1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of acive 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of acive 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 if (rrq->vport) 991 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 992 993 /* The target DID could have been swapped (cable swap) 994 * we should use the ndlp from the findnode if it is 995 * available. 996 */ 997 if ((!ndlp) && rrq->ndlp) 998 ndlp = rrq->ndlp; 999 1000 if (!ndlp) 1001 goto out; 1002 1003 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 1004 rrq->send_rrq = 0; 1005 rrq->xritag = 0; 1006 rrq->rrq_stop_time = 0; 1007 } 1008 out: 1009 mempool_free(rrq, phba->rrq_pool); 1010 } 1011 1012 /** 1013 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1014 * @phba: Pointer to HBA context object. 1015 * 1016 * This function is called with hbalock held. This function 1017 * Checks if stop_time (ratov from setting rrq active) has 1018 * been reached, if it has and the send_rrq flag is set then 1019 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1020 * then it will just call the routine to clear the rrq and 1021 * free the rrq resource. 1022 * The timer is set to the next rrq that is going to expire before 1023 * leaving the routine. 1024 * 1025 **/ 1026 void 1027 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1028 { 1029 struct lpfc_node_rrq *rrq; 1030 struct lpfc_node_rrq *nextrrq; 1031 unsigned long next_time; 1032 unsigned long iflags; 1033 LIST_HEAD(send_rrq); 1034 1035 spin_lock_irqsave(&phba->hbalock, iflags); 1036 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1037 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1038 list_for_each_entry_safe(rrq, nextrrq, 1039 &phba->active_rrq_list, list) { 1040 if (time_after(jiffies, rrq->rrq_stop_time)) 1041 list_move(&rrq->list, &send_rrq); 1042 else if (time_before(rrq->rrq_stop_time, next_time)) 1043 next_time = rrq->rrq_stop_time; 1044 } 1045 spin_unlock_irqrestore(&phba->hbalock, iflags); 1046 if ((!list_empty(&phba->active_rrq_list)) && 1047 (!(phba->pport->load_flag & FC_UNLOADING))) 1048 mod_timer(&phba->rrq_tmr, next_time); 1049 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1050 list_del(&rrq->list); 1051 if (!rrq->send_rrq) { 1052 /* this call will free the rrq */ 1053 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1054 } else if (lpfc_send_rrq(phba, rrq)) { 1055 /* if we send the rrq then the completion handler 1056 * will clear the bit in the xribitmap. 1057 */ 1058 lpfc_clr_rrq_active(phba, rrq->xritag, 1059 rrq); 1060 } 1061 } 1062 } 1063 1064 /** 1065 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1066 * @vport: Pointer to vport context object. 1067 * @xri: The xri used in the exchange. 1068 * @did: The targets DID for this exchange. 1069 * 1070 * returns NULL = rrq not found in the phba->active_rrq_list. 1071 * rrq = rrq for this xri and target. 1072 **/ 1073 struct lpfc_node_rrq * 1074 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1075 { 1076 struct lpfc_hba *phba = vport->phba; 1077 struct lpfc_node_rrq *rrq; 1078 struct lpfc_node_rrq *nextrrq; 1079 unsigned long iflags; 1080 1081 if (phba->sli_rev != LPFC_SLI_REV4) 1082 return NULL; 1083 spin_lock_irqsave(&phba->hbalock, iflags); 1084 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1085 if (rrq->vport == vport && rrq->xritag == xri && 1086 rrq->nlp_DID == did){ 1087 list_del(&rrq->list); 1088 spin_unlock_irqrestore(&phba->hbalock, iflags); 1089 return rrq; 1090 } 1091 } 1092 spin_unlock_irqrestore(&phba->hbalock, iflags); 1093 return NULL; 1094 } 1095 1096 /** 1097 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1098 * @vport: Pointer to vport context object. 1099 * @ndlp: Pointer to the lpfc_node_list structure. 1100 * If ndlp is NULL Remove all active RRQs for this vport from the 1101 * phba->active_rrq_list and clear the rrq. 1102 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1103 **/ 1104 void 1105 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1106 1107 { 1108 struct lpfc_hba *phba = vport->phba; 1109 struct lpfc_node_rrq *rrq; 1110 struct lpfc_node_rrq *nextrrq; 1111 unsigned long iflags; 1112 LIST_HEAD(rrq_list); 1113 1114 if (phba->sli_rev != LPFC_SLI_REV4) 1115 return; 1116 if (!ndlp) { 1117 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1118 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1119 } 1120 spin_lock_irqsave(&phba->hbalock, iflags); 1121 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 1122 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 1123 list_move(&rrq->list, &rrq_list); 1124 spin_unlock_irqrestore(&phba->hbalock, iflags); 1125 1126 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1127 list_del(&rrq->list); 1128 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1129 } 1130 } 1131 1132 /** 1133 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1134 * @phba: Pointer to HBA context object. 1135 * @ndlp: Targets nodelist pointer for this exchange. 1136 * @xritag: the xri in the bitmap to test. 1137 * 1138 * This function returns: 1139 * 0 = rrq not active for this xri 1140 * 1 = rrq is valid for this xri. 1141 **/ 1142 int 1143 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1144 uint16_t xritag) 1145 { 1146 if (!ndlp) 1147 return 0; 1148 if (!ndlp->active_rrqs_xri_bitmap) 1149 return 0; 1150 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1151 return 1; 1152 else 1153 return 0; 1154 } 1155 1156 /** 1157 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1158 * @phba: Pointer to HBA context object. 1159 * @ndlp: nodelist pointer for this target. 1160 * @xritag: xri used in this exchange. 1161 * @rxid: Remote Exchange ID. 1162 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1163 * 1164 * This function takes the hbalock. 1165 * The active bit is always set in the active rrq xri_bitmap even 1166 * if there is no slot avaiable for the other rrq information. 1167 * 1168 * returns 0 rrq actived for this xri 1169 * < 0 No memory or invalid ndlp. 1170 **/ 1171 int 1172 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1173 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1174 { 1175 unsigned long iflags; 1176 struct lpfc_node_rrq *rrq; 1177 int empty; 1178 1179 if (!ndlp) 1180 return -EINVAL; 1181 1182 if (!phba->cfg_enable_rrq) 1183 return -EINVAL; 1184 1185 spin_lock_irqsave(&phba->hbalock, iflags); 1186 if (phba->pport->load_flag & FC_UNLOADING) { 1187 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1188 goto out; 1189 } 1190 1191 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1192 goto out; 1193 1194 if (!ndlp->active_rrqs_xri_bitmap) 1195 goto out; 1196 1197 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1198 goto out; 1199 1200 spin_unlock_irqrestore(&phba->hbalock, iflags); 1201 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1202 if (!rrq) { 1203 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1204 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1205 " DID:0x%x Send:%d\n", 1206 xritag, rxid, ndlp->nlp_DID, send_rrq); 1207 return -EINVAL; 1208 } 1209 if (phba->cfg_enable_rrq == 1) 1210 rrq->send_rrq = send_rrq; 1211 else 1212 rrq->send_rrq = 0; 1213 rrq->xritag = xritag; 1214 rrq->rrq_stop_time = jiffies + 1215 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1216 rrq->ndlp = ndlp; 1217 rrq->nlp_DID = ndlp->nlp_DID; 1218 rrq->vport = ndlp->vport; 1219 rrq->rxid = rxid; 1220 spin_lock_irqsave(&phba->hbalock, iflags); 1221 empty = list_empty(&phba->active_rrq_list); 1222 list_add_tail(&rrq->list, &phba->active_rrq_list); 1223 phba->hba_flag |= HBA_RRQ_ACTIVE; 1224 if (empty) 1225 lpfc_worker_wake_up(phba); 1226 spin_unlock_irqrestore(&phba->hbalock, iflags); 1227 return 0; 1228 out: 1229 spin_unlock_irqrestore(&phba->hbalock, iflags); 1230 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1231 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1232 " DID:0x%x Send:%d\n", 1233 xritag, rxid, ndlp->nlp_DID, send_rrq); 1234 return -EINVAL; 1235 } 1236 1237 /** 1238 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1239 * @phba: Pointer to HBA context object. 1240 * @piocbq: Pointer to the iocbq. 1241 * 1242 * The driver calls this function with either the nvme ls ring lock 1243 * or the fc els ring lock held depending on the iocb usage. This function 1244 * gets a new driver sglq object from the sglq list. If the list is not empty 1245 * then it is successful, it returns pointer to the newly allocated sglq 1246 * object else it returns NULL. 1247 **/ 1248 static struct lpfc_sglq * 1249 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1250 { 1251 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1252 struct lpfc_sglq *sglq = NULL; 1253 struct lpfc_sglq *start_sglq = NULL; 1254 struct lpfc_io_buf *lpfc_cmd; 1255 struct lpfc_nodelist *ndlp; 1256 struct lpfc_sli_ring *pring = NULL; 1257 int found = 0; 1258 1259 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1260 pring = phba->sli4_hba.nvmels_wq->pring; 1261 else 1262 pring = lpfc_phba_elsring(phba); 1263 1264 lockdep_assert_held(&pring->ring_lock); 1265 1266 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1267 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1268 ndlp = lpfc_cmd->rdata->pnode; 1269 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1270 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1271 ndlp = piocbq->context_un.ndlp; 1272 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1273 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1274 ndlp = NULL; 1275 else 1276 ndlp = piocbq->context_un.ndlp; 1277 } else { 1278 ndlp = piocbq->context1; 1279 } 1280 1281 spin_lock(&phba->sli4_hba.sgl_list_lock); 1282 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1283 start_sglq = sglq; 1284 while (!found) { 1285 if (!sglq) 1286 break; 1287 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1288 test_bit(sglq->sli4_lxritag, 1289 ndlp->active_rrqs_xri_bitmap)) { 1290 /* This xri has an rrq outstanding for this DID. 1291 * put it back in the list and get another xri. 1292 */ 1293 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1294 sglq = NULL; 1295 list_remove_head(lpfc_els_sgl_list, sglq, 1296 struct lpfc_sglq, list); 1297 if (sglq == start_sglq) { 1298 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1299 sglq = NULL; 1300 break; 1301 } else 1302 continue; 1303 } 1304 sglq->ndlp = ndlp; 1305 found = 1; 1306 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1307 sglq->state = SGL_ALLOCATED; 1308 } 1309 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1310 return sglq; 1311 } 1312 1313 /** 1314 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1315 * @phba: Pointer to HBA context object. 1316 * @piocbq: Pointer to the iocbq. 1317 * 1318 * This function is called with the sgl_list lock held. This function 1319 * gets a new driver sglq object from the sglq list. If the 1320 * list is not empty then it is successful, it returns pointer to the newly 1321 * allocated sglq object else it returns NULL. 1322 **/ 1323 struct lpfc_sglq * 1324 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1325 { 1326 struct list_head *lpfc_nvmet_sgl_list; 1327 struct lpfc_sglq *sglq = NULL; 1328 1329 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1330 1331 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1332 1333 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1334 if (!sglq) 1335 return NULL; 1336 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1337 sglq->state = SGL_ALLOCATED; 1338 return sglq; 1339 } 1340 1341 /** 1342 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1343 * @phba: Pointer to HBA context object. 1344 * 1345 * This function is called with no lock held. This function 1346 * allocates a new driver iocb object from the iocb pool. If the 1347 * allocation is successful, it returns pointer to the newly 1348 * allocated iocb object else it returns NULL. 1349 **/ 1350 struct lpfc_iocbq * 1351 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1352 { 1353 struct lpfc_iocbq * iocbq = NULL; 1354 unsigned long iflags; 1355 1356 spin_lock_irqsave(&phba->hbalock, iflags); 1357 iocbq = __lpfc_sli_get_iocbq(phba); 1358 spin_unlock_irqrestore(&phba->hbalock, iflags); 1359 return iocbq; 1360 } 1361 1362 /** 1363 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1364 * @phba: Pointer to HBA context object. 1365 * @iocbq: Pointer to driver iocb object. 1366 * 1367 * This function is called to release the driver iocb object 1368 * to the iocb pool. The iotag in the iocb object 1369 * does not change for each use of the iocb object. This function 1370 * clears all other fields of the iocb object when it is freed. 1371 * The sqlq structure that holds the xritag and phys and virtual 1372 * mappings for the scatter gather list is retrieved from the 1373 * active array of sglq. The get of the sglq pointer also clears 1374 * the entry in the array. If the status of the IO indiactes that 1375 * this IO was aborted then the sglq entry it put on the 1376 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1377 * IO has good status or fails for any other reason then the sglq 1378 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1379 * asserted held in the code path calling this routine. 1380 **/ 1381 static void 1382 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1383 { 1384 struct lpfc_sglq *sglq; 1385 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1386 unsigned long iflag = 0; 1387 struct lpfc_sli_ring *pring; 1388 1389 if (iocbq->sli4_xritag == NO_XRI) 1390 sglq = NULL; 1391 else 1392 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1393 1394 1395 if (sglq) { 1396 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1397 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1398 iflag); 1399 sglq->state = SGL_FREED; 1400 sglq->ndlp = NULL; 1401 list_add_tail(&sglq->list, 1402 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1403 spin_unlock_irqrestore( 1404 &phba->sli4_hba.sgl_list_lock, iflag); 1405 goto out; 1406 } 1407 1408 pring = phba->sli4_hba.els_wq->pring; 1409 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1410 (sglq->state != SGL_XRI_ABORTED)) { 1411 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1412 iflag); 1413 1414 /* Check if we can get a reference on ndlp */ 1415 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1416 sglq->ndlp = NULL; 1417 1418 list_add(&sglq->list, 1419 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 } else { 1423 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1424 iflag); 1425 sglq->state = SGL_FREED; 1426 sglq->ndlp = NULL; 1427 list_add_tail(&sglq->list, 1428 &phba->sli4_hba.lpfc_els_sgl_list); 1429 spin_unlock_irqrestore( 1430 &phba->sli4_hba.sgl_list_lock, iflag); 1431 1432 /* Check if TXQ queue needs to be serviced */ 1433 if (!list_empty(&pring->txq)) 1434 lpfc_worker_wake_up(phba); 1435 } 1436 } 1437 1438 out: 1439 /* 1440 * Clean all volatile data fields, preserve iotag and node struct. 1441 */ 1442 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1443 iocbq->sli4_lxritag = NO_XRI; 1444 iocbq->sli4_xritag = NO_XRI; 1445 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1446 LPFC_IO_NVME_LS); 1447 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1448 } 1449 1450 1451 /** 1452 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1453 * @phba: Pointer to HBA context object. 1454 * @iocbq: Pointer to driver iocb object. 1455 * 1456 * This function is called to release the driver iocb object to the 1457 * iocb pool. The iotag in the iocb object does not change for each 1458 * use of the iocb object. This function clears all other fields of 1459 * the iocb object when it is freed. The hbalock is asserted held in 1460 * the code path calling this routine. 1461 **/ 1462 static void 1463 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1464 { 1465 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1466 1467 /* 1468 * Clean all volatile data fields, preserve iotag and node struct. 1469 */ 1470 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1471 iocbq->sli4_xritag = NO_XRI; 1472 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1473 } 1474 1475 /** 1476 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1477 * @phba: Pointer to HBA context object. 1478 * @iocbq: Pointer to driver iocb object. 1479 * 1480 * This function is called with hbalock held to release driver 1481 * iocb object to the iocb pool. The iotag in the iocb object 1482 * does not change for each use of the iocb object. This function 1483 * clears all other fields of the iocb object when it is freed. 1484 **/ 1485 static void 1486 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1487 { 1488 lockdep_assert_held(&phba->hbalock); 1489 1490 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1491 phba->iocb_cnt--; 1492 } 1493 1494 /** 1495 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1496 * @phba: Pointer to HBA context object. 1497 * @iocbq: Pointer to driver iocb object. 1498 * 1499 * This function is called with no lock held to release the iocb to 1500 * iocb pool. 1501 **/ 1502 void 1503 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1504 { 1505 unsigned long iflags; 1506 1507 /* 1508 * Clean all volatile data fields, preserve iotag and node struct. 1509 */ 1510 spin_lock_irqsave(&phba->hbalock, iflags); 1511 __lpfc_sli_release_iocbq(phba, iocbq); 1512 spin_unlock_irqrestore(&phba->hbalock, iflags); 1513 } 1514 1515 /** 1516 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1517 * @phba: Pointer to HBA context object. 1518 * @iocblist: List of IOCBs. 1519 * @ulpstatus: ULP status in IOCB command field. 1520 * @ulpWord4: ULP word-4 in IOCB command field. 1521 * 1522 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1523 * on the list by invoking the complete callback function associated with the 1524 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1525 * fields. 1526 **/ 1527 void 1528 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1529 uint32_t ulpstatus, uint32_t ulpWord4) 1530 { 1531 struct lpfc_iocbq *piocb; 1532 1533 while (!list_empty(iocblist)) { 1534 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1535 if (!piocb->iocb_cmpl) { 1536 if (piocb->iocb_flag & LPFC_IO_NVME) 1537 lpfc_nvme_cancel_iocb(phba, piocb); 1538 else 1539 lpfc_sli_release_iocbq(phba, piocb); 1540 } else { 1541 piocb->iocb.ulpStatus = ulpstatus; 1542 piocb->iocb.un.ulpWord[4] = ulpWord4; 1543 (piocb->iocb_cmpl) (phba, piocb, piocb); 1544 } 1545 } 1546 return; 1547 } 1548 1549 /** 1550 * lpfc_sli_iocb_cmd_type - Get the iocb type 1551 * @iocb_cmnd: iocb command code. 1552 * 1553 * This function is called by ring event handler function to get the iocb type. 1554 * This function translates the iocb command to an iocb command type used to 1555 * decide the final disposition of each completed IOCB. 1556 * The function returns 1557 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1558 * LPFC_SOL_IOCB if it is a solicited iocb completion 1559 * LPFC_ABORT_IOCB if it is an abort iocb 1560 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1561 * 1562 * The caller is not required to hold any lock. 1563 **/ 1564 static lpfc_iocb_type 1565 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1566 { 1567 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1568 1569 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1570 return 0; 1571 1572 switch (iocb_cmnd) { 1573 case CMD_XMIT_SEQUENCE_CR: 1574 case CMD_XMIT_SEQUENCE_CX: 1575 case CMD_XMIT_BCAST_CN: 1576 case CMD_XMIT_BCAST_CX: 1577 case CMD_ELS_REQUEST_CR: 1578 case CMD_ELS_REQUEST_CX: 1579 case CMD_CREATE_XRI_CR: 1580 case CMD_CREATE_XRI_CX: 1581 case CMD_GET_RPI_CN: 1582 case CMD_XMIT_ELS_RSP_CX: 1583 case CMD_GET_RPI_CR: 1584 case CMD_FCP_IWRITE_CR: 1585 case CMD_FCP_IWRITE_CX: 1586 case CMD_FCP_IREAD_CR: 1587 case CMD_FCP_IREAD_CX: 1588 case CMD_FCP_ICMND_CR: 1589 case CMD_FCP_ICMND_CX: 1590 case CMD_FCP_TSEND_CX: 1591 case CMD_FCP_TRSP_CX: 1592 case CMD_FCP_TRECEIVE_CX: 1593 case CMD_FCP_AUTO_TRSP_CX: 1594 case CMD_ADAPTER_MSG: 1595 case CMD_ADAPTER_DUMP: 1596 case CMD_XMIT_SEQUENCE64_CR: 1597 case CMD_XMIT_SEQUENCE64_CX: 1598 case CMD_XMIT_BCAST64_CN: 1599 case CMD_XMIT_BCAST64_CX: 1600 case CMD_ELS_REQUEST64_CR: 1601 case CMD_ELS_REQUEST64_CX: 1602 case CMD_FCP_IWRITE64_CR: 1603 case CMD_FCP_IWRITE64_CX: 1604 case CMD_FCP_IREAD64_CR: 1605 case CMD_FCP_IREAD64_CX: 1606 case CMD_FCP_ICMND64_CR: 1607 case CMD_FCP_ICMND64_CX: 1608 case CMD_FCP_TSEND64_CX: 1609 case CMD_FCP_TRSP64_CX: 1610 case CMD_FCP_TRECEIVE64_CX: 1611 case CMD_GEN_REQUEST64_CR: 1612 case CMD_GEN_REQUEST64_CX: 1613 case CMD_XMIT_ELS_RSP64_CX: 1614 case DSSCMD_IWRITE64_CR: 1615 case DSSCMD_IWRITE64_CX: 1616 case DSSCMD_IREAD64_CR: 1617 case DSSCMD_IREAD64_CX: 1618 case CMD_SEND_FRAME: 1619 type = LPFC_SOL_IOCB; 1620 break; 1621 case CMD_ABORT_XRI_CN: 1622 case CMD_ABORT_XRI_CX: 1623 case CMD_CLOSE_XRI_CN: 1624 case CMD_CLOSE_XRI_CX: 1625 case CMD_XRI_ABORTED_CX: 1626 case CMD_ABORT_MXRI64_CN: 1627 case CMD_XMIT_BLS_RSP64_CX: 1628 type = LPFC_ABORT_IOCB; 1629 break; 1630 case CMD_RCV_SEQUENCE_CX: 1631 case CMD_RCV_ELS_REQ_CX: 1632 case CMD_RCV_SEQUENCE64_CX: 1633 case CMD_RCV_ELS_REQ64_CX: 1634 case CMD_ASYNC_STATUS: 1635 case CMD_IOCB_RCV_SEQ64_CX: 1636 case CMD_IOCB_RCV_ELS64_CX: 1637 case CMD_IOCB_RCV_CONT64_CX: 1638 case CMD_IOCB_RET_XRI64_CX: 1639 type = LPFC_UNSOL_IOCB; 1640 break; 1641 case CMD_IOCB_XMIT_MSEQ64_CR: 1642 case CMD_IOCB_XMIT_MSEQ64_CX: 1643 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1644 case CMD_IOCB_RCV_ELS_LIST64_CX: 1645 case CMD_IOCB_CLOSE_EXTENDED_CN: 1646 case CMD_IOCB_ABORT_EXTENDED_CN: 1647 case CMD_IOCB_RET_HBQE64_CN: 1648 case CMD_IOCB_FCP_IBIDIR64_CR: 1649 case CMD_IOCB_FCP_IBIDIR64_CX: 1650 case CMD_IOCB_FCP_ITASKMGT64_CX: 1651 case CMD_IOCB_LOGENTRY_CN: 1652 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1653 printk("%s - Unhandled SLI-3 Command x%x\n", 1654 __func__, iocb_cmnd); 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 default: 1658 type = LPFC_UNKNOWN_IOCB; 1659 break; 1660 } 1661 1662 return type; 1663 } 1664 1665 /** 1666 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1667 * @phba: Pointer to HBA context object. 1668 * 1669 * This function is called from SLI initialization code 1670 * to configure every ring of the HBA's SLI interface. The 1671 * caller is not required to hold any lock. This function issues 1672 * a config_ring mailbox command for each ring. 1673 * This function returns zero if successful else returns a negative 1674 * error code. 1675 **/ 1676 static int 1677 lpfc_sli_ring_map(struct lpfc_hba *phba) 1678 { 1679 struct lpfc_sli *psli = &phba->sli; 1680 LPFC_MBOXQ_t *pmb; 1681 MAILBOX_t *pmbox; 1682 int i, rc, ret = 0; 1683 1684 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1685 if (!pmb) 1686 return -ENOMEM; 1687 pmbox = &pmb->u.mb; 1688 phba->link_state = LPFC_INIT_MBX_CMDS; 1689 for (i = 0; i < psli->num_rings; i++) { 1690 lpfc_config_ring(phba, i, pmb); 1691 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1692 if (rc != MBX_SUCCESS) { 1693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1694 "0446 Adapter failed to init (%d), " 1695 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1696 "ring %d\n", 1697 rc, pmbox->mbxCommand, 1698 pmbox->mbxStatus, i); 1699 phba->link_state = LPFC_HBA_ERROR; 1700 ret = -ENXIO; 1701 break; 1702 } 1703 } 1704 mempool_free(pmb, phba->mbox_mem_pool); 1705 return ret; 1706 } 1707 1708 /** 1709 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1710 * @phba: Pointer to HBA context object. 1711 * @pring: Pointer to driver SLI ring object. 1712 * @piocb: Pointer to the driver iocb object. 1713 * 1714 * The driver calls this function with the hbalock held for SLI3 ports or 1715 * the ring lock held for SLI4 ports. The function adds the 1716 * new iocb to txcmplq of the given ring. This function always returns 1717 * 0. If this function is called for ELS ring, this function checks if 1718 * there is a vport associated with the ELS command. This function also 1719 * starts els_tmofunc timer if this is an ELS command. 1720 **/ 1721 static int 1722 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1723 struct lpfc_iocbq *piocb) 1724 { 1725 if (phba->sli_rev == LPFC_SLI_REV4) 1726 lockdep_assert_held(&pring->ring_lock); 1727 else 1728 lockdep_assert_held(&phba->hbalock); 1729 1730 BUG_ON(!piocb); 1731 1732 list_add_tail(&piocb->list, &pring->txcmplq); 1733 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1734 pring->txcmplq_cnt++; 1735 1736 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1737 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1738 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1739 BUG_ON(!piocb->vport); 1740 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1741 mod_timer(&piocb->vport->els_tmofunc, 1742 jiffies + 1743 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1744 } 1745 1746 return 0; 1747 } 1748 1749 /** 1750 * lpfc_sli_ringtx_get - Get first element of the txq 1751 * @phba: Pointer to HBA context object. 1752 * @pring: Pointer to driver SLI ring object. 1753 * 1754 * This function is called with hbalock held to get next 1755 * iocb in txq of the given ring. If there is any iocb in 1756 * the txq, the function returns first iocb in the list after 1757 * removing the iocb from the list, else it returns NULL. 1758 **/ 1759 struct lpfc_iocbq * 1760 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1761 { 1762 struct lpfc_iocbq *cmd_iocb; 1763 1764 lockdep_assert_held(&phba->hbalock); 1765 1766 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1767 return cmd_iocb; 1768 } 1769 1770 /** 1771 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1772 * @phba: Pointer to HBA context object. 1773 * @pring: Pointer to driver SLI ring object. 1774 * 1775 * This function is called with hbalock held and the caller must post the 1776 * iocb without releasing the lock. If the caller releases the lock, 1777 * iocb slot returned by the function is not guaranteed to be available. 1778 * The function returns pointer to the next available iocb slot if there 1779 * is available slot in the ring, else it returns NULL. 1780 * If the get index of the ring is ahead of the put index, the function 1781 * will post an error attention event to the worker thread to take the 1782 * HBA to offline state. 1783 **/ 1784 static IOCB_t * 1785 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1786 { 1787 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1788 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1789 1790 lockdep_assert_held(&phba->hbalock); 1791 1792 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1793 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1794 pring->sli.sli3.next_cmdidx = 0; 1795 1796 if (unlikely(pring->sli.sli3.local_getidx == 1797 pring->sli.sli3.next_cmdidx)) { 1798 1799 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1800 1801 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1803 "0315 Ring %d issue: portCmdGet %d " 1804 "is bigger than cmd ring %d\n", 1805 pring->ringno, 1806 pring->sli.sli3.local_getidx, 1807 max_cmd_idx); 1808 1809 phba->link_state = LPFC_HBA_ERROR; 1810 /* 1811 * All error attention handlers are posted to 1812 * worker thread 1813 */ 1814 phba->work_ha |= HA_ERATT; 1815 phba->work_hs = HS_FFER3; 1816 1817 lpfc_worker_wake_up(phba); 1818 1819 return NULL; 1820 } 1821 1822 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1823 return NULL; 1824 } 1825 1826 return lpfc_cmd_iocb(phba, pring); 1827 } 1828 1829 /** 1830 * lpfc_sli_next_iotag - Get an iotag for the iocb 1831 * @phba: Pointer to HBA context object. 1832 * @iocbq: Pointer to driver iocb object. 1833 * 1834 * This function gets an iotag for the iocb. If there is no unused iotag and 1835 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1836 * array and assigns a new iotag. 1837 * The function returns the allocated iotag if successful, else returns zero. 1838 * Zero is not a valid iotag. 1839 * The caller is not required to hold any lock. 1840 **/ 1841 uint16_t 1842 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1843 { 1844 struct lpfc_iocbq **new_arr; 1845 struct lpfc_iocbq **old_arr; 1846 size_t new_len; 1847 struct lpfc_sli *psli = &phba->sli; 1848 uint16_t iotag; 1849 1850 spin_lock_irq(&phba->hbalock); 1851 iotag = psli->last_iotag; 1852 if(++iotag < psli->iocbq_lookup_len) { 1853 psli->last_iotag = iotag; 1854 psli->iocbq_lookup[iotag] = iocbq; 1855 spin_unlock_irq(&phba->hbalock); 1856 iocbq->iotag = iotag; 1857 return iotag; 1858 } else if (psli->iocbq_lookup_len < (0xffff 1859 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1860 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1861 spin_unlock_irq(&phba->hbalock); 1862 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1863 GFP_KERNEL); 1864 if (new_arr) { 1865 spin_lock_irq(&phba->hbalock); 1866 old_arr = psli->iocbq_lookup; 1867 if (new_len <= psli->iocbq_lookup_len) { 1868 /* highly unprobable case */ 1869 kfree(new_arr); 1870 iotag = psli->last_iotag; 1871 if(++iotag < psli->iocbq_lookup_len) { 1872 psli->last_iotag = iotag; 1873 psli->iocbq_lookup[iotag] = iocbq; 1874 spin_unlock_irq(&phba->hbalock); 1875 iocbq->iotag = iotag; 1876 return iotag; 1877 } 1878 spin_unlock_irq(&phba->hbalock); 1879 return 0; 1880 } 1881 if (psli->iocbq_lookup) 1882 memcpy(new_arr, old_arr, 1883 ((psli->last_iotag + 1) * 1884 sizeof (struct lpfc_iocbq *))); 1885 psli->iocbq_lookup = new_arr; 1886 psli->iocbq_lookup_len = new_len; 1887 psli->last_iotag = iotag; 1888 psli->iocbq_lookup[iotag] = iocbq; 1889 spin_unlock_irq(&phba->hbalock); 1890 iocbq->iotag = iotag; 1891 kfree(old_arr); 1892 return iotag; 1893 } 1894 } else 1895 spin_unlock_irq(&phba->hbalock); 1896 1897 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1898 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1899 psli->last_iotag); 1900 1901 return 0; 1902 } 1903 1904 /** 1905 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1906 * @phba: Pointer to HBA context object. 1907 * @pring: Pointer to driver SLI ring object. 1908 * @iocb: Pointer to iocb slot in the ring. 1909 * @nextiocb: Pointer to driver iocb object which need to be 1910 * posted to firmware. 1911 * 1912 * This function is called to post a new iocb to the firmware. This 1913 * function copies the new iocb to ring iocb slot and updates the 1914 * ring pointers. It adds the new iocb to txcmplq if there is 1915 * a completion call back for this iocb else the function will free the 1916 * iocb object. The hbalock is asserted held in the code path calling 1917 * this routine. 1918 **/ 1919 static void 1920 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1921 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1922 { 1923 /* 1924 * Set up an iotag 1925 */ 1926 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1927 1928 1929 if (pring->ringno == LPFC_ELS_RING) { 1930 lpfc_debugfs_slow_ring_trc(phba, 1931 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1932 *(((uint32_t *) &nextiocb->iocb) + 4), 1933 *(((uint32_t *) &nextiocb->iocb) + 6), 1934 *(((uint32_t *) &nextiocb->iocb) + 7)); 1935 } 1936 1937 /* 1938 * Issue iocb command to adapter 1939 */ 1940 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1941 wmb(); 1942 pring->stats.iocb_cmd++; 1943 1944 /* 1945 * If there is no completion routine to call, we can release the 1946 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1947 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1948 */ 1949 if (nextiocb->iocb_cmpl) 1950 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1951 else 1952 __lpfc_sli_release_iocbq(phba, nextiocb); 1953 1954 /* 1955 * Let the HBA know what IOCB slot will be the next one the 1956 * driver will put a command into. 1957 */ 1958 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1959 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1960 } 1961 1962 /** 1963 * lpfc_sli_update_full_ring - Update the chip attention register 1964 * @phba: Pointer to HBA context object. 1965 * @pring: Pointer to driver SLI ring object. 1966 * 1967 * The caller is not required to hold any lock for calling this function. 1968 * This function updates the chip attention bits for the ring to inform firmware 1969 * that there are pending work to be done for this ring and requests an 1970 * interrupt when there is space available in the ring. This function is 1971 * called when the driver is unable to post more iocbs to the ring due 1972 * to unavailability of space in the ring. 1973 **/ 1974 static void 1975 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1976 { 1977 int ringno = pring->ringno; 1978 1979 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1980 1981 wmb(); 1982 1983 /* 1984 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1985 * The HBA will tell us when an IOCB entry is available. 1986 */ 1987 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1988 readl(phba->CAregaddr); /* flush */ 1989 1990 pring->stats.iocb_cmd_full++; 1991 } 1992 1993 /** 1994 * lpfc_sli_update_ring - Update chip attention register 1995 * @phba: Pointer to HBA context object. 1996 * @pring: Pointer to driver SLI ring object. 1997 * 1998 * This function updates the chip attention register bit for the 1999 * given ring to inform HBA that there is more work to be done 2000 * in this ring. The caller is not required to hold any lock. 2001 **/ 2002 static void 2003 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2004 { 2005 int ringno = pring->ringno; 2006 2007 /* 2008 * Tell the HBA that there is work to do in this ring. 2009 */ 2010 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2011 wmb(); 2012 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2013 readl(phba->CAregaddr); /* flush */ 2014 } 2015 } 2016 2017 /** 2018 * lpfc_sli_resume_iocb - Process iocbs in the txq 2019 * @phba: Pointer to HBA context object. 2020 * @pring: Pointer to driver SLI ring object. 2021 * 2022 * This function is called with hbalock held to post pending iocbs 2023 * in the txq to the firmware. This function is called when driver 2024 * detects space available in the ring. 2025 **/ 2026 static void 2027 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2028 { 2029 IOCB_t *iocb; 2030 struct lpfc_iocbq *nextiocb; 2031 2032 lockdep_assert_held(&phba->hbalock); 2033 2034 /* 2035 * Check to see if: 2036 * (a) there is anything on the txq to send 2037 * (b) link is up 2038 * (c) link attention events can be processed (fcp ring only) 2039 * (d) IOCB processing is not blocked by the outstanding mbox command. 2040 */ 2041 2042 if (lpfc_is_link_up(phba) && 2043 (!list_empty(&pring->txq)) && 2044 (pring->ringno != LPFC_FCP_RING || 2045 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2046 2047 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2048 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2049 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2050 2051 if (iocb) 2052 lpfc_sli_update_ring(phba, pring); 2053 else 2054 lpfc_sli_update_full_ring(phba, pring); 2055 } 2056 2057 return; 2058 } 2059 2060 /** 2061 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2062 * @phba: Pointer to HBA context object. 2063 * @hbqno: HBQ number. 2064 * 2065 * This function is called with hbalock held to get the next 2066 * available slot for the given HBQ. If there is free slot 2067 * available for the HBQ it will return pointer to the next available 2068 * HBQ entry else it will return NULL. 2069 **/ 2070 static struct lpfc_hbq_entry * 2071 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2072 { 2073 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2074 2075 lockdep_assert_held(&phba->hbalock); 2076 2077 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2078 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2079 hbqp->next_hbqPutIdx = 0; 2080 2081 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2082 uint32_t raw_index = phba->hbq_get[hbqno]; 2083 uint32_t getidx = le32_to_cpu(raw_index); 2084 2085 hbqp->local_hbqGetIdx = getidx; 2086 2087 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2088 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2089 "1802 HBQ %d: local_hbqGetIdx " 2090 "%u is > than hbqp->entry_count %u\n", 2091 hbqno, hbqp->local_hbqGetIdx, 2092 hbqp->entry_count); 2093 2094 phba->link_state = LPFC_HBA_ERROR; 2095 return NULL; 2096 } 2097 2098 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2099 return NULL; 2100 } 2101 2102 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2103 hbqp->hbqPutIdx; 2104 } 2105 2106 /** 2107 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2108 * @phba: Pointer to HBA context object. 2109 * 2110 * This function is called with no lock held to free all the 2111 * hbq buffers while uninitializing the SLI interface. It also 2112 * frees the HBQ buffers returned by the firmware but not yet 2113 * processed by the upper layers. 2114 **/ 2115 void 2116 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2117 { 2118 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2119 struct hbq_dmabuf *hbq_buf; 2120 unsigned long flags; 2121 int i, hbq_count; 2122 2123 hbq_count = lpfc_sli_hbq_count(); 2124 /* Return all memory used by all HBQs */ 2125 spin_lock_irqsave(&phba->hbalock, flags); 2126 for (i = 0; i < hbq_count; ++i) { 2127 list_for_each_entry_safe(dmabuf, next_dmabuf, 2128 &phba->hbqs[i].hbq_buffer_list, list) { 2129 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2130 list_del(&hbq_buf->dbuf.list); 2131 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2132 } 2133 phba->hbqs[i].buffer_count = 0; 2134 } 2135 2136 /* Mark the HBQs not in use */ 2137 phba->hbq_in_use = 0; 2138 spin_unlock_irqrestore(&phba->hbalock, flags); 2139 } 2140 2141 /** 2142 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2143 * @phba: Pointer to HBA context object. 2144 * @hbqno: HBQ number. 2145 * @hbq_buf: Pointer to HBQ buffer. 2146 * 2147 * This function is called with the hbalock held to post a 2148 * hbq buffer to the firmware. If the function finds an empty 2149 * slot in the HBQ, it will post the buffer. The function will return 2150 * pointer to the hbq entry if it successfully post the buffer 2151 * else it will return NULL. 2152 **/ 2153 static int 2154 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2155 struct hbq_dmabuf *hbq_buf) 2156 { 2157 lockdep_assert_held(&phba->hbalock); 2158 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2159 } 2160 2161 /** 2162 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2163 * @phba: Pointer to HBA context object. 2164 * @hbqno: HBQ number. 2165 * @hbq_buf: Pointer to HBQ buffer. 2166 * 2167 * This function is called with the hbalock held to post a hbq buffer to the 2168 * firmware. If the function finds an empty slot in the HBQ, it will post the 2169 * buffer and place it on the hbq_buffer_list. The function will return zero if 2170 * it successfully post the buffer else it will return an error. 2171 **/ 2172 static int 2173 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2174 struct hbq_dmabuf *hbq_buf) 2175 { 2176 struct lpfc_hbq_entry *hbqe; 2177 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2178 2179 lockdep_assert_held(&phba->hbalock); 2180 /* Get next HBQ entry slot to use */ 2181 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2182 if (hbqe) { 2183 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2184 2185 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2186 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2187 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2188 hbqe->bde.tus.f.bdeFlags = 0; 2189 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2190 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2191 /* Sync SLIM */ 2192 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2193 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2194 /* flush */ 2195 readl(phba->hbq_put + hbqno); 2196 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2197 return 0; 2198 } else 2199 return -ENOMEM; 2200 } 2201 2202 /** 2203 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2204 * @phba: Pointer to HBA context object. 2205 * @hbqno: HBQ number. 2206 * @hbq_buf: Pointer to HBQ buffer. 2207 * 2208 * This function is called with the hbalock held to post an RQE to the SLI4 2209 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2210 * the hbq_buffer_list and return zero, otherwise it will return an error. 2211 **/ 2212 static int 2213 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2214 struct hbq_dmabuf *hbq_buf) 2215 { 2216 int rc; 2217 struct lpfc_rqe hrqe; 2218 struct lpfc_rqe drqe; 2219 struct lpfc_queue *hrq; 2220 struct lpfc_queue *drq; 2221 2222 if (hbqno != LPFC_ELS_HBQ) 2223 return 1; 2224 hrq = phba->sli4_hba.hdr_rq; 2225 drq = phba->sli4_hba.dat_rq; 2226 2227 lockdep_assert_held(&phba->hbalock); 2228 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2229 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2230 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2231 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2232 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2233 if (rc < 0) 2234 return rc; 2235 hbq_buf->tag = (rc | (hbqno << 16)); 2236 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2237 return 0; 2238 } 2239 2240 /* HBQ for ELS and CT traffic. */ 2241 static struct lpfc_hbq_init lpfc_els_hbq = { 2242 .rn = 1, 2243 .entry_count = 256, 2244 .mask_count = 0, 2245 .profile = 0, 2246 .ring_mask = (1 << LPFC_ELS_RING), 2247 .buffer_count = 0, 2248 .init_count = 40, 2249 .add_count = 40, 2250 }; 2251 2252 /* Array of HBQs */ 2253 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2254 &lpfc_els_hbq, 2255 }; 2256 2257 /** 2258 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2259 * @phba: Pointer to HBA context object. 2260 * @hbqno: HBQ number. 2261 * @count: Number of HBQ buffers to be posted. 2262 * 2263 * This function is called with no lock held to post more hbq buffers to the 2264 * given HBQ. The function returns the number of HBQ buffers successfully 2265 * posted. 2266 **/ 2267 static int 2268 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2269 { 2270 uint32_t i, posted = 0; 2271 unsigned long flags; 2272 struct hbq_dmabuf *hbq_buffer; 2273 LIST_HEAD(hbq_buf_list); 2274 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2275 return 0; 2276 2277 if ((phba->hbqs[hbqno].buffer_count + count) > 2278 lpfc_hbq_defs[hbqno]->entry_count) 2279 count = lpfc_hbq_defs[hbqno]->entry_count - 2280 phba->hbqs[hbqno].buffer_count; 2281 if (!count) 2282 return 0; 2283 /* Allocate HBQ entries */ 2284 for (i = 0; i < count; i++) { 2285 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2286 if (!hbq_buffer) 2287 break; 2288 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2289 } 2290 /* Check whether HBQ is still in use */ 2291 spin_lock_irqsave(&phba->hbalock, flags); 2292 if (!phba->hbq_in_use) 2293 goto err; 2294 while (!list_empty(&hbq_buf_list)) { 2295 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2296 dbuf.list); 2297 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2298 (hbqno << 16)); 2299 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2300 phba->hbqs[hbqno].buffer_count++; 2301 posted++; 2302 } else 2303 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2304 } 2305 spin_unlock_irqrestore(&phba->hbalock, flags); 2306 return posted; 2307 err: 2308 spin_unlock_irqrestore(&phba->hbalock, flags); 2309 while (!list_empty(&hbq_buf_list)) { 2310 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2311 dbuf.list); 2312 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2313 } 2314 return 0; 2315 } 2316 2317 /** 2318 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2319 * @phba: Pointer to HBA context object. 2320 * @qno: HBQ number. 2321 * 2322 * This function posts more buffers to the HBQ. This function 2323 * is called with no lock held. The function returns the number of HBQ entries 2324 * successfully allocated. 2325 **/ 2326 int 2327 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2328 { 2329 if (phba->sli_rev == LPFC_SLI_REV4) 2330 return 0; 2331 else 2332 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2333 lpfc_hbq_defs[qno]->add_count); 2334 } 2335 2336 /** 2337 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2338 * @phba: Pointer to HBA context object. 2339 * @qno: HBQ queue number. 2340 * 2341 * This function is called from SLI initialization code path with 2342 * no lock held to post initial HBQ buffers to firmware. The 2343 * function returns the number of HBQ entries successfully allocated. 2344 **/ 2345 static int 2346 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2347 { 2348 if (phba->sli_rev == LPFC_SLI_REV4) 2349 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2350 lpfc_hbq_defs[qno]->entry_count); 2351 else 2352 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2353 lpfc_hbq_defs[qno]->init_count); 2354 } 2355 2356 /* 2357 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2358 * 2359 * This function removes the first hbq buffer on an hbq list and returns a 2360 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2361 **/ 2362 static struct hbq_dmabuf * 2363 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2364 { 2365 struct lpfc_dmabuf *d_buf; 2366 2367 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2368 if (!d_buf) 2369 return NULL; 2370 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2371 } 2372 2373 /** 2374 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2375 * @phba: Pointer to HBA context object. 2376 * @hrq: HBQ number. 2377 * 2378 * This function removes the first RQ buffer on an RQ buffer list and returns a 2379 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2380 **/ 2381 static struct rqb_dmabuf * 2382 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2383 { 2384 struct lpfc_dmabuf *h_buf; 2385 struct lpfc_rqb *rqbp; 2386 2387 rqbp = hrq->rqbp; 2388 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2389 struct lpfc_dmabuf, list); 2390 if (!h_buf) 2391 return NULL; 2392 rqbp->buffer_count--; 2393 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2394 } 2395 2396 /** 2397 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2398 * @phba: Pointer to HBA context object. 2399 * @tag: Tag of the hbq buffer. 2400 * 2401 * This function searches for the hbq buffer associated with the given tag in 2402 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2403 * otherwise it returns NULL. 2404 **/ 2405 static struct hbq_dmabuf * 2406 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2407 { 2408 struct lpfc_dmabuf *d_buf; 2409 struct hbq_dmabuf *hbq_buf; 2410 uint32_t hbqno; 2411 2412 hbqno = tag >> 16; 2413 if (hbqno >= LPFC_MAX_HBQS) 2414 return NULL; 2415 2416 spin_lock_irq(&phba->hbalock); 2417 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2418 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2419 if (hbq_buf->tag == tag) { 2420 spin_unlock_irq(&phba->hbalock); 2421 return hbq_buf; 2422 } 2423 } 2424 spin_unlock_irq(&phba->hbalock); 2425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2426 "1803 Bad hbq tag. Data: x%x x%x\n", 2427 tag, phba->hbqs[tag >> 16].buffer_count); 2428 return NULL; 2429 } 2430 2431 /** 2432 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2433 * @phba: Pointer to HBA context object. 2434 * @hbq_buffer: Pointer to HBQ buffer. 2435 * 2436 * This function is called with hbalock. This function gives back 2437 * the hbq buffer to firmware. If the HBQ does not have space to 2438 * post the buffer, it will free the buffer. 2439 **/ 2440 void 2441 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2442 { 2443 uint32_t hbqno; 2444 2445 if (hbq_buffer) { 2446 hbqno = hbq_buffer->tag >> 16; 2447 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2448 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2449 } 2450 } 2451 2452 /** 2453 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2454 * @mbxCommand: mailbox command code. 2455 * 2456 * This function is called by the mailbox event handler function to verify 2457 * that the completed mailbox command is a legitimate mailbox command. If the 2458 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2459 * and the mailbox event handler will take the HBA offline. 2460 **/ 2461 static int 2462 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2463 { 2464 uint8_t ret; 2465 2466 switch (mbxCommand) { 2467 case MBX_LOAD_SM: 2468 case MBX_READ_NV: 2469 case MBX_WRITE_NV: 2470 case MBX_WRITE_VPARMS: 2471 case MBX_RUN_BIU_DIAG: 2472 case MBX_INIT_LINK: 2473 case MBX_DOWN_LINK: 2474 case MBX_CONFIG_LINK: 2475 case MBX_CONFIG_RING: 2476 case MBX_RESET_RING: 2477 case MBX_READ_CONFIG: 2478 case MBX_READ_RCONFIG: 2479 case MBX_READ_SPARM: 2480 case MBX_READ_STATUS: 2481 case MBX_READ_RPI: 2482 case MBX_READ_XRI: 2483 case MBX_READ_REV: 2484 case MBX_READ_LNK_STAT: 2485 case MBX_REG_LOGIN: 2486 case MBX_UNREG_LOGIN: 2487 case MBX_CLEAR_LA: 2488 case MBX_DUMP_MEMORY: 2489 case MBX_DUMP_CONTEXT: 2490 case MBX_RUN_DIAGS: 2491 case MBX_RESTART: 2492 case MBX_UPDATE_CFG: 2493 case MBX_DOWN_LOAD: 2494 case MBX_DEL_LD_ENTRY: 2495 case MBX_RUN_PROGRAM: 2496 case MBX_SET_MASK: 2497 case MBX_SET_VARIABLE: 2498 case MBX_UNREG_D_ID: 2499 case MBX_KILL_BOARD: 2500 case MBX_CONFIG_FARP: 2501 case MBX_BEACON: 2502 case MBX_LOAD_AREA: 2503 case MBX_RUN_BIU_DIAG64: 2504 case MBX_CONFIG_PORT: 2505 case MBX_READ_SPARM64: 2506 case MBX_READ_RPI64: 2507 case MBX_REG_LOGIN64: 2508 case MBX_READ_TOPOLOGY: 2509 case MBX_WRITE_WWN: 2510 case MBX_SET_DEBUG: 2511 case MBX_LOAD_EXP_ROM: 2512 case MBX_ASYNCEVT_ENABLE: 2513 case MBX_REG_VPI: 2514 case MBX_UNREG_VPI: 2515 case MBX_HEARTBEAT: 2516 case MBX_PORT_CAPABILITIES: 2517 case MBX_PORT_IOV_CONTROL: 2518 case MBX_SLI4_CONFIG: 2519 case MBX_SLI4_REQ_FTRS: 2520 case MBX_REG_FCFI: 2521 case MBX_UNREG_FCFI: 2522 case MBX_REG_VFI: 2523 case MBX_UNREG_VFI: 2524 case MBX_INIT_VPI: 2525 case MBX_INIT_VFI: 2526 case MBX_RESUME_RPI: 2527 case MBX_READ_EVENT_LOG_STATUS: 2528 case MBX_READ_EVENT_LOG: 2529 case MBX_SECURITY_MGMT: 2530 case MBX_AUTH_PORT: 2531 case MBX_ACCESS_VDATA: 2532 ret = mbxCommand; 2533 break; 2534 default: 2535 ret = MBX_SHUTDOWN; 2536 break; 2537 } 2538 return ret; 2539 } 2540 2541 /** 2542 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2543 * @phba: Pointer to HBA context object. 2544 * @pmboxq: Pointer to mailbox command. 2545 * 2546 * This is completion handler function for mailbox commands issued from 2547 * lpfc_sli_issue_mbox_wait function. This function is called by the 2548 * mailbox event handler function with no lock held. This function 2549 * will wake up thread waiting on the wait queue pointed by context1 2550 * of the mailbox. 2551 **/ 2552 void 2553 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2554 { 2555 unsigned long drvr_flag; 2556 struct completion *pmbox_done; 2557 2558 /* 2559 * If pmbox_done is empty, the driver thread gave up waiting and 2560 * continued running. 2561 */ 2562 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2563 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2564 pmbox_done = (struct completion *)pmboxq->context3; 2565 if (pmbox_done) 2566 complete(pmbox_done); 2567 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2568 return; 2569 } 2570 2571 static void 2572 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2573 { 2574 unsigned long iflags; 2575 2576 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2577 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2578 spin_lock_irqsave(&ndlp->lock, iflags); 2579 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2580 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2581 spin_unlock_irqrestore(&ndlp->lock, iflags); 2582 } 2583 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2584 } 2585 2586 /** 2587 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2588 * @phba: Pointer to HBA context object. 2589 * @pmb: Pointer to mailbox object. 2590 * 2591 * This function is the default mailbox completion handler. It 2592 * frees the memory resources associated with the completed mailbox 2593 * command. If the completed command is a REG_LOGIN mailbox command, 2594 * this function will issue a UREG_LOGIN to re-claim the RPI. 2595 **/ 2596 void 2597 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2598 { 2599 struct lpfc_vport *vport = pmb->vport; 2600 struct lpfc_dmabuf *mp; 2601 struct lpfc_nodelist *ndlp; 2602 struct Scsi_Host *shost; 2603 uint16_t rpi, vpi; 2604 int rc; 2605 2606 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2607 2608 if (mp) { 2609 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2610 kfree(mp); 2611 } 2612 2613 /* 2614 * If a REG_LOGIN succeeded after node is destroyed or node 2615 * is in re-discovery driver need to cleanup the RPI. 2616 */ 2617 if (!(phba->pport->load_flag & FC_UNLOADING) && 2618 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2619 !pmb->u.mb.mbxStatus) { 2620 rpi = pmb->u.mb.un.varWords[0]; 2621 vpi = pmb->u.mb.un.varRegLogin.vpi; 2622 if (phba->sli_rev == LPFC_SLI_REV4) 2623 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2624 lpfc_unreg_login(phba, vpi, rpi, pmb); 2625 pmb->vport = vport; 2626 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2627 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2628 if (rc != MBX_NOT_FINISHED) 2629 return; 2630 } 2631 2632 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2633 !(phba->pport->load_flag & FC_UNLOADING) && 2634 !pmb->u.mb.mbxStatus) { 2635 shost = lpfc_shost_from_vport(vport); 2636 spin_lock_irq(shost->host_lock); 2637 vport->vpi_state |= LPFC_VPI_REGISTERED; 2638 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2639 spin_unlock_irq(shost->host_lock); 2640 } 2641 2642 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2643 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2644 lpfc_nlp_put(ndlp); 2645 pmb->ctx_buf = NULL; 2646 pmb->ctx_ndlp = NULL; 2647 } 2648 2649 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2650 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2651 2652 /* Check to see if there are any deferred events to process */ 2653 if (ndlp) { 2654 lpfc_printf_vlog( 2655 vport, 2656 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2657 "1438 UNREG cmpl deferred mbox x%x " 2658 "on NPort x%x Data: x%x x%x %px x%x x%x\n", 2659 ndlp->nlp_rpi, ndlp->nlp_DID, 2660 ndlp->nlp_flag, ndlp->nlp_defer_did, 2661 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2662 2663 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2664 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2665 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2666 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2667 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2668 } else { 2669 __lpfc_sli_rpi_release(vport, ndlp); 2670 } 2671 2672 /* The unreg_login mailbox is complete and had a 2673 * reference that has to be released. The PLOGI 2674 * got its own ref. 2675 */ 2676 lpfc_nlp_put(ndlp); 2677 pmb->ctx_ndlp = NULL; 2678 } 2679 } 2680 2681 /* Check security permission status on INIT_LINK mailbox command */ 2682 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2683 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2685 "2860 SLI authentication is required " 2686 "for INIT_LINK but has not done yet\n"); 2687 2688 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2689 lpfc_sli4_mbox_cmd_free(phba, pmb); 2690 else 2691 mempool_free(pmb, phba->mbox_mem_pool); 2692 } 2693 /** 2694 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2695 * @phba: Pointer to HBA context object. 2696 * @pmb: Pointer to mailbox object. 2697 * 2698 * This function is the unreg rpi mailbox completion handler. It 2699 * frees the memory resources associated with the completed mailbox 2700 * command. An additional reference is put on the ndlp to prevent 2701 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2702 * the unreg mailbox command completes, this routine puts the 2703 * reference back. 2704 * 2705 **/ 2706 void 2707 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2708 { 2709 struct lpfc_vport *vport = pmb->vport; 2710 struct lpfc_nodelist *ndlp; 2711 2712 ndlp = pmb->ctx_ndlp; 2713 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2714 if (phba->sli_rev == LPFC_SLI_REV4 && 2715 (bf_get(lpfc_sli_intf_if_type, 2716 &phba->sli4_hba.sli_intf) >= 2717 LPFC_SLI_INTF_IF_TYPE_2)) { 2718 if (ndlp) { 2719 lpfc_printf_vlog( 2720 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2721 "0010 UNREG_LOGIN vpi:%x " 2722 "rpi:%x DID:%x defer x%x flg x%x " 2723 "%px\n", 2724 vport->vpi, ndlp->nlp_rpi, 2725 ndlp->nlp_DID, ndlp->nlp_defer_did, 2726 ndlp->nlp_flag, 2727 ndlp); 2728 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2729 2730 /* Check to see if there are any deferred 2731 * events to process 2732 */ 2733 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2734 (ndlp->nlp_defer_did != 2735 NLP_EVT_NOTHING_PENDING)) { 2736 lpfc_printf_vlog( 2737 vport, KERN_INFO, LOG_DISCOVERY, 2738 "4111 UNREG cmpl deferred " 2739 "clr x%x on " 2740 "NPort x%x Data: x%x x%px\n", 2741 ndlp->nlp_rpi, ndlp->nlp_DID, 2742 ndlp->nlp_defer_did, ndlp); 2743 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2744 ndlp->nlp_defer_did = 2745 NLP_EVT_NOTHING_PENDING; 2746 lpfc_issue_els_plogi( 2747 vport, ndlp->nlp_DID, 0); 2748 } else { 2749 __lpfc_sli_rpi_release(vport, ndlp); 2750 } 2751 2752 lpfc_nlp_put(ndlp); 2753 } 2754 } 2755 } 2756 2757 mempool_free(pmb, phba->mbox_mem_pool); 2758 } 2759 2760 /** 2761 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2762 * @phba: Pointer to HBA context object. 2763 * 2764 * This function is called with no lock held. This function processes all 2765 * the completed mailbox commands and gives it to upper layers. The interrupt 2766 * service routine processes mailbox completion interrupt and adds completed 2767 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2768 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2769 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2770 * function returns the mailbox commands to the upper layer by calling the 2771 * completion handler function of each mailbox. 2772 **/ 2773 int 2774 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2775 { 2776 MAILBOX_t *pmbox; 2777 LPFC_MBOXQ_t *pmb; 2778 int rc; 2779 LIST_HEAD(cmplq); 2780 2781 phba->sli.slistat.mbox_event++; 2782 2783 /* Get all completed mailboxe buffers into the cmplq */ 2784 spin_lock_irq(&phba->hbalock); 2785 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2786 spin_unlock_irq(&phba->hbalock); 2787 2788 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2789 do { 2790 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2791 if (pmb == NULL) 2792 break; 2793 2794 pmbox = &pmb->u.mb; 2795 2796 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2797 if (pmb->vport) { 2798 lpfc_debugfs_disc_trc(pmb->vport, 2799 LPFC_DISC_TRC_MBOX_VPORT, 2800 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2801 (uint32_t)pmbox->mbxCommand, 2802 pmbox->un.varWords[0], 2803 pmbox->un.varWords[1]); 2804 } 2805 else { 2806 lpfc_debugfs_disc_trc(phba->pport, 2807 LPFC_DISC_TRC_MBOX, 2808 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2809 (uint32_t)pmbox->mbxCommand, 2810 pmbox->un.varWords[0], 2811 pmbox->un.varWords[1]); 2812 } 2813 } 2814 2815 /* 2816 * It is a fatal error if unknown mbox command completion. 2817 */ 2818 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2819 MBX_SHUTDOWN) { 2820 /* Unknown mailbox command compl */ 2821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2822 "(%d):0323 Unknown Mailbox command " 2823 "x%x (x%x/x%x) Cmpl\n", 2824 pmb->vport ? pmb->vport->vpi : 2825 LPFC_VPORT_UNKNOWN, 2826 pmbox->mbxCommand, 2827 lpfc_sli_config_mbox_subsys_get(phba, 2828 pmb), 2829 lpfc_sli_config_mbox_opcode_get(phba, 2830 pmb)); 2831 phba->link_state = LPFC_HBA_ERROR; 2832 phba->work_hs = HS_FFER3; 2833 lpfc_handle_eratt(phba); 2834 continue; 2835 } 2836 2837 if (pmbox->mbxStatus) { 2838 phba->sli.slistat.mbox_stat_err++; 2839 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2840 /* Mbox cmd cmpl error - RETRYing */ 2841 lpfc_printf_log(phba, KERN_INFO, 2842 LOG_MBOX | LOG_SLI, 2843 "(%d):0305 Mbox cmd cmpl " 2844 "error - RETRYing Data: x%x " 2845 "(x%x/x%x) x%x x%x x%x\n", 2846 pmb->vport ? pmb->vport->vpi : 2847 LPFC_VPORT_UNKNOWN, 2848 pmbox->mbxCommand, 2849 lpfc_sli_config_mbox_subsys_get(phba, 2850 pmb), 2851 lpfc_sli_config_mbox_opcode_get(phba, 2852 pmb), 2853 pmbox->mbxStatus, 2854 pmbox->un.varWords[0], 2855 pmb->vport ? pmb->vport->port_state : 2856 LPFC_VPORT_UNKNOWN); 2857 pmbox->mbxStatus = 0; 2858 pmbox->mbxOwner = OWN_HOST; 2859 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2860 if (rc != MBX_NOT_FINISHED) 2861 continue; 2862 } 2863 } 2864 2865 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2866 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2867 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2868 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2869 "x%x x%x x%x\n", 2870 pmb->vport ? pmb->vport->vpi : 0, 2871 pmbox->mbxCommand, 2872 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2873 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2874 pmb->mbox_cmpl, 2875 *((uint32_t *) pmbox), 2876 pmbox->un.varWords[0], 2877 pmbox->un.varWords[1], 2878 pmbox->un.varWords[2], 2879 pmbox->un.varWords[3], 2880 pmbox->un.varWords[4], 2881 pmbox->un.varWords[5], 2882 pmbox->un.varWords[6], 2883 pmbox->un.varWords[7], 2884 pmbox->un.varWords[8], 2885 pmbox->un.varWords[9], 2886 pmbox->un.varWords[10]); 2887 2888 if (pmb->mbox_cmpl) 2889 pmb->mbox_cmpl(phba,pmb); 2890 } while (1); 2891 return 0; 2892 } 2893 2894 /** 2895 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2896 * @phba: Pointer to HBA context object. 2897 * @pring: Pointer to driver SLI ring object. 2898 * @tag: buffer tag. 2899 * 2900 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2901 * is set in the tag the buffer is posted for a particular exchange, 2902 * the function will return the buffer without replacing the buffer. 2903 * If the buffer is for unsolicited ELS or CT traffic, this function 2904 * returns the buffer and also posts another buffer to the firmware. 2905 **/ 2906 static struct lpfc_dmabuf * 2907 lpfc_sli_get_buff(struct lpfc_hba *phba, 2908 struct lpfc_sli_ring *pring, 2909 uint32_t tag) 2910 { 2911 struct hbq_dmabuf *hbq_entry; 2912 2913 if (tag & QUE_BUFTAG_BIT) 2914 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2915 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2916 if (!hbq_entry) 2917 return NULL; 2918 return &hbq_entry->dbuf; 2919 } 2920 2921 /** 2922 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2923 * containing a NVME LS request. 2924 * @phba: pointer to lpfc hba data structure. 2925 * @piocb: pointer to the iocbq struct representing the sequence starting 2926 * frame. 2927 * 2928 * This routine initially validates the NVME LS, validates there is a login 2929 * with the port that sent the LS, and then calls the appropriate nvme host 2930 * or target LS request handler. 2931 **/ 2932 static void 2933 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2934 { 2935 struct lpfc_nodelist *ndlp; 2936 struct lpfc_dmabuf *d_buf; 2937 struct hbq_dmabuf *nvmebuf; 2938 struct fc_frame_header *fc_hdr; 2939 struct lpfc_async_xchg_ctx *axchg = NULL; 2940 char *failwhy = NULL; 2941 uint32_t oxid, sid, did, fctl, size; 2942 int ret = 1; 2943 2944 d_buf = piocb->context2; 2945 2946 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2947 fc_hdr = nvmebuf->hbuf.virt; 2948 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2949 sid = sli4_sid_from_fc_hdr(fc_hdr); 2950 did = sli4_did_from_fc_hdr(fc_hdr); 2951 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2952 fc_hdr->fh_f_ctl[1] << 8 | 2953 fc_hdr->fh_f_ctl[2]); 2954 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2955 2956 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2957 oxid, size, sid); 2958 2959 if (phba->pport->load_flag & FC_UNLOADING) { 2960 failwhy = "Driver Unloading"; 2961 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2962 failwhy = "NVME FC4 Disabled"; 2963 } else if (!phba->nvmet_support && !phba->pport->localport) { 2964 failwhy = "No Localport"; 2965 } else if (phba->nvmet_support && !phba->targetport) { 2966 failwhy = "No Targetport"; 2967 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2968 failwhy = "Bad NVME LS R_CTL"; 2969 } else if (unlikely((fctl & 0x00FF0000) != 2970 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2971 failwhy = "Bad NVME LS F_CTL"; 2972 } else { 2973 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2974 if (!axchg) 2975 failwhy = "No CTX memory"; 2976 } 2977 2978 if (unlikely(failwhy)) { 2979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2980 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2981 sid, oxid, failwhy); 2982 goto out_fail; 2983 } 2984 2985 /* validate the source of the LS is logged in */ 2986 ndlp = lpfc_findnode_did(phba->pport, sid); 2987 if (!ndlp || 2988 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2989 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2990 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2991 "6216 NVME Unsol rcv: No ndlp: " 2992 "NPort_ID x%x oxid x%x\n", 2993 sid, oxid); 2994 goto out_fail; 2995 } 2996 2997 axchg->phba = phba; 2998 axchg->ndlp = ndlp; 2999 axchg->size = size; 3000 axchg->oxid = oxid; 3001 axchg->sid = sid; 3002 axchg->wqeq = NULL; 3003 axchg->state = LPFC_NVME_STE_LS_RCV; 3004 axchg->entry_cnt = 1; 3005 axchg->rqb_buffer = (void *)nvmebuf; 3006 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3007 axchg->payload = nvmebuf->dbuf.virt; 3008 INIT_LIST_HEAD(&axchg->list); 3009 3010 if (phba->nvmet_support) 3011 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3012 else 3013 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3014 3015 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3016 if (!ret) 3017 return; 3018 3019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3020 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3021 "NVMe%s handler failed %d\n", 3022 did, sid, oxid, 3023 (phba->nvmet_support) ? "T" : "I", ret); 3024 3025 out_fail: 3026 3027 /* recycle receive buffer */ 3028 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3029 3030 /* If start of new exchange, abort it */ 3031 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3032 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3033 3034 if (ret) 3035 kfree(axchg); 3036 } 3037 3038 /** 3039 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3040 * @phba: Pointer to HBA context object. 3041 * @pring: Pointer to driver SLI ring object. 3042 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3043 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3044 * @fch_type: the type for the first frame of the sequence. 3045 * 3046 * This function is called with no lock held. This function uses the r_ctl and 3047 * type of the received sequence to find the correct callback function to call 3048 * to process the sequence. 3049 **/ 3050 static int 3051 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3052 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3053 uint32_t fch_type) 3054 { 3055 int i; 3056 3057 switch (fch_type) { 3058 case FC_TYPE_NVME: 3059 lpfc_nvme_unsol_ls_handler(phba, saveq); 3060 return 1; 3061 default: 3062 break; 3063 } 3064 3065 /* unSolicited Responses */ 3066 if (pring->prt[0].profile) { 3067 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3068 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3069 saveq); 3070 return 1; 3071 } 3072 /* We must search, based on rctl / type 3073 for the right routine */ 3074 for (i = 0; i < pring->num_mask; i++) { 3075 if ((pring->prt[i].rctl == fch_r_ctl) && 3076 (pring->prt[i].type == fch_type)) { 3077 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3078 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3079 (phba, pring, saveq); 3080 return 1; 3081 } 3082 } 3083 return 0; 3084 } 3085 3086 /** 3087 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3088 * @phba: Pointer to HBA context object. 3089 * @pring: Pointer to driver SLI ring object. 3090 * @saveq: Pointer to the unsolicited iocb. 3091 * 3092 * This function is called with no lock held by the ring event handler 3093 * when there is an unsolicited iocb posted to the response ring by the 3094 * firmware. This function gets the buffer associated with the iocbs 3095 * and calls the event handler for the ring. This function handles both 3096 * qring buffers and hbq buffers. 3097 * When the function returns 1 the caller can free the iocb object otherwise 3098 * upper layer functions will free the iocb objects. 3099 **/ 3100 static int 3101 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3102 struct lpfc_iocbq *saveq) 3103 { 3104 IOCB_t * irsp; 3105 WORD5 * w5p; 3106 uint32_t Rctl, Type; 3107 struct lpfc_iocbq *iocbq; 3108 struct lpfc_dmabuf *dmzbuf; 3109 3110 irsp = &(saveq->iocb); 3111 3112 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3113 if (pring->lpfc_sli_rcv_async_status) 3114 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3115 else 3116 lpfc_printf_log(phba, 3117 KERN_WARNING, 3118 LOG_SLI, 3119 "0316 Ring %d handler: unexpected " 3120 "ASYNC_STATUS iocb received evt_code " 3121 "0x%x\n", 3122 pring->ringno, 3123 irsp->un.asyncstat.evt_code); 3124 return 1; 3125 } 3126 3127 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3128 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3129 if (irsp->ulpBdeCount > 0) { 3130 dmzbuf = lpfc_sli_get_buff(phba, pring, 3131 irsp->un.ulpWord[3]); 3132 lpfc_in_buf_free(phba, dmzbuf); 3133 } 3134 3135 if (irsp->ulpBdeCount > 1) { 3136 dmzbuf = lpfc_sli_get_buff(phba, pring, 3137 irsp->unsli3.sli3Words[3]); 3138 lpfc_in_buf_free(phba, dmzbuf); 3139 } 3140 3141 if (irsp->ulpBdeCount > 2) { 3142 dmzbuf = lpfc_sli_get_buff(phba, pring, 3143 irsp->unsli3.sli3Words[7]); 3144 lpfc_in_buf_free(phba, dmzbuf); 3145 } 3146 3147 return 1; 3148 } 3149 3150 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3151 if (irsp->ulpBdeCount != 0) { 3152 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3153 irsp->un.ulpWord[3]); 3154 if (!saveq->context2) 3155 lpfc_printf_log(phba, 3156 KERN_ERR, 3157 LOG_SLI, 3158 "0341 Ring %d Cannot find buffer for " 3159 "an unsolicited iocb. tag 0x%x\n", 3160 pring->ringno, 3161 irsp->un.ulpWord[3]); 3162 } 3163 if (irsp->ulpBdeCount == 2) { 3164 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3165 irsp->unsli3.sli3Words[7]); 3166 if (!saveq->context3) 3167 lpfc_printf_log(phba, 3168 KERN_ERR, 3169 LOG_SLI, 3170 "0342 Ring %d Cannot find buffer for an" 3171 " unsolicited iocb. tag 0x%x\n", 3172 pring->ringno, 3173 irsp->unsli3.sli3Words[7]); 3174 } 3175 list_for_each_entry(iocbq, &saveq->list, list) { 3176 irsp = &(iocbq->iocb); 3177 if (irsp->ulpBdeCount != 0) { 3178 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3179 irsp->un.ulpWord[3]); 3180 if (!iocbq->context2) 3181 lpfc_printf_log(phba, 3182 KERN_ERR, 3183 LOG_SLI, 3184 "0343 Ring %d Cannot find " 3185 "buffer for an unsolicited iocb" 3186 ". tag 0x%x\n", pring->ringno, 3187 irsp->un.ulpWord[3]); 3188 } 3189 if (irsp->ulpBdeCount == 2) { 3190 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3191 irsp->unsli3.sli3Words[7]); 3192 if (!iocbq->context3) 3193 lpfc_printf_log(phba, 3194 KERN_ERR, 3195 LOG_SLI, 3196 "0344 Ring %d Cannot find " 3197 "buffer for an unsolicited " 3198 "iocb. tag 0x%x\n", 3199 pring->ringno, 3200 irsp->unsli3.sli3Words[7]); 3201 } 3202 } 3203 } 3204 if (irsp->ulpBdeCount != 0 && 3205 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3206 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3207 int found = 0; 3208 3209 /* search continue save q for same XRI */ 3210 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3211 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3212 saveq->iocb.unsli3.rcvsli3.ox_id) { 3213 list_add_tail(&saveq->list, &iocbq->list); 3214 found = 1; 3215 break; 3216 } 3217 } 3218 if (!found) 3219 list_add_tail(&saveq->clist, 3220 &pring->iocb_continue_saveq); 3221 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3222 list_del_init(&iocbq->clist); 3223 saveq = iocbq; 3224 irsp = &(saveq->iocb); 3225 } else 3226 return 0; 3227 } 3228 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3229 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3230 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3231 Rctl = FC_RCTL_ELS_REQ; 3232 Type = FC_TYPE_ELS; 3233 } else { 3234 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3235 Rctl = w5p->hcsw.Rctl; 3236 Type = w5p->hcsw.Type; 3237 3238 /* Firmware Workaround */ 3239 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3240 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3241 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3242 Rctl = FC_RCTL_ELS_REQ; 3243 Type = FC_TYPE_ELS; 3244 w5p->hcsw.Rctl = Rctl; 3245 w5p->hcsw.Type = Type; 3246 } 3247 } 3248 3249 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3250 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3251 "0313 Ring %d handler: unexpected Rctl x%x " 3252 "Type x%x received\n", 3253 pring->ringno, Rctl, Type); 3254 3255 return 1; 3256 } 3257 3258 /** 3259 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3260 * @phba: Pointer to HBA context object. 3261 * @pring: Pointer to driver SLI ring object. 3262 * @prspiocb: Pointer to response iocb object. 3263 * 3264 * This function looks up the iocb_lookup table to get the command iocb 3265 * corresponding to the given response iocb using the iotag of the 3266 * response iocb. The driver calls this function with the hbalock held 3267 * for SLI3 ports or the ring lock held for SLI4 ports. 3268 * This function returns the command iocb object if it finds the command 3269 * iocb else returns NULL. 3270 **/ 3271 static struct lpfc_iocbq * 3272 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3273 struct lpfc_sli_ring *pring, 3274 struct lpfc_iocbq *prspiocb) 3275 { 3276 struct lpfc_iocbq *cmd_iocb = NULL; 3277 uint16_t iotag; 3278 spinlock_t *temp_lock = NULL; 3279 unsigned long iflag = 0; 3280 3281 if (phba->sli_rev == LPFC_SLI_REV4) 3282 temp_lock = &pring->ring_lock; 3283 else 3284 temp_lock = &phba->hbalock; 3285 3286 spin_lock_irqsave(temp_lock, iflag); 3287 iotag = prspiocb->iocb.ulpIoTag; 3288 3289 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3290 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3291 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3292 /* remove from txcmpl queue list */ 3293 list_del_init(&cmd_iocb->list); 3294 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3295 pring->txcmplq_cnt--; 3296 spin_unlock_irqrestore(temp_lock, iflag); 3297 return cmd_iocb; 3298 } 3299 } 3300 3301 spin_unlock_irqrestore(temp_lock, iflag); 3302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3303 "0317 iotag x%x is out of " 3304 "range: max iotag x%x wd0 x%x\n", 3305 iotag, phba->sli.last_iotag, 3306 *(((uint32_t *) &prspiocb->iocb) + 7)); 3307 return NULL; 3308 } 3309 3310 /** 3311 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3312 * @phba: Pointer to HBA context object. 3313 * @pring: Pointer to driver SLI ring object. 3314 * @iotag: IOCB tag. 3315 * 3316 * This function looks up the iocb_lookup table to get the command iocb 3317 * corresponding to the given iotag. The driver calls this function with 3318 * the ring lock held because this function is an SLI4 port only helper. 3319 * This function returns the command iocb object if it finds the command 3320 * iocb else returns NULL. 3321 **/ 3322 static struct lpfc_iocbq * 3323 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3324 struct lpfc_sli_ring *pring, uint16_t iotag) 3325 { 3326 struct lpfc_iocbq *cmd_iocb = NULL; 3327 spinlock_t *temp_lock = NULL; 3328 unsigned long iflag = 0; 3329 3330 if (phba->sli_rev == LPFC_SLI_REV4) 3331 temp_lock = &pring->ring_lock; 3332 else 3333 temp_lock = &phba->hbalock; 3334 3335 spin_lock_irqsave(temp_lock, iflag); 3336 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3337 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3338 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3339 /* remove from txcmpl queue list */ 3340 list_del_init(&cmd_iocb->list); 3341 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3342 pring->txcmplq_cnt--; 3343 spin_unlock_irqrestore(temp_lock, iflag); 3344 return cmd_iocb; 3345 } 3346 } 3347 3348 spin_unlock_irqrestore(temp_lock, iflag); 3349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3350 "0372 iotag x%x lookup error: max iotag (x%x) " 3351 "iocb_flag x%x\n", 3352 iotag, phba->sli.last_iotag, 3353 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3354 return NULL; 3355 } 3356 3357 /** 3358 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3359 * @phba: Pointer to HBA context object. 3360 * @pring: Pointer to driver SLI ring object. 3361 * @saveq: Pointer to the response iocb to be processed. 3362 * 3363 * This function is called by the ring event handler for non-fcp 3364 * rings when there is a new response iocb in the response ring. 3365 * The caller is not required to hold any locks. This function 3366 * gets the command iocb associated with the response iocb and 3367 * calls the completion handler for the command iocb. If there 3368 * is no completion handler, the function will free the resources 3369 * associated with command iocb. If the response iocb is for 3370 * an already aborted command iocb, the status of the completion 3371 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3372 * This function always returns 1. 3373 **/ 3374 static int 3375 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3376 struct lpfc_iocbq *saveq) 3377 { 3378 struct lpfc_iocbq *cmdiocbp; 3379 int rc = 1; 3380 unsigned long iflag; 3381 3382 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3383 if (cmdiocbp) { 3384 if (cmdiocbp->iocb_cmpl) { 3385 /* 3386 * If an ELS command failed send an event to mgmt 3387 * application. 3388 */ 3389 if (saveq->iocb.ulpStatus && 3390 (pring->ringno == LPFC_ELS_RING) && 3391 (cmdiocbp->iocb.ulpCommand == 3392 CMD_ELS_REQUEST64_CR)) 3393 lpfc_send_els_failure_event(phba, 3394 cmdiocbp, saveq); 3395 3396 /* 3397 * Post all ELS completions to the worker thread. 3398 * All other are passed to the completion callback. 3399 */ 3400 if (pring->ringno == LPFC_ELS_RING) { 3401 if ((phba->sli_rev < LPFC_SLI_REV4) && 3402 (cmdiocbp->iocb_flag & 3403 LPFC_DRIVER_ABORTED)) { 3404 spin_lock_irqsave(&phba->hbalock, 3405 iflag); 3406 cmdiocbp->iocb_flag &= 3407 ~LPFC_DRIVER_ABORTED; 3408 spin_unlock_irqrestore(&phba->hbalock, 3409 iflag); 3410 saveq->iocb.ulpStatus = 3411 IOSTAT_LOCAL_REJECT; 3412 saveq->iocb.un.ulpWord[4] = 3413 IOERR_SLI_ABORTED; 3414 3415 /* Firmware could still be in progress 3416 * of DMAing payload, so don't free data 3417 * buffer till after a hbeat. 3418 */ 3419 spin_lock_irqsave(&phba->hbalock, 3420 iflag); 3421 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3422 spin_unlock_irqrestore(&phba->hbalock, 3423 iflag); 3424 } 3425 if (phba->sli_rev == LPFC_SLI_REV4) { 3426 if (saveq->iocb_flag & 3427 LPFC_EXCHANGE_BUSY) { 3428 /* Set cmdiocb flag for the 3429 * exchange busy so sgl (xri) 3430 * will not be released until 3431 * the abort xri is received 3432 * from hba. 3433 */ 3434 spin_lock_irqsave( 3435 &phba->hbalock, iflag); 3436 cmdiocbp->iocb_flag |= 3437 LPFC_EXCHANGE_BUSY; 3438 spin_unlock_irqrestore( 3439 &phba->hbalock, iflag); 3440 } 3441 if (cmdiocbp->iocb_flag & 3442 LPFC_DRIVER_ABORTED) { 3443 /* 3444 * Clear LPFC_DRIVER_ABORTED 3445 * bit in case it was driver 3446 * initiated abort. 3447 */ 3448 spin_lock_irqsave( 3449 &phba->hbalock, iflag); 3450 cmdiocbp->iocb_flag &= 3451 ~LPFC_DRIVER_ABORTED; 3452 spin_unlock_irqrestore( 3453 &phba->hbalock, iflag); 3454 cmdiocbp->iocb.ulpStatus = 3455 IOSTAT_LOCAL_REJECT; 3456 cmdiocbp->iocb.un.ulpWord[4] = 3457 IOERR_ABORT_REQUESTED; 3458 /* 3459 * For SLI4, irsiocb contains 3460 * NO_XRI in sli_xritag, it 3461 * shall not affect releasing 3462 * sgl (xri) process. 3463 */ 3464 saveq->iocb.ulpStatus = 3465 IOSTAT_LOCAL_REJECT; 3466 saveq->iocb.un.ulpWord[4] = 3467 IOERR_SLI_ABORTED; 3468 spin_lock_irqsave( 3469 &phba->hbalock, iflag); 3470 saveq->iocb_flag |= 3471 LPFC_DELAY_MEM_FREE; 3472 spin_unlock_irqrestore( 3473 &phba->hbalock, iflag); 3474 } 3475 } 3476 } 3477 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3478 } else 3479 lpfc_sli_release_iocbq(phba, cmdiocbp); 3480 } else { 3481 /* 3482 * Unknown initiating command based on the response iotag. 3483 * This could be the case on the ELS ring because of 3484 * lpfc_els_abort(). 3485 */ 3486 if (pring->ringno != LPFC_ELS_RING) { 3487 /* 3488 * Ring <ringno> handler: unexpected completion IoTag 3489 * <IoTag> 3490 */ 3491 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3492 "0322 Ring %d handler: " 3493 "unexpected completion IoTag x%x " 3494 "Data: x%x x%x x%x x%x\n", 3495 pring->ringno, 3496 saveq->iocb.ulpIoTag, 3497 saveq->iocb.ulpStatus, 3498 saveq->iocb.un.ulpWord[4], 3499 saveq->iocb.ulpCommand, 3500 saveq->iocb.ulpContext); 3501 } 3502 } 3503 3504 return rc; 3505 } 3506 3507 /** 3508 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3509 * @phba: Pointer to HBA context object. 3510 * @pring: Pointer to driver SLI ring object. 3511 * 3512 * This function is called from the iocb ring event handlers when 3513 * put pointer is ahead of the get pointer for a ring. This function signal 3514 * an error attention condition to the worker thread and the worker 3515 * thread will transition the HBA to offline state. 3516 **/ 3517 static void 3518 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3519 { 3520 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3521 /* 3522 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3523 * rsp ring <portRspMax> 3524 */ 3525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3526 "0312 Ring %d handler: portRspPut %d " 3527 "is bigger than rsp ring %d\n", 3528 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3529 pring->sli.sli3.numRiocb); 3530 3531 phba->link_state = LPFC_HBA_ERROR; 3532 3533 /* 3534 * All error attention handlers are posted to 3535 * worker thread 3536 */ 3537 phba->work_ha |= HA_ERATT; 3538 phba->work_hs = HS_FFER3; 3539 3540 lpfc_worker_wake_up(phba); 3541 3542 return; 3543 } 3544 3545 /** 3546 * lpfc_poll_eratt - Error attention polling timer timeout handler 3547 * @t: Context to fetch pointer to address of HBA context object from. 3548 * 3549 * This function is invoked by the Error Attention polling timer when the 3550 * timer times out. It will check the SLI Error Attention register for 3551 * possible attention events. If so, it will post an Error Attention event 3552 * and wake up worker thread to process it. Otherwise, it will set up the 3553 * Error Attention polling timer for the next poll. 3554 **/ 3555 void lpfc_poll_eratt(struct timer_list *t) 3556 { 3557 struct lpfc_hba *phba; 3558 uint32_t eratt = 0; 3559 uint64_t sli_intr, cnt; 3560 3561 phba = from_timer(phba, t, eratt_poll); 3562 3563 /* Here we will also keep track of interrupts per sec of the hba */ 3564 sli_intr = phba->sli.slistat.sli_intr; 3565 3566 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3567 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3568 sli_intr); 3569 else 3570 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3571 3572 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3573 do_div(cnt, phba->eratt_poll_interval); 3574 phba->sli.slistat.sli_ips = cnt; 3575 3576 phba->sli.slistat.sli_prev_intr = sli_intr; 3577 3578 /* Check chip HA register for error event */ 3579 eratt = lpfc_sli_check_eratt(phba); 3580 3581 if (eratt) 3582 /* Tell the worker thread there is work to do */ 3583 lpfc_worker_wake_up(phba); 3584 else 3585 /* Restart the timer for next eratt poll */ 3586 mod_timer(&phba->eratt_poll, 3587 jiffies + 3588 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3589 return; 3590 } 3591 3592 3593 /** 3594 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3595 * @phba: Pointer to HBA context object. 3596 * @pring: Pointer to driver SLI ring object. 3597 * @mask: Host attention register mask for this ring. 3598 * 3599 * This function is called from the interrupt context when there is a ring 3600 * event for the fcp ring. The caller does not hold any lock. 3601 * The function processes each response iocb in the response ring until it 3602 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3603 * LE bit set. The function will call the completion handler of the command iocb 3604 * if the response iocb indicates a completion for a command iocb or it is 3605 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3606 * function if this is an unsolicited iocb. 3607 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3608 * to check it explicitly. 3609 */ 3610 int 3611 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3612 struct lpfc_sli_ring *pring, uint32_t mask) 3613 { 3614 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3615 IOCB_t *irsp = NULL; 3616 IOCB_t *entry = NULL; 3617 struct lpfc_iocbq *cmdiocbq = NULL; 3618 struct lpfc_iocbq rspiocbq; 3619 uint32_t status; 3620 uint32_t portRspPut, portRspMax; 3621 int rc = 1; 3622 lpfc_iocb_type type; 3623 unsigned long iflag; 3624 uint32_t rsp_cmpl = 0; 3625 3626 spin_lock_irqsave(&phba->hbalock, iflag); 3627 pring->stats.iocb_event++; 3628 3629 /* 3630 * The next available response entry should never exceed the maximum 3631 * entries. If it does, treat it as an adapter hardware error. 3632 */ 3633 portRspMax = pring->sli.sli3.numRiocb; 3634 portRspPut = le32_to_cpu(pgp->rspPutInx); 3635 if (unlikely(portRspPut >= portRspMax)) { 3636 lpfc_sli_rsp_pointers_error(phba, pring); 3637 spin_unlock_irqrestore(&phba->hbalock, iflag); 3638 return 1; 3639 } 3640 if (phba->fcp_ring_in_use) { 3641 spin_unlock_irqrestore(&phba->hbalock, iflag); 3642 return 1; 3643 } else 3644 phba->fcp_ring_in_use = 1; 3645 3646 rmb(); 3647 while (pring->sli.sli3.rspidx != portRspPut) { 3648 /* 3649 * Fetch an entry off the ring and copy it into a local data 3650 * structure. The copy involves a byte-swap since the 3651 * network byte order and pci byte orders are different. 3652 */ 3653 entry = lpfc_resp_iocb(phba, pring); 3654 phba->last_completion_time = jiffies; 3655 3656 if (++pring->sli.sli3.rspidx >= portRspMax) 3657 pring->sli.sli3.rspidx = 0; 3658 3659 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3660 (uint32_t *) &rspiocbq.iocb, 3661 phba->iocb_rsp_size); 3662 INIT_LIST_HEAD(&(rspiocbq.list)); 3663 irsp = &rspiocbq.iocb; 3664 3665 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3666 pring->stats.iocb_rsp++; 3667 rsp_cmpl++; 3668 3669 if (unlikely(irsp->ulpStatus)) { 3670 /* 3671 * If resource errors reported from HBA, reduce 3672 * queuedepths of the SCSI device. 3673 */ 3674 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3675 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3676 IOERR_NO_RESOURCES)) { 3677 spin_unlock_irqrestore(&phba->hbalock, iflag); 3678 phba->lpfc_rampdown_queue_depth(phba); 3679 spin_lock_irqsave(&phba->hbalock, iflag); 3680 } 3681 3682 /* Rsp ring <ringno> error: IOCB */ 3683 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3684 "0336 Rsp Ring %d error: IOCB Data: " 3685 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3686 pring->ringno, 3687 irsp->un.ulpWord[0], 3688 irsp->un.ulpWord[1], 3689 irsp->un.ulpWord[2], 3690 irsp->un.ulpWord[3], 3691 irsp->un.ulpWord[4], 3692 irsp->un.ulpWord[5], 3693 *(uint32_t *)&irsp->un1, 3694 *((uint32_t *)&irsp->un1 + 1)); 3695 } 3696 3697 switch (type) { 3698 case LPFC_ABORT_IOCB: 3699 case LPFC_SOL_IOCB: 3700 /* 3701 * Idle exchange closed via ABTS from port. No iocb 3702 * resources need to be recovered. 3703 */ 3704 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3705 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3706 "0333 IOCB cmd 0x%x" 3707 " processed. Skipping" 3708 " completion\n", 3709 irsp->ulpCommand); 3710 break; 3711 } 3712 3713 spin_unlock_irqrestore(&phba->hbalock, iflag); 3714 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3715 &rspiocbq); 3716 spin_lock_irqsave(&phba->hbalock, iflag); 3717 if (unlikely(!cmdiocbq)) 3718 break; 3719 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3720 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3721 if (cmdiocbq->iocb_cmpl) { 3722 spin_unlock_irqrestore(&phba->hbalock, iflag); 3723 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3724 &rspiocbq); 3725 spin_lock_irqsave(&phba->hbalock, iflag); 3726 } 3727 break; 3728 case LPFC_UNSOL_IOCB: 3729 spin_unlock_irqrestore(&phba->hbalock, iflag); 3730 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3731 spin_lock_irqsave(&phba->hbalock, iflag); 3732 break; 3733 default: 3734 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3735 char adaptermsg[LPFC_MAX_ADPTMSG]; 3736 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3737 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3738 MAX_MSG_DATA); 3739 dev_warn(&((phba->pcidev)->dev), 3740 "lpfc%d: %s\n", 3741 phba->brd_no, adaptermsg); 3742 } else { 3743 /* Unknown IOCB command */ 3744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3745 "0334 Unknown IOCB command " 3746 "Data: x%x, x%x x%x x%x x%x\n", 3747 type, irsp->ulpCommand, 3748 irsp->ulpStatus, 3749 irsp->ulpIoTag, 3750 irsp->ulpContext); 3751 } 3752 break; 3753 } 3754 3755 /* 3756 * The response IOCB has been processed. Update the ring 3757 * pointer in SLIM. If the port response put pointer has not 3758 * been updated, sync the pgp->rspPutInx and fetch the new port 3759 * response put pointer. 3760 */ 3761 writel(pring->sli.sli3.rspidx, 3762 &phba->host_gp[pring->ringno].rspGetInx); 3763 3764 if (pring->sli.sli3.rspidx == portRspPut) 3765 portRspPut = le32_to_cpu(pgp->rspPutInx); 3766 } 3767 3768 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3769 pring->stats.iocb_rsp_full++; 3770 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3771 writel(status, phba->CAregaddr); 3772 readl(phba->CAregaddr); 3773 } 3774 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3775 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3776 pring->stats.iocb_cmd_empty++; 3777 3778 /* Force update of the local copy of cmdGetInx */ 3779 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3780 lpfc_sli_resume_iocb(phba, pring); 3781 3782 if ((pring->lpfc_sli_cmd_available)) 3783 (pring->lpfc_sli_cmd_available) (phba, pring); 3784 3785 } 3786 3787 phba->fcp_ring_in_use = 0; 3788 spin_unlock_irqrestore(&phba->hbalock, iflag); 3789 return rc; 3790 } 3791 3792 /** 3793 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3794 * @phba: Pointer to HBA context object. 3795 * @pring: Pointer to driver SLI ring object. 3796 * @rspiocbp: Pointer to driver response IOCB object. 3797 * 3798 * This function is called from the worker thread when there is a slow-path 3799 * response IOCB to process. This function chains all the response iocbs until 3800 * seeing the iocb with the LE bit set. The function will call 3801 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3802 * completion of a command iocb. The function will call the 3803 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3804 * The function frees the resources or calls the completion handler if this 3805 * iocb is an abort completion. The function returns NULL when the response 3806 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3807 * this function shall chain the iocb on to the iocb_continueq and return the 3808 * response iocb passed in. 3809 **/ 3810 static struct lpfc_iocbq * 3811 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3812 struct lpfc_iocbq *rspiocbp) 3813 { 3814 struct lpfc_iocbq *saveq; 3815 struct lpfc_iocbq *cmdiocbp; 3816 struct lpfc_iocbq *next_iocb; 3817 IOCB_t *irsp = NULL; 3818 uint32_t free_saveq; 3819 uint8_t iocb_cmd_type; 3820 lpfc_iocb_type type; 3821 unsigned long iflag; 3822 int rc; 3823 3824 spin_lock_irqsave(&phba->hbalock, iflag); 3825 /* First add the response iocb to the countinueq list */ 3826 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3827 pring->iocb_continueq_cnt++; 3828 3829 /* Now, determine whether the list is completed for processing */ 3830 irsp = &rspiocbp->iocb; 3831 if (irsp->ulpLe) { 3832 /* 3833 * By default, the driver expects to free all resources 3834 * associated with this iocb completion. 3835 */ 3836 free_saveq = 1; 3837 saveq = list_get_first(&pring->iocb_continueq, 3838 struct lpfc_iocbq, list); 3839 irsp = &(saveq->iocb); 3840 list_del_init(&pring->iocb_continueq); 3841 pring->iocb_continueq_cnt = 0; 3842 3843 pring->stats.iocb_rsp++; 3844 3845 /* 3846 * If resource errors reported from HBA, reduce 3847 * queuedepths of the SCSI device. 3848 */ 3849 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3850 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3851 IOERR_NO_RESOURCES)) { 3852 spin_unlock_irqrestore(&phba->hbalock, iflag); 3853 phba->lpfc_rampdown_queue_depth(phba); 3854 spin_lock_irqsave(&phba->hbalock, iflag); 3855 } 3856 3857 if (irsp->ulpStatus) { 3858 /* Rsp ring <ringno> error: IOCB */ 3859 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3860 "0328 Rsp Ring %d error: " 3861 "IOCB Data: " 3862 "x%x x%x x%x x%x " 3863 "x%x x%x x%x x%x " 3864 "x%x x%x x%x x%x " 3865 "x%x x%x x%x x%x\n", 3866 pring->ringno, 3867 irsp->un.ulpWord[0], 3868 irsp->un.ulpWord[1], 3869 irsp->un.ulpWord[2], 3870 irsp->un.ulpWord[3], 3871 irsp->un.ulpWord[4], 3872 irsp->un.ulpWord[5], 3873 *(((uint32_t *) irsp) + 6), 3874 *(((uint32_t *) irsp) + 7), 3875 *(((uint32_t *) irsp) + 8), 3876 *(((uint32_t *) irsp) + 9), 3877 *(((uint32_t *) irsp) + 10), 3878 *(((uint32_t *) irsp) + 11), 3879 *(((uint32_t *) irsp) + 12), 3880 *(((uint32_t *) irsp) + 13), 3881 *(((uint32_t *) irsp) + 14), 3882 *(((uint32_t *) irsp) + 15)); 3883 } 3884 3885 /* 3886 * Fetch the IOCB command type and call the correct completion 3887 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3888 * get freed back to the lpfc_iocb_list by the discovery 3889 * kernel thread. 3890 */ 3891 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3892 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3893 switch (type) { 3894 case LPFC_SOL_IOCB: 3895 spin_unlock_irqrestore(&phba->hbalock, iflag); 3896 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3897 spin_lock_irqsave(&phba->hbalock, iflag); 3898 break; 3899 3900 case LPFC_UNSOL_IOCB: 3901 spin_unlock_irqrestore(&phba->hbalock, iflag); 3902 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3903 spin_lock_irqsave(&phba->hbalock, iflag); 3904 if (!rc) 3905 free_saveq = 0; 3906 break; 3907 3908 case LPFC_ABORT_IOCB: 3909 cmdiocbp = NULL; 3910 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3911 spin_unlock_irqrestore(&phba->hbalock, iflag); 3912 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3913 saveq); 3914 spin_lock_irqsave(&phba->hbalock, iflag); 3915 } 3916 if (cmdiocbp) { 3917 /* Call the specified completion routine */ 3918 if (cmdiocbp->iocb_cmpl) { 3919 spin_unlock_irqrestore(&phba->hbalock, 3920 iflag); 3921 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3922 saveq); 3923 spin_lock_irqsave(&phba->hbalock, 3924 iflag); 3925 } else 3926 __lpfc_sli_release_iocbq(phba, 3927 cmdiocbp); 3928 } 3929 break; 3930 3931 case LPFC_UNKNOWN_IOCB: 3932 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3933 char adaptermsg[LPFC_MAX_ADPTMSG]; 3934 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3935 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3936 MAX_MSG_DATA); 3937 dev_warn(&((phba->pcidev)->dev), 3938 "lpfc%d: %s\n", 3939 phba->brd_no, adaptermsg); 3940 } else { 3941 /* Unknown IOCB command */ 3942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3943 "0335 Unknown IOCB " 3944 "command Data: x%x " 3945 "x%x x%x x%x\n", 3946 irsp->ulpCommand, 3947 irsp->ulpStatus, 3948 irsp->ulpIoTag, 3949 irsp->ulpContext); 3950 } 3951 break; 3952 } 3953 3954 if (free_saveq) { 3955 list_for_each_entry_safe(rspiocbp, next_iocb, 3956 &saveq->list, list) { 3957 list_del_init(&rspiocbp->list); 3958 __lpfc_sli_release_iocbq(phba, rspiocbp); 3959 } 3960 __lpfc_sli_release_iocbq(phba, saveq); 3961 } 3962 rspiocbp = NULL; 3963 } 3964 spin_unlock_irqrestore(&phba->hbalock, iflag); 3965 return rspiocbp; 3966 } 3967 3968 /** 3969 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3970 * @phba: Pointer to HBA context object. 3971 * @pring: Pointer to driver SLI ring object. 3972 * @mask: Host attention register mask for this ring. 3973 * 3974 * This routine wraps the actual slow_ring event process routine from the 3975 * API jump table function pointer from the lpfc_hba struct. 3976 **/ 3977 void 3978 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3979 struct lpfc_sli_ring *pring, uint32_t mask) 3980 { 3981 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3982 } 3983 3984 /** 3985 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3986 * @phba: Pointer to HBA context object. 3987 * @pring: Pointer to driver SLI ring object. 3988 * @mask: Host attention register mask for this ring. 3989 * 3990 * This function is called from the worker thread when there is a ring event 3991 * for non-fcp rings. The caller does not hold any lock. The function will 3992 * remove each response iocb in the response ring and calls the handle 3993 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3994 **/ 3995 static void 3996 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3997 struct lpfc_sli_ring *pring, uint32_t mask) 3998 { 3999 struct lpfc_pgp *pgp; 4000 IOCB_t *entry; 4001 IOCB_t *irsp = NULL; 4002 struct lpfc_iocbq *rspiocbp = NULL; 4003 uint32_t portRspPut, portRspMax; 4004 unsigned long iflag; 4005 uint32_t status; 4006 4007 pgp = &phba->port_gp[pring->ringno]; 4008 spin_lock_irqsave(&phba->hbalock, iflag); 4009 pring->stats.iocb_event++; 4010 4011 /* 4012 * The next available response entry should never exceed the maximum 4013 * entries. If it does, treat it as an adapter hardware error. 4014 */ 4015 portRspMax = pring->sli.sli3.numRiocb; 4016 portRspPut = le32_to_cpu(pgp->rspPutInx); 4017 if (portRspPut >= portRspMax) { 4018 /* 4019 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4020 * rsp ring <portRspMax> 4021 */ 4022 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4023 "0303 Ring %d handler: portRspPut %d " 4024 "is bigger than rsp ring %d\n", 4025 pring->ringno, portRspPut, portRspMax); 4026 4027 phba->link_state = LPFC_HBA_ERROR; 4028 spin_unlock_irqrestore(&phba->hbalock, iflag); 4029 4030 phba->work_hs = HS_FFER3; 4031 lpfc_handle_eratt(phba); 4032 4033 return; 4034 } 4035 4036 rmb(); 4037 while (pring->sli.sli3.rspidx != portRspPut) { 4038 /* 4039 * Build a completion list and call the appropriate handler. 4040 * The process is to get the next available response iocb, get 4041 * a free iocb from the list, copy the response data into the 4042 * free iocb, insert to the continuation list, and update the 4043 * next response index to slim. This process makes response 4044 * iocb's in the ring available to DMA as fast as possible but 4045 * pays a penalty for a copy operation. Since the iocb is 4046 * only 32 bytes, this penalty is considered small relative to 4047 * the PCI reads for register values and a slim write. When 4048 * the ulpLe field is set, the entire Command has been 4049 * received. 4050 */ 4051 entry = lpfc_resp_iocb(phba, pring); 4052 4053 phba->last_completion_time = jiffies; 4054 rspiocbp = __lpfc_sli_get_iocbq(phba); 4055 if (rspiocbp == NULL) { 4056 printk(KERN_ERR "%s: out of buffers! Failing " 4057 "completion.\n", __func__); 4058 break; 4059 } 4060 4061 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4062 phba->iocb_rsp_size); 4063 irsp = &rspiocbp->iocb; 4064 4065 if (++pring->sli.sli3.rspidx >= portRspMax) 4066 pring->sli.sli3.rspidx = 0; 4067 4068 if (pring->ringno == LPFC_ELS_RING) { 4069 lpfc_debugfs_slow_ring_trc(phba, 4070 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4071 *(((uint32_t *) irsp) + 4), 4072 *(((uint32_t *) irsp) + 6), 4073 *(((uint32_t *) irsp) + 7)); 4074 } 4075 4076 writel(pring->sli.sli3.rspidx, 4077 &phba->host_gp[pring->ringno].rspGetInx); 4078 4079 spin_unlock_irqrestore(&phba->hbalock, iflag); 4080 /* Handle the response IOCB */ 4081 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4082 spin_lock_irqsave(&phba->hbalock, iflag); 4083 4084 /* 4085 * If the port response put pointer has not been updated, sync 4086 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4087 * response put pointer. 4088 */ 4089 if (pring->sli.sli3.rspidx == portRspPut) { 4090 portRspPut = le32_to_cpu(pgp->rspPutInx); 4091 } 4092 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4093 4094 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4095 /* At least one response entry has been freed */ 4096 pring->stats.iocb_rsp_full++; 4097 /* SET RxRE_RSP in Chip Att register */ 4098 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4099 writel(status, phba->CAregaddr); 4100 readl(phba->CAregaddr); /* flush */ 4101 } 4102 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4103 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4104 pring->stats.iocb_cmd_empty++; 4105 4106 /* Force update of the local copy of cmdGetInx */ 4107 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4108 lpfc_sli_resume_iocb(phba, pring); 4109 4110 if ((pring->lpfc_sli_cmd_available)) 4111 (pring->lpfc_sli_cmd_available) (phba, pring); 4112 4113 } 4114 4115 spin_unlock_irqrestore(&phba->hbalock, iflag); 4116 return; 4117 } 4118 4119 /** 4120 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4121 * @phba: Pointer to HBA context object. 4122 * @pring: Pointer to driver SLI ring object. 4123 * @mask: Host attention register mask for this ring. 4124 * 4125 * This function is called from the worker thread when there is a pending 4126 * ELS response iocb on the driver internal slow-path response iocb worker 4127 * queue. The caller does not hold any lock. The function will remove each 4128 * response iocb from the response worker queue and calls the handle 4129 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4130 **/ 4131 static void 4132 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4133 struct lpfc_sli_ring *pring, uint32_t mask) 4134 { 4135 struct lpfc_iocbq *irspiocbq; 4136 struct hbq_dmabuf *dmabuf; 4137 struct lpfc_cq_event *cq_event; 4138 unsigned long iflag; 4139 int count = 0; 4140 4141 spin_lock_irqsave(&phba->hbalock, iflag); 4142 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4143 spin_unlock_irqrestore(&phba->hbalock, iflag); 4144 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4145 /* Get the response iocb from the head of work queue */ 4146 spin_lock_irqsave(&phba->hbalock, iflag); 4147 list_remove_head(&phba->sli4_hba.sp_queue_event, 4148 cq_event, struct lpfc_cq_event, list); 4149 spin_unlock_irqrestore(&phba->hbalock, iflag); 4150 4151 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4152 case CQE_CODE_COMPL_WQE: 4153 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4154 cq_event); 4155 /* Translate ELS WCQE to response IOCBQ */ 4156 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4157 irspiocbq); 4158 if (irspiocbq) 4159 lpfc_sli_sp_handle_rspiocb(phba, pring, 4160 irspiocbq); 4161 count++; 4162 break; 4163 case CQE_CODE_RECEIVE: 4164 case CQE_CODE_RECEIVE_V1: 4165 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4166 cq_event); 4167 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4168 count++; 4169 break; 4170 default: 4171 break; 4172 } 4173 4174 /* Limit the number of events to 64 to avoid soft lockups */ 4175 if (count == 64) 4176 break; 4177 } 4178 } 4179 4180 /** 4181 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4182 * @phba: Pointer to HBA context object. 4183 * @pring: Pointer to driver SLI ring object. 4184 * 4185 * This function aborts all iocbs in the given ring and frees all the iocb 4186 * objects in txq. This function issues an abort iocb for all the iocb commands 4187 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4188 * the return of this function. The caller is not required to hold any locks. 4189 **/ 4190 void 4191 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4192 { 4193 LIST_HEAD(completions); 4194 struct lpfc_iocbq *iocb, *next_iocb; 4195 4196 if (pring->ringno == LPFC_ELS_RING) { 4197 lpfc_fabric_abort_hba(phba); 4198 } 4199 4200 /* Error everything on txq and txcmplq 4201 * First do the txq. 4202 */ 4203 if (phba->sli_rev >= LPFC_SLI_REV4) { 4204 spin_lock_irq(&pring->ring_lock); 4205 list_splice_init(&pring->txq, &completions); 4206 pring->txq_cnt = 0; 4207 spin_unlock_irq(&pring->ring_lock); 4208 4209 spin_lock_irq(&phba->hbalock); 4210 /* Next issue ABTS for everything on the txcmplq */ 4211 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4212 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4213 spin_unlock_irq(&phba->hbalock); 4214 } else { 4215 spin_lock_irq(&phba->hbalock); 4216 list_splice_init(&pring->txq, &completions); 4217 pring->txq_cnt = 0; 4218 4219 /* Next issue ABTS for everything on the txcmplq */ 4220 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4221 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4222 spin_unlock_irq(&phba->hbalock); 4223 } 4224 4225 /* Cancel all the IOCBs from the completions list */ 4226 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4227 IOERR_SLI_ABORTED); 4228 } 4229 4230 /** 4231 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4232 * @phba: Pointer to HBA context object. 4233 * 4234 * This function aborts all iocbs in FCP rings and frees all the iocb 4235 * objects in txq. This function issues an abort iocb for all the iocb commands 4236 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4237 * the return of this function. The caller is not required to hold any locks. 4238 **/ 4239 void 4240 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4241 { 4242 struct lpfc_sli *psli = &phba->sli; 4243 struct lpfc_sli_ring *pring; 4244 uint32_t i; 4245 4246 /* Look on all the FCP Rings for the iotag */ 4247 if (phba->sli_rev >= LPFC_SLI_REV4) { 4248 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4249 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4250 lpfc_sli_abort_iocb_ring(phba, pring); 4251 } 4252 } else { 4253 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4254 lpfc_sli_abort_iocb_ring(phba, pring); 4255 } 4256 } 4257 4258 /** 4259 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4260 * @phba: Pointer to HBA context object. 4261 * 4262 * This function flushes all iocbs in the IO ring and frees all the iocb 4263 * objects in txq and txcmplq. This function will not issue abort iocbs 4264 * for all the iocb commands in txcmplq, they will just be returned with 4265 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4266 * slot has been permanently disabled. 4267 **/ 4268 void 4269 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4270 { 4271 LIST_HEAD(txq); 4272 LIST_HEAD(txcmplq); 4273 struct lpfc_sli *psli = &phba->sli; 4274 struct lpfc_sli_ring *pring; 4275 uint32_t i; 4276 struct lpfc_iocbq *piocb, *next_iocb; 4277 4278 spin_lock_irq(&phba->hbalock); 4279 if (phba->hba_flag & HBA_IOQ_FLUSH || 4280 !phba->sli4_hba.hdwq) { 4281 spin_unlock_irq(&phba->hbalock); 4282 return; 4283 } 4284 /* Indicate the I/O queues are flushed */ 4285 phba->hba_flag |= HBA_IOQ_FLUSH; 4286 spin_unlock_irq(&phba->hbalock); 4287 4288 /* Look on all the FCP Rings for the iotag */ 4289 if (phba->sli_rev >= LPFC_SLI_REV4) { 4290 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4291 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4292 4293 spin_lock_irq(&pring->ring_lock); 4294 /* Retrieve everything on txq */ 4295 list_splice_init(&pring->txq, &txq); 4296 list_for_each_entry_safe(piocb, next_iocb, 4297 &pring->txcmplq, list) 4298 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4299 /* Retrieve everything on the txcmplq */ 4300 list_splice_init(&pring->txcmplq, &txcmplq); 4301 pring->txq_cnt = 0; 4302 pring->txcmplq_cnt = 0; 4303 spin_unlock_irq(&pring->ring_lock); 4304 4305 /* Flush the txq */ 4306 lpfc_sli_cancel_iocbs(phba, &txq, 4307 IOSTAT_LOCAL_REJECT, 4308 IOERR_SLI_DOWN); 4309 /* Flush the txcmpq */ 4310 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4311 IOSTAT_LOCAL_REJECT, 4312 IOERR_SLI_DOWN); 4313 } 4314 } else { 4315 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4316 4317 spin_lock_irq(&phba->hbalock); 4318 /* Retrieve everything on txq */ 4319 list_splice_init(&pring->txq, &txq); 4320 list_for_each_entry_safe(piocb, next_iocb, 4321 &pring->txcmplq, list) 4322 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4323 /* Retrieve everything on the txcmplq */ 4324 list_splice_init(&pring->txcmplq, &txcmplq); 4325 pring->txq_cnt = 0; 4326 pring->txcmplq_cnt = 0; 4327 spin_unlock_irq(&phba->hbalock); 4328 4329 /* Flush the txq */ 4330 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4331 IOERR_SLI_DOWN); 4332 /* Flush the txcmpq */ 4333 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4334 IOERR_SLI_DOWN); 4335 } 4336 } 4337 4338 /** 4339 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4340 * @phba: Pointer to HBA context object. 4341 * @mask: Bit mask to be checked. 4342 * 4343 * This function reads the host status register and compares 4344 * with the provided bit mask to check if HBA completed 4345 * the restart. This function will wait in a loop for the 4346 * HBA to complete restart. If the HBA does not restart within 4347 * 15 iterations, the function will reset the HBA again. The 4348 * function returns 1 when HBA fail to restart otherwise returns 4349 * zero. 4350 **/ 4351 static int 4352 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4353 { 4354 uint32_t status; 4355 int i = 0; 4356 int retval = 0; 4357 4358 /* Read the HBA Host Status Register */ 4359 if (lpfc_readl(phba->HSregaddr, &status)) 4360 return 1; 4361 4362 /* 4363 * Check status register every 100ms for 5 retries, then every 4364 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4365 * every 2.5 sec for 4. 4366 * Break our of the loop if errors occurred during init. 4367 */ 4368 while (((status & mask) != mask) && 4369 !(status & HS_FFERM) && 4370 i++ < 20) { 4371 4372 if (i <= 5) 4373 msleep(10); 4374 else if (i <= 10) 4375 msleep(500); 4376 else 4377 msleep(2500); 4378 4379 if (i == 15) { 4380 /* Do post */ 4381 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4382 lpfc_sli_brdrestart(phba); 4383 } 4384 /* Read the HBA Host Status Register */ 4385 if (lpfc_readl(phba->HSregaddr, &status)) { 4386 retval = 1; 4387 break; 4388 } 4389 } 4390 4391 /* Check to see if any errors occurred during init */ 4392 if ((status & HS_FFERM) || (i >= 20)) { 4393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4394 "2751 Adapter failed to restart, " 4395 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4396 status, 4397 readl(phba->MBslimaddr + 0xa8), 4398 readl(phba->MBslimaddr + 0xac)); 4399 phba->link_state = LPFC_HBA_ERROR; 4400 retval = 1; 4401 } 4402 4403 return retval; 4404 } 4405 4406 /** 4407 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4408 * @phba: Pointer to HBA context object. 4409 * @mask: Bit mask to be checked. 4410 * 4411 * This function checks the host status register to check if HBA is 4412 * ready. This function will wait in a loop for the HBA to be ready 4413 * If the HBA is not ready , the function will will reset the HBA PCI 4414 * function again. The function returns 1 when HBA fail to be ready 4415 * otherwise returns zero. 4416 **/ 4417 static int 4418 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4419 { 4420 uint32_t status; 4421 int retval = 0; 4422 4423 /* Read the HBA Host Status Register */ 4424 status = lpfc_sli4_post_status_check(phba); 4425 4426 if (status) { 4427 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4428 lpfc_sli_brdrestart(phba); 4429 status = lpfc_sli4_post_status_check(phba); 4430 } 4431 4432 /* Check to see if any errors occurred during init */ 4433 if (status) { 4434 phba->link_state = LPFC_HBA_ERROR; 4435 retval = 1; 4436 } else 4437 phba->sli4_hba.intr_enable = 0; 4438 4439 return retval; 4440 } 4441 4442 /** 4443 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4444 * @phba: Pointer to HBA context object. 4445 * @mask: Bit mask to be checked. 4446 * 4447 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4448 * from the API jump table function pointer from the lpfc_hba struct. 4449 **/ 4450 int 4451 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4452 { 4453 return phba->lpfc_sli_brdready(phba, mask); 4454 } 4455 4456 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4457 4458 /** 4459 * lpfc_reset_barrier - Make HBA ready for HBA reset 4460 * @phba: Pointer to HBA context object. 4461 * 4462 * This function is called before resetting an HBA. This function is called 4463 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4464 **/ 4465 void lpfc_reset_barrier(struct lpfc_hba *phba) 4466 { 4467 uint32_t __iomem *resp_buf; 4468 uint32_t __iomem *mbox_buf; 4469 volatile uint32_t mbox; 4470 uint32_t hc_copy, ha_copy, resp_data; 4471 int i; 4472 uint8_t hdrtype; 4473 4474 lockdep_assert_held(&phba->hbalock); 4475 4476 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4477 if (hdrtype != 0x80 || 4478 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4479 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4480 return; 4481 4482 /* 4483 * Tell the other part of the chip to suspend temporarily all 4484 * its DMA activity. 4485 */ 4486 resp_buf = phba->MBslimaddr; 4487 4488 /* Disable the error attention */ 4489 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4490 return; 4491 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4492 readl(phba->HCregaddr); /* flush */ 4493 phba->link_flag |= LS_IGNORE_ERATT; 4494 4495 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4496 return; 4497 if (ha_copy & HA_ERATT) { 4498 /* Clear Chip error bit */ 4499 writel(HA_ERATT, phba->HAregaddr); 4500 phba->pport->stopped = 1; 4501 } 4502 4503 mbox = 0; 4504 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4505 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4506 4507 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4508 mbox_buf = phba->MBslimaddr; 4509 writel(mbox, mbox_buf); 4510 4511 for (i = 0; i < 50; i++) { 4512 if (lpfc_readl((resp_buf + 1), &resp_data)) 4513 return; 4514 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4515 mdelay(1); 4516 else 4517 break; 4518 } 4519 resp_data = 0; 4520 if (lpfc_readl((resp_buf + 1), &resp_data)) 4521 return; 4522 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4523 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4524 phba->pport->stopped) 4525 goto restore_hc; 4526 else 4527 goto clear_errat; 4528 } 4529 4530 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4531 resp_data = 0; 4532 for (i = 0; i < 500; i++) { 4533 if (lpfc_readl(resp_buf, &resp_data)) 4534 return; 4535 if (resp_data != mbox) 4536 mdelay(1); 4537 else 4538 break; 4539 } 4540 4541 clear_errat: 4542 4543 while (++i < 500) { 4544 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4545 return; 4546 if (!(ha_copy & HA_ERATT)) 4547 mdelay(1); 4548 else 4549 break; 4550 } 4551 4552 if (readl(phba->HAregaddr) & HA_ERATT) { 4553 writel(HA_ERATT, phba->HAregaddr); 4554 phba->pport->stopped = 1; 4555 } 4556 4557 restore_hc: 4558 phba->link_flag &= ~LS_IGNORE_ERATT; 4559 writel(hc_copy, phba->HCregaddr); 4560 readl(phba->HCregaddr); /* flush */ 4561 } 4562 4563 /** 4564 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4565 * @phba: Pointer to HBA context object. 4566 * 4567 * This function issues a kill_board mailbox command and waits for 4568 * the error attention interrupt. This function is called for stopping 4569 * the firmware processing. The caller is not required to hold any 4570 * locks. This function calls lpfc_hba_down_post function to free 4571 * any pending commands after the kill. The function will return 1 when it 4572 * fails to kill the board else will return 0. 4573 **/ 4574 int 4575 lpfc_sli_brdkill(struct lpfc_hba *phba) 4576 { 4577 struct lpfc_sli *psli; 4578 LPFC_MBOXQ_t *pmb; 4579 uint32_t status; 4580 uint32_t ha_copy; 4581 int retval; 4582 int i = 0; 4583 4584 psli = &phba->sli; 4585 4586 /* Kill HBA */ 4587 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4588 "0329 Kill HBA Data: x%x x%x\n", 4589 phba->pport->port_state, psli->sli_flag); 4590 4591 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4592 if (!pmb) 4593 return 1; 4594 4595 /* Disable the error attention */ 4596 spin_lock_irq(&phba->hbalock); 4597 if (lpfc_readl(phba->HCregaddr, &status)) { 4598 spin_unlock_irq(&phba->hbalock); 4599 mempool_free(pmb, phba->mbox_mem_pool); 4600 return 1; 4601 } 4602 status &= ~HC_ERINT_ENA; 4603 writel(status, phba->HCregaddr); 4604 readl(phba->HCregaddr); /* flush */ 4605 phba->link_flag |= LS_IGNORE_ERATT; 4606 spin_unlock_irq(&phba->hbalock); 4607 4608 lpfc_kill_board(phba, pmb); 4609 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4610 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4611 4612 if (retval != MBX_SUCCESS) { 4613 if (retval != MBX_BUSY) 4614 mempool_free(pmb, phba->mbox_mem_pool); 4615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4616 "2752 KILL_BOARD command failed retval %d\n", 4617 retval); 4618 spin_lock_irq(&phba->hbalock); 4619 phba->link_flag &= ~LS_IGNORE_ERATT; 4620 spin_unlock_irq(&phba->hbalock); 4621 return 1; 4622 } 4623 4624 spin_lock_irq(&phba->hbalock); 4625 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4626 spin_unlock_irq(&phba->hbalock); 4627 4628 mempool_free(pmb, phba->mbox_mem_pool); 4629 4630 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4631 * attention every 100ms for 3 seconds. If we don't get ERATT after 4632 * 3 seconds we still set HBA_ERROR state because the status of the 4633 * board is now undefined. 4634 */ 4635 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4636 return 1; 4637 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4638 mdelay(100); 4639 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4640 return 1; 4641 } 4642 4643 del_timer_sync(&psli->mbox_tmo); 4644 if (ha_copy & HA_ERATT) { 4645 writel(HA_ERATT, phba->HAregaddr); 4646 phba->pport->stopped = 1; 4647 } 4648 spin_lock_irq(&phba->hbalock); 4649 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4650 psli->mbox_active = NULL; 4651 phba->link_flag &= ~LS_IGNORE_ERATT; 4652 spin_unlock_irq(&phba->hbalock); 4653 4654 lpfc_hba_down_post(phba); 4655 phba->link_state = LPFC_HBA_ERROR; 4656 4657 return ha_copy & HA_ERATT ? 0 : 1; 4658 } 4659 4660 /** 4661 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4662 * @phba: Pointer to HBA context object. 4663 * 4664 * This function resets the HBA by writing HC_INITFF to the control 4665 * register. After the HBA resets, this function resets all the iocb ring 4666 * indices. This function disables PCI layer parity checking during 4667 * the reset. 4668 * This function returns 0 always. 4669 * The caller is not required to hold any locks. 4670 **/ 4671 int 4672 lpfc_sli_brdreset(struct lpfc_hba *phba) 4673 { 4674 struct lpfc_sli *psli; 4675 struct lpfc_sli_ring *pring; 4676 uint16_t cfg_value; 4677 int i; 4678 4679 psli = &phba->sli; 4680 4681 /* Reset HBA */ 4682 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4683 "0325 Reset HBA Data: x%x x%x\n", 4684 (phba->pport) ? phba->pport->port_state : 0, 4685 psli->sli_flag); 4686 4687 /* perform board reset */ 4688 phba->fc_eventTag = 0; 4689 phba->link_events = 0; 4690 if (phba->pport) { 4691 phba->pport->fc_myDID = 0; 4692 phba->pport->fc_prevDID = 0; 4693 } 4694 4695 /* Turn off parity checking and serr during the physical reset */ 4696 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4697 return -EIO; 4698 4699 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4700 (cfg_value & 4701 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4702 4703 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4704 4705 /* Now toggle INITFF bit in the Host Control Register */ 4706 writel(HC_INITFF, phba->HCregaddr); 4707 mdelay(1); 4708 readl(phba->HCregaddr); /* flush */ 4709 writel(0, phba->HCregaddr); 4710 readl(phba->HCregaddr); /* flush */ 4711 4712 /* Restore PCI cmd register */ 4713 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4714 4715 /* Initialize relevant SLI info */ 4716 for (i = 0; i < psli->num_rings; i++) { 4717 pring = &psli->sli3_ring[i]; 4718 pring->flag = 0; 4719 pring->sli.sli3.rspidx = 0; 4720 pring->sli.sli3.next_cmdidx = 0; 4721 pring->sli.sli3.local_getidx = 0; 4722 pring->sli.sli3.cmdidx = 0; 4723 pring->missbufcnt = 0; 4724 } 4725 4726 phba->link_state = LPFC_WARM_START; 4727 return 0; 4728 } 4729 4730 /** 4731 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4732 * @phba: Pointer to HBA context object. 4733 * 4734 * This function resets a SLI4 HBA. This function disables PCI layer parity 4735 * checking during resets the device. The caller is not required to hold 4736 * any locks. 4737 * 4738 * This function returns 0 on success else returns negative error code. 4739 **/ 4740 int 4741 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4742 { 4743 struct lpfc_sli *psli = &phba->sli; 4744 uint16_t cfg_value; 4745 int rc = 0; 4746 4747 /* Reset HBA */ 4748 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4749 "0295 Reset HBA Data: x%x x%x x%x\n", 4750 phba->pport->port_state, psli->sli_flag, 4751 phba->hba_flag); 4752 4753 /* perform board reset */ 4754 phba->fc_eventTag = 0; 4755 phba->link_events = 0; 4756 phba->pport->fc_myDID = 0; 4757 phba->pport->fc_prevDID = 0; 4758 4759 spin_lock_irq(&phba->hbalock); 4760 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4761 phba->fcf.fcf_flag = 0; 4762 spin_unlock_irq(&phba->hbalock); 4763 4764 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4765 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4766 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4767 return rc; 4768 } 4769 4770 /* Now physically reset the device */ 4771 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4772 "0389 Performing PCI function reset!\n"); 4773 4774 /* Turn off parity checking and serr during the physical reset */ 4775 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4776 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4777 "3205 PCI read Config failed\n"); 4778 return -EIO; 4779 } 4780 4781 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4782 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4783 4784 /* Perform FCoE PCI function reset before freeing queue memory */ 4785 rc = lpfc_pci_function_reset(phba); 4786 4787 /* Restore PCI cmd register */ 4788 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4789 4790 return rc; 4791 } 4792 4793 /** 4794 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4795 * @phba: Pointer to HBA context object. 4796 * 4797 * This function is called in the SLI initialization code path to 4798 * restart the HBA. The caller is not required to hold any lock. 4799 * This function writes MBX_RESTART mailbox command to the SLIM and 4800 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4801 * function to free any pending commands. The function enables 4802 * POST only during the first initialization. The function returns zero. 4803 * The function does not guarantee completion of MBX_RESTART mailbox 4804 * command before the return of this function. 4805 **/ 4806 static int 4807 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4808 { 4809 MAILBOX_t *mb; 4810 struct lpfc_sli *psli; 4811 volatile uint32_t word0; 4812 void __iomem *to_slim; 4813 uint32_t hba_aer_enabled; 4814 4815 spin_lock_irq(&phba->hbalock); 4816 4817 /* Take PCIe device Advanced Error Reporting (AER) state */ 4818 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4819 4820 psli = &phba->sli; 4821 4822 /* Restart HBA */ 4823 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4824 "0337 Restart HBA Data: x%x x%x\n", 4825 (phba->pport) ? phba->pport->port_state : 0, 4826 psli->sli_flag); 4827 4828 word0 = 0; 4829 mb = (MAILBOX_t *) &word0; 4830 mb->mbxCommand = MBX_RESTART; 4831 mb->mbxHc = 1; 4832 4833 lpfc_reset_barrier(phba); 4834 4835 to_slim = phba->MBslimaddr; 4836 writel(*(uint32_t *) mb, to_slim); 4837 readl(to_slim); /* flush */ 4838 4839 /* Only skip post after fc_ffinit is completed */ 4840 if (phba->pport && phba->pport->port_state) 4841 word0 = 1; /* This is really setting up word1 */ 4842 else 4843 word0 = 0; /* This is really setting up word1 */ 4844 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4845 writel(*(uint32_t *) mb, to_slim); 4846 readl(to_slim); /* flush */ 4847 4848 lpfc_sli_brdreset(phba); 4849 if (phba->pport) 4850 phba->pport->stopped = 0; 4851 phba->link_state = LPFC_INIT_START; 4852 phba->hba_flag = 0; 4853 spin_unlock_irq(&phba->hbalock); 4854 4855 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4856 psli->stats_start = ktime_get_seconds(); 4857 4858 /* Give the INITFF and Post time to settle. */ 4859 mdelay(100); 4860 4861 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4862 if (hba_aer_enabled) 4863 pci_disable_pcie_error_reporting(phba->pcidev); 4864 4865 lpfc_hba_down_post(phba); 4866 4867 return 0; 4868 } 4869 4870 /** 4871 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4872 * @phba: Pointer to HBA context object. 4873 * 4874 * This function is called in the SLI initialization code path to restart 4875 * a SLI4 HBA. The caller is not required to hold any lock. 4876 * At the end of the function, it calls lpfc_hba_down_post function to 4877 * free any pending commands. 4878 **/ 4879 static int 4880 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4881 { 4882 struct lpfc_sli *psli = &phba->sli; 4883 uint32_t hba_aer_enabled; 4884 int rc; 4885 4886 /* Restart HBA */ 4887 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4888 "0296 Restart HBA Data: x%x x%x\n", 4889 phba->pport->port_state, psli->sli_flag); 4890 4891 /* Take PCIe device Advanced Error Reporting (AER) state */ 4892 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4893 4894 rc = lpfc_sli4_brdreset(phba); 4895 if (rc) { 4896 phba->link_state = LPFC_HBA_ERROR; 4897 goto hba_down_queue; 4898 } 4899 4900 spin_lock_irq(&phba->hbalock); 4901 phba->pport->stopped = 0; 4902 phba->link_state = LPFC_INIT_START; 4903 phba->hba_flag = 0; 4904 spin_unlock_irq(&phba->hbalock); 4905 4906 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4907 psli->stats_start = ktime_get_seconds(); 4908 4909 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4910 if (hba_aer_enabled) 4911 pci_disable_pcie_error_reporting(phba->pcidev); 4912 4913 hba_down_queue: 4914 lpfc_hba_down_post(phba); 4915 lpfc_sli4_queue_destroy(phba); 4916 4917 return rc; 4918 } 4919 4920 /** 4921 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4922 * @phba: Pointer to HBA context object. 4923 * 4924 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4925 * API jump table function pointer from the lpfc_hba struct. 4926 **/ 4927 int 4928 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4929 { 4930 return phba->lpfc_sli_brdrestart(phba); 4931 } 4932 4933 /** 4934 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4935 * @phba: Pointer to HBA context object. 4936 * 4937 * This function is called after a HBA restart to wait for successful 4938 * restart of the HBA. Successful restart of the HBA is indicated by 4939 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4940 * iteration, the function will restart the HBA again. The function returns 4941 * zero if HBA successfully restarted else returns negative error code. 4942 **/ 4943 int 4944 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4945 { 4946 uint32_t status, i = 0; 4947 4948 /* Read the HBA Host Status Register */ 4949 if (lpfc_readl(phba->HSregaddr, &status)) 4950 return -EIO; 4951 4952 /* Check status register to see what current state is */ 4953 i = 0; 4954 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4955 4956 /* Check every 10ms for 10 retries, then every 100ms for 90 4957 * retries, then every 1 sec for 50 retires for a total of 4958 * ~60 seconds before reset the board again and check every 4959 * 1 sec for 50 retries. The up to 60 seconds before the 4960 * board ready is required by the Falcon FIPS zeroization 4961 * complete, and any reset the board in between shall cause 4962 * restart of zeroization, further delay the board ready. 4963 */ 4964 if (i++ >= 200) { 4965 /* Adapter failed to init, timeout, status reg 4966 <status> */ 4967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4968 "0436 Adapter failed to init, " 4969 "timeout, status reg x%x, " 4970 "FW Data: A8 x%x AC x%x\n", status, 4971 readl(phba->MBslimaddr + 0xa8), 4972 readl(phba->MBslimaddr + 0xac)); 4973 phba->link_state = LPFC_HBA_ERROR; 4974 return -ETIMEDOUT; 4975 } 4976 4977 /* Check to see if any errors occurred during init */ 4978 if (status & HS_FFERM) { 4979 /* ERROR: During chipset initialization */ 4980 /* Adapter failed to init, chipset, status reg 4981 <status> */ 4982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4983 "0437 Adapter failed to init, " 4984 "chipset, status reg x%x, " 4985 "FW Data: A8 x%x AC x%x\n", status, 4986 readl(phba->MBslimaddr + 0xa8), 4987 readl(phba->MBslimaddr + 0xac)); 4988 phba->link_state = LPFC_HBA_ERROR; 4989 return -EIO; 4990 } 4991 4992 if (i <= 10) 4993 msleep(10); 4994 else if (i <= 100) 4995 msleep(100); 4996 else 4997 msleep(1000); 4998 4999 if (i == 150) { 5000 /* Do post */ 5001 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5002 lpfc_sli_brdrestart(phba); 5003 } 5004 /* Read the HBA Host Status Register */ 5005 if (lpfc_readl(phba->HSregaddr, &status)) 5006 return -EIO; 5007 } 5008 5009 /* Check to see if any errors occurred during init */ 5010 if (status & HS_FFERM) { 5011 /* ERROR: During chipset initialization */ 5012 /* Adapter failed to init, chipset, status reg <status> */ 5013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5014 "0438 Adapter failed to init, chipset, " 5015 "status reg x%x, " 5016 "FW Data: A8 x%x AC x%x\n", status, 5017 readl(phba->MBslimaddr + 0xa8), 5018 readl(phba->MBslimaddr + 0xac)); 5019 phba->link_state = LPFC_HBA_ERROR; 5020 return -EIO; 5021 } 5022 5023 /* Clear all interrupt enable conditions */ 5024 writel(0, phba->HCregaddr); 5025 readl(phba->HCregaddr); /* flush */ 5026 5027 /* setup host attn register */ 5028 writel(0xffffffff, phba->HAregaddr); 5029 readl(phba->HAregaddr); /* flush */ 5030 return 0; 5031 } 5032 5033 /** 5034 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5035 * 5036 * This function calculates and returns the number of HBQs required to be 5037 * configured. 5038 **/ 5039 int 5040 lpfc_sli_hbq_count(void) 5041 { 5042 return ARRAY_SIZE(lpfc_hbq_defs); 5043 } 5044 5045 /** 5046 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5047 * 5048 * This function adds the number of hbq entries in every HBQ to get 5049 * the total number of hbq entries required for the HBA and returns 5050 * the total count. 5051 **/ 5052 static int 5053 lpfc_sli_hbq_entry_count(void) 5054 { 5055 int hbq_count = lpfc_sli_hbq_count(); 5056 int count = 0; 5057 int i; 5058 5059 for (i = 0; i < hbq_count; ++i) 5060 count += lpfc_hbq_defs[i]->entry_count; 5061 return count; 5062 } 5063 5064 /** 5065 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5066 * 5067 * This function calculates amount of memory required for all hbq entries 5068 * to be configured and returns the total memory required. 5069 **/ 5070 int 5071 lpfc_sli_hbq_size(void) 5072 { 5073 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5074 } 5075 5076 /** 5077 * lpfc_sli_hbq_setup - configure and initialize HBQs 5078 * @phba: Pointer to HBA context object. 5079 * 5080 * This function is called during the SLI initialization to configure 5081 * all the HBQs and post buffers to the HBQ. The caller is not 5082 * required to hold any locks. This function will return zero if successful 5083 * else it will return negative error code. 5084 **/ 5085 static int 5086 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5087 { 5088 int hbq_count = lpfc_sli_hbq_count(); 5089 LPFC_MBOXQ_t *pmb; 5090 MAILBOX_t *pmbox; 5091 uint32_t hbqno; 5092 uint32_t hbq_entry_index; 5093 5094 /* Get a Mailbox buffer to setup mailbox 5095 * commands for HBA initialization 5096 */ 5097 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5098 5099 if (!pmb) 5100 return -ENOMEM; 5101 5102 pmbox = &pmb->u.mb; 5103 5104 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5105 phba->link_state = LPFC_INIT_MBX_CMDS; 5106 phba->hbq_in_use = 1; 5107 5108 hbq_entry_index = 0; 5109 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5110 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5111 phba->hbqs[hbqno].hbqPutIdx = 0; 5112 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5113 phba->hbqs[hbqno].entry_count = 5114 lpfc_hbq_defs[hbqno]->entry_count; 5115 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5116 hbq_entry_index, pmb); 5117 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5118 5119 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5120 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5121 mbxStatus <status>, ring <num> */ 5122 5123 lpfc_printf_log(phba, KERN_ERR, 5124 LOG_SLI | LOG_VPORT, 5125 "1805 Adapter failed to init. " 5126 "Data: x%x x%x x%x\n", 5127 pmbox->mbxCommand, 5128 pmbox->mbxStatus, hbqno); 5129 5130 phba->link_state = LPFC_HBA_ERROR; 5131 mempool_free(pmb, phba->mbox_mem_pool); 5132 return -ENXIO; 5133 } 5134 } 5135 phba->hbq_count = hbq_count; 5136 5137 mempool_free(pmb, phba->mbox_mem_pool); 5138 5139 /* Initially populate or replenish the HBQs */ 5140 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5141 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5142 return 0; 5143 } 5144 5145 /** 5146 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5147 * @phba: Pointer to HBA context object. 5148 * 5149 * This function is called during the SLI initialization to configure 5150 * all the HBQs and post buffers to the HBQ. The caller is not 5151 * required to hold any locks. This function will return zero if successful 5152 * else it will return negative error code. 5153 **/ 5154 static int 5155 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5156 { 5157 phba->hbq_in_use = 1; 5158 /** 5159 * Specific case when the MDS diagnostics is enabled and supported. 5160 * The receive buffer count is truncated to manage the incoming 5161 * traffic. 5162 **/ 5163 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5164 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5165 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5166 else 5167 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5168 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5169 phba->hbq_count = 1; 5170 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5171 /* Initially populate or replenish the HBQs */ 5172 return 0; 5173 } 5174 5175 /** 5176 * lpfc_sli_config_port - Issue config port mailbox command 5177 * @phba: Pointer to HBA context object. 5178 * @sli_mode: sli mode - 2/3 5179 * 5180 * This function is called by the sli initialization code path 5181 * to issue config_port mailbox command. This function restarts the 5182 * HBA firmware and issues a config_port mailbox command to configure 5183 * the SLI interface in the sli mode specified by sli_mode 5184 * variable. The caller is not required to hold any locks. 5185 * The function returns 0 if successful, else returns negative error 5186 * code. 5187 **/ 5188 int 5189 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5190 { 5191 LPFC_MBOXQ_t *pmb; 5192 uint32_t resetcount = 0, rc = 0, done = 0; 5193 5194 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5195 if (!pmb) { 5196 phba->link_state = LPFC_HBA_ERROR; 5197 return -ENOMEM; 5198 } 5199 5200 phba->sli_rev = sli_mode; 5201 while (resetcount < 2 && !done) { 5202 spin_lock_irq(&phba->hbalock); 5203 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5204 spin_unlock_irq(&phba->hbalock); 5205 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5206 lpfc_sli_brdrestart(phba); 5207 rc = lpfc_sli_chipset_init(phba); 5208 if (rc) 5209 break; 5210 5211 spin_lock_irq(&phba->hbalock); 5212 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5213 spin_unlock_irq(&phba->hbalock); 5214 resetcount++; 5215 5216 /* Call pre CONFIG_PORT mailbox command initialization. A 5217 * value of 0 means the call was successful. Any other 5218 * nonzero value is a failure, but if ERESTART is returned, 5219 * the driver may reset the HBA and try again. 5220 */ 5221 rc = lpfc_config_port_prep(phba); 5222 if (rc == -ERESTART) { 5223 phba->link_state = LPFC_LINK_UNKNOWN; 5224 continue; 5225 } else if (rc) 5226 break; 5227 5228 phba->link_state = LPFC_INIT_MBX_CMDS; 5229 lpfc_config_port(phba, pmb); 5230 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5231 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5232 LPFC_SLI3_HBQ_ENABLED | 5233 LPFC_SLI3_CRP_ENABLED | 5234 LPFC_SLI3_DSS_ENABLED); 5235 if (rc != MBX_SUCCESS) { 5236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5237 "0442 Adapter failed to init, mbxCmd x%x " 5238 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5239 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5240 spin_lock_irq(&phba->hbalock); 5241 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5242 spin_unlock_irq(&phba->hbalock); 5243 rc = -ENXIO; 5244 } else { 5245 /* Allow asynchronous mailbox command to go through */ 5246 spin_lock_irq(&phba->hbalock); 5247 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5248 spin_unlock_irq(&phba->hbalock); 5249 done = 1; 5250 5251 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5252 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5253 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5254 "3110 Port did not grant ASABT\n"); 5255 } 5256 } 5257 if (!done) { 5258 rc = -EINVAL; 5259 goto do_prep_failed; 5260 } 5261 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5262 if (!pmb->u.mb.un.varCfgPort.cMA) { 5263 rc = -ENXIO; 5264 goto do_prep_failed; 5265 } 5266 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5267 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5268 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5269 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5270 phba->max_vpi : phba->max_vports; 5271 5272 } else 5273 phba->max_vpi = 0; 5274 if (pmb->u.mb.un.varCfgPort.gerbm) 5275 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5276 if (pmb->u.mb.un.varCfgPort.gcrp) 5277 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5278 5279 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5280 phba->port_gp = phba->mbox->us.s3_pgp.port; 5281 5282 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5283 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5284 phba->cfg_enable_bg = 0; 5285 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5287 "0443 Adapter did not grant " 5288 "BlockGuard\n"); 5289 } 5290 } 5291 } else { 5292 phba->hbq_get = NULL; 5293 phba->port_gp = phba->mbox->us.s2.port; 5294 phba->max_vpi = 0; 5295 } 5296 do_prep_failed: 5297 mempool_free(pmb, phba->mbox_mem_pool); 5298 return rc; 5299 } 5300 5301 5302 /** 5303 * lpfc_sli_hba_setup - SLI initialization function 5304 * @phba: Pointer to HBA context object. 5305 * 5306 * This function is the main SLI initialization function. This function 5307 * is called by the HBA initialization code, HBA reset code and HBA 5308 * error attention handler code. Caller is not required to hold any 5309 * locks. This function issues config_port mailbox command to configure 5310 * the SLI, setup iocb rings and HBQ rings. In the end the function 5311 * calls the config_port_post function to issue init_link mailbox 5312 * command and to start the discovery. The function will return zero 5313 * if successful, else it will return negative error code. 5314 **/ 5315 int 5316 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5317 { 5318 uint32_t rc; 5319 int mode = 3, i; 5320 int longs; 5321 5322 switch (phba->cfg_sli_mode) { 5323 case 2: 5324 if (phba->cfg_enable_npiv) { 5325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5326 "1824 NPIV enabled: Override sli_mode " 5327 "parameter (%d) to auto (0).\n", 5328 phba->cfg_sli_mode); 5329 break; 5330 } 5331 mode = 2; 5332 break; 5333 case 0: 5334 case 3: 5335 break; 5336 default: 5337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5338 "1819 Unrecognized sli_mode parameter: %d.\n", 5339 phba->cfg_sli_mode); 5340 5341 break; 5342 } 5343 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5344 5345 rc = lpfc_sli_config_port(phba, mode); 5346 5347 if (rc && phba->cfg_sli_mode == 3) 5348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5349 "1820 Unable to select SLI-3. " 5350 "Not supported by adapter.\n"); 5351 if (rc && mode != 2) 5352 rc = lpfc_sli_config_port(phba, 2); 5353 else if (rc && mode == 2) 5354 rc = lpfc_sli_config_port(phba, 3); 5355 if (rc) 5356 goto lpfc_sli_hba_setup_error; 5357 5358 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5359 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5360 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5361 if (!rc) { 5362 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5363 "2709 This device supports " 5364 "Advanced Error Reporting (AER)\n"); 5365 spin_lock_irq(&phba->hbalock); 5366 phba->hba_flag |= HBA_AER_ENABLED; 5367 spin_unlock_irq(&phba->hbalock); 5368 } else { 5369 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5370 "2708 This device does not support " 5371 "Advanced Error Reporting (AER): %d\n", 5372 rc); 5373 phba->cfg_aer_support = 0; 5374 } 5375 } 5376 5377 if (phba->sli_rev == 3) { 5378 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5379 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5380 } else { 5381 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5382 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5383 phba->sli3_options = 0; 5384 } 5385 5386 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5387 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5388 phba->sli_rev, phba->max_vpi); 5389 rc = lpfc_sli_ring_map(phba); 5390 5391 if (rc) 5392 goto lpfc_sli_hba_setup_error; 5393 5394 /* Initialize VPIs. */ 5395 if (phba->sli_rev == LPFC_SLI_REV3) { 5396 /* 5397 * The VPI bitmask and physical ID array are allocated 5398 * and initialized once only - at driver load. A port 5399 * reset doesn't need to reinitialize this memory. 5400 */ 5401 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5402 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5403 phba->vpi_bmask = kcalloc(longs, 5404 sizeof(unsigned long), 5405 GFP_KERNEL); 5406 if (!phba->vpi_bmask) { 5407 rc = -ENOMEM; 5408 goto lpfc_sli_hba_setup_error; 5409 } 5410 5411 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5412 sizeof(uint16_t), 5413 GFP_KERNEL); 5414 if (!phba->vpi_ids) { 5415 kfree(phba->vpi_bmask); 5416 rc = -ENOMEM; 5417 goto lpfc_sli_hba_setup_error; 5418 } 5419 for (i = 0; i < phba->max_vpi; i++) 5420 phba->vpi_ids[i] = i; 5421 } 5422 } 5423 5424 /* Init HBQs */ 5425 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5426 rc = lpfc_sli_hbq_setup(phba); 5427 if (rc) 5428 goto lpfc_sli_hba_setup_error; 5429 } 5430 spin_lock_irq(&phba->hbalock); 5431 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5432 spin_unlock_irq(&phba->hbalock); 5433 5434 rc = lpfc_config_port_post(phba); 5435 if (rc) 5436 goto lpfc_sli_hba_setup_error; 5437 5438 return rc; 5439 5440 lpfc_sli_hba_setup_error: 5441 phba->link_state = LPFC_HBA_ERROR; 5442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5443 "0445 Firmware initialization failed\n"); 5444 return rc; 5445 } 5446 5447 /** 5448 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5449 * @phba: Pointer to HBA context object. 5450 * 5451 * This function issue a dump mailbox command to read config region 5452 * 23 and parse the records in the region and populate driver 5453 * data structure. 5454 **/ 5455 static int 5456 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5457 { 5458 LPFC_MBOXQ_t *mboxq; 5459 struct lpfc_dmabuf *mp; 5460 struct lpfc_mqe *mqe; 5461 uint32_t data_length; 5462 int rc; 5463 5464 /* Program the default value of vlan_id and fc_map */ 5465 phba->valid_vlan = 0; 5466 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5467 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5468 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5469 5470 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5471 if (!mboxq) 5472 return -ENOMEM; 5473 5474 mqe = &mboxq->u.mqe; 5475 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5476 rc = -ENOMEM; 5477 goto out_free_mboxq; 5478 } 5479 5480 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5481 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5482 5483 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5484 "(%d):2571 Mailbox cmd x%x Status x%x " 5485 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5486 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5487 "CQ: x%x x%x x%x x%x\n", 5488 mboxq->vport ? mboxq->vport->vpi : 0, 5489 bf_get(lpfc_mqe_command, mqe), 5490 bf_get(lpfc_mqe_status, mqe), 5491 mqe->un.mb_words[0], mqe->un.mb_words[1], 5492 mqe->un.mb_words[2], mqe->un.mb_words[3], 5493 mqe->un.mb_words[4], mqe->un.mb_words[5], 5494 mqe->un.mb_words[6], mqe->un.mb_words[7], 5495 mqe->un.mb_words[8], mqe->un.mb_words[9], 5496 mqe->un.mb_words[10], mqe->un.mb_words[11], 5497 mqe->un.mb_words[12], mqe->un.mb_words[13], 5498 mqe->un.mb_words[14], mqe->un.mb_words[15], 5499 mqe->un.mb_words[16], mqe->un.mb_words[50], 5500 mboxq->mcqe.word0, 5501 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5502 mboxq->mcqe.trailer); 5503 5504 if (rc) { 5505 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5506 kfree(mp); 5507 rc = -EIO; 5508 goto out_free_mboxq; 5509 } 5510 data_length = mqe->un.mb_words[5]; 5511 if (data_length > DMP_RGN23_SIZE) { 5512 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5513 kfree(mp); 5514 rc = -EIO; 5515 goto out_free_mboxq; 5516 } 5517 5518 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5519 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5520 kfree(mp); 5521 rc = 0; 5522 5523 out_free_mboxq: 5524 mempool_free(mboxq, phba->mbox_mem_pool); 5525 return rc; 5526 } 5527 5528 /** 5529 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5530 * @phba: pointer to lpfc hba data structure. 5531 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5532 * @vpd: pointer to the memory to hold resulting port vpd data. 5533 * @vpd_size: On input, the number of bytes allocated to @vpd. 5534 * On output, the number of data bytes in @vpd. 5535 * 5536 * This routine executes a READ_REV SLI4 mailbox command. In 5537 * addition, this routine gets the port vpd data. 5538 * 5539 * Return codes 5540 * 0 - successful 5541 * -ENOMEM - could not allocated memory. 5542 **/ 5543 static int 5544 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5545 uint8_t *vpd, uint32_t *vpd_size) 5546 { 5547 int rc = 0; 5548 uint32_t dma_size; 5549 struct lpfc_dmabuf *dmabuf; 5550 struct lpfc_mqe *mqe; 5551 5552 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5553 if (!dmabuf) 5554 return -ENOMEM; 5555 5556 /* 5557 * Get a DMA buffer for the vpd data resulting from the READ_REV 5558 * mailbox command. 5559 */ 5560 dma_size = *vpd_size; 5561 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5562 &dmabuf->phys, GFP_KERNEL); 5563 if (!dmabuf->virt) { 5564 kfree(dmabuf); 5565 return -ENOMEM; 5566 } 5567 5568 /* 5569 * The SLI4 implementation of READ_REV conflicts at word1, 5570 * bits 31:16 and SLI4 adds vpd functionality not present 5571 * in SLI3. This code corrects the conflicts. 5572 */ 5573 lpfc_read_rev(phba, mboxq); 5574 mqe = &mboxq->u.mqe; 5575 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5576 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5577 mqe->un.read_rev.word1 &= 0x0000FFFF; 5578 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5579 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5580 5581 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5582 if (rc) { 5583 dma_free_coherent(&phba->pcidev->dev, dma_size, 5584 dmabuf->virt, dmabuf->phys); 5585 kfree(dmabuf); 5586 return -EIO; 5587 } 5588 5589 /* 5590 * The available vpd length cannot be bigger than the 5591 * DMA buffer passed to the port. Catch the less than 5592 * case and update the caller's size. 5593 */ 5594 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5595 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5596 5597 memcpy(vpd, dmabuf->virt, *vpd_size); 5598 5599 dma_free_coherent(&phba->pcidev->dev, dma_size, 5600 dmabuf->virt, dmabuf->phys); 5601 kfree(dmabuf); 5602 return 0; 5603 } 5604 5605 /** 5606 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5607 * @phba: pointer to lpfc hba data structure. 5608 * 5609 * This routine retrieves SLI4 device physical port name this PCI function 5610 * is attached to. 5611 * 5612 * Return codes 5613 * 0 - successful 5614 * otherwise - failed to retrieve controller attributes 5615 **/ 5616 static int 5617 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5618 { 5619 LPFC_MBOXQ_t *mboxq; 5620 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5621 struct lpfc_controller_attribute *cntl_attr; 5622 void *virtaddr = NULL; 5623 uint32_t alloclen, reqlen; 5624 uint32_t shdr_status, shdr_add_status; 5625 union lpfc_sli4_cfg_shdr *shdr; 5626 int rc; 5627 5628 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5629 if (!mboxq) 5630 return -ENOMEM; 5631 5632 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5633 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5634 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5635 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5636 LPFC_SLI4_MBX_NEMBED); 5637 5638 if (alloclen < reqlen) { 5639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5640 "3084 Allocated DMA memory size (%d) is " 5641 "less than the requested DMA memory size " 5642 "(%d)\n", alloclen, reqlen); 5643 rc = -ENOMEM; 5644 goto out_free_mboxq; 5645 } 5646 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5647 virtaddr = mboxq->sge_array->addr[0]; 5648 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5649 shdr = &mbx_cntl_attr->cfg_shdr; 5650 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5651 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5652 if (shdr_status || shdr_add_status || rc) { 5653 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5654 "3085 Mailbox x%x (x%x/x%x) failed, " 5655 "rc:x%x, status:x%x, add_status:x%x\n", 5656 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5657 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5658 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5659 rc, shdr_status, shdr_add_status); 5660 rc = -ENXIO; 5661 goto out_free_mboxq; 5662 } 5663 5664 cntl_attr = &mbx_cntl_attr->cntl_attr; 5665 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5666 phba->sli4_hba.lnk_info.lnk_tp = 5667 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5668 phba->sli4_hba.lnk_info.lnk_no = 5669 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5670 5671 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5672 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5673 sizeof(phba->BIOSVersion)); 5674 5675 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5676 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5677 phba->sli4_hba.lnk_info.lnk_tp, 5678 phba->sli4_hba.lnk_info.lnk_no, 5679 phba->BIOSVersion); 5680 out_free_mboxq: 5681 if (rc != MBX_TIMEOUT) { 5682 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5683 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5684 else 5685 mempool_free(mboxq, phba->mbox_mem_pool); 5686 } 5687 return rc; 5688 } 5689 5690 /** 5691 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5692 * @phba: pointer to lpfc hba data structure. 5693 * 5694 * This routine retrieves SLI4 device physical port name this PCI function 5695 * is attached to. 5696 * 5697 * Return codes 5698 * 0 - successful 5699 * otherwise - failed to retrieve physical port name 5700 **/ 5701 static int 5702 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5703 { 5704 LPFC_MBOXQ_t *mboxq; 5705 struct lpfc_mbx_get_port_name *get_port_name; 5706 uint32_t shdr_status, shdr_add_status; 5707 union lpfc_sli4_cfg_shdr *shdr; 5708 char cport_name = 0; 5709 int rc; 5710 5711 /* We assume nothing at this point */ 5712 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5713 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5714 5715 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5716 if (!mboxq) 5717 return -ENOMEM; 5718 /* obtain link type and link number via READ_CONFIG */ 5719 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5720 lpfc_sli4_read_config(phba); 5721 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5722 goto retrieve_ppname; 5723 5724 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5725 rc = lpfc_sli4_get_ctl_attr(phba); 5726 if (rc) 5727 goto out_free_mboxq; 5728 5729 retrieve_ppname: 5730 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5731 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5732 sizeof(struct lpfc_mbx_get_port_name) - 5733 sizeof(struct lpfc_sli4_cfg_mhdr), 5734 LPFC_SLI4_MBX_EMBED); 5735 get_port_name = &mboxq->u.mqe.un.get_port_name; 5736 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5737 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5738 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5739 phba->sli4_hba.lnk_info.lnk_tp); 5740 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5741 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5742 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5743 if (shdr_status || shdr_add_status || rc) { 5744 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5745 "3087 Mailbox x%x (x%x/x%x) failed: " 5746 "rc:x%x, status:x%x, add_status:x%x\n", 5747 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5748 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5749 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5750 rc, shdr_status, shdr_add_status); 5751 rc = -ENXIO; 5752 goto out_free_mboxq; 5753 } 5754 switch (phba->sli4_hba.lnk_info.lnk_no) { 5755 case LPFC_LINK_NUMBER_0: 5756 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5757 &get_port_name->u.response); 5758 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5759 break; 5760 case LPFC_LINK_NUMBER_1: 5761 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5762 &get_port_name->u.response); 5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5764 break; 5765 case LPFC_LINK_NUMBER_2: 5766 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5767 &get_port_name->u.response); 5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5769 break; 5770 case LPFC_LINK_NUMBER_3: 5771 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5772 &get_port_name->u.response); 5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5774 break; 5775 default: 5776 break; 5777 } 5778 5779 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5780 phba->Port[0] = cport_name; 5781 phba->Port[1] = '\0'; 5782 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5783 "3091 SLI get port name: %s\n", phba->Port); 5784 } 5785 5786 out_free_mboxq: 5787 if (rc != MBX_TIMEOUT) { 5788 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5789 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5790 else 5791 mempool_free(mboxq, phba->mbox_mem_pool); 5792 } 5793 return rc; 5794 } 5795 5796 /** 5797 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5798 * @phba: pointer to lpfc hba data structure. 5799 * 5800 * This routine is called to explicitly arm the SLI4 device's completion and 5801 * event queues 5802 **/ 5803 static void 5804 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5805 { 5806 int qidx; 5807 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5808 struct lpfc_sli4_hdw_queue *qp; 5809 struct lpfc_queue *eq; 5810 5811 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5812 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5813 if (sli4_hba->nvmels_cq) 5814 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5815 LPFC_QUEUE_REARM); 5816 5817 if (sli4_hba->hdwq) { 5818 /* Loop thru all Hardware Queues */ 5819 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5820 qp = &sli4_hba->hdwq[qidx]; 5821 /* ARM the corresponding CQ */ 5822 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5823 LPFC_QUEUE_REARM); 5824 } 5825 5826 /* Loop thru all IRQ vectors */ 5827 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5828 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5829 /* ARM the corresponding EQ */ 5830 sli4_hba->sli4_write_eq_db(phba, eq, 5831 0, LPFC_QUEUE_REARM); 5832 } 5833 } 5834 5835 if (phba->nvmet_support) { 5836 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5837 sli4_hba->sli4_write_cq_db(phba, 5838 sli4_hba->nvmet_cqset[qidx], 0, 5839 LPFC_QUEUE_REARM); 5840 } 5841 } 5842 } 5843 5844 /** 5845 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5846 * @phba: Pointer to HBA context object. 5847 * @type: The resource extent type. 5848 * @extnt_count: buffer to hold port available extent count. 5849 * @extnt_size: buffer to hold element count per extent. 5850 * 5851 * This function calls the port and retrievs the number of available 5852 * extents and their size for a particular extent type. 5853 * 5854 * Returns: 0 if successful. Nonzero otherwise. 5855 **/ 5856 int 5857 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5858 uint16_t *extnt_count, uint16_t *extnt_size) 5859 { 5860 int rc = 0; 5861 uint32_t length; 5862 uint32_t mbox_tmo; 5863 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5864 LPFC_MBOXQ_t *mbox; 5865 5866 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5867 if (!mbox) 5868 return -ENOMEM; 5869 5870 /* Find out how many extents are available for this resource type */ 5871 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5872 sizeof(struct lpfc_sli4_cfg_mhdr)); 5873 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5874 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5875 length, LPFC_SLI4_MBX_EMBED); 5876 5877 /* Send an extents count of 0 - the GET doesn't use it. */ 5878 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5879 LPFC_SLI4_MBX_EMBED); 5880 if (unlikely(rc)) { 5881 rc = -EIO; 5882 goto err_exit; 5883 } 5884 5885 if (!phba->sli4_hba.intr_enable) 5886 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5887 else { 5888 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5889 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5890 } 5891 if (unlikely(rc)) { 5892 rc = -EIO; 5893 goto err_exit; 5894 } 5895 5896 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5897 if (bf_get(lpfc_mbox_hdr_status, 5898 &rsrc_info->header.cfg_shdr.response)) { 5899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5900 "2930 Failed to get resource extents " 5901 "Status 0x%x Add'l Status 0x%x\n", 5902 bf_get(lpfc_mbox_hdr_status, 5903 &rsrc_info->header.cfg_shdr.response), 5904 bf_get(lpfc_mbox_hdr_add_status, 5905 &rsrc_info->header.cfg_shdr.response)); 5906 rc = -EIO; 5907 goto err_exit; 5908 } 5909 5910 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5911 &rsrc_info->u.rsp); 5912 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5913 &rsrc_info->u.rsp); 5914 5915 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5916 "3162 Retrieved extents type-%d from port: count:%d, " 5917 "size:%d\n", type, *extnt_count, *extnt_size); 5918 5919 err_exit: 5920 mempool_free(mbox, phba->mbox_mem_pool); 5921 return rc; 5922 } 5923 5924 /** 5925 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5926 * @phba: Pointer to HBA context object. 5927 * @type: The extent type to check. 5928 * 5929 * This function reads the current available extents from the port and checks 5930 * if the extent count or extent size has changed since the last access. 5931 * Callers use this routine post port reset to understand if there is a 5932 * extent reprovisioning requirement. 5933 * 5934 * Returns: 5935 * -Error: error indicates problem. 5936 * 1: Extent count or size has changed. 5937 * 0: No changes. 5938 **/ 5939 static int 5940 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5941 { 5942 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5943 uint16_t size_diff, rsrc_ext_size; 5944 int rc = 0; 5945 struct lpfc_rsrc_blks *rsrc_entry; 5946 struct list_head *rsrc_blk_list = NULL; 5947 5948 size_diff = 0; 5949 curr_ext_cnt = 0; 5950 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5951 &rsrc_ext_cnt, 5952 &rsrc_ext_size); 5953 if (unlikely(rc)) 5954 return -EIO; 5955 5956 switch (type) { 5957 case LPFC_RSC_TYPE_FCOE_RPI: 5958 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5959 break; 5960 case LPFC_RSC_TYPE_FCOE_VPI: 5961 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5962 break; 5963 case LPFC_RSC_TYPE_FCOE_XRI: 5964 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5965 break; 5966 case LPFC_RSC_TYPE_FCOE_VFI: 5967 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5968 break; 5969 default: 5970 break; 5971 } 5972 5973 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5974 curr_ext_cnt++; 5975 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5976 size_diff++; 5977 } 5978 5979 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5980 rc = 1; 5981 5982 return rc; 5983 } 5984 5985 /** 5986 * lpfc_sli4_cfg_post_extnts - 5987 * @phba: Pointer to HBA context object. 5988 * @extnt_cnt: number of available extents. 5989 * @type: the extent type (rpi, xri, vfi, vpi). 5990 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5991 * @mbox: pointer to the caller's allocated mailbox structure. 5992 * 5993 * This function executes the extents allocation request. It also 5994 * takes care of the amount of memory needed to allocate or get the 5995 * allocated extents. It is the caller's responsibility to evaluate 5996 * the response. 5997 * 5998 * Returns: 5999 * -Error: Error value describes the condition found. 6000 * 0: if successful 6001 **/ 6002 static int 6003 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6004 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6005 { 6006 int rc = 0; 6007 uint32_t req_len; 6008 uint32_t emb_len; 6009 uint32_t alloc_len, mbox_tmo; 6010 6011 /* Calculate the total requested length of the dma memory */ 6012 req_len = extnt_cnt * sizeof(uint16_t); 6013 6014 /* 6015 * Calculate the size of an embedded mailbox. The uint32_t 6016 * accounts for extents-specific word. 6017 */ 6018 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6019 sizeof(uint32_t); 6020 6021 /* 6022 * Presume the allocation and response will fit into an embedded 6023 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6024 */ 6025 *emb = LPFC_SLI4_MBX_EMBED; 6026 if (req_len > emb_len) { 6027 req_len = extnt_cnt * sizeof(uint16_t) + 6028 sizeof(union lpfc_sli4_cfg_shdr) + 6029 sizeof(uint32_t); 6030 *emb = LPFC_SLI4_MBX_NEMBED; 6031 } 6032 6033 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6034 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6035 req_len, *emb); 6036 if (alloc_len < req_len) { 6037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6038 "2982 Allocated DMA memory size (x%x) is " 6039 "less than the requested DMA memory " 6040 "size (x%x)\n", alloc_len, req_len); 6041 return -ENOMEM; 6042 } 6043 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6044 if (unlikely(rc)) 6045 return -EIO; 6046 6047 if (!phba->sli4_hba.intr_enable) 6048 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6049 else { 6050 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6051 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6052 } 6053 6054 if (unlikely(rc)) 6055 rc = -EIO; 6056 return rc; 6057 } 6058 6059 /** 6060 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6061 * @phba: Pointer to HBA context object. 6062 * @type: The resource extent type to allocate. 6063 * 6064 * This function allocates the number of elements for the specified 6065 * resource type. 6066 **/ 6067 static int 6068 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6069 { 6070 bool emb = false; 6071 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6072 uint16_t rsrc_id, rsrc_start, j, k; 6073 uint16_t *ids; 6074 int i, rc; 6075 unsigned long longs; 6076 unsigned long *bmask; 6077 struct lpfc_rsrc_blks *rsrc_blks; 6078 LPFC_MBOXQ_t *mbox; 6079 uint32_t length; 6080 struct lpfc_id_range *id_array = NULL; 6081 void *virtaddr = NULL; 6082 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6083 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6084 struct list_head *ext_blk_list; 6085 6086 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6087 &rsrc_cnt, 6088 &rsrc_size); 6089 if (unlikely(rc)) 6090 return -EIO; 6091 6092 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6094 "3009 No available Resource Extents " 6095 "for resource type 0x%x: Count: 0x%x, " 6096 "Size 0x%x\n", type, rsrc_cnt, 6097 rsrc_size); 6098 return -ENOMEM; 6099 } 6100 6101 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6102 "2903 Post resource extents type-0x%x: " 6103 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6104 6105 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6106 if (!mbox) 6107 return -ENOMEM; 6108 6109 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6110 if (unlikely(rc)) { 6111 rc = -EIO; 6112 goto err_exit; 6113 } 6114 6115 /* 6116 * Figure out where the response is located. Then get local pointers 6117 * to the response data. The port does not guarantee to respond to 6118 * all extents counts request so update the local variable with the 6119 * allocated count from the port. 6120 */ 6121 if (emb == LPFC_SLI4_MBX_EMBED) { 6122 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6123 id_array = &rsrc_ext->u.rsp.id[0]; 6124 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6125 } else { 6126 virtaddr = mbox->sge_array->addr[0]; 6127 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6128 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6129 id_array = &n_rsrc->id; 6130 } 6131 6132 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6133 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6134 6135 /* 6136 * Based on the resource size and count, correct the base and max 6137 * resource values. 6138 */ 6139 length = sizeof(struct lpfc_rsrc_blks); 6140 switch (type) { 6141 case LPFC_RSC_TYPE_FCOE_RPI: 6142 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6143 sizeof(unsigned long), 6144 GFP_KERNEL); 6145 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6146 rc = -ENOMEM; 6147 goto err_exit; 6148 } 6149 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6150 sizeof(uint16_t), 6151 GFP_KERNEL); 6152 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6153 kfree(phba->sli4_hba.rpi_bmask); 6154 rc = -ENOMEM; 6155 goto err_exit; 6156 } 6157 6158 /* 6159 * The next_rpi was initialized with the maximum available 6160 * count but the port may allocate a smaller number. Catch 6161 * that case and update the next_rpi. 6162 */ 6163 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6164 6165 /* Initialize local ptrs for common extent processing later. */ 6166 bmask = phba->sli4_hba.rpi_bmask; 6167 ids = phba->sli4_hba.rpi_ids; 6168 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6169 break; 6170 case LPFC_RSC_TYPE_FCOE_VPI: 6171 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6172 GFP_KERNEL); 6173 if (unlikely(!phba->vpi_bmask)) { 6174 rc = -ENOMEM; 6175 goto err_exit; 6176 } 6177 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6178 GFP_KERNEL); 6179 if (unlikely(!phba->vpi_ids)) { 6180 kfree(phba->vpi_bmask); 6181 rc = -ENOMEM; 6182 goto err_exit; 6183 } 6184 6185 /* Initialize local ptrs for common extent processing later. */ 6186 bmask = phba->vpi_bmask; 6187 ids = phba->vpi_ids; 6188 ext_blk_list = &phba->lpfc_vpi_blk_list; 6189 break; 6190 case LPFC_RSC_TYPE_FCOE_XRI: 6191 phba->sli4_hba.xri_bmask = kcalloc(longs, 6192 sizeof(unsigned long), 6193 GFP_KERNEL); 6194 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6195 rc = -ENOMEM; 6196 goto err_exit; 6197 } 6198 phba->sli4_hba.max_cfg_param.xri_used = 0; 6199 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6200 sizeof(uint16_t), 6201 GFP_KERNEL); 6202 if (unlikely(!phba->sli4_hba.xri_ids)) { 6203 kfree(phba->sli4_hba.xri_bmask); 6204 rc = -ENOMEM; 6205 goto err_exit; 6206 } 6207 6208 /* Initialize local ptrs for common extent processing later. */ 6209 bmask = phba->sli4_hba.xri_bmask; 6210 ids = phba->sli4_hba.xri_ids; 6211 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6212 break; 6213 case LPFC_RSC_TYPE_FCOE_VFI: 6214 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6215 sizeof(unsigned long), 6216 GFP_KERNEL); 6217 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6218 rc = -ENOMEM; 6219 goto err_exit; 6220 } 6221 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6222 sizeof(uint16_t), 6223 GFP_KERNEL); 6224 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6225 kfree(phba->sli4_hba.vfi_bmask); 6226 rc = -ENOMEM; 6227 goto err_exit; 6228 } 6229 6230 /* Initialize local ptrs for common extent processing later. */ 6231 bmask = phba->sli4_hba.vfi_bmask; 6232 ids = phba->sli4_hba.vfi_ids; 6233 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6234 break; 6235 default: 6236 /* Unsupported Opcode. Fail call. */ 6237 id_array = NULL; 6238 bmask = NULL; 6239 ids = NULL; 6240 ext_blk_list = NULL; 6241 goto err_exit; 6242 } 6243 6244 /* 6245 * Complete initializing the extent configuration with the 6246 * allocated ids assigned to this function. The bitmask serves 6247 * as an index into the array and manages the available ids. The 6248 * array just stores the ids communicated to the port via the wqes. 6249 */ 6250 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6251 if ((i % 2) == 0) 6252 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6253 &id_array[k]); 6254 else 6255 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6256 &id_array[k]); 6257 6258 rsrc_blks = kzalloc(length, GFP_KERNEL); 6259 if (unlikely(!rsrc_blks)) { 6260 rc = -ENOMEM; 6261 kfree(bmask); 6262 kfree(ids); 6263 goto err_exit; 6264 } 6265 rsrc_blks->rsrc_start = rsrc_id; 6266 rsrc_blks->rsrc_size = rsrc_size; 6267 list_add_tail(&rsrc_blks->list, ext_blk_list); 6268 rsrc_start = rsrc_id; 6269 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6270 phba->sli4_hba.io_xri_start = rsrc_start + 6271 lpfc_sli4_get_iocb_cnt(phba); 6272 } 6273 6274 while (rsrc_id < (rsrc_start + rsrc_size)) { 6275 ids[j] = rsrc_id; 6276 rsrc_id++; 6277 j++; 6278 } 6279 /* Entire word processed. Get next word.*/ 6280 if ((i % 2) == 1) 6281 k++; 6282 } 6283 err_exit: 6284 lpfc_sli4_mbox_cmd_free(phba, mbox); 6285 return rc; 6286 } 6287 6288 6289 6290 /** 6291 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6292 * @phba: Pointer to HBA context object. 6293 * @type: the extent's type. 6294 * 6295 * This function deallocates all extents of a particular resource type. 6296 * SLI4 does not allow for deallocating a particular extent range. It 6297 * is the caller's responsibility to release all kernel memory resources. 6298 **/ 6299 static int 6300 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6301 { 6302 int rc; 6303 uint32_t length, mbox_tmo = 0; 6304 LPFC_MBOXQ_t *mbox; 6305 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6306 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6307 6308 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6309 if (!mbox) 6310 return -ENOMEM; 6311 6312 /* 6313 * This function sends an embedded mailbox because it only sends the 6314 * the resource type. All extents of this type are released by the 6315 * port. 6316 */ 6317 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6318 sizeof(struct lpfc_sli4_cfg_mhdr)); 6319 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6320 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6321 length, LPFC_SLI4_MBX_EMBED); 6322 6323 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6324 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6325 LPFC_SLI4_MBX_EMBED); 6326 if (unlikely(rc)) { 6327 rc = -EIO; 6328 goto out_free_mbox; 6329 } 6330 if (!phba->sli4_hba.intr_enable) 6331 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6332 else { 6333 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6334 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6335 } 6336 if (unlikely(rc)) { 6337 rc = -EIO; 6338 goto out_free_mbox; 6339 } 6340 6341 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6342 if (bf_get(lpfc_mbox_hdr_status, 6343 &dealloc_rsrc->header.cfg_shdr.response)) { 6344 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6345 "2919 Failed to release resource extents " 6346 "for type %d - Status 0x%x Add'l Status 0x%x. " 6347 "Resource memory not released.\n", 6348 type, 6349 bf_get(lpfc_mbox_hdr_status, 6350 &dealloc_rsrc->header.cfg_shdr.response), 6351 bf_get(lpfc_mbox_hdr_add_status, 6352 &dealloc_rsrc->header.cfg_shdr.response)); 6353 rc = -EIO; 6354 goto out_free_mbox; 6355 } 6356 6357 /* Release kernel memory resources for the specific type. */ 6358 switch (type) { 6359 case LPFC_RSC_TYPE_FCOE_VPI: 6360 kfree(phba->vpi_bmask); 6361 kfree(phba->vpi_ids); 6362 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6363 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6364 &phba->lpfc_vpi_blk_list, list) { 6365 list_del_init(&rsrc_blk->list); 6366 kfree(rsrc_blk); 6367 } 6368 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6369 break; 6370 case LPFC_RSC_TYPE_FCOE_XRI: 6371 kfree(phba->sli4_hba.xri_bmask); 6372 kfree(phba->sli4_hba.xri_ids); 6373 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6374 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6375 list_del_init(&rsrc_blk->list); 6376 kfree(rsrc_blk); 6377 } 6378 break; 6379 case LPFC_RSC_TYPE_FCOE_VFI: 6380 kfree(phba->sli4_hba.vfi_bmask); 6381 kfree(phba->sli4_hba.vfi_ids); 6382 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6383 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6384 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6385 list_del_init(&rsrc_blk->list); 6386 kfree(rsrc_blk); 6387 } 6388 break; 6389 case LPFC_RSC_TYPE_FCOE_RPI: 6390 /* RPI bitmask and physical id array are cleaned up earlier. */ 6391 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6392 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6393 list_del_init(&rsrc_blk->list); 6394 kfree(rsrc_blk); 6395 } 6396 break; 6397 default: 6398 break; 6399 } 6400 6401 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6402 6403 out_free_mbox: 6404 mempool_free(mbox, phba->mbox_mem_pool); 6405 return rc; 6406 } 6407 6408 static void 6409 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6410 uint32_t feature) 6411 { 6412 uint32_t len; 6413 6414 len = sizeof(struct lpfc_mbx_set_feature) - 6415 sizeof(struct lpfc_sli4_cfg_mhdr); 6416 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6417 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6418 LPFC_SLI4_MBX_EMBED); 6419 6420 switch (feature) { 6421 case LPFC_SET_UE_RECOVERY: 6422 bf_set(lpfc_mbx_set_feature_UER, 6423 &mbox->u.mqe.un.set_feature, 1); 6424 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6425 mbox->u.mqe.un.set_feature.param_len = 8; 6426 break; 6427 case LPFC_SET_MDS_DIAGS: 6428 bf_set(lpfc_mbx_set_feature_mds, 6429 &mbox->u.mqe.un.set_feature, 1); 6430 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6431 &mbox->u.mqe.un.set_feature, 1); 6432 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6433 mbox->u.mqe.un.set_feature.param_len = 8; 6434 break; 6435 case LPFC_SET_DUAL_DUMP: 6436 bf_set(lpfc_mbx_set_feature_dd, 6437 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6438 bf_set(lpfc_mbx_set_feature_ddquery, 6439 &mbox->u.mqe.un.set_feature, 0); 6440 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6441 mbox->u.mqe.un.set_feature.param_len = 4; 6442 break; 6443 } 6444 6445 return; 6446 } 6447 6448 /** 6449 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6450 * @phba: Pointer to HBA context object. 6451 * 6452 * Disable FW logging into host memory on the adapter. To 6453 * be done before reading logs from the host memory. 6454 **/ 6455 void 6456 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6457 { 6458 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6459 6460 spin_lock_irq(&phba->hbalock); 6461 ras_fwlog->state = INACTIVE; 6462 spin_unlock_irq(&phba->hbalock); 6463 6464 /* Disable FW logging to host memory */ 6465 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6466 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6467 6468 /* Wait 10ms for firmware to stop using DMA buffer */ 6469 usleep_range(10 * 1000, 20 * 1000); 6470 } 6471 6472 /** 6473 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6474 * @phba: Pointer to HBA context object. 6475 * 6476 * This function is called to free memory allocated for RAS FW logging 6477 * support in the driver. 6478 **/ 6479 void 6480 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6481 { 6482 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6483 struct lpfc_dmabuf *dmabuf, *next; 6484 6485 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6486 list_for_each_entry_safe(dmabuf, next, 6487 &ras_fwlog->fwlog_buff_list, 6488 list) { 6489 list_del(&dmabuf->list); 6490 dma_free_coherent(&phba->pcidev->dev, 6491 LPFC_RAS_MAX_ENTRY_SIZE, 6492 dmabuf->virt, dmabuf->phys); 6493 kfree(dmabuf); 6494 } 6495 } 6496 6497 if (ras_fwlog->lwpd.virt) { 6498 dma_free_coherent(&phba->pcidev->dev, 6499 sizeof(uint32_t) * 2, 6500 ras_fwlog->lwpd.virt, 6501 ras_fwlog->lwpd.phys); 6502 ras_fwlog->lwpd.virt = NULL; 6503 } 6504 6505 spin_lock_irq(&phba->hbalock); 6506 ras_fwlog->state = INACTIVE; 6507 spin_unlock_irq(&phba->hbalock); 6508 } 6509 6510 /** 6511 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6512 * @phba: Pointer to HBA context object. 6513 * @fwlog_buff_count: Count of buffers to be created. 6514 * 6515 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6516 * to update FW log is posted to the adapter. 6517 * Buffer count is calculated based on module param ras_fwlog_buffsize 6518 * Size of each buffer posted to FW is 64K. 6519 **/ 6520 6521 static int 6522 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6523 uint32_t fwlog_buff_count) 6524 { 6525 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6526 struct lpfc_dmabuf *dmabuf; 6527 int rc = 0, i = 0; 6528 6529 /* Initialize List */ 6530 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6531 6532 /* Allocate memory for the LWPD */ 6533 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6534 sizeof(uint32_t) * 2, 6535 &ras_fwlog->lwpd.phys, 6536 GFP_KERNEL); 6537 if (!ras_fwlog->lwpd.virt) { 6538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6539 "6185 LWPD Memory Alloc Failed\n"); 6540 6541 return -ENOMEM; 6542 } 6543 6544 ras_fwlog->fw_buffcount = fwlog_buff_count; 6545 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6546 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6547 GFP_KERNEL); 6548 if (!dmabuf) { 6549 rc = -ENOMEM; 6550 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6551 "6186 Memory Alloc failed FW logging"); 6552 goto free_mem; 6553 } 6554 6555 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6556 LPFC_RAS_MAX_ENTRY_SIZE, 6557 &dmabuf->phys, GFP_KERNEL); 6558 if (!dmabuf->virt) { 6559 kfree(dmabuf); 6560 rc = -ENOMEM; 6561 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6562 "6187 DMA Alloc Failed FW logging"); 6563 goto free_mem; 6564 } 6565 dmabuf->buffer_tag = i; 6566 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6567 } 6568 6569 free_mem: 6570 if (rc) 6571 lpfc_sli4_ras_dma_free(phba); 6572 6573 return rc; 6574 } 6575 6576 /** 6577 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6578 * @phba: pointer to lpfc hba data structure. 6579 * @pmb: pointer to the driver internal queue element for mailbox command. 6580 * 6581 * Completion handler for driver's RAS MBX command to the device. 6582 **/ 6583 static void 6584 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6585 { 6586 MAILBOX_t *mb; 6587 union lpfc_sli4_cfg_shdr *shdr; 6588 uint32_t shdr_status, shdr_add_status; 6589 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6590 6591 mb = &pmb->u.mb; 6592 6593 shdr = (union lpfc_sli4_cfg_shdr *) 6594 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6595 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6596 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6597 6598 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6600 "6188 FW LOG mailbox " 6601 "completed with status x%x add_status x%x," 6602 " mbx status x%x\n", 6603 shdr_status, shdr_add_status, mb->mbxStatus); 6604 6605 ras_fwlog->ras_hwsupport = false; 6606 goto disable_ras; 6607 } 6608 6609 spin_lock_irq(&phba->hbalock); 6610 ras_fwlog->state = ACTIVE; 6611 spin_unlock_irq(&phba->hbalock); 6612 mempool_free(pmb, phba->mbox_mem_pool); 6613 6614 return; 6615 6616 disable_ras: 6617 /* Free RAS DMA memory */ 6618 lpfc_sli4_ras_dma_free(phba); 6619 mempool_free(pmb, phba->mbox_mem_pool); 6620 } 6621 6622 /** 6623 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6624 * @phba: pointer to lpfc hba data structure. 6625 * @fwlog_level: Logging verbosity level. 6626 * @fwlog_enable: Enable/Disable logging. 6627 * 6628 * Initialize memory and post mailbox command to enable FW logging in host 6629 * memory. 6630 **/ 6631 int 6632 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6633 uint32_t fwlog_level, 6634 uint32_t fwlog_enable) 6635 { 6636 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6637 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6638 struct lpfc_dmabuf *dmabuf; 6639 LPFC_MBOXQ_t *mbox; 6640 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6641 int rc = 0; 6642 6643 spin_lock_irq(&phba->hbalock); 6644 ras_fwlog->state = INACTIVE; 6645 spin_unlock_irq(&phba->hbalock); 6646 6647 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6648 phba->cfg_ras_fwlog_buffsize); 6649 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6650 6651 /* 6652 * If re-enabling FW logging support use earlier allocated 6653 * DMA buffers while posting MBX command. 6654 **/ 6655 if (!ras_fwlog->lwpd.virt) { 6656 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6657 if (rc) { 6658 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6659 "6189 FW Log Memory Allocation Failed"); 6660 return rc; 6661 } 6662 } 6663 6664 /* Setup Mailbox command */ 6665 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6666 if (!mbox) { 6667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6668 "6190 RAS MBX Alloc Failed"); 6669 rc = -ENOMEM; 6670 goto mem_free; 6671 } 6672 6673 ras_fwlog->fw_loglevel = fwlog_level; 6674 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6675 sizeof(struct lpfc_sli4_cfg_mhdr)); 6676 6677 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6678 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6679 len, LPFC_SLI4_MBX_EMBED); 6680 6681 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6682 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6683 fwlog_enable); 6684 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6685 ras_fwlog->fw_loglevel); 6686 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6687 ras_fwlog->fw_buffcount); 6688 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6689 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6690 6691 /* Update DMA buffer address */ 6692 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6693 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6694 6695 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6696 putPaddrLow(dmabuf->phys); 6697 6698 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6699 putPaddrHigh(dmabuf->phys); 6700 } 6701 6702 /* Update LPWD address */ 6703 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6704 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6705 6706 spin_lock_irq(&phba->hbalock); 6707 ras_fwlog->state = REG_INPROGRESS; 6708 spin_unlock_irq(&phba->hbalock); 6709 mbox->vport = phba->pport; 6710 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6711 6712 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6713 6714 if (rc == MBX_NOT_FINISHED) { 6715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6716 "6191 FW-Log Mailbox failed. " 6717 "status %d mbxStatus : x%x", rc, 6718 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6719 mempool_free(mbox, phba->mbox_mem_pool); 6720 rc = -EIO; 6721 goto mem_free; 6722 } else 6723 rc = 0; 6724 mem_free: 6725 if (rc) 6726 lpfc_sli4_ras_dma_free(phba); 6727 6728 return rc; 6729 } 6730 6731 /** 6732 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6733 * @phba: Pointer to HBA context object. 6734 * 6735 * Check if RAS is supported on the adapter and initialize it. 6736 **/ 6737 void 6738 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6739 { 6740 /* Check RAS FW Log needs to be enabled or not */ 6741 if (lpfc_check_fwlog_support(phba)) 6742 return; 6743 6744 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6745 LPFC_RAS_ENABLE_LOGGING); 6746 } 6747 6748 /** 6749 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6750 * @phba: Pointer to HBA context object. 6751 * 6752 * This function allocates all SLI4 resource identifiers. 6753 **/ 6754 int 6755 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6756 { 6757 int i, rc, error = 0; 6758 uint16_t count, base; 6759 unsigned long longs; 6760 6761 if (!phba->sli4_hba.rpi_hdrs_in_use) 6762 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6763 if (phba->sli4_hba.extents_in_use) { 6764 /* 6765 * The port supports resource extents. The XRI, VPI, VFI, RPI 6766 * resource extent count must be read and allocated before 6767 * provisioning the resource id arrays. 6768 */ 6769 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6770 LPFC_IDX_RSRC_RDY) { 6771 /* 6772 * Extent-based resources are set - the driver could 6773 * be in a port reset. Figure out if any corrective 6774 * actions need to be taken. 6775 */ 6776 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6777 LPFC_RSC_TYPE_FCOE_VFI); 6778 if (rc != 0) 6779 error++; 6780 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6781 LPFC_RSC_TYPE_FCOE_VPI); 6782 if (rc != 0) 6783 error++; 6784 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6785 LPFC_RSC_TYPE_FCOE_XRI); 6786 if (rc != 0) 6787 error++; 6788 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6789 LPFC_RSC_TYPE_FCOE_RPI); 6790 if (rc != 0) 6791 error++; 6792 6793 /* 6794 * It's possible that the number of resources 6795 * provided to this port instance changed between 6796 * resets. Detect this condition and reallocate 6797 * resources. Otherwise, there is no action. 6798 */ 6799 if (error) { 6800 lpfc_printf_log(phba, KERN_INFO, 6801 LOG_MBOX | LOG_INIT, 6802 "2931 Detected extent resource " 6803 "change. Reallocating all " 6804 "extents.\n"); 6805 rc = lpfc_sli4_dealloc_extent(phba, 6806 LPFC_RSC_TYPE_FCOE_VFI); 6807 rc = lpfc_sli4_dealloc_extent(phba, 6808 LPFC_RSC_TYPE_FCOE_VPI); 6809 rc = lpfc_sli4_dealloc_extent(phba, 6810 LPFC_RSC_TYPE_FCOE_XRI); 6811 rc = lpfc_sli4_dealloc_extent(phba, 6812 LPFC_RSC_TYPE_FCOE_RPI); 6813 } else 6814 return 0; 6815 } 6816 6817 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6818 if (unlikely(rc)) 6819 goto err_exit; 6820 6821 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6822 if (unlikely(rc)) 6823 goto err_exit; 6824 6825 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6826 if (unlikely(rc)) 6827 goto err_exit; 6828 6829 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6830 if (unlikely(rc)) 6831 goto err_exit; 6832 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6833 LPFC_IDX_RSRC_RDY); 6834 return rc; 6835 } else { 6836 /* 6837 * The port does not support resource extents. The XRI, VPI, 6838 * VFI, RPI resource ids were determined from READ_CONFIG. 6839 * Just allocate the bitmasks and provision the resource id 6840 * arrays. If a port reset is active, the resources don't 6841 * need any action - just exit. 6842 */ 6843 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6844 LPFC_IDX_RSRC_RDY) { 6845 lpfc_sli4_dealloc_resource_identifiers(phba); 6846 lpfc_sli4_remove_rpis(phba); 6847 } 6848 /* RPIs. */ 6849 count = phba->sli4_hba.max_cfg_param.max_rpi; 6850 if (count <= 0) { 6851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6852 "3279 Invalid provisioning of " 6853 "rpi:%d\n", count); 6854 rc = -EINVAL; 6855 goto err_exit; 6856 } 6857 base = phba->sli4_hba.max_cfg_param.rpi_base; 6858 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6859 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6860 sizeof(unsigned long), 6861 GFP_KERNEL); 6862 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6863 rc = -ENOMEM; 6864 goto err_exit; 6865 } 6866 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6867 GFP_KERNEL); 6868 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6869 rc = -ENOMEM; 6870 goto free_rpi_bmask; 6871 } 6872 6873 for (i = 0; i < count; i++) 6874 phba->sli4_hba.rpi_ids[i] = base + i; 6875 6876 /* VPIs. */ 6877 count = phba->sli4_hba.max_cfg_param.max_vpi; 6878 if (count <= 0) { 6879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6880 "3280 Invalid provisioning of " 6881 "vpi:%d\n", count); 6882 rc = -EINVAL; 6883 goto free_rpi_ids; 6884 } 6885 base = phba->sli4_hba.max_cfg_param.vpi_base; 6886 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6887 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6888 GFP_KERNEL); 6889 if (unlikely(!phba->vpi_bmask)) { 6890 rc = -ENOMEM; 6891 goto free_rpi_ids; 6892 } 6893 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6894 GFP_KERNEL); 6895 if (unlikely(!phba->vpi_ids)) { 6896 rc = -ENOMEM; 6897 goto free_vpi_bmask; 6898 } 6899 6900 for (i = 0; i < count; i++) 6901 phba->vpi_ids[i] = base + i; 6902 6903 /* XRIs. */ 6904 count = phba->sli4_hba.max_cfg_param.max_xri; 6905 if (count <= 0) { 6906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6907 "3281 Invalid provisioning of " 6908 "xri:%d\n", count); 6909 rc = -EINVAL; 6910 goto free_vpi_ids; 6911 } 6912 base = phba->sli4_hba.max_cfg_param.xri_base; 6913 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6914 phba->sli4_hba.xri_bmask = kcalloc(longs, 6915 sizeof(unsigned long), 6916 GFP_KERNEL); 6917 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6918 rc = -ENOMEM; 6919 goto free_vpi_ids; 6920 } 6921 phba->sli4_hba.max_cfg_param.xri_used = 0; 6922 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6923 GFP_KERNEL); 6924 if (unlikely(!phba->sli4_hba.xri_ids)) { 6925 rc = -ENOMEM; 6926 goto free_xri_bmask; 6927 } 6928 6929 for (i = 0; i < count; i++) 6930 phba->sli4_hba.xri_ids[i] = base + i; 6931 6932 /* VFIs. */ 6933 count = phba->sli4_hba.max_cfg_param.max_vfi; 6934 if (count <= 0) { 6935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6936 "3282 Invalid provisioning of " 6937 "vfi:%d\n", count); 6938 rc = -EINVAL; 6939 goto free_xri_ids; 6940 } 6941 base = phba->sli4_hba.max_cfg_param.vfi_base; 6942 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6943 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6944 sizeof(unsigned long), 6945 GFP_KERNEL); 6946 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6947 rc = -ENOMEM; 6948 goto free_xri_ids; 6949 } 6950 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6951 GFP_KERNEL); 6952 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6953 rc = -ENOMEM; 6954 goto free_vfi_bmask; 6955 } 6956 6957 for (i = 0; i < count; i++) 6958 phba->sli4_hba.vfi_ids[i] = base + i; 6959 6960 /* 6961 * Mark all resources ready. An HBA reset doesn't need 6962 * to reset the initialization. 6963 */ 6964 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6965 LPFC_IDX_RSRC_RDY); 6966 return 0; 6967 } 6968 6969 free_vfi_bmask: 6970 kfree(phba->sli4_hba.vfi_bmask); 6971 phba->sli4_hba.vfi_bmask = NULL; 6972 free_xri_ids: 6973 kfree(phba->sli4_hba.xri_ids); 6974 phba->sli4_hba.xri_ids = NULL; 6975 free_xri_bmask: 6976 kfree(phba->sli4_hba.xri_bmask); 6977 phba->sli4_hba.xri_bmask = NULL; 6978 free_vpi_ids: 6979 kfree(phba->vpi_ids); 6980 phba->vpi_ids = NULL; 6981 free_vpi_bmask: 6982 kfree(phba->vpi_bmask); 6983 phba->vpi_bmask = NULL; 6984 free_rpi_ids: 6985 kfree(phba->sli4_hba.rpi_ids); 6986 phba->sli4_hba.rpi_ids = NULL; 6987 free_rpi_bmask: 6988 kfree(phba->sli4_hba.rpi_bmask); 6989 phba->sli4_hba.rpi_bmask = NULL; 6990 err_exit: 6991 return rc; 6992 } 6993 6994 /** 6995 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6996 * @phba: Pointer to HBA context object. 6997 * 6998 * This function allocates the number of elements for the specified 6999 * resource type. 7000 **/ 7001 int 7002 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7003 { 7004 if (phba->sli4_hba.extents_in_use) { 7005 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7006 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7007 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7008 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7009 } else { 7010 kfree(phba->vpi_bmask); 7011 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7012 kfree(phba->vpi_ids); 7013 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7014 kfree(phba->sli4_hba.xri_bmask); 7015 kfree(phba->sli4_hba.xri_ids); 7016 kfree(phba->sli4_hba.vfi_bmask); 7017 kfree(phba->sli4_hba.vfi_ids); 7018 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7019 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7020 } 7021 7022 return 0; 7023 } 7024 7025 /** 7026 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7027 * @phba: Pointer to HBA context object. 7028 * @type: The resource extent type. 7029 * @extnt_cnt: buffer to hold port extent count response 7030 * @extnt_size: buffer to hold port extent size response. 7031 * 7032 * This function calls the port to read the host allocated extents 7033 * for a particular type. 7034 **/ 7035 int 7036 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7037 uint16_t *extnt_cnt, uint16_t *extnt_size) 7038 { 7039 bool emb; 7040 int rc = 0; 7041 uint16_t curr_blks = 0; 7042 uint32_t req_len, emb_len; 7043 uint32_t alloc_len, mbox_tmo; 7044 struct list_head *blk_list_head; 7045 struct lpfc_rsrc_blks *rsrc_blk; 7046 LPFC_MBOXQ_t *mbox; 7047 void *virtaddr = NULL; 7048 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7049 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7050 union lpfc_sli4_cfg_shdr *shdr; 7051 7052 switch (type) { 7053 case LPFC_RSC_TYPE_FCOE_VPI: 7054 blk_list_head = &phba->lpfc_vpi_blk_list; 7055 break; 7056 case LPFC_RSC_TYPE_FCOE_XRI: 7057 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7058 break; 7059 case LPFC_RSC_TYPE_FCOE_VFI: 7060 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7061 break; 7062 case LPFC_RSC_TYPE_FCOE_RPI: 7063 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7064 break; 7065 default: 7066 return -EIO; 7067 } 7068 7069 /* Count the number of extents currently allocatd for this type. */ 7070 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7071 if (curr_blks == 0) { 7072 /* 7073 * The GET_ALLOCATED mailbox does not return the size, 7074 * just the count. The size should be just the size 7075 * stored in the current allocated block and all sizes 7076 * for an extent type are the same so set the return 7077 * value now. 7078 */ 7079 *extnt_size = rsrc_blk->rsrc_size; 7080 } 7081 curr_blks++; 7082 } 7083 7084 /* 7085 * Calculate the size of an embedded mailbox. The uint32_t 7086 * accounts for extents-specific word. 7087 */ 7088 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7089 sizeof(uint32_t); 7090 7091 /* 7092 * Presume the allocation and response will fit into an embedded 7093 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7094 */ 7095 emb = LPFC_SLI4_MBX_EMBED; 7096 req_len = emb_len; 7097 if (req_len > emb_len) { 7098 req_len = curr_blks * sizeof(uint16_t) + 7099 sizeof(union lpfc_sli4_cfg_shdr) + 7100 sizeof(uint32_t); 7101 emb = LPFC_SLI4_MBX_NEMBED; 7102 } 7103 7104 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7105 if (!mbox) 7106 return -ENOMEM; 7107 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7108 7109 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7110 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7111 req_len, emb); 7112 if (alloc_len < req_len) { 7113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7114 "2983 Allocated DMA memory size (x%x) is " 7115 "less than the requested DMA memory " 7116 "size (x%x)\n", alloc_len, req_len); 7117 rc = -ENOMEM; 7118 goto err_exit; 7119 } 7120 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7121 if (unlikely(rc)) { 7122 rc = -EIO; 7123 goto err_exit; 7124 } 7125 7126 if (!phba->sli4_hba.intr_enable) 7127 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7128 else { 7129 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7130 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7131 } 7132 7133 if (unlikely(rc)) { 7134 rc = -EIO; 7135 goto err_exit; 7136 } 7137 7138 /* 7139 * Figure out where the response is located. Then get local pointers 7140 * to the response data. The port does not guarantee to respond to 7141 * all extents counts request so update the local variable with the 7142 * allocated count from the port. 7143 */ 7144 if (emb == LPFC_SLI4_MBX_EMBED) { 7145 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7146 shdr = &rsrc_ext->header.cfg_shdr; 7147 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7148 } else { 7149 virtaddr = mbox->sge_array->addr[0]; 7150 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7151 shdr = &n_rsrc->cfg_shdr; 7152 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7153 } 7154 7155 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7157 "2984 Failed to read allocated resources " 7158 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7159 type, 7160 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7161 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7162 rc = -EIO; 7163 goto err_exit; 7164 } 7165 err_exit: 7166 lpfc_sli4_mbox_cmd_free(phba, mbox); 7167 return rc; 7168 } 7169 7170 /** 7171 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7172 * @phba: pointer to lpfc hba data structure. 7173 * @sgl_list: linked link of sgl buffers to post 7174 * @cnt: number of linked list buffers 7175 * 7176 * This routine walks the list of buffers that have been allocated and 7177 * repost them to the port by using SGL block post. This is needed after a 7178 * pci_function_reset/warm_start or start. It attempts to construct blocks 7179 * of buffer sgls which contains contiguous xris and uses the non-embedded 7180 * SGL block post mailbox commands to post them to the port. For single 7181 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7182 * mailbox command for posting. 7183 * 7184 * Returns: 0 = success, non-zero failure. 7185 **/ 7186 static int 7187 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7188 struct list_head *sgl_list, int cnt) 7189 { 7190 struct lpfc_sglq *sglq_entry = NULL; 7191 struct lpfc_sglq *sglq_entry_next = NULL; 7192 struct lpfc_sglq *sglq_entry_first = NULL; 7193 int status, total_cnt; 7194 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7195 int last_xritag = NO_XRI; 7196 LIST_HEAD(prep_sgl_list); 7197 LIST_HEAD(blck_sgl_list); 7198 LIST_HEAD(allc_sgl_list); 7199 LIST_HEAD(post_sgl_list); 7200 LIST_HEAD(free_sgl_list); 7201 7202 spin_lock_irq(&phba->hbalock); 7203 spin_lock(&phba->sli4_hba.sgl_list_lock); 7204 list_splice_init(sgl_list, &allc_sgl_list); 7205 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7206 spin_unlock_irq(&phba->hbalock); 7207 7208 total_cnt = cnt; 7209 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7210 &allc_sgl_list, list) { 7211 list_del_init(&sglq_entry->list); 7212 block_cnt++; 7213 if ((last_xritag != NO_XRI) && 7214 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7215 /* a hole in xri block, form a sgl posting block */ 7216 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7217 post_cnt = block_cnt - 1; 7218 /* prepare list for next posting block */ 7219 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7220 block_cnt = 1; 7221 } else { 7222 /* prepare list for next posting block */ 7223 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7224 /* enough sgls for non-embed sgl mbox command */ 7225 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7226 list_splice_init(&prep_sgl_list, 7227 &blck_sgl_list); 7228 post_cnt = block_cnt; 7229 block_cnt = 0; 7230 } 7231 } 7232 num_posted++; 7233 7234 /* keep track of last sgl's xritag */ 7235 last_xritag = sglq_entry->sli4_xritag; 7236 7237 /* end of repost sgl list condition for buffers */ 7238 if (num_posted == total_cnt) { 7239 if (post_cnt == 0) { 7240 list_splice_init(&prep_sgl_list, 7241 &blck_sgl_list); 7242 post_cnt = block_cnt; 7243 } else if (block_cnt == 1) { 7244 status = lpfc_sli4_post_sgl(phba, 7245 sglq_entry->phys, 0, 7246 sglq_entry->sli4_xritag); 7247 if (!status) { 7248 /* successful, put sgl to posted list */ 7249 list_add_tail(&sglq_entry->list, 7250 &post_sgl_list); 7251 } else { 7252 /* Failure, put sgl to free list */ 7253 lpfc_printf_log(phba, KERN_WARNING, 7254 LOG_SLI, 7255 "3159 Failed to post " 7256 "sgl, xritag:x%x\n", 7257 sglq_entry->sli4_xritag); 7258 list_add_tail(&sglq_entry->list, 7259 &free_sgl_list); 7260 total_cnt--; 7261 } 7262 } 7263 } 7264 7265 /* continue until a nembed page worth of sgls */ 7266 if (post_cnt == 0) 7267 continue; 7268 7269 /* post the buffer list sgls as a block */ 7270 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7271 post_cnt); 7272 7273 if (!status) { 7274 /* success, put sgl list to posted sgl list */ 7275 list_splice_init(&blck_sgl_list, &post_sgl_list); 7276 } else { 7277 /* Failure, put sgl list to free sgl list */ 7278 sglq_entry_first = list_first_entry(&blck_sgl_list, 7279 struct lpfc_sglq, 7280 list); 7281 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7282 "3160 Failed to post sgl-list, " 7283 "xritag:x%x-x%x\n", 7284 sglq_entry_first->sli4_xritag, 7285 (sglq_entry_first->sli4_xritag + 7286 post_cnt - 1)); 7287 list_splice_init(&blck_sgl_list, &free_sgl_list); 7288 total_cnt -= post_cnt; 7289 } 7290 7291 /* don't reset xirtag due to hole in xri block */ 7292 if (block_cnt == 0) 7293 last_xritag = NO_XRI; 7294 7295 /* reset sgl post count for next round of posting */ 7296 post_cnt = 0; 7297 } 7298 7299 /* free the sgls failed to post */ 7300 lpfc_free_sgl_list(phba, &free_sgl_list); 7301 7302 /* push sgls posted to the available list */ 7303 if (!list_empty(&post_sgl_list)) { 7304 spin_lock_irq(&phba->hbalock); 7305 spin_lock(&phba->sli4_hba.sgl_list_lock); 7306 list_splice_init(&post_sgl_list, sgl_list); 7307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7308 spin_unlock_irq(&phba->hbalock); 7309 } else { 7310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7311 "3161 Failure to post sgl to port.\n"); 7312 return -EIO; 7313 } 7314 7315 /* return the number of XRIs actually posted */ 7316 return total_cnt; 7317 } 7318 7319 /** 7320 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7321 * @phba: pointer to lpfc hba data structure. 7322 * 7323 * This routine walks the list of nvme buffers that have been allocated and 7324 * repost them to the port by using SGL block post. This is needed after a 7325 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7326 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7327 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7328 * 7329 * Returns: 0 = success, non-zero failure. 7330 **/ 7331 static int 7332 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7333 { 7334 LIST_HEAD(post_nblist); 7335 int num_posted, rc = 0; 7336 7337 /* get all NVME buffers need to repost to a local list */ 7338 lpfc_io_buf_flush(phba, &post_nblist); 7339 7340 /* post the list of nvme buffer sgls to port if available */ 7341 if (!list_empty(&post_nblist)) { 7342 num_posted = lpfc_sli4_post_io_sgl_list( 7343 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7344 /* failed to post any nvme buffer, return error */ 7345 if (num_posted == 0) 7346 rc = -EIO; 7347 } 7348 return rc; 7349 } 7350 7351 static void 7352 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7353 { 7354 uint32_t len; 7355 7356 len = sizeof(struct lpfc_mbx_set_host_data) - 7357 sizeof(struct lpfc_sli4_cfg_mhdr); 7358 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7359 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7360 LPFC_SLI4_MBX_EMBED); 7361 7362 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7363 mbox->u.mqe.un.set_host_data.param_len = 7364 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7365 snprintf(mbox->u.mqe.un.set_host_data.data, 7366 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7367 "Linux %s v"LPFC_DRIVER_VERSION, 7368 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7369 } 7370 7371 int 7372 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7373 struct lpfc_queue *drq, int count, int idx) 7374 { 7375 int rc, i; 7376 struct lpfc_rqe hrqe; 7377 struct lpfc_rqe drqe; 7378 struct lpfc_rqb *rqbp; 7379 unsigned long flags; 7380 struct rqb_dmabuf *rqb_buffer; 7381 LIST_HEAD(rqb_buf_list); 7382 7383 rqbp = hrq->rqbp; 7384 for (i = 0; i < count; i++) { 7385 spin_lock_irqsave(&phba->hbalock, flags); 7386 /* IF RQ is already full, don't bother */ 7387 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7388 spin_unlock_irqrestore(&phba->hbalock, flags); 7389 break; 7390 } 7391 spin_unlock_irqrestore(&phba->hbalock, flags); 7392 7393 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7394 if (!rqb_buffer) 7395 break; 7396 rqb_buffer->hrq = hrq; 7397 rqb_buffer->drq = drq; 7398 rqb_buffer->idx = idx; 7399 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7400 } 7401 7402 spin_lock_irqsave(&phba->hbalock, flags); 7403 while (!list_empty(&rqb_buf_list)) { 7404 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7405 hbuf.list); 7406 7407 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7408 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7409 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7410 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7411 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7412 if (rc < 0) { 7413 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7414 "6421 Cannot post to HRQ %d: %x %x %x " 7415 "DRQ %x %x\n", 7416 hrq->queue_id, 7417 hrq->host_index, 7418 hrq->hba_index, 7419 hrq->entry_count, 7420 drq->host_index, 7421 drq->hba_index); 7422 rqbp->rqb_free_buffer(phba, rqb_buffer); 7423 } else { 7424 list_add_tail(&rqb_buffer->hbuf.list, 7425 &rqbp->rqb_buffer_list); 7426 rqbp->buffer_count++; 7427 } 7428 } 7429 spin_unlock_irqrestore(&phba->hbalock, flags); 7430 return 1; 7431 } 7432 7433 /** 7434 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7435 * @phba: pointer to lpfc hba data structure. 7436 * 7437 * This routine initializes the per-cq idle_stat to dynamically dictate 7438 * polling decisions. 7439 * 7440 * Return codes: 7441 * None 7442 **/ 7443 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7444 { 7445 int i; 7446 struct lpfc_sli4_hdw_queue *hdwq; 7447 struct lpfc_queue *cq; 7448 struct lpfc_idle_stat *idle_stat; 7449 u64 wall; 7450 7451 for_each_present_cpu(i) { 7452 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7453 cq = hdwq->io_cq; 7454 7455 /* Skip if we've already handled this cq's primary CPU */ 7456 if (cq->chann != i) 7457 continue; 7458 7459 idle_stat = &phba->sli4_hba.idle_stat[i]; 7460 7461 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7462 idle_stat->prev_wall = wall; 7463 7464 if (phba->nvmet_support) 7465 cq->poll_mode = LPFC_QUEUE_WORK; 7466 else 7467 cq->poll_mode = LPFC_IRQ_POLL; 7468 } 7469 7470 if (!phba->nvmet_support) 7471 schedule_delayed_work(&phba->idle_stat_delay_work, 7472 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7473 } 7474 7475 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7476 { 7477 uint32_t if_type; 7478 7479 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7480 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7481 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7482 struct lpfc_register reg_data; 7483 7484 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7485 ®_data.word0)) 7486 return; 7487 7488 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7490 "2904 Firmware Dump Image Present" 7491 " on Adapter"); 7492 } 7493 } 7494 7495 /** 7496 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7497 * @phba: Pointer to HBA context object. 7498 * 7499 * This function is the main SLI4 device initialization PCI function. This 7500 * function is called by the HBA initialization code, HBA reset code and 7501 * HBA error attention handler code. Caller is not required to hold any 7502 * locks. 7503 **/ 7504 int 7505 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7506 { 7507 int rc, i, cnt, len, dd; 7508 LPFC_MBOXQ_t *mboxq; 7509 struct lpfc_mqe *mqe; 7510 uint8_t *vpd; 7511 uint32_t vpd_size; 7512 uint32_t ftr_rsp = 0; 7513 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7514 struct lpfc_vport *vport = phba->pport; 7515 struct lpfc_dmabuf *mp; 7516 struct lpfc_rqb *rqbp; 7517 7518 /* Perform a PCI function reset to start from clean */ 7519 rc = lpfc_pci_function_reset(phba); 7520 if (unlikely(rc)) 7521 return -ENODEV; 7522 7523 /* Check the HBA Host Status Register for readyness */ 7524 rc = lpfc_sli4_post_status_check(phba); 7525 if (unlikely(rc)) 7526 return -ENODEV; 7527 else { 7528 spin_lock_irq(&phba->hbalock); 7529 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7530 spin_unlock_irq(&phba->hbalock); 7531 } 7532 7533 lpfc_sli4_dip(phba); 7534 7535 /* 7536 * Allocate a single mailbox container for initializing the 7537 * port. 7538 */ 7539 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7540 if (!mboxq) 7541 return -ENOMEM; 7542 7543 /* Issue READ_REV to collect vpd and FW information. */ 7544 vpd_size = SLI4_PAGE_SIZE; 7545 vpd = kzalloc(vpd_size, GFP_KERNEL); 7546 if (!vpd) { 7547 rc = -ENOMEM; 7548 goto out_free_mbox; 7549 } 7550 7551 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7552 if (unlikely(rc)) { 7553 kfree(vpd); 7554 goto out_free_mbox; 7555 } 7556 7557 mqe = &mboxq->u.mqe; 7558 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7559 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7560 phba->hba_flag |= HBA_FCOE_MODE; 7561 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7562 } else { 7563 phba->hba_flag &= ~HBA_FCOE_MODE; 7564 } 7565 7566 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7567 LPFC_DCBX_CEE_MODE) 7568 phba->hba_flag |= HBA_FIP_SUPPORT; 7569 else 7570 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7571 7572 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7573 7574 if (phba->sli_rev != LPFC_SLI_REV4) { 7575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7576 "0376 READ_REV Error. SLI Level %d " 7577 "FCoE enabled %d\n", 7578 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7579 rc = -EIO; 7580 kfree(vpd); 7581 goto out_free_mbox; 7582 } 7583 7584 /* 7585 * Continue initialization with default values even if driver failed 7586 * to read FCoE param config regions, only read parameters if the 7587 * board is FCoE 7588 */ 7589 if (phba->hba_flag & HBA_FCOE_MODE && 7590 lpfc_sli4_read_fcoe_params(phba)) 7591 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7592 "2570 Failed to read FCoE parameters\n"); 7593 7594 /* 7595 * Retrieve sli4 device physical port name, failure of doing it 7596 * is considered as non-fatal. 7597 */ 7598 rc = lpfc_sli4_retrieve_pport_name(phba); 7599 if (!rc) 7600 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7601 "3080 Successful retrieving SLI4 device " 7602 "physical port name: %s.\n", phba->Port); 7603 7604 rc = lpfc_sli4_get_ctl_attr(phba); 7605 if (!rc) 7606 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7607 "8351 Successful retrieving SLI4 device " 7608 "CTL ATTR\n"); 7609 7610 /* 7611 * Evaluate the read rev and vpd data. Populate the driver 7612 * state with the results. If this routine fails, the failure 7613 * is not fatal as the driver will use generic values. 7614 */ 7615 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7616 if (unlikely(!rc)) { 7617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7618 "0377 Error %d parsing vpd. " 7619 "Using defaults.\n", rc); 7620 rc = 0; 7621 } 7622 kfree(vpd); 7623 7624 /* Save information as VPD data */ 7625 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7626 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7627 7628 /* 7629 * This is because first G7 ASIC doesn't support the standard 7630 * 0x5a NVME cmd descriptor type/subtype 7631 */ 7632 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7633 LPFC_SLI_INTF_IF_TYPE_6) && 7634 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7635 (phba->vpd.rev.smRev == 0) && 7636 (phba->cfg_nvme_embed_cmd == 1)) 7637 phba->cfg_nvme_embed_cmd = 0; 7638 7639 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7640 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7641 &mqe->un.read_rev); 7642 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7643 &mqe->un.read_rev); 7644 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7645 &mqe->un.read_rev); 7646 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7647 &mqe->un.read_rev); 7648 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7649 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7650 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7651 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7652 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7653 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7654 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7655 "(%d):0380 READ_REV Status x%x " 7656 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7657 mboxq->vport ? mboxq->vport->vpi : 0, 7658 bf_get(lpfc_mqe_status, mqe), 7659 phba->vpd.rev.opFwName, 7660 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7661 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7662 7663 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7664 LPFC_SLI_INTF_IF_TYPE_0) { 7665 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7666 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7667 if (rc == MBX_SUCCESS) { 7668 phba->hba_flag |= HBA_RECOVERABLE_UE; 7669 /* Set 1Sec interval to detect UE */ 7670 phba->eratt_poll_interval = 1; 7671 phba->sli4_hba.ue_to_sr = bf_get( 7672 lpfc_mbx_set_feature_UESR, 7673 &mboxq->u.mqe.un.set_feature); 7674 phba->sli4_hba.ue_to_rp = bf_get( 7675 lpfc_mbx_set_feature_UERP, 7676 &mboxq->u.mqe.un.set_feature); 7677 } 7678 } 7679 7680 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7681 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7682 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7683 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7684 if (rc != MBX_SUCCESS) 7685 phba->mds_diags_support = 0; 7686 } 7687 7688 /* 7689 * Discover the port's supported feature set and match it against the 7690 * hosts requests. 7691 */ 7692 lpfc_request_features(phba, mboxq); 7693 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7694 if (unlikely(rc)) { 7695 rc = -EIO; 7696 goto out_free_mbox; 7697 } 7698 7699 /* 7700 * The port must support FCP initiator mode as this is the 7701 * only mode running in the host. 7702 */ 7703 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7704 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7705 "0378 No support for fcpi mode.\n"); 7706 ftr_rsp++; 7707 } 7708 7709 /* Performance Hints are ONLY for FCoE */ 7710 if (phba->hba_flag & HBA_FCOE_MODE) { 7711 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7712 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7713 else 7714 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7715 } 7716 7717 /* 7718 * If the port cannot support the host's requested features 7719 * then turn off the global config parameters to disable the 7720 * feature in the driver. This is not a fatal error. 7721 */ 7722 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7723 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7724 phba->cfg_enable_bg = 0; 7725 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7726 ftr_rsp++; 7727 } 7728 } 7729 7730 if (phba->max_vpi && phba->cfg_enable_npiv && 7731 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7732 ftr_rsp++; 7733 7734 if (ftr_rsp) { 7735 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7736 "0379 Feature Mismatch Data: x%08x %08x " 7737 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7738 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7739 phba->cfg_enable_npiv, phba->max_vpi); 7740 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7741 phba->cfg_enable_bg = 0; 7742 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7743 phba->cfg_enable_npiv = 0; 7744 } 7745 7746 /* These SLI3 features are assumed in SLI4 */ 7747 spin_lock_irq(&phba->hbalock); 7748 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7749 spin_unlock_irq(&phba->hbalock); 7750 7751 /* Always try to enable dual dump feature if we can */ 7752 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7754 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7755 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7757 "6448 Dual Dump is enabled\n"); 7758 else 7759 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7760 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7761 "rc:x%x dd:x%x\n", 7762 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7763 lpfc_sli_config_mbox_subsys_get( 7764 phba, mboxq), 7765 lpfc_sli_config_mbox_opcode_get( 7766 phba, mboxq), 7767 rc, dd); 7768 /* 7769 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7770 * calls depends on these resources to complete port setup. 7771 */ 7772 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7773 if (rc) { 7774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7775 "2920 Failed to alloc Resource IDs " 7776 "rc = x%x\n", rc); 7777 goto out_free_mbox; 7778 } 7779 7780 lpfc_set_host_data(phba, mboxq); 7781 7782 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7783 if (rc) { 7784 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7785 "2134 Failed to set host os driver version %x", 7786 rc); 7787 } 7788 7789 /* Read the port's service parameters. */ 7790 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7791 if (rc) { 7792 phba->link_state = LPFC_HBA_ERROR; 7793 rc = -ENOMEM; 7794 goto out_free_mbox; 7795 } 7796 7797 mboxq->vport = vport; 7798 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7799 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7800 if (rc == MBX_SUCCESS) { 7801 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7802 rc = 0; 7803 } 7804 7805 /* 7806 * This memory was allocated by the lpfc_read_sparam routine. Release 7807 * it to the mbuf pool. 7808 */ 7809 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7810 kfree(mp); 7811 mboxq->ctx_buf = NULL; 7812 if (unlikely(rc)) { 7813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7814 "0382 READ_SPARAM command failed " 7815 "status %d, mbxStatus x%x\n", 7816 rc, bf_get(lpfc_mqe_status, mqe)); 7817 phba->link_state = LPFC_HBA_ERROR; 7818 rc = -EIO; 7819 goto out_free_mbox; 7820 } 7821 7822 lpfc_update_vport_wwn(vport); 7823 7824 /* Update the fc_host data structures with new wwn. */ 7825 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7826 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7827 7828 /* Create all the SLI4 queues */ 7829 rc = lpfc_sli4_queue_create(phba); 7830 if (rc) { 7831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7832 "3089 Failed to allocate queues\n"); 7833 rc = -ENODEV; 7834 goto out_free_mbox; 7835 } 7836 /* Set up all the queues to the device */ 7837 rc = lpfc_sli4_queue_setup(phba); 7838 if (unlikely(rc)) { 7839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7840 "0381 Error %d during queue setup.\n ", rc); 7841 goto out_stop_timers; 7842 } 7843 /* Initialize the driver internal SLI layer lists. */ 7844 lpfc_sli4_setup(phba); 7845 lpfc_sli4_queue_init(phba); 7846 7847 /* update host els xri-sgl sizes and mappings */ 7848 rc = lpfc_sli4_els_sgl_update(phba); 7849 if (unlikely(rc)) { 7850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7851 "1400 Failed to update xri-sgl size and " 7852 "mapping: %d\n", rc); 7853 goto out_destroy_queue; 7854 } 7855 7856 /* register the els sgl pool to the port */ 7857 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7858 phba->sli4_hba.els_xri_cnt); 7859 if (unlikely(rc < 0)) { 7860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7861 "0582 Error %d during els sgl post " 7862 "operation\n", rc); 7863 rc = -ENODEV; 7864 goto out_destroy_queue; 7865 } 7866 phba->sli4_hba.els_xri_cnt = rc; 7867 7868 if (phba->nvmet_support) { 7869 /* update host nvmet xri-sgl sizes and mappings */ 7870 rc = lpfc_sli4_nvmet_sgl_update(phba); 7871 if (unlikely(rc)) { 7872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7873 "6308 Failed to update nvmet-sgl size " 7874 "and mapping: %d\n", rc); 7875 goto out_destroy_queue; 7876 } 7877 7878 /* register the nvmet sgl pool to the port */ 7879 rc = lpfc_sli4_repost_sgl_list( 7880 phba, 7881 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7882 phba->sli4_hba.nvmet_xri_cnt); 7883 if (unlikely(rc < 0)) { 7884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7885 "3117 Error %d during nvmet " 7886 "sgl post\n", rc); 7887 rc = -ENODEV; 7888 goto out_destroy_queue; 7889 } 7890 phba->sli4_hba.nvmet_xri_cnt = rc; 7891 7892 /* We allocate an iocbq for every receive context SGL. 7893 * The additional allocation is for abort and ls handling. 7894 */ 7895 cnt = phba->sli4_hba.nvmet_xri_cnt + 7896 phba->sli4_hba.max_cfg_param.max_xri; 7897 } else { 7898 /* update host common xri-sgl sizes and mappings */ 7899 rc = lpfc_sli4_io_sgl_update(phba); 7900 if (unlikely(rc)) { 7901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7902 "6082 Failed to update nvme-sgl size " 7903 "and mapping: %d\n", rc); 7904 goto out_destroy_queue; 7905 } 7906 7907 /* register the allocated common sgl pool to the port */ 7908 rc = lpfc_sli4_repost_io_sgl_list(phba); 7909 if (unlikely(rc)) { 7910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7911 "6116 Error %d during nvme sgl post " 7912 "operation\n", rc); 7913 /* Some NVME buffers were moved to abort nvme list */ 7914 /* A pci function reset will repost them */ 7915 rc = -ENODEV; 7916 goto out_destroy_queue; 7917 } 7918 /* Each lpfc_io_buf job structure has an iocbq element. 7919 * This cnt provides for abort, els, ct and ls requests. 7920 */ 7921 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7922 } 7923 7924 if (!phba->sli.iocbq_lookup) { 7925 /* Initialize and populate the iocb list per host */ 7926 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7927 "2821 initialize iocb list with %d entries\n", 7928 cnt); 7929 rc = lpfc_init_iocb_list(phba, cnt); 7930 if (rc) { 7931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7932 "1413 Failed to init iocb list.\n"); 7933 goto out_destroy_queue; 7934 } 7935 } 7936 7937 if (phba->nvmet_support) 7938 lpfc_nvmet_create_targetport(phba); 7939 7940 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7941 /* Post initial buffers to all RQs created */ 7942 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7943 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7944 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7945 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7946 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7947 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7948 rqbp->buffer_count = 0; 7949 7950 lpfc_post_rq_buffer( 7951 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7952 phba->sli4_hba.nvmet_mrq_data[i], 7953 phba->cfg_nvmet_mrq_post, i); 7954 } 7955 } 7956 7957 /* Post the rpi header region to the device. */ 7958 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7959 if (unlikely(rc)) { 7960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7961 "0393 Error %d during rpi post operation\n", 7962 rc); 7963 rc = -ENODEV; 7964 goto out_destroy_queue; 7965 } 7966 lpfc_sli4_node_prep(phba); 7967 7968 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7969 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7970 /* 7971 * The FC Port needs to register FCFI (index 0) 7972 */ 7973 lpfc_reg_fcfi(phba, mboxq); 7974 mboxq->vport = phba->pport; 7975 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7976 if (rc != MBX_SUCCESS) 7977 goto out_unset_queue; 7978 rc = 0; 7979 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7980 &mboxq->u.mqe.un.reg_fcfi); 7981 } else { 7982 /* We are a NVME Target mode with MRQ > 1 */ 7983 7984 /* First register the FCFI */ 7985 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7986 mboxq->vport = phba->pport; 7987 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7988 if (rc != MBX_SUCCESS) 7989 goto out_unset_queue; 7990 rc = 0; 7991 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7992 &mboxq->u.mqe.un.reg_fcfi_mrq); 7993 7994 /* Next register the MRQs */ 7995 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7996 mboxq->vport = phba->pport; 7997 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7998 if (rc != MBX_SUCCESS) 7999 goto out_unset_queue; 8000 rc = 0; 8001 } 8002 /* Check if the port is configured to be disabled */ 8003 lpfc_sli_read_link_ste(phba); 8004 } 8005 8006 /* Don't post more new bufs if repost already recovered 8007 * the nvme sgls. 8008 */ 8009 if (phba->nvmet_support == 0) { 8010 if (phba->sli4_hba.io_xri_cnt == 0) { 8011 len = lpfc_new_io_buf( 8012 phba, phba->sli4_hba.io_xri_max); 8013 if (len == 0) { 8014 rc = -ENOMEM; 8015 goto out_unset_queue; 8016 } 8017 8018 if (phba->cfg_xri_rebalancing) 8019 lpfc_create_multixri_pools(phba); 8020 } 8021 } else { 8022 phba->cfg_xri_rebalancing = 0; 8023 } 8024 8025 /* Allow asynchronous mailbox command to go through */ 8026 spin_lock_irq(&phba->hbalock); 8027 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8028 spin_unlock_irq(&phba->hbalock); 8029 8030 /* Post receive buffers to the device */ 8031 lpfc_sli4_rb_setup(phba); 8032 8033 /* Reset HBA FCF states after HBA reset */ 8034 phba->fcf.fcf_flag = 0; 8035 phba->fcf.current_rec.flag = 0; 8036 8037 /* Start the ELS watchdog timer */ 8038 mod_timer(&vport->els_tmofunc, 8039 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8040 8041 /* Start heart beat timer */ 8042 mod_timer(&phba->hb_tmofunc, 8043 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8044 phba->hb_outstanding = 0; 8045 phba->last_completion_time = jiffies; 8046 8047 /* start eq_delay heartbeat */ 8048 if (phba->cfg_auto_imax) 8049 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8050 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8051 8052 /* start per phba idle_stat_delay heartbeat */ 8053 lpfc_init_idle_stat_hb(phba); 8054 8055 /* Start error attention (ERATT) polling timer */ 8056 mod_timer(&phba->eratt_poll, 8057 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8058 8059 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8060 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8061 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8062 if (!rc) { 8063 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8064 "2829 This device supports " 8065 "Advanced Error Reporting (AER)\n"); 8066 spin_lock_irq(&phba->hbalock); 8067 phba->hba_flag |= HBA_AER_ENABLED; 8068 spin_unlock_irq(&phba->hbalock); 8069 } else { 8070 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8071 "2830 This device does not support " 8072 "Advanced Error Reporting (AER)\n"); 8073 phba->cfg_aer_support = 0; 8074 } 8075 rc = 0; 8076 } 8077 8078 /* 8079 * The port is ready, set the host's link state to LINK_DOWN 8080 * in preparation for link interrupts. 8081 */ 8082 spin_lock_irq(&phba->hbalock); 8083 phba->link_state = LPFC_LINK_DOWN; 8084 8085 /* Check if physical ports are trunked */ 8086 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8087 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8088 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8089 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8090 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8091 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8092 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8093 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8094 spin_unlock_irq(&phba->hbalock); 8095 8096 /* Arm the CQs and then EQs on device */ 8097 lpfc_sli4_arm_cqeq_intr(phba); 8098 8099 /* Indicate device interrupt mode */ 8100 phba->sli4_hba.intr_enable = 1; 8101 8102 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8103 (phba->hba_flag & LINK_DISABLED)) { 8104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8105 "3103 Adapter Link is disabled.\n"); 8106 lpfc_down_link(phba, mboxq); 8107 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8108 if (rc != MBX_SUCCESS) { 8109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8110 "3104 Adapter failed to issue " 8111 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8112 goto out_io_buff_free; 8113 } 8114 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8115 /* don't perform init_link on SLI4 FC port loopback test */ 8116 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8117 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8118 if (rc) 8119 goto out_io_buff_free; 8120 } 8121 } 8122 mempool_free(mboxq, phba->mbox_mem_pool); 8123 return rc; 8124 out_io_buff_free: 8125 /* Free allocated IO Buffers */ 8126 lpfc_io_free(phba); 8127 out_unset_queue: 8128 /* Unset all the queues set up in this routine when error out */ 8129 lpfc_sli4_queue_unset(phba); 8130 out_destroy_queue: 8131 lpfc_free_iocb_list(phba); 8132 lpfc_sli4_queue_destroy(phba); 8133 out_stop_timers: 8134 lpfc_stop_hba_timers(phba); 8135 out_free_mbox: 8136 mempool_free(mboxq, phba->mbox_mem_pool); 8137 return rc; 8138 } 8139 8140 /** 8141 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8142 * @t: Context to fetch pointer to hba structure from. 8143 * 8144 * This is the callback function for mailbox timer. The mailbox 8145 * timer is armed when a new mailbox command is issued and the timer 8146 * is deleted when the mailbox complete. The function is called by 8147 * the kernel timer code when a mailbox does not complete within 8148 * expected time. This function wakes up the worker thread to 8149 * process the mailbox timeout and returns. All the processing is 8150 * done by the worker thread function lpfc_mbox_timeout_handler. 8151 **/ 8152 void 8153 lpfc_mbox_timeout(struct timer_list *t) 8154 { 8155 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8156 unsigned long iflag; 8157 uint32_t tmo_posted; 8158 8159 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8160 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8161 if (!tmo_posted) 8162 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8163 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8164 8165 if (!tmo_posted) 8166 lpfc_worker_wake_up(phba); 8167 return; 8168 } 8169 8170 /** 8171 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8172 * are pending 8173 * @phba: Pointer to HBA context object. 8174 * 8175 * This function checks if any mailbox completions are present on the mailbox 8176 * completion queue. 8177 **/ 8178 static bool 8179 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8180 { 8181 8182 uint32_t idx; 8183 struct lpfc_queue *mcq; 8184 struct lpfc_mcqe *mcqe; 8185 bool pending_completions = false; 8186 uint8_t qe_valid; 8187 8188 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8189 return false; 8190 8191 /* Check for completions on mailbox completion queue */ 8192 8193 mcq = phba->sli4_hba.mbx_cq; 8194 idx = mcq->hba_index; 8195 qe_valid = mcq->qe_valid; 8196 while (bf_get_le32(lpfc_cqe_valid, 8197 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8198 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8199 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8200 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8201 pending_completions = true; 8202 break; 8203 } 8204 idx = (idx + 1) % mcq->entry_count; 8205 if (mcq->hba_index == idx) 8206 break; 8207 8208 /* if the index wrapped around, toggle the valid bit */ 8209 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8210 qe_valid = (qe_valid) ? 0 : 1; 8211 } 8212 return pending_completions; 8213 8214 } 8215 8216 /** 8217 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8218 * that were missed. 8219 * @phba: Pointer to HBA context object. 8220 * 8221 * For sli4, it is possible to miss an interrupt. As such mbox completions 8222 * maybe missed causing erroneous mailbox timeouts to occur. This function 8223 * checks to see if mbox completions are on the mailbox completion queue 8224 * and will process all the completions associated with the eq for the 8225 * mailbox completion queue. 8226 **/ 8227 static bool 8228 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8229 { 8230 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8231 uint32_t eqidx; 8232 struct lpfc_queue *fpeq = NULL; 8233 struct lpfc_queue *eq; 8234 bool mbox_pending; 8235 8236 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8237 return false; 8238 8239 /* Find the EQ associated with the mbox CQ */ 8240 if (sli4_hba->hdwq) { 8241 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8242 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8243 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8244 fpeq = eq; 8245 break; 8246 } 8247 } 8248 } 8249 if (!fpeq) 8250 return false; 8251 8252 /* Turn off interrupts from this EQ */ 8253 8254 sli4_hba->sli4_eq_clr_intr(fpeq); 8255 8256 /* Check to see if a mbox completion is pending */ 8257 8258 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8259 8260 /* 8261 * If a mbox completion is pending, process all the events on EQ 8262 * associated with the mbox completion queue (this could include 8263 * mailbox commands, async events, els commands, receive queue data 8264 * and fcp commands) 8265 */ 8266 8267 if (mbox_pending) 8268 /* process and rearm the EQ */ 8269 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8270 else 8271 /* Always clear and re-arm the EQ */ 8272 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8273 8274 return mbox_pending; 8275 8276 } 8277 8278 /** 8279 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8280 * @phba: Pointer to HBA context object. 8281 * 8282 * This function is called from worker thread when a mailbox command times out. 8283 * The caller is not required to hold any locks. This function will reset the 8284 * HBA and recover all the pending commands. 8285 **/ 8286 void 8287 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8288 { 8289 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8290 MAILBOX_t *mb = NULL; 8291 8292 struct lpfc_sli *psli = &phba->sli; 8293 8294 /* If the mailbox completed, process the completion and return */ 8295 if (lpfc_sli4_process_missed_mbox_completions(phba)) 8296 return; 8297 8298 if (pmbox != NULL) 8299 mb = &pmbox->u.mb; 8300 /* Check the pmbox pointer first. There is a race condition 8301 * between the mbox timeout handler getting executed in the 8302 * worklist and the mailbox actually completing. When this 8303 * race condition occurs, the mbox_active will be NULL. 8304 */ 8305 spin_lock_irq(&phba->hbalock); 8306 if (pmbox == NULL) { 8307 lpfc_printf_log(phba, KERN_WARNING, 8308 LOG_MBOX | LOG_SLI, 8309 "0353 Active Mailbox cleared - mailbox timeout " 8310 "exiting\n"); 8311 spin_unlock_irq(&phba->hbalock); 8312 return; 8313 } 8314 8315 /* Mbox cmd <mbxCommand> timeout */ 8316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8317 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8318 mb->mbxCommand, 8319 phba->pport->port_state, 8320 phba->sli.sli_flag, 8321 phba->sli.mbox_active); 8322 spin_unlock_irq(&phba->hbalock); 8323 8324 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8325 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8326 * it to fail all outstanding SCSI IO. 8327 */ 8328 spin_lock_irq(&phba->pport->work_port_lock); 8329 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8330 spin_unlock_irq(&phba->pport->work_port_lock); 8331 spin_lock_irq(&phba->hbalock); 8332 phba->link_state = LPFC_LINK_UNKNOWN; 8333 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8334 spin_unlock_irq(&phba->hbalock); 8335 8336 lpfc_sli_abort_fcp_rings(phba); 8337 8338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8339 "0345 Resetting board due to mailbox timeout\n"); 8340 8341 /* Reset the HBA device */ 8342 lpfc_reset_hba(phba); 8343 } 8344 8345 /** 8346 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8347 * @phba: Pointer to HBA context object. 8348 * @pmbox: Pointer to mailbox object. 8349 * @flag: Flag indicating how the mailbox need to be processed. 8350 * 8351 * This function is called by discovery code and HBA management code 8352 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8353 * function gets the hbalock to protect the data structures. 8354 * The mailbox command can be submitted in polling mode, in which case 8355 * this function will wait in a polling loop for the completion of the 8356 * mailbox. 8357 * If the mailbox is submitted in no_wait mode (not polling) the 8358 * function will submit the command and returns immediately without waiting 8359 * for the mailbox completion. The no_wait is supported only when HBA 8360 * is in SLI2/SLI3 mode - interrupts are enabled. 8361 * The SLI interface allows only one mailbox pending at a time. If the 8362 * mailbox is issued in polling mode and there is already a mailbox 8363 * pending, then the function will return an error. If the mailbox is issued 8364 * in NO_WAIT mode and there is a mailbox pending already, the function 8365 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8366 * The sli layer owns the mailbox object until the completion of mailbox 8367 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8368 * return codes the caller owns the mailbox command after the return of 8369 * the function. 8370 **/ 8371 static int 8372 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8373 uint32_t flag) 8374 { 8375 MAILBOX_t *mbx; 8376 struct lpfc_sli *psli = &phba->sli; 8377 uint32_t status, evtctr; 8378 uint32_t ha_copy, hc_copy; 8379 int i; 8380 unsigned long timeout; 8381 unsigned long drvr_flag = 0; 8382 uint32_t word0, ldata; 8383 void __iomem *to_slim; 8384 int processing_queue = 0; 8385 8386 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8387 if (!pmbox) { 8388 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8389 /* processing mbox queue from intr_handler */ 8390 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8391 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8392 return MBX_SUCCESS; 8393 } 8394 processing_queue = 1; 8395 pmbox = lpfc_mbox_get(phba); 8396 if (!pmbox) { 8397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8398 return MBX_SUCCESS; 8399 } 8400 } 8401 8402 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8403 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8404 if(!pmbox->vport) { 8405 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8406 lpfc_printf_log(phba, KERN_ERR, 8407 LOG_MBOX | LOG_VPORT, 8408 "1806 Mbox x%x failed. No vport\n", 8409 pmbox->u.mb.mbxCommand); 8410 dump_stack(); 8411 goto out_not_finished; 8412 } 8413 } 8414 8415 /* If the PCI channel is in offline state, do not post mbox. */ 8416 if (unlikely(pci_channel_offline(phba->pcidev))) { 8417 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8418 goto out_not_finished; 8419 } 8420 8421 /* If HBA has a deferred error attention, fail the iocb. */ 8422 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8423 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8424 goto out_not_finished; 8425 } 8426 8427 psli = &phba->sli; 8428 8429 mbx = &pmbox->u.mb; 8430 status = MBX_SUCCESS; 8431 8432 if (phba->link_state == LPFC_HBA_ERROR) { 8433 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8434 8435 /* Mbox command <mbxCommand> cannot issue */ 8436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8437 "(%d):0311 Mailbox command x%x cannot " 8438 "issue Data: x%x x%x\n", 8439 pmbox->vport ? pmbox->vport->vpi : 0, 8440 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8441 goto out_not_finished; 8442 } 8443 8444 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8445 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8446 !(hc_copy & HC_MBINT_ENA)) { 8447 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8449 "(%d):2528 Mailbox command x%x cannot " 8450 "issue Data: x%x x%x\n", 8451 pmbox->vport ? pmbox->vport->vpi : 0, 8452 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8453 goto out_not_finished; 8454 } 8455 } 8456 8457 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8458 /* Polling for a mbox command when another one is already active 8459 * is not allowed in SLI. Also, the driver must have established 8460 * SLI2 mode to queue and process multiple mbox commands. 8461 */ 8462 8463 if (flag & MBX_POLL) { 8464 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8465 8466 /* Mbox command <mbxCommand> cannot issue */ 8467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8468 "(%d):2529 Mailbox command x%x " 8469 "cannot issue Data: x%x x%x\n", 8470 pmbox->vport ? pmbox->vport->vpi : 0, 8471 pmbox->u.mb.mbxCommand, 8472 psli->sli_flag, flag); 8473 goto out_not_finished; 8474 } 8475 8476 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8478 /* Mbox command <mbxCommand> cannot issue */ 8479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8480 "(%d):2530 Mailbox command x%x " 8481 "cannot issue Data: x%x x%x\n", 8482 pmbox->vport ? pmbox->vport->vpi : 0, 8483 pmbox->u.mb.mbxCommand, 8484 psli->sli_flag, flag); 8485 goto out_not_finished; 8486 } 8487 8488 /* Another mailbox command is still being processed, queue this 8489 * command to be processed later. 8490 */ 8491 lpfc_mbox_put(phba, pmbox); 8492 8493 /* Mbox cmd issue - BUSY */ 8494 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8495 "(%d):0308 Mbox cmd issue - BUSY Data: " 8496 "x%x x%x x%x x%x\n", 8497 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8498 mbx->mbxCommand, 8499 phba->pport ? phba->pport->port_state : 0xff, 8500 psli->sli_flag, flag); 8501 8502 psli->slistat.mbox_busy++; 8503 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8504 8505 if (pmbox->vport) { 8506 lpfc_debugfs_disc_trc(pmbox->vport, 8507 LPFC_DISC_TRC_MBOX_VPORT, 8508 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8509 (uint32_t)mbx->mbxCommand, 8510 mbx->un.varWords[0], mbx->un.varWords[1]); 8511 } 8512 else { 8513 lpfc_debugfs_disc_trc(phba->pport, 8514 LPFC_DISC_TRC_MBOX, 8515 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8516 (uint32_t)mbx->mbxCommand, 8517 mbx->un.varWords[0], mbx->un.varWords[1]); 8518 } 8519 8520 return MBX_BUSY; 8521 } 8522 8523 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8524 8525 /* If we are not polling, we MUST be in SLI2 mode */ 8526 if (flag != MBX_POLL) { 8527 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8528 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8529 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8530 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8531 /* Mbox command <mbxCommand> cannot issue */ 8532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8533 "(%d):2531 Mailbox command x%x " 8534 "cannot issue Data: x%x x%x\n", 8535 pmbox->vport ? pmbox->vport->vpi : 0, 8536 pmbox->u.mb.mbxCommand, 8537 psli->sli_flag, flag); 8538 goto out_not_finished; 8539 } 8540 /* timeout active mbox command */ 8541 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8542 1000); 8543 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8544 } 8545 8546 /* Mailbox cmd <cmd> issue */ 8547 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8548 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8549 "x%x\n", 8550 pmbox->vport ? pmbox->vport->vpi : 0, 8551 mbx->mbxCommand, 8552 phba->pport ? phba->pport->port_state : 0xff, 8553 psli->sli_flag, flag); 8554 8555 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8556 if (pmbox->vport) { 8557 lpfc_debugfs_disc_trc(pmbox->vport, 8558 LPFC_DISC_TRC_MBOX_VPORT, 8559 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8560 (uint32_t)mbx->mbxCommand, 8561 mbx->un.varWords[0], mbx->un.varWords[1]); 8562 } 8563 else { 8564 lpfc_debugfs_disc_trc(phba->pport, 8565 LPFC_DISC_TRC_MBOX, 8566 "MBOX Send: cmd:x%x mb:x%x x%x", 8567 (uint32_t)mbx->mbxCommand, 8568 mbx->un.varWords[0], mbx->un.varWords[1]); 8569 } 8570 } 8571 8572 psli->slistat.mbox_cmd++; 8573 evtctr = psli->slistat.mbox_event; 8574 8575 /* next set own bit for the adapter and copy over command word */ 8576 mbx->mbxOwner = OWN_CHIP; 8577 8578 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8579 /* Populate mbox extension offset word. */ 8580 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8581 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8582 = (uint8_t *)phba->mbox_ext 8583 - (uint8_t *)phba->mbox; 8584 } 8585 8586 /* Copy the mailbox extension data */ 8587 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8588 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8589 (uint8_t *)phba->mbox_ext, 8590 pmbox->in_ext_byte_len); 8591 } 8592 /* Copy command data to host SLIM area */ 8593 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8594 } else { 8595 /* Populate mbox extension offset word. */ 8596 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8597 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8598 = MAILBOX_HBA_EXT_OFFSET; 8599 8600 /* Copy the mailbox extension data */ 8601 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8602 lpfc_memcpy_to_slim(phba->MBslimaddr + 8603 MAILBOX_HBA_EXT_OFFSET, 8604 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8605 8606 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8607 /* copy command data into host mbox for cmpl */ 8608 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8609 MAILBOX_CMD_SIZE); 8610 8611 /* First copy mbox command data to HBA SLIM, skip past first 8612 word */ 8613 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8614 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8615 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8616 8617 /* Next copy over first word, with mbxOwner set */ 8618 ldata = *((uint32_t *)mbx); 8619 to_slim = phba->MBslimaddr; 8620 writel(ldata, to_slim); 8621 readl(to_slim); /* flush */ 8622 8623 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8624 /* switch over to host mailbox */ 8625 psli->sli_flag |= LPFC_SLI_ACTIVE; 8626 } 8627 8628 wmb(); 8629 8630 switch (flag) { 8631 case MBX_NOWAIT: 8632 /* Set up reference to mailbox command */ 8633 psli->mbox_active = pmbox; 8634 /* Interrupt board to do it */ 8635 writel(CA_MBATT, phba->CAregaddr); 8636 readl(phba->CAregaddr); /* flush */ 8637 /* Don't wait for it to finish, just return */ 8638 break; 8639 8640 case MBX_POLL: 8641 /* Set up null reference to mailbox command */ 8642 psli->mbox_active = NULL; 8643 /* Interrupt board to do it */ 8644 writel(CA_MBATT, phba->CAregaddr); 8645 readl(phba->CAregaddr); /* flush */ 8646 8647 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8648 /* First read mbox status word */ 8649 word0 = *((uint32_t *)phba->mbox); 8650 word0 = le32_to_cpu(word0); 8651 } else { 8652 /* First read mbox status word */ 8653 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8654 spin_unlock_irqrestore(&phba->hbalock, 8655 drvr_flag); 8656 goto out_not_finished; 8657 } 8658 } 8659 8660 /* Read the HBA Host Attention Register */ 8661 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8662 spin_unlock_irqrestore(&phba->hbalock, 8663 drvr_flag); 8664 goto out_not_finished; 8665 } 8666 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8667 1000) + jiffies; 8668 i = 0; 8669 /* Wait for command to complete */ 8670 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8671 (!(ha_copy & HA_MBATT) && 8672 (phba->link_state > LPFC_WARM_START))) { 8673 if (time_after(jiffies, timeout)) { 8674 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8675 spin_unlock_irqrestore(&phba->hbalock, 8676 drvr_flag); 8677 goto out_not_finished; 8678 } 8679 8680 /* Check if we took a mbox interrupt while we were 8681 polling */ 8682 if (((word0 & OWN_CHIP) != OWN_CHIP) 8683 && (evtctr != psli->slistat.mbox_event)) 8684 break; 8685 8686 if (i++ > 10) { 8687 spin_unlock_irqrestore(&phba->hbalock, 8688 drvr_flag); 8689 msleep(1); 8690 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8691 } 8692 8693 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8694 /* First copy command data */ 8695 word0 = *((uint32_t *)phba->mbox); 8696 word0 = le32_to_cpu(word0); 8697 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8698 MAILBOX_t *slimmb; 8699 uint32_t slimword0; 8700 /* Check real SLIM for any errors */ 8701 slimword0 = readl(phba->MBslimaddr); 8702 slimmb = (MAILBOX_t *) & slimword0; 8703 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8704 && slimmb->mbxStatus) { 8705 psli->sli_flag &= 8706 ~LPFC_SLI_ACTIVE; 8707 word0 = slimword0; 8708 } 8709 } 8710 } else { 8711 /* First copy command data */ 8712 word0 = readl(phba->MBslimaddr); 8713 } 8714 /* Read the HBA Host Attention Register */ 8715 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8716 spin_unlock_irqrestore(&phba->hbalock, 8717 drvr_flag); 8718 goto out_not_finished; 8719 } 8720 } 8721 8722 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8723 /* copy results back to user */ 8724 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8725 MAILBOX_CMD_SIZE); 8726 /* Copy the mailbox extension data */ 8727 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8728 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8729 pmbox->ctx_buf, 8730 pmbox->out_ext_byte_len); 8731 } 8732 } else { 8733 /* First copy command data */ 8734 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8735 MAILBOX_CMD_SIZE); 8736 /* Copy the mailbox extension data */ 8737 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8738 lpfc_memcpy_from_slim( 8739 pmbox->ctx_buf, 8740 phba->MBslimaddr + 8741 MAILBOX_HBA_EXT_OFFSET, 8742 pmbox->out_ext_byte_len); 8743 } 8744 } 8745 8746 writel(HA_MBATT, phba->HAregaddr); 8747 readl(phba->HAregaddr); /* flush */ 8748 8749 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8750 status = mbx->mbxStatus; 8751 } 8752 8753 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8754 return status; 8755 8756 out_not_finished: 8757 if (processing_queue) { 8758 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8759 lpfc_mbox_cmpl_put(phba, pmbox); 8760 } 8761 return MBX_NOT_FINISHED; 8762 } 8763 8764 /** 8765 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8766 * @phba: Pointer to HBA context object. 8767 * 8768 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8769 * the driver internal pending mailbox queue. It will then try to wait out the 8770 * possible outstanding mailbox command before return. 8771 * 8772 * Returns: 8773 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8774 * the outstanding mailbox command timed out. 8775 **/ 8776 static int 8777 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8778 { 8779 struct lpfc_sli *psli = &phba->sli; 8780 int rc = 0; 8781 unsigned long timeout = 0; 8782 8783 /* Mark the asynchronous mailbox command posting as blocked */ 8784 spin_lock_irq(&phba->hbalock); 8785 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8786 /* Determine how long we might wait for the active mailbox 8787 * command to be gracefully completed by firmware. 8788 */ 8789 if (phba->sli.mbox_active) 8790 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8791 phba->sli.mbox_active) * 8792 1000) + jiffies; 8793 spin_unlock_irq(&phba->hbalock); 8794 8795 /* Make sure the mailbox is really active */ 8796 if (timeout) 8797 lpfc_sli4_process_missed_mbox_completions(phba); 8798 8799 /* Wait for the outstnading mailbox command to complete */ 8800 while (phba->sli.mbox_active) { 8801 /* Check active mailbox complete status every 2ms */ 8802 msleep(2); 8803 if (time_after(jiffies, timeout)) { 8804 /* Timeout, marked the outstanding cmd not complete */ 8805 rc = 1; 8806 break; 8807 } 8808 } 8809 8810 /* Can not cleanly block async mailbox command, fails it */ 8811 if (rc) { 8812 spin_lock_irq(&phba->hbalock); 8813 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8814 spin_unlock_irq(&phba->hbalock); 8815 } 8816 return rc; 8817 } 8818 8819 /** 8820 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8821 * @phba: Pointer to HBA context object. 8822 * 8823 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8824 * commands from the driver internal pending mailbox queue. It makes sure 8825 * that there is no outstanding mailbox command before resuming posting 8826 * asynchronous mailbox commands. If, for any reason, there is outstanding 8827 * mailbox command, it will try to wait it out before resuming asynchronous 8828 * mailbox command posting. 8829 **/ 8830 static void 8831 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8832 { 8833 struct lpfc_sli *psli = &phba->sli; 8834 8835 spin_lock_irq(&phba->hbalock); 8836 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8837 /* Asynchronous mailbox posting is not blocked, do nothing */ 8838 spin_unlock_irq(&phba->hbalock); 8839 return; 8840 } 8841 8842 /* Outstanding synchronous mailbox command is guaranteed to be done, 8843 * successful or timeout, after timing-out the outstanding mailbox 8844 * command shall always be removed, so just unblock posting async 8845 * mailbox command and resume 8846 */ 8847 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8848 spin_unlock_irq(&phba->hbalock); 8849 8850 /* wake up worker thread to post asynchronous mailbox command */ 8851 lpfc_worker_wake_up(phba); 8852 } 8853 8854 /** 8855 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8856 * @phba: Pointer to HBA context object. 8857 * @mboxq: Pointer to mailbox object. 8858 * 8859 * The function waits for the bootstrap mailbox register ready bit from 8860 * port for twice the regular mailbox command timeout value. 8861 * 8862 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8863 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8864 **/ 8865 static int 8866 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8867 { 8868 uint32_t db_ready; 8869 unsigned long timeout; 8870 struct lpfc_register bmbx_reg; 8871 8872 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8873 * 1000) + jiffies; 8874 8875 do { 8876 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8877 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8878 if (!db_ready) 8879 mdelay(2); 8880 8881 if (time_after(jiffies, timeout)) 8882 return MBXERR_ERROR; 8883 } while (!db_ready); 8884 8885 return 0; 8886 } 8887 8888 /** 8889 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8890 * @phba: Pointer to HBA context object. 8891 * @mboxq: Pointer to mailbox object. 8892 * 8893 * The function posts a mailbox to the port. The mailbox is expected 8894 * to be comletely filled in and ready for the port to operate on it. 8895 * This routine executes a synchronous completion operation on the 8896 * mailbox by polling for its completion. 8897 * 8898 * The caller must not be holding any locks when calling this routine. 8899 * 8900 * Returns: 8901 * MBX_SUCCESS - mailbox posted successfully 8902 * Any of the MBX error values. 8903 **/ 8904 static int 8905 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8906 { 8907 int rc = MBX_SUCCESS; 8908 unsigned long iflag; 8909 uint32_t mcqe_status; 8910 uint32_t mbx_cmnd; 8911 struct lpfc_sli *psli = &phba->sli; 8912 struct lpfc_mqe *mb = &mboxq->u.mqe; 8913 struct lpfc_bmbx_create *mbox_rgn; 8914 struct dma_address *dma_address; 8915 8916 /* 8917 * Only one mailbox can be active to the bootstrap mailbox region 8918 * at a time and there is no queueing provided. 8919 */ 8920 spin_lock_irqsave(&phba->hbalock, iflag); 8921 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8922 spin_unlock_irqrestore(&phba->hbalock, iflag); 8923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8924 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8925 "cannot issue Data: x%x x%x\n", 8926 mboxq->vport ? mboxq->vport->vpi : 0, 8927 mboxq->u.mb.mbxCommand, 8928 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8929 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8930 psli->sli_flag, MBX_POLL); 8931 return MBXERR_ERROR; 8932 } 8933 /* The server grabs the token and owns it until release */ 8934 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8935 phba->sli.mbox_active = mboxq; 8936 spin_unlock_irqrestore(&phba->hbalock, iflag); 8937 8938 /* wait for bootstrap mbox register for readyness */ 8939 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8940 if (rc) 8941 goto exit; 8942 /* 8943 * Initialize the bootstrap memory region to avoid stale data areas 8944 * in the mailbox post. Then copy the caller's mailbox contents to 8945 * the bmbx mailbox region. 8946 */ 8947 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8948 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8949 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8950 sizeof(struct lpfc_mqe)); 8951 8952 /* Post the high mailbox dma address to the port and wait for ready. */ 8953 dma_address = &phba->sli4_hba.bmbx.dma_address; 8954 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8955 8956 /* wait for bootstrap mbox register for hi-address write done */ 8957 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8958 if (rc) 8959 goto exit; 8960 8961 /* Post the low mailbox dma address to the port. */ 8962 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8963 8964 /* wait for bootstrap mbox register for low address write done */ 8965 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8966 if (rc) 8967 goto exit; 8968 8969 /* 8970 * Read the CQ to ensure the mailbox has completed. 8971 * If so, update the mailbox status so that the upper layers 8972 * can complete the request normally. 8973 */ 8974 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8975 sizeof(struct lpfc_mqe)); 8976 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8977 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8978 sizeof(struct lpfc_mcqe)); 8979 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8980 /* 8981 * When the CQE status indicates a failure and the mailbox status 8982 * indicates success then copy the CQE status into the mailbox status 8983 * (and prefix it with x4000). 8984 */ 8985 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8986 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8987 bf_set(lpfc_mqe_status, mb, 8988 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8989 rc = MBXERR_ERROR; 8990 } else 8991 lpfc_sli4_swap_str(phba, mboxq); 8992 8993 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8994 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8995 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8996 " x%x x%x CQ: x%x x%x x%x x%x\n", 8997 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8998 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8999 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9000 bf_get(lpfc_mqe_status, mb), 9001 mb->un.mb_words[0], mb->un.mb_words[1], 9002 mb->un.mb_words[2], mb->un.mb_words[3], 9003 mb->un.mb_words[4], mb->un.mb_words[5], 9004 mb->un.mb_words[6], mb->un.mb_words[7], 9005 mb->un.mb_words[8], mb->un.mb_words[9], 9006 mb->un.mb_words[10], mb->un.mb_words[11], 9007 mb->un.mb_words[12], mboxq->mcqe.word0, 9008 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9009 mboxq->mcqe.trailer); 9010 exit: 9011 /* We are holding the token, no needed for lock when release */ 9012 spin_lock_irqsave(&phba->hbalock, iflag); 9013 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9014 phba->sli.mbox_active = NULL; 9015 spin_unlock_irqrestore(&phba->hbalock, iflag); 9016 return rc; 9017 } 9018 9019 /** 9020 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9021 * @phba: Pointer to HBA context object. 9022 * @mboxq: Pointer to mailbox object. 9023 * @flag: Flag indicating how the mailbox need to be processed. 9024 * 9025 * This function is called by discovery code and HBA management code to submit 9026 * a mailbox command to firmware with SLI-4 interface spec. 9027 * 9028 * Return codes the caller owns the mailbox command after the return of the 9029 * function. 9030 **/ 9031 static int 9032 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9033 uint32_t flag) 9034 { 9035 struct lpfc_sli *psli = &phba->sli; 9036 unsigned long iflags; 9037 int rc; 9038 9039 /* dump from issue mailbox command if setup */ 9040 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9041 9042 rc = lpfc_mbox_dev_check(phba); 9043 if (unlikely(rc)) { 9044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9045 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9046 "cannot issue Data: x%x x%x\n", 9047 mboxq->vport ? mboxq->vport->vpi : 0, 9048 mboxq->u.mb.mbxCommand, 9049 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9050 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9051 psli->sli_flag, flag); 9052 goto out_not_finished; 9053 } 9054 9055 /* Detect polling mode and jump to a handler */ 9056 if (!phba->sli4_hba.intr_enable) { 9057 if (flag == MBX_POLL) 9058 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9059 else 9060 rc = -EIO; 9061 if (rc != MBX_SUCCESS) 9062 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9063 "(%d):2541 Mailbox command x%x " 9064 "(x%x/x%x) failure: " 9065 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9066 "Data: x%x x%x\n,", 9067 mboxq->vport ? mboxq->vport->vpi : 0, 9068 mboxq->u.mb.mbxCommand, 9069 lpfc_sli_config_mbox_subsys_get(phba, 9070 mboxq), 9071 lpfc_sli_config_mbox_opcode_get(phba, 9072 mboxq), 9073 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9074 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9075 bf_get(lpfc_mcqe_ext_status, 9076 &mboxq->mcqe), 9077 psli->sli_flag, flag); 9078 return rc; 9079 } else if (flag == MBX_POLL) { 9080 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9081 "(%d):2542 Try to issue mailbox command " 9082 "x%x (x%x/x%x) synchronously ahead of async " 9083 "mailbox command queue: x%x x%x\n", 9084 mboxq->vport ? mboxq->vport->vpi : 0, 9085 mboxq->u.mb.mbxCommand, 9086 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9087 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9088 psli->sli_flag, flag); 9089 /* Try to block the asynchronous mailbox posting */ 9090 rc = lpfc_sli4_async_mbox_block(phba); 9091 if (!rc) { 9092 /* Successfully blocked, now issue sync mbox cmd */ 9093 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9094 if (rc != MBX_SUCCESS) 9095 lpfc_printf_log(phba, KERN_WARNING, 9096 LOG_MBOX | LOG_SLI, 9097 "(%d):2597 Sync Mailbox command " 9098 "x%x (x%x/x%x) failure: " 9099 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9100 "Data: x%x x%x\n,", 9101 mboxq->vport ? mboxq->vport->vpi : 0, 9102 mboxq->u.mb.mbxCommand, 9103 lpfc_sli_config_mbox_subsys_get(phba, 9104 mboxq), 9105 lpfc_sli_config_mbox_opcode_get(phba, 9106 mboxq), 9107 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9108 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9109 bf_get(lpfc_mcqe_ext_status, 9110 &mboxq->mcqe), 9111 psli->sli_flag, flag); 9112 /* Unblock the async mailbox posting afterward */ 9113 lpfc_sli4_async_mbox_unblock(phba); 9114 } 9115 return rc; 9116 } 9117 9118 /* Now, interrupt mode asynchronous mailbox command */ 9119 rc = lpfc_mbox_cmd_check(phba, mboxq); 9120 if (rc) { 9121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9122 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9123 "cannot issue Data: x%x x%x\n", 9124 mboxq->vport ? mboxq->vport->vpi : 0, 9125 mboxq->u.mb.mbxCommand, 9126 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9127 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9128 psli->sli_flag, flag); 9129 goto out_not_finished; 9130 } 9131 9132 /* Put the mailbox command to the driver internal FIFO */ 9133 psli->slistat.mbox_busy++; 9134 spin_lock_irqsave(&phba->hbalock, iflags); 9135 lpfc_mbox_put(phba, mboxq); 9136 spin_unlock_irqrestore(&phba->hbalock, iflags); 9137 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9138 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9139 "x%x (x%x/x%x) x%x x%x x%x\n", 9140 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9141 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9142 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9143 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9144 phba->pport->port_state, 9145 psli->sli_flag, MBX_NOWAIT); 9146 /* Wake up worker thread to transport mailbox command from head */ 9147 lpfc_worker_wake_up(phba); 9148 9149 return MBX_BUSY; 9150 9151 out_not_finished: 9152 return MBX_NOT_FINISHED; 9153 } 9154 9155 /** 9156 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9157 * @phba: Pointer to HBA context object. 9158 * 9159 * This function is called by worker thread to send a mailbox command to 9160 * SLI4 HBA firmware. 9161 * 9162 **/ 9163 int 9164 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9165 { 9166 struct lpfc_sli *psli = &phba->sli; 9167 LPFC_MBOXQ_t *mboxq; 9168 int rc = MBX_SUCCESS; 9169 unsigned long iflags; 9170 struct lpfc_mqe *mqe; 9171 uint32_t mbx_cmnd; 9172 9173 /* Check interrupt mode before post async mailbox command */ 9174 if (unlikely(!phba->sli4_hba.intr_enable)) 9175 return MBX_NOT_FINISHED; 9176 9177 /* Check for mailbox command service token */ 9178 spin_lock_irqsave(&phba->hbalock, iflags); 9179 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9180 spin_unlock_irqrestore(&phba->hbalock, iflags); 9181 return MBX_NOT_FINISHED; 9182 } 9183 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9184 spin_unlock_irqrestore(&phba->hbalock, iflags); 9185 return MBX_NOT_FINISHED; 9186 } 9187 if (unlikely(phba->sli.mbox_active)) { 9188 spin_unlock_irqrestore(&phba->hbalock, iflags); 9189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9190 "0384 There is pending active mailbox cmd\n"); 9191 return MBX_NOT_FINISHED; 9192 } 9193 /* Take the mailbox command service token */ 9194 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9195 9196 /* Get the next mailbox command from head of queue */ 9197 mboxq = lpfc_mbox_get(phba); 9198 9199 /* If no more mailbox command waiting for post, we're done */ 9200 if (!mboxq) { 9201 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9202 spin_unlock_irqrestore(&phba->hbalock, iflags); 9203 return MBX_SUCCESS; 9204 } 9205 phba->sli.mbox_active = mboxq; 9206 spin_unlock_irqrestore(&phba->hbalock, iflags); 9207 9208 /* Check device readiness for posting mailbox command */ 9209 rc = lpfc_mbox_dev_check(phba); 9210 if (unlikely(rc)) 9211 /* Driver clean routine will clean up pending mailbox */ 9212 goto out_not_finished; 9213 9214 /* Prepare the mbox command to be posted */ 9215 mqe = &mboxq->u.mqe; 9216 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9217 9218 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9219 mod_timer(&psli->mbox_tmo, (jiffies + 9220 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9221 9222 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9223 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9224 "x%x x%x\n", 9225 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9226 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9227 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9228 phba->pport->port_state, psli->sli_flag); 9229 9230 if (mbx_cmnd != MBX_HEARTBEAT) { 9231 if (mboxq->vport) { 9232 lpfc_debugfs_disc_trc(mboxq->vport, 9233 LPFC_DISC_TRC_MBOX_VPORT, 9234 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9235 mbx_cmnd, mqe->un.mb_words[0], 9236 mqe->un.mb_words[1]); 9237 } else { 9238 lpfc_debugfs_disc_trc(phba->pport, 9239 LPFC_DISC_TRC_MBOX, 9240 "MBOX Send: cmd:x%x mb:x%x x%x", 9241 mbx_cmnd, mqe->un.mb_words[0], 9242 mqe->un.mb_words[1]); 9243 } 9244 } 9245 psli->slistat.mbox_cmd++; 9246 9247 /* Post the mailbox command to the port */ 9248 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9249 if (rc != MBX_SUCCESS) { 9250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9251 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9252 "cannot issue Data: x%x x%x\n", 9253 mboxq->vport ? mboxq->vport->vpi : 0, 9254 mboxq->u.mb.mbxCommand, 9255 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9256 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9257 psli->sli_flag, MBX_NOWAIT); 9258 goto out_not_finished; 9259 } 9260 9261 return rc; 9262 9263 out_not_finished: 9264 spin_lock_irqsave(&phba->hbalock, iflags); 9265 if (phba->sli.mbox_active) { 9266 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9267 __lpfc_mbox_cmpl_put(phba, mboxq); 9268 /* Release the token */ 9269 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9270 phba->sli.mbox_active = NULL; 9271 } 9272 spin_unlock_irqrestore(&phba->hbalock, iflags); 9273 9274 return MBX_NOT_FINISHED; 9275 } 9276 9277 /** 9278 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9279 * @phba: Pointer to HBA context object. 9280 * @pmbox: Pointer to mailbox object. 9281 * @flag: Flag indicating how the mailbox need to be processed. 9282 * 9283 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9284 * the API jump table function pointer from the lpfc_hba struct. 9285 * 9286 * Return codes the caller owns the mailbox command after the return of the 9287 * function. 9288 **/ 9289 int 9290 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9291 { 9292 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9293 } 9294 9295 /** 9296 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9297 * @phba: The hba struct for which this call is being executed. 9298 * @dev_grp: The HBA PCI-Device group number. 9299 * 9300 * This routine sets up the mbox interface API function jump table in @phba 9301 * struct. 9302 * Returns: 0 - success, -ENODEV - failure. 9303 **/ 9304 int 9305 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9306 { 9307 9308 switch (dev_grp) { 9309 case LPFC_PCI_DEV_LP: 9310 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9311 phba->lpfc_sli_handle_slow_ring_event = 9312 lpfc_sli_handle_slow_ring_event_s3; 9313 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9314 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9315 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9316 break; 9317 case LPFC_PCI_DEV_OC: 9318 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9319 phba->lpfc_sli_handle_slow_ring_event = 9320 lpfc_sli_handle_slow_ring_event_s4; 9321 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9322 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9323 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9324 break; 9325 default: 9326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9327 "1420 Invalid HBA PCI-device group: 0x%x\n", 9328 dev_grp); 9329 return -ENODEV; 9330 } 9331 return 0; 9332 } 9333 9334 /** 9335 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9336 * @phba: Pointer to HBA context object. 9337 * @pring: Pointer to driver SLI ring object. 9338 * @piocb: Pointer to address of newly added command iocb. 9339 * 9340 * This function is called with hbalock held for SLI3 ports or 9341 * the ring lock held for SLI4 ports to add a command 9342 * iocb to the txq when SLI layer cannot submit the command iocb 9343 * to the ring. 9344 **/ 9345 void 9346 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9347 struct lpfc_iocbq *piocb) 9348 { 9349 if (phba->sli_rev == LPFC_SLI_REV4) 9350 lockdep_assert_held(&pring->ring_lock); 9351 else 9352 lockdep_assert_held(&phba->hbalock); 9353 /* Insert the caller's iocb in the txq tail for later processing. */ 9354 list_add_tail(&piocb->list, &pring->txq); 9355 } 9356 9357 /** 9358 * lpfc_sli_next_iocb - Get the next iocb in the txq 9359 * @phba: Pointer to HBA context object. 9360 * @pring: Pointer to driver SLI ring object. 9361 * @piocb: Pointer to address of newly added command iocb. 9362 * 9363 * This function is called with hbalock held before a new 9364 * iocb is submitted to the firmware. This function checks 9365 * txq to flush the iocbs in txq to Firmware before 9366 * submitting new iocbs to the Firmware. 9367 * If there are iocbs in the txq which need to be submitted 9368 * to firmware, lpfc_sli_next_iocb returns the first element 9369 * of the txq after dequeuing it from txq. 9370 * If there is no iocb in the txq then the function will return 9371 * *piocb and *piocb is set to NULL. Caller needs to check 9372 * *piocb to find if there are more commands in the txq. 9373 **/ 9374 static struct lpfc_iocbq * 9375 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9376 struct lpfc_iocbq **piocb) 9377 { 9378 struct lpfc_iocbq * nextiocb; 9379 9380 lockdep_assert_held(&phba->hbalock); 9381 9382 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9383 if (!nextiocb) { 9384 nextiocb = *piocb; 9385 *piocb = NULL; 9386 } 9387 9388 return nextiocb; 9389 } 9390 9391 /** 9392 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9393 * @phba: Pointer to HBA context object. 9394 * @ring_number: SLI ring number to issue iocb on. 9395 * @piocb: Pointer to command iocb. 9396 * @flag: Flag indicating if this command can be put into txq. 9397 * 9398 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9399 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9400 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9401 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9402 * this function allows only iocbs for posting buffers. This function finds 9403 * next available slot in the command ring and posts the command to the 9404 * available slot and writes the port attention register to request HBA start 9405 * processing new iocb. If there is no slot available in the ring and 9406 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9407 * the function returns IOCB_BUSY. 9408 * 9409 * This function is called with hbalock held. The function will return success 9410 * after it successfully submit the iocb to firmware or after adding to the 9411 * txq. 9412 **/ 9413 static int 9414 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9415 struct lpfc_iocbq *piocb, uint32_t flag) 9416 { 9417 struct lpfc_iocbq *nextiocb; 9418 IOCB_t *iocb; 9419 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9420 9421 lockdep_assert_held(&phba->hbalock); 9422 9423 if (piocb->iocb_cmpl && (!piocb->vport) && 9424 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9425 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9427 "1807 IOCB x%x failed. No vport\n", 9428 piocb->iocb.ulpCommand); 9429 dump_stack(); 9430 return IOCB_ERROR; 9431 } 9432 9433 9434 /* If the PCI channel is in offline state, do not post iocbs. */ 9435 if (unlikely(pci_channel_offline(phba->pcidev))) 9436 return IOCB_ERROR; 9437 9438 /* If HBA has a deferred error attention, fail the iocb. */ 9439 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9440 return IOCB_ERROR; 9441 9442 /* 9443 * We should never get an IOCB if we are in a < LINK_DOWN state 9444 */ 9445 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9446 return IOCB_ERROR; 9447 9448 /* 9449 * Check to see if we are blocking IOCB processing because of a 9450 * outstanding event. 9451 */ 9452 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9453 goto iocb_busy; 9454 9455 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9456 /* 9457 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9458 * can be issued if the link is not up. 9459 */ 9460 switch (piocb->iocb.ulpCommand) { 9461 case CMD_GEN_REQUEST64_CR: 9462 case CMD_GEN_REQUEST64_CX: 9463 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9464 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9465 FC_RCTL_DD_UNSOL_CMD) || 9466 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9467 MENLO_TRANSPORT_TYPE)) 9468 9469 goto iocb_busy; 9470 break; 9471 case CMD_QUE_RING_BUF_CN: 9472 case CMD_QUE_RING_BUF64_CN: 9473 /* 9474 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9475 * completion, iocb_cmpl MUST be 0. 9476 */ 9477 if (piocb->iocb_cmpl) 9478 piocb->iocb_cmpl = NULL; 9479 fallthrough; 9480 case CMD_CREATE_XRI_CR: 9481 case CMD_CLOSE_XRI_CN: 9482 case CMD_CLOSE_XRI_CX: 9483 break; 9484 default: 9485 goto iocb_busy; 9486 } 9487 9488 /* 9489 * For FCP commands, we must be in a state where we can process link 9490 * attention events. 9491 */ 9492 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9493 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9494 goto iocb_busy; 9495 } 9496 9497 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9498 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9499 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9500 9501 if (iocb) 9502 lpfc_sli_update_ring(phba, pring); 9503 else 9504 lpfc_sli_update_full_ring(phba, pring); 9505 9506 if (!piocb) 9507 return IOCB_SUCCESS; 9508 9509 goto out_busy; 9510 9511 iocb_busy: 9512 pring->stats.iocb_cmd_delay++; 9513 9514 out_busy: 9515 9516 if (!(flag & SLI_IOCB_RET_IOCB)) { 9517 __lpfc_sli_ringtx_put(phba, pring, piocb); 9518 return IOCB_SUCCESS; 9519 } 9520 9521 return IOCB_BUSY; 9522 } 9523 9524 /** 9525 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9526 * @phba: Pointer to HBA context object. 9527 * @piocbq: Pointer to command iocb. 9528 * @sglq: Pointer to the scatter gather queue object. 9529 * 9530 * This routine converts the bpl or bde that is in the IOCB 9531 * to a sgl list for the sli4 hardware. The physical address 9532 * of the bpl/bde is converted back to a virtual address. 9533 * If the IOCB contains a BPL then the list of BDE's is 9534 * converted to sli4_sge's. If the IOCB contains a single 9535 * BDE then it is converted to a single sli_sge. 9536 * The IOCB is still in cpu endianess so the contents of 9537 * the bpl can be used without byte swapping. 9538 * 9539 * Returns valid XRI = Success, NO_XRI = Failure. 9540 **/ 9541 static uint16_t 9542 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9543 struct lpfc_sglq *sglq) 9544 { 9545 uint16_t xritag = NO_XRI; 9546 struct ulp_bde64 *bpl = NULL; 9547 struct ulp_bde64 bde; 9548 struct sli4_sge *sgl = NULL; 9549 struct lpfc_dmabuf *dmabuf; 9550 IOCB_t *icmd; 9551 int numBdes = 0; 9552 int i = 0; 9553 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9554 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9555 9556 if (!piocbq || !sglq) 9557 return xritag; 9558 9559 sgl = (struct sli4_sge *)sglq->sgl; 9560 icmd = &piocbq->iocb; 9561 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9562 return sglq->sli4_xritag; 9563 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9564 numBdes = icmd->un.genreq64.bdl.bdeSize / 9565 sizeof(struct ulp_bde64); 9566 /* The addrHigh and addrLow fields within the IOCB 9567 * have not been byteswapped yet so there is no 9568 * need to swap them back. 9569 */ 9570 if (piocbq->context3) 9571 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9572 else 9573 return xritag; 9574 9575 bpl = (struct ulp_bde64 *)dmabuf->virt; 9576 if (!bpl) 9577 return xritag; 9578 9579 for (i = 0; i < numBdes; i++) { 9580 /* Should already be byte swapped. */ 9581 sgl->addr_hi = bpl->addrHigh; 9582 sgl->addr_lo = bpl->addrLow; 9583 9584 sgl->word2 = le32_to_cpu(sgl->word2); 9585 if ((i+1) == numBdes) 9586 bf_set(lpfc_sli4_sge_last, sgl, 1); 9587 else 9588 bf_set(lpfc_sli4_sge_last, sgl, 0); 9589 /* swap the size field back to the cpu so we 9590 * can assign it to the sgl. 9591 */ 9592 bde.tus.w = le32_to_cpu(bpl->tus.w); 9593 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9594 /* The offsets in the sgl need to be accumulated 9595 * separately for the request and reply lists. 9596 * The request is always first, the reply follows. 9597 */ 9598 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9599 /* add up the reply sg entries */ 9600 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9601 inbound++; 9602 /* first inbound? reset the offset */ 9603 if (inbound == 1) 9604 offset = 0; 9605 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9606 bf_set(lpfc_sli4_sge_type, sgl, 9607 LPFC_SGE_TYPE_DATA); 9608 offset += bde.tus.f.bdeSize; 9609 } 9610 sgl->word2 = cpu_to_le32(sgl->word2); 9611 bpl++; 9612 sgl++; 9613 } 9614 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9615 /* The addrHigh and addrLow fields of the BDE have not 9616 * been byteswapped yet so they need to be swapped 9617 * before putting them in the sgl. 9618 */ 9619 sgl->addr_hi = 9620 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9621 sgl->addr_lo = 9622 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9623 sgl->word2 = le32_to_cpu(sgl->word2); 9624 bf_set(lpfc_sli4_sge_last, sgl, 1); 9625 sgl->word2 = cpu_to_le32(sgl->word2); 9626 sgl->sge_len = 9627 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9628 } 9629 return sglq->sli4_xritag; 9630 } 9631 9632 /** 9633 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9634 * @phba: Pointer to HBA context object. 9635 * @iocbq: Pointer to command iocb. 9636 * @wqe: Pointer to the work queue entry. 9637 * 9638 * This routine converts the iocb command to its Work Queue Entry 9639 * equivalent. The wqe pointer should not have any fields set when 9640 * this routine is called because it will memcpy over them. 9641 * This routine does not set the CQ_ID or the WQEC bits in the 9642 * wqe. 9643 * 9644 * Returns: 0 = Success, IOCB_ERROR = Failure. 9645 **/ 9646 static int 9647 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9648 union lpfc_wqe128 *wqe) 9649 { 9650 uint32_t xmit_len = 0, total_len = 0; 9651 uint8_t ct = 0; 9652 uint32_t fip; 9653 uint32_t abort_tag; 9654 uint8_t command_type = ELS_COMMAND_NON_FIP; 9655 uint8_t cmnd; 9656 uint16_t xritag; 9657 uint16_t abrt_iotag; 9658 struct lpfc_iocbq *abrtiocbq; 9659 struct ulp_bde64 *bpl = NULL; 9660 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9661 int numBdes, i; 9662 struct ulp_bde64 bde; 9663 struct lpfc_nodelist *ndlp; 9664 uint32_t *pcmd; 9665 uint32_t if_type; 9666 9667 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9668 /* The fcp commands will set command type */ 9669 if (iocbq->iocb_flag & LPFC_IO_FCP) 9670 command_type = FCP_COMMAND; 9671 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9672 command_type = ELS_COMMAND_FIP; 9673 else 9674 command_type = ELS_COMMAND_NON_FIP; 9675 9676 if (phba->fcp_embed_io) 9677 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9678 /* Some of the fields are in the right position already */ 9679 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9680 /* The ct field has moved so reset */ 9681 wqe->generic.wqe_com.word7 = 0; 9682 wqe->generic.wqe_com.word10 = 0; 9683 9684 abort_tag = (uint32_t) iocbq->iotag; 9685 xritag = iocbq->sli4_xritag; 9686 /* words0-2 bpl convert bde */ 9687 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9688 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9689 sizeof(struct ulp_bde64); 9690 bpl = (struct ulp_bde64 *) 9691 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9692 if (!bpl) 9693 return IOCB_ERROR; 9694 9695 /* Should already be byte swapped. */ 9696 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9697 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9698 /* swap the size field back to the cpu so we 9699 * can assign it to the sgl. 9700 */ 9701 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9702 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9703 total_len = 0; 9704 for (i = 0; i < numBdes; i++) { 9705 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9706 total_len += bde.tus.f.bdeSize; 9707 } 9708 } else 9709 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9710 9711 iocbq->iocb.ulpIoTag = iocbq->iotag; 9712 cmnd = iocbq->iocb.ulpCommand; 9713 9714 switch (iocbq->iocb.ulpCommand) { 9715 case CMD_ELS_REQUEST64_CR: 9716 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9717 ndlp = iocbq->context_un.ndlp; 9718 else 9719 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9720 if (!iocbq->iocb.ulpLe) { 9721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9722 "2007 Only Limited Edition cmd Format" 9723 " supported 0x%x\n", 9724 iocbq->iocb.ulpCommand); 9725 return IOCB_ERROR; 9726 } 9727 9728 wqe->els_req.payload_len = xmit_len; 9729 /* Els_reguest64 has a TMO */ 9730 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9731 iocbq->iocb.ulpTimeout); 9732 /* Need a VF for word 4 set the vf bit*/ 9733 bf_set(els_req64_vf, &wqe->els_req, 0); 9734 /* And a VFID for word 12 */ 9735 bf_set(els_req64_vfid, &wqe->els_req, 0); 9736 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9737 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9738 iocbq->iocb.ulpContext); 9739 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9740 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9741 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9742 if (command_type == ELS_COMMAND_FIP) 9743 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9744 >> LPFC_FIP_ELS_ID_SHIFT); 9745 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9746 iocbq->context2)->virt); 9747 if_type = bf_get(lpfc_sli_intf_if_type, 9748 &phba->sli4_hba.sli_intf); 9749 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9750 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9751 *pcmd == ELS_CMD_SCR || 9752 *pcmd == ELS_CMD_RDF || 9753 *pcmd == ELS_CMD_RSCN_XMT || 9754 *pcmd == ELS_CMD_FDISC || 9755 *pcmd == ELS_CMD_LOGO || 9756 *pcmd == ELS_CMD_PLOGI)) { 9757 bf_set(els_req64_sp, &wqe->els_req, 1); 9758 bf_set(els_req64_sid, &wqe->els_req, 9759 iocbq->vport->fc_myDID); 9760 if ((*pcmd == ELS_CMD_FLOGI) && 9761 !(phba->fc_topology == 9762 LPFC_TOPOLOGY_LOOP)) 9763 bf_set(els_req64_sid, &wqe->els_req, 0); 9764 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9765 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9766 phba->vpi_ids[iocbq->vport->vpi]); 9767 } else if (pcmd && iocbq->context1) { 9768 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9769 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9770 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9771 } 9772 } 9773 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9774 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9775 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9776 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9777 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9778 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9779 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9780 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9781 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9782 break; 9783 case CMD_XMIT_SEQUENCE64_CX: 9784 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9785 iocbq->iocb.un.ulpWord[3]); 9786 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9787 iocbq->iocb.unsli3.rcvsli3.ox_id); 9788 /* The entire sequence is transmitted for this IOCB */ 9789 xmit_len = total_len; 9790 cmnd = CMD_XMIT_SEQUENCE64_CR; 9791 if (phba->link_flag & LS_LOOPBACK_MODE) 9792 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9793 fallthrough; 9794 case CMD_XMIT_SEQUENCE64_CR: 9795 /* word3 iocb=io_tag32 wqe=reserved */ 9796 wqe->xmit_sequence.rsvd3 = 0; 9797 /* word4 relative_offset memcpy */ 9798 /* word5 r_ctl/df_ctl memcpy */ 9799 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9800 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9801 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9802 LPFC_WQE_IOD_WRITE); 9803 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9804 LPFC_WQE_LENLOC_WORD12); 9805 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9806 wqe->xmit_sequence.xmit_len = xmit_len; 9807 command_type = OTHER_COMMAND; 9808 break; 9809 case CMD_XMIT_BCAST64_CN: 9810 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9811 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9812 /* word4 iocb=rsvd wqe=rsvd */ 9813 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9814 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9815 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9816 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9817 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9818 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9819 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9820 LPFC_WQE_LENLOC_WORD3); 9821 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9822 break; 9823 case CMD_FCP_IWRITE64_CR: 9824 command_type = FCP_COMMAND_DATA_OUT; 9825 /* word3 iocb=iotag wqe=payload_offset_len */ 9826 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9827 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9828 xmit_len + sizeof(struct fcp_rsp)); 9829 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9830 0); 9831 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9832 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9833 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9834 iocbq->iocb.ulpFCP2Rcvy); 9835 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9836 /* Always open the exchange */ 9837 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9838 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9839 LPFC_WQE_LENLOC_WORD4); 9840 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9841 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9842 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9843 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9844 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9845 if (iocbq->priority) { 9846 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9847 (iocbq->priority << 1)); 9848 } else { 9849 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9850 (phba->cfg_XLanePriority << 1)); 9851 } 9852 } 9853 /* Note, word 10 is already initialized to 0 */ 9854 9855 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9856 if (phba->cfg_enable_pbde) 9857 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9858 else 9859 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9860 9861 if (phba->fcp_embed_io) { 9862 struct lpfc_io_buf *lpfc_cmd; 9863 struct sli4_sge *sgl; 9864 struct fcp_cmnd *fcp_cmnd; 9865 uint32_t *ptr; 9866 9867 /* 128 byte wqe support here */ 9868 9869 lpfc_cmd = iocbq->context1; 9870 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9871 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9872 9873 /* Word 0-2 - FCP_CMND */ 9874 wqe->generic.bde.tus.f.bdeFlags = 9875 BUFF_TYPE_BDE_IMMED; 9876 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9877 wqe->generic.bde.addrHigh = 0; 9878 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9879 9880 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9881 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9882 9883 /* Word 22-29 FCP CMND Payload */ 9884 ptr = &wqe->words[22]; 9885 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9886 } 9887 break; 9888 case CMD_FCP_IREAD64_CR: 9889 /* word3 iocb=iotag wqe=payload_offset_len */ 9890 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9891 bf_set(payload_offset_len, &wqe->fcp_iread, 9892 xmit_len + sizeof(struct fcp_rsp)); 9893 bf_set(cmd_buff_len, &wqe->fcp_iread, 9894 0); 9895 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9896 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9897 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9898 iocbq->iocb.ulpFCP2Rcvy); 9899 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9900 /* Always open the exchange */ 9901 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9902 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9903 LPFC_WQE_LENLOC_WORD4); 9904 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9905 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9906 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9907 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9908 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9909 if (iocbq->priority) { 9910 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9911 (iocbq->priority << 1)); 9912 } else { 9913 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9914 (phba->cfg_XLanePriority << 1)); 9915 } 9916 } 9917 /* Note, word 10 is already initialized to 0 */ 9918 9919 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9920 if (phba->cfg_enable_pbde) 9921 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9922 else 9923 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9924 9925 if (phba->fcp_embed_io) { 9926 struct lpfc_io_buf *lpfc_cmd; 9927 struct sli4_sge *sgl; 9928 struct fcp_cmnd *fcp_cmnd; 9929 uint32_t *ptr; 9930 9931 /* 128 byte wqe support here */ 9932 9933 lpfc_cmd = iocbq->context1; 9934 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9935 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9936 9937 /* Word 0-2 - FCP_CMND */ 9938 wqe->generic.bde.tus.f.bdeFlags = 9939 BUFF_TYPE_BDE_IMMED; 9940 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9941 wqe->generic.bde.addrHigh = 0; 9942 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9943 9944 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9945 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9946 9947 /* Word 22-29 FCP CMND Payload */ 9948 ptr = &wqe->words[22]; 9949 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9950 } 9951 break; 9952 case CMD_FCP_ICMND64_CR: 9953 /* word3 iocb=iotag wqe=payload_offset_len */ 9954 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9955 bf_set(payload_offset_len, &wqe->fcp_icmd, 9956 xmit_len + sizeof(struct fcp_rsp)); 9957 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9958 0); 9959 /* word3 iocb=IO_TAG wqe=reserved */ 9960 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9961 /* Always open the exchange */ 9962 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9963 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9964 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9965 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9966 LPFC_WQE_LENLOC_NONE); 9967 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9968 iocbq->iocb.ulpFCP2Rcvy); 9969 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9970 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9971 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9972 if (iocbq->priority) { 9973 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9974 (iocbq->priority << 1)); 9975 } else { 9976 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9977 (phba->cfg_XLanePriority << 1)); 9978 } 9979 } 9980 /* Note, word 10 is already initialized to 0 */ 9981 9982 if (phba->fcp_embed_io) { 9983 struct lpfc_io_buf *lpfc_cmd; 9984 struct sli4_sge *sgl; 9985 struct fcp_cmnd *fcp_cmnd; 9986 uint32_t *ptr; 9987 9988 /* 128 byte wqe support here */ 9989 9990 lpfc_cmd = iocbq->context1; 9991 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9992 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9993 9994 /* Word 0-2 - FCP_CMND */ 9995 wqe->generic.bde.tus.f.bdeFlags = 9996 BUFF_TYPE_BDE_IMMED; 9997 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9998 wqe->generic.bde.addrHigh = 0; 9999 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10000 10001 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10002 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10003 10004 /* Word 22-29 FCP CMND Payload */ 10005 ptr = &wqe->words[22]; 10006 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10007 } 10008 break; 10009 case CMD_GEN_REQUEST64_CR: 10010 /* For this command calculate the xmit length of the 10011 * request bde. 10012 */ 10013 xmit_len = 0; 10014 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10015 sizeof(struct ulp_bde64); 10016 for (i = 0; i < numBdes; i++) { 10017 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10018 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10019 break; 10020 xmit_len += bde.tus.f.bdeSize; 10021 } 10022 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10023 wqe->gen_req.request_payload_len = xmit_len; 10024 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10025 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10026 /* word6 context tag copied in memcpy */ 10027 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10028 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10030 "2015 Invalid CT %x command 0x%x\n", 10031 ct, iocbq->iocb.ulpCommand); 10032 return IOCB_ERROR; 10033 } 10034 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10035 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10036 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10037 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10038 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10039 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10040 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10041 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10042 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10043 command_type = OTHER_COMMAND; 10044 break; 10045 case CMD_XMIT_ELS_RSP64_CX: 10046 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10047 /* words0-2 BDE memcpy */ 10048 /* word3 iocb=iotag32 wqe=response_payload_len */ 10049 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10050 /* word4 */ 10051 wqe->xmit_els_rsp.word4 = 0; 10052 /* word5 iocb=rsvd wge=did */ 10053 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10054 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10055 10056 if_type = bf_get(lpfc_sli_intf_if_type, 10057 &phba->sli4_hba.sli_intf); 10058 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10059 if (iocbq->vport->fc_flag & FC_PT2PT) { 10060 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10061 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10062 iocbq->vport->fc_myDID); 10063 if (iocbq->vport->fc_myDID == Fabric_DID) { 10064 bf_set(wqe_els_did, 10065 &wqe->xmit_els_rsp.wqe_dest, 0); 10066 } 10067 } 10068 } 10069 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10070 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10071 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10072 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10073 iocbq->iocb.unsli3.rcvsli3.ox_id); 10074 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10075 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10076 phba->vpi_ids[iocbq->vport->vpi]); 10077 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10078 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10079 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10080 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10081 LPFC_WQE_LENLOC_WORD3); 10082 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10083 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10084 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10085 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10086 iocbq->context2)->virt); 10087 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10088 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10089 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10090 iocbq->vport->fc_myDID); 10091 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10092 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10093 phba->vpi_ids[phba->pport->vpi]); 10094 } 10095 command_type = OTHER_COMMAND; 10096 break; 10097 case CMD_CLOSE_XRI_CN: 10098 case CMD_ABORT_XRI_CN: 10099 case CMD_ABORT_XRI_CX: 10100 /* words 0-2 memcpy should be 0 rserved */ 10101 /* port will send abts */ 10102 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10103 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10104 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10105 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10106 } else 10107 fip = 0; 10108 10109 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10110 /* 10111 * The link is down, or the command was ELS_FIP 10112 * so the fw does not need to send abts 10113 * on the wire. 10114 */ 10115 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10116 else 10117 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10118 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10119 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10120 wqe->abort_cmd.rsrvd5 = 0; 10121 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10122 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10123 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10124 /* 10125 * The abort handler will send us CMD_ABORT_XRI_CN or 10126 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10127 */ 10128 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10129 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10130 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10131 LPFC_WQE_LENLOC_NONE); 10132 cmnd = CMD_ABORT_XRI_CX; 10133 command_type = OTHER_COMMAND; 10134 xritag = 0; 10135 break; 10136 case CMD_XMIT_BLS_RSP64_CX: 10137 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10138 /* As BLS ABTS RSP WQE is very different from other WQEs, 10139 * we re-construct this WQE here based on information in 10140 * iocbq from scratch. 10141 */ 10142 memset(wqe, 0, sizeof(*wqe)); 10143 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10144 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10145 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10146 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10147 LPFC_ABTS_UNSOL_INT) { 10148 /* ABTS sent by initiator to CT exchange, the 10149 * RX_ID field will be filled with the newly 10150 * allocated responder XRI. 10151 */ 10152 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10153 iocbq->sli4_xritag); 10154 } else { 10155 /* ABTS sent by responder to CT exchange, the 10156 * RX_ID field will be filled with the responder 10157 * RX_ID from ABTS. 10158 */ 10159 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10160 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10161 } 10162 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10163 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10164 10165 /* Use CT=VPI */ 10166 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10167 ndlp->nlp_DID); 10168 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10169 iocbq->iocb.ulpContext); 10170 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10171 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10172 phba->vpi_ids[phba->pport->vpi]); 10173 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10174 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10175 LPFC_WQE_LENLOC_NONE); 10176 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10177 command_type = OTHER_COMMAND; 10178 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10179 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10180 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10181 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10182 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10183 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10184 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10185 } 10186 10187 break; 10188 case CMD_SEND_FRAME: 10189 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10190 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10191 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10192 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10193 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10194 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10195 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10196 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10197 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10198 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10199 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10200 return 0; 10201 case CMD_XRI_ABORTED_CX: 10202 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10203 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10204 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10205 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10206 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10207 default: 10208 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10209 "2014 Invalid command 0x%x\n", 10210 iocbq->iocb.ulpCommand); 10211 return IOCB_ERROR; 10212 } 10213 10214 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10215 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10216 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10217 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10218 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10219 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10220 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10221 LPFC_IO_DIF_INSERT); 10222 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10223 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10224 wqe->generic.wqe_com.abort_tag = abort_tag; 10225 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10226 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10227 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10228 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10229 return 0; 10230 } 10231 10232 /** 10233 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10234 * @phba: Pointer to HBA context object. 10235 * @ring_number: SLI ring number to issue wqe on. 10236 * @piocb: Pointer to command iocb. 10237 * @flag: Flag indicating if this command can be put into txq. 10238 * 10239 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10240 * send an iocb command to an HBA with SLI-4 interface spec. 10241 * 10242 * This function takes the hbalock before invoking the lockless version. 10243 * The function will return success after it successfully submit the wqe to 10244 * firmware or after adding to the txq. 10245 **/ 10246 static int 10247 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10248 struct lpfc_iocbq *piocb, uint32_t flag) 10249 { 10250 unsigned long iflags; 10251 int rc; 10252 10253 spin_lock_irqsave(&phba->hbalock, iflags); 10254 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10255 spin_unlock_irqrestore(&phba->hbalock, iflags); 10256 10257 return rc; 10258 } 10259 10260 /** 10261 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10262 * @phba: Pointer to HBA context object. 10263 * @ring_number: SLI ring number to issue wqe on. 10264 * @piocb: Pointer to command iocb. 10265 * @flag: Flag indicating if this command can be put into txq. 10266 * 10267 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10268 * an wqe command to an HBA with SLI-4 interface spec. 10269 * 10270 * This function is a lockless version. The function will return success 10271 * after it successfully submit the wqe to firmware or after adding to the 10272 * txq. 10273 **/ 10274 static int 10275 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10276 struct lpfc_iocbq *piocb, uint32_t flag) 10277 { 10278 int rc; 10279 struct lpfc_io_buf *lpfc_cmd = 10280 (struct lpfc_io_buf *)piocb->context1; 10281 union lpfc_wqe128 *wqe = &piocb->wqe; 10282 struct sli4_sge *sgl; 10283 10284 /* 128 byte wqe support here */ 10285 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10286 10287 if (phba->fcp_embed_io) { 10288 struct fcp_cmnd *fcp_cmnd; 10289 u32 *ptr; 10290 10291 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10292 10293 /* Word 0-2 - FCP_CMND */ 10294 wqe->generic.bde.tus.f.bdeFlags = 10295 BUFF_TYPE_BDE_IMMED; 10296 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10297 wqe->generic.bde.addrHigh = 0; 10298 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10299 10300 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10301 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10302 10303 /* Word 22-29 FCP CMND Payload */ 10304 ptr = &wqe->words[22]; 10305 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10306 } else { 10307 /* Word 0-2 - Inline BDE */ 10308 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10309 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10310 wqe->generic.bde.addrHigh = sgl->addr_hi; 10311 wqe->generic.bde.addrLow = sgl->addr_lo; 10312 10313 /* Word 10 */ 10314 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10315 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10316 } 10317 10318 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10319 return rc; 10320 } 10321 10322 /** 10323 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10324 * @phba: Pointer to HBA context object. 10325 * @ring_number: SLI ring number to issue iocb on. 10326 * @piocb: Pointer to command iocb. 10327 * @flag: Flag indicating if this command can be put into txq. 10328 * 10329 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10330 * an iocb command to an HBA with SLI-4 interface spec. 10331 * 10332 * This function is called with ringlock held. The function will return success 10333 * after it successfully submit the iocb to firmware or after adding to the 10334 * txq. 10335 **/ 10336 static int 10337 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10338 struct lpfc_iocbq *piocb, uint32_t flag) 10339 { 10340 struct lpfc_sglq *sglq; 10341 union lpfc_wqe128 wqe; 10342 struct lpfc_queue *wq; 10343 struct lpfc_sli_ring *pring; 10344 10345 /* Get the WQ */ 10346 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10347 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10348 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10349 } else { 10350 wq = phba->sli4_hba.els_wq; 10351 } 10352 10353 /* Get corresponding ring */ 10354 pring = wq->pring; 10355 10356 /* 10357 * The WQE can be either 64 or 128 bytes, 10358 */ 10359 10360 lockdep_assert_held(&pring->ring_lock); 10361 10362 if (piocb->sli4_xritag == NO_XRI) { 10363 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10364 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10365 sglq = NULL; 10366 else { 10367 if (!list_empty(&pring->txq)) { 10368 if (!(flag & SLI_IOCB_RET_IOCB)) { 10369 __lpfc_sli_ringtx_put(phba, 10370 pring, piocb); 10371 return IOCB_SUCCESS; 10372 } else { 10373 return IOCB_BUSY; 10374 } 10375 } else { 10376 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10377 if (!sglq) { 10378 if (!(flag & SLI_IOCB_RET_IOCB)) { 10379 __lpfc_sli_ringtx_put(phba, 10380 pring, 10381 piocb); 10382 return IOCB_SUCCESS; 10383 } else 10384 return IOCB_BUSY; 10385 } 10386 } 10387 } 10388 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10389 /* These IO's already have an XRI and a mapped sgl. */ 10390 sglq = NULL; 10391 } 10392 else { 10393 /* 10394 * This is a continuation of a commandi,(CX) so this 10395 * sglq is on the active list 10396 */ 10397 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10398 if (!sglq) 10399 return IOCB_ERROR; 10400 } 10401 10402 if (sglq) { 10403 piocb->sli4_lxritag = sglq->sli4_lxritag; 10404 piocb->sli4_xritag = sglq->sli4_xritag; 10405 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10406 return IOCB_ERROR; 10407 } 10408 10409 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10410 return IOCB_ERROR; 10411 10412 if (lpfc_sli4_wq_put(wq, &wqe)) 10413 return IOCB_ERROR; 10414 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10415 10416 return 0; 10417 } 10418 10419 /** 10420 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10421 * 10422 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10423 * or IOCB for sli-3 function. 10424 * pointer from the lpfc_hba struct. 10425 * 10426 * Return codes: 10427 * IOCB_ERROR - Error 10428 * IOCB_SUCCESS - Success 10429 * IOCB_BUSY - Busy 10430 **/ 10431 int 10432 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10433 struct lpfc_iocbq *piocb, uint32_t flag) 10434 { 10435 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10436 } 10437 10438 /* 10439 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10440 * 10441 * This routine wraps the actual lockless version for issusing IOCB function 10442 * pointer from the lpfc_hba struct. 10443 * 10444 * Return codes: 10445 * IOCB_ERROR - Error 10446 * IOCB_SUCCESS - Success 10447 * IOCB_BUSY - Busy 10448 **/ 10449 int 10450 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10451 struct lpfc_iocbq *piocb, uint32_t flag) 10452 { 10453 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10454 } 10455 10456 /** 10457 * lpfc_sli_api_table_setup - Set up sli api function jump table 10458 * @phba: The hba struct for which this call is being executed. 10459 * @dev_grp: The HBA PCI-Device group number. 10460 * 10461 * This routine sets up the SLI interface API function jump table in @phba 10462 * struct. 10463 * Returns: 0 - success, -ENODEV - failure. 10464 **/ 10465 int 10466 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10467 { 10468 10469 switch (dev_grp) { 10470 case LPFC_PCI_DEV_LP: 10471 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10472 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10473 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10474 break; 10475 case LPFC_PCI_DEV_OC: 10476 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10477 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10478 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10479 break; 10480 default: 10481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10482 "1419 Invalid HBA PCI-device group: 0x%x\n", 10483 dev_grp); 10484 return -ENODEV; 10485 } 10486 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10487 return 0; 10488 } 10489 10490 /** 10491 * lpfc_sli4_calc_ring - Calculates which ring to use 10492 * @phba: Pointer to HBA context object. 10493 * @piocb: Pointer to command iocb. 10494 * 10495 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10496 * hba_wqidx, thus we need to calculate the corresponding ring. 10497 * Since ABORTS must go on the same WQ of the command they are 10498 * aborting, we use command's hba_wqidx. 10499 */ 10500 struct lpfc_sli_ring * 10501 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10502 { 10503 struct lpfc_io_buf *lpfc_cmd; 10504 10505 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10506 if (unlikely(!phba->sli4_hba.hdwq)) 10507 return NULL; 10508 /* 10509 * for abort iocb hba_wqidx should already 10510 * be setup based on what work queue we used. 10511 */ 10512 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10513 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10514 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10515 } 10516 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10517 } else { 10518 if (unlikely(!phba->sli4_hba.els_wq)) 10519 return NULL; 10520 piocb->hba_wqidx = 0; 10521 return phba->sli4_hba.els_wq->pring; 10522 } 10523 } 10524 10525 /** 10526 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10527 * @phba: Pointer to HBA context object. 10528 * @ring_number: Ring number 10529 * @piocb: Pointer to command iocb. 10530 * @flag: Flag indicating if this command can be put into txq. 10531 * 10532 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10533 * function. This function gets the hbalock and calls 10534 * __lpfc_sli_issue_iocb function and will return the error returned 10535 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10536 * functions which do not hold hbalock. 10537 **/ 10538 int 10539 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10540 struct lpfc_iocbq *piocb, uint32_t flag) 10541 { 10542 struct lpfc_sli_ring *pring; 10543 struct lpfc_queue *eq; 10544 unsigned long iflags; 10545 int rc; 10546 10547 if (phba->sli_rev == LPFC_SLI_REV4) { 10548 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10549 10550 pring = lpfc_sli4_calc_ring(phba, piocb); 10551 if (unlikely(pring == NULL)) 10552 return IOCB_ERROR; 10553 10554 spin_lock_irqsave(&pring->ring_lock, iflags); 10555 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10556 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10557 10558 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10559 } else { 10560 /* For now, SLI2/3 will still use hbalock */ 10561 spin_lock_irqsave(&phba->hbalock, iflags); 10562 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10563 spin_unlock_irqrestore(&phba->hbalock, iflags); 10564 } 10565 return rc; 10566 } 10567 10568 /** 10569 * lpfc_extra_ring_setup - Extra ring setup function 10570 * @phba: Pointer to HBA context object. 10571 * 10572 * This function is called while driver attaches with the 10573 * HBA to setup the extra ring. The extra ring is used 10574 * only when driver needs to support target mode functionality 10575 * or IP over FC functionalities. 10576 * 10577 * This function is called with no lock held. SLI3 only. 10578 **/ 10579 static int 10580 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10581 { 10582 struct lpfc_sli *psli; 10583 struct lpfc_sli_ring *pring; 10584 10585 psli = &phba->sli; 10586 10587 /* Adjust cmd/rsp ring iocb entries more evenly */ 10588 10589 /* Take some away from the FCP ring */ 10590 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10591 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10592 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10593 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10594 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10595 10596 /* and give them to the extra ring */ 10597 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10598 10599 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10600 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10601 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10602 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10603 10604 /* Setup default profile for this ring */ 10605 pring->iotag_max = 4096; 10606 pring->num_mask = 1; 10607 pring->prt[0].profile = 0; /* Mask 0 */ 10608 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10609 pring->prt[0].type = phba->cfg_multi_ring_type; 10610 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10611 return 0; 10612 } 10613 10614 static void 10615 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10616 struct lpfc_nodelist *ndlp) 10617 { 10618 unsigned long iflags; 10619 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10620 10621 spin_lock_irqsave(&phba->hbalock, iflags); 10622 if (!list_empty(&evtp->evt_listp)) { 10623 spin_unlock_irqrestore(&phba->hbalock, iflags); 10624 return; 10625 } 10626 10627 /* Incrementing the reference count until the queued work is done. */ 10628 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10629 if (!evtp->evt_arg1) { 10630 spin_unlock_irqrestore(&phba->hbalock, iflags); 10631 return; 10632 } 10633 evtp->evt = LPFC_EVT_RECOVER_PORT; 10634 list_add_tail(&evtp->evt_listp, &phba->work_list); 10635 spin_unlock_irqrestore(&phba->hbalock, iflags); 10636 10637 lpfc_worker_wake_up(phba); 10638 } 10639 10640 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10641 * @phba: Pointer to HBA context object. 10642 * @iocbq: Pointer to iocb object. 10643 * 10644 * The async_event handler calls this routine when it receives 10645 * an ASYNC_STATUS_CN event from the port. The port generates 10646 * this event when an Abort Sequence request to an rport fails 10647 * twice in succession. The abort could be originated by the 10648 * driver or by the port. The ABTS could have been for an ELS 10649 * or FCP IO. The port only generates this event when an ABTS 10650 * fails to complete after one retry. 10651 */ 10652 static void 10653 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10654 struct lpfc_iocbq *iocbq) 10655 { 10656 struct lpfc_nodelist *ndlp = NULL; 10657 uint16_t rpi = 0, vpi = 0; 10658 struct lpfc_vport *vport = NULL; 10659 10660 /* The rpi in the ulpContext is vport-sensitive. */ 10661 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10662 rpi = iocbq->iocb.ulpContext; 10663 10664 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10665 "3092 Port generated ABTS async event " 10666 "on vpi %d rpi %d status 0x%x\n", 10667 vpi, rpi, iocbq->iocb.ulpStatus); 10668 10669 vport = lpfc_find_vport_by_vpid(phba, vpi); 10670 if (!vport) 10671 goto err_exit; 10672 ndlp = lpfc_findnode_rpi(vport, rpi); 10673 if (!ndlp) 10674 goto err_exit; 10675 10676 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10677 lpfc_sli_abts_recover_port(vport, ndlp); 10678 return; 10679 10680 err_exit: 10681 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10682 "3095 Event Context not found, no " 10683 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10684 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10685 vpi, rpi); 10686 } 10687 10688 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10689 * @phba: pointer to HBA context object. 10690 * @ndlp: nodelist pointer for the impacted rport. 10691 * @axri: pointer to the wcqe containing the failed exchange. 10692 * 10693 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10694 * port. The port generates this event when an abort exchange request to an 10695 * rport fails twice in succession with no reply. The abort could be originated 10696 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10697 */ 10698 void 10699 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10700 struct lpfc_nodelist *ndlp, 10701 struct sli4_wcqe_xri_aborted *axri) 10702 { 10703 uint32_t ext_status = 0; 10704 10705 if (!ndlp) { 10706 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10707 "3115 Node Context not found, driver " 10708 "ignoring abts err event\n"); 10709 return; 10710 } 10711 10712 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10713 "3116 Port generated FCP XRI ABORT event on " 10714 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10715 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10716 bf_get(lpfc_wcqe_xa_xri, axri), 10717 bf_get(lpfc_wcqe_xa_status, axri), 10718 axri->parameter); 10719 10720 /* 10721 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10722 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10723 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10724 */ 10725 ext_status = axri->parameter & IOERR_PARAM_MASK; 10726 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10727 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10728 lpfc_sli_post_recovery_event(phba, ndlp); 10729 } 10730 10731 /** 10732 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10733 * @phba: Pointer to HBA context object. 10734 * @pring: Pointer to driver SLI ring object. 10735 * @iocbq: Pointer to iocb object. 10736 * 10737 * This function is called by the slow ring event handler 10738 * function when there is an ASYNC event iocb in the ring. 10739 * This function is called with no lock held. 10740 * Currently this function handles only temperature related 10741 * ASYNC events. The function decodes the temperature sensor 10742 * event message and posts events for the management applications. 10743 **/ 10744 static void 10745 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10746 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10747 { 10748 IOCB_t *icmd; 10749 uint16_t evt_code; 10750 struct temp_event temp_event_data; 10751 struct Scsi_Host *shost; 10752 uint32_t *iocb_w; 10753 10754 icmd = &iocbq->iocb; 10755 evt_code = icmd->un.asyncstat.evt_code; 10756 10757 switch (evt_code) { 10758 case ASYNC_TEMP_WARN: 10759 case ASYNC_TEMP_SAFE: 10760 temp_event_data.data = (uint32_t) icmd->ulpContext; 10761 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10762 if (evt_code == ASYNC_TEMP_WARN) { 10763 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10765 "0347 Adapter is very hot, please take " 10766 "corrective action. temperature : %d Celsius\n", 10767 (uint32_t) icmd->ulpContext); 10768 } else { 10769 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10770 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10771 "0340 Adapter temperature is OK now. " 10772 "temperature : %d Celsius\n", 10773 (uint32_t) icmd->ulpContext); 10774 } 10775 10776 /* Send temperature change event to applications */ 10777 shost = lpfc_shost_from_vport(phba->pport); 10778 fc_host_post_vendor_event(shost, fc_get_event_number(), 10779 sizeof(temp_event_data), (char *) &temp_event_data, 10780 LPFC_NL_VENDOR_ID); 10781 break; 10782 case ASYNC_STATUS_CN: 10783 lpfc_sli_abts_err_handler(phba, iocbq); 10784 break; 10785 default: 10786 iocb_w = (uint32_t *) icmd; 10787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10788 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10789 " evt_code 0x%x\n" 10790 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10791 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10792 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10793 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10794 pring->ringno, icmd->un.asyncstat.evt_code, 10795 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10796 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10797 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10798 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10799 10800 break; 10801 } 10802 } 10803 10804 10805 /** 10806 * lpfc_sli4_setup - SLI ring setup function 10807 * @phba: Pointer to HBA context object. 10808 * 10809 * lpfc_sli_setup sets up rings of the SLI interface with 10810 * number of iocbs per ring and iotags. This function is 10811 * called while driver attach to the HBA and before the 10812 * interrupts are enabled. So there is no need for locking. 10813 * 10814 * This function always returns 0. 10815 **/ 10816 int 10817 lpfc_sli4_setup(struct lpfc_hba *phba) 10818 { 10819 struct lpfc_sli_ring *pring; 10820 10821 pring = phba->sli4_hba.els_wq->pring; 10822 pring->num_mask = LPFC_MAX_RING_MASK; 10823 pring->prt[0].profile = 0; /* Mask 0 */ 10824 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10825 pring->prt[0].type = FC_TYPE_ELS; 10826 pring->prt[0].lpfc_sli_rcv_unsol_event = 10827 lpfc_els_unsol_event; 10828 pring->prt[1].profile = 0; /* Mask 1 */ 10829 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10830 pring->prt[1].type = FC_TYPE_ELS; 10831 pring->prt[1].lpfc_sli_rcv_unsol_event = 10832 lpfc_els_unsol_event; 10833 pring->prt[2].profile = 0; /* Mask 2 */ 10834 /* NameServer Inquiry */ 10835 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10836 /* NameServer */ 10837 pring->prt[2].type = FC_TYPE_CT; 10838 pring->prt[2].lpfc_sli_rcv_unsol_event = 10839 lpfc_ct_unsol_event; 10840 pring->prt[3].profile = 0; /* Mask 3 */ 10841 /* NameServer response */ 10842 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10843 /* NameServer */ 10844 pring->prt[3].type = FC_TYPE_CT; 10845 pring->prt[3].lpfc_sli_rcv_unsol_event = 10846 lpfc_ct_unsol_event; 10847 return 0; 10848 } 10849 10850 /** 10851 * lpfc_sli_setup - SLI ring setup function 10852 * @phba: Pointer to HBA context object. 10853 * 10854 * lpfc_sli_setup sets up rings of the SLI interface with 10855 * number of iocbs per ring and iotags. This function is 10856 * called while driver attach to the HBA and before the 10857 * interrupts are enabled. So there is no need for locking. 10858 * 10859 * This function always returns 0. SLI3 only. 10860 **/ 10861 int 10862 lpfc_sli_setup(struct lpfc_hba *phba) 10863 { 10864 int i, totiocbsize = 0; 10865 struct lpfc_sli *psli = &phba->sli; 10866 struct lpfc_sli_ring *pring; 10867 10868 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10869 psli->sli_flag = 0; 10870 10871 psli->iocbq_lookup = NULL; 10872 psli->iocbq_lookup_len = 0; 10873 psli->last_iotag = 0; 10874 10875 for (i = 0; i < psli->num_rings; i++) { 10876 pring = &psli->sli3_ring[i]; 10877 switch (i) { 10878 case LPFC_FCP_RING: /* ring 0 - FCP */ 10879 /* numCiocb and numRiocb are used in config_port */ 10880 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10881 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10882 pring->sli.sli3.numCiocb += 10883 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10884 pring->sli.sli3.numRiocb += 10885 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10886 pring->sli.sli3.numCiocb += 10887 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10888 pring->sli.sli3.numRiocb += 10889 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10890 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10891 SLI3_IOCB_CMD_SIZE : 10892 SLI2_IOCB_CMD_SIZE; 10893 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10894 SLI3_IOCB_RSP_SIZE : 10895 SLI2_IOCB_RSP_SIZE; 10896 pring->iotag_ctr = 0; 10897 pring->iotag_max = 10898 (phba->cfg_hba_queue_depth * 2); 10899 pring->fast_iotag = pring->iotag_max; 10900 pring->num_mask = 0; 10901 break; 10902 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10903 /* numCiocb and numRiocb are used in config_port */ 10904 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10905 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10906 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10907 SLI3_IOCB_CMD_SIZE : 10908 SLI2_IOCB_CMD_SIZE; 10909 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10910 SLI3_IOCB_RSP_SIZE : 10911 SLI2_IOCB_RSP_SIZE; 10912 pring->iotag_max = phba->cfg_hba_queue_depth; 10913 pring->num_mask = 0; 10914 break; 10915 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10916 /* numCiocb and numRiocb are used in config_port */ 10917 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10918 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10919 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10920 SLI3_IOCB_CMD_SIZE : 10921 SLI2_IOCB_CMD_SIZE; 10922 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10923 SLI3_IOCB_RSP_SIZE : 10924 SLI2_IOCB_RSP_SIZE; 10925 pring->fast_iotag = 0; 10926 pring->iotag_ctr = 0; 10927 pring->iotag_max = 4096; 10928 pring->lpfc_sli_rcv_async_status = 10929 lpfc_sli_async_event_handler; 10930 pring->num_mask = LPFC_MAX_RING_MASK; 10931 pring->prt[0].profile = 0; /* Mask 0 */ 10932 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10933 pring->prt[0].type = FC_TYPE_ELS; 10934 pring->prt[0].lpfc_sli_rcv_unsol_event = 10935 lpfc_els_unsol_event; 10936 pring->prt[1].profile = 0; /* Mask 1 */ 10937 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10938 pring->prt[1].type = FC_TYPE_ELS; 10939 pring->prt[1].lpfc_sli_rcv_unsol_event = 10940 lpfc_els_unsol_event; 10941 pring->prt[2].profile = 0; /* Mask 2 */ 10942 /* NameServer Inquiry */ 10943 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10944 /* NameServer */ 10945 pring->prt[2].type = FC_TYPE_CT; 10946 pring->prt[2].lpfc_sli_rcv_unsol_event = 10947 lpfc_ct_unsol_event; 10948 pring->prt[3].profile = 0; /* Mask 3 */ 10949 /* NameServer response */ 10950 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10951 /* NameServer */ 10952 pring->prt[3].type = FC_TYPE_CT; 10953 pring->prt[3].lpfc_sli_rcv_unsol_event = 10954 lpfc_ct_unsol_event; 10955 break; 10956 } 10957 totiocbsize += (pring->sli.sli3.numCiocb * 10958 pring->sli.sli3.sizeCiocb) + 10959 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10960 } 10961 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10962 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10963 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10964 "SLI2 SLIM Data: x%x x%lx\n", 10965 phba->brd_no, totiocbsize, 10966 (unsigned long) MAX_SLIM_IOCB_SIZE); 10967 } 10968 if (phba->cfg_multi_ring_support == 2) 10969 lpfc_extra_ring_setup(phba); 10970 10971 return 0; 10972 } 10973 10974 /** 10975 * lpfc_sli4_queue_init - Queue initialization function 10976 * @phba: Pointer to HBA context object. 10977 * 10978 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10979 * ring. This function also initializes ring indices of each ring. 10980 * This function is called during the initialization of the SLI 10981 * interface of an HBA. 10982 * This function is called with no lock held and always returns 10983 * 1. 10984 **/ 10985 void 10986 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10987 { 10988 struct lpfc_sli *psli; 10989 struct lpfc_sli_ring *pring; 10990 int i; 10991 10992 psli = &phba->sli; 10993 spin_lock_irq(&phba->hbalock); 10994 INIT_LIST_HEAD(&psli->mboxq); 10995 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10996 /* Initialize list headers for txq and txcmplq as double linked lists */ 10997 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10998 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10999 pring->flag = 0; 11000 pring->ringno = LPFC_FCP_RING; 11001 pring->txcmplq_cnt = 0; 11002 INIT_LIST_HEAD(&pring->txq); 11003 INIT_LIST_HEAD(&pring->txcmplq); 11004 INIT_LIST_HEAD(&pring->iocb_continueq); 11005 spin_lock_init(&pring->ring_lock); 11006 } 11007 pring = phba->sli4_hba.els_wq->pring; 11008 pring->flag = 0; 11009 pring->ringno = LPFC_ELS_RING; 11010 pring->txcmplq_cnt = 0; 11011 INIT_LIST_HEAD(&pring->txq); 11012 INIT_LIST_HEAD(&pring->txcmplq); 11013 INIT_LIST_HEAD(&pring->iocb_continueq); 11014 spin_lock_init(&pring->ring_lock); 11015 11016 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11017 pring = phba->sli4_hba.nvmels_wq->pring; 11018 pring->flag = 0; 11019 pring->ringno = LPFC_ELS_RING; 11020 pring->txcmplq_cnt = 0; 11021 INIT_LIST_HEAD(&pring->txq); 11022 INIT_LIST_HEAD(&pring->txcmplq); 11023 INIT_LIST_HEAD(&pring->iocb_continueq); 11024 spin_lock_init(&pring->ring_lock); 11025 } 11026 11027 spin_unlock_irq(&phba->hbalock); 11028 } 11029 11030 /** 11031 * lpfc_sli_queue_init - Queue initialization function 11032 * @phba: Pointer to HBA context object. 11033 * 11034 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11035 * ring. This function also initializes ring indices of each ring. 11036 * This function is called during the initialization of the SLI 11037 * interface of an HBA. 11038 * This function is called with no lock held and always returns 11039 * 1. 11040 **/ 11041 void 11042 lpfc_sli_queue_init(struct lpfc_hba *phba) 11043 { 11044 struct lpfc_sli *psli; 11045 struct lpfc_sli_ring *pring; 11046 int i; 11047 11048 psli = &phba->sli; 11049 spin_lock_irq(&phba->hbalock); 11050 INIT_LIST_HEAD(&psli->mboxq); 11051 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11052 /* Initialize list headers for txq and txcmplq as double linked lists */ 11053 for (i = 0; i < psli->num_rings; i++) { 11054 pring = &psli->sli3_ring[i]; 11055 pring->ringno = i; 11056 pring->sli.sli3.next_cmdidx = 0; 11057 pring->sli.sli3.local_getidx = 0; 11058 pring->sli.sli3.cmdidx = 0; 11059 INIT_LIST_HEAD(&pring->iocb_continueq); 11060 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11061 INIT_LIST_HEAD(&pring->postbufq); 11062 pring->flag = 0; 11063 INIT_LIST_HEAD(&pring->txq); 11064 INIT_LIST_HEAD(&pring->txcmplq); 11065 spin_lock_init(&pring->ring_lock); 11066 } 11067 spin_unlock_irq(&phba->hbalock); 11068 } 11069 11070 /** 11071 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11072 * @phba: Pointer to HBA context object. 11073 * 11074 * This routine flushes the mailbox command subsystem. It will unconditionally 11075 * flush all the mailbox commands in the three possible stages in the mailbox 11076 * command sub-system: pending mailbox command queue; the outstanding mailbox 11077 * command; and completed mailbox command queue. It is caller's responsibility 11078 * to make sure that the driver is in the proper state to flush the mailbox 11079 * command sub-system. Namely, the posting of mailbox commands into the 11080 * pending mailbox command queue from the various clients must be stopped; 11081 * either the HBA is in a state that it will never works on the outstanding 11082 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11083 * mailbox command has been completed. 11084 **/ 11085 static void 11086 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11087 { 11088 LIST_HEAD(completions); 11089 struct lpfc_sli *psli = &phba->sli; 11090 LPFC_MBOXQ_t *pmb; 11091 unsigned long iflag; 11092 11093 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11094 local_bh_disable(); 11095 11096 /* Flush all the mailbox commands in the mbox system */ 11097 spin_lock_irqsave(&phba->hbalock, iflag); 11098 11099 /* The pending mailbox command queue */ 11100 list_splice_init(&phba->sli.mboxq, &completions); 11101 /* The outstanding active mailbox command */ 11102 if (psli->mbox_active) { 11103 list_add_tail(&psli->mbox_active->list, &completions); 11104 psli->mbox_active = NULL; 11105 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11106 } 11107 /* The completed mailbox command queue */ 11108 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11109 spin_unlock_irqrestore(&phba->hbalock, iflag); 11110 11111 /* Enable softirqs again, done with phba->hbalock */ 11112 local_bh_enable(); 11113 11114 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11115 while (!list_empty(&completions)) { 11116 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11117 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11118 if (pmb->mbox_cmpl) 11119 pmb->mbox_cmpl(phba, pmb); 11120 } 11121 } 11122 11123 /** 11124 * lpfc_sli_host_down - Vport cleanup function 11125 * @vport: Pointer to virtual port object. 11126 * 11127 * lpfc_sli_host_down is called to clean up the resources 11128 * associated with a vport before destroying virtual 11129 * port data structures. 11130 * This function does following operations: 11131 * - Free discovery resources associated with this virtual 11132 * port. 11133 * - Free iocbs associated with this virtual port in 11134 * the txq. 11135 * - Send abort for all iocb commands associated with this 11136 * vport in txcmplq. 11137 * 11138 * This function is called with no lock held and always returns 1. 11139 **/ 11140 int 11141 lpfc_sli_host_down(struct lpfc_vport *vport) 11142 { 11143 LIST_HEAD(completions); 11144 struct lpfc_hba *phba = vport->phba; 11145 struct lpfc_sli *psli = &phba->sli; 11146 struct lpfc_queue *qp = NULL; 11147 struct lpfc_sli_ring *pring; 11148 struct lpfc_iocbq *iocb, *next_iocb; 11149 int i; 11150 unsigned long flags = 0; 11151 uint16_t prev_pring_flag; 11152 11153 lpfc_cleanup_discovery_resources(vport); 11154 11155 spin_lock_irqsave(&phba->hbalock, flags); 11156 11157 /* 11158 * Error everything on the txq since these iocbs 11159 * have not been given to the FW yet. 11160 * Also issue ABTS for everything on the txcmplq 11161 */ 11162 if (phba->sli_rev != LPFC_SLI_REV4) { 11163 for (i = 0; i < psli->num_rings; i++) { 11164 pring = &psli->sli3_ring[i]; 11165 prev_pring_flag = pring->flag; 11166 /* Only slow rings */ 11167 if (pring->ringno == LPFC_ELS_RING) { 11168 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11169 /* Set the lpfc data pending flag */ 11170 set_bit(LPFC_DATA_READY, &phba->data_flags); 11171 } 11172 list_for_each_entry_safe(iocb, next_iocb, 11173 &pring->txq, list) { 11174 if (iocb->vport != vport) 11175 continue; 11176 list_move_tail(&iocb->list, &completions); 11177 } 11178 list_for_each_entry_safe(iocb, next_iocb, 11179 &pring->txcmplq, list) { 11180 if (iocb->vport != vport) 11181 continue; 11182 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11183 NULL); 11184 } 11185 pring->flag = prev_pring_flag; 11186 } 11187 } else { 11188 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11189 pring = qp->pring; 11190 if (!pring) 11191 continue; 11192 if (pring == phba->sli4_hba.els_wq->pring) { 11193 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11194 /* Set the lpfc data pending flag */ 11195 set_bit(LPFC_DATA_READY, &phba->data_flags); 11196 } 11197 prev_pring_flag = pring->flag; 11198 spin_lock(&pring->ring_lock); 11199 list_for_each_entry_safe(iocb, next_iocb, 11200 &pring->txq, list) { 11201 if (iocb->vport != vport) 11202 continue; 11203 list_move_tail(&iocb->list, &completions); 11204 } 11205 spin_unlock(&pring->ring_lock); 11206 list_for_each_entry_safe(iocb, next_iocb, 11207 &pring->txcmplq, list) { 11208 if (iocb->vport != vport) 11209 continue; 11210 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11211 NULL); 11212 } 11213 pring->flag = prev_pring_flag; 11214 } 11215 } 11216 spin_unlock_irqrestore(&phba->hbalock, flags); 11217 11218 /* Cancel all the IOCBs from the completions list */ 11219 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11220 IOERR_SLI_DOWN); 11221 return 1; 11222 } 11223 11224 /** 11225 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11226 * @phba: Pointer to HBA context object. 11227 * 11228 * This function cleans up all iocb, buffers, mailbox commands 11229 * while shutting down the HBA. This function is called with no 11230 * lock held and always returns 1. 11231 * This function does the following to cleanup driver resources: 11232 * - Free discovery resources for each virtual port 11233 * - Cleanup any pending fabric iocbs 11234 * - Iterate through the iocb txq and free each entry 11235 * in the list. 11236 * - Free up any buffer posted to the HBA 11237 * - Free mailbox commands in the mailbox queue. 11238 **/ 11239 int 11240 lpfc_sli_hba_down(struct lpfc_hba *phba) 11241 { 11242 LIST_HEAD(completions); 11243 struct lpfc_sli *psli = &phba->sli; 11244 struct lpfc_queue *qp = NULL; 11245 struct lpfc_sli_ring *pring; 11246 struct lpfc_dmabuf *buf_ptr; 11247 unsigned long flags = 0; 11248 int i; 11249 11250 /* Shutdown the mailbox command sub-system */ 11251 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11252 11253 lpfc_hba_down_prep(phba); 11254 11255 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11256 local_bh_disable(); 11257 11258 lpfc_fabric_abort_hba(phba); 11259 11260 spin_lock_irqsave(&phba->hbalock, flags); 11261 11262 /* 11263 * Error everything on the txq since these iocbs 11264 * have not been given to the FW yet. 11265 */ 11266 if (phba->sli_rev != LPFC_SLI_REV4) { 11267 for (i = 0; i < psli->num_rings; i++) { 11268 pring = &psli->sli3_ring[i]; 11269 /* Only slow rings */ 11270 if (pring->ringno == LPFC_ELS_RING) { 11271 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11272 /* Set the lpfc data pending flag */ 11273 set_bit(LPFC_DATA_READY, &phba->data_flags); 11274 } 11275 list_splice_init(&pring->txq, &completions); 11276 } 11277 } else { 11278 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11279 pring = qp->pring; 11280 if (!pring) 11281 continue; 11282 spin_lock(&pring->ring_lock); 11283 list_splice_init(&pring->txq, &completions); 11284 spin_unlock(&pring->ring_lock); 11285 if (pring == phba->sli4_hba.els_wq->pring) { 11286 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11287 /* Set the lpfc data pending flag */ 11288 set_bit(LPFC_DATA_READY, &phba->data_flags); 11289 } 11290 } 11291 } 11292 spin_unlock_irqrestore(&phba->hbalock, flags); 11293 11294 /* Cancel all the IOCBs from the completions list */ 11295 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11296 IOERR_SLI_DOWN); 11297 11298 spin_lock_irqsave(&phba->hbalock, flags); 11299 list_splice_init(&phba->elsbuf, &completions); 11300 phba->elsbuf_cnt = 0; 11301 phba->elsbuf_prev_cnt = 0; 11302 spin_unlock_irqrestore(&phba->hbalock, flags); 11303 11304 while (!list_empty(&completions)) { 11305 list_remove_head(&completions, buf_ptr, 11306 struct lpfc_dmabuf, list); 11307 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11308 kfree(buf_ptr); 11309 } 11310 11311 /* Enable softirqs again, done with phba->hbalock */ 11312 local_bh_enable(); 11313 11314 /* Return any active mbox cmds */ 11315 del_timer_sync(&psli->mbox_tmo); 11316 11317 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11318 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11319 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11320 11321 return 1; 11322 } 11323 11324 /** 11325 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11326 * @srcp: Source memory pointer. 11327 * @destp: Destination memory pointer. 11328 * @cnt: Number of words required to be copied. 11329 * 11330 * This function is used for copying data between driver memory 11331 * and the SLI memory. This function also changes the endianness 11332 * of each word if native endianness is different from SLI 11333 * endianness. This function can be called with or without 11334 * lock. 11335 **/ 11336 void 11337 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11338 { 11339 uint32_t *src = srcp; 11340 uint32_t *dest = destp; 11341 uint32_t ldata; 11342 int i; 11343 11344 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11345 ldata = *src; 11346 ldata = le32_to_cpu(ldata); 11347 *dest = ldata; 11348 src++; 11349 dest++; 11350 } 11351 } 11352 11353 11354 /** 11355 * lpfc_sli_bemem_bcopy - SLI memory copy function 11356 * @srcp: Source memory pointer. 11357 * @destp: Destination memory pointer. 11358 * @cnt: Number of words required to be copied. 11359 * 11360 * This function is used for copying data between a data structure 11361 * with big endian representation to local endianness. 11362 * This function can be called with or without lock. 11363 **/ 11364 void 11365 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11366 { 11367 uint32_t *src = srcp; 11368 uint32_t *dest = destp; 11369 uint32_t ldata; 11370 int i; 11371 11372 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11373 ldata = *src; 11374 ldata = be32_to_cpu(ldata); 11375 *dest = ldata; 11376 src++; 11377 dest++; 11378 } 11379 } 11380 11381 /** 11382 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11383 * @phba: Pointer to HBA context object. 11384 * @pring: Pointer to driver SLI ring object. 11385 * @mp: Pointer to driver buffer object. 11386 * 11387 * This function is called with no lock held. 11388 * It always return zero after adding the buffer to the postbufq 11389 * buffer list. 11390 **/ 11391 int 11392 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11393 struct lpfc_dmabuf *mp) 11394 { 11395 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11396 later */ 11397 spin_lock_irq(&phba->hbalock); 11398 list_add_tail(&mp->list, &pring->postbufq); 11399 pring->postbufq_cnt++; 11400 spin_unlock_irq(&phba->hbalock); 11401 return 0; 11402 } 11403 11404 /** 11405 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11406 * @phba: Pointer to HBA context object. 11407 * 11408 * When HBQ is enabled, buffers are searched based on tags. This function 11409 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11410 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11411 * does not conflict with tags of buffer posted for unsolicited events. 11412 * The function returns the allocated tag. The function is called with 11413 * no locks held. 11414 **/ 11415 uint32_t 11416 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11417 { 11418 spin_lock_irq(&phba->hbalock); 11419 phba->buffer_tag_count++; 11420 /* 11421 * Always set the QUE_BUFTAG_BIT to distiguish between 11422 * a tag assigned by HBQ. 11423 */ 11424 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11425 spin_unlock_irq(&phba->hbalock); 11426 return phba->buffer_tag_count; 11427 } 11428 11429 /** 11430 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11431 * @phba: Pointer to HBA context object. 11432 * @pring: Pointer to driver SLI ring object. 11433 * @tag: Buffer tag. 11434 * 11435 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11436 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11437 * iocb is posted to the response ring with the tag of the buffer. 11438 * This function searches the pring->postbufq list using the tag 11439 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11440 * iocb. If the buffer is found then lpfc_dmabuf object of the 11441 * buffer is returned to the caller else NULL is returned. 11442 * This function is called with no lock held. 11443 **/ 11444 struct lpfc_dmabuf * 11445 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11446 uint32_t tag) 11447 { 11448 struct lpfc_dmabuf *mp, *next_mp; 11449 struct list_head *slp = &pring->postbufq; 11450 11451 /* Search postbufq, from the beginning, looking for a match on tag */ 11452 spin_lock_irq(&phba->hbalock); 11453 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11454 if (mp->buffer_tag == tag) { 11455 list_del_init(&mp->list); 11456 pring->postbufq_cnt--; 11457 spin_unlock_irq(&phba->hbalock); 11458 return mp; 11459 } 11460 } 11461 11462 spin_unlock_irq(&phba->hbalock); 11463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11464 "0402 Cannot find virtual addr for buffer tag on " 11465 "ring %d Data x%lx x%px x%px x%x\n", 11466 pring->ringno, (unsigned long) tag, 11467 slp->next, slp->prev, pring->postbufq_cnt); 11468 11469 return NULL; 11470 } 11471 11472 /** 11473 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11474 * @phba: Pointer to HBA context object. 11475 * @pring: Pointer to driver SLI ring object. 11476 * @phys: DMA address of the buffer. 11477 * 11478 * This function searches the buffer list using the dma_address 11479 * of unsolicited event to find the driver's lpfc_dmabuf object 11480 * corresponding to the dma_address. The function returns the 11481 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11482 * This function is called by the ct and els unsolicited event 11483 * handlers to get the buffer associated with the unsolicited 11484 * event. 11485 * 11486 * This function is called with no lock held. 11487 **/ 11488 struct lpfc_dmabuf * 11489 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11490 dma_addr_t phys) 11491 { 11492 struct lpfc_dmabuf *mp, *next_mp; 11493 struct list_head *slp = &pring->postbufq; 11494 11495 /* Search postbufq, from the beginning, looking for a match on phys */ 11496 spin_lock_irq(&phba->hbalock); 11497 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11498 if (mp->phys == phys) { 11499 list_del_init(&mp->list); 11500 pring->postbufq_cnt--; 11501 spin_unlock_irq(&phba->hbalock); 11502 return mp; 11503 } 11504 } 11505 11506 spin_unlock_irq(&phba->hbalock); 11507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11508 "0410 Cannot find virtual addr for mapped buf on " 11509 "ring %d Data x%llx x%px x%px x%x\n", 11510 pring->ringno, (unsigned long long)phys, 11511 slp->next, slp->prev, pring->postbufq_cnt); 11512 return NULL; 11513 } 11514 11515 /** 11516 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11517 * @phba: Pointer to HBA context object. 11518 * @cmdiocb: Pointer to driver command iocb object. 11519 * @rspiocb: Pointer to driver response iocb object. 11520 * 11521 * This function is the completion handler for the abort iocbs for 11522 * ELS commands. This function is called from the ELS ring event 11523 * handler with no lock held. This function frees memory resources 11524 * associated with the abort iocb. 11525 **/ 11526 static void 11527 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11528 struct lpfc_iocbq *rspiocb) 11529 { 11530 IOCB_t *irsp = &rspiocb->iocb; 11531 uint16_t abort_iotag, abort_context; 11532 struct lpfc_iocbq *abort_iocb = NULL; 11533 11534 if (irsp->ulpStatus) { 11535 11536 /* 11537 * Assume that the port already completed and returned, or 11538 * will return the iocb. Just Log the message. 11539 */ 11540 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11541 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11542 11543 spin_lock_irq(&phba->hbalock); 11544 if (phba->sli_rev < LPFC_SLI_REV4) { 11545 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11546 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11547 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11548 spin_unlock_irq(&phba->hbalock); 11549 goto release_iocb; 11550 } 11551 if (abort_iotag != 0 && 11552 abort_iotag <= phba->sli.last_iotag) 11553 abort_iocb = 11554 phba->sli.iocbq_lookup[abort_iotag]; 11555 } else 11556 /* For sli4 the abort_tag is the XRI, 11557 * so the abort routine puts the iotag of the iocb 11558 * being aborted in the context field of the abort 11559 * IOCB. 11560 */ 11561 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11562 11563 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11564 "0327 Cannot abort els iocb x%px " 11565 "with tag %x context %x, abort status %x, " 11566 "abort code %x\n", 11567 abort_iocb, abort_iotag, abort_context, 11568 irsp->ulpStatus, irsp->un.ulpWord[4]); 11569 11570 spin_unlock_irq(&phba->hbalock); 11571 } 11572 release_iocb: 11573 lpfc_sli_release_iocbq(phba, cmdiocb); 11574 return; 11575 } 11576 11577 /** 11578 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11579 * @phba: Pointer to HBA context object. 11580 * @cmdiocb: Pointer to driver command iocb object. 11581 * @rspiocb: Pointer to driver response iocb object. 11582 * 11583 * The function is called from SLI ring event handler with no 11584 * lock held. This function is the completion handler for ELS commands 11585 * which are aborted. The function frees memory resources used for 11586 * the aborted ELS commands. 11587 **/ 11588 static void 11589 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11590 struct lpfc_iocbq *rspiocb) 11591 { 11592 IOCB_t *irsp = &rspiocb->iocb; 11593 11594 /* ELS cmd tag <ulpIoTag> completes */ 11595 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11596 "0139 Ignoring ELS cmd tag x%x completion Data: " 11597 "x%x x%x x%x\n", 11598 irsp->ulpIoTag, irsp->ulpStatus, 11599 irsp->un.ulpWord[4], irsp->ulpTimeout); 11600 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1); 11601 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11602 lpfc_ct_free_iocb(phba, cmdiocb); 11603 else 11604 lpfc_els_free_iocb(phba, cmdiocb); 11605 } 11606 11607 /** 11608 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11609 * @phba: Pointer to HBA context object. 11610 * @pring: Pointer to driver SLI ring object. 11611 * @cmdiocb: Pointer to driver command iocb object. 11612 * @cmpl: completion function. 11613 * 11614 * This function issues an abort iocb for the provided command iocb. In case 11615 * of unloading, the abort iocb will not be issued to commands on the ELS 11616 * ring. Instead, the callback function shall be changed to those commands 11617 * so that nothing happens when them finishes. This function is called with 11618 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11619 * when the command iocb is an abort request. 11620 * 11621 **/ 11622 int 11623 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11624 struct lpfc_iocbq *cmdiocb, void *cmpl) 11625 { 11626 struct lpfc_vport *vport = cmdiocb->vport; 11627 struct lpfc_iocbq *abtsiocbp; 11628 IOCB_t *icmd = NULL; 11629 IOCB_t *iabt = NULL; 11630 int retval = IOCB_ERROR; 11631 unsigned long iflags; 11632 struct lpfc_nodelist *ndlp; 11633 11634 /* 11635 * There are certain command types we don't want to abort. And we 11636 * don't want to abort commands that are already in the process of 11637 * being aborted. 11638 */ 11639 icmd = &cmdiocb->iocb; 11640 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11641 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11642 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11643 return IOCB_ABORTING; 11644 11645 if (!pring) { 11646 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11647 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11648 else 11649 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11650 return retval; 11651 } 11652 11653 /* 11654 * If we're unloading, don't abort iocb on the ELS ring, but change 11655 * the callback so that nothing happens when it finishes. 11656 */ 11657 if ((vport->load_flag & FC_UNLOADING) && 11658 pring->ringno == LPFC_ELS_RING) { 11659 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11660 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11661 else 11662 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11663 return retval; 11664 } 11665 11666 /* issue ABTS for this IOCB based on iotag */ 11667 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11668 if (abtsiocbp == NULL) 11669 return IOCB_NORESOURCE; 11670 11671 /* This signals the response to set the correct status 11672 * before calling the completion handler 11673 */ 11674 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11675 11676 iabt = &abtsiocbp->iocb; 11677 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11678 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11679 if (phba->sli_rev == LPFC_SLI_REV4) { 11680 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11681 if (pring->ringno == LPFC_ELS_RING) 11682 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11683 } else { 11684 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11685 if (pring->ringno == LPFC_ELS_RING) { 11686 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11687 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11688 } 11689 } 11690 iabt->ulpLe = 1; 11691 iabt->ulpClass = icmd->ulpClass; 11692 11693 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11694 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11695 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11696 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11697 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11698 } 11699 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11700 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11701 11702 if (phba->link_state >= LPFC_LINK_UP) 11703 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11704 else 11705 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11706 11707 if (cmpl) 11708 abtsiocbp->iocb_cmpl = cmpl; 11709 else 11710 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11711 abtsiocbp->vport = vport; 11712 11713 if (phba->sli_rev == LPFC_SLI_REV4) { 11714 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11715 if (unlikely(pring == NULL)) 11716 goto abort_iotag_exit; 11717 /* Note: both hbalock and ring_lock need to be set here */ 11718 spin_lock_irqsave(&pring->ring_lock, iflags); 11719 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11720 abtsiocbp, 0); 11721 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11722 } else { 11723 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11724 abtsiocbp, 0); 11725 } 11726 11727 abort_iotag_exit: 11728 11729 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11730 "0339 Abort xri x%x, original iotag x%x, " 11731 "abort cmd iotag x%x retval x%x\n", 11732 iabt->un.acxri.abortIoTag, 11733 iabt->un.acxri.abortContextTag, 11734 abtsiocbp->iotag, retval); 11735 11736 if (retval) { 11737 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11738 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11739 } 11740 11741 /* 11742 * Caller to this routine should check for IOCB_ERROR 11743 * and handle it properly. This routine no longer removes 11744 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11745 */ 11746 return retval; 11747 } 11748 11749 /** 11750 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11751 * @phba: pointer to lpfc HBA data structure. 11752 * 11753 * This routine will abort all pending and outstanding iocbs to an HBA. 11754 **/ 11755 void 11756 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11757 { 11758 struct lpfc_sli *psli = &phba->sli; 11759 struct lpfc_sli_ring *pring; 11760 struct lpfc_queue *qp = NULL; 11761 int i; 11762 11763 if (phba->sli_rev != LPFC_SLI_REV4) { 11764 for (i = 0; i < psli->num_rings; i++) { 11765 pring = &psli->sli3_ring[i]; 11766 lpfc_sli_abort_iocb_ring(phba, pring); 11767 } 11768 return; 11769 } 11770 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11771 pring = qp->pring; 11772 if (!pring) 11773 continue; 11774 lpfc_sli_abort_iocb_ring(phba, pring); 11775 } 11776 } 11777 11778 /** 11779 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11780 * @iocbq: Pointer to driver iocb object. 11781 * @vport: Pointer to driver virtual port object. 11782 * @tgt_id: SCSI ID of the target. 11783 * @lun_id: LUN ID of the scsi device. 11784 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11785 * 11786 * This function acts as an iocb filter for functions which abort or count 11787 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11788 * 0 if the filtering criteria is met for the given iocb and will return 11789 * 1 if the filtering criteria is not met. 11790 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11791 * given iocb is for the SCSI device specified by vport, tgt_id and 11792 * lun_id parameter. 11793 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11794 * given iocb is for the SCSI target specified by vport and tgt_id 11795 * parameters. 11796 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11797 * given iocb is for the SCSI host associated with the given vport. 11798 * This function is called with no locks held. 11799 **/ 11800 static int 11801 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11802 uint16_t tgt_id, uint64_t lun_id, 11803 lpfc_ctx_cmd ctx_cmd) 11804 { 11805 struct lpfc_io_buf *lpfc_cmd; 11806 int rc = 1; 11807 11808 if (iocbq->vport != vport) 11809 return rc; 11810 11811 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11812 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11813 return rc; 11814 11815 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11816 11817 if (lpfc_cmd->pCmd == NULL) 11818 return rc; 11819 11820 switch (ctx_cmd) { 11821 case LPFC_CTX_LUN: 11822 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11823 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11824 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11825 rc = 0; 11826 break; 11827 case LPFC_CTX_TGT: 11828 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11829 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11830 rc = 0; 11831 break; 11832 case LPFC_CTX_HOST: 11833 rc = 0; 11834 break; 11835 default: 11836 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11837 __func__, ctx_cmd); 11838 break; 11839 } 11840 11841 return rc; 11842 } 11843 11844 /** 11845 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11846 * @vport: Pointer to virtual port. 11847 * @tgt_id: SCSI ID of the target. 11848 * @lun_id: LUN ID of the scsi device. 11849 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11850 * 11851 * This function returns number of FCP commands pending for the vport. 11852 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11853 * commands pending on the vport associated with SCSI device specified 11854 * by tgt_id and lun_id parameters. 11855 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11856 * commands pending on the vport associated with SCSI target specified 11857 * by tgt_id parameter. 11858 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11859 * commands pending on the vport. 11860 * This function returns the number of iocbs which satisfy the filter. 11861 * This function is called without any lock held. 11862 **/ 11863 int 11864 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11865 lpfc_ctx_cmd ctx_cmd) 11866 { 11867 struct lpfc_hba *phba = vport->phba; 11868 struct lpfc_iocbq *iocbq; 11869 int sum, i; 11870 11871 spin_lock_irq(&phba->hbalock); 11872 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11873 iocbq = phba->sli.iocbq_lookup[i]; 11874 11875 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11876 ctx_cmd) == 0) 11877 sum++; 11878 } 11879 spin_unlock_irq(&phba->hbalock); 11880 11881 return sum; 11882 } 11883 11884 /** 11885 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11886 * @phba: Pointer to HBA context object 11887 * @cmdiocb: Pointer to command iocb object. 11888 * @wcqe: pointer to the complete wcqe 11889 * 11890 * This function is called when an aborted FCP iocb completes. This 11891 * function is called by the ring event handler with no lock held. 11892 * This function frees the iocb. It is called for sli-4 adapters. 11893 **/ 11894 void 11895 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11896 struct lpfc_wcqe_complete *wcqe) 11897 { 11898 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11899 "3017 ABORT_XRI_CN completing on rpi x%x " 11900 "original iotag x%x, abort cmd iotag x%x " 11901 "status 0x%x, reason 0x%x\n", 11902 cmdiocb->iocb.un.acxri.abortContextTag, 11903 cmdiocb->iocb.un.acxri.abortIoTag, 11904 cmdiocb->iotag, 11905 (bf_get(lpfc_wcqe_c_status, wcqe) 11906 & LPFC_IOCB_STATUS_MASK), 11907 wcqe->parameter); 11908 lpfc_sli_release_iocbq(phba, cmdiocb); 11909 } 11910 11911 /** 11912 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11913 * @phba: Pointer to HBA context object 11914 * @cmdiocb: Pointer to command iocb object. 11915 * @rspiocb: Pointer to response iocb object. 11916 * 11917 * This function is called when an aborted FCP iocb completes. This 11918 * function is called by the ring event handler with no lock held. 11919 * This function frees the iocb. 11920 **/ 11921 void 11922 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11923 struct lpfc_iocbq *rspiocb) 11924 { 11925 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11926 "3096 ABORT_XRI_CN completing on rpi x%x " 11927 "original iotag x%x, abort cmd iotag x%x " 11928 "status 0x%x, reason 0x%x\n", 11929 cmdiocb->iocb.un.acxri.abortContextTag, 11930 cmdiocb->iocb.un.acxri.abortIoTag, 11931 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11932 rspiocb->iocb.un.ulpWord[4]); 11933 lpfc_sli_release_iocbq(phba, cmdiocb); 11934 return; 11935 } 11936 11937 /** 11938 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11939 * @vport: Pointer to virtual port. 11940 * @pring: Pointer to driver SLI ring object. 11941 * @tgt_id: SCSI ID of the target. 11942 * @lun_id: LUN ID of the scsi device. 11943 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11944 * 11945 * This function sends an abort command for every SCSI command 11946 * associated with the given virtual port pending on the ring 11947 * filtered by lpfc_sli_validate_fcp_iocb function. 11948 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11949 * FCP iocbs associated with lun specified by tgt_id and lun_id 11950 * parameters 11951 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11952 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11953 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11954 * FCP iocbs associated with virtual port. 11955 * This function returns number of iocbs it failed to abort. 11956 * This function is called with no locks held. 11957 **/ 11958 int 11959 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11960 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11961 { 11962 struct lpfc_hba *phba = vport->phba; 11963 struct lpfc_iocbq *iocbq; 11964 int errcnt = 0, ret_val = 0; 11965 unsigned long iflags; 11966 int i; 11967 11968 /* all I/Os are in process of being flushed */ 11969 if (phba->hba_flag & HBA_IOQ_FLUSH) 11970 return errcnt; 11971 11972 for (i = 1; i <= phba->sli.last_iotag; i++) { 11973 iocbq = phba->sli.iocbq_lookup[i]; 11974 11975 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11976 abort_cmd) != 0) 11977 continue; 11978 11979 spin_lock_irqsave(&phba->hbalock, iflags); 11980 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 11981 lpfc_sli_abort_fcp_cmpl); 11982 spin_unlock_irqrestore(&phba->hbalock, iflags); 11983 if (ret_val != IOCB_SUCCESS) 11984 errcnt++; 11985 } 11986 11987 return errcnt; 11988 } 11989 11990 /** 11991 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11992 * @vport: Pointer to virtual port. 11993 * @pring: Pointer to driver SLI ring object. 11994 * @tgt_id: SCSI ID of the target. 11995 * @lun_id: LUN ID of the scsi device. 11996 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11997 * 11998 * This function sends an abort command for every SCSI command 11999 * associated with the given virtual port pending on the ring 12000 * filtered by lpfc_sli_validate_fcp_iocb function. 12001 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12002 * FCP iocbs associated with lun specified by tgt_id and lun_id 12003 * parameters 12004 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12005 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12006 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12007 * FCP iocbs associated with virtual port. 12008 * This function returns number of iocbs it aborted . 12009 * This function is called with no locks held right after a taskmgmt 12010 * command is sent. 12011 **/ 12012 int 12013 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12014 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12015 { 12016 struct lpfc_hba *phba = vport->phba; 12017 struct lpfc_io_buf *lpfc_cmd; 12018 struct lpfc_iocbq *abtsiocbq; 12019 struct lpfc_nodelist *ndlp; 12020 struct lpfc_iocbq *iocbq; 12021 IOCB_t *icmd; 12022 int sum, i, ret_val; 12023 unsigned long iflags; 12024 struct lpfc_sli_ring *pring_s4 = NULL; 12025 12026 spin_lock_irqsave(&phba->hbalock, iflags); 12027 12028 /* all I/Os are in process of being flushed */ 12029 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12030 spin_unlock_irqrestore(&phba->hbalock, iflags); 12031 return 0; 12032 } 12033 sum = 0; 12034 12035 for (i = 1; i <= phba->sli.last_iotag; i++) { 12036 iocbq = phba->sli.iocbq_lookup[i]; 12037 12038 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12039 cmd) != 0) 12040 continue; 12041 12042 /* Guard against IO completion being called at same time */ 12043 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12044 spin_lock(&lpfc_cmd->buf_lock); 12045 12046 if (!lpfc_cmd->pCmd) { 12047 spin_unlock(&lpfc_cmd->buf_lock); 12048 continue; 12049 } 12050 12051 if (phba->sli_rev == LPFC_SLI_REV4) { 12052 pring_s4 = 12053 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12054 if (!pring_s4) { 12055 spin_unlock(&lpfc_cmd->buf_lock); 12056 continue; 12057 } 12058 /* Note: both hbalock and ring_lock must be set here */ 12059 spin_lock(&pring_s4->ring_lock); 12060 } 12061 12062 /* 12063 * If the iocbq is already being aborted, don't take a second 12064 * action, but do count it. 12065 */ 12066 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12067 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12068 if (phba->sli_rev == LPFC_SLI_REV4) 12069 spin_unlock(&pring_s4->ring_lock); 12070 spin_unlock(&lpfc_cmd->buf_lock); 12071 continue; 12072 } 12073 12074 /* issue ABTS for this IOCB based on iotag */ 12075 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12076 if (!abtsiocbq) { 12077 if (phba->sli_rev == LPFC_SLI_REV4) 12078 spin_unlock(&pring_s4->ring_lock); 12079 spin_unlock(&lpfc_cmd->buf_lock); 12080 continue; 12081 } 12082 12083 icmd = &iocbq->iocb; 12084 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12085 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12086 if (phba->sli_rev == LPFC_SLI_REV4) 12087 abtsiocbq->iocb.un.acxri.abortIoTag = 12088 iocbq->sli4_xritag; 12089 else 12090 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12091 abtsiocbq->iocb.ulpLe = 1; 12092 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12093 abtsiocbq->vport = vport; 12094 12095 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12096 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12097 if (iocbq->iocb_flag & LPFC_IO_FCP) 12098 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12099 if (iocbq->iocb_flag & LPFC_IO_FOF) 12100 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12101 12102 ndlp = lpfc_cmd->rdata->pnode; 12103 12104 if (lpfc_is_link_up(phba) && 12105 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12106 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12107 else 12108 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12109 12110 /* Setup callback routine and issue the command. */ 12111 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12112 12113 /* 12114 * Indicate the IO is being aborted by the driver and set 12115 * the caller's flag into the aborted IO. 12116 */ 12117 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12118 12119 if (phba->sli_rev == LPFC_SLI_REV4) { 12120 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12121 abtsiocbq, 0); 12122 spin_unlock(&pring_s4->ring_lock); 12123 } else { 12124 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12125 abtsiocbq, 0); 12126 } 12127 12128 spin_unlock(&lpfc_cmd->buf_lock); 12129 12130 if (ret_val == IOCB_ERROR) 12131 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12132 else 12133 sum++; 12134 } 12135 spin_unlock_irqrestore(&phba->hbalock, iflags); 12136 return sum; 12137 } 12138 12139 /** 12140 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12141 * @phba: Pointer to HBA context object. 12142 * @cmdiocbq: Pointer to command iocb. 12143 * @rspiocbq: Pointer to response iocb. 12144 * 12145 * This function is the completion handler for iocbs issued using 12146 * lpfc_sli_issue_iocb_wait function. This function is called by the 12147 * ring event handler function without any lock held. This function 12148 * can be called from both worker thread context and interrupt 12149 * context. This function also can be called from other thread which 12150 * cleans up the SLI layer objects. 12151 * This function copy the contents of the response iocb to the 12152 * response iocb memory object provided by the caller of 12153 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12154 * sleeps for the iocb completion. 12155 **/ 12156 static void 12157 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12158 struct lpfc_iocbq *cmdiocbq, 12159 struct lpfc_iocbq *rspiocbq) 12160 { 12161 wait_queue_head_t *pdone_q; 12162 unsigned long iflags; 12163 struct lpfc_io_buf *lpfc_cmd; 12164 12165 spin_lock_irqsave(&phba->hbalock, iflags); 12166 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12167 12168 /* 12169 * A time out has occurred for the iocb. If a time out 12170 * completion handler has been supplied, call it. Otherwise, 12171 * just free the iocbq. 12172 */ 12173 12174 spin_unlock_irqrestore(&phba->hbalock, iflags); 12175 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12176 cmdiocbq->wait_iocb_cmpl = NULL; 12177 if (cmdiocbq->iocb_cmpl) 12178 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12179 else 12180 lpfc_sli_release_iocbq(phba, cmdiocbq); 12181 return; 12182 } 12183 12184 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12185 if (cmdiocbq->context2 && rspiocbq) 12186 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12187 &rspiocbq->iocb, sizeof(IOCB_t)); 12188 12189 /* Set the exchange busy flag for task management commands */ 12190 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12191 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12192 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12193 cur_iocbq); 12194 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12195 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12196 else 12197 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12198 } 12199 12200 pdone_q = cmdiocbq->context_un.wait_queue; 12201 if (pdone_q) 12202 wake_up(pdone_q); 12203 spin_unlock_irqrestore(&phba->hbalock, iflags); 12204 return; 12205 } 12206 12207 /** 12208 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12209 * @phba: Pointer to HBA context object.. 12210 * @piocbq: Pointer to command iocb. 12211 * @flag: Flag to test. 12212 * 12213 * This routine grabs the hbalock and then test the iocb_flag to 12214 * see if the passed in flag is set. 12215 * Returns: 12216 * 1 if flag is set. 12217 * 0 if flag is not set. 12218 **/ 12219 static int 12220 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12221 struct lpfc_iocbq *piocbq, uint32_t flag) 12222 { 12223 unsigned long iflags; 12224 int ret; 12225 12226 spin_lock_irqsave(&phba->hbalock, iflags); 12227 ret = piocbq->iocb_flag & flag; 12228 spin_unlock_irqrestore(&phba->hbalock, iflags); 12229 return ret; 12230 12231 } 12232 12233 /** 12234 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12235 * @phba: Pointer to HBA context object.. 12236 * @ring_number: Ring number 12237 * @piocb: Pointer to command iocb. 12238 * @prspiocbq: Pointer to response iocb. 12239 * @timeout: Timeout in number of seconds. 12240 * 12241 * This function issues the iocb to firmware and waits for the 12242 * iocb to complete. The iocb_cmpl field of the shall be used 12243 * to handle iocbs which time out. If the field is NULL, the 12244 * function shall free the iocbq structure. If more clean up is 12245 * needed, the caller is expected to provide a completion function 12246 * that will provide the needed clean up. If the iocb command is 12247 * not completed within timeout seconds, the function will either 12248 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12249 * completion function set in the iocb_cmpl field and then return 12250 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12251 * resources if this function returns IOCB_TIMEDOUT. 12252 * The function waits for the iocb completion using an 12253 * non-interruptible wait. 12254 * This function will sleep while waiting for iocb completion. 12255 * So, this function should not be called from any context which 12256 * does not allow sleeping. Due to the same reason, this function 12257 * cannot be called with interrupt disabled. 12258 * This function assumes that the iocb completions occur while 12259 * this function sleep. So, this function cannot be called from 12260 * the thread which process iocb completion for this ring. 12261 * This function clears the iocb_flag of the iocb object before 12262 * issuing the iocb and the iocb completion handler sets this 12263 * flag and wakes this thread when the iocb completes. 12264 * The contents of the response iocb will be copied to prspiocbq 12265 * by the completion handler when the command completes. 12266 * This function returns IOCB_SUCCESS when success. 12267 * This function is called with no lock held. 12268 **/ 12269 int 12270 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12271 uint32_t ring_number, 12272 struct lpfc_iocbq *piocb, 12273 struct lpfc_iocbq *prspiocbq, 12274 uint32_t timeout) 12275 { 12276 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12277 long timeleft, timeout_req = 0; 12278 int retval = IOCB_SUCCESS; 12279 uint32_t creg_val; 12280 struct lpfc_iocbq *iocb; 12281 int txq_cnt = 0; 12282 int txcmplq_cnt = 0; 12283 struct lpfc_sli_ring *pring; 12284 unsigned long iflags; 12285 bool iocb_completed = true; 12286 12287 if (phba->sli_rev >= LPFC_SLI_REV4) 12288 pring = lpfc_sli4_calc_ring(phba, piocb); 12289 else 12290 pring = &phba->sli.sli3_ring[ring_number]; 12291 /* 12292 * If the caller has provided a response iocbq buffer, then context2 12293 * is NULL or its an error. 12294 */ 12295 if (prspiocbq) { 12296 if (piocb->context2) 12297 return IOCB_ERROR; 12298 piocb->context2 = prspiocbq; 12299 } 12300 12301 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12302 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12303 piocb->context_un.wait_queue = &done_q; 12304 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12305 12306 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12307 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12308 return IOCB_ERROR; 12309 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12310 writel(creg_val, phba->HCregaddr); 12311 readl(phba->HCregaddr); /* flush */ 12312 } 12313 12314 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12315 SLI_IOCB_RET_IOCB); 12316 if (retval == IOCB_SUCCESS) { 12317 timeout_req = msecs_to_jiffies(timeout * 1000); 12318 timeleft = wait_event_timeout(done_q, 12319 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12320 timeout_req); 12321 spin_lock_irqsave(&phba->hbalock, iflags); 12322 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12323 12324 /* 12325 * IOCB timed out. Inform the wake iocb wait 12326 * completion function and set local status 12327 */ 12328 12329 iocb_completed = false; 12330 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12331 } 12332 spin_unlock_irqrestore(&phba->hbalock, iflags); 12333 if (iocb_completed) { 12334 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12335 "0331 IOCB wake signaled\n"); 12336 /* Note: we are not indicating if the IOCB has a success 12337 * status or not - that's for the caller to check. 12338 * IOCB_SUCCESS means just that the command was sent and 12339 * completed. Not that it completed successfully. 12340 * */ 12341 } else if (timeleft == 0) { 12342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12343 "0338 IOCB wait timeout error - no " 12344 "wake response Data x%x\n", timeout); 12345 retval = IOCB_TIMEDOUT; 12346 } else { 12347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12348 "0330 IOCB wake NOT set, " 12349 "Data x%x x%lx\n", 12350 timeout, (timeleft / jiffies)); 12351 retval = IOCB_TIMEDOUT; 12352 } 12353 } else if (retval == IOCB_BUSY) { 12354 if (phba->cfg_log_verbose & LOG_SLI) { 12355 list_for_each_entry(iocb, &pring->txq, list) { 12356 txq_cnt++; 12357 } 12358 list_for_each_entry(iocb, &pring->txcmplq, list) { 12359 txcmplq_cnt++; 12360 } 12361 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12362 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12363 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12364 } 12365 return retval; 12366 } else { 12367 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12368 "0332 IOCB wait issue failed, Data x%x\n", 12369 retval); 12370 retval = IOCB_ERROR; 12371 } 12372 12373 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12374 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12375 return IOCB_ERROR; 12376 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12377 writel(creg_val, phba->HCregaddr); 12378 readl(phba->HCregaddr); /* flush */ 12379 } 12380 12381 if (prspiocbq) 12382 piocb->context2 = NULL; 12383 12384 piocb->context_un.wait_queue = NULL; 12385 piocb->iocb_cmpl = NULL; 12386 return retval; 12387 } 12388 12389 /** 12390 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12391 * @phba: Pointer to HBA context object. 12392 * @pmboxq: Pointer to driver mailbox object. 12393 * @timeout: Timeout in number of seconds. 12394 * 12395 * This function issues the mailbox to firmware and waits for the 12396 * mailbox command to complete. If the mailbox command is not 12397 * completed within timeout seconds, it returns MBX_TIMEOUT. 12398 * The function waits for the mailbox completion using an 12399 * interruptible wait. If the thread is woken up due to a 12400 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12401 * should not free the mailbox resources, if this function returns 12402 * MBX_TIMEOUT. 12403 * This function will sleep while waiting for mailbox completion. 12404 * So, this function should not be called from any context which 12405 * does not allow sleeping. Due to the same reason, this function 12406 * cannot be called with interrupt disabled. 12407 * This function assumes that the mailbox completion occurs while 12408 * this function sleep. So, this function cannot be called from 12409 * the worker thread which processes mailbox completion. 12410 * This function is called in the context of HBA management 12411 * applications. 12412 * This function returns MBX_SUCCESS when successful. 12413 * This function is called with no lock held. 12414 **/ 12415 int 12416 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12417 uint32_t timeout) 12418 { 12419 struct completion mbox_done; 12420 int retval; 12421 unsigned long flag; 12422 12423 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12424 /* setup wake call as IOCB callback */ 12425 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12426 12427 /* setup context3 field to pass wait_queue pointer to wake function */ 12428 init_completion(&mbox_done); 12429 pmboxq->context3 = &mbox_done; 12430 /* now issue the command */ 12431 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12432 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12433 wait_for_completion_timeout(&mbox_done, 12434 msecs_to_jiffies(timeout * 1000)); 12435 12436 spin_lock_irqsave(&phba->hbalock, flag); 12437 pmboxq->context3 = NULL; 12438 /* 12439 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12440 * else do not free the resources. 12441 */ 12442 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12443 retval = MBX_SUCCESS; 12444 } else { 12445 retval = MBX_TIMEOUT; 12446 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12447 } 12448 spin_unlock_irqrestore(&phba->hbalock, flag); 12449 } 12450 return retval; 12451 } 12452 12453 /** 12454 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12455 * @phba: Pointer to HBA context. 12456 * @mbx_action: Mailbox shutdown options. 12457 * 12458 * This function is called to shutdown the driver's mailbox sub-system. 12459 * It first marks the mailbox sub-system is in a block state to prevent 12460 * the asynchronous mailbox command from issued off the pending mailbox 12461 * command queue. If the mailbox command sub-system shutdown is due to 12462 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12463 * the mailbox sub-system flush routine to forcefully bring down the 12464 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12465 * as with offline or HBA function reset), this routine will wait for the 12466 * outstanding mailbox command to complete before invoking the mailbox 12467 * sub-system flush routine to gracefully bring down mailbox sub-system. 12468 **/ 12469 void 12470 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12471 { 12472 struct lpfc_sli *psli = &phba->sli; 12473 unsigned long timeout; 12474 12475 if (mbx_action == LPFC_MBX_NO_WAIT) { 12476 /* delay 100ms for port state */ 12477 msleep(100); 12478 lpfc_sli_mbox_sys_flush(phba); 12479 return; 12480 } 12481 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12482 12483 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12484 local_bh_disable(); 12485 12486 spin_lock_irq(&phba->hbalock); 12487 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12488 12489 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12490 /* Determine how long we might wait for the active mailbox 12491 * command to be gracefully completed by firmware. 12492 */ 12493 if (phba->sli.mbox_active) 12494 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12495 phba->sli.mbox_active) * 12496 1000) + jiffies; 12497 spin_unlock_irq(&phba->hbalock); 12498 12499 /* Enable softirqs again, done with phba->hbalock */ 12500 local_bh_enable(); 12501 12502 while (phba->sli.mbox_active) { 12503 /* Check active mailbox complete status every 2ms */ 12504 msleep(2); 12505 if (time_after(jiffies, timeout)) 12506 /* Timeout, let the mailbox flush routine to 12507 * forcefully release active mailbox command 12508 */ 12509 break; 12510 } 12511 } else { 12512 spin_unlock_irq(&phba->hbalock); 12513 12514 /* Enable softirqs again, done with phba->hbalock */ 12515 local_bh_enable(); 12516 } 12517 12518 lpfc_sli_mbox_sys_flush(phba); 12519 } 12520 12521 /** 12522 * lpfc_sli_eratt_read - read sli-3 error attention events 12523 * @phba: Pointer to HBA context. 12524 * 12525 * This function is called to read the SLI3 device error attention registers 12526 * for possible error attention events. The caller must hold the hostlock 12527 * with spin_lock_irq(). 12528 * 12529 * This function returns 1 when there is Error Attention in the Host Attention 12530 * Register and returns 0 otherwise. 12531 **/ 12532 static int 12533 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12534 { 12535 uint32_t ha_copy; 12536 12537 /* Read chip Host Attention (HA) register */ 12538 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12539 goto unplug_err; 12540 12541 if (ha_copy & HA_ERATT) { 12542 /* Read host status register to retrieve error event */ 12543 if (lpfc_sli_read_hs(phba)) 12544 goto unplug_err; 12545 12546 /* Check if there is a deferred error condition is active */ 12547 if ((HS_FFER1 & phba->work_hs) && 12548 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12549 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12550 phba->hba_flag |= DEFER_ERATT; 12551 /* Clear all interrupt enable conditions */ 12552 writel(0, phba->HCregaddr); 12553 readl(phba->HCregaddr); 12554 } 12555 12556 /* Set the driver HA work bitmap */ 12557 phba->work_ha |= HA_ERATT; 12558 /* Indicate polling handles this ERATT */ 12559 phba->hba_flag |= HBA_ERATT_HANDLED; 12560 return 1; 12561 } 12562 return 0; 12563 12564 unplug_err: 12565 /* Set the driver HS work bitmap */ 12566 phba->work_hs |= UNPLUG_ERR; 12567 /* Set the driver HA work bitmap */ 12568 phba->work_ha |= HA_ERATT; 12569 /* Indicate polling handles this ERATT */ 12570 phba->hba_flag |= HBA_ERATT_HANDLED; 12571 return 1; 12572 } 12573 12574 /** 12575 * lpfc_sli4_eratt_read - read sli-4 error attention events 12576 * @phba: Pointer to HBA context. 12577 * 12578 * This function is called to read the SLI4 device error attention registers 12579 * for possible error attention events. The caller must hold the hostlock 12580 * with spin_lock_irq(). 12581 * 12582 * This function returns 1 when there is Error Attention in the Host Attention 12583 * Register and returns 0 otherwise. 12584 **/ 12585 static int 12586 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12587 { 12588 uint32_t uerr_sta_hi, uerr_sta_lo; 12589 uint32_t if_type, portsmphr; 12590 struct lpfc_register portstat_reg; 12591 12592 /* 12593 * For now, use the SLI4 device internal unrecoverable error 12594 * registers for error attention. This can be changed later. 12595 */ 12596 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12597 switch (if_type) { 12598 case LPFC_SLI_INTF_IF_TYPE_0: 12599 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12600 &uerr_sta_lo) || 12601 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12602 &uerr_sta_hi)) { 12603 phba->work_hs |= UNPLUG_ERR; 12604 phba->work_ha |= HA_ERATT; 12605 phba->hba_flag |= HBA_ERATT_HANDLED; 12606 return 1; 12607 } 12608 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12609 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12611 "1423 HBA Unrecoverable error: " 12612 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12613 "ue_mask_lo_reg=0x%x, " 12614 "ue_mask_hi_reg=0x%x\n", 12615 uerr_sta_lo, uerr_sta_hi, 12616 phba->sli4_hba.ue_mask_lo, 12617 phba->sli4_hba.ue_mask_hi); 12618 phba->work_status[0] = uerr_sta_lo; 12619 phba->work_status[1] = uerr_sta_hi; 12620 phba->work_ha |= HA_ERATT; 12621 phba->hba_flag |= HBA_ERATT_HANDLED; 12622 return 1; 12623 } 12624 break; 12625 case LPFC_SLI_INTF_IF_TYPE_2: 12626 case LPFC_SLI_INTF_IF_TYPE_6: 12627 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12628 &portstat_reg.word0) || 12629 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12630 &portsmphr)){ 12631 phba->work_hs |= UNPLUG_ERR; 12632 phba->work_ha |= HA_ERATT; 12633 phba->hba_flag |= HBA_ERATT_HANDLED; 12634 return 1; 12635 } 12636 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12637 phba->work_status[0] = 12638 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12639 phba->work_status[1] = 12640 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12642 "2885 Port Status Event: " 12643 "port status reg 0x%x, " 12644 "port smphr reg 0x%x, " 12645 "error 1=0x%x, error 2=0x%x\n", 12646 portstat_reg.word0, 12647 portsmphr, 12648 phba->work_status[0], 12649 phba->work_status[1]); 12650 phba->work_ha |= HA_ERATT; 12651 phba->hba_flag |= HBA_ERATT_HANDLED; 12652 return 1; 12653 } 12654 break; 12655 case LPFC_SLI_INTF_IF_TYPE_1: 12656 default: 12657 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12658 "2886 HBA Error Attention on unsupported " 12659 "if type %d.", if_type); 12660 return 1; 12661 } 12662 12663 return 0; 12664 } 12665 12666 /** 12667 * lpfc_sli_check_eratt - check error attention events 12668 * @phba: Pointer to HBA context. 12669 * 12670 * This function is called from timer soft interrupt context to check HBA's 12671 * error attention register bit for error attention events. 12672 * 12673 * This function returns 1 when there is Error Attention in the Host Attention 12674 * Register and returns 0 otherwise. 12675 **/ 12676 int 12677 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12678 { 12679 uint32_t ha_copy; 12680 12681 /* If somebody is waiting to handle an eratt, don't process it 12682 * here. The brdkill function will do this. 12683 */ 12684 if (phba->link_flag & LS_IGNORE_ERATT) 12685 return 0; 12686 12687 /* Check if interrupt handler handles this ERATT */ 12688 spin_lock_irq(&phba->hbalock); 12689 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12690 /* Interrupt handler has handled ERATT */ 12691 spin_unlock_irq(&phba->hbalock); 12692 return 0; 12693 } 12694 12695 /* 12696 * If there is deferred error attention, do not check for error 12697 * attention 12698 */ 12699 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12700 spin_unlock_irq(&phba->hbalock); 12701 return 0; 12702 } 12703 12704 /* If PCI channel is offline, don't process it */ 12705 if (unlikely(pci_channel_offline(phba->pcidev))) { 12706 spin_unlock_irq(&phba->hbalock); 12707 return 0; 12708 } 12709 12710 switch (phba->sli_rev) { 12711 case LPFC_SLI_REV2: 12712 case LPFC_SLI_REV3: 12713 /* Read chip Host Attention (HA) register */ 12714 ha_copy = lpfc_sli_eratt_read(phba); 12715 break; 12716 case LPFC_SLI_REV4: 12717 /* Read device Uncoverable Error (UERR) registers */ 12718 ha_copy = lpfc_sli4_eratt_read(phba); 12719 break; 12720 default: 12721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12722 "0299 Invalid SLI revision (%d)\n", 12723 phba->sli_rev); 12724 ha_copy = 0; 12725 break; 12726 } 12727 spin_unlock_irq(&phba->hbalock); 12728 12729 return ha_copy; 12730 } 12731 12732 /** 12733 * lpfc_intr_state_check - Check device state for interrupt handling 12734 * @phba: Pointer to HBA context. 12735 * 12736 * This inline routine checks whether a device or its PCI slot is in a state 12737 * that the interrupt should be handled. 12738 * 12739 * This function returns 0 if the device or the PCI slot is in a state that 12740 * interrupt should be handled, otherwise -EIO. 12741 */ 12742 static inline int 12743 lpfc_intr_state_check(struct lpfc_hba *phba) 12744 { 12745 /* If the pci channel is offline, ignore all the interrupts */ 12746 if (unlikely(pci_channel_offline(phba->pcidev))) 12747 return -EIO; 12748 12749 /* Update device level interrupt statistics */ 12750 phba->sli.slistat.sli_intr++; 12751 12752 /* Ignore all interrupts during initialization. */ 12753 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12754 return -EIO; 12755 12756 return 0; 12757 } 12758 12759 /** 12760 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12761 * @irq: Interrupt number. 12762 * @dev_id: The device context pointer. 12763 * 12764 * This function is directly called from the PCI layer as an interrupt 12765 * service routine when device with SLI-3 interface spec is enabled with 12766 * MSI-X multi-message interrupt mode and there are slow-path events in 12767 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12768 * interrupt mode, this function is called as part of the device-level 12769 * interrupt handler. When the PCI slot is in error recovery or the HBA 12770 * is undergoing initialization, the interrupt handler will not process 12771 * the interrupt. The link attention and ELS ring attention events are 12772 * handled by the worker thread. The interrupt handler signals the worker 12773 * thread and returns for these events. This function is called without 12774 * any lock held. It gets the hbalock to access and update SLI data 12775 * structures. 12776 * 12777 * This function returns IRQ_HANDLED when interrupt is handled else it 12778 * returns IRQ_NONE. 12779 **/ 12780 irqreturn_t 12781 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12782 { 12783 struct lpfc_hba *phba; 12784 uint32_t ha_copy, hc_copy; 12785 uint32_t work_ha_copy; 12786 unsigned long status; 12787 unsigned long iflag; 12788 uint32_t control; 12789 12790 MAILBOX_t *mbox, *pmbox; 12791 struct lpfc_vport *vport; 12792 struct lpfc_nodelist *ndlp; 12793 struct lpfc_dmabuf *mp; 12794 LPFC_MBOXQ_t *pmb; 12795 int rc; 12796 12797 /* 12798 * Get the driver's phba structure from the dev_id and 12799 * assume the HBA is not interrupting. 12800 */ 12801 phba = (struct lpfc_hba *)dev_id; 12802 12803 if (unlikely(!phba)) 12804 return IRQ_NONE; 12805 12806 /* 12807 * Stuff needs to be attented to when this function is invoked as an 12808 * individual interrupt handler in MSI-X multi-message interrupt mode 12809 */ 12810 if (phba->intr_type == MSIX) { 12811 /* Check device state for handling interrupt */ 12812 if (lpfc_intr_state_check(phba)) 12813 return IRQ_NONE; 12814 /* Need to read HA REG for slow-path events */ 12815 spin_lock_irqsave(&phba->hbalock, iflag); 12816 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12817 goto unplug_error; 12818 /* If somebody is waiting to handle an eratt don't process it 12819 * here. The brdkill function will do this. 12820 */ 12821 if (phba->link_flag & LS_IGNORE_ERATT) 12822 ha_copy &= ~HA_ERATT; 12823 /* Check the need for handling ERATT in interrupt handler */ 12824 if (ha_copy & HA_ERATT) { 12825 if (phba->hba_flag & HBA_ERATT_HANDLED) 12826 /* ERATT polling has handled ERATT */ 12827 ha_copy &= ~HA_ERATT; 12828 else 12829 /* Indicate interrupt handler handles ERATT */ 12830 phba->hba_flag |= HBA_ERATT_HANDLED; 12831 } 12832 12833 /* 12834 * If there is deferred error attention, do not check for any 12835 * interrupt. 12836 */ 12837 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12838 spin_unlock_irqrestore(&phba->hbalock, iflag); 12839 return IRQ_NONE; 12840 } 12841 12842 /* Clear up only attention source related to slow-path */ 12843 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12844 goto unplug_error; 12845 12846 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12847 HC_LAINT_ENA | HC_ERINT_ENA), 12848 phba->HCregaddr); 12849 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12850 phba->HAregaddr); 12851 writel(hc_copy, phba->HCregaddr); 12852 readl(phba->HAregaddr); /* flush */ 12853 spin_unlock_irqrestore(&phba->hbalock, iflag); 12854 } else 12855 ha_copy = phba->ha_copy; 12856 12857 work_ha_copy = ha_copy & phba->work_ha_mask; 12858 12859 if (work_ha_copy) { 12860 if (work_ha_copy & HA_LATT) { 12861 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12862 /* 12863 * Turn off Link Attention interrupts 12864 * until CLEAR_LA done 12865 */ 12866 spin_lock_irqsave(&phba->hbalock, iflag); 12867 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12868 if (lpfc_readl(phba->HCregaddr, &control)) 12869 goto unplug_error; 12870 control &= ~HC_LAINT_ENA; 12871 writel(control, phba->HCregaddr); 12872 readl(phba->HCregaddr); /* flush */ 12873 spin_unlock_irqrestore(&phba->hbalock, iflag); 12874 } 12875 else 12876 work_ha_copy &= ~HA_LATT; 12877 } 12878 12879 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12880 /* 12881 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12882 * the only slow ring. 12883 */ 12884 status = (work_ha_copy & 12885 (HA_RXMASK << (4*LPFC_ELS_RING))); 12886 status >>= (4*LPFC_ELS_RING); 12887 if (status & HA_RXMASK) { 12888 spin_lock_irqsave(&phba->hbalock, iflag); 12889 if (lpfc_readl(phba->HCregaddr, &control)) 12890 goto unplug_error; 12891 12892 lpfc_debugfs_slow_ring_trc(phba, 12893 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12894 control, status, 12895 (uint32_t)phba->sli.slistat.sli_intr); 12896 12897 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12898 lpfc_debugfs_slow_ring_trc(phba, 12899 "ISR Disable ring:" 12900 "pwork:x%x hawork:x%x wait:x%x", 12901 phba->work_ha, work_ha_copy, 12902 (uint32_t)((unsigned long) 12903 &phba->work_waitq)); 12904 12905 control &= 12906 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12907 writel(control, phba->HCregaddr); 12908 readl(phba->HCregaddr); /* flush */ 12909 } 12910 else { 12911 lpfc_debugfs_slow_ring_trc(phba, 12912 "ISR slow ring: pwork:" 12913 "x%x hawork:x%x wait:x%x", 12914 phba->work_ha, work_ha_copy, 12915 (uint32_t)((unsigned long) 12916 &phba->work_waitq)); 12917 } 12918 spin_unlock_irqrestore(&phba->hbalock, iflag); 12919 } 12920 } 12921 spin_lock_irqsave(&phba->hbalock, iflag); 12922 if (work_ha_copy & HA_ERATT) { 12923 if (lpfc_sli_read_hs(phba)) 12924 goto unplug_error; 12925 /* 12926 * Check if there is a deferred error condition 12927 * is active 12928 */ 12929 if ((HS_FFER1 & phba->work_hs) && 12930 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12931 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12932 phba->work_hs)) { 12933 phba->hba_flag |= DEFER_ERATT; 12934 /* Clear all interrupt enable conditions */ 12935 writel(0, phba->HCregaddr); 12936 readl(phba->HCregaddr); 12937 } 12938 } 12939 12940 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12941 pmb = phba->sli.mbox_active; 12942 pmbox = &pmb->u.mb; 12943 mbox = phba->mbox; 12944 vport = pmb->vport; 12945 12946 /* First check out the status word */ 12947 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12948 if (pmbox->mbxOwner != OWN_HOST) { 12949 spin_unlock_irqrestore(&phba->hbalock, iflag); 12950 /* 12951 * Stray Mailbox Interrupt, mbxCommand <cmd> 12952 * mbxStatus <status> 12953 */ 12954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12955 "(%d):0304 Stray Mailbox " 12956 "Interrupt mbxCommand x%x " 12957 "mbxStatus x%x\n", 12958 (vport ? vport->vpi : 0), 12959 pmbox->mbxCommand, 12960 pmbox->mbxStatus); 12961 /* clear mailbox attention bit */ 12962 work_ha_copy &= ~HA_MBATT; 12963 } else { 12964 phba->sli.mbox_active = NULL; 12965 spin_unlock_irqrestore(&phba->hbalock, iflag); 12966 phba->last_completion_time = jiffies; 12967 del_timer(&phba->sli.mbox_tmo); 12968 if (pmb->mbox_cmpl) { 12969 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12970 MAILBOX_CMD_SIZE); 12971 if (pmb->out_ext_byte_len && 12972 pmb->ctx_buf) 12973 lpfc_sli_pcimem_bcopy( 12974 phba->mbox_ext, 12975 pmb->ctx_buf, 12976 pmb->out_ext_byte_len); 12977 } 12978 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12979 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12980 12981 lpfc_debugfs_disc_trc(vport, 12982 LPFC_DISC_TRC_MBOX_VPORT, 12983 "MBOX dflt rpi: : " 12984 "status:x%x rpi:x%x", 12985 (uint32_t)pmbox->mbxStatus, 12986 pmbox->un.varWords[0], 0); 12987 12988 if (!pmbox->mbxStatus) { 12989 mp = (struct lpfc_dmabuf *) 12990 (pmb->ctx_buf); 12991 ndlp = (struct lpfc_nodelist *) 12992 pmb->ctx_ndlp; 12993 12994 /* Reg_LOGIN of dflt RPI was 12995 * successful. new lets get 12996 * rid of the RPI using the 12997 * same mbox buffer. 12998 */ 12999 lpfc_unreg_login(phba, 13000 vport->vpi, 13001 pmbox->un.varWords[0], 13002 pmb); 13003 pmb->mbox_cmpl = 13004 lpfc_mbx_cmpl_dflt_rpi; 13005 pmb->ctx_buf = mp; 13006 pmb->ctx_ndlp = ndlp; 13007 pmb->vport = vport; 13008 rc = lpfc_sli_issue_mbox(phba, 13009 pmb, 13010 MBX_NOWAIT); 13011 if (rc != MBX_BUSY) 13012 lpfc_printf_log(phba, 13013 KERN_ERR, 13014 LOG_TRACE_EVENT, 13015 "0350 rc should have" 13016 "been MBX_BUSY\n"); 13017 if (rc != MBX_NOT_FINISHED) 13018 goto send_current_mbox; 13019 } 13020 } 13021 spin_lock_irqsave( 13022 &phba->pport->work_port_lock, 13023 iflag); 13024 phba->pport->work_port_events &= 13025 ~WORKER_MBOX_TMO; 13026 spin_unlock_irqrestore( 13027 &phba->pport->work_port_lock, 13028 iflag); 13029 lpfc_mbox_cmpl_put(phba, pmb); 13030 } 13031 } else 13032 spin_unlock_irqrestore(&phba->hbalock, iflag); 13033 13034 if ((work_ha_copy & HA_MBATT) && 13035 (phba->sli.mbox_active == NULL)) { 13036 send_current_mbox: 13037 /* Process next mailbox command if there is one */ 13038 do { 13039 rc = lpfc_sli_issue_mbox(phba, NULL, 13040 MBX_NOWAIT); 13041 } while (rc == MBX_NOT_FINISHED); 13042 if (rc != MBX_SUCCESS) 13043 lpfc_printf_log(phba, KERN_ERR, 13044 LOG_TRACE_EVENT, 13045 "0349 rc should be " 13046 "MBX_SUCCESS\n"); 13047 } 13048 13049 spin_lock_irqsave(&phba->hbalock, iflag); 13050 phba->work_ha |= work_ha_copy; 13051 spin_unlock_irqrestore(&phba->hbalock, iflag); 13052 lpfc_worker_wake_up(phba); 13053 } 13054 return IRQ_HANDLED; 13055 unplug_error: 13056 spin_unlock_irqrestore(&phba->hbalock, iflag); 13057 return IRQ_HANDLED; 13058 13059 } /* lpfc_sli_sp_intr_handler */ 13060 13061 /** 13062 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13063 * @irq: Interrupt number. 13064 * @dev_id: The device context pointer. 13065 * 13066 * This function is directly called from the PCI layer as an interrupt 13067 * service routine when device with SLI-3 interface spec is enabled with 13068 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13069 * ring event in the HBA. However, when the device is enabled with either 13070 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13071 * device-level interrupt handler. When the PCI slot is in error recovery 13072 * or the HBA is undergoing initialization, the interrupt handler will not 13073 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13074 * the intrrupt context. This function is called without any lock held. 13075 * It gets the hbalock to access and update SLI data structures. 13076 * 13077 * This function returns IRQ_HANDLED when interrupt is handled else it 13078 * returns IRQ_NONE. 13079 **/ 13080 irqreturn_t 13081 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13082 { 13083 struct lpfc_hba *phba; 13084 uint32_t ha_copy; 13085 unsigned long status; 13086 unsigned long iflag; 13087 struct lpfc_sli_ring *pring; 13088 13089 /* Get the driver's phba structure from the dev_id and 13090 * assume the HBA is not interrupting. 13091 */ 13092 phba = (struct lpfc_hba *) dev_id; 13093 13094 if (unlikely(!phba)) 13095 return IRQ_NONE; 13096 13097 /* 13098 * Stuff needs to be attented to when this function is invoked as an 13099 * individual interrupt handler in MSI-X multi-message interrupt mode 13100 */ 13101 if (phba->intr_type == MSIX) { 13102 /* Check device state for handling interrupt */ 13103 if (lpfc_intr_state_check(phba)) 13104 return IRQ_NONE; 13105 /* Need to read HA REG for FCP ring and other ring events */ 13106 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13107 return IRQ_HANDLED; 13108 /* Clear up only attention source related to fast-path */ 13109 spin_lock_irqsave(&phba->hbalock, iflag); 13110 /* 13111 * If there is deferred error attention, do not check for 13112 * any interrupt. 13113 */ 13114 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13115 spin_unlock_irqrestore(&phba->hbalock, iflag); 13116 return IRQ_NONE; 13117 } 13118 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13119 phba->HAregaddr); 13120 readl(phba->HAregaddr); /* flush */ 13121 spin_unlock_irqrestore(&phba->hbalock, iflag); 13122 } else 13123 ha_copy = phba->ha_copy; 13124 13125 /* 13126 * Process all events on FCP ring. Take the optimized path for FCP IO. 13127 */ 13128 ha_copy &= ~(phba->work_ha_mask); 13129 13130 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13131 status >>= (4*LPFC_FCP_RING); 13132 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13133 if (status & HA_RXMASK) 13134 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13135 13136 if (phba->cfg_multi_ring_support == 2) { 13137 /* 13138 * Process all events on extra ring. Take the optimized path 13139 * for extra ring IO. 13140 */ 13141 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13142 status >>= (4*LPFC_EXTRA_RING); 13143 if (status & HA_RXMASK) { 13144 lpfc_sli_handle_fast_ring_event(phba, 13145 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13146 status); 13147 } 13148 } 13149 return IRQ_HANDLED; 13150 } /* lpfc_sli_fp_intr_handler */ 13151 13152 /** 13153 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13154 * @irq: Interrupt number. 13155 * @dev_id: The device context pointer. 13156 * 13157 * This function is the HBA device-level interrupt handler to device with 13158 * SLI-3 interface spec, called from the PCI layer when either MSI or 13159 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13160 * requires driver attention. This function invokes the slow-path interrupt 13161 * attention handling function and fast-path interrupt attention handling 13162 * function in turn to process the relevant HBA attention events. This 13163 * function is called without any lock held. It gets the hbalock to access 13164 * and update SLI data structures. 13165 * 13166 * This function returns IRQ_HANDLED when interrupt is handled, else it 13167 * returns IRQ_NONE. 13168 **/ 13169 irqreturn_t 13170 lpfc_sli_intr_handler(int irq, void *dev_id) 13171 { 13172 struct lpfc_hba *phba; 13173 irqreturn_t sp_irq_rc, fp_irq_rc; 13174 unsigned long status1, status2; 13175 uint32_t hc_copy; 13176 13177 /* 13178 * Get the driver's phba structure from the dev_id and 13179 * assume the HBA is not interrupting. 13180 */ 13181 phba = (struct lpfc_hba *) dev_id; 13182 13183 if (unlikely(!phba)) 13184 return IRQ_NONE; 13185 13186 /* Check device state for handling interrupt */ 13187 if (lpfc_intr_state_check(phba)) 13188 return IRQ_NONE; 13189 13190 spin_lock(&phba->hbalock); 13191 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13192 spin_unlock(&phba->hbalock); 13193 return IRQ_HANDLED; 13194 } 13195 13196 if (unlikely(!phba->ha_copy)) { 13197 spin_unlock(&phba->hbalock); 13198 return IRQ_NONE; 13199 } else if (phba->ha_copy & HA_ERATT) { 13200 if (phba->hba_flag & HBA_ERATT_HANDLED) 13201 /* ERATT polling has handled ERATT */ 13202 phba->ha_copy &= ~HA_ERATT; 13203 else 13204 /* Indicate interrupt handler handles ERATT */ 13205 phba->hba_flag |= HBA_ERATT_HANDLED; 13206 } 13207 13208 /* 13209 * If there is deferred error attention, do not check for any interrupt. 13210 */ 13211 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13212 spin_unlock(&phba->hbalock); 13213 return IRQ_NONE; 13214 } 13215 13216 /* Clear attention sources except link and error attentions */ 13217 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13218 spin_unlock(&phba->hbalock); 13219 return IRQ_HANDLED; 13220 } 13221 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13222 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13223 phba->HCregaddr); 13224 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13225 writel(hc_copy, phba->HCregaddr); 13226 readl(phba->HAregaddr); /* flush */ 13227 spin_unlock(&phba->hbalock); 13228 13229 /* 13230 * Invokes slow-path host attention interrupt handling as appropriate. 13231 */ 13232 13233 /* status of events with mailbox and link attention */ 13234 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13235 13236 /* status of events with ELS ring */ 13237 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13238 status2 >>= (4*LPFC_ELS_RING); 13239 13240 if (status1 || (status2 & HA_RXMASK)) 13241 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13242 else 13243 sp_irq_rc = IRQ_NONE; 13244 13245 /* 13246 * Invoke fast-path host attention interrupt handling as appropriate. 13247 */ 13248 13249 /* status of events with FCP ring */ 13250 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13251 status1 >>= (4*LPFC_FCP_RING); 13252 13253 /* status of events with extra ring */ 13254 if (phba->cfg_multi_ring_support == 2) { 13255 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13256 status2 >>= (4*LPFC_EXTRA_RING); 13257 } else 13258 status2 = 0; 13259 13260 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13261 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13262 else 13263 fp_irq_rc = IRQ_NONE; 13264 13265 /* Return device-level interrupt handling status */ 13266 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13267 } /* lpfc_sli_intr_handler */ 13268 13269 /** 13270 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13271 * @phba: pointer to lpfc hba data structure. 13272 * 13273 * This routine is invoked by the worker thread to process all the pending 13274 * SLI4 els abort xri events. 13275 **/ 13276 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13277 { 13278 struct lpfc_cq_event *cq_event; 13279 unsigned long iflags; 13280 13281 /* First, declare the els xri abort event has been handled */ 13282 spin_lock_irqsave(&phba->hbalock, iflags); 13283 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13284 spin_unlock_irqrestore(&phba->hbalock, iflags); 13285 13286 /* Now, handle all the els xri abort events */ 13287 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13288 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13289 /* Get the first event from the head of the event queue */ 13290 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13291 cq_event, struct lpfc_cq_event, list); 13292 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13293 iflags); 13294 /* Notify aborted XRI for ELS work queue */ 13295 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13296 13297 /* Free the event processed back to the free pool */ 13298 lpfc_sli4_cq_event_release(phba, cq_event); 13299 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13300 iflags); 13301 } 13302 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13303 } 13304 13305 /** 13306 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13307 * @phba: pointer to lpfc hba data structure 13308 * @pIocbIn: pointer to the rspiocbq 13309 * @pIocbOut: pointer to the cmdiocbq 13310 * @wcqe: pointer to the complete wcqe 13311 * 13312 * This routine transfers the fields of a command iocbq to a response iocbq 13313 * by copying all the IOCB fields from command iocbq and transferring the 13314 * completion status information from the complete wcqe. 13315 **/ 13316 static void 13317 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13318 struct lpfc_iocbq *pIocbIn, 13319 struct lpfc_iocbq *pIocbOut, 13320 struct lpfc_wcqe_complete *wcqe) 13321 { 13322 int numBdes, i; 13323 unsigned long iflags; 13324 uint32_t status, max_response; 13325 struct lpfc_dmabuf *dmabuf; 13326 struct ulp_bde64 *bpl, bde; 13327 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13328 13329 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13330 sizeof(struct lpfc_iocbq) - offset); 13331 /* Map WCQE parameters into irspiocb parameters */ 13332 status = bf_get(lpfc_wcqe_c_status, wcqe); 13333 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13334 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13335 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13336 pIocbIn->iocb.un.fcpi.fcpi_parm = 13337 pIocbOut->iocb.un.fcpi.fcpi_parm - 13338 wcqe->total_data_placed; 13339 else 13340 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13341 else { 13342 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13343 switch (pIocbOut->iocb.ulpCommand) { 13344 case CMD_ELS_REQUEST64_CR: 13345 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13346 bpl = (struct ulp_bde64 *)dmabuf->virt; 13347 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13348 max_response = bde.tus.f.bdeSize; 13349 break; 13350 case CMD_GEN_REQUEST64_CR: 13351 max_response = 0; 13352 if (!pIocbOut->context3) 13353 break; 13354 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13355 sizeof(struct ulp_bde64); 13356 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13357 bpl = (struct ulp_bde64 *)dmabuf->virt; 13358 for (i = 0; i < numBdes; i++) { 13359 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13360 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13361 max_response += bde.tus.f.bdeSize; 13362 } 13363 break; 13364 default: 13365 max_response = wcqe->total_data_placed; 13366 break; 13367 } 13368 if (max_response < wcqe->total_data_placed) 13369 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13370 else 13371 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13372 wcqe->total_data_placed; 13373 } 13374 13375 /* Convert BG errors for completion status */ 13376 if (status == CQE_STATUS_DI_ERROR) { 13377 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13378 13379 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13380 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13381 else 13382 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13383 13384 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13385 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13386 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13387 BGS_GUARD_ERR_MASK; 13388 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13389 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13390 BGS_APPTAG_ERR_MASK; 13391 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13392 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13393 BGS_REFTAG_ERR_MASK; 13394 13395 /* Check to see if there was any good data before the error */ 13396 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13397 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13398 BGS_HI_WATER_MARK_PRESENT_MASK; 13399 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13400 wcqe->total_data_placed; 13401 } 13402 13403 /* 13404 * Set ALL the error bits to indicate we don't know what 13405 * type of error it is. 13406 */ 13407 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13408 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13409 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13410 BGS_GUARD_ERR_MASK); 13411 } 13412 13413 /* Pick up HBA exchange busy condition */ 13414 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13415 spin_lock_irqsave(&phba->hbalock, iflags); 13416 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13417 spin_unlock_irqrestore(&phba->hbalock, iflags); 13418 } 13419 } 13420 13421 /** 13422 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13423 * @phba: Pointer to HBA context object. 13424 * @irspiocbq: Pointer to work-queue completion queue entry. 13425 * 13426 * This routine handles an ELS work-queue completion event and construct 13427 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13428 * discovery engine to handle. 13429 * 13430 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13431 **/ 13432 static struct lpfc_iocbq * 13433 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13434 struct lpfc_iocbq *irspiocbq) 13435 { 13436 struct lpfc_sli_ring *pring; 13437 struct lpfc_iocbq *cmdiocbq; 13438 struct lpfc_wcqe_complete *wcqe; 13439 unsigned long iflags; 13440 13441 pring = lpfc_phba_elsring(phba); 13442 if (unlikely(!pring)) 13443 return NULL; 13444 13445 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13446 pring->stats.iocb_event++; 13447 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13448 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13449 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13450 if (unlikely(!cmdiocbq)) { 13451 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13452 "0386 ELS complete with no corresponding " 13453 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13454 wcqe->word0, wcqe->total_data_placed, 13455 wcqe->parameter, wcqe->word3); 13456 lpfc_sli_release_iocbq(phba, irspiocbq); 13457 return NULL; 13458 } 13459 13460 spin_lock_irqsave(&pring->ring_lock, iflags); 13461 /* Put the iocb back on the txcmplq */ 13462 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13463 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13464 13465 /* Fake the irspiocbq and copy necessary response information */ 13466 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13467 13468 return irspiocbq; 13469 } 13470 13471 inline struct lpfc_cq_event * 13472 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13473 { 13474 struct lpfc_cq_event *cq_event; 13475 13476 /* Allocate a new internal CQ_EVENT entry */ 13477 cq_event = lpfc_sli4_cq_event_alloc(phba); 13478 if (!cq_event) { 13479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13480 "0602 Failed to alloc CQ_EVENT entry\n"); 13481 return NULL; 13482 } 13483 13484 /* Move the CQE into the event */ 13485 memcpy(&cq_event->cqe, entry, size); 13486 return cq_event; 13487 } 13488 13489 /** 13490 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13491 * @phba: Pointer to HBA context object. 13492 * @mcqe: Pointer to mailbox completion queue entry. 13493 * 13494 * This routine process a mailbox completion queue entry with asynchronous 13495 * event. 13496 * 13497 * Return: true if work posted to worker thread, otherwise false. 13498 **/ 13499 static bool 13500 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13501 { 13502 struct lpfc_cq_event *cq_event; 13503 unsigned long iflags; 13504 13505 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13506 "0392 Async Event: word0:x%x, word1:x%x, " 13507 "word2:x%x, word3:x%x\n", mcqe->word0, 13508 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13509 13510 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13511 if (!cq_event) 13512 return false; 13513 13514 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13515 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13516 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13517 13518 /* Set the async event flag */ 13519 spin_lock_irqsave(&phba->hbalock, iflags); 13520 phba->hba_flag |= ASYNC_EVENT; 13521 spin_unlock_irqrestore(&phba->hbalock, iflags); 13522 13523 return true; 13524 } 13525 13526 /** 13527 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13528 * @phba: Pointer to HBA context object. 13529 * @mcqe: Pointer to mailbox completion queue entry. 13530 * 13531 * This routine process a mailbox completion queue entry with mailbox 13532 * completion event. 13533 * 13534 * Return: true if work posted to worker thread, otherwise false. 13535 **/ 13536 static bool 13537 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13538 { 13539 uint32_t mcqe_status; 13540 MAILBOX_t *mbox, *pmbox; 13541 struct lpfc_mqe *mqe; 13542 struct lpfc_vport *vport; 13543 struct lpfc_nodelist *ndlp; 13544 struct lpfc_dmabuf *mp; 13545 unsigned long iflags; 13546 LPFC_MBOXQ_t *pmb; 13547 bool workposted = false; 13548 int rc; 13549 13550 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13551 if (!bf_get(lpfc_trailer_completed, mcqe)) 13552 goto out_no_mqe_complete; 13553 13554 /* Get the reference to the active mbox command */ 13555 spin_lock_irqsave(&phba->hbalock, iflags); 13556 pmb = phba->sli.mbox_active; 13557 if (unlikely(!pmb)) { 13558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13559 "1832 No pending MBOX command to handle\n"); 13560 spin_unlock_irqrestore(&phba->hbalock, iflags); 13561 goto out_no_mqe_complete; 13562 } 13563 spin_unlock_irqrestore(&phba->hbalock, iflags); 13564 mqe = &pmb->u.mqe; 13565 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13566 mbox = phba->mbox; 13567 vport = pmb->vport; 13568 13569 /* Reset heartbeat timer */ 13570 phba->last_completion_time = jiffies; 13571 del_timer(&phba->sli.mbox_tmo); 13572 13573 /* Move mbox data to caller's mailbox region, do endian swapping */ 13574 if (pmb->mbox_cmpl && mbox) 13575 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13576 13577 /* 13578 * For mcqe errors, conditionally move a modified error code to 13579 * the mbox so that the error will not be missed. 13580 */ 13581 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13582 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13583 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13584 bf_set(lpfc_mqe_status, mqe, 13585 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13586 } 13587 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13588 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13589 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13590 "MBOX dflt rpi: status:x%x rpi:x%x", 13591 mcqe_status, 13592 pmbox->un.varWords[0], 0); 13593 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13594 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13595 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13596 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13597 * RID of the PPI using the same mbox buffer. 13598 */ 13599 lpfc_unreg_login(phba, vport->vpi, 13600 pmbox->un.varWords[0], pmb); 13601 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13602 pmb->ctx_buf = mp; 13603 13604 /* No reference taken here. This is a default 13605 * RPI reg/immediate unreg cycle. The reference was 13606 * taken in the reg rpi path and is released when 13607 * this mailbox completes. 13608 */ 13609 pmb->ctx_ndlp = ndlp; 13610 pmb->vport = vport; 13611 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13612 if (rc != MBX_BUSY) 13613 lpfc_printf_log(phba, KERN_ERR, 13614 LOG_TRACE_EVENT, 13615 "0385 rc should " 13616 "have been MBX_BUSY\n"); 13617 if (rc != MBX_NOT_FINISHED) 13618 goto send_current_mbox; 13619 } 13620 } 13621 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13622 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13623 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13624 13625 /* There is mailbox completion work to do */ 13626 spin_lock_irqsave(&phba->hbalock, iflags); 13627 __lpfc_mbox_cmpl_put(phba, pmb); 13628 phba->work_ha |= HA_MBATT; 13629 spin_unlock_irqrestore(&phba->hbalock, iflags); 13630 workposted = true; 13631 13632 send_current_mbox: 13633 spin_lock_irqsave(&phba->hbalock, iflags); 13634 /* Release the mailbox command posting token */ 13635 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13636 /* Setting active mailbox pointer need to be in sync to flag clear */ 13637 phba->sli.mbox_active = NULL; 13638 if (bf_get(lpfc_trailer_consumed, mcqe)) 13639 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13640 spin_unlock_irqrestore(&phba->hbalock, iflags); 13641 /* Wake up worker thread to post the next pending mailbox command */ 13642 lpfc_worker_wake_up(phba); 13643 return workposted; 13644 13645 out_no_mqe_complete: 13646 spin_lock_irqsave(&phba->hbalock, iflags); 13647 if (bf_get(lpfc_trailer_consumed, mcqe)) 13648 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13649 spin_unlock_irqrestore(&phba->hbalock, iflags); 13650 return false; 13651 } 13652 13653 /** 13654 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13655 * @phba: Pointer to HBA context object. 13656 * @cq: Pointer to associated CQ 13657 * @cqe: Pointer to mailbox completion queue entry. 13658 * 13659 * This routine process a mailbox completion queue entry, it invokes the 13660 * proper mailbox complete handling or asynchronous event handling routine 13661 * according to the MCQE's async bit. 13662 * 13663 * Return: true if work posted to worker thread, otherwise false. 13664 **/ 13665 static bool 13666 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13667 struct lpfc_cqe *cqe) 13668 { 13669 struct lpfc_mcqe mcqe; 13670 bool workposted; 13671 13672 cq->CQ_mbox++; 13673 13674 /* Copy the mailbox MCQE and convert endian order as needed */ 13675 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13676 13677 /* Invoke the proper event handling routine */ 13678 if (!bf_get(lpfc_trailer_async, &mcqe)) 13679 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13680 else 13681 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13682 return workposted; 13683 } 13684 13685 /** 13686 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13687 * @phba: Pointer to HBA context object. 13688 * @cq: Pointer to associated CQ 13689 * @wcqe: Pointer to work-queue completion queue entry. 13690 * 13691 * This routine handles an ELS work-queue completion event. 13692 * 13693 * Return: true if work posted to worker thread, otherwise false. 13694 **/ 13695 static bool 13696 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13697 struct lpfc_wcqe_complete *wcqe) 13698 { 13699 struct lpfc_iocbq *irspiocbq; 13700 unsigned long iflags; 13701 struct lpfc_sli_ring *pring = cq->pring; 13702 int txq_cnt = 0; 13703 int txcmplq_cnt = 0; 13704 13705 /* Check for response status */ 13706 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13707 /* Log the error status */ 13708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13709 "0357 ELS CQE error: status=x%x: " 13710 "CQE: %08x %08x %08x %08x\n", 13711 bf_get(lpfc_wcqe_c_status, wcqe), 13712 wcqe->word0, wcqe->total_data_placed, 13713 wcqe->parameter, wcqe->word3); 13714 } 13715 13716 /* Get an irspiocbq for later ELS response processing use */ 13717 irspiocbq = lpfc_sli_get_iocbq(phba); 13718 if (!irspiocbq) { 13719 if (!list_empty(&pring->txq)) 13720 txq_cnt++; 13721 if (!list_empty(&pring->txcmplq)) 13722 txcmplq_cnt++; 13723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13724 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13725 "els_txcmplq_cnt=%d\n", 13726 txq_cnt, phba->iocb_cnt, 13727 txcmplq_cnt); 13728 return false; 13729 } 13730 13731 /* Save off the slow-path queue event for work thread to process */ 13732 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13733 spin_lock_irqsave(&phba->hbalock, iflags); 13734 list_add_tail(&irspiocbq->cq_event.list, 13735 &phba->sli4_hba.sp_queue_event); 13736 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13737 spin_unlock_irqrestore(&phba->hbalock, iflags); 13738 13739 return true; 13740 } 13741 13742 /** 13743 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13744 * @phba: Pointer to HBA context object. 13745 * @wcqe: Pointer to work-queue completion queue entry. 13746 * 13747 * This routine handles slow-path WQ entry consumed event by invoking the 13748 * proper WQ release routine to the slow-path WQ. 13749 **/ 13750 static void 13751 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13752 struct lpfc_wcqe_release *wcqe) 13753 { 13754 /* sanity check on queue memory */ 13755 if (unlikely(!phba->sli4_hba.els_wq)) 13756 return; 13757 /* Check for the slow-path ELS work queue */ 13758 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13759 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13760 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13761 else 13762 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13763 "2579 Slow-path wqe consume event carries " 13764 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13765 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13766 phba->sli4_hba.els_wq->queue_id); 13767 } 13768 13769 /** 13770 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13771 * @phba: Pointer to HBA context object. 13772 * @cq: Pointer to a WQ completion queue. 13773 * @wcqe: Pointer to work-queue completion queue entry. 13774 * 13775 * This routine handles an XRI abort event. 13776 * 13777 * Return: true if work posted to worker thread, otherwise false. 13778 **/ 13779 static bool 13780 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13781 struct lpfc_queue *cq, 13782 struct sli4_wcqe_xri_aborted *wcqe) 13783 { 13784 bool workposted = false; 13785 struct lpfc_cq_event *cq_event; 13786 unsigned long iflags; 13787 13788 switch (cq->subtype) { 13789 case LPFC_IO: 13790 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13791 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13792 /* Notify aborted XRI for NVME work queue */ 13793 if (phba->nvmet_support) 13794 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13795 } 13796 workposted = false; 13797 break; 13798 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13799 case LPFC_ELS: 13800 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13801 if (!cq_event) { 13802 workposted = false; 13803 break; 13804 } 13805 cq_event->hdwq = cq->hdwq; 13806 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13807 iflags); 13808 list_add_tail(&cq_event->list, 13809 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13810 /* Set the els xri abort event flag */ 13811 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13812 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13813 iflags); 13814 workposted = true; 13815 break; 13816 default: 13817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13818 "0603 Invalid CQ subtype %d: " 13819 "%08x %08x %08x %08x\n", 13820 cq->subtype, wcqe->word0, wcqe->parameter, 13821 wcqe->word2, wcqe->word3); 13822 workposted = false; 13823 break; 13824 } 13825 return workposted; 13826 } 13827 13828 #define FC_RCTL_MDS_DIAGS 0xF4 13829 13830 /** 13831 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13832 * @phba: Pointer to HBA context object. 13833 * @rcqe: Pointer to receive-queue completion queue entry. 13834 * 13835 * This routine process a receive-queue completion queue entry. 13836 * 13837 * Return: true if work posted to worker thread, otherwise false. 13838 **/ 13839 static bool 13840 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13841 { 13842 bool workposted = false; 13843 struct fc_frame_header *fc_hdr; 13844 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13845 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13846 struct lpfc_nvmet_tgtport *tgtp; 13847 struct hbq_dmabuf *dma_buf; 13848 uint32_t status, rq_id; 13849 unsigned long iflags; 13850 13851 /* sanity check on queue memory */ 13852 if (unlikely(!hrq) || unlikely(!drq)) 13853 return workposted; 13854 13855 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13856 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13857 else 13858 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13859 if (rq_id != hrq->queue_id) 13860 goto out; 13861 13862 status = bf_get(lpfc_rcqe_status, rcqe); 13863 switch (status) { 13864 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13866 "2537 Receive Frame Truncated!!\n"); 13867 fallthrough; 13868 case FC_STATUS_RQ_SUCCESS: 13869 spin_lock_irqsave(&phba->hbalock, iflags); 13870 lpfc_sli4_rq_release(hrq, drq); 13871 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13872 if (!dma_buf) { 13873 hrq->RQ_no_buf_found++; 13874 spin_unlock_irqrestore(&phba->hbalock, iflags); 13875 goto out; 13876 } 13877 hrq->RQ_rcv_buf++; 13878 hrq->RQ_buf_posted--; 13879 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13880 13881 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13882 13883 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13884 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13885 spin_unlock_irqrestore(&phba->hbalock, iflags); 13886 /* Handle MDS Loopback frames */ 13887 if (!(phba->pport->load_flag & FC_UNLOADING)) 13888 lpfc_sli4_handle_mds_loopback(phba->pport, 13889 dma_buf); 13890 else 13891 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13892 break; 13893 } 13894 13895 /* save off the frame for the work thread to process */ 13896 list_add_tail(&dma_buf->cq_event.list, 13897 &phba->sli4_hba.sp_queue_event); 13898 /* Frame received */ 13899 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13900 spin_unlock_irqrestore(&phba->hbalock, iflags); 13901 workposted = true; 13902 break; 13903 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13904 if (phba->nvmet_support) { 13905 tgtp = phba->targetport->private; 13906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13907 "6402 RQE Error x%x, posted %d err_cnt " 13908 "%d: %x %x %x\n", 13909 status, hrq->RQ_buf_posted, 13910 hrq->RQ_no_posted_buf, 13911 atomic_read(&tgtp->rcv_fcp_cmd_in), 13912 atomic_read(&tgtp->rcv_fcp_cmd_out), 13913 atomic_read(&tgtp->xmt_fcp_release)); 13914 } 13915 fallthrough; 13916 13917 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13918 hrq->RQ_no_posted_buf++; 13919 /* Post more buffers if possible */ 13920 spin_lock_irqsave(&phba->hbalock, iflags); 13921 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13922 spin_unlock_irqrestore(&phba->hbalock, iflags); 13923 workposted = true; 13924 break; 13925 } 13926 out: 13927 return workposted; 13928 } 13929 13930 /** 13931 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13932 * @phba: Pointer to HBA context object. 13933 * @cq: Pointer to the completion queue. 13934 * @cqe: Pointer to a completion queue entry. 13935 * 13936 * This routine process a slow-path work-queue or receive queue completion queue 13937 * entry. 13938 * 13939 * Return: true if work posted to worker thread, otherwise false. 13940 **/ 13941 static bool 13942 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13943 struct lpfc_cqe *cqe) 13944 { 13945 struct lpfc_cqe cqevt; 13946 bool workposted = false; 13947 13948 /* Copy the work queue CQE and convert endian order if needed */ 13949 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13950 13951 /* Check and process for different type of WCQE and dispatch */ 13952 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13953 case CQE_CODE_COMPL_WQE: 13954 /* Process the WQ/RQ complete event */ 13955 phba->last_completion_time = jiffies; 13956 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13957 (struct lpfc_wcqe_complete *)&cqevt); 13958 break; 13959 case CQE_CODE_RELEASE_WQE: 13960 /* Process the WQ release event */ 13961 lpfc_sli4_sp_handle_rel_wcqe(phba, 13962 (struct lpfc_wcqe_release *)&cqevt); 13963 break; 13964 case CQE_CODE_XRI_ABORTED: 13965 /* Process the WQ XRI abort event */ 13966 phba->last_completion_time = jiffies; 13967 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13968 (struct sli4_wcqe_xri_aborted *)&cqevt); 13969 break; 13970 case CQE_CODE_RECEIVE: 13971 case CQE_CODE_RECEIVE_V1: 13972 /* Process the RQ event */ 13973 phba->last_completion_time = jiffies; 13974 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13975 (struct lpfc_rcqe *)&cqevt); 13976 break; 13977 default: 13978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13979 "0388 Not a valid WCQE code: x%x\n", 13980 bf_get(lpfc_cqe_code, &cqevt)); 13981 break; 13982 } 13983 return workposted; 13984 } 13985 13986 /** 13987 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13988 * @phba: Pointer to HBA context object. 13989 * @eqe: Pointer to fast-path event queue entry. 13990 * @speq: Pointer to slow-path event queue. 13991 * 13992 * This routine process a event queue entry from the slow-path event queue. 13993 * It will check the MajorCode and MinorCode to determine this is for a 13994 * completion event on a completion queue, if not, an error shall be logged 13995 * and just return. Otherwise, it will get to the corresponding completion 13996 * queue and process all the entries on that completion queue, rearm the 13997 * completion queue, and then return. 13998 * 13999 **/ 14000 static void 14001 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14002 struct lpfc_queue *speq) 14003 { 14004 struct lpfc_queue *cq = NULL, *childq; 14005 uint16_t cqid; 14006 int ret = 0; 14007 14008 /* Get the reference to the corresponding CQ */ 14009 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14010 14011 list_for_each_entry(childq, &speq->child_list, list) { 14012 if (childq->queue_id == cqid) { 14013 cq = childq; 14014 break; 14015 } 14016 } 14017 if (unlikely(!cq)) { 14018 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14020 "0365 Slow-path CQ identifier " 14021 "(%d) does not exist\n", cqid); 14022 return; 14023 } 14024 14025 /* Save EQ associated with this CQ */ 14026 cq->assoc_qp = speq; 14027 14028 if (is_kdump_kernel()) 14029 ret = queue_work(phba->wq, &cq->spwork); 14030 else 14031 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14032 14033 if (!ret) 14034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14035 "0390 Cannot schedule queue work " 14036 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14037 cqid, cq->queue_id, raw_smp_processor_id()); 14038 } 14039 14040 /** 14041 * __lpfc_sli4_process_cq - Process elements of a CQ 14042 * @phba: Pointer to HBA context object. 14043 * @cq: Pointer to CQ to be processed 14044 * @handler: Routine to process each cqe 14045 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14046 * @poll_mode: Polling mode we were called from 14047 * 14048 * This routine processes completion queue entries in a CQ. While a valid 14049 * queue element is found, the handler is called. During processing checks 14050 * are made for periodic doorbell writes to let the hardware know of 14051 * element consumption. 14052 * 14053 * If the max limit on cqes to process is hit, or there are no more valid 14054 * entries, the loop stops. If we processed a sufficient number of elements, 14055 * meaning there is sufficient load, rather than rearming and generating 14056 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14057 * indicates no rescheduling. 14058 * 14059 * Returns True if work scheduled, False otherwise. 14060 **/ 14061 static bool 14062 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14063 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14064 struct lpfc_cqe *), unsigned long *delay, 14065 enum lpfc_poll_mode poll_mode) 14066 { 14067 struct lpfc_cqe *cqe; 14068 bool workposted = false; 14069 int count = 0, consumed = 0; 14070 bool arm = true; 14071 14072 /* default - no reschedule */ 14073 *delay = 0; 14074 14075 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14076 goto rearm_and_exit; 14077 14078 /* Process all the entries to the CQ */ 14079 cq->q_flag = 0; 14080 cqe = lpfc_sli4_cq_get(cq); 14081 while (cqe) { 14082 workposted |= handler(phba, cq, cqe); 14083 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14084 14085 consumed++; 14086 if (!(++count % cq->max_proc_limit)) 14087 break; 14088 14089 if (!(count % cq->notify_interval)) { 14090 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14091 LPFC_QUEUE_NOARM); 14092 consumed = 0; 14093 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14094 } 14095 14096 if (count == LPFC_NVMET_CQ_NOTIFY) 14097 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14098 14099 cqe = lpfc_sli4_cq_get(cq); 14100 } 14101 if (count >= phba->cfg_cq_poll_threshold) { 14102 *delay = 1; 14103 arm = false; 14104 } 14105 14106 /* Note: complete the irq_poll softirq before rearming CQ */ 14107 if (poll_mode == LPFC_IRQ_POLL) 14108 irq_poll_complete(&cq->iop); 14109 14110 /* Track the max number of CQEs processed in 1 EQ */ 14111 if (count > cq->CQ_max_cqe) 14112 cq->CQ_max_cqe = count; 14113 14114 cq->assoc_qp->EQ_cqe_cnt += count; 14115 14116 /* Catch the no cq entry condition */ 14117 if (unlikely(count == 0)) 14118 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14119 "0369 No entry from completion queue " 14120 "qid=%d\n", cq->queue_id); 14121 14122 xchg(&cq->queue_claimed, 0); 14123 14124 rearm_and_exit: 14125 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14126 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14127 14128 return workposted; 14129 } 14130 14131 /** 14132 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14133 * @cq: pointer to CQ to process 14134 * 14135 * This routine calls the cq processing routine with a handler specific 14136 * to the type of queue bound to it. 14137 * 14138 * The CQ routine returns two values: the first is the calling status, 14139 * which indicates whether work was queued to the background discovery 14140 * thread. If true, the routine should wakeup the discovery thread; 14141 * the second is the delay parameter. If non-zero, rather than rearming 14142 * the CQ and yet another interrupt, the CQ handler should be queued so 14143 * that it is processed in a subsequent polling action. The value of 14144 * the delay indicates when to reschedule it. 14145 **/ 14146 static void 14147 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14148 { 14149 struct lpfc_hba *phba = cq->phba; 14150 unsigned long delay; 14151 bool workposted = false; 14152 int ret = 0; 14153 14154 /* Process and rearm the CQ */ 14155 switch (cq->type) { 14156 case LPFC_MCQ: 14157 workposted |= __lpfc_sli4_process_cq(phba, cq, 14158 lpfc_sli4_sp_handle_mcqe, 14159 &delay, LPFC_QUEUE_WORK); 14160 break; 14161 case LPFC_WCQ: 14162 if (cq->subtype == LPFC_IO) 14163 workposted |= __lpfc_sli4_process_cq(phba, cq, 14164 lpfc_sli4_fp_handle_cqe, 14165 &delay, LPFC_QUEUE_WORK); 14166 else 14167 workposted |= __lpfc_sli4_process_cq(phba, cq, 14168 lpfc_sli4_sp_handle_cqe, 14169 &delay, LPFC_QUEUE_WORK); 14170 break; 14171 default: 14172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14173 "0370 Invalid completion queue type (%d)\n", 14174 cq->type); 14175 return; 14176 } 14177 14178 if (delay) { 14179 if (is_kdump_kernel()) 14180 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14181 delay); 14182 else 14183 ret = queue_delayed_work_on(cq->chann, phba->wq, 14184 &cq->sched_spwork, delay); 14185 if (!ret) 14186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14187 "0394 Cannot schedule queue work " 14188 "for cqid=%d on CPU %d\n", 14189 cq->queue_id, cq->chann); 14190 } 14191 14192 /* wake up worker thread if there are works to be done */ 14193 if (workposted) 14194 lpfc_worker_wake_up(phba); 14195 } 14196 14197 /** 14198 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14199 * interrupt 14200 * @work: pointer to work element 14201 * 14202 * translates from the work handler and calls the slow-path handler. 14203 **/ 14204 static void 14205 lpfc_sli4_sp_process_cq(struct work_struct *work) 14206 { 14207 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14208 14209 __lpfc_sli4_sp_process_cq(cq); 14210 } 14211 14212 /** 14213 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14214 * @work: pointer to work element 14215 * 14216 * translates from the work handler and calls the slow-path handler. 14217 **/ 14218 static void 14219 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14220 { 14221 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14222 struct lpfc_queue, sched_spwork); 14223 14224 __lpfc_sli4_sp_process_cq(cq); 14225 } 14226 14227 /** 14228 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14229 * @phba: Pointer to HBA context object. 14230 * @cq: Pointer to associated CQ 14231 * @wcqe: Pointer to work-queue completion queue entry. 14232 * 14233 * This routine process a fast-path work queue completion entry from fast-path 14234 * event queue for FCP command response completion. 14235 **/ 14236 static void 14237 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14238 struct lpfc_wcqe_complete *wcqe) 14239 { 14240 struct lpfc_sli_ring *pring = cq->pring; 14241 struct lpfc_iocbq *cmdiocbq; 14242 struct lpfc_iocbq irspiocbq; 14243 unsigned long iflags; 14244 14245 /* Check for response status */ 14246 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14247 /* If resource errors reported from HBA, reduce queue 14248 * depth of the SCSI device. 14249 */ 14250 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14251 IOSTAT_LOCAL_REJECT)) && 14252 ((wcqe->parameter & IOERR_PARAM_MASK) == 14253 IOERR_NO_RESOURCES)) 14254 phba->lpfc_rampdown_queue_depth(phba); 14255 14256 /* Log the cmpl status */ 14257 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14258 "0373 FCP CQE cmpl: status=x%x: " 14259 "CQE: %08x %08x %08x %08x\n", 14260 bf_get(lpfc_wcqe_c_status, wcqe), 14261 wcqe->word0, wcqe->total_data_placed, 14262 wcqe->parameter, wcqe->word3); 14263 } 14264 14265 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14266 spin_lock_irqsave(&pring->ring_lock, iflags); 14267 pring->stats.iocb_event++; 14268 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14269 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14270 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14271 if (unlikely(!cmdiocbq)) { 14272 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14273 "0374 FCP complete with no corresponding " 14274 "cmdiocb: iotag (%d)\n", 14275 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14276 return; 14277 } 14278 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14279 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14280 #endif 14281 if (cmdiocbq->iocb_cmpl == NULL) { 14282 if (cmdiocbq->wqe_cmpl) { 14283 /* For FCP the flag is cleared in wqe_cmpl */ 14284 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14285 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14286 spin_lock_irqsave(&phba->hbalock, iflags); 14287 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14288 spin_unlock_irqrestore(&phba->hbalock, iflags); 14289 } 14290 14291 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14292 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14293 return; 14294 } 14295 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14296 "0375 FCP cmdiocb not callback function " 14297 "iotag: (%d)\n", 14298 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14299 return; 14300 } 14301 14302 /* Only SLI4 non-IO commands stil use IOCB */ 14303 /* Fake the irspiocb and copy necessary response information */ 14304 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14305 14306 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14307 spin_lock_irqsave(&phba->hbalock, iflags); 14308 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14309 spin_unlock_irqrestore(&phba->hbalock, iflags); 14310 } 14311 14312 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14313 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14314 } 14315 14316 /** 14317 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14318 * @phba: Pointer to HBA context object. 14319 * @cq: Pointer to completion queue. 14320 * @wcqe: Pointer to work-queue completion queue entry. 14321 * 14322 * This routine handles an fast-path WQ entry consumed event by invoking the 14323 * proper WQ release routine to the slow-path WQ. 14324 **/ 14325 static void 14326 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14327 struct lpfc_wcqe_release *wcqe) 14328 { 14329 struct lpfc_queue *childwq; 14330 bool wqid_matched = false; 14331 uint16_t hba_wqid; 14332 14333 /* Check for fast-path FCP work queue release */ 14334 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14335 list_for_each_entry(childwq, &cq->child_list, list) { 14336 if (childwq->queue_id == hba_wqid) { 14337 lpfc_sli4_wq_release(childwq, 14338 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14339 if (childwq->q_flag & HBA_NVMET_WQFULL) 14340 lpfc_nvmet_wqfull_process(phba, childwq); 14341 wqid_matched = true; 14342 break; 14343 } 14344 } 14345 /* Report warning log message if no match found */ 14346 if (wqid_matched != true) 14347 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14348 "2580 Fast-path wqe consume event carries " 14349 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14350 } 14351 14352 /** 14353 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14354 * @phba: Pointer to HBA context object. 14355 * @cq: Pointer to completion queue. 14356 * @rcqe: Pointer to receive-queue completion queue entry. 14357 * 14358 * This routine process a receive-queue completion queue entry. 14359 * 14360 * Return: true if work posted to worker thread, otherwise false. 14361 **/ 14362 static bool 14363 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14364 struct lpfc_rcqe *rcqe) 14365 { 14366 bool workposted = false; 14367 struct lpfc_queue *hrq; 14368 struct lpfc_queue *drq; 14369 struct rqb_dmabuf *dma_buf; 14370 struct fc_frame_header *fc_hdr; 14371 struct lpfc_nvmet_tgtport *tgtp; 14372 uint32_t status, rq_id; 14373 unsigned long iflags; 14374 uint32_t fctl, idx; 14375 14376 if ((phba->nvmet_support == 0) || 14377 (phba->sli4_hba.nvmet_cqset == NULL)) 14378 return workposted; 14379 14380 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14381 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14382 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14383 14384 /* sanity check on queue memory */ 14385 if (unlikely(!hrq) || unlikely(!drq)) 14386 return workposted; 14387 14388 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14389 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14390 else 14391 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14392 14393 if ((phba->nvmet_support == 0) || 14394 (rq_id != hrq->queue_id)) 14395 return workposted; 14396 14397 status = bf_get(lpfc_rcqe_status, rcqe); 14398 switch (status) { 14399 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14401 "6126 Receive Frame Truncated!!\n"); 14402 fallthrough; 14403 case FC_STATUS_RQ_SUCCESS: 14404 spin_lock_irqsave(&phba->hbalock, iflags); 14405 lpfc_sli4_rq_release(hrq, drq); 14406 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14407 if (!dma_buf) { 14408 hrq->RQ_no_buf_found++; 14409 spin_unlock_irqrestore(&phba->hbalock, iflags); 14410 goto out; 14411 } 14412 spin_unlock_irqrestore(&phba->hbalock, iflags); 14413 hrq->RQ_rcv_buf++; 14414 hrq->RQ_buf_posted--; 14415 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14416 14417 /* Just some basic sanity checks on FCP Command frame */ 14418 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14419 fc_hdr->fh_f_ctl[1] << 8 | 14420 fc_hdr->fh_f_ctl[2]); 14421 if (((fctl & 14422 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14423 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14424 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14425 goto drop; 14426 14427 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14428 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14429 lpfc_nvmet_unsol_fcp_event( 14430 phba, idx, dma_buf, cq->isr_timestamp, 14431 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14432 return false; 14433 } 14434 drop: 14435 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14436 break; 14437 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14438 if (phba->nvmet_support) { 14439 tgtp = phba->targetport->private; 14440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14441 "6401 RQE Error x%x, posted %d err_cnt " 14442 "%d: %x %x %x\n", 14443 status, hrq->RQ_buf_posted, 14444 hrq->RQ_no_posted_buf, 14445 atomic_read(&tgtp->rcv_fcp_cmd_in), 14446 atomic_read(&tgtp->rcv_fcp_cmd_out), 14447 atomic_read(&tgtp->xmt_fcp_release)); 14448 } 14449 fallthrough; 14450 14451 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14452 hrq->RQ_no_posted_buf++; 14453 /* Post more buffers if possible */ 14454 break; 14455 } 14456 out: 14457 return workposted; 14458 } 14459 14460 /** 14461 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14462 * @phba: adapter with cq 14463 * @cq: Pointer to the completion queue. 14464 * @cqe: Pointer to fast-path completion queue entry. 14465 * 14466 * This routine process a fast-path work queue completion entry from fast-path 14467 * event queue for FCP command response completion. 14468 * 14469 * Return: true if work posted to worker thread, otherwise false. 14470 **/ 14471 static bool 14472 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14473 struct lpfc_cqe *cqe) 14474 { 14475 struct lpfc_wcqe_release wcqe; 14476 bool workposted = false; 14477 14478 /* Copy the work queue CQE and convert endian order if needed */ 14479 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14480 14481 /* Check and process for different type of WCQE and dispatch */ 14482 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14483 case CQE_CODE_COMPL_WQE: 14484 case CQE_CODE_NVME_ERSP: 14485 cq->CQ_wq++; 14486 /* Process the WQ complete event */ 14487 phba->last_completion_time = jiffies; 14488 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14489 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14490 (struct lpfc_wcqe_complete *)&wcqe); 14491 break; 14492 case CQE_CODE_RELEASE_WQE: 14493 cq->CQ_release_wqe++; 14494 /* Process the WQ release event */ 14495 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14496 (struct lpfc_wcqe_release *)&wcqe); 14497 break; 14498 case CQE_CODE_XRI_ABORTED: 14499 cq->CQ_xri_aborted++; 14500 /* Process the WQ XRI abort event */ 14501 phba->last_completion_time = jiffies; 14502 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14503 (struct sli4_wcqe_xri_aborted *)&wcqe); 14504 break; 14505 case CQE_CODE_RECEIVE_V1: 14506 case CQE_CODE_RECEIVE: 14507 phba->last_completion_time = jiffies; 14508 if (cq->subtype == LPFC_NVMET) { 14509 workposted = lpfc_sli4_nvmet_handle_rcqe( 14510 phba, cq, (struct lpfc_rcqe *)&wcqe); 14511 } 14512 break; 14513 default: 14514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14515 "0144 Not a valid CQE code: x%x\n", 14516 bf_get(lpfc_wcqe_c_code, &wcqe)); 14517 break; 14518 } 14519 return workposted; 14520 } 14521 14522 /** 14523 * lpfc_sli4_sched_cq_work - Schedules cq work 14524 * @phba: Pointer to HBA context object. 14525 * @cq: Pointer to CQ 14526 * @cqid: CQ ID 14527 * 14528 * This routine checks the poll mode of the CQ corresponding to 14529 * cq->chann, then either schedules a softirq or queue_work to complete 14530 * cq work. 14531 * 14532 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14533 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14534 * 14535 **/ 14536 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14537 struct lpfc_queue *cq, uint16_t cqid) 14538 { 14539 int ret = 0; 14540 14541 switch (cq->poll_mode) { 14542 case LPFC_IRQ_POLL: 14543 irq_poll_sched(&cq->iop); 14544 break; 14545 case LPFC_QUEUE_WORK: 14546 default: 14547 if (is_kdump_kernel()) 14548 ret = queue_work(phba->wq, &cq->irqwork); 14549 else 14550 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14551 if (!ret) 14552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14553 "0383 Cannot schedule queue work " 14554 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14555 cqid, cq->queue_id, 14556 raw_smp_processor_id()); 14557 } 14558 } 14559 14560 /** 14561 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14562 * @phba: Pointer to HBA context object. 14563 * @eq: Pointer to the queue structure. 14564 * @eqe: Pointer to fast-path event queue entry. 14565 * 14566 * This routine process a event queue entry from the fast-path event queue. 14567 * It will check the MajorCode and MinorCode to determine this is for a 14568 * completion event on a completion queue, if not, an error shall be logged 14569 * and just return. Otherwise, it will get to the corresponding completion 14570 * queue and process all the entries on the completion queue, rearm the 14571 * completion queue, and then return. 14572 **/ 14573 static void 14574 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14575 struct lpfc_eqe *eqe) 14576 { 14577 struct lpfc_queue *cq = NULL; 14578 uint32_t qidx = eq->hdwq; 14579 uint16_t cqid, id; 14580 14581 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14583 "0366 Not a valid completion " 14584 "event: majorcode=x%x, minorcode=x%x\n", 14585 bf_get_le32(lpfc_eqe_major_code, eqe), 14586 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14587 return; 14588 } 14589 14590 /* Get the reference to the corresponding CQ */ 14591 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14592 14593 /* Use the fast lookup method first */ 14594 if (cqid <= phba->sli4_hba.cq_max) { 14595 cq = phba->sli4_hba.cq_lookup[cqid]; 14596 if (cq) 14597 goto work_cq; 14598 } 14599 14600 /* Next check for NVMET completion */ 14601 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14602 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14603 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14604 /* Process NVMET unsol rcv */ 14605 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14606 goto process_cq; 14607 } 14608 } 14609 14610 if (phba->sli4_hba.nvmels_cq && 14611 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14612 /* Process NVME unsol rcv */ 14613 cq = phba->sli4_hba.nvmels_cq; 14614 } 14615 14616 /* Otherwise this is a Slow path event */ 14617 if (cq == NULL) { 14618 lpfc_sli4_sp_handle_eqe(phba, eqe, 14619 phba->sli4_hba.hdwq[qidx].hba_eq); 14620 return; 14621 } 14622 14623 process_cq: 14624 if (unlikely(cqid != cq->queue_id)) { 14625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14626 "0368 Miss-matched fast-path completion " 14627 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14628 cqid, cq->queue_id); 14629 return; 14630 } 14631 14632 work_cq: 14633 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14634 if (phba->ktime_on) 14635 cq->isr_timestamp = ktime_get_ns(); 14636 else 14637 cq->isr_timestamp = 0; 14638 #endif 14639 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14640 } 14641 14642 /** 14643 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14644 * @cq: Pointer to CQ to be processed 14645 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14646 * 14647 * This routine calls the cq processing routine with the handler for 14648 * fast path CQEs. 14649 * 14650 * The CQ routine returns two values: the first is the calling status, 14651 * which indicates whether work was queued to the background discovery 14652 * thread. If true, the routine should wakeup the discovery thread; 14653 * the second is the delay parameter. If non-zero, rather than rearming 14654 * the CQ and yet another interrupt, the CQ handler should be queued so 14655 * that it is processed in a subsequent polling action. The value of 14656 * the delay indicates when to reschedule it. 14657 **/ 14658 static void 14659 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14660 enum lpfc_poll_mode poll_mode) 14661 { 14662 struct lpfc_hba *phba = cq->phba; 14663 unsigned long delay; 14664 bool workposted = false; 14665 int ret = 0; 14666 14667 /* process and rearm the CQ */ 14668 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14669 &delay, poll_mode); 14670 14671 if (delay) { 14672 if (is_kdump_kernel()) 14673 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14674 delay); 14675 else 14676 ret = queue_delayed_work_on(cq->chann, phba->wq, 14677 &cq->sched_irqwork, delay); 14678 if (!ret) 14679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14680 "0367 Cannot schedule queue work " 14681 "for cqid=%d on CPU %d\n", 14682 cq->queue_id, cq->chann); 14683 } 14684 14685 /* wake up worker thread if there are works to be done */ 14686 if (workposted) 14687 lpfc_worker_wake_up(phba); 14688 } 14689 14690 /** 14691 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14692 * interrupt 14693 * @work: pointer to work element 14694 * 14695 * translates from the work handler and calls the fast-path handler. 14696 **/ 14697 static void 14698 lpfc_sli4_hba_process_cq(struct work_struct *work) 14699 { 14700 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14701 14702 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14703 } 14704 14705 /** 14706 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14707 * @work: pointer to work element 14708 * 14709 * translates from the work handler and calls the fast-path handler. 14710 **/ 14711 static void 14712 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14713 { 14714 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14715 struct lpfc_queue, sched_irqwork); 14716 14717 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14718 } 14719 14720 /** 14721 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14722 * @irq: Interrupt number. 14723 * @dev_id: The device context pointer. 14724 * 14725 * This function is directly called from the PCI layer as an interrupt 14726 * service routine when device with SLI-4 interface spec is enabled with 14727 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14728 * ring event in the HBA. However, when the device is enabled with either 14729 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14730 * device-level interrupt handler. When the PCI slot is in error recovery 14731 * or the HBA is undergoing initialization, the interrupt handler will not 14732 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14733 * the intrrupt context. This function is called without any lock held. 14734 * It gets the hbalock to access and update SLI data structures. Note that, 14735 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14736 * equal to that of FCP CQ index. 14737 * 14738 * The link attention and ELS ring attention events are handled 14739 * by the worker thread. The interrupt handler signals the worker thread 14740 * and returns for these events. This function is called without any lock 14741 * held. It gets the hbalock to access and update SLI data structures. 14742 * 14743 * This function returns IRQ_HANDLED when interrupt is handled else it 14744 * returns IRQ_NONE. 14745 **/ 14746 irqreturn_t 14747 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14748 { 14749 struct lpfc_hba *phba; 14750 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14751 struct lpfc_queue *fpeq; 14752 unsigned long iflag; 14753 int ecount = 0; 14754 int hba_eqidx; 14755 struct lpfc_eq_intr_info *eqi; 14756 14757 /* Get the driver's phba structure from the dev_id */ 14758 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14759 phba = hba_eq_hdl->phba; 14760 hba_eqidx = hba_eq_hdl->idx; 14761 14762 if (unlikely(!phba)) 14763 return IRQ_NONE; 14764 if (unlikely(!phba->sli4_hba.hdwq)) 14765 return IRQ_NONE; 14766 14767 /* Get to the EQ struct associated with this vector */ 14768 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14769 if (unlikely(!fpeq)) 14770 return IRQ_NONE; 14771 14772 /* Check device state for handling interrupt */ 14773 if (unlikely(lpfc_intr_state_check(phba))) { 14774 /* Check again for link_state with lock held */ 14775 spin_lock_irqsave(&phba->hbalock, iflag); 14776 if (phba->link_state < LPFC_LINK_DOWN) 14777 /* Flush, clear interrupt, and rearm the EQ */ 14778 lpfc_sli4_eqcq_flush(phba, fpeq); 14779 spin_unlock_irqrestore(&phba->hbalock, iflag); 14780 return IRQ_NONE; 14781 } 14782 14783 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14784 eqi->icnt++; 14785 14786 fpeq->last_cpu = raw_smp_processor_id(); 14787 14788 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14789 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14790 phba->cfg_auto_imax && 14791 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14792 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14793 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14794 14795 /* process and rearm the EQ */ 14796 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14797 14798 if (unlikely(ecount == 0)) { 14799 fpeq->EQ_no_entry++; 14800 if (phba->intr_type == MSIX) 14801 /* MSI-X treated interrupt served as no EQ share INT */ 14802 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14803 "0358 MSI-X interrupt with no EQE\n"); 14804 else 14805 /* Non MSI-X treated on interrupt as EQ share INT */ 14806 return IRQ_NONE; 14807 } 14808 14809 return IRQ_HANDLED; 14810 } /* lpfc_sli4_fp_intr_handler */ 14811 14812 /** 14813 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14814 * @irq: Interrupt number. 14815 * @dev_id: The device context pointer. 14816 * 14817 * This function is the device-level interrupt handler to device with SLI-4 14818 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14819 * interrupt mode is enabled and there is an event in the HBA which requires 14820 * driver attention. This function invokes the slow-path interrupt attention 14821 * handling function and fast-path interrupt attention handling function in 14822 * turn to process the relevant HBA attention events. This function is called 14823 * without any lock held. It gets the hbalock to access and update SLI data 14824 * structures. 14825 * 14826 * This function returns IRQ_HANDLED when interrupt is handled, else it 14827 * returns IRQ_NONE. 14828 **/ 14829 irqreturn_t 14830 lpfc_sli4_intr_handler(int irq, void *dev_id) 14831 { 14832 struct lpfc_hba *phba; 14833 irqreturn_t hba_irq_rc; 14834 bool hba_handled = false; 14835 int qidx; 14836 14837 /* Get the driver's phba structure from the dev_id */ 14838 phba = (struct lpfc_hba *)dev_id; 14839 14840 if (unlikely(!phba)) 14841 return IRQ_NONE; 14842 14843 /* 14844 * Invoke fast-path host attention interrupt handling as appropriate. 14845 */ 14846 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14847 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14848 &phba->sli4_hba.hba_eq_hdl[qidx]); 14849 if (hba_irq_rc == IRQ_HANDLED) 14850 hba_handled |= true; 14851 } 14852 14853 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14854 } /* lpfc_sli4_intr_handler */ 14855 14856 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14857 { 14858 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14859 struct lpfc_queue *eq; 14860 int i = 0; 14861 14862 rcu_read_lock(); 14863 14864 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14865 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14866 if (!list_empty(&phba->poll_list)) 14867 mod_timer(&phba->cpuhp_poll_timer, 14868 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14869 14870 rcu_read_unlock(); 14871 } 14872 14873 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14874 { 14875 struct lpfc_hba *phba = eq->phba; 14876 int i = 0; 14877 14878 /* 14879 * Unlocking an irq is one of the entry point to check 14880 * for re-schedule, but we are good for io submission 14881 * path as midlayer does a get_cpu to glue us in. Flush 14882 * out the invalidate queue so we can see the updated 14883 * value for flag. 14884 */ 14885 smp_rmb(); 14886 14887 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14888 /* We will not likely get the completion for the caller 14889 * during this iteration but i guess that's fine. 14890 * Future io's coming on this eq should be able to 14891 * pick it up. As for the case of single io's, they 14892 * will be handled through a sched from polling timer 14893 * function which is currently triggered every 1msec. 14894 */ 14895 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14896 14897 return i; 14898 } 14899 14900 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14901 { 14902 struct lpfc_hba *phba = eq->phba; 14903 14904 /* kickstart slowpath processing if needed */ 14905 if (list_empty(&phba->poll_list)) 14906 mod_timer(&phba->cpuhp_poll_timer, 14907 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14908 14909 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14910 synchronize_rcu(); 14911 } 14912 14913 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14914 { 14915 struct lpfc_hba *phba = eq->phba; 14916 14917 /* Disable slowpath processing for this eq. Kick start the eq 14918 * by RE-ARMING the eq's ASAP 14919 */ 14920 list_del_rcu(&eq->_poll_list); 14921 synchronize_rcu(); 14922 14923 if (list_empty(&phba->poll_list)) 14924 del_timer_sync(&phba->cpuhp_poll_timer); 14925 } 14926 14927 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14928 { 14929 struct lpfc_queue *eq, *next; 14930 14931 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14932 list_del(&eq->_poll_list); 14933 14934 INIT_LIST_HEAD(&phba->poll_list); 14935 synchronize_rcu(); 14936 } 14937 14938 static inline void 14939 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14940 { 14941 if (mode == eq->mode) 14942 return; 14943 /* 14944 * currently this function is only called during a hotplug 14945 * event and the cpu on which this function is executing 14946 * is going offline. By now the hotplug has instructed 14947 * the scheduler to remove this cpu from cpu active mask. 14948 * So we don't need to work about being put aside by the 14949 * scheduler for a high priority process. Yes, the inte- 14950 * rrupts could come but they are known to retire ASAP. 14951 */ 14952 14953 /* Disable polling in the fastpath */ 14954 WRITE_ONCE(eq->mode, mode); 14955 /* flush out the store buffer */ 14956 smp_wmb(); 14957 14958 /* 14959 * Add this eq to the polling list and start polling. For 14960 * a grace period both interrupt handler and poller will 14961 * try to process the eq _but_ that's fine. We have a 14962 * synchronization mechanism in place (queue_claimed) to 14963 * deal with it. This is just a draining phase for int- 14964 * errupt handler (not eq's) as we have guranteed through 14965 * barrier that all the CPUs have seen the new CQ_POLLED 14966 * state. which will effectively disable the REARMING of 14967 * the EQ. The whole idea is eq's die off eventually as 14968 * we are not rearming EQ's anymore. 14969 */ 14970 mode ? lpfc_sli4_add_to_poll_list(eq) : 14971 lpfc_sli4_remove_from_poll_list(eq); 14972 } 14973 14974 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14975 { 14976 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14977 } 14978 14979 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14980 { 14981 struct lpfc_hba *phba = eq->phba; 14982 14983 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14984 14985 /* Kick start for the pending io's in h/w. 14986 * Once we switch back to interrupt processing on a eq 14987 * the io path completion will only arm eq's when it 14988 * receives a completion. But since eq's are in disa- 14989 * rmed state it doesn't receive a completion. This 14990 * creates a deadlock scenaro. 14991 */ 14992 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14993 } 14994 14995 /** 14996 * lpfc_sli4_queue_free - free a queue structure and associated memory 14997 * @queue: The queue structure to free. 14998 * 14999 * This function frees a queue structure and the DMAable memory used for 15000 * the host resident queue. This function must be called after destroying the 15001 * queue on the HBA. 15002 **/ 15003 void 15004 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15005 { 15006 struct lpfc_dmabuf *dmabuf; 15007 15008 if (!queue) 15009 return; 15010 15011 if (!list_empty(&queue->wq_list)) 15012 list_del(&queue->wq_list); 15013 15014 while (!list_empty(&queue->page_list)) { 15015 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15016 list); 15017 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15018 dmabuf->virt, dmabuf->phys); 15019 kfree(dmabuf); 15020 } 15021 if (queue->rqbp) { 15022 lpfc_free_rq_buffer(queue->phba, queue); 15023 kfree(queue->rqbp); 15024 } 15025 15026 if (!list_empty(&queue->cpu_list)) 15027 list_del(&queue->cpu_list); 15028 15029 kfree(queue); 15030 return; 15031 } 15032 15033 /** 15034 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15035 * @phba: The HBA that this queue is being created on. 15036 * @page_size: The size of a queue page 15037 * @entry_size: The size of each queue entry for this queue. 15038 * @entry_count: The number of entries that this queue will handle. 15039 * @cpu: The cpu that will primarily utilize this queue. 15040 * 15041 * This function allocates a queue structure and the DMAable memory used for 15042 * the host resident queue. This function must be called before creating the 15043 * queue on the HBA. 15044 **/ 15045 struct lpfc_queue * 15046 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15047 uint32_t entry_size, uint32_t entry_count, int cpu) 15048 { 15049 struct lpfc_queue *queue; 15050 struct lpfc_dmabuf *dmabuf; 15051 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15052 uint16_t x, pgcnt; 15053 15054 if (!phba->sli4_hba.pc_sli4_params.supported) 15055 hw_page_size = page_size; 15056 15057 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15058 15059 /* If needed, Adjust page count to match the max the adapter supports */ 15060 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15061 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15062 15063 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15064 GFP_KERNEL, cpu_to_node(cpu)); 15065 if (!queue) 15066 return NULL; 15067 15068 INIT_LIST_HEAD(&queue->list); 15069 INIT_LIST_HEAD(&queue->_poll_list); 15070 INIT_LIST_HEAD(&queue->wq_list); 15071 INIT_LIST_HEAD(&queue->wqfull_list); 15072 INIT_LIST_HEAD(&queue->page_list); 15073 INIT_LIST_HEAD(&queue->child_list); 15074 INIT_LIST_HEAD(&queue->cpu_list); 15075 15076 /* Set queue parameters now. If the system cannot provide memory 15077 * resources, the free routine needs to know what was allocated. 15078 */ 15079 queue->page_count = pgcnt; 15080 queue->q_pgs = (void **)&queue[1]; 15081 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15082 queue->entry_size = entry_size; 15083 queue->entry_count = entry_count; 15084 queue->page_size = hw_page_size; 15085 queue->phba = phba; 15086 15087 for (x = 0; x < queue->page_count; x++) { 15088 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15089 dev_to_node(&phba->pcidev->dev)); 15090 if (!dmabuf) 15091 goto out_fail; 15092 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15093 hw_page_size, &dmabuf->phys, 15094 GFP_KERNEL); 15095 if (!dmabuf->virt) { 15096 kfree(dmabuf); 15097 goto out_fail; 15098 } 15099 dmabuf->buffer_tag = x; 15100 list_add_tail(&dmabuf->list, &queue->page_list); 15101 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15102 queue->q_pgs[x] = dmabuf->virt; 15103 } 15104 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15105 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15106 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15107 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15108 15109 /* notify_interval will be set during q creation */ 15110 15111 return queue; 15112 out_fail: 15113 lpfc_sli4_queue_free(queue); 15114 return NULL; 15115 } 15116 15117 /** 15118 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15119 * @phba: HBA structure that indicates port to create a queue on. 15120 * @pci_barset: PCI BAR set flag. 15121 * 15122 * This function shall perform iomap of the specified PCI BAR address to host 15123 * memory address if not already done so and return it. The returned host 15124 * memory address can be NULL. 15125 */ 15126 static void __iomem * 15127 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15128 { 15129 if (!phba->pcidev) 15130 return NULL; 15131 15132 switch (pci_barset) { 15133 case WQ_PCI_BAR_0_AND_1: 15134 return phba->pci_bar0_memmap_p; 15135 case WQ_PCI_BAR_2_AND_3: 15136 return phba->pci_bar2_memmap_p; 15137 case WQ_PCI_BAR_4_AND_5: 15138 return phba->pci_bar4_memmap_p; 15139 default: 15140 break; 15141 } 15142 return NULL; 15143 } 15144 15145 /** 15146 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15147 * @phba: HBA structure that EQs are on. 15148 * @startq: The starting EQ index to modify 15149 * @numq: The number of EQs (consecutive indexes) to modify 15150 * @usdelay: amount of delay 15151 * 15152 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15153 * is set either by writing to a register (if supported by the SLI Port) 15154 * or by mailbox command. The mailbox command allows several EQs to be 15155 * updated at once. 15156 * 15157 * The @phba struct is used to send a mailbox command to HBA. The @startq 15158 * is used to get the starting EQ index to change. The @numq value is 15159 * used to specify how many consecutive EQ indexes, starting at EQ index, 15160 * are to be changed. This function is asynchronous and will wait for any 15161 * mailbox commands to finish before returning. 15162 * 15163 * On success this function will return a zero. If unable to allocate 15164 * enough memory this function will return -ENOMEM. If a mailbox command 15165 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15166 * have had their delay multipler changed. 15167 **/ 15168 void 15169 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15170 uint32_t numq, uint32_t usdelay) 15171 { 15172 struct lpfc_mbx_modify_eq_delay *eq_delay; 15173 LPFC_MBOXQ_t *mbox; 15174 struct lpfc_queue *eq; 15175 int cnt = 0, rc, length; 15176 uint32_t shdr_status, shdr_add_status; 15177 uint32_t dmult; 15178 int qidx; 15179 union lpfc_sli4_cfg_shdr *shdr; 15180 15181 if (startq >= phba->cfg_irq_chann) 15182 return; 15183 15184 if (usdelay > 0xFFFF) { 15185 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15186 "6429 usdelay %d too large. Scaled down to " 15187 "0xFFFF.\n", usdelay); 15188 usdelay = 0xFFFF; 15189 } 15190 15191 /* set values by EQ_DELAY register if supported */ 15192 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15193 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15194 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15195 if (!eq) 15196 continue; 15197 15198 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15199 15200 if (++cnt >= numq) 15201 break; 15202 } 15203 return; 15204 } 15205 15206 /* Otherwise, set values by mailbox cmd */ 15207 15208 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15209 if (!mbox) { 15210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15211 "6428 Failed allocating mailbox cmd buffer." 15212 " EQ delay was not set.\n"); 15213 return; 15214 } 15215 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15216 sizeof(struct lpfc_sli4_cfg_mhdr)); 15217 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15218 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15219 length, LPFC_SLI4_MBX_EMBED); 15220 eq_delay = &mbox->u.mqe.un.eq_delay; 15221 15222 /* Calculate delay multiper from maximum interrupt per second */ 15223 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15224 if (dmult) 15225 dmult--; 15226 if (dmult > LPFC_DMULT_MAX) 15227 dmult = LPFC_DMULT_MAX; 15228 15229 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15230 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15231 if (!eq) 15232 continue; 15233 eq->q_mode = usdelay; 15234 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15235 eq_delay->u.request.eq[cnt].phase = 0; 15236 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15237 15238 if (++cnt >= numq) 15239 break; 15240 } 15241 eq_delay->u.request.num_eq = cnt; 15242 15243 mbox->vport = phba->pport; 15244 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15245 mbox->ctx_buf = NULL; 15246 mbox->ctx_ndlp = NULL; 15247 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15248 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15249 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15250 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15251 if (shdr_status || shdr_add_status || rc) { 15252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15253 "2512 MODIFY_EQ_DELAY mailbox failed with " 15254 "status x%x add_status x%x, mbx status x%x\n", 15255 shdr_status, shdr_add_status, rc); 15256 } 15257 mempool_free(mbox, phba->mbox_mem_pool); 15258 return; 15259 } 15260 15261 /** 15262 * lpfc_eq_create - Create an Event Queue on the HBA 15263 * @phba: HBA structure that indicates port to create a queue on. 15264 * @eq: The queue structure to use to create the event queue. 15265 * @imax: The maximum interrupt per second limit. 15266 * 15267 * This function creates an event queue, as detailed in @eq, on a port, 15268 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15269 * 15270 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15271 * is used to get the entry count and entry size that are necessary to 15272 * determine the number of pages to allocate and use for this queue. This 15273 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15274 * event queue. This function is asynchronous and will wait for the mailbox 15275 * command to finish before continuing. 15276 * 15277 * On success this function will return a zero. If unable to allocate enough 15278 * memory this function will return -ENOMEM. If the queue create mailbox command 15279 * fails this function will return -ENXIO. 15280 **/ 15281 int 15282 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15283 { 15284 struct lpfc_mbx_eq_create *eq_create; 15285 LPFC_MBOXQ_t *mbox; 15286 int rc, length, status = 0; 15287 struct lpfc_dmabuf *dmabuf; 15288 uint32_t shdr_status, shdr_add_status; 15289 union lpfc_sli4_cfg_shdr *shdr; 15290 uint16_t dmult; 15291 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15292 15293 /* sanity check on queue memory */ 15294 if (!eq) 15295 return -ENODEV; 15296 if (!phba->sli4_hba.pc_sli4_params.supported) 15297 hw_page_size = SLI4_PAGE_SIZE; 15298 15299 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15300 if (!mbox) 15301 return -ENOMEM; 15302 length = (sizeof(struct lpfc_mbx_eq_create) - 15303 sizeof(struct lpfc_sli4_cfg_mhdr)); 15304 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15305 LPFC_MBOX_OPCODE_EQ_CREATE, 15306 length, LPFC_SLI4_MBX_EMBED); 15307 eq_create = &mbox->u.mqe.un.eq_create; 15308 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15309 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15310 eq->page_count); 15311 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15312 LPFC_EQE_SIZE); 15313 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15314 15315 /* Use version 2 of CREATE_EQ if eqav is set */ 15316 if (phba->sli4_hba.pc_sli4_params.eqav) { 15317 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15318 LPFC_Q_CREATE_VERSION_2); 15319 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15320 phba->sli4_hba.pc_sli4_params.eqav); 15321 } 15322 15323 /* don't setup delay multiplier using EQ_CREATE */ 15324 dmult = 0; 15325 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15326 dmult); 15327 switch (eq->entry_count) { 15328 default: 15329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15330 "0360 Unsupported EQ count. (%d)\n", 15331 eq->entry_count); 15332 if (eq->entry_count < 256) { 15333 status = -EINVAL; 15334 goto out; 15335 } 15336 fallthrough; /* otherwise default to smallest count */ 15337 case 256: 15338 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15339 LPFC_EQ_CNT_256); 15340 break; 15341 case 512: 15342 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15343 LPFC_EQ_CNT_512); 15344 break; 15345 case 1024: 15346 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15347 LPFC_EQ_CNT_1024); 15348 break; 15349 case 2048: 15350 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15351 LPFC_EQ_CNT_2048); 15352 break; 15353 case 4096: 15354 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15355 LPFC_EQ_CNT_4096); 15356 break; 15357 } 15358 list_for_each_entry(dmabuf, &eq->page_list, list) { 15359 memset(dmabuf->virt, 0, hw_page_size); 15360 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15361 putPaddrLow(dmabuf->phys); 15362 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15363 putPaddrHigh(dmabuf->phys); 15364 } 15365 mbox->vport = phba->pport; 15366 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15367 mbox->ctx_buf = NULL; 15368 mbox->ctx_ndlp = NULL; 15369 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15370 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15371 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15372 if (shdr_status || shdr_add_status || rc) { 15373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15374 "2500 EQ_CREATE mailbox failed with " 15375 "status x%x add_status x%x, mbx status x%x\n", 15376 shdr_status, shdr_add_status, rc); 15377 status = -ENXIO; 15378 } 15379 eq->type = LPFC_EQ; 15380 eq->subtype = LPFC_NONE; 15381 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15382 if (eq->queue_id == 0xFFFF) 15383 status = -ENXIO; 15384 eq->host_index = 0; 15385 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15386 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15387 out: 15388 mempool_free(mbox, phba->mbox_mem_pool); 15389 return status; 15390 } 15391 15392 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15393 { 15394 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15395 15396 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15397 15398 return 1; 15399 } 15400 15401 /** 15402 * lpfc_cq_create - Create a Completion Queue on the HBA 15403 * @phba: HBA structure that indicates port to create a queue on. 15404 * @cq: The queue structure to use to create the completion queue. 15405 * @eq: The event queue to bind this completion queue to. 15406 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15407 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15408 * 15409 * This function creates a completion queue, as detailed in @wq, on a port, 15410 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15411 * 15412 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15413 * is used to get the entry count and entry size that are necessary to 15414 * determine the number of pages to allocate and use for this queue. The @eq 15415 * is used to indicate which event queue to bind this completion queue to. This 15416 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15417 * completion queue. This function is asynchronous and will wait for the mailbox 15418 * command to finish before continuing. 15419 * 15420 * On success this function will return a zero. If unable to allocate enough 15421 * memory this function will return -ENOMEM. If the queue create mailbox command 15422 * fails this function will return -ENXIO. 15423 **/ 15424 int 15425 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15426 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15427 { 15428 struct lpfc_mbx_cq_create *cq_create; 15429 struct lpfc_dmabuf *dmabuf; 15430 LPFC_MBOXQ_t *mbox; 15431 int rc, length, status = 0; 15432 uint32_t shdr_status, shdr_add_status; 15433 union lpfc_sli4_cfg_shdr *shdr; 15434 15435 /* sanity check on queue memory */ 15436 if (!cq || !eq) 15437 return -ENODEV; 15438 15439 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15440 if (!mbox) 15441 return -ENOMEM; 15442 length = (sizeof(struct lpfc_mbx_cq_create) - 15443 sizeof(struct lpfc_sli4_cfg_mhdr)); 15444 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15445 LPFC_MBOX_OPCODE_CQ_CREATE, 15446 length, LPFC_SLI4_MBX_EMBED); 15447 cq_create = &mbox->u.mqe.un.cq_create; 15448 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15449 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15450 cq->page_count); 15451 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15452 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15453 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15454 phba->sli4_hba.pc_sli4_params.cqv); 15455 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15456 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15457 (cq->page_size / SLI4_PAGE_SIZE)); 15458 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15459 eq->queue_id); 15460 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15461 phba->sli4_hba.pc_sli4_params.cqav); 15462 } else { 15463 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15464 eq->queue_id); 15465 } 15466 switch (cq->entry_count) { 15467 case 2048: 15468 case 4096: 15469 if (phba->sli4_hba.pc_sli4_params.cqv == 15470 LPFC_Q_CREATE_VERSION_2) { 15471 cq_create->u.request.context.lpfc_cq_context_count = 15472 cq->entry_count; 15473 bf_set(lpfc_cq_context_count, 15474 &cq_create->u.request.context, 15475 LPFC_CQ_CNT_WORD7); 15476 break; 15477 } 15478 fallthrough; 15479 default: 15480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15481 "0361 Unsupported CQ count: " 15482 "entry cnt %d sz %d pg cnt %d\n", 15483 cq->entry_count, cq->entry_size, 15484 cq->page_count); 15485 if (cq->entry_count < 256) { 15486 status = -EINVAL; 15487 goto out; 15488 } 15489 fallthrough; /* otherwise default to smallest count */ 15490 case 256: 15491 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15492 LPFC_CQ_CNT_256); 15493 break; 15494 case 512: 15495 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15496 LPFC_CQ_CNT_512); 15497 break; 15498 case 1024: 15499 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15500 LPFC_CQ_CNT_1024); 15501 break; 15502 } 15503 list_for_each_entry(dmabuf, &cq->page_list, list) { 15504 memset(dmabuf->virt, 0, cq->page_size); 15505 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15506 putPaddrLow(dmabuf->phys); 15507 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15508 putPaddrHigh(dmabuf->phys); 15509 } 15510 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15511 15512 /* The IOCTL status is embedded in the mailbox subheader. */ 15513 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15514 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15515 if (shdr_status || shdr_add_status || rc) { 15516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15517 "2501 CQ_CREATE mailbox failed with " 15518 "status x%x add_status x%x, mbx status x%x\n", 15519 shdr_status, shdr_add_status, rc); 15520 status = -ENXIO; 15521 goto out; 15522 } 15523 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15524 if (cq->queue_id == 0xFFFF) { 15525 status = -ENXIO; 15526 goto out; 15527 } 15528 /* link the cq onto the parent eq child list */ 15529 list_add_tail(&cq->list, &eq->child_list); 15530 /* Set up completion queue's type and subtype */ 15531 cq->type = type; 15532 cq->subtype = subtype; 15533 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15534 cq->assoc_qid = eq->queue_id; 15535 cq->assoc_qp = eq; 15536 cq->host_index = 0; 15537 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15538 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15539 15540 if (cq->queue_id > phba->sli4_hba.cq_max) 15541 phba->sli4_hba.cq_max = cq->queue_id; 15542 15543 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15544 out: 15545 mempool_free(mbox, phba->mbox_mem_pool); 15546 return status; 15547 } 15548 15549 /** 15550 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15551 * @phba: HBA structure that indicates port to create a queue on. 15552 * @cqp: The queue structure array to use to create the completion queues. 15553 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15554 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15555 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15556 * 15557 * This function creates a set of completion queue, s to support MRQ 15558 * as detailed in @cqp, on a port, 15559 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15560 * 15561 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15562 * is used to get the entry count and entry size that are necessary to 15563 * determine the number of pages to allocate and use for this queue. The @eq 15564 * is used to indicate which event queue to bind this completion queue to. This 15565 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15566 * completion queue. This function is asynchronous and will wait for the mailbox 15567 * command to finish before continuing. 15568 * 15569 * On success this function will return a zero. If unable to allocate enough 15570 * memory this function will return -ENOMEM. If the queue create mailbox command 15571 * fails this function will return -ENXIO. 15572 **/ 15573 int 15574 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15575 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15576 uint32_t subtype) 15577 { 15578 struct lpfc_queue *cq; 15579 struct lpfc_queue *eq; 15580 struct lpfc_mbx_cq_create_set *cq_set; 15581 struct lpfc_dmabuf *dmabuf; 15582 LPFC_MBOXQ_t *mbox; 15583 int rc, length, alloclen, status = 0; 15584 int cnt, idx, numcq, page_idx = 0; 15585 uint32_t shdr_status, shdr_add_status; 15586 union lpfc_sli4_cfg_shdr *shdr; 15587 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15588 15589 /* sanity check on queue memory */ 15590 numcq = phba->cfg_nvmet_mrq; 15591 if (!cqp || !hdwq || !numcq) 15592 return -ENODEV; 15593 15594 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15595 if (!mbox) 15596 return -ENOMEM; 15597 15598 length = sizeof(struct lpfc_mbx_cq_create_set); 15599 length += ((numcq * cqp[0]->page_count) * 15600 sizeof(struct dma_address)); 15601 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15602 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15603 LPFC_SLI4_MBX_NEMBED); 15604 if (alloclen < length) { 15605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15606 "3098 Allocated DMA memory size (%d) is " 15607 "less than the requested DMA memory size " 15608 "(%d)\n", alloclen, length); 15609 status = -ENOMEM; 15610 goto out; 15611 } 15612 cq_set = mbox->sge_array->addr[0]; 15613 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15614 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15615 15616 for (idx = 0; idx < numcq; idx++) { 15617 cq = cqp[idx]; 15618 eq = hdwq[idx].hba_eq; 15619 if (!cq || !eq) { 15620 status = -ENOMEM; 15621 goto out; 15622 } 15623 if (!phba->sli4_hba.pc_sli4_params.supported) 15624 hw_page_size = cq->page_size; 15625 15626 switch (idx) { 15627 case 0: 15628 bf_set(lpfc_mbx_cq_create_set_page_size, 15629 &cq_set->u.request, 15630 (hw_page_size / SLI4_PAGE_SIZE)); 15631 bf_set(lpfc_mbx_cq_create_set_num_pages, 15632 &cq_set->u.request, cq->page_count); 15633 bf_set(lpfc_mbx_cq_create_set_evt, 15634 &cq_set->u.request, 1); 15635 bf_set(lpfc_mbx_cq_create_set_valid, 15636 &cq_set->u.request, 1); 15637 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15638 &cq_set->u.request, 0); 15639 bf_set(lpfc_mbx_cq_create_set_num_cq, 15640 &cq_set->u.request, numcq); 15641 bf_set(lpfc_mbx_cq_create_set_autovalid, 15642 &cq_set->u.request, 15643 phba->sli4_hba.pc_sli4_params.cqav); 15644 switch (cq->entry_count) { 15645 case 2048: 15646 case 4096: 15647 if (phba->sli4_hba.pc_sli4_params.cqv == 15648 LPFC_Q_CREATE_VERSION_2) { 15649 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15650 &cq_set->u.request, 15651 cq->entry_count); 15652 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15653 &cq_set->u.request, 15654 LPFC_CQ_CNT_WORD7); 15655 break; 15656 } 15657 fallthrough; 15658 default: 15659 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15660 "3118 Bad CQ count. (%d)\n", 15661 cq->entry_count); 15662 if (cq->entry_count < 256) { 15663 status = -EINVAL; 15664 goto out; 15665 } 15666 fallthrough; /* otherwise default to smallest */ 15667 case 256: 15668 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15669 &cq_set->u.request, LPFC_CQ_CNT_256); 15670 break; 15671 case 512: 15672 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15673 &cq_set->u.request, LPFC_CQ_CNT_512); 15674 break; 15675 case 1024: 15676 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15677 &cq_set->u.request, LPFC_CQ_CNT_1024); 15678 break; 15679 } 15680 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15681 &cq_set->u.request, eq->queue_id); 15682 break; 15683 case 1: 15684 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15685 &cq_set->u.request, eq->queue_id); 15686 break; 15687 case 2: 15688 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15689 &cq_set->u.request, eq->queue_id); 15690 break; 15691 case 3: 15692 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15693 &cq_set->u.request, eq->queue_id); 15694 break; 15695 case 4: 15696 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15697 &cq_set->u.request, eq->queue_id); 15698 break; 15699 case 5: 15700 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15701 &cq_set->u.request, eq->queue_id); 15702 break; 15703 case 6: 15704 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15705 &cq_set->u.request, eq->queue_id); 15706 break; 15707 case 7: 15708 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15709 &cq_set->u.request, eq->queue_id); 15710 break; 15711 case 8: 15712 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15713 &cq_set->u.request, eq->queue_id); 15714 break; 15715 case 9: 15716 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15717 &cq_set->u.request, eq->queue_id); 15718 break; 15719 case 10: 15720 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15721 &cq_set->u.request, eq->queue_id); 15722 break; 15723 case 11: 15724 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15725 &cq_set->u.request, eq->queue_id); 15726 break; 15727 case 12: 15728 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15729 &cq_set->u.request, eq->queue_id); 15730 break; 15731 case 13: 15732 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15733 &cq_set->u.request, eq->queue_id); 15734 break; 15735 case 14: 15736 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15737 &cq_set->u.request, eq->queue_id); 15738 break; 15739 case 15: 15740 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15741 &cq_set->u.request, eq->queue_id); 15742 break; 15743 } 15744 15745 /* link the cq onto the parent eq child list */ 15746 list_add_tail(&cq->list, &eq->child_list); 15747 /* Set up completion queue's type and subtype */ 15748 cq->type = type; 15749 cq->subtype = subtype; 15750 cq->assoc_qid = eq->queue_id; 15751 cq->assoc_qp = eq; 15752 cq->host_index = 0; 15753 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15754 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15755 cq->entry_count); 15756 cq->chann = idx; 15757 15758 rc = 0; 15759 list_for_each_entry(dmabuf, &cq->page_list, list) { 15760 memset(dmabuf->virt, 0, hw_page_size); 15761 cnt = page_idx + dmabuf->buffer_tag; 15762 cq_set->u.request.page[cnt].addr_lo = 15763 putPaddrLow(dmabuf->phys); 15764 cq_set->u.request.page[cnt].addr_hi = 15765 putPaddrHigh(dmabuf->phys); 15766 rc++; 15767 } 15768 page_idx += rc; 15769 } 15770 15771 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15772 15773 /* The IOCTL status is embedded in the mailbox subheader. */ 15774 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15775 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15776 if (shdr_status || shdr_add_status || rc) { 15777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15778 "3119 CQ_CREATE_SET mailbox failed with " 15779 "status x%x add_status x%x, mbx status x%x\n", 15780 shdr_status, shdr_add_status, rc); 15781 status = -ENXIO; 15782 goto out; 15783 } 15784 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15785 if (rc == 0xFFFF) { 15786 status = -ENXIO; 15787 goto out; 15788 } 15789 15790 for (idx = 0; idx < numcq; idx++) { 15791 cq = cqp[idx]; 15792 cq->queue_id = rc + idx; 15793 if (cq->queue_id > phba->sli4_hba.cq_max) 15794 phba->sli4_hba.cq_max = cq->queue_id; 15795 } 15796 15797 out: 15798 lpfc_sli4_mbox_cmd_free(phba, mbox); 15799 return status; 15800 } 15801 15802 /** 15803 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15804 * @phba: HBA structure that indicates port to create a queue on. 15805 * @mq: The queue structure to use to create the mailbox queue. 15806 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15807 * @cq: The completion queue to associate with this cq. 15808 * 15809 * This function provides failback (fb) functionality when the 15810 * mq_create_ext fails on older FW generations. It's purpose is identical 15811 * to mq_create_ext otherwise. 15812 * 15813 * This routine cannot fail as all attributes were previously accessed and 15814 * initialized in mq_create_ext. 15815 **/ 15816 static void 15817 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15818 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15819 { 15820 struct lpfc_mbx_mq_create *mq_create; 15821 struct lpfc_dmabuf *dmabuf; 15822 int length; 15823 15824 length = (sizeof(struct lpfc_mbx_mq_create) - 15825 sizeof(struct lpfc_sli4_cfg_mhdr)); 15826 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15827 LPFC_MBOX_OPCODE_MQ_CREATE, 15828 length, LPFC_SLI4_MBX_EMBED); 15829 mq_create = &mbox->u.mqe.un.mq_create; 15830 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15831 mq->page_count); 15832 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15833 cq->queue_id); 15834 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15835 switch (mq->entry_count) { 15836 case 16: 15837 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15838 LPFC_MQ_RING_SIZE_16); 15839 break; 15840 case 32: 15841 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15842 LPFC_MQ_RING_SIZE_32); 15843 break; 15844 case 64: 15845 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15846 LPFC_MQ_RING_SIZE_64); 15847 break; 15848 case 128: 15849 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15850 LPFC_MQ_RING_SIZE_128); 15851 break; 15852 } 15853 list_for_each_entry(dmabuf, &mq->page_list, list) { 15854 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15855 putPaddrLow(dmabuf->phys); 15856 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15857 putPaddrHigh(dmabuf->phys); 15858 } 15859 } 15860 15861 /** 15862 * lpfc_mq_create - Create a mailbox Queue on the HBA 15863 * @phba: HBA structure that indicates port to create a queue on. 15864 * @mq: The queue structure to use to create the mailbox queue. 15865 * @cq: The completion queue to associate with this cq. 15866 * @subtype: The queue's subtype. 15867 * 15868 * This function creates a mailbox queue, as detailed in @mq, on a port, 15869 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15870 * 15871 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15872 * is used to get the entry count and entry size that are necessary to 15873 * determine the number of pages to allocate and use for this queue. This 15874 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15875 * mailbox queue. This function is asynchronous and will wait for the mailbox 15876 * command to finish before continuing. 15877 * 15878 * On success this function will return a zero. If unable to allocate enough 15879 * memory this function will return -ENOMEM. If the queue create mailbox command 15880 * fails this function will return -ENXIO. 15881 **/ 15882 int32_t 15883 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15884 struct lpfc_queue *cq, uint32_t subtype) 15885 { 15886 struct lpfc_mbx_mq_create *mq_create; 15887 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15888 struct lpfc_dmabuf *dmabuf; 15889 LPFC_MBOXQ_t *mbox; 15890 int rc, length, status = 0; 15891 uint32_t shdr_status, shdr_add_status; 15892 union lpfc_sli4_cfg_shdr *shdr; 15893 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15894 15895 /* sanity check on queue memory */ 15896 if (!mq || !cq) 15897 return -ENODEV; 15898 if (!phba->sli4_hba.pc_sli4_params.supported) 15899 hw_page_size = SLI4_PAGE_SIZE; 15900 15901 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15902 if (!mbox) 15903 return -ENOMEM; 15904 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15905 sizeof(struct lpfc_sli4_cfg_mhdr)); 15906 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15907 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15908 length, LPFC_SLI4_MBX_EMBED); 15909 15910 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15911 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15912 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15913 &mq_create_ext->u.request, mq->page_count); 15914 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15915 &mq_create_ext->u.request, 1); 15916 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15917 &mq_create_ext->u.request, 1); 15918 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15919 &mq_create_ext->u.request, 1); 15920 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15921 &mq_create_ext->u.request, 1); 15922 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15923 &mq_create_ext->u.request, 1); 15924 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15925 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15926 phba->sli4_hba.pc_sli4_params.mqv); 15927 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15928 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15929 cq->queue_id); 15930 else 15931 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15932 cq->queue_id); 15933 switch (mq->entry_count) { 15934 default: 15935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15936 "0362 Unsupported MQ count. (%d)\n", 15937 mq->entry_count); 15938 if (mq->entry_count < 16) { 15939 status = -EINVAL; 15940 goto out; 15941 } 15942 fallthrough; /* otherwise default to smallest count */ 15943 case 16: 15944 bf_set(lpfc_mq_context_ring_size, 15945 &mq_create_ext->u.request.context, 15946 LPFC_MQ_RING_SIZE_16); 15947 break; 15948 case 32: 15949 bf_set(lpfc_mq_context_ring_size, 15950 &mq_create_ext->u.request.context, 15951 LPFC_MQ_RING_SIZE_32); 15952 break; 15953 case 64: 15954 bf_set(lpfc_mq_context_ring_size, 15955 &mq_create_ext->u.request.context, 15956 LPFC_MQ_RING_SIZE_64); 15957 break; 15958 case 128: 15959 bf_set(lpfc_mq_context_ring_size, 15960 &mq_create_ext->u.request.context, 15961 LPFC_MQ_RING_SIZE_128); 15962 break; 15963 } 15964 list_for_each_entry(dmabuf, &mq->page_list, list) { 15965 memset(dmabuf->virt, 0, hw_page_size); 15966 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15967 putPaddrLow(dmabuf->phys); 15968 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15969 putPaddrHigh(dmabuf->phys); 15970 } 15971 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15972 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15973 &mq_create_ext->u.response); 15974 if (rc != MBX_SUCCESS) { 15975 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15976 "2795 MQ_CREATE_EXT failed with " 15977 "status x%x. Failback to MQ_CREATE.\n", 15978 rc); 15979 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15980 mq_create = &mbox->u.mqe.un.mq_create; 15981 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15982 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15983 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15984 &mq_create->u.response); 15985 } 15986 15987 /* The IOCTL status is embedded in the mailbox subheader. */ 15988 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15989 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15990 if (shdr_status || shdr_add_status || rc) { 15991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15992 "2502 MQ_CREATE mailbox failed with " 15993 "status x%x add_status x%x, mbx status x%x\n", 15994 shdr_status, shdr_add_status, rc); 15995 status = -ENXIO; 15996 goto out; 15997 } 15998 if (mq->queue_id == 0xFFFF) { 15999 status = -ENXIO; 16000 goto out; 16001 } 16002 mq->type = LPFC_MQ; 16003 mq->assoc_qid = cq->queue_id; 16004 mq->subtype = subtype; 16005 mq->host_index = 0; 16006 mq->hba_index = 0; 16007 16008 /* link the mq onto the parent cq child list */ 16009 list_add_tail(&mq->list, &cq->child_list); 16010 out: 16011 mempool_free(mbox, phba->mbox_mem_pool); 16012 return status; 16013 } 16014 16015 /** 16016 * lpfc_wq_create - Create a Work Queue on the HBA 16017 * @phba: HBA structure that indicates port to create a queue on. 16018 * @wq: The queue structure to use to create the work queue. 16019 * @cq: The completion queue to bind this work queue to. 16020 * @subtype: The subtype of the work queue indicating its functionality. 16021 * 16022 * This function creates a work queue, as detailed in @wq, on a port, described 16023 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16024 * 16025 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16026 * is used to get the entry count and entry size that are necessary to 16027 * determine the number of pages to allocate and use for this queue. The @cq 16028 * is used to indicate which completion queue to bind this work queue to. This 16029 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16030 * work queue. This function is asynchronous and will wait for the mailbox 16031 * command to finish before continuing. 16032 * 16033 * On success this function will return a zero. If unable to allocate enough 16034 * memory this function will return -ENOMEM. If the queue create mailbox command 16035 * fails this function will return -ENXIO. 16036 **/ 16037 int 16038 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16039 struct lpfc_queue *cq, uint32_t subtype) 16040 { 16041 struct lpfc_mbx_wq_create *wq_create; 16042 struct lpfc_dmabuf *dmabuf; 16043 LPFC_MBOXQ_t *mbox; 16044 int rc, length, status = 0; 16045 uint32_t shdr_status, shdr_add_status; 16046 union lpfc_sli4_cfg_shdr *shdr; 16047 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16048 struct dma_address *page; 16049 void __iomem *bar_memmap_p; 16050 uint32_t db_offset; 16051 uint16_t pci_barset; 16052 uint8_t dpp_barset; 16053 uint32_t dpp_offset; 16054 uint8_t wq_create_version; 16055 #ifdef CONFIG_X86 16056 unsigned long pg_addr; 16057 #endif 16058 16059 /* sanity check on queue memory */ 16060 if (!wq || !cq) 16061 return -ENODEV; 16062 if (!phba->sli4_hba.pc_sli4_params.supported) 16063 hw_page_size = wq->page_size; 16064 16065 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16066 if (!mbox) 16067 return -ENOMEM; 16068 length = (sizeof(struct lpfc_mbx_wq_create) - 16069 sizeof(struct lpfc_sli4_cfg_mhdr)); 16070 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16071 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16072 length, LPFC_SLI4_MBX_EMBED); 16073 wq_create = &mbox->u.mqe.un.wq_create; 16074 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16075 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16076 wq->page_count); 16077 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16078 cq->queue_id); 16079 16080 /* wqv is the earliest version supported, NOT the latest */ 16081 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16082 phba->sli4_hba.pc_sli4_params.wqv); 16083 16084 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16085 (wq->page_size > SLI4_PAGE_SIZE)) 16086 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16087 else 16088 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16089 16090 switch (wq_create_version) { 16091 case LPFC_Q_CREATE_VERSION_1: 16092 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16093 wq->entry_count); 16094 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16095 LPFC_Q_CREATE_VERSION_1); 16096 16097 switch (wq->entry_size) { 16098 default: 16099 case 64: 16100 bf_set(lpfc_mbx_wq_create_wqe_size, 16101 &wq_create->u.request_1, 16102 LPFC_WQ_WQE_SIZE_64); 16103 break; 16104 case 128: 16105 bf_set(lpfc_mbx_wq_create_wqe_size, 16106 &wq_create->u.request_1, 16107 LPFC_WQ_WQE_SIZE_128); 16108 break; 16109 } 16110 /* Request DPP by default */ 16111 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16112 bf_set(lpfc_mbx_wq_create_page_size, 16113 &wq_create->u.request_1, 16114 (wq->page_size / SLI4_PAGE_SIZE)); 16115 page = wq_create->u.request_1.page; 16116 break; 16117 default: 16118 page = wq_create->u.request.page; 16119 break; 16120 } 16121 16122 list_for_each_entry(dmabuf, &wq->page_list, list) { 16123 memset(dmabuf->virt, 0, hw_page_size); 16124 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16125 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16126 } 16127 16128 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16129 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16130 16131 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16132 /* The IOCTL status is embedded in the mailbox subheader. */ 16133 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16134 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16135 if (shdr_status || shdr_add_status || rc) { 16136 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16137 "2503 WQ_CREATE mailbox failed with " 16138 "status x%x add_status x%x, mbx status x%x\n", 16139 shdr_status, shdr_add_status, rc); 16140 status = -ENXIO; 16141 goto out; 16142 } 16143 16144 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16145 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16146 &wq_create->u.response); 16147 else 16148 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16149 &wq_create->u.response_1); 16150 16151 if (wq->queue_id == 0xFFFF) { 16152 status = -ENXIO; 16153 goto out; 16154 } 16155 16156 wq->db_format = LPFC_DB_LIST_FORMAT; 16157 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16158 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16159 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16160 &wq_create->u.response); 16161 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16162 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16164 "3265 WQ[%d] doorbell format " 16165 "not supported: x%x\n", 16166 wq->queue_id, wq->db_format); 16167 status = -EINVAL; 16168 goto out; 16169 } 16170 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16171 &wq_create->u.response); 16172 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16173 pci_barset); 16174 if (!bar_memmap_p) { 16175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16176 "3263 WQ[%d] failed to memmap " 16177 "pci barset:x%x\n", 16178 wq->queue_id, pci_barset); 16179 status = -ENOMEM; 16180 goto out; 16181 } 16182 db_offset = wq_create->u.response.doorbell_offset; 16183 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16184 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16186 "3252 WQ[%d] doorbell offset " 16187 "not supported: x%x\n", 16188 wq->queue_id, db_offset); 16189 status = -EINVAL; 16190 goto out; 16191 } 16192 wq->db_regaddr = bar_memmap_p + db_offset; 16193 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16194 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16195 "format:x%x\n", wq->queue_id, 16196 pci_barset, db_offset, wq->db_format); 16197 } else 16198 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16199 } else { 16200 /* Check if DPP was honored by the firmware */ 16201 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16202 &wq_create->u.response_1); 16203 if (wq->dpp_enable) { 16204 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16205 &wq_create->u.response_1); 16206 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16207 pci_barset); 16208 if (!bar_memmap_p) { 16209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16210 "3267 WQ[%d] failed to memmap " 16211 "pci barset:x%x\n", 16212 wq->queue_id, pci_barset); 16213 status = -ENOMEM; 16214 goto out; 16215 } 16216 db_offset = wq_create->u.response_1.doorbell_offset; 16217 wq->db_regaddr = bar_memmap_p + db_offset; 16218 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16219 &wq_create->u.response_1); 16220 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16221 &wq_create->u.response_1); 16222 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16223 dpp_barset); 16224 if (!bar_memmap_p) { 16225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16226 "3268 WQ[%d] failed to memmap " 16227 "pci barset:x%x\n", 16228 wq->queue_id, dpp_barset); 16229 status = -ENOMEM; 16230 goto out; 16231 } 16232 dpp_offset = wq_create->u.response_1.dpp_offset; 16233 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16234 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16235 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16236 "dpp_id:x%x dpp_barset:x%x " 16237 "dpp_offset:x%x\n", 16238 wq->queue_id, pci_barset, db_offset, 16239 wq->dpp_id, dpp_barset, dpp_offset); 16240 16241 #ifdef CONFIG_X86 16242 /* Enable combined writes for DPP aperture */ 16243 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16244 rc = set_memory_wc(pg_addr, 1); 16245 if (rc) { 16246 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16247 "3272 Cannot setup Combined " 16248 "Write on WQ[%d] - disable DPP\n", 16249 wq->queue_id); 16250 phba->cfg_enable_dpp = 0; 16251 } 16252 #else 16253 phba->cfg_enable_dpp = 0; 16254 #endif 16255 } else 16256 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16257 } 16258 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16259 if (wq->pring == NULL) { 16260 status = -ENOMEM; 16261 goto out; 16262 } 16263 wq->type = LPFC_WQ; 16264 wq->assoc_qid = cq->queue_id; 16265 wq->subtype = subtype; 16266 wq->host_index = 0; 16267 wq->hba_index = 0; 16268 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16269 16270 /* link the wq onto the parent cq child list */ 16271 list_add_tail(&wq->list, &cq->child_list); 16272 out: 16273 mempool_free(mbox, phba->mbox_mem_pool); 16274 return status; 16275 } 16276 16277 /** 16278 * lpfc_rq_create - Create a Receive Queue on the HBA 16279 * @phba: HBA structure that indicates port to create a queue on. 16280 * @hrq: The queue structure to use to create the header receive queue. 16281 * @drq: The queue structure to use to create the data receive queue. 16282 * @cq: The completion queue to bind this work queue to. 16283 * @subtype: The subtype of the work queue indicating its functionality. 16284 * 16285 * This function creates a receive buffer queue pair , as detailed in @hrq and 16286 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16287 * to the HBA. 16288 * 16289 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16290 * struct is used to get the entry count that is necessary to determine the 16291 * number of pages to use for this queue. The @cq is used to indicate which 16292 * completion queue to bind received buffers that are posted to these queues to. 16293 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16294 * receive queue pair. This function is asynchronous and will wait for the 16295 * mailbox command to finish before continuing. 16296 * 16297 * On success this function will return a zero. If unable to allocate enough 16298 * memory this function will return -ENOMEM. If the queue create mailbox command 16299 * fails this function will return -ENXIO. 16300 **/ 16301 int 16302 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16303 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16304 { 16305 struct lpfc_mbx_rq_create *rq_create; 16306 struct lpfc_dmabuf *dmabuf; 16307 LPFC_MBOXQ_t *mbox; 16308 int rc, length, status = 0; 16309 uint32_t shdr_status, shdr_add_status; 16310 union lpfc_sli4_cfg_shdr *shdr; 16311 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16312 void __iomem *bar_memmap_p; 16313 uint32_t db_offset; 16314 uint16_t pci_barset; 16315 16316 /* sanity check on queue memory */ 16317 if (!hrq || !drq || !cq) 16318 return -ENODEV; 16319 if (!phba->sli4_hba.pc_sli4_params.supported) 16320 hw_page_size = SLI4_PAGE_SIZE; 16321 16322 if (hrq->entry_count != drq->entry_count) 16323 return -EINVAL; 16324 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16325 if (!mbox) 16326 return -ENOMEM; 16327 length = (sizeof(struct lpfc_mbx_rq_create) - 16328 sizeof(struct lpfc_sli4_cfg_mhdr)); 16329 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16330 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16331 length, LPFC_SLI4_MBX_EMBED); 16332 rq_create = &mbox->u.mqe.un.rq_create; 16333 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16334 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16335 phba->sli4_hba.pc_sli4_params.rqv); 16336 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16337 bf_set(lpfc_rq_context_rqe_count_1, 16338 &rq_create->u.request.context, 16339 hrq->entry_count); 16340 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16341 bf_set(lpfc_rq_context_rqe_size, 16342 &rq_create->u.request.context, 16343 LPFC_RQE_SIZE_8); 16344 bf_set(lpfc_rq_context_page_size, 16345 &rq_create->u.request.context, 16346 LPFC_RQ_PAGE_SIZE_4096); 16347 } else { 16348 switch (hrq->entry_count) { 16349 default: 16350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16351 "2535 Unsupported RQ count. (%d)\n", 16352 hrq->entry_count); 16353 if (hrq->entry_count < 512) { 16354 status = -EINVAL; 16355 goto out; 16356 } 16357 fallthrough; /* otherwise default to smallest count */ 16358 case 512: 16359 bf_set(lpfc_rq_context_rqe_count, 16360 &rq_create->u.request.context, 16361 LPFC_RQ_RING_SIZE_512); 16362 break; 16363 case 1024: 16364 bf_set(lpfc_rq_context_rqe_count, 16365 &rq_create->u.request.context, 16366 LPFC_RQ_RING_SIZE_1024); 16367 break; 16368 case 2048: 16369 bf_set(lpfc_rq_context_rqe_count, 16370 &rq_create->u.request.context, 16371 LPFC_RQ_RING_SIZE_2048); 16372 break; 16373 case 4096: 16374 bf_set(lpfc_rq_context_rqe_count, 16375 &rq_create->u.request.context, 16376 LPFC_RQ_RING_SIZE_4096); 16377 break; 16378 } 16379 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16380 LPFC_HDR_BUF_SIZE); 16381 } 16382 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16383 cq->queue_id); 16384 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16385 hrq->page_count); 16386 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16387 memset(dmabuf->virt, 0, hw_page_size); 16388 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16389 putPaddrLow(dmabuf->phys); 16390 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16391 putPaddrHigh(dmabuf->phys); 16392 } 16393 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16394 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16395 16396 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16397 /* The IOCTL status is embedded in the mailbox subheader. */ 16398 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16399 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16400 if (shdr_status || shdr_add_status || rc) { 16401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16402 "2504 RQ_CREATE mailbox failed with " 16403 "status x%x add_status x%x, mbx status x%x\n", 16404 shdr_status, shdr_add_status, rc); 16405 status = -ENXIO; 16406 goto out; 16407 } 16408 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16409 if (hrq->queue_id == 0xFFFF) { 16410 status = -ENXIO; 16411 goto out; 16412 } 16413 16414 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16415 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16416 &rq_create->u.response); 16417 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16418 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16420 "3262 RQ [%d] doorbell format not " 16421 "supported: x%x\n", hrq->queue_id, 16422 hrq->db_format); 16423 status = -EINVAL; 16424 goto out; 16425 } 16426 16427 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16428 &rq_create->u.response); 16429 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16430 if (!bar_memmap_p) { 16431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16432 "3269 RQ[%d] failed to memmap pci " 16433 "barset:x%x\n", hrq->queue_id, 16434 pci_barset); 16435 status = -ENOMEM; 16436 goto out; 16437 } 16438 16439 db_offset = rq_create->u.response.doorbell_offset; 16440 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16441 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16443 "3270 RQ[%d] doorbell offset not " 16444 "supported: x%x\n", hrq->queue_id, 16445 db_offset); 16446 status = -EINVAL; 16447 goto out; 16448 } 16449 hrq->db_regaddr = bar_memmap_p + db_offset; 16450 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16451 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16452 "format:x%x\n", hrq->queue_id, pci_barset, 16453 db_offset, hrq->db_format); 16454 } else { 16455 hrq->db_format = LPFC_DB_RING_FORMAT; 16456 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16457 } 16458 hrq->type = LPFC_HRQ; 16459 hrq->assoc_qid = cq->queue_id; 16460 hrq->subtype = subtype; 16461 hrq->host_index = 0; 16462 hrq->hba_index = 0; 16463 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16464 16465 /* now create the data queue */ 16466 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16467 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16468 length, LPFC_SLI4_MBX_EMBED); 16469 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16470 phba->sli4_hba.pc_sli4_params.rqv); 16471 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16472 bf_set(lpfc_rq_context_rqe_count_1, 16473 &rq_create->u.request.context, hrq->entry_count); 16474 if (subtype == LPFC_NVMET) 16475 rq_create->u.request.context.buffer_size = 16476 LPFC_NVMET_DATA_BUF_SIZE; 16477 else 16478 rq_create->u.request.context.buffer_size = 16479 LPFC_DATA_BUF_SIZE; 16480 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16481 LPFC_RQE_SIZE_8); 16482 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16483 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16484 } else { 16485 switch (drq->entry_count) { 16486 default: 16487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16488 "2536 Unsupported RQ count. (%d)\n", 16489 drq->entry_count); 16490 if (drq->entry_count < 512) { 16491 status = -EINVAL; 16492 goto out; 16493 } 16494 fallthrough; /* otherwise default to smallest count */ 16495 case 512: 16496 bf_set(lpfc_rq_context_rqe_count, 16497 &rq_create->u.request.context, 16498 LPFC_RQ_RING_SIZE_512); 16499 break; 16500 case 1024: 16501 bf_set(lpfc_rq_context_rqe_count, 16502 &rq_create->u.request.context, 16503 LPFC_RQ_RING_SIZE_1024); 16504 break; 16505 case 2048: 16506 bf_set(lpfc_rq_context_rqe_count, 16507 &rq_create->u.request.context, 16508 LPFC_RQ_RING_SIZE_2048); 16509 break; 16510 case 4096: 16511 bf_set(lpfc_rq_context_rqe_count, 16512 &rq_create->u.request.context, 16513 LPFC_RQ_RING_SIZE_4096); 16514 break; 16515 } 16516 if (subtype == LPFC_NVMET) 16517 bf_set(lpfc_rq_context_buf_size, 16518 &rq_create->u.request.context, 16519 LPFC_NVMET_DATA_BUF_SIZE); 16520 else 16521 bf_set(lpfc_rq_context_buf_size, 16522 &rq_create->u.request.context, 16523 LPFC_DATA_BUF_SIZE); 16524 } 16525 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16526 cq->queue_id); 16527 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16528 drq->page_count); 16529 list_for_each_entry(dmabuf, &drq->page_list, list) { 16530 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16531 putPaddrLow(dmabuf->phys); 16532 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16533 putPaddrHigh(dmabuf->phys); 16534 } 16535 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16536 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16537 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16538 /* The IOCTL status is embedded in the mailbox subheader. */ 16539 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16540 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16541 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16542 if (shdr_status || shdr_add_status || rc) { 16543 status = -ENXIO; 16544 goto out; 16545 } 16546 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16547 if (drq->queue_id == 0xFFFF) { 16548 status = -ENXIO; 16549 goto out; 16550 } 16551 drq->type = LPFC_DRQ; 16552 drq->assoc_qid = cq->queue_id; 16553 drq->subtype = subtype; 16554 drq->host_index = 0; 16555 drq->hba_index = 0; 16556 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16557 16558 /* link the header and data RQs onto the parent cq child list */ 16559 list_add_tail(&hrq->list, &cq->child_list); 16560 list_add_tail(&drq->list, &cq->child_list); 16561 16562 out: 16563 mempool_free(mbox, phba->mbox_mem_pool); 16564 return status; 16565 } 16566 16567 /** 16568 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16569 * @phba: HBA structure that indicates port to create a queue on. 16570 * @hrqp: The queue structure array to use to create the header receive queues. 16571 * @drqp: The queue structure array to use to create the data receive queues. 16572 * @cqp: The completion queue array to bind these receive queues to. 16573 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16574 * 16575 * This function creates a receive buffer queue pair , as detailed in @hrq and 16576 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16577 * to the HBA. 16578 * 16579 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16580 * struct is used to get the entry count that is necessary to determine the 16581 * number of pages to use for this queue. The @cq is used to indicate which 16582 * completion queue to bind received buffers that are posted to these queues to. 16583 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16584 * receive queue pair. This function is asynchronous and will wait for the 16585 * mailbox command to finish before continuing. 16586 * 16587 * On success this function will return a zero. If unable to allocate enough 16588 * memory this function will return -ENOMEM. If the queue create mailbox command 16589 * fails this function will return -ENXIO. 16590 **/ 16591 int 16592 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16593 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16594 uint32_t subtype) 16595 { 16596 struct lpfc_queue *hrq, *drq, *cq; 16597 struct lpfc_mbx_rq_create_v2 *rq_create; 16598 struct lpfc_dmabuf *dmabuf; 16599 LPFC_MBOXQ_t *mbox; 16600 int rc, length, alloclen, status = 0; 16601 int cnt, idx, numrq, page_idx = 0; 16602 uint32_t shdr_status, shdr_add_status; 16603 union lpfc_sli4_cfg_shdr *shdr; 16604 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16605 16606 numrq = phba->cfg_nvmet_mrq; 16607 /* sanity check on array memory */ 16608 if (!hrqp || !drqp || !cqp || !numrq) 16609 return -ENODEV; 16610 if (!phba->sli4_hba.pc_sli4_params.supported) 16611 hw_page_size = SLI4_PAGE_SIZE; 16612 16613 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16614 if (!mbox) 16615 return -ENOMEM; 16616 16617 length = sizeof(struct lpfc_mbx_rq_create_v2); 16618 length += ((2 * numrq * hrqp[0]->page_count) * 16619 sizeof(struct dma_address)); 16620 16621 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16622 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16623 LPFC_SLI4_MBX_NEMBED); 16624 if (alloclen < length) { 16625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16626 "3099 Allocated DMA memory size (%d) is " 16627 "less than the requested DMA memory size " 16628 "(%d)\n", alloclen, length); 16629 status = -ENOMEM; 16630 goto out; 16631 } 16632 16633 16634 16635 rq_create = mbox->sge_array->addr[0]; 16636 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16637 16638 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16639 cnt = 0; 16640 16641 for (idx = 0; idx < numrq; idx++) { 16642 hrq = hrqp[idx]; 16643 drq = drqp[idx]; 16644 cq = cqp[idx]; 16645 16646 /* sanity check on queue memory */ 16647 if (!hrq || !drq || !cq) { 16648 status = -ENODEV; 16649 goto out; 16650 } 16651 16652 if (hrq->entry_count != drq->entry_count) { 16653 status = -EINVAL; 16654 goto out; 16655 } 16656 16657 if (idx == 0) { 16658 bf_set(lpfc_mbx_rq_create_num_pages, 16659 &rq_create->u.request, 16660 hrq->page_count); 16661 bf_set(lpfc_mbx_rq_create_rq_cnt, 16662 &rq_create->u.request, (numrq * 2)); 16663 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16664 1); 16665 bf_set(lpfc_rq_context_base_cq, 16666 &rq_create->u.request.context, 16667 cq->queue_id); 16668 bf_set(lpfc_rq_context_data_size, 16669 &rq_create->u.request.context, 16670 LPFC_NVMET_DATA_BUF_SIZE); 16671 bf_set(lpfc_rq_context_hdr_size, 16672 &rq_create->u.request.context, 16673 LPFC_HDR_BUF_SIZE); 16674 bf_set(lpfc_rq_context_rqe_count_1, 16675 &rq_create->u.request.context, 16676 hrq->entry_count); 16677 bf_set(lpfc_rq_context_rqe_size, 16678 &rq_create->u.request.context, 16679 LPFC_RQE_SIZE_8); 16680 bf_set(lpfc_rq_context_page_size, 16681 &rq_create->u.request.context, 16682 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16683 } 16684 rc = 0; 16685 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16686 memset(dmabuf->virt, 0, hw_page_size); 16687 cnt = page_idx + dmabuf->buffer_tag; 16688 rq_create->u.request.page[cnt].addr_lo = 16689 putPaddrLow(dmabuf->phys); 16690 rq_create->u.request.page[cnt].addr_hi = 16691 putPaddrHigh(dmabuf->phys); 16692 rc++; 16693 } 16694 page_idx += rc; 16695 16696 rc = 0; 16697 list_for_each_entry(dmabuf, &drq->page_list, list) { 16698 memset(dmabuf->virt, 0, hw_page_size); 16699 cnt = page_idx + dmabuf->buffer_tag; 16700 rq_create->u.request.page[cnt].addr_lo = 16701 putPaddrLow(dmabuf->phys); 16702 rq_create->u.request.page[cnt].addr_hi = 16703 putPaddrHigh(dmabuf->phys); 16704 rc++; 16705 } 16706 page_idx += rc; 16707 16708 hrq->db_format = LPFC_DB_RING_FORMAT; 16709 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16710 hrq->type = LPFC_HRQ; 16711 hrq->assoc_qid = cq->queue_id; 16712 hrq->subtype = subtype; 16713 hrq->host_index = 0; 16714 hrq->hba_index = 0; 16715 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16716 16717 drq->db_format = LPFC_DB_RING_FORMAT; 16718 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16719 drq->type = LPFC_DRQ; 16720 drq->assoc_qid = cq->queue_id; 16721 drq->subtype = subtype; 16722 drq->host_index = 0; 16723 drq->hba_index = 0; 16724 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16725 16726 list_add_tail(&hrq->list, &cq->child_list); 16727 list_add_tail(&drq->list, &cq->child_list); 16728 } 16729 16730 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16731 /* The IOCTL status is embedded in the mailbox subheader. */ 16732 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16733 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16734 if (shdr_status || shdr_add_status || rc) { 16735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16736 "3120 RQ_CREATE mailbox failed with " 16737 "status x%x add_status x%x, mbx status x%x\n", 16738 shdr_status, shdr_add_status, rc); 16739 status = -ENXIO; 16740 goto out; 16741 } 16742 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16743 if (rc == 0xFFFF) { 16744 status = -ENXIO; 16745 goto out; 16746 } 16747 16748 /* Initialize all RQs with associated queue id */ 16749 for (idx = 0; idx < numrq; idx++) { 16750 hrq = hrqp[idx]; 16751 hrq->queue_id = rc + (2 * idx); 16752 drq = drqp[idx]; 16753 drq->queue_id = rc + (2 * idx) + 1; 16754 } 16755 16756 out: 16757 lpfc_sli4_mbox_cmd_free(phba, mbox); 16758 return status; 16759 } 16760 16761 /** 16762 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16763 * @phba: HBA structure that indicates port to destroy a queue on. 16764 * @eq: The queue structure associated with the queue to destroy. 16765 * 16766 * This function destroys a queue, as detailed in @eq by sending an mailbox 16767 * command, specific to the type of queue, to the HBA. 16768 * 16769 * The @eq struct is used to get the queue ID of the queue to destroy. 16770 * 16771 * On success this function will return a zero. If the queue destroy mailbox 16772 * command fails this function will return -ENXIO. 16773 **/ 16774 int 16775 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16776 { 16777 LPFC_MBOXQ_t *mbox; 16778 int rc, length, status = 0; 16779 uint32_t shdr_status, shdr_add_status; 16780 union lpfc_sli4_cfg_shdr *shdr; 16781 16782 /* sanity check on queue memory */ 16783 if (!eq) 16784 return -ENODEV; 16785 16786 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16787 if (!mbox) 16788 return -ENOMEM; 16789 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16790 sizeof(struct lpfc_sli4_cfg_mhdr)); 16791 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16792 LPFC_MBOX_OPCODE_EQ_DESTROY, 16793 length, LPFC_SLI4_MBX_EMBED); 16794 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16795 eq->queue_id); 16796 mbox->vport = eq->phba->pport; 16797 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16798 16799 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16800 /* The IOCTL status is embedded in the mailbox subheader. */ 16801 shdr = (union lpfc_sli4_cfg_shdr *) 16802 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16803 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16804 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16805 if (shdr_status || shdr_add_status || rc) { 16806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16807 "2505 EQ_DESTROY mailbox failed with " 16808 "status x%x add_status x%x, mbx status x%x\n", 16809 shdr_status, shdr_add_status, rc); 16810 status = -ENXIO; 16811 } 16812 16813 /* Remove eq from any list */ 16814 list_del_init(&eq->list); 16815 mempool_free(mbox, eq->phba->mbox_mem_pool); 16816 return status; 16817 } 16818 16819 /** 16820 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16821 * @phba: HBA structure that indicates port to destroy a queue on. 16822 * @cq: The queue structure associated with the queue to destroy. 16823 * 16824 * This function destroys a queue, as detailed in @cq by sending an mailbox 16825 * command, specific to the type of queue, to the HBA. 16826 * 16827 * The @cq struct is used to get the queue ID of the queue to destroy. 16828 * 16829 * On success this function will return a zero. If the queue destroy mailbox 16830 * command fails this function will return -ENXIO. 16831 **/ 16832 int 16833 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16834 { 16835 LPFC_MBOXQ_t *mbox; 16836 int rc, length, status = 0; 16837 uint32_t shdr_status, shdr_add_status; 16838 union lpfc_sli4_cfg_shdr *shdr; 16839 16840 /* sanity check on queue memory */ 16841 if (!cq) 16842 return -ENODEV; 16843 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16844 if (!mbox) 16845 return -ENOMEM; 16846 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16847 sizeof(struct lpfc_sli4_cfg_mhdr)); 16848 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16849 LPFC_MBOX_OPCODE_CQ_DESTROY, 16850 length, LPFC_SLI4_MBX_EMBED); 16851 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16852 cq->queue_id); 16853 mbox->vport = cq->phba->pport; 16854 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16855 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16856 /* The IOCTL status is embedded in the mailbox subheader. */ 16857 shdr = (union lpfc_sli4_cfg_shdr *) 16858 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16859 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16860 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16861 if (shdr_status || shdr_add_status || rc) { 16862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16863 "2506 CQ_DESTROY mailbox failed with " 16864 "status x%x add_status x%x, mbx status x%x\n", 16865 shdr_status, shdr_add_status, rc); 16866 status = -ENXIO; 16867 } 16868 /* Remove cq from any list */ 16869 list_del_init(&cq->list); 16870 mempool_free(mbox, cq->phba->mbox_mem_pool); 16871 return status; 16872 } 16873 16874 /** 16875 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16876 * @phba: HBA structure that indicates port to destroy a queue on. 16877 * @mq: The queue structure associated with the queue to destroy. 16878 * 16879 * This function destroys a queue, as detailed in @mq by sending an mailbox 16880 * command, specific to the type of queue, to the HBA. 16881 * 16882 * The @mq struct is used to get the queue ID of the queue to destroy. 16883 * 16884 * On success this function will return a zero. If the queue destroy mailbox 16885 * command fails this function will return -ENXIO. 16886 **/ 16887 int 16888 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16889 { 16890 LPFC_MBOXQ_t *mbox; 16891 int rc, length, status = 0; 16892 uint32_t shdr_status, shdr_add_status; 16893 union lpfc_sli4_cfg_shdr *shdr; 16894 16895 /* sanity check on queue memory */ 16896 if (!mq) 16897 return -ENODEV; 16898 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16899 if (!mbox) 16900 return -ENOMEM; 16901 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16902 sizeof(struct lpfc_sli4_cfg_mhdr)); 16903 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16904 LPFC_MBOX_OPCODE_MQ_DESTROY, 16905 length, LPFC_SLI4_MBX_EMBED); 16906 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16907 mq->queue_id); 16908 mbox->vport = mq->phba->pport; 16909 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16910 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16911 /* The IOCTL status is embedded in the mailbox subheader. */ 16912 shdr = (union lpfc_sli4_cfg_shdr *) 16913 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16914 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16915 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16916 if (shdr_status || shdr_add_status || rc) { 16917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16918 "2507 MQ_DESTROY mailbox failed with " 16919 "status x%x add_status x%x, mbx status x%x\n", 16920 shdr_status, shdr_add_status, rc); 16921 status = -ENXIO; 16922 } 16923 /* Remove mq from any list */ 16924 list_del_init(&mq->list); 16925 mempool_free(mbox, mq->phba->mbox_mem_pool); 16926 return status; 16927 } 16928 16929 /** 16930 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16931 * @phba: HBA structure that indicates port to destroy a queue on. 16932 * @wq: The queue structure associated with the queue to destroy. 16933 * 16934 * This function destroys a queue, as detailed in @wq by sending an mailbox 16935 * command, specific to the type of queue, to the HBA. 16936 * 16937 * The @wq struct is used to get the queue ID of the queue to destroy. 16938 * 16939 * On success this function will return a zero. If the queue destroy mailbox 16940 * command fails this function will return -ENXIO. 16941 **/ 16942 int 16943 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16944 { 16945 LPFC_MBOXQ_t *mbox; 16946 int rc, length, status = 0; 16947 uint32_t shdr_status, shdr_add_status; 16948 union lpfc_sli4_cfg_shdr *shdr; 16949 16950 /* sanity check on queue memory */ 16951 if (!wq) 16952 return -ENODEV; 16953 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16954 if (!mbox) 16955 return -ENOMEM; 16956 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16957 sizeof(struct lpfc_sli4_cfg_mhdr)); 16958 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16959 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16960 length, LPFC_SLI4_MBX_EMBED); 16961 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16962 wq->queue_id); 16963 mbox->vport = wq->phba->pport; 16964 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16965 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16966 shdr = (union lpfc_sli4_cfg_shdr *) 16967 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16968 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16969 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16970 if (shdr_status || shdr_add_status || rc) { 16971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16972 "2508 WQ_DESTROY mailbox failed with " 16973 "status x%x add_status x%x, mbx status x%x\n", 16974 shdr_status, shdr_add_status, rc); 16975 status = -ENXIO; 16976 } 16977 /* Remove wq from any list */ 16978 list_del_init(&wq->list); 16979 kfree(wq->pring); 16980 wq->pring = NULL; 16981 mempool_free(mbox, wq->phba->mbox_mem_pool); 16982 return status; 16983 } 16984 16985 /** 16986 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16987 * @phba: HBA structure that indicates port to destroy a queue on. 16988 * @hrq: The queue structure associated with the queue to destroy. 16989 * @drq: The queue structure associated with the queue to destroy. 16990 * 16991 * This function destroys a queue, as detailed in @rq by sending an mailbox 16992 * command, specific to the type of queue, to the HBA. 16993 * 16994 * The @rq struct is used to get the queue ID of the queue to destroy. 16995 * 16996 * On success this function will return a zero. If the queue destroy mailbox 16997 * command fails this function will return -ENXIO. 16998 **/ 16999 int 17000 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17001 struct lpfc_queue *drq) 17002 { 17003 LPFC_MBOXQ_t *mbox; 17004 int rc, length, status = 0; 17005 uint32_t shdr_status, shdr_add_status; 17006 union lpfc_sli4_cfg_shdr *shdr; 17007 17008 /* sanity check on queue memory */ 17009 if (!hrq || !drq) 17010 return -ENODEV; 17011 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17012 if (!mbox) 17013 return -ENOMEM; 17014 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17015 sizeof(struct lpfc_sli4_cfg_mhdr)); 17016 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17017 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17018 length, LPFC_SLI4_MBX_EMBED); 17019 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17020 hrq->queue_id); 17021 mbox->vport = hrq->phba->pport; 17022 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17023 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17024 /* The IOCTL status is embedded in the mailbox subheader. */ 17025 shdr = (union lpfc_sli4_cfg_shdr *) 17026 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17027 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17028 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17029 if (shdr_status || shdr_add_status || rc) { 17030 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17031 "2509 RQ_DESTROY mailbox failed with " 17032 "status x%x add_status x%x, mbx status x%x\n", 17033 shdr_status, shdr_add_status, rc); 17034 if (rc != MBX_TIMEOUT) 17035 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17036 return -ENXIO; 17037 } 17038 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17039 drq->queue_id); 17040 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17041 shdr = (union lpfc_sli4_cfg_shdr *) 17042 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17043 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17045 if (shdr_status || shdr_add_status || rc) { 17046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17047 "2510 RQ_DESTROY mailbox failed with " 17048 "status x%x add_status x%x, mbx status x%x\n", 17049 shdr_status, shdr_add_status, rc); 17050 status = -ENXIO; 17051 } 17052 list_del_init(&hrq->list); 17053 list_del_init(&drq->list); 17054 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17055 return status; 17056 } 17057 17058 /** 17059 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17060 * @phba: The virtual port for which this call being executed. 17061 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17062 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17063 * @xritag: the xritag that ties this io to the SGL pages. 17064 * 17065 * This routine will post the sgl pages for the IO that has the xritag 17066 * that is in the iocbq structure. The xritag is assigned during iocbq 17067 * creation and persists for as long as the driver is loaded. 17068 * if the caller has fewer than 256 scatter gather segments to map then 17069 * pdma_phys_addr1 should be 0. 17070 * If the caller needs to map more than 256 scatter gather segment then 17071 * pdma_phys_addr1 should be a valid physical address. 17072 * physical address for SGLs must be 64 byte aligned. 17073 * If you are going to map 2 SGL's then the first one must have 256 entries 17074 * the second sgl can have between 1 and 256 entries. 17075 * 17076 * Return codes: 17077 * 0 - Success 17078 * -ENXIO, -ENOMEM - Failure 17079 **/ 17080 int 17081 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17082 dma_addr_t pdma_phys_addr0, 17083 dma_addr_t pdma_phys_addr1, 17084 uint16_t xritag) 17085 { 17086 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17087 LPFC_MBOXQ_t *mbox; 17088 int rc; 17089 uint32_t shdr_status, shdr_add_status; 17090 uint32_t mbox_tmo; 17091 union lpfc_sli4_cfg_shdr *shdr; 17092 17093 if (xritag == NO_XRI) { 17094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17095 "0364 Invalid param:\n"); 17096 return -EINVAL; 17097 } 17098 17099 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17100 if (!mbox) 17101 return -ENOMEM; 17102 17103 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17104 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17105 sizeof(struct lpfc_mbx_post_sgl_pages) - 17106 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17107 17108 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17109 &mbox->u.mqe.un.post_sgl_pages; 17110 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17111 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17112 17113 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17114 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17115 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17116 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17117 17118 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17119 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17120 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17121 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17122 if (!phba->sli4_hba.intr_enable) 17123 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17124 else { 17125 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17126 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17127 } 17128 /* The IOCTL status is embedded in the mailbox subheader. */ 17129 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17130 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17131 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17132 if (rc != MBX_TIMEOUT) 17133 mempool_free(mbox, phba->mbox_mem_pool); 17134 if (shdr_status || shdr_add_status || rc) { 17135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17136 "2511 POST_SGL mailbox failed with " 17137 "status x%x add_status x%x, mbx status x%x\n", 17138 shdr_status, shdr_add_status, rc); 17139 } 17140 return 0; 17141 } 17142 17143 /** 17144 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17145 * @phba: pointer to lpfc hba data structure. 17146 * 17147 * This routine is invoked to post rpi header templates to the 17148 * HBA consistent with the SLI-4 interface spec. This routine 17149 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17150 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17151 * 17152 * Returns 17153 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17154 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17155 **/ 17156 static uint16_t 17157 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17158 { 17159 unsigned long xri; 17160 17161 /* 17162 * Fetch the next logical xri. Because this index is logical, 17163 * the driver starts at 0 each time. 17164 */ 17165 spin_lock_irq(&phba->hbalock); 17166 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17167 phba->sli4_hba.max_cfg_param.max_xri, 0); 17168 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17169 spin_unlock_irq(&phba->hbalock); 17170 return NO_XRI; 17171 } else { 17172 set_bit(xri, phba->sli4_hba.xri_bmask); 17173 phba->sli4_hba.max_cfg_param.xri_used++; 17174 } 17175 spin_unlock_irq(&phba->hbalock); 17176 return xri; 17177 } 17178 17179 /** 17180 * lpfc_sli4_free_xri - Release an xri for reuse. 17181 * @phba: pointer to lpfc hba data structure. 17182 * @xri: xri to release. 17183 * 17184 * This routine is invoked to release an xri to the pool of 17185 * available rpis maintained by the driver. 17186 **/ 17187 static void 17188 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17189 { 17190 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17191 phba->sli4_hba.max_cfg_param.xri_used--; 17192 } 17193 } 17194 17195 /** 17196 * lpfc_sli4_free_xri - Release an xri for reuse. 17197 * @phba: pointer to lpfc hba data structure. 17198 * @xri: xri to release. 17199 * 17200 * This routine is invoked to release an xri to the pool of 17201 * available rpis maintained by the driver. 17202 **/ 17203 void 17204 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17205 { 17206 spin_lock_irq(&phba->hbalock); 17207 __lpfc_sli4_free_xri(phba, xri); 17208 spin_unlock_irq(&phba->hbalock); 17209 } 17210 17211 /** 17212 * lpfc_sli4_next_xritag - Get an xritag for the io 17213 * @phba: Pointer to HBA context object. 17214 * 17215 * This function gets an xritag for the iocb. If there is no unused xritag 17216 * it will return 0xffff. 17217 * The function returns the allocated xritag if successful, else returns zero. 17218 * Zero is not a valid xritag. 17219 * The caller is not required to hold any lock. 17220 **/ 17221 uint16_t 17222 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17223 { 17224 uint16_t xri_index; 17225 17226 xri_index = lpfc_sli4_alloc_xri(phba); 17227 if (xri_index == NO_XRI) 17228 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17229 "2004 Failed to allocate XRI.last XRITAG is %d" 17230 " Max XRI is %d, Used XRI is %d\n", 17231 xri_index, 17232 phba->sli4_hba.max_cfg_param.max_xri, 17233 phba->sli4_hba.max_cfg_param.xri_used); 17234 return xri_index; 17235 } 17236 17237 /** 17238 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17239 * @phba: pointer to lpfc hba data structure. 17240 * @post_sgl_list: pointer to els sgl entry list. 17241 * @post_cnt: number of els sgl entries on the list. 17242 * 17243 * This routine is invoked to post a block of driver's sgl pages to the 17244 * HBA using non-embedded mailbox command. No Lock is held. This routine 17245 * is only called when the driver is loading and after all IO has been 17246 * stopped. 17247 **/ 17248 static int 17249 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17250 struct list_head *post_sgl_list, 17251 int post_cnt) 17252 { 17253 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17254 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17255 struct sgl_page_pairs *sgl_pg_pairs; 17256 void *viraddr; 17257 LPFC_MBOXQ_t *mbox; 17258 uint32_t reqlen, alloclen, pg_pairs; 17259 uint32_t mbox_tmo; 17260 uint16_t xritag_start = 0; 17261 int rc = 0; 17262 uint32_t shdr_status, shdr_add_status; 17263 union lpfc_sli4_cfg_shdr *shdr; 17264 17265 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17266 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17267 if (reqlen > SLI4_PAGE_SIZE) { 17268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17269 "2559 Block sgl registration required DMA " 17270 "size (%d) great than a page\n", reqlen); 17271 return -ENOMEM; 17272 } 17273 17274 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17275 if (!mbox) 17276 return -ENOMEM; 17277 17278 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17279 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17280 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17281 LPFC_SLI4_MBX_NEMBED); 17282 17283 if (alloclen < reqlen) { 17284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17285 "0285 Allocated DMA memory size (%d) is " 17286 "less than the requested DMA memory " 17287 "size (%d)\n", alloclen, reqlen); 17288 lpfc_sli4_mbox_cmd_free(phba, mbox); 17289 return -ENOMEM; 17290 } 17291 /* Set up the SGL pages in the non-embedded DMA pages */ 17292 viraddr = mbox->sge_array->addr[0]; 17293 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17294 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17295 17296 pg_pairs = 0; 17297 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17298 /* Set up the sge entry */ 17299 sgl_pg_pairs->sgl_pg0_addr_lo = 17300 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17301 sgl_pg_pairs->sgl_pg0_addr_hi = 17302 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17303 sgl_pg_pairs->sgl_pg1_addr_lo = 17304 cpu_to_le32(putPaddrLow(0)); 17305 sgl_pg_pairs->sgl_pg1_addr_hi = 17306 cpu_to_le32(putPaddrHigh(0)); 17307 17308 /* Keep the first xritag on the list */ 17309 if (pg_pairs == 0) 17310 xritag_start = sglq_entry->sli4_xritag; 17311 sgl_pg_pairs++; 17312 pg_pairs++; 17313 } 17314 17315 /* Complete initialization and perform endian conversion. */ 17316 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17317 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17318 sgl->word0 = cpu_to_le32(sgl->word0); 17319 17320 if (!phba->sli4_hba.intr_enable) 17321 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17322 else { 17323 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17324 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17325 } 17326 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17327 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17328 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17329 if (rc != MBX_TIMEOUT) 17330 lpfc_sli4_mbox_cmd_free(phba, mbox); 17331 if (shdr_status || shdr_add_status || rc) { 17332 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17333 "2513 POST_SGL_BLOCK mailbox command failed " 17334 "status x%x add_status x%x mbx status x%x\n", 17335 shdr_status, shdr_add_status, rc); 17336 rc = -ENXIO; 17337 } 17338 return rc; 17339 } 17340 17341 /** 17342 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17343 * @phba: pointer to lpfc hba data structure. 17344 * @nblist: pointer to nvme buffer list. 17345 * @count: number of scsi buffers on the list. 17346 * 17347 * This routine is invoked to post a block of @count scsi sgl pages from a 17348 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17349 * No Lock is held. 17350 * 17351 **/ 17352 static int 17353 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17354 int count) 17355 { 17356 struct lpfc_io_buf *lpfc_ncmd; 17357 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17358 struct sgl_page_pairs *sgl_pg_pairs; 17359 void *viraddr; 17360 LPFC_MBOXQ_t *mbox; 17361 uint32_t reqlen, alloclen, pg_pairs; 17362 uint32_t mbox_tmo; 17363 uint16_t xritag_start = 0; 17364 int rc = 0; 17365 uint32_t shdr_status, shdr_add_status; 17366 dma_addr_t pdma_phys_bpl1; 17367 union lpfc_sli4_cfg_shdr *shdr; 17368 17369 /* Calculate the requested length of the dma memory */ 17370 reqlen = count * sizeof(struct sgl_page_pairs) + 17371 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17372 if (reqlen > SLI4_PAGE_SIZE) { 17373 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17374 "6118 Block sgl registration required DMA " 17375 "size (%d) great than a page\n", reqlen); 17376 return -ENOMEM; 17377 } 17378 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17379 if (!mbox) { 17380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17381 "6119 Failed to allocate mbox cmd memory\n"); 17382 return -ENOMEM; 17383 } 17384 17385 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17386 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17387 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17388 reqlen, LPFC_SLI4_MBX_NEMBED); 17389 17390 if (alloclen < reqlen) { 17391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17392 "6120 Allocated DMA memory size (%d) is " 17393 "less than the requested DMA memory " 17394 "size (%d)\n", alloclen, reqlen); 17395 lpfc_sli4_mbox_cmd_free(phba, mbox); 17396 return -ENOMEM; 17397 } 17398 17399 /* Get the first SGE entry from the non-embedded DMA memory */ 17400 viraddr = mbox->sge_array->addr[0]; 17401 17402 /* Set up the SGL pages in the non-embedded DMA pages */ 17403 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17404 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17405 17406 pg_pairs = 0; 17407 list_for_each_entry(lpfc_ncmd, nblist, list) { 17408 /* Set up the sge entry */ 17409 sgl_pg_pairs->sgl_pg0_addr_lo = 17410 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17411 sgl_pg_pairs->sgl_pg0_addr_hi = 17412 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17413 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17414 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17415 SGL_PAGE_SIZE; 17416 else 17417 pdma_phys_bpl1 = 0; 17418 sgl_pg_pairs->sgl_pg1_addr_lo = 17419 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17420 sgl_pg_pairs->sgl_pg1_addr_hi = 17421 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17422 /* Keep the first xritag on the list */ 17423 if (pg_pairs == 0) 17424 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17425 sgl_pg_pairs++; 17426 pg_pairs++; 17427 } 17428 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17429 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17430 /* Perform endian conversion if necessary */ 17431 sgl->word0 = cpu_to_le32(sgl->word0); 17432 17433 if (!phba->sli4_hba.intr_enable) { 17434 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17435 } else { 17436 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17437 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17438 } 17439 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17440 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17441 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17442 if (rc != MBX_TIMEOUT) 17443 lpfc_sli4_mbox_cmd_free(phba, mbox); 17444 if (shdr_status || shdr_add_status || rc) { 17445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17446 "6125 POST_SGL_BLOCK mailbox command failed " 17447 "status x%x add_status x%x mbx status x%x\n", 17448 shdr_status, shdr_add_status, rc); 17449 rc = -ENXIO; 17450 } 17451 return rc; 17452 } 17453 17454 /** 17455 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17456 * @phba: pointer to lpfc hba data structure. 17457 * @post_nblist: pointer to the nvme buffer list. 17458 * @sb_count: number of nvme buffers. 17459 * 17460 * This routine walks a list of nvme buffers that was passed in. It attempts 17461 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17462 * uses the non-embedded SGL block post mailbox commands to post to the port. 17463 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17464 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17465 * must be local list, thus no lock is needed when manipulate the list. 17466 * 17467 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17468 **/ 17469 int 17470 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17471 struct list_head *post_nblist, int sb_count) 17472 { 17473 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17474 int status, sgl_size; 17475 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17476 dma_addr_t pdma_phys_sgl1; 17477 int last_xritag = NO_XRI; 17478 int cur_xritag; 17479 LIST_HEAD(prep_nblist); 17480 LIST_HEAD(blck_nblist); 17481 LIST_HEAD(nvme_nblist); 17482 17483 /* sanity check */ 17484 if (sb_count <= 0) 17485 return -EINVAL; 17486 17487 sgl_size = phba->cfg_sg_dma_buf_size; 17488 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17489 list_del_init(&lpfc_ncmd->list); 17490 block_cnt++; 17491 if ((last_xritag != NO_XRI) && 17492 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17493 /* a hole in xri block, form a sgl posting block */ 17494 list_splice_init(&prep_nblist, &blck_nblist); 17495 post_cnt = block_cnt - 1; 17496 /* prepare list for next posting block */ 17497 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17498 block_cnt = 1; 17499 } else { 17500 /* prepare list for next posting block */ 17501 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17502 /* enough sgls for non-embed sgl mbox command */ 17503 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17504 list_splice_init(&prep_nblist, &blck_nblist); 17505 post_cnt = block_cnt; 17506 block_cnt = 0; 17507 } 17508 } 17509 num_posting++; 17510 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17511 17512 /* end of repost sgl list condition for NVME buffers */ 17513 if (num_posting == sb_count) { 17514 if (post_cnt == 0) { 17515 /* last sgl posting block */ 17516 list_splice_init(&prep_nblist, &blck_nblist); 17517 post_cnt = block_cnt; 17518 } else if (block_cnt == 1) { 17519 /* last single sgl with non-contiguous xri */ 17520 if (sgl_size > SGL_PAGE_SIZE) 17521 pdma_phys_sgl1 = 17522 lpfc_ncmd->dma_phys_sgl + 17523 SGL_PAGE_SIZE; 17524 else 17525 pdma_phys_sgl1 = 0; 17526 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17527 status = lpfc_sli4_post_sgl( 17528 phba, lpfc_ncmd->dma_phys_sgl, 17529 pdma_phys_sgl1, cur_xritag); 17530 if (status) { 17531 /* Post error. Buffer unavailable. */ 17532 lpfc_ncmd->flags |= 17533 LPFC_SBUF_NOT_POSTED; 17534 } else { 17535 /* Post success. Bffer available. */ 17536 lpfc_ncmd->flags &= 17537 ~LPFC_SBUF_NOT_POSTED; 17538 lpfc_ncmd->status = IOSTAT_SUCCESS; 17539 num_posted++; 17540 } 17541 /* success, put on NVME buffer sgl list */ 17542 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17543 } 17544 } 17545 17546 /* continue until a nembed page worth of sgls */ 17547 if (post_cnt == 0) 17548 continue; 17549 17550 /* post block of NVME buffer list sgls */ 17551 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17552 post_cnt); 17553 17554 /* don't reset xirtag due to hole in xri block */ 17555 if (block_cnt == 0) 17556 last_xritag = NO_XRI; 17557 17558 /* reset NVME buffer post count for next round of posting */ 17559 post_cnt = 0; 17560 17561 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17562 while (!list_empty(&blck_nblist)) { 17563 list_remove_head(&blck_nblist, lpfc_ncmd, 17564 struct lpfc_io_buf, list); 17565 if (status) { 17566 /* Post error. Mark buffer unavailable. */ 17567 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17568 } else { 17569 /* Post success, Mark buffer available. */ 17570 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17571 lpfc_ncmd->status = IOSTAT_SUCCESS; 17572 num_posted++; 17573 } 17574 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17575 } 17576 } 17577 /* Push NVME buffers with sgl posted to the available list */ 17578 lpfc_io_buf_replenish(phba, &nvme_nblist); 17579 17580 return num_posted; 17581 } 17582 17583 /** 17584 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17585 * @phba: pointer to lpfc_hba struct that the frame was received on 17586 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17587 * 17588 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17589 * valid type of frame that the LPFC driver will handle. This function will 17590 * return a zero if the frame is a valid frame or a non zero value when the 17591 * frame does not pass the check. 17592 **/ 17593 static int 17594 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17595 { 17596 /* make rctl_names static to save stack space */ 17597 struct fc_vft_header *fc_vft_hdr; 17598 uint32_t *header = (uint32_t *) fc_hdr; 17599 17600 #define FC_RCTL_MDS_DIAGS 0xF4 17601 17602 switch (fc_hdr->fh_r_ctl) { 17603 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17604 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17605 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17606 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17607 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17608 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17609 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17610 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17611 case FC_RCTL_ELS_REQ: /* extended link services request */ 17612 case FC_RCTL_ELS_REP: /* extended link services reply */ 17613 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17614 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17615 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17616 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17617 case FC_RCTL_BA_RMC: /* remove connection */ 17618 case FC_RCTL_BA_ACC: /* basic accept */ 17619 case FC_RCTL_BA_RJT: /* basic reject */ 17620 case FC_RCTL_BA_PRMT: 17621 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17622 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17623 case FC_RCTL_P_RJT: /* port reject */ 17624 case FC_RCTL_F_RJT: /* fabric reject */ 17625 case FC_RCTL_P_BSY: /* port busy */ 17626 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17627 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17628 case FC_RCTL_LCR: /* link credit reset */ 17629 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17630 case FC_RCTL_END: /* end */ 17631 break; 17632 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17633 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17634 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17635 return lpfc_fc_frame_check(phba, fc_hdr); 17636 default: 17637 goto drop; 17638 } 17639 17640 switch (fc_hdr->fh_type) { 17641 case FC_TYPE_BLS: 17642 case FC_TYPE_ELS: 17643 case FC_TYPE_FCP: 17644 case FC_TYPE_CT: 17645 case FC_TYPE_NVME: 17646 break; 17647 case FC_TYPE_IP: 17648 case FC_TYPE_ILS: 17649 default: 17650 goto drop; 17651 } 17652 17653 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17654 "2538 Received frame rctl:x%x, type:x%x, " 17655 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17656 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17657 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17658 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17659 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17660 be32_to_cpu(header[6])); 17661 return 0; 17662 drop: 17663 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17664 "2539 Dropped frame rctl:x%x type:x%x\n", 17665 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17666 return 1; 17667 } 17668 17669 /** 17670 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17671 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17672 * 17673 * This function processes the FC header to retrieve the VFI from the VF 17674 * header, if one exists. This function will return the VFI if one exists 17675 * or 0 if no VSAN Header exists. 17676 **/ 17677 static uint32_t 17678 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17679 { 17680 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17681 17682 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17683 return 0; 17684 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17685 } 17686 17687 /** 17688 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17689 * @phba: Pointer to the HBA structure to search for the vport on 17690 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17691 * @fcfi: The FC Fabric ID that the frame came from 17692 * @did: Destination ID to match against 17693 * 17694 * This function searches the @phba for a vport that matches the content of the 17695 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17696 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17697 * returns the matching vport pointer or NULL if unable to match frame to a 17698 * vport. 17699 **/ 17700 static struct lpfc_vport * 17701 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17702 uint16_t fcfi, uint32_t did) 17703 { 17704 struct lpfc_vport **vports; 17705 struct lpfc_vport *vport = NULL; 17706 int i; 17707 17708 if (did == Fabric_DID) 17709 return phba->pport; 17710 if ((phba->pport->fc_flag & FC_PT2PT) && 17711 !(phba->link_state == LPFC_HBA_READY)) 17712 return phba->pport; 17713 17714 vports = lpfc_create_vport_work_array(phba); 17715 if (vports != NULL) { 17716 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17717 if (phba->fcf.fcfi == fcfi && 17718 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17719 vports[i]->fc_myDID == did) { 17720 vport = vports[i]; 17721 break; 17722 } 17723 } 17724 } 17725 lpfc_destroy_vport_work_array(phba, vports); 17726 return vport; 17727 } 17728 17729 /** 17730 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17731 * @vport: The vport to work on. 17732 * 17733 * This function updates the receive sequence time stamp for this vport. The 17734 * receive sequence time stamp indicates the time that the last frame of the 17735 * the sequence that has been idle for the longest amount of time was received. 17736 * the driver uses this time stamp to indicate if any received sequences have 17737 * timed out. 17738 **/ 17739 static void 17740 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17741 { 17742 struct lpfc_dmabuf *h_buf; 17743 struct hbq_dmabuf *dmabuf = NULL; 17744 17745 /* get the oldest sequence on the rcv list */ 17746 h_buf = list_get_first(&vport->rcv_buffer_list, 17747 struct lpfc_dmabuf, list); 17748 if (!h_buf) 17749 return; 17750 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17751 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17752 } 17753 17754 /** 17755 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17756 * @vport: The vport that the received sequences were sent to. 17757 * 17758 * This function cleans up all outstanding received sequences. This is called 17759 * by the driver when a link event or user action invalidates all the received 17760 * sequences. 17761 **/ 17762 void 17763 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17764 { 17765 struct lpfc_dmabuf *h_buf, *hnext; 17766 struct lpfc_dmabuf *d_buf, *dnext; 17767 struct hbq_dmabuf *dmabuf = NULL; 17768 17769 /* start with the oldest sequence on the rcv list */ 17770 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17771 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17772 list_del_init(&dmabuf->hbuf.list); 17773 list_for_each_entry_safe(d_buf, dnext, 17774 &dmabuf->dbuf.list, list) { 17775 list_del_init(&d_buf->list); 17776 lpfc_in_buf_free(vport->phba, d_buf); 17777 } 17778 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17779 } 17780 } 17781 17782 /** 17783 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17784 * @vport: The vport that the received sequences were sent to. 17785 * 17786 * This function determines whether any received sequences have timed out by 17787 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17788 * indicates that there is at least one timed out sequence this routine will 17789 * go through the received sequences one at a time from most inactive to most 17790 * active to determine which ones need to be cleaned up. Once it has determined 17791 * that a sequence needs to be cleaned up it will simply free up the resources 17792 * without sending an abort. 17793 **/ 17794 void 17795 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17796 { 17797 struct lpfc_dmabuf *h_buf, *hnext; 17798 struct lpfc_dmabuf *d_buf, *dnext; 17799 struct hbq_dmabuf *dmabuf = NULL; 17800 unsigned long timeout; 17801 int abort_count = 0; 17802 17803 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17804 vport->rcv_buffer_time_stamp); 17805 if (list_empty(&vport->rcv_buffer_list) || 17806 time_before(jiffies, timeout)) 17807 return; 17808 /* start with the oldest sequence on the rcv list */ 17809 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17810 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17811 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17812 dmabuf->time_stamp); 17813 if (time_before(jiffies, timeout)) 17814 break; 17815 abort_count++; 17816 list_del_init(&dmabuf->hbuf.list); 17817 list_for_each_entry_safe(d_buf, dnext, 17818 &dmabuf->dbuf.list, list) { 17819 list_del_init(&d_buf->list); 17820 lpfc_in_buf_free(vport->phba, d_buf); 17821 } 17822 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17823 } 17824 if (abort_count) 17825 lpfc_update_rcv_time_stamp(vport); 17826 } 17827 17828 /** 17829 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17830 * @vport: pointer to a vitural port 17831 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17832 * 17833 * This function searches through the existing incomplete sequences that have 17834 * been sent to this @vport. If the frame matches one of the incomplete 17835 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17836 * make up that sequence. If no sequence is found that matches this frame then 17837 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17838 * This function returns a pointer to the first dmabuf in the sequence list that 17839 * the frame was linked to. 17840 **/ 17841 static struct hbq_dmabuf * 17842 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17843 { 17844 struct fc_frame_header *new_hdr; 17845 struct fc_frame_header *temp_hdr; 17846 struct lpfc_dmabuf *d_buf; 17847 struct lpfc_dmabuf *h_buf; 17848 struct hbq_dmabuf *seq_dmabuf = NULL; 17849 struct hbq_dmabuf *temp_dmabuf = NULL; 17850 uint8_t found = 0; 17851 17852 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17853 dmabuf->time_stamp = jiffies; 17854 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17855 17856 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17857 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17858 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17859 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17860 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17861 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17862 continue; 17863 /* found a pending sequence that matches this frame */ 17864 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17865 break; 17866 } 17867 if (!seq_dmabuf) { 17868 /* 17869 * This indicates first frame received for this sequence. 17870 * Queue the buffer on the vport's rcv_buffer_list. 17871 */ 17872 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17873 lpfc_update_rcv_time_stamp(vport); 17874 return dmabuf; 17875 } 17876 temp_hdr = seq_dmabuf->hbuf.virt; 17877 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17878 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17879 list_del_init(&seq_dmabuf->hbuf.list); 17880 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17881 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17882 lpfc_update_rcv_time_stamp(vport); 17883 return dmabuf; 17884 } 17885 /* move this sequence to the tail to indicate a young sequence */ 17886 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17887 seq_dmabuf->time_stamp = jiffies; 17888 lpfc_update_rcv_time_stamp(vport); 17889 if (list_empty(&seq_dmabuf->dbuf.list)) { 17890 temp_hdr = dmabuf->hbuf.virt; 17891 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17892 return seq_dmabuf; 17893 } 17894 /* find the correct place in the sequence to insert this frame */ 17895 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17896 while (!found) { 17897 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17898 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17899 /* 17900 * If the frame's sequence count is greater than the frame on 17901 * the list then insert the frame right after this frame 17902 */ 17903 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17904 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17905 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17906 found = 1; 17907 break; 17908 } 17909 17910 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17911 break; 17912 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17913 } 17914 17915 if (found) 17916 return seq_dmabuf; 17917 return NULL; 17918 } 17919 17920 /** 17921 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17922 * @vport: pointer to a vitural port 17923 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17924 * 17925 * This function tries to abort from the partially assembed sequence, described 17926 * by the information from basic abbort @dmabuf. It checks to see whether such 17927 * partially assembled sequence held by the driver. If so, it shall free up all 17928 * the frames from the partially assembled sequence. 17929 * 17930 * Return 17931 * true -- if there is matching partially assembled sequence present and all 17932 * the frames freed with the sequence; 17933 * false -- if there is no matching partially assembled sequence present so 17934 * nothing got aborted in the lower layer driver 17935 **/ 17936 static bool 17937 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17938 struct hbq_dmabuf *dmabuf) 17939 { 17940 struct fc_frame_header *new_hdr; 17941 struct fc_frame_header *temp_hdr; 17942 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17943 struct hbq_dmabuf *seq_dmabuf = NULL; 17944 17945 /* Use the hdr_buf to find the sequence that matches this frame */ 17946 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17947 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17948 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17949 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17950 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17951 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17952 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17953 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17954 continue; 17955 /* found a pending sequence that matches this frame */ 17956 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17957 break; 17958 } 17959 17960 /* Free up all the frames from the partially assembled sequence */ 17961 if (seq_dmabuf) { 17962 list_for_each_entry_safe(d_buf, n_buf, 17963 &seq_dmabuf->dbuf.list, list) { 17964 list_del_init(&d_buf->list); 17965 lpfc_in_buf_free(vport->phba, d_buf); 17966 } 17967 return true; 17968 } 17969 return false; 17970 } 17971 17972 /** 17973 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17974 * @vport: pointer to a vitural port 17975 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17976 * 17977 * This function tries to abort from the assembed sequence from upper level 17978 * protocol, described by the information from basic abbort @dmabuf. It 17979 * checks to see whether such pending context exists at upper level protocol. 17980 * If so, it shall clean up the pending context. 17981 * 17982 * Return 17983 * true -- if there is matching pending context of the sequence cleaned 17984 * at ulp; 17985 * false -- if there is no matching pending context of the sequence present 17986 * at ulp. 17987 **/ 17988 static bool 17989 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17990 { 17991 struct lpfc_hba *phba = vport->phba; 17992 int handled; 17993 17994 /* Accepting abort at ulp with SLI4 only */ 17995 if (phba->sli_rev < LPFC_SLI_REV4) 17996 return false; 17997 17998 /* Register all caring upper level protocols to attend abort */ 17999 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18000 if (handled) 18001 return true; 18002 18003 return false; 18004 } 18005 18006 /** 18007 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18008 * @phba: Pointer to HBA context object. 18009 * @cmd_iocbq: pointer to the command iocbq structure. 18010 * @rsp_iocbq: pointer to the response iocbq structure. 18011 * 18012 * This function handles the sequence abort response iocb command complete 18013 * event. It properly releases the memory allocated to the sequence abort 18014 * accept iocb. 18015 **/ 18016 static void 18017 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18018 struct lpfc_iocbq *cmd_iocbq, 18019 struct lpfc_iocbq *rsp_iocbq) 18020 { 18021 struct lpfc_nodelist *ndlp; 18022 18023 if (cmd_iocbq) { 18024 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18025 lpfc_nlp_put(ndlp); 18026 lpfc_nlp_not_used(ndlp); 18027 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18028 } 18029 18030 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18031 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18033 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18034 rsp_iocbq->iocb.ulpStatus, 18035 rsp_iocbq->iocb.un.ulpWord[4]); 18036 } 18037 18038 /** 18039 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18040 * @phba: Pointer to HBA context object. 18041 * @xri: xri id in transaction. 18042 * 18043 * This function validates the xri maps to the known range of XRIs allocated an 18044 * used by the driver. 18045 **/ 18046 uint16_t 18047 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18048 uint16_t xri) 18049 { 18050 uint16_t i; 18051 18052 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18053 if (xri == phba->sli4_hba.xri_ids[i]) 18054 return i; 18055 } 18056 return NO_XRI; 18057 } 18058 18059 /** 18060 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18061 * @vport: pointer to a vitural port. 18062 * @fc_hdr: pointer to a FC frame header. 18063 * @aborted: was the partially assembled receive sequence successfully aborted 18064 * 18065 * This function sends a basic response to a previous unsol sequence abort 18066 * event after aborting the sequence handling. 18067 **/ 18068 void 18069 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18070 struct fc_frame_header *fc_hdr, bool aborted) 18071 { 18072 struct lpfc_hba *phba = vport->phba; 18073 struct lpfc_iocbq *ctiocb = NULL; 18074 struct lpfc_nodelist *ndlp; 18075 uint16_t oxid, rxid, xri, lxri; 18076 uint32_t sid, fctl; 18077 IOCB_t *icmd; 18078 int rc; 18079 18080 if (!lpfc_is_link_up(phba)) 18081 return; 18082 18083 sid = sli4_sid_from_fc_hdr(fc_hdr); 18084 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18085 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18086 18087 ndlp = lpfc_findnode_did(vport, sid); 18088 if (!ndlp) { 18089 ndlp = lpfc_nlp_init(vport, sid); 18090 if (!ndlp) { 18091 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18092 "1268 Failed to allocate ndlp for " 18093 "oxid:x%x SID:x%x\n", oxid, sid); 18094 return; 18095 } 18096 /* Put ndlp onto pport node list */ 18097 lpfc_enqueue_node(vport, ndlp); 18098 } 18099 18100 /* Allocate buffer for rsp iocb */ 18101 ctiocb = lpfc_sli_get_iocbq(phba); 18102 if (!ctiocb) 18103 return; 18104 18105 /* Extract the F_CTL field from FC_HDR */ 18106 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18107 18108 icmd = &ctiocb->iocb; 18109 icmd->un.xseq64.bdl.bdeSize = 0; 18110 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18111 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18112 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18113 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18114 18115 /* Fill in the rest of iocb fields */ 18116 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18117 icmd->ulpBdeCount = 0; 18118 icmd->ulpLe = 1; 18119 icmd->ulpClass = CLASS3; 18120 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18121 ctiocb->context1 = lpfc_nlp_get(ndlp); 18122 if (!ctiocb->context1) { 18123 lpfc_sli_release_iocbq(phba, ctiocb); 18124 return; 18125 } 18126 18127 ctiocb->vport = phba->pport; 18128 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18129 ctiocb->sli4_lxritag = NO_XRI; 18130 ctiocb->sli4_xritag = NO_XRI; 18131 18132 if (fctl & FC_FC_EX_CTX) 18133 /* Exchange responder sent the abort so we 18134 * own the oxid. 18135 */ 18136 xri = oxid; 18137 else 18138 xri = rxid; 18139 lxri = lpfc_sli4_xri_inrange(phba, xri); 18140 if (lxri != NO_XRI) 18141 lpfc_set_rrq_active(phba, ndlp, lxri, 18142 (xri == oxid) ? rxid : oxid, 0); 18143 /* For BA_ABTS from exchange responder, if the logical xri with 18144 * the oxid maps to the FCP XRI range, the port no longer has 18145 * that exchange context, send a BLS_RJT. Override the IOCB for 18146 * a BA_RJT. 18147 */ 18148 if ((fctl & FC_FC_EX_CTX) && 18149 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18150 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18151 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18152 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18153 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18154 } 18155 18156 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18157 * the driver no longer has that exchange, send a BLS_RJT. Override 18158 * the IOCB for a BA_RJT. 18159 */ 18160 if (aborted == false) { 18161 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18162 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18163 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18164 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18165 } 18166 18167 if (fctl & FC_FC_EX_CTX) { 18168 /* ABTS sent by responder to CT exchange, construction 18169 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18170 * field and RX_ID from ABTS for RX_ID field. 18171 */ 18172 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18173 } else { 18174 /* ABTS sent by initiator to CT exchange, construction 18175 * of BA_ACC will need to allocate a new XRI as for the 18176 * XRI_TAG field. 18177 */ 18178 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18179 } 18180 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18181 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18182 18183 /* Xmit CT abts response on exchange <xid> */ 18184 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18185 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18186 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18187 18188 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18189 if (rc == IOCB_ERROR) { 18190 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18191 "2925 Failed to issue CT ABTS RSP x%x on " 18192 "xri x%x, Data x%x\n", 18193 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18194 phba->link_state); 18195 lpfc_nlp_put(ndlp); 18196 ctiocb->context1 = NULL; 18197 lpfc_sli_release_iocbq(phba, ctiocb); 18198 } 18199 } 18200 18201 /** 18202 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18203 * @vport: Pointer to the vport on which this sequence was received 18204 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18205 * 18206 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18207 * receive sequence is only partially assembed by the driver, it shall abort 18208 * the partially assembled frames for the sequence. Otherwise, if the 18209 * unsolicited receive sequence has been completely assembled and passed to 18210 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18211 * unsolicited sequence has been aborted. After that, it will issue a basic 18212 * accept to accept the abort. 18213 **/ 18214 static void 18215 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18216 struct hbq_dmabuf *dmabuf) 18217 { 18218 struct lpfc_hba *phba = vport->phba; 18219 struct fc_frame_header fc_hdr; 18220 uint32_t fctl; 18221 bool aborted; 18222 18223 /* Make a copy of fc_hdr before the dmabuf being released */ 18224 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18225 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18226 18227 if (fctl & FC_FC_EX_CTX) { 18228 /* ABTS by responder to exchange, no cleanup needed */ 18229 aborted = true; 18230 } else { 18231 /* ABTS by initiator to exchange, need to do cleanup */ 18232 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18233 if (aborted == false) 18234 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18235 } 18236 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18237 18238 if (phba->nvmet_support) { 18239 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18240 return; 18241 } 18242 18243 /* Respond with BA_ACC or BA_RJT accordingly */ 18244 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18245 } 18246 18247 /** 18248 * lpfc_seq_complete - Indicates if a sequence is complete 18249 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18250 * 18251 * This function checks the sequence, starting with the frame described by 18252 * @dmabuf, to see if all the frames associated with this sequence are present. 18253 * the frames associated with this sequence are linked to the @dmabuf using the 18254 * dbuf list. This function looks for two major things. 1) That the first frame 18255 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18256 * set. 3) That there are no holes in the sequence count. The function will 18257 * return 1 when the sequence is complete, otherwise it will return 0. 18258 **/ 18259 static int 18260 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18261 { 18262 struct fc_frame_header *hdr; 18263 struct lpfc_dmabuf *d_buf; 18264 struct hbq_dmabuf *seq_dmabuf; 18265 uint32_t fctl; 18266 int seq_count = 0; 18267 18268 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18269 /* make sure first fame of sequence has a sequence count of zero */ 18270 if (hdr->fh_seq_cnt != seq_count) 18271 return 0; 18272 fctl = (hdr->fh_f_ctl[0] << 16 | 18273 hdr->fh_f_ctl[1] << 8 | 18274 hdr->fh_f_ctl[2]); 18275 /* If last frame of sequence we can return success. */ 18276 if (fctl & FC_FC_END_SEQ) 18277 return 1; 18278 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18279 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18280 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18281 /* If there is a hole in the sequence count then fail. */ 18282 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18283 return 0; 18284 fctl = (hdr->fh_f_ctl[0] << 16 | 18285 hdr->fh_f_ctl[1] << 8 | 18286 hdr->fh_f_ctl[2]); 18287 /* If last frame of sequence we can return success. */ 18288 if (fctl & FC_FC_END_SEQ) 18289 return 1; 18290 } 18291 return 0; 18292 } 18293 18294 /** 18295 * lpfc_prep_seq - Prep sequence for ULP processing 18296 * @vport: Pointer to the vport on which this sequence was received 18297 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18298 * 18299 * This function takes a sequence, described by a list of frames, and creates 18300 * a list of iocbq structures to describe the sequence. This iocbq list will be 18301 * used to issue to the generic unsolicited sequence handler. This routine 18302 * returns a pointer to the first iocbq in the list. If the function is unable 18303 * to allocate an iocbq then it throw out the received frames that were not 18304 * able to be described and return a pointer to the first iocbq. If unable to 18305 * allocate any iocbqs (including the first) this function will return NULL. 18306 **/ 18307 static struct lpfc_iocbq * 18308 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18309 { 18310 struct hbq_dmabuf *hbq_buf; 18311 struct lpfc_dmabuf *d_buf, *n_buf; 18312 struct lpfc_iocbq *first_iocbq, *iocbq; 18313 struct fc_frame_header *fc_hdr; 18314 uint32_t sid; 18315 uint32_t len, tot_len; 18316 struct ulp_bde64 *pbde; 18317 18318 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18319 /* remove from receive buffer list */ 18320 list_del_init(&seq_dmabuf->hbuf.list); 18321 lpfc_update_rcv_time_stamp(vport); 18322 /* get the Remote Port's SID */ 18323 sid = sli4_sid_from_fc_hdr(fc_hdr); 18324 tot_len = 0; 18325 /* Get an iocbq struct to fill in. */ 18326 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18327 if (first_iocbq) { 18328 /* Initialize the first IOCB. */ 18329 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18330 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18331 first_iocbq->vport = vport; 18332 18333 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18334 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18335 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18336 first_iocbq->iocb.un.rcvels.parmRo = 18337 sli4_did_from_fc_hdr(fc_hdr); 18338 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18339 } else 18340 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18341 first_iocbq->iocb.ulpContext = NO_XRI; 18342 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18343 be16_to_cpu(fc_hdr->fh_ox_id); 18344 /* iocbq is prepped for internal consumption. Physical vpi. */ 18345 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18346 vport->phba->vpi_ids[vport->vpi]; 18347 /* put the first buffer into the first IOCBq */ 18348 tot_len = bf_get(lpfc_rcqe_length, 18349 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18350 18351 first_iocbq->context2 = &seq_dmabuf->dbuf; 18352 first_iocbq->context3 = NULL; 18353 first_iocbq->iocb.ulpBdeCount = 1; 18354 if (tot_len > LPFC_DATA_BUF_SIZE) 18355 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18356 LPFC_DATA_BUF_SIZE; 18357 else 18358 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18359 18360 first_iocbq->iocb.un.rcvels.remoteID = sid; 18361 18362 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18363 } 18364 iocbq = first_iocbq; 18365 /* 18366 * Each IOCBq can have two Buffers assigned, so go through the list 18367 * of buffers for this sequence and save two buffers in each IOCBq 18368 */ 18369 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18370 if (!iocbq) { 18371 lpfc_in_buf_free(vport->phba, d_buf); 18372 continue; 18373 } 18374 if (!iocbq->context3) { 18375 iocbq->context3 = d_buf; 18376 iocbq->iocb.ulpBdeCount++; 18377 /* We need to get the size out of the right CQE */ 18378 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18379 len = bf_get(lpfc_rcqe_length, 18380 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18381 pbde = (struct ulp_bde64 *) 18382 &iocbq->iocb.unsli3.sli3Words[4]; 18383 if (len > LPFC_DATA_BUF_SIZE) 18384 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18385 else 18386 pbde->tus.f.bdeSize = len; 18387 18388 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18389 tot_len += len; 18390 } else { 18391 iocbq = lpfc_sli_get_iocbq(vport->phba); 18392 if (!iocbq) { 18393 if (first_iocbq) { 18394 first_iocbq->iocb.ulpStatus = 18395 IOSTAT_FCP_RSP_ERROR; 18396 first_iocbq->iocb.un.ulpWord[4] = 18397 IOERR_NO_RESOURCES; 18398 } 18399 lpfc_in_buf_free(vport->phba, d_buf); 18400 continue; 18401 } 18402 /* We need to get the size out of the right CQE */ 18403 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18404 len = bf_get(lpfc_rcqe_length, 18405 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18406 iocbq->context2 = d_buf; 18407 iocbq->context3 = NULL; 18408 iocbq->iocb.ulpBdeCount = 1; 18409 if (len > LPFC_DATA_BUF_SIZE) 18410 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18411 LPFC_DATA_BUF_SIZE; 18412 else 18413 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18414 18415 tot_len += len; 18416 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18417 18418 iocbq->iocb.un.rcvels.remoteID = sid; 18419 list_add_tail(&iocbq->list, &first_iocbq->list); 18420 } 18421 } 18422 /* Free the sequence's header buffer */ 18423 if (!first_iocbq) 18424 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18425 18426 return first_iocbq; 18427 } 18428 18429 static void 18430 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18431 struct hbq_dmabuf *seq_dmabuf) 18432 { 18433 struct fc_frame_header *fc_hdr; 18434 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18435 struct lpfc_hba *phba = vport->phba; 18436 18437 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18438 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18439 if (!iocbq) { 18440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18441 "2707 Ring %d handler: Failed to allocate " 18442 "iocb Rctl x%x Type x%x received\n", 18443 LPFC_ELS_RING, 18444 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18445 return; 18446 } 18447 if (!lpfc_complete_unsol_iocb(phba, 18448 phba->sli4_hba.els_wq->pring, 18449 iocbq, fc_hdr->fh_r_ctl, 18450 fc_hdr->fh_type)) 18451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18452 "2540 Ring %d handler: unexpected Rctl " 18453 "x%x Type x%x received\n", 18454 LPFC_ELS_RING, 18455 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18456 18457 /* Free iocb created in lpfc_prep_seq */ 18458 list_for_each_entry_safe(curr_iocb, next_iocb, 18459 &iocbq->list, list) { 18460 list_del_init(&curr_iocb->list); 18461 lpfc_sli_release_iocbq(phba, curr_iocb); 18462 } 18463 lpfc_sli_release_iocbq(phba, iocbq); 18464 } 18465 18466 static void 18467 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18468 struct lpfc_iocbq *rspiocb) 18469 { 18470 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18471 18472 if (pcmd && pcmd->virt) 18473 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18474 kfree(pcmd); 18475 lpfc_sli_release_iocbq(phba, cmdiocb); 18476 lpfc_drain_txq(phba); 18477 } 18478 18479 static void 18480 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18481 struct hbq_dmabuf *dmabuf) 18482 { 18483 struct fc_frame_header *fc_hdr; 18484 struct lpfc_hba *phba = vport->phba; 18485 struct lpfc_iocbq *iocbq = NULL; 18486 union lpfc_wqe *wqe; 18487 struct lpfc_dmabuf *pcmd = NULL; 18488 uint32_t frame_len; 18489 int rc; 18490 unsigned long iflags; 18491 18492 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18493 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18494 18495 /* Send the received frame back */ 18496 iocbq = lpfc_sli_get_iocbq(phba); 18497 if (!iocbq) { 18498 /* Queue cq event and wakeup worker thread to process it */ 18499 spin_lock_irqsave(&phba->hbalock, iflags); 18500 list_add_tail(&dmabuf->cq_event.list, 18501 &phba->sli4_hba.sp_queue_event); 18502 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18503 spin_unlock_irqrestore(&phba->hbalock, iflags); 18504 lpfc_worker_wake_up(phba); 18505 return; 18506 } 18507 18508 /* Allocate buffer for command payload */ 18509 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18510 if (pcmd) 18511 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18512 &pcmd->phys); 18513 if (!pcmd || !pcmd->virt) 18514 goto exit; 18515 18516 INIT_LIST_HEAD(&pcmd->list); 18517 18518 /* copyin the payload */ 18519 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18520 18521 /* fill in BDE's for command */ 18522 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18523 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18524 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18525 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18526 18527 iocbq->context2 = pcmd; 18528 iocbq->vport = vport; 18529 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18530 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18531 18532 /* 18533 * Setup rest of the iocb as though it were a WQE 18534 * Build the SEND_FRAME WQE 18535 */ 18536 wqe = (union lpfc_wqe *)&iocbq->iocb; 18537 18538 wqe->send_frame.frame_len = frame_len; 18539 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18540 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18541 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18542 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18543 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18544 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18545 18546 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18547 iocbq->iocb.ulpLe = 1; 18548 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18549 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18550 if (rc == IOCB_ERROR) 18551 goto exit; 18552 18553 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18554 return; 18555 18556 exit: 18557 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18558 "2023 Unable to process MDS loopback frame\n"); 18559 if (pcmd && pcmd->virt) 18560 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18561 kfree(pcmd); 18562 if (iocbq) 18563 lpfc_sli_release_iocbq(phba, iocbq); 18564 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18565 } 18566 18567 /** 18568 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18569 * @phba: Pointer to HBA context object. 18570 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18571 * 18572 * This function is called with no lock held. This function processes all 18573 * the received buffers and gives it to upper layers when a received buffer 18574 * indicates that it is the final frame in the sequence. The interrupt 18575 * service routine processes received buffers at interrupt contexts. 18576 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18577 * appropriate receive function when the final frame in a sequence is received. 18578 **/ 18579 void 18580 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18581 struct hbq_dmabuf *dmabuf) 18582 { 18583 struct hbq_dmabuf *seq_dmabuf; 18584 struct fc_frame_header *fc_hdr; 18585 struct lpfc_vport *vport; 18586 uint32_t fcfi; 18587 uint32_t did; 18588 18589 /* Process each received buffer */ 18590 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18591 18592 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18593 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18594 vport = phba->pport; 18595 /* Handle MDS Loopback frames */ 18596 if (!(phba->pport->load_flag & FC_UNLOADING)) 18597 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18598 else 18599 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18600 return; 18601 } 18602 18603 /* check to see if this a valid type of frame */ 18604 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18605 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18606 return; 18607 } 18608 18609 if ((bf_get(lpfc_cqe_code, 18610 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18611 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18612 &dmabuf->cq_event.cqe.rcqe_cmpl); 18613 else 18614 fcfi = bf_get(lpfc_rcqe_fcf_id, 18615 &dmabuf->cq_event.cqe.rcqe_cmpl); 18616 18617 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18618 vport = phba->pport; 18619 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18620 "2023 MDS Loopback %d bytes\n", 18621 bf_get(lpfc_rcqe_length, 18622 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18623 /* Handle MDS Loopback frames */ 18624 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18625 return; 18626 } 18627 18628 /* d_id this frame is directed to */ 18629 did = sli4_did_from_fc_hdr(fc_hdr); 18630 18631 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18632 if (!vport) { 18633 /* throw out the frame */ 18634 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18635 return; 18636 } 18637 18638 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18639 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18640 (did != Fabric_DID)) { 18641 /* 18642 * Throw out the frame if we are not pt2pt. 18643 * The pt2pt protocol allows for discovery frames 18644 * to be received without a registered VPI. 18645 */ 18646 if (!(vport->fc_flag & FC_PT2PT) || 18647 (phba->link_state == LPFC_HBA_READY)) { 18648 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18649 return; 18650 } 18651 } 18652 18653 /* Handle the basic abort sequence (BA_ABTS) event */ 18654 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18655 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18656 return; 18657 } 18658 18659 /* Link this frame */ 18660 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18661 if (!seq_dmabuf) { 18662 /* unable to add frame to vport - throw it out */ 18663 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18664 return; 18665 } 18666 /* If not last frame in sequence continue processing frames. */ 18667 if (!lpfc_seq_complete(seq_dmabuf)) 18668 return; 18669 18670 /* Send the complete sequence to the upper layer protocol */ 18671 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18672 } 18673 18674 /** 18675 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18676 * @phba: pointer to lpfc hba data structure. 18677 * 18678 * This routine is invoked to post rpi header templates to the 18679 * HBA consistent with the SLI-4 interface spec. This routine 18680 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18681 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18682 * 18683 * This routine does not require any locks. It's usage is expected 18684 * to be driver load or reset recovery when the driver is 18685 * sequential. 18686 * 18687 * Return codes 18688 * 0 - successful 18689 * -EIO - The mailbox failed to complete successfully. 18690 * When this error occurs, the driver is not guaranteed 18691 * to have any rpi regions posted to the device and 18692 * must either attempt to repost the regions or take a 18693 * fatal error. 18694 **/ 18695 int 18696 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18697 { 18698 struct lpfc_rpi_hdr *rpi_page; 18699 uint32_t rc = 0; 18700 uint16_t lrpi = 0; 18701 18702 /* SLI4 ports that support extents do not require RPI headers. */ 18703 if (!phba->sli4_hba.rpi_hdrs_in_use) 18704 goto exit; 18705 if (phba->sli4_hba.extents_in_use) 18706 return -EIO; 18707 18708 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18709 /* 18710 * Assign the rpi headers a physical rpi only if the driver 18711 * has not initialized those resources. A port reset only 18712 * needs the headers posted. 18713 */ 18714 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18715 LPFC_RPI_RSRC_RDY) 18716 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18717 18718 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18719 if (rc != MBX_SUCCESS) { 18720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18721 "2008 Error %d posting all rpi " 18722 "headers\n", rc); 18723 rc = -EIO; 18724 break; 18725 } 18726 } 18727 18728 exit: 18729 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18730 LPFC_RPI_RSRC_RDY); 18731 return rc; 18732 } 18733 18734 /** 18735 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18736 * @phba: pointer to lpfc hba data structure. 18737 * @rpi_page: pointer to the rpi memory region. 18738 * 18739 * This routine is invoked to post a single rpi header to the 18740 * HBA consistent with the SLI-4 interface spec. This memory region 18741 * maps up to 64 rpi context regions. 18742 * 18743 * Return codes 18744 * 0 - successful 18745 * -ENOMEM - No available memory 18746 * -EIO - The mailbox failed to complete successfully. 18747 **/ 18748 int 18749 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18750 { 18751 LPFC_MBOXQ_t *mboxq; 18752 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18753 uint32_t rc = 0; 18754 uint32_t shdr_status, shdr_add_status; 18755 union lpfc_sli4_cfg_shdr *shdr; 18756 18757 /* SLI4 ports that support extents do not require RPI headers. */ 18758 if (!phba->sli4_hba.rpi_hdrs_in_use) 18759 return rc; 18760 if (phba->sli4_hba.extents_in_use) 18761 return -EIO; 18762 18763 /* The port is notified of the header region via a mailbox command. */ 18764 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18765 if (!mboxq) { 18766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18767 "2001 Unable to allocate memory for issuing " 18768 "SLI_CONFIG_SPECIAL mailbox command\n"); 18769 return -ENOMEM; 18770 } 18771 18772 /* Post all rpi memory regions to the port. */ 18773 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18774 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18775 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18776 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18777 sizeof(struct lpfc_sli4_cfg_mhdr), 18778 LPFC_SLI4_MBX_EMBED); 18779 18780 18781 /* Post the physical rpi to the port for this rpi header. */ 18782 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18783 rpi_page->start_rpi); 18784 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18785 hdr_tmpl, rpi_page->page_count); 18786 18787 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18788 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18789 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18790 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18791 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18792 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18793 if (rc != MBX_TIMEOUT) 18794 mempool_free(mboxq, phba->mbox_mem_pool); 18795 if (shdr_status || shdr_add_status || rc) { 18796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18797 "2514 POST_RPI_HDR mailbox failed with " 18798 "status x%x add_status x%x, mbx status x%x\n", 18799 shdr_status, shdr_add_status, rc); 18800 rc = -ENXIO; 18801 } else { 18802 /* 18803 * The next_rpi stores the next logical module-64 rpi value used 18804 * to post physical rpis in subsequent rpi postings. 18805 */ 18806 spin_lock_irq(&phba->hbalock); 18807 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18808 spin_unlock_irq(&phba->hbalock); 18809 } 18810 return rc; 18811 } 18812 18813 /** 18814 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18815 * @phba: pointer to lpfc hba data structure. 18816 * 18817 * This routine is invoked to post rpi header templates to the 18818 * HBA consistent with the SLI-4 interface spec. This routine 18819 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18820 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18821 * 18822 * Returns 18823 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18824 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18825 **/ 18826 int 18827 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18828 { 18829 unsigned long rpi; 18830 uint16_t max_rpi, rpi_limit; 18831 uint16_t rpi_remaining, lrpi = 0; 18832 struct lpfc_rpi_hdr *rpi_hdr; 18833 unsigned long iflag; 18834 18835 /* 18836 * Fetch the next logical rpi. Because this index is logical, 18837 * the driver starts at 0 each time. 18838 */ 18839 spin_lock_irqsave(&phba->hbalock, iflag); 18840 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18841 rpi_limit = phba->sli4_hba.next_rpi; 18842 18843 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18844 if (rpi >= rpi_limit) 18845 rpi = LPFC_RPI_ALLOC_ERROR; 18846 else { 18847 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18848 phba->sli4_hba.max_cfg_param.rpi_used++; 18849 phba->sli4_hba.rpi_count++; 18850 } 18851 lpfc_printf_log(phba, KERN_INFO, 18852 LOG_NODE | LOG_DISCOVERY, 18853 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18854 (int) rpi, max_rpi, rpi_limit); 18855 18856 /* 18857 * Don't try to allocate more rpi header regions if the device limit 18858 * has been exhausted. 18859 */ 18860 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18861 (phba->sli4_hba.rpi_count >= max_rpi)) { 18862 spin_unlock_irqrestore(&phba->hbalock, iflag); 18863 return rpi; 18864 } 18865 18866 /* 18867 * RPI header postings are not required for SLI4 ports capable of 18868 * extents. 18869 */ 18870 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18871 spin_unlock_irqrestore(&phba->hbalock, iflag); 18872 return rpi; 18873 } 18874 18875 /* 18876 * If the driver is running low on rpi resources, allocate another 18877 * page now. Note that the next_rpi value is used because 18878 * it represents how many are actually in use whereas max_rpi notes 18879 * how many are supported max by the device. 18880 */ 18881 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18882 spin_unlock_irqrestore(&phba->hbalock, iflag); 18883 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18884 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18885 if (!rpi_hdr) { 18886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18887 "2002 Error Could not grow rpi " 18888 "count\n"); 18889 } else { 18890 lrpi = rpi_hdr->start_rpi; 18891 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18892 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18893 } 18894 } 18895 18896 return rpi; 18897 } 18898 18899 /** 18900 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18901 * @phba: pointer to lpfc hba data structure. 18902 * @rpi: rpi to free 18903 * 18904 * This routine is invoked to release an rpi to the pool of 18905 * available rpis maintained by the driver. 18906 **/ 18907 static void 18908 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18909 { 18910 /* 18911 * if the rpi value indicates a prior unreg has already 18912 * been done, skip the unreg. 18913 */ 18914 if (rpi == LPFC_RPI_ALLOC_ERROR) 18915 return; 18916 18917 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18918 phba->sli4_hba.rpi_count--; 18919 phba->sli4_hba.max_cfg_param.rpi_used--; 18920 } else { 18921 lpfc_printf_log(phba, KERN_INFO, 18922 LOG_NODE | LOG_DISCOVERY, 18923 "2016 rpi %x not inuse\n", 18924 rpi); 18925 } 18926 } 18927 18928 /** 18929 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18930 * @phba: pointer to lpfc hba data structure. 18931 * @rpi: rpi to free 18932 * 18933 * This routine is invoked to release an rpi to the pool of 18934 * available rpis maintained by the driver. 18935 **/ 18936 void 18937 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18938 { 18939 spin_lock_irq(&phba->hbalock); 18940 __lpfc_sli4_free_rpi(phba, rpi); 18941 spin_unlock_irq(&phba->hbalock); 18942 } 18943 18944 /** 18945 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18946 * @phba: pointer to lpfc hba data structure. 18947 * 18948 * This routine is invoked to remove the memory region that 18949 * provided rpi via a bitmask. 18950 **/ 18951 void 18952 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18953 { 18954 kfree(phba->sli4_hba.rpi_bmask); 18955 kfree(phba->sli4_hba.rpi_ids); 18956 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18957 } 18958 18959 /** 18960 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18961 * @ndlp: pointer to lpfc nodelist data structure. 18962 * @cmpl: completion call-back. 18963 * @arg: data to load as MBox 'caller buffer information' 18964 * 18965 * This routine is invoked to remove the memory region that 18966 * provided rpi via a bitmask. 18967 **/ 18968 int 18969 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18970 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18971 { 18972 LPFC_MBOXQ_t *mboxq; 18973 struct lpfc_hba *phba = ndlp->phba; 18974 int rc; 18975 18976 /* The port is notified of the header region via a mailbox command. */ 18977 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18978 if (!mboxq) 18979 return -ENOMEM; 18980 18981 /* Post all rpi memory regions to the port. */ 18982 lpfc_resume_rpi(mboxq, ndlp); 18983 if (cmpl) { 18984 mboxq->mbox_cmpl = cmpl; 18985 mboxq->ctx_buf = arg; 18986 mboxq->ctx_ndlp = ndlp; 18987 } else 18988 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18989 mboxq->vport = ndlp->vport; 18990 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18991 if (rc == MBX_NOT_FINISHED) { 18992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18993 "2010 Resume RPI Mailbox failed " 18994 "status %d, mbxStatus x%x\n", rc, 18995 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18996 mempool_free(mboxq, phba->mbox_mem_pool); 18997 return -EIO; 18998 } 18999 return 0; 19000 } 19001 19002 /** 19003 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19004 * @vport: Pointer to the vport for which the vpi is being initialized 19005 * 19006 * This routine is invoked to activate a vpi with the port. 19007 * 19008 * Returns: 19009 * 0 success 19010 * -Evalue otherwise 19011 **/ 19012 int 19013 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19014 { 19015 LPFC_MBOXQ_t *mboxq; 19016 int rc = 0; 19017 int retval = MBX_SUCCESS; 19018 uint32_t mbox_tmo; 19019 struct lpfc_hba *phba = vport->phba; 19020 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19021 if (!mboxq) 19022 return -ENOMEM; 19023 lpfc_init_vpi(phba, mboxq, vport->vpi); 19024 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19025 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19026 if (rc != MBX_SUCCESS) { 19027 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19028 "2022 INIT VPI Mailbox failed " 19029 "status %d, mbxStatus x%x\n", rc, 19030 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19031 retval = -EIO; 19032 } 19033 if (rc != MBX_TIMEOUT) 19034 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19035 19036 return retval; 19037 } 19038 19039 /** 19040 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19041 * @phba: pointer to lpfc hba data structure. 19042 * @mboxq: Pointer to mailbox object. 19043 * 19044 * This routine is invoked to manually add a single FCF record. The caller 19045 * must pass a completely initialized FCF_Record. This routine takes 19046 * care of the nonembedded mailbox operations. 19047 **/ 19048 static void 19049 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19050 { 19051 void *virt_addr; 19052 union lpfc_sli4_cfg_shdr *shdr; 19053 uint32_t shdr_status, shdr_add_status; 19054 19055 virt_addr = mboxq->sge_array->addr[0]; 19056 /* The IOCTL status is embedded in the mailbox subheader. */ 19057 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19058 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19059 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19060 19061 if ((shdr_status || shdr_add_status) && 19062 (shdr_status != STATUS_FCF_IN_USE)) 19063 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19064 "2558 ADD_FCF_RECORD mailbox failed with " 19065 "status x%x add_status x%x\n", 19066 shdr_status, shdr_add_status); 19067 19068 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19069 } 19070 19071 /** 19072 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19073 * @phba: pointer to lpfc hba data structure. 19074 * @fcf_record: pointer to the initialized fcf record to add. 19075 * 19076 * This routine is invoked to manually add a single FCF record. The caller 19077 * must pass a completely initialized FCF_Record. This routine takes 19078 * care of the nonembedded mailbox operations. 19079 **/ 19080 int 19081 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19082 { 19083 int rc = 0; 19084 LPFC_MBOXQ_t *mboxq; 19085 uint8_t *bytep; 19086 void *virt_addr; 19087 struct lpfc_mbx_sge sge; 19088 uint32_t alloc_len, req_len; 19089 uint32_t fcfindex; 19090 19091 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19092 if (!mboxq) { 19093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19094 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19095 return -ENOMEM; 19096 } 19097 19098 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19099 sizeof(uint32_t); 19100 19101 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19102 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19103 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19104 req_len, LPFC_SLI4_MBX_NEMBED); 19105 if (alloc_len < req_len) { 19106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19107 "2523 Allocated DMA memory size (x%x) is " 19108 "less than the requested DMA memory " 19109 "size (x%x)\n", alloc_len, req_len); 19110 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19111 return -ENOMEM; 19112 } 19113 19114 /* 19115 * Get the first SGE entry from the non-embedded DMA memory. This 19116 * routine only uses a single SGE. 19117 */ 19118 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19119 virt_addr = mboxq->sge_array->addr[0]; 19120 /* 19121 * Configure the FCF record for FCFI 0. This is the driver's 19122 * hardcoded default and gets used in nonFIP mode. 19123 */ 19124 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19125 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19126 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19127 19128 /* 19129 * Copy the fcf_index and the FCF Record Data. The data starts after 19130 * the FCoE header plus word10. The data copy needs to be endian 19131 * correct. 19132 */ 19133 bytep += sizeof(uint32_t); 19134 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19135 mboxq->vport = phba->pport; 19136 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19137 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19138 if (rc == MBX_NOT_FINISHED) { 19139 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19140 "2515 ADD_FCF_RECORD mailbox failed with " 19141 "status 0x%x\n", rc); 19142 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19143 rc = -EIO; 19144 } else 19145 rc = 0; 19146 19147 return rc; 19148 } 19149 19150 /** 19151 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19152 * @phba: pointer to lpfc hba data structure. 19153 * @fcf_record: pointer to the fcf record to write the default data. 19154 * @fcf_index: FCF table entry index. 19155 * 19156 * This routine is invoked to build the driver's default FCF record. The 19157 * values used are hardcoded. This routine handles memory initialization. 19158 * 19159 **/ 19160 void 19161 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19162 struct fcf_record *fcf_record, 19163 uint16_t fcf_index) 19164 { 19165 memset(fcf_record, 0, sizeof(struct fcf_record)); 19166 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19167 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19168 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19169 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19170 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19171 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19172 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19173 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19174 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19175 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19176 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19177 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19178 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19179 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19180 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19181 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19182 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19183 /* Set the VLAN bit map */ 19184 if (phba->valid_vlan) { 19185 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19186 = 1 << (phba->vlan_id % 8); 19187 } 19188 } 19189 19190 /** 19191 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19192 * @phba: pointer to lpfc hba data structure. 19193 * @fcf_index: FCF table entry offset. 19194 * 19195 * This routine is invoked to scan the entire FCF table by reading FCF 19196 * record and processing it one at a time starting from the @fcf_index 19197 * for initial FCF discovery or fast FCF failover rediscovery. 19198 * 19199 * Return 0 if the mailbox command is submitted successfully, none 0 19200 * otherwise. 19201 **/ 19202 int 19203 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19204 { 19205 int rc = 0, error; 19206 LPFC_MBOXQ_t *mboxq; 19207 19208 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19209 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19210 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19211 if (!mboxq) { 19212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19213 "2000 Failed to allocate mbox for " 19214 "READ_FCF cmd\n"); 19215 error = -ENOMEM; 19216 goto fail_fcf_scan; 19217 } 19218 /* Construct the read FCF record mailbox command */ 19219 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19220 if (rc) { 19221 error = -EINVAL; 19222 goto fail_fcf_scan; 19223 } 19224 /* Issue the mailbox command asynchronously */ 19225 mboxq->vport = phba->pport; 19226 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19227 19228 spin_lock_irq(&phba->hbalock); 19229 phba->hba_flag |= FCF_TS_INPROG; 19230 spin_unlock_irq(&phba->hbalock); 19231 19232 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19233 if (rc == MBX_NOT_FINISHED) 19234 error = -EIO; 19235 else { 19236 /* Reset eligible FCF count for new scan */ 19237 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19238 phba->fcf.eligible_fcf_cnt = 0; 19239 error = 0; 19240 } 19241 fail_fcf_scan: 19242 if (error) { 19243 if (mboxq) 19244 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19245 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19246 spin_lock_irq(&phba->hbalock); 19247 phba->hba_flag &= ~FCF_TS_INPROG; 19248 spin_unlock_irq(&phba->hbalock); 19249 } 19250 return error; 19251 } 19252 19253 /** 19254 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19255 * @phba: pointer to lpfc hba data structure. 19256 * @fcf_index: FCF table entry offset. 19257 * 19258 * This routine is invoked to read an FCF record indicated by @fcf_index 19259 * and to use it for FLOGI roundrobin FCF failover. 19260 * 19261 * Return 0 if the mailbox command is submitted successfully, none 0 19262 * otherwise. 19263 **/ 19264 int 19265 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19266 { 19267 int rc = 0, error; 19268 LPFC_MBOXQ_t *mboxq; 19269 19270 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19271 if (!mboxq) { 19272 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19273 "2763 Failed to allocate mbox for " 19274 "READ_FCF cmd\n"); 19275 error = -ENOMEM; 19276 goto fail_fcf_read; 19277 } 19278 /* Construct the read FCF record mailbox command */ 19279 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19280 if (rc) { 19281 error = -EINVAL; 19282 goto fail_fcf_read; 19283 } 19284 /* Issue the mailbox command asynchronously */ 19285 mboxq->vport = phba->pport; 19286 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19287 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19288 if (rc == MBX_NOT_FINISHED) 19289 error = -EIO; 19290 else 19291 error = 0; 19292 19293 fail_fcf_read: 19294 if (error && mboxq) 19295 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19296 return error; 19297 } 19298 19299 /** 19300 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19301 * @phba: pointer to lpfc hba data structure. 19302 * @fcf_index: FCF table entry offset. 19303 * 19304 * This routine is invoked to read an FCF record indicated by @fcf_index to 19305 * determine whether it's eligible for FLOGI roundrobin failover list. 19306 * 19307 * Return 0 if the mailbox command is submitted successfully, none 0 19308 * otherwise. 19309 **/ 19310 int 19311 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19312 { 19313 int rc = 0, error; 19314 LPFC_MBOXQ_t *mboxq; 19315 19316 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19317 if (!mboxq) { 19318 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19319 "2758 Failed to allocate mbox for " 19320 "READ_FCF cmd\n"); 19321 error = -ENOMEM; 19322 goto fail_fcf_read; 19323 } 19324 /* Construct the read FCF record mailbox command */ 19325 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19326 if (rc) { 19327 error = -EINVAL; 19328 goto fail_fcf_read; 19329 } 19330 /* Issue the mailbox command asynchronously */ 19331 mboxq->vport = phba->pport; 19332 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19333 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19334 if (rc == MBX_NOT_FINISHED) 19335 error = -EIO; 19336 else 19337 error = 0; 19338 19339 fail_fcf_read: 19340 if (error && mboxq) 19341 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19342 return error; 19343 } 19344 19345 /** 19346 * lpfc_check_next_fcf_pri_level 19347 * @phba: pointer to the lpfc_hba struct for this port. 19348 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19349 * routine when the rr_bmask is empty. The FCF indecies are put into the 19350 * rr_bmask based on their priority level. Starting from the highest priority 19351 * to the lowest. The most likely FCF candidate will be in the highest 19352 * priority group. When this routine is called it searches the fcf_pri list for 19353 * next lowest priority group and repopulates the rr_bmask with only those 19354 * fcf_indexes. 19355 * returns: 19356 * 1=success 0=failure 19357 **/ 19358 static int 19359 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19360 { 19361 uint16_t next_fcf_pri; 19362 uint16_t last_index; 19363 struct lpfc_fcf_pri *fcf_pri; 19364 int rc; 19365 int ret = 0; 19366 19367 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19368 LPFC_SLI4_FCF_TBL_INDX_MAX); 19369 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19370 "3060 Last IDX %d\n", last_index); 19371 19372 /* Verify the priority list has 2 or more entries */ 19373 spin_lock_irq(&phba->hbalock); 19374 if (list_empty(&phba->fcf.fcf_pri_list) || 19375 list_is_singular(&phba->fcf.fcf_pri_list)) { 19376 spin_unlock_irq(&phba->hbalock); 19377 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19378 "3061 Last IDX %d\n", last_index); 19379 return 0; /* Empty rr list */ 19380 } 19381 spin_unlock_irq(&phba->hbalock); 19382 19383 next_fcf_pri = 0; 19384 /* 19385 * Clear the rr_bmask and set all of the bits that are at this 19386 * priority. 19387 */ 19388 memset(phba->fcf.fcf_rr_bmask, 0, 19389 sizeof(*phba->fcf.fcf_rr_bmask)); 19390 spin_lock_irq(&phba->hbalock); 19391 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19392 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19393 continue; 19394 /* 19395 * the 1st priority that has not FLOGI failed 19396 * will be the highest. 19397 */ 19398 if (!next_fcf_pri) 19399 next_fcf_pri = fcf_pri->fcf_rec.priority; 19400 spin_unlock_irq(&phba->hbalock); 19401 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19402 rc = lpfc_sli4_fcf_rr_index_set(phba, 19403 fcf_pri->fcf_rec.fcf_index); 19404 if (rc) 19405 return 0; 19406 } 19407 spin_lock_irq(&phba->hbalock); 19408 } 19409 /* 19410 * if next_fcf_pri was not set above and the list is not empty then 19411 * we have failed flogis on all of them. So reset flogi failed 19412 * and start at the beginning. 19413 */ 19414 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19415 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19416 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19417 /* 19418 * the 1st priority that has not FLOGI failed 19419 * will be the highest. 19420 */ 19421 if (!next_fcf_pri) 19422 next_fcf_pri = fcf_pri->fcf_rec.priority; 19423 spin_unlock_irq(&phba->hbalock); 19424 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19425 rc = lpfc_sli4_fcf_rr_index_set(phba, 19426 fcf_pri->fcf_rec.fcf_index); 19427 if (rc) 19428 return 0; 19429 } 19430 spin_lock_irq(&phba->hbalock); 19431 } 19432 } else 19433 ret = 1; 19434 spin_unlock_irq(&phba->hbalock); 19435 19436 return ret; 19437 } 19438 /** 19439 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19440 * @phba: pointer to lpfc hba data structure. 19441 * 19442 * This routine is to get the next eligible FCF record index in a round 19443 * robin fashion. If the next eligible FCF record index equals to the 19444 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19445 * shall be returned, otherwise, the next eligible FCF record's index 19446 * shall be returned. 19447 **/ 19448 uint16_t 19449 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19450 { 19451 uint16_t next_fcf_index; 19452 19453 initial_priority: 19454 /* Search start from next bit of currently registered FCF index */ 19455 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19456 19457 next_priority: 19458 /* Determine the next fcf index to check */ 19459 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19460 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19461 LPFC_SLI4_FCF_TBL_INDX_MAX, 19462 next_fcf_index); 19463 19464 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19465 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19466 /* 19467 * If we have wrapped then we need to clear the bits that 19468 * have been tested so that we can detect when we should 19469 * change the priority level. 19470 */ 19471 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19472 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19473 } 19474 19475 19476 /* Check roundrobin failover list empty condition */ 19477 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19478 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19479 /* 19480 * If next fcf index is not found check if there are lower 19481 * Priority level fcf's in the fcf_priority list. 19482 * Set up the rr_bmask with all of the avaiable fcf bits 19483 * at that level and continue the selection process. 19484 */ 19485 if (lpfc_check_next_fcf_pri_level(phba)) 19486 goto initial_priority; 19487 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19488 "2844 No roundrobin failover FCF available\n"); 19489 19490 return LPFC_FCOE_FCF_NEXT_NONE; 19491 } 19492 19493 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19494 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19495 LPFC_FCF_FLOGI_FAILED) { 19496 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19497 return LPFC_FCOE_FCF_NEXT_NONE; 19498 19499 goto next_priority; 19500 } 19501 19502 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19503 "2845 Get next roundrobin failover FCF (x%x)\n", 19504 next_fcf_index); 19505 19506 return next_fcf_index; 19507 } 19508 19509 /** 19510 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19511 * @phba: pointer to lpfc hba data structure. 19512 * @fcf_index: index into the FCF table to 'set' 19513 * 19514 * This routine sets the FCF record index in to the eligible bmask for 19515 * roundrobin failover search. It checks to make sure that the index 19516 * does not go beyond the range of the driver allocated bmask dimension 19517 * before setting the bit. 19518 * 19519 * Returns 0 if the index bit successfully set, otherwise, it returns 19520 * -EINVAL. 19521 **/ 19522 int 19523 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19524 { 19525 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19526 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19527 "2610 FCF (x%x) reached driver's book " 19528 "keeping dimension:x%x\n", 19529 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19530 return -EINVAL; 19531 } 19532 /* Set the eligible FCF record index bmask */ 19533 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19534 19535 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19536 "2790 Set FCF (x%x) to roundrobin FCF failover " 19537 "bmask\n", fcf_index); 19538 19539 return 0; 19540 } 19541 19542 /** 19543 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19544 * @phba: pointer to lpfc hba data structure. 19545 * @fcf_index: index into the FCF table to 'clear' 19546 * 19547 * This routine clears the FCF record index from the eligible bmask for 19548 * roundrobin failover search. It checks to make sure that the index 19549 * does not go beyond the range of the driver allocated bmask dimension 19550 * before clearing the bit. 19551 **/ 19552 void 19553 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19554 { 19555 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19556 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19557 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19558 "2762 FCF (x%x) reached driver's book " 19559 "keeping dimension:x%x\n", 19560 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19561 return; 19562 } 19563 /* Clear the eligible FCF record index bmask */ 19564 spin_lock_irq(&phba->hbalock); 19565 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19566 list) { 19567 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19568 list_del_init(&fcf_pri->list); 19569 break; 19570 } 19571 } 19572 spin_unlock_irq(&phba->hbalock); 19573 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19574 19575 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19576 "2791 Clear FCF (x%x) from roundrobin failover " 19577 "bmask\n", fcf_index); 19578 } 19579 19580 /** 19581 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19582 * @phba: pointer to lpfc hba data structure. 19583 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19584 * 19585 * This routine is the completion routine for the rediscover FCF table mailbox 19586 * command. If the mailbox command returned failure, it will try to stop the 19587 * FCF rediscover wait timer. 19588 **/ 19589 static void 19590 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19591 { 19592 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19593 uint32_t shdr_status, shdr_add_status; 19594 19595 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19596 19597 shdr_status = bf_get(lpfc_mbox_hdr_status, 19598 &redisc_fcf->header.cfg_shdr.response); 19599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19600 &redisc_fcf->header.cfg_shdr.response); 19601 if (shdr_status || shdr_add_status) { 19602 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19603 "2746 Requesting for FCF rediscovery failed " 19604 "status x%x add_status x%x\n", 19605 shdr_status, shdr_add_status); 19606 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19607 spin_lock_irq(&phba->hbalock); 19608 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19609 spin_unlock_irq(&phba->hbalock); 19610 /* 19611 * CVL event triggered FCF rediscover request failed, 19612 * last resort to re-try current registered FCF entry. 19613 */ 19614 lpfc_retry_pport_discovery(phba); 19615 } else { 19616 spin_lock_irq(&phba->hbalock); 19617 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19618 spin_unlock_irq(&phba->hbalock); 19619 /* 19620 * DEAD FCF event triggered FCF rediscover request 19621 * failed, last resort to fail over as a link down 19622 * to FCF registration. 19623 */ 19624 lpfc_sli4_fcf_dead_failthrough(phba); 19625 } 19626 } else { 19627 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19628 "2775 Start FCF rediscover quiescent timer\n"); 19629 /* 19630 * Start FCF rediscovery wait timer for pending FCF 19631 * before rescan FCF record table. 19632 */ 19633 lpfc_fcf_redisc_wait_start_timer(phba); 19634 } 19635 19636 mempool_free(mbox, phba->mbox_mem_pool); 19637 } 19638 19639 /** 19640 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19641 * @phba: pointer to lpfc hba data structure. 19642 * 19643 * This routine is invoked to request for rediscovery of the entire FCF table 19644 * by the port. 19645 **/ 19646 int 19647 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19648 { 19649 LPFC_MBOXQ_t *mbox; 19650 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19651 int rc, length; 19652 19653 /* Cancel retry delay timers to all vports before FCF rediscover */ 19654 lpfc_cancel_all_vport_retry_delay_timer(phba); 19655 19656 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19657 if (!mbox) { 19658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19659 "2745 Failed to allocate mbox for " 19660 "requesting FCF rediscover.\n"); 19661 return -ENOMEM; 19662 } 19663 19664 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19665 sizeof(struct lpfc_sli4_cfg_mhdr)); 19666 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19667 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19668 length, LPFC_SLI4_MBX_EMBED); 19669 19670 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19671 /* Set count to 0 for invalidating the entire FCF database */ 19672 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19673 19674 /* Issue the mailbox command asynchronously */ 19675 mbox->vport = phba->pport; 19676 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19677 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19678 19679 if (rc == MBX_NOT_FINISHED) { 19680 mempool_free(mbox, phba->mbox_mem_pool); 19681 return -EIO; 19682 } 19683 return 0; 19684 } 19685 19686 /** 19687 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19688 * @phba: pointer to lpfc hba data structure. 19689 * 19690 * This function is the failover routine as a last resort to the FCF DEAD 19691 * event when driver failed to perform fast FCF failover. 19692 **/ 19693 void 19694 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19695 { 19696 uint32_t link_state; 19697 19698 /* 19699 * Last resort as FCF DEAD event failover will treat this as 19700 * a link down, but save the link state because we don't want 19701 * it to be changed to Link Down unless it is already down. 19702 */ 19703 link_state = phba->link_state; 19704 lpfc_linkdown(phba); 19705 phba->link_state = link_state; 19706 19707 /* Unregister FCF if no devices connected to it */ 19708 lpfc_unregister_unused_fcf(phba); 19709 } 19710 19711 /** 19712 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19713 * @phba: pointer to lpfc hba data structure. 19714 * @rgn23_data: pointer to configure region 23 data. 19715 * 19716 * This function gets SLI3 port configure region 23 data through memory dump 19717 * mailbox command. When it successfully retrieves data, the size of the data 19718 * will be returned, otherwise, 0 will be returned. 19719 **/ 19720 static uint32_t 19721 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19722 { 19723 LPFC_MBOXQ_t *pmb = NULL; 19724 MAILBOX_t *mb; 19725 uint32_t offset = 0; 19726 int i, rc; 19727 19728 if (!rgn23_data) 19729 return 0; 19730 19731 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19732 if (!pmb) { 19733 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19734 "2600 failed to allocate mailbox memory\n"); 19735 return 0; 19736 } 19737 mb = &pmb->u.mb; 19738 19739 do { 19740 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19741 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19742 19743 if (rc != MBX_SUCCESS) { 19744 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19745 "2601 failed to read config " 19746 "region 23, rc 0x%x Status 0x%x\n", 19747 rc, mb->mbxStatus); 19748 mb->un.varDmp.word_cnt = 0; 19749 } 19750 /* 19751 * dump mem may return a zero when finished or we got a 19752 * mailbox error, either way we are done. 19753 */ 19754 if (mb->un.varDmp.word_cnt == 0) 19755 break; 19756 19757 i = mb->un.varDmp.word_cnt * sizeof(uint32_t); 19758 if (offset + i > DMP_RGN23_SIZE) 19759 i = DMP_RGN23_SIZE - offset; 19760 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19761 rgn23_data + offset, i); 19762 offset += i; 19763 } while (offset < DMP_RGN23_SIZE); 19764 19765 mempool_free(pmb, phba->mbox_mem_pool); 19766 return offset; 19767 } 19768 19769 /** 19770 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19771 * @phba: pointer to lpfc hba data structure. 19772 * @rgn23_data: pointer to configure region 23 data. 19773 * 19774 * This function gets SLI4 port configure region 23 data through memory dump 19775 * mailbox command. When it successfully retrieves data, the size of the data 19776 * will be returned, otherwise, 0 will be returned. 19777 **/ 19778 static uint32_t 19779 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19780 { 19781 LPFC_MBOXQ_t *mboxq = NULL; 19782 struct lpfc_dmabuf *mp = NULL; 19783 struct lpfc_mqe *mqe; 19784 uint32_t data_length = 0; 19785 int rc; 19786 19787 if (!rgn23_data) 19788 return 0; 19789 19790 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19791 if (!mboxq) { 19792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19793 "3105 failed to allocate mailbox memory\n"); 19794 return 0; 19795 } 19796 19797 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19798 goto out; 19799 mqe = &mboxq->u.mqe; 19800 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19801 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19802 if (rc) 19803 goto out; 19804 data_length = mqe->un.mb_words[5]; 19805 if (data_length == 0) 19806 goto out; 19807 if (data_length > DMP_RGN23_SIZE) { 19808 data_length = 0; 19809 goto out; 19810 } 19811 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19812 out: 19813 mempool_free(mboxq, phba->mbox_mem_pool); 19814 if (mp) { 19815 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19816 kfree(mp); 19817 } 19818 return data_length; 19819 } 19820 19821 /** 19822 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19823 * @phba: pointer to lpfc hba data structure. 19824 * 19825 * This function read region 23 and parse TLV for port status to 19826 * decide if the user disaled the port. If the TLV indicates the 19827 * port is disabled, the hba_flag is set accordingly. 19828 **/ 19829 void 19830 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19831 { 19832 uint8_t *rgn23_data = NULL; 19833 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19834 uint32_t offset = 0; 19835 19836 /* Get adapter Region 23 data */ 19837 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19838 if (!rgn23_data) 19839 goto out; 19840 19841 if (phba->sli_rev < LPFC_SLI_REV4) 19842 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19843 else { 19844 if_type = bf_get(lpfc_sli_intf_if_type, 19845 &phba->sli4_hba.sli_intf); 19846 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19847 goto out; 19848 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19849 } 19850 19851 if (!data_size) 19852 goto out; 19853 19854 /* Check the region signature first */ 19855 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19857 "2619 Config region 23 has bad signature\n"); 19858 goto out; 19859 } 19860 offset += 4; 19861 19862 /* Check the data structure version */ 19863 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19865 "2620 Config region 23 has bad version\n"); 19866 goto out; 19867 } 19868 offset += 4; 19869 19870 /* Parse TLV entries in the region */ 19871 while (offset < data_size) { 19872 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19873 break; 19874 /* 19875 * If the TLV is not driver specific TLV or driver id is 19876 * not linux driver id, skip the record. 19877 */ 19878 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19879 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19880 (rgn23_data[offset + 3] != 0)) { 19881 offset += rgn23_data[offset + 1] * 4 + 4; 19882 continue; 19883 } 19884 19885 /* Driver found a driver specific TLV in the config region */ 19886 sub_tlv_len = rgn23_data[offset + 1] * 4; 19887 offset += 4; 19888 tlv_offset = 0; 19889 19890 /* 19891 * Search for configured port state sub-TLV. 19892 */ 19893 while ((offset < data_size) && 19894 (tlv_offset < sub_tlv_len)) { 19895 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19896 offset += 4; 19897 tlv_offset += 4; 19898 break; 19899 } 19900 if (rgn23_data[offset] != PORT_STE_TYPE) { 19901 offset += rgn23_data[offset + 1] * 4 + 4; 19902 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19903 continue; 19904 } 19905 19906 /* This HBA contains PORT_STE configured */ 19907 if (!rgn23_data[offset + 2]) 19908 phba->hba_flag |= LINK_DISABLED; 19909 19910 goto out; 19911 } 19912 } 19913 19914 out: 19915 kfree(rgn23_data); 19916 return; 19917 } 19918 19919 /** 19920 * lpfc_wr_object - write an object to the firmware 19921 * @phba: HBA structure that indicates port to create a queue on. 19922 * @dmabuf_list: list of dmabufs to write to the port. 19923 * @size: the total byte value of the objects to write to the port. 19924 * @offset: the current offset to be used to start the transfer. 19925 * 19926 * This routine will create a wr_object mailbox command to send to the port. 19927 * the mailbox command will be constructed using the dma buffers described in 19928 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19929 * BDEs that the imbedded mailbox can support. The @offset variable will be 19930 * used to indicate the starting offset of the transfer and will also return 19931 * the offset after the write object mailbox has completed. @size is used to 19932 * determine the end of the object and whether the eof bit should be set. 19933 * 19934 * Return 0 is successful and offset will contain the the new offset to use 19935 * for the next write. 19936 * Return negative value for error cases. 19937 **/ 19938 int 19939 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19940 uint32_t size, uint32_t *offset) 19941 { 19942 struct lpfc_mbx_wr_object *wr_object; 19943 LPFC_MBOXQ_t *mbox; 19944 int rc = 0, i = 0; 19945 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19946 uint32_t mbox_tmo; 19947 struct lpfc_dmabuf *dmabuf; 19948 uint32_t written = 0; 19949 bool check_change_status = false; 19950 19951 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19952 if (!mbox) 19953 return -ENOMEM; 19954 19955 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19956 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19957 sizeof(struct lpfc_mbx_wr_object) - 19958 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19959 19960 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19961 wr_object->u.request.write_offset = *offset; 19962 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19963 wr_object->u.request.object_name[0] = 19964 cpu_to_le32(wr_object->u.request.object_name[0]); 19965 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19966 list_for_each_entry(dmabuf, dmabuf_list, list) { 19967 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19968 break; 19969 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19970 wr_object->u.request.bde[i].addrHigh = 19971 putPaddrHigh(dmabuf->phys); 19972 if (written + SLI4_PAGE_SIZE >= size) { 19973 wr_object->u.request.bde[i].tus.f.bdeSize = 19974 (size - written); 19975 written += (size - written); 19976 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19977 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19978 check_change_status = true; 19979 } else { 19980 wr_object->u.request.bde[i].tus.f.bdeSize = 19981 SLI4_PAGE_SIZE; 19982 written += SLI4_PAGE_SIZE; 19983 } 19984 i++; 19985 } 19986 wr_object->u.request.bde_count = i; 19987 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19988 if (!phba->sli4_hba.intr_enable) 19989 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19990 else { 19991 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19992 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19993 } 19994 /* The IOCTL status is embedded in the mailbox subheader. */ 19995 shdr_status = bf_get(lpfc_mbox_hdr_status, 19996 &wr_object->header.cfg_shdr.response); 19997 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19998 &wr_object->header.cfg_shdr.response); 19999 if (check_change_status) { 20000 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20001 &wr_object->u.response); 20002 20003 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20004 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20005 shdr_csf = bf_get(lpfc_wr_object_csf, 20006 &wr_object->u.response); 20007 if (shdr_csf) 20008 shdr_change_status = 20009 LPFC_CHANGE_STATUS_PCI_RESET; 20010 } 20011 20012 switch (shdr_change_status) { 20013 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20014 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20015 "3198 Firmware write complete: System " 20016 "reboot required to instantiate\n"); 20017 break; 20018 case (LPFC_CHANGE_STATUS_FW_RESET): 20019 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20020 "3199 Firmware write complete: Firmware" 20021 " reset required to instantiate\n"); 20022 break; 20023 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20024 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20025 "3200 Firmware write complete: Port " 20026 "Migration or PCI Reset required to " 20027 "instantiate\n"); 20028 break; 20029 case (LPFC_CHANGE_STATUS_PCI_RESET): 20030 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20031 "3201 Firmware write complete: PCI " 20032 "Reset required to instantiate\n"); 20033 break; 20034 default: 20035 break; 20036 } 20037 } 20038 if (rc != MBX_TIMEOUT) 20039 mempool_free(mbox, phba->mbox_mem_pool); 20040 if (shdr_status || shdr_add_status || rc) { 20041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20042 "3025 Write Object mailbox failed with " 20043 "status x%x add_status x%x, mbx status x%x\n", 20044 shdr_status, shdr_add_status, rc); 20045 rc = -ENXIO; 20046 *offset = shdr_add_status; 20047 } else 20048 *offset += wr_object->u.response.actual_write_length; 20049 return rc; 20050 } 20051 20052 /** 20053 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20054 * @vport: pointer to vport data structure. 20055 * 20056 * This function iterate through the mailboxq and clean up all REG_LOGIN 20057 * and REG_VPI mailbox commands associated with the vport. This function 20058 * is called when driver want to restart discovery of the vport due to 20059 * a Clear Virtual Link event. 20060 **/ 20061 void 20062 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20063 { 20064 struct lpfc_hba *phba = vport->phba; 20065 LPFC_MBOXQ_t *mb, *nextmb; 20066 struct lpfc_dmabuf *mp; 20067 struct lpfc_nodelist *ndlp; 20068 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20069 LIST_HEAD(mbox_cmd_list); 20070 uint8_t restart_loop; 20071 20072 /* Clean up internally queued mailbox commands with the vport */ 20073 spin_lock_irq(&phba->hbalock); 20074 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20075 if (mb->vport != vport) 20076 continue; 20077 20078 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20079 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20080 continue; 20081 20082 list_del(&mb->list); 20083 list_add_tail(&mb->list, &mbox_cmd_list); 20084 } 20085 /* Clean up active mailbox command with the vport */ 20086 mb = phba->sli.mbox_active; 20087 if (mb && (mb->vport == vport)) { 20088 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20089 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20090 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20091 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20092 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20093 /* Put reference count for delayed processing */ 20094 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20095 /* Unregister the RPI when mailbox complete */ 20096 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20097 } 20098 } 20099 /* Cleanup any mailbox completions which are not yet processed */ 20100 do { 20101 restart_loop = 0; 20102 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20103 /* 20104 * If this mailox is already processed or it is 20105 * for another vport ignore it. 20106 */ 20107 if ((mb->vport != vport) || 20108 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20109 continue; 20110 20111 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20112 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20113 continue; 20114 20115 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20116 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20117 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20118 /* Unregister the RPI when mailbox complete */ 20119 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20120 restart_loop = 1; 20121 spin_unlock_irq(&phba->hbalock); 20122 spin_lock(&ndlp->lock); 20123 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20124 spin_unlock(&ndlp->lock); 20125 spin_lock_irq(&phba->hbalock); 20126 break; 20127 } 20128 } 20129 } while (restart_loop); 20130 20131 spin_unlock_irq(&phba->hbalock); 20132 20133 /* Release the cleaned-up mailbox commands */ 20134 while (!list_empty(&mbox_cmd_list)) { 20135 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20136 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20137 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20138 if (mp) { 20139 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20140 kfree(mp); 20141 } 20142 mb->ctx_buf = NULL; 20143 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20144 mb->ctx_ndlp = NULL; 20145 if (ndlp) { 20146 spin_lock(&ndlp->lock); 20147 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20148 spin_unlock(&ndlp->lock); 20149 lpfc_nlp_put(ndlp); 20150 } 20151 } 20152 mempool_free(mb, phba->mbox_mem_pool); 20153 } 20154 20155 /* Release the ndlp with the cleaned-up active mailbox command */ 20156 if (act_mbx_ndlp) { 20157 spin_lock(&act_mbx_ndlp->lock); 20158 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20159 spin_unlock(&act_mbx_ndlp->lock); 20160 lpfc_nlp_put(act_mbx_ndlp); 20161 } 20162 } 20163 20164 /** 20165 * lpfc_drain_txq - Drain the txq 20166 * @phba: Pointer to HBA context object. 20167 * 20168 * This function attempt to submit IOCBs on the txq 20169 * to the adapter. For SLI4 adapters, the txq contains 20170 * ELS IOCBs that have been deferred because the there 20171 * are no SGLs. This congestion can occur with large 20172 * vport counts during node discovery. 20173 **/ 20174 20175 uint32_t 20176 lpfc_drain_txq(struct lpfc_hba *phba) 20177 { 20178 LIST_HEAD(completions); 20179 struct lpfc_sli_ring *pring; 20180 struct lpfc_iocbq *piocbq = NULL; 20181 unsigned long iflags = 0; 20182 char *fail_msg = NULL; 20183 struct lpfc_sglq *sglq; 20184 union lpfc_wqe128 wqe; 20185 uint32_t txq_cnt = 0; 20186 struct lpfc_queue *wq; 20187 20188 if (phba->link_flag & LS_MDS_LOOPBACK) { 20189 /* MDS WQE are posted only to first WQ*/ 20190 wq = phba->sli4_hba.hdwq[0].io_wq; 20191 if (unlikely(!wq)) 20192 return 0; 20193 pring = wq->pring; 20194 } else { 20195 wq = phba->sli4_hba.els_wq; 20196 if (unlikely(!wq)) 20197 return 0; 20198 pring = lpfc_phba_elsring(phba); 20199 } 20200 20201 if (unlikely(!pring) || list_empty(&pring->txq)) 20202 return 0; 20203 20204 spin_lock_irqsave(&pring->ring_lock, iflags); 20205 list_for_each_entry(piocbq, &pring->txq, list) { 20206 txq_cnt++; 20207 } 20208 20209 if (txq_cnt > pring->txq_max) 20210 pring->txq_max = txq_cnt; 20211 20212 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20213 20214 while (!list_empty(&pring->txq)) { 20215 spin_lock_irqsave(&pring->ring_lock, iflags); 20216 20217 piocbq = lpfc_sli_ringtx_get(phba, pring); 20218 if (!piocbq) { 20219 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20221 "2823 txq empty and txq_cnt is %d\n ", 20222 txq_cnt); 20223 break; 20224 } 20225 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20226 if (!sglq) { 20227 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20228 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20229 break; 20230 } 20231 txq_cnt--; 20232 20233 /* The xri and iocb resources secured, 20234 * attempt to issue request 20235 */ 20236 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20237 piocbq->sli4_xritag = sglq->sli4_xritag; 20238 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20239 fail_msg = "to convert bpl to sgl"; 20240 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20241 fail_msg = "to convert iocb to wqe"; 20242 else if (lpfc_sli4_wq_put(wq, &wqe)) 20243 fail_msg = " - Wq is full"; 20244 else 20245 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20246 20247 if (fail_msg) { 20248 /* Failed means we can't issue and need to cancel */ 20249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20250 "2822 IOCB failed %s iotag 0x%x " 20251 "xri 0x%x\n", 20252 fail_msg, 20253 piocbq->iotag, piocbq->sli4_xritag); 20254 list_add_tail(&piocbq->list, &completions); 20255 } 20256 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20257 } 20258 20259 /* Cancel all the IOCBs that cannot be issued */ 20260 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20261 IOERR_SLI_ABORTED); 20262 20263 return txq_cnt; 20264 } 20265 20266 /** 20267 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20268 * @phba: Pointer to HBA context object. 20269 * @pwqeq: Pointer to command WQE. 20270 * @sglq: Pointer to the scatter gather queue object. 20271 * 20272 * This routine converts the bpl or bde that is in the WQE 20273 * to a sgl list for the sli4 hardware. The physical address 20274 * of the bpl/bde is converted back to a virtual address. 20275 * If the WQE contains a BPL then the list of BDE's is 20276 * converted to sli4_sge's. If the WQE contains a single 20277 * BDE then it is converted to a single sli_sge. 20278 * The WQE is still in cpu endianness so the contents of 20279 * the bpl can be used without byte swapping. 20280 * 20281 * Returns valid XRI = Success, NO_XRI = Failure. 20282 */ 20283 static uint16_t 20284 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20285 struct lpfc_sglq *sglq) 20286 { 20287 uint16_t xritag = NO_XRI; 20288 struct ulp_bde64 *bpl = NULL; 20289 struct ulp_bde64 bde; 20290 struct sli4_sge *sgl = NULL; 20291 struct lpfc_dmabuf *dmabuf; 20292 union lpfc_wqe128 *wqe; 20293 int numBdes = 0; 20294 int i = 0; 20295 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20296 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20297 uint32_t cmd; 20298 20299 if (!pwqeq || !sglq) 20300 return xritag; 20301 20302 sgl = (struct sli4_sge *)sglq->sgl; 20303 wqe = &pwqeq->wqe; 20304 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20305 20306 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20307 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20308 return sglq->sli4_xritag; 20309 numBdes = pwqeq->rsvd2; 20310 if (numBdes) { 20311 /* The addrHigh and addrLow fields within the WQE 20312 * have not been byteswapped yet so there is no 20313 * need to swap them back. 20314 */ 20315 if (pwqeq->context3) 20316 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20317 else 20318 return xritag; 20319 20320 bpl = (struct ulp_bde64 *)dmabuf->virt; 20321 if (!bpl) 20322 return xritag; 20323 20324 for (i = 0; i < numBdes; i++) { 20325 /* Should already be byte swapped. */ 20326 sgl->addr_hi = bpl->addrHigh; 20327 sgl->addr_lo = bpl->addrLow; 20328 20329 sgl->word2 = le32_to_cpu(sgl->word2); 20330 if ((i+1) == numBdes) 20331 bf_set(lpfc_sli4_sge_last, sgl, 1); 20332 else 20333 bf_set(lpfc_sli4_sge_last, sgl, 0); 20334 /* swap the size field back to the cpu so we 20335 * can assign it to the sgl. 20336 */ 20337 bde.tus.w = le32_to_cpu(bpl->tus.w); 20338 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20339 /* The offsets in the sgl need to be accumulated 20340 * separately for the request and reply lists. 20341 * The request is always first, the reply follows. 20342 */ 20343 switch (cmd) { 20344 case CMD_GEN_REQUEST64_WQE: 20345 /* add up the reply sg entries */ 20346 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20347 inbound++; 20348 /* first inbound? reset the offset */ 20349 if (inbound == 1) 20350 offset = 0; 20351 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20352 bf_set(lpfc_sli4_sge_type, sgl, 20353 LPFC_SGE_TYPE_DATA); 20354 offset += bde.tus.f.bdeSize; 20355 break; 20356 case CMD_FCP_TRSP64_WQE: 20357 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20358 bf_set(lpfc_sli4_sge_type, sgl, 20359 LPFC_SGE_TYPE_DATA); 20360 break; 20361 case CMD_FCP_TSEND64_WQE: 20362 case CMD_FCP_TRECEIVE64_WQE: 20363 bf_set(lpfc_sli4_sge_type, sgl, 20364 bpl->tus.f.bdeFlags); 20365 if (i < 3) 20366 offset = 0; 20367 else 20368 offset += bde.tus.f.bdeSize; 20369 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20370 break; 20371 } 20372 sgl->word2 = cpu_to_le32(sgl->word2); 20373 bpl++; 20374 sgl++; 20375 } 20376 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20377 /* The addrHigh and addrLow fields of the BDE have not 20378 * been byteswapped yet so they need to be swapped 20379 * before putting them in the sgl. 20380 */ 20381 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20382 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20383 sgl->word2 = le32_to_cpu(sgl->word2); 20384 bf_set(lpfc_sli4_sge_last, sgl, 1); 20385 sgl->word2 = cpu_to_le32(sgl->word2); 20386 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20387 } 20388 return sglq->sli4_xritag; 20389 } 20390 20391 /** 20392 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20393 * @phba: Pointer to HBA context object. 20394 * @qp: Pointer to HDW queue. 20395 * @pwqe: Pointer to command WQE. 20396 **/ 20397 int 20398 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20399 struct lpfc_iocbq *pwqe) 20400 { 20401 union lpfc_wqe128 *wqe = &pwqe->wqe; 20402 struct lpfc_async_xchg_ctx *ctxp; 20403 struct lpfc_queue *wq; 20404 struct lpfc_sglq *sglq; 20405 struct lpfc_sli_ring *pring; 20406 unsigned long iflags; 20407 uint32_t ret = 0; 20408 20409 /* NVME_LS and NVME_LS ABTS requests. */ 20410 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20411 pring = phba->sli4_hba.nvmels_wq->pring; 20412 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20413 qp, wq_access); 20414 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20415 if (!sglq) { 20416 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20417 return WQE_BUSY; 20418 } 20419 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20420 pwqe->sli4_xritag = sglq->sli4_xritag; 20421 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20422 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20423 return WQE_ERROR; 20424 } 20425 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20426 pwqe->sli4_xritag); 20427 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20428 if (ret) { 20429 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20430 return ret; 20431 } 20432 20433 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20434 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20435 20436 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20437 return 0; 20438 } 20439 20440 /* NVME_FCREQ and NVME_ABTS requests */ 20441 if (pwqe->iocb_flag & LPFC_IO_NVME || 20442 pwqe->iocb_flag & LPFC_IO_FCP) { 20443 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20444 wq = qp->io_wq; 20445 pring = wq->pring; 20446 20447 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20448 20449 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20450 qp, wq_access); 20451 ret = lpfc_sli4_wq_put(wq, wqe); 20452 if (ret) { 20453 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20454 return ret; 20455 } 20456 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20457 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20458 20459 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20460 return 0; 20461 } 20462 20463 /* NVMET requests */ 20464 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20465 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20466 wq = qp->io_wq; 20467 pring = wq->pring; 20468 20469 ctxp = pwqe->context2; 20470 sglq = ctxp->ctxbuf->sglq; 20471 if (pwqe->sli4_xritag == NO_XRI) { 20472 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20473 pwqe->sli4_xritag = sglq->sli4_xritag; 20474 } 20475 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20476 pwqe->sli4_xritag); 20477 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20478 20479 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20480 qp, wq_access); 20481 ret = lpfc_sli4_wq_put(wq, wqe); 20482 if (ret) { 20483 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20484 return ret; 20485 } 20486 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20487 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20488 20489 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20490 return 0; 20491 } 20492 return WQE_ERROR; 20493 } 20494 20495 /** 20496 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20497 * @phba: Pointer to HBA context object. 20498 * @cmdiocb: Pointer to driver command iocb object. 20499 * @cmpl: completion function. 20500 * 20501 * Fill the appropriate fields for the abort WQE and call 20502 * internal routine lpfc_sli4_issue_wqe to send the WQE 20503 * This function is called with hbalock held and no ring_lock held. 20504 * 20505 * RETURNS 0 - SUCCESS 20506 **/ 20507 20508 int 20509 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20510 void *cmpl) 20511 { 20512 struct lpfc_vport *vport = cmdiocb->vport; 20513 struct lpfc_iocbq *abtsiocb = NULL; 20514 union lpfc_wqe128 *abtswqe; 20515 struct lpfc_io_buf *lpfc_cmd; 20516 int retval = IOCB_ERROR; 20517 u16 xritag = cmdiocb->sli4_xritag; 20518 20519 /* 20520 * The scsi command can not be in txq and it is in flight because the 20521 * pCmd is still pointing at the SCSI command we have to abort. There 20522 * is no need to search the txcmplq. Just send an abort to the FW. 20523 */ 20524 20525 abtsiocb = __lpfc_sli_get_iocbq(phba); 20526 if (!abtsiocb) 20527 return WQE_NORESOURCE; 20528 20529 /* Indicate the IO is being aborted by the driver. */ 20530 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20531 20532 abtswqe = &abtsiocb->wqe; 20533 memset(abtswqe, 0, sizeof(*abtswqe)); 20534 20535 if (lpfc_is_link_up(phba)) 20536 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20537 else 20538 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0); 20539 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20540 abtswqe->abort_cmd.rsrvd5 = 0; 20541 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20542 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20543 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20544 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20545 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20546 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20547 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20548 20549 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20550 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20551 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20552 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20553 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20554 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20555 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20556 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20557 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20558 abtsiocb->vport = vport; 20559 abtsiocb->wqe_cmpl = cmpl; 20560 20561 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20562 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20563 20564 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20565 "0359 Abort xri x%x, original iotag x%x, " 20566 "abort cmd iotag x%x retval x%x\n", 20567 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20568 20569 if (retval) { 20570 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20571 __lpfc_sli_release_iocbq(phba, abtsiocb); 20572 } 20573 20574 return retval; 20575 } 20576 20577 #ifdef LPFC_MXP_STAT 20578 /** 20579 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20580 * @phba: pointer to lpfc hba data structure. 20581 * @hwqid: belong to which HWQ. 20582 * 20583 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20584 * 15 seconds after a test case is running. 20585 * 20586 * The user should call lpfc_debugfs_multixripools_write before running a test 20587 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20588 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20589 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20590 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20591 **/ 20592 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20593 { 20594 struct lpfc_sli4_hdw_queue *qp; 20595 struct lpfc_multixri_pool *multixri_pool; 20596 struct lpfc_pvt_pool *pvt_pool; 20597 struct lpfc_pbl_pool *pbl_pool; 20598 u32 txcmplq_cnt; 20599 20600 qp = &phba->sli4_hba.hdwq[hwqid]; 20601 multixri_pool = qp->p_multixri_pool; 20602 if (!multixri_pool) 20603 return; 20604 20605 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20606 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20607 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20608 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20609 20610 multixri_pool->stat_pbl_count = pbl_pool->count; 20611 multixri_pool->stat_pvt_count = pvt_pool->count; 20612 multixri_pool->stat_busy_count = txcmplq_cnt; 20613 } 20614 20615 multixri_pool->stat_snapshot_taken++; 20616 } 20617 #endif 20618 20619 /** 20620 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20621 * @phba: pointer to lpfc hba data structure. 20622 * @hwqid: belong to which HWQ. 20623 * 20624 * This routine moves some XRIs from private to public pool when private pool 20625 * is not busy. 20626 **/ 20627 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20628 { 20629 struct lpfc_multixri_pool *multixri_pool; 20630 u32 io_req_count; 20631 u32 prev_io_req_count; 20632 20633 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20634 if (!multixri_pool) 20635 return; 20636 io_req_count = multixri_pool->io_req_count; 20637 prev_io_req_count = multixri_pool->prev_io_req_count; 20638 20639 if (prev_io_req_count != io_req_count) { 20640 /* Private pool is busy */ 20641 multixri_pool->prev_io_req_count = io_req_count; 20642 } else { 20643 /* Private pool is not busy. 20644 * Move XRIs from private to public pool. 20645 */ 20646 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20647 } 20648 } 20649 20650 /** 20651 * lpfc_adjust_high_watermark - Adjust high watermark 20652 * @phba: pointer to lpfc hba data structure. 20653 * @hwqid: belong to which HWQ. 20654 * 20655 * This routine sets high watermark as number of outstanding XRIs, 20656 * but make sure the new value is between xri_limit/2 and xri_limit. 20657 **/ 20658 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20659 { 20660 u32 new_watermark; 20661 u32 watermark_max; 20662 u32 watermark_min; 20663 u32 xri_limit; 20664 u32 txcmplq_cnt; 20665 u32 abts_io_bufs; 20666 struct lpfc_multixri_pool *multixri_pool; 20667 struct lpfc_sli4_hdw_queue *qp; 20668 20669 qp = &phba->sli4_hba.hdwq[hwqid]; 20670 multixri_pool = qp->p_multixri_pool; 20671 if (!multixri_pool) 20672 return; 20673 xri_limit = multixri_pool->xri_limit; 20674 20675 watermark_max = xri_limit; 20676 watermark_min = xri_limit / 2; 20677 20678 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20679 abts_io_bufs = qp->abts_scsi_io_bufs; 20680 abts_io_bufs += qp->abts_nvme_io_bufs; 20681 20682 new_watermark = txcmplq_cnt + abts_io_bufs; 20683 new_watermark = min(watermark_max, new_watermark); 20684 new_watermark = max(watermark_min, new_watermark); 20685 multixri_pool->pvt_pool.high_watermark = new_watermark; 20686 20687 #ifdef LPFC_MXP_STAT 20688 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20689 new_watermark); 20690 #endif 20691 } 20692 20693 /** 20694 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20695 * @phba: pointer to lpfc hba data structure. 20696 * @hwqid: belong to which HWQ. 20697 * 20698 * This routine is called from hearbeat timer when pvt_pool is idle. 20699 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20700 * The first step moves (all - low_watermark) amount of XRIs. 20701 * The second step moves the rest of XRIs. 20702 **/ 20703 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20704 { 20705 struct lpfc_pbl_pool *pbl_pool; 20706 struct lpfc_pvt_pool *pvt_pool; 20707 struct lpfc_sli4_hdw_queue *qp; 20708 struct lpfc_io_buf *lpfc_ncmd; 20709 struct lpfc_io_buf *lpfc_ncmd_next; 20710 unsigned long iflag; 20711 struct list_head tmp_list; 20712 u32 tmp_count; 20713 20714 qp = &phba->sli4_hba.hdwq[hwqid]; 20715 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20716 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20717 tmp_count = 0; 20718 20719 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20720 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20721 20722 if (pvt_pool->count > pvt_pool->low_watermark) { 20723 /* Step 1: move (all - low_watermark) from pvt_pool 20724 * to pbl_pool 20725 */ 20726 20727 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20728 INIT_LIST_HEAD(&tmp_list); 20729 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20730 &pvt_pool->list, list) { 20731 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20732 tmp_count++; 20733 if (tmp_count >= pvt_pool->low_watermark) 20734 break; 20735 } 20736 20737 /* Move all bufs from pvt_pool to pbl_pool */ 20738 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20739 20740 /* Move all bufs from tmp_list to pvt_pool */ 20741 list_splice(&tmp_list, &pvt_pool->list); 20742 20743 pbl_pool->count += (pvt_pool->count - tmp_count); 20744 pvt_pool->count = tmp_count; 20745 } else { 20746 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20747 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20748 pbl_pool->count += pvt_pool->count; 20749 pvt_pool->count = 0; 20750 } 20751 20752 spin_unlock(&pvt_pool->lock); 20753 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20754 } 20755 20756 /** 20757 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20758 * @phba: pointer to lpfc hba data structure 20759 * @qp: pointer to HDW queue 20760 * @pbl_pool: specified public free XRI pool 20761 * @pvt_pool: specified private free XRI pool 20762 * @count: number of XRIs to move 20763 * 20764 * This routine tries to move some free common bufs from the specified pbl_pool 20765 * to the specified pvt_pool. It might move less than count XRIs if there's not 20766 * enough in public pool. 20767 * 20768 * Return: 20769 * true - if XRIs are successfully moved from the specified pbl_pool to the 20770 * specified pvt_pool 20771 * false - if the specified pbl_pool is empty or locked by someone else 20772 **/ 20773 static bool 20774 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20775 struct lpfc_pbl_pool *pbl_pool, 20776 struct lpfc_pvt_pool *pvt_pool, u32 count) 20777 { 20778 struct lpfc_io_buf *lpfc_ncmd; 20779 struct lpfc_io_buf *lpfc_ncmd_next; 20780 unsigned long iflag; 20781 int ret; 20782 20783 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20784 if (ret) { 20785 if (pbl_pool->count) { 20786 /* Move a batch of XRIs from public to private pool */ 20787 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20788 list_for_each_entry_safe(lpfc_ncmd, 20789 lpfc_ncmd_next, 20790 &pbl_pool->list, 20791 list) { 20792 list_move_tail(&lpfc_ncmd->list, 20793 &pvt_pool->list); 20794 pvt_pool->count++; 20795 pbl_pool->count--; 20796 count--; 20797 if (count == 0) 20798 break; 20799 } 20800 20801 spin_unlock(&pvt_pool->lock); 20802 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20803 return true; 20804 } 20805 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20806 } 20807 20808 return false; 20809 } 20810 20811 /** 20812 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20813 * @phba: pointer to lpfc hba data structure. 20814 * @hwqid: belong to which HWQ. 20815 * @count: number of XRIs to move 20816 * 20817 * This routine tries to find some free common bufs in one of public pools with 20818 * Round Robin method. The search always starts from local hwqid, then the next 20819 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20820 * a batch of free common bufs are moved to private pool on hwqid. 20821 * It might move less than count XRIs if there's not enough in public pool. 20822 **/ 20823 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20824 { 20825 struct lpfc_multixri_pool *multixri_pool; 20826 struct lpfc_multixri_pool *next_multixri_pool; 20827 struct lpfc_pvt_pool *pvt_pool; 20828 struct lpfc_pbl_pool *pbl_pool; 20829 struct lpfc_sli4_hdw_queue *qp; 20830 u32 next_hwqid; 20831 u32 hwq_count; 20832 int ret; 20833 20834 qp = &phba->sli4_hba.hdwq[hwqid]; 20835 multixri_pool = qp->p_multixri_pool; 20836 pvt_pool = &multixri_pool->pvt_pool; 20837 pbl_pool = &multixri_pool->pbl_pool; 20838 20839 /* Check if local pbl_pool is available */ 20840 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20841 if (ret) { 20842 #ifdef LPFC_MXP_STAT 20843 multixri_pool->local_pbl_hit_count++; 20844 #endif 20845 return; 20846 } 20847 20848 hwq_count = phba->cfg_hdw_queue; 20849 20850 /* Get the next hwqid which was found last time */ 20851 next_hwqid = multixri_pool->rrb_next_hwqid; 20852 20853 do { 20854 /* Go to next hwq */ 20855 next_hwqid = (next_hwqid + 1) % hwq_count; 20856 20857 next_multixri_pool = 20858 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20859 pbl_pool = &next_multixri_pool->pbl_pool; 20860 20861 /* Check if the public free xri pool is available */ 20862 ret = _lpfc_move_xri_pbl_to_pvt( 20863 phba, qp, pbl_pool, pvt_pool, count); 20864 20865 /* Exit while-loop if success or all hwqid are checked */ 20866 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20867 20868 /* Starting point for the next time */ 20869 multixri_pool->rrb_next_hwqid = next_hwqid; 20870 20871 if (!ret) { 20872 /* stats: all public pools are empty*/ 20873 multixri_pool->pbl_empty_count++; 20874 } 20875 20876 #ifdef LPFC_MXP_STAT 20877 if (ret) { 20878 if (next_hwqid == hwqid) 20879 multixri_pool->local_pbl_hit_count++; 20880 else 20881 multixri_pool->other_pbl_hit_count++; 20882 } 20883 #endif 20884 } 20885 20886 /** 20887 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20888 * @phba: pointer to lpfc hba data structure. 20889 * @hwqid: belong to which HWQ. 20890 * 20891 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20892 * low watermark. 20893 **/ 20894 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20895 { 20896 struct lpfc_multixri_pool *multixri_pool; 20897 struct lpfc_pvt_pool *pvt_pool; 20898 20899 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20900 pvt_pool = &multixri_pool->pvt_pool; 20901 20902 if (pvt_pool->count < pvt_pool->low_watermark) 20903 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20904 } 20905 20906 /** 20907 * lpfc_release_io_buf - Return one IO buf back to free pool 20908 * @phba: pointer to lpfc hba data structure. 20909 * @lpfc_ncmd: IO buf to be returned. 20910 * @qp: belong to which HWQ. 20911 * 20912 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20913 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20914 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20915 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20916 * lpfc_io_buf_list_put. 20917 **/ 20918 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20919 struct lpfc_sli4_hdw_queue *qp) 20920 { 20921 unsigned long iflag; 20922 struct lpfc_pbl_pool *pbl_pool; 20923 struct lpfc_pvt_pool *pvt_pool; 20924 struct lpfc_epd_pool *epd_pool; 20925 u32 txcmplq_cnt; 20926 u32 xri_owned; 20927 u32 xri_limit; 20928 u32 abts_io_bufs; 20929 20930 /* MUST zero fields if buffer is reused by another protocol */ 20931 lpfc_ncmd->nvmeCmd = NULL; 20932 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20933 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20934 20935 if (phba->cfg_xpsgl && !phba->nvmet_support && 20936 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20937 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20938 20939 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20940 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20941 20942 if (phba->cfg_xri_rebalancing) { 20943 if (lpfc_ncmd->expedite) { 20944 /* Return to expedite pool */ 20945 epd_pool = &phba->epd_pool; 20946 spin_lock_irqsave(&epd_pool->lock, iflag); 20947 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20948 epd_pool->count++; 20949 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20950 return; 20951 } 20952 20953 /* Avoid invalid access if an IO sneaks in and is being rejected 20954 * just _after_ xri pools are destroyed in lpfc_offline. 20955 * Nothing much can be done at this point. 20956 */ 20957 if (!qp->p_multixri_pool) 20958 return; 20959 20960 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20961 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20962 20963 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20964 abts_io_bufs = qp->abts_scsi_io_bufs; 20965 abts_io_bufs += qp->abts_nvme_io_bufs; 20966 20967 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20968 xri_limit = qp->p_multixri_pool->xri_limit; 20969 20970 #ifdef LPFC_MXP_STAT 20971 if (xri_owned <= xri_limit) 20972 qp->p_multixri_pool->below_limit_count++; 20973 else 20974 qp->p_multixri_pool->above_limit_count++; 20975 #endif 20976 20977 /* XRI goes to either public or private free xri pool 20978 * based on watermark and xri_limit 20979 */ 20980 if ((pvt_pool->count < pvt_pool->low_watermark) || 20981 (xri_owned < xri_limit && 20982 pvt_pool->count < pvt_pool->high_watermark)) { 20983 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20984 qp, free_pvt_pool); 20985 list_add_tail(&lpfc_ncmd->list, 20986 &pvt_pool->list); 20987 pvt_pool->count++; 20988 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20989 } else { 20990 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20991 qp, free_pub_pool); 20992 list_add_tail(&lpfc_ncmd->list, 20993 &pbl_pool->list); 20994 pbl_pool->count++; 20995 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20996 } 20997 } else { 20998 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20999 qp, free_xri); 21000 list_add_tail(&lpfc_ncmd->list, 21001 &qp->lpfc_io_buf_list_put); 21002 qp->put_io_bufs++; 21003 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21004 iflag); 21005 } 21006 } 21007 21008 /** 21009 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21010 * @phba: pointer to lpfc hba data structure. 21011 * @qp: pointer to HDW queue 21012 * @pvt_pool: pointer to private pool data structure. 21013 * @ndlp: pointer to lpfc nodelist data structure. 21014 * 21015 * This routine tries to get one free IO buf from private pool. 21016 * 21017 * Return: 21018 * pointer to one free IO buf - if private pool is not empty 21019 * NULL - if private pool is empty 21020 **/ 21021 static struct lpfc_io_buf * 21022 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21023 struct lpfc_sli4_hdw_queue *qp, 21024 struct lpfc_pvt_pool *pvt_pool, 21025 struct lpfc_nodelist *ndlp) 21026 { 21027 struct lpfc_io_buf *lpfc_ncmd; 21028 struct lpfc_io_buf *lpfc_ncmd_next; 21029 unsigned long iflag; 21030 21031 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21032 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21033 &pvt_pool->list, list) { 21034 if (lpfc_test_rrq_active( 21035 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21036 continue; 21037 list_del(&lpfc_ncmd->list); 21038 pvt_pool->count--; 21039 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21040 return lpfc_ncmd; 21041 } 21042 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21043 21044 return NULL; 21045 } 21046 21047 /** 21048 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21049 * @phba: pointer to lpfc hba data structure. 21050 * 21051 * This routine tries to get one free IO buf from expedite pool. 21052 * 21053 * Return: 21054 * pointer to one free IO buf - if expedite pool is not empty 21055 * NULL - if expedite pool is empty 21056 **/ 21057 static struct lpfc_io_buf * 21058 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21059 { 21060 struct lpfc_io_buf *lpfc_ncmd; 21061 struct lpfc_io_buf *lpfc_ncmd_next; 21062 unsigned long iflag; 21063 struct lpfc_epd_pool *epd_pool; 21064 21065 epd_pool = &phba->epd_pool; 21066 lpfc_ncmd = NULL; 21067 21068 spin_lock_irqsave(&epd_pool->lock, iflag); 21069 if (epd_pool->count > 0) { 21070 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21071 &epd_pool->list, list) { 21072 list_del(&lpfc_ncmd->list); 21073 epd_pool->count--; 21074 break; 21075 } 21076 } 21077 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21078 21079 return lpfc_ncmd; 21080 } 21081 21082 /** 21083 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21084 * @phba: pointer to lpfc hba data structure. 21085 * @ndlp: pointer to lpfc nodelist data structure. 21086 * @hwqid: belong to which HWQ 21087 * @expedite: 1 means this request is urgent. 21088 * 21089 * This routine will do the following actions and then return a pointer to 21090 * one free IO buf. 21091 * 21092 * 1. If private free xri count is empty, move some XRIs from public to 21093 * private pool. 21094 * 2. Get one XRI from private free xri pool. 21095 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21096 * get one free xri from expedite pool. 21097 * 21098 * Note: ndlp is only used on SCSI side for RRQ testing. 21099 * The caller should pass NULL for ndlp on NVME side. 21100 * 21101 * Return: 21102 * pointer to one free IO buf - if private pool is not empty 21103 * NULL - if private pool is empty 21104 **/ 21105 static struct lpfc_io_buf * 21106 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21107 struct lpfc_nodelist *ndlp, 21108 int hwqid, int expedite) 21109 { 21110 struct lpfc_sli4_hdw_queue *qp; 21111 struct lpfc_multixri_pool *multixri_pool; 21112 struct lpfc_pvt_pool *pvt_pool; 21113 struct lpfc_io_buf *lpfc_ncmd; 21114 21115 qp = &phba->sli4_hba.hdwq[hwqid]; 21116 lpfc_ncmd = NULL; 21117 multixri_pool = qp->p_multixri_pool; 21118 pvt_pool = &multixri_pool->pvt_pool; 21119 multixri_pool->io_req_count++; 21120 21121 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21122 if (pvt_pool->count == 0) 21123 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21124 21125 /* Get one XRI from private free xri pool */ 21126 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21127 21128 if (lpfc_ncmd) { 21129 lpfc_ncmd->hdwq = qp; 21130 lpfc_ncmd->hdwq_no = hwqid; 21131 } else if (expedite) { 21132 /* If we fail to get one from pvt_pool and this is an expedite 21133 * request, get one free xri from expedite pool. 21134 */ 21135 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21136 } 21137 21138 return lpfc_ncmd; 21139 } 21140 21141 static inline struct lpfc_io_buf * 21142 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21143 { 21144 struct lpfc_sli4_hdw_queue *qp; 21145 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21146 21147 qp = &phba->sli4_hba.hdwq[idx]; 21148 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21149 &qp->lpfc_io_buf_list_get, list) { 21150 if (lpfc_test_rrq_active(phba, ndlp, 21151 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21152 continue; 21153 21154 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21155 continue; 21156 21157 list_del_init(&lpfc_cmd->list); 21158 qp->get_io_bufs--; 21159 lpfc_cmd->hdwq = qp; 21160 lpfc_cmd->hdwq_no = idx; 21161 return lpfc_cmd; 21162 } 21163 return NULL; 21164 } 21165 21166 /** 21167 * lpfc_get_io_buf - Get one IO buffer from free pool 21168 * @phba: The HBA for which this call is being executed. 21169 * @ndlp: pointer to lpfc nodelist data structure. 21170 * @hwqid: belong to which HWQ 21171 * @expedite: 1 means this request is urgent. 21172 * 21173 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21174 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21175 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21176 * 21177 * Note: ndlp is only used on SCSI side for RRQ testing. 21178 * The caller should pass NULL for ndlp on NVME side. 21179 * 21180 * Return codes: 21181 * NULL - Error 21182 * Pointer to lpfc_io_buf - Success 21183 **/ 21184 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21185 struct lpfc_nodelist *ndlp, 21186 u32 hwqid, int expedite) 21187 { 21188 struct lpfc_sli4_hdw_queue *qp; 21189 unsigned long iflag; 21190 struct lpfc_io_buf *lpfc_cmd; 21191 21192 qp = &phba->sli4_hba.hdwq[hwqid]; 21193 lpfc_cmd = NULL; 21194 21195 if (phba->cfg_xri_rebalancing) 21196 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21197 phba, ndlp, hwqid, expedite); 21198 else { 21199 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21200 qp, alloc_xri_get); 21201 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21202 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21203 if (!lpfc_cmd) { 21204 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21205 qp, alloc_xri_put); 21206 list_splice(&qp->lpfc_io_buf_list_put, 21207 &qp->lpfc_io_buf_list_get); 21208 qp->get_io_bufs += qp->put_io_bufs; 21209 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21210 qp->put_io_bufs = 0; 21211 spin_unlock(&qp->io_buf_list_put_lock); 21212 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21213 expedite) 21214 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21215 } 21216 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21217 } 21218 21219 return lpfc_cmd; 21220 } 21221 21222 /** 21223 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21224 * @phba: The HBA for which this call is being executed. 21225 * @lpfc_buf: IO buf structure to append the SGL chunk 21226 * 21227 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21228 * and will allocate an SGL chunk if the pool is empty. 21229 * 21230 * Return codes: 21231 * NULL - Error 21232 * Pointer to sli4_hybrid_sgl - Success 21233 **/ 21234 struct sli4_hybrid_sgl * 21235 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21236 { 21237 struct sli4_hybrid_sgl *list_entry = NULL; 21238 struct sli4_hybrid_sgl *tmp = NULL; 21239 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21240 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21241 struct list_head *buf_list = &hdwq->sgl_list; 21242 unsigned long iflags; 21243 21244 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21245 21246 if (likely(!list_empty(buf_list))) { 21247 /* break off 1 chunk from the sgl_list */ 21248 list_for_each_entry_safe(list_entry, tmp, 21249 buf_list, list_node) { 21250 list_move_tail(&list_entry->list_node, 21251 &lpfc_buf->dma_sgl_xtra_list); 21252 break; 21253 } 21254 } else { 21255 /* allocate more */ 21256 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21257 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21258 cpu_to_node(hdwq->io_wq->chann)); 21259 if (!tmp) { 21260 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21261 "8353 error kmalloc memory for HDWQ " 21262 "%d %s\n", 21263 lpfc_buf->hdwq_no, __func__); 21264 return NULL; 21265 } 21266 21267 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21268 GFP_ATOMIC, &tmp->dma_phys_sgl); 21269 if (!tmp->dma_sgl) { 21270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21271 "8354 error pool_alloc memory for HDWQ " 21272 "%d %s\n", 21273 lpfc_buf->hdwq_no, __func__); 21274 kfree(tmp); 21275 return NULL; 21276 } 21277 21278 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21279 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21280 } 21281 21282 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21283 struct sli4_hybrid_sgl, 21284 list_node); 21285 21286 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21287 21288 return allocated_sgl; 21289 } 21290 21291 /** 21292 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21293 * @phba: The HBA for which this call is being executed. 21294 * @lpfc_buf: IO buf structure with the SGL chunk 21295 * 21296 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21297 * 21298 * Return codes: 21299 * 0 - Success 21300 * -EINVAL - Error 21301 **/ 21302 int 21303 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21304 { 21305 int rc = 0; 21306 struct sli4_hybrid_sgl *list_entry = NULL; 21307 struct sli4_hybrid_sgl *tmp = NULL; 21308 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21309 struct list_head *buf_list = &hdwq->sgl_list; 21310 unsigned long iflags; 21311 21312 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21313 21314 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21315 list_for_each_entry_safe(list_entry, tmp, 21316 &lpfc_buf->dma_sgl_xtra_list, 21317 list_node) { 21318 list_move_tail(&list_entry->list_node, 21319 buf_list); 21320 } 21321 } else { 21322 rc = -EINVAL; 21323 } 21324 21325 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21326 return rc; 21327 } 21328 21329 /** 21330 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21331 * @phba: phba object 21332 * @hdwq: hdwq to cleanup sgl buff resources on 21333 * 21334 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21335 * 21336 * Return codes: 21337 * None 21338 **/ 21339 void 21340 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21341 struct lpfc_sli4_hdw_queue *hdwq) 21342 { 21343 struct list_head *buf_list = &hdwq->sgl_list; 21344 struct sli4_hybrid_sgl *list_entry = NULL; 21345 struct sli4_hybrid_sgl *tmp = NULL; 21346 unsigned long iflags; 21347 21348 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21349 21350 /* Free sgl pool */ 21351 list_for_each_entry_safe(list_entry, tmp, 21352 buf_list, list_node) { 21353 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21354 list_entry->dma_sgl, 21355 list_entry->dma_phys_sgl); 21356 list_del(&list_entry->list_node); 21357 kfree(list_entry); 21358 } 21359 21360 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21361 } 21362 21363 /** 21364 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21365 * @phba: The HBA for which this call is being executed. 21366 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21367 * 21368 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21369 * and will allocate an CMD/RSP buffer if the pool is empty. 21370 * 21371 * Return codes: 21372 * NULL - Error 21373 * Pointer to fcp_cmd_rsp_buf - Success 21374 **/ 21375 struct fcp_cmd_rsp_buf * 21376 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21377 struct lpfc_io_buf *lpfc_buf) 21378 { 21379 struct fcp_cmd_rsp_buf *list_entry = NULL; 21380 struct fcp_cmd_rsp_buf *tmp = NULL; 21381 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21382 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21383 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21384 unsigned long iflags; 21385 21386 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21387 21388 if (likely(!list_empty(buf_list))) { 21389 /* break off 1 chunk from the list */ 21390 list_for_each_entry_safe(list_entry, tmp, 21391 buf_list, 21392 list_node) { 21393 list_move_tail(&list_entry->list_node, 21394 &lpfc_buf->dma_cmd_rsp_list); 21395 break; 21396 } 21397 } else { 21398 /* allocate more */ 21399 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21400 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21401 cpu_to_node(hdwq->io_wq->chann)); 21402 if (!tmp) { 21403 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21404 "8355 error kmalloc memory for HDWQ " 21405 "%d %s\n", 21406 lpfc_buf->hdwq_no, __func__); 21407 return NULL; 21408 } 21409 21410 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21411 GFP_ATOMIC, 21412 &tmp->fcp_cmd_rsp_dma_handle); 21413 21414 if (!tmp->fcp_cmnd) { 21415 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21416 "8356 error pool_alloc memory for HDWQ " 21417 "%d %s\n", 21418 lpfc_buf->hdwq_no, __func__); 21419 kfree(tmp); 21420 return NULL; 21421 } 21422 21423 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21424 sizeof(struct fcp_cmnd)); 21425 21426 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21427 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21428 } 21429 21430 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21431 struct fcp_cmd_rsp_buf, 21432 list_node); 21433 21434 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21435 21436 return allocated_buf; 21437 } 21438 21439 /** 21440 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21441 * @phba: The HBA for which this call is being executed. 21442 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21443 * 21444 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21445 * 21446 * Return codes: 21447 * 0 - Success 21448 * -EINVAL - Error 21449 **/ 21450 int 21451 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21452 struct lpfc_io_buf *lpfc_buf) 21453 { 21454 int rc = 0; 21455 struct fcp_cmd_rsp_buf *list_entry = NULL; 21456 struct fcp_cmd_rsp_buf *tmp = NULL; 21457 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21458 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21459 unsigned long iflags; 21460 21461 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21462 21463 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21464 list_for_each_entry_safe(list_entry, tmp, 21465 &lpfc_buf->dma_cmd_rsp_list, 21466 list_node) { 21467 list_move_tail(&list_entry->list_node, 21468 buf_list); 21469 } 21470 } else { 21471 rc = -EINVAL; 21472 } 21473 21474 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21475 return rc; 21476 } 21477 21478 /** 21479 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21480 * @phba: phba object 21481 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21482 * 21483 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21484 * 21485 * Return codes: 21486 * None 21487 **/ 21488 void 21489 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21490 struct lpfc_sli4_hdw_queue *hdwq) 21491 { 21492 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21493 struct fcp_cmd_rsp_buf *list_entry = NULL; 21494 struct fcp_cmd_rsp_buf *tmp = NULL; 21495 unsigned long iflags; 21496 21497 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21498 21499 /* Free cmd_rsp buf pool */ 21500 list_for_each_entry_safe(list_entry, tmp, 21501 buf_list, 21502 list_node) { 21503 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21504 list_entry->fcp_cmnd, 21505 list_entry->fcp_cmd_rsp_dma_handle); 21506 list_del(&list_entry->list_node); 21507 kfree(list_entry); 21508 } 21509 21510 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21511 } 21512