * This function flushes all iocbs in the IO ring and frees all the iocb 4631 * objects in txq and txcmplq. This function will not issue abort iocbs 4632 * for all the iocb commands in txcmplq, they will just be returned with 4633 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4634 * slot has been permanently disabled. 4635 **/ 4636 void 4637 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4638 { 4639 LIST_HEAD(txq); 4640 LIST_HEAD(txcmplq); 4641 struct lpfc_sli *psli = &phba->sli; 4642 struct lpfc_sli_ring *pring; 4643 uint32_t i; 4644 struct lpfc_iocbq *piocb, *next_iocb; 4645 4646 spin_lock_irq(&phba->hbalock); 4647 /* Indicate the I/O queues are flushed */ 4648 phba->hba_flag |= HBA_IOQ_FLUSH; 4649 spin_unlock_irq(&phba->hbalock); 4650 4651 /* Look on all the FCP Rings for the iotag */ 4652 if (phba->sli_rev >= LPFC_SLI_REV4) { 4653 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4654 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4655 4656 spin_lock_irq(&pring->ring_lock); 4657 /* Retrieve everything on txq */ 4658 list_splice_init(&pring->txq, &txq); 4659 list_for_each_entry_safe(piocb, next_iocb, 4660 &pring->txcmplq, list) 4661 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4662 /* Retrieve everything on the txcmplq */ 4663 list_splice_init(&pring->txcmplq, &txcmplq); 4664 pring->txq_cnt = 0; 4665 pring->txcmplq_cnt = 0; 4666 spin_unlock_irq(&pring->ring_lock); 4667 4668 /* Flush the txq */ 4669 lpfc_sli_cancel_iocbs(phba, &txq, 4670 IOSTAT_LOCAL_REJECT, 4671 IOERR_SLI_DOWN); 4672 /* Flush the txcmplq */ 4673 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4674 IOSTAT_LOCAL_REJECT, 4675 IOERR_SLI_DOWN); 4676 if (unlikely(pci_channel_offline(phba->pcidev))) 4677 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4678 } 4679 } else { 4680 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4681 4682 spin_lock_irq(&phba->hbalock); 4683 /* Retrieve everything on txq */ 4684 list_splice_init(&pring->txq, &txq); 4685 list_for_each_entry_safe(piocb, next_iocb, 4686 &pring->txcmplq, list) 4687 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4688 /* Retrieve everything on the txcmplq */ 4689 list_splice_init(&pring->txcmplq, &txcmplq); 4690 pring->txq_cnt = 0; 4691 pring->txcmplq_cnt = 0; 4692 spin_unlock_irq(&phba->hbalock); 4693 4694 /* Flush the txq */ 4695 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4696 IOERR_SLI_DOWN); 4697 /* Flush the txcmpq */ 4698 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4699 IOERR_SLI_DOWN); 4700 } 4701 } 4702 4703 /** 4704 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4705 * @phba: Pointer to HBA context object. 4706 * @mask: Bit mask to be checked. 4707 * 4708 * This function reads the host status register and compares 4709 * with the provided bit mask to check if HBA completed 4710 * the restart. This function will wait in a loop for the 4711 * HBA to complete restart. If the HBA does not restart within 4712 * 15 iterations, the function will reset the HBA again. The 4713 * function returns 1 when HBA fail to restart otherwise returns 4714 * zero. 4715 **/ 4716 static int 4717 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4718 { 4719 uint32_t status; 4720 int i = 0; 4721 int retval = 0; 4722 4723 /* Read the HBA Host Status Register */ 4724 if (lpfc_readl(phba->HSregaddr, &status)) 4725 return 1; 4726 4727 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4728 4729 /* 4730 * Check status register every 100ms for 5 retries, then every 4731 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4732 * every 2.5 sec for 4. 4733 * Break our of the loop if errors occurred during init. 4734 */ 4735 while (((status & mask) != mask) && 4736 !(status & HS_FFERM) && 4737 i++ < 20) { 4738 4739 if (i <= 5) 4740 msleep(10); 4741 else if (i <= 10) 4742 msleep(500); 4743 else 4744 msleep(2500); 4745 4746 if (i == 15) { 4747 /* Do post */ 4748 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4749 lpfc_sli_brdrestart(phba); 4750 } 4751 /* Read the HBA Host Status Register */ 4752 if (lpfc_readl(phba->HSregaddr, &status)) { 4753 retval = 1; 4754 break; 4755 } 4756 } 4757 4758 /* Check to see if any errors occurred during init */ 4759 if ((status & HS_FFERM) || (i >= 20)) { 4760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4761 "2751 Adapter failed to restart, " 4762 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4763 status, 4764 readl(phba->MBslimaddr + 0xa8), 4765 readl(phba->MBslimaddr + 0xac)); 4766 phba->link_state = LPFC_HBA_ERROR; 4767 retval = 1; 4768 } 4769 4770 return retval; 4771 } 4772 4773 /** 4774 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4775 * @phba: Pointer to HBA context object. 4776 * @mask: Bit mask to be checked. 4777 * 4778 * This function checks the host status register to check if HBA is 4779 * ready. This function will wait in a loop for the HBA to be ready 4780 * If the HBA is not ready , the function will will reset the HBA PCI 4781 * function again. The function returns 1 when HBA fail to be ready 4782 * otherwise returns zero. 4783 **/ 4784 static int 4785 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4786 { 4787 uint32_t status; 4788 int retval = 0; 4789 4790 /* Read the HBA Host Status Register */ 4791 status = lpfc_sli4_post_status_check(phba); 4792 4793 if (status) { 4794 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4795 lpfc_sli_brdrestart(phba); 4796 status = lpfc_sli4_post_status_check(phba); 4797 } 4798 4799 /* Check to see if any errors occurred during init */ 4800 if (status) { 4801 phba->link_state = LPFC_HBA_ERROR; 4802 retval = 1; 4803 } else 4804 phba->sli4_hba.intr_enable = 0; 4805 4806 phba->hba_flag &= ~HBA_SETUP; 4807 return retval; 4808 } 4809 4810 /** 4811 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4812 * @phba: Pointer to HBA context object. 4813 * @mask: Bit mask to be checked. 4814 * 4815 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4816 * from the API jump table function pointer from the lpfc_hba struct. 4817 **/ 4818 int 4819 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4820 { 4821 return phba->lpfc_sli_brdready(phba, mask); 4822 } 4823 4824 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4825 4826 /** 4827 * lpfc_reset_barrier - Make HBA ready for HBA reset 4828 * @phba: Pointer to HBA context object. 4829 * 4830 * This function is called before resetting an HBA. This function is called 4831 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4832 **/ 4833 void lpfc_reset_barrier(struct lpfc_hba *phba) 4834 { 4835 uint32_t __iomem *resp_buf; 4836 uint32_t __iomem *mbox_buf; 4837 volatile struct MAILBOX_word0 mbox; 4838 uint32_t hc_copy, ha_copy, resp_data; 4839 int i; 4840 uint8_t hdrtype; 4841 4842 lockdep_assert_held(&phba->hbalock); 4843 4844 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4845 if (hdrtype != 0x80 || 4846 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4847 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4848 return; 4849 4850 /* 4851 * Tell the other part of the chip to suspend temporarily all 4852 * its DMA activity. 4853 */ 4854 resp_buf = phba->MBslimaddr; 4855 4856 /* Disable the error attention */ 4857 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4858 return; 4859 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4860 readl(phba->HCregaddr); /* flush */ 4861 phba->link_flag |= LS_IGNORE_ERATT; 4862 4863 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4864 return; 4865 if (ha_copy & HA_ERATT) { 4866 /* Clear Chip error bit */ 4867 writel(HA_ERATT, phba->HAregaddr); 4868 phba->pport->stopped = 1; 4869 } 4870 4871 mbox.word0 = 0; 4872 mbox.mbxCommand = MBX_KILL_BOARD; 4873 mbox.mbxOwner = OWN_CHIP; 4874 4875 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4876 mbox_buf = phba->MBslimaddr; 4877 writel(mbox.word0, mbox_buf); 4878 4879 for (i = 0; i < 50; i++) { 4880 if (lpfc_readl((resp_buf + 1), &resp_data)) 4881 return; 4882 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4883 mdelay(1); 4884 else 4885 break; 4886 } 4887 resp_data = 0; 4888 if (lpfc_readl((resp_buf + 1), &resp_data)) 4889 return; 4890 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4891 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4892 phba->pport->stopped) 4893 goto restore_hc; 4894 else 4895 goto clear_errat; 4896 } 4897 4898 mbox.mbxOwner = OWN_HOST; 4899 resp_data = 0; 4900 for (i = 0; i < 500; i++) { 4901 if (lpfc_readl(resp_buf, &resp_data)) 4902 return; 4903 if (resp_data != mbox.word0) 4904 mdelay(1); 4905 else 4906 break; 4907 } 4908 4909 clear_errat: 4910 4911 while (++i < 500) { 4912 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4913 return; 4914 if (!(ha_copy & HA_ERATT)) 4915 mdelay(1); 4916 else 4917 break; 4918 } 4919 4920 if (readl(phba->HAregaddr) & HA_ERATT) { 4921 writel(HA_ERATT, phba->HAregaddr); 4922 phba->pport->stopped = 1; 4923 } 4924 4925 restore_hc: 4926 phba->link_flag &= ~LS_IGNORE_ERATT; 4927 writel(hc_copy, phba->HCregaddr); 4928 readl(phba->HCregaddr); /* flush */ 4929 } 4930 4931 /** 4932 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4933 * @phba: Pointer to HBA context object. 4934 * 4935 * This function issues a kill_board mailbox command and waits for 4936 * the error attention interrupt. This function is called for stopping 4937 * the firmware processing. The caller is not required to hold any 4938 * locks. This function calls lpfc_hba_down_post function to free 4939 * any pending commands after the kill. The function will return 1 when it 4940 * fails to kill the board else will return 0. 4941 **/ 4942 int 4943 lpfc_sli_brdkill(struct lpfc_hba *phba) 4944 { 4945 struct lpfc_sli *psli; 4946 LPFC_MBOXQ_t *pmb; 4947 uint32_t status; 4948 uint32_t ha_copy; 4949 int retval; 4950 int i = 0; 4951 4952 psli = &phba->sli; 4953 4954 /* Kill HBA */ 4955 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4956 "0329 Kill HBA Data: x%x x%x\n", 4957 phba->pport->port_state, psli->sli_flag); 4958 4959 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4960 if (!pmb) 4961 return 1; 4962 4963 /* Disable the error attention */ 4964 spin_lock_irq(&phba->hbalock); 4965 if (lpfc_readl(phba->HCregaddr, &status)) { 4966 spin_unlock_irq(&phba->hbalock); 4967 mempool_free(pmb, phba->mbox_mem_pool); 4968 return 1; 4969 } 4970 status &= ~HC_ERINT_ENA; 4971 writel(status, phba->HCregaddr); 4972 readl(phba->HCregaddr); /* flush */ 4973 phba->link_flag |= LS_IGNORE_ERATT; 4974 spin_unlock_irq(&phba->hbalock); 4975 4976 lpfc_kill_board(phba, pmb); 4977 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4978 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4979 4980 if (retval != MBX_SUCCESS) { 4981 if (retval != MBX_BUSY) 4982 mempool_free(pmb, phba->mbox_mem_pool); 4983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4984 "2752 KILL_BOARD command failed retval %d\n", 4985 retval); 4986 spin_lock_irq(&phba->hbalock); 4987 phba->link_flag &= ~LS_IGNORE_ERATT; 4988 spin_unlock_irq(&phba->hbalock); 4989 return 1; 4990 } 4991 4992 spin_lock_irq(&phba->hbalock); 4993 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4994 spin_unlock_irq(&phba->hbalock); 4995 4996 mempool_free(pmb, phba->mbox_mem_pool); 4997 4998 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4999 * attention every 100ms for 3 seconds. If we don't get ERATT after 5000 * 3 seconds we still set HBA_ERROR state because the status of the 5001 * board is now undefined. 5002 */ 5003 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5004 return 1; 5005 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5006 mdelay(100); 5007 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5008 return 1; 5009 } 5010 5011 del_timer_sync(&psli->mbox_tmo); 5012 if (ha_copy & HA_ERATT) { 5013 writel(HA_ERATT, phba->HAregaddr); 5014 phba->pport->stopped = 1; 5015 } 5016 spin_lock_irq(&phba->hbalock); 5017 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5018 psli->mbox_active = NULL; 5019 phba->link_flag &= ~LS_IGNORE_ERATT; 5020 spin_unlock_irq(&phba->hbalock); 5021 5022 lpfc_hba_down_post(phba); 5023 phba->link_state = LPFC_HBA_ERROR; 5024 5025 return ha_copy & HA_ERATT ? 0 : 1; 5026 } 5027 5028 /** 5029 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5030 * @phba: Pointer to HBA context object. 5031 * 5032 * This function resets the HBA by writing HC_INITFF to the control 5033 * register. After the HBA resets, this function resets all the iocb ring 5034 * indices. This function disables PCI layer parity checking during 5035 * the reset. 5036 * This function returns 0 always. 5037 * The caller is not required to hold any locks. 5038 **/ 5039 int 5040 lpfc_sli_brdreset(struct lpfc_hba *phba) 5041 { 5042 struct lpfc_sli *psli; 5043 struct lpfc_sli_ring *pring; 5044 uint16_t cfg_value; 5045 int i; 5046 5047 psli = &phba->sli; 5048 5049 /* Reset HBA */ 5050 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5051 "0325 Reset HBA Data: x%x x%x\n", 5052 (phba->pport) ? phba->pport->port_state : 0, 5053 psli->sli_flag); 5054 5055 /* perform board reset */ 5056 phba->fc_eventTag = 0; 5057 phba->link_events = 0; 5058 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5059 if (phba->pport) { 5060 phba->pport->fc_myDID = 0; 5061 phba->pport->fc_prevDID = 0; 5062 } 5063 5064 /* Turn off parity checking and serr during the physical reset */ 5065 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5066 return -EIO; 5067 5068 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5069 (cfg_value & 5070 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5071 5072 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5073 5074 /* Now toggle INITFF bit in the Host Control Register */ 5075 writel(HC_INITFF, phba->HCregaddr); 5076 mdelay(1); 5077 readl(phba->HCregaddr); /* flush */ 5078 writel(0, phba->HCregaddr); 5079 readl(phba->HCregaddr); /* flush */ 5080 5081 /* Restore PCI cmd register */ 5082 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5083 5084 /* Initialize relevant SLI info */ 5085 for (i = 0; i < psli->num_rings; i++) { 5086 pring = &psli->sli3_ring[i]; 5087 pring->flag = 0; 5088 pring->sli.sli3.rspidx = 0; 5089 pring->sli.sli3.next_cmdidx = 0; 5090 pring->sli.sli3.local_getidx = 0; 5091 pring->sli.sli3.cmdidx = 0; 5092 pring->missbufcnt = 0; 5093 } 5094 5095 phba->link_state = LPFC_WARM_START; 5096 return 0; 5097 } 5098 5099 /** 5100 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5101 * @phba: Pointer to HBA context object. 5102 * 5103 * This function resets a SLI4 HBA. This function disables PCI layer parity 5104 * checking during resets the device. The caller is not required to hold 5105 * any locks. 5106 * 5107 * This function returns 0 on success else returns negative error code. 5108 **/ 5109 int 5110 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5111 { 5112 struct lpfc_sli *psli = &phba->sli; 5113 uint16_t cfg_value; 5114 int rc = 0; 5115 5116 /* Reset HBA */ 5117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5118 "0295 Reset HBA Data: x%x x%x x%x\n", 5119 phba->pport->port_state, psli->sli_flag, 5120 phba->hba_flag); 5121 5122 /* perform board reset */ 5123 phba->fc_eventTag = 0; 5124 phba->link_events = 0; 5125 phba->pport->fc_myDID = 0; 5126 phba->pport->fc_prevDID = 0; 5127 phba->hba_flag &= ~HBA_SETUP; 5128 5129 spin_lock_irq(&phba->hbalock); 5130 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5131 phba->fcf.fcf_flag = 0; 5132 spin_unlock_irq(&phba->hbalock); 5133 5134 /* Now physically reset the device */ 5135 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5136 "0389 Performing PCI function reset!\n"); 5137 5138 /* Turn off parity checking and serr during the physical reset */ 5139 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5140 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5141 "3205 PCI read Config failed\n"); 5142 return -EIO; 5143 } 5144 5145 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5146 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5147 5148 /* Perform FCoE PCI function reset before freeing queue memory */ 5149 rc = lpfc_pci_function_reset(phba); 5150 5151 /* Restore PCI cmd register */ 5152 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5153 5154 return rc; 5155 } 5156 5157 /** 5158 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5159 * @phba: Pointer to HBA context object. 5160 * 5161 * This function is called in the SLI initialization code path to 5162 * restart the HBA. The caller is not required to hold any lock. 5163 * This function writes MBX_RESTART mailbox command to the SLIM and 5164 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5165 * function to free any pending commands. The function enables 5166 * POST only during the first initialization. The function returns zero. 5167 * The function does not guarantee completion of MBX_RESTART mailbox 5168 * command before the return of this function. 5169 **/ 5170 static int 5171 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5172 { 5173 volatile struct MAILBOX_word0 mb; 5174 struct lpfc_sli *psli; 5175 void __iomem *to_slim; 5176 uint32_t hba_aer_enabled; 5177 5178 spin_lock_irq(&phba->hbalock); 5179 5180 /* Take PCIe device Advanced Error Reporting (AER) state */ 5181 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5182 5183 psli = &phba->sli; 5184 5185 /* Restart HBA */ 5186 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5187 "0337 Restart HBA Data: x%x x%x\n", 5188 (phba->pport) ? phba->pport->port_state : 0, 5189 psli->sli_flag); 5190 5191 mb.word0 = 0; 5192 mb.mbxCommand = MBX_RESTART; 5193 mb.mbxHc = 1; 5194 5195 lpfc_reset_barrier(phba); 5196 5197 to_slim = phba->MBslimaddr; 5198 writel(mb.word0, to_slim); 5199 readl(to_slim); /* flush */ 5200 5201 /* Only skip post after fc_ffinit is completed */ 5202 if (phba->pport && phba->pport->port_state) 5203 mb.word0 = 1; /* This is really setting up word1 */ 5204 else 5205 mb.word0 = 0; /* This is really setting up word1 */ 5206 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5207 writel(mb.word0, to_slim); 5208 readl(to_slim); /* flush */ 5209 5210 lpfc_sli_brdreset(phba); 5211 if (phba->pport) 5212 phba->pport->stopped = 0; 5213 phba->link_state = LPFC_INIT_START; 5214 phba->hba_flag = 0; 5215 spin_unlock_irq(&phba->hbalock); 5216 5217 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5218 psli->stats_start = ktime_get_seconds(); 5219 5220 /* Give the INITFF and Post time to settle. */ 5221 mdelay(100); 5222 5223 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5224 if (hba_aer_enabled) 5225 pci_disable_pcie_error_reporting(phba->pcidev); 5226 5227 lpfc_hba_down_post(phba); 5228 5229 return 0; 5230 } 5231 5232 /** 5233 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5234 * @phba: Pointer to HBA context object. 5235 * 5236 * This function is called in the SLI initialization code path to restart 5237 * a SLI4 HBA. The caller is not required to hold any lock. 5238 * At the end of the function, it calls lpfc_hba_down_post function to 5239 * free any pending commands. 5240 **/ 5241 static int 5242 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5243 { 5244 struct lpfc_sli *psli = &phba->sli; 5245 uint32_t hba_aer_enabled; 5246 int rc; 5247 5248 /* Restart HBA */ 5249 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5250 "0296 Restart HBA Data: x%x x%x\n", 5251 phba->pport->port_state, psli->sli_flag); 5252 5253 /* Take PCIe device Advanced Error Reporting (AER) state */ 5254 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5255 5256 rc = lpfc_sli4_brdreset(phba); 5257 if (rc) { 5258 phba->link_state = LPFC_HBA_ERROR; 5259 goto hba_down_queue; 5260 } 5261 5262 spin_lock_irq(&phba->hbalock); 5263 phba->pport->stopped = 0; 5264 phba->link_state = LPFC_INIT_START; 5265 phba->hba_flag = 0; 5266 phba->sli4_hba.fawwpn_flag = 0; 5267 spin_unlock_irq(&phba->hbalock); 5268 5269 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5270 psli->stats_start = ktime_get_seconds(); 5271 5272 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5273 if (hba_aer_enabled) 5274 pci_disable_pcie_error_reporting(phba->pcidev); 5275 5276 hba_down_queue: 5277 lpfc_hba_down_post(phba); 5278 lpfc_sli4_queue_destroy(phba); 5279 5280 return rc; 5281 } 5282 5283 /** 5284 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5285 * @phba: Pointer to HBA context object. 5286 * 5287 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5288 * API jump table function pointer from the lpfc_hba struct. 5289 **/ 5290 int 5291 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5292 { 5293 return phba->lpfc_sli_brdrestart(phba); 5294 } 5295 5296 /** 5297 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5298 * @phba: Pointer to HBA context object. 5299 * 5300 * This function is called after a HBA restart to wait for successful 5301 * restart of the HBA. Successful restart of the HBA is indicated by 5302 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5303 * iteration, the function will restart the HBA again. The function returns 5304 * zero if HBA successfully restarted else returns negative error code. 5305 **/ 5306 int 5307 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5308 { 5309 uint32_t status, i = 0; 5310 5311 /* Read the HBA Host Status Register */ 5312 if (lpfc_readl(phba->HSregaddr, &status)) 5313 return -EIO; 5314 5315 /* Check status register to see what current state is */ 5316 i = 0; 5317 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5318 5319 /* Check every 10ms for 10 retries, then every 100ms for 90 5320 * retries, then every 1 sec for 50 retires for a total of 5321 * ~60 seconds before reset the board again and check every 5322 * 1 sec for 50 retries. The up to 60 seconds before the 5323 * board ready is required by the Falcon FIPS zeroization 5324 * complete, and any reset the board in between shall cause 5325 * restart of zeroization, further delay the board ready. 5326 */ 5327 if (i++ >= 200) { 5328 /* Adapter failed to init, timeout, status reg 5329 <status> */ 5330 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5331 "0436 Adapter failed to init, " 5332 "timeout, status reg x%x, " 5333 "FW Data: A8 x%x AC x%x\n", status, 5334 readl(phba->MBslimaddr + 0xa8), 5335 readl(phba->MBslimaddr + 0xac)); 5336 phba->link_state = LPFC_HBA_ERROR; 5337 return -ETIMEDOUT; 5338 } 5339 5340 /* Check to see if any errors occurred during init */ 5341 if (status & HS_FFERM) { 5342 /* ERROR: During chipset initialization */ 5343 /* Adapter failed to init, chipset, status reg 5344 <status> */ 5345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5346 "0437 Adapter failed to init, " 5347 "chipset, status reg x%x, " 5348 "FW Data: A8 x%x AC x%x\n", status, 5349 readl(phba->MBslimaddr + 0xa8), 5350 readl(phba->MBslimaddr + 0xac)); 5351 phba->link_state = LPFC_HBA_ERROR; 5352 return -EIO; 5353 } 5354 5355 if (i <= 10) 5356 msleep(10); 5357 else if (i <= 100) 5358 msleep(100); 5359 else 5360 msleep(1000); 5361 5362 if (i == 150) { 5363 /* Do post */ 5364 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5365 lpfc_sli_brdrestart(phba); 5366 } 5367 /* Read the HBA Host Status Register */ 5368 if (lpfc_readl(phba->HSregaddr, &status)) 5369 return -EIO; 5370 } 5371 5372 /* Check to see if any errors occurred during init */ 5373 if (status & HS_FFERM) { 5374 /* ERROR: During chipset initialization */ 5375 /* Adapter failed to init, chipset, status reg <status> */ 5376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5377 "0438 Adapter failed to init, chipset, " 5378 "status reg x%x, " 5379 "FW Data: A8 x%x AC x%x\n", status, 5380 readl(phba->MBslimaddr + 0xa8), 5381 readl(phba->MBslimaddr + 0xac)); 5382 phba->link_state = LPFC_HBA_ERROR; 5383 return -EIO; 5384 } 5385 5386 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5387 5388 /* Clear all interrupt enable conditions */ 5389 writel(0, phba->HCregaddr); 5390 readl(phba->HCregaddr); /* flush */ 5391 5392 /* setup host attn register */ 5393 writel(0xffffffff, phba->HAregaddr); 5394 readl(phba->HAregaddr); /* flush */ 5395 return 0; 5396 } 5397 5398 /** 5399 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5400 * 5401 * This function calculates and returns the number of HBQs required to be 5402 * configured. 5403 **/ 5404 int 5405 lpfc_sli_hbq_count(void) 5406 { 5407 return ARRAY_SIZE(lpfc_hbq_defs); 5408 } 5409 5410 /** 5411 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5412 * 5413 * This function adds the number of hbq entries in every HBQ to get 5414 * the total number of hbq entries required for the HBA and returns 5415 * the total count. 5416 **/ 5417 static int 5418 lpfc_sli_hbq_entry_count(void) 5419 { 5420 int hbq_count = lpfc_sli_hbq_count(); 5421 int count = 0; 5422 int i; 5423 5424 for (i = 0; i < hbq_count; ++i) 5425 count += lpfc_hbq_defs[i]->entry_count; 5426 return count; 5427 } 5428 5429 /** 5430 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5431 * 5432 * This function calculates amount of memory required for all hbq entries 5433 * to be configured and returns the total memory required. 5434 **/ 5435 int 5436 lpfc_sli_hbq_size(void) 5437 { 5438 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5439 } 5440 5441 /** 5442 * lpfc_sli_hbq_setup - configure and initialize HBQs 5443 * @phba: Pointer to HBA context object. 5444 * 5445 * This function is called during the SLI initialization to configure 5446 * all the HBQs and post buffers to the HBQ. The caller is not 5447 * required to hold any locks. This function will return zero if successful 5448 * else it will return negative error code. 5449 **/ 5450 static int 5451 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5452 { 5453 int hbq_count = lpfc_sli_hbq_count(); 5454 LPFC_MBOXQ_t *pmb; 5455 MAILBOX_t *pmbox; 5456 uint32_t hbqno; 5457 uint32_t hbq_entry_index; 5458 5459 /* Get a Mailbox buffer to setup mailbox 5460 * commands for HBA initialization 5461 */ 5462 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5463 5464 if (!pmb) 5465 return -ENOMEM; 5466 5467 pmbox = &pmb->u.mb; 5468 5469 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5470 phba->link_state = LPFC_INIT_MBX_CMDS; 5471 phba->hbq_in_use = 1; 5472 5473 hbq_entry_index = 0; 5474 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5475 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5476 phba->hbqs[hbqno].hbqPutIdx = 0; 5477 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5478 phba->hbqs[hbqno].entry_count = 5479 lpfc_hbq_defs[hbqno]->entry_count; 5480 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5481 hbq_entry_index, pmb); 5482 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5483 5484 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5485 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5486 mbxStatus <status>, ring <num> */ 5487 5488 lpfc_printf_log(phba, KERN_ERR, 5489 LOG_SLI | LOG_VPORT, 5490 "1805 Adapter failed to init. " 5491 "Data: x%x x%x x%x\n", 5492 pmbox->mbxCommand, 5493 pmbox->mbxStatus, hbqno); 5494 5495 phba->link_state = LPFC_HBA_ERROR; 5496 mempool_free(pmb, phba->mbox_mem_pool); 5497 return -ENXIO; 5498 } 5499 } 5500 phba->hbq_count = hbq_count; 5501 5502 mempool_free(pmb, phba->mbox_mem_pool); 5503 5504 /* Initially populate or replenish the HBQs */ 5505 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5506 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5507 return 0; 5508 } 5509 5510 /** 5511 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5512 * @phba: Pointer to HBA context object. 5513 * 5514 * This function is called during the SLI initialization to configure 5515 * all the HBQs and post buffers to the HBQ. The caller is not 5516 * required to hold any locks. This function will return zero if successful 5517 * else it will return negative error code. 5518 **/ 5519 static int 5520 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5521 { 5522 phba->hbq_in_use = 1; 5523 /** 5524 * Specific case when the MDS diagnostics is enabled and supported. 5525 * The receive buffer count is truncated to manage the incoming 5526 * traffic. 5527 **/ 5528 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5529 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5530 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5531 else 5532 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5533 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5534 phba->hbq_count = 1; 5535 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5536 /* Initially populate or replenish the HBQs */ 5537 return 0; 5538 } 5539 5540 /** 5541 * lpfc_sli_config_port - Issue config port mailbox command 5542 * @phba: Pointer to HBA context object. 5543 * @sli_mode: sli mode - 2/3 5544 * 5545 * This function is called by the sli initialization code path 5546 * to issue config_port mailbox command. This function restarts the 5547 * HBA firmware and issues a config_port mailbox command to configure 5548 * the SLI interface in the sli mode specified by sli_mode 5549 * variable. The caller is not required to hold any locks. 5550 * The function returns 0 if successful, else returns negative error 5551 * code. 5552 **/ 5553 int 5554 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5555 { 5556 LPFC_MBOXQ_t *pmb; 5557 uint32_t resetcount = 0, rc = 0, done = 0; 5558 5559 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5560 if (!pmb) { 5561 phba->link_state = LPFC_HBA_ERROR; 5562 return -ENOMEM; 5563 } 5564 5565 phba->sli_rev = sli_mode; 5566 while (resetcount < 2 && !done) { 5567 spin_lock_irq(&phba->hbalock); 5568 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5569 spin_unlock_irq(&phba->hbalock); 5570 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5571 lpfc_sli_brdrestart(phba); 5572 rc = lpfc_sli_chipset_init(phba); 5573 if (rc) 5574 break; 5575 5576 spin_lock_irq(&phba->hbalock); 5577 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5578 spin_unlock_irq(&phba->hbalock); 5579 resetcount++; 5580 5581 /* Call pre CONFIG_PORT mailbox command initialization. A 5582 * value of 0 means the call was successful. Any other 5583 * nonzero value is a failure, but if ERESTART is returned, 5584 * the driver may reset the HBA and try again. 5585 */ 5586 rc = lpfc_config_port_prep(phba); 5587 if (rc == -ERESTART) { 5588 phba->link_state = LPFC_LINK_UNKNOWN; 5589 continue; 5590 } else if (rc) 5591 break; 5592 5593 phba->link_state = LPFC_INIT_MBX_CMDS; 5594 lpfc_config_port(phba, pmb); 5595 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5596 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5597 LPFC_SLI3_HBQ_ENABLED | 5598 LPFC_SLI3_CRP_ENABLED | 5599 LPFC_SLI3_DSS_ENABLED); 5600 if (rc != MBX_SUCCESS) { 5601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5602 "0442 Adapter failed to init, mbxCmd x%x " 5603 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5604 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5605 spin_lock_irq(&phba->hbalock); 5606 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5607 spin_unlock_irq(&phba->hbalock); 5608 rc = -ENXIO; 5609 } else { 5610 /* Allow asynchronous mailbox command to go through */ 5611 spin_lock_irq(&phba->hbalock); 5612 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5613 spin_unlock_irq(&phba->hbalock); 5614 done = 1; 5615 5616 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5617 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5618 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5619 "3110 Port did not grant ASABT\n"); 5620 } 5621 } 5622 if (!done) { 5623 rc = -EINVAL; 5624 goto do_prep_failed; 5625 } 5626 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5627 if (!pmb->u.mb.un.varCfgPort.cMA) { 5628 rc = -ENXIO; 5629 goto do_prep_failed; 5630 } 5631 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5632 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5633 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5634 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5635 phba->max_vpi : phba->max_vports; 5636 5637 } else 5638 phba->max_vpi = 0; 5639 if (pmb->u.mb.un.varCfgPort.gerbm) 5640 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5641 if (pmb->u.mb.un.varCfgPort.gcrp) 5642 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5643 5644 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5645 phba->port_gp = phba->mbox->us.s3_pgp.port; 5646 5647 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5648 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5649 phba->cfg_enable_bg = 0; 5650 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5651 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5652 "0443 Adapter did not grant " 5653 "BlockGuard\n"); 5654 } 5655 } 5656 } else { 5657 phba->hbq_get = NULL; 5658 phba->port_gp = phba->mbox->us.s2.port; 5659 phba->max_vpi = 0; 5660 } 5661 do_prep_failed: 5662 mempool_free(pmb, phba->mbox_mem_pool); 5663 return rc; 5664 } 5665 5666 5667 /** 5668 * lpfc_sli_hba_setup - SLI initialization function 5669 * @phba: Pointer to HBA context object. 5670 * 5671 * This function is the main SLI initialization function. This function 5672 * is called by the HBA initialization code, HBA reset code and HBA 5673 * error attention handler code. Caller is not required to hold any 5674 * locks. This function issues config_port mailbox command to configure 5675 * the SLI, setup iocb rings and HBQ rings. In the end the function 5676 * calls the config_port_post function to issue init_link mailbox 5677 * command and to start the discovery. The function will return zero 5678 * if successful, else it will return negative error code. 5679 **/ 5680 int 5681 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5682 { 5683 uint32_t rc; 5684 int i; 5685 int longs; 5686 5687 /* Enable ISR already does config_port because of config_msi mbx */ 5688 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5689 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5690 if (rc) 5691 return -EIO; 5692 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5693 } 5694 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5695 5696 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5697 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5698 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5699 if (!rc) { 5700 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5701 "2709 This device supports " 5702 "Advanced Error Reporting (AER)\n"); 5703 spin_lock_irq(&phba->hbalock); 5704 phba->hba_flag |= HBA_AER_ENABLED; 5705 spin_unlock_irq(&phba->hbalock); 5706 } else { 5707 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5708 "2708 This device does not support " 5709 "Advanced Error Reporting (AER): %d\n", 5710 rc); 5711 phba->cfg_aer_support = 0; 5712 } 5713 } 5714 5715 if (phba->sli_rev == 3) { 5716 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5717 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5718 } else { 5719 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5720 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5721 phba->sli3_options = 0; 5722 } 5723 5724 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5725 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5726 phba->sli_rev, phba->max_vpi); 5727 rc = lpfc_sli_ring_map(phba); 5728 5729 if (rc) 5730 goto lpfc_sli_hba_setup_error; 5731 5732 /* Initialize VPIs. */ 5733 if (phba->sli_rev == LPFC_SLI_REV3) { 5734 /* 5735 * The VPI bitmask and physical ID array are allocated 5736 * and initialized once only - at driver load. A port 5737 * reset doesn't need to reinitialize this memory. 5738 */ 5739 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5740 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5741 phba->vpi_bmask = kcalloc(longs, 5742 sizeof(unsigned long), 5743 GFP_KERNEL); 5744 if (!phba->vpi_bmask) { 5745 rc = -ENOMEM; 5746 goto lpfc_sli_hba_setup_error; 5747 } 5748 5749 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5750 sizeof(uint16_t), 5751 GFP_KERNEL); 5752 if (!phba->vpi_ids) { 5753 kfree(phba->vpi_bmask); 5754 rc = -ENOMEM; 5755 goto lpfc_sli_hba_setup_error; 5756 } 5757 for (i = 0; i < phba->max_vpi; i++) 5758 phba->vpi_ids[i] = i; 5759 } 5760 } 5761 5762 /* Init HBQs */ 5763 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5764 rc = lpfc_sli_hbq_setup(phba); 5765 if (rc) 5766 goto lpfc_sli_hba_setup_error; 5767 } 5768 spin_lock_irq(&phba->hbalock); 5769 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5770 spin_unlock_irq(&phba->hbalock); 5771 5772 rc = lpfc_config_port_post(phba); 5773 if (rc) 5774 goto lpfc_sli_hba_setup_error; 5775 5776 return rc; 5777 5778 lpfc_sli_hba_setup_error: 5779 phba->link_state = LPFC_HBA_ERROR; 5780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5781 "0445 Firmware initialization failed\n"); 5782 return rc; 5783 } 5784 5785 /** 5786 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5787 * @phba: Pointer to HBA context object. 5788 * 5789 * This function issue a dump mailbox command to read config region 5790 * 23 and parse the records in the region and populate driver 5791 * data structure. 5792 **/ 5793 static int 5794 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5795 { 5796 LPFC_MBOXQ_t *mboxq; 5797 struct lpfc_dmabuf *mp; 5798 struct lpfc_mqe *mqe; 5799 uint32_t data_length; 5800 int rc; 5801 5802 /* Program the default value of vlan_id and fc_map */ 5803 phba->valid_vlan = 0; 5804 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5805 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5806 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5807 5808 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5809 if (!mboxq) 5810 return -ENOMEM; 5811 5812 mqe = &mboxq->u.mqe; 5813 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5814 rc = -ENOMEM; 5815 goto out_free_mboxq; 5816 } 5817 5818 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5819 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5820 5821 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5822 "(%d):2571 Mailbox cmd x%x Status x%x " 5823 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5824 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5825 "CQ: x%x x%x x%x x%x\n", 5826 mboxq->vport ? mboxq->vport->vpi : 0, 5827 bf_get(lpfc_mqe_command, mqe), 5828 bf_get(lpfc_mqe_status, mqe), 5829 mqe->un.mb_words[0], mqe->un.mb_words[1], 5830 mqe->un.mb_words[2], mqe->un.mb_words[3], 5831 mqe->un.mb_words[4], mqe->un.mb_words[5], 5832 mqe->un.mb_words[6], mqe->un.mb_words[7], 5833 mqe->un.mb_words[8], mqe->un.mb_words[9], 5834 mqe->un.mb_words[10], mqe->un.mb_words[11], 5835 mqe->un.mb_words[12], mqe->un.mb_words[13], 5836 mqe->un.mb_words[14], mqe->un.mb_words[15], 5837 mqe->un.mb_words[16], mqe->un.mb_words[50], 5838 mboxq->mcqe.word0, 5839 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5840 mboxq->mcqe.trailer); 5841 5842 if (rc) { 5843 rc = -EIO; 5844 goto out_free_mboxq; 5845 } 5846 data_length = mqe->un.mb_words[5]; 5847 if (data_length > DMP_RGN23_SIZE) { 5848 rc = -EIO; 5849 goto out_free_mboxq; 5850 } 5851 5852 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5853 rc = 0; 5854 5855 out_free_mboxq: 5856 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5857 return rc; 5858 } 5859 5860 /** 5861 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5862 * @phba: pointer to lpfc hba data structure. 5863 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5864 * @vpd: pointer to the memory to hold resulting port vpd data. 5865 * @vpd_size: On input, the number of bytes allocated to @vpd. 5866 * On output, the number of data bytes in @vpd. 5867 * 5868 * This routine executes a READ_REV SLI4 mailbox command. In 5869 * addition, this routine gets the port vpd data. 5870 * 5871 * Return codes 5872 * 0 - successful 5873 * -ENOMEM - could not allocated memory. 5874 **/ 5875 static int 5876 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5877 uint8_t *vpd, uint32_t *vpd_size) 5878 { 5879 int rc = 0; 5880 uint32_t dma_size; 5881 struct lpfc_dmabuf *dmabuf; 5882 struct lpfc_mqe *mqe; 5883 5884 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5885 if (!dmabuf) 5886 return -ENOMEM; 5887 5888 /* 5889 * Get a DMA buffer for the vpd data resulting from the READ_REV 5890 * mailbox command. 5891 */ 5892 dma_size = *vpd_size; 5893 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5894 &dmabuf->phys, GFP_KERNEL); 5895 if (!dmabuf->virt) { 5896 kfree(dmabuf); 5897 return -ENOMEM; 5898 } 5899 5900 /* 5901 * The SLI4 implementation of READ_REV conflicts at word1, 5902 * bits 31:16 and SLI4 adds vpd functionality not present 5903 * in SLI3. This code corrects the conflicts. 5904 */ 5905 lpfc_read_rev(phba, mboxq); 5906 mqe = &mboxq->u.mqe; 5907 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5908 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5909 mqe->un.read_rev.word1 &= 0x0000FFFF; 5910 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5911 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5912 5913 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5914 if (rc) { 5915 dma_free_coherent(&phba->pcidev->dev, dma_size, 5916 dmabuf->virt, dmabuf->phys); 5917 kfree(dmabuf); 5918 return -EIO; 5919 } 5920 5921 /* 5922 * The available vpd length cannot be bigger than the 5923 * DMA buffer passed to the port. Catch the less than 5924 * case and update the caller's size. 5925 */ 5926 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5927 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5928 5929 memcpy(vpd, dmabuf->virt, *vpd_size); 5930 5931 dma_free_coherent(&phba->pcidev->dev, dma_size, 5932 dmabuf->virt, dmabuf->phys); 5933 kfree(dmabuf); 5934 return 0; 5935 } 5936 5937 /** 5938 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5939 * @phba: pointer to lpfc hba data structure. 5940 * 5941 * This routine retrieves SLI4 device physical port name this PCI function 5942 * is attached to. 5943 * 5944 * Return codes 5945 * 0 - successful 5946 * otherwise - failed to retrieve controller attributes 5947 **/ 5948 static int 5949 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5950 { 5951 LPFC_MBOXQ_t *mboxq; 5952 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5953 struct lpfc_controller_attribute *cntl_attr; 5954 void *virtaddr = NULL; 5955 uint32_t alloclen, reqlen; 5956 uint32_t shdr_status, shdr_add_status; 5957 union lpfc_sli4_cfg_shdr *shdr; 5958 int rc; 5959 5960 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5961 if (!mboxq) 5962 return -ENOMEM; 5963 5964 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5965 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5966 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5967 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5968 LPFC_SLI4_MBX_NEMBED); 5969 5970 if (alloclen < reqlen) { 5971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5972 "3084 Allocated DMA memory size (%d) is " 5973 "less than the requested DMA memory size " 5974 "(%d)\n", alloclen, reqlen); 5975 rc = -ENOMEM; 5976 goto out_free_mboxq; 5977 } 5978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5979 virtaddr = mboxq->sge_array->addr[0]; 5980 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5981 shdr = &mbx_cntl_attr->cfg_shdr; 5982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5984 if (shdr_status || shdr_add_status || rc) { 5985 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5986 "3085 Mailbox x%x (x%x/x%x) failed, " 5987 "rc:x%x, status:x%x, add_status:x%x\n", 5988 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5989 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5990 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5991 rc, shdr_status, shdr_add_status); 5992 rc = -ENXIO; 5993 goto out_free_mboxq; 5994 } 5995 5996 cntl_attr = &mbx_cntl_attr->cntl_attr; 5997 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5998 phba->sli4_hba.lnk_info.lnk_tp = 5999 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6000 phba->sli4_hba.lnk_info.lnk_no = 6001 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6002 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6003 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6004 6005 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6006 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6007 sizeof(phba->BIOSVersion)); 6008 6009 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6010 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6011 "flash_id: x%02x, asic_rev: x%02x\n", 6012 phba->sli4_hba.lnk_info.lnk_tp, 6013 phba->sli4_hba.lnk_info.lnk_no, 6014 phba->BIOSVersion, phba->sli4_hba.flash_id, 6015 phba->sli4_hba.asic_rev); 6016 out_free_mboxq: 6017 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6018 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6019 else 6020 mempool_free(mboxq, phba->mbox_mem_pool); 6021 return rc; 6022 } 6023 6024 /** 6025 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6026 * @phba: pointer to lpfc hba data structure. 6027 * 6028 * This routine retrieves SLI4 device physical port name this PCI function 6029 * is attached to. 6030 * 6031 * Return codes 6032 * 0 - successful 6033 * otherwise - failed to retrieve physical port name 6034 **/ 6035 static int 6036 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6037 { 6038 LPFC_MBOXQ_t *mboxq; 6039 struct lpfc_mbx_get_port_name *get_port_name; 6040 uint32_t shdr_status, shdr_add_status; 6041 union lpfc_sli4_cfg_shdr *shdr; 6042 char cport_name = 0; 6043 int rc; 6044 6045 /* We assume nothing at this point */ 6046 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6047 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6048 6049 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6050 if (!mboxq) 6051 return -ENOMEM; 6052 /* obtain link type and link number via READ_CONFIG */ 6053 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6054 lpfc_sli4_read_config(phba); 6055 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6056 goto retrieve_ppname; 6057 6058 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6059 rc = lpfc_sli4_get_ctl_attr(phba); 6060 if (rc) 6061 goto out_free_mboxq; 6062 6063 retrieve_ppname: 6064 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6065 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6066 sizeof(struct lpfc_mbx_get_port_name) - 6067 sizeof(struct lpfc_sli4_cfg_mhdr), 6068 LPFC_SLI4_MBX_EMBED); 6069 get_port_name = &mboxq->u.mqe.un.get_port_name; 6070 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6071 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6072 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6073 phba->sli4_hba.lnk_info.lnk_tp); 6074 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6075 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6076 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6077 if (shdr_status || shdr_add_status || rc) { 6078 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6079 "3087 Mailbox x%x (x%x/x%x) failed: " 6080 "rc:x%x, status:x%x, add_status:x%x\n", 6081 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6082 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6083 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6084 rc, shdr_status, shdr_add_status); 6085 rc = -ENXIO; 6086 goto out_free_mboxq; 6087 } 6088 switch (phba->sli4_hba.lnk_info.lnk_no) { 6089 case LPFC_LINK_NUMBER_0: 6090 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6091 &get_port_name->u.response); 6092 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6093 break; 6094 case LPFC_LINK_NUMBER_1: 6095 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6096 &get_port_name->u.response); 6097 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6098 break; 6099 case LPFC_LINK_NUMBER_2: 6100 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6101 &get_port_name->u.response); 6102 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6103 break; 6104 case LPFC_LINK_NUMBER_3: 6105 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6106 &get_port_name->u.response); 6107 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6108 break; 6109 default: 6110 break; 6111 } 6112 6113 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6114 phba->Port[0] = cport_name; 6115 phba->Port[1] = '\0'; 6116 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6117 "3091 SLI get port name: %s\n", phba->Port); 6118 } 6119 6120 out_free_mboxq: 6121 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6122 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6123 else 6124 mempool_free(mboxq, phba->mbox_mem_pool); 6125 return rc; 6126 } 6127 6128 /** 6129 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6130 * @phba: pointer to lpfc hba data structure. 6131 * 6132 * This routine is called to explicitly arm the SLI4 device's completion and 6133 * event queues 6134 **/ 6135 static void 6136 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6137 { 6138 int qidx; 6139 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6140 struct lpfc_sli4_hdw_queue *qp; 6141 struct lpfc_queue *eq; 6142 6143 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6144 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6145 if (sli4_hba->nvmels_cq) 6146 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6147 LPFC_QUEUE_REARM); 6148 6149 if (sli4_hba->hdwq) { 6150 /* Loop thru all Hardware Queues */ 6151 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6152 qp = &sli4_hba->hdwq[qidx]; 6153 /* ARM the corresponding CQ */ 6154 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6155 LPFC_QUEUE_REARM); 6156 } 6157 6158 /* Loop thru all IRQ vectors */ 6159 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6160 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6161 /* ARM the corresponding EQ */ 6162 sli4_hba->sli4_write_eq_db(phba, eq, 6163 0, LPFC_QUEUE_REARM); 6164 } 6165 } 6166 6167 if (phba->nvmet_support) { 6168 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6169 sli4_hba->sli4_write_cq_db(phba, 6170 sli4_hba->nvmet_cqset[qidx], 0, 6171 LPFC_QUEUE_REARM); 6172 } 6173 } 6174 } 6175 6176 /** 6177 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6178 * @phba: Pointer to HBA context object. 6179 * @type: The resource extent type. 6180 * @extnt_count: buffer to hold port available extent count. 6181 * @extnt_size: buffer to hold element count per extent. 6182 * 6183 * This function calls the port and retrievs the number of available 6184 * extents and their size for a particular extent type. 6185 * 6186 * Returns: 0 if successful. Nonzero otherwise. 6187 **/ 6188 int 6189 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6190 uint16_t *extnt_count, uint16_t *extnt_size) 6191 { 6192 int rc = 0; 6193 uint32_t length; 6194 uint32_t mbox_tmo; 6195 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6196 LPFC_MBOXQ_t *mbox; 6197 6198 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6199 if (!mbox) 6200 return -ENOMEM; 6201 6202 /* Find out how many extents are available for this resource type */ 6203 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6204 sizeof(struct lpfc_sli4_cfg_mhdr)); 6205 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6206 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6207 length, LPFC_SLI4_MBX_EMBED); 6208 6209 /* Send an extents count of 0 - the GET doesn't use it. */ 6210 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6211 LPFC_SLI4_MBX_EMBED); 6212 if (unlikely(rc)) { 6213 rc = -EIO; 6214 goto err_exit; 6215 } 6216 6217 if (!phba->sli4_hba.intr_enable) 6218 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6219 else { 6220 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6221 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6222 } 6223 if (unlikely(rc)) { 6224 rc = -EIO; 6225 goto err_exit; 6226 } 6227 6228 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6229 if (bf_get(lpfc_mbox_hdr_status, 6230 &rsrc_info->header.cfg_shdr.response)) { 6231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6232 "2930 Failed to get resource extents " 6233 "Status 0x%x Add'l Status 0x%x\n", 6234 bf_get(lpfc_mbox_hdr_status, 6235 &rsrc_info->header.cfg_shdr.response), 6236 bf_get(lpfc_mbox_hdr_add_status, 6237 &rsrc_info->header.cfg_shdr.response)); 6238 rc = -EIO; 6239 goto err_exit; 6240 } 6241 6242 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6243 &rsrc_info->u.rsp); 6244 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6245 &rsrc_info->u.rsp); 6246 6247 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6248 "3162 Retrieved extents type-%d from port: count:%d, " 6249 "size:%d\n", type, *extnt_count, *extnt_size); 6250 6251 err_exit: 6252 mempool_free(mbox, phba->mbox_mem_pool); 6253 return rc; 6254 } 6255 6256 /** 6257 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6258 * @phba: Pointer to HBA context object. 6259 * @type: The extent type to check. 6260 * 6261 * This function reads the current available extents from the port and checks 6262 * if the extent count or extent size has changed since the last access. 6263 * Callers use this routine post port reset to understand if there is a 6264 * extent reprovisioning requirement. 6265 * 6266 * Returns: 6267 * -Error: error indicates problem. 6268 * 1: Extent count or size has changed. 6269 * 0: No changes. 6270 **/ 6271 static int 6272 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6273 { 6274 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6275 uint16_t size_diff, rsrc_ext_size; 6276 int rc = 0; 6277 struct lpfc_rsrc_blks *rsrc_entry; 6278 struct list_head *rsrc_blk_list = NULL; 6279 6280 size_diff = 0; 6281 curr_ext_cnt = 0; 6282 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6283 &rsrc_ext_cnt, 6284 &rsrc_ext_size); 6285 if (unlikely(rc)) 6286 return -EIO; 6287 6288 switch (type) { 6289 case LPFC_RSC_TYPE_FCOE_RPI: 6290 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6291 break; 6292 case LPFC_RSC_TYPE_FCOE_VPI: 6293 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6294 break; 6295 case LPFC_RSC_TYPE_FCOE_XRI: 6296 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6297 break; 6298 case LPFC_RSC_TYPE_FCOE_VFI: 6299 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6300 break; 6301 default: 6302 break; 6303 } 6304 6305 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6306 curr_ext_cnt++; 6307 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6308 size_diff++; 6309 } 6310 6311 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6312 rc = 1; 6313 6314 return rc; 6315 } 6316 6317 /** 6318 * lpfc_sli4_cfg_post_extnts - 6319 * @phba: Pointer to HBA context object. 6320 * @extnt_cnt: number of available extents. 6321 * @type: the extent type (rpi, xri, vfi, vpi). 6322 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6323 * @mbox: pointer to the caller's allocated mailbox structure. 6324 * 6325 * This function executes the extents allocation request. It also 6326 * takes care of the amount of memory needed to allocate or get the 6327 * allocated extents. It is the caller's responsibility to evaluate 6328 * the response. 6329 * 6330 * Returns: 6331 * -Error: Error value describes the condition found. 6332 * 0: if successful 6333 **/ 6334 static int 6335 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6336 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6337 { 6338 int rc = 0; 6339 uint32_t req_len; 6340 uint32_t emb_len; 6341 uint32_t alloc_len, mbox_tmo; 6342 6343 /* Calculate the total requested length of the dma memory */ 6344 req_len = extnt_cnt * sizeof(uint16_t); 6345 6346 /* 6347 * Calculate the size of an embedded mailbox. The uint32_t 6348 * accounts for extents-specific word. 6349 */ 6350 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6351 sizeof(uint32_t); 6352 6353 /* 6354 * Presume the allocation and response will fit into an embedded 6355 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6356 */ 6357 *emb = LPFC_SLI4_MBX_EMBED; 6358 if (req_len > emb_len) { 6359 req_len = extnt_cnt * sizeof(uint16_t) + 6360 sizeof(union lpfc_sli4_cfg_shdr) + 6361 sizeof(uint32_t); 6362 *emb = LPFC_SLI4_MBX_NEMBED; 6363 } 6364 6365 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6366 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6367 req_len, *emb); 6368 if (alloc_len < req_len) { 6369 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6370 "2982 Allocated DMA memory size (x%x) is " 6371 "less than the requested DMA memory " 6372 "size (x%x)\n", alloc_len, req_len); 6373 return -ENOMEM; 6374 } 6375 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6376 if (unlikely(rc)) 6377 return -EIO; 6378 6379 if (!phba->sli4_hba.intr_enable) 6380 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6381 else { 6382 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6383 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6384 } 6385 6386 if (unlikely(rc)) 6387 rc = -EIO; 6388 return rc; 6389 } 6390 6391 /** 6392 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6393 * @phba: Pointer to HBA context object. 6394 * @type: The resource extent type to allocate. 6395 * 6396 * This function allocates the number of elements for the specified 6397 * resource type. 6398 **/ 6399 static int 6400 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6401 { 6402 bool emb = false; 6403 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6404 uint16_t rsrc_id, rsrc_start, j, k; 6405 uint16_t *ids; 6406 int i, rc; 6407 unsigned long longs; 6408 unsigned long *bmask; 6409 struct lpfc_rsrc_blks *rsrc_blks; 6410 LPFC_MBOXQ_t *mbox; 6411 uint32_t length; 6412 struct lpfc_id_range *id_array = NULL; 6413 void *virtaddr = NULL; 6414 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6415 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6416 struct list_head *ext_blk_list; 6417 6418 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6419 &rsrc_cnt, 6420 &rsrc_size); 6421 if (unlikely(rc)) 6422 return -EIO; 6423 6424 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6426 "3009 No available Resource Extents " 6427 "for resource type 0x%x: Count: 0x%x, " 6428 "Size 0x%x\n", type, rsrc_cnt, 6429 rsrc_size); 6430 return -ENOMEM; 6431 } 6432 6433 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6434 "2903 Post resource extents type-0x%x: " 6435 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6436 6437 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6438 if (!mbox) 6439 return -ENOMEM; 6440 6441 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6442 if (unlikely(rc)) { 6443 rc = -EIO; 6444 goto err_exit; 6445 } 6446 6447 /* 6448 * Figure out where the response is located. Then get local pointers 6449 * to the response data. The port does not guarantee to respond to 6450 * all extents counts request so update the local variable with the 6451 * allocated count from the port. 6452 */ 6453 if (emb == LPFC_SLI4_MBX_EMBED) { 6454 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6455 id_array = &rsrc_ext->u.rsp.id[0]; 6456 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6457 } else { 6458 virtaddr = mbox->sge_array->addr[0]; 6459 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6460 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6461 id_array = &n_rsrc->id; 6462 } 6463 6464 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6465 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6466 6467 /* 6468 * Based on the resource size and count, correct the base and max 6469 * resource values. 6470 */ 6471 length = sizeof(struct lpfc_rsrc_blks); 6472 switch (type) { 6473 case LPFC_RSC_TYPE_FCOE_RPI: 6474 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6475 sizeof(unsigned long), 6476 GFP_KERNEL); 6477 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6478 rc = -ENOMEM; 6479 goto err_exit; 6480 } 6481 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6482 sizeof(uint16_t), 6483 GFP_KERNEL); 6484 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6485 kfree(phba->sli4_hba.rpi_bmask); 6486 rc = -ENOMEM; 6487 goto err_exit; 6488 } 6489 6490 /* 6491 * The next_rpi was initialized with the maximum available 6492 * count but the port may allocate a smaller number. Catch 6493 * that case and update the next_rpi. 6494 */ 6495 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6496 6497 /* Initialize local ptrs for common extent processing later. */ 6498 bmask = phba->sli4_hba.rpi_bmask; 6499 ids = phba->sli4_hba.rpi_ids; 6500 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6501 break; 6502 case LPFC_RSC_TYPE_FCOE_VPI: 6503 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6504 GFP_KERNEL); 6505 if (unlikely(!phba->vpi_bmask)) { 6506 rc = -ENOMEM; 6507 goto err_exit; 6508 } 6509 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6510 GFP_KERNEL); 6511 if (unlikely(!phba->vpi_ids)) { 6512 kfree(phba->vpi_bmask); 6513 rc = -ENOMEM; 6514 goto err_exit; 6515 } 6516 6517 /* Initialize local ptrs for common extent processing later. */ 6518 bmask = phba->vpi_bmask; 6519 ids = phba->vpi_ids; 6520 ext_blk_list = &phba->lpfc_vpi_blk_list; 6521 break; 6522 case LPFC_RSC_TYPE_FCOE_XRI: 6523 phba->sli4_hba.xri_bmask = kcalloc(longs, 6524 sizeof(unsigned long), 6525 GFP_KERNEL); 6526 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6527 rc = -ENOMEM; 6528 goto err_exit; 6529 } 6530 phba->sli4_hba.max_cfg_param.xri_used = 0; 6531 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6532 sizeof(uint16_t), 6533 GFP_KERNEL); 6534 if (unlikely(!phba->sli4_hba.xri_ids)) { 6535 kfree(phba->sli4_hba.xri_bmask); 6536 rc = -ENOMEM; 6537 goto err_exit; 6538 } 6539 6540 /* Initialize local ptrs for common extent processing later. */ 6541 bmask = phba->sli4_hba.xri_bmask; 6542 ids = phba->sli4_hba.xri_ids; 6543 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6544 break; 6545 case LPFC_RSC_TYPE_FCOE_VFI: 6546 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6547 sizeof(unsigned long), 6548 GFP_KERNEL); 6549 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6550 rc = -ENOMEM; 6551 goto err_exit; 6552 } 6553 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6554 sizeof(uint16_t), 6555 GFP_KERNEL); 6556 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6557 kfree(phba->sli4_hba.vfi_bmask); 6558 rc = -ENOMEM; 6559 goto err_exit; 6560 } 6561 6562 /* Initialize local ptrs for common extent processing later. */ 6563 bmask = phba->sli4_hba.vfi_bmask; 6564 ids = phba->sli4_hba.vfi_ids; 6565 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6566 break; 6567 default: 6568 /* Unsupported Opcode. Fail call. */ 6569 id_array = NULL; 6570 bmask = NULL; 6571 ids = NULL; 6572 ext_blk_list = NULL; 6573 goto err_exit; 6574 } 6575 6576 /* 6577 * Complete initializing the extent configuration with the 6578 * allocated ids assigned to this function. The bitmask serves 6579 * as an index into the array and manages the available ids. The 6580 * array just stores the ids communicated to the port via the wqes. 6581 */ 6582 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6583 if ((i % 2) == 0) 6584 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6585 &id_array[k]); 6586 else 6587 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6588 &id_array[k]); 6589 6590 rsrc_blks = kzalloc(length, GFP_KERNEL); 6591 if (unlikely(!rsrc_blks)) { 6592 rc = -ENOMEM; 6593 kfree(bmask); 6594 kfree(ids); 6595 goto err_exit; 6596 } 6597 rsrc_blks->rsrc_start = rsrc_id; 6598 rsrc_blks->rsrc_size = rsrc_size; 6599 list_add_tail(&rsrc_blks->list, ext_blk_list); 6600 rsrc_start = rsrc_id; 6601 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6602 phba->sli4_hba.io_xri_start = rsrc_start + 6603 lpfc_sli4_get_iocb_cnt(phba); 6604 } 6605 6606 while (rsrc_id < (rsrc_start + rsrc_size)) { 6607 ids[j] = rsrc_id; 6608 rsrc_id++; 6609 j++; 6610 } 6611 /* Entire word processed. Get next word.*/ 6612 if ((i % 2) == 1) 6613 k++; 6614 } 6615 err_exit: 6616 lpfc_sli4_mbox_cmd_free(phba, mbox); 6617 return rc; 6618 } 6619 6620 6621 6622 /** 6623 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6624 * @phba: Pointer to HBA context object. 6625 * @type: the extent's type. 6626 * 6627 * This function deallocates all extents of a particular resource type. 6628 * SLI4 does not allow for deallocating a particular extent range. It 6629 * is the caller's responsibility to release all kernel memory resources. 6630 **/ 6631 static int 6632 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6633 { 6634 int rc; 6635 uint32_t length, mbox_tmo = 0; 6636 LPFC_MBOXQ_t *mbox; 6637 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6638 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6639 6640 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6641 if (!mbox) 6642 return -ENOMEM; 6643 6644 /* 6645 * This function sends an embedded mailbox because it only sends the 6646 * the resource type. All extents of this type are released by the 6647 * port. 6648 */ 6649 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6650 sizeof(struct lpfc_sli4_cfg_mhdr)); 6651 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6652 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6653 length, LPFC_SLI4_MBX_EMBED); 6654 6655 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6656 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6657 LPFC_SLI4_MBX_EMBED); 6658 if (unlikely(rc)) { 6659 rc = -EIO; 6660 goto out_free_mbox; 6661 } 6662 if (!phba->sli4_hba.intr_enable) 6663 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6664 else { 6665 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6666 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6667 } 6668 if (unlikely(rc)) { 6669 rc = -EIO; 6670 goto out_free_mbox; 6671 } 6672 6673 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6674 if (bf_get(lpfc_mbox_hdr_status, 6675 &dealloc_rsrc->header.cfg_shdr.response)) { 6676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6677 "2919 Failed to release resource extents " 6678 "for type %d - Status 0x%x Add'l Status 0x%x. " 6679 "Resource memory not released.\n", 6680 type, 6681 bf_get(lpfc_mbox_hdr_status, 6682 &dealloc_rsrc->header.cfg_shdr.response), 6683 bf_get(lpfc_mbox_hdr_add_status, 6684 &dealloc_rsrc->header.cfg_shdr.response)); 6685 rc = -EIO; 6686 goto out_free_mbox; 6687 } 6688 6689 /* Release kernel memory resources for the specific type. */ 6690 switch (type) { 6691 case LPFC_RSC_TYPE_FCOE_VPI: 6692 kfree(phba->vpi_bmask); 6693 kfree(phba->vpi_ids); 6694 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6695 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6696 &phba->lpfc_vpi_blk_list, list) { 6697 list_del_init(&rsrc_blk->list); 6698 kfree(rsrc_blk); 6699 } 6700 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6701 break; 6702 case LPFC_RSC_TYPE_FCOE_XRI: 6703 kfree(phba->sli4_hba.xri_bmask); 6704 kfree(phba->sli4_hba.xri_ids); 6705 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6706 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6707 list_del_init(&rsrc_blk->list); 6708 kfree(rsrc_blk); 6709 } 6710 break; 6711 case LPFC_RSC_TYPE_FCOE_VFI: 6712 kfree(phba->sli4_hba.vfi_bmask); 6713 kfree(phba->sli4_hba.vfi_ids); 6714 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6715 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6716 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6717 list_del_init(&rsrc_blk->list); 6718 kfree(rsrc_blk); 6719 } 6720 break; 6721 case LPFC_RSC_TYPE_FCOE_RPI: 6722 /* RPI bitmask and physical id array are cleaned up earlier. */ 6723 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6724 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6725 list_del_init(&rsrc_blk->list); 6726 kfree(rsrc_blk); 6727 } 6728 break; 6729 default: 6730 break; 6731 } 6732 6733 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6734 6735 out_free_mbox: 6736 mempool_free(mbox, phba->mbox_mem_pool); 6737 return rc; 6738 } 6739 6740 static void 6741 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6742 uint32_t feature) 6743 { 6744 uint32_t len; 6745 u32 sig_freq = 0; 6746 6747 len = sizeof(struct lpfc_mbx_set_feature) - 6748 sizeof(struct lpfc_sli4_cfg_mhdr); 6749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6750 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6751 LPFC_SLI4_MBX_EMBED); 6752 6753 switch (feature) { 6754 case LPFC_SET_UE_RECOVERY: 6755 bf_set(lpfc_mbx_set_feature_UER, 6756 &mbox->u.mqe.un.set_feature, 1); 6757 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6758 mbox->u.mqe.un.set_feature.param_len = 8; 6759 break; 6760 case LPFC_SET_MDS_DIAGS: 6761 bf_set(lpfc_mbx_set_feature_mds, 6762 &mbox->u.mqe.un.set_feature, 1); 6763 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6764 &mbox->u.mqe.un.set_feature, 1); 6765 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6766 mbox->u.mqe.un.set_feature.param_len = 8; 6767 break; 6768 case LPFC_SET_CGN_SIGNAL: 6769 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6770 sig_freq = 0; 6771 else 6772 sig_freq = phba->cgn_sig_freq; 6773 6774 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6775 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6776 &mbox->u.mqe.un.set_feature, sig_freq); 6777 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6778 &mbox->u.mqe.un.set_feature, sig_freq); 6779 } 6780 6781 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6782 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6783 &mbox->u.mqe.un.set_feature, sig_freq); 6784 6785 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6786 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6787 sig_freq = 0; 6788 else 6789 sig_freq = lpfc_acqe_cgn_frequency; 6790 6791 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6792 &mbox->u.mqe.un.set_feature, sig_freq); 6793 6794 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6795 mbox->u.mqe.un.set_feature.param_len = 12; 6796 break; 6797 case LPFC_SET_DUAL_DUMP: 6798 bf_set(lpfc_mbx_set_feature_dd, 6799 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6800 bf_set(lpfc_mbx_set_feature_ddquery, 6801 &mbox->u.mqe.un.set_feature, 0); 6802 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6803 mbox->u.mqe.un.set_feature.param_len = 4; 6804 break; 6805 case LPFC_SET_ENABLE_MI: 6806 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6807 mbox->u.mqe.un.set_feature.param_len = 4; 6808 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6809 phba->pport->cfg_lun_queue_depth); 6810 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6811 phba->sli4_hba.pc_sli4_params.mi_ver); 6812 break; 6813 case LPFC_SET_ENABLE_CMF: 6814 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6815 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6816 mbox->u.mqe.un.set_feature.param_len = 4; 6817 bf_set(lpfc_mbx_set_feature_cmf, 6818 &mbox->u.mqe.un.set_feature, 1); 6819 break; 6820 } 6821 return; 6822 } 6823 6824 /** 6825 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6826 * @phba: Pointer to HBA context object. 6827 * 6828 * Disable FW logging into host memory on the adapter. To 6829 * be done before reading logs from the host memory. 6830 **/ 6831 void 6832 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6833 { 6834 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6835 6836 spin_lock_irq(&phba->hbalock); 6837 ras_fwlog->state = INACTIVE; 6838 spin_unlock_irq(&phba->hbalock); 6839 6840 /* Disable FW logging to host memory */ 6841 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6842 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6843 6844 /* Wait 10ms for firmware to stop using DMA buffer */ 6845 usleep_range(10 * 1000, 20 * 1000); 6846 } 6847 6848 /** 6849 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6850 * @phba: Pointer to HBA context object. 6851 * 6852 * This function is called to free memory allocated for RAS FW logging 6853 * support in the driver. 6854 **/ 6855 void 6856 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6857 { 6858 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6859 struct lpfc_dmabuf *dmabuf, *next; 6860 6861 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6862 list_for_each_entry_safe(dmabuf, next, 6863 &ras_fwlog->fwlog_buff_list, 6864 list) { 6865 list_del(&dmabuf->list); 6866 dma_free_coherent(&phba->pcidev->dev, 6867 LPFC_RAS_MAX_ENTRY_SIZE, 6868 dmabuf->virt, dmabuf->phys); 6869 kfree(dmabuf); 6870 } 6871 } 6872 6873 if (ras_fwlog->lwpd.virt) { 6874 dma_free_coherent(&phba->pcidev->dev, 6875 sizeof(uint32_t) * 2, 6876 ras_fwlog->lwpd.virt, 6877 ras_fwlog->lwpd.phys); 6878 ras_fwlog->lwpd.virt = NULL; 6879 } 6880 6881 spin_lock_irq(&phba->hbalock); 6882 ras_fwlog->state = INACTIVE; 6883 spin_unlock_irq(&phba->hbalock); 6884 } 6885 6886 /** 6887 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6888 * @phba: Pointer to HBA context object. 6889 * @fwlog_buff_count: Count of buffers to be created. 6890 * 6891 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6892 * to update FW log is posted to the adapter. 6893 * Buffer count is calculated based on module param ras_fwlog_buffsize 6894 * Size of each buffer posted to FW is 64K. 6895 **/ 6896 6897 static int 6898 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6899 uint32_t fwlog_buff_count) 6900 { 6901 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6902 struct lpfc_dmabuf *dmabuf; 6903 int rc = 0, i = 0; 6904 6905 /* Initialize List */ 6906 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6907 6908 /* Allocate memory for the LWPD */ 6909 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6910 sizeof(uint32_t) * 2, 6911 &ras_fwlog->lwpd.phys, 6912 GFP_KERNEL); 6913 if (!ras_fwlog->lwpd.virt) { 6914 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6915 "6185 LWPD Memory Alloc Failed\n"); 6916 6917 return -ENOMEM; 6918 } 6919 6920 ras_fwlog->fw_buffcount = fwlog_buff_count; 6921 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6922 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6923 GFP_KERNEL); 6924 if (!dmabuf) { 6925 rc = -ENOMEM; 6926 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6927 "6186 Memory Alloc failed FW logging"); 6928 goto free_mem; 6929 } 6930 6931 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6932 LPFC_RAS_MAX_ENTRY_SIZE, 6933 &dmabuf->phys, GFP_KERNEL); 6934 if (!dmabuf->virt) { 6935 kfree(dmabuf); 6936 rc = -ENOMEM; 6937 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6938 "6187 DMA Alloc Failed FW logging"); 6939 goto free_mem; 6940 } 6941 dmabuf->buffer_tag = i; 6942 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6943 } 6944 6945 free_mem: 6946 if (rc) 6947 lpfc_sli4_ras_dma_free(phba); 6948 6949 return rc; 6950 } 6951 6952 /** 6953 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6954 * @phba: pointer to lpfc hba data structure. 6955 * @pmb: pointer to the driver internal queue element for mailbox command. 6956 * 6957 * Completion handler for driver's RAS MBX command to the device. 6958 **/ 6959 static void 6960 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6961 { 6962 MAILBOX_t *mb; 6963 union lpfc_sli4_cfg_shdr *shdr; 6964 uint32_t shdr_status, shdr_add_status; 6965 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6966 6967 mb = &pmb->u.mb; 6968 6969 shdr = (union lpfc_sli4_cfg_shdr *) 6970 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6971 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6972 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6973 6974 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6975 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6976 "6188 FW LOG mailbox " 6977 "completed with status x%x add_status x%x," 6978 " mbx status x%x\n", 6979 shdr_status, shdr_add_status, mb->mbxStatus); 6980 6981 ras_fwlog->ras_hwsupport = false; 6982 goto disable_ras; 6983 } 6984 6985 spin_lock_irq(&phba->hbalock); 6986 ras_fwlog->state = ACTIVE; 6987 spin_unlock_irq(&phba->hbalock); 6988 mempool_free(pmb, phba->mbox_mem_pool); 6989 6990 return; 6991 6992 disable_ras: 6993 /* Free RAS DMA memory */ 6994 lpfc_sli4_ras_dma_free(phba); 6995 mempool_free(pmb, phba->mbox_mem_pool); 6996 } 6997 6998 /** 6999 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7000 * @phba: pointer to lpfc hba data structure. 7001 * @fwlog_level: Logging verbosity level. 7002 * @fwlog_enable: Enable/Disable logging. 7003 * 7004 * Initialize memory and post mailbox command to enable FW logging in host 7005 * memory. 7006 **/ 7007 int 7008 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7009 uint32_t fwlog_level, 7010 uint32_t fwlog_enable) 7011 { 7012 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7013 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7014 struct lpfc_dmabuf *dmabuf; 7015 LPFC_MBOXQ_t *mbox; 7016 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7017 int rc = 0; 7018 7019 spin_lock_irq(&phba->hbalock); 7020 ras_fwlog->state = INACTIVE; 7021 spin_unlock_irq(&phba->hbalock); 7022 7023 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7024 phba->cfg_ras_fwlog_buffsize); 7025 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7026 7027 /* 7028 * If re-enabling FW logging support use earlier allocated 7029 * DMA buffers while posting MBX command. 7030 **/ 7031 if (!ras_fwlog->lwpd.virt) { 7032 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7033 if (rc) { 7034 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7035 "6189 FW Log Memory Allocation Failed"); 7036 return rc; 7037 } 7038 } 7039 7040 /* Setup Mailbox command */ 7041 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7042 if (!mbox) { 7043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7044 "6190 RAS MBX Alloc Failed"); 7045 rc = -ENOMEM; 7046 goto mem_free; 7047 } 7048 7049 ras_fwlog->fw_loglevel = fwlog_level; 7050 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7051 sizeof(struct lpfc_sli4_cfg_mhdr)); 7052 7053 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7054 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7055 len, LPFC_SLI4_MBX_EMBED); 7056 7057 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7058 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7059 fwlog_enable); 7060 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7061 ras_fwlog->fw_loglevel); 7062 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7063 ras_fwlog->fw_buffcount); 7064 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7065 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7066 7067 /* Update DMA buffer address */ 7068 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7069 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7070 7071 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7072 putPaddrLow(dmabuf->phys); 7073 7074 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7075 putPaddrHigh(dmabuf->phys); 7076 } 7077 7078 /* Update LPWD address */ 7079 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7080 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7081 7082 spin_lock_irq(&phba->hbalock); 7083 ras_fwlog->state = REG_INPROGRESS; 7084 spin_unlock_irq(&phba->hbalock); 7085 mbox->vport = phba->pport; 7086 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7087 7088 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7089 7090 if (rc == MBX_NOT_FINISHED) { 7091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7092 "6191 FW-Log Mailbox failed. " 7093 "status %d mbxStatus : x%x", rc, 7094 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7095 mempool_free(mbox, phba->mbox_mem_pool); 7096 rc = -EIO; 7097 goto mem_free; 7098 } else 7099 rc = 0; 7100 mem_free: 7101 if (rc) 7102 lpfc_sli4_ras_dma_free(phba); 7103 7104 return rc; 7105 } 7106 7107 /** 7108 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7109 * @phba: Pointer to HBA context object. 7110 * 7111 * Check if RAS is supported on the adapter and initialize it. 7112 **/ 7113 void 7114 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7115 { 7116 /* Check RAS FW Log needs to be enabled or not */ 7117 if (lpfc_check_fwlog_support(phba)) 7118 return; 7119 7120 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7121 LPFC_RAS_ENABLE_LOGGING); 7122 } 7123 7124 /** 7125 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7126 * @phba: Pointer to HBA context object. 7127 * 7128 * This function allocates all SLI4 resource identifiers. 7129 **/ 7130 int 7131 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7132 { 7133 int i, rc, error = 0; 7134 uint16_t count, base; 7135 unsigned long longs; 7136 7137 if (!phba->sli4_hba.rpi_hdrs_in_use) 7138 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7139 if (phba->sli4_hba.extents_in_use) { 7140 /* 7141 * The port supports resource extents. The XRI, VPI, VFI, RPI 7142 * resource extent count must be read and allocated before 7143 * provisioning the resource id arrays. 7144 */ 7145 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7146 LPFC_IDX_RSRC_RDY) { 7147 /* 7148 * Extent-based resources are set - the driver could 7149 * be in a port reset. Figure out if any corrective 7150 * actions need to be taken. 7151 */ 7152 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7153 LPFC_RSC_TYPE_FCOE_VFI); 7154 if (rc != 0) 7155 error++; 7156 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7157 LPFC_RSC_TYPE_FCOE_VPI); 7158 if (rc != 0) 7159 error++; 7160 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7161 LPFC_RSC_TYPE_FCOE_XRI); 7162 if (rc != 0) 7163 error++; 7164 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7165 LPFC_RSC_TYPE_FCOE_RPI); 7166 if (rc != 0) 7167 error++; 7168 7169 /* 7170 * It's possible that the number of resources 7171 * provided to this port instance changed between 7172 * resets. Detect this condition and reallocate 7173 * resources. Otherwise, there is no action. 7174 */ 7175 if (error) { 7176 lpfc_printf_log(phba, KERN_INFO, 7177 LOG_MBOX | LOG_INIT, 7178 "2931 Detected extent resource " 7179 "change. Reallocating all " 7180 "extents.\n"); 7181 rc = lpfc_sli4_dealloc_extent(phba, 7182 LPFC_RSC_TYPE_FCOE_VFI); 7183 rc = lpfc_sli4_dealloc_extent(phba, 7184 LPFC_RSC_TYPE_FCOE_VPI); 7185 rc = lpfc_sli4_dealloc_extent(phba, 7186 LPFC_RSC_TYPE_FCOE_XRI); 7187 rc = lpfc_sli4_dealloc_extent(phba, 7188 LPFC_RSC_TYPE_FCOE_RPI); 7189 } else 7190 return 0; 7191 } 7192 7193 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7194 if (unlikely(rc)) 7195 goto err_exit; 7196 7197 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7198 if (unlikely(rc)) 7199 goto err_exit; 7200 7201 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7202 if (unlikely(rc)) 7203 goto err_exit; 7204 7205 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7206 if (unlikely(rc)) 7207 goto err_exit; 7208 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7209 LPFC_IDX_RSRC_RDY); 7210 return rc; 7211 } else { 7212 /* 7213 * The port does not support resource extents. The XRI, VPI, 7214 * VFI, RPI resource ids were determined from READ_CONFIG. 7215 * Just allocate the bitmasks and provision the resource id 7216 * arrays. If a port reset is active, the resources don't 7217 * need any action - just exit. 7218 */ 7219 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7220 LPFC_IDX_RSRC_RDY) { 7221 lpfc_sli4_dealloc_resource_identifiers(phba); 7222 lpfc_sli4_remove_rpis(phba); 7223 } 7224 /* RPIs. */ 7225 count = phba->sli4_hba.max_cfg_param.max_rpi; 7226 if (count <= 0) { 7227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7228 "3279 Invalid provisioning of " 7229 "rpi:%d\n", count); 7230 rc = -EINVAL; 7231 goto err_exit; 7232 } 7233 base = phba->sli4_hba.max_cfg_param.rpi_base; 7234 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7235 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7236 sizeof(unsigned long), 7237 GFP_KERNEL); 7238 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7239 rc = -ENOMEM; 7240 goto err_exit; 7241 } 7242 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7243 GFP_KERNEL); 7244 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7245 rc = -ENOMEM; 7246 goto free_rpi_bmask; 7247 } 7248 7249 for (i = 0; i < count; i++) 7250 phba->sli4_hba.rpi_ids[i] = base + i; 7251 7252 /* VPIs. */ 7253 count = phba->sli4_hba.max_cfg_param.max_vpi; 7254 if (count <= 0) { 7255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7256 "3280 Invalid provisioning of " 7257 "vpi:%d\n", count); 7258 rc = -EINVAL; 7259 goto free_rpi_ids; 7260 } 7261 base = phba->sli4_hba.max_cfg_param.vpi_base; 7262 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7263 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7264 GFP_KERNEL); 7265 if (unlikely(!phba->vpi_bmask)) { 7266 rc = -ENOMEM; 7267 goto free_rpi_ids; 7268 } 7269 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7270 GFP_KERNEL); 7271 if (unlikely(!phba->vpi_ids)) { 7272 rc = -ENOMEM; 7273 goto free_vpi_bmask; 7274 } 7275 7276 for (i = 0; i < count; i++) 7277 phba->vpi_ids[i] = base + i; 7278 7279 /* XRIs. */ 7280 count = phba->sli4_hba.max_cfg_param.max_xri; 7281 if (count <= 0) { 7282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7283 "3281 Invalid provisioning of " 7284 "xri:%d\n", count); 7285 rc = -EINVAL; 7286 goto free_vpi_ids; 7287 } 7288 base = phba->sli4_hba.max_cfg_param.xri_base; 7289 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7290 phba->sli4_hba.xri_bmask = kcalloc(longs, 7291 sizeof(unsigned long), 7292 GFP_KERNEL); 7293 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7294 rc = -ENOMEM; 7295 goto free_vpi_ids; 7296 } 7297 phba->sli4_hba.max_cfg_param.xri_used = 0; 7298 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7299 GFP_KERNEL); 7300 if (unlikely(!phba->sli4_hba.xri_ids)) { 7301 rc = -ENOMEM; 7302 goto free_xri_bmask; 7303 } 7304 7305 for (i = 0; i < count; i++) 7306 phba->sli4_hba.xri_ids[i] = base + i; 7307 7308 /* VFIs. */ 7309 count = phba->sli4_hba.max_cfg_param.max_vfi; 7310 if (count <= 0) { 7311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7312 "3282 Invalid provisioning of " 7313 "vfi:%d\n", count); 7314 rc = -EINVAL; 7315 goto free_xri_ids; 7316 } 7317 base = phba->sli4_hba.max_cfg_param.vfi_base; 7318 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7319 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7320 sizeof(unsigned long), 7321 GFP_KERNEL); 7322 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7323 rc = -ENOMEM; 7324 goto free_xri_ids; 7325 } 7326 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7327 GFP_KERNEL); 7328 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7329 rc = -ENOMEM; 7330 goto free_vfi_bmask; 7331 } 7332 7333 for (i = 0; i < count; i++) 7334 phba->sli4_hba.vfi_ids[i] = base + i; 7335 7336 /* 7337 * Mark all resources ready. An HBA reset doesn't need 7338 * to reset the initialization. 7339 */ 7340 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7341 LPFC_IDX_RSRC_RDY); 7342 return 0; 7343 } 7344 7345 free_vfi_bmask: 7346 kfree(phba->sli4_hba.vfi_bmask); 7347 phba->sli4_hba.vfi_bmask = NULL; 7348 free_xri_ids: 7349 kfree(phba->sli4_hba.xri_ids); 7350 phba->sli4_hba.xri_ids = NULL; 7351 free_xri_bmask: 7352 kfree(phba->sli4_hba.xri_bmask); 7353 phba->sli4_hba.xri_bmask = NULL; 7354 free_vpi_ids: 7355 kfree(phba->vpi_ids); 7356 phba->vpi_ids = NULL; 7357 free_vpi_bmask: 7358 kfree(phba->vpi_bmask); 7359 phba->vpi_bmask = NULL; 7360 free_rpi_ids: 7361 kfree(phba->sli4_hba.rpi_ids); 7362 phba->sli4_hba.rpi_ids = NULL; 7363 free_rpi_bmask: 7364 kfree(phba->sli4_hba.rpi_bmask); 7365 phba->sli4_hba.rpi_bmask = NULL; 7366 err_exit: 7367 return rc; 7368 } 7369 7370 /** 7371 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7372 * @phba: Pointer to HBA context object. 7373 * 7374 * This function allocates the number of elements for the specified 7375 * resource type. 7376 **/ 7377 int 7378 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7379 { 7380 if (phba->sli4_hba.extents_in_use) { 7381 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7382 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7383 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7384 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7385 } else { 7386 kfree(phba->vpi_bmask); 7387 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7388 kfree(phba->vpi_ids); 7389 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7390 kfree(phba->sli4_hba.xri_bmask); 7391 kfree(phba->sli4_hba.xri_ids); 7392 kfree(phba->sli4_hba.vfi_bmask); 7393 kfree(phba->sli4_hba.vfi_ids); 7394 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7395 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7396 } 7397 7398 return 0; 7399 } 7400 7401 /** 7402 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7403 * @phba: Pointer to HBA context object. 7404 * @type: The resource extent type. 7405 * @extnt_cnt: buffer to hold port extent count response 7406 * @extnt_size: buffer to hold port extent size response. 7407 * 7408 * This function calls the port to read the host allocated extents 7409 * for a particular type. 7410 **/ 7411 int 7412 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7413 uint16_t *extnt_cnt, uint16_t *extnt_size) 7414 { 7415 bool emb; 7416 int rc = 0; 7417 uint16_t curr_blks = 0; 7418 uint32_t req_len, emb_len; 7419 uint32_t alloc_len, mbox_tmo; 7420 struct list_head *blk_list_head; 7421 struct lpfc_rsrc_blks *rsrc_blk; 7422 LPFC_MBOXQ_t *mbox; 7423 void *virtaddr = NULL; 7424 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7425 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7426 union lpfc_sli4_cfg_shdr *shdr; 7427 7428 switch (type) { 7429 case LPFC_RSC_TYPE_FCOE_VPI: 7430 blk_list_head = &phba->lpfc_vpi_blk_list; 7431 break; 7432 case LPFC_RSC_TYPE_FCOE_XRI: 7433 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7434 break; 7435 case LPFC_RSC_TYPE_FCOE_VFI: 7436 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7437 break; 7438 case LPFC_RSC_TYPE_FCOE_RPI: 7439 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7440 break; 7441 default: 7442 return -EIO; 7443 } 7444 7445 /* Count the number of extents currently allocatd for this type. */ 7446 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7447 if (curr_blks == 0) { 7448 /* 7449 * The GET_ALLOCATED mailbox does not return the size, 7450 * just the count. The size should be just the size 7451 * stored in the current allocated block and all sizes 7452 * for an extent type are the same so set the return 7453 * value now. 7454 */ 7455 *extnt_size = rsrc_blk->rsrc_size; 7456 } 7457 curr_blks++; 7458 } 7459 7460 /* 7461 * Calculate the size of an embedded mailbox. The uint32_t 7462 * accounts for extents-specific word. 7463 */ 7464 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7465 sizeof(uint32_t); 7466 7467 /* 7468 * Presume the allocation and response will fit into an embedded 7469 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7470 */ 7471 emb = LPFC_SLI4_MBX_EMBED; 7472 req_len = emb_len; 7473 if (req_len > emb_len) { 7474 req_len = curr_blks * sizeof(uint16_t) + 7475 sizeof(union lpfc_sli4_cfg_shdr) + 7476 sizeof(uint32_t); 7477 emb = LPFC_SLI4_MBX_NEMBED; 7478 } 7479 7480 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7481 if (!mbox) 7482 return -ENOMEM; 7483 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7484 7485 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7486 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7487 req_len, emb); 7488 if (alloc_len < req_len) { 7489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7490 "2983 Allocated DMA memory size (x%x) is " 7491 "less than the requested DMA memory " 7492 "size (x%x)\n", alloc_len, req_len); 7493 rc = -ENOMEM; 7494 goto err_exit; 7495 } 7496 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7497 if (unlikely(rc)) { 7498 rc = -EIO; 7499 goto err_exit; 7500 } 7501 7502 if (!phba->sli4_hba.intr_enable) 7503 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7504 else { 7505 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7506 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7507 } 7508 7509 if (unlikely(rc)) { 7510 rc = -EIO; 7511 goto err_exit; 7512 } 7513 7514 /* 7515 * Figure out where the response is located. Then get local pointers 7516 * to the response data. The port does not guarantee to respond to 7517 * all extents counts request so update the local variable with the 7518 * allocated count from the port. 7519 */ 7520 if (emb == LPFC_SLI4_MBX_EMBED) { 7521 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7522 shdr = &rsrc_ext->header.cfg_shdr; 7523 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7524 } else { 7525 virtaddr = mbox->sge_array->addr[0]; 7526 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7527 shdr = &n_rsrc->cfg_shdr; 7528 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7529 } 7530 7531 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7533 "2984 Failed to read allocated resources " 7534 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7535 type, 7536 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7537 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7538 rc = -EIO; 7539 goto err_exit; 7540 } 7541 err_exit: 7542 lpfc_sli4_mbox_cmd_free(phba, mbox); 7543 return rc; 7544 } 7545 7546 /** 7547 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7548 * @phba: pointer to lpfc hba data structure. 7549 * @sgl_list: linked link of sgl buffers to post 7550 * @cnt: number of linked list buffers 7551 * 7552 * This routine walks the list of buffers that have been allocated and 7553 * repost them to the port by using SGL block post. This is needed after a 7554 * pci_function_reset/warm_start or start. It attempts to construct blocks 7555 * of buffer sgls which contains contiguous xris and uses the non-embedded 7556 * SGL block post mailbox commands to post them to the port. For single 7557 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7558 * mailbox command for posting. 7559 * 7560 * Returns: 0 = success, non-zero failure. 7561 **/ 7562 static int 7563 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7564 struct list_head *sgl_list, int cnt) 7565 { 7566 struct lpfc_sglq *sglq_entry = NULL; 7567 struct lpfc_sglq *sglq_entry_next = NULL; 7568 struct lpfc_sglq *sglq_entry_first = NULL; 7569 int status, total_cnt; 7570 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7571 int last_xritag = NO_XRI; 7572 LIST_HEAD(prep_sgl_list); 7573 LIST_HEAD(blck_sgl_list); 7574 LIST_HEAD(allc_sgl_list); 7575 LIST_HEAD(post_sgl_list); 7576 LIST_HEAD(free_sgl_list); 7577 7578 spin_lock_irq(&phba->hbalock); 7579 spin_lock(&phba->sli4_hba.sgl_list_lock); 7580 list_splice_init(sgl_list, &allc_sgl_list); 7581 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7582 spin_unlock_irq(&phba->hbalock); 7583 7584 total_cnt = cnt; 7585 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7586 &allc_sgl_list, list) { 7587 list_del_init(&sglq_entry->list); 7588 block_cnt++; 7589 if ((last_xritag != NO_XRI) && 7590 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7591 /* a hole in xri block, form a sgl posting block */ 7592 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7593 post_cnt = block_cnt - 1; 7594 /* prepare list for next posting block */ 7595 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7596 block_cnt = 1; 7597 } else { 7598 /* prepare list for next posting block */ 7599 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7600 /* enough sgls for non-embed sgl mbox command */ 7601 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7602 list_splice_init(&prep_sgl_list, 7603 &blck_sgl_list); 7604 post_cnt = block_cnt; 7605 block_cnt = 0; 7606 } 7607 } 7608 num_posted++; 7609 7610 /* keep track of last sgl's xritag */ 7611 last_xritag = sglq_entry->sli4_xritag; 7612 7613 /* end of repost sgl list condition for buffers */ 7614 if (num_posted == total_cnt) { 7615 if (post_cnt == 0) { 7616 list_splice_init(&prep_sgl_list, 7617 &blck_sgl_list); 7618 post_cnt = block_cnt; 7619 } else if (block_cnt == 1) { 7620 status = lpfc_sli4_post_sgl(phba, 7621 sglq_entry->phys, 0, 7622 sglq_entry->sli4_xritag); 7623 if (!status) { 7624 /* successful, put sgl to posted list */ 7625 list_add_tail(&sglq_entry->list, 7626 &post_sgl_list); 7627 } else { 7628 /* Failure, put sgl to free list */ 7629 lpfc_printf_log(phba, KERN_WARNING, 7630 LOG_SLI, 7631 "3159 Failed to post " 7632 "sgl, xritag:x%x\n", 7633 sglq_entry->sli4_xritag); 7634 list_add_tail(&sglq_entry->list, 7635 &free_sgl_list); 7636 total_cnt--; 7637 } 7638 } 7639 } 7640 7641 /* continue until a nembed page worth of sgls */ 7642 if (post_cnt == 0) 7643 continue; 7644 7645 /* post the buffer list sgls as a block */ 7646 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7647 post_cnt); 7648 7649 if (!status) { 7650 /* success, put sgl list to posted sgl list */ 7651 list_splice_init(&blck_sgl_list, &post_sgl_list); 7652 } else { 7653 /* Failure, put sgl list to free sgl list */ 7654 sglq_entry_first = list_first_entry(&blck_sgl_list, 7655 struct lpfc_sglq, 7656 list); 7657 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7658 "3160 Failed to post sgl-list, " 7659 "xritag:x%x-x%x\n", 7660 sglq_entry_first->sli4_xritag, 7661 (sglq_entry_first->sli4_xritag + 7662 post_cnt - 1)); 7663 list_splice_init(&blck_sgl_list, &free_sgl_list); 7664 total_cnt -= post_cnt; 7665 } 7666 7667 /* don't reset xirtag due to hole in xri block */ 7668 if (block_cnt == 0) 7669 last_xritag = NO_XRI; 7670 7671 /* reset sgl post count for next round of posting */ 7672 post_cnt = 0; 7673 } 7674 7675 /* free the sgls failed to post */ 7676 lpfc_free_sgl_list(phba, &free_sgl_list); 7677 7678 /* push sgls posted to the available list */ 7679 if (!list_empty(&post_sgl_list)) { 7680 spin_lock_irq(&phba->hbalock); 7681 spin_lock(&phba->sli4_hba.sgl_list_lock); 7682 list_splice_init(&post_sgl_list, sgl_list); 7683 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7684 spin_unlock_irq(&phba->hbalock); 7685 } else { 7686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7687 "3161 Failure to post sgl to port.\n"); 7688 return -EIO; 7689 } 7690 7691 /* return the number of XRIs actually posted */ 7692 return total_cnt; 7693 } 7694 7695 /** 7696 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7697 * @phba: pointer to lpfc hba data structure. 7698 * 7699 * This routine walks the list of nvme buffers that have been allocated and 7700 * repost them to the port by using SGL block post. This is needed after a 7701 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7702 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7703 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7704 * 7705 * Returns: 0 = success, non-zero failure. 7706 **/ 7707 static int 7708 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7709 { 7710 LIST_HEAD(post_nblist); 7711 int num_posted, rc = 0; 7712 7713 /* get all NVME buffers need to repost to a local list */ 7714 lpfc_io_buf_flush(phba, &post_nblist); 7715 7716 /* post the list of nvme buffer sgls to port if available */ 7717 if (!list_empty(&post_nblist)) { 7718 num_posted = lpfc_sli4_post_io_sgl_list( 7719 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7720 /* failed to post any nvme buffer, return error */ 7721 if (num_posted == 0) 7722 rc = -EIO; 7723 } 7724 return rc; 7725 } 7726 7727 static void 7728 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7729 { 7730 uint32_t len; 7731 7732 len = sizeof(struct lpfc_mbx_set_host_data) - 7733 sizeof(struct lpfc_sli4_cfg_mhdr); 7734 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7735 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7736 LPFC_SLI4_MBX_EMBED); 7737 7738 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7739 mbox->u.mqe.un.set_host_data.param_len = 7740 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7741 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7742 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7743 "Linux %s v"LPFC_DRIVER_VERSION, 7744 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7745 } 7746 7747 int 7748 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7749 struct lpfc_queue *drq, int count, int idx) 7750 { 7751 int rc, i; 7752 struct lpfc_rqe hrqe; 7753 struct lpfc_rqe drqe; 7754 struct lpfc_rqb *rqbp; 7755 unsigned long flags; 7756 struct rqb_dmabuf *rqb_buffer; 7757 LIST_HEAD(rqb_buf_list); 7758 7759 rqbp = hrq->rqbp; 7760 for (i = 0; i < count; i++) { 7761 spin_lock_irqsave(&phba->hbalock, flags); 7762 /* IF RQ is already full, don't bother */ 7763 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7764 spin_unlock_irqrestore(&phba->hbalock, flags); 7765 break; 7766 } 7767 spin_unlock_irqrestore(&phba->hbalock, flags); 7768 7769 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7770 if (!rqb_buffer) 7771 break; 7772 rqb_buffer->hrq = hrq; 7773 rqb_buffer->drq = drq; 7774 rqb_buffer->idx = idx; 7775 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7776 } 7777 7778 spin_lock_irqsave(&phba->hbalock, flags); 7779 while (!list_empty(&rqb_buf_list)) { 7780 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7781 hbuf.list); 7782 7783 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7784 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7785 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7786 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7787 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7788 if (rc < 0) { 7789 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7790 "6421 Cannot post to HRQ %d: %x %x %x " 7791 "DRQ %x %x\n", 7792 hrq->queue_id, 7793 hrq->host_index, 7794 hrq->hba_index, 7795 hrq->entry_count, 7796 drq->host_index, 7797 drq->hba_index); 7798 rqbp->rqb_free_buffer(phba, rqb_buffer); 7799 } else { 7800 list_add_tail(&rqb_buffer->hbuf.list, 7801 &rqbp->rqb_buffer_list); 7802 rqbp->buffer_count++; 7803 } 7804 } 7805 spin_unlock_irqrestore(&phba->hbalock, flags); 7806 return 1; 7807 } 7808 7809 static void 7810 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7811 { 7812 struct lpfc_vport *vport = pmb->vport; 7813 union lpfc_sli4_cfg_shdr *shdr; 7814 u32 shdr_status, shdr_add_status; 7815 u32 sig, acqe; 7816 7817 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7818 * is done. (2) Mailbox failed and send FPIN support only. 7819 */ 7820 shdr = (union lpfc_sli4_cfg_shdr *) 7821 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7822 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7823 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7824 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7825 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7826 "2516 CGN SET_FEATURE mbox failed with " 7827 "status x%x add_status x%x, mbx status x%x " 7828 "Reset Congestion to FPINs only\n", 7829 shdr_status, shdr_add_status, 7830 pmb->u.mb.mbxStatus); 7831 /* If there is a mbox error, move on to RDF */ 7832 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7833 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7834 goto out; 7835 } 7836 7837 /* Zero out Congestion Signal ACQE counter */ 7838 phba->cgn_acqe_cnt = 0; 7839 7840 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7841 &pmb->u.mqe.un.set_feature); 7842 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7843 &pmb->u.mqe.un.set_feature); 7844 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7845 "4620 SET_FEATURES Success: Freq: %ds %dms " 7846 " Reg: x%x x%x\n", acqe, sig, 7847 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7848 out: 7849 mempool_free(pmb, phba->mbox_mem_pool); 7850 7851 /* Register for FPIN events from the fabric now that the 7852 * EDC common_set_features has completed. 7853 */ 7854 lpfc_issue_els_rdf(vport, 0); 7855 } 7856 7857 int 7858 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7859 { 7860 LPFC_MBOXQ_t *mboxq; 7861 u32 rc; 7862 7863 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7864 if (!mboxq) 7865 goto out_rdf; 7866 7867 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7868 mboxq->vport = phba->pport; 7869 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7870 7871 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7872 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7873 "Reg: x%x x%x\n", 7874 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7875 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7876 7877 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7878 if (rc == MBX_NOT_FINISHED) 7879 goto out; 7880 return 0; 7881 7882 out: 7883 mempool_free(mboxq, phba->mbox_mem_pool); 7884 out_rdf: 7885 /* If there is a mbox error, move on to RDF */ 7886 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7887 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7888 lpfc_issue_els_rdf(phba->pport, 0); 7889 return -EIO; 7890 } 7891 7892 /** 7893 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7894 * @phba: pointer to lpfc hba data structure. 7895 * 7896 * This routine initializes the per-cq idle_stat to dynamically dictate 7897 * polling decisions. 7898 * 7899 * Return codes: 7900 * None 7901 **/ 7902 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7903 { 7904 int i; 7905 struct lpfc_sli4_hdw_queue *hdwq; 7906 struct lpfc_queue *cq; 7907 struct lpfc_idle_stat *idle_stat; 7908 u64 wall; 7909 7910 for_each_present_cpu(i) { 7911 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7912 cq = hdwq->io_cq; 7913 7914 /* Skip if we've already handled this cq's primary CPU */ 7915 if (cq->chann != i) 7916 continue; 7917 7918 idle_stat = &phba->sli4_hba.idle_stat[i]; 7919 7920 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7921 idle_stat->prev_wall = wall; 7922 7923 if (phba->nvmet_support || 7924 phba->cmf_active_mode != LPFC_CFG_OFF) 7925 cq->poll_mode = LPFC_QUEUE_WORK; 7926 else 7927 cq->poll_mode = LPFC_IRQ_POLL; 7928 } 7929 7930 if (!phba->nvmet_support) 7931 schedule_delayed_work(&phba->idle_stat_delay_work, 7932 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7933 } 7934 7935 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7936 { 7937 uint32_t if_type; 7938 7939 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7940 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7941 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7942 struct lpfc_register reg_data; 7943 7944 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7945 ®_data.word0)) 7946 return; 7947 7948 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7949 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7950 "2904 Firmware Dump Image Present" 7951 " on Adapter"); 7952 } 7953 } 7954 7955 /** 7956 * lpfc_cmf_setup - Initialize idle_stat tracking 7957 * @phba: Pointer to HBA context object. 7958 * 7959 * This is called from HBA setup during driver load or when the HBA 7960 * comes online. this does all the initialization to support CMF and MI. 7961 **/ 7962 static int 7963 lpfc_cmf_setup(struct lpfc_hba *phba) 7964 { 7965 LPFC_MBOXQ_t *mboxq; 7966 struct lpfc_dmabuf *mp; 7967 struct lpfc_pc_sli4_params *sli4_params; 7968 int rc, cmf, mi_ver; 7969 7970 rc = lpfc_sli4_refresh_params(phba); 7971 if (unlikely(rc)) 7972 return rc; 7973 7974 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7975 if (!mboxq) 7976 return -ENOMEM; 7977 7978 sli4_params = &phba->sli4_hba.pc_sli4_params; 7979 7980 /* Always try to enable MI feature if we can */ 7981 if (sli4_params->mi_ver) { 7982 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7983 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7984 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7985 &mboxq->u.mqe.un.set_feature); 7986 7987 if (rc == MBX_SUCCESS) { 7988 if (mi_ver) { 7989 lpfc_printf_log(phba, 7990 KERN_WARNING, LOG_CGN_MGMT, 7991 "6215 MI is enabled\n"); 7992 sli4_params->mi_ver = mi_ver; 7993 } else { 7994 lpfc_printf_log(phba, 7995 KERN_WARNING, LOG_CGN_MGMT, 7996 "6338 MI is disabled\n"); 7997 sli4_params->mi_ver = 0; 7998 } 7999 } else { 8000 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8001 lpfc_printf_log(phba, KERN_INFO, 8002 LOG_CGN_MGMT | LOG_INIT, 8003 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8004 "failed, rc:x%x mi:x%x\n", 8005 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8006 lpfc_sli_config_mbox_subsys_get 8007 (phba, mboxq), 8008 lpfc_sli_config_mbox_opcode_get 8009 (phba, mboxq), 8010 rc, sli4_params->mi_ver); 8011 } 8012 } else { 8013 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8014 "6217 MI is disabled\n"); 8015 } 8016 8017 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8018 if (sli4_params->mi_ver) 8019 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8020 8021 /* Always try to enable CMF feature if we can */ 8022 if (sli4_params->cmf) { 8023 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8024 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8025 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8026 &mboxq->u.mqe.un.set_feature); 8027 if (rc == MBX_SUCCESS && cmf) { 8028 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8029 "6218 CMF is enabled: mode %d\n", 8030 phba->cmf_active_mode); 8031 } else { 8032 lpfc_printf_log(phba, KERN_WARNING, 8033 LOG_CGN_MGMT | LOG_INIT, 8034 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8035 "failed, rc:x%x dd:x%x\n", 8036 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8037 lpfc_sli_config_mbox_subsys_get 8038 (phba, mboxq), 8039 lpfc_sli_config_mbox_opcode_get 8040 (phba, mboxq), 8041 rc, cmf); 8042 sli4_params->cmf = 0; 8043 phba->cmf_active_mode = LPFC_CFG_OFF; 8044 goto no_cmf; 8045 } 8046 8047 /* Allocate Congestion Information Buffer */ 8048 if (!phba->cgn_i) { 8049 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8050 if (mp) 8051 mp->virt = dma_alloc_coherent 8052 (&phba->pcidev->dev, 8053 sizeof(struct lpfc_cgn_info), 8054 &mp->phys, GFP_KERNEL); 8055 if (!mp || !mp->virt) { 8056 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8057 "2640 Failed to alloc memory " 8058 "for Congestion Info\n"); 8059 kfree(mp); 8060 sli4_params->cmf = 0; 8061 phba->cmf_active_mode = LPFC_CFG_OFF; 8062 goto no_cmf; 8063 } 8064 phba->cgn_i = mp; 8065 8066 /* initialize congestion buffer info */ 8067 lpfc_init_congestion_buf(phba); 8068 lpfc_init_congestion_stat(phba); 8069 8070 /* Zero out Congestion Signal counters */ 8071 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8072 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8073 } 8074 8075 rc = lpfc_sli4_cgn_params_read(phba); 8076 if (rc < 0) { 8077 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8078 "6242 Error reading Cgn Params (%d)\n", 8079 rc); 8080 /* Ensure CGN Mode is off */ 8081 sli4_params->cmf = 0; 8082 } else if (!rc) { 8083 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8084 "6243 CGN Event empty object.\n"); 8085 /* Ensure CGN Mode is off */ 8086 sli4_params->cmf = 0; 8087 } 8088 } else { 8089 no_cmf: 8090 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8091 "6220 CMF is disabled\n"); 8092 } 8093 8094 /* Only register congestion buffer with firmware if BOTH 8095 * CMF and E2E are enabled. 8096 */ 8097 if (sli4_params->cmf && sli4_params->mi_ver) { 8098 rc = lpfc_reg_congestion_buf(phba); 8099 if (rc) { 8100 dma_free_coherent(&phba->pcidev->dev, 8101 sizeof(struct lpfc_cgn_info), 8102 phba->cgn_i->virt, phba->cgn_i->phys); 8103 kfree(phba->cgn_i); 8104 phba->cgn_i = NULL; 8105 /* Ensure CGN Mode is off */ 8106 phba->cmf_active_mode = LPFC_CFG_OFF; 8107 return 0; 8108 } 8109 } 8110 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8111 "6470 Setup MI version %d CMF %d mode %d\n", 8112 sli4_params->mi_ver, sli4_params->cmf, 8113 phba->cmf_active_mode); 8114 8115 mempool_free(mboxq, phba->mbox_mem_pool); 8116 8117 /* Initialize atomic counters */ 8118 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8119 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8120 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8121 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8122 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8123 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8124 atomic64_set(&phba->cgn_latency_evt, 0); 8125 8126 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8127 8128 /* Allocate RX Monitor Buffer */ 8129 if (!phba->rxtable) { 8130 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8131 sizeof(struct rxtable_entry), 8132 GFP_KERNEL); 8133 if (!phba->rxtable) { 8134 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8135 "2644 Failed to alloc memory " 8136 "for RX Monitor Buffer\n"); 8137 return -ENOMEM; 8138 } 8139 } 8140 atomic_set(&phba->rxtable_idx_head, 0); 8141 atomic_set(&phba->rxtable_idx_tail, 0); 8142 return 0; 8143 } 8144 8145 static int 8146 lpfc_set_host_tm(struct lpfc_hba *phba) 8147 { 8148 LPFC_MBOXQ_t *mboxq; 8149 uint32_t len, rc; 8150 struct timespec64 cur_time; 8151 struct tm broken; 8152 uint32_t month, day, year; 8153 uint32_t hour, minute, second; 8154 struct lpfc_mbx_set_host_date_time *tm; 8155 8156 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8157 if (!mboxq) 8158 return -ENOMEM; 8159 8160 len = sizeof(struct lpfc_mbx_set_host_data) - 8161 sizeof(struct lpfc_sli4_cfg_mhdr); 8162 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8163 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8164 LPFC_SLI4_MBX_EMBED); 8165 8166 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8167 mboxq->u.mqe.un.set_host_data.param_len = 8168 sizeof(struct lpfc_mbx_set_host_date_time); 8169 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8170 ktime_get_real_ts64(&cur_time); 8171 time64_to_tm(cur_time.tv_sec, 0, &broken); 8172 month = broken.tm_mon + 1; 8173 day = broken.tm_mday; 8174 year = broken.tm_year - 100; 8175 hour = broken.tm_hour; 8176 minute = broken.tm_min; 8177 second = broken.tm_sec; 8178 bf_set(lpfc_mbx_set_host_month, tm, month); 8179 bf_set(lpfc_mbx_set_host_day, tm, day); 8180 bf_set(lpfc_mbx_set_host_year, tm, year); 8181 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8182 bf_set(lpfc_mbx_set_host_min, tm, minute); 8183 bf_set(lpfc_mbx_set_host_sec, tm, second); 8184 8185 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8186 mempool_free(mboxq, phba->mbox_mem_pool); 8187 return rc; 8188 } 8189 8190 /** 8191 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8192 * @phba: Pointer to HBA context object. 8193 * 8194 * This function is the main SLI4 device initialization PCI function. This 8195 * function is called by the HBA initialization code, HBA reset code and 8196 * HBA error attention handler code. Caller is not required to hold any 8197 * locks. 8198 **/ 8199 int 8200 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8201 { 8202 int rc, i, cnt, len, dd; 8203 LPFC_MBOXQ_t *mboxq; 8204 struct lpfc_mqe *mqe; 8205 uint8_t *vpd; 8206 uint32_t vpd_size; 8207 uint32_t ftr_rsp = 0; 8208 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8209 struct lpfc_vport *vport = phba->pport; 8210 struct lpfc_dmabuf *mp; 8211 struct lpfc_rqb *rqbp; 8212 u32 flg; 8213 8214 /* Perform a PCI function reset to start from clean */ 8215 rc = lpfc_pci_function_reset(phba); 8216 if (unlikely(rc)) 8217 return -ENODEV; 8218 8219 /* Check the HBA Host Status Register for readyness */ 8220 rc = lpfc_sli4_post_status_check(phba); 8221 if (unlikely(rc)) 8222 return -ENODEV; 8223 else { 8224 spin_lock_irq(&phba->hbalock); 8225 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8226 flg = phba->sli.sli_flag; 8227 spin_unlock_irq(&phba->hbalock); 8228 /* Allow a little time after setting SLI_ACTIVE for any polled 8229 * MBX commands to complete via BSG. 8230 */ 8231 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8232 msleep(20); 8233 spin_lock_irq(&phba->hbalock); 8234 flg = phba->sli.sli_flag; 8235 spin_unlock_irq(&phba->hbalock); 8236 } 8237 } 8238 8239 lpfc_sli4_dip(phba); 8240 8241 /* 8242 * Allocate a single mailbox container for initializing the 8243 * port. 8244 */ 8245 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8246 if (!mboxq) 8247 return -ENOMEM; 8248 8249 /* Issue READ_REV to collect vpd and FW information. */ 8250 vpd_size = SLI4_PAGE_SIZE; 8251 vpd = kzalloc(vpd_size, GFP_KERNEL); 8252 if (!vpd) { 8253 rc = -ENOMEM; 8254 goto out_free_mbox; 8255 } 8256 8257 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8258 if (unlikely(rc)) { 8259 kfree(vpd); 8260 goto out_free_mbox; 8261 } 8262 8263 mqe = &mboxq->u.mqe; 8264 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8265 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8266 phba->hba_flag |= HBA_FCOE_MODE; 8267 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8268 } else { 8269 phba->hba_flag &= ~HBA_FCOE_MODE; 8270 } 8271 8272 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8273 LPFC_DCBX_CEE_MODE) 8274 phba->hba_flag |= HBA_FIP_SUPPORT; 8275 else 8276 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8277 8278 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8279 8280 if (phba->sli_rev != LPFC_SLI_REV4) { 8281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8282 "0376 READ_REV Error. SLI Level %d " 8283 "FCoE enabled %d\n", 8284 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8285 rc = -EIO; 8286 kfree(vpd); 8287 goto out_free_mbox; 8288 } 8289 8290 rc = lpfc_set_host_tm(phba); 8291 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8292 "6468 Set host date / time: Status x%x:\n", rc); 8293 8294 /* 8295 * Continue initialization with default values even if driver failed 8296 * to read FCoE param config regions, only read parameters if the 8297 * board is FCoE 8298 */ 8299 if (phba->hba_flag & HBA_FCOE_MODE && 8300 lpfc_sli4_read_fcoe_params(phba)) 8301 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8302 "2570 Failed to read FCoE parameters\n"); 8303 8304 /* 8305 * Retrieve sli4 device physical port name, failure of doing it 8306 * is considered as non-fatal. 8307 */ 8308 rc = lpfc_sli4_retrieve_pport_name(phba); 8309 if (!rc) 8310 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8311 "3080 Successful retrieving SLI4 device " 8312 "physical port name: %s.\n", phba->Port); 8313 8314 rc = lpfc_sli4_get_ctl_attr(phba); 8315 if (!rc) 8316 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8317 "8351 Successful retrieving SLI4 device " 8318 "CTL ATTR\n"); 8319 8320 /* 8321 * Evaluate the read rev and vpd data. Populate the driver 8322 * state with the results. If this routine fails, the failure 8323 * is not fatal as the driver will use generic values. 8324 */ 8325 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8326 if (unlikely(!rc)) { 8327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8328 "0377 Error %d parsing vpd. " 8329 "Using defaults.\n", rc); 8330 rc = 0; 8331 } 8332 kfree(vpd); 8333 8334 /* Save information as VPD data */ 8335 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8336 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8337 8338 /* 8339 * This is because first G7 ASIC doesn't support the standard 8340 * 0x5a NVME cmd descriptor type/subtype 8341 */ 8342 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8343 LPFC_SLI_INTF_IF_TYPE_6) && 8344 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8345 (phba->vpd.rev.smRev == 0) && 8346 (phba->cfg_nvme_embed_cmd == 1)) 8347 phba->cfg_nvme_embed_cmd = 0; 8348 8349 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8350 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8351 &mqe->un.read_rev); 8352 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8353 &mqe->un.read_rev); 8354 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8355 &mqe->un.read_rev); 8356 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8357 &mqe->un.read_rev); 8358 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8359 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8360 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8361 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8362 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8363 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8364 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8365 "(%d):0380 READ_REV Status x%x " 8366 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8367 mboxq->vport ? mboxq->vport->vpi : 0, 8368 bf_get(lpfc_mqe_status, mqe), 8369 phba->vpd.rev.opFwName, 8370 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8371 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8372 8373 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8374 LPFC_SLI_INTF_IF_TYPE_0) { 8375 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8376 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8377 if (rc == MBX_SUCCESS) { 8378 phba->hba_flag |= HBA_RECOVERABLE_UE; 8379 /* Set 1Sec interval to detect UE */ 8380 phba->eratt_poll_interval = 1; 8381 phba->sli4_hba.ue_to_sr = bf_get( 8382 lpfc_mbx_set_feature_UESR, 8383 &mboxq->u.mqe.un.set_feature); 8384 phba->sli4_hba.ue_to_rp = bf_get( 8385 lpfc_mbx_set_feature_UERP, 8386 &mboxq->u.mqe.un.set_feature); 8387 } 8388 } 8389 8390 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8391 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8392 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8393 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8394 if (rc != MBX_SUCCESS) 8395 phba->mds_diags_support = 0; 8396 } 8397 8398 /* 8399 * Discover the port's supported feature set and match it against the 8400 * hosts requests. 8401 */ 8402 lpfc_request_features(phba, mboxq); 8403 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8404 if (unlikely(rc)) { 8405 rc = -EIO; 8406 goto out_free_mbox; 8407 } 8408 8409 /* Disable VMID if app header is not supported */ 8410 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8411 &mqe->un.req_ftrs))) { 8412 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8413 phba->cfg_vmid_app_header = 0; 8414 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8415 "1242 vmid feature not supported\n"); 8416 } 8417 8418 /* 8419 * The port must support FCP initiator mode as this is the 8420 * only mode running in the host. 8421 */ 8422 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8423 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8424 "0378 No support for fcpi mode.\n"); 8425 ftr_rsp++; 8426 } 8427 8428 /* Performance Hints are ONLY for FCoE */ 8429 if (phba->hba_flag & HBA_FCOE_MODE) { 8430 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8431 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8432 else 8433 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8434 } 8435 8436 /* 8437 * If the port cannot support the host's requested features 8438 * then turn off the global config parameters to disable the 8439 * feature in the driver. This is not a fatal error. 8440 */ 8441 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8442 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8443 phba->cfg_enable_bg = 0; 8444 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8445 ftr_rsp++; 8446 } 8447 } 8448 8449 if (phba->max_vpi && phba->cfg_enable_npiv && 8450 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8451 ftr_rsp++; 8452 8453 if (ftr_rsp) { 8454 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8455 "0379 Feature Mismatch Data: x%08x %08x " 8456 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8457 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8458 phba->cfg_enable_npiv, phba->max_vpi); 8459 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8460 phba->cfg_enable_bg = 0; 8461 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8462 phba->cfg_enable_npiv = 0; 8463 } 8464 8465 /* These SLI3 features are assumed in SLI4 */ 8466 spin_lock_irq(&phba->hbalock); 8467 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8468 spin_unlock_irq(&phba->hbalock); 8469 8470 /* Always try to enable dual dump feature if we can */ 8471 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8472 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8473 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8474 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8475 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8476 "6448 Dual Dump is enabled\n"); 8477 else 8478 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8479 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8480 "rc:x%x dd:x%x\n", 8481 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8482 lpfc_sli_config_mbox_subsys_get( 8483 phba, mboxq), 8484 lpfc_sli_config_mbox_opcode_get( 8485 phba, mboxq), 8486 rc, dd); 8487 /* 8488 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8489 * calls depends on these resources to complete port setup. 8490 */ 8491 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8492 if (rc) { 8493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8494 "2920 Failed to alloc Resource IDs " 8495 "rc = x%x\n", rc); 8496 goto out_free_mbox; 8497 } 8498 8499 lpfc_set_host_data(phba, mboxq); 8500 8501 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8502 if (rc) { 8503 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8504 "2134 Failed to set host os driver version %x", 8505 rc); 8506 } 8507 8508 /* Read the port's service parameters. */ 8509 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8510 if (rc) { 8511 phba->link_state = LPFC_HBA_ERROR; 8512 rc = -ENOMEM; 8513 goto out_free_mbox; 8514 } 8515 8516 mboxq->vport = vport; 8517 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8518 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8519 if (rc == MBX_SUCCESS) { 8520 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8521 rc = 0; 8522 } 8523 8524 /* 8525 * This memory was allocated by the lpfc_read_sparam routine but is 8526 * no longer needed. It is released and ctx_buf NULLed to prevent 8527 * unintended pointer access as the mbox is reused. 8528 */ 8529 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8530 kfree(mp); 8531 mboxq->ctx_buf = NULL; 8532 if (unlikely(rc)) { 8533 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8534 "0382 READ_SPARAM command failed " 8535 "status %d, mbxStatus x%x\n", 8536 rc, bf_get(lpfc_mqe_status, mqe)); 8537 phba->link_state = LPFC_HBA_ERROR; 8538 rc = -EIO; 8539 goto out_free_mbox; 8540 } 8541 8542 lpfc_update_vport_wwn(vport); 8543 8544 /* Update the fc_host data structures with new wwn. */ 8545 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8546 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8547 8548 /* Create all the SLI4 queues */ 8549 rc = lpfc_sli4_queue_create(phba); 8550 if (rc) { 8551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8552 "3089 Failed to allocate queues\n"); 8553 rc = -ENODEV; 8554 goto out_free_mbox; 8555 } 8556 /* Set up all the queues to the device */ 8557 rc = lpfc_sli4_queue_setup(phba); 8558 if (unlikely(rc)) { 8559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8560 "0381 Error %d during queue setup.\n ", rc); 8561 goto out_stop_timers; 8562 } 8563 /* Initialize the driver internal SLI layer lists. */ 8564 lpfc_sli4_setup(phba); 8565 lpfc_sli4_queue_init(phba); 8566 8567 /* update host els xri-sgl sizes and mappings */ 8568 rc = lpfc_sli4_els_sgl_update(phba); 8569 if (unlikely(rc)) { 8570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8571 "1400 Failed to update xri-sgl size and " 8572 "mapping: %d\n", rc); 8573 goto out_destroy_queue; 8574 } 8575 8576 /* register the els sgl pool to the port */ 8577 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8578 phba->sli4_hba.els_xri_cnt); 8579 if (unlikely(rc < 0)) { 8580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8581 "0582 Error %d during els sgl post " 8582 "operation\n", rc); 8583 rc = -ENODEV; 8584 goto out_destroy_queue; 8585 } 8586 phba->sli4_hba.els_xri_cnt = rc; 8587 8588 if (phba->nvmet_support) { 8589 /* update host nvmet xri-sgl sizes and mappings */ 8590 rc = lpfc_sli4_nvmet_sgl_update(phba); 8591 if (unlikely(rc)) { 8592 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8593 "6308 Failed to update nvmet-sgl size " 8594 "and mapping: %d\n", rc); 8595 goto out_destroy_queue; 8596 } 8597 8598 /* register the nvmet sgl pool to the port */ 8599 rc = lpfc_sli4_repost_sgl_list( 8600 phba, 8601 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8602 phba->sli4_hba.nvmet_xri_cnt); 8603 if (unlikely(rc < 0)) { 8604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8605 "3117 Error %d during nvmet " 8606 "sgl post\n", rc); 8607 rc = -ENODEV; 8608 goto out_destroy_queue; 8609 } 8610 phba->sli4_hba.nvmet_xri_cnt = rc; 8611 8612 /* We allocate an iocbq for every receive context SGL. 8613 * The additional allocation is for abort and ls handling. 8614 */ 8615 cnt = phba->sli4_hba.nvmet_xri_cnt + 8616 phba->sli4_hba.max_cfg_param.max_xri; 8617 } else { 8618 /* update host common xri-sgl sizes and mappings */ 8619 rc = lpfc_sli4_io_sgl_update(phba); 8620 if (unlikely(rc)) { 8621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8622 "6082 Failed to update nvme-sgl size " 8623 "and mapping: %d\n", rc); 8624 goto out_destroy_queue; 8625 } 8626 8627 /* register the allocated common sgl pool to the port */ 8628 rc = lpfc_sli4_repost_io_sgl_list(phba); 8629 if (unlikely(rc)) { 8630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8631 "6116 Error %d during nvme sgl post " 8632 "operation\n", rc); 8633 /* Some NVME buffers were moved to abort nvme list */ 8634 /* A pci function reset will repost them */ 8635 rc = -ENODEV; 8636 goto out_destroy_queue; 8637 } 8638 /* Each lpfc_io_buf job structure has an iocbq element. 8639 * This cnt provides for abort, els, ct and ls requests. 8640 */ 8641 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8642 } 8643 8644 if (!phba->sli.iocbq_lookup) { 8645 /* Initialize and populate the iocb list per host */ 8646 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8647 "2821 initialize iocb list with %d entries\n", 8648 cnt); 8649 rc = lpfc_init_iocb_list(phba, cnt); 8650 if (rc) { 8651 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8652 "1413 Failed to init iocb list.\n"); 8653 goto out_destroy_queue; 8654 } 8655 } 8656 8657 if (phba->nvmet_support) 8658 lpfc_nvmet_create_targetport(phba); 8659 8660 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8661 /* Post initial buffers to all RQs created */ 8662 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8663 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8664 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8665 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8666 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8667 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8668 rqbp->buffer_count = 0; 8669 8670 lpfc_post_rq_buffer( 8671 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8672 phba->sli4_hba.nvmet_mrq_data[i], 8673 phba->cfg_nvmet_mrq_post, i); 8674 } 8675 } 8676 8677 /* Post the rpi header region to the device. */ 8678 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8679 if (unlikely(rc)) { 8680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8681 "0393 Error %d during rpi post operation\n", 8682 rc); 8683 rc = -ENODEV; 8684 goto out_free_iocblist; 8685 } 8686 lpfc_sli4_node_prep(phba); 8687 8688 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8689 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8690 /* 8691 * The FC Port needs to register FCFI (index 0) 8692 */ 8693 lpfc_reg_fcfi(phba, mboxq); 8694 mboxq->vport = phba->pport; 8695 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8696 if (rc != MBX_SUCCESS) 8697 goto out_unset_queue; 8698 rc = 0; 8699 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8700 &mboxq->u.mqe.un.reg_fcfi); 8701 } else { 8702 /* We are a NVME Target mode with MRQ > 1 */ 8703 8704 /* First register the FCFI */ 8705 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8706 mboxq->vport = phba->pport; 8707 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8708 if (rc != MBX_SUCCESS) 8709 goto out_unset_queue; 8710 rc = 0; 8711 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8712 &mboxq->u.mqe.un.reg_fcfi_mrq); 8713 8714 /* Next register the MRQs */ 8715 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8716 mboxq->vport = phba->pport; 8717 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8718 if (rc != MBX_SUCCESS) 8719 goto out_unset_queue; 8720 rc = 0; 8721 } 8722 /* Check if the port is configured to be disabled */ 8723 lpfc_sli_read_link_ste(phba); 8724 } 8725 8726 /* Don't post more new bufs if repost already recovered 8727 * the nvme sgls. 8728 */ 8729 if (phba->nvmet_support == 0) { 8730 if (phba->sli4_hba.io_xri_cnt == 0) { 8731 len = lpfc_new_io_buf( 8732 phba, phba->sli4_hba.io_xri_max); 8733 if (len == 0) { 8734 rc = -ENOMEM; 8735 goto out_unset_queue; 8736 } 8737 8738 if (phba->cfg_xri_rebalancing) 8739 lpfc_create_multixri_pools(phba); 8740 } 8741 } else { 8742 phba->cfg_xri_rebalancing = 0; 8743 } 8744 8745 /* Allow asynchronous mailbox command to go through */ 8746 spin_lock_irq(&phba->hbalock); 8747 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8748 spin_unlock_irq(&phba->hbalock); 8749 8750 /* Post receive buffers to the device */ 8751 lpfc_sli4_rb_setup(phba); 8752 8753 /* Reset HBA FCF states after HBA reset */ 8754 phba->fcf.fcf_flag = 0; 8755 phba->fcf.current_rec.flag = 0; 8756 8757 /* Start the ELS watchdog timer */ 8758 mod_timer(&vport->els_tmofunc, 8759 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8760 8761 /* Start heart beat timer */ 8762 mod_timer(&phba->hb_tmofunc, 8763 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8764 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8765 phba->last_completion_time = jiffies; 8766 8767 /* start eq_delay heartbeat */ 8768 if (phba->cfg_auto_imax) 8769 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8770 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8771 8772 /* start per phba idle_stat_delay heartbeat */ 8773 lpfc_init_idle_stat_hb(phba); 8774 8775 /* Start error attention (ERATT) polling timer */ 8776 mod_timer(&phba->eratt_poll, 8777 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8778 8779 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8780 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8781 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8782 if (!rc) { 8783 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8784 "2829 This device supports " 8785 "Advanced Error Reporting (AER)\n"); 8786 spin_lock_irq(&phba->hbalock); 8787 phba->hba_flag |= HBA_AER_ENABLED; 8788 spin_unlock_irq(&phba->hbalock); 8789 } else { 8790 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8791 "2830 This device does not support " 8792 "Advanced Error Reporting (AER)\n"); 8793 phba->cfg_aer_support = 0; 8794 } 8795 rc = 0; 8796 } 8797 8798 /* 8799 * The port is ready, set the host's link state to LINK_DOWN 8800 * in preparation for link interrupts. 8801 */ 8802 spin_lock_irq(&phba->hbalock); 8803 phba->link_state = LPFC_LINK_DOWN; 8804 8805 /* Check if physical ports are trunked */ 8806 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8807 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8808 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8809 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8810 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8811 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8812 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8813 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8814 spin_unlock_irq(&phba->hbalock); 8815 8816 /* Arm the CQs and then EQs on device */ 8817 lpfc_sli4_arm_cqeq_intr(phba); 8818 8819 /* Indicate device interrupt mode */ 8820 phba->sli4_hba.intr_enable = 1; 8821 8822 /* Setup CMF after HBA is initialized */ 8823 lpfc_cmf_setup(phba); 8824 8825 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8826 (phba->hba_flag & LINK_DISABLED)) { 8827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8828 "3103 Adapter Link is disabled.\n"); 8829 lpfc_down_link(phba, mboxq); 8830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8831 if (rc != MBX_SUCCESS) { 8832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8833 "3104 Adapter failed to issue " 8834 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8835 goto out_io_buff_free; 8836 } 8837 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8838 /* don't perform init_link on SLI4 FC port loopback test */ 8839 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8840 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8841 if (rc) 8842 goto out_io_buff_free; 8843 } 8844 } 8845 mempool_free(mboxq, phba->mbox_mem_pool); 8846 8847 /* Enable RAS FW log support */ 8848 lpfc_sli4_ras_setup(phba); 8849 8850 phba->hba_flag |= HBA_SETUP; 8851 return rc; 8852 8853 out_io_buff_free: 8854 /* Free allocated IO Buffers */ 8855 lpfc_io_free(phba); 8856 out_unset_queue: 8857 /* Unset all the queues set up in this routine when error out */ 8858 lpfc_sli4_queue_unset(phba); 8859 out_free_iocblist: 8860 lpfc_free_iocb_list(phba); 8861 out_destroy_queue: 8862 lpfc_sli4_queue_destroy(phba); 8863 out_stop_timers: 8864 lpfc_stop_hba_timers(phba); 8865 out_free_mbox: 8866 mempool_free(mboxq, phba->mbox_mem_pool); 8867 return rc; 8868 } 8869 8870 /** 8871 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8872 * @t: Context to fetch pointer to hba structure from. 8873 * 8874 * This is the callback function for mailbox timer. The mailbox 8875 * timer is armed when a new mailbox command is issued and the timer 8876 * is deleted when the mailbox complete. The function is called by 8877 * the kernel timer code when a mailbox does not complete within 8878 * expected time. This function wakes up the worker thread to 8879 * process the mailbox timeout and returns. All the processing is 8880 * done by the worker thread function lpfc_mbox_timeout_handler. 8881 **/ 8882 void 8883 lpfc_mbox_timeout(struct timer_list *t) 8884 { 8885 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8886 unsigned long iflag; 8887 uint32_t tmo_posted; 8888 8889 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8890 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8891 if (!tmo_posted) 8892 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8893 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8894 8895 if (!tmo_posted) 8896 lpfc_worker_wake_up(phba); 8897 return; 8898 } 8899 8900 /** 8901 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8902 * are pending 8903 * @phba: Pointer to HBA context object. 8904 * 8905 * This function checks if any mailbox completions are present on the mailbox 8906 * completion queue. 8907 **/ 8908 static bool 8909 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8910 { 8911 8912 uint32_t idx; 8913 struct lpfc_queue *mcq; 8914 struct lpfc_mcqe *mcqe; 8915 bool pending_completions = false; 8916 uint8_t qe_valid; 8917 8918 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8919 return false; 8920 8921 /* Check for completions on mailbox completion queue */ 8922 8923 mcq = phba->sli4_hba.mbx_cq; 8924 idx = mcq->hba_index; 8925 qe_valid = mcq->qe_valid; 8926 while (bf_get_le32(lpfc_cqe_valid, 8927 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8928 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8929 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8930 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8931 pending_completions = true; 8932 break; 8933 } 8934 idx = (idx + 1) % mcq->entry_count; 8935 if (mcq->hba_index == idx) 8936 break; 8937 8938 /* if the index wrapped around, toggle the valid bit */ 8939 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8940 qe_valid = (qe_valid) ? 0 : 1; 8941 } 8942 return pending_completions; 8943 8944 } 8945 8946 /** 8947 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8948 * that were missed. 8949 * @phba: Pointer to HBA context object. 8950 * 8951 * For sli4, it is possible to miss an interrupt. As such mbox completions 8952 * maybe missed causing erroneous mailbox timeouts to occur. This function 8953 * checks to see if mbox completions are on the mailbox completion queue 8954 * and will process all the completions associated with the eq for the 8955 * mailbox completion queue. 8956 **/ 8957 static bool 8958 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8959 { 8960 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8961 uint32_t eqidx; 8962 struct lpfc_queue *fpeq = NULL; 8963 struct lpfc_queue *eq; 8964 bool mbox_pending; 8965 8966 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8967 return false; 8968 8969 /* Find the EQ associated with the mbox CQ */ 8970 if (sli4_hba->hdwq) { 8971 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8972 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8973 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8974 fpeq = eq; 8975 break; 8976 } 8977 } 8978 } 8979 if (!fpeq) 8980 return false; 8981 8982 /* Turn off interrupts from this EQ */ 8983 8984 sli4_hba->sli4_eq_clr_intr(fpeq); 8985 8986 /* Check to see if a mbox completion is pending */ 8987 8988 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8989 8990 /* 8991 * If a mbox completion is pending, process all the events on EQ 8992 * associated with the mbox completion queue (this could include 8993 * mailbox commands, async events, els commands, receive queue data 8994 * and fcp commands) 8995 */ 8996 8997 if (mbox_pending) 8998 /* process and rearm the EQ */ 8999 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 9000 else 9001 /* Always clear and re-arm the EQ */ 9002 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9003 9004 return mbox_pending; 9005 9006 } 9007 9008 /** 9009 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9010 * @phba: Pointer to HBA context object. 9011 * 9012 * This function is called from worker thread when a mailbox command times out. 9013 * The caller is not required to hold any locks. This function will reset the 9014 * HBA and recover all the pending commands. 9015 **/ 9016 void 9017 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9018 { 9019 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9020 MAILBOX_t *mb = NULL; 9021 9022 struct lpfc_sli *psli = &phba->sli; 9023 9024 /* If the mailbox completed, process the completion */ 9025 lpfc_sli4_process_missed_mbox_completions(phba); 9026 9027 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9028 return; 9029 9030 if (pmbox != NULL) 9031 mb = &pmbox->u.mb; 9032 /* Check the pmbox pointer first. There is a race condition 9033 * between the mbox timeout handler getting executed in the 9034 * worklist and the mailbox actually completing. When this 9035 * race condition occurs, the mbox_active will be NULL. 9036 */ 9037 spin_lock_irq(&phba->hbalock); 9038 if (pmbox == NULL) { 9039 lpfc_printf_log(phba, KERN_WARNING, 9040 LOG_MBOX | LOG_SLI, 9041 "0353 Active Mailbox cleared - mailbox timeout " 9042 "exiting\n"); 9043 spin_unlock_irq(&phba->hbalock); 9044 return; 9045 } 9046 9047 /* Mbox cmd <mbxCommand> timeout */ 9048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9049 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9050 mb->mbxCommand, 9051 phba->pport->port_state, 9052 phba->sli.sli_flag, 9053 phba->sli.mbox_active); 9054 spin_unlock_irq(&phba->hbalock); 9055 9056 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9057 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9058 * it to fail all outstanding SCSI IO. 9059 */ 9060 spin_lock_irq(&phba->pport->work_port_lock); 9061 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9062 spin_unlock_irq(&phba->pport->work_port_lock); 9063 spin_lock_irq(&phba->hbalock); 9064 phba->link_state = LPFC_LINK_UNKNOWN; 9065 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9066 spin_unlock_irq(&phba->hbalock); 9067 9068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9069 "0345 Resetting board due to mailbox timeout\n"); 9070 9071 /* Reset the HBA device */ 9072 lpfc_reset_hba(phba); 9073 } 9074 9075 /** 9076 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9077 * @phba: Pointer to HBA context object. 9078 * @pmbox: Pointer to mailbox object. 9079 * @flag: Flag indicating how the mailbox need to be processed. 9080 * 9081 * This function is called by discovery code and HBA management code 9082 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9083 * function gets the hbalock to protect the data structures. 9084 * The mailbox command can be submitted in polling mode, in which case 9085 * this function will wait in a polling loop for the completion of the 9086 * mailbox. 9087 * If the mailbox is submitted in no_wait mode (not polling) the 9088 * function will submit the command and returns immediately without waiting 9089 * for the mailbox completion. The no_wait is supported only when HBA 9090 * is in SLI2/SLI3 mode - interrupts are enabled. 9091 * The SLI interface allows only one mailbox pending at a time. If the 9092 * mailbox is issued in polling mode and there is already a mailbox 9093 * pending, then the function will return an error. If the mailbox is issued 9094 * in NO_WAIT mode and there is a mailbox pending already, the function 9095 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9096 * The sli layer owns the mailbox object until the completion of mailbox 9097 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9098 * return codes the caller owns the mailbox command after the return of 9099 * the function. 9100 **/ 9101 static int 9102 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9103 uint32_t flag) 9104 { 9105 MAILBOX_t *mbx; 9106 struct lpfc_sli *psli = &phba->sli; 9107 uint32_t status, evtctr; 9108 uint32_t ha_copy, hc_copy; 9109 int i; 9110 unsigned long timeout; 9111 unsigned long drvr_flag = 0; 9112 uint32_t word0, ldata; 9113 void __iomem *to_slim; 9114 int processing_queue = 0; 9115 9116 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9117 if (!pmbox) { 9118 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9119 /* processing mbox queue from intr_handler */ 9120 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9121 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9122 return MBX_SUCCESS; 9123 } 9124 processing_queue = 1; 9125 pmbox = lpfc_mbox_get(phba); 9126 if (!pmbox) { 9127 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9128 return MBX_SUCCESS; 9129 } 9130 } 9131 9132 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9133 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9134 if(!pmbox->vport) { 9135 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9136 lpfc_printf_log(phba, KERN_ERR, 9137 LOG_MBOX | LOG_VPORT, 9138 "1806 Mbox x%x failed. No vport\n", 9139 pmbox->u.mb.mbxCommand); 9140 dump_stack(); 9141 goto out_not_finished; 9142 } 9143 } 9144 9145 /* If the PCI channel is in offline state, do not post mbox. */ 9146 if (unlikely(pci_channel_offline(phba->pcidev))) { 9147 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9148 goto out_not_finished; 9149 } 9150 9151 /* If HBA has a deferred error attention, fail the iocb. */ 9152 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9153 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9154 goto out_not_finished; 9155 } 9156 9157 psli = &phba->sli; 9158 9159 mbx = &pmbox->u.mb; 9160 status = MBX_SUCCESS; 9161 9162 if (phba->link_state == LPFC_HBA_ERROR) { 9163 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9164 9165 /* Mbox command <mbxCommand> cannot issue */ 9166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9167 "(%d):0311 Mailbox command x%x cannot " 9168 "issue Data: x%x x%x\n", 9169 pmbox->vport ? pmbox->vport->vpi : 0, 9170 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9171 goto out_not_finished; 9172 } 9173 9174 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9175 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9176 !(hc_copy & HC_MBINT_ENA)) { 9177 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9179 "(%d):2528 Mailbox command x%x cannot " 9180 "issue Data: x%x x%x\n", 9181 pmbox->vport ? pmbox->vport->vpi : 0, 9182 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9183 goto out_not_finished; 9184 } 9185 } 9186 9187 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9188 /* Polling for a mbox command when another one is already active 9189 * is not allowed in SLI. Also, the driver must have established 9190 * SLI2 mode to queue and process multiple mbox commands. 9191 */ 9192 9193 if (flag & MBX_POLL) { 9194 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9195 9196 /* Mbox command <mbxCommand> cannot issue */ 9197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9198 "(%d):2529 Mailbox command x%x " 9199 "cannot issue Data: x%x x%x\n", 9200 pmbox->vport ? pmbox->vport->vpi : 0, 9201 pmbox->u.mb.mbxCommand, 9202 psli->sli_flag, flag); 9203 goto out_not_finished; 9204 } 9205 9206 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9207 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9208 /* Mbox command <mbxCommand> cannot issue */ 9209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9210 "(%d):2530 Mailbox command x%x " 9211 "cannot issue Data: x%x x%x\n", 9212 pmbox->vport ? pmbox->vport->vpi : 0, 9213 pmbox->u.mb.mbxCommand, 9214 psli->sli_flag, flag); 9215 goto out_not_finished; 9216 } 9217 9218 /* Another mailbox command is still being processed, queue this 9219 * command to be processed later. 9220 */ 9221 lpfc_mbox_put(phba, pmbox); 9222 9223 /* Mbox cmd issue - BUSY */ 9224 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9225 "(%d):0308 Mbox cmd issue - BUSY Data: " 9226 "x%x x%x x%x x%x\n", 9227 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9228 mbx->mbxCommand, 9229 phba->pport ? phba->pport->port_state : 0xff, 9230 psli->sli_flag, flag); 9231 9232 psli->slistat.mbox_busy++; 9233 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9234 9235 if (pmbox->vport) { 9236 lpfc_debugfs_disc_trc(pmbox->vport, 9237 LPFC_DISC_TRC_MBOX_VPORT, 9238 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9239 (uint32_t)mbx->mbxCommand, 9240 mbx->un.varWords[0], mbx->un.varWords[1]); 9241 } 9242 else { 9243 lpfc_debugfs_disc_trc(phba->pport, 9244 LPFC_DISC_TRC_MBOX, 9245 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9246 (uint32_t)mbx->mbxCommand, 9247 mbx->un.varWords[0], mbx->un.varWords[1]); 9248 } 9249 9250 return MBX_BUSY; 9251 } 9252 9253 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9254 9255 /* If we are not polling, we MUST be in SLI2 mode */ 9256 if (flag != MBX_POLL) { 9257 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9258 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9259 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9260 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9261 /* Mbox command <mbxCommand> cannot issue */ 9262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9263 "(%d):2531 Mailbox command x%x " 9264 "cannot issue Data: x%x x%x\n", 9265 pmbox->vport ? pmbox->vport->vpi : 0, 9266 pmbox->u.mb.mbxCommand, 9267 psli->sli_flag, flag); 9268 goto out_not_finished; 9269 } 9270 /* timeout active mbox command */ 9271 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9272 1000); 9273 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9274 } 9275 9276 /* Mailbox cmd <cmd> issue */ 9277 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9278 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9279 "x%x\n", 9280 pmbox->vport ? pmbox->vport->vpi : 0, 9281 mbx->mbxCommand, 9282 phba->pport ? phba->pport->port_state : 0xff, 9283 psli->sli_flag, flag); 9284 9285 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9286 if (pmbox->vport) { 9287 lpfc_debugfs_disc_trc(pmbox->vport, 9288 LPFC_DISC_TRC_MBOX_VPORT, 9289 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9290 (uint32_t)mbx->mbxCommand, 9291 mbx->un.varWords[0], mbx->un.varWords[1]); 9292 } 9293 else { 9294 lpfc_debugfs_disc_trc(phba->pport, 9295 LPFC_DISC_TRC_MBOX, 9296 "MBOX Send: cmd:x%x mb:x%x x%x", 9297 (uint32_t)mbx->mbxCommand, 9298 mbx->un.varWords[0], mbx->un.varWords[1]); 9299 } 9300 } 9301 9302 psli->slistat.mbox_cmd++; 9303 evtctr = psli->slistat.mbox_event; 9304 9305 /* next set own bit for the adapter and copy over command word */ 9306 mbx->mbxOwner = OWN_CHIP; 9307 9308 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9309 /* Populate mbox extension offset word. */ 9310 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9311 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9312 = (uint8_t *)phba->mbox_ext 9313 - (uint8_t *)phba->mbox; 9314 } 9315 9316 /* Copy the mailbox extension data */ 9317 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9318 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9319 (uint8_t *)phba->mbox_ext, 9320 pmbox->in_ext_byte_len); 9321 } 9322 /* Copy command data to host SLIM area */ 9323 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9324 } else { 9325 /* Populate mbox extension offset word. */ 9326 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9327 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9328 = MAILBOX_HBA_EXT_OFFSET; 9329 9330 /* Copy the mailbox extension data */ 9331 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9332 lpfc_memcpy_to_slim(phba->MBslimaddr + 9333 MAILBOX_HBA_EXT_OFFSET, 9334 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9335 9336 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9337 /* copy command data into host mbox for cmpl */ 9338 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9339 MAILBOX_CMD_SIZE); 9340 9341 /* First copy mbox command data to HBA SLIM, skip past first 9342 word */ 9343 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9344 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9345 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9346 9347 /* Next copy over first word, with mbxOwner set */ 9348 ldata = *((uint32_t *)mbx); 9349 to_slim = phba->MBslimaddr; 9350 writel(ldata, to_slim); 9351 readl(to_slim); /* flush */ 9352 9353 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9354 /* switch over to host mailbox */ 9355 psli->sli_flag |= LPFC_SLI_ACTIVE; 9356 } 9357 9358 wmb(); 9359 9360 switch (flag) { 9361 case MBX_NOWAIT: 9362 /* Set up reference to mailbox command */ 9363 psli->mbox_active = pmbox; 9364 /* Interrupt board to do it */ 9365 writel(CA_MBATT, phba->CAregaddr); 9366 readl(phba->CAregaddr); /* flush */ 9367 /* Don't wait for it to finish, just return */ 9368 break; 9369 9370 case MBX_POLL: 9371 /* Set up null reference to mailbox command */ 9372 psli->mbox_active = NULL; 9373 /* Interrupt board to do it */ 9374 writel(CA_MBATT, phba->CAregaddr); 9375 readl(phba->CAregaddr); /* flush */ 9376 9377 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9378 /* First read mbox status word */ 9379 word0 = *((uint32_t *)phba->mbox); 9380 word0 = le32_to_cpu(word0); 9381 } else { 9382 /* First read mbox status word */ 9383 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9384 spin_unlock_irqrestore(&phba->hbalock, 9385 drvr_flag); 9386 goto out_not_finished; 9387 } 9388 } 9389 9390 /* Read the HBA Host Attention Register */ 9391 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9392 spin_unlock_irqrestore(&phba->hbalock, 9393 drvr_flag); 9394 goto out_not_finished; 9395 } 9396 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9397 1000) + jiffies; 9398 i = 0; 9399 /* Wait for command to complete */ 9400 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9401 (!(ha_copy & HA_MBATT) && 9402 (phba->link_state > LPFC_WARM_START))) { 9403 if (time_after(jiffies, timeout)) { 9404 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9405 spin_unlock_irqrestore(&phba->hbalock, 9406 drvr_flag); 9407 goto out_not_finished; 9408 } 9409 9410 /* Check if we took a mbox interrupt while we were 9411 polling */ 9412 if (((word0 & OWN_CHIP) != OWN_CHIP) 9413 && (evtctr != psli->slistat.mbox_event)) 9414 break; 9415 9416 if (i++ > 10) { 9417 spin_unlock_irqrestore(&phba->hbalock, 9418 drvr_flag); 9419 msleep(1); 9420 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9421 } 9422 9423 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9424 /* First copy command data */ 9425 word0 = *((uint32_t *)phba->mbox); 9426 word0 = le32_to_cpu(word0); 9427 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9428 MAILBOX_t *slimmb; 9429 uint32_t slimword0; 9430 /* Check real SLIM for any errors */ 9431 slimword0 = readl(phba->MBslimaddr); 9432 slimmb = (MAILBOX_t *) & slimword0; 9433 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9434 && slimmb->mbxStatus) { 9435 psli->sli_flag &= 9436 ~LPFC_SLI_ACTIVE; 9437 word0 = slimword0; 9438 } 9439 } 9440 } else { 9441 /* First copy command data */ 9442 word0 = readl(phba->MBslimaddr); 9443 } 9444 /* Read the HBA Host Attention Register */ 9445 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9446 spin_unlock_irqrestore(&phba->hbalock, 9447 drvr_flag); 9448 goto out_not_finished; 9449 } 9450 } 9451 9452 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9453 /* copy results back to user */ 9454 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9455 MAILBOX_CMD_SIZE); 9456 /* Copy the mailbox extension data */ 9457 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9458 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9459 pmbox->ctx_buf, 9460 pmbox->out_ext_byte_len); 9461 } 9462 } else { 9463 /* First copy command data */ 9464 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9465 MAILBOX_CMD_SIZE); 9466 /* Copy the mailbox extension data */ 9467 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9468 lpfc_memcpy_from_slim( 9469 pmbox->ctx_buf, 9470 phba->MBslimaddr + 9471 MAILBOX_HBA_EXT_OFFSET, 9472 pmbox->out_ext_byte_len); 9473 } 9474 } 9475 9476 writel(HA_MBATT, phba->HAregaddr); 9477 readl(phba->HAregaddr); /* flush */ 9478 9479 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9480 status = mbx->mbxStatus; 9481 } 9482 9483 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9484 return status; 9485 9486 out_not_finished: 9487 if (processing_queue) { 9488 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9489 lpfc_mbox_cmpl_put(phba, pmbox); 9490 } 9491 return MBX_NOT_FINISHED; 9492 } 9493 9494 /** 9495 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9496 * @phba: Pointer to HBA context object. 9497 * 9498 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9499 * the driver internal pending mailbox queue. It will then try to wait out the 9500 * possible outstanding mailbox command before return. 9501 * 9502 * Returns: 9503 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9504 * the outstanding mailbox command timed out. 9505 **/ 9506 static int 9507 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9508 { 9509 struct lpfc_sli *psli = &phba->sli; 9510 LPFC_MBOXQ_t *mboxq; 9511 int rc = 0; 9512 unsigned long timeout = 0; 9513 u32 sli_flag; 9514 u8 cmd, subsys, opcode; 9515 9516 /* Mark the asynchronous mailbox command posting as blocked */ 9517 spin_lock_irq(&phba->hbalock); 9518 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9519 /* Determine how long we might wait for the active mailbox 9520 * command to be gracefully completed by firmware. 9521 */ 9522 if (phba->sli.mbox_active) 9523 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9524 phba->sli.mbox_active) * 9525 1000) + jiffies; 9526 spin_unlock_irq(&phba->hbalock); 9527 9528 /* Make sure the mailbox is really active */ 9529 if (timeout) 9530 lpfc_sli4_process_missed_mbox_completions(phba); 9531 9532 /* Wait for the outstanding mailbox command to complete */ 9533 while (phba->sli.mbox_active) { 9534 /* Check active mailbox complete status every 2ms */ 9535 msleep(2); 9536 if (time_after(jiffies, timeout)) { 9537 /* Timeout, mark the outstanding cmd not complete */ 9538 9539 /* Sanity check sli.mbox_active has not completed or 9540 * cancelled from another context during last 2ms sleep, 9541 * so take hbalock to be sure before logging. 9542 */ 9543 spin_lock_irq(&phba->hbalock); 9544 if (phba->sli.mbox_active) { 9545 mboxq = phba->sli.mbox_active; 9546 cmd = mboxq->u.mb.mbxCommand; 9547 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9548 mboxq); 9549 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9550 mboxq); 9551 sli_flag = psli->sli_flag; 9552 spin_unlock_irq(&phba->hbalock); 9553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9554 "2352 Mailbox command x%x " 9555 "(x%x/x%x) sli_flag x%x could " 9556 "not complete\n", 9557 cmd, subsys, opcode, 9558 sli_flag); 9559 } else { 9560 spin_unlock_irq(&phba->hbalock); 9561 } 9562 9563 rc = 1; 9564 break; 9565 } 9566 } 9567 9568 /* Can not cleanly block async mailbox command, fails it */ 9569 if (rc) { 9570 spin_lock_irq(&phba->hbalock); 9571 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9572 spin_unlock_irq(&phba->hbalock); 9573 } 9574 return rc; 9575 } 9576 9577 /** 9578 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9579 * @phba: Pointer to HBA context object. 9580 * 9581 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9582 * commands from the driver internal pending mailbox queue. It makes sure 9583 * that there is no outstanding mailbox command before resuming posting 9584 * asynchronous mailbox commands. If, for any reason, there is outstanding 9585 * mailbox command, it will try to wait it out before resuming asynchronous 9586 * mailbox command posting. 9587 **/ 9588 static void 9589 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9590 { 9591 struct lpfc_sli *psli = &phba->sli; 9592 9593 spin_lock_irq(&phba->hbalock); 9594 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9595 /* Asynchronous mailbox posting is not blocked, do nothing */ 9596 spin_unlock_irq(&phba->hbalock); 9597 return; 9598 } 9599 9600 /* Outstanding synchronous mailbox command is guaranteed to be done, 9601 * successful or timeout, after timing-out the outstanding mailbox 9602 * command shall always be removed, so just unblock posting async 9603 * mailbox command and resume 9604 */ 9605 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9606 spin_unlock_irq(&phba->hbalock); 9607 9608 /* wake up worker thread to post asynchronous mailbox command */ 9609 lpfc_worker_wake_up(phba); 9610 } 9611 9612 /** 9613 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9614 * @phba: Pointer to HBA context object. 9615 * @mboxq: Pointer to mailbox object. 9616 * 9617 * The function waits for the bootstrap mailbox register ready bit from 9618 * port for twice the regular mailbox command timeout value. 9619 * 9620 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9621 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9622 **/ 9623 static int 9624 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9625 { 9626 uint32_t db_ready; 9627 unsigned long timeout; 9628 struct lpfc_register bmbx_reg; 9629 9630 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9631 * 1000) + jiffies; 9632 9633 do { 9634 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9635 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9636 if (!db_ready) 9637 mdelay(2); 9638 9639 if (time_after(jiffies, timeout)) 9640 return MBXERR_ERROR; 9641 } while (!db_ready); 9642 9643 return 0; 9644 } 9645 9646 /** 9647 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9648 * @phba: Pointer to HBA context object. 9649 * @mboxq: Pointer to mailbox object. 9650 * 9651 * The function posts a mailbox to the port. The mailbox is expected 9652 * to be comletely filled in and ready for the port to operate on it. 9653 * This routine executes a synchronous completion operation on the 9654 * mailbox by polling for its completion. 9655 * 9656 * The caller must not be holding any locks when calling this routine. 9657 * 9658 * Returns: 9659 * MBX_SUCCESS - mailbox posted successfully 9660 * Any of the MBX error values. 9661 **/ 9662 static int 9663 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9664 { 9665 int rc = MBX_SUCCESS; 9666 unsigned long iflag; 9667 uint32_t mcqe_status; 9668 uint32_t mbx_cmnd; 9669 struct lpfc_sli *psli = &phba->sli; 9670 struct lpfc_mqe *mb = &mboxq->u.mqe; 9671 struct lpfc_bmbx_create *mbox_rgn; 9672 struct dma_address *dma_address; 9673 9674 /* 9675 * Only one mailbox can be active to the bootstrap mailbox region 9676 * at a time and there is no queueing provided. 9677 */ 9678 spin_lock_irqsave(&phba->hbalock, iflag); 9679 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9680 spin_unlock_irqrestore(&phba->hbalock, iflag); 9681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9682 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9683 "cannot issue Data: x%x x%x\n", 9684 mboxq->vport ? mboxq->vport->vpi : 0, 9685 mboxq->u.mb.mbxCommand, 9686 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9687 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9688 psli->sli_flag, MBX_POLL); 9689 return MBXERR_ERROR; 9690 } 9691 /* The server grabs the token and owns it until release */ 9692 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9693 phba->sli.mbox_active = mboxq; 9694 spin_unlock_irqrestore(&phba->hbalock, iflag); 9695 9696 /* wait for bootstrap mbox register for readyness */ 9697 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9698 if (rc) 9699 goto exit; 9700 /* 9701 * Initialize the bootstrap memory region to avoid stale data areas 9702 * in the mailbox post. Then copy the caller's mailbox contents to 9703 * the bmbx mailbox region. 9704 */ 9705 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9706 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9707 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9708 sizeof(struct lpfc_mqe)); 9709 9710 /* Post the high mailbox dma address to the port and wait for ready. */ 9711 dma_address = &phba->sli4_hba.bmbx.dma_address; 9712 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9713 9714 /* wait for bootstrap mbox register for hi-address write done */ 9715 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9716 if (rc) 9717 goto exit; 9718 9719 /* Post the low mailbox dma address to the port. */ 9720 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9721 9722 /* wait for bootstrap mbox register for low address write done */ 9723 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9724 if (rc) 9725 goto exit; 9726 9727 /* 9728 * Read the CQ to ensure the mailbox has completed. 9729 * If so, update the mailbox status so that the upper layers 9730 * can complete the request normally. 9731 */ 9732 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9733 sizeof(struct lpfc_mqe)); 9734 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9735 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9736 sizeof(struct lpfc_mcqe)); 9737 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9738 /* 9739 * When the CQE status indicates a failure and the mailbox status 9740 * indicates success then copy the CQE status into the mailbox status 9741 * (and prefix it with x4000). 9742 */ 9743 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9744 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9745 bf_set(lpfc_mqe_status, mb, 9746 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9747 rc = MBXERR_ERROR; 9748 } else 9749 lpfc_sli4_swap_str(phba, mboxq); 9750 9751 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9752 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9753 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9754 " x%x x%x CQ: x%x x%x x%x x%x\n", 9755 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9756 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9757 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9758 bf_get(lpfc_mqe_status, mb), 9759 mb->un.mb_words[0], mb->un.mb_words[1], 9760 mb->un.mb_words[2], mb->un.mb_words[3], 9761 mb->un.mb_words[4], mb->un.mb_words[5], 9762 mb->un.mb_words[6], mb->un.mb_words[7], 9763 mb->un.mb_words[8], mb->un.mb_words[9], 9764 mb->un.mb_words[10], mb->un.mb_words[11], 9765 mb->un.mb_words[12], mboxq->mcqe.word0, 9766 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9767 mboxq->mcqe.trailer); 9768 exit: 9769 /* We are holding the token, no needed for lock when release */ 9770 spin_lock_irqsave(&phba->hbalock, iflag); 9771 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9772 phba->sli.mbox_active = NULL; 9773 spin_unlock_irqrestore(&phba->hbalock, iflag); 9774 return rc; 9775 } 9776 9777 /** 9778 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9779 * @phba: Pointer to HBA context object. 9780 * @mboxq: Pointer to mailbox object. 9781 * @flag: Flag indicating how the mailbox need to be processed. 9782 * 9783 * This function is called by discovery code and HBA management code to submit 9784 * a mailbox command to firmware with SLI-4 interface spec. 9785 * 9786 * Return codes the caller owns the mailbox command after the return of the 9787 * function. 9788 **/ 9789 static int 9790 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9791 uint32_t flag) 9792 { 9793 struct lpfc_sli *psli = &phba->sli; 9794 unsigned long iflags; 9795 int rc; 9796 9797 /* dump from issue mailbox command if setup */ 9798 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9799 9800 rc = lpfc_mbox_dev_check(phba); 9801 if (unlikely(rc)) { 9802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9803 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9804 "cannot issue Data: x%x x%x\n", 9805 mboxq->vport ? mboxq->vport->vpi : 0, 9806 mboxq->u.mb.mbxCommand, 9807 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9808 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9809 psli->sli_flag, flag); 9810 goto out_not_finished; 9811 } 9812 9813 /* Detect polling mode and jump to a handler */ 9814 if (!phba->sli4_hba.intr_enable) { 9815 if (flag == MBX_POLL) 9816 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9817 else 9818 rc = -EIO; 9819 if (rc != MBX_SUCCESS) 9820 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9821 "(%d):2541 Mailbox command x%x " 9822 "(x%x/x%x) failure: " 9823 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9824 "Data: x%x x%x\n", 9825 mboxq->vport ? mboxq->vport->vpi : 0, 9826 mboxq->u.mb.mbxCommand, 9827 lpfc_sli_config_mbox_subsys_get(phba, 9828 mboxq), 9829 lpfc_sli_config_mbox_opcode_get(phba, 9830 mboxq), 9831 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9832 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9833 bf_get(lpfc_mcqe_ext_status, 9834 &mboxq->mcqe), 9835 psli->sli_flag, flag); 9836 return rc; 9837 } else if (flag == MBX_POLL) { 9838 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9839 "(%d):2542 Try to issue mailbox command " 9840 "x%x (x%x/x%x) synchronously ahead of async " 9841 "mailbox command queue: x%x x%x\n", 9842 mboxq->vport ? mboxq->vport->vpi : 0, 9843 mboxq->u.mb.mbxCommand, 9844 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9845 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9846 psli->sli_flag, flag); 9847 /* Try to block the asynchronous mailbox posting */ 9848 rc = lpfc_sli4_async_mbox_block(phba); 9849 if (!rc) { 9850 /* Successfully blocked, now issue sync mbox cmd */ 9851 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9852 if (rc != MBX_SUCCESS) 9853 lpfc_printf_log(phba, KERN_WARNING, 9854 LOG_MBOX | LOG_SLI, 9855 "(%d):2597 Sync Mailbox command " 9856 "x%x (x%x/x%x) failure: " 9857 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9858 "Data: x%x x%x\n", 9859 mboxq->vport ? mboxq->vport->vpi : 0, 9860 mboxq->u.mb.mbxCommand, 9861 lpfc_sli_config_mbox_subsys_get(phba, 9862 mboxq), 9863 lpfc_sli_config_mbox_opcode_get(phba, 9864 mboxq), 9865 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9866 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9867 bf_get(lpfc_mcqe_ext_status, 9868 &mboxq->mcqe), 9869 psli->sli_flag, flag); 9870 /* Unblock the async mailbox posting afterward */ 9871 lpfc_sli4_async_mbox_unblock(phba); 9872 } 9873 return rc; 9874 } 9875 9876 /* Now, interrupt mode asynchronous mailbox command */ 9877 rc = lpfc_mbox_cmd_check(phba, mboxq); 9878 if (rc) { 9879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9880 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9881 "cannot issue Data: x%x x%x\n", 9882 mboxq->vport ? mboxq->vport->vpi : 0, 9883 mboxq->u.mb.mbxCommand, 9884 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9885 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9886 psli->sli_flag, flag); 9887 goto out_not_finished; 9888 } 9889 9890 /* Put the mailbox command to the driver internal FIFO */ 9891 psli->slistat.mbox_busy++; 9892 spin_lock_irqsave(&phba->hbalock, iflags); 9893 lpfc_mbox_put(phba, mboxq); 9894 spin_unlock_irqrestore(&phba->hbalock, iflags); 9895 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9896 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9897 "x%x (x%x/x%x) x%x x%x x%x\n", 9898 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9899 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9900 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9901 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9902 phba->pport->port_state, 9903 psli->sli_flag, MBX_NOWAIT); 9904 /* Wake up worker thread to transport mailbox command from head */ 9905 lpfc_worker_wake_up(phba); 9906 9907 return MBX_BUSY; 9908 9909 out_not_finished: 9910 return MBX_NOT_FINISHED; 9911 } 9912 9913 /** 9914 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9915 * @phba: Pointer to HBA context object. 9916 * 9917 * This function is called by worker thread to send a mailbox command to 9918 * SLI4 HBA firmware. 9919 * 9920 **/ 9921 int 9922 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9923 { 9924 struct lpfc_sli *psli = &phba->sli; 9925 LPFC_MBOXQ_t *mboxq; 9926 int rc = MBX_SUCCESS; 9927 unsigned long iflags; 9928 struct lpfc_mqe *mqe; 9929 uint32_t mbx_cmnd; 9930 9931 /* Check interrupt mode before post async mailbox command */ 9932 if (unlikely(!phba->sli4_hba.intr_enable)) 9933 return MBX_NOT_FINISHED; 9934 9935 /* Check for mailbox command service token */ 9936 spin_lock_irqsave(&phba->hbalock, iflags); 9937 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9938 spin_unlock_irqrestore(&phba->hbalock, iflags); 9939 return MBX_NOT_FINISHED; 9940 } 9941 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9942 spin_unlock_irqrestore(&phba->hbalock, iflags); 9943 return MBX_NOT_FINISHED; 9944 } 9945 if (unlikely(phba->sli.mbox_active)) { 9946 spin_unlock_irqrestore(&phba->hbalock, iflags); 9947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9948 "0384 There is pending active mailbox cmd\n"); 9949 return MBX_NOT_FINISHED; 9950 } 9951 /* Take the mailbox command service token */ 9952 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9953 9954 /* Get the next mailbox command from head of queue */ 9955 mboxq = lpfc_mbox_get(phba); 9956 9957 /* If no more mailbox command waiting for post, we're done */ 9958 if (!mboxq) { 9959 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9960 spin_unlock_irqrestore(&phba->hbalock, iflags); 9961 return MBX_SUCCESS; 9962 } 9963 phba->sli.mbox_active = mboxq; 9964 spin_unlock_irqrestore(&phba->hbalock, iflags); 9965 9966 /* Check device readiness for posting mailbox command */ 9967 rc = lpfc_mbox_dev_check(phba); 9968 if (unlikely(rc)) 9969 /* Driver clean routine will clean up pending mailbox */ 9970 goto out_not_finished; 9971 9972 /* Prepare the mbox command to be posted */ 9973 mqe = &mboxq->u.mqe; 9974 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9975 9976 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9977 mod_timer(&psli->mbox_tmo, (jiffies + 9978 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9979 9980 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9981 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9982 "x%x x%x\n", 9983 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9984 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9985 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9986 phba->pport->port_state, psli->sli_flag); 9987 9988 if (mbx_cmnd != MBX_HEARTBEAT) { 9989 if (mboxq->vport) { 9990 lpfc_debugfs_disc_trc(mboxq->vport, 9991 LPFC_DISC_TRC_MBOX_VPORT, 9992 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9993 mbx_cmnd, mqe->un.mb_words[0], 9994 mqe->un.mb_words[1]); 9995 } else { 9996 lpfc_debugfs_disc_trc(phba->pport, 9997 LPFC_DISC_TRC_MBOX, 9998 "MBOX Send: cmd:x%x mb:x%x x%x", 9999 mbx_cmnd, mqe->un.mb_words[0], 10000 mqe->un.mb_words[1]); 10001 } 10002 } 10003 psli->slistat.mbox_cmd++; 10004 10005 /* Post the mailbox command to the port */ 10006 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10007 if (rc != MBX_SUCCESS) { 10008 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10009 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10010 "cannot issue Data: x%x x%x\n", 10011 mboxq->vport ? mboxq->vport->vpi : 0, 10012 mboxq->u.mb.mbxCommand, 10013 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10014 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10015 psli->sli_flag, MBX_NOWAIT); 10016 goto out_not_finished; 10017 } 10018 10019 return rc; 10020 10021 out_not_finished: 10022 spin_lock_irqsave(&phba->hbalock, iflags); 10023 if (phba->sli.mbox_active) { 10024 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10025 __lpfc_mbox_cmpl_put(phba, mboxq); 10026 /* Release the token */ 10027 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10028 phba->sli.mbox_active = NULL; 10029 } 10030 spin_unlock_irqrestore(&phba->hbalock, iflags); 10031 10032 return MBX_NOT_FINISHED; 10033 } 10034 10035 /** 10036 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10037 * @phba: Pointer to HBA context object. 10038 * @pmbox: Pointer to mailbox object. 10039 * @flag: Flag indicating how the mailbox need to be processed. 10040 * 10041 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10042 * the API jump table function pointer from the lpfc_hba struct. 10043 * 10044 * Return codes the caller owns the mailbox command after the return of the 10045 * function. 10046 **/ 10047 int 10048 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10049 { 10050 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10051 } 10052 10053 /** 10054 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10055 * @phba: The hba struct for which this call is being executed. 10056 * @dev_grp: The HBA PCI-Device group number. 10057 * 10058 * This routine sets up the mbox interface API function jump table in @phba 10059 * struct. 10060 * Returns: 0 - success, -ENODEV - failure. 10061 **/ 10062 int 10063 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10064 { 10065 10066 switch (dev_grp) { 10067 case LPFC_PCI_DEV_LP: 10068 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10069 phba->lpfc_sli_handle_slow_ring_event = 10070 lpfc_sli_handle_slow_ring_event_s3; 10071 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10072 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10073 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10074 break; 10075 case LPFC_PCI_DEV_OC: 10076 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10077 phba->lpfc_sli_handle_slow_ring_event = 10078 lpfc_sli_handle_slow_ring_event_s4; 10079 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10080 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10081 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10082 break; 10083 default: 10084 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10085 "1420 Invalid HBA PCI-device group: 0x%x\n", 10086 dev_grp); 10087 return -ENODEV; 10088 } 10089 return 0; 10090 } 10091 10092 /** 10093 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10094 * @phba: Pointer to HBA context object. 10095 * @pring: Pointer to driver SLI ring object. 10096 * @piocb: Pointer to address of newly added command iocb. 10097 * 10098 * This function is called with hbalock held for SLI3 ports or 10099 * the ring lock held for SLI4 ports to add a command 10100 * iocb to the txq when SLI layer cannot submit the command iocb 10101 * to the ring. 10102 **/ 10103 void 10104 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10105 struct lpfc_iocbq *piocb) 10106 { 10107 if (phba->sli_rev == LPFC_SLI_REV4) 10108 lockdep_assert_held(&pring->ring_lock); 10109 else 10110 lockdep_assert_held(&phba->hbalock); 10111 /* Insert the caller's iocb in the txq tail for later processing. */ 10112 list_add_tail(&piocb->list, &pring->txq); 10113 } 10114 10115 /** 10116 * lpfc_sli_next_iocb - Get the next iocb in the txq 10117 * @phba: Pointer to HBA context object. 10118 * @pring: Pointer to driver SLI ring object. 10119 * @piocb: Pointer to address of newly added command iocb. 10120 * 10121 * This function is called with hbalock held before a new 10122 * iocb is submitted to the firmware. This function checks 10123 * txq to flush the iocbs in txq to Firmware before 10124 * submitting new iocbs to the Firmware. 10125 * If there are iocbs in the txq which need to be submitted 10126 * to firmware, lpfc_sli_next_iocb returns the first element 10127 * of the txq after dequeuing it from txq. 10128 * If there is no iocb in the txq then the function will return 10129 * *piocb and *piocb is set to NULL. Caller needs to check 10130 * *piocb to find if there are more commands in the txq. 10131 **/ 10132 static struct lpfc_iocbq * 10133 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10134 struct lpfc_iocbq **piocb) 10135 { 10136 struct lpfc_iocbq * nextiocb; 10137 10138 lockdep_assert_held(&phba->hbalock); 10139 10140 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10141 if (!nextiocb) { 10142 nextiocb = *piocb; 10143 *piocb = NULL; 10144 } 10145 10146 return nextiocb; 10147 } 10148 10149 /** 10150 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10151 * @phba: Pointer to HBA context object. 10152 * @ring_number: SLI ring number to issue iocb on. 10153 * @piocb: Pointer to command iocb. 10154 * @flag: Flag indicating if this command can be put into txq. 10155 * 10156 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10157 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10158 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10159 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10160 * this function allows only iocbs for posting buffers. This function finds 10161 * next available slot in the command ring and posts the command to the 10162 * available slot and writes the port attention register to request HBA start 10163 * processing new iocb. If there is no slot available in the ring and 10164 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10165 * the function returns IOCB_BUSY. 10166 * 10167 * This function is called with hbalock held. The function will return success 10168 * after it successfully submit the iocb to firmware or after adding to the 10169 * txq. 10170 **/ 10171 static int 10172 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10173 struct lpfc_iocbq *piocb, uint32_t flag) 10174 { 10175 struct lpfc_iocbq *nextiocb; 10176 IOCB_t *iocb; 10177 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10178 10179 lockdep_assert_held(&phba->hbalock); 10180 10181 if (piocb->cmd_cmpl && (!piocb->vport) && 10182 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10183 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10185 "1807 IOCB x%x failed. No vport\n", 10186 piocb->iocb.ulpCommand); 10187 dump_stack(); 10188 return IOCB_ERROR; 10189 } 10190 10191 10192 /* If the PCI channel is in offline state, do not post iocbs. */ 10193 if (unlikely(pci_channel_offline(phba->pcidev))) 10194 return IOCB_ERROR; 10195 10196 /* If HBA has a deferred error attention, fail the iocb. */ 10197 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10198 return IOCB_ERROR; 10199 10200 /* 10201 * We should never get an IOCB if we are in a < LINK_DOWN state 10202 */ 10203 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10204 return IOCB_ERROR; 10205 10206 /* 10207 * Check to see if we are blocking IOCB processing because of a 10208 * outstanding event. 10209 */ 10210 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10211 goto iocb_busy; 10212 10213 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10214 /* 10215 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10216 * can be issued if the link is not up. 10217 */ 10218 switch (piocb->iocb.ulpCommand) { 10219 case CMD_GEN_REQUEST64_CR: 10220 case CMD_GEN_REQUEST64_CX: 10221 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10222 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10223 FC_RCTL_DD_UNSOL_CMD) || 10224 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10225 MENLO_TRANSPORT_TYPE)) 10226 10227 goto iocb_busy; 10228 break; 10229 case CMD_QUE_RING_BUF_CN: 10230 case CMD_QUE_RING_BUF64_CN: 10231 /* 10232 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10233 * completion, cmd_cmpl MUST be 0. 10234 */ 10235 if (piocb->cmd_cmpl) 10236 piocb->cmd_cmpl = NULL; 10237 fallthrough; 10238 case CMD_CREATE_XRI_CR: 10239 case CMD_CLOSE_XRI_CN: 10240 case CMD_CLOSE_XRI_CX: 10241 break; 10242 default: 10243 goto iocb_busy; 10244 } 10245 10246 /* 10247 * For FCP commands, we must be in a state where we can process link 10248 * attention events. 10249 */ 10250 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10251 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10252 goto iocb_busy; 10253 } 10254 10255 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10256 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10257 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10258 10259 if (iocb) 10260 lpfc_sli_update_ring(phba, pring); 10261 else 10262 lpfc_sli_update_full_ring(phba, pring); 10263 10264 if (!piocb) 10265 return IOCB_SUCCESS; 10266 10267 goto out_busy; 10268 10269 iocb_busy: 10270 pring->stats.iocb_cmd_delay++; 10271 10272 out_busy: 10273 10274 if (!(flag & SLI_IOCB_RET_IOCB)) { 10275 __lpfc_sli_ringtx_put(phba, pring, piocb); 10276 return IOCB_SUCCESS; 10277 } 10278 10279 return IOCB_BUSY; 10280 } 10281 10282 /** 10283 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10284 * @phba: Pointer to HBA context object. 10285 * @ring_number: SLI ring number to issue wqe on. 10286 * @piocb: Pointer to command iocb. 10287 * @flag: Flag indicating if this command can be put into txq. 10288 * 10289 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10290 * send an iocb command to an HBA with SLI-3 interface spec. 10291 * 10292 * This function takes the hbalock before invoking the lockless version. 10293 * The function will return success after it successfully submit the wqe to 10294 * firmware or after adding to the txq. 10295 **/ 10296 static int 10297 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10298 struct lpfc_iocbq *piocb, uint32_t flag) 10299 { 10300 unsigned long iflags; 10301 int rc; 10302 10303 spin_lock_irqsave(&phba->hbalock, iflags); 10304 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10305 spin_unlock_irqrestore(&phba->hbalock, iflags); 10306 10307 return rc; 10308 } 10309 10310 /** 10311 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10312 * @phba: Pointer to HBA context object. 10313 * @ring_number: SLI ring number to issue wqe on. 10314 * @piocb: Pointer to command iocb. 10315 * @flag: Flag indicating if this command can be put into txq. 10316 * 10317 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10318 * an wqe command to an HBA with SLI-4 interface spec. 10319 * 10320 * This function is a lockless version. The function will return success 10321 * after it successfully submit the wqe to firmware or after adding to the 10322 * txq. 10323 **/ 10324 static int 10325 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10326 struct lpfc_iocbq *piocb, uint32_t flag) 10327 { 10328 int rc; 10329 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10330 10331 lpfc_prep_embed_io(phba, lpfc_cmd); 10332 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10333 return rc; 10334 } 10335 10336 void 10337 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10338 { 10339 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10340 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10341 struct sli4_sge *sgl; 10342 10343 /* 128 byte wqe support here */ 10344 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10345 10346 if (phba->fcp_embed_io) { 10347 struct fcp_cmnd *fcp_cmnd; 10348 u32 *ptr; 10349 10350 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10351 10352 /* Word 0-2 - FCP_CMND */ 10353 wqe->generic.bde.tus.f.bdeFlags = 10354 BUFF_TYPE_BDE_IMMED; 10355 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10356 wqe->generic.bde.addrHigh = 0; 10357 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10358 10359 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10360 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10361 10362 /* Word 22-29 FCP CMND Payload */ 10363 ptr = &wqe->words[22]; 10364 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10365 } else { 10366 /* Word 0-2 - Inline BDE */ 10367 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10368 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10369 wqe->generic.bde.addrHigh = sgl->addr_hi; 10370 wqe->generic.bde.addrLow = sgl->addr_lo; 10371 10372 /* Word 10 */ 10373 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10374 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10375 } 10376 10377 /* add the VMID tags as per switch response */ 10378 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10379 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10380 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10381 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10382 (piocb->vmid_tag.cs_ctl_vmid)); 10383 } else if (phba->cfg_vmid_app_header) { 10384 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10385 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10386 wqe->words[31] = piocb->vmid_tag.app_id; 10387 } 10388 } 10389 } 10390 10391 /** 10392 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10393 * @phba: Pointer to HBA context object. 10394 * @ring_number: SLI ring number to issue iocb on. 10395 * @piocb: Pointer to command iocb. 10396 * @flag: Flag indicating if this command can be put into txq. 10397 * 10398 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10399 * an iocb command to an HBA with SLI-4 interface spec. 10400 * 10401 * This function is called with ringlock held. The function will return success 10402 * after it successfully submit the iocb to firmware or after adding to the 10403 * txq. 10404 **/ 10405 static int 10406 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10407 struct lpfc_iocbq *piocb, uint32_t flag) 10408 { 10409 struct lpfc_sglq *sglq; 10410 union lpfc_wqe128 *wqe; 10411 struct lpfc_queue *wq; 10412 struct lpfc_sli_ring *pring; 10413 u32 ulp_command = get_job_cmnd(phba, piocb); 10414 10415 /* Get the WQ */ 10416 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10417 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10418 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10419 } else { 10420 wq = phba->sli4_hba.els_wq; 10421 } 10422 10423 /* Get corresponding ring */ 10424 pring = wq->pring; 10425 10426 /* 10427 * The WQE can be either 64 or 128 bytes, 10428 */ 10429 10430 lockdep_assert_held(&pring->ring_lock); 10431 wqe = &piocb->wqe; 10432 if (piocb->sli4_xritag == NO_XRI) { 10433 if (ulp_command == CMD_ABORT_XRI_CX) 10434 sglq = NULL; 10435 else { 10436 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10437 if (!sglq) { 10438 if (!(flag & SLI_IOCB_RET_IOCB)) { 10439 __lpfc_sli_ringtx_put(phba, 10440 pring, 10441 piocb); 10442 return IOCB_SUCCESS; 10443 } else { 10444 return IOCB_BUSY; 10445 } 10446 } 10447 } 10448 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10449 /* These IO's already have an XRI and a mapped sgl. */ 10450 sglq = NULL; 10451 } 10452 else { 10453 /* 10454 * This is a continuation of a commandi,(CX) so this 10455 * sglq is on the active list 10456 */ 10457 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10458 if (!sglq) 10459 return IOCB_ERROR; 10460 } 10461 10462 if (sglq) { 10463 piocb->sli4_lxritag = sglq->sli4_lxritag; 10464 piocb->sli4_xritag = sglq->sli4_xritag; 10465 10466 /* ABTS sent by initiator to CT exchange, the 10467 * RX_ID field will be filled with the newly 10468 * allocated responder XRI. 10469 */ 10470 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10471 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10472 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10473 piocb->sli4_xritag); 10474 10475 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10476 piocb->sli4_xritag); 10477 10478 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10479 return IOCB_ERROR; 10480 } 10481 10482 if (lpfc_sli4_wq_put(wq, wqe)) 10483 return IOCB_ERROR; 10484 10485 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10486 10487 return 0; 10488 } 10489 10490 /* 10491 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10492 * 10493 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10494 * or IOCB for sli-3 function. 10495 * pointer from the lpfc_hba struct. 10496 * 10497 * Return codes: 10498 * IOCB_ERROR - Error 10499 * IOCB_SUCCESS - Success 10500 * IOCB_BUSY - Busy 10501 **/ 10502 int 10503 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10504 struct lpfc_iocbq *piocb, uint32_t flag) 10505 { 10506 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10507 } 10508 10509 /* 10510 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10511 * 10512 * This routine wraps the actual lockless version for issusing IOCB function 10513 * pointer from the lpfc_hba struct. 10514 * 10515 * Return codes: 10516 * IOCB_ERROR - Error 10517 * IOCB_SUCCESS - Success 10518 * IOCB_BUSY - Busy 10519 **/ 10520 int 10521 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10522 struct lpfc_iocbq *piocb, uint32_t flag) 10523 { 10524 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10525 } 10526 10527 static void 10528 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10529 struct lpfc_vport *vport, 10530 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10531 u32 elscmd, u8 tmo, u8 expect_rsp) 10532 { 10533 struct lpfc_hba *phba = vport->phba; 10534 IOCB_t *cmd; 10535 10536 cmd = &cmdiocbq->iocb; 10537 memset(cmd, 0, sizeof(*cmd)); 10538 10539 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10540 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10541 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10542 10543 if (expect_rsp) { 10544 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10545 cmd->un.elsreq64.remoteID = did; /* DID */ 10546 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10547 cmd->ulpTimeout = tmo; 10548 } else { 10549 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10550 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10551 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10552 } 10553 cmd->ulpBdeCount = 1; 10554 cmd->ulpLe = 1; 10555 cmd->ulpClass = CLASS3; 10556 10557 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10558 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10559 if (expect_rsp) { 10560 cmd->un.elsreq64.myID = vport->fc_myDID; 10561 10562 /* For ELS_REQUEST64_CR, use the VPI by default */ 10563 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10564 } 10565 10566 cmd->ulpCt_h = 0; 10567 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10568 if (elscmd == ELS_CMD_ECHO) 10569 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10570 else 10571 cmd->ulpCt_l = 1; /* context = VPI */ 10572 } 10573 } 10574 10575 static void 10576 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10577 struct lpfc_vport *vport, 10578 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10579 u32 elscmd, u8 tmo, u8 expect_rsp) 10580 { 10581 struct lpfc_hba *phba = vport->phba; 10582 union lpfc_wqe128 *wqe; 10583 struct ulp_bde64_le *bde; 10584 u8 els_id; 10585 10586 wqe = &cmdiocbq->wqe; 10587 memset(wqe, 0, sizeof(*wqe)); 10588 10589 /* Word 0 - 2 BDE */ 10590 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10591 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10592 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10593 bde->type_size = cpu_to_le32(cmd_size); 10594 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10595 10596 if (expect_rsp) { 10597 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10598 10599 /* Transfer length */ 10600 wqe->els_req.payload_len = cmd_size; 10601 wqe->els_req.max_response_payload_len = FCELSSIZE; 10602 10603 /* DID */ 10604 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10605 10606 /* Word 11 - ELS_ID */ 10607 switch (elscmd) { 10608 case ELS_CMD_PLOGI: 10609 els_id = LPFC_ELS_ID_PLOGI; 10610 break; 10611 case ELS_CMD_FLOGI: 10612 els_id = LPFC_ELS_ID_FLOGI; 10613 break; 10614 case ELS_CMD_LOGO: 10615 els_id = LPFC_ELS_ID_LOGO; 10616 break; 10617 case ELS_CMD_FDISC: 10618 if (!vport->fc_myDID) { 10619 els_id = LPFC_ELS_ID_FDISC; 10620 break; 10621 } 10622 fallthrough; 10623 default: 10624 els_id = LPFC_ELS_ID_DEFAULT; 10625 break; 10626 } 10627 10628 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10629 } else { 10630 /* DID */ 10631 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10632 10633 /* Transfer length */ 10634 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10635 10636 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10637 CMD_XMIT_ELS_RSP64_WQE); 10638 } 10639 10640 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10641 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10642 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10643 10644 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10645 * For SLI4, since the driver controls VPIs we also want to include 10646 * all ELS pt2pt protocol traffic as well. 10647 */ 10648 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10649 (vport->fc_flag & FC_PT2PT)) { 10650 if (expect_rsp) { 10651 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10652 10653 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10654 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10655 phba->vpi_ids[vport->vpi]); 10656 } 10657 10658 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10659 if (elscmd == ELS_CMD_ECHO) 10660 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10661 else 10662 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10663 } 10664 } 10665 10666 void 10667 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10668 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10669 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10670 u8 expect_rsp) 10671 { 10672 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10673 elscmd, tmo, expect_rsp); 10674 } 10675 10676 static void 10677 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10678 u16 rpi, u32 num_entry, u8 tmo) 10679 { 10680 IOCB_t *cmd; 10681 10682 cmd = &cmdiocbq->iocb; 10683 memset(cmd, 0, sizeof(*cmd)); 10684 10685 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10686 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10687 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10688 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10689 10690 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10691 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10692 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10693 10694 cmd->ulpContext = rpi; 10695 cmd->ulpClass = CLASS3; 10696 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10697 cmd->ulpBdeCount = 1; 10698 cmd->ulpLe = 1; 10699 cmd->ulpOwner = OWN_CHIP; 10700 cmd->ulpTimeout = tmo; 10701 } 10702 10703 static void 10704 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10705 u16 rpi, u32 num_entry, u8 tmo) 10706 { 10707 union lpfc_wqe128 *cmdwqe; 10708 struct ulp_bde64_le *bde, *bpl; 10709 u32 xmit_len = 0, total_len = 0, size, type, i; 10710 10711 cmdwqe = &cmdiocbq->wqe; 10712 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10713 10714 /* Calculate total_len and xmit_len */ 10715 bpl = (struct ulp_bde64_le *)bmp->virt; 10716 for (i = 0; i < num_entry; i++) { 10717 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10718 total_len += size; 10719 } 10720 for (i = 0; i < num_entry; i++) { 10721 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10722 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10723 if (type != ULP_BDE64_TYPE_BDE_64) 10724 break; 10725 xmit_len += size; 10726 } 10727 10728 /* Words 0 - 2 */ 10729 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10730 bde->addr_low = bpl->addr_low; 10731 bde->addr_high = bpl->addr_high; 10732 bde->type_size = cpu_to_le32(xmit_len); 10733 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10734 10735 /* Word 3 */ 10736 cmdwqe->gen_req.request_payload_len = xmit_len; 10737 10738 /* Word 5 */ 10739 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10740 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10741 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10742 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10743 10744 /* Word 6 */ 10745 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10746 10747 /* Word 7 */ 10748 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10749 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10750 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10751 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10752 10753 /* Word 12 */ 10754 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10755 } 10756 10757 void 10758 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10759 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10760 { 10761 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10762 } 10763 10764 static void 10765 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 10766 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10767 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10768 { 10769 IOCB_t *icmd; 10770 10771 icmd = &cmdiocbq->iocb; 10772 memset(icmd, 0, sizeof(*icmd)); 10773 10774 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10775 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 10776 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10777 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 10778 icmd->un.xseq64.w5.hcsw.Fctl = LA; 10779 if (last_seq) 10780 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 10781 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 10782 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 10783 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 10784 10785 icmd->ulpBdeCount = 1; 10786 icmd->ulpLe = 1; 10787 icmd->ulpClass = CLASS3; 10788 10789 switch (cr_cx_cmd) { 10790 case CMD_XMIT_SEQUENCE64_CR: 10791 icmd->ulpContext = rpi; 10792 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 10793 break; 10794 case CMD_XMIT_SEQUENCE64_CX: 10795 icmd->ulpContext = ox_id; 10796 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 10797 break; 10798 default: 10799 break; 10800 } 10801 } 10802 10803 static void 10804 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 10805 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10806 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10807 { 10808 union lpfc_wqe128 *wqe; 10809 struct ulp_bde64 *bpl; 10810 10811 wqe = &cmdiocbq->wqe; 10812 memset(wqe, 0, sizeof(*wqe)); 10813 10814 /* Words 0 - 2 */ 10815 bpl = (struct ulp_bde64 *)bmp->virt; 10816 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 10817 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 10818 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 10819 10820 /* Word 5 */ 10821 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 10822 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 10823 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 10824 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 10825 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 10826 10827 /* Word 6 */ 10828 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 10829 10830 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 10831 CMD_XMIT_SEQUENCE64_WQE); 10832 10833 /* Word 7 */ 10834 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 10835 10836 /* Word 9 */ 10837 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 10838 10839 /* Word 12 */ 10840 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 10841 wqe->xmit_sequence.xmit_len = full_size; 10842 else 10843 wqe->xmit_sequence.xmit_len = 10844 wqe->xmit_sequence.bde.tus.f.bdeSize; 10845 } 10846 10847 void 10848 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10849 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10850 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10851 { 10852 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 10853 rctl, last_seq, cr_cx_cmd); 10854 } 10855 10856 static void 10857 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10858 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10859 { 10860 IOCB_t *icmd = NULL; 10861 10862 icmd = &cmdiocbq->iocb; 10863 memset(icmd, 0, sizeof(*icmd)); 10864 10865 /* Word 5 */ 10866 icmd->un.acxri.abortContextTag = ulp_context; 10867 icmd->un.acxri.abortIoTag = iotag; 10868 10869 if (ia) { 10870 /* Word 7 */ 10871 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 10872 } else { 10873 /* Word 3 */ 10874 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 10875 10876 /* Word 7 */ 10877 icmd->ulpClass = ulp_class; 10878 icmd->ulpCommand = CMD_ABORT_XRI_CN; 10879 } 10880 10881 /* Word 7 */ 10882 icmd->ulpLe = 1; 10883 } 10884 10885 static void 10886 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10887 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10888 { 10889 union lpfc_wqe128 *wqe; 10890 10891 wqe = &cmdiocbq->wqe; 10892 memset(wqe, 0, sizeof(*wqe)); 10893 10894 /* Word 3 */ 10895 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10896 if (ia) 10897 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10898 else 10899 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10900 10901 /* Word 7 */ 10902 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 10903 10904 /* Word 8 */ 10905 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 10906 10907 /* Word 9 */ 10908 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 10909 10910 /* Word 10 */ 10911 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10912 10913 /* Word 11 */ 10914 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 10915 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10916 } 10917 10918 void 10919 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10920 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 10921 bool ia) 10922 { 10923 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 10924 cqid, ia); 10925 } 10926 10927 /** 10928 * lpfc_sli_api_table_setup - Set up sli api function jump table 10929 * @phba: The hba struct for which this call is being executed. 10930 * @dev_grp: The HBA PCI-Device group number. 10931 * 10932 * This routine sets up the SLI interface API function jump table in @phba 10933 * struct. 10934 * Returns: 0 - success, -ENODEV - failure. 10935 **/ 10936 int 10937 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10938 { 10939 10940 switch (dev_grp) { 10941 case LPFC_PCI_DEV_LP: 10942 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10943 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10944 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10945 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 10946 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 10947 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 10948 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 10949 break; 10950 case LPFC_PCI_DEV_OC: 10951 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10952 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10953 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10954 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 10955 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 10956 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 10957 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 10958 break; 10959 default: 10960 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10961 "1419 Invalid HBA PCI-device group: 0x%x\n", 10962 dev_grp); 10963 return -ENODEV; 10964 } 10965 return 0; 10966 } 10967 10968 /** 10969 * lpfc_sli4_calc_ring - Calculates which ring to use 10970 * @phba: Pointer to HBA context object. 10971 * @piocb: Pointer to command iocb. 10972 * 10973 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10974 * hba_wqidx, thus we need to calculate the corresponding ring. 10975 * Since ABORTS must go on the same WQ of the command they are 10976 * aborting, we use command's hba_wqidx. 10977 */ 10978 struct lpfc_sli_ring * 10979 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10980 { 10981 struct lpfc_io_buf *lpfc_cmd; 10982 10983 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10984 if (unlikely(!phba->sli4_hba.hdwq)) 10985 return NULL; 10986 /* 10987 * for abort iocb hba_wqidx should already 10988 * be setup based on what work queue we used. 10989 */ 10990 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10991 lpfc_cmd = piocb->io_buf; 10992 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10993 } 10994 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10995 } else { 10996 if (unlikely(!phba->sli4_hba.els_wq)) 10997 return NULL; 10998 piocb->hba_wqidx = 0; 10999 return phba->sli4_hba.els_wq->pring; 11000 } 11001 } 11002 11003 /** 11004 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11005 * @phba: Pointer to HBA context object. 11006 * @ring_number: Ring number 11007 * @piocb: Pointer to command iocb. 11008 * @flag: Flag indicating if this command can be put into txq. 11009 * 11010 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11011 * function. This function gets the hbalock and calls 11012 * __lpfc_sli_issue_iocb function and will return the error returned 11013 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11014 * functions which do not hold hbalock. 11015 **/ 11016 int 11017 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11018 struct lpfc_iocbq *piocb, uint32_t flag) 11019 { 11020 struct lpfc_sli_ring *pring; 11021 struct lpfc_queue *eq; 11022 unsigned long iflags; 11023 int rc; 11024 11025 /* If the PCI channel is in offline state, do not post iocbs. */ 11026 if (unlikely(pci_channel_offline(phba->pcidev))) 11027 return IOCB_ERROR; 11028 11029 if (phba->sli_rev == LPFC_SLI_REV4) { 11030 lpfc_sli_prep_wqe(phba, piocb); 11031 11032 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11033 11034 pring = lpfc_sli4_calc_ring(phba, piocb); 11035 if (unlikely(pring == NULL)) 11036 return IOCB_ERROR; 11037 11038 spin_lock_irqsave(&pring->ring_lock, iflags); 11039 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11040 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11041 11042 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11043 } else { 11044 /* For now, SLI2/3 will still use hbalock */ 11045 spin_lock_irqsave(&phba->hbalock, iflags); 11046 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11047 spin_unlock_irqrestore(&phba->hbalock, iflags); 11048 } 11049 return rc; 11050 } 11051 11052 /** 11053 * lpfc_extra_ring_setup - Extra ring setup function 11054 * @phba: Pointer to HBA context object. 11055 * 11056 * This function is called while driver attaches with the 11057 * HBA to setup the extra ring. The extra ring is used 11058 * only when driver needs to support target mode functionality 11059 * or IP over FC functionalities. 11060 * 11061 * This function is called with no lock held. SLI3 only. 11062 **/ 11063 static int 11064 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11065 { 11066 struct lpfc_sli *psli; 11067 struct lpfc_sli_ring *pring; 11068 11069 psli = &phba->sli; 11070 11071 /* Adjust cmd/rsp ring iocb entries more evenly */ 11072 11073 /* Take some away from the FCP ring */ 11074 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11075 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11076 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11077 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11078 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11079 11080 /* and give them to the extra ring */ 11081 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11082 11083 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11084 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11085 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11086 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11087 11088 /* Setup default profile for this ring */ 11089 pring->iotag_max = 4096; 11090 pring->num_mask = 1; 11091 pring->prt[0].profile = 0; /* Mask 0 */ 11092 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11093 pring->prt[0].type = phba->cfg_multi_ring_type; 11094 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11095 return 0; 11096 } 11097 11098 static void 11099 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11100 struct lpfc_nodelist *ndlp) 11101 { 11102 unsigned long iflags; 11103 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11104 11105 spin_lock_irqsave(&phba->hbalock, iflags); 11106 if (!list_empty(&evtp->evt_listp)) { 11107 spin_unlock_irqrestore(&phba->hbalock, iflags); 11108 return; 11109 } 11110 11111 /* Incrementing the reference count until the queued work is done. */ 11112 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11113 if (!evtp->evt_arg1) { 11114 spin_unlock_irqrestore(&phba->hbalock, iflags); 11115 return; 11116 } 11117 evtp->evt = LPFC_EVT_RECOVER_PORT; 11118 list_add_tail(&evtp->evt_listp, &phba->work_list); 11119 spin_unlock_irqrestore(&phba->hbalock, iflags); 11120 11121 lpfc_worker_wake_up(phba); 11122 } 11123 11124 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11125 * @phba: Pointer to HBA context object. 11126 * @iocbq: Pointer to iocb object. 11127 * 11128 * The async_event handler calls this routine when it receives 11129 * an ASYNC_STATUS_CN event from the port. The port generates 11130 * this event when an Abort Sequence request to an rport fails 11131 * twice in succession. The abort could be originated by the 11132 * driver or by the port. The ABTS could have been for an ELS 11133 * or FCP IO. The port only generates this event when an ABTS 11134 * fails to complete after one retry. 11135 */ 11136 static void 11137 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11138 struct lpfc_iocbq *iocbq) 11139 { 11140 struct lpfc_nodelist *ndlp = NULL; 11141 uint16_t rpi = 0, vpi = 0; 11142 struct lpfc_vport *vport = NULL; 11143 11144 /* The rpi in the ulpContext is vport-sensitive. */ 11145 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11146 rpi = iocbq->iocb.ulpContext; 11147 11148 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11149 "3092 Port generated ABTS async event " 11150 "on vpi %d rpi %d status 0x%x\n", 11151 vpi, rpi, iocbq->iocb.ulpStatus); 11152 11153 vport = lpfc_find_vport_by_vpid(phba, vpi); 11154 if (!vport) 11155 goto err_exit; 11156 ndlp = lpfc_findnode_rpi(vport, rpi); 11157 if (!ndlp) 11158 goto err_exit; 11159 11160 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11161 lpfc_sli_abts_recover_port(vport, ndlp); 11162 return; 11163 11164 err_exit: 11165 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11166 "3095 Event Context not found, no " 11167 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11168 vpi, rpi, iocbq->iocb.ulpStatus, 11169 iocbq->iocb.ulpContext); 11170 } 11171 11172 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11173 * @phba: pointer to HBA context object. 11174 * @ndlp: nodelist pointer for the impacted rport. 11175 * @axri: pointer to the wcqe containing the failed exchange. 11176 * 11177 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11178 * port. The port generates this event when an abort exchange request to an 11179 * rport fails twice in succession with no reply. The abort could be originated 11180 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11181 */ 11182 void 11183 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11184 struct lpfc_nodelist *ndlp, 11185 struct sli4_wcqe_xri_aborted *axri) 11186 { 11187 uint32_t ext_status = 0; 11188 11189 if (!ndlp) { 11190 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11191 "3115 Node Context not found, driver " 11192 "ignoring abts err event\n"); 11193 return; 11194 } 11195 11196 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11197 "3116 Port generated FCP XRI ABORT event on " 11198 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11199 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11200 bf_get(lpfc_wcqe_xa_xri, axri), 11201 bf_get(lpfc_wcqe_xa_status, axri), 11202 axri->parameter); 11203 11204 /* 11205 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11206 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11207 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11208 */ 11209 ext_status = axri->parameter & IOERR_PARAM_MASK; 11210 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11211 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11212 lpfc_sli_post_recovery_event(phba, ndlp); 11213 } 11214 11215 /** 11216 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11217 * @phba: Pointer to HBA context object. 11218 * @pring: Pointer to driver SLI ring object. 11219 * @iocbq: Pointer to iocb object. 11220 * 11221 * This function is called by the slow ring event handler 11222 * function when there is an ASYNC event iocb in the ring. 11223 * This function is called with no lock held. 11224 * Currently this function handles only temperature related 11225 * ASYNC events. The function decodes the temperature sensor 11226 * event message and posts events for the management applications. 11227 **/ 11228 static void 11229 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11230 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11231 { 11232 IOCB_t *icmd; 11233 uint16_t evt_code; 11234 struct temp_event temp_event_data; 11235 struct Scsi_Host *shost; 11236 uint32_t *iocb_w; 11237 11238 icmd = &iocbq->iocb; 11239 evt_code = icmd->un.asyncstat.evt_code; 11240 11241 switch (evt_code) { 11242 case ASYNC_TEMP_WARN: 11243 case ASYNC_TEMP_SAFE: 11244 temp_event_data.data = (uint32_t) icmd->ulpContext; 11245 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11246 if (evt_code == ASYNC_TEMP_WARN) { 11247 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11249 "0347 Adapter is very hot, please take " 11250 "corrective action. temperature : %d Celsius\n", 11251 (uint32_t) icmd->ulpContext); 11252 } else { 11253 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11255 "0340 Adapter temperature is OK now. " 11256 "temperature : %d Celsius\n", 11257 (uint32_t) icmd->ulpContext); 11258 } 11259 11260 /* Send temperature change event to applications */ 11261 shost = lpfc_shost_from_vport(phba->pport); 11262 fc_host_post_vendor_event(shost, fc_get_event_number(), 11263 sizeof(temp_event_data), (char *) &temp_event_data, 11264 LPFC_NL_VENDOR_ID); 11265 break; 11266 case ASYNC_STATUS_CN: 11267 lpfc_sli_abts_err_handler(phba, iocbq); 11268 break; 11269 default: 11270 iocb_w = (uint32_t *) icmd; 11271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11272 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11273 " evt_code 0x%x\n" 11274 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11275 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11276 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11277 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11278 pring->ringno, icmd->un.asyncstat.evt_code, 11279 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11280 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11281 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11282 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11283 11284 break; 11285 } 11286 } 11287 11288 11289 /** 11290 * lpfc_sli4_setup - SLI ring setup function 11291 * @phba: Pointer to HBA context object. 11292 * 11293 * lpfc_sli_setup sets up rings of the SLI interface with 11294 * number of iocbs per ring and iotags. This function is 11295 * called while driver attach to the HBA and before the 11296 * interrupts are enabled. So there is no need for locking. 11297 * 11298 * This function always returns 0. 11299 **/ 11300 int 11301 lpfc_sli4_setup(struct lpfc_hba *phba) 11302 { 11303 struct lpfc_sli_ring *pring; 11304 11305 pring = phba->sli4_hba.els_wq->pring; 11306 pring->num_mask = LPFC_MAX_RING_MASK; 11307 pring->prt[0].profile = 0; /* Mask 0 */ 11308 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11309 pring->prt[0].type = FC_TYPE_ELS; 11310 pring->prt[0].lpfc_sli_rcv_unsol_event = 11311 lpfc_els_unsol_event; 11312 pring->prt[1].profile = 0; /* Mask 1 */ 11313 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11314 pring->prt[1].type = FC_TYPE_ELS; 11315 pring->prt[1].lpfc_sli_rcv_unsol_event = 11316 lpfc_els_unsol_event; 11317 pring->prt[2].profile = 0; /* Mask 2 */ 11318 /* NameServer Inquiry */ 11319 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11320 /* NameServer */ 11321 pring->prt[2].type = FC_TYPE_CT; 11322 pring->prt[2].lpfc_sli_rcv_unsol_event = 11323 lpfc_ct_unsol_event; 11324 pring->prt[3].profile = 0; /* Mask 3 */ 11325 /* NameServer response */ 11326 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11327 /* NameServer */ 11328 pring->prt[3].type = FC_TYPE_CT; 11329 pring->prt[3].lpfc_sli_rcv_unsol_event = 11330 lpfc_ct_unsol_event; 11331 return 0; 11332 } 11333 11334 /** 11335 * lpfc_sli_setup - SLI ring setup function 11336 * @phba: Pointer to HBA context object. 11337 * 11338 * lpfc_sli_setup sets up rings of the SLI interface with 11339 * number of iocbs per ring and iotags. This function is 11340 * called while driver attach to the HBA and before the 11341 * interrupts are enabled. So there is no need for locking. 11342 * 11343 * This function always returns 0. SLI3 only. 11344 **/ 11345 int 11346 lpfc_sli_setup(struct lpfc_hba *phba) 11347 { 11348 int i, totiocbsize = 0; 11349 struct lpfc_sli *psli = &phba->sli; 11350 struct lpfc_sli_ring *pring; 11351 11352 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11353 psli->sli_flag = 0; 11354 11355 psli->iocbq_lookup = NULL; 11356 psli->iocbq_lookup_len = 0; 11357 psli->last_iotag = 0; 11358 11359 for (i = 0; i < psli->num_rings; i++) { 11360 pring = &psli->sli3_ring[i]; 11361 switch (i) { 11362 case LPFC_FCP_RING: /* ring 0 - FCP */ 11363 /* numCiocb and numRiocb are used in config_port */ 11364 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11365 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11366 pring->sli.sli3.numCiocb += 11367 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11368 pring->sli.sli3.numRiocb += 11369 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11370 pring->sli.sli3.numCiocb += 11371 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11372 pring->sli.sli3.numRiocb += 11373 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11374 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11375 SLI3_IOCB_CMD_SIZE : 11376 SLI2_IOCB_CMD_SIZE; 11377 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11378 SLI3_IOCB_RSP_SIZE : 11379 SLI2_IOCB_RSP_SIZE; 11380 pring->iotag_ctr = 0; 11381 pring->iotag_max = 11382 (phba->cfg_hba_queue_depth * 2); 11383 pring->fast_iotag = pring->iotag_max; 11384 pring->num_mask = 0; 11385 break; 11386 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11387 /* numCiocb and numRiocb are used in config_port */ 11388 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11389 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11390 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11391 SLI3_IOCB_CMD_SIZE : 11392 SLI2_IOCB_CMD_SIZE; 11393 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11394 SLI3_IOCB_RSP_SIZE : 11395 SLI2_IOCB_RSP_SIZE; 11396 pring->iotag_max = phba->cfg_hba_queue_depth; 11397 pring->num_mask = 0; 11398 break; 11399 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11400 /* numCiocb and numRiocb are used in config_port */ 11401 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11402 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11403 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11404 SLI3_IOCB_CMD_SIZE : 11405 SLI2_IOCB_CMD_SIZE; 11406 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11407 SLI3_IOCB_RSP_SIZE : 11408 SLI2_IOCB_RSP_SIZE; 11409 pring->fast_iotag = 0; 11410 pring->iotag_ctr = 0; 11411 pring->iotag_max = 4096; 11412 pring->lpfc_sli_rcv_async_status = 11413 lpfc_sli_async_event_handler; 11414 pring->num_mask = LPFC_MAX_RING_MASK; 11415 pring->prt[0].profile = 0; /* Mask 0 */ 11416 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11417 pring->prt[0].type = FC_TYPE_ELS; 11418 pring->prt[0].lpfc_sli_rcv_unsol_event = 11419 lpfc_els_unsol_event; 11420 pring->prt[1].profile = 0; /* Mask 1 */ 11421 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11422 pring->prt[1].type = FC_TYPE_ELS; 11423 pring->prt[1].lpfc_sli_rcv_unsol_event = 11424 lpfc_els_unsol_event; 11425 pring->prt[2].profile = 0; /* Mask 2 */ 11426 /* NameServer Inquiry */ 11427 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11428 /* NameServer */ 11429 pring->prt[2].type = FC_TYPE_CT; 11430 pring->prt[2].lpfc_sli_rcv_unsol_event = 11431 lpfc_ct_unsol_event; 11432 pring->prt[3].profile = 0; /* Mask 3 */ 11433 /* NameServer response */ 11434 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11435 /* NameServer */ 11436 pring->prt[3].type = FC_TYPE_CT; 11437 pring->prt[3].lpfc_sli_rcv_unsol_event = 11438 lpfc_ct_unsol_event; 11439 break; 11440 } 11441 totiocbsize += (pring->sli.sli3.numCiocb * 11442 pring->sli.sli3.sizeCiocb) + 11443 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11444 } 11445 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11446 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11447 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11448 "SLI2 SLIM Data: x%x x%lx\n", 11449 phba->brd_no, totiocbsize, 11450 (unsigned long) MAX_SLIM_IOCB_SIZE); 11451 } 11452 if (phba->cfg_multi_ring_support == 2) 11453 lpfc_extra_ring_setup(phba); 11454 11455 return 0; 11456 } 11457 11458 /** 11459 * lpfc_sli4_queue_init - Queue initialization function 11460 * @phba: Pointer to HBA context object. 11461 * 11462 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11463 * ring. This function also initializes ring indices of each ring. 11464 * This function is called during the initialization of the SLI 11465 * interface of an HBA. 11466 * This function is called with no lock held and always returns 11467 * 1. 11468 **/ 11469 void 11470 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11471 { 11472 struct lpfc_sli *psli; 11473 struct lpfc_sli_ring *pring; 11474 int i; 11475 11476 psli = &phba->sli; 11477 spin_lock_irq(&phba->hbalock); 11478 INIT_LIST_HEAD(&psli->mboxq); 11479 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11480 /* Initialize list headers for txq and txcmplq as double linked lists */ 11481 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11482 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11483 pring->flag = 0; 11484 pring->ringno = LPFC_FCP_RING; 11485 pring->txcmplq_cnt = 0; 11486 INIT_LIST_HEAD(&pring->txq); 11487 INIT_LIST_HEAD(&pring->txcmplq); 11488 INIT_LIST_HEAD(&pring->iocb_continueq); 11489 spin_lock_init(&pring->ring_lock); 11490 } 11491 pring = phba->sli4_hba.els_wq->pring; 11492 pring->flag = 0; 11493 pring->ringno = LPFC_ELS_RING; 11494 pring->txcmplq_cnt = 0; 11495 INIT_LIST_HEAD(&pring->txq); 11496 INIT_LIST_HEAD(&pring->txcmplq); 11497 INIT_LIST_HEAD(&pring->iocb_continueq); 11498 spin_lock_init(&pring->ring_lock); 11499 11500 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11501 pring = phba->sli4_hba.nvmels_wq->pring; 11502 pring->flag = 0; 11503 pring->ringno = LPFC_ELS_RING; 11504 pring->txcmplq_cnt = 0; 11505 INIT_LIST_HEAD(&pring->txq); 11506 INIT_LIST_HEAD(&pring->txcmplq); 11507 INIT_LIST_HEAD(&pring->iocb_continueq); 11508 spin_lock_init(&pring->ring_lock); 11509 } 11510 11511 spin_unlock_irq(&phba->hbalock); 11512 } 11513 11514 /** 11515 * lpfc_sli_queue_init - Queue initialization function 11516 * @phba: Pointer to HBA context object. 11517 * 11518 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11519 * ring. This function also initializes ring indices of each ring. 11520 * This function is called during the initialization of the SLI 11521 * interface of an HBA. 11522 * This function is called with no lock held and always returns 11523 * 1. 11524 **/ 11525 void 11526 lpfc_sli_queue_init(struct lpfc_hba *phba) 11527 { 11528 struct lpfc_sli *psli; 11529 struct lpfc_sli_ring *pring; 11530 int i; 11531 11532 psli = &phba->sli; 11533 spin_lock_irq(&phba->hbalock); 11534 INIT_LIST_HEAD(&psli->mboxq); 11535 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11536 /* Initialize list headers for txq and txcmplq as double linked lists */ 11537 for (i = 0; i < psli->num_rings; i++) { 11538 pring = &psli->sli3_ring[i]; 11539 pring->ringno = i; 11540 pring->sli.sli3.next_cmdidx = 0; 11541 pring->sli.sli3.local_getidx = 0; 11542 pring->sli.sli3.cmdidx = 0; 11543 INIT_LIST_HEAD(&pring->iocb_continueq); 11544 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11545 INIT_LIST_HEAD(&pring->postbufq); 11546 pring->flag = 0; 11547 INIT_LIST_HEAD(&pring->txq); 11548 INIT_LIST_HEAD(&pring->txcmplq); 11549 spin_lock_init(&pring->ring_lock); 11550 } 11551 spin_unlock_irq(&phba->hbalock); 11552 } 11553 11554 /** 11555 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11556 * @phba: Pointer to HBA context object. 11557 * 11558 * This routine flushes the mailbox command subsystem. It will unconditionally 11559 * flush all the mailbox commands in the three possible stages in the mailbox 11560 * command sub-system: pending mailbox command queue; the outstanding mailbox 11561 * command; and completed mailbox command queue. It is caller's responsibility 11562 * to make sure that the driver is in the proper state to flush the mailbox 11563 * command sub-system. Namely, the posting of mailbox commands into the 11564 * pending mailbox command queue from the various clients must be stopped; 11565 * either the HBA is in a state that it will never works on the outstanding 11566 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11567 * mailbox command has been completed. 11568 **/ 11569 static void 11570 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11571 { 11572 LIST_HEAD(completions); 11573 struct lpfc_sli *psli = &phba->sli; 11574 LPFC_MBOXQ_t *pmb; 11575 unsigned long iflag; 11576 11577 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11578 local_bh_disable(); 11579 11580 /* Flush all the mailbox commands in the mbox system */ 11581 spin_lock_irqsave(&phba->hbalock, iflag); 11582 11583 /* The pending mailbox command queue */ 11584 list_splice_init(&phba->sli.mboxq, &completions); 11585 /* The outstanding active mailbox command */ 11586 if (psli->mbox_active) { 11587 list_add_tail(&psli->mbox_active->list, &completions); 11588 psli->mbox_active = NULL; 11589 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11590 } 11591 /* The completed mailbox command queue */ 11592 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11593 spin_unlock_irqrestore(&phba->hbalock, iflag); 11594 11595 /* Enable softirqs again, done with phba->hbalock */ 11596 local_bh_enable(); 11597 11598 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11599 while (!list_empty(&completions)) { 11600 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11601 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11602 if (pmb->mbox_cmpl) 11603 pmb->mbox_cmpl(phba, pmb); 11604 } 11605 } 11606 11607 /** 11608 * lpfc_sli_host_down - Vport cleanup function 11609 * @vport: Pointer to virtual port object. 11610 * 11611 * lpfc_sli_host_down is called to clean up the resources 11612 * associated with a vport before destroying virtual 11613 * port data structures. 11614 * This function does following operations: 11615 * - Free discovery resources associated with this virtual 11616 * port. 11617 * - Free iocbs associated with this virtual port in 11618 * the txq. 11619 * - Send abort for all iocb commands associated with this 11620 * vport in txcmplq. 11621 * 11622 * This function is called with no lock held and always returns 1. 11623 **/ 11624 int 11625 lpfc_sli_host_down(struct lpfc_vport *vport) 11626 { 11627 LIST_HEAD(completions); 11628 struct lpfc_hba *phba = vport->phba; 11629 struct lpfc_sli *psli = &phba->sli; 11630 struct lpfc_queue *qp = NULL; 11631 struct lpfc_sli_ring *pring; 11632 struct lpfc_iocbq *iocb, *next_iocb; 11633 int i; 11634 unsigned long flags = 0; 11635 uint16_t prev_pring_flag; 11636 11637 lpfc_cleanup_discovery_resources(vport); 11638 11639 spin_lock_irqsave(&phba->hbalock, flags); 11640 11641 /* 11642 * Error everything on the txq since these iocbs 11643 * have not been given to the FW yet. 11644 * Also issue ABTS for everything on the txcmplq 11645 */ 11646 if (phba->sli_rev != LPFC_SLI_REV4) { 11647 for (i = 0; i < psli->num_rings; i++) { 11648 pring = &psli->sli3_ring[i]; 11649 prev_pring_flag = pring->flag; 11650 /* Only slow rings */ 11651 if (pring->ringno == LPFC_ELS_RING) { 11652 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11653 /* Set the lpfc data pending flag */ 11654 set_bit(LPFC_DATA_READY, &phba->data_flags); 11655 } 11656 list_for_each_entry_safe(iocb, next_iocb, 11657 &pring->txq, list) { 11658 if (iocb->vport != vport) 11659 continue; 11660 list_move_tail(&iocb->list, &completions); 11661 } 11662 list_for_each_entry_safe(iocb, next_iocb, 11663 &pring->txcmplq, list) { 11664 if (iocb->vport != vport) 11665 continue; 11666 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11667 NULL); 11668 } 11669 pring->flag = prev_pring_flag; 11670 } 11671 } else { 11672 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11673 pring = qp->pring; 11674 if (!pring) 11675 continue; 11676 if (pring == phba->sli4_hba.els_wq->pring) { 11677 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11678 /* Set the lpfc data pending flag */ 11679 set_bit(LPFC_DATA_READY, &phba->data_flags); 11680 } 11681 prev_pring_flag = pring->flag; 11682 spin_lock(&pring->ring_lock); 11683 list_for_each_entry_safe(iocb, next_iocb, 11684 &pring->txq, list) { 11685 if (iocb->vport != vport) 11686 continue; 11687 list_move_tail(&iocb->list, &completions); 11688 } 11689 spin_unlock(&pring->ring_lock); 11690 list_for_each_entry_safe(iocb, next_iocb, 11691 &pring->txcmplq, list) { 11692 if (iocb->vport != vport) 11693 continue; 11694 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11695 NULL); 11696 } 11697 pring->flag = prev_pring_flag; 11698 } 11699 } 11700 spin_unlock_irqrestore(&phba->hbalock, flags); 11701 11702 /* Make sure HBA is alive */ 11703 lpfc_issue_hb_tmo(phba); 11704 11705 /* Cancel all the IOCBs from the completions list */ 11706 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11707 IOERR_SLI_DOWN); 11708 return 1; 11709 } 11710 11711 /** 11712 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11713 * @phba: Pointer to HBA context object. 11714 * 11715 * This function cleans up all iocb, buffers, mailbox commands 11716 * while shutting down the HBA. This function is called with no 11717 * lock held and always returns 1. 11718 * This function does the following to cleanup driver resources: 11719 * - Free discovery resources for each virtual port 11720 * - Cleanup any pending fabric iocbs 11721 * - Iterate through the iocb txq and free each entry 11722 * in the list. 11723 * - Free up any buffer posted to the HBA 11724 * - Free mailbox commands in the mailbox queue. 11725 **/ 11726 int 11727 lpfc_sli_hba_down(struct lpfc_hba *phba) 11728 { 11729 LIST_HEAD(completions); 11730 struct lpfc_sli *psli = &phba->sli; 11731 struct lpfc_queue *qp = NULL; 11732 struct lpfc_sli_ring *pring; 11733 struct lpfc_dmabuf *buf_ptr; 11734 unsigned long flags = 0; 11735 int i; 11736 11737 /* Shutdown the mailbox command sub-system */ 11738 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11739 11740 lpfc_hba_down_prep(phba); 11741 11742 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11743 local_bh_disable(); 11744 11745 lpfc_fabric_abort_hba(phba); 11746 11747 spin_lock_irqsave(&phba->hbalock, flags); 11748 11749 /* 11750 * Error everything on the txq since these iocbs 11751 * have not been given to the FW yet. 11752 */ 11753 if (phba->sli_rev != LPFC_SLI_REV4) { 11754 for (i = 0; i < psli->num_rings; i++) { 11755 pring = &psli->sli3_ring[i]; 11756 /* Only slow rings */ 11757 if (pring->ringno == LPFC_ELS_RING) { 11758 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11759 /* Set the lpfc data pending flag */ 11760 set_bit(LPFC_DATA_READY, &phba->data_flags); 11761 } 11762 list_splice_init(&pring->txq, &completions); 11763 } 11764 } else { 11765 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11766 pring = qp->pring; 11767 if (!pring) 11768 continue; 11769 spin_lock(&pring->ring_lock); 11770 list_splice_init(&pring->txq, &completions); 11771 spin_unlock(&pring->ring_lock); 11772 if (pring == phba->sli4_hba.els_wq->pring) { 11773 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11774 /* Set the lpfc data pending flag */ 11775 set_bit(LPFC_DATA_READY, &phba->data_flags); 11776 } 11777 } 11778 } 11779 spin_unlock_irqrestore(&phba->hbalock, flags); 11780 11781 /* Cancel all the IOCBs from the completions list */ 11782 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11783 IOERR_SLI_DOWN); 11784 11785 spin_lock_irqsave(&phba->hbalock, flags); 11786 list_splice_init(&phba->elsbuf, &completions); 11787 phba->elsbuf_cnt = 0; 11788 phba->elsbuf_prev_cnt = 0; 11789 spin_unlock_irqrestore(&phba->hbalock, flags); 11790 11791 while (!list_empty(&completions)) { 11792 list_remove_head(&completions, buf_ptr, 11793 struct lpfc_dmabuf, list); 11794 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11795 kfree(buf_ptr); 11796 } 11797 11798 /* Enable softirqs again, done with phba->hbalock */ 11799 local_bh_enable(); 11800 11801 /* Return any active mbox cmds */ 11802 del_timer_sync(&psli->mbox_tmo); 11803 11804 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11805 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11806 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11807 11808 return 1; 11809 } 11810 11811 /** 11812 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11813 * @srcp: Source memory pointer. 11814 * @destp: Destination memory pointer. 11815 * @cnt: Number of words required to be copied. 11816 * 11817 * This function is used for copying data between driver memory 11818 * and the SLI memory. This function also changes the endianness 11819 * of each word if native endianness is different from SLI 11820 * endianness. This function can be called with or without 11821 * lock. 11822 **/ 11823 void 11824 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11825 { 11826 uint32_t *src = srcp; 11827 uint32_t *dest = destp; 11828 uint32_t ldata; 11829 int i; 11830 11831 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11832 ldata = *src; 11833 ldata = le32_to_cpu(ldata); 11834 *dest = ldata; 11835 src++; 11836 dest++; 11837 } 11838 } 11839 11840 11841 /** 11842 * lpfc_sli_bemem_bcopy - SLI memory copy function 11843 * @srcp: Source memory pointer. 11844 * @destp: Destination memory pointer. 11845 * @cnt: Number of words required to be copied. 11846 * 11847 * This function is used for copying data between a data structure 11848 * with big endian representation to local endianness. 11849 * This function can be called with or without lock. 11850 **/ 11851 void 11852 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11853 { 11854 uint32_t *src = srcp; 11855 uint32_t *dest = destp; 11856 uint32_t ldata; 11857 int i; 11858 11859 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11860 ldata = *src; 11861 ldata = be32_to_cpu(ldata); 11862 *dest = ldata; 11863 src++; 11864 dest++; 11865 } 11866 } 11867 11868 /** 11869 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11870 * @phba: Pointer to HBA context object. 11871 * @pring: Pointer to driver SLI ring object. 11872 * @mp: Pointer to driver buffer object. 11873 * 11874 * This function is called with no lock held. 11875 * It always return zero after adding the buffer to the postbufq 11876 * buffer list. 11877 **/ 11878 int 11879 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11880 struct lpfc_dmabuf *mp) 11881 { 11882 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11883 later */ 11884 spin_lock_irq(&phba->hbalock); 11885 list_add_tail(&mp->list, &pring->postbufq); 11886 pring->postbufq_cnt++; 11887 spin_unlock_irq(&phba->hbalock); 11888 return 0; 11889 } 11890 11891 /** 11892 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11893 * @phba: Pointer to HBA context object. 11894 * 11895 * When HBQ is enabled, buffers are searched based on tags. This function 11896 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11897 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11898 * does not conflict with tags of buffer posted for unsolicited events. 11899 * The function returns the allocated tag. The function is called with 11900 * no locks held. 11901 **/ 11902 uint32_t 11903 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11904 { 11905 spin_lock_irq(&phba->hbalock); 11906 phba->buffer_tag_count++; 11907 /* 11908 * Always set the QUE_BUFTAG_BIT to distiguish between 11909 * a tag assigned by HBQ. 11910 */ 11911 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11912 spin_unlock_irq(&phba->hbalock); 11913 return phba->buffer_tag_count; 11914 } 11915 11916 /** 11917 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11918 * @phba: Pointer to HBA context object. 11919 * @pring: Pointer to driver SLI ring object. 11920 * @tag: Buffer tag. 11921 * 11922 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11923 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11924 * iocb is posted to the response ring with the tag of the buffer. 11925 * This function searches the pring->postbufq list using the tag 11926 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11927 * iocb. If the buffer is found then lpfc_dmabuf object of the 11928 * buffer is returned to the caller else NULL is returned. 11929 * This function is called with no lock held. 11930 **/ 11931 struct lpfc_dmabuf * 11932 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11933 uint32_t tag) 11934 { 11935 struct lpfc_dmabuf *mp, *next_mp; 11936 struct list_head *slp = &pring->postbufq; 11937 11938 /* Search postbufq, from the beginning, looking for a match on tag */ 11939 spin_lock_irq(&phba->hbalock); 11940 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11941 if (mp->buffer_tag == tag) { 11942 list_del_init(&mp->list); 11943 pring->postbufq_cnt--; 11944 spin_unlock_irq(&phba->hbalock); 11945 return mp; 11946 } 11947 } 11948 11949 spin_unlock_irq(&phba->hbalock); 11950 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11951 "0402 Cannot find virtual addr for buffer tag on " 11952 "ring %d Data x%lx x%px x%px x%x\n", 11953 pring->ringno, (unsigned long) tag, 11954 slp->next, slp->prev, pring->postbufq_cnt); 11955 11956 return NULL; 11957 } 11958 11959 /** 11960 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11961 * @phba: Pointer to HBA context object. 11962 * @pring: Pointer to driver SLI ring object. 11963 * @phys: DMA address of the buffer. 11964 * 11965 * This function searches the buffer list using the dma_address 11966 * of unsolicited event to find the driver's lpfc_dmabuf object 11967 * corresponding to the dma_address. The function returns the 11968 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11969 * This function is called by the ct and els unsolicited event 11970 * handlers to get the buffer associated with the unsolicited 11971 * event. 11972 * 11973 * This function is called with no lock held. 11974 **/ 11975 struct lpfc_dmabuf * 11976 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11977 dma_addr_t phys) 11978 { 11979 struct lpfc_dmabuf *mp, *next_mp; 11980 struct list_head *slp = &pring->postbufq; 11981 11982 /* Search postbufq, from the beginning, looking for a match on phys */ 11983 spin_lock_irq(&phba->hbalock); 11984 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11985 if (mp->phys == phys) { 11986 list_del_init(&mp->list); 11987 pring->postbufq_cnt--; 11988 spin_unlock_irq(&phba->hbalock); 11989 return mp; 11990 } 11991 } 11992 11993 spin_unlock_irq(&phba->hbalock); 11994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11995 "0410 Cannot find virtual addr for mapped buf on " 11996 "ring %d Data x%llx x%px x%px x%x\n", 11997 pring->ringno, (unsigned long long)phys, 11998 slp->next, slp->prev, pring->postbufq_cnt); 11999 return NULL; 12000 } 12001 12002 /** 12003 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12004 * @phba: Pointer to HBA context object. 12005 * @cmdiocb: Pointer to driver command iocb object. 12006 * @rspiocb: Pointer to driver response iocb object. 12007 * 12008 * This function is the completion handler for the abort iocbs for 12009 * ELS commands. This function is called from the ELS ring event 12010 * handler with no lock held. This function frees memory resources 12011 * associated with the abort iocb. 12012 **/ 12013 static void 12014 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12015 struct lpfc_iocbq *rspiocb) 12016 { 12017 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12018 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12019 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12020 12021 if (ulp_status) { 12022 /* 12023 * Assume that the port already completed and returned, or 12024 * will return the iocb. Just Log the message. 12025 */ 12026 if (phba->sli_rev < LPFC_SLI_REV4) { 12027 if (cmnd == CMD_ABORT_XRI_CX && 12028 ulp_status == IOSTAT_LOCAL_REJECT && 12029 ulp_word4 == IOERR_ABORT_REQUESTED) { 12030 goto release_iocb; 12031 } 12032 } 12033 12034 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12035 "0327 Cannot abort els iocb x%px " 12036 "with io cmd xri %x abort tag : x%x, " 12037 "abort status %x abort code %x\n", 12038 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12039 (phba->sli_rev == LPFC_SLI_REV4) ? 12040 get_wqe_reqtag(cmdiocb) : 12041 cmdiocb->iocb.un.acxri.abortContextTag, 12042 ulp_status, ulp_word4); 12043 12044 } 12045 release_iocb: 12046 lpfc_sli_release_iocbq(phba, cmdiocb); 12047 return; 12048 } 12049 12050 /** 12051 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12052 * @phba: Pointer to HBA context object. 12053 * @cmdiocb: Pointer to driver command iocb object. 12054 * @rspiocb: Pointer to driver response iocb object. 12055 * 12056 * The function is called from SLI ring event handler with no 12057 * lock held. This function is the completion handler for ELS commands 12058 * which are aborted. The function frees memory resources used for 12059 * the aborted ELS commands. 12060 **/ 12061 void 12062 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12063 struct lpfc_iocbq *rspiocb) 12064 { 12065 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12066 IOCB_t *irsp; 12067 LPFC_MBOXQ_t *mbox; 12068 u32 ulp_command, ulp_status, ulp_word4, iotag; 12069 12070 ulp_command = get_job_cmnd(phba, cmdiocb); 12071 ulp_status = get_job_ulpstatus(phba, rspiocb); 12072 ulp_word4 = get_job_word4(phba, rspiocb); 12073 12074 if (phba->sli_rev == LPFC_SLI_REV4) { 12075 iotag = get_wqe_reqtag(cmdiocb); 12076 } else { 12077 irsp = &rspiocb->iocb; 12078 iotag = irsp->ulpIoTag; 12079 12080 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12081 * The MBX_REG_LOGIN64 mbox command is freed back to the 12082 * mbox_mem_pool here. 12083 */ 12084 if (cmdiocb->context_un.mbox) { 12085 mbox = cmdiocb->context_un.mbox; 12086 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12087 cmdiocb->context_un.mbox = NULL; 12088 } 12089 } 12090 12091 /* ELS cmd tag <ulpIoTag> completes */ 12092 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12093 "0139 Ignoring ELS cmd code x%x completion Data: " 12094 "x%x x%x x%x x%px\n", 12095 ulp_command, ulp_status, ulp_word4, iotag, 12096 cmdiocb->ndlp); 12097 /* 12098 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12099 * if exchange is busy. 12100 */ 12101 if (ulp_command == CMD_GEN_REQUEST64_CR) 12102 lpfc_ct_free_iocb(phba, cmdiocb); 12103 else 12104 lpfc_els_free_iocb(phba, cmdiocb); 12105 12106 lpfc_nlp_put(ndlp); 12107 } 12108 12109 /** 12110 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12111 * @phba: Pointer to HBA context object. 12112 * @pring: Pointer to driver SLI ring object. 12113 * @cmdiocb: Pointer to driver command iocb object. 12114 * @cmpl: completion function. 12115 * 12116 * This function issues an abort iocb for the provided command iocb. In case 12117 * of unloading, the abort iocb will not be issued to commands on the ELS 12118 * ring. Instead, the callback function shall be changed to those commands 12119 * so that nothing happens when them finishes. This function is called with 12120 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12121 * when the command iocb is an abort request. 12122 * 12123 **/ 12124 int 12125 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12126 struct lpfc_iocbq *cmdiocb, void *cmpl) 12127 { 12128 struct lpfc_vport *vport = cmdiocb->vport; 12129 struct lpfc_iocbq *abtsiocbp; 12130 int retval = IOCB_ERROR; 12131 unsigned long iflags; 12132 struct lpfc_nodelist *ndlp = NULL; 12133 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12134 u16 ulp_context, iotag; 12135 bool ia; 12136 12137 /* 12138 * There are certain command types we don't want to abort. And we 12139 * don't want to abort commands that are already in the process of 12140 * being aborted. 12141 */ 12142 if (ulp_command == CMD_ABORT_XRI_WQE || 12143 ulp_command == CMD_ABORT_XRI_CN || 12144 ulp_command == CMD_CLOSE_XRI_CN || 12145 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12146 return IOCB_ABORTING; 12147 12148 if (!pring) { 12149 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12150 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12151 else 12152 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12153 return retval; 12154 } 12155 12156 /* 12157 * If we're unloading, don't abort iocb on the ELS ring, but change 12158 * the callback so that nothing happens when it finishes. 12159 */ 12160 if ((vport->load_flag & FC_UNLOADING) && 12161 pring->ringno == LPFC_ELS_RING) { 12162 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12163 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12164 else 12165 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12166 return retval; 12167 } 12168 12169 /* issue ABTS for this IOCB based on iotag */ 12170 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12171 if (abtsiocbp == NULL) 12172 return IOCB_NORESOURCE; 12173 12174 /* This signals the response to set the correct status 12175 * before calling the completion handler 12176 */ 12177 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12178 12179 if (phba->sli_rev == LPFC_SLI_REV4) { 12180 ulp_context = cmdiocb->sli4_xritag; 12181 iotag = abtsiocbp->iotag; 12182 } else { 12183 iotag = cmdiocb->iocb.ulpIoTag; 12184 if (pring->ringno == LPFC_ELS_RING) { 12185 ndlp = cmdiocb->ndlp; 12186 ulp_context = ndlp->nlp_rpi; 12187 } else { 12188 ulp_context = cmdiocb->iocb.ulpContext; 12189 } 12190 } 12191 12192 if (phba->link_state < LPFC_LINK_UP || 12193 (phba->sli_rev == LPFC_SLI_REV4 && 12194 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12195 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12196 ia = true; 12197 else 12198 ia = false; 12199 12200 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12201 cmdiocb->iocb.ulpClass, 12202 LPFC_WQE_CQ_ID_DEFAULT, ia); 12203 12204 abtsiocbp->vport = vport; 12205 12206 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12207 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12208 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12209 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12210 12211 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12212 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12213 12214 if (cmpl) 12215 abtsiocbp->cmd_cmpl = cmpl; 12216 else 12217 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12218 abtsiocbp->vport = vport; 12219 12220 if (phba->sli_rev == LPFC_SLI_REV4) { 12221 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12222 if (unlikely(pring == NULL)) 12223 goto abort_iotag_exit; 12224 /* Note: both hbalock and ring_lock need to be set here */ 12225 spin_lock_irqsave(&pring->ring_lock, iflags); 12226 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12227 abtsiocbp, 0); 12228 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12229 } else { 12230 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12231 abtsiocbp, 0); 12232 } 12233 12234 abort_iotag_exit: 12235 12236 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12237 "0339 Abort IO XRI x%x, Original iotag x%x, " 12238 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12239 "retval x%x\n", 12240 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12241 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12242 retval); 12243 if (retval) { 12244 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12245 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12246 } 12247 12248 /* 12249 * Caller to this routine should check for IOCB_ERROR 12250 * and handle it properly. This routine no longer removes 12251 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12252 */ 12253 return retval; 12254 } 12255 12256 /** 12257 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12258 * @phba: pointer to lpfc HBA data structure. 12259 * 12260 * This routine will abort all pending and outstanding iocbs to an HBA. 12261 **/ 12262 void 12263 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12264 { 12265 struct lpfc_sli *psli = &phba->sli; 12266 struct lpfc_sli_ring *pring; 12267 struct lpfc_queue *qp = NULL; 12268 int i; 12269 12270 if (phba->sli_rev != LPFC_SLI_REV4) { 12271 for (i = 0; i < psli->num_rings; i++) { 12272 pring = &psli->sli3_ring[i]; 12273 lpfc_sli_abort_iocb_ring(phba, pring); 12274 } 12275 return; 12276 } 12277 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12278 pring = qp->pring; 12279 if (!pring) 12280 continue; 12281 lpfc_sli_abort_iocb_ring(phba, pring); 12282 } 12283 } 12284 12285 /** 12286 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12287 * @iocbq: Pointer to iocb object. 12288 * @vport: Pointer to driver virtual port object. 12289 * 12290 * This function acts as an iocb filter for functions which abort FCP iocbs. 12291 * 12292 * Return values 12293 * -ENODEV, if a null iocb or vport ptr is encountered 12294 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12295 * driver already started the abort process, or is an abort iocb itself 12296 * 0, passes criteria for aborting the FCP I/O iocb 12297 **/ 12298 static int 12299 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12300 struct lpfc_vport *vport) 12301 { 12302 u8 ulp_command; 12303 12304 /* No null ptr vports */ 12305 if (!iocbq || iocbq->vport != vport) 12306 return -ENODEV; 12307 12308 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12309 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12310 */ 12311 ulp_command = get_job_cmnd(vport->phba, iocbq); 12312 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12313 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12314 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12315 (ulp_command == CMD_ABORT_XRI_CN || 12316 ulp_command == CMD_CLOSE_XRI_CN || 12317 ulp_command == CMD_ABORT_XRI_WQE)) 12318 return -EINVAL; 12319 12320 return 0; 12321 } 12322 12323 /** 12324 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12325 * @iocbq: Pointer to driver iocb object. 12326 * @vport: Pointer to driver virtual port object. 12327 * @tgt_id: SCSI ID of the target. 12328 * @lun_id: LUN ID of the scsi device. 12329 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12330 * 12331 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12332 * host. 12333 * 12334 * It will return 12335 * 0 if the filtering criteria is met for the given iocb and will return 12336 * 1 if the filtering criteria is not met. 12337 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12338 * given iocb is for the SCSI device specified by vport, tgt_id and 12339 * lun_id parameter. 12340 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12341 * given iocb is for the SCSI target specified by vport and tgt_id 12342 * parameters. 12343 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12344 * given iocb is for the SCSI host associated with the given vport. 12345 * This function is called with no locks held. 12346 **/ 12347 static int 12348 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12349 uint16_t tgt_id, uint64_t lun_id, 12350 lpfc_ctx_cmd ctx_cmd) 12351 { 12352 struct lpfc_io_buf *lpfc_cmd; 12353 int rc = 1; 12354 12355 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12356 12357 if (lpfc_cmd->pCmd == NULL) 12358 return rc; 12359 12360 switch (ctx_cmd) { 12361 case LPFC_CTX_LUN: 12362 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12363 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12364 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12365 rc = 0; 12366 break; 12367 case LPFC_CTX_TGT: 12368 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12369 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12370 rc = 0; 12371 break; 12372 case LPFC_CTX_HOST: 12373 rc = 0; 12374 break; 12375 default: 12376 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12377 __func__, ctx_cmd); 12378 break; 12379 } 12380 12381 return rc; 12382 } 12383 12384 /** 12385 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12386 * @vport: Pointer to virtual port. 12387 * @tgt_id: SCSI ID of the target. 12388 * @lun_id: LUN ID of the scsi device. 12389 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12390 * 12391 * This function returns number of FCP commands pending for the vport. 12392 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12393 * commands pending on the vport associated with SCSI device specified 12394 * by tgt_id and lun_id parameters. 12395 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12396 * commands pending on the vport associated with SCSI target specified 12397 * by tgt_id parameter. 12398 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12399 * commands pending on the vport. 12400 * This function returns the number of iocbs which satisfy the filter. 12401 * This function is called without any lock held. 12402 **/ 12403 int 12404 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12405 lpfc_ctx_cmd ctx_cmd) 12406 { 12407 struct lpfc_hba *phba = vport->phba; 12408 struct lpfc_iocbq *iocbq; 12409 int sum, i; 12410 unsigned long iflags; 12411 u8 ulp_command; 12412 12413 spin_lock_irqsave(&phba->hbalock, iflags); 12414 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12415 iocbq = phba->sli.iocbq_lookup[i]; 12416 12417 if (!iocbq || iocbq->vport != vport) 12418 continue; 12419 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12420 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12421 continue; 12422 12423 /* Include counting outstanding aborts */ 12424 ulp_command = get_job_cmnd(phba, iocbq); 12425 if (ulp_command == CMD_ABORT_XRI_CN || 12426 ulp_command == CMD_CLOSE_XRI_CN || 12427 ulp_command == CMD_ABORT_XRI_WQE) { 12428 sum++; 12429 continue; 12430 } 12431 12432 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12433 ctx_cmd) == 0) 12434 sum++; 12435 } 12436 spin_unlock_irqrestore(&phba->hbalock, iflags); 12437 12438 return sum; 12439 } 12440 12441 /** 12442 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12443 * @phba: Pointer to HBA context object 12444 * @cmdiocb: Pointer to command iocb object. 12445 * @rspiocb: Pointer to response iocb object. 12446 * 12447 * This function is called when an aborted FCP iocb completes. This 12448 * function is called by the ring event handler with no lock held. 12449 * This function frees the iocb. 12450 **/ 12451 void 12452 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12453 struct lpfc_iocbq *rspiocb) 12454 { 12455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12456 "3096 ABORT_XRI_CX completing on rpi x%x " 12457 "original iotag x%x, abort cmd iotag x%x " 12458 "status 0x%x, reason 0x%x\n", 12459 (phba->sli_rev == LPFC_SLI_REV4) ? 12460 cmdiocb->sli4_xritag : 12461 cmdiocb->iocb.un.acxri.abortContextTag, 12462 get_job_abtsiotag(phba, cmdiocb), 12463 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12464 get_job_word4(phba, rspiocb)); 12465 lpfc_sli_release_iocbq(phba, cmdiocb); 12466 return; 12467 } 12468 12469 /** 12470 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12471 * @vport: Pointer to virtual port. 12472 * @tgt_id: SCSI ID of the target. 12473 * @lun_id: LUN ID of the scsi device. 12474 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12475 * 12476 * This function sends an abort command for every SCSI command 12477 * associated with the given virtual port pending on the ring 12478 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12479 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12480 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12481 * followed by lpfc_sli_validate_fcp_iocb. 12482 * 12483 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12484 * FCP iocbs associated with lun specified by tgt_id and lun_id 12485 * parameters 12486 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12487 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12488 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12489 * FCP iocbs associated with virtual port. 12490 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12491 * lpfc_sli4_calc_ring is used. 12492 * This function returns number of iocbs it failed to abort. 12493 * This function is called with no locks held. 12494 **/ 12495 int 12496 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12497 lpfc_ctx_cmd abort_cmd) 12498 { 12499 struct lpfc_hba *phba = vport->phba; 12500 struct lpfc_sli_ring *pring = NULL; 12501 struct lpfc_iocbq *iocbq; 12502 int errcnt = 0, ret_val = 0; 12503 unsigned long iflags; 12504 int i; 12505 12506 /* all I/Os are in process of being flushed */ 12507 if (phba->hba_flag & HBA_IOQ_FLUSH) 12508 return errcnt; 12509 12510 for (i = 1; i <= phba->sli.last_iotag; i++) { 12511 iocbq = phba->sli.iocbq_lookup[i]; 12512 12513 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12514 continue; 12515 12516 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12517 abort_cmd) != 0) 12518 continue; 12519 12520 spin_lock_irqsave(&phba->hbalock, iflags); 12521 if (phba->sli_rev == LPFC_SLI_REV3) { 12522 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12523 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12524 pring = lpfc_sli4_calc_ring(phba, iocbq); 12525 } 12526 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12527 lpfc_sli_abort_fcp_cmpl); 12528 spin_unlock_irqrestore(&phba->hbalock, iflags); 12529 if (ret_val != IOCB_SUCCESS) 12530 errcnt++; 12531 } 12532 12533 return errcnt; 12534 } 12535 12536 /** 12537 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12538 * @vport: Pointer to virtual port. 12539 * @pring: Pointer to driver SLI ring object. 12540 * @tgt_id: SCSI ID of the target. 12541 * @lun_id: LUN ID of the scsi device. 12542 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12543 * 12544 * This function sends an abort command for every SCSI command 12545 * associated with the given virtual port pending on the ring 12546 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12547 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12548 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12549 * followed by lpfc_sli_validate_fcp_iocb. 12550 * 12551 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12552 * FCP iocbs associated with lun specified by tgt_id and lun_id 12553 * parameters 12554 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12555 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12556 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12557 * FCP iocbs associated with virtual port. 12558 * This function returns number of iocbs it aborted . 12559 * This function is called with no locks held right after a taskmgmt 12560 * command is sent. 12561 **/ 12562 int 12563 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12564 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12565 { 12566 struct lpfc_hba *phba = vport->phba; 12567 struct lpfc_io_buf *lpfc_cmd; 12568 struct lpfc_iocbq *abtsiocbq; 12569 struct lpfc_nodelist *ndlp = NULL; 12570 struct lpfc_iocbq *iocbq; 12571 int sum, i, ret_val; 12572 unsigned long iflags; 12573 struct lpfc_sli_ring *pring_s4 = NULL; 12574 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12575 bool ia; 12576 12577 spin_lock_irqsave(&phba->hbalock, iflags); 12578 12579 /* all I/Os are in process of being flushed */ 12580 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12581 spin_unlock_irqrestore(&phba->hbalock, iflags); 12582 return 0; 12583 } 12584 sum = 0; 12585 12586 for (i = 1; i <= phba->sli.last_iotag; i++) { 12587 iocbq = phba->sli.iocbq_lookup[i]; 12588 12589 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12590 continue; 12591 12592 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12593 cmd) != 0) 12594 continue; 12595 12596 /* Guard against IO completion being called at same time */ 12597 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12598 spin_lock(&lpfc_cmd->buf_lock); 12599 12600 if (!lpfc_cmd->pCmd) { 12601 spin_unlock(&lpfc_cmd->buf_lock); 12602 continue; 12603 } 12604 12605 if (phba->sli_rev == LPFC_SLI_REV4) { 12606 pring_s4 = 12607 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12608 if (!pring_s4) { 12609 spin_unlock(&lpfc_cmd->buf_lock); 12610 continue; 12611 } 12612 /* Note: both hbalock and ring_lock must be set here */ 12613 spin_lock(&pring_s4->ring_lock); 12614 } 12615 12616 /* 12617 * If the iocbq is already being aborted, don't take a second 12618 * action, but do count it. 12619 */ 12620 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12621 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12622 if (phba->sli_rev == LPFC_SLI_REV4) 12623 spin_unlock(&pring_s4->ring_lock); 12624 spin_unlock(&lpfc_cmd->buf_lock); 12625 continue; 12626 } 12627 12628 /* issue ABTS for this IOCB based on iotag */ 12629 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12630 if (!abtsiocbq) { 12631 if (phba->sli_rev == LPFC_SLI_REV4) 12632 spin_unlock(&pring_s4->ring_lock); 12633 spin_unlock(&lpfc_cmd->buf_lock); 12634 continue; 12635 } 12636 12637 if (phba->sli_rev == LPFC_SLI_REV4) { 12638 iotag = abtsiocbq->iotag; 12639 ulp_context = iocbq->sli4_xritag; 12640 cqid = lpfc_cmd->hdwq->io_cq_map; 12641 } else { 12642 iotag = iocbq->iocb.ulpIoTag; 12643 if (pring->ringno == LPFC_ELS_RING) { 12644 ndlp = iocbq->ndlp; 12645 ulp_context = ndlp->nlp_rpi; 12646 } else { 12647 ulp_context = iocbq->iocb.ulpContext; 12648 } 12649 } 12650 12651 ndlp = lpfc_cmd->rdata->pnode; 12652 12653 if (lpfc_is_link_up(phba) && 12654 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12655 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12656 ia = false; 12657 else 12658 ia = true; 12659 12660 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12661 iocbq->iocb.ulpClass, cqid, 12662 ia); 12663 12664 abtsiocbq->vport = vport; 12665 12666 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12667 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12668 if (iocbq->cmd_flag & LPFC_IO_FCP) 12669 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12670 if (iocbq->cmd_flag & LPFC_IO_FOF) 12671 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12672 12673 /* Setup callback routine and issue the command. */ 12674 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12675 12676 /* 12677 * Indicate the IO is being aborted by the driver and set 12678 * the caller's flag into the aborted IO. 12679 */ 12680 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12681 12682 if (phba->sli_rev == LPFC_SLI_REV4) { 12683 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12684 abtsiocbq, 0); 12685 spin_unlock(&pring_s4->ring_lock); 12686 } else { 12687 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12688 abtsiocbq, 0); 12689 } 12690 12691 spin_unlock(&lpfc_cmd->buf_lock); 12692 12693 if (ret_val == IOCB_ERROR) 12694 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12695 else 12696 sum++; 12697 } 12698 spin_unlock_irqrestore(&phba->hbalock, iflags); 12699 return sum; 12700 } 12701 12702 /** 12703 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12704 * @phba: Pointer to HBA context object. 12705 * @cmdiocbq: Pointer to command iocb. 12706 * @rspiocbq: Pointer to response iocb. 12707 * 12708 * This function is the completion handler for iocbs issued using 12709 * lpfc_sli_issue_iocb_wait function. This function is called by the 12710 * ring event handler function without any lock held. This function 12711 * can be called from both worker thread context and interrupt 12712 * context. This function also can be called from other thread which 12713 * cleans up the SLI layer objects. 12714 * This function copy the contents of the response iocb to the 12715 * response iocb memory object provided by the caller of 12716 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12717 * sleeps for the iocb completion. 12718 **/ 12719 static void 12720 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12721 struct lpfc_iocbq *cmdiocbq, 12722 struct lpfc_iocbq *rspiocbq) 12723 { 12724 wait_queue_head_t *pdone_q; 12725 unsigned long iflags; 12726 struct lpfc_io_buf *lpfc_cmd; 12727 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12728 12729 spin_lock_irqsave(&phba->hbalock, iflags); 12730 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12731 12732 /* 12733 * A time out has occurred for the iocb. If a time out 12734 * completion handler has been supplied, call it. Otherwise, 12735 * just free the iocbq. 12736 */ 12737 12738 spin_unlock_irqrestore(&phba->hbalock, iflags); 12739 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 12740 cmdiocbq->wait_cmd_cmpl = NULL; 12741 if (cmdiocbq->cmd_cmpl) 12742 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 12743 else 12744 lpfc_sli_release_iocbq(phba, cmdiocbq); 12745 return; 12746 } 12747 12748 /* Copy the contents of the local rspiocb into the caller's buffer. */ 12749 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 12750 if (cmdiocbq->rsp_iocb && rspiocbq) 12751 memcpy((char *)cmdiocbq->rsp_iocb + offset, 12752 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 12753 12754 /* Set the exchange busy flag for task management commands */ 12755 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 12756 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 12757 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12758 cur_iocbq); 12759 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 12760 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12761 else 12762 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12763 } 12764 12765 pdone_q = cmdiocbq->context_un.wait_queue; 12766 if (pdone_q) 12767 wake_up(pdone_q); 12768 spin_unlock_irqrestore(&phba->hbalock, iflags); 12769 return; 12770 } 12771 12772 /** 12773 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12774 * @phba: Pointer to HBA context object.. 12775 * @piocbq: Pointer to command iocb. 12776 * @flag: Flag to test. 12777 * 12778 * This routine grabs the hbalock and then test the cmd_flag to 12779 * see if the passed in flag is set. 12780 * Returns: 12781 * 1 if flag is set. 12782 * 0 if flag is not set. 12783 **/ 12784 static int 12785 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12786 struct lpfc_iocbq *piocbq, uint32_t flag) 12787 { 12788 unsigned long iflags; 12789 int ret; 12790 12791 spin_lock_irqsave(&phba->hbalock, iflags); 12792 ret = piocbq->cmd_flag & flag; 12793 spin_unlock_irqrestore(&phba->hbalock, iflags); 12794 return ret; 12795 12796 } 12797 12798 /** 12799 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12800 * @phba: Pointer to HBA context object.. 12801 * @ring_number: Ring number 12802 * @piocb: Pointer to command iocb. 12803 * @prspiocbq: Pointer to response iocb. 12804 * @timeout: Timeout in number of seconds. 12805 * 12806 * This function issues the iocb to firmware and waits for the 12807 * iocb to complete. The cmd_cmpl field of the shall be used 12808 * to handle iocbs which time out. If the field is NULL, the 12809 * function shall free the iocbq structure. If more clean up is 12810 * needed, the caller is expected to provide a completion function 12811 * that will provide the needed clean up. If the iocb command is 12812 * not completed within timeout seconds, the function will either 12813 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 12814 * completion function set in the cmd_cmpl field and then return 12815 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12816 * resources if this function returns IOCB_TIMEDOUT. 12817 * The function waits for the iocb completion using an 12818 * non-interruptible wait. 12819 * This function will sleep while waiting for iocb completion. 12820 * So, this function should not be called from any context which 12821 * does not allow sleeping. Due to the same reason, this function 12822 * cannot be called with interrupt disabled. 12823 * This function assumes that the iocb completions occur while 12824 * this function sleep. So, this function cannot be called from 12825 * the thread which process iocb completion for this ring. 12826 * This function clears the cmd_flag of the iocb object before 12827 * issuing the iocb and the iocb completion handler sets this 12828 * flag and wakes this thread when the iocb completes. 12829 * The contents of the response iocb will be copied to prspiocbq 12830 * by the completion handler when the command completes. 12831 * This function returns IOCB_SUCCESS when success. 12832 * This function is called with no lock held. 12833 **/ 12834 int 12835 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12836 uint32_t ring_number, 12837 struct lpfc_iocbq *piocb, 12838 struct lpfc_iocbq *prspiocbq, 12839 uint32_t timeout) 12840 { 12841 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12842 long timeleft, timeout_req = 0; 12843 int retval = IOCB_SUCCESS; 12844 uint32_t creg_val; 12845 struct lpfc_iocbq *iocb; 12846 int txq_cnt = 0; 12847 int txcmplq_cnt = 0; 12848 struct lpfc_sli_ring *pring; 12849 unsigned long iflags; 12850 bool iocb_completed = true; 12851 12852 if (phba->sli_rev >= LPFC_SLI_REV4) { 12853 lpfc_sli_prep_wqe(phba, piocb); 12854 12855 pring = lpfc_sli4_calc_ring(phba, piocb); 12856 } else 12857 pring = &phba->sli.sli3_ring[ring_number]; 12858 /* 12859 * If the caller has provided a response iocbq buffer, then rsp_iocb 12860 * is NULL or its an error. 12861 */ 12862 if (prspiocbq) { 12863 if (piocb->rsp_iocb) 12864 return IOCB_ERROR; 12865 piocb->rsp_iocb = prspiocbq; 12866 } 12867 12868 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 12869 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 12870 piocb->context_un.wait_queue = &done_q; 12871 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12872 12873 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12874 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12875 return IOCB_ERROR; 12876 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12877 writel(creg_val, phba->HCregaddr); 12878 readl(phba->HCregaddr); /* flush */ 12879 } 12880 12881 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12882 SLI_IOCB_RET_IOCB); 12883 if (retval == IOCB_SUCCESS) { 12884 timeout_req = msecs_to_jiffies(timeout * 1000); 12885 timeleft = wait_event_timeout(done_q, 12886 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12887 timeout_req); 12888 spin_lock_irqsave(&phba->hbalock, iflags); 12889 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 12890 12891 /* 12892 * IOCB timed out. Inform the wake iocb wait 12893 * completion function and set local status 12894 */ 12895 12896 iocb_completed = false; 12897 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 12898 } 12899 spin_unlock_irqrestore(&phba->hbalock, iflags); 12900 if (iocb_completed) { 12901 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12902 "0331 IOCB wake signaled\n"); 12903 /* Note: we are not indicating if the IOCB has a success 12904 * status or not - that's for the caller to check. 12905 * IOCB_SUCCESS means just that the command was sent and 12906 * completed. Not that it completed successfully. 12907 * */ 12908 } else if (timeleft == 0) { 12909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12910 "0338 IOCB wait timeout error - no " 12911 "wake response Data x%x\n", timeout); 12912 retval = IOCB_TIMEDOUT; 12913 } else { 12914 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12915 "0330 IOCB wake NOT set, " 12916 "Data x%x x%lx\n", 12917 timeout, (timeleft / jiffies)); 12918 retval = IOCB_TIMEDOUT; 12919 } 12920 } else if (retval == IOCB_BUSY) { 12921 if (phba->cfg_log_verbose & LOG_SLI) { 12922 list_for_each_entry(iocb, &pring->txq, list) { 12923 txq_cnt++; 12924 } 12925 list_for_each_entry(iocb, &pring->txcmplq, list) { 12926 txcmplq_cnt++; 12927 } 12928 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12929 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12930 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12931 } 12932 return retval; 12933 } else { 12934 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12935 "0332 IOCB wait issue failed, Data x%x\n", 12936 retval); 12937 retval = IOCB_ERROR; 12938 } 12939 12940 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12941 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12942 return IOCB_ERROR; 12943 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12944 writel(creg_val, phba->HCregaddr); 12945 readl(phba->HCregaddr); /* flush */ 12946 } 12947 12948 if (prspiocbq) 12949 piocb->rsp_iocb = NULL; 12950 12951 piocb->context_un.wait_queue = NULL; 12952 piocb->cmd_cmpl = NULL; 12953 return retval; 12954 } 12955 12956 /** 12957 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12958 * @phba: Pointer to HBA context object. 12959 * @pmboxq: Pointer to driver mailbox object. 12960 * @timeout: Timeout in number of seconds. 12961 * 12962 * This function issues the mailbox to firmware and waits for the 12963 * mailbox command to complete. If the mailbox command is not 12964 * completed within timeout seconds, it returns MBX_TIMEOUT. 12965 * The function waits for the mailbox completion using an 12966 * interruptible wait. If the thread is woken up due to a 12967 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12968 * should not free the mailbox resources, if this function returns 12969 * MBX_TIMEOUT. 12970 * This function will sleep while waiting for mailbox completion. 12971 * So, this function should not be called from any context which 12972 * does not allow sleeping. Due to the same reason, this function 12973 * cannot be called with interrupt disabled. 12974 * This function assumes that the mailbox completion occurs while 12975 * this function sleep. So, this function cannot be called from 12976 * the worker thread which processes mailbox completion. 12977 * This function is called in the context of HBA management 12978 * applications. 12979 * This function returns MBX_SUCCESS when successful. 12980 * This function is called with no lock held. 12981 **/ 12982 int 12983 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12984 uint32_t timeout) 12985 { 12986 struct completion mbox_done; 12987 int retval; 12988 unsigned long flag; 12989 12990 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12991 /* setup wake call as IOCB callback */ 12992 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12993 12994 /* setup context3 field to pass wait_queue pointer to wake function */ 12995 init_completion(&mbox_done); 12996 pmboxq->context3 = &mbox_done; 12997 /* now issue the command */ 12998 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12999 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13000 wait_for_completion_timeout(&mbox_done, 13001 msecs_to_jiffies(timeout * 1000)); 13002 13003 spin_lock_irqsave(&phba->hbalock, flag); 13004 pmboxq->context3 = NULL; 13005 /* 13006 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13007 * else do not free the resources. 13008 */ 13009 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13010 retval = MBX_SUCCESS; 13011 } else { 13012 retval = MBX_TIMEOUT; 13013 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13014 } 13015 spin_unlock_irqrestore(&phba->hbalock, flag); 13016 } 13017 return retval; 13018 } 13019 13020 /** 13021 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13022 * @phba: Pointer to HBA context. 13023 * @mbx_action: Mailbox shutdown options. 13024 * 13025 * This function is called to shutdown the driver's mailbox sub-system. 13026 * It first marks the mailbox sub-system is in a block state to prevent 13027 * the asynchronous mailbox command from issued off the pending mailbox 13028 * command queue. If the mailbox command sub-system shutdown is due to 13029 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13030 * the mailbox sub-system flush routine to forcefully bring down the 13031 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13032 * as with offline or HBA function reset), this routine will wait for the 13033 * outstanding mailbox command to complete before invoking the mailbox 13034 * sub-system flush routine to gracefully bring down mailbox sub-system. 13035 **/ 13036 void 13037 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13038 { 13039 struct lpfc_sli *psli = &phba->sli; 13040 unsigned long timeout; 13041 13042 if (mbx_action == LPFC_MBX_NO_WAIT) { 13043 /* delay 100ms for port state */ 13044 msleep(100); 13045 lpfc_sli_mbox_sys_flush(phba); 13046 return; 13047 } 13048 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13049 13050 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13051 local_bh_disable(); 13052 13053 spin_lock_irq(&phba->hbalock); 13054 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13055 13056 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13057 /* Determine how long we might wait for the active mailbox 13058 * command to be gracefully completed by firmware. 13059 */ 13060 if (phba->sli.mbox_active) 13061 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13062 phba->sli.mbox_active) * 13063 1000) + jiffies; 13064 spin_unlock_irq(&phba->hbalock); 13065 13066 /* Enable softirqs again, done with phba->hbalock */ 13067 local_bh_enable(); 13068 13069 while (phba->sli.mbox_active) { 13070 /* Check active mailbox complete status every 2ms */ 13071 msleep(2); 13072 if (time_after(jiffies, timeout)) 13073 /* Timeout, let the mailbox flush routine to 13074 * forcefully release active mailbox command 13075 */ 13076 break; 13077 } 13078 } else { 13079 spin_unlock_irq(&phba->hbalock); 13080 13081 /* Enable softirqs again, done with phba->hbalock */ 13082 local_bh_enable(); 13083 } 13084 13085 lpfc_sli_mbox_sys_flush(phba); 13086 } 13087 13088 /** 13089 * lpfc_sli_eratt_read - read sli-3 error attention events 13090 * @phba: Pointer to HBA context. 13091 * 13092 * This function is called to read the SLI3 device error attention registers 13093 * for possible error attention events. The caller must hold the hostlock 13094 * with spin_lock_irq(). 13095 * 13096 * This function returns 1 when there is Error Attention in the Host Attention 13097 * Register and returns 0 otherwise. 13098 **/ 13099 static int 13100 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13101 { 13102 uint32_t ha_copy; 13103 13104 /* Read chip Host Attention (HA) register */ 13105 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13106 goto unplug_err; 13107 13108 if (ha_copy & HA_ERATT) { 13109 /* Read host status register to retrieve error event */ 13110 if (lpfc_sli_read_hs(phba)) 13111 goto unplug_err; 13112 13113 /* Check if there is a deferred error condition is active */ 13114 if ((HS_FFER1 & phba->work_hs) && 13115 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13116 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13117 phba->hba_flag |= DEFER_ERATT; 13118 /* Clear all interrupt enable conditions */ 13119 writel(0, phba->HCregaddr); 13120 readl(phba->HCregaddr); 13121 } 13122 13123 /* Set the driver HA work bitmap */ 13124 phba->work_ha |= HA_ERATT; 13125 /* Indicate polling handles this ERATT */ 13126 phba->hba_flag |= HBA_ERATT_HANDLED; 13127 return 1; 13128 } 13129 return 0; 13130 13131 unplug_err: 13132 /* Set the driver HS work bitmap */ 13133 phba->work_hs |= UNPLUG_ERR; 13134 /* Set the driver HA work bitmap */ 13135 phba->work_ha |= HA_ERATT; 13136 /* Indicate polling handles this ERATT */ 13137 phba->hba_flag |= HBA_ERATT_HANDLED; 13138 return 1; 13139 } 13140 13141 /** 13142 * lpfc_sli4_eratt_read - read sli-4 error attention events 13143 * @phba: Pointer to HBA context. 13144 * 13145 * This function is called to read the SLI4 device error attention registers 13146 * for possible error attention events. The caller must hold the hostlock 13147 * with spin_lock_irq(). 13148 * 13149 * This function returns 1 when there is Error Attention in the Host Attention 13150 * Register and returns 0 otherwise. 13151 **/ 13152 static int 13153 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13154 { 13155 uint32_t uerr_sta_hi, uerr_sta_lo; 13156 uint32_t if_type, portsmphr; 13157 struct lpfc_register portstat_reg; 13158 u32 logmask; 13159 13160 /* 13161 * For now, use the SLI4 device internal unrecoverable error 13162 * registers for error attention. This can be changed later. 13163 */ 13164 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13165 switch (if_type) { 13166 case LPFC_SLI_INTF_IF_TYPE_0: 13167 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13168 &uerr_sta_lo) || 13169 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13170 &uerr_sta_hi)) { 13171 phba->work_hs |= UNPLUG_ERR; 13172 phba->work_ha |= HA_ERATT; 13173 phba->hba_flag |= HBA_ERATT_HANDLED; 13174 return 1; 13175 } 13176 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13177 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13179 "1423 HBA Unrecoverable error: " 13180 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13181 "ue_mask_lo_reg=0x%x, " 13182 "ue_mask_hi_reg=0x%x\n", 13183 uerr_sta_lo, uerr_sta_hi, 13184 phba->sli4_hba.ue_mask_lo, 13185 phba->sli4_hba.ue_mask_hi); 13186 phba->work_status[0] = uerr_sta_lo; 13187 phba->work_status[1] = uerr_sta_hi; 13188 phba->work_ha |= HA_ERATT; 13189 phba->hba_flag |= HBA_ERATT_HANDLED; 13190 return 1; 13191 } 13192 break; 13193 case LPFC_SLI_INTF_IF_TYPE_2: 13194 case LPFC_SLI_INTF_IF_TYPE_6: 13195 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13196 &portstat_reg.word0) || 13197 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13198 &portsmphr)){ 13199 phba->work_hs |= UNPLUG_ERR; 13200 phba->work_ha |= HA_ERATT; 13201 phba->hba_flag |= HBA_ERATT_HANDLED; 13202 return 1; 13203 } 13204 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13205 phba->work_status[0] = 13206 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13207 phba->work_status[1] = 13208 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13209 logmask = LOG_TRACE_EVENT; 13210 if (phba->work_status[0] == 13211 SLIPORT_ERR1_REG_ERR_CODE_2 && 13212 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13213 logmask = LOG_SLI; 13214 lpfc_printf_log(phba, KERN_ERR, logmask, 13215 "2885 Port Status Event: " 13216 "port status reg 0x%x, " 13217 "port smphr reg 0x%x, " 13218 "error 1=0x%x, error 2=0x%x\n", 13219 portstat_reg.word0, 13220 portsmphr, 13221 phba->work_status[0], 13222 phba->work_status[1]); 13223 phba->work_ha |= HA_ERATT; 13224 phba->hba_flag |= HBA_ERATT_HANDLED; 13225 return 1; 13226 } 13227 break; 13228 case LPFC_SLI_INTF_IF_TYPE_1: 13229 default: 13230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13231 "2886 HBA Error Attention on unsupported " 13232 "if type %d.", if_type); 13233 return 1; 13234 } 13235 13236 return 0; 13237 } 13238 13239 /** 13240 * lpfc_sli_check_eratt - check error attention events 13241 * @phba: Pointer to HBA context. 13242 * 13243 * This function is called from timer soft interrupt context to check HBA's 13244 * error attention register bit for error attention events. 13245 * 13246 * This function returns 1 when there is Error Attention in the Host Attention 13247 * Register and returns 0 otherwise. 13248 **/ 13249 int 13250 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13251 { 13252 uint32_t ha_copy; 13253 13254 /* If somebody is waiting to handle an eratt, don't process it 13255 * here. The brdkill function will do this. 13256 */ 13257 if (phba->link_flag & LS_IGNORE_ERATT) 13258 return 0; 13259 13260 /* Check if interrupt handler handles this ERATT */ 13261 spin_lock_irq(&phba->hbalock); 13262 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13263 /* Interrupt handler has handled ERATT */ 13264 spin_unlock_irq(&phba->hbalock); 13265 return 0; 13266 } 13267 13268 /* 13269 * If there is deferred error attention, do not check for error 13270 * attention 13271 */ 13272 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13273 spin_unlock_irq(&phba->hbalock); 13274 return 0; 13275 } 13276 13277 /* If PCI channel is offline, don't process it */ 13278 if (unlikely(pci_channel_offline(phba->pcidev))) { 13279 spin_unlock_irq(&phba->hbalock); 13280 return 0; 13281 } 13282 13283 switch (phba->sli_rev) { 13284 case LPFC_SLI_REV2: 13285 case LPFC_SLI_REV3: 13286 /* Read chip Host Attention (HA) register */ 13287 ha_copy = lpfc_sli_eratt_read(phba); 13288 break; 13289 case LPFC_SLI_REV4: 13290 /* Read device Uncoverable Error (UERR) registers */ 13291 ha_copy = lpfc_sli4_eratt_read(phba); 13292 break; 13293 default: 13294 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13295 "0299 Invalid SLI revision (%d)\n", 13296 phba->sli_rev); 13297 ha_copy = 0; 13298 break; 13299 } 13300 spin_unlock_irq(&phba->hbalock); 13301 13302 return ha_copy; 13303 } 13304 13305 /** 13306 * lpfc_intr_state_check - Check device state for interrupt handling 13307 * @phba: Pointer to HBA context. 13308 * 13309 * This inline routine checks whether a device or its PCI slot is in a state 13310 * that the interrupt should be handled. 13311 * 13312 * This function returns 0 if the device or the PCI slot is in a state that 13313 * interrupt should be handled, otherwise -EIO. 13314 */ 13315 static inline int 13316 lpfc_intr_state_check(struct lpfc_hba *phba) 13317 { 13318 /* If the pci channel is offline, ignore all the interrupts */ 13319 if (unlikely(pci_channel_offline(phba->pcidev))) 13320 return -EIO; 13321 13322 /* Update device level interrupt statistics */ 13323 phba->sli.slistat.sli_intr++; 13324 13325 /* Ignore all interrupts during initialization. */ 13326 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13327 return -EIO; 13328 13329 return 0; 13330 } 13331 13332 /** 13333 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13334 * @irq: Interrupt number. 13335 * @dev_id: The device context pointer. 13336 * 13337 * This function is directly called from the PCI layer as an interrupt 13338 * service routine when device with SLI-3 interface spec is enabled with 13339 * MSI-X multi-message interrupt mode and there are slow-path events in 13340 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13341 * interrupt mode, this function is called as part of the device-level 13342 * interrupt handler. When the PCI slot is in error recovery or the HBA 13343 * is undergoing initialization, the interrupt handler will not process 13344 * the interrupt. The link attention and ELS ring attention events are 13345 * handled by the worker thread. The interrupt handler signals the worker 13346 * thread and returns for these events. This function is called without 13347 * any lock held. It gets the hbalock to access and update SLI data 13348 * structures. 13349 * 13350 * This function returns IRQ_HANDLED when interrupt is handled else it 13351 * returns IRQ_NONE. 13352 **/ 13353 irqreturn_t 13354 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13355 { 13356 struct lpfc_hba *phba; 13357 uint32_t ha_copy, hc_copy; 13358 uint32_t work_ha_copy; 13359 unsigned long status; 13360 unsigned long iflag; 13361 uint32_t control; 13362 13363 MAILBOX_t *mbox, *pmbox; 13364 struct lpfc_vport *vport; 13365 struct lpfc_nodelist *ndlp; 13366 struct lpfc_dmabuf *mp; 13367 LPFC_MBOXQ_t *pmb; 13368 int rc; 13369 13370 /* 13371 * Get the driver's phba structure from the dev_id and 13372 * assume the HBA is not interrupting. 13373 */ 13374 phba = (struct lpfc_hba *)dev_id; 13375 13376 if (unlikely(!phba)) 13377 return IRQ_NONE; 13378 13379 /* 13380 * Stuff needs to be attented to when this function is invoked as an 13381 * individual interrupt handler in MSI-X multi-message interrupt mode 13382 */ 13383 if (phba->intr_type == MSIX) { 13384 /* Check device state for handling interrupt */ 13385 if (lpfc_intr_state_check(phba)) 13386 return IRQ_NONE; 13387 /* Need to read HA REG for slow-path events */ 13388 spin_lock_irqsave(&phba->hbalock, iflag); 13389 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13390 goto unplug_error; 13391 /* If somebody is waiting to handle an eratt don't process it 13392 * here. The brdkill function will do this. 13393 */ 13394 if (phba->link_flag & LS_IGNORE_ERATT) 13395 ha_copy &= ~HA_ERATT; 13396 /* Check the need for handling ERATT in interrupt handler */ 13397 if (ha_copy & HA_ERATT) { 13398 if (phba->hba_flag & HBA_ERATT_HANDLED) 13399 /* ERATT polling has handled ERATT */ 13400 ha_copy &= ~HA_ERATT; 13401 else 13402 /* Indicate interrupt handler handles ERATT */ 13403 phba->hba_flag |= HBA_ERATT_HANDLED; 13404 } 13405 13406 /* 13407 * If there is deferred error attention, do not check for any 13408 * interrupt. 13409 */ 13410 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13411 spin_unlock_irqrestore(&phba->hbalock, iflag); 13412 return IRQ_NONE; 13413 } 13414 13415 /* Clear up only attention source related to slow-path */ 13416 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13417 goto unplug_error; 13418 13419 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13420 HC_LAINT_ENA | HC_ERINT_ENA), 13421 phba->HCregaddr); 13422 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13423 phba->HAregaddr); 13424 writel(hc_copy, phba->HCregaddr); 13425 readl(phba->HAregaddr); /* flush */ 13426 spin_unlock_irqrestore(&phba->hbalock, iflag); 13427 } else 13428 ha_copy = phba->ha_copy; 13429 13430 work_ha_copy = ha_copy & phba->work_ha_mask; 13431 13432 if (work_ha_copy) { 13433 if (work_ha_copy & HA_LATT) { 13434 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13435 /* 13436 * Turn off Link Attention interrupts 13437 * until CLEAR_LA done 13438 */ 13439 spin_lock_irqsave(&phba->hbalock, iflag); 13440 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13441 if (lpfc_readl(phba->HCregaddr, &control)) 13442 goto unplug_error; 13443 control &= ~HC_LAINT_ENA; 13444 writel(control, phba->HCregaddr); 13445 readl(phba->HCregaddr); /* flush */ 13446 spin_unlock_irqrestore(&phba->hbalock, iflag); 13447 } 13448 else 13449 work_ha_copy &= ~HA_LATT; 13450 } 13451 13452 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13453 /* 13454 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13455 * the only slow ring. 13456 */ 13457 status = (work_ha_copy & 13458 (HA_RXMASK << (4*LPFC_ELS_RING))); 13459 status >>= (4*LPFC_ELS_RING); 13460 if (status & HA_RXMASK) { 13461 spin_lock_irqsave(&phba->hbalock, iflag); 13462 if (lpfc_readl(phba->HCregaddr, &control)) 13463 goto unplug_error; 13464 13465 lpfc_debugfs_slow_ring_trc(phba, 13466 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13467 control, status, 13468 (uint32_t)phba->sli.slistat.sli_intr); 13469 13470 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13471 lpfc_debugfs_slow_ring_trc(phba, 13472 "ISR Disable ring:" 13473 "pwork:x%x hawork:x%x wait:x%x", 13474 phba->work_ha, work_ha_copy, 13475 (uint32_t)((unsigned long) 13476 &phba->work_waitq)); 13477 13478 control &= 13479 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13480 writel(control, phba->HCregaddr); 13481 readl(phba->HCregaddr); /* flush */ 13482 } 13483 else { 13484 lpfc_debugfs_slow_ring_trc(phba, 13485 "ISR slow ring: pwork:" 13486 "x%x hawork:x%x wait:x%x", 13487 phba->work_ha, work_ha_copy, 13488 (uint32_t)((unsigned long) 13489 &phba->work_waitq)); 13490 } 13491 spin_unlock_irqrestore(&phba->hbalock, iflag); 13492 } 13493 } 13494 spin_lock_irqsave(&phba->hbalock, iflag); 13495 if (work_ha_copy & HA_ERATT) { 13496 if (lpfc_sli_read_hs(phba)) 13497 goto unplug_error; 13498 /* 13499 * Check if there is a deferred error condition 13500 * is active 13501 */ 13502 if ((HS_FFER1 & phba->work_hs) && 13503 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13504 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13505 phba->work_hs)) { 13506 phba->hba_flag |= DEFER_ERATT; 13507 /* Clear all interrupt enable conditions */ 13508 writel(0, phba->HCregaddr); 13509 readl(phba->HCregaddr); 13510 } 13511 } 13512 13513 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13514 pmb = phba->sli.mbox_active; 13515 pmbox = &pmb->u.mb; 13516 mbox = phba->mbox; 13517 vport = pmb->vport; 13518 13519 /* First check out the status word */ 13520 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13521 if (pmbox->mbxOwner != OWN_HOST) { 13522 spin_unlock_irqrestore(&phba->hbalock, iflag); 13523 /* 13524 * Stray Mailbox Interrupt, mbxCommand <cmd> 13525 * mbxStatus <status> 13526 */ 13527 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13528 "(%d):0304 Stray Mailbox " 13529 "Interrupt mbxCommand x%x " 13530 "mbxStatus x%x\n", 13531 (vport ? vport->vpi : 0), 13532 pmbox->mbxCommand, 13533 pmbox->mbxStatus); 13534 /* clear mailbox attention bit */ 13535 work_ha_copy &= ~HA_MBATT; 13536 } else { 13537 phba->sli.mbox_active = NULL; 13538 spin_unlock_irqrestore(&phba->hbalock, iflag); 13539 phba->last_completion_time = jiffies; 13540 del_timer(&phba->sli.mbox_tmo); 13541 if (pmb->mbox_cmpl) { 13542 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13543 MAILBOX_CMD_SIZE); 13544 if (pmb->out_ext_byte_len && 13545 pmb->ctx_buf) 13546 lpfc_sli_pcimem_bcopy( 13547 phba->mbox_ext, 13548 pmb->ctx_buf, 13549 pmb->out_ext_byte_len); 13550 } 13551 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13552 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13553 13554 lpfc_debugfs_disc_trc(vport, 13555 LPFC_DISC_TRC_MBOX_VPORT, 13556 "MBOX dflt rpi: : " 13557 "status:x%x rpi:x%x", 13558 (uint32_t)pmbox->mbxStatus, 13559 pmbox->un.varWords[0], 0); 13560 13561 if (!pmbox->mbxStatus) { 13562 mp = (struct lpfc_dmabuf *) 13563 (pmb->ctx_buf); 13564 ndlp = (struct lpfc_nodelist *) 13565 pmb->ctx_ndlp; 13566 13567 /* Reg_LOGIN of dflt RPI was 13568 * successful. new lets get 13569 * rid of the RPI using the 13570 * same mbox buffer. 13571 */ 13572 lpfc_unreg_login(phba, 13573 vport->vpi, 13574 pmbox->un.varWords[0], 13575 pmb); 13576 pmb->mbox_cmpl = 13577 lpfc_mbx_cmpl_dflt_rpi; 13578 pmb->ctx_buf = mp; 13579 pmb->ctx_ndlp = ndlp; 13580 pmb->vport = vport; 13581 rc = lpfc_sli_issue_mbox(phba, 13582 pmb, 13583 MBX_NOWAIT); 13584 if (rc != MBX_BUSY) 13585 lpfc_printf_log(phba, 13586 KERN_ERR, 13587 LOG_TRACE_EVENT, 13588 "0350 rc should have" 13589 "been MBX_BUSY\n"); 13590 if (rc != MBX_NOT_FINISHED) 13591 goto send_current_mbox; 13592 } 13593 } 13594 spin_lock_irqsave( 13595 &phba->pport->work_port_lock, 13596 iflag); 13597 phba->pport->work_port_events &= 13598 ~WORKER_MBOX_TMO; 13599 spin_unlock_irqrestore( 13600 &phba->pport->work_port_lock, 13601 iflag); 13602 13603 /* Do NOT queue MBX_HEARTBEAT to the worker 13604 * thread for processing. 13605 */ 13606 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13607 /* Process mbox now */ 13608 phba->sli.mbox_active = NULL; 13609 phba->sli.sli_flag &= 13610 ~LPFC_SLI_MBOX_ACTIVE; 13611 if (pmb->mbox_cmpl) 13612 pmb->mbox_cmpl(phba, pmb); 13613 } else { 13614 /* Queue to worker thread to process */ 13615 lpfc_mbox_cmpl_put(phba, pmb); 13616 } 13617 } 13618 } else 13619 spin_unlock_irqrestore(&phba->hbalock, iflag); 13620 13621 if ((work_ha_copy & HA_MBATT) && 13622 (phba->sli.mbox_active == NULL)) { 13623 send_current_mbox: 13624 /* Process next mailbox command if there is one */ 13625 do { 13626 rc = lpfc_sli_issue_mbox(phba, NULL, 13627 MBX_NOWAIT); 13628 } while (rc == MBX_NOT_FINISHED); 13629 if (rc != MBX_SUCCESS) 13630 lpfc_printf_log(phba, KERN_ERR, 13631 LOG_TRACE_EVENT, 13632 "0349 rc should be " 13633 "MBX_SUCCESS\n"); 13634 } 13635 13636 spin_lock_irqsave(&phba->hbalock, iflag); 13637 phba->work_ha |= work_ha_copy; 13638 spin_unlock_irqrestore(&phba->hbalock, iflag); 13639 lpfc_worker_wake_up(phba); 13640 } 13641 return IRQ_HANDLED; 13642 unplug_error: 13643 spin_unlock_irqrestore(&phba->hbalock, iflag); 13644 return IRQ_HANDLED; 13645 13646 } /* lpfc_sli_sp_intr_handler */ 13647 13648 /** 13649 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13650 * @irq: Interrupt number. 13651 * @dev_id: The device context pointer. 13652 * 13653 * This function is directly called from the PCI layer as an interrupt 13654 * service routine when device with SLI-3 interface spec is enabled with 13655 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13656 * ring event in the HBA. However, when the device is enabled with either 13657 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13658 * device-level interrupt handler. When the PCI slot is in error recovery 13659 * or the HBA is undergoing initialization, the interrupt handler will not 13660 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13661 * the intrrupt context. This function is called without any lock held. 13662 * It gets the hbalock to access and update SLI data structures. 13663 * 13664 * This function returns IRQ_HANDLED when interrupt is handled else it 13665 * returns IRQ_NONE. 13666 **/ 13667 irqreturn_t 13668 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13669 { 13670 struct lpfc_hba *phba; 13671 uint32_t ha_copy; 13672 unsigned long status; 13673 unsigned long iflag; 13674 struct lpfc_sli_ring *pring; 13675 13676 /* Get the driver's phba structure from the dev_id and 13677 * assume the HBA is not interrupting. 13678 */ 13679 phba = (struct lpfc_hba *) dev_id; 13680 13681 if (unlikely(!phba)) 13682 return IRQ_NONE; 13683 13684 /* 13685 * Stuff needs to be attented to when this function is invoked as an 13686 * individual interrupt handler in MSI-X multi-message interrupt mode 13687 */ 13688 if (phba->intr_type == MSIX) { 13689 /* Check device state for handling interrupt */ 13690 if (lpfc_intr_state_check(phba)) 13691 return IRQ_NONE; 13692 /* Need to read HA REG for FCP ring and other ring events */ 13693 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13694 return IRQ_HANDLED; 13695 /* Clear up only attention source related to fast-path */ 13696 spin_lock_irqsave(&phba->hbalock, iflag); 13697 /* 13698 * If there is deferred error attention, do not check for 13699 * any interrupt. 13700 */ 13701 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13702 spin_unlock_irqrestore(&phba->hbalock, iflag); 13703 return IRQ_NONE; 13704 } 13705 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13706 phba->HAregaddr); 13707 readl(phba->HAregaddr); /* flush */ 13708 spin_unlock_irqrestore(&phba->hbalock, iflag); 13709 } else 13710 ha_copy = phba->ha_copy; 13711 13712 /* 13713 * Process all events on FCP ring. Take the optimized path for FCP IO. 13714 */ 13715 ha_copy &= ~(phba->work_ha_mask); 13716 13717 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13718 status >>= (4*LPFC_FCP_RING); 13719 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13720 if (status & HA_RXMASK) 13721 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13722 13723 if (phba->cfg_multi_ring_support == 2) { 13724 /* 13725 * Process all events on extra ring. Take the optimized path 13726 * for extra ring IO. 13727 */ 13728 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13729 status >>= (4*LPFC_EXTRA_RING); 13730 if (status & HA_RXMASK) { 13731 lpfc_sli_handle_fast_ring_event(phba, 13732 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13733 status); 13734 } 13735 } 13736 return IRQ_HANDLED; 13737 } /* lpfc_sli_fp_intr_handler */ 13738 13739 /** 13740 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13741 * @irq: Interrupt number. 13742 * @dev_id: The device context pointer. 13743 * 13744 * This function is the HBA device-level interrupt handler to device with 13745 * SLI-3 interface spec, called from the PCI layer when either MSI or 13746 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13747 * requires driver attention. This function invokes the slow-path interrupt 13748 * attention handling function and fast-path interrupt attention handling 13749 * function in turn to process the relevant HBA attention events. This 13750 * function is called without any lock held. It gets the hbalock to access 13751 * and update SLI data structures. 13752 * 13753 * This function returns IRQ_HANDLED when interrupt is handled, else it 13754 * returns IRQ_NONE. 13755 **/ 13756 irqreturn_t 13757 lpfc_sli_intr_handler(int irq, void *dev_id) 13758 { 13759 struct lpfc_hba *phba; 13760 irqreturn_t sp_irq_rc, fp_irq_rc; 13761 unsigned long status1, status2; 13762 uint32_t hc_copy; 13763 13764 /* 13765 * Get the driver's phba structure from the dev_id and 13766 * assume the HBA is not interrupting. 13767 */ 13768 phba = (struct lpfc_hba *) dev_id; 13769 13770 if (unlikely(!phba)) 13771 return IRQ_NONE; 13772 13773 /* Check device state for handling interrupt */ 13774 if (lpfc_intr_state_check(phba)) 13775 return IRQ_NONE; 13776 13777 spin_lock(&phba->hbalock); 13778 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13779 spin_unlock(&phba->hbalock); 13780 return IRQ_HANDLED; 13781 } 13782 13783 if (unlikely(!phba->ha_copy)) { 13784 spin_unlock(&phba->hbalock); 13785 return IRQ_NONE; 13786 } else if (phba->ha_copy & HA_ERATT) { 13787 if (phba->hba_flag & HBA_ERATT_HANDLED) 13788 /* ERATT polling has handled ERATT */ 13789 phba->ha_copy &= ~HA_ERATT; 13790 else 13791 /* Indicate interrupt handler handles ERATT */ 13792 phba->hba_flag |= HBA_ERATT_HANDLED; 13793 } 13794 13795 /* 13796 * If there is deferred error attention, do not check for any interrupt. 13797 */ 13798 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13799 spin_unlock(&phba->hbalock); 13800 return IRQ_NONE; 13801 } 13802 13803 /* Clear attention sources except link and error attentions */ 13804 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13805 spin_unlock(&phba->hbalock); 13806 return IRQ_HANDLED; 13807 } 13808 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13809 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13810 phba->HCregaddr); 13811 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13812 writel(hc_copy, phba->HCregaddr); 13813 readl(phba->HAregaddr); /* flush */ 13814 spin_unlock(&phba->hbalock); 13815 13816 /* 13817 * Invokes slow-path host attention interrupt handling as appropriate. 13818 */ 13819 13820 /* status of events with mailbox and link attention */ 13821 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13822 13823 /* status of events with ELS ring */ 13824 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13825 status2 >>= (4*LPFC_ELS_RING); 13826 13827 if (status1 || (status2 & HA_RXMASK)) 13828 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13829 else 13830 sp_irq_rc = IRQ_NONE; 13831 13832 /* 13833 * Invoke fast-path host attention interrupt handling as appropriate. 13834 */ 13835 13836 /* status of events with FCP ring */ 13837 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13838 status1 >>= (4*LPFC_FCP_RING); 13839 13840 /* status of events with extra ring */ 13841 if (phba->cfg_multi_ring_support == 2) { 13842 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13843 status2 >>= (4*LPFC_EXTRA_RING); 13844 } else 13845 status2 = 0; 13846 13847 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13848 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13849 else 13850 fp_irq_rc = IRQ_NONE; 13851 13852 /* Return device-level interrupt handling status */ 13853 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13854 } /* lpfc_sli_intr_handler */ 13855 13856 /** 13857 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13858 * @phba: pointer to lpfc hba data structure. 13859 * 13860 * This routine is invoked by the worker thread to process all the pending 13861 * SLI4 els abort xri events. 13862 **/ 13863 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13864 { 13865 struct lpfc_cq_event *cq_event; 13866 unsigned long iflags; 13867 13868 /* First, declare the els xri abort event has been handled */ 13869 spin_lock_irqsave(&phba->hbalock, iflags); 13870 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13871 spin_unlock_irqrestore(&phba->hbalock, iflags); 13872 13873 /* Now, handle all the els xri abort events */ 13874 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13875 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13876 /* Get the first event from the head of the event queue */ 13877 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13878 cq_event, struct lpfc_cq_event, list); 13879 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13880 iflags); 13881 /* Notify aborted XRI for ELS work queue */ 13882 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13883 13884 /* Free the event processed back to the free pool */ 13885 lpfc_sli4_cq_event_release(phba, cq_event); 13886 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13887 iflags); 13888 } 13889 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13890 } 13891 13892 /** 13893 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 13894 * @phba: Pointer to HBA context object. 13895 * @irspiocbq: Pointer to work-queue completion queue entry. 13896 * 13897 * This routine handles an ELS work-queue completion event and construct 13898 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 13899 * discovery engine to handle. 13900 * 13901 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13902 **/ 13903 static struct lpfc_iocbq * 13904 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 13905 struct lpfc_iocbq *irspiocbq) 13906 { 13907 struct lpfc_sli_ring *pring; 13908 struct lpfc_iocbq *cmdiocbq; 13909 struct lpfc_wcqe_complete *wcqe; 13910 unsigned long iflags; 13911 13912 pring = lpfc_phba_elsring(phba); 13913 if (unlikely(!pring)) 13914 return NULL; 13915 13916 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13917 spin_lock_irqsave(&pring->ring_lock, iflags); 13918 pring->stats.iocb_event++; 13919 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13920 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13921 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13922 if (unlikely(!cmdiocbq)) { 13923 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13924 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13925 "0386 ELS complete with no corresponding " 13926 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13927 wcqe->word0, wcqe->total_data_placed, 13928 wcqe->parameter, wcqe->word3); 13929 lpfc_sli_release_iocbq(phba, irspiocbq); 13930 return NULL; 13931 } 13932 13933 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 13934 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 13935 13936 /* Put the iocb back on the txcmplq */ 13937 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13938 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13939 13940 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13941 spin_lock_irqsave(&phba->hbalock, iflags); 13942 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 13943 spin_unlock_irqrestore(&phba->hbalock, iflags); 13944 } 13945 13946 return irspiocbq; 13947 } 13948 13949 inline struct lpfc_cq_event * 13950 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13951 { 13952 struct lpfc_cq_event *cq_event; 13953 13954 /* Allocate a new internal CQ_EVENT entry */ 13955 cq_event = lpfc_sli4_cq_event_alloc(phba); 13956 if (!cq_event) { 13957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13958 "0602 Failed to alloc CQ_EVENT entry\n"); 13959 return NULL; 13960 } 13961 13962 /* Move the CQE into the event */ 13963 memcpy(&cq_event->cqe, entry, size); 13964 return cq_event; 13965 } 13966 13967 /** 13968 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13969 * @phba: Pointer to HBA context object. 13970 * @mcqe: Pointer to mailbox completion queue entry. 13971 * 13972 * This routine process a mailbox completion queue entry with asynchronous 13973 * event. 13974 * 13975 * Return: true if work posted to worker thread, otherwise false. 13976 **/ 13977 static bool 13978 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13979 { 13980 struct lpfc_cq_event *cq_event; 13981 unsigned long iflags; 13982 13983 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13984 "0392 Async Event: word0:x%x, word1:x%x, " 13985 "word2:x%x, word3:x%x\n", mcqe->word0, 13986 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13987 13988 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13989 if (!cq_event) 13990 return false; 13991 13992 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13993 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13994 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13995 13996 /* Set the async event flag */ 13997 spin_lock_irqsave(&phba->hbalock, iflags); 13998 phba->hba_flag |= ASYNC_EVENT; 13999 spin_unlock_irqrestore(&phba->hbalock, iflags); 14000 14001 return true; 14002 } 14003 14004 /** 14005 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14006 * @phba: Pointer to HBA context object. 14007 * @mcqe: Pointer to mailbox completion queue entry. 14008 * 14009 * This routine process a mailbox completion queue entry with mailbox 14010 * completion event. 14011 * 14012 * Return: true if work posted to worker thread, otherwise false. 14013 **/ 14014 static bool 14015 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14016 { 14017 uint32_t mcqe_status; 14018 MAILBOX_t *mbox, *pmbox; 14019 struct lpfc_mqe *mqe; 14020 struct lpfc_vport *vport; 14021 struct lpfc_nodelist *ndlp; 14022 struct lpfc_dmabuf *mp; 14023 unsigned long iflags; 14024 LPFC_MBOXQ_t *pmb; 14025 bool workposted = false; 14026 int rc; 14027 14028 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14029 if (!bf_get(lpfc_trailer_completed, mcqe)) 14030 goto out_no_mqe_complete; 14031 14032 /* Get the reference to the active mbox command */ 14033 spin_lock_irqsave(&phba->hbalock, iflags); 14034 pmb = phba->sli.mbox_active; 14035 if (unlikely(!pmb)) { 14036 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14037 "1832 No pending MBOX command to handle\n"); 14038 spin_unlock_irqrestore(&phba->hbalock, iflags); 14039 goto out_no_mqe_complete; 14040 } 14041 spin_unlock_irqrestore(&phba->hbalock, iflags); 14042 mqe = &pmb->u.mqe; 14043 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14044 mbox = phba->mbox; 14045 vport = pmb->vport; 14046 14047 /* Reset heartbeat timer */ 14048 phba->last_completion_time = jiffies; 14049 del_timer(&phba->sli.mbox_tmo); 14050 14051 /* Move mbox data to caller's mailbox region, do endian swapping */ 14052 if (pmb->mbox_cmpl && mbox) 14053 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14054 14055 /* 14056 * For mcqe errors, conditionally move a modified error code to 14057 * the mbox so that the error will not be missed. 14058 */ 14059 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14060 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14061 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14062 bf_set(lpfc_mqe_status, mqe, 14063 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14064 } 14065 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14066 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14067 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14068 "MBOX dflt rpi: status:x%x rpi:x%x", 14069 mcqe_status, 14070 pmbox->un.varWords[0], 0); 14071 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14072 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14073 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14074 14075 /* Reg_LOGIN of dflt RPI was successful. Mark the 14076 * node as having an UNREG_LOGIN in progress to stop 14077 * an unsolicited PLOGI from the same NPortId from 14078 * starting another mailbox transaction. 14079 */ 14080 spin_lock_irqsave(&ndlp->lock, iflags); 14081 ndlp->nlp_flag |= NLP_UNREG_INP; 14082 spin_unlock_irqrestore(&ndlp->lock, iflags); 14083 lpfc_unreg_login(phba, vport->vpi, 14084 pmbox->un.varWords[0], pmb); 14085 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14086 pmb->ctx_buf = mp; 14087 14088 /* No reference taken here. This is a default 14089 * RPI reg/immediate unreg cycle. The reference was 14090 * taken in the reg rpi path and is released when 14091 * this mailbox completes. 14092 */ 14093 pmb->ctx_ndlp = ndlp; 14094 pmb->vport = vport; 14095 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14096 if (rc != MBX_BUSY) 14097 lpfc_printf_log(phba, KERN_ERR, 14098 LOG_TRACE_EVENT, 14099 "0385 rc should " 14100 "have been MBX_BUSY\n"); 14101 if (rc != MBX_NOT_FINISHED) 14102 goto send_current_mbox; 14103 } 14104 } 14105 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14106 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14107 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14108 14109 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14110 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14111 spin_lock_irqsave(&phba->hbalock, iflags); 14112 /* Release the mailbox command posting token */ 14113 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14114 phba->sli.mbox_active = NULL; 14115 if (bf_get(lpfc_trailer_consumed, mcqe)) 14116 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14117 spin_unlock_irqrestore(&phba->hbalock, iflags); 14118 14119 /* Post the next mbox command, if there is one */ 14120 lpfc_sli4_post_async_mbox(phba); 14121 14122 /* Process cmpl now */ 14123 if (pmb->mbox_cmpl) 14124 pmb->mbox_cmpl(phba, pmb); 14125 return false; 14126 } 14127 14128 /* There is mailbox completion work to queue to the worker thread */ 14129 spin_lock_irqsave(&phba->hbalock, iflags); 14130 __lpfc_mbox_cmpl_put(phba, pmb); 14131 phba->work_ha |= HA_MBATT; 14132 spin_unlock_irqrestore(&phba->hbalock, iflags); 14133 workposted = true; 14134 14135 send_current_mbox: 14136 spin_lock_irqsave(&phba->hbalock, iflags); 14137 /* Release the mailbox command posting token */ 14138 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14139 /* Setting active mailbox pointer need to be in sync to flag clear */ 14140 phba->sli.mbox_active = NULL; 14141 if (bf_get(lpfc_trailer_consumed, mcqe)) 14142 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14143 spin_unlock_irqrestore(&phba->hbalock, iflags); 14144 /* Wake up worker thread to post the next pending mailbox command */ 14145 lpfc_worker_wake_up(phba); 14146 return workposted; 14147 14148 out_no_mqe_complete: 14149 spin_lock_irqsave(&phba->hbalock, iflags); 14150 if (bf_get(lpfc_trailer_consumed, mcqe)) 14151 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14152 spin_unlock_irqrestore(&phba->hbalock, iflags); 14153 return false; 14154 } 14155 14156 /** 14157 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14158 * @phba: Pointer to HBA context object. 14159 * @cq: Pointer to associated CQ 14160 * @cqe: Pointer to mailbox completion queue entry. 14161 * 14162 * This routine process a mailbox completion queue entry, it invokes the 14163 * proper mailbox complete handling or asynchronous event handling routine 14164 * according to the MCQE's async bit. 14165 * 14166 * Return: true if work posted to worker thread, otherwise false. 14167 **/ 14168 static bool 14169 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14170 struct lpfc_cqe *cqe) 14171 { 14172 struct lpfc_mcqe mcqe; 14173 bool workposted; 14174 14175 cq->CQ_mbox++; 14176 14177 /* Copy the mailbox MCQE and convert endian order as needed */ 14178 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14179 14180 /* Invoke the proper event handling routine */ 14181 if (!bf_get(lpfc_trailer_async, &mcqe)) 14182 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14183 else 14184 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14185 return workposted; 14186 } 14187 14188 /** 14189 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14190 * @phba: Pointer to HBA context object. 14191 * @cq: Pointer to associated CQ 14192 * @wcqe: Pointer to work-queue completion queue entry. 14193 * 14194 * This routine handles an ELS work-queue completion event. 14195 * 14196 * Return: true if work posted to worker thread, otherwise false. 14197 **/ 14198 static bool 14199 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14200 struct lpfc_wcqe_complete *wcqe) 14201 { 14202 struct lpfc_iocbq *irspiocbq; 14203 unsigned long iflags; 14204 struct lpfc_sli_ring *pring = cq->pring; 14205 int txq_cnt = 0; 14206 int txcmplq_cnt = 0; 14207 14208 /* Check for response status */ 14209 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14210 /* Log the error status */ 14211 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14212 "0357 ELS CQE error: status=x%x: " 14213 "CQE: %08x %08x %08x %08x\n", 14214 bf_get(lpfc_wcqe_c_status, wcqe), 14215 wcqe->word0, wcqe->total_data_placed, 14216 wcqe->parameter, wcqe->word3); 14217 } 14218 14219 /* Get an irspiocbq for later ELS response processing use */ 14220 irspiocbq = lpfc_sli_get_iocbq(phba); 14221 if (!irspiocbq) { 14222 if (!list_empty(&pring->txq)) 14223 txq_cnt++; 14224 if (!list_empty(&pring->txcmplq)) 14225 txcmplq_cnt++; 14226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14227 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14228 "els_txcmplq_cnt=%d\n", 14229 txq_cnt, phba->iocb_cnt, 14230 txcmplq_cnt); 14231 return false; 14232 } 14233 14234 /* Save off the slow-path queue event for work thread to process */ 14235 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14236 spin_lock_irqsave(&phba->hbalock, iflags); 14237 list_add_tail(&irspiocbq->cq_event.list, 14238 &phba->sli4_hba.sp_queue_event); 14239 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14240 spin_unlock_irqrestore(&phba->hbalock, iflags); 14241 14242 return true; 14243 } 14244 14245 /** 14246 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14247 * @phba: Pointer to HBA context object. 14248 * @wcqe: Pointer to work-queue completion queue entry. 14249 * 14250 * This routine handles slow-path WQ entry consumed event by invoking the 14251 * proper WQ release routine to the slow-path WQ. 14252 **/ 14253 static void 14254 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14255 struct lpfc_wcqe_release *wcqe) 14256 { 14257 /* sanity check on queue memory */ 14258 if (unlikely(!phba->sli4_hba.els_wq)) 14259 return; 14260 /* Check for the slow-path ELS work queue */ 14261 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14262 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14263 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14264 else 14265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14266 "2579 Slow-path wqe consume event carries " 14267 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14268 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14269 phba->sli4_hba.els_wq->queue_id); 14270 } 14271 14272 /** 14273 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14274 * @phba: Pointer to HBA context object. 14275 * @cq: Pointer to a WQ completion queue. 14276 * @wcqe: Pointer to work-queue completion queue entry. 14277 * 14278 * This routine handles an XRI abort event. 14279 * 14280 * Return: true if work posted to worker thread, otherwise false. 14281 **/ 14282 static bool 14283 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14284 struct lpfc_queue *cq, 14285 struct sli4_wcqe_xri_aborted *wcqe) 14286 { 14287 bool workposted = false; 14288 struct lpfc_cq_event *cq_event; 14289 unsigned long iflags; 14290 14291 switch (cq->subtype) { 14292 case LPFC_IO: 14293 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14294 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14295 /* Notify aborted XRI for NVME work queue */ 14296 if (phba->nvmet_support) 14297 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14298 } 14299 workposted = false; 14300 break; 14301 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14302 case LPFC_ELS: 14303 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14304 if (!cq_event) { 14305 workposted = false; 14306 break; 14307 } 14308 cq_event->hdwq = cq->hdwq; 14309 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14310 iflags); 14311 list_add_tail(&cq_event->list, 14312 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14313 /* Set the els xri abort event flag */ 14314 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14315 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14316 iflags); 14317 workposted = true; 14318 break; 14319 default: 14320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14321 "0603 Invalid CQ subtype %d: " 14322 "%08x %08x %08x %08x\n", 14323 cq->subtype, wcqe->word0, wcqe->parameter, 14324 wcqe->word2, wcqe->word3); 14325 workposted = false; 14326 break; 14327 } 14328 return workposted; 14329 } 14330 14331 #define FC_RCTL_MDS_DIAGS 0xF4 14332 14333 /** 14334 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14335 * @phba: Pointer to HBA context object. 14336 * @rcqe: Pointer to receive-queue completion queue entry. 14337 * 14338 * This routine process a receive-queue completion queue entry. 14339 * 14340 * Return: true if work posted to worker thread, otherwise false. 14341 **/ 14342 static bool 14343 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14344 { 14345 bool workposted = false; 14346 struct fc_frame_header *fc_hdr; 14347 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14348 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14349 struct lpfc_nvmet_tgtport *tgtp; 14350 struct hbq_dmabuf *dma_buf; 14351 uint32_t status, rq_id; 14352 unsigned long iflags; 14353 14354 /* sanity check on queue memory */ 14355 if (unlikely(!hrq) || unlikely(!drq)) 14356 return workposted; 14357 14358 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14359 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14360 else 14361 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14362 if (rq_id != hrq->queue_id) 14363 goto out; 14364 14365 status = bf_get(lpfc_rcqe_status, rcqe); 14366 switch (status) { 14367 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14369 "2537 Receive Frame Truncated!!\n"); 14370 fallthrough; 14371 case FC_STATUS_RQ_SUCCESS: 14372 spin_lock_irqsave(&phba->hbalock, iflags); 14373 lpfc_sli4_rq_release(hrq, drq); 14374 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14375 if (!dma_buf) { 14376 hrq->RQ_no_buf_found++; 14377 spin_unlock_irqrestore(&phba->hbalock, iflags); 14378 goto out; 14379 } 14380 hrq->RQ_rcv_buf++; 14381 hrq->RQ_buf_posted--; 14382 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14383 14384 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14385 14386 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14387 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14388 spin_unlock_irqrestore(&phba->hbalock, iflags); 14389 /* Handle MDS Loopback frames */ 14390 if (!(phba->pport->load_flag & FC_UNLOADING)) 14391 lpfc_sli4_handle_mds_loopback(phba->pport, 14392 dma_buf); 14393 else 14394 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14395 break; 14396 } 14397 14398 /* save off the frame for the work thread to process */ 14399 list_add_tail(&dma_buf->cq_event.list, 14400 &phba->sli4_hba.sp_queue_event); 14401 /* Frame received */ 14402 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14403 spin_unlock_irqrestore(&phba->hbalock, iflags); 14404 workposted = true; 14405 break; 14406 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14407 if (phba->nvmet_support) { 14408 tgtp = phba->targetport->private; 14409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14410 "6402 RQE Error x%x, posted %d err_cnt " 14411 "%d: %x %x %x\n", 14412 status, hrq->RQ_buf_posted, 14413 hrq->RQ_no_posted_buf, 14414 atomic_read(&tgtp->rcv_fcp_cmd_in), 14415 atomic_read(&tgtp->rcv_fcp_cmd_out), 14416 atomic_read(&tgtp->xmt_fcp_release)); 14417 } 14418 fallthrough; 14419 14420 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14421 hrq->RQ_no_posted_buf++; 14422 /* Post more buffers if possible */ 14423 spin_lock_irqsave(&phba->hbalock, iflags); 14424 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14425 spin_unlock_irqrestore(&phba->hbalock, iflags); 14426 workposted = true; 14427 break; 14428 } 14429 out: 14430 return workposted; 14431 } 14432 14433 /** 14434 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14435 * @phba: Pointer to HBA context object. 14436 * @cq: Pointer to the completion queue. 14437 * @cqe: Pointer to a completion queue entry. 14438 * 14439 * This routine process a slow-path work-queue or receive queue completion queue 14440 * entry. 14441 * 14442 * Return: true if work posted to worker thread, otherwise false. 14443 **/ 14444 static bool 14445 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14446 struct lpfc_cqe *cqe) 14447 { 14448 struct lpfc_cqe cqevt; 14449 bool workposted = false; 14450 14451 /* Copy the work queue CQE and convert endian order if needed */ 14452 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14453 14454 /* Check and process for different type of WCQE and dispatch */ 14455 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14456 case CQE_CODE_COMPL_WQE: 14457 /* Process the WQ/RQ complete event */ 14458 phba->last_completion_time = jiffies; 14459 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14460 (struct lpfc_wcqe_complete *)&cqevt); 14461 break; 14462 case CQE_CODE_RELEASE_WQE: 14463 /* Process the WQ release event */ 14464 lpfc_sli4_sp_handle_rel_wcqe(phba, 14465 (struct lpfc_wcqe_release *)&cqevt); 14466 break; 14467 case CQE_CODE_XRI_ABORTED: 14468 /* Process the WQ XRI abort event */ 14469 phba->last_completion_time = jiffies; 14470 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14471 (struct sli4_wcqe_xri_aborted *)&cqevt); 14472 break; 14473 case CQE_CODE_RECEIVE: 14474 case CQE_CODE_RECEIVE_V1: 14475 /* Process the RQ event */ 14476 phba->last_completion_time = jiffies; 14477 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14478 (struct lpfc_rcqe *)&cqevt); 14479 break; 14480 default: 14481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14482 "0388 Not a valid WCQE code: x%x\n", 14483 bf_get(lpfc_cqe_code, &cqevt)); 14484 break; 14485 } 14486 return workposted; 14487 } 14488 14489 /** 14490 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14491 * @phba: Pointer to HBA context object. 14492 * @eqe: Pointer to fast-path event queue entry. 14493 * @speq: Pointer to slow-path event queue. 14494 * 14495 * This routine process a event queue entry from the slow-path event queue. 14496 * It will check the MajorCode and MinorCode to determine this is for a 14497 * completion event on a completion queue, if not, an error shall be logged 14498 * and just return. Otherwise, it will get to the corresponding completion 14499 * queue and process all the entries on that completion queue, rearm the 14500 * completion queue, and then return. 14501 * 14502 **/ 14503 static void 14504 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14505 struct lpfc_queue *speq) 14506 { 14507 struct lpfc_queue *cq = NULL, *childq; 14508 uint16_t cqid; 14509 int ret = 0; 14510 14511 /* Get the reference to the corresponding CQ */ 14512 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14513 14514 list_for_each_entry(childq, &speq->child_list, list) { 14515 if (childq->queue_id == cqid) { 14516 cq = childq; 14517 break; 14518 } 14519 } 14520 if (unlikely(!cq)) { 14521 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14523 "0365 Slow-path CQ identifier " 14524 "(%d) does not exist\n", cqid); 14525 return; 14526 } 14527 14528 /* Save EQ associated with this CQ */ 14529 cq->assoc_qp = speq; 14530 14531 if (is_kdump_kernel()) 14532 ret = queue_work(phba->wq, &cq->spwork); 14533 else 14534 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14535 14536 if (!ret) 14537 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14538 "0390 Cannot schedule queue work " 14539 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14540 cqid, cq->queue_id, raw_smp_processor_id()); 14541 } 14542 14543 /** 14544 * __lpfc_sli4_process_cq - Process elements of a CQ 14545 * @phba: Pointer to HBA context object. 14546 * @cq: Pointer to CQ to be processed 14547 * @handler: Routine to process each cqe 14548 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14549 * @poll_mode: Polling mode we were called from 14550 * 14551 * This routine processes completion queue entries in a CQ. While a valid 14552 * queue element is found, the handler is called. During processing checks 14553 * are made for periodic doorbell writes to let the hardware know of 14554 * element consumption. 14555 * 14556 * If the max limit on cqes to process is hit, or there are no more valid 14557 * entries, the loop stops. If we processed a sufficient number of elements, 14558 * meaning there is sufficient load, rather than rearming and generating 14559 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14560 * indicates no rescheduling. 14561 * 14562 * Returns True if work scheduled, False otherwise. 14563 **/ 14564 static bool 14565 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14566 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14567 struct lpfc_cqe *), unsigned long *delay, 14568 enum lpfc_poll_mode poll_mode) 14569 { 14570 struct lpfc_cqe *cqe; 14571 bool workposted = false; 14572 int count = 0, consumed = 0; 14573 bool arm = true; 14574 14575 /* default - no reschedule */ 14576 *delay = 0; 14577 14578 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14579 goto rearm_and_exit; 14580 14581 /* Process all the entries to the CQ */ 14582 cq->q_flag = 0; 14583 cqe = lpfc_sli4_cq_get(cq); 14584 while (cqe) { 14585 workposted |= handler(phba, cq, cqe); 14586 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14587 14588 consumed++; 14589 if (!(++count % cq->max_proc_limit)) 14590 break; 14591 14592 if (!(count % cq->notify_interval)) { 14593 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14594 LPFC_QUEUE_NOARM); 14595 consumed = 0; 14596 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14597 } 14598 14599 if (count == LPFC_NVMET_CQ_NOTIFY) 14600 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14601 14602 cqe = lpfc_sli4_cq_get(cq); 14603 } 14604 if (count >= phba->cfg_cq_poll_threshold) { 14605 *delay = 1; 14606 arm = false; 14607 } 14608 14609 /* Note: complete the irq_poll softirq before rearming CQ */ 14610 if (poll_mode == LPFC_IRQ_POLL) 14611 irq_poll_complete(&cq->iop); 14612 14613 /* Track the max number of CQEs processed in 1 EQ */ 14614 if (count > cq->CQ_max_cqe) 14615 cq->CQ_max_cqe = count; 14616 14617 cq->assoc_qp->EQ_cqe_cnt += count; 14618 14619 /* Catch the no cq entry condition */ 14620 if (unlikely(count == 0)) 14621 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14622 "0369 No entry from completion queue " 14623 "qid=%d\n", cq->queue_id); 14624 14625 xchg(&cq->queue_claimed, 0); 14626 14627 rearm_and_exit: 14628 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14629 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14630 14631 return workposted; 14632 } 14633 14634 /** 14635 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14636 * @cq: pointer to CQ to process 14637 * 14638 * This routine calls the cq processing routine with a handler specific 14639 * to the type of queue bound to it. 14640 * 14641 * The CQ routine returns two values: the first is the calling status, 14642 * which indicates whether work was queued to the background discovery 14643 * thread. If true, the routine should wakeup the discovery thread; 14644 * the second is the delay parameter. If non-zero, rather than rearming 14645 * the CQ and yet another interrupt, the CQ handler should be queued so 14646 * that it is processed in a subsequent polling action. The value of 14647 * the delay indicates when to reschedule it. 14648 **/ 14649 static void 14650 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14651 { 14652 struct lpfc_hba *phba = cq->phba; 14653 unsigned long delay; 14654 bool workposted = false; 14655 int ret = 0; 14656 14657 /* Process and rearm the CQ */ 14658 switch (cq->type) { 14659 case LPFC_MCQ: 14660 workposted |= __lpfc_sli4_process_cq(phba, cq, 14661 lpfc_sli4_sp_handle_mcqe, 14662 &delay, LPFC_QUEUE_WORK); 14663 break; 14664 case LPFC_WCQ: 14665 if (cq->subtype == LPFC_IO) 14666 workposted |= __lpfc_sli4_process_cq(phba, cq, 14667 lpfc_sli4_fp_handle_cqe, 14668 &delay, LPFC_QUEUE_WORK); 14669 else 14670 workposted |= __lpfc_sli4_process_cq(phba, cq, 14671 lpfc_sli4_sp_handle_cqe, 14672 &delay, LPFC_QUEUE_WORK); 14673 break; 14674 default: 14675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14676 "0370 Invalid completion queue type (%d)\n", 14677 cq->type); 14678 return; 14679 } 14680 14681 if (delay) { 14682 if (is_kdump_kernel()) 14683 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14684 delay); 14685 else 14686 ret = queue_delayed_work_on(cq->chann, phba->wq, 14687 &cq->sched_spwork, delay); 14688 if (!ret) 14689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14690 "0394 Cannot schedule queue work " 14691 "for cqid=%d on CPU %d\n", 14692 cq->queue_id, cq->chann); 14693 } 14694 14695 /* wake up worker thread if there are works to be done */ 14696 if (workposted) 14697 lpfc_worker_wake_up(phba); 14698 } 14699 14700 /** 14701 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14702 * interrupt 14703 * @work: pointer to work element 14704 * 14705 * translates from the work handler and calls the slow-path handler. 14706 **/ 14707 static void 14708 lpfc_sli4_sp_process_cq(struct work_struct *work) 14709 { 14710 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14711 14712 __lpfc_sli4_sp_process_cq(cq); 14713 } 14714 14715 /** 14716 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14717 * @work: pointer to work element 14718 * 14719 * translates from the work handler and calls the slow-path handler. 14720 **/ 14721 static void 14722 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14723 { 14724 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14725 struct lpfc_queue, sched_spwork); 14726 14727 __lpfc_sli4_sp_process_cq(cq); 14728 } 14729 14730 /** 14731 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14732 * @phba: Pointer to HBA context object. 14733 * @cq: Pointer to associated CQ 14734 * @wcqe: Pointer to work-queue completion queue entry. 14735 * 14736 * This routine process a fast-path work queue completion entry from fast-path 14737 * event queue for FCP command response completion. 14738 **/ 14739 static void 14740 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14741 struct lpfc_wcqe_complete *wcqe) 14742 { 14743 struct lpfc_sli_ring *pring = cq->pring; 14744 struct lpfc_iocbq *cmdiocbq; 14745 unsigned long iflags; 14746 14747 /* Check for response status */ 14748 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14749 /* If resource errors reported from HBA, reduce queue 14750 * depth of the SCSI device. 14751 */ 14752 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14753 IOSTAT_LOCAL_REJECT)) && 14754 ((wcqe->parameter & IOERR_PARAM_MASK) == 14755 IOERR_NO_RESOURCES)) 14756 phba->lpfc_rampdown_queue_depth(phba); 14757 14758 /* Log the cmpl status */ 14759 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14760 "0373 FCP CQE cmpl: status=x%x: " 14761 "CQE: %08x %08x %08x %08x\n", 14762 bf_get(lpfc_wcqe_c_status, wcqe), 14763 wcqe->word0, wcqe->total_data_placed, 14764 wcqe->parameter, wcqe->word3); 14765 } 14766 14767 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14768 spin_lock_irqsave(&pring->ring_lock, iflags); 14769 pring->stats.iocb_event++; 14770 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14771 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14772 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14773 if (unlikely(!cmdiocbq)) { 14774 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14775 "0374 FCP complete with no corresponding " 14776 "cmdiocb: iotag (%d)\n", 14777 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14778 return; 14779 } 14780 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14781 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14782 #endif 14783 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14784 spin_lock_irqsave(&phba->hbalock, iflags); 14785 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14786 spin_unlock_irqrestore(&phba->hbalock, iflags); 14787 } 14788 14789 if (cmdiocbq->cmd_cmpl) { 14790 /* For FCP the flag is cleared in cmd_cmpl */ 14791 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 14792 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 14793 spin_lock_irqsave(&phba->hbalock, iflags); 14794 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 14795 spin_unlock_irqrestore(&phba->hbalock, iflags); 14796 } 14797 14798 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14799 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 14800 sizeof(struct lpfc_wcqe_complete)); 14801 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 14802 } else { 14803 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14804 "0375 FCP cmdiocb not callback function " 14805 "iotag: (%d)\n", 14806 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14807 } 14808 } 14809 14810 /** 14811 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14812 * @phba: Pointer to HBA context object. 14813 * @cq: Pointer to completion queue. 14814 * @wcqe: Pointer to work-queue completion queue entry. 14815 * 14816 * This routine handles an fast-path WQ entry consumed event by invoking the 14817 * proper WQ release routine to the slow-path WQ. 14818 **/ 14819 static void 14820 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14821 struct lpfc_wcqe_release *wcqe) 14822 { 14823 struct lpfc_queue *childwq; 14824 bool wqid_matched = false; 14825 uint16_t hba_wqid; 14826 14827 /* Check for fast-path FCP work queue release */ 14828 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14829 list_for_each_entry(childwq, &cq->child_list, list) { 14830 if (childwq->queue_id == hba_wqid) { 14831 lpfc_sli4_wq_release(childwq, 14832 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14833 if (childwq->q_flag & HBA_NVMET_WQFULL) 14834 lpfc_nvmet_wqfull_process(phba, childwq); 14835 wqid_matched = true; 14836 break; 14837 } 14838 } 14839 /* Report warning log message if no match found */ 14840 if (wqid_matched != true) 14841 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14842 "2580 Fast-path wqe consume event carries " 14843 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14844 } 14845 14846 /** 14847 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14848 * @phba: Pointer to HBA context object. 14849 * @cq: Pointer to completion queue. 14850 * @rcqe: Pointer to receive-queue completion queue entry. 14851 * 14852 * This routine process a receive-queue completion queue entry. 14853 * 14854 * Return: true if work posted to worker thread, otherwise false. 14855 **/ 14856 static bool 14857 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14858 struct lpfc_rcqe *rcqe) 14859 { 14860 bool workposted = false; 14861 struct lpfc_queue *hrq; 14862 struct lpfc_queue *drq; 14863 struct rqb_dmabuf *dma_buf; 14864 struct fc_frame_header *fc_hdr; 14865 struct lpfc_nvmet_tgtport *tgtp; 14866 uint32_t status, rq_id; 14867 unsigned long iflags; 14868 uint32_t fctl, idx; 14869 14870 if ((phba->nvmet_support == 0) || 14871 (phba->sli4_hba.nvmet_cqset == NULL)) 14872 return workposted; 14873 14874 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14875 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14876 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14877 14878 /* sanity check on queue memory */ 14879 if (unlikely(!hrq) || unlikely(!drq)) 14880 return workposted; 14881 14882 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14883 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14884 else 14885 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14886 14887 if ((phba->nvmet_support == 0) || 14888 (rq_id != hrq->queue_id)) 14889 return workposted; 14890 14891 status = bf_get(lpfc_rcqe_status, rcqe); 14892 switch (status) { 14893 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14895 "6126 Receive Frame Truncated!!\n"); 14896 fallthrough; 14897 case FC_STATUS_RQ_SUCCESS: 14898 spin_lock_irqsave(&phba->hbalock, iflags); 14899 lpfc_sli4_rq_release(hrq, drq); 14900 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14901 if (!dma_buf) { 14902 hrq->RQ_no_buf_found++; 14903 spin_unlock_irqrestore(&phba->hbalock, iflags); 14904 goto out; 14905 } 14906 spin_unlock_irqrestore(&phba->hbalock, iflags); 14907 hrq->RQ_rcv_buf++; 14908 hrq->RQ_buf_posted--; 14909 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14910 14911 /* Just some basic sanity checks on FCP Command frame */ 14912 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14913 fc_hdr->fh_f_ctl[1] << 8 | 14914 fc_hdr->fh_f_ctl[2]); 14915 if (((fctl & 14916 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14917 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14918 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14919 goto drop; 14920 14921 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14922 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14923 lpfc_nvmet_unsol_fcp_event( 14924 phba, idx, dma_buf, cq->isr_timestamp, 14925 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14926 return false; 14927 } 14928 drop: 14929 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14930 break; 14931 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14932 if (phba->nvmet_support) { 14933 tgtp = phba->targetport->private; 14934 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14935 "6401 RQE Error x%x, posted %d err_cnt " 14936 "%d: %x %x %x\n", 14937 status, hrq->RQ_buf_posted, 14938 hrq->RQ_no_posted_buf, 14939 atomic_read(&tgtp->rcv_fcp_cmd_in), 14940 atomic_read(&tgtp->rcv_fcp_cmd_out), 14941 atomic_read(&tgtp->xmt_fcp_release)); 14942 } 14943 fallthrough; 14944 14945 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14946 hrq->RQ_no_posted_buf++; 14947 /* Post more buffers if possible */ 14948 break; 14949 } 14950 out: 14951 return workposted; 14952 } 14953 14954 /** 14955 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14956 * @phba: adapter with cq 14957 * @cq: Pointer to the completion queue. 14958 * @cqe: Pointer to fast-path completion queue entry. 14959 * 14960 * This routine process a fast-path work queue completion entry from fast-path 14961 * event queue for FCP command response completion. 14962 * 14963 * Return: true if work posted to worker thread, otherwise false. 14964 **/ 14965 static bool 14966 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14967 struct lpfc_cqe *cqe) 14968 { 14969 struct lpfc_wcqe_release wcqe; 14970 bool workposted = false; 14971 14972 /* Copy the work queue CQE and convert endian order if needed */ 14973 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14974 14975 /* Check and process for different type of WCQE and dispatch */ 14976 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14977 case CQE_CODE_COMPL_WQE: 14978 case CQE_CODE_NVME_ERSP: 14979 cq->CQ_wq++; 14980 /* Process the WQ complete event */ 14981 phba->last_completion_time = jiffies; 14982 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14983 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14984 (struct lpfc_wcqe_complete *)&wcqe); 14985 break; 14986 case CQE_CODE_RELEASE_WQE: 14987 cq->CQ_release_wqe++; 14988 /* Process the WQ release event */ 14989 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14990 (struct lpfc_wcqe_release *)&wcqe); 14991 break; 14992 case CQE_CODE_XRI_ABORTED: 14993 cq->CQ_xri_aborted++; 14994 /* Process the WQ XRI abort event */ 14995 phba->last_completion_time = jiffies; 14996 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14997 (struct sli4_wcqe_xri_aborted *)&wcqe); 14998 break; 14999 case CQE_CODE_RECEIVE_V1: 15000 case CQE_CODE_RECEIVE: 15001 phba->last_completion_time = jiffies; 15002 if (cq->subtype == LPFC_NVMET) { 15003 workposted = lpfc_sli4_nvmet_handle_rcqe( 15004 phba, cq, (struct lpfc_rcqe *)&wcqe); 15005 } 15006 break; 15007 default: 15008 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15009 "0144 Not a valid CQE code: x%x\n", 15010 bf_get(lpfc_wcqe_c_code, &wcqe)); 15011 break; 15012 } 15013 return workposted; 15014 } 15015 15016 /** 15017 * lpfc_sli4_sched_cq_work - Schedules cq work 15018 * @phba: Pointer to HBA context object. 15019 * @cq: Pointer to CQ 15020 * @cqid: CQ ID 15021 * 15022 * This routine checks the poll mode of the CQ corresponding to 15023 * cq->chann, then either schedules a softirq or queue_work to complete 15024 * cq work. 15025 * 15026 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15027 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15028 * 15029 **/ 15030 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15031 struct lpfc_queue *cq, uint16_t cqid) 15032 { 15033 int ret = 0; 15034 15035 switch (cq->poll_mode) { 15036 case LPFC_IRQ_POLL: 15037 /* CGN mgmt is mutually exclusive from softirq processing */ 15038 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15039 irq_poll_sched(&cq->iop); 15040 break; 15041 } 15042 fallthrough; 15043 case LPFC_QUEUE_WORK: 15044 default: 15045 if (is_kdump_kernel()) 15046 ret = queue_work(phba->wq, &cq->irqwork); 15047 else 15048 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15049 if (!ret) 15050 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15051 "0383 Cannot schedule queue work " 15052 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15053 cqid, cq->queue_id, 15054 raw_smp_processor_id()); 15055 } 15056 } 15057 15058 /** 15059 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15060 * @phba: Pointer to HBA context object. 15061 * @eq: Pointer to the queue structure. 15062 * @eqe: Pointer to fast-path event queue entry. 15063 * 15064 * This routine process a event queue entry from the fast-path event queue. 15065 * It will check the MajorCode and MinorCode to determine this is for a 15066 * completion event on a completion queue, if not, an error shall be logged 15067 * and just return. Otherwise, it will get to the corresponding completion 15068 * queue and process all the entries on the completion queue, rearm the 15069 * completion queue, and then return. 15070 **/ 15071 static void 15072 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15073 struct lpfc_eqe *eqe) 15074 { 15075 struct lpfc_queue *cq = NULL; 15076 uint32_t qidx = eq->hdwq; 15077 uint16_t cqid, id; 15078 15079 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15080 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15081 "0366 Not a valid completion " 15082 "event: majorcode=x%x, minorcode=x%x\n", 15083 bf_get_le32(lpfc_eqe_major_code, eqe), 15084 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15085 return; 15086 } 15087 15088 /* Get the reference to the corresponding CQ */ 15089 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15090 15091 /* Use the fast lookup method first */ 15092 if (cqid <= phba->sli4_hba.cq_max) { 15093 cq = phba->sli4_hba.cq_lookup[cqid]; 15094 if (cq) 15095 goto work_cq; 15096 } 15097 15098 /* Next check for NVMET completion */ 15099 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15100 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15101 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15102 /* Process NVMET unsol rcv */ 15103 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15104 goto process_cq; 15105 } 15106 } 15107 15108 if (phba->sli4_hba.nvmels_cq && 15109 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15110 /* Process NVME unsol rcv */ 15111 cq = phba->sli4_hba.nvmels_cq; 15112 } 15113 15114 /* Otherwise this is a Slow path event */ 15115 if (cq == NULL) { 15116 lpfc_sli4_sp_handle_eqe(phba, eqe, 15117 phba->sli4_hba.hdwq[qidx].hba_eq); 15118 return; 15119 } 15120 15121 process_cq: 15122 if (unlikely(cqid != cq->queue_id)) { 15123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15124 "0368 Miss-matched fast-path completion " 15125 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15126 cqid, cq->queue_id); 15127 return; 15128 } 15129 15130 work_cq: 15131 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15132 if (phba->ktime_on) 15133 cq->isr_timestamp = ktime_get_ns(); 15134 else 15135 cq->isr_timestamp = 0; 15136 #endif 15137 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15138 } 15139 15140 /** 15141 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15142 * @cq: Pointer to CQ to be processed 15143 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15144 * 15145 * This routine calls the cq processing routine with the handler for 15146 * fast path CQEs. 15147 * 15148 * The CQ routine returns two values: the first is the calling status, 15149 * which indicates whether work was queued to the background discovery 15150 * thread. If true, the routine should wakeup the discovery thread; 15151 * the second is the delay parameter. If non-zero, rather than rearming 15152 * the CQ and yet another interrupt, the CQ handler should be queued so 15153 * that it is processed in a subsequent polling action. The value of 15154 * the delay indicates when to reschedule it. 15155 **/ 15156 static void 15157 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15158 enum lpfc_poll_mode poll_mode) 15159 { 15160 struct lpfc_hba *phba = cq->phba; 15161 unsigned long delay; 15162 bool workposted = false; 15163 int ret = 0; 15164 15165 /* process and rearm the CQ */ 15166 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15167 &delay, poll_mode); 15168 15169 if (delay) { 15170 if (is_kdump_kernel()) 15171 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15172 delay); 15173 else 15174 ret = queue_delayed_work_on(cq->chann, phba->wq, 15175 &cq->sched_irqwork, delay); 15176 if (!ret) 15177 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15178 "0367 Cannot schedule queue work " 15179 "for cqid=%d on CPU %d\n", 15180 cq->queue_id, cq->chann); 15181 } 15182 15183 /* wake up worker thread if there are works to be done */ 15184 if (workposted) 15185 lpfc_worker_wake_up(phba); 15186 } 15187 15188 /** 15189 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15190 * interrupt 15191 * @work: pointer to work element 15192 * 15193 * translates from the work handler and calls the fast-path handler. 15194 **/ 15195 static void 15196 lpfc_sli4_hba_process_cq(struct work_struct *work) 15197 { 15198 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15199 15200 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15201 } 15202 15203 /** 15204 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15205 * @work: pointer to work element 15206 * 15207 * translates from the work handler and calls the fast-path handler. 15208 **/ 15209 static void 15210 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15211 { 15212 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15213 struct lpfc_queue, sched_irqwork); 15214 15215 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15216 } 15217 15218 /** 15219 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15220 * @irq: Interrupt number. 15221 * @dev_id: The device context pointer. 15222 * 15223 * This function is directly called from the PCI layer as an interrupt 15224 * service routine when device with SLI-4 interface spec is enabled with 15225 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15226 * ring event in the HBA. However, when the device is enabled with either 15227 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15228 * device-level interrupt handler. When the PCI slot is in error recovery 15229 * or the HBA is undergoing initialization, the interrupt handler will not 15230 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15231 * the intrrupt context. This function is called without any lock held. 15232 * It gets the hbalock to access and update SLI data structures. Note that, 15233 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15234 * equal to that of FCP CQ index. 15235 * 15236 * The link attention and ELS ring attention events are handled 15237 * by the worker thread. The interrupt handler signals the worker thread 15238 * and returns for these events. This function is called without any lock 15239 * held. It gets the hbalock to access and update SLI data structures. 15240 * 15241 * This function returns IRQ_HANDLED when interrupt is handled else it 15242 * returns IRQ_NONE. 15243 **/ 15244 irqreturn_t 15245 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15246 { 15247 struct lpfc_hba *phba; 15248 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15249 struct lpfc_queue *fpeq; 15250 unsigned long iflag; 15251 int ecount = 0; 15252 int hba_eqidx; 15253 struct lpfc_eq_intr_info *eqi; 15254 15255 /* Get the driver's phba structure from the dev_id */ 15256 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15257 phba = hba_eq_hdl->phba; 15258 hba_eqidx = hba_eq_hdl->idx; 15259 15260 if (unlikely(!phba)) 15261 return IRQ_NONE; 15262 if (unlikely(!phba->sli4_hba.hdwq)) 15263 return IRQ_NONE; 15264 15265 /* Get to the EQ struct associated with this vector */ 15266 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15267 if (unlikely(!fpeq)) 15268 return IRQ_NONE; 15269 15270 /* Check device state for handling interrupt */ 15271 if (unlikely(lpfc_intr_state_check(phba))) { 15272 /* Check again for link_state with lock held */ 15273 spin_lock_irqsave(&phba->hbalock, iflag); 15274 if (phba->link_state < LPFC_LINK_DOWN) 15275 /* Flush, clear interrupt, and rearm the EQ */ 15276 lpfc_sli4_eqcq_flush(phba, fpeq); 15277 spin_unlock_irqrestore(&phba->hbalock, iflag); 15278 return IRQ_NONE; 15279 } 15280 15281 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15282 eqi->icnt++; 15283 15284 fpeq->last_cpu = raw_smp_processor_id(); 15285 15286 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15287 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15288 phba->cfg_auto_imax && 15289 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15290 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15291 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15292 15293 /* process and rearm the EQ */ 15294 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15295 15296 if (unlikely(ecount == 0)) { 15297 fpeq->EQ_no_entry++; 15298 if (phba->intr_type == MSIX) 15299 /* MSI-X treated interrupt served as no EQ share INT */ 15300 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15301 "0358 MSI-X interrupt with no EQE\n"); 15302 else 15303 /* Non MSI-X treated on interrupt as EQ share INT */ 15304 return IRQ_NONE; 15305 } 15306 15307 return IRQ_HANDLED; 15308 } /* lpfc_sli4_hba_intr_handler */ 15309 15310 /** 15311 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15312 * @irq: Interrupt number. 15313 * @dev_id: The device context pointer. 15314 * 15315 * This function is the device-level interrupt handler to device with SLI-4 15316 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15317 * interrupt mode is enabled and there is an event in the HBA which requires 15318 * driver attention. This function invokes the slow-path interrupt attention 15319 * handling function and fast-path interrupt attention handling function in 15320 * turn to process the relevant HBA attention events. This function is called 15321 * without any lock held. It gets the hbalock to access and update SLI data 15322 * structures. 15323 * 15324 * This function returns IRQ_HANDLED when interrupt is handled, else it 15325 * returns IRQ_NONE. 15326 **/ 15327 irqreturn_t 15328 lpfc_sli4_intr_handler(int irq, void *dev_id) 15329 { 15330 struct lpfc_hba *phba; 15331 irqreturn_t hba_irq_rc; 15332 bool hba_handled = false; 15333 int qidx; 15334 15335 /* Get the driver's phba structure from the dev_id */ 15336 phba = (struct lpfc_hba *)dev_id; 15337 15338 if (unlikely(!phba)) 15339 return IRQ_NONE; 15340 15341 /* 15342 * Invoke fast-path host attention interrupt handling as appropriate. 15343 */ 15344 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15345 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15346 &phba->sli4_hba.hba_eq_hdl[qidx]); 15347 if (hba_irq_rc == IRQ_HANDLED) 15348 hba_handled |= true; 15349 } 15350 15351 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15352 } /* lpfc_sli4_intr_handler */ 15353 15354 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15355 { 15356 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15357 struct lpfc_queue *eq; 15358 int i = 0; 15359 15360 rcu_read_lock(); 15361 15362 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15363 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15364 if (!list_empty(&phba->poll_list)) 15365 mod_timer(&phba->cpuhp_poll_timer, 15366 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15367 15368 rcu_read_unlock(); 15369 } 15370 15371 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15372 { 15373 struct lpfc_hba *phba = eq->phba; 15374 int i = 0; 15375 15376 /* 15377 * Unlocking an irq is one of the entry point to check 15378 * for re-schedule, but we are good for io submission 15379 * path as midlayer does a get_cpu to glue us in. Flush 15380 * out the invalidate queue so we can see the updated 15381 * value for flag. 15382 */ 15383 smp_rmb(); 15384 15385 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15386 /* We will not likely get the completion for the caller 15387 * during this iteration but i guess that's fine. 15388 * Future io's coming on this eq should be able to 15389 * pick it up. As for the case of single io's, they 15390 * will be handled through a sched from polling timer 15391 * function which is currently triggered every 1msec. 15392 */ 15393 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15394 15395 return i; 15396 } 15397 15398 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15399 { 15400 struct lpfc_hba *phba = eq->phba; 15401 15402 /* kickstart slowpath processing if needed */ 15403 if (list_empty(&phba->poll_list)) 15404 mod_timer(&phba->cpuhp_poll_timer, 15405 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15406 15407 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15408 synchronize_rcu(); 15409 } 15410 15411 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15412 { 15413 struct lpfc_hba *phba = eq->phba; 15414 15415 /* Disable slowpath processing for this eq. Kick start the eq 15416 * by RE-ARMING the eq's ASAP 15417 */ 15418 list_del_rcu(&eq->_poll_list); 15419 synchronize_rcu(); 15420 15421 if (list_empty(&phba->poll_list)) 15422 del_timer_sync(&phba->cpuhp_poll_timer); 15423 } 15424 15425 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15426 { 15427 struct lpfc_queue *eq, *next; 15428 15429 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15430 list_del(&eq->_poll_list); 15431 15432 INIT_LIST_HEAD(&phba->poll_list); 15433 synchronize_rcu(); 15434 } 15435 15436 static inline void 15437 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15438 { 15439 if (mode == eq->mode) 15440 return; 15441 /* 15442 * currently this function is only called during a hotplug 15443 * event and the cpu on which this function is executing 15444 * is going offline. By now the hotplug has instructed 15445 * the scheduler to remove this cpu from cpu active mask. 15446 * So we don't need to work about being put aside by the 15447 * scheduler for a high priority process. Yes, the inte- 15448 * rrupts could come but they are known to retire ASAP. 15449 */ 15450 15451 /* Disable polling in the fastpath */ 15452 WRITE_ONCE(eq->mode, mode); 15453 /* flush out the store buffer */ 15454 smp_wmb(); 15455 15456 /* 15457 * Add this eq to the polling list and start polling. For 15458 * a grace period both interrupt handler and poller will 15459 * try to process the eq _but_ that's fine. We have a 15460 * synchronization mechanism in place (queue_claimed) to 15461 * deal with it. This is just a draining phase for int- 15462 * errupt handler (not eq's) as we have guranteed through 15463 * barrier that all the CPUs have seen the new CQ_POLLED 15464 * state. which will effectively disable the REARMING of 15465 * the EQ. The whole idea is eq's die off eventually as 15466 * we are not rearming EQ's anymore. 15467 */ 15468 mode ? lpfc_sli4_add_to_poll_list(eq) : 15469 lpfc_sli4_remove_from_poll_list(eq); 15470 } 15471 15472 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15473 { 15474 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15475 } 15476 15477 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15478 { 15479 struct lpfc_hba *phba = eq->phba; 15480 15481 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15482 15483 /* Kick start for the pending io's in h/w. 15484 * Once we switch back to interrupt processing on a eq 15485 * the io path completion will only arm eq's when it 15486 * receives a completion. But since eq's are in disa- 15487 * rmed state it doesn't receive a completion. This 15488 * creates a deadlock scenaro. 15489 */ 15490 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15491 } 15492 15493 /** 15494 * lpfc_sli4_queue_free - free a queue structure and associated memory 15495 * @queue: The queue structure to free. 15496 * 15497 * This function frees a queue structure and the DMAable memory used for 15498 * the host resident queue. This function must be called after destroying the 15499 * queue on the HBA. 15500 **/ 15501 void 15502 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15503 { 15504 struct lpfc_dmabuf *dmabuf; 15505 15506 if (!queue) 15507 return; 15508 15509 if (!list_empty(&queue->wq_list)) 15510 list_del(&queue->wq_list); 15511 15512 while (!list_empty(&queue->page_list)) { 15513 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15514 list); 15515 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15516 dmabuf->virt, dmabuf->phys); 15517 kfree(dmabuf); 15518 } 15519 if (queue->rqbp) { 15520 lpfc_free_rq_buffer(queue->phba, queue); 15521 kfree(queue->rqbp); 15522 } 15523 15524 if (!list_empty(&queue->cpu_list)) 15525 list_del(&queue->cpu_list); 15526 15527 kfree(queue); 15528 return; 15529 } 15530 15531 /** 15532 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15533 * @phba: The HBA that this queue is being created on. 15534 * @page_size: The size of a queue page 15535 * @entry_size: The size of each queue entry for this queue. 15536 * @entry_count: The number of entries that this queue will handle. 15537 * @cpu: The cpu that will primarily utilize this queue. 15538 * 15539 * This function allocates a queue structure and the DMAable memory used for 15540 * the host resident queue. This function must be called before creating the 15541 * queue on the HBA. 15542 **/ 15543 struct lpfc_queue * 15544 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15545 uint32_t entry_size, uint32_t entry_count, int cpu) 15546 { 15547 struct lpfc_queue *queue; 15548 struct lpfc_dmabuf *dmabuf; 15549 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15550 uint16_t x, pgcnt; 15551 15552 if (!phba->sli4_hba.pc_sli4_params.supported) 15553 hw_page_size = page_size; 15554 15555 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15556 15557 /* If needed, Adjust page count to match the max the adapter supports */ 15558 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15559 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15560 15561 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15562 GFP_KERNEL, cpu_to_node(cpu)); 15563 if (!queue) 15564 return NULL; 15565 15566 INIT_LIST_HEAD(&queue->list); 15567 INIT_LIST_HEAD(&queue->_poll_list); 15568 INIT_LIST_HEAD(&queue->wq_list); 15569 INIT_LIST_HEAD(&queue->wqfull_list); 15570 INIT_LIST_HEAD(&queue->page_list); 15571 INIT_LIST_HEAD(&queue->child_list); 15572 INIT_LIST_HEAD(&queue->cpu_list); 15573 15574 /* Set queue parameters now. If the system cannot provide memory 15575 * resources, the free routine needs to know what was allocated. 15576 */ 15577 queue->page_count = pgcnt; 15578 queue->q_pgs = (void **)&queue[1]; 15579 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15580 queue->entry_size = entry_size; 15581 queue->entry_count = entry_count; 15582 queue->page_size = hw_page_size; 15583 queue->phba = phba; 15584 15585 for (x = 0; x < queue->page_count; x++) { 15586 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15587 dev_to_node(&phba->pcidev->dev)); 15588 if (!dmabuf) 15589 goto out_fail; 15590 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15591 hw_page_size, &dmabuf->phys, 15592 GFP_KERNEL); 15593 if (!dmabuf->virt) { 15594 kfree(dmabuf); 15595 goto out_fail; 15596 } 15597 dmabuf->buffer_tag = x; 15598 list_add_tail(&dmabuf->list, &queue->page_list); 15599 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15600 queue->q_pgs[x] = dmabuf->virt; 15601 } 15602 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15603 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15604 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15605 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15606 15607 /* notify_interval will be set during q creation */ 15608 15609 return queue; 15610 out_fail: 15611 lpfc_sli4_queue_free(queue); 15612 return NULL; 15613 } 15614 15615 /** 15616 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15617 * @phba: HBA structure that indicates port to create a queue on. 15618 * @pci_barset: PCI BAR set flag. 15619 * 15620 * This function shall perform iomap of the specified PCI BAR address to host 15621 * memory address if not already done so and return it. The returned host 15622 * memory address can be NULL. 15623 */ 15624 static void __iomem * 15625 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15626 { 15627 if (!phba->pcidev) 15628 return NULL; 15629 15630 switch (pci_barset) { 15631 case WQ_PCI_BAR_0_AND_1: 15632 return phba->pci_bar0_memmap_p; 15633 case WQ_PCI_BAR_2_AND_3: 15634 return phba->pci_bar2_memmap_p; 15635 case WQ_PCI_BAR_4_AND_5: 15636 return phba->pci_bar4_memmap_p; 15637 default: 15638 break; 15639 } 15640 return NULL; 15641 } 15642 15643 /** 15644 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15645 * @phba: HBA structure that EQs are on. 15646 * @startq: The starting EQ index to modify 15647 * @numq: The number of EQs (consecutive indexes) to modify 15648 * @usdelay: amount of delay 15649 * 15650 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15651 * is set either by writing to a register (if supported by the SLI Port) 15652 * or by mailbox command. The mailbox command allows several EQs to be 15653 * updated at once. 15654 * 15655 * The @phba struct is used to send a mailbox command to HBA. The @startq 15656 * is used to get the starting EQ index to change. The @numq value is 15657 * used to specify how many consecutive EQ indexes, starting at EQ index, 15658 * are to be changed. This function is asynchronous and will wait for any 15659 * mailbox commands to finish before returning. 15660 * 15661 * On success this function will return a zero. If unable to allocate 15662 * enough memory this function will return -ENOMEM. If a mailbox command 15663 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15664 * have had their delay multipler changed. 15665 **/ 15666 void 15667 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15668 uint32_t numq, uint32_t usdelay) 15669 { 15670 struct lpfc_mbx_modify_eq_delay *eq_delay; 15671 LPFC_MBOXQ_t *mbox; 15672 struct lpfc_queue *eq; 15673 int cnt = 0, rc, length; 15674 uint32_t shdr_status, shdr_add_status; 15675 uint32_t dmult; 15676 int qidx; 15677 union lpfc_sli4_cfg_shdr *shdr; 15678 15679 if (startq >= phba->cfg_irq_chann) 15680 return; 15681 15682 if (usdelay > 0xFFFF) { 15683 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15684 "6429 usdelay %d too large. Scaled down to " 15685 "0xFFFF.\n", usdelay); 15686 usdelay = 0xFFFF; 15687 } 15688 15689 /* set values by EQ_DELAY register if supported */ 15690 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15691 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15692 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15693 if (!eq) 15694 continue; 15695 15696 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15697 15698 if (++cnt >= numq) 15699 break; 15700 } 15701 return; 15702 } 15703 15704 /* Otherwise, set values by mailbox cmd */ 15705 15706 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15707 if (!mbox) { 15708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15709 "6428 Failed allocating mailbox cmd buffer." 15710 " EQ delay was not set.\n"); 15711 return; 15712 } 15713 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15714 sizeof(struct lpfc_sli4_cfg_mhdr)); 15715 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15716 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15717 length, LPFC_SLI4_MBX_EMBED); 15718 eq_delay = &mbox->u.mqe.un.eq_delay; 15719 15720 /* Calculate delay multiper from maximum interrupt per second */ 15721 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15722 if (dmult) 15723 dmult--; 15724 if (dmult > LPFC_DMULT_MAX) 15725 dmult = LPFC_DMULT_MAX; 15726 15727 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15728 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15729 if (!eq) 15730 continue; 15731 eq->q_mode = usdelay; 15732 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15733 eq_delay->u.request.eq[cnt].phase = 0; 15734 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15735 15736 if (++cnt >= numq) 15737 break; 15738 } 15739 eq_delay->u.request.num_eq = cnt; 15740 15741 mbox->vport = phba->pport; 15742 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15743 mbox->ctx_ndlp = NULL; 15744 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15745 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15746 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15747 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15748 if (shdr_status || shdr_add_status || rc) { 15749 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15750 "2512 MODIFY_EQ_DELAY mailbox failed with " 15751 "status x%x add_status x%x, mbx status x%x\n", 15752 shdr_status, shdr_add_status, rc); 15753 } 15754 mempool_free(mbox, phba->mbox_mem_pool); 15755 return; 15756 } 15757 15758 /** 15759 * lpfc_eq_create - Create an Event Queue on the HBA 15760 * @phba: HBA structure that indicates port to create a queue on. 15761 * @eq: The queue structure to use to create the event queue. 15762 * @imax: The maximum interrupt per second limit. 15763 * 15764 * This function creates an event queue, as detailed in @eq, on a port, 15765 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15766 * 15767 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15768 * is used to get the entry count and entry size that are necessary to 15769 * determine the number of pages to allocate and use for this queue. This 15770 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15771 * event queue. This function is asynchronous and will wait for the mailbox 15772 * command to finish before continuing. 15773 * 15774 * On success this function will return a zero. If unable to allocate enough 15775 * memory this function will return -ENOMEM. If the queue create mailbox command 15776 * fails this function will return -ENXIO. 15777 **/ 15778 int 15779 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15780 { 15781 struct lpfc_mbx_eq_create *eq_create; 15782 LPFC_MBOXQ_t *mbox; 15783 int rc, length, status = 0; 15784 struct lpfc_dmabuf *dmabuf; 15785 uint32_t shdr_status, shdr_add_status; 15786 union lpfc_sli4_cfg_shdr *shdr; 15787 uint16_t dmult; 15788 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15789 15790 /* sanity check on queue memory */ 15791 if (!eq) 15792 return -ENODEV; 15793 if (!phba->sli4_hba.pc_sli4_params.supported) 15794 hw_page_size = SLI4_PAGE_SIZE; 15795 15796 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15797 if (!mbox) 15798 return -ENOMEM; 15799 length = (sizeof(struct lpfc_mbx_eq_create) - 15800 sizeof(struct lpfc_sli4_cfg_mhdr)); 15801 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15802 LPFC_MBOX_OPCODE_EQ_CREATE, 15803 length, LPFC_SLI4_MBX_EMBED); 15804 eq_create = &mbox->u.mqe.un.eq_create; 15805 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15806 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15807 eq->page_count); 15808 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15809 LPFC_EQE_SIZE); 15810 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15811 15812 /* Use version 2 of CREATE_EQ if eqav is set */ 15813 if (phba->sli4_hba.pc_sli4_params.eqav) { 15814 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15815 LPFC_Q_CREATE_VERSION_2); 15816 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15817 phba->sli4_hba.pc_sli4_params.eqav); 15818 } 15819 15820 /* don't setup delay multiplier using EQ_CREATE */ 15821 dmult = 0; 15822 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15823 dmult); 15824 switch (eq->entry_count) { 15825 default: 15826 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15827 "0360 Unsupported EQ count. (%d)\n", 15828 eq->entry_count); 15829 if (eq->entry_count < 256) { 15830 status = -EINVAL; 15831 goto out; 15832 } 15833 fallthrough; /* otherwise default to smallest count */ 15834 case 256: 15835 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15836 LPFC_EQ_CNT_256); 15837 break; 15838 case 512: 15839 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15840 LPFC_EQ_CNT_512); 15841 break; 15842 case 1024: 15843 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15844 LPFC_EQ_CNT_1024); 15845 break; 15846 case 2048: 15847 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15848 LPFC_EQ_CNT_2048); 15849 break; 15850 case 4096: 15851 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15852 LPFC_EQ_CNT_4096); 15853 break; 15854 } 15855 list_for_each_entry(dmabuf, &eq->page_list, list) { 15856 memset(dmabuf->virt, 0, hw_page_size); 15857 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15858 putPaddrLow(dmabuf->phys); 15859 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15860 putPaddrHigh(dmabuf->phys); 15861 } 15862 mbox->vport = phba->pport; 15863 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15864 mbox->ctx_buf = NULL; 15865 mbox->ctx_ndlp = NULL; 15866 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15867 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15868 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15869 if (shdr_status || shdr_add_status || rc) { 15870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15871 "2500 EQ_CREATE mailbox failed with " 15872 "status x%x add_status x%x, mbx status x%x\n", 15873 shdr_status, shdr_add_status, rc); 15874 status = -ENXIO; 15875 } 15876 eq->type = LPFC_EQ; 15877 eq->subtype = LPFC_NONE; 15878 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15879 if (eq->queue_id == 0xFFFF) 15880 status = -ENXIO; 15881 eq->host_index = 0; 15882 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15883 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15884 out: 15885 mempool_free(mbox, phba->mbox_mem_pool); 15886 return status; 15887 } 15888 15889 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15890 { 15891 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15892 15893 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15894 15895 return 1; 15896 } 15897 15898 /** 15899 * lpfc_cq_create - Create a Completion Queue on the HBA 15900 * @phba: HBA structure that indicates port to create a queue on. 15901 * @cq: The queue structure to use to create the completion queue. 15902 * @eq: The event queue to bind this completion queue to. 15903 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15904 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15905 * 15906 * This function creates a completion queue, as detailed in @wq, on a port, 15907 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15908 * 15909 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15910 * is used to get the entry count and entry size that are necessary to 15911 * determine the number of pages to allocate and use for this queue. The @eq 15912 * is used to indicate which event queue to bind this completion queue to. This 15913 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15914 * completion queue. This function is asynchronous and will wait for the mailbox 15915 * command to finish before continuing. 15916 * 15917 * On success this function will return a zero. If unable to allocate enough 15918 * memory this function will return -ENOMEM. If the queue create mailbox command 15919 * fails this function will return -ENXIO. 15920 **/ 15921 int 15922 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15923 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15924 { 15925 struct lpfc_mbx_cq_create *cq_create; 15926 struct lpfc_dmabuf *dmabuf; 15927 LPFC_MBOXQ_t *mbox; 15928 int rc, length, status = 0; 15929 uint32_t shdr_status, shdr_add_status; 15930 union lpfc_sli4_cfg_shdr *shdr; 15931 15932 /* sanity check on queue memory */ 15933 if (!cq || !eq) 15934 return -ENODEV; 15935 15936 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15937 if (!mbox) 15938 return -ENOMEM; 15939 length = (sizeof(struct lpfc_mbx_cq_create) - 15940 sizeof(struct lpfc_sli4_cfg_mhdr)); 15941 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15942 LPFC_MBOX_OPCODE_CQ_CREATE, 15943 length, LPFC_SLI4_MBX_EMBED); 15944 cq_create = &mbox->u.mqe.un.cq_create; 15945 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15946 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15947 cq->page_count); 15948 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15949 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15950 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15951 phba->sli4_hba.pc_sli4_params.cqv); 15952 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15953 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15954 (cq->page_size / SLI4_PAGE_SIZE)); 15955 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15956 eq->queue_id); 15957 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15958 phba->sli4_hba.pc_sli4_params.cqav); 15959 } else { 15960 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15961 eq->queue_id); 15962 } 15963 switch (cq->entry_count) { 15964 case 2048: 15965 case 4096: 15966 if (phba->sli4_hba.pc_sli4_params.cqv == 15967 LPFC_Q_CREATE_VERSION_2) { 15968 cq_create->u.request.context.lpfc_cq_context_count = 15969 cq->entry_count; 15970 bf_set(lpfc_cq_context_count, 15971 &cq_create->u.request.context, 15972 LPFC_CQ_CNT_WORD7); 15973 break; 15974 } 15975 fallthrough; 15976 default: 15977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15978 "0361 Unsupported CQ count: " 15979 "entry cnt %d sz %d pg cnt %d\n", 15980 cq->entry_count, cq->entry_size, 15981 cq->page_count); 15982 if (cq->entry_count < 256) { 15983 status = -EINVAL; 15984 goto out; 15985 } 15986 fallthrough; /* otherwise default to smallest count */ 15987 case 256: 15988 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15989 LPFC_CQ_CNT_256); 15990 break; 15991 case 512: 15992 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15993 LPFC_CQ_CNT_512); 15994 break; 15995 case 1024: 15996 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15997 LPFC_CQ_CNT_1024); 15998 break; 15999 } 16000 list_for_each_entry(dmabuf, &cq->page_list, list) { 16001 memset(dmabuf->virt, 0, cq->page_size); 16002 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16003 putPaddrLow(dmabuf->phys); 16004 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16005 putPaddrHigh(dmabuf->phys); 16006 } 16007 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16008 16009 /* The IOCTL status is embedded in the mailbox subheader. */ 16010 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16011 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16012 if (shdr_status || shdr_add_status || rc) { 16013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16014 "2501 CQ_CREATE mailbox failed with " 16015 "status x%x add_status x%x, mbx status x%x\n", 16016 shdr_status, shdr_add_status, rc); 16017 status = -ENXIO; 16018 goto out; 16019 } 16020 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16021 if (cq->queue_id == 0xFFFF) { 16022 status = -ENXIO; 16023 goto out; 16024 } 16025 /* link the cq onto the parent eq child list */ 16026 list_add_tail(&cq->list, &eq->child_list); 16027 /* Set up completion queue's type and subtype */ 16028 cq->type = type; 16029 cq->subtype = subtype; 16030 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16031 cq->assoc_qid = eq->queue_id; 16032 cq->assoc_qp = eq; 16033 cq->host_index = 0; 16034 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16035 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16036 16037 if (cq->queue_id > phba->sli4_hba.cq_max) 16038 phba->sli4_hba.cq_max = cq->queue_id; 16039 16040 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16041 out: 16042 mempool_free(mbox, phba->mbox_mem_pool); 16043 return status; 16044 } 16045 16046 /** 16047 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16048 * @phba: HBA structure that indicates port to create a queue on. 16049 * @cqp: The queue structure array to use to create the completion queues. 16050 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16051 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16052 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16053 * 16054 * This function creates a set of completion queue, s to support MRQ 16055 * as detailed in @cqp, on a port, 16056 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16057 * 16058 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16059 * is used to get the entry count and entry size that are necessary to 16060 * determine the number of pages to allocate and use for this queue. The @eq 16061 * is used to indicate which event queue to bind this completion queue to. This 16062 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16063 * completion queue. This function is asynchronous and will wait for the mailbox 16064 * command to finish before continuing. 16065 * 16066 * On success this function will return a zero. If unable to allocate enough 16067 * memory this function will return -ENOMEM. If the queue create mailbox command 16068 * fails this function will return -ENXIO. 16069 **/ 16070 int 16071 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16072 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16073 uint32_t subtype) 16074 { 16075 struct lpfc_queue *cq; 16076 struct lpfc_queue *eq; 16077 struct lpfc_mbx_cq_create_set *cq_set; 16078 struct lpfc_dmabuf *dmabuf; 16079 LPFC_MBOXQ_t *mbox; 16080 int rc, length, alloclen, status = 0; 16081 int cnt, idx, numcq, page_idx = 0; 16082 uint32_t shdr_status, shdr_add_status; 16083 union lpfc_sli4_cfg_shdr *shdr; 16084 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16085 16086 /* sanity check on queue memory */ 16087 numcq = phba->cfg_nvmet_mrq; 16088 if (!cqp || !hdwq || !numcq) 16089 return -ENODEV; 16090 16091 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16092 if (!mbox) 16093 return -ENOMEM; 16094 16095 length = sizeof(struct lpfc_mbx_cq_create_set); 16096 length += ((numcq * cqp[0]->page_count) * 16097 sizeof(struct dma_address)); 16098 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16099 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16100 LPFC_SLI4_MBX_NEMBED); 16101 if (alloclen < length) { 16102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16103 "3098 Allocated DMA memory size (%d) is " 16104 "less than the requested DMA memory size " 16105 "(%d)\n", alloclen, length); 16106 status = -ENOMEM; 16107 goto out; 16108 } 16109 cq_set = mbox->sge_array->addr[0]; 16110 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16111 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16112 16113 for (idx = 0; idx < numcq; idx++) { 16114 cq = cqp[idx]; 16115 eq = hdwq[idx].hba_eq; 16116 if (!cq || !eq) { 16117 status = -ENOMEM; 16118 goto out; 16119 } 16120 if (!phba->sli4_hba.pc_sli4_params.supported) 16121 hw_page_size = cq->page_size; 16122 16123 switch (idx) { 16124 case 0: 16125 bf_set(lpfc_mbx_cq_create_set_page_size, 16126 &cq_set->u.request, 16127 (hw_page_size / SLI4_PAGE_SIZE)); 16128 bf_set(lpfc_mbx_cq_create_set_num_pages, 16129 &cq_set->u.request, cq->page_count); 16130 bf_set(lpfc_mbx_cq_create_set_evt, 16131 &cq_set->u.request, 1); 16132 bf_set(lpfc_mbx_cq_create_set_valid, 16133 &cq_set->u.request, 1); 16134 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16135 &cq_set->u.request, 0); 16136 bf_set(lpfc_mbx_cq_create_set_num_cq, 16137 &cq_set->u.request, numcq); 16138 bf_set(lpfc_mbx_cq_create_set_autovalid, 16139 &cq_set->u.request, 16140 phba->sli4_hba.pc_sli4_params.cqav); 16141 switch (cq->entry_count) { 16142 case 2048: 16143 case 4096: 16144 if (phba->sli4_hba.pc_sli4_params.cqv == 16145 LPFC_Q_CREATE_VERSION_2) { 16146 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16147 &cq_set->u.request, 16148 cq->entry_count); 16149 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16150 &cq_set->u.request, 16151 LPFC_CQ_CNT_WORD7); 16152 break; 16153 } 16154 fallthrough; 16155 default: 16156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16157 "3118 Bad CQ count. (%d)\n", 16158 cq->entry_count); 16159 if (cq->entry_count < 256) { 16160 status = -EINVAL; 16161 goto out; 16162 } 16163 fallthrough; /* otherwise default to smallest */ 16164 case 256: 16165 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16166 &cq_set->u.request, LPFC_CQ_CNT_256); 16167 break; 16168 case 512: 16169 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16170 &cq_set->u.request, LPFC_CQ_CNT_512); 16171 break; 16172 case 1024: 16173 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16174 &cq_set->u.request, LPFC_CQ_CNT_1024); 16175 break; 16176 } 16177 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16178 &cq_set->u.request, eq->queue_id); 16179 break; 16180 case 1: 16181 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16182 &cq_set->u.request, eq->queue_id); 16183 break; 16184 case 2: 16185 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16186 &cq_set->u.request, eq->queue_id); 16187 break; 16188 case 3: 16189 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16190 &cq_set->u.request, eq->queue_id); 16191 break; 16192 case 4: 16193 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16194 &cq_set->u.request, eq->queue_id); 16195 break; 16196 case 5: 16197 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16198 &cq_set->u.request, eq->queue_id); 16199 break; 16200 case 6: 16201 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16202 &cq_set->u.request, eq->queue_id); 16203 break; 16204 case 7: 16205 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16206 &cq_set->u.request, eq->queue_id); 16207 break; 16208 case 8: 16209 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16210 &cq_set->u.request, eq->queue_id); 16211 break; 16212 case 9: 16213 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16214 &cq_set->u.request, eq->queue_id); 16215 break; 16216 case 10: 16217 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16218 &cq_set->u.request, eq->queue_id); 16219 break; 16220 case 11: 16221 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16222 &cq_set->u.request, eq->queue_id); 16223 break; 16224 case 12: 16225 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16226 &cq_set->u.request, eq->queue_id); 16227 break; 16228 case 13: 16229 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16230 &cq_set->u.request, eq->queue_id); 16231 break; 16232 case 14: 16233 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16234 &cq_set->u.request, eq->queue_id); 16235 break; 16236 case 15: 16237 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16238 &cq_set->u.request, eq->queue_id); 16239 break; 16240 } 16241 16242 /* link the cq onto the parent eq child list */ 16243 list_add_tail(&cq->list, &eq->child_list); 16244 /* Set up completion queue's type and subtype */ 16245 cq->type = type; 16246 cq->subtype = subtype; 16247 cq->assoc_qid = eq->queue_id; 16248 cq->assoc_qp = eq; 16249 cq->host_index = 0; 16250 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16251 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16252 cq->entry_count); 16253 cq->chann = idx; 16254 16255 rc = 0; 16256 list_for_each_entry(dmabuf, &cq->page_list, list) { 16257 memset(dmabuf->virt, 0, hw_page_size); 16258 cnt = page_idx + dmabuf->buffer_tag; 16259 cq_set->u.request.page[cnt].addr_lo = 16260 putPaddrLow(dmabuf->phys); 16261 cq_set->u.request.page[cnt].addr_hi = 16262 putPaddrHigh(dmabuf->phys); 16263 rc++; 16264 } 16265 page_idx += rc; 16266 } 16267 16268 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16269 16270 /* The IOCTL status is embedded in the mailbox subheader. */ 16271 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16272 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16273 if (shdr_status || shdr_add_status || rc) { 16274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16275 "3119 CQ_CREATE_SET mailbox failed with " 16276 "status x%x add_status x%x, mbx status x%x\n", 16277 shdr_status, shdr_add_status, rc); 16278 status = -ENXIO; 16279 goto out; 16280 } 16281 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16282 if (rc == 0xFFFF) { 16283 status = -ENXIO; 16284 goto out; 16285 } 16286 16287 for (idx = 0; idx < numcq; idx++) { 16288 cq = cqp[idx]; 16289 cq->queue_id = rc + idx; 16290 if (cq->queue_id > phba->sli4_hba.cq_max) 16291 phba->sli4_hba.cq_max = cq->queue_id; 16292 } 16293 16294 out: 16295 lpfc_sli4_mbox_cmd_free(phba, mbox); 16296 return status; 16297 } 16298 16299 /** 16300 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16301 * @phba: HBA structure that indicates port to create a queue on. 16302 * @mq: The queue structure to use to create the mailbox queue. 16303 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16304 * @cq: The completion queue to associate with this cq. 16305 * 16306 * This function provides failback (fb) functionality when the 16307 * mq_create_ext fails on older FW generations. It's purpose is identical 16308 * to mq_create_ext otherwise. 16309 * 16310 * This routine cannot fail as all attributes were previously accessed and 16311 * initialized in mq_create_ext. 16312 **/ 16313 static void 16314 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16315 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16316 { 16317 struct lpfc_mbx_mq_create *mq_create; 16318 struct lpfc_dmabuf *dmabuf; 16319 int length; 16320 16321 length = (sizeof(struct lpfc_mbx_mq_create) - 16322 sizeof(struct lpfc_sli4_cfg_mhdr)); 16323 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16324 LPFC_MBOX_OPCODE_MQ_CREATE, 16325 length, LPFC_SLI4_MBX_EMBED); 16326 mq_create = &mbox->u.mqe.un.mq_create; 16327 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16328 mq->page_count); 16329 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16330 cq->queue_id); 16331 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16332 switch (mq->entry_count) { 16333 case 16: 16334 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16335 LPFC_MQ_RING_SIZE_16); 16336 break; 16337 case 32: 16338 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16339 LPFC_MQ_RING_SIZE_32); 16340 break; 16341 case 64: 16342 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16343 LPFC_MQ_RING_SIZE_64); 16344 break; 16345 case 128: 16346 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16347 LPFC_MQ_RING_SIZE_128); 16348 break; 16349 } 16350 list_for_each_entry(dmabuf, &mq->page_list, list) { 16351 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16352 putPaddrLow(dmabuf->phys); 16353 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16354 putPaddrHigh(dmabuf->phys); 16355 } 16356 } 16357 16358 /** 16359 * lpfc_mq_create - Create a mailbox Queue on the HBA 16360 * @phba: HBA structure that indicates port to create a queue on. 16361 * @mq: The queue structure to use to create the mailbox queue. 16362 * @cq: The completion queue to associate with this cq. 16363 * @subtype: The queue's subtype. 16364 * 16365 * This function creates a mailbox queue, as detailed in @mq, on a port, 16366 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16367 * 16368 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16369 * is used to get the entry count and entry size that are necessary to 16370 * determine the number of pages to allocate and use for this queue. This 16371 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16372 * mailbox queue. This function is asynchronous and will wait for the mailbox 16373 * command to finish before continuing. 16374 * 16375 * On success this function will return a zero. If unable to allocate enough 16376 * memory this function will return -ENOMEM. If the queue create mailbox command 16377 * fails this function will return -ENXIO. 16378 **/ 16379 int32_t 16380 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16381 struct lpfc_queue *cq, uint32_t subtype) 16382 { 16383 struct lpfc_mbx_mq_create *mq_create; 16384 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16385 struct lpfc_dmabuf *dmabuf; 16386 LPFC_MBOXQ_t *mbox; 16387 int rc, length, status = 0; 16388 uint32_t shdr_status, shdr_add_status; 16389 union lpfc_sli4_cfg_shdr *shdr; 16390 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16391 16392 /* sanity check on queue memory */ 16393 if (!mq || !cq) 16394 return -ENODEV; 16395 if (!phba->sli4_hba.pc_sli4_params.supported) 16396 hw_page_size = SLI4_PAGE_SIZE; 16397 16398 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16399 if (!mbox) 16400 return -ENOMEM; 16401 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16402 sizeof(struct lpfc_sli4_cfg_mhdr)); 16403 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16404 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16405 length, LPFC_SLI4_MBX_EMBED); 16406 16407 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16408 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16409 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16410 &mq_create_ext->u.request, mq->page_count); 16411 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16412 &mq_create_ext->u.request, 1); 16413 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16414 &mq_create_ext->u.request, 1); 16415 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16416 &mq_create_ext->u.request, 1); 16417 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16418 &mq_create_ext->u.request, 1); 16419 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16420 &mq_create_ext->u.request, 1); 16421 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16422 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16423 phba->sli4_hba.pc_sli4_params.mqv); 16424 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16425 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16426 cq->queue_id); 16427 else 16428 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16429 cq->queue_id); 16430 switch (mq->entry_count) { 16431 default: 16432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16433 "0362 Unsupported MQ count. (%d)\n", 16434 mq->entry_count); 16435 if (mq->entry_count < 16) { 16436 status = -EINVAL; 16437 goto out; 16438 } 16439 fallthrough; /* otherwise default to smallest count */ 16440 case 16: 16441 bf_set(lpfc_mq_context_ring_size, 16442 &mq_create_ext->u.request.context, 16443 LPFC_MQ_RING_SIZE_16); 16444 break; 16445 case 32: 16446 bf_set(lpfc_mq_context_ring_size, 16447 &mq_create_ext->u.request.context, 16448 LPFC_MQ_RING_SIZE_32); 16449 break; 16450 case 64: 16451 bf_set(lpfc_mq_context_ring_size, 16452 &mq_create_ext->u.request.context, 16453 LPFC_MQ_RING_SIZE_64); 16454 break; 16455 case 128: 16456 bf_set(lpfc_mq_context_ring_size, 16457 &mq_create_ext->u.request.context, 16458 LPFC_MQ_RING_SIZE_128); 16459 break; 16460 } 16461 list_for_each_entry(dmabuf, &mq->page_list, list) { 16462 memset(dmabuf->virt, 0, hw_page_size); 16463 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16464 putPaddrLow(dmabuf->phys); 16465 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16466 putPaddrHigh(dmabuf->phys); 16467 } 16468 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16469 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16470 &mq_create_ext->u.response); 16471 if (rc != MBX_SUCCESS) { 16472 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16473 "2795 MQ_CREATE_EXT failed with " 16474 "status x%x. Failback to MQ_CREATE.\n", 16475 rc); 16476 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16477 mq_create = &mbox->u.mqe.un.mq_create; 16478 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16479 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16480 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16481 &mq_create->u.response); 16482 } 16483 16484 /* The IOCTL status is embedded in the mailbox subheader. */ 16485 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16486 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16487 if (shdr_status || shdr_add_status || rc) { 16488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16489 "2502 MQ_CREATE mailbox failed with " 16490 "status x%x add_status x%x, mbx status x%x\n", 16491 shdr_status, shdr_add_status, rc); 16492 status = -ENXIO; 16493 goto out; 16494 } 16495 if (mq->queue_id == 0xFFFF) { 16496 status = -ENXIO; 16497 goto out; 16498 } 16499 mq->type = LPFC_MQ; 16500 mq->assoc_qid = cq->queue_id; 16501 mq->subtype = subtype; 16502 mq->host_index = 0; 16503 mq->hba_index = 0; 16504 16505 /* link the mq onto the parent cq child list */ 16506 list_add_tail(&mq->list, &cq->child_list); 16507 out: 16508 mempool_free(mbox, phba->mbox_mem_pool); 16509 return status; 16510 } 16511 16512 /** 16513 * lpfc_wq_create - Create a Work Queue on the HBA 16514 * @phba: HBA structure that indicates port to create a queue on. 16515 * @wq: The queue structure to use to create the work queue. 16516 * @cq: The completion queue to bind this work queue to. 16517 * @subtype: The subtype of the work queue indicating its functionality. 16518 * 16519 * This function creates a work queue, as detailed in @wq, on a port, described 16520 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16521 * 16522 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16523 * is used to get the entry count and entry size that are necessary to 16524 * determine the number of pages to allocate and use for this queue. The @cq 16525 * is used to indicate which completion queue to bind this work queue to. This 16526 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16527 * work queue. This function is asynchronous and will wait for the mailbox 16528 * command to finish before continuing. 16529 * 16530 * On success this function will return a zero. If unable to allocate enough 16531 * memory this function will return -ENOMEM. If the queue create mailbox command 16532 * fails this function will return -ENXIO. 16533 **/ 16534 int 16535 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16536 struct lpfc_queue *cq, uint32_t subtype) 16537 { 16538 struct lpfc_mbx_wq_create *wq_create; 16539 struct lpfc_dmabuf *dmabuf; 16540 LPFC_MBOXQ_t *mbox; 16541 int rc, length, status = 0; 16542 uint32_t shdr_status, shdr_add_status; 16543 union lpfc_sli4_cfg_shdr *shdr; 16544 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16545 struct dma_address *page; 16546 void __iomem *bar_memmap_p; 16547 uint32_t db_offset; 16548 uint16_t pci_barset; 16549 uint8_t dpp_barset; 16550 uint32_t dpp_offset; 16551 uint8_t wq_create_version; 16552 #ifdef CONFIG_X86 16553 unsigned long pg_addr; 16554 #endif 16555 16556 /* sanity check on queue memory */ 16557 if (!wq || !cq) 16558 return -ENODEV; 16559 if (!phba->sli4_hba.pc_sli4_params.supported) 16560 hw_page_size = wq->page_size; 16561 16562 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16563 if (!mbox) 16564 return -ENOMEM; 16565 length = (sizeof(struct lpfc_mbx_wq_create) - 16566 sizeof(struct lpfc_sli4_cfg_mhdr)); 16567 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16568 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16569 length, LPFC_SLI4_MBX_EMBED); 16570 wq_create = &mbox->u.mqe.un.wq_create; 16571 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16572 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16573 wq->page_count); 16574 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16575 cq->queue_id); 16576 16577 /* wqv is the earliest version supported, NOT the latest */ 16578 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16579 phba->sli4_hba.pc_sli4_params.wqv); 16580 16581 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16582 (wq->page_size > SLI4_PAGE_SIZE)) 16583 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16584 else 16585 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16586 16587 switch (wq_create_version) { 16588 case LPFC_Q_CREATE_VERSION_1: 16589 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16590 wq->entry_count); 16591 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16592 LPFC_Q_CREATE_VERSION_1); 16593 16594 switch (wq->entry_size) { 16595 default: 16596 case 64: 16597 bf_set(lpfc_mbx_wq_create_wqe_size, 16598 &wq_create->u.request_1, 16599 LPFC_WQ_WQE_SIZE_64); 16600 break; 16601 case 128: 16602 bf_set(lpfc_mbx_wq_create_wqe_size, 16603 &wq_create->u.request_1, 16604 LPFC_WQ_WQE_SIZE_128); 16605 break; 16606 } 16607 /* Request DPP by default */ 16608 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16609 bf_set(lpfc_mbx_wq_create_page_size, 16610 &wq_create->u.request_1, 16611 (wq->page_size / SLI4_PAGE_SIZE)); 16612 page = wq_create->u.request_1.page; 16613 break; 16614 default: 16615 page = wq_create->u.request.page; 16616 break; 16617 } 16618 16619 list_for_each_entry(dmabuf, &wq->page_list, list) { 16620 memset(dmabuf->virt, 0, hw_page_size); 16621 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16622 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16623 } 16624 16625 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16626 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16627 16628 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16629 /* The IOCTL status is embedded in the mailbox subheader. */ 16630 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16631 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16632 if (shdr_status || shdr_add_status || rc) { 16633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16634 "2503 WQ_CREATE mailbox failed with " 16635 "status x%x add_status x%x, mbx status x%x\n", 16636 shdr_status, shdr_add_status, rc); 16637 status = -ENXIO; 16638 goto out; 16639 } 16640 16641 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16642 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16643 &wq_create->u.response); 16644 else 16645 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16646 &wq_create->u.response_1); 16647 16648 if (wq->queue_id == 0xFFFF) { 16649 status = -ENXIO; 16650 goto out; 16651 } 16652 16653 wq->db_format = LPFC_DB_LIST_FORMAT; 16654 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16655 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16656 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16657 &wq_create->u.response); 16658 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16659 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16660 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16661 "3265 WQ[%d] doorbell format " 16662 "not supported: x%x\n", 16663 wq->queue_id, wq->db_format); 16664 status = -EINVAL; 16665 goto out; 16666 } 16667 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16668 &wq_create->u.response); 16669 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16670 pci_barset); 16671 if (!bar_memmap_p) { 16672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16673 "3263 WQ[%d] failed to memmap " 16674 "pci barset:x%x\n", 16675 wq->queue_id, pci_barset); 16676 status = -ENOMEM; 16677 goto out; 16678 } 16679 db_offset = wq_create->u.response.doorbell_offset; 16680 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16681 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16683 "3252 WQ[%d] doorbell offset " 16684 "not supported: x%x\n", 16685 wq->queue_id, db_offset); 16686 status = -EINVAL; 16687 goto out; 16688 } 16689 wq->db_regaddr = bar_memmap_p + db_offset; 16690 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16691 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16692 "format:x%x\n", wq->queue_id, 16693 pci_barset, db_offset, wq->db_format); 16694 } else 16695 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16696 } else { 16697 /* Check if DPP was honored by the firmware */ 16698 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16699 &wq_create->u.response_1); 16700 if (wq->dpp_enable) { 16701 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16702 &wq_create->u.response_1); 16703 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16704 pci_barset); 16705 if (!bar_memmap_p) { 16706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16707 "3267 WQ[%d] failed to memmap " 16708 "pci barset:x%x\n", 16709 wq->queue_id, pci_barset); 16710 status = -ENOMEM; 16711 goto out; 16712 } 16713 db_offset = wq_create->u.response_1.doorbell_offset; 16714 wq->db_regaddr = bar_memmap_p + db_offset; 16715 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16716 &wq_create->u.response_1); 16717 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16718 &wq_create->u.response_1); 16719 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16720 dpp_barset); 16721 if (!bar_memmap_p) { 16722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16723 "3268 WQ[%d] failed to memmap " 16724 "pci barset:x%x\n", 16725 wq->queue_id, dpp_barset); 16726 status = -ENOMEM; 16727 goto out; 16728 } 16729 dpp_offset = wq_create->u.response_1.dpp_offset; 16730 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16731 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16732 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16733 "dpp_id:x%x dpp_barset:x%x " 16734 "dpp_offset:x%x\n", 16735 wq->queue_id, pci_barset, db_offset, 16736 wq->dpp_id, dpp_barset, dpp_offset); 16737 16738 #ifdef CONFIG_X86 16739 /* Enable combined writes for DPP aperture */ 16740 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16741 rc = set_memory_wc(pg_addr, 1); 16742 if (rc) { 16743 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16744 "3272 Cannot setup Combined " 16745 "Write on WQ[%d] - disable DPP\n", 16746 wq->queue_id); 16747 phba->cfg_enable_dpp = 0; 16748 } 16749 #else 16750 phba->cfg_enable_dpp = 0; 16751 #endif 16752 } else 16753 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16754 } 16755 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16756 if (wq->pring == NULL) { 16757 status = -ENOMEM; 16758 goto out; 16759 } 16760 wq->type = LPFC_WQ; 16761 wq->assoc_qid = cq->queue_id; 16762 wq->subtype = subtype; 16763 wq->host_index = 0; 16764 wq->hba_index = 0; 16765 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16766 16767 /* link the wq onto the parent cq child list */ 16768 list_add_tail(&wq->list, &cq->child_list); 16769 out: 16770 mempool_free(mbox, phba->mbox_mem_pool); 16771 return status; 16772 } 16773 16774 /** 16775 * lpfc_rq_create - Create a Receive Queue on the HBA 16776 * @phba: HBA structure that indicates port to create a queue on. 16777 * @hrq: The queue structure to use to create the header receive queue. 16778 * @drq: The queue structure to use to create the data receive queue. 16779 * @cq: The completion queue to bind this work queue to. 16780 * @subtype: The subtype of the work queue indicating its functionality. 16781 * 16782 * This function creates a receive buffer queue pair , as detailed in @hrq and 16783 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16784 * to the HBA. 16785 * 16786 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16787 * struct is used to get the entry count that is necessary to determine the 16788 * number of pages to use for this queue. The @cq is used to indicate which 16789 * completion queue to bind received buffers that are posted to these queues to. 16790 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16791 * receive queue pair. This function is asynchronous and will wait for the 16792 * mailbox command to finish before continuing. 16793 * 16794 * On success this function will return a zero. If unable to allocate enough 16795 * memory this function will return -ENOMEM. If the queue create mailbox command 16796 * fails this function will return -ENXIO. 16797 **/ 16798 int 16799 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16800 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16801 { 16802 struct lpfc_mbx_rq_create *rq_create; 16803 struct lpfc_dmabuf *dmabuf; 16804 LPFC_MBOXQ_t *mbox; 16805 int rc, length, status = 0; 16806 uint32_t shdr_status, shdr_add_status; 16807 union lpfc_sli4_cfg_shdr *shdr; 16808 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16809 void __iomem *bar_memmap_p; 16810 uint32_t db_offset; 16811 uint16_t pci_barset; 16812 16813 /* sanity check on queue memory */ 16814 if (!hrq || !drq || !cq) 16815 return -ENODEV; 16816 if (!phba->sli4_hba.pc_sli4_params.supported) 16817 hw_page_size = SLI4_PAGE_SIZE; 16818 16819 if (hrq->entry_count != drq->entry_count) 16820 return -EINVAL; 16821 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16822 if (!mbox) 16823 return -ENOMEM; 16824 length = (sizeof(struct lpfc_mbx_rq_create) - 16825 sizeof(struct lpfc_sli4_cfg_mhdr)); 16826 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16827 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16828 length, LPFC_SLI4_MBX_EMBED); 16829 rq_create = &mbox->u.mqe.un.rq_create; 16830 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16831 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16832 phba->sli4_hba.pc_sli4_params.rqv); 16833 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16834 bf_set(lpfc_rq_context_rqe_count_1, 16835 &rq_create->u.request.context, 16836 hrq->entry_count); 16837 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16838 bf_set(lpfc_rq_context_rqe_size, 16839 &rq_create->u.request.context, 16840 LPFC_RQE_SIZE_8); 16841 bf_set(lpfc_rq_context_page_size, 16842 &rq_create->u.request.context, 16843 LPFC_RQ_PAGE_SIZE_4096); 16844 } else { 16845 switch (hrq->entry_count) { 16846 default: 16847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16848 "2535 Unsupported RQ count. (%d)\n", 16849 hrq->entry_count); 16850 if (hrq->entry_count < 512) { 16851 status = -EINVAL; 16852 goto out; 16853 } 16854 fallthrough; /* otherwise default to smallest count */ 16855 case 512: 16856 bf_set(lpfc_rq_context_rqe_count, 16857 &rq_create->u.request.context, 16858 LPFC_RQ_RING_SIZE_512); 16859 break; 16860 case 1024: 16861 bf_set(lpfc_rq_context_rqe_count, 16862 &rq_create->u.request.context, 16863 LPFC_RQ_RING_SIZE_1024); 16864 break; 16865 case 2048: 16866 bf_set(lpfc_rq_context_rqe_count, 16867 &rq_create->u.request.context, 16868 LPFC_RQ_RING_SIZE_2048); 16869 break; 16870 case 4096: 16871 bf_set(lpfc_rq_context_rqe_count, 16872 &rq_create->u.request.context, 16873 LPFC_RQ_RING_SIZE_4096); 16874 break; 16875 } 16876 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16877 LPFC_HDR_BUF_SIZE); 16878 } 16879 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16880 cq->queue_id); 16881 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16882 hrq->page_count); 16883 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16884 memset(dmabuf->virt, 0, hw_page_size); 16885 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16886 putPaddrLow(dmabuf->phys); 16887 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16888 putPaddrHigh(dmabuf->phys); 16889 } 16890 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16891 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16892 16893 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16894 /* The IOCTL status is embedded in the mailbox subheader. */ 16895 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16896 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16897 if (shdr_status || shdr_add_status || rc) { 16898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16899 "2504 RQ_CREATE mailbox failed with " 16900 "status x%x add_status x%x, mbx status x%x\n", 16901 shdr_status, shdr_add_status, rc); 16902 status = -ENXIO; 16903 goto out; 16904 } 16905 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16906 if (hrq->queue_id == 0xFFFF) { 16907 status = -ENXIO; 16908 goto out; 16909 } 16910 16911 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16912 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16913 &rq_create->u.response); 16914 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16915 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16917 "3262 RQ [%d] doorbell format not " 16918 "supported: x%x\n", hrq->queue_id, 16919 hrq->db_format); 16920 status = -EINVAL; 16921 goto out; 16922 } 16923 16924 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16925 &rq_create->u.response); 16926 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16927 if (!bar_memmap_p) { 16928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16929 "3269 RQ[%d] failed to memmap pci " 16930 "barset:x%x\n", hrq->queue_id, 16931 pci_barset); 16932 status = -ENOMEM; 16933 goto out; 16934 } 16935 16936 db_offset = rq_create->u.response.doorbell_offset; 16937 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16938 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16940 "3270 RQ[%d] doorbell offset not " 16941 "supported: x%x\n", hrq->queue_id, 16942 db_offset); 16943 status = -EINVAL; 16944 goto out; 16945 } 16946 hrq->db_regaddr = bar_memmap_p + db_offset; 16947 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16948 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16949 "format:x%x\n", hrq->queue_id, pci_barset, 16950 db_offset, hrq->db_format); 16951 } else { 16952 hrq->db_format = LPFC_DB_RING_FORMAT; 16953 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16954 } 16955 hrq->type = LPFC_HRQ; 16956 hrq->assoc_qid = cq->queue_id; 16957 hrq->subtype = subtype; 16958 hrq->host_index = 0; 16959 hrq->hba_index = 0; 16960 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16961 16962 /* now create the data queue */ 16963 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16964 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16965 length, LPFC_SLI4_MBX_EMBED); 16966 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16967 phba->sli4_hba.pc_sli4_params.rqv); 16968 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16969 bf_set(lpfc_rq_context_rqe_count_1, 16970 &rq_create->u.request.context, hrq->entry_count); 16971 if (subtype == LPFC_NVMET) 16972 rq_create->u.request.context.buffer_size = 16973 LPFC_NVMET_DATA_BUF_SIZE; 16974 else 16975 rq_create->u.request.context.buffer_size = 16976 LPFC_DATA_BUF_SIZE; 16977 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16978 LPFC_RQE_SIZE_8); 16979 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16980 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16981 } else { 16982 switch (drq->entry_count) { 16983 default: 16984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16985 "2536 Unsupported RQ count. (%d)\n", 16986 drq->entry_count); 16987 if (drq->entry_count < 512) { 16988 status = -EINVAL; 16989 goto out; 16990 } 16991 fallthrough; /* otherwise default to smallest count */ 16992 case 512: 16993 bf_set(lpfc_rq_context_rqe_count, 16994 &rq_create->u.request.context, 16995 LPFC_RQ_RING_SIZE_512); 16996 break; 16997 case 1024: 16998 bf_set(lpfc_rq_context_rqe_count, 16999 &rq_create->u.request.context, 17000 LPFC_RQ_RING_SIZE_1024); 17001 break; 17002 case 2048: 17003 bf_set(lpfc_rq_context_rqe_count, 17004 &rq_create->u.request.context, 17005 LPFC_RQ_RING_SIZE_2048); 17006 break; 17007 case 4096: 17008 bf_set(lpfc_rq_context_rqe_count, 17009 &rq_create->u.request.context, 17010 LPFC_RQ_RING_SIZE_4096); 17011 break; 17012 } 17013 if (subtype == LPFC_NVMET) 17014 bf_set(lpfc_rq_context_buf_size, 17015 &rq_create->u.request.context, 17016 LPFC_NVMET_DATA_BUF_SIZE); 17017 else 17018 bf_set(lpfc_rq_context_buf_size, 17019 &rq_create->u.request.context, 17020 LPFC_DATA_BUF_SIZE); 17021 } 17022 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17023 cq->queue_id); 17024 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17025 drq->page_count); 17026 list_for_each_entry(dmabuf, &drq->page_list, list) { 17027 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17028 putPaddrLow(dmabuf->phys); 17029 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17030 putPaddrHigh(dmabuf->phys); 17031 } 17032 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17033 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17034 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17035 /* The IOCTL status is embedded in the mailbox subheader. */ 17036 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17037 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17038 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17039 if (shdr_status || shdr_add_status || rc) { 17040 status = -ENXIO; 17041 goto out; 17042 } 17043 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17044 if (drq->queue_id == 0xFFFF) { 17045 status = -ENXIO; 17046 goto out; 17047 } 17048 drq->type = LPFC_DRQ; 17049 drq->assoc_qid = cq->queue_id; 17050 drq->subtype = subtype; 17051 drq->host_index = 0; 17052 drq->hba_index = 0; 17053 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17054 17055 /* link the header and data RQs onto the parent cq child list */ 17056 list_add_tail(&hrq->list, &cq->child_list); 17057 list_add_tail(&drq->list, &cq->child_list); 17058 17059 out: 17060 mempool_free(mbox, phba->mbox_mem_pool); 17061 return status; 17062 } 17063 17064 /** 17065 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17066 * @phba: HBA structure that indicates port to create a queue on. 17067 * @hrqp: The queue structure array to use to create the header receive queues. 17068 * @drqp: The queue structure array to use to create the data receive queues. 17069 * @cqp: The completion queue array to bind these receive queues to. 17070 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17071 * 17072 * This function creates a receive buffer queue pair , as detailed in @hrq and 17073 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17074 * to the HBA. 17075 * 17076 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17077 * struct is used to get the entry count that is necessary to determine the 17078 * number of pages to use for this queue. The @cq is used to indicate which 17079 * completion queue to bind received buffers that are posted to these queues to. 17080 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17081 * receive queue pair. This function is asynchronous and will wait for the 17082 * mailbox command to finish before continuing. 17083 * 17084 * On success this function will return a zero. If unable to allocate enough 17085 * memory this function will return -ENOMEM. If the queue create mailbox command 17086 * fails this function will return -ENXIO. 17087 **/ 17088 int 17089 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17090 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17091 uint32_t subtype) 17092 { 17093 struct lpfc_queue *hrq, *drq, *cq; 17094 struct lpfc_mbx_rq_create_v2 *rq_create; 17095 struct lpfc_dmabuf *dmabuf; 17096 LPFC_MBOXQ_t *mbox; 17097 int rc, length, alloclen, status = 0; 17098 int cnt, idx, numrq, page_idx = 0; 17099 uint32_t shdr_status, shdr_add_status; 17100 union lpfc_sli4_cfg_shdr *shdr; 17101 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17102 17103 numrq = phba->cfg_nvmet_mrq; 17104 /* sanity check on array memory */ 17105 if (!hrqp || !drqp || !cqp || !numrq) 17106 return -ENODEV; 17107 if (!phba->sli4_hba.pc_sli4_params.supported) 17108 hw_page_size = SLI4_PAGE_SIZE; 17109 17110 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17111 if (!mbox) 17112 return -ENOMEM; 17113 17114 length = sizeof(struct lpfc_mbx_rq_create_v2); 17115 length += ((2 * numrq * hrqp[0]->page_count) * 17116 sizeof(struct dma_address)); 17117 17118 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17119 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17120 LPFC_SLI4_MBX_NEMBED); 17121 if (alloclen < length) { 17122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17123 "3099 Allocated DMA memory size (%d) is " 17124 "less than the requested DMA memory size " 17125 "(%d)\n", alloclen, length); 17126 status = -ENOMEM; 17127 goto out; 17128 } 17129 17130 17131 17132 rq_create = mbox->sge_array->addr[0]; 17133 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17134 17135 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17136 cnt = 0; 17137 17138 for (idx = 0; idx < numrq; idx++) { 17139 hrq = hrqp[idx]; 17140 drq = drqp[idx]; 17141 cq = cqp[idx]; 17142 17143 /* sanity check on queue memory */ 17144 if (!hrq || !drq || !cq) { 17145 status = -ENODEV; 17146 goto out; 17147 } 17148 17149 if (hrq->entry_count != drq->entry_count) { 17150 status = -EINVAL; 17151 goto out; 17152 } 17153 17154 if (idx == 0) { 17155 bf_set(lpfc_mbx_rq_create_num_pages, 17156 &rq_create->u.request, 17157 hrq->page_count); 17158 bf_set(lpfc_mbx_rq_create_rq_cnt, 17159 &rq_create->u.request, (numrq * 2)); 17160 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17161 1); 17162 bf_set(lpfc_rq_context_base_cq, 17163 &rq_create->u.request.context, 17164 cq->queue_id); 17165 bf_set(lpfc_rq_context_data_size, 17166 &rq_create->u.request.context, 17167 LPFC_NVMET_DATA_BUF_SIZE); 17168 bf_set(lpfc_rq_context_hdr_size, 17169 &rq_create->u.request.context, 17170 LPFC_HDR_BUF_SIZE); 17171 bf_set(lpfc_rq_context_rqe_count_1, 17172 &rq_create->u.request.context, 17173 hrq->entry_count); 17174 bf_set(lpfc_rq_context_rqe_size, 17175 &rq_create->u.request.context, 17176 LPFC_RQE_SIZE_8); 17177 bf_set(lpfc_rq_context_page_size, 17178 &rq_create->u.request.context, 17179 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17180 } 17181 rc = 0; 17182 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17183 memset(dmabuf->virt, 0, hw_page_size); 17184 cnt = page_idx + dmabuf->buffer_tag; 17185 rq_create->u.request.page[cnt].addr_lo = 17186 putPaddrLow(dmabuf->phys); 17187 rq_create->u.request.page[cnt].addr_hi = 17188 putPaddrHigh(dmabuf->phys); 17189 rc++; 17190 } 17191 page_idx += rc; 17192 17193 rc = 0; 17194 list_for_each_entry(dmabuf, &drq->page_list, list) { 17195 memset(dmabuf->virt, 0, hw_page_size); 17196 cnt = page_idx + dmabuf->buffer_tag; 17197 rq_create->u.request.page[cnt].addr_lo = 17198 putPaddrLow(dmabuf->phys); 17199 rq_create->u.request.page[cnt].addr_hi = 17200 putPaddrHigh(dmabuf->phys); 17201 rc++; 17202 } 17203 page_idx += rc; 17204 17205 hrq->db_format = LPFC_DB_RING_FORMAT; 17206 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17207 hrq->type = LPFC_HRQ; 17208 hrq->assoc_qid = cq->queue_id; 17209 hrq->subtype = subtype; 17210 hrq->host_index = 0; 17211 hrq->hba_index = 0; 17212 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17213 17214 drq->db_format = LPFC_DB_RING_FORMAT; 17215 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17216 drq->type = LPFC_DRQ; 17217 drq->assoc_qid = cq->queue_id; 17218 drq->subtype = subtype; 17219 drq->host_index = 0; 17220 drq->hba_index = 0; 17221 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17222 17223 list_add_tail(&hrq->list, &cq->child_list); 17224 list_add_tail(&drq->list, &cq->child_list); 17225 } 17226 17227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17228 /* The IOCTL status is embedded in the mailbox subheader. */ 17229 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17230 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17231 if (shdr_status || shdr_add_status || rc) { 17232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17233 "3120 RQ_CREATE mailbox failed with " 17234 "status x%x add_status x%x, mbx status x%x\n", 17235 shdr_status, shdr_add_status, rc); 17236 status = -ENXIO; 17237 goto out; 17238 } 17239 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17240 if (rc == 0xFFFF) { 17241 status = -ENXIO; 17242 goto out; 17243 } 17244 17245 /* Initialize all RQs with associated queue id */ 17246 for (idx = 0; idx < numrq; idx++) { 17247 hrq = hrqp[idx]; 17248 hrq->queue_id = rc + (2 * idx); 17249 drq = drqp[idx]; 17250 drq->queue_id = rc + (2 * idx) + 1; 17251 } 17252 17253 out: 17254 lpfc_sli4_mbox_cmd_free(phba, mbox); 17255 return status; 17256 } 17257 17258 /** 17259 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17260 * @phba: HBA structure that indicates port to destroy a queue on. 17261 * @eq: The queue structure associated with the queue to destroy. 17262 * 17263 * This function destroys a queue, as detailed in @eq by sending an mailbox 17264 * command, specific to the type of queue, to the HBA. 17265 * 17266 * The @eq struct is used to get the queue ID of the queue to destroy. 17267 * 17268 * On success this function will return a zero. If the queue destroy mailbox 17269 * command fails this function will return -ENXIO. 17270 **/ 17271 int 17272 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17273 { 17274 LPFC_MBOXQ_t *mbox; 17275 int rc, length, status = 0; 17276 uint32_t shdr_status, shdr_add_status; 17277 union lpfc_sli4_cfg_shdr *shdr; 17278 17279 /* sanity check on queue memory */ 17280 if (!eq) 17281 return -ENODEV; 17282 17283 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17284 if (!mbox) 17285 return -ENOMEM; 17286 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17287 sizeof(struct lpfc_sli4_cfg_mhdr)); 17288 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17289 LPFC_MBOX_OPCODE_EQ_DESTROY, 17290 length, LPFC_SLI4_MBX_EMBED); 17291 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17292 eq->queue_id); 17293 mbox->vport = eq->phba->pport; 17294 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17295 17296 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17297 /* The IOCTL status is embedded in the mailbox subheader. */ 17298 shdr = (union lpfc_sli4_cfg_shdr *) 17299 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17300 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17301 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17302 if (shdr_status || shdr_add_status || rc) { 17303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17304 "2505 EQ_DESTROY mailbox failed with " 17305 "status x%x add_status x%x, mbx status x%x\n", 17306 shdr_status, shdr_add_status, rc); 17307 status = -ENXIO; 17308 } 17309 17310 /* Remove eq from any list */ 17311 list_del_init(&eq->list); 17312 mempool_free(mbox, eq->phba->mbox_mem_pool); 17313 return status; 17314 } 17315 17316 /** 17317 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17318 * @phba: HBA structure that indicates port to destroy a queue on. 17319 * @cq: The queue structure associated with the queue to destroy. 17320 * 17321 * This function destroys a queue, as detailed in @cq by sending an mailbox 17322 * command, specific to the type of queue, to the HBA. 17323 * 17324 * The @cq struct is used to get the queue ID of the queue to destroy. 17325 * 17326 * On success this function will return a zero. If the queue destroy mailbox 17327 * command fails this function will return -ENXIO. 17328 **/ 17329 int 17330 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17331 { 17332 LPFC_MBOXQ_t *mbox; 17333 int rc, length, status = 0; 17334 uint32_t shdr_status, shdr_add_status; 17335 union lpfc_sli4_cfg_shdr *shdr; 17336 17337 /* sanity check on queue memory */ 17338 if (!cq) 17339 return -ENODEV; 17340 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17341 if (!mbox) 17342 return -ENOMEM; 17343 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17344 sizeof(struct lpfc_sli4_cfg_mhdr)); 17345 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17346 LPFC_MBOX_OPCODE_CQ_DESTROY, 17347 length, LPFC_SLI4_MBX_EMBED); 17348 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17349 cq->queue_id); 17350 mbox->vport = cq->phba->pport; 17351 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17352 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17353 /* The IOCTL status is embedded in the mailbox subheader. */ 17354 shdr = (union lpfc_sli4_cfg_shdr *) 17355 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17356 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17357 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17358 if (shdr_status || shdr_add_status || rc) { 17359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17360 "2506 CQ_DESTROY mailbox failed with " 17361 "status x%x add_status x%x, mbx status x%x\n", 17362 shdr_status, shdr_add_status, rc); 17363 status = -ENXIO; 17364 } 17365 /* Remove cq from any list */ 17366 list_del_init(&cq->list); 17367 mempool_free(mbox, cq->phba->mbox_mem_pool); 17368 return status; 17369 } 17370 17371 /** 17372 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17373 * @phba: HBA structure that indicates port to destroy a queue on. 17374 * @mq: The queue structure associated with the queue to destroy. 17375 * 17376 * This function destroys a queue, as detailed in @mq by sending an mailbox 17377 * command, specific to the type of queue, to the HBA. 17378 * 17379 * The @mq struct is used to get the queue ID of the queue to destroy. 17380 * 17381 * On success this function will return a zero. If the queue destroy mailbox 17382 * command fails this function will return -ENXIO. 17383 **/ 17384 int 17385 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17386 { 17387 LPFC_MBOXQ_t *mbox; 17388 int rc, length, status = 0; 17389 uint32_t shdr_status, shdr_add_status; 17390 union lpfc_sli4_cfg_shdr *shdr; 17391 17392 /* sanity check on queue memory */ 17393 if (!mq) 17394 return -ENODEV; 17395 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17396 if (!mbox) 17397 return -ENOMEM; 17398 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17399 sizeof(struct lpfc_sli4_cfg_mhdr)); 17400 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17401 LPFC_MBOX_OPCODE_MQ_DESTROY, 17402 length, LPFC_SLI4_MBX_EMBED); 17403 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17404 mq->queue_id); 17405 mbox->vport = mq->phba->pport; 17406 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17407 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17408 /* The IOCTL status is embedded in the mailbox subheader. */ 17409 shdr = (union lpfc_sli4_cfg_shdr *) 17410 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17411 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17412 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17413 if (shdr_status || shdr_add_status || rc) { 17414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17415 "2507 MQ_DESTROY mailbox failed with " 17416 "status x%x add_status x%x, mbx status x%x\n", 17417 shdr_status, shdr_add_status, rc); 17418 status = -ENXIO; 17419 } 17420 /* Remove mq from any list */ 17421 list_del_init(&mq->list); 17422 mempool_free(mbox, mq->phba->mbox_mem_pool); 17423 return status; 17424 } 17425 17426 /** 17427 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17428 * @phba: HBA structure that indicates port to destroy a queue on. 17429 * @wq: The queue structure associated with the queue to destroy. 17430 * 17431 * This function destroys a queue, as detailed in @wq by sending an mailbox 17432 * command, specific to the type of queue, to the HBA. 17433 * 17434 * The @wq struct is used to get the queue ID of the queue to destroy. 17435 * 17436 * On success this function will return a zero. If the queue destroy mailbox 17437 * command fails this function will return -ENXIO. 17438 **/ 17439 int 17440 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17441 { 17442 LPFC_MBOXQ_t *mbox; 17443 int rc, length, status = 0; 17444 uint32_t shdr_status, shdr_add_status; 17445 union lpfc_sli4_cfg_shdr *shdr; 17446 17447 /* sanity check on queue memory */ 17448 if (!wq) 17449 return -ENODEV; 17450 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17451 if (!mbox) 17452 return -ENOMEM; 17453 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17454 sizeof(struct lpfc_sli4_cfg_mhdr)); 17455 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17456 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17457 length, LPFC_SLI4_MBX_EMBED); 17458 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17459 wq->queue_id); 17460 mbox->vport = wq->phba->pport; 17461 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17462 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17463 shdr = (union lpfc_sli4_cfg_shdr *) 17464 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17465 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17466 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17467 if (shdr_status || shdr_add_status || rc) { 17468 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17469 "2508 WQ_DESTROY mailbox failed with " 17470 "status x%x add_status x%x, mbx status x%x\n", 17471 shdr_status, shdr_add_status, rc); 17472 status = -ENXIO; 17473 } 17474 /* Remove wq from any list */ 17475 list_del_init(&wq->list); 17476 kfree(wq->pring); 17477 wq->pring = NULL; 17478 mempool_free(mbox, wq->phba->mbox_mem_pool); 17479 return status; 17480 } 17481 17482 /** 17483 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17484 * @phba: HBA structure that indicates port to destroy a queue on. 17485 * @hrq: The queue structure associated with the queue to destroy. 17486 * @drq: The queue structure associated with the queue to destroy. 17487 * 17488 * This function destroys a queue, as detailed in @rq by sending an mailbox 17489 * command, specific to the type of queue, to the HBA. 17490 * 17491 * The @rq struct is used to get the queue ID of the queue to destroy. 17492 * 17493 * On success this function will return a zero. If the queue destroy mailbox 17494 * command fails this function will return -ENXIO. 17495 **/ 17496 int 17497 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17498 struct lpfc_queue *drq) 17499 { 17500 LPFC_MBOXQ_t *mbox; 17501 int rc, length, status = 0; 17502 uint32_t shdr_status, shdr_add_status; 17503 union lpfc_sli4_cfg_shdr *shdr; 17504 17505 /* sanity check on queue memory */ 17506 if (!hrq || !drq) 17507 return -ENODEV; 17508 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17509 if (!mbox) 17510 return -ENOMEM; 17511 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17512 sizeof(struct lpfc_sli4_cfg_mhdr)); 17513 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17514 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17515 length, LPFC_SLI4_MBX_EMBED); 17516 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17517 hrq->queue_id); 17518 mbox->vport = hrq->phba->pport; 17519 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17520 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17521 /* The IOCTL status is embedded in the mailbox subheader. */ 17522 shdr = (union lpfc_sli4_cfg_shdr *) 17523 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17524 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17525 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17526 if (shdr_status || shdr_add_status || rc) { 17527 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17528 "2509 RQ_DESTROY mailbox failed with " 17529 "status x%x add_status x%x, mbx status x%x\n", 17530 shdr_status, shdr_add_status, rc); 17531 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17532 return -ENXIO; 17533 } 17534 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17535 drq->queue_id); 17536 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17537 shdr = (union lpfc_sli4_cfg_shdr *) 17538 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17539 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17540 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17541 if (shdr_status || shdr_add_status || rc) { 17542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17543 "2510 RQ_DESTROY mailbox failed with " 17544 "status x%x add_status x%x, mbx status x%x\n", 17545 shdr_status, shdr_add_status, rc); 17546 status = -ENXIO; 17547 } 17548 list_del_init(&hrq->list); 17549 list_del_init(&drq->list); 17550 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17551 return status; 17552 } 17553 17554 /** 17555 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17556 * @phba: The virtual port for which this call being executed. 17557 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17558 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17559 * @xritag: the xritag that ties this io to the SGL pages. 17560 * 17561 * This routine will post the sgl pages for the IO that has the xritag 17562 * that is in the iocbq structure. The xritag is assigned during iocbq 17563 * creation and persists for as long as the driver is loaded. 17564 * if the caller has fewer than 256 scatter gather segments to map then 17565 * pdma_phys_addr1 should be 0. 17566 * If the caller needs to map more than 256 scatter gather segment then 17567 * pdma_phys_addr1 should be a valid physical address. 17568 * physical address for SGLs must be 64 byte aligned. 17569 * If you are going to map 2 SGL's then the first one must have 256 entries 17570 * the second sgl can have between 1 and 256 entries. 17571 * 17572 * Return codes: 17573 * 0 - Success 17574 * -ENXIO, -ENOMEM - Failure 17575 **/ 17576 int 17577 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17578 dma_addr_t pdma_phys_addr0, 17579 dma_addr_t pdma_phys_addr1, 17580 uint16_t xritag) 17581 { 17582 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17583 LPFC_MBOXQ_t *mbox; 17584 int rc; 17585 uint32_t shdr_status, shdr_add_status; 17586 uint32_t mbox_tmo; 17587 union lpfc_sli4_cfg_shdr *shdr; 17588 17589 if (xritag == NO_XRI) { 17590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17591 "0364 Invalid param:\n"); 17592 return -EINVAL; 17593 } 17594 17595 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17596 if (!mbox) 17597 return -ENOMEM; 17598 17599 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17600 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17601 sizeof(struct lpfc_mbx_post_sgl_pages) - 17602 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17603 17604 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17605 &mbox->u.mqe.un.post_sgl_pages; 17606 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17607 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17608 17609 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17610 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17611 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17612 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17613 17614 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17615 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17616 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17617 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17618 if (!phba->sli4_hba.intr_enable) 17619 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17620 else { 17621 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17622 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17623 } 17624 /* The IOCTL status is embedded in the mailbox subheader. */ 17625 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17626 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17627 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17628 if (!phba->sli4_hba.intr_enable) 17629 mempool_free(mbox, phba->mbox_mem_pool); 17630 else if (rc != MBX_TIMEOUT) 17631 mempool_free(mbox, phba->mbox_mem_pool); 17632 if (shdr_status || shdr_add_status || rc) { 17633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17634 "2511 POST_SGL mailbox failed with " 17635 "status x%x add_status x%x, mbx status x%x\n", 17636 shdr_status, shdr_add_status, rc); 17637 } 17638 return 0; 17639 } 17640 17641 /** 17642 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17643 * @phba: pointer to lpfc hba data structure. 17644 * 17645 * This routine is invoked to post rpi header templates to the 17646 * HBA consistent with the SLI-4 interface spec. This routine 17647 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17648 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17649 * 17650 * Returns 17651 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17652 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17653 **/ 17654 static uint16_t 17655 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17656 { 17657 unsigned long xri; 17658 17659 /* 17660 * Fetch the next logical xri. Because this index is logical, 17661 * the driver starts at 0 each time. 17662 */ 17663 spin_lock_irq(&phba->hbalock); 17664 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17665 phba->sli4_hba.max_cfg_param.max_xri); 17666 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17667 spin_unlock_irq(&phba->hbalock); 17668 return NO_XRI; 17669 } else { 17670 set_bit(xri, phba->sli4_hba.xri_bmask); 17671 phba->sli4_hba.max_cfg_param.xri_used++; 17672 } 17673 spin_unlock_irq(&phba->hbalock); 17674 return xri; 17675 } 17676 17677 /** 17678 * __lpfc_sli4_free_xri - Release an xri for reuse. 17679 * @phba: pointer to lpfc hba data structure. 17680 * @xri: xri to release. 17681 * 17682 * This routine is invoked to release an xri to the pool of 17683 * available rpis maintained by the driver. 17684 **/ 17685 static void 17686 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17687 { 17688 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17689 phba->sli4_hba.max_cfg_param.xri_used--; 17690 } 17691 } 17692 17693 /** 17694 * lpfc_sli4_free_xri - Release an xri for reuse. 17695 * @phba: pointer to lpfc hba data structure. 17696 * @xri: xri to release. 17697 * 17698 * This routine is invoked to release an xri to the pool of 17699 * available rpis maintained by the driver. 17700 **/ 17701 void 17702 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17703 { 17704 spin_lock_irq(&phba->hbalock); 17705 __lpfc_sli4_free_xri(phba, xri); 17706 spin_unlock_irq(&phba->hbalock); 17707 } 17708 17709 /** 17710 * lpfc_sli4_next_xritag - Get an xritag for the io 17711 * @phba: Pointer to HBA context object. 17712 * 17713 * This function gets an xritag for the iocb. If there is no unused xritag 17714 * it will return 0xffff. 17715 * The function returns the allocated xritag if successful, else returns zero. 17716 * Zero is not a valid xritag. 17717 * The caller is not required to hold any lock. 17718 **/ 17719 uint16_t 17720 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17721 { 17722 uint16_t xri_index; 17723 17724 xri_index = lpfc_sli4_alloc_xri(phba); 17725 if (xri_index == NO_XRI) 17726 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17727 "2004 Failed to allocate XRI.last XRITAG is %d" 17728 " Max XRI is %d, Used XRI is %d\n", 17729 xri_index, 17730 phba->sli4_hba.max_cfg_param.max_xri, 17731 phba->sli4_hba.max_cfg_param.xri_used); 17732 return xri_index; 17733 } 17734 17735 /** 17736 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17737 * @phba: pointer to lpfc hba data structure. 17738 * @post_sgl_list: pointer to els sgl entry list. 17739 * @post_cnt: number of els sgl entries on the list. 17740 * 17741 * This routine is invoked to post a block of driver's sgl pages to the 17742 * HBA using non-embedded mailbox command. No Lock is held. This routine 17743 * is only called when the driver is loading and after all IO has been 17744 * stopped. 17745 **/ 17746 static int 17747 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17748 struct list_head *post_sgl_list, 17749 int post_cnt) 17750 { 17751 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17752 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17753 struct sgl_page_pairs *sgl_pg_pairs; 17754 void *viraddr; 17755 LPFC_MBOXQ_t *mbox; 17756 uint32_t reqlen, alloclen, pg_pairs; 17757 uint32_t mbox_tmo; 17758 uint16_t xritag_start = 0; 17759 int rc = 0; 17760 uint32_t shdr_status, shdr_add_status; 17761 union lpfc_sli4_cfg_shdr *shdr; 17762 17763 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17764 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17765 if (reqlen > SLI4_PAGE_SIZE) { 17766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17767 "2559 Block sgl registration required DMA " 17768 "size (%d) great than a page\n", reqlen); 17769 return -ENOMEM; 17770 } 17771 17772 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17773 if (!mbox) 17774 return -ENOMEM; 17775 17776 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17777 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17778 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17779 LPFC_SLI4_MBX_NEMBED); 17780 17781 if (alloclen < reqlen) { 17782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17783 "0285 Allocated DMA memory size (%d) is " 17784 "less than the requested DMA memory " 17785 "size (%d)\n", alloclen, reqlen); 17786 lpfc_sli4_mbox_cmd_free(phba, mbox); 17787 return -ENOMEM; 17788 } 17789 /* Set up the SGL pages in the non-embedded DMA pages */ 17790 viraddr = mbox->sge_array->addr[0]; 17791 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17792 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17793 17794 pg_pairs = 0; 17795 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17796 /* Set up the sge entry */ 17797 sgl_pg_pairs->sgl_pg0_addr_lo = 17798 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17799 sgl_pg_pairs->sgl_pg0_addr_hi = 17800 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17801 sgl_pg_pairs->sgl_pg1_addr_lo = 17802 cpu_to_le32(putPaddrLow(0)); 17803 sgl_pg_pairs->sgl_pg1_addr_hi = 17804 cpu_to_le32(putPaddrHigh(0)); 17805 17806 /* Keep the first xritag on the list */ 17807 if (pg_pairs == 0) 17808 xritag_start = sglq_entry->sli4_xritag; 17809 sgl_pg_pairs++; 17810 pg_pairs++; 17811 } 17812 17813 /* Complete initialization and perform endian conversion. */ 17814 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17815 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17816 sgl->word0 = cpu_to_le32(sgl->word0); 17817 17818 if (!phba->sli4_hba.intr_enable) 17819 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17820 else { 17821 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17822 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17823 } 17824 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17825 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17826 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17827 if (!phba->sli4_hba.intr_enable) 17828 lpfc_sli4_mbox_cmd_free(phba, mbox); 17829 else if (rc != MBX_TIMEOUT) 17830 lpfc_sli4_mbox_cmd_free(phba, mbox); 17831 if (shdr_status || shdr_add_status || rc) { 17832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17833 "2513 POST_SGL_BLOCK mailbox command failed " 17834 "status x%x add_status x%x mbx status x%x\n", 17835 shdr_status, shdr_add_status, rc); 17836 rc = -ENXIO; 17837 } 17838 return rc; 17839 } 17840 17841 /** 17842 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17843 * @phba: pointer to lpfc hba data structure. 17844 * @nblist: pointer to nvme buffer list. 17845 * @count: number of scsi buffers on the list. 17846 * 17847 * This routine is invoked to post a block of @count scsi sgl pages from a 17848 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17849 * No Lock is held. 17850 * 17851 **/ 17852 static int 17853 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17854 int count) 17855 { 17856 struct lpfc_io_buf *lpfc_ncmd; 17857 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17858 struct sgl_page_pairs *sgl_pg_pairs; 17859 void *viraddr; 17860 LPFC_MBOXQ_t *mbox; 17861 uint32_t reqlen, alloclen, pg_pairs; 17862 uint32_t mbox_tmo; 17863 uint16_t xritag_start = 0; 17864 int rc = 0; 17865 uint32_t shdr_status, shdr_add_status; 17866 dma_addr_t pdma_phys_bpl1; 17867 union lpfc_sli4_cfg_shdr *shdr; 17868 17869 /* Calculate the requested length of the dma memory */ 17870 reqlen = count * sizeof(struct sgl_page_pairs) + 17871 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17872 if (reqlen > SLI4_PAGE_SIZE) { 17873 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17874 "6118 Block sgl registration required DMA " 17875 "size (%d) great than a page\n", reqlen); 17876 return -ENOMEM; 17877 } 17878 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17879 if (!mbox) { 17880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17881 "6119 Failed to allocate mbox cmd memory\n"); 17882 return -ENOMEM; 17883 } 17884 17885 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17886 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17887 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17888 reqlen, LPFC_SLI4_MBX_NEMBED); 17889 17890 if (alloclen < reqlen) { 17891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17892 "6120 Allocated DMA memory size (%d) is " 17893 "less than the requested DMA memory " 17894 "size (%d)\n", alloclen, reqlen); 17895 lpfc_sli4_mbox_cmd_free(phba, mbox); 17896 return -ENOMEM; 17897 } 17898 17899 /* Get the first SGE entry from the non-embedded DMA memory */ 17900 viraddr = mbox->sge_array->addr[0]; 17901 17902 /* Set up the SGL pages in the non-embedded DMA pages */ 17903 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17904 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17905 17906 pg_pairs = 0; 17907 list_for_each_entry(lpfc_ncmd, nblist, list) { 17908 /* Set up the sge entry */ 17909 sgl_pg_pairs->sgl_pg0_addr_lo = 17910 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17911 sgl_pg_pairs->sgl_pg0_addr_hi = 17912 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17913 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17914 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17915 SGL_PAGE_SIZE; 17916 else 17917 pdma_phys_bpl1 = 0; 17918 sgl_pg_pairs->sgl_pg1_addr_lo = 17919 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17920 sgl_pg_pairs->sgl_pg1_addr_hi = 17921 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17922 /* Keep the first xritag on the list */ 17923 if (pg_pairs == 0) 17924 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17925 sgl_pg_pairs++; 17926 pg_pairs++; 17927 } 17928 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17929 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17930 /* Perform endian conversion if necessary */ 17931 sgl->word0 = cpu_to_le32(sgl->word0); 17932 17933 if (!phba->sli4_hba.intr_enable) { 17934 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17935 } else { 17936 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17937 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17938 } 17939 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17940 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17941 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17942 if (!phba->sli4_hba.intr_enable) 17943 lpfc_sli4_mbox_cmd_free(phba, mbox); 17944 else if (rc != MBX_TIMEOUT) 17945 lpfc_sli4_mbox_cmd_free(phba, mbox); 17946 if (shdr_status || shdr_add_status || rc) { 17947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17948 "6125 POST_SGL_BLOCK mailbox command failed " 17949 "status x%x add_status x%x mbx status x%x\n", 17950 shdr_status, shdr_add_status, rc); 17951 rc = -ENXIO; 17952 } 17953 return rc; 17954 } 17955 17956 /** 17957 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17958 * @phba: pointer to lpfc hba data structure. 17959 * @post_nblist: pointer to the nvme buffer list. 17960 * @sb_count: number of nvme buffers. 17961 * 17962 * This routine walks a list of nvme buffers that was passed in. It attempts 17963 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17964 * uses the non-embedded SGL block post mailbox commands to post to the port. 17965 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17966 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17967 * must be local list, thus no lock is needed when manipulate the list. 17968 * 17969 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17970 **/ 17971 int 17972 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17973 struct list_head *post_nblist, int sb_count) 17974 { 17975 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17976 int status, sgl_size; 17977 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17978 dma_addr_t pdma_phys_sgl1; 17979 int last_xritag = NO_XRI; 17980 int cur_xritag; 17981 LIST_HEAD(prep_nblist); 17982 LIST_HEAD(blck_nblist); 17983 LIST_HEAD(nvme_nblist); 17984 17985 /* sanity check */ 17986 if (sb_count <= 0) 17987 return -EINVAL; 17988 17989 sgl_size = phba->cfg_sg_dma_buf_size; 17990 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17991 list_del_init(&lpfc_ncmd->list); 17992 block_cnt++; 17993 if ((last_xritag != NO_XRI) && 17994 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17995 /* a hole in xri block, form a sgl posting block */ 17996 list_splice_init(&prep_nblist, &blck_nblist); 17997 post_cnt = block_cnt - 1; 17998 /* prepare list for next posting block */ 17999 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18000 block_cnt = 1; 18001 } else { 18002 /* prepare list for next posting block */ 18003 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18004 /* enough sgls for non-embed sgl mbox command */ 18005 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18006 list_splice_init(&prep_nblist, &blck_nblist); 18007 post_cnt = block_cnt; 18008 block_cnt = 0; 18009 } 18010 } 18011 num_posting++; 18012 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18013 18014 /* end of repost sgl list condition for NVME buffers */ 18015 if (num_posting == sb_count) { 18016 if (post_cnt == 0) { 18017 /* last sgl posting block */ 18018 list_splice_init(&prep_nblist, &blck_nblist); 18019 post_cnt = block_cnt; 18020 } else if (block_cnt == 1) { 18021 /* last single sgl with non-contiguous xri */ 18022 if (sgl_size > SGL_PAGE_SIZE) 18023 pdma_phys_sgl1 = 18024 lpfc_ncmd->dma_phys_sgl + 18025 SGL_PAGE_SIZE; 18026 else 18027 pdma_phys_sgl1 = 0; 18028 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18029 status = lpfc_sli4_post_sgl( 18030 phba, lpfc_ncmd->dma_phys_sgl, 18031 pdma_phys_sgl1, cur_xritag); 18032 if (status) { 18033 /* Post error. Buffer unavailable. */ 18034 lpfc_ncmd->flags |= 18035 LPFC_SBUF_NOT_POSTED; 18036 } else { 18037 /* Post success. Bffer available. */ 18038 lpfc_ncmd->flags &= 18039 ~LPFC_SBUF_NOT_POSTED; 18040 lpfc_ncmd->status = IOSTAT_SUCCESS; 18041 num_posted++; 18042 } 18043 /* success, put on NVME buffer sgl list */ 18044 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18045 } 18046 } 18047 18048 /* continue until a nembed page worth of sgls */ 18049 if (post_cnt == 0) 18050 continue; 18051 18052 /* post block of NVME buffer list sgls */ 18053 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18054 post_cnt); 18055 18056 /* don't reset xirtag due to hole in xri block */ 18057 if (block_cnt == 0) 18058 last_xritag = NO_XRI; 18059 18060 /* reset NVME buffer post count for next round of posting */ 18061 post_cnt = 0; 18062 18063 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18064 while (!list_empty(&blck_nblist)) { 18065 list_remove_head(&blck_nblist, lpfc_ncmd, 18066 struct lpfc_io_buf, list); 18067 if (status) { 18068 /* Post error. Mark buffer unavailable. */ 18069 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18070 } else { 18071 /* Post success, Mark buffer available. */ 18072 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18073 lpfc_ncmd->status = IOSTAT_SUCCESS; 18074 num_posted++; 18075 } 18076 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18077 } 18078 } 18079 /* Push NVME buffers with sgl posted to the available list */ 18080 lpfc_io_buf_replenish(phba, &nvme_nblist); 18081 18082 return num_posted; 18083 } 18084 18085 /** 18086 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18087 * @phba: pointer to lpfc_hba struct that the frame was received on 18088 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18089 * 18090 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18091 * valid type of frame that the LPFC driver will handle. This function will 18092 * return a zero if the frame is a valid frame or a non zero value when the 18093 * frame does not pass the check. 18094 **/ 18095 static int 18096 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18097 { 18098 /* make rctl_names static to save stack space */ 18099 struct fc_vft_header *fc_vft_hdr; 18100 uint32_t *header = (uint32_t *) fc_hdr; 18101 18102 #define FC_RCTL_MDS_DIAGS 0xF4 18103 18104 switch (fc_hdr->fh_r_ctl) { 18105 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18106 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18107 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18108 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18109 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18110 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18111 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18112 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18113 case FC_RCTL_ELS_REQ: /* extended link services request */ 18114 case FC_RCTL_ELS_REP: /* extended link services reply */ 18115 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18116 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18117 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18118 case FC_RCTL_BA_RMC: /* remove connection */ 18119 case FC_RCTL_BA_ACC: /* basic accept */ 18120 case FC_RCTL_BA_RJT: /* basic reject */ 18121 case FC_RCTL_BA_PRMT: 18122 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18123 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18124 case FC_RCTL_P_RJT: /* port reject */ 18125 case FC_RCTL_F_RJT: /* fabric reject */ 18126 case FC_RCTL_P_BSY: /* port busy */ 18127 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18128 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18129 case FC_RCTL_LCR: /* link credit reset */ 18130 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18131 case FC_RCTL_END: /* end */ 18132 break; 18133 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18134 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18135 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18136 return lpfc_fc_frame_check(phba, fc_hdr); 18137 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18138 default: 18139 goto drop; 18140 } 18141 18142 switch (fc_hdr->fh_type) { 18143 case FC_TYPE_BLS: 18144 case FC_TYPE_ELS: 18145 case FC_TYPE_FCP: 18146 case FC_TYPE_CT: 18147 case FC_TYPE_NVME: 18148 break; 18149 case FC_TYPE_IP: 18150 case FC_TYPE_ILS: 18151 default: 18152 goto drop; 18153 } 18154 18155 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18156 "2538 Received frame rctl:x%x, type:x%x, " 18157 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18158 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18159 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18160 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18161 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18162 be32_to_cpu(header[6])); 18163 return 0; 18164 drop: 18165 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18166 "2539 Dropped frame rctl:x%x type:x%x\n", 18167 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18168 return 1; 18169 } 18170 18171 /** 18172 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18173 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18174 * 18175 * This function processes the FC header to retrieve the VFI from the VF 18176 * header, if one exists. This function will return the VFI if one exists 18177 * or 0 if no VSAN Header exists. 18178 **/ 18179 static uint32_t 18180 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18181 { 18182 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18183 18184 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18185 return 0; 18186 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18187 } 18188 18189 /** 18190 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18191 * @phba: Pointer to the HBA structure to search for the vport on 18192 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18193 * @fcfi: The FC Fabric ID that the frame came from 18194 * @did: Destination ID to match against 18195 * 18196 * This function searches the @phba for a vport that matches the content of the 18197 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18198 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18199 * returns the matching vport pointer or NULL if unable to match frame to a 18200 * vport. 18201 **/ 18202 static struct lpfc_vport * 18203 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18204 uint16_t fcfi, uint32_t did) 18205 { 18206 struct lpfc_vport **vports; 18207 struct lpfc_vport *vport = NULL; 18208 int i; 18209 18210 if (did == Fabric_DID) 18211 return phba->pport; 18212 if ((phba->pport->fc_flag & FC_PT2PT) && 18213 !(phba->link_state == LPFC_HBA_READY)) 18214 return phba->pport; 18215 18216 vports = lpfc_create_vport_work_array(phba); 18217 if (vports != NULL) { 18218 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18219 if (phba->fcf.fcfi == fcfi && 18220 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18221 vports[i]->fc_myDID == did) { 18222 vport = vports[i]; 18223 break; 18224 } 18225 } 18226 } 18227 lpfc_destroy_vport_work_array(phba, vports); 18228 return vport; 18229 } 18230 18231 /** 18232 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18233 * @vport: The vport to work on. 18234 * 18235 * This function updates the receive sequence time stamp for this vport. The 18236 * receive sequence time stamp indicates the time that the last frame of the 18237 * the sequence that has been idle for the longest amount of time was received. 18238 * the driver uses this time stamp to indicate if any received sequences have 18239 * timed out. 18240 **/ 18241 static void 18242 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18243 { 18244 struct lpfc_dmabuf *h_buf; 18245 struct hbq_dmabuf *dmabuf = NULL; 18246 18247 /* get the oldest sequence on the rcv list */ 18248 h_buf = list_get_first(&vport->rcv_buffer_list, 18249 struct lpfc_dmabuf, list); 18250 if (!h_buf) 18251 return; 18252 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18253 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18254 } 18255 18256 /** 18257 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18258 * @vport: The vport that the received sequences were sent to. 18259 * 18260 * This function cleans up all outstanding received sequences. This is called 18261 * by the driver when a link event or user action invalidates all the received 18262 * sequences. 18263 **/ 18264 void 18265 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18266 { 18267 struct lpfc_dmabuf *h_buf, *hnext; 18268 struct lpfc_dmabuf *d_buf, *dnext; 18269 struct hbq_dmabuf *dmabuf = NULL; 18270 18271 /* start with the oldest sequence on the rcv list */ 18272 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18273 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18274 list_del_init(&dmabuf->hbuf.list); 18275 list_for_each_entry_safe(d_buf, dnext, 18276 &dmabuf->dbuf.list, list) { 18277 list_del_init(&d_buf->list); 18278 lpfc_in_buf_free(vport->phba, d_buf); 18279 } 18280 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18281 } 18282 } 18283 18284 /** 18285 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18286 * @vport: The vport that the received sequences were sent to. 18287 * 18288 * This function determines whether any received sequences have timed out by 18289 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18290 * indicates that there is at least one timed out sequence this routine will 18291 * go through the received sequences one at a time from most inactive to most 18292 * active to determine which ones need to be cleaned up. Once it has determined 18293 * that a sequence needs to be cleaned up it will simply free up the resources 18294 * without sending an abort. 18295 **/ 18296 void 18297 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18298 { 18299 struct lpfc_dmabuf *h_buf, *hnext; 18300 struct lpfc_dmabuf *d_buf, *dnext; 18301 struct hbq_dmabuf *dmabuf = NULL; 18302 unsigned long timeout; 18303 int abort_count = 0; 18304 18305 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18306 vport->rcv_buffer_time_stamp); 18307 if (list_empty(&vport->rcv_buffer_list) || 18308 time_before(jiffies, timeout)) 18309 return; 18310 /* start with the oldest sequence on the rcv list */ 18311 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18312 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18313 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18314 dmabuf->time_stamp); 18315 if (time_before(jiffies, timeout)) 18316 break; 18317 abort_count++; 18318 list_del_init(&dmabuf->hbuf.list); 18319 list_for_each_entry_safe(d_buf, dnext, 18320 &dmabuf->dbuf.list, list) { 18321 list_del_init(&d_buf->list); 18322 lpfc_in_buf_free(vport->phba, d_buf); 18323 } 18324 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18325 } 18326 if (abort_count) 18327 lpfc_update_rcv_time_stamp(vport); 18328 } 18329 18330 /** 18331 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18332 * @vport: pointer to a vitural port 18333 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18334 * 18335 * This function searches through the existing incomplete sequences that have 18336 * been sent to this @vport. If the frame matches one of the incomplete 18337 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18338 * make up that sequence. If no sequence is found that matches this frame then 18339 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18340 * This function returns a pointer to the first dmabuf in the sequence list that 18341 * the frame was linked to. 18342 **/ 18343 static struct hbq_dmabuf * 18344 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18345 { 18346 struct fc_frame_header *new_hdr; 18347 struct fc_frame_header *temp_hdr; 18348 struct lpfc_dmabuf *d_buf; 18349 struct lpfc_dmabuf *h_buf; 18350 struct hbq_dmabuf *seq_dmabuf = NULL; 18351 struct hbq_dmabuf *temp_dmabuf = NULL; 18352 uint8_t found = 0; 18353 18354 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18355 dmabuf->time_stamp = jiffies; 18356 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18357 18358 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18359 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18360 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18361 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18362 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18363 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18364 continue; 18365 /* found a pending sequence that matches this frame */ 18366 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18367 break; 18368 } 18369 if (!seq_dmabuf) { 18370 /* 18371 * This indicates first frame received for this sequence. 18372 * Queue the buffer on the vport's rcv_buffer_list. 18373 */ 18374 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18375 lpfc_update_rcv_time_stamp(vport); 18376 return dmabuf; 18377 } 18378 temp_hdr = seq_dmabuf->hbuf.virt; 18379 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18380 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18381 list_del_init(&seq_dmabuf->hbuf.list); 18382 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18383 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18384 lpfc_update_rcv_time_stamp(vport); 18385 return dmabuf; 18386 } 18387 /* move this sequence to the tail to indicate a young sequence */ 18388 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18389 seq_dmabuf->time_stamp = jiffies; 18390 lpfc_update_rcv_time_stamp(vport); 18391 if (list_empty(&seq_dmabuf->dbuf.list)) { 18392 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18393 return seq_dmabuf; 18394 } 18395 /* find the correct place in the sequence to insert this frame */ 18396 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18397 while (!found) { 18398 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18399 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18400 /* 18401 * If the frame's sequence count is greater than the frame on 18402 * the list then insert the frame right after this frame 18403 */ 18404 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18405 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18406 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18407 found = 1; 18408 break; 18409 } 18410 18411 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18412 break; 18413 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18414 } 18415 18416 if (found) 18417 return seq_dmabuf; 18418 return NULL; 18419 } 18420 18421 /** 18422 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18423 * @vport: pointer to a vitural port 18424 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18425 * 18426 * This function tries to abort from the partially assembed sequence, described 18427 * by the information from basic abbort @dmabuf. It checks to see whether such 18428 * partially assembled sequence held by the driver. If so, it shall free up all 18429 * the frames from the partially assembled sequence. 18430 * 18431 * Return 18432 * true -- if there is matching partially assembled sequence present and all 18433 * the frames freed with the sequence; 18434 * false -- if there is no matching partially assembled sequence present so 18435 * nothing got aborted in the lower layer driver 18436 **/ 18437 static bool 18438 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18439 struct hbq_dmabuf *dmabuf) 18440 { 18441 struct fc_frame_header *new_hdr; 18442 struct fc_frame_header *temp_hdr; 18443 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18444 struct hbq_dmabuf *seq_dmabuf = NULL; 18445 18446 /* Use the hdr_buf to find the sequence that matches this frame */ 18447 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18448 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18449 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18450 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18451 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18452 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18453 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18454 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18455 continue; 18456 /* found a pending sequence that matches this frame */ 18457 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18458 break; 18459 } 18460 18461 /* Free up all the frames from the partially assembled sequence */ 18462 if (seq_dmabuf) { 18463 list_for_each_entry_safe(d_buf, n_buf, 18464 &seq_dmabuf->dbuf.list, list) { 18465 list_del_init(&d_buf->list); 18466 lpfc_in_buf_free(vport->phba, d_buf); 18467 } 18468 return true; 18469 } 18470 return false; 18471 } 18472 18473 /** 18474 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18475 * @vport: pointer to a vitural port 18476 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18477 * 18478 * This function tries to abort from the assembed sequence from upper level 18479 * protocol, described by the information from basic abbort @dmabuf. It 18480 * checks to see whether such pending context exists at upper level protocol. 18481 * If so, it shall clean up the pending context. 18482 * 18483 * Return 18484 * true -- if there is matching pending context of the sequence cleaned 18485 * at ulp; 18486 * false -- if there is no matching pending context of the sequence present 18487 * at ulp. 18488 **/ 18489 static bool 18490 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18491 { 18492 struct lpfc_hba *phba = vport->phba; 18493 int handled; 18494 18495 /* Accepting abort at ulp with SLI4 only */ 18496 if (phba->sli_rev < LPFC_SLI_REV4) 18497 return false; 18498 18499 /* Register all caring upper level protocols to attend abort */ 18500 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18501 if (handled) 18502 return true; 18503 18504 return false; 18505 } 18506 18507 /** 18508 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18509 * @phba: Pointer to HBA context object. 18510 * @cmd_iocbq: pointer to the command iocbq structure. 18511 * @rsp_iocbq: pointer to the response iocbq structure. 18512 * 18513 * This function handles the sequence abort response iocb command complete 18514 * event. It properly releases the memory allocated to the sequence abort 18515 * accept iocb. 18516 **/ 18517 static void 18518 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18519 struct lpfc_iocbq *cmd_iocbq, 18520 struct lpfc_iocbq *rsp_iocbq) 18521 { 18522 if (cmd_iocbq) { 18523 lpfc_nlp_put(cmd_iocbq->ndlp); 18524 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18525 } 18526 18527 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18528 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18530 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18531 get_job_ulpstatus(phba, rsp_iocbq), 18532 get_job_word4(phba, rsp_iocbq)); 18533 } 18534 18535 /** 18536 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18537 * @phba: Pointer to HBA context object. 18538 * @xri: xri id in transaction. 18539 * 18540 * This function validates the xri maps to the known range of XRIs allocated an 18541 * used by the driver. 18542 **/ 18543 uint16_t 18544 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18545 uint16_t xri) 18546 { 18547 uint16_t i; 18548 18549 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18550 if (xri == phba->sli4_hba.xri_ids[i]) 18551 return i; 18552 } 18553 return NO_XRI; 18554 } 18555 18556 /** 18557 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18558 * @vport: pointer to a virtual port. 18559 * @fc_hdr: pointer to a FC frame header. 18560 * @aborted: was the partially assembled receive sequence successfully aborted 18561 * 18562 * This function sends a basic response to a previous unsol sequence abort 18563 * event after aborting the sequence handling. 18564 **/ 18565 void 18566 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18567 struct fc_frame_header *fc_hdr, bool aborted) 18568 { 18569 struct lpfc_hba *phba = vport->phba; 18570 struct lpfc_iocbq *ctiocb = NULL; 18571 struct lpfc_nodelist *ndlp; 18572 uint16_t oxid, rxid, xri, lxri; 18573 uint32_t sid, fctl; 18574 union lpfc_wqe128 *icmd; 18575 int rc; 18576 18577 if (!lpfc_is_link_up(phba)) 18578 return; 18579 18580 sid = sli4_sid_from_fc_hdr(fc_hdr); 18581 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18582 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18583 18584 ndlp = lpfc_findnode_did(vport, sid); 18585 if (!ndlp) { 18586 ndlp = lpfc_nlp_init(vport, sid); 18587 if (!ndlp) { 18588 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18589 "1268 Failed to allocate ndlp for " 18590 "oxid:x%x SID:x%x\n", oxid, sid); 18591 return; 18592 } 18593 /* Put ndlp onto pport node list */ 18594 lpfc_enqueue_node(vport, ndlp); 18595 } 18596 18597 /* Allocate buffer for rsp iocb */ 18598 ctiocb = lpfc_sli_get_iocbq(phba); 18599 if (!ctiocb) 18600 return; 18601 18602 icmd = &ctiocb->wqe; 18603 18604 /* Extract the F_CTL field from FC_HDR */ 18605 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18606 18607 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18608 if (!ctiocb->ndlp) { 18609 lpfc_sli_release_iocbq(phba, ctiocb); 18610 return; 18611 } 18612 18613 ctiocb->vport = phba->pport; 18614 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18615 ctiocb->sli4_lxritag = NO_XRI; 18616 ctiocb->sli4_xritag = NO_XRI; 18617 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18618 18619 if (fctl & FC_FC_EX_CTX) 18620 /* Exchange responder sent the abort so we 18621 * own the oxid. 18622 */ 18623 xri = oxid; 18624 else 18625 xri = rxid; 18626 lxri = lpfc_sli4_xri_inrange(phba, xri); 18627 if (lxri != NO_XRI) 18628 lpfc_set_rrq_active(phba, ndlp, lxri, 18629 (xri == oxid) ? rxid : oxid, 0); 18630 /* For BA_ABTS from exchange responder, if the logical xri with 18631 * the oxid maps to the FCP XRI range, the port no longer has 18632 * that exchange context, send a BLS_RJT. Override the IOCB for 18633 * a BA_RJT. 18634 */ 18635 if ((fctl & FC_FC_EX_CTX) && 18636 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18637 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18638 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18639 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18640 FC_BA_RJT_INV_XID); 18641 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18642 FC_BA_RJT_UNABLE); 18643 } 18644 18645 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18646 * the driver no longer has that exchange, send a BLS_RJT. Override 18647 * the IOCB for a BA_RJT. 18648 */ 18649 if (aborted == false) { 18650 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18651 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18652 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18653 FC_BA_RJT_INV_XID); 18654 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18655 FC_BA_RJT_UNABLE); 18656 } 18657 18658 if (fctl & FC_FC_EX_CTX) { 18659 /* ABTS sent by responder to CT exchange, construction 18660 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18661 * field and RX_ID from ABTS for RX_ID field. 18662 */ 18663 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18664 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18665 } else { 18666 /* ABTS sent by initiator to CT exchange, construction 18667 * of BA_ACC will need to allocate a new XRI as for the 18668 * XRI_TAG field. 18669 */ 18670 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18671 } 18672 18673 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18674 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18675 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18676 18677 /* Use CT=VPI */ 18678 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18679 ndlp->nlp_DID); 18680 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18681 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18682 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18683 18684 /* Xmit CT abts response on exchange <xid> */ 18685 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18686 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18687 ctiocb->abort_rctl, oxid, phba->link_state); 18688 18689 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18690 if (rc == IOCB_ERROR) { 18691 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18692 "2925 Failed to issue CT ABTS RSP x%x on " 18693 "xri x%x, Data x%x\n", 18694 ctiocb->abort_rctl, oxid, 18695 phba->link_state); 18696 lpfc_nlp_put(ndlp); 18697 ctiocb->ndlp = NULL; 18698 lpfc_sli_release_iocbq(phba, ctiocb); 18699 } 18700 } 18701 18702 /** 18703 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18704 * @vport: Pointer to the vport on which this sequence was received 18705 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18706 * 18707 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18708 * receive sequence is only partially assembed by the driver, it shall abort 18709 * the partially assembled frames for the sequence. Otherwise, if the 18710 * unsolicited receive sequence has been completely assembled and passed to 18711 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18712 * unsolicited sequence has been aborted. After that, it will issue a basic 18713 * accept to accept the abort. 18714 **/ 18715 static void 18716 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18717 struct hbq_dmabuf *dmabuf) 18718 { 18719 struct lpfc_hba *phba = vport->phba; 18720 struct fc_frame_header fc_hdr; 18721 uint32_t fctl; 18722 bool aborted; 18723 18724 /* Make a copy of fc_hdr before the dmabuf being released */ 18725 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18726 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18727 18728 if (fctl & FC_FC_EX_CTX) { 18729 /* ABTS by responder to exchange, no cleanup needed */ 18730 aborted = true; 18731 } else { 18732 /* ABTS by initiator to exchange, need to do cleanup */ 18733 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18734 if (aborted == false) 18735 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18736 } 18737 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18738 18739 if (phba->nvmet_support) { 18740 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18741 return; 18742 } 18743 18744 /* Respond with BA_ACC or BA_RJT accordingly */ 18745 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18746 } 18747 18748 /** 18749 * lpfc_seq_complete - Indicates if a sequence is complete 18750 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18751 * 18752 * This function checks the sequence, starting with the frame described by 18753 * @dmabuf, to see if all the frames associated with this sequence are present. 18754 * the frames associated with this sequence are linked to the @dmabuf using the 18755 * dbuf list. This function looks for two major things. 1) That the first frame 18756 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18757 * set. 3) That there are no holes in the sequence count. The function will 18758 * return 1 when the sequence is complete, otherwise it will return 0. 18759 **/ 18760 static int 18761 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18762 { 18763 struct fc_frame_header *hdr; 18764 struct lpfc_dmabuf *d_buf; 18765 struct hbq_dmabuf *seq_dmabuf; 18766 uint32_t fctl; 18767 int seq_count = 0; 18768 18769 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18770 /* make sure first fame of sequence has a sequence count of zero */ 18771 if (hdr->fh_seq_cnt != seq_count) 18772 return 0; 18773 fctl = (hdr->fh_f_ctl[0] << 16 | 18774 hdr->fh_f_ctl[1] << 8 | 18775 hdr->fh_f_ctl[2]); 18776 /* If last frame of sequence we can return success. */ 18777 if (fctl & FC_FC_END_SEQ) 18778 return 1; 18779 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18780 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18781 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18782 /* If there is a hole in the sequence count then fail. */ 18783 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18784 return 0; 18785 fctl = (hdr->fh_f_ctl[0] << 16 | 18786 hdr->fh_f_ctl[1] << 8 | 18787 hdr->fh_f_ctl[2]); 18788 /* If last frame of sequence we can return success. */ 18789 if (fctl & FC_FC_END_SEQ) 18790 return 1; 18791 } 18792 return 0; 18793 } 18794 18795 /** 18796 * lpfc_prep_seq - Prep sequence for ULP processing 18797 * @vport: Pointer to the vport on which this sequence was received 18798 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18799 * 18800 * This function takes a sequence, described by a list of frames, and creates 18801 * a list of iocbq structures to describe the sequence. This iocbq list will be 18802 * used to issue to the generic unsolicited sequence handler. This routine 18803 * returns a pointer to the first iocbq in the list. If the function is unable 18804 * to allocate an iocbq then it throw out the received frames that were not 18805 * able to be described and return a pointer to the first iocbq. If unable to 18806 * allocate any iocbqs (including the first) this function will return NULL. 18807 **/ 18808 static struct lpfc_iocbq * 18809 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18810 { 18811 struct hbq_dmabuf *hbq_buf; 18812 struct lpfc_dmabuf *d_buf, *n_buf; 18813 struct lpfc_iocbq *first_iocbq, *iocbq; 18814 struct fc_frame_header *fc_hdr; 18815 uint32_t sid; 18816 uint32_t len, tot_len; 18817 18818 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18819 /* remove from receive buffer list */ 18820 list_del_init(&seq_dmabuf->hbuf.list); 18821 lpfc_update_rcv_time_stamp(vport); 18822 /* get the Remote Port's SID */ 18823 sid = sli4_sid_from_fc_hdr(fc_hdr); 18824 tot_len = 0; 18825 /* Get an iocbq struct to fill in. */ 18826 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18827 if (first_iocbq) { 18828 /* Initialize the first IOCB. */ 18829 first_iocbq->wcqe_cmpl.total_data_placed = 0; 18830 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 18831 IOSTAT_SUCCESS); 18832 first_iocbq->vport = vport; 18833 18834 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18835 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18836 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 18837 sli4_did_from_fc_hdr(fc_hdr)); 18838 } 18839 18840 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18841 NO_XRI); 18842 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18843 be16_to_cpu(fc_hdr->fh_ox_id)); 18844 18845 /* put the first buffer into the first iocb */ 18846 tot_len = bf_get(lpfc_rcqe_length, 18847 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18848 18849 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 18850 first_iocbq->bpl_dmabuf = NULL; 18851 /* Keep track of the BDE count */ 18852 first_iocbq->wcqe_cmpl.word3 = 1; 18853 18854 if (tot_len > LPFC_DATA_BUF_SIZE) 18855 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 18856 LPFC_DATA_BUF_SIZE; 18857 else 18858 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 18859 18860 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 18861 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 18862 sid); 18863 } 18864 iocbq = first_iocbq; 18865 /* 18866 * Each IOCBq can have two Buffers assigned, so go through the list 18867 * of buffers for this sequence and save two buffers in each IOCBq 18868 */ 18869 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18870 if (!iocbq) { 18871 lpfc_in_buf_free(vport->phba, d_buf); 18872 continue; 18873 } 18874 if (!iocbq->bpl_dmabuf) { 18875 iocbq->bpl_dmabuf = d_buf; 18876 iocbq->wcqe_cmpl.word3++; 18877 /* We need to get the size out of the right CQE */ 18878 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18879 len = bf_get(lpfc_rcqe_length, 18880 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18881 iocbq->unsol_rcv_len = len; 18882 iocbq->wcqe_cmpl.total_data_placed += len; 18883 tot_len += len; 18884 } else { 18885 iocbq = lpfc_sli_get_iocbq(vport->phba); 18886 if (!iocbq) { 18887 if (first_iocbq) { 18888 bf_set(lpfc_wcqe_c_status, 18889 &first_iocbq->wcqe_cmpl, 18890 IOSTAT_SUCCESS); 18891 first_iocbq->wcqe_cmpl.parameter = 18892 IOERR_NO_RESOURCES; 18893 } 18894 lpfc_in_buf_free(vport->phba, d_buf); 18895 continue; 18896 } 18897 /* We need to get the size out of the right CQE */ 18898 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18899 len = bf_get(lpfc_rcqe_length, 18900 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18901 iocbq->cmd_dmabuf = d_buf; 18902 iocbq->bpl_dmabuf = NULL; 18903 iocbq->wcqe_cmpl.word3 = 1; 18904 18905 if (len > LPFC_DATA_BUF_SIZE) 18906 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18907 LPFC_DATA_BUF_SIZE; 18908 else 18909 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18910 len; 18911 18912 tot_len += len; 18913 iocbq->wcqe_cmpl.total_data_placed = tot_len; 18914 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 18915 sid); 18916 list_add_tail(&iocbq->list, &first_iocbq->list); 18917 } 18918 } 18919 /* Free the sequence's header buffer */ 18920 if (!first_iocbq) 18921 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18922 18923 return first_iocbq; 18924 } 18925 18926 static void 18927 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18928 struct hbq_dmabuf *seq_dmabuf) 18929 { 18930 struct fc_frame_header *fc_hdr; 18931 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18932 struct lpfc_hba *phba = vport->phba; 18933 18934 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18935 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18936 if (!iocbq) { 18937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18938 "2707 Ring %d handler: Failed to allocate " 18939 "iocb Rctl x%x Type x%x received\n", 18940 LPFC_ELS_RING, 18941 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18942 return; 18943 } 18944 if (!lpfc_complete_unsol_iocb(phba, 18945 phba->sli4_hba.els_wq->pring, 18946 iocbq, fc_hdr->fh_r_ctl, 18947 fc_hdr->fh_type)) { 18948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18949 "2540 Ring %d handler: unexpected Rctl " 18950 "x%x Type x%x received\n", 18951 LPFC_ELS_RING, 18952 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18953 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 18954 } 18955 18956 /* Free iocb created in lpfc_prep_seq */ 18957 list_for_each_entry_safe(curr_iocb, next_iocb, 18958 &iocbq->list, list) { 18959 list_del_init(&curr_iocb->list); 18960 lpfc_sli_release_iocbq(phba, curr_iocb); 18961 } 18962 lpfc_sli_release_iocbq(phba, iocbq); 18963 } 18964 18965 static void 18966 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18967 struct lpfc_iocbq *rspiocb) 18968 { 18969 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 18970 18971 if (pcmd && pcmd->virt) 18972 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18973 kfree(pcmd); 18974 lpfc_sli_release_iocbq(phba, cmdiocb); 18975 lpfc_drain_txq(phba); 18976 } 18977 18978 static void 18979 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18980 struct hbq_dmabuf *dmabuf) 18981 { 18982 struct fc_frame_header *fc_hdr; 18983 struct lpfc_hba *phba = vport->phba; 18984 struct lpfc_iocbq *iocbq = NULL; 18985 union lpfc_wqe128 *pwqe; 18986 struct lpfc_dmabuf *pcmd = NULL; 18987 uint32_t frame_len; 18988 int rc; 18989 unsigned long iflags; 18990 18991 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18992 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18993 18994 /* Send the received frame back */ 18995 iocbq = lpfc_sli_get_iocbq(phba); 18996 if (!iocbq) { 18997 /* Queue cq event and wakeup worker thread to process it */ 18998 spin_lock_irqsave(&phba->hbalock, iflags); 18999 list_add_tail(&dmabuf->cq_event.list, 19000 &phba->sli4_hba.sp_queue_event); 19001 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19002 spin_unlock_irqrestore(&phba->hbalock, iflags); 19003 lpfc_worker_wake_up(phba); 19004 return; 19005 } 19006 19007 /* Allocate buffer for command payload */ 19008 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19009 if (pcmd) 19010 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19011 &pcmd->phys); 19012 if (!pcmd || !pcmd->virt) 19013 goto exit; 19014 19015 INIT_LIST_HEAD(&pcmd->list); 19016 19017 /* copyin the payload */ 19018 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19019 19020 iocbq->cmd_dmabuf = pcmd; 19021 iocbq->vport = vport; 19022 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19023 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19024 iocbq->num_bdes = 0; 19025 19026 pwqe = &iocbq->wqe; 19027 /* fill in BDE's for command */ 19028 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19029 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19030 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19031 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19032 19033 pwqe->send_frame.frame_len = frame_len; 19034 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19035 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19036 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19037 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19038 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19039 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19040 19041 pwqe->generic.wqe_com.word7 = 0; 19042 pwqe->generic.wqe_com.word10 = 0; 19043 19044 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19045 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19046 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19047 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19048 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19049 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19050 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19051 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19052 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19053 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19054 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19055 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19056 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19057 19058 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19059 19060 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19061 if (rc == IOCB_ERROR) 19062 goto exit; 19063 19064 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19065 return; 19066 19067 exit: 19068 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19069 "2023 Unable to process MDS loopback frame\n"); 19070 if (pcmd && pcmd->virt) 19071 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19072 kfree(pcmd); 19073 if (iocbq) 19074 lpfc_sli_release_iocbq(phba, iocbq); 19075 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19076 } 19077 19078 /** 19079 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19080 * @phba: Pointer to HBA context object. 19081 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19082 * 19083 * This function is called with no lock held. This function processes all 19084 * the received buffers and gives it to upper layers when a received buffer 19085 * indicates that it is the final frame in the sequence. The interrupt 19086 * service routine processes received buffers at interrupt contexts. 19087 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19088 * appropriate receive function when the final frame in a sequence is received. 19089 **/ 19090 void 19091 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19092 struct hbq_dmabuf *dmabuf) 19093 { 19094 struct hbq_dmabuf *seq_dmabuf; 19095 struct fc_frame_header *fc_hdr; 19096 struct lpfc_vport *vport; 19097 uint32_t fcfi; 19098 uint32_t did; 19099 19100 /* Process each received buffer */ 19101 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19102 19103 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19104 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19105 vport = phba->pport; 19106 /* Handle MDS Loopback frames */ 19107 if (!(phba->pport->load_flag & FC_UNLOADING)) 19108 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19109 else 19110 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19111 return; 19112 } 19113 19114 /* check to see if this a valid type of frame */ 19115 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19116 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19117 return; 19118 } 19119 19120 if ((bf_get(lpfc_cqe_code, 19121 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19122 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19123 &dmabuf->cq_event.cqe.rcqe_cmpl); 19124 else 19125 fcfi = bf_get(lpfc_rcqe_fcf_id, 19126 &dmabuf->cq_event.cqe.rcqe_cmpl); 19127 19128 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19129 vport = phba->pport; 19130 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19131 "2023 MDS Loopback %d bytes\n", 19132 bf_get(lpfc_rcqe_length, 19133 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19134 /* Handle MDS Loopback frames */ 19135 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19136 return; 19137 } 19138 19139 /* d_id this frame is directed to */ 19140 did = sli4_did_from_fc_hdr(fc_hdr); 19141 19142 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19143 if (!vport) { 19144 /* throw out the frame */ 19145 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19146 return; 19147 } 19148 19149 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19150 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19151 (did != Fabric_DID)) { 19152 /* 19153 * Throw out the frame if we are not pt2pt. 19154 * The pt2pt protocol allows for discovery frames 19155 * to be received without a registered VPI. 19156 */ 19157 if (!(vport->fc_flag & FC_PT2PT) || 19158 (phba->link_state == LPFC_HBA_READY)) { 19159 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19160 return; 19161 } 19162 } 19163 19164 /* Handle the basic abort sequence (BA_ABTS) event */ 19165 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19166 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19167 return; 19168 } 19169 19170 /* Link this frame */ 19171 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19172 if (!seq_dmabuf) { 19173 /* unable to add frame to vport - throw it out */ 19174 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19175 return; 19176 } 19177 /* If not last frame in sequence continue processing frames. */ 19178 if (!lpfc_seq_complete(seq_dmabuf)) 19179 return; 19180 19181 /* Send the complete sequence to the upper layer protocol */ 19182 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19183 } 19184 19185 /** 19186 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19187 * @phba: pointer to lpfc hba data structure. 19188 * 19189 * This routine is invoked to post rpi header templates to the 19190 * HBA consistent with the SLI-4 interface spec. This routine 19191 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19192 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19193 * 19194 * This routine does not require any locks. It's usage is expected 19195 * to be driver load or reset recovery when the driver is 19196 * sequential. 19197 * 19198 * Return codes 19199 * 0 - successful 19200 * -EIO - The mailbox failed to complete successfully. 19201 * When this error occurs, the driver is not guaranteed 19202 * to have any rpi regions posted to the device and 19203 * must either attempt to repost the regions or take a 19204 * fatal error. 19205 **/ 19206 int 19207 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19208 { 19209 struct lpfc_rpi_hdr *rpi_page; 19210 uint32_t rc = 0; 19211 uint16_t lrpi = 0; 19212 19213 /* SLI4 ports that support extents do not require RPI headers. */ 19214 if (!phba->sli4_hba.rpi_hdrs_in_use) 19215 goto exit; 19216 if (phba->sli4_hba.extents_in_use) 19217 return -EIO; 19218 19219 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19220 /* 19221 * Assign the rpi headers a physical rpi only if the driver 19222 * has not initialized those resources. A port reset only 19223 * needs the headers posted. 19224 */ 19225 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19226 LPFC_RPI_RSRC_RDY) 19227 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19228 19229 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19230 if (rc != MBX_SUCCESS) { 19231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19232 "2008 Error %d posting all rpi " 19233 "headers\n", rc); 19234 rc = -EIO; 19235 break; 19236 } 19237 } 19238 19239 exit: 19240 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19241 LPFC_RPI_RSRC_RDY); 19242 return rc; 19243 } 19244 19245 /** 19246 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19247 * @phba: pointer to lpfc hba data structure. 19248 * @rpi_page: pointer to the rpi memory region. 19249 * 19250 * This routine is invoked to post a single rpi header to the 19251 * HBA consistent with the SLI-4 interface spec. This memory region 19252 * maps up to 64 rpi context regions. 19253 * 19254 * Return codes 19255 * 0 - successful 19256 * -ENOMEM - No available memory 19257 * -EIO - The mailbox failed to complete successfully. 19258 **/ 19259 int 19260 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19261 { 19262 LPFC_MBOXQ_t *mboxq; 19263 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19264 uint32_t rc = 0; 19265 uint32_t shdr_status, shdr_add_status; 19266 union lpfc_sli4_cfg_shdr *shdr; 19267 19268 /* SLI4 ports that support extents do not require RPI headers. */ 19269 if (!phba->sli4_hba.rpi_hdrs_in_use) 19270 return rc; 19271 if (phba->sli4_hba.extents_in_use) 19272 return -EIO; 19273 19274 /* The port is notified of the header region via a mailbox command. */ 19275 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19276 if (!mboxq) { 19277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19278 "2001 Unable to allocate memory for issuing " 19279 "SLI_CONFIG_SPECIAL mailbox command\n"); 19280 return -ENOMEM; 19281 } 19282 19283 /* Post all rpi memory regions to the port. */ 19284 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19285 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19286 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19287 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19288 sizeof(struct lpfc_sli4_cfg_mhdr), 19289 LPFC_SLI4_MBX_EMBED); 19290 19291 19292 /* Post the physical rpi to the port for this rpi header. */ 19293 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19294 rpi_page->start_rpi); 19295 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19296 hdr_tmpl, rpi_page->page_count); 19297 19298 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19299 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19300 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19301 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19302 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19303 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19304 mempool_free(mboxq, phba->mbox_mem_pool); 19305 if (shdr_status || shdr_add_status || rc) { 19306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19307 "2514 POST_RPI_HDR mailbox failed with " 19308 "status x%x add_status x%x, mbx status x%x\n", 19309 shdr_status, shdr_add_status, rc); 19310 rc = -ENXIO; 19311 } else { 19312 /* 19313 * The next_rpi stores the next logical module-64 rpi value used 19314 * to post physical rpis in subsequent rpi postings. 19315 */ 19316 spin_lock_irq(&phba->hbalock); 19317 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19318 spin_unlock_irq(&phba->hbalock); 19319 } 19320 return rc; 19321 } 19322 19323 /** 19324 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19325 * @phba: pointer to lpfc hba data structure. 19326 * 19327 * This routine is invoked to post rpi header templates to the 19328 * HBA consistent with the SLI-4 interface spec. This routine 19329 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19330 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19331 * 19332 * Returns 19333 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19334 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19335 **/ 19336 int 19337 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19338 { 19339 unsigned long rpi; 19340 uint16_t max_rpi, rpi_limit; 19341 uint16_t rpi_remaining, lrpi = 0; 19342 struct lpfc_rpi_hdr *rpi_hdr; 19343 unsigned long iflag; 19344 19345 /* 19346 * Fetch the next logical rpi. Because this index is logical, 19347 * the driver starts at 0 each time. 19348 */ 19349 spin_lock_irqsave(&phba->hbalock, iflag); 19350 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19351 rpi_limit = phba->sli4_hba.next_rpi; 19352 19353 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19354 if (rpi >= rpi_limit) 19355 rpi = LPFC_RPI_ALLOC_ERROR; 19356 else { 19357 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19358 phba->sli4_hba.max_cfg_param.rpi_used++; 19359 phba->sli4_hba.rpi_count++; 19360 } 19361 lpfc_printf_log(phba, KERN_INFO, 19362 LOG_NODE | LOG_DISCOVERY, 19363 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19364 (int) rpi, max_rpi, rpi_limit); 19365 19366 /* 19367 * Don't try to allocate more rpi header regions if the device limit 19368 * has been exhausted. 19369 */ 19370 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19371 (phba->sli4_hba.rpi_count >= max_rpi)) { 19372 spin_unlock_irqrestore(&phba->hbalock, iflag); 19373 return rpi; 19374 } 19375 19376 /* 19377 * RPI header postings are not required for SLI4 ports capable of 19378 * extents. 19379 */ 19380 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19381 spin_unlock_irqrestore(&phba->hbalock, iflag); 19382 return rpi; 19383 } 19384 19385 /* 19386 * If the driver is running low on rpi resources, allocate another 19387 * page now. Note that the next_rpi value is used because 19388 * it represents how many are actually in use whereas max_rpi notes 19389 * how many are supported max by the device. 19390 */ 19391 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19392 spin_unlock_irqrestore(&phba->hbalock, iflag); 19393 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19394 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19395 if (!rpi_hdr) { 19396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19397 "2002 Error Could not grow rpi " 19398 "count\n"); 19399 } else { 19400 lrpi = rpi_hdr->start_rpi; 19401 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19402 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19403 } 19404 } 19405 19406 return rpi; 19407 } 19408 19409 /** 19410 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19411 * @phba: pointer to lpfc hba data structure. 19412 * @rpi: rpi to free 19413 * 19414 * This routine is invoked to release an rpi to the pool of 19415 * available rpis maintained by the driver. 19416 **/ 19417 static void 19418 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19419 { 19420 /* 19421 * if the rpi value indicates a prior unreg has already 19422 * been done, skip the unreg. 19423 */ 19424 if (rpi == LPFC_RPI_ALLOC_ERROR) 19425 return; 19426 19427 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19428 phba->sli4_hba.rpi_count--; 19429 phba->sli4_hba.max_cfg_param.rpi_used--; 19430 } else { 19431 lpfc_printf_log(phba, KERN_INFO, 19432 LOG_NODE | LOG_DISCOVERY, 19433 "2016 rpi %x not inuse\n", 19434 rpi); 19435 } 19436 } 19437 19438 /** 19439 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19440 * @phba: pointer to lpfc hba data structure. 19441 * @rpi: rpi to free 19442 * 19443 * This routine is invoked to release an rpi to the pool of 19444 * available rpis maintained by the driver. 19445 **/ 19446 void 19447 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19448 { 19449 spin_lock_irq(&phba->hbalock); 19450 __lpfc_sli4_free_rpi(phba, rpi); 19451 spin_unlock_irq(&phba->hbalock); 19452 } 19453 19454 /** 19455 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19456 * @phba: pointer to lpfc hba data structure. 19457 * 19458 * This routine is invoked to remove the memory region that 19459 * provided rpi via a bitmask. 19460 **/ 19461 void 19462 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19463 { 19464 kfree(phba->sli4_hba.rpi_bmask); 19465 kfree(phba->sli4_hba.rpi_ids); 19466 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19467 } 19468 19469 /** 19470 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19471 * @ndlp: pointer to lpfc nodelist data structure. 19472 * @cmpl: completion call-back. 19473 * @arg: data to load as MBox 'caller buffer information' 19474 * 19475 * This routine is invoked to remove the memory region that 19476 * provided rpi via a bitmask. 19477 **/ 19478 int 19479 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19480 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19481 { 19482 LPFC_MBOXQ_t *mboxq; 19483 struct lpfc_hba *phba = ndlp->phba; 19484 int rc; 19485 19486 /* The port is notified of the header region via a mailbox command. */ 19487 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19488 if (!mboxq) 19489 return -ENOMEM; 19490 19491 /* If cmpl assigned, then this nlp_get pairs with 19492 * lpfc_mbx_cmpl_resume_rpi. 19493 * 19494 * Else cmpl is NULL, then this nlp_get pairs with 19495 * lpfc_sli_def_mbox_cmpl. 19496 */ 19497 if (!lpfc_nlp_get(ndlp)) { 19498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19499 "2122 %s: Failed to get nlp ref\n", 19500 __func__); 19501 mempool_free(mboxq, phba->mbox_mem_pool); 19502 return -EIO; 19503 } 19504 19505 /* Post all rpi memory regions to the port. */ 19506 lpfc_resume_rpi(mboxq, ndlp); 19507 if (cmpl) { 19508 mboxq->mbox_cmpl = cmpl; 19509 mboxq->ctx_buf = arg; 19510 } else 19511 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19512 mboxq->ctx_ndlp = ndlp; 19513 mboxq->vport = ndlp->vport; 19514 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19515 if (rc == MBX_NOT_FINISHED) { 19516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19517 "2010 Resume RPI Mailbox failed " 19518 "status %d, mbxStatus x%x\n", rc, 19519 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19520 lpfc_nlp_put(ndlp); 19521 mempool_free(mboxq, phba->mbox_mem_pool); 19522 return -EIO; 19523 } 19524 return 0; 19525 } 19526 19527 /** 19528 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19529 * @vport: Pointer to the vport for which the vpi is being initialized 19530 * 19531 * This routine is invoked to activate a vpi with the port. 19532 * 19533 * Returns: 19534 * 0 success 19535 * -Evalue otherwise 19536 **/ 19537 int 19538 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19539 { 19540 LPFC_MBOXQ_t *mboxq; 19541 int rc = 0; 19542 int retval = MBX_SUCCESS; 19543 uint32_t mbox_tmo; 19544 struct lpfc_hba *phba = vport->phba; 19545 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19546 if (!mboxq) 19547 return -ENOMEM; 19548 lpfc_init_vpi(phba, mboxq, vport->vpi); 19549 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19550 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19551 if (rc != MBX_SUCCESS) { 19552 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19553 "2022 INIT VPI Mailbox failed " 19554 "status %d, mbxStatus x%x\n", rc, 19555 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19556 retval = -EIO; 19557 } 19558 if (rc != MBX_TIMEOUT) 19559 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19560 19561 return retval; 19562 } 19563 19564 /** 19565 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19566 * @phba: pointer to lpfc hba data structure. 19567 * @mboxq: Pointer to mailbox object. 19568 * 19569 * This routine is invoked to manually add a single FCF record. The caller 19570 * must pass a completely initialized FCF_Record. This routine takes 19571 * care of the nonembedded mailbox operations. 19572 **/ 19573 static void 19574 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19575 { 19576 void *virt_addr; 19577 union lpfc_sli4_cfg_shdr *shdr; 19578 uint32_t shdr_status, shdr_add_status; 19579 19580 virt_addr = mboxq->sge_array->addr[0]; 19581 /* The IOCTL status is embedded in the mailbox subheader. */ 19582 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19583 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19584 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19585 19586 if ((shdr_status || shdr_add_status) && 19587 (shdr_status != STATUS_FCF_IN_USE)) 19588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19589 "2558 ADD_FCF_RECORD mailbox failed with " 19590 "status x%x add_status x%x\n", 19591 shdr_status, shdr_add_status); 19592 19593 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19594 } 19595 19596 /** 19597 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19598 * @phba: pointer to lpfc hba data structure. 19599 * @fcf_record: pointer to the initialized fcf record to add. 19600 * 19601 * This routine is invoked to manually add a single FCF record. The caller 19602 * must pass a completely initialized FCF_Record. This routine takes 19603 * care of the nonembedded mailbox operations. 19604 **/ 19605 int 19606 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19607 { 19608 int rc = 0; 19609 LPFC_MBOXQ_t *mboxq; 19610 uint8_t *bytep; 19611 void *virt_addr; 19612 struct lpfc_mbx_sge sge; 19613 uint32_t alloc_len, req_len; 19614 uint32_t fcfindex; 19615 19616 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19617 if (!mboxq) { 19618 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19619 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19620 return -ENOMEM; 19621 } 19622 19623 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19624 sizeof(uint32_t); 19625 19626 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19627 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19628 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19629 req_len, LPFC_SLI4_MBX_NEMBED); 19630 if (alloc_len < req_len) { 19631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19632 "2523 Allocated DMA memory size (x%x) is " 19633 "less than the requested DMA memory " 19634 "size (x%x)\n", alloc_len, req_len); 19635 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19636 return -ENOMEM; 19637 } 19638 19639 /* 19640 * Get the first SGE entry from the non-embedded DMA memory. This 19641 * routine only uses a single SGE. 19642 */ 19643 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19644 virt_addr = mboxq->sge_array->addr[0]; 19645 /* 19646 * Configure the FCF record for FCFI 0. This is the driver's 19647 * hardcoded default and gets used in nonFIP mode. 19648 */ 19649 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19650 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19651 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19652 19653 /* 19654 * Copy the fcf_index and the FCF Record Data. The data starts after 19655 * the FCoE header plus word10. The data copy needs to be endian 19656 * correct. 19657 */ 19658 bytep += sizeof(uint32_t); 19659 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19660 mboxq->vport = phba->pport; 19661 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19663 if (rc == MBX_NOT_FINISHED) { 19664 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19665 "2515 ADD_FCF_RECORD mailbox failed with " 19666 "status 0x%x\n", rc); 19667 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19668 rc = -EIO; 19669 } else 19670 rc = 0; 19671 19672 return rc; 19673 } 19674 19675 /** 19676 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19677 * @phba: pointer to lpfc hba data structure. 19678 * @fcf_record: pointer to the fcf record to write the default data. 19679 * @fcf_index: FCF table entry index. 19680 * 19681 * This routine is invoked to build the driver's default FCF record. The 19682 * values used are hardcoded. This routine handles memory initialization. 19683 * 19684 **/ 19685 void 19686 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19687 struct fcf_record *fcf_record, 19688 uint16_t fcf_index) 19689 { 19690 memset(fcf_record, 0, sizeof(struct fcf_record)); 19691 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19692 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19693 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19694 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19695 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19696 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19697 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19698 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19699 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19700 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19701 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19702 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19703 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19704 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19705 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19706 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19707 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19708 /* Set the VLAN bit map */ 19709 if (phba->valid_vlan) { 19710 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19711 = 1 << (phba->vlan_id % 8); 19712 } 19713 } 19714 19715 /** 19716 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19717 * @phba: pointer to lpfc hba data structure. 19718 * @fcf_index: FCF table entry offset. 19719 * 19720 * This routine is invoked to scan the entire FCF table by reading FCF 19721 * record and processing it one at a time starting from the @fcf_index 19722 * for initial FCF discovery or fast FCF failover rediscovery. 19723 * 19724 * Return 0 if the mailbox command is submitted successfully, none 0 19725 * otherwise. 19726 **/ 19727 int 19728 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19729 { 19730 int rc = 0, error; 19731 LPFC_MBOXQ_t *mboxq; 19732 19733 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19734 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19735 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19736 if (!mboxq) { 19737 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19738 "2000 Failed to allocate mbox for " 19739 "READ_FCF cmd\n"); 19740 error = -ENOMEM; 19741 goto fail_fcf_scan; 19742 } 19743 /* Construct the read FCF record mailbox command */ 19744 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19745 if (rc) { 19746 error = -EINVAL; 19747 goto fail_fcf_scan; 19748 } 19749 /* Issue the mailbox command asynchronously */ 19750 mboxq->vport = phba->pport; 19751 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19752 19753 spin_lock_irq(&phba->hbalock); 19754 phba->hba_flag |= FCF_TS_INPROG; 19755 spin_unlock_irq(&phba->hbalock); 19756 19757 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19758 if (rc == MBX_NOT_FINISHED) 19759 error = -EIO; 19760 else { 19761 /* Reset eligible FCF count for new scan */ 19762 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19763 phba->fcf.eligible_fcf_cnt = 0; 19764 error = 0; 19765 } 19766 fail_fcf_scan: 19767 if (error) { 19768 if (mboxq) 19769 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19770 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19771 spin_lock_irq(&phba->hbalock); 19772 phba->hba_flag &= ~FCF_TS_INPROG; 19773 spin_unlock_irq(&phba->hbalock); 19774 } 19775 return error; 19776 } 19777 19778 /** 19779 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19780 * @phba: pointer to lpfc hba data structure. 19781 * @fcf_index: FCF table entry offset. 19782 * 19783 * This routine is invoked to read an FCF record indicated by @fcf_index 19784 * and to use it for FLOGI roundrobin FCF failover. 19785 * 19786 * Return 0 if the mailbox command is submitted successfully, none 0 19787 * otherwise. 19788 **/ 19789 int 19790 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19791 { 19792 int rc = 0, error; 19793 LPFC_MBOXQ_t *mboxq; 19794 19795 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19796 if (!mboxq) { 19797 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19798 "2763 Failed to allocate mbox for " 19799 "READ_FCF cmd\n"); 19800 error = -ENOMEM; 19801 goto fail_fcf_read; 19802 } 19803 /* Construct the read FCF record mailbox command */ 19804 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19805 if (rc) { 19806 error = -EINVAL; 19807 goto fail_fcf_read; 19808 } 19809 /* Issue the mailbox command asynchronously */ 19810 mboxq->vport = phba->pport; 19811 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19812 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19813 if (rc == MBX_NOT_FINISHED) 19814 error = -EIO; 19815 else 19816 error = 0; 19817 19818 fail_fcf_read: 19819 if (error && mboxq) 19820 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19821 return error; 19822 } 19823 19824 /** 19825 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19826 * @phba: pointer to lpfc hba data structure. 19827 * @fcf_index: FCF table entry offset. 19828 * 19829 * This routine is invoked to read an FCF record indicated by @fcf_index to 19830 * determine whether it's eligible for FLOGI roundrobin failover list. 19831 * 19832 * Return 0 if the mailbox command is submitted successfully, none 0 19833 * otherwise. 19834 **/ 19835 int 19836 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19837 { 19838 int rc = 0, error; 19839 LPFC_MBOXQ_t *mboxq; 19840 19841 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19842 if (!mboxq) { 19843 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19844 "2758 Failed to allocate mbox for " 19845 "READ_FCF cmd\n"); 19846 error = -ENOMEM; 19847 goto fail_fcf_read; 19848 } 19849 /* Construct the read FCF record mailbox command */ 19850 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19851 if (rc) { 19852 error = -EINVAL; 19853 goto fail_fcf_read; 19854 } 19855 /* Issue the mailbox command asynchronously */ 19856 mboxq->vport = phba->pport; 19857 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19858 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19859 if (rc == MBX_NOT_FINISHED) 19860 error = -EIO; 19861 else 19862 error = 0; 19863 19864 fail_fcf_read: 19865 if (error && mboxq) 19866 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19867 return error; 19868 } 19869 19870 /** 19871 * lpfc_check_next_fcf_pri_level 19872 * @phba: pointer to the lpfc_hba struct for this port. 19873 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19874 * routine when the rr_bmask is empty. The FCF indecies are put into the 19875 * rr_bmask based on their priority level. Starting from the highest priority 19876 * to the lowest. The most likely FCF candidate will be in the highest 19877 * priority group. When this routine is called it searches the fcf_pri list for 19878 * next lowest priority group and repopulates the rr_bmask with only those 19879 * fcf_indexes. 19880 * returns: 19881 * 1=success 0=failure 19882 **/ 19883 static int 19884 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19885 { 19886 uint16_t next_fcf_pri; 19887 uint16_t last_index; 19888 struct lpfc_fcf_pri *fcf_pri; 19889 int rc; 19890 int ret = 0; 19891 19892 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19893 LPFC_SLI4_FCF_TBL_INDX_MAX); 19894 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19895 "3060 Last IDX %d\n", last_index); 19896 19897 /* Verify the priority list has 2 or more entries */ 19898 spin_lock_irq(&phba->hbalock); 19899 if (list_empty(&phba->fcf.fcf_pri_list) || 19900 list_is_singular(&phba->fcf.fcf_pri_list)) { 19901 spin_unlock_irq(&phba->hbalock); 19902 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19903 "3061 Last IDX %d\n", last_index); 19904 return 0; /* Empty rr list */ 19905 } 19906 spin_unlock_irq(&phba->hbalock); 19907 19908 next_fcf_pri = 0; 19909 /* 19910 * Clear the rr_bmask and set all of the bits that are at this 19911 * priority. 19912 */ 19913 memset(phba->fcf.fcf_rr_bmask, 0, 19914 sizeof(*phba->fcf.fcf_rr_bmask)); 19915 spin_lock_irq(&phba->hbalock); 19916 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19917 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19918 continue; 19919 /* 19920 * the 1st priority that has not FLOGI failed 19921 * will be the highest. 19922 */ 19923 if (!next_fcf_pri) 19924 next_fcf_pri = fcf_pri->fcf_rec.priority; 19925 spin_unlock_irq(&phba->hbalock); 19926 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19927 rc = lpfc_sli4_fcf_rr_index_set(phba, 19928 fcf_pri->fcf_rec.fcf_index); 19929 if (rc) 19930 return 0; 19931 } 19932 spin_lock_irq(&phba->hbalock); 19933 } 19934 /* 19935 * if next_fcf_pri was not set above and the list is not empty then 19936 * we have failed flogis on all of them. So reset flogi failed 19937 * and start at the beginning. 19938 */ 19939 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19940 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19941 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19942 /* 19943 * the 1st priority that has not FLOGI failed 19944 * will be the highest. 19945 */ 19946 if (!next_fcf_pri) 19947 next_fcf_pri = fcf_pri->fcf_rec.priority; 19948 spin_unlock_irq(&phba->hbalock); 19949 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19950 rc = lpfc_sli4_fcf_rr_index_set(phba, 19951 fcf_pri->fcf_rec.fcf_index); 19952 if (rc) 19953 return 0; 19954 } 19955 spin_lock_irq(&phba->hbalock); 19956 } 19957 } else 19958 ret = 1; 19959 spin_unlock_irq(&phba->hbalock); 19960 19961 return ret; 19962 } 19963 /** 19964 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19965 * @phba: pointer to lpfc hba data structure. 19966 * 19967 * This routine is to get the next eligible FCF record index in a round 19968 * robin fashion. If the next eligible FCF record index equals to the 19969 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19970 * shall be returned, otherwise, the next eligible FCF record's index 19971 * shall be returned. 19972 **/ 19973 uint16_t 19974 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19975 { 19976 uint16_t next_fcf_index; 19977 19978 initial_priority: 19979 /* Search start from next bit of currently registered FCF index */ 19980 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19981 19982 next_priority: 19983 /* Determine the next fcf index to check */ 19984 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19985 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19986 LPFC_SLI4_FCF_TBL_INDX_MAX, 19987 next_fcf_index); 19988 19989 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19990 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19991 /* 19992 * If we have wrapped then we need to clear the bits that 19993 * have been tested so that we can detect when we should 19994 * change the priority level. 19995 */ 19996 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19997 LPFC_SLI4_FCF_TBL_INDX_MAX); 19998 } 19999 20000 20001 /* Check roundrobin failover list empty condition */ 20002 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20003 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20004 /* 20005 * If next fcf index is not found check if there are lower 20006 * Priority level fcf's in the fcf_priority list. 20007 * Set up the rr_bmask with all of the avaiable fcf bits 20008 * at that level and continue the selection process. 20009 */ 20010 if (lpfc_check_next_fcf_pri_level(phba)) 20011 goto initial_priority; 20012 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20013 "2844 No roundrobin failover FCF available\n"); 20014 20015 return LPFC_FCOE_FCF_NEXT_NONE; 20016 } 20017 20018 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20019 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20020 LPFC_FCF_FLOGI_FAILED) { 20021 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20022 return LPFC_FCOE_FCF_NEXT_NONE; 20023 20024 goto next_priority; 20025 } 20026 20027 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20028 "2845 Get next roundrobin failover FCF (x%x)\n", 20029 next_fcf_index); 20030 20031 return next_fcf_index; 20032 } 20033 20034 /** 20035 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20036 * @phba: pointer to lpfc hba data structure. 20037 * @fcf_index: index into the FCF table to 'set' 20038 * 20039 * This routine sets the FCF record index in to the eligible bmask for 20040 * roundrobin failover search. It checks to make sure that the index 20041 * does not go beyond the range of the driver allocated bmask dimension 20042 * before setting the bit. 20043 * 20044 * Returns 0 if the index bit successfully set, otherwise, it returns 20045 * -EINVAL. 20046 **/ 20047 int 20048 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20049 { 20050 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20051 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20052 "2610 FCF (x%x) reached driver's book " 20053 "keeping dimension:x%x\n", 20054 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20055 return -EINVAL; 20056 } 20057 /* Set the eligible FCF record index bmask */ 20058 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20059 20060 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20061 "2790 Set FCF (x%x) to roundrobin FCF failover " 20062 "bmask\n", fcf_index); 20063 20064 return 0; 20065 } 20066 20067 /** 20068 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20069 * @phba: pointer to lpfc hba data structure. 20070 * @fcf_index: index into the FCF table to 'clear' 20071 * 20072 * This routine clears the FCF record index from the eligible bmask for 20073 * roundrobin failover search. It checks to make sure that the index 20074 * does not go beyond the range of the driver allocated bmask dimension 20075 * before clearing the bit. 20076 **/ 20077 void 20078 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20079 { 20080 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20081 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20082 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20083 "2762 FCF (x%x) reached driver's book " 20084 "keeping dimension:x%x\n", 20085 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20086 return; 20087 } 20088 /* Clear the eligible FCF record index bmask */ 20089 spin_lock_irq(&phba->hbalock); 20090 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20091 list) { 20092 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20093 list_del_init(&fcf_pri->list); 20094 break; 20095 } 20096 } 20097 spin_unlock_irq(&phba->hbalock); 20098 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20099 20100 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20101 "2791 Clear FCF (x%x) from roundrobin failover " 20102 "bmask\n", fcf_index); 20103 } 20104 20105 /** 20106 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20107 * @phba: pointer to lpfc hba data structure. 20108 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20109 * 20110 * This routine is the completion routine for the rediscover FCF table mailbox 20111 * command. If the mailbox command returned failure, it will try to stop the 20112 * FCF rediscover wait timer. 20113 **/ 20114 static void 20115 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20116 { 20117 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20118 uint32_t shdr_status, shdr_add_status; 20119 20120 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20121 20122 shdr_status = bf_get(lpfc_mbox_hdr_status, 20123 &redisc_fcf->header.cfg_shdr.response); 20124 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20125 &redisc_fcf->header.cfg_shdr.response); 20126 if (shdr_status || shdr_add_status) { 20127 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20128 "2746 Requesting for FCF rediscovery failed " 20129 "status x%x add_status x%x\n", 20130 shdr_status, shdr_add_status); 20131 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20132 spin_lock_irq(&phba->hbalock); 20133 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20134 spin_unlock_irq(&phba->hbalock); 20135 /* 20136 * CVL event triggered FCF rediscover request failed, 20137 * last resort to re-try current registered FCF entry. 20138 */ 20139 lpfc_retry_pport_discovery(phba); 20140 } else { 20141 spin_lock_irq(&phba->hbalock); 20142 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20143 spin_unlock_irq(&phba->hbalock); 20144 /* 20145 * DEAD FCF event triggered FCF rediscover request 20146 * failed, last resort to fail over as a link down 20147 * to FCF registration. 20148 */ 20149 lpfc_sli4_fcf_dead_failthrough(phba); 20150 } 20151 } else { 20152 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20153 "2775 Start FCF rediscover quiescent timer\n"); 20154 /* 20155 * Start FCF rediscovery wait timer for pending FCF 20156 * before rescan FCF record table. 20157 */ 20158 lpfc_fcf_redisc_wait_start_timer(phba); 20159 } 20160 20161 mempool_free(mbox, phba->mbox_mem_pool); 20162 } 20163 20164 /** 20165 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20166 * @phba: pointer to lpfc hba data structure. 20167 * 20168 * This routine is invoked to request for rediscovery of the entire FCF table 20169 * by the port. 20170 **/ 20171 int 20172 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20173 { 20174 LPFC_MBOXQ_t *mbox; 20175 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20176 int rc, length; 20177 20178 /* Cancel retry delay timers to all vports before FCF rediscover */ 20179 lpfc_cancel_all_vport_retry_delay_timer(phba); 20180 20181 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20182 if (!mbox) { 20183 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20184 "2745 Failed to allocate mbox for " 20185 "requesting FCF rediscover.\n"); 20186 return -ENOMEM; 20187 } 20188 20189 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20190 sizeof(struct lpfc_sli4_cfg_mhdr)); 20191 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20192 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20193 length, LPFC_SLI4_MBX_EMBED); 20194 20195 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20196 /* Set count to 0 for invalidating the entire FCF database */ 20197 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20198 20199 /* Issue the mailbox command asynchronously */ 20200 mbox->vport = phba->pport; 20201 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20202 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20203 20204 if (rc == MBX_NOT_FINISHED) { 20205 mempool_free(mbox, phba->mbox_mem_pool); 20206 return -EIO; 20207 } 20208 return 0; 20209 } 20210 20211 /** 20212 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20213 * @phba: pointer to lpfc hba data structure. 20214 * 20215 * This function is the failover routine as a last resort to the FCF DEAD 20216 * event when driver failed to perform fast FCF failover. 20217 **/ 20218 void 20219 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20220 { 20221 uint32_t link_state; 20222 20223 /* 20224 * Last resort as FCF DEAD event failover will treat this as 20225 * a link down, but save the link state because we don't want 20226 * it to be changed to Link Down unless it is already down. 20227 */ 20228 link_state = phba->link_state; 20229 lpfc_linkdown(phba); 20230 phba->link_state = link_state; 20231 20232 /* Unregister FCF if no devices connected to it */ 20233 lpfc_unregister_unused_fcf(phba); 20234 } 20235 20236 /** 20237 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20238 * @phba: pointer to lpfc hba data structure. 20239 * @rgn23_data: pointer to configure region 23 data. 20240 * 20241 * This function gets SLI3 port configure region 23 data through memory dump 20242 * mailbox command. When it successfully retrieves data, the size of the data 20243 * will be returned, otherwise, 0 will be returned. 20244 **/ 20245 static uint32_t 20246 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20247 { 20248 LPFC_MBOXQ_t *pmb = NULL; 20249 MAILBOX_t *mb; 20250 uint32_t offset = 0; 20251 int rc; 20252 20253 if (!rgn23_data) 20254 return 0; 20255 20256 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20257 if (!pmb) { 20258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20259 "2600 failed to allocate mailbox memory\n"); 20260 return 0; 20261 } 20262 mb = &pmb->u.mb; 20263 20264 do { 20265 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20266 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20267 20268 if (rc != MBX_SUCCESS) { 20269 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20270 "2601 failed to read config " 20271 "region 23, rc 0x%x Status 0x%x\n", 20272 rc, mb->mbxStatus); 20273 mb->un.varDmp.word_cnt = 0; 20274 } 20275 /* 20276 * dump mem may return a zero when finished or we got a 20277 * mailbox error, either way we are done. 20278 */ 20279 if (mb->un.varDmp.word_cnt == 0) 20280 break; 20281 20282 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20283 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20284 20285 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20286 rgn23_data + offset, 20287 mb->un.varDmp.word_cnt); 20288 offset += mb->un.varDmp.word_cnt; 20289 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20290 20291 mempool_free(pmb, phba->mbox_mem_pool); 20292 return offset; 20293 } 20294 20295 /** 20296 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20297 * @phba: pointer to lpfc hba data structure. 20298 * @rgn23_data: pointer to configure region 23 data. 20299 * 20300 * This function gets SLI4 port configure region 23 data through memory dump 20301 * mailbox command. When it successfully retrieves data, the size of the data 20302 * will be returned, otherwise, 0 will be returned. 20303 **/ 20304 static uint32_t 20305 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20306 { 20307 LPFC_MBOXQ_t *mboxq = NULL; 20308 struct lpfc_dmabuf *mp = NULL; 20309 struct lpfc_mqe *mqe; 20310 uint32_t data_length = 0; 20311 int rc; 20312 20313 if (!rgn23_data) 20314 return 0; 20315 20316 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20317 if (!mboxq) { 20318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20319 "3105 failed to allocate mailbox memory\n"); 20320 return 0; 20321 } 20322 20323 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20324 goto out; 20325 mqe = &mboxq->u.mqe; 20326 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20327 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20328 if (rc) 20329 goto out; 20330 data_length = mqe->un.mb_words[5]; 20331 if (data_length == 0) 20332 goto out; 20333 if (data_length > DMP_RGN23_SIZE) { 20334 data_length = 0; 20335 goto out; 20336 } 20337 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20338 out: 20339 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20340 return data_length; 20341 } 20342 20343 /** 20344 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20345 * @phba: pointer to lpfc hba data structure. 20346 * 20347 * This function read region 23 and parse TLV for port status to 20348 * decide if the user disaled the port. If the TLV indicates the 20349 * port is disabled, the hba_flag is set accordingly. 20350 **/ 20351 void 20352 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20353 { 20354 uint8_t *rgn23_data = NULL; 20355 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20356 uint32_t offset = 0; 20357 20358 /* Get adapter Region 23 data */ 20359 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20360 if (!rgn23_data) 20361 goto out; 20362 20363 if (phba->sli_rev < LPFC_SLI_REV4) 20364 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20365 else { 20366 if_type = bf_get(lpfc_sli_intf_if_type, 20367 &phba->sli4_hba.sli_intf); 20368 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20369 goto out; 20370 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20371 } 20372 20373 if (!data_size) 20374 goto out; 20375 20376 /* Check the region signature first */ 20377 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20379 "2619 Config region 23 has bad signature\n"); 20380 goto out; 20381 } 20382 offset += 4; 20383 20384 /* Check the data structure version */ 20385 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20387 "2620 Config region 23 has bad version\n"); 20388 goto out; 20389 } 20390 offset += 4; 20391 20392 /* Parse TLV entries in the region */ 20393 while (offset < data_size) { 20394 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20395 break; 20396 /* 20397 * If the TLV is not driver specific TLV or driver id is 20398 * not linux driver id, skip the record. 20399 */ 20400 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20401 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20402 (rgn23_data[offset + 3] != 0)) { 20403 offset += rgn23_data[offset + 1] * 4 + 4; 20404 continue; 20405 } 20406 20407 /* Driver found a driver specific TLV in the config region */ 20408 sub_tlv_len = rgn23_data[offset + 1] * 4; 20409 offset += 4; 20410 tlv_offset = 0; 20411 20412 /* 20413 * Search for configured port state sub-TLV. 20414 */ 20415 while ((offset < data_size) && 20416 (tlv_offset < sub_tlv_len)) { 20417 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20418 offset += 4; 20419 tlv_offset += 4; 20420 break; 20421 } 20422 if (rgn23_data[offset] != PORT_STE_TYPE) { 20423 offset += rgn23_data[offset + 1] * 4 + 4; 20424 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20425 continue; 20426 } 20427 20428 /* This HBA contains PORT_STE configured */ 20429 if (!rgn23_data[offset + 2]) 20430 phba->hba_flag |= LINK_DISABLED; 20431 20432 goto out; 20433 } 20434 } 20435 20436 out: 20437 kfree(rgn23_data); 20438 return; 20439 } 20440 20441 /** 20442 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20443 * @phba: pointer to lpfc hba data structure 20444 * @shdr_status: wr_object rsp's status field 20445 * @shdr_add_status: wr_object rsp's add_status field 20446 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20447 * @shdr_change_status: wr_object rsp's change_status field 20448 * @shdr_csf: wr_object rsp's csf bit 20449 * 20450 * This routine is intended to be called after a firmware write completes. 20451 * It will log next action items to be performed by the user to instantiate 20452 * the newly downloaded firmware or reason for incompatibility. 20453 **/ 20454 static void 20455 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20456 u32 shdr_add_status, u32 shdr_add_status_2, 20457 u32 shdr_change_status, u32 shdr_csf) 20458 { 20459 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20460 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20461 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20462 "change_status x%02x, csf %01x\n", __func__, 20463 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20464 shdr_status, shdr_add_status, shdr_add_status_2, 20465 shdr_change_status, shdr_csf); 20466 20467 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20468 switch (shdr_add_status_2) { 20469 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20470 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20471 "4199 Firmware write failed: " 20472 "image incompatible with flash x%02x\n", 20473 phba->sli4_hba.flash_id); 20474 break; 20475 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20476 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20477 "4200 Firmware write failed: " 20478 "image incompatible with ASIC " 20479 "architecture x%02x\n", 20480 phba->sli4_hba.asic_rev); 20481 break; 20482 default: 20483 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20484 "4210 Firmware write failed: " 20485 "add_status_2 x%02x\n", 20486 shdr_add_status_2); 20487 break; 20488 } 20489 } else if (!shdr_status && !shdr_add_status) { 20490 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20491 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20492 if (shdr_csf) 20493 shdr_change_status = 20494 LPFC_CHANGE_STATUS_PCI_RESET; 20495 } 20496 20497 switch (shdr_change_status) { 20498 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20499 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20500 "3198 Firmware write complete: System " 20501 "reboot required to instantiate\n"); 20502 break; 20503 case (LPFC_CHANGE_STATUS_FW_RESET): 20504 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20505 "3199 Firmware write complete: " 20506 "Firmware reset required to " 20507 "instantiate\n"); 20508 break; 20509 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20510 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20511 "3200 Firmware write complete: Port " 20512 "Migration or PCI Reset required to " 20513 "instantiate\n"); 20514 break; 20515 case (LPFC_CHANGE_STATUS_PCI_RESET): 20516 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20517 "3201 Firmware write complete: PCI " 20518 "Reset required to instantiate\n"); 20519 break; 20520 default: 20521 break; 20522 } 20523 } 20524 } 20525 20526 /** 20527 * lpfc_wr_object - write an object to the firmware 20528 * @phba: HBA structure that indicates port to create a queue on. 20529 * @dmabuf_list: list of dmabufs to write to the port. 20530 * @size: the total byte value of the objects to write to the port. 20531 * @offset: the current offset to be used to start the transfer. 20532 * 20533 * This routine will create a wr_object mailbox command to send to the port. 20534 * the mailbox command will be constructed using the dma buffers described in 20535 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20536 * BDEs that the imbedded mailbox can support. The @offset variable will be 20537 * used to indicate the starting offset of the transfer and will also return 20538 * the offset after the write object mailbox has completed. @size is used to 20539 * determine the end of the object and whether the eof bit should be set. 20540 * 20541 * Return 0 is successful and offset will contain the the new offset to use 20542 * for the next write. 20543 * Return negative value for error cases. 20544 **/ 20545 int 20546 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20547 uint32_t size, uint32_t *offset) 20548 { 20549 struct lpfc_mbx_wr_object *wr_object; 20550 LPFC_MBOXQ_t *mbox; 20551 int rc = 0, i = 0; 20552 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20553 uint32_t shdr_change_status = 0, shdr_csf = 0; 20554 uint32_t mbox_tmo; 20555 struct lpfc_dmabuf *dmabuf; 20556 uint32_t written = 0; 20557 bool check_change_status = false; 20558 20559 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20560 if (!mbox) 20561 return -ENOMEM; 20562 20563 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20564 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20565 sizeof(struct lpfc_mbx_wr_object) - 20566 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20567 20568 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20569 wr_object->u.request.write_offset = *offset; 20570 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20571 wr_object->u.request.object_name[0] = 20572 cpu_to_le32(wr_object->u.request.object_name[0]); 20573 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20574 list_for_each_entry(dmabuf, dmabuf_list, list) { 20575 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20576 break; 20577 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20578 wr_object->u.request.bde[i].addrHigh = 20579 putPaddrHigh(dmabuf->phys); 20580 if (written + SLI4_PAGE_SIZE >= size) { 20581 wr_object->u.request.bde[i].tus.f.bdeSize = 20582 (size - written); 20583 written += (size - written); 20584 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20585 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20586 check_change_status = true; 20587 } else { 20588 wr_object->u.request.bde[i].tus.f.bdeSize = 20589 SLI4_PAGE_SIZE; 20590 written += SLI4_PAGE_SIZE; 20591 } 20592 i++; 20593 } 20594 wr_object->u.request.bde_count = i; 20595 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20596 if (!phba->sli4_hba.intr_enable) 20597 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20598 else { 20599 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20600 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20601 } 20602 /* The IOCTL status is embedded in the mailbox subheader. */ 20603 shdr_status = bf_get(lpfc_mbox_hdr_status, 20604 &wr_object->header.cfg_shdr.response); 20605 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20606 &wr_object->header.cfg_shdr.response); 20607 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20608 &wr_object->header.cfg_shdr.response); 20609 if (check_change_status) { 20610 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20611 &wr_object->u.response); 20612 shdr_csf = bf_get(lpfc_wr_object_csf, 20613 &wr_object->u.response); 20614 } 20615 20616 if (!phba->sli4_hba.intr_enable) 20617 mempool_free(mbox, phba->mbox_mem_pool); 20618 else if (rc != MBX_TIMEOUT) 20619 mempool_free(mbox, phba->mbox_mem_pool); 20620 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20622 "3025 Write Object mailbox failed with " 20623 "status x%x add_status x%x, add_status_2 x%x, " 20624 "mbx status x%x\n", 20625 shdr_status, shdr_add_status, shdr_add_status_2, 20626 rc); 20627 rc = -ENXIO; 20628 *offset = shdr_add_status; 20629 } else { 20630 *offset += wr_object->u.response.actual_write_length; 20631 } 20632 20633 if (rc || check_change_status) 20634 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20635 shdr_add_status_2, shdr_change_status, 20636 shdr_csf); 20637 return rc; 20638 } 20639 20640 /** 20641 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20642 * @vport: pointer to vport data structure. 20643 * 20644 * This function iterate through the mailboxq and clean up all REG_LOGIN 20645 * and REG_VPI mailbox commands associated with the vport. This function 20646 * is called when driver want to restart discovery of the vport due to 20647 * a Clear Virtual Link event. 20648 **/ 20649 void 20650 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20651 { 20652 struct lpfc_hba *phba = vport->phba; 20653 LPFC_MBOXQ_t *mb, *nextmb; 20654 struct lpfc_nodelist *ndlp; 20655 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20656 LIST_HEAD(mbox_cmd_list); 20657 uint8_t restart_loop; 20658 20659 /* Clean up internally queued mailbox commands with the vport */ 20660 spin_lock_irq(&phba->hbalock); 20661 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20662 if (mb->vport != vport) 20663 continue; 20664 20665 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20666 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20667 continue; 20668 20669 list_move_tail(&mb->list, &mbox_cmd_list); 20670 } 20671 /* Clean up active mailbox command with the vport */ 20672 mb = phba->sli.mbox_active; 20673 if (mb && (mb->vport == vport)) { 20674 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20675 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20676 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20677 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20678 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20679 20680 /* This reference is local to this routine. The 20681 * reference is removed at routine exit. 20682 */ 20683 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20684 20685 /* Unregister the RPI when mailbox complete */ 20686 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20687 } 20688 } 20689 /* Cleanup any mailbox completions which are not yet processed */ 20690 do { 20691 restart_loop = 0; 20692 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20693 /* 20694 * If this mailox is already processed or it is 20695 * for another vport ignore it. 20696 */ 20697 if ((mb->vport != vport) || 20698 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20699 continue; 20700 20701 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20702 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20703 continue; 20704 20705 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20706 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20707 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20708 /* Unregister the RPI when mailbox complete */ 20709 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20710 restart_loop = 1; 20711 spin_unlock_irq(&phba->hbalock); 20712 spin_lock(&ndlp->lock); 20713 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20714 spin_unlock(&ndlp->lock); 20715 spin_lock_irq(&phba->hbalock); 20716 break; 20717 } 20718 } 20719 } while (restart_loop); 20720 20721 spin_unlock_irq(&phba->hbalock); 20722 20723 /* Release the cleaned-up mailbox commands */ 20724 while (!list_empty(&mbox_cmd_list)) { 20725 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20726 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20727 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20728 mb->ctx_ndlp = NULL; 20729 if (ndlp) { 20730 spin_lock(&ndlp->lock); 20731 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20732 spin_unlock(&ndlp->lock); 20733 lpfc_nlp_put(ndlp); 20734 } 20735 } 20736 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 20737 } 20738 20739 /* Release the ndlp with the cleaned-up active mailbox command */ 20740 if (act_mbx_ndlp) { 20741 spin_lock(&act_mbx_ndlp->lock); 20742 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20743 spin_unlock(&act_mbx_ndlp->lock); 20744 lpfc_nlp_put(act_mbx_ndlp); 20745 } 20746 } 20747 20748 /** 20749 * lpfc_drain_txq - Drain the txq 20750 * @phba: Pointer to HBA context object. 20751 * 20752 * This function attempt to submit IOCBs on the txq 20753 * to the adapter. For SLI4 adapters, the txq contains 20754 * ELS IOCBs that have been deferred because the there 20755 * are no SGLs. This congestion can occur with large 20756 * vport counts during node discovery. 20757 **/ 20758 20759 uint32_t 20760 lpfc_drain_txq(struct lpfc_hba *phba) 20761 { 20762 LIST_HEAD(completions); 20763 struct lpfc_sli_ring *pring; 20764 struct lpfc_iocbq *piocbq = NULL; 20765 unsigned long iflags = 0; 20766 char *fail_msg = NULL; 20767 uint32_t txq_cnt = 0; 20768 struct lpfc_queue *wq; 20769 int ret = 0; 20770 20771 if (phba->link_flag & LS_MDS_LOOPBACK) { 20772 /* MDS WQE are posted only to first WQ*/ 20773 wq = phba->sli4_hba.hdwq[0].io_wq; 20774 if (unlikely(!wq)) 20775 return 0; 20776 pring = wq->pring; 20777 } else { 20778 wq = phba->sli4_hba.els_wq; 20779 if (unlikely(!wq)) 20780 return 0; 20781 pring = lpfc_phba_elsring(phba); 20782 } 20783 20784 if (unlikely(!pring) || list_empty(&pring->txq)) 20785 return 0; 20786 20787 spin_lock_irqsave(&pring->ring_lock, iflags); 20788 list_for_each_entry(piocbq, &pring->txq, list) { 20789 txq_cnt++; 20790 } 20791 20792 if (txq_cnt > pring->txq_max) 20793 pring->txq_max = txq_cnt; 20794 20795 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20796 20797 while (!list_empty(&pring->txq)) { 20798 spin_lock_irqsave(&pring->ring_lock, iflags); 20799 20800 piocbq = lpfc_sli_ringtx_get(phba, pring); 20801 if (!piocbq) { 20802 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20804 "2823 txq empty and txq_cnt is %d\n ", 20805 txq_cnt); 20806 break; 20807 } 20808 txq_cnt--; 20809 20810 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 20811 20812 if (ret && ret != IOCB_BUSY) { 20813 fail_msg = " - Cannot send IO "; 20814 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 20815 } 20816 if (fail_msg) { 20817 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 20818 /* Failed means we can't issue and need to cancel */ 20819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20820 "2822 IOCB failed %s iotag 0x%x " 20821 "xri 0x%x %d flg x%x\n", 20822 fail_msg, piocbq->iotag, 20823 piocbq->sli4_xritag, ret, 20824 piocbq->cmd_flag); 20825 list_add_tail(&piocbq->list, &completions); 20826 fail_msg = NULL; 20827 } 20828 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20829 if (txq_cnt == 0 || ret == IOCB_BUSY) 20830 break; 20831 } 20832 /* Cancel all the IOCBs that cannot be issued */ 20833 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20834 IOERR_SLI_ABORTED); 20835 20836 return txq_cnt; 20837 } 20838 20839 /** 20840 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20841 * @phba: Pointer to HBA context object. 20842 * @pwqeq: Pointer to command WQE. 20843 * @sglq: Pointer to the scatter gather queue object. 20844 * 20845 * This routine converts the bpl or bde that is in the WQE 20846 * to a sgl list for the sli4 hardware. The physical address 20847 * of the bpl/bde is converted back to a virtual address. 20848 * If the WQE contains a BPL then the list of BDE's is 20849 * converted to sli4_sge's. If the WQE contains a single 20850 * BDE then it is converted to a single sli_sge. 20851 * The WQE is still in cpu endianness so the contents of 20852 * the bpl can be used without byte swapping. 20853 * 20854 * Returns valid XRI = Success, NO_XRI = Failure. 20855 */ 20856 static uint16_t 20857 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20858 struct lpfc_sglq *sglq) 20859 { 20860 uint16_t xritag = NO_XRI; 20861 struct ulp_bde64 *bpl = NULL; 20862 struct ulp_bde64 bde; 20863 struct sli4_sge *sgl = NULL; 20864 struct lpfc_dmabuf *dmabuf; 20865 union lpfc_wqe128 *wqe; 20866 int numBdes = 0; 20867 int i = 0; 20868 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20869 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20870 uint32_t cmd; 20871 20872 if (!pwqeq || !sglq) 20873 return xritag; 20874 20875 sgl = (struct sli4_sge *)sglq->sgl; 20876 wqe = &pwqeq->wqe; 20877 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20878 20879 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20880 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20881 return sglq->sli4_xritag; 20882 numBdes = pwqeq->num_bdes; 20883 if (numBdes) { 20884 /* The addrHigh and addrLow fields within the WQE 20885 * have not been byteswapped yet so there is no 20886 * need to swap them back. 20887 */ 20888 if (pwqeq->bpl_dmabuf) 20889 dmabuf = pwqeq->bpl_dmabuf; 20890 else 20891 return xritag; 20892 20893 bpl = (struct ulp_bde64 *)dmabuf->virt; 20894 if (!bpl) 20895 return xritag; 20896 20897 for (i = 0; i < numBdes; i++) { 20898 /* Should already be byte swapped. */ 20899 sgl->addr_hi = bpl->addrHigh; 20900 sgl->addr_lo = bpl->addrLow; 20901 20902 sgl->word2 = le32_to_cpu(sgl->word2); 20903 if ((i+1) == numBdes) 20904 bf_set(lpfc_sli4_sge_last, sgl, 1); 20905 else 20906 bf_set(lpfc_sli4_sge_last, sgl, 0); 20907 /* swap the size field back to the cpu so we 20908 * can assign it to the sgl. 20909 */ 20910 bde.tus.w = le32_to_cpu(bpl->tus.w); 20911 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20912 /* The offsets in the sgl need to be accumulated 20913 * separately for the request and reply lists. 20914 * The request is always first, the reply follows. 20915 */ 20916 switch (cmd) { 20917 case CMD_GEN_REQUEST64_WQE: 20918 /* add up the reply sg entries */ 20919 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20920 inbound++; 20921 /* first inbound? reset the offset */ 20922 if (inbound == 1) 20923 offset = 0; 20924 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20925 bf_set(lpfc_sli4_sge_type, sgl, 20926 LPFC_SGE_TYPE_DATA); 20927 offset += bde.tus.f.bdeSize; 20928 break; 20929 case CMD_FCP_TRSP64_WQE: 20930 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20931 bf_set(lpfc_sli4_sge_type, sgl, 20932 LPFC_SGE_TYPE_DATA); 20933 break; 20934 case CMD_FCP_TSEND64_WQE: 20935 case CMD_FCP_TRECEIVE64_WQE: 20936 bf_set(lpfc_sli4_sge_type, sgl, 20937 bpl->tus.f.bdeFlags); 20938 if (i < 3) 20939 offset = 0; 20940 else 20941 offset += bde.tus.f.bdeSize; 20942 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20943 break; 20944 } 20945 sgl->word2 = cpu_to_le32(sgl->word2); 20946 bpl++; 20947 sgl++; 20948 } 20949 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20950 /* The addrHigh and addrLow fields of the BDE have not 20951 * been byteswapped yet so they need to be swapped 20952 * before putting them in the sgl. 20953 */ 20954 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20955 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20956 sgl->word2 = le32_to_cpu(sgl->word2); 20957 bf_set(lpfc_sli4_sge_last, sgl, 1); 20958 sgl->word2 = cpu_to_le32(sgl->word2); 20959 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20960 } 20961 return sglq->sli4_xritag; 20962 } 20963 20964 /** 20965 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20966 * @phba: Pointer to HBA context object. 20967 * @qp: Pointer to HDW queue. 20968 * @pwqe: Pointer to command WQE. 20969 **/ 20970 int 20971 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20972 struct lpfc_iocbq *pwqe) 20973 { 20974 union lpfc_wqe128 *wqe = &pwqe->wqe; 20975 struct lpfc_async_xchg_ctx *ctxp; 20976 struct lpfc_queue *wq; 20977 struct lpfc_sglq *sglq; 20978 struct lpfc_sli_ring *pring; 20979 unsigned long iflags; 20980 uint32_t ret = 0; 20981 20982 /* NVME_LS and NVME_LS ABTS requests. */ 20983 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 20984 pring = phba->sli4_hba.nvmels_wq->pring; 20985 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20986 qp, wq_access); 20987 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20988 if (!sglq) { 20989 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20990 return WQE_BUSY; 20991 } 20992 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20993 pwqe->sli4_xritag = sglq->sli4_xritag; 20994 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20995 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20996 return WQE_ERROR; 20997 } 20998 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20999 pwqe->sli4_xritag); 21000 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21001 if (ret) { 21002 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21003 return ret; 21004 } 21005 21006 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21007 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21008 21009 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21010 return 0; 21011 } 21012 21013 /* NVME_FCREQ and NVME_ABTS requests */ 21014 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21015 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21016 wq = qp->io_wq; 21017 pring = wq->pring; 21018 21019 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21020 21021 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21022 qp, wq_access); 21023 ret = lpfc_sli4_wq_put(wq, wqe); 21024 if (ret) { 21025 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21026 return ret; 21027 } 21028 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21029 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21030 21031 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21032 return 0; 21033 } 21034 21035 /* NVMET requests */ 21036 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21037 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21038 wq = qp->io_wq; 21039 pring = wq->pring; 21040 21041 ctxp = pwqe->context_un.axchg; 21042 sglq = ctxp->ctxbuf->sglq; 21043 if (pwqe->sli4_xritag == NO_XRI) { 21044 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21045 pwqe->sli4_xritag = sglq->sli4_xritag; 21046 } 21047 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21048 pwqe->sli4_xritag); 21049 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21050 21051 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21052 qp, wq_access); 21053 ret = lpfc_sli4_wq_put(wq, wqe); 21054 if (ret) { 21055 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21056 return ret; 21057 } 21058 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21059 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21060 21061 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21062 return 0; 21063 } 21064 return WQE_ERROR; 21065 } 21066 21067 /** 21068 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21069 * @phba: Pointer to HBA context object. 21070 * @cmdiocb: Pointer to driver command iocb object. 21071 * @cmpl: completion function. 21072 * 21073 * Fill the appropriate fields for the abort WQE and call 21074 * internal routine lpfc_sli4_issue_wqe to send the WQE 21075 * This function is called with hbalock held and no ring_lock held. 21076 * 21077 * RETURNS 0 - SUCCESS 21078 **/ 21079 21080 int 21081 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21082 void *cmpl) 21083 { 21084 struct lpfc_vport *vport = cmdiocb->vport; 21085 struct lpfc_iocbq *abtsiocb = NULL; 21086 union lpfc_wqe128 *abtswqe; 21087 struct lpfc_io_buf *lpfc_cmd; 21088 int retval = IOCB_ERROR; 21089 u16 xritag = cmdiocb->sli4_xritag; 21090 21091 /* 21092 * The scsi command can not be in txq and it is in flight because the 21093 * pCmd is still pointing at the SCSI command we have to abort. There 21094 * is no need to search the txcmplq. Just send an abort to the FW. 21095 */ 21096 21097 abtsiocb = __lpfc_sli_get_iocbq(phba); 21098 if (!abtsiocb) 21099 return WQE_NORESOURCE; 21100 21101 /* Indicate the IO is being aborted by the driver. */ 21102 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21103 21104 abtswqe = &abtsiocb->wqe; 21105 memset(abtswqe, 0, sizeof(*abtswqe)); 21106 21107 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21108 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21109 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21110 abtswqe->abort_cmd.rsrvd5 = 0; 21111 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21112 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21113 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21114 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21115 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21116 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21117 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21118 21119 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21120 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21121 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21122 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21123 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21124 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21125 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21126 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21127 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21128 abtsiocb->vport = vport; 21129 abtsiocb->cmd_cmpl = cmpl; 21130 21131 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21132 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21133 21134 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21135 "0359 Abort xri x%x, original iotag x%x, " 21136 "abort cmd iotag x%x retval x%x\n", 21137 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21138 21139 if (retval) { 21140 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21141 __lpfc_sli_release_iocbq(phba, abtsiocb); 21142 } 21143 21144 return retval; 21145 } 21146 21147 #ifdef LPFC_MXP_STAT 21148 /** 21149 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21150 * @phba: pointer to lpfc hba data structure. 21151 * @hwqid: belong to which HWQ. 21152 * 21153 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21154 * 15 seconds after a test case is running. 21155 * 21156 * The user should call lpfc_debugfs_multixripools_write before running a test 21157 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21158 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21159 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21160 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21161 **/ 21162 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21163 { 21164 struct lpfc_sli4_hdw_queue *qp; 21165 struct lpfc_multixri_pool *multixri_pool; 21166 struct lpfc_pvt_pool *pvt_pool; 21167 struct lpfc_pbl_pool *pbl_pool; 21168 u32 txcmplq_cnt; 21169 21170 qp = &phba->sli4_hba.hdwq[hwqid]; 21171 multixri_pool = qp->p_multixri_pool; 21172 if (!multixri_pool) 21173 return; 21174 21175 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21176 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21177 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21178 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21179 21180 multixri_pool->stat_pbl_count = pbl_pool->count; 21181 multixri_pool->stat_pvt_count = pvt_pool->count; 21182 multixri_pool->stat_busy_count = txcmplq_cnt; 21183 } 21184 21185 multixri_pool->stat_snapshot_taken++; 21186 } 21187 #endif 21188 21189 /** 21190 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21191 * @phba: pointer to lpfc hba data structure. 21192 * @hwqid: belong to which HWQ. 21193 * 21194 * This routine moves some XRIs from private to public pool when private pool 21195 * is not busy. 21196 **/ 21197 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21198 { 21199 struct lpfc_multixri_pool *multixri_pool; 21200 u32 io_req_count; 21201 u32 prev_io_req_count; 21202 21203 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21204 if (!multixri_pool) 21205 return; 21206 io_req_count = multixri_pool->io_req_count; 21207 prev_io_req_count = multixri_pool->prev_io_req_count; 21208 21209 if (prev_io_req_count != io_req_count) { 21210 /* Private pool is busy */ 21211 multixri_pool->prev_io_req_count = io_req_count; 21212 } else { 21213 /* Private pool is not busy. 21214 * Move XRIs from private to public pool. 21215 */ 21216 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21217 } 21218 } 21219 21220 /** 21221 * lpfc_adjust_high_watermark - Adjust high watermark 21222 * @phba: pointer to lpfc hba data structure. 21223 * @hwqid: belong to which HWQ. 21224 * 21225 * This routine sets high watermark as number of outstanding XRIs, 21226 * but make sure the new value is between xri_limit/2 and xri_limit. 21227 **/ 21228 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21229 { 21230 u32 new_watermark; 21231 u32 watermark_max; 21232 u32 watermark_min; 21233 u32 xri_limit; 21234 u32 txcmplq_cnt; 21235 u32 abts_io_bufs; 21236 struct lpfc_multixri_pool *multixri_pool; 21237 struct lpfc_sli4_hdw_queue *qp; 21238 21239 qp = &phba->sli4_hba.hdwq[hwqid]; 21240 multixri_pool = qp->p_multixri_pool; 21241 if (!multixri_pool) 21242 return; 21243 xri_limit = multixri_pool->xri_limit; 21244 21245 watermark_max = xri_limit; 21246 watermark_min = xri_limit / 2; 21247 21248 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21249 abts_io_bufs = qp->abts_scsi_io_bufs; 21250 abts_io_bufs += qp->abts_nvme_io_bufs; 21251 21252 new_watermark = txcmplq_cnt + abts_io_bufs; 21253 new_watermark = min(watermark_max, new_watermark); 21254 new_watermark = max(watermark_min, new_watermark); 21255 multixri_pool->pvt_pool.high_watermark = new_watermark; 21256 21257 #ifdef LPFC_MXP_STAT 21258 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21259 new_watermark); 21260 #endif 21261 } 21262 21263 /** 21264 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21265 * @phba: pointer to lpfc hba data structure. 21266 * @hwqid: belong to which HWQ. 21267 * 21268 * This routine is called from hearbeat timer when pvt_pool is idle. 21269 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21270 * The first step moves (all - low_watermark) amount of XRIs. 21271 * The second step moves the rest of XRIs. 21272 **/ 21273 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21274 { 21275 struct lpfc_pbl_pool *pbl_pool; 21276 struct lpfc_pvt_pool *pvt_pool; 21277 struct lpfc_sli4_hdw_queue *qp; 21278 struct lpfc_io_buf *lpfc_ncmd; 21279 struct lpfc_io_buf *lpfc_ncmd_next; 21280 unsigned long iflag; 21281 struct list_head tmp_list; 21282 u32 tmp_count; 21283 21284 qp = &phba->sli4_hba.hdwq[hwqid]; 21285 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21286 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21287 tmp_count = 0; 21288 21289 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21290 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21291 21292 if (pvt_pool->count > pvt_pool->low_watermark) { 21293 /* Step 1: move (all - low_watermark) from pvt_pool 21294 * to pbl_pool 21295 */ 21296 21297 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21298 INIT_LIST_HEAD(&tmp_list); 21299 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21300 &pvt_pool->list, list) { 21301 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21302 tmp_count++; 21303 if (tmp_count >= pvt_pool->low_watermark) 21304 break; 21305 } 21306 21307 /* Move all bufs from pvt_pool to pbl_pool */ 21308 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21309 21310 /* Move all bufs from tmp_list to pvt_pool */ 21311 list_splice(&tmp_list, &pvt_pool->list); 21312 21313 pbl_pool->count += (pvt_pool->count - tmp_count); 21314 pvt_pool->count = tmp_count; 21315 } else { 21316 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21317 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21318 pbl_pool->count += pvt_pool->count; 21319 pvt_pool->count = 0; 21320 } 21321 21322 spin_unlock(&pvt_pool->lock); 21323 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21324 } 21325 21326 /** 21327 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21328 * @phba: pointer to lpfc hba data structure 21329 * @qp: pointer to HDW queue 21330 * @pbl_pool: specified public free XRI pool 21331 * @pvt_pool: specified private free XRI pool 21332 * @count: number of XRIs to move 21333 * 21334 * This routine tries to move some free common bufs from the specified pbl_pool 21335 * to the specified pvt_pool. It might move less than count XRIs if there's not 21336 * enough in public pool. 21337 * 21338 * Return: 21339 * true - if XRIs are successfully moved from the specified pbl_pool to the 21340 * specified pvt_pool 21341 * false - if the specified pbl_pool is empty or locked by someone else 21342 **/ 21343 static bool 21344 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21345 struct lpfc_pbl_pool *pbl_pool, 21346 struct lpfc_pvt_pool *pvt_pool, u32 count) 21347 { 21348 struct lpfc_io_buf *lpfc_ncmd; 21349 struct lpfc_io_buf *lpfc_ncmd_next; 21350 unsigned long iflag; 21351 int ret; 21352 21353 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21354 if (ret) { 21355 if (pbl_pool->count) { 21356 /* Move a batch of XRIs from public to private pool */ 21357 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21358 list_for_each_entry_safe(lpfc_ncmd, 21359 lpfc_ncmd_next, 21360 &pbl_pool->list, 21361 list) { 21362 list_move_tail(&lpfc_ncmd->list, 21363 &pvt_pool->list); 21364 pvt_pool->count++; 21365 pbl_pool->count--; 21366 count--; 21367 if (count == 0) 21368 break; 21369 } 21370 21371 spin_unlock(&pvt_pool->lock); 21372 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21373 return true; 21374 } 21375 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21376 } 21377 21378 return false; 21379 } 21380 21381 /** 21382 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21383 * @phba: pointer to lpfc hba data structure. 21384 * @hwqid: belong to which HWQ. 21385 * @count: number of XRIs to move 21386 * 21387 * This routine tries to find some free common bufs in one of public pools with 21388 * Round Robin method. The search always starts from local hwqid, then the next 21389 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21390 * a batch of free common bufs are moved to private pool on hwqid. 21391 * It might move less than count XRIs if there's not enough in public pool. 21392 **/ 21393 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21394 { 21395 struct lpfc_multixri_pool *multixri_pool; 21396 struct lpfc_multixri_pool *next_multixri_pool; 21397 struct lpfc_pvt_pool *pvt_pool; 21398 struct lpfc_pbl_pool *pbl_pool; 21399 struct lpfc_sli4_hdw_queue *qp; 21400 u32 next_hwqid; 21401 u32 hwq_count; 21402 int ret; 21403 21404 qp = &phba->sli4_hba.hdwq[hwqid]; 21405 multixri_pool = qp->p_multixri_pool; 21406 pvt_pool = &multixri_pool->pvt_pool; 21407 pbl_pool = &multixri_pool->pbl_pool; 21408 21409 /* Check if local pbl_pool is available */ 21410 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21411 if (ret) { 21412 #ifdef LPFC_MXP_STAT 21413 multixri_pool->local_pbl_hit_count++; 21414 #endif 21415 return; 21416 } 21417 21418 hwq_count = phba->cfg_hdw_queue; 21419 21420 /* Get the next hwqid which was found last time */ 21421 next_hwqid = multixri_pool->rrb_next_hwqid; 21422 21423 do { 21424 /* Go to next hwq */ 21425 next_hwqid = (next_hwqid + 1) % hwq_count; 21426 21427 next_multixri_pool = 21428 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21429 pbl_pool = &next_multixri_pool->pbl_pool; 21430 21431 /* Check if the public free xri pool is available */ 21432 ret = _lpfc_move_xri_pbl_to_pvt( 21433 phba, qp, pbl_pool, pvt_pool, count); 21434 21435 /* Exit while-loop if success or all hwqid are checked */ 21436 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21437 21438 /* Starting point for the next time */ 21439 multixri_pool->rrb_next_hwqid = next_hwqid; 21440 21441 if (!ret) { 21442 /* stats: all public pools are empty*/ 21443 multixri_pool->pbl_empty_count++; 21444 } 21445 21446 #ifdef LPFC_MXP_STAT 21447 if (ret) { 21448 if (next_hwqid == hwqid) 21449 multixri_pool->local_pbl_hit_count++; 21450 else 21451 multixri_pool->other_pbl_hit_count++; 21452 } 21453 #endif 21454 } 21455 21456 /** 21457 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21458 * @phba: pointer to lpfc hba data structure. 21459 * @hwqid: belong to which HWQ. 21460 * 21461 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21462 * low watermark. 21463 **/ 21464 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21465 { 21466 struct lpfc_multixri_pool *multixri_pool; 21467 struct lpfc_pvt_pool *pvt_pool; 21468 21469 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21470 pvt_pool = &multixri_pool->pvt_pool; 21471 21472 if (pvt_pool->count < pvt_pool->low_watermark) 21473 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21474 } 21475 21476 /** 21477 * lpfc_release_io_buf - Return one IO buf back to free pool 21478 * @phba: pointer to lpfc hba data structure. 21479 * @lpfc_ncmd: IO buf to be returned. 21480 * @qp: belong to which HWQ. 21481 * 21482 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21483 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21484 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21485 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21486 * lpfc_io_buf_list_put. 21487 **/ 21488 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21489 struct lpfc_sli4_hdw_queue *qp) 21490 { 21491 unsigned long iflag; 21492 struct lpfc_pbl_pool *pbl_pool; 21493 struct lpfc_pvt_pool *pvt_pool; 21494 struct lpfc_epd_pool *epd_pool; 21495 u32 txcmplq_cnt; 21496 u32 xri_owned; 21497 u32 xri_limit; 21498 u32 abts_io_bufs; 21499 21500 /* MUST zero fields if buffer is reused by another protocol */ 21501 lpfc_ncmd->nvmeCmd = NULL; 21502 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21503 21504 if (phba->cfg_xpsgl && !phba->nvmet_support && 21505 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21506 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21507 21508 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21509 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21510 21511 if (phba->cfg_xri_rebalancing) { 21512 if (lpfc_ncmd->expedite) { 21513 /* Return to expedite pool */ 21514 epd_pool = &phba->epd_pool; 21515 spin_lock_irqsave(&epd_pool->lock, iflag); 21516 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21517 epd_pool->count++; 21518 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21519 return; 21520 } 21521 21522 /* Avoid invalid access if an IO sneaks in and is being rejected 21523 * just _after_ xri pools are destroyed in lpfc_offline. 21524 * Nothing much can be done at this point. 21525 */ 21526 if (!qp->p_multixri_pool) 21527 return; 21528 21529 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21530 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21531 21532 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21533 abts_io_bufs = qp->abts_scsi_io_bufs; 21534 abts_io_bufs += qp->abts_nvme_io_bufs; 21535 21536 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21537 xri_limit = qp->p_multixri_pool->xri_limit; 21538 21539 #ifdef LPFC_MXP_STAT 21540 if (xri_owned <= xri_limit) 21541 qp->p_multixri_pool->below_limit_count++; 21542 else 21543 qp->p_multixri_pool->above_limit_count++; 21544 #endif 21545 21546 /* XRI goes to either public or private free xri pool 21547 * based on watermark and xri_limit 21548 */ 21549 if ((pvt_pool->count < pvt_pool->low_watermark) || 21550 (xri_owned < xri_limit && 21551 pvt_pool->count < pvt_pool->high_watermark)) { 21552 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21553 qp, free_pvt_pool); 21554 list_add_tail(&lpfc_ncmd->list, 21555 &pvt_pool->list); 21556 pvt_pool->count++; 21557 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21558 } else { 21559 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21560 qp, free_pub_pool); 21561 list_add_tail(&lpfc_ncmd->list, 21562 &pbl_pool->list); 21563 pbl_pool->count++; 21564 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21565 } 21566 } else { 21567 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21568 qp, free_xri); 21569 list_add_tail(&lpfc_ncmd->list, 21570 &qp->lpfc_io_buf_list_put); 21571 qp->put_io_bufs++; 21572 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21573 iflag); 21574 } 21575 } 21576 21577 /** 21578 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21579 * @phba: pointer to lpfc hba data structure. 21580 * @qp: pointer to HDW queue 21581 * @pvt_pool: pointer to private pool data structure. 21582 * @ndlp: pointer to lpfc nodelist data structure. 21583 * 21584 * This routine tries to get one free IO buf from private pool. 21585 * 21586 * Return: 21587 * pointer to one free IO buf - if private pool is not empty 21588 * NULL - if private pool is empty 21589 **/ 21590 static struct lpfc_io_buf * 21591 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21592 struct lpfc_sli4_hdw_queue *qp, 21593 struct lpfc_pvt_pool *pvt_pool, 21594 struct lpfc_nodelist *ndlp) 21595 { 21596 struct lpfc_io_buf *lpfc_ncmd; 21597 struct lpfc_io_buf *lpfc_ncmd_next; 21598 unsigned long iflag; 21599 21600 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21601 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21602 &pvt_pool->list, list) { 21603 if (lpfc_test_rrq_active( 21604 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21605 continue; 21606 list_del(&lpfc_ncmd->list); 21607 pvt_pool->count--; 21608 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21609 return lpfc_ncmd; 21610 } 21611 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21612 21613 return NULL; 21614 } 21615 21616 /** 21617 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21618 * @phba: pointer to lpfc hba data structure. 21619 * 21620 * This routine tries to get one free IO buf from expedite pool. 21621 * 21622 * Return: 21623 * pointer to one free IO buf - if expedite pool is not empty 21624 * NULL - if expedite pool is empty 21625 **/ 21626 static struct lpfc_io_buf * 21627 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21628 { 21629 struct lpfc_io_buf *lpfc_ncmd; 21630 struct lpfc_io_buf *lpfc_ncmd_next; 21631 unsigned long iflag; 21632 struct lpfc_epd_pool *epd_pool; 21633 21634 epd_pool = &phba->epd_pool; 21635 lpfc_ncmd = NULL; 21636 21637 spin_lock_irqsave(&epd_pool->lock, iflag); 21638 if (epd_pool->count > 0) { 21639 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21640 &epd_pool->list, list) { 21641 list_del(&lpfc_ncmd->list); 21642 epd_pool->count--; 21643 break; 21644 } 21645 } 21646 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21647 21648 return lpfc_ncmd; 21649 } 21650 21651 /** 21652 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21653 * @phba: pointer to lpfc hba data structure. 21654 * @ndlp: pointer to lpfc nodelist data structure. 21655 * @hwqid: belong to which HWQ 21656 * @expedite: 1 means this request is urgent. 21657 * 21658 * This routine will do the following actions and then return a pointer to 21659 * one free IO buf. 21660 * 21661 * 1. If private free xri count is empty, move some XRIs from public to 21662 * private pool. 21663 * 2. Get one XRI from private free xri pool. 21664 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21665 * get one free xri from expedite pool. 21666 * 21667 * Note: ndlp is only used on SCSI side for RRQ testing. 21668 * The caller should pass NULL for ndlp on NVME side. 21669 * 21670 * Return: 21671 * pointer to one free IO buf - if private pool is not empty 21672 * NULL - if private pool is empty 21673 **/ 21674 static struct lpfc_io_buf * 21675 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21676 struct lpfc_nodelist *ndlp, 21677 int hwqid, int expedite) 21678 { 21679 struct lpfc_sli4_hdw_queue *qp; 21680 struct lpfc_multixri_pool *multixri_pool; 21681 struct lpfc_pvt_pool *pvt_pool; 21682 struct lpfc_io_buf *lpfc_ncmd; 21683 21684 qp = &phba->sli4_hba.hdwq[hwqid]; 21685 lpfc_ncmd = NULL; 21686 if (!qp) { 21687 lpfc_printf_log(phba, KERN_INFO, 21688 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21689 "5556 NULL qp for hwqid x%x\n", hwqid); 21690 return lpfc_ncmd; 21691 } 21692 multixri_pool = qp->p_multixri_pool; 21693 if (!multixri_pool) { 21694 lpfc_printf_log(phba, KERN_INFO, 21695 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21696 "5557 NULL multixri for hwqid x%x\n", hwqid); 21697 return lpfc_ncmd; 21698 } 21699 pvt_pool = &multixri_pool->pvt_pool; 21700 if (!pvt_pool) { 21701 lpfc_printf_log(phba, KERN_INFO, 21702 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21703 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21704 return lpfc_ncmd; 21705 } 21706 multixri_pool->io_req_count++; 21707 21708 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21709 if (pvt_pool->count == 0) 21710 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21711 21712 /* Get one XRI from private free xri pool */ 21713 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21714 21715 if (lpfc_ncmd) { 21716 lpfc_ncmd->hdwq = qp; 21717 lpfc_ncmd->hdwq_no = hwqid; 21718 } else if (expedite) { 21719 /* If we fail to get one from pvt_pool and this is an expedite 21720 * request, get one free xri from expedite pool. 21721 */ 21722 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21723 } 21724 21725 return lpfc_ncmd; 21726 } 21727 21728 static inline struct lpfc_io_buf * 21729 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21730 { 21731 struct lpfc_sli4_hdw_queue *qp; 21732 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21733 21734 qp = &phba->sli4_hba.hdwq[idx]; 21735 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21736 &qp->lpfc_io_buf_list_get, list) { 21737 if (lpfc_test_rrq_active(phba, ndlp, 21738 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21739 continue; 21740 21741 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21742 continue; 21743 21744 list_del_init(&lpfc_cmd->list); 21745 qp->get_io_bufs--; 21746 lpfc_cmd->hdwq = qp; 21747 lpfc_cmd->hdwq_no = idx; 21748 return lpfc_cmd; 21749 } 21750 return NULL; 21751 } 21752 21753 /** 21754 * lpfc_get_io_buf - Get one IO buffer from free pool 21755 * @phba: The HBA for which this call is being executed. 21756 * @ndlp: pointer to lpfc nodelist data structure. 21757 * @hwqid: belong to which HWQ 21758 * @expedite: 1 means this request is urgent. 21759 * 21760 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21761 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21762 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21763 * 21764 * Note: ndlp is only used on SCSI side for RRQ testing. 21765 * The caller should pass NULL for ndlp on NVME side. 21766 * 21767 * Return codes: 21768 * NULL - Error 21769 * Pointer to lpfc_io_buf - Success 21770 **/ 21771 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21772 struct lpfc_nodelist *ndlp, 21773 u32 hwqid, int expedite) 21774 { 21775 struct lpfc_sli4_hdw_queue *qp; 21776 unsigned long iflag; 21777 struct lpfc_io_buf *lpfc_cmd; 21778 21779 qp = &phba->sli4_hba.hdwq[hwqid]; 21780 lpfc_cmd = NULL; 21781 if (!qp) { 21782 lpfc_printf_log(phba, KERN_WARNING, 21783 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21784 "5555 NULL qp for hwqid x%x\n", hwqid); 21785 return lpfc_cmd; 21786 } 21787 21788 if (phba->cfg_xri_rebalancing) 21789 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21790 phba, ndlp, hwqid, expedite); 21791 else { 21792 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21793 qp, alloc_xri_get); 21794 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21795 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21796 if (!lpfc_cmd) { 21797 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21798 qp, alloc_xri_put); 21799 list_splice(&qp->lpfc_io_buf_list_put, 21800 &qp->lpfc_io_buf_list_get); 21801 qp->get_io_bufs += qp->put_io_bufs; 21802 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21803 qp->put_io_bufs = 0; 21804 spin_unlock(&qp->io_buf_list_put_lock); 21805 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21806 expedite) 21807 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21808 } 21809 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21810 } 21811 21812 return lpfc_cmd; 21813 } 21814 21815 /** 21816 * lpfc_read_object - Retrieve object data from HBA 21817 * @phba: The HBA for which this call is being executed. 21818 * @rdobject: Pathname of object data we want to read. 21819 * @datap: Pointer to where data will be copied to. 21820 * @datasz: size of data area 21821 * 21822 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 21823 * The data will be truncated if datasz is not large enough. 21824 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 21825 * Returns the actual bytes read from the object. 21826 */ 21827 int 21828 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 21829 uint32_t datasz) 21830 { 21831 struct lpfc_mbx_read_object *read_object; 21832 LPFC_MBOXQ_t *mbox; 21833 int rc, length, eof, j, byte_cnt = 0; 21834 uint32_t shdr_status, shdr_add_status; 21835 union lpfc_sli4_cfg_shdr *shdr; 21836 struct lpfc_dmabuf *pcmd; 21837 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 21838 21839 /* sanity check on queue memory */ 21840 if (!datap) 21841 return -ENODEV; 21842 21843 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 21844 if (!mbox) 21845 return -ENOMEM; 21846 length = (sizeof(struct lpfc_mbx_read_object) - 21847 sizeof(struct lpfc_sli4_cfg_mhdr)); 21848 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 21849 LPFC_MBOX_OPCODE_READ_OBJECT, 21850 length, LPFC_SLI4_MBX_EMBED); 21851 read_object = &mbox->u.mqe.un.read_object; 21852 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 21853 21854 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 21855 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 21856 read_object->u.request.rd_object_offset = 0; 21857 read_object->u.request.rd_object_cnt = 1; 21858 21859 memset((void *)read_object->u.request.rd_object_name, 0, 21860 LPFC_OBJ_NAME_SZ); 21861 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 21862 for (j = 0; j < strlen(rdobject); j++) 21863 read_object->u.request.rd_object_name[j] = 21864 cpu_to_le32(rd_object_name[j]); 21865 21866 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 21867 if (pcmd) 21868 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 21869 if (!pcmd || !pcmd->virt) { 21870 kfree(pcmd); 21871 mempool_free(mbox, phba->mbox_mem_pool); 21872 return -ENOMEM; 21873 } 21874 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 21875 read_object->u.request.rd_object_hbuf[0].pa_lo = 21876 putPaddrLow(pcmd->phys); 21877 read_object->u.request.rd_object_hbuf[0].pa_hi = 21878 putPaddrHigh(pcmd->phys); 21879 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 21880 21881 mbox->vport = phba->pport; 21882 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21883 mbox->ctx_ndlp = NULL; 21884 21885 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 21886 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 21887 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 21888 21889 if (shdr_status == STATUS_FAILED && 21890 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 21891 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21892 "4674 No port cfg file in FW.\n"); 21893 byte_cnt = -ENOENT; 21894 } else if (shdr_status || shdr_add_status || rc) { 21895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21896 "2625 READ_OBJECT mailbox failed with " 21897 "status x%x add_status x%x, mbx status x%x\n", 21898 shdr_status, shdr_add_status, rc); 21899 byte_cnt = -ENXIO; 21900 } else { 21901 /* Success */ 21902 length = read_object->u.response.rd_object_actual_rlen; 21903 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 21904 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 21905 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 21906 length, datasz, eof); 21907 21908 /* Detect the port config file exists but is empty */ 21909 if (!length && eof) { 21910 byte_cnt = 0; 21911 goto exit; 21912 } 21913 21914 byte_cnt = length; 21915 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 21916 } 21917 21918 exit: 21919 /* This is an embedded SLI4 mailbox with an external buffer allocated. 21920 * Free the pcmd and then cleanup with the correct routine. 21921 */ 21922 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 21923 kfree(pcmd); 21924 lpfc_sli4_mbox_cmd_free(phba, mbox); 21925 return byte_cnt; 21926 } 21927 21928 /** 21929 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21930 * @phba: The HBA for which this call is being executed. 21931 * @lpfc_buf: IO buf structure to append the SGL chunk 21932 * 21933 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21934 * and will allocate an SGL chunk if the pool is empty. 21935 * 21936 * Return codes: 21937 * NULL - Error 21938 * Pointer to sli4_hybrid_sgl - Success 21939 **/ 21940 struct sli4_hybrid_sgl * 21941 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21942 { 21943 struct sli4_hybrid_sgl *list_entry = NULL; 21944 struct sli4_hybrid_sgl *tmp = NULL; 21945 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21946 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21947 struct list_head *buf_list = &hdwq->sgl_list; 21948 unsigned long iflags; 21949 21950 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21951 21952 if (likely(!list_empty(buf_list))) { 21953 /* break off 1 chunk from the sgl_list */ 21954 list_for_each_entry_safe(list_entry, tmp, 21955 buf_list, list_node) { 21956 list_move_tail(&list_entry->list_node, 21957 &lpfc_buf->dma_sgl_xtra_list); 21958 break; 21959 } 21960 } else { 21961 /* allocate more */ 21962 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21963 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21964 cpu_to_node(hdwq->io_wq->chann)); 21965 if (!tmp) { 21966 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21967 "8353 error kmalloc memory for HDWQ " 21968 "%d %s\n", 21969 lpfc_buf->hdwq_no, __func__); 21970 return NULL; 21971 } 21972 21973 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21974 GFP_ATOMIC, &tmp->dma_phys_sgl); 21975 if (!tmp->dma_sgl) { 21976 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21977 "8354 error pool_alloc memory for HDWQ " 21978 "%d %s\n", 21979 lpfc_buf->hdwq_no, __func__); 21980 kfree(tmp); 21981 return NULL; 21982 } 21983 21984 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21985 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21986 } 21987 21988 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21989 struct sli4_hybrid_sgl, 21990 list_node); 21991 21992 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21993 21994 return allocated_sgl; 21995 } 21996 21997 /** 21998 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21999 * @phba: The HBA for which this call is being executed. 22000 * @lpfc_buf: IO buf structure with the SGL chunk 22001 * 22002 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22003 * 22004 * Return codes: 22005 * 0 - Success 22006 * -EINVAL - Error 22007 **/ 22008 int 22009 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22010 { 22011 int rc = 0; 22012 struct sli4_hybrid_sgl *list_entry = NULL; 22013 struct sli4_hybrid_sgl *tmp = NULL; 22014 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22015 struct list_head *buf_list = &hdwq->sgl_list; 22016 unsigned long iflags; 22017 22018 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22019 22020 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22021 list_for_each_entry_safe(list_entry, tmp, 22022 &lpfc_buf->dma_sgl_xtra_list, 22023 list_node) { 22024 list_move_tail(&list_entry->list_node, 22025 buf_list); 22026 } 22027 } else { 22028 rc = -EINVAL; 22029 } 22030 22031 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22032 return rc; 22033 } 22034 22035 /** 22036 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22037 * @phba: phba object 22038 * @hdwq: hdwq to cleanup sgl buff resources on 22039 * 22040 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22041 * 22042 * Return codes: 22043 * None 22044 **/ 22045 void 22046 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22047 struct lpfc_sli4_hdw_queue *hdwq) 22048 { 22049 struct list_head *buf_list = &hdwq->sgl_list; 22050 struct sli4_hybrid_sgl *list_entry = NULL; 22051 struct sli4_hybrid_sgl *tmp = NULL; 22052 unsigned long iflags; 22053 22054 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22055 22056 /* Free sgl pool */ 22057 list_for_each_entry_safe(list_entry, tmp, 22058 buf_list, list_node) { 22059 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22060 list_entry->dma_sgl, 22061 list_entry->dma_phys_sgl); 22062 list_del(&list_entry->list_node); 22063 kfree(list_entry); 22064 } 22065 22066 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22067 } 22068 22069 /** 22070 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22071 * @phba: The HBA for which this call is being executed. 22072 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22073 * 22074 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22075 * and will allocate an CMD/RSP buffer if the pool is empty. 22076 * 22077 * Return codes: 22078 * NULL - Error 22079 * Pointer to fcp_cmd_rsp_buf - Success 22080 **/ 22081 struct fcp_cmd_rsp_buf * 22082 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22083 struct lpfc_io_buf *lpfc_buf) 22084 { 22085 struct fcp_cmd_rsp_buf *list_entry = NULL; 22086 struct fcp_cmd_rsp_buf *tmp = NULL; 22087 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22088 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22089 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22090 unsigned long iflags; 22091 22092 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22093 22094 if (likely(!list_empty(buf_list))) { 22095 /* break off 1 chunk from the list */ 22096 list_for_each_entry_safe(list_entry, tmp, 22097 buf_list, 22098 list_node) { 22099 list_move_tail(&list_entry->list_node, 22100 &lpfc_buf->dma_cmd_rsp_list); 22101 break; 22102 } 22103 } else { 22104 /* allocate more */ 22105 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22106 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22107 cpu_to_node(hdwq->io_wq->chann)); 22108 if (!tmp) { 22109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22110 "8355 error kmalloc memory for HDWQ " 22111 "%d %s\n", 22112 lpfc_buf->hdwq_no, __func__); 22113 return NULL; 22114 } 22115 22116 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22117 GFP_ATOMIC, 22118 &tmp->fcp_cmd_rsp_dma_handle); 22119 22120 if (!tmp->fcp_cmnd) { 22121 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22122 "8356 error pool_alloc memory for HDWQ " 22123 "%d %s\n", 22124 lpfc_buf->hdwq_no, __func__); 22125 kfree(tmp); 22126 return NULL; 22127 } 22128 22129 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22130 sizeof(struct fcp_cmnd)); 22131 22132 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22133 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22134 } 22135 22136 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22137 struct fcp_cmd_rsp_buf, 22138 list_node); 22139 22140 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22141 22142 return allocated_buf; 22143 } 22144 22145 /** 22146 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22147 * @phba: The HBA for which this call is being executed. 22148 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22149 * 22150 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22151 * 22152 * Return codes: 22153 * 0 - Success 22154 * -EINVAL - Error 22155 **/ 22156 int 22157 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22158 struct lpfc_io_buf *lpfc_buf) 22159 { 22160 int rc = 0; 22161 struct fcp_cmd_rsp_buf *list_entry = NULL; 22162 struct fcp_cmd_rsp_buf *tmp = NULL; 22163 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22164 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22165 unsigned long iflags; 22166 22167 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22168 22169 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22170 list_for_each_entry_safe(list_entry, tmp, 22171 &lpfc_buf->dma_cmd_rsp_list, 22172 list_node) { 22173 list_move_tail(&list_entry->list_node, 22174 buf_list); 22175 } 22176 } else { 22177 rc = -EINVAL; 22178 } 22179 22180 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22181 return rc; 22182 } 22183 22184 /** 22185 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22186 * @phba: phba object 22187 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22188 * 22189 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22190 * 22191 * Return codes: 22192 * None 22193 **/ 22194 void 22195 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22196 struct lpfc_sli4_hdw_queue *hdwq) 22197 { 22198 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22199 struct fcp_cmd_rsp_buf *list_entry = NULL; 22200 struct fcp_cmd_rsp_buf *tmp = NULL; 22201 unsigned long iflags; 22202 22203 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22204 22205 /* Free cmd_rsp buf pool */ 22206 list_for_each_entry_safe(list_entry, tmp, 22207 buf_list, 22208 list_node) { 22209 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22210 list_entry->fcp_cmnd, 22211 list_entry->fcp_cmd_rsp_dma_handle); 22212 list_del(&list_entry->list_node); 22213 kfree(list_entry); 22214 } 22215 22216 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22217 } 22218 22219 /** 22220 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22221 * @phba: phba object 22222 * @job: job entry of the command to be posted. 22223 * 22224 * Fill the common fields of the wqe for each of the command. 22225 * 22226 * Return codes: 22227 * None 22228 **/ 22229 void 22230 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22231 { 22232 u8 cmnd; 22233 u32 *pcmd; 22234 u32 if_type = 0; 22235 u32 fip, abort_tag; 22236 struct lpfc_nodelist *ndlp = NULL; 22237 union lpfc_wqe128 *wqe = &job->wqe; 22238 u8 command_type = ELS_COMMAND_NON_FIP; 22239 22240 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22241 /* The fcp commands will set command type */ 22242 if (job->cmd_flag & LPFC_IO_FCP) 22243 command_type = FCP_COMMAND; 22244 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22245 command_type = ELS_COMMAND_FIP; 22246 else 22247 command_type = ELS_COMMAND_NON_FIP; 22248 22249 abort_tag = job->iotag; 22250 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22251 22252 switch (cmnd) { 22253 case CMD_ELS_REQUEST64_WQE: 22254 ndlp = job->ndlp; 22255 22256 if_type = bf_get(lpfc_sli_intf_if_type, 22257 &phba->sli4_hba.sli_intf); 22258 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22259 pcmd = (u32 *)job->cmd_dmabuf->virt; 22260 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22261 *pcmd == ELS_CMD_SCR || 22262 *pcmd == ELS_CMD_RDF || 22263 *pcmd == ELS_CMD_EDC || 22264 *pcmd == ELS_CMD_RSCN_XMT || 22265 *pcmd == ELS_CMD_FDISC || 22266 *pcmd == ELS_CMD_LOGO || 22267 *pcmd == ELS_CMD_QFPA || 22268 *pcmd == ELS_CMD_UVEM || 22269 *pcmd == ELS_CMD_PLOGI)) { 22270 bf_set(els_req64_sp, &wqe->els_req, 1); 22271 bf_set(els_req64_sid, &wqe->els_req, 22272 job->vport->fc_myDID); 22273 22274 if ((*pcmd == ELS_CMD_FLOGI) && 22275 !(phba->fc_topology == 22276 LPFC_TOPOLOGY_LOOP)) 22277 bf_set(els_req64_sid, &wqe->els_req, 0); 22278 22279 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22280 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22281 phba->vpi_ids[job->vport->vpi]); 22282 } else if (pcmd) { 22283 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22284 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22285 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22286 } 22287 } 22288 22289 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22290 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22291 22292 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22293 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22294 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22295 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22296 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22297 break; 22298 case CMD_XMIT_ELS_RSP64_WQE: 22299 ndlp = job->ndlp; 22300 22301 /* word4 */ 22302 wqe->xmit_els_rsp.word4 = 0; 22303 22304 if_type = bf_get(lpfc_sli_intf_if_type, 22305 &phba->sli4_hba.sli_intf); 22306 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22307 if (job->vport->fc_flag & FC_PT2PT) { 22308 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22309 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22310 job->vport->fc_myDID); 22311 if (job->vport->fc_myDID == Fabric_DID) { 22312 bf_set(wqe_els_did, 22313 &wqe->xmit_els_rsp.wqe_dest, 0); 22314 } 22315 } 22316 } 22317 22318 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22319 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22320 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22321 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22322 LPFC_WQE_LENLOC_WORD3); 22323 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22324 22325 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22326 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22327 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22328 job->vport->fc_myDID); 22329 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22330 } 22331 22332 if (phba->sli_rev == LPFC_SLI_REV4) { 22333 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22334 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22335 22336 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22337 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22338 phba->vpi_ids[job->vport->vpi]); 22339 } 22340 command_type = OTHER_COMMAND; 22341 break; 22342 case CMD_GEN_REQUEST64_WQE: 22343 /* Word 10 */ 22344 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22345 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22346 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22347 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22348 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22349 command_type = OTHER_COMMAND; 22350 break; 22351 case CMD_XMIT_SEQUENCE64_WQE: 22352 if (phba->link_flag & LS_LOOPBACK_MODE) 22353 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22354 22355 wqe->xmit_sequence.rsvd3 = 0; 22356 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22357 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22358 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22359 LPFC_WQE_IOD_WRITE); 22360 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22361 LPFC_WQE_LENLOC_WORD12); 22362 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22363 command_type = OTHER_COMMAND; 22364 break; 22365 case CMD_XMIT_BLS_RSP64_WQE: 22366 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22367 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22368 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22369 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22370 phba->vpi_ids[phba->pport->vpi]); 22371 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22372 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22373 LPFC_WQE_LENLOC_NONE); 22374 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22375 command_type = OTHER_COMMAND; 22376 break; 22377 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22378 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22379 case CMD_SEND_FRAME: /* mds loopback */ 22380 /* cases already formatted for sli4 wqe - no chgs necessary */ 22381 return; 22382 default: 22383 dump_stack(); 22384 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22385 "6207 Invalid command 0x%x\n", 22386 cmnd); 22387 break; 22388 } 22389 22390 wqe->generic.wqe_com.abort_tag = abort_tag; 22391 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22392 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22393 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22394 } 22395