1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq * 74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 75 struct lpfc_iocbq *rspiocbq); 76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 77 struct hbq_dmabuf *); 78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 79 struct hbq_dmabuf *dmabuf); 80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 81 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 83 int); 84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 85 struct lpfc_queue *eq, 86 struct lpfc_eqe *eqe); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 uint8_t rearm) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->context_un.ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->context_un.ndlp; 1268 } else { 1269 ndlp = piocbq->context1; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 if (asig) { 1852 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1853 "6237 BW Threshold %lld%% (%lld): " 1854 "%lld%% %s: Signal Alarm: cg:%d " 1855 "Info:%u\n", 1856 bwpcent, bw, pcent, s, cg, 1857 phba->cmf_active_info); 1858 } else if (afpin) { 1859 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1860 "6238 BW Threshold %lld%% (%lld): " 1861 "%lld%% %s: FPIN Alarm: cg:%d " 1862 "Info:%u\n", 1863 bwpcent, bw, pcent, s, cg, 1864 phba->cmf_active_info); 1865 } else if (sigcnt) { 1866 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1868 "6239 BW Threshold %lld%% (%lld): " 1869 "%lld%% %s: Signal Warning: " 1870 "Cnt %d Max %d: cg:%d Info:%u\n", 1871 bwpcent, bw, pcent, s, sigcnt, 1872 wsigmax, cg, phba->cmf_active_info); 1873 } else if (fpincnt) { 1874 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6240 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Warning: " 1878 "Cnt %d Max %d: cg:%d Info:%u\n", 1879 bwpcent, bw, pcent, s, fpincnt, 1880 wfpinmax, cg, phba->cmf_active_info); 1881 } else { 1882 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1883 "6241 BW Threshold %lld%% (%lld): " 1884 "CMF %lld%% %s: cg:%d Info:%u\n", 1885 bwpcent, bw, pcent, s, cg, 1886 phba->cmf_active_info); 1887 } 1888 } else if (info) { 1889 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1890 "6246 Info Threshold %u\n", info); 1891 } 1892 1893 /* Save BW change to be picked up during next timer interrupt */ 1894 phba->cmf_last_sync_bw = bw; 1895 out: 1896 lpfc_sli_release_iocbq(phba, cmdiocb); 1897 } 1898 1899 /** 1900 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1901 * @phba: Pointer to HBA context object. 1902 * @ms: ms to set in WQE interval, 0 means use init op 1903 * @total: Total rcv bytes for this interval 1904 * 1905 * This routine is called every CMF timer interrupt. Its purpose is 1906 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1907 * that may indicate we have congestion (FPINs or Signals). Upon 1908 * completion, the firmware will indicate any BW restrictions the 1909 * driver may need to take. 1910 **/ 1911 int 1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1913 { 1914 union lpfc_wqe128 *wqe; 1915 struct lpfc_iocbq *sync_buf; 1916 unsigned long iflags; 1917 u32 ret_val; 1918 u32 atot, wtot, max; 1919 1920 /* First address any alarm / warning activity */ 1921 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1922 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1923 1924 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1925 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1926 phba->link_state == LPFC_LINK_DOWN) 1927 return 0; 1928 1929 spin_lock_irqsave(&phba->hbalock, iflags); 1930 sync_buf = __lpfc_sli_get_iocbq(phba); 1931 if (!sync_buf) { 1932 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1933 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1934 ret_val = ENOMEM; 1935 goto out_unlock; 1936 } 1937 1938 wqe = &sync_buf->wqe; 1939 1940 /* WQEs are reused. Clear stale data and set key fields to zero */ 1941 memset(wqe, 0, sizeof(*wqe)); 1942 1943 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1944 if (!ms) { 1945 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1946 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1947 phba->fc_eventTag); 1948 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1949 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1950 goto initpath; 1951 } 1952 1953 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1954 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1955 1956 /* Check for alarms / warnings */ 1957 if (atot) { 1958 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1959 /* We hit an Signal alarm condition */ 1960 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1961 } else { 1962 /* We hit a FPIN alarm condition */ 1963 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1964 } 1965 } else if (wtot) { 1966 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1967 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1968 /* We hit an Signal warning condition */ 1969 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1970 lpfc_acqe_cgn_frequency; 1971 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1972 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1973 } else { 1974 /* We hit a FPIN warning condition */ 1975 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1976 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1977 } 1978 } 1979 1980 /* Update total read blocks during previous timer interval */ 1981 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1982 1983 initpath: 1984 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1985 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1986 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1987 1988 /* Setup reqtag to match the wqe completion. */ 1989 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1990 1991 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1992 1993 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1994 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1995 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 1996 1997 sync_buf->vport = phba->pport; 1998 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 1999 sync_buf->context1 = NULL; 2000 sync_buf->context2 = NULL; 2001 sync_buf->context3 = NULL; 2002 sync_buf->sli4_xritag = NO_XRI; 2003 2004 sync_buf->cmd_flag |= LPFC_IO_CMF; 2005 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2006 if (ret_val) 2007 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2008 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2009 ret_val); 2010 out_unlock: 2011 spin_unlock_irqrestore(&phba->hbalock, iflags); 2012 return ret_val; 2013 } 2014 2015 /** 2016 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2017 * @phba: Pointer to HBA context object. 2018 * @pring: Pointer to driver SLI ring object. 2019 * 2020 * This function is called with hbalock held and the caller must post the 2021 * iocb without releasing the lock. If the caller releases the lock, 2022 * iocb slot returned by the function is not guaranteed to be available. 2023 * The function returns pointer to the next available iocb slot if there 2024 * is available slot in the ring, else it returns NULL. 2025 * If the get index of the ring is ahead of the put index, the function 2026 * will post an error attention event to the worker thread to take the 2027 * HBA to offline state. 2028 **/ 2029 static IOCB_t * 2030 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2031 { 2032 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2033 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2034 2035 lockdep_assert_held(&phba->hbalock); 2036 2037 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2038 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2039 pring->sli.sli3.next_cmdidx = 0; 2040 2041 if (unlikely(pring->sli.sli3.local_getidx == 2042 pring->sli.sli3.next_cmdidx)) { 2043 2044 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2045 2046 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2048 "0315 Ring %d issue: portCmdGet %d " 2049 "is bigger than cmd ring %d\n", 2050 pring->ringno, 2051 pring->sli.sli3.local_getidx, 2052 max_cmd_idx); 2053 2054 phba->link_state = LPFC_HBA_ERROR; 2055 /* 2056 * All error attention handlers are posted to 2057 * worker thread 2058 */ 2059 phba->work_ha |= HA_ERATT; 2060 phba->work_hs = HS_FFER3; 2061 2062 lpfc_worker_wake_up(phba); 2063 2064 return NULL; 2065 } 2066 2067 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2068 return NULL; 2069 } 2070 2071 return lpfc_cmd_iocb(phba, pring); 2072 } 2073 2074 /** 2075 * lpfc_sli_next_iotag - Get an iotag for the iocb 2076 * @phba: Pointer to HBA context object. 2077 * @iocbq: Pointer to driver iocb object. 2078 * 2079 * This function gets an iotag for the iocb. If there is no unused iotag and 2080 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2081 * array and assigns a new iotag. 2082 * The function returns the allocated iotag if successful, else returns zero. 2083 * Zero is not a valid iotag. 2084 * The caller is not required to hold any lock. 2085 **/ 2086 uint16_t 2087 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2088 { 2089 struct lpfc_iocbq **new_arr; 2090 struct lpfc_iocbq **old_arr; 2091 size_t new_len; 2092 struct lpfc_sli *psli = &phba->sli; 2093 uint16_t iotag; 2094 2095 spin_lock_irq(&phba->hbalock); 2096 iotag = psli->last_iotag; 2097 if(++iotag < psli->iocbq_lookup_len) { 2098 psli->last_iotag = iotag; 2099 psli->iocbq_lookup[iotag] = iocbq; 2100 spin_unlock_irq(&phba->hbalock); 2101 iocbq->iotag = iotag; 2102 return iotag; 2103 } else if (psli->iocbq_lookup_len < (0xffff 2104 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2105 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2106 spin_unlock_irq(&phba->hbalock); 2107 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2108 GFP_KERNEL); 2109 if (new_arr) { 2110 spin_lock_irq(&phba->hbalock); 2111 old_arr = psli->iocbq_lookup; 2112 if (new_len <= psli->iocbq_lookup_len) { 2113 /* highly unprobable case */ 2114 kfree(new_arr); 2115 iotag = psli->last_iotag; 2116 if(++iotag < psli->iocbq_lookup_len) { 2117 psli->last_iotag = iotag; 2118 psli->iocbq_lookup[iotag] = iocbq; 2119 spin_unlock_irq(&phba->hbalock); 2120 iocbq->iotag = iotag; 2121 return iotag; 2122 } 2123 spin_unlock_irq(&phba->hbalock); 2124 return 0; 2125 } 2126 if (psli->iocbq_lookup) 2127 memcpy(new_arr, old_arr, 2128 ((psli->last_iotag + 1) * 2129 sizeof (struct lpfc_iocbq *))); 2130 psli->iocbq_lookup = new_arr; 2131 psli->iocbq_lookup_len = new_len; 2132 psli->last_iotag = iotag; 2133 psli->iocbq_lookup[iotag] = iocbq; 2134 spin_unlock_irq(&phba->hbalock); 2135 iocbq->iotag = iotag; 2136 kfree(old_arr); 2137 return iotag; 2138 } 2139 } else 2140 spin_unlock_irq(&phba->hbalock); 2141 2142 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2143 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2144 psli->last_iotag); 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2151 * @phba: Pointer to HBA context object. 2152 * @pring: Pointer to driver SLI ring object. 2153 * @iocb: Pointer to iocb slot in the ring. 2154 * @nextiocb: Pointer to driver iocb object which need to be 2155 * posted to firmware. 2156 * 2157 * This function is called to post a new iocb to the firmware. This 2158 * function copies the new iocb to ring iocb slot and updates the 2159 * ring pointers. It adds the new iocb to txcmplq if there is 2160 * a completion call back for this iocb else the function will free the 2161 * iocb object. The hbalock is asserted held in the code path calling 2162 * this routine. 2163 **/ 2164 static void 2165 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2166 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2167 { 2168 /* 2169 * Set up an iotag 2170 */ 2171 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2172 2173 2174 if (pring->ringno == LPFC_ELS_RING) { 2175 lpfc_debugfs_slow_ring_trc(phba, 2176 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2177 *(((uint32_t *) &nextiocb->iocb) + 4), 2178 *(((uint32_t *) &nextiocb->iocb) + 6), 2179 *(((uint32_t *) &nextiocb->iocb) + 7)); 2180 } 2181 2182 /* 2183 * Issue iocb command to adapter 2184 */ 2185 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2186 wmb(); 2187 pring->stats.iocb_cmd++; 2188 2189 /* 2190 * If there is no completion routine to call, we can release the 2191 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2192 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2193 */ 2194 if (nextiocb->cmd_cmpl) 2195 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2196 else 2197 __lpfc_sli_release_iocbq(phba, nextiocb); 2198 2199 /* 2200 * Let the HBA know what IOCB slot will be the next one the 2201 * driver will put a command into. 2202 */ 2203 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2204 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2205 } 2206 2207 /** 2208 * lpfc_sli_update_full_ring - Update the chip attention register 2209 * @phba: Pointer to HBA context object. 2210 * @pring: Pointer to driver SLI ring object. 2211 * 2212 * The caller is not required to hold any lock for calling this function. 2213 * This function updates the chip attention bits for the ring to inform firmware 2214 * that there are pending work to be done for this ring and requests an 2215 * interrupt when there is space available in the ring. This function is 2216 * called when the driver is unable to post more iocbs to the ring due 2217 * to unavailability of space in the ring. 2218 **/ 2219 static void 2220 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2221 { 2222 int ringno = pring->ringno; 2223 2224 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2225 2226 wmb(); 2227 2228 /* 2229 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2230 * The HBA will tell us when an IOCB entry is available. 2231 */ 2232 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2233 readl(phba->CAregaddr); /* flush */ 2234 2235 pring->stats.iocb_cmd_full++; 2236 } 2237 2238 /** 2239 * lpfc_sli_update_ring - Update chip attention register 2240 * @phba: Pointer to HBA context object. 2241 * @pring: Pointer to driver SLI ring object. 2242 * 2243 * This function updates the chip attention register bit for the 2244 * given ring to inform HBA that there is more work to be done 2245 * in this ring. The caller is not required to hold any lock. 2246 **/ 2247 static void 2248 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2249 { 2250 int ringno = pring->ringno; 2251 2252 /* 2253 * Tell the HBA that there is work to do in this ring. 2254 */ 2255 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2256 wmb(); 2257 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2258 readl(phba->CAregaddr); /* flush */ 2259 } 2260 } 2261 2262 /** 2263 * lpfc_sli_resume_iocb - Process iocbs in the txq 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function is called with hbalock held to post pending iocbs 2268 * in the txq to the firmware. This function is called when driver 2269 * detects space available in the ring. 2270 **/ 2271 static void 2272 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 IOCB_t *iocb; 2275 struct lpfc_iocbq *nextiocb; 2276 2277 lockdep_assert_held(&phba->hbalock); 2278 2279 /* 2280 * Check to see if: 2281 * (a) there is anything on the txq to send 2282 * (b) link is up 2283 * (c) link attention events can be processed (fcp ring only) 2284 * (d) IOCB processing is not blocked by the outstanding mbox command. 2285 */ 2286 2287 if (lpfc_is_link_up(phba) && 2288 (!list_empty(&pring->txq)) && 2289 (pring->ringno != LPFC_FCP_RING || 2290 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2291 2292 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2293 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2294 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2295 2296 if (iocb) 2297 lpfc_sli_update_ring(phba, pring); 2298 else 2299 lpfc_sli_update_full_ring(phba, pring); 2300 } 2301 2302 return; 2303 } 2304 2305 /** 2306 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2307 * @phba: Pointer to HBA context object. 2308 * @hbqno: HBQ number. 2309 * 2310 * This function is called with hbalock held to get the next 2311 * available slot for the given HBQ. If there is free slot 2312 * available for the HBQ it will return pointer to the next available 2313 * HBQ entry else it will return NULL. 2314 **/ 2315 static struct lpfc_hbq_entry * 2316 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2317 { 2318 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2319 2320 lockdep_assert_held(&phba->hbalock); 2321 2322 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2323 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2324 hbqp->next_hbqPutIdx = 0; 2325 2326 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2327 uint32_t raw_index = phba->hbq_get[hbqno]; 2328 uint32_t getidx = le32_to_cpu(raw_index); 2329 2330 hbqp->local_hbqGetIdx = getidx; 2331 2332 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2334 "1802 HBQ %d: local_hbqGetIdx " 2335 "%u is > than hbqp->entry_count %u\n", 2336 hbqno, hbqp->local_hbqGetIdx, 2337 hbqp->entry_count); 2338 2339 phba->link_state = LPFC_HBA_ERROR; 2340 return NULL; 2341 } 2342 2343 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2344 return NULL; 2345 } 2346 2347 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2348 hbqp->hbqPutIdx; 2349 } 2350 2351 /** 2352 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2353 * @phba: Pointer to HBA context object. 2354 * 2355 * This function is called with no lock held to free all the 2356 * hbq buffers while uninitializing the SLI interface. It also 2357 * frees the HBQ buffers returned by the firmware but not yet 2358 * processed by the upper layers. 2359 **/ 2360 void 2361 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2362 { 2363 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2364 struct hbq_dmabuf *hbq_buf; 2365 unsigned long flags; 2366 int i, hbq_count; 2367 2368 hbq_count = lpfc_sli_hbq_count(); 2369 /* Return all memory used by all HBQs */ 2370 spin_lock_irqsave(&phba->hbalock, flags); 2371 for (i = 0; i < hbq_count; ++i) { 2372 list_for_each_entry_safe(dmabuf, next_dmabuf, 2373 &phba->hbqs[i].hbq_buffer_list, list) { 2374 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2375 list_del(&hbq_buf->dbuf.list); 2376 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2377 } 2378 phba->hbqs[i].buffer_count = 0; 2379 } 2380 2381 /* Mark the HBQs not in use */ 2382 phba->hbq_in_use = 0; 2383 spin_unlock_irqrestore(&phba->hbalock, flags); 2384 } 2385 2386 /** 2387 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2388 * @phba: Pointer to HBA context object. 2389 * @hbqno: HBQ number. 2390 * @hbq_buf: Pointer to HBQ buffer. 2391 * 2392 * This function is called with the hbalock held to post a 2393 * hbq buffer to the firmware. If the function finds an empty 2394 * slot in the HBQ, it will post the buffer. The function will return 2395 * pointer to the hbq entry if it successfully post the buffer 2396 * else it will return NULL. 2397 **/ 2398 static int 2399 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2400 struct hbq_dmabuf *hbq_buf) 2401 { 2402 lockdep_assert_held(&phba->hbalock); 2403 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2404 } 2405 2406 /** 2407 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2408 * @phba: Pointer to HBA context object. 2409 * @hbqno: HBQ number. 2410 * @hbq_buf: Pointer to HBQ buffer. 2411 * 2412 * This function is called with the hbalock held to post a hbq buffer to the 2413 * firmware. If the function finds an empty slot in the HBQ, it will post the 2414 * buffer and place it on the hbq_buffer_list. The function will return zero if 2415 * it successfully post the buffer else it will return an error. 2416 **/ 2417 static int 2418 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2419 struct hbq_dmabuf *hbq_buf) 2420 { 2421 struct lpfc_hbq_entry *hbqe; 2422 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2423 2424 lockdep_assert_held(&phba->hbalock); 2425 /* Get next HBQ entry slot to use */ 2426 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2427 if (hbqe) { 2428 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2429 2430 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2431 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2432 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2433 hbqe->bde.tus.f.bdeFlags = 0; 2434 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2435 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2436 /* Sync SLIM */ 2437 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2438 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2439 /* flush */ 2440 readl(phba->hbq_put + hbqno); 2441 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2442 return 0; 2443 } else 2444 return -ENOMEM; 2445 } 2446 2447 /** 2448 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2449 * @phba: Pointer to HBA context object. 2450 * @hbqno: HBQ number. 2451 * @hbq_buf: Pointer to HBQ buffer. 2452 * 2453 * This function is called with the hbalock held to post an RQE to the SLI4 2454 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2455 * the hbq_buffer_list and return zero, otherwise it will return an error. 2456 **/ 2457 static int 2458 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2459 struct hbq_dmabuf *hbq_buf) 2460 { 2461 int rc; 2462 struct lpfc_rqe hrqe; 2463 struct lpfc_rqe drqe; 2464 struct lpfc_queue *hrq; 2465 struct lpfc_queue *drq; 2466 2467 if (hbqno != LPFC_ELS_HBQ) 2468 return 1; 2469 hrq = phba->sli4_hba.hdr_rq; 2470 drq = phba->sli4_hba.dat_rq; 2471 2472 lockdep_assert_held(&phba->hbalock); 2473 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2474 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2475 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2476 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2477 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2478 if (rc < 0) 2479 return rc; 2480 hbq_buf->tag = (rc | (hbqno << 16)); 2481 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2482 return 0; 2483 } 2484 2485 /* HBQ for ELS and CT traffic. */ 2486 static struct lpfc_hbq_init lpfc_els_hbq = { 2487 .rn = 1, 2488 .entry_count = 256, 2489 .mask_count = 0, 2490 .profile = 0, 2491 .ring_mask = (1 << LPFC_ELS_RING), 2492 .buffer_count = 0, 2493 .init_count = 40, 2494 .add_count = 40, 2495 }; 2496 2497 /* Array of HBQs */ 2498 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2499 &lpfc_els_hbq, 2500 }; 2501 2502 /** 2503 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2504 * @phba: Pointer to HBA context object. 2505 * @hbqno: HBQ number. 2506 * @count: Number of HBQ buffers to be posted. 2507 * 2508 * This function is called with no lock held to post more hbq buffers to the 2509 * given HBQ. The function returns the number of HBQ buffers successfully 2510 * posted. 2511 **/ 2512 static int 2513 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2514 { 2515 uint32_t i, posted = 0; 2516 unsigned long flags; 2517 struct hbq_dmabuf *hbq_buffer; 2518 LIST_HEAD(hbq_buf_list); 2519 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2520 return 0; 2521 2522 if ((phba->hbqs[hbqno].buffer_count + count) > 2523 lpfc_hbq_defs[hbqno]->entry_count) 2524 count = lpfc_hbq_defs[hbqno]->entry_count - 2525 phba->hbqs[hbqno].buffer_count; 2526 if (!count) 2527 return 0; 2528 /* Allocate HBQ entries */ 2529 for (i = 0; i < count; i++) { 2530 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2531 if (!hbq_buffer) 2532 break; 2533 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2534 } 2535 /* Check whether HBQ is still in use */ 2536 spin_lock_irqsave(&phba->hbalock, flags); 2537 if (!phba->hbq_in_use) 2538 goto err; 2539 while (!list_empty(&hbq_buf_list)) { 2540 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2541 dbuf.list); 2542 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2543 (hbqno << 16)); 2544 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2545 phba->hbqs[hbqno].buffer_count++; 2546 posted++; 2547 } else 2548 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2549 } 2550 spin_unlock_irqrestore(&phba->hbalock, flags); 2551 return posted; 2552 err: 2553 spin_unlock_irqrestore(&phba->hbalock, flags); 2554 while (!list_empty(&hbq_buf_list)) { 2555 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2556 dbuf.list); 2557 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2558 } 2559 return 0; 2560 } 2561 2562 /** 2563 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2564 * @phba: Pointer to HBA context object. 2565 * @qno: HBQ number. 2566 * 2567 * This function posts more buffers to the HBQ. This function 2568 * is called with no lock held. The function returns the number of HBQ entries 2569 * successfully allocated. 2570 **/ 2571 int 2572 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2573 { 2574 if (phba->sli_rev == LPFC_SLI_REV4) 2575 return 0; 2576 else 2577 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2578 lpfc_hbq_defs[qno]->add_count); 2579 } 2580 2581 /** 2582 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2583 * @phba: Pointer to HBA context object. 2584 * @qno: HBQ queue number. 2585 * 2586 * This function is called from SLI initialization code path with 2587 * no lock held to post initial HBQ buffers to firmware. The 2588 * function returns the number of HBQ entries successfully allocated. 2589 **/ 2590 static int 2591 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2592 { 2593 if (phba->sli_rev == LPFC_SLI_REV4) 2594 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2595 lpfc_hbq_defs[qno]->entry_count); 2596 else 2597 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2598 lpfc_hbq_defs[qno]->init_count); 2599 } 2600 2601 /* 2602 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2603 * 2604 * This function removes the first hbq buffer on an hbq list and returns a 2605 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2606 **/ 2607 static struct hbq_dmabuf * 2608 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2609 { 2610 struct lpfc_dmabuf *d_buf; 2611 2612 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2613 if (!d_buf) 2614 return NULL; 2615 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2616 } 2617 2618 /** 2619 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2620 * @phba: Pointer to HBA context object. 2621 * @hrq: HBQ number. 2622 * 2623 * This function removes the first RQ buffer on an RQ buffer list and returns a 2624 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2625 **/ 2626 static struct rqb_dmabuf * 2627 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2628 { 2629 struct lpfc_dmabuf *h_buf; 2630 struct lpfc_rqb *rqbp; 2631 2632 rqbp = hrq->rqbp; 2633 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2634 struct lpfc_dmabuf, list); 2635 if (!h_buf) 2636 return NULL; 2637 rqbp->buffer_count--; 2638 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2639 } 2640 2641 /** 2642 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2643 * @phba: Pointer to HBA context object. 2644 * @tag: Tag of the hbq buffer. 2645 * 2646 * This function searches for the hbq buffer associated with the given tag in 2647 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2648 * otherwise it returns NULL. 2649 **/ 2650 static struct hbq_dmabuf * 2651 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2652 { 2653 struct lpfc_dmabuf *d_buf; 2654 struct hbq_dmabuf *hbq_buf; 2655 uint32_t hbqno; 2656 2657 hbqno = tag >> 16; 2658 if (hbqno >= LPFC_MAX_HBQS) 2659 return NULL; 2660 2661 spin_lock_irq(&phba->hbalock); 2662 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2663 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2664 if (hbq_buf->tag == tag) { 2665 spin_unlock_irq(&phba->hbalock); 2666 return hbq_buf; 2667 } 2668 } 2669 spin_unlock_irq(&phba->hbalock); 2670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2671 "1803 Bad hbq tag. Data: x%x x%x\n", 2672 tag, phba->hbqs[tag >> 16].buffer_count); 2673 return NULL; 2674 } 2675 2676 /** 2677 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2678 * @phba: Pointer to HBA context object. 2679 * @hbq_buffer: Pointer to HBQ buffer. 2680 * 2681 * This function is called with hbalock. This function gives back 2682 * the hbq buffer to firmware. If the HBQ does not have space to 2683 * post the buffer, it will free the buffer. 2684 **/ 2685 void 2686 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2687 { 2688 uint32_t hbqno; 2689 2690 if (hbq_buffer) { 2691 hbqno = hbq_buffer->tag >> 16; 2692 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2693 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2694 } 2695 } 2696 2697 /** 2698 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2699 * @mbxCommand: mailbox command code. 2700 * 2701 * This function is called by the mailbox event handler function to verify 2702 * that the completed mailbox command is a legitimate mailbox command. If the 2703 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2704 * and the mailbox event handler will take the HBA offline. 2705 **/ 2706 static int 2707 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2708 { 2709 uint8_t ret; 2710 2711 switch (mbxCommand) { 2712 case MBX_LOAD_SM: 2713 case MBX_READ_NV: 2714 case MBX_WRITE_NV: 2715 case MBX_WRITE_VPARMS: 2716 case MBX_RUN_BIU_DIAG: 2717 case MBX_INIT_LINK: 2718 case MBX_DOWN_LINK: 2719 case MBX_CONFIG_LINK: 2720 case MBX_CONFIG_RING: 2721 case MBX_RESET_RING: 2722 case MBX_READ_CONFIG: 2723 case MBX_READ_RCONFIG: 2724 case MBX_READ_SPARM: 2725 case MBX_READ_STATUS: 2726 case MBX_READ_RPI: 2727 case MBX_READ_XRI: 2728 case MBX_READ_REV: 2729 case MBX_READ_LNK_STAT: 2730 case MBX_REG_LOGIN: 2731 case MBX_UNREG_LOGIN: 2732 case MBX_CLEAR_LA: 2733 case MBX_DUMP_MEMORY: 2734 case MBX_DUMP_CONTEXT: 2735 case MBX_RUN_DIAGS: 2736 case MBX_RESTART: 2737 case MBX_UPDATE_CFG: 2738 case MBX_DOWN_LOAD: 2739 case MBX_DEL_LD_ENTRY: 2740 case MBX_RUN_PROGRAM: 2741 case MBX_SET_MASK: 2742 case MBX_SET_VARIABLE: 2743 case MBX_UNREG_D_ID: 2744 case MBX_KILL_BOARD: 2745 case MBX_CONFIG_FARP: 2746 case MBX_BEACON: 2747 case MBX_LOAD_AREA: 2748 case MBX_RUN_BIU_DIAG64: 2749 case MBX_CONFIG_PORT: 2750 case MBX_READ_SPARM64: 2751 case MBX_READ_RPI64: 2752 case MBX_REG_LOGIN64: 2753 case MBX_READ_TOPOLOGY: 2754 case MBX_WRITE_WWN: 2755 case MBX_SET_DEBUG: 2756 case MBX_LOAD_EXP_ROM: 2757 case MBX_ASYNCEVT_ENABLE: 2758 case MBX_REG_VPI: 2759 case MBX_UNREG_VPI: 2760 case MBX_HEARTBEAT: 2761 case MBX_PORT_CAPABILITIES: 2762 case MBX_PORT_IOV_CONTROL: 2763 case MBX_SLI4_CONFIG: 2764 case MBX_SLI4_REQ_FTRS: 2765 case MBX_REG_FCFI: 2766 case MBX_UNREG_FCFI: 2767 case MBX_REG_VFI: 2768 case MBX_UNREG_VFI: 2769 case MBX_INIT_VPI: 2770 case MBX_INIT_VFI: 2771 case MBX_RESUME_RPI: 2772 case MBX_READ_EVENT_LOG_STATUS: 2773 case MBX_READ_EVENT_LOG: 2774 case MBX_SECURITY_MGMT: 2775 case MBX_AUTH_PORT: 2776 case MBX_ACCESS_VDATA: 2777 ret = mbxCommand; 2778 break; 2779 default: 2780 ret = MBX_SHUTDOWN; 2781 break; 2782 } 2783 return ret; 2784 } 2785 2786 /** 2787 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2788 * @phba: Pointer to HBA context object. 2789 * @pmboxq: Pointer to mailbox command. 2790 * 2791 * This is completion handler function for mailbox commands issued from 2792 * lpfc_sli_issue_mbox_wait function. This function is called by the 2793 * mailbox event handler function with no lock held. This function 2794 * will wake up thread waiting on the wait queue pointed by context1 2795 * of the mailbox. 2796 **/ 2797 void 2798 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2799 { 2800 unsigned long drvr_flag; 2801 struct completion *pmbox_done; 2802 2803 /* 2804 * If pmbox_done is empty, the driver thread gave up waiting and 2805 * continued running. 2806 */ 2807 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2808 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2809 pmbox_done = (struct completion *)pmboxq->context3; 2810 if (pmbox_done) 2811 complete(pmbox_done); 2812 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2813 return; 2814 } 2815 2816 static void 2817 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2818 { 2819 unsigned long iflags; 2820 2821 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2822 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2823 spin_lock_irqsave(&ndlp->lock, iflags); 2824 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2825 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2826 spin_unlock_irqrestore(&ndlp->lock, iflags); 2827 } 2828 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2829 } 2830 2831 /** 2832 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2833 * @phba: Pointer to HBA context object. 2834 * @pmb: Pointer to mailbox object. 2835 * 2836 * This function is the default mailbox completion handler. It 2837 * frees the memory resources associated with the completed mailbox 2838 * command. If the completed command is a REG_LOGIN mailbox command, 2839 * this function will issue a UREG_LOGIN to re-claim the RPI. 2840 **/ 2841 void 2842 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2843 { 2844 struct lpfc_vport *vport = pmb->vport; 2845 struct lpfc_dmabuf *mp; 2846 struct lpfc_nodelist *ndlp; 2847 struct Scsi_Host *shost; 2848 uint16_t rpi, vpi; 2849 int rc; 2850 2851 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2852 2853 if (mp) { 2854 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2855 kfree(mp); 2856 } 2857 2858 /* 2859 * If a REG_LOGIN succeeded after node is destroyed or node 2860 * is in re-discovery driver need to cleanup the RPI. 2861 */ 2862 if (!(phba->pport->load_flag & FC_UNLOADING) && 2863 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2864 !pmb->u.mb.mbxStatus) { 2865 rpi = pmb->u.mb.un.varWords[0]; 2866 vpi = pmb->u.mb.un.varRegLogin.vpi; 2867 if (phba->sli_rev == LPFC_SLI_REV4) 2868 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2869 lpfc_unreg_login(phba, vpi, rpi, pmb); 2870 pmb->vport = vport; 2871 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2872 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2873 if (rc != MBX_NOT_FINISHED) 2874 return; 2875 } 2876 2877 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2878 !(phba->pport->load_flag & FC_UNLOADING) && 2879 !pmb->u.mb.mbxStatus) { 2880 shost = lpfc_shost_from_vport(vport); 2881 spin_lock_irq(shost->host_lock); 2882 vport->vpi_state |= LPFC_VPI_REGISTERED; 2883 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2884 spin_unlock_irq(shost->host_lock); 2885 } 2886 2887 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2888 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2889 lpfc_nlp_put(ndlp); 2890 pmb->ctx_buf = NULL; 2891 pmb->ctx_ndlp = NULL; 2892 } 2893 2894 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2895 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2896 2897 /* Check to see if there are any deferred events to process */ 2898 if (ndlp) { 2899 lpfc_printf_vlog( 2900 vport, 2901 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2902 "1438 UNREG cmpl deferred mbox x%x " 2903 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2904 ndlp->nlp_rpi, ndlp->nlp_DID, 2905 ndlp->nlp_flag, ndlp->nlp_defer_did, 2906 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2907 2908 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2909 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2910 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2911 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2912 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2913 } else { 2914 __lpfc_sli_rpi_release(vport, ndlp); 2915 } 2916 2917 /* The unreg_login mailbox is complete and had a 2918 * reference that has to be released. The PLOGI 2919 * got its own ref. 2920 */ 2921 lpfc_nlp_put(ndlp); 2922 pmb->ctx_ndlp = NULL; 2923 } 2924 } 2925 2926 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2927 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2928 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2929 lpfc_nlp_put(ndlp); 2930 } 2931 2932 /* Check security permission status on INIT_LINK mailbox command */ 2933 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2934 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2936 "2860 SLI authentication is required " 2937 "for INIT_LINK but has not done yet\n"); 2938 2939 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2940 lpfc_sli4_mbox_cmd_free(phba, pmb); 2941 else 2942 mempool_free(pmb, phba->mbox_mem_pool); 2943 } 2944 /** 2945 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2946 * @phba: Pointer to HBA context object. 2947 * @pmb: Pointer to mailbox object. 2948 * 2949 * This function is the unreg rpi mailbox completion handler. It 2950 * frees the memory resources associated with the completed mailbox 2951 * command. An additional reference is put on the ndlp to prevent 2952 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2953 * the unreg mailbox command completes, this routine puts the 2954 * reference back. 2955 * 2956 **/ 2957 void 2958 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2959 { 2960 struct lpfc_vport *vport = pmb->vport; 2961 struct lpfc_nodelist *ndlp; 2962 2963 ndlp = pmb->ctx_ndlp; 2964 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2965 if (phba->sli_rev == LPFC_SLI_REV4 && 2966 (bf_get(lpfc_sli_intf_if_type, 2967 &phba->sli4_hba.sli_intf) >= 2968 LPFC_SLI_INTF_IF_TYPE_2)) { 2969 if (ndlp) { 2970 lpfc_printf_vlog( 2971 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2972 "0010 UNREG_LOGIN vpi:%x " 2973 "rpi:%x DID:%x defer x%x flg x%x " 2974 "x%px\n", 2975 vport->vpi, ndlp->nlp_rpi, 2976 ndlp->nlp_DID, ndlp->nlp_defer_did, 2977 ndlp->nlp_flag, 2978 ndlp); 2979 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2980 2981 /* Check to see if there are any deferred 2982 * events to process 2983 */ 2984 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2985 (ndlp->nlp_defer_did != 2986 NLP_EVT_NOTHING_PENDING)) { 2987 lpfc_printf_vlog( 2988 vport, KERN_INFO, LOG_DISCOVERY, 2989 "4111 UNREG cmpl deferred " 2990 "clr x%x on " 2991 "NPort x%x Data: x%x x%px\n", 2992 ndlp->nlp_rpi, ndlp->nlp_DID, 2993 ndlp->nlp_defer_did, ndlp); 2994 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2995 ndlp->nlp_defer_did = 2996 NLP_EVT_NOTHING_PENDING; 2997 lpfc_issue_els_plogi( 2998 vport, ndlp->nlp_DID, 0); 2999 } else { 3000 __lpfc_sli_rpi_release(vport, ndlp); 3001 } 3002 lpfc_nlp_put(ndlp); 3003 } 3004 } 3005 } 3006 3007 mempool_free(pmb, phba->mbox_mem_pool); 3008 } 3009 3010 /** 3011 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3012 * @phba: Pointer to HBA context object. 3013 * 3014 * This function is called with no lock held. This function processes all 3015 * the completed mailbox commands and gives it to upper layers. The interrupt 3016 * service routine processes mailbox completion interrupt and adds completed 3017 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3018 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3019 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3020 * function returns the mailbox commands to the upper layer by calling the 3021 * completion handler function of each mailbox. 3022 **/ 3023 int 3024 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3025 { 3026 MAILBOX_t *pmbox; 3027 LPFC_MBOXQ_t *pmb; 3028 int rc; 3029 LIST_HEAD(cmplq); 3030 3031 phba->sli.slistat.mbox_event++; 3032 3033 /* Get all completed mailboxe buffers into the cmplq */ 3034 spin_lock_irq(&phba->hbalock); 3035 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3036 spin_unlock_irq(&phba->hbalock); 3037 3038 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3039 do { 3040 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3041 if (pmb == NULL) 3042 break; 3043 3044 pmbox = &pmb->u.mb; 3045 3046 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3047 if (pmb->vport) { 3048 lpfc_debugfs_disc_trc(pmb->vport, 3049 LPFC_DISC_TRC_MBOX_VPORT, 3050 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3051 (uint32_t)pmbox->mbxCommand, 3052 pmbox->un.varWords[0], 3053 pmbox->un.varWords[1]); 3054 } 3055 else { 3056 lpfc_debugfs_disc_trc(phba->pport, 3057 LPFC_DISC_TRC_MBOX, 3058 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3059 (uint32_t)pmbox->mbxCommand, 3060 pmbox->un.varWords[0], 3061 pmbox->un.varWords[1]); 3062 } 3063 } 3064 3065 /* 3066 * It is a fatal error if unknown mbox command completion. 3067 */ 3068 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3069 MBX_SHUTDOWN) { 3070 /* Unknown mailbox command compl */ 3071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3072 "(%d):0323 Unknown Mailbox command " 3073 "x%x (x%x/x%x) Cmpl\n", 3074 pmb->vport ? pmb->vport->vpi : 3075 LPFC_VPORT_UNKNOWN, 3076 pmbox->mbxCommand, 3077 lpfc_sli_config_mbox_subsys_get(phba, 3078 pmb), 3079 lpfc_sli_config_mbox_opcode_get(phba, 3080 pmb)); 3081 phba->link_state = LPFC_HBA_ERROR; 3082 phba->work_hs = HS_FFER3; 3083 lpfc_handle_eratt(phba); 3084 continue; 3085 } 3086 3087 if (pmbox->mbxStatus) { 3088 phba->sli.slistat.mbox_stat_err++; 3089 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3090 /* Mbox cmd cmpl error - RETRYing */ 3091 lpfc_printf_log(phba, KERN_INFO, 3092 LOG_MBOX | LOG_SLI, 3093 "(%d):0305 Mbox cmd cmpl " 3094 "error - RETRYing Data: x%x " 3095 "(x%x/x%x) x%x x%x x%x\n", 3096 pmb->vport ? pmb->vport->vpi : 3097 LPFC_VPORT_UNKNOWN, 3098 pmbox->mbxCommand, 3099 lpfc_sli_config_mbox_subsys_get(phba, 3100 pmb), 3101 lpfc_sli_config_mbox_opcode_get(phba, 3102 pmb), 3103 pmbox->mbxStatus, 3104 pmbox->un.varWords[0], 3105 pmb->vport ? pmb->vport->port_state : 3106 LPFC_VPORT_UNKNOWN); 3107 pmbox->mbxStatus = 0; 3108 pmbox->mbxOwner = OWN_HOST; 3109 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3110 if (rc != MBX_NOT_FINISHED) 3111 continue; 3112 } 3113 } 3114 3115 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3116 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3117 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3118 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3119 "x%x x%x x%x\n", 3120 pmb->vport ? pmb->vport->vpi : 0, 3121 pmbox->mbxCommand, 3122 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3123 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3124 pmb->mbox_cmpl, 3125 *((uint32_t *) pmbox), 3126 pmbox->un.varWords[0], 3127 pmbox->un.varWords[1], 3128 pmbox->un.varWords[2], 3129 pmbox->un.varWords[3], 3130 pmbox->un.varWords[4], 3131 pmbox->un.varWords[5], 3132 pmbox->un.varWords[6], 3133 pmbox->un.varWords[7], 3134 pmbox->un.varWords[8], 3135 pmbox->un.varWords[9], 3136 pmbox->un.varWords[10]); 3137 3138 if (pmb->mbox_cmpl) 3139 pmb->mbox_cmpl(phba,pmb); 3140 } while (1); 3141 return 0; 3142 } 3143 3144 /** 3145 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3146 * @phba: Pointer to HBA context object. 3147 * @pring: Pointer to driver SLI ring object. 3148 * @tag: buffer tag. 3149 * 3150 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3151 * is set in the tag the buffer is posted for a particular exchange, 3152 * the function will return the buffer without replacing the buffer. 3153 * If the buffer is for unsolicited ELS or CT traffic, this function 3154 * returns the buffer and also posts another buffer to the firmware. 3155 **/ 3156 static struct lpfc_dmabuf * 3157 lpfc_sli_get_buff(struct lpfc_hba *phba, 3158 struct lpfc_sli_ring *pring, 3159 uint32_t tag) 3160 { 3161 struct hbq_dmabuf *hbq_entry; 3162 3163 if (tag & QUE_BUFTAG_BIT) 3164 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3165 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3166 if (!hbq_entry) 3167 return NULL; 3168 return &hbq_entry->dbuf; 3169 } 3170 3171 /** 3172 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3173 * containing a NVME LS request. 3174 * @phba: pointer to lpfc hba data structure. 3175 * @piocb: pointer to the iocbq struct representing the sequence starting 3176 * frame. 3177 * 3178 * This routine initially validates the NVME LS, validates there is a login 3179 * with the port that sent the LS, and then calls the appropriate nvme host 3180 * or target LS request handler. 3181 **/ 3182 static void 3183 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3184 { 3185 struct lpfc_nodelist *ndlp; 3186 struct lpfc_dmabuf *d_buf; 3187 struct hbq_dmabuf *nvmebuf; 3188 struct fc_frame_header *fc_hdr; 3189 struct lpfc_async_xchg_ctx *axchg = NULL; 3190 char *failwhy = NULL; 3191 uint32_t oxid, sid, did, fctl, size; 3192 int ret = 1; 3193 3194 d_buf = piocb->context2; 3195 3196 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3197 fc_hdr = nvmebuf->hbuf.virt; 3198 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3199 sid = sli4_sid_from_fc_hdr(fc_hdr); 3200 did = sli4_did_from_fc_hdr(fc_hdr); 3201 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3202 fc_hdr->fh_f_ctl[1] << 8 | 3203 fc_hdr->fh_f_ctl[2]); 3204 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3205 3206 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3207 oxid, size, sid); 3208 3209 if (phba->pport->load_flag & FC_UNLOADING) { 3210 failwhy = "Driver Unloading"; 3211 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3212 failwhy = "NVME FC4 Disabled"; 3213 } else if (!phba->nvmet_support && !phba->pport->localport) { 3214 failwhy = "No Localport"; 3215 } else if (phba->nvmet_support && !phba->targetport) { 3216 failwhy = "No Targetport"; 3217 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3218 failwhy = "Bad NVME LS R_CTL"; 3219 } else if (unlikely((fctl & 0x00FF0000) != 3220 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3221 failwhy = "Bad NVME LS F_CTL"; 3222 } else { 3223 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3224 if (!axchg) 3225 failwhy = "No CTX memory"; 3226 } 3227 3228 if (unlikely(failwhy)) { 3229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3230 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3231 sid, oxid, failwhy); 3232 goto out_fail; 3233 } 3234 3235 /* validate the source of the LS is logged in */ 3236 ndlp = lpfc_findnode_did(phba->pport, sid); 3237 if (!ndlp || 3238 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3239 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3240 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3241 "6216 NVME Unsol rcv: No ndlp: " 3242 "NPort_ID x%x oxid x%x\n", 3243 sid, oxid); 3244 goto out_fail; 3245 } 3246 3247 axchg->phba = phba; 3248 axchg->ndlp = ndlp; 3249 axchg->size = size; 3250 axchg->oxid = oxid; 3251 axchg->sid = sid; 3252 axchg->wqeq = NULL; 3253 axchg->state = LPFC_NVME_STE_LS_RCV; 3254 axchg->entry_cnt = 1; 3255 axchg->rqb_buffer = (void *)nvmebuf; 3256 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3257 axchg->payload = nvmebuf->dbuf.virt; 3258 INIT_LIST_HEAD(&axchg->list); 3259 3260 if (phba->nvmet_support) { 3261 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3262 spin_lock_irq(&ndlp->lock); 3263 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3264 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3265 spin_unlock_irq(&ndlp->lock); 3266 3267 /* This reference is a single occurrence to hold the 3268 * node valid until the nvmet transport calls 3269 * host_release. 3270 */ 3271 if (!lpfc_nlp_get(ndlp)) 3272 goto out_fail; 3273 3274 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3275 "6206 NVMET unsol ls_req ndlp x%px " 3276 "DID x%x xflags x%x refcnt %d\n", 3277 ndlp, ndlp->nlp_DID, 3278 ndlp->fc4_xpt_flags, 3279 kref_read(&ndlp->kref)); 3280 } else { 3281 spin_unlock_irq(&ndlp->lock); 3282 } 3283 } else { 3284 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3285 } 3286 3287 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3288 if (!ret) 3289 return; 3290 3291 out_fail: 3292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3293 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3294 "NVMe%s handler failed %d\n", 3295 did, sid, oxid, 3296 (phba->nvmet_support) ? "T" : "I", ret); 3297 3298 /* recycle receive buffer */ 3299 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3300 3301 /* If start of new exchange, abort it */ 3302 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3303 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3304 3305 if (ret) 3306 kfree(axchg); 3307 } 3308 3309 /** 3310 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3311 * @phba: Pointer to HBA context object. 3312 * @pring: Pointer to driver SLI ring object. 3313 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3314 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3315 * @fch_type: the type for the first frame of the sequence. 3316 * 3317 * This function is called with no lock held. This function uses the r_ctl and 3318 * type of the received sequence to find the correct callback function to call 3319 * to process the sequence. 3320 **/ 3321 static int 3322 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3323 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3324 uint32_t fch_type) 3325 { 3326 int i; 3327 3328 switch (fch_type) { 3329 case FC_TYPE_NVME: 3330 lpfc_nvme_unsol_ls_handler(phba, saveq); 3331 return 1; 3332 default: 3333 break; 3334 } 3335 3336 /* unSolicited Responses */ 3337 if (pring->prt[0].profile) { 3338 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3339 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3340 saveq); 3341 return 1; 3342 } 3343 /* We must search, based on rctl / type 3344 for the right routine */ 3345 for (i = 0; i < pring->num_mask; i++) { 3346 if ((pring->prt[i].rctl == fch_r_ctl) && 3347 (pring->prt[i].type == fch_type)) { 3348 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3349 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3350 (phba, pring, saveq); 3351 return 1; 3352 } 3353 } 3354 return 0; 3355 } 3356 3357 static void 3358 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3359 struct lpfc_iocbq *saveq) 3360 { 3361 IOCB_t *irsp; 3362 union lpfc_wqe128 *wqe; 3363 u16 i = 0; 3364 3365 irsp = &saveq->iocb; 3366 wqe = &saveq->wqe; 3367 3368 /* Fill wcqe with the IOCB status fields */ 3369 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3370 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3371 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3372 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3373 3374 /* Source ID */ 3375 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3376 3377 /* rx-id of the response frame */ 3378 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3379 3380 /* ox-id of the frame */ 3381 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3382 irsp->unsli3.rcvsli3.ox_id); 3383 3384 /* DID */ 3385 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3386 irsp->un.rcvels.remoteID); 3387 3388 /* unsol data len */ 3389 for (i = 0; i < irsp->ulpBdeCount; i++) { 3390 struct lpfc_hbq_entry *hbqe = NULL; 3391 3392 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3393 if (i == 0) { 3394 hbqe = (struct lpfc_hbq_entry *) 3395 &irsp->un.ulpWord[0]; 3396 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3397 hbqe->bde.tus.f.bdeSize; 3398 } else if (i == 1) { 3399 hbqe = (struct lpfc_hbq_entry *) 3400 &irsp->unsli3.sli3Words[4]; 3401 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3402 } 3403 } 3404 } 3405 } 3406 3407 /** 3408 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3409 * @phba: Pointer to HBA context object. 3410 * @pring: Pointer to driver SLI ring object. 3411 * @saveq: Pointer to the unsolicited iocb. 3412 * 3413 * This function is called with no lock held by the ring event handler 3414 * when there is an unsolicited iocb posted to the response ring by the 3415 * firmware. This function gets the buffer associated with the iocbs 3416 * and calls the event handler for the ring. This function handles both 3417 * qring buffers and hbq buffers. 3418 * When the function returns 1 the caller can free the iocb object otherwise 3419 * upper layer functions will free the iocb objects. 3420 **/ 3421 static int 3422 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3423 struct lpfc_iocbq *saveq) 3424 { 3425 IOCB_t * irsp; 3426 WORD5 * w5p; 3427 dma_addr_t paddr; 3428 uint32_t Rctl, Type; 3429 struct lpfc_iocbq *iocbq; 3430 struct lpfc_dmabuf *dmzbuf; 3431 3432 irsp = &saveq->iocb; 3433 saveq->vport = phba->pport; 3434 3435 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3436 if (pring->lpfc_sli_rcv_async_status) 3437 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3438 else 3439 lpfc_printf_log(phba, 3440 KERN_WARNING, 3441 LOG_SLI, 3442 "0316 Ring %d handler: unexpected " 3443 "ASYNC_STATUS iocb received evt_code " 3444 "0x%x\n", 3445 pring->ringno, 3446 irsp->un.asyncstat.evt_code); 3447 return 1; 3448 } 3449 3450 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3451 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3452 if (irsp->ulpBdeCount > 0) { 3453 dmzbuf = lpfc_sli_get_buff(phba, pring, 3454 irsp->un.ulpWord[3]); 3455 lpfc_in_buf_free(phba, dmzbuf); 3456 } 3457 3458 if (irsp->ulpBdeCount > 1) { 3459 dmzbuf = lpfc_sli_get_buff(phba, pring, 3460 irsp->unsli3.sli3Words[3]); 3461 lpfc_in_buf_free(phba, dmzbuf); 3462 } 3463 3464 if (irsp->ulpBdeCount > 2) { 3465 dmzbuf = lpfc_sli_get_buff(phba, pring, 3466 irsp->unsli3.sli3Words[7]); 3467 lpfc_in_buf_free(phba, dmzbuf); 3468 } 3469 3470 return 1; 3471 } 3472 3473 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3474 if (irsp->ulpBdeCount != 0) { 3475 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3476 irsp->un.ulpWord[3]); 3477 if (!saveq->context2) 3478 lpfc_printf_log(phba, 3479 KERN_ERR, 3480 LOG_SLI, 3481 "0341 Ring %d Cannot find buffer for " 3482 "an unsolicited iocb. tag 0x%x\n", 3483 pring->ringno, 3484 irsp->un.ulpWord[3]); 3485 } 3486 if (irsp->ulpBdeCount == 2) { 3487 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3488 irsp->unsli3.sli3Words[7]); 3489 if (!saveq->context3) 3490 lpfc_printf_log(phba, 3491 KERN_ERR, 3492 LOG_SLI, 3493 "0342 Ring %d Cannot find buffer for an" 3494 " unsolicited iocb. tag 0x%x\n", 3495 pring->ringno, 3496 irsp->unsli3.sli3Words[7]); 3497 } 3498 list_for_each_entry(iocbq, &saveq->list, list) { 3499 irsp = &iocbq->iocb; 3500 if (irsp->ulpBdeCount != 0) { 3501 iocbq->context2 = lpfc_sli_get_buff(phba, 3502 pring, 3503 irsp->un.ulpWord[3]); 3504 if (!iocbq->context2) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0343 Ring %d Cannot find " 3509 "buffer for an unsolicited iocb" 3510 ". tag 0x%x\n", pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 iocbq->context3 = lpfc_sli_get_buff(phba, 3515 pring, 3516 irsp->unsli3.sli3Words[7]); 3517 if (!iocbq->context3) 3518 lpfc_printf_log(phba, 3519 KERN_ERR, 3520 LOG_SLI, 3521 "0344 Ring %d Cannot find " 3522 "buffer for an unsolicited " 3523 "iocb. tag 0x%x\n", 3524 pring->ringno, 3525 irsp->unsli3.sli3Words[7]); 3526 } 3527 } 3528 } else { 3529 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3530 irsp->un.cont64[0].addrLow); 3531 saveq->context2 = lpfc_sli_ringpostbuf_get(phba, pring, 3532 paddr); 3533 if (irsp->ulpBdeCount == 2) { 3534 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3535 irsp->un.cont64[1].addrLow); 3536 saveq->context3 = lpfc_sli_ringpostbuf_get(phba, 3537 pring, 3538 paddr); 3539 } 3540 } 3541 3542 if (irsp->ulpBdeCount != 0 && 3543 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3544 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3545 int found = 0; 3546 3547 /* search continue save q for same XRI */ 3548 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3549 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3550 saveq->iocb.unsli3.rcvsli3.ox_id) { 3551 list_add_tail(&saveq->list, &iocbq->list); 3552 found = 1; 3553 break; 3554 } 3555 } 3556 if (!found) 3557 list_add_tail(&saveq->clist, 3558 &pring->iocb_continue_saveq); 3559 3560 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3561 list_del_init(&iocbq->clist); 3562 saveq = iocbq; 3563 irsp = &saveq->iocb; 3564 } else { 3565 return 0; 3566 } 3567 } 3568 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3569 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3570 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3571 Rctl = FC_RCTL_ELS_REQ; 3572 Type = FC_TYPE_ELS; 3573 } else { 3574 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3575 Rctl = w5p->hcsw.Rctl; 3576 Type = w5p->hcsw.Type; 3577 3578 /* Firmware Workaround */ 3579 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3580 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3581 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3582 Rctl = FC_RCTL_ELS_REQ; 3583 Type = FC_TYPE_ELS; 3584 w5p->hcsw.Rctl = Rctl; 3585 w5p->hcsw.Type = Type; 3586 } 3587 } 3588 3589 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3590 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3591 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3592 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3593 saveq->vport = phba->pport; 3594 else 3595 saveq->vport = lpfc_find_vport_by_vpid(phba, 3596 irsp->unsli3.rcvsli3.vpi); 3597 } 3598 3599 /* Prepare WQE with Unsol frame */ 3600 lpfc_sli_prep_unsol_wqe(phba, saveq); 3601 3602 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3603 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3604 "0313 Ring %d handler: unexpected Rctl x%x " 3605 "Type x%x received\n", 3606 pring->ringno, Rctl, Type); 3607 3608 return 1; 3609 } 3610 3611 /** 3612 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3613 * @phba: Pointer to HBA context object. 3614 * @pring: Pointer to driver SLI ring object. 3615 * @prspiocb: Pointer to response iocb object. 3616 * 3617 * This function looks up the iocb_lookup table to get the command iocb 3618 * corresponding to the given response iocb using the iotag of the 3619 * response iocb. The driver calls this function with the hbalock held 3620 * for SLI3 ports or the ring lock held for SLI4 ports. 3621 * This function returns the command iocb object if it finds the command 3622 * iocb else returns NULL. 3623 **/ 3624 static struct lpfc_iocbq * 3625 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3626 struct lpfc_sli_ring *pring, 3627 struct lpfc_iocbq *prspiocb) 3628 { 3629 struct lpfc_iocbq *cmd_iocb = NULL; 3630 u16 iotag; 3631 3632 if (phba->sli_rev == LPFC_SLI_REV4) 3633 iotag = get_wqe_reqtag(prspiocb); 3634 else 3635 iotag = prspiocb->iocb.ulpIoTag; 3636 3637 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3638 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3639 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3640 /* remove from txcmpl queue list */ 3641 list_del_init(&cmd_iocb->list); 3642 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3643 pring->txcmplq_cnt--; 3644 return cmd_iocb; 3645 } 3646 } 3647 3648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3649 "0317 iotag x%x is out of " 3650 "range: max iotag x%x\n", 3651 iotag, phba->sli.last_iotag); 3652 return NULL; 3653 } 3654 3655 /** 3656 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3657 * @phba: Pointer to HBA context object. 3658 * @pring: Pointer to driver SLI ring object. 3659 * @iotag: IOCB tag. 3660 * 3661 * This function looks up the iocb_lookup table to get the command iocb 3662 * corresponding to the given iotag. The driver calls this function with 3663 * the ring lock held because this function is an SLI4 port only helper. 3664 * This function returns the command iocb object if it finds the command 3665 * iocb else returns NULL. 3666 **/ 3667 static struct lpfc_iocbq * 3668 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3669 struct lpfc_sli_ring *pring, uint16_t iotag) 3670 { 3671 struct lpfc_iocbq *cmd_iocb = NULL; 3672 3673 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3674 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3675 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3676 /* remove from txcmpl queue list */ 3677 list_del_init(&cmd_iocb->list); 3678 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3679 pring->txcmplq_cnt--; 3680 return cmd_iocb; 3681 } 3682 } 3683 3684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3685 "0372 iotag x%x lookup error: max iotag (x%x) " 3686 "cmd_flag x%x\n", 3687 iotag, phba->sli.last_iotag, 3688 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3689 return NULL; 3690 } 3691 3692 /** 3693 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3694 * @phba: Pointer to HBA context object. 3695 * @pring: Pointer to driver SLI ring object. 3696 * @saveq: Pointer to the response iocb to be processed. 3697 * 3698 * This function is called by the ring event handler for non-fcp 3699 * rings when there is a new response iocb in the response ring. 3700 * The caller is not required to hold any locks. This function 3701 * gets the command iocb associated with the response iocb and 3702 * calls the completion handler for the command iocb. If there 3703 * is no completion handler, the function will free the resources 3704 * associated with command iocb. If the response iocb is for 3705 * an already aborted command iocb, the status of the completion 3706 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3707 * This function always returns 1. 3708 **/ 3709 static int 3710 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3711 struct lpfc_iocbq *saveq) 3712 { 3713 struct lpfc_iocbq *cmdiocbp; 3714 int rc = 1; 3715 unsigned long iflag; 3716 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3717 3718 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3719 3720 ulp_command = get_job_cmnd(phba, saveq); 3721 ulp_status = get_job_ulpstatus(phba, saveq); 3722 ulp_word4 = get_job_word4(phba, saveq); 3723 ulp_context = get_job_ulpcontext(phba, saveq); 3724 if (phba->sli_rev == LPFC_SLI_REV4) 3725 iotag = get_wqe_reqtag(saveq); 3726 else 3727 iotag = saveq->iocb.ulpIoTag; 3728 3729 if (cmdiocbp) { 3730 ulp_command = get_job_cmnd(phba, cmdiocbp); 3731 if (cmdiocbp->cmd_cmpl) { 3732 /* 3733 * If an ELS command failed send an event to mgmt 3734 * application. 3735 */ 3736 if (ulp_status && 3737 (pring->ringno == LPFC_ELS_RING) && 3738 (ulp_command == CMD_ELS_REQUEST64_CR)) 3739 lpfc_send_els_failure_event(phba, 3740 cmdiocbp, saveq); 3741 3742 /* 3743 * Post all ELS completions to the worker thread. 3744 * All other are passed to the completion callback. 3745 */ 3746 if (pring->ringno == LPFC_ELS_RING) { 3747 if ((phba->sli_rev < LPFC_SLI_REV4) && 3748 (cmdiocbp->cmd_flag & 3749 LPFC_DRIVER_ABORTED)) { 3750 spin_lock_irqsave(&phba->hbalock, 3751 iflag); 3752 cmdiocbp->cmd_flag &= 3753 ~LPFC_DRIVER_ABORTED; 3754 spin_unlock_irqrestore(&phba->hbalock, 3755 iflag); 3756 saveq->iocb.ulpStatus = 3757 IOSTAT_LOCAL_REJECT; 3758 saveq->iocb.un.ulpWord[4] = 3759 IOERR_SLI_ABORTED; 3760 3761 /* Firmware could still be in progress 3762 * of DMAing payload, so don't free data 3763 * buffer till after a hbeat. 3764 */ 3765 spin_lock_irqsave(&phba->hbalock, 3766 iflag); 3767 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3768 spin_unlock_irqrestore(&phba->hbalock, 3769 iflag); 3770 } 3771 if (phba->sli_rev == LPFC_SLI_REV4) { 3772 if (saveq->cmd_flag & 3773 LPFC_EXCHANGE_BUSY) { 3774 /* Set cmdiocb flag for the 3775 * exchange busy so sgl (xri) 3776 * will not be released until 3777 * the abort xri is received 3778 * from hba. 3779 */ 3780 spin_lock_irqsave( 3781 &phba->hbalock, iflag); 3782 cmdiocbp->cmd_flag |= 3783 LPFC_EXCHANGE_BUSY; 3784 spin_unlock_irqrestore( 3785 &phba->hbalock, iflag); 3786 } 3787 if (cmdiocbp->cmd_flag & 3788 LPFC_DRIVER_ABORTED) { 3789 /* 3790 * Clear LPFC_DRIVER_ABORTED 3791 * bit in case it was driver 3792 * initiated abort. 3793 */ 3794 spin_lock_irqsave( 3795 &phba->hbalock, iflag); 3796 cmdiocbp->cmd_flag &= 3797 ~LPFC_DRIVER_ABORTED; 3798 spin_unlock_irqrestore( 3799 &phba->hbalock, iflag); 3800 set_job_ulpstatus(cmdiocbp, 3801 IOSTAT_LOCAL_REJECT); 3802 set_job_ulpword4(cmdiocbp, 3803 IOERR_ABORT_REQUESTED); 3804 /* 3805 * For SLI4, irsiocb contains 3806 * NO_XRI in sli_xritag, it 3807 * shall not affect releasing 3808 * sgl (xri) process. 3809 */ 3810 set_job_ulpstatus(saveq, 3811 IOSTAT_LOCAL_REJECT); 3812 set_job_ulpword4(saveq, 3813 IOERR_SLI_ABORTED); 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 saveq->cmd_flag |= 3817 LPFC_DELAY_MEM_FREE; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 } 3822 } 3823 (cmdiocbp->cmd_cmpl) (phba, cmdiocbp, saveq); 3824 } else 3825 lpfc_sli_release_iocbq(phba, cmdiocbp); 3826 } else { 3827 /* 3828 * Unknown initiating command based on the response iotag. 3829 * This could be the case on the ELS ring because of 3830 * lpfc_els_abort(). 3831 */ 3832 if (pring->ringno != LPFC_ELS_RING) { 3833 /* 3834 * Ring <ringno> handler: unexpected completion IoTag 3835 * <IoTag> 3836 */ 3837 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3838 "0322 Ring %d handler: " 3839 "unexpected completion IoTag x%x " 3840 "Data: x%x x%x x%x x%x\n", 3841 pring->ringno, iotag, ulp_status, 3842 ulp_word4, ulp_command, ulp_context); 3843 } 3844 } 3845 3846 return rc; 3847 } 3848 3849 /** 3850 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3851 * @phba: Pointer to HBA context object. 3852 * @pring: Pointer to driver SLI ring object. 3853 * 3854 * This function is called from the iocb ring event handlers when 3855 * put pointer is ahead of the get pointer for a ring. This function signal 3856 * an error attention condition to the worker thread and the worker 3857 * thread will transition the HBA to offline state. 3858 **/ 3859 static void 3860 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3861 { 3862 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3863 /* 3864 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3865 * rsp ring <portRspMax> 3866 */ 3867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3868 "0312 Ring %d handler: portRspPut %d " 3869 "is bigger than rsp ring %d\n", 3870 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3871 pring->sli.sli3.numRiocb); 3872 3873 phba->link_state = LPFC_HBA_ERROR; 3874 3875 /* 3876 * All error attention handlers are posted to 3877 * worker thread 3878 */ 3879 phba->work_ha |= HA_ERATT; 3880 phba->work_hs = HS_FFER3; 3881 3882 lpfc_worker_wake_up(phba); 3883 3884 return; 3885 } 3886 3887 /** 3888 * lpfc_poll_eratt - Error attention polling timer timeout handler 3889 * @t: Context to fetch pointer to address of HBA context object from. 3890 * 3891 * This function is invoked by the Error Attention polling timer when the 3892 * timer times out. It will check the SLI Error Attention register for 3893 * possible attention events. If so, it will post an Error Attention event 3894 * and wake up worker thread to process it. Otherwise, it will set up the 3895 * Error Attention polling timer for the next poll. 3896 **/ 3897 void lpfc_poll_eratt(struct timer_list *t) 3898 { 3899 struct lpfc_hba *phba; 3900 uint32_t eratt = 0; 3901 uint64_t sli_intr, cnt; 3902 3903 phba = from_timer(phba, t, eratt_poll); 3904 3905 /* Here we will also keep track of interrupts per sec of the hba */ 3906 sli_intr = phba->sli.slistat.sli_intr; 3907 3908 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3909 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3910 sli_intr); 3911 else 3912 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3913 3914 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3915 do_div(cnt, phba->eratt_poll_interval); 3916 phba->sli.slistat.sli_ips = cnt; 3917 3918 phba->sli.slistat.sli_prev_intr = sli_intr; 3919 3920 /* Check chip HA register for error event */ 3921 eratt = lpfc_sli_check_eratt(phba); 3922 3923 if (eratt) 3924 /* Tell the worker thread there is work to do */ 3925 lpfc_worker_wake_up(phba); 3926 else 3927 /* Restart the timer for next eratt poll */ 3928 mod_timer(&phba->eratt_poll, 3929 jiffies + 3930 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3931 return; 3932 } 3933 3934 3935 /** 3936 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3937 * @phba: Pointer to HBA context object. 3938 * @pring: Pointer to driver SLI ring object. 3939 * @mask: Host attention register mask for this ring. 3940 * 3941 * This function is called from the interrupt context when there is a ring 3942 * event for the fcp ring. The caller does not hold any lock. 3943 * The function processes each response iocb in the response ring until it 3944 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3945 * LE bit set. The function will call the completion handler of the command iocb 3946 * if the response iocb indicates a completion for a command iocb or it is 3947 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3948 * function if this is an unsolicited iocb. 3949 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3950 * to check it explicitly. 3951 */ 3952 int 3953 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3954 struct lpfc_sli_ring *pring, uint32_t mask) 3955 { 3956 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3957 IOCB_t *irsp = NULL; 3958 IOCB_t *entry = NULL; 3959 struct lpfc_iocbq *cmdiocbq = NULL; 3960 struct lpfc_iocbq rspiocbq; 3961 uint32_t status; 3962 uint32_t portRspPut, portRspMax; 3963 int rc = 1; 3964 lpfc_iocb_type type; 3965 unsigned long iflag; 3966 uint32_t rsp_cmpl = 0; 3967 3968 spin_lock_irqsave(&phba->hbalock, iflag); 3969 pring->stats.iocb_event++; 3970 3971 /* 3972 * The next available response entry should never exceed the maximum 3973 * entries. If it does, treat it as an adapter hardware error. 3974 */ 3975 portRspMax = pring->sli.sli3.numRiocb; 3976 portRspPut = le32_to_cpu(pgp->rspPutInx); 3977 if (unlikely(portRspPut >= portRspMax)) { 3978 lpfc_sli_rsp_pointers_error(phba, pring); 3979 spin_unlock_irqrestore(&phba->hbalock, iflag); 3980 return 1; 3981 } 3982 if (phba->fcp_ring_in_use) { 3983 spin_unlock_irqrestore(&phba->hbalock, iflag); 3984 return 1; 3985 } else 3986 phba->fcp_ring_in_use = 1; 3987 3988 rmb(); 3989 while (pring->sli.sli3.rspidx != portRspPut) { 3990 /* 3991 * Fetch an entry off the ring and copy it into a local data 3992 * structure. The copy involves a byte-swap since the 3993 * network byte order and pci byte orders are different. 3994 */ 3995 entry = lpfc_resp_iocb(phba, pring); 3996 phba->last_completion_time = jiffies; 3997 3998 if (++pring->sli.sli3.rspidx >= portRspMax) 3999 pring->sli.sli3.rspidx = 0; 4000 4001 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4002 (uint32_t *) &rspiocbq.iocb, 4003 phba->iocb_rsp_size); 4004 INIT_LIST_HEAD(&(rspiocbq.list)); 4005 irsp = &rspiocbq.iocb; 4006 4007 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4008 pring->stats.iocb_rsp++; 4009 rsp_cmpl++; 4010 4011 if (unlikely(irsp->ulpStatus)) { 4012 /* 4013 * If resource errors reported from HBA, reduce 4014 * queuedepths of the SCSI device. 4015 */ 4016 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4017 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4018 IOERR_NO_RESOURCES)) { 4019 spin_unlock_irqrestore(&phba->hbalock, iflag); 4020 phba->lpfc_rampdown_queue_depth(phba); 4021 spin_lock_irqsave(&phba->hbalock, iflag); 4022 } 4023 4024 /* Rsp ring <ringno> error: IOCB */ 4025 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4026 "0336 Rsp Ring %d error: IOCB Data: " 4027 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4028 pring->ringno, 4029 irsp->un.ulpWord[0], 4030 irsp->un.ulpWord[1], 4031 irsp->un.ulpWord[2], 4032 irsp->un.ulpWord[3], 4033 irsp->un.ulpWord[4], 4034 irsp->un.ulpWord[5], 4035 *(uint32_t *)&irsp->un1, 4036 *((uint32_t *)&irsp->un1 + 1)); 4037 } 4038 4039 switch (type) { 4040 case LPFC_ABORT_IOCB: 4041 case LPFC_SOL_IOCB: 4042 /* 4043 * Idle exchange closed via ABTS from port. No iocb 4044 * resources need to be recovered. 4045 */ 4046 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4047 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4048 "0333 IOCB cmd 0x%x" 4049 " processed. Skipping" 4050 " completion\n", 4051 irsp->ulpCommand); 4052 break; 4053 } 4054 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4057 &rspiocbq); 4058 spin_lock_irqsave(&phba->hbalock, iflag); 4059 if (unlikely(!cmdiocbq)) 4060 break; 4061 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4062 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4063 if (cmdiocbq->cmd_cmpl) { 4064 spin_unlock_irqrestore(&phba->hbalock, iflag); 4065 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, 4066 &rspiocbq); 4067 spin_lock_irqsave(&phba->hbalock, iflag); 4068 } 4069 break; 4070 case LPFC_UNSOL_IOCB: 4071 spin_unlock_irqrestore(&phba->hbalock, iflag); 4072 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4073 spin_lock_irqsave(&phba->hbalock, iflag); 4074 break; 4075 default: 4076 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4077 char adaptermsg[LPFC_MAX_ADPTMSG]; 4078 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4079 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4080 MAX_MSG_DATA); 4081 dev_warn(&((phba->pcidev)->dev), 4082 "lpfc%d: %s\n", 4083 phba->brd_no, adaptermsg); 4084 } else { 4085 /* Unknown IOCB command */ 4086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4087 "0334 Unknown IOCB command " 4088 "Data: x%x, x%x x%x x%x x%x\n", 4089 type, irsp->ulpCommand, 4090 irsp->ulpStatus, 4091 irsp->ulpIoTag, 4092 irsp->ulpContext); 4093 } 4094 break; 4095 } 4096 4097 /* 4098 * The response IOCB has been processed. Update the ring 4099 * pointer in SLIM. If the port response put pointer has not 4100 * been updated, sync the pgp->rspPutInx and fetch the new port 4101 * response put pointer. 4102 */ 4103 writel(pring->sli.sli3.rspidx, 4104 &phba->host_gp[pring->ringno].rspGetInx); 4105 4106 if (pring->sli.sli3.rspidx == portRspPut) 4107 portRspPut = le32_to_cpu(pgp->rspPutInx); 4108 } 4109 4110 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4111 pring->stats.iocb_rsp_full++; 4112 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4113 writel(status, phba->CAregaddr); 4114 readl(phba->CAregaddr); 4115 } 4116 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4117 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4118 pring->stats.iocb_cmd_empty++; 4119 4120 /* Force update of the local copy of cmdGetInx */ 4121 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4122 lpfc_sli_resume_iocb(phba, pring); 4123 4124 if ((pring->lpfc_sli_cmd_available)) 4125 (pring->lpfc_sli_cmd_available) (phba, pring); 4126 4127 } 4128 4129 phba->fcp_ring_in_use = 0; 4130 spin_unlock_irqrestore(&phba->hbalock, iflag); 4131 return rc; 4132 } 4133 4134 /** 4135 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4136 * @phba: Pointer to HBA context object. 4137 * @pring: Pointer to driver SLI ring object. 4138 * @rspiocbp: Pointer to driver response IOCB object. 4139 * 4140 * This function is called from the worker thread when there is a slow-path 4141 * response IOCB to process. This function chains all the response iocbs until 4142 * seeing the iocb with the LE bit set. The function will call 4143 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4144 * completion of a command iocb. The function will call the 4145 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4146 * The function frees the resources or calls the completion handler if this 4147 * iocb is an abort completion. The function returns NULL when the response 4148 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4149 * this function shall chain the iocb on to the iocb_continueq and return the 4150 * response iocb passed in. 4151 **/ 4152 static struct lpfc_iocbq * 4153 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4154 struct lpfc_iocbq *rspiocbp) 4155 { 4156 struct lpfc_iocbq *saveq; 4157 struct lpfc_iocbq *cmdiocb; 4158 struct lpfc_iocbq *next_iocb; 4159 IOCB_t *irsp; 4160 uint32_t free_saveq; 4161 u8 cmd_type; 4162 lpfc_iocb_type type; 4163 unsigned long iflag; 4164 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4165 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4166 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4167 int rc; 4168 4169 spin_lock_irqsave(&phba->hbalock, iflag); 4170 /* First add the response iocb to the countinueq list */ 4171 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4172 pring->iocb_continueq_cnt++; 4173 4174 /* 4175 * By default, the driver expects to free all resources 4176 * associated with this iocb completion. 4177 */ 4178 free_saveq = 1; 4179 saveq = list_get_first(&pring->iocb_continueq, 4180 struct lpfc_iocbq, list); 4181 list_del_init(&pring->iocb_continueq); 4182 pring->iocb_continueq_cnt = 0; 4183 4184 pring->stats.iocb_rsp++; 4185 4186 /* 4187 * If resource errors reported from HBA, reduce 4188 * queuedepths of the SCSI device. 4189 */ 4190 if (ulp_status == IOSTAT_LOCAL_REJECT && 4191 ((ulp_word4 & IOERR_PARAM_MASK) == 4192 IOERR_NO_RESOURCES)) { 4193 spin_unlock_irqrestore(&phba->hbalock, iflag); 4194 phba->lpfc_rampdown_queue_depth(phba); 4195 spin_lock_irqsave(&phba->hbalock, iflag); 4196 } 4197 4198 if (ulp_status) { 4199 /* Rsp ring <ringno> error: IOCB */ 4200 if (phba->sli_rev < LPFC_SLI_REV4) { 4201 irsp = &rspiocbp->iocb; 4202 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4203 "0328 Rsp Ring %d error: ulp_status x%x " 4204 "IOCB Data: " 4205 "x%08x x%08x x%08x x%08x " 4206 "x%08x x%08x x%08x x%08x " 4207 "x%08x x%08x x%08x x%08x " 4208 "x%08x x%08x x%08x x%08x\n", 4209 pring->ringno, ulp_status, 4210 get_job_ulpword(rspiocbp, 0), 4211 get_job_ulpword(rspiocbp, 1), 4212 get_job_ulpword(rspiocbp, 2), 4213 get_job_ulpword(rspiocbp, 3), 4214 get_job_ulpword(rspiocbp, 4), 4215 get_job_ulpword(rspiocbp, 5), 4216 *(((uint32_t *)irsp) + 6), 4217 *(((uint32_t *)irsp) + 7), 4218 *(((uint32_t *)irsp) + 8), 4219 *(((uint32_t *)irsp) + 9), 4220 *(((uint32_t *)irsp) + 10), 4221 *(((uint32_t *)irsp) + 11), 4222 *(((uint32_t *)irsp) + 12), 4223 *(((uint32_t *)irsp) + 13), 4224 *(((uint32_t *)irsp) + 14), 4225 *(((uint32_t *)irsp) + 15)); 4226 } else { 4227 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4228 "0321 Rsp Ring %d error: " 4229 "IOCB Data: " 4230 "x%x x%x x%x x%x\n", 4231 pring->ringno, 4232 rspiocbp->wcqe_cmpl.word0, 4233 rspiocbp->wcqe_cmpl.total_data_placed, 4234 rspiocbp->wcqe_cmpl.parameter, 4235 rspiocbp->wcqe_cmpl.word3); 4236 } 4237 } 4238 4239 4240 /* 4241 * Fetch the iocb command type and call the correct completion 4242 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4243 * get freed back to the lpfc_iocb_list by the discovery 4244 * kernel thread. 4245 */ 4246 cmd_type = ulp_command & CMD_IOCB_MASK; 4247 type = lpfc_sli_iocb_cmd_type(cmd_type); 4248 switch (type) { 4249 case LPFC_SOL_IOCB: 4250 spin_unlock_irqrestore(&phba->hbalock, iflag); 4251 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4252 spin_lock_irqsave(&phba->hbalock, iflag); 4253 break; 4254 case LPFC_UNSOL_IOCB: 4255 spin_unlock_irqrestore(&phba->hbalock, iflag); 4256 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4257 spin_lock_irqsave(&phba->hbalock, iflag); 4258 if (!rc) 4259 free_saveq = 0; 4260 break; 4261 case LPFC_ABORT_IOCB: 4262 cmdiocb = NULL; 4263 if (ulp_command != CMD_XRI_ABORTED_CX) 4264 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4265 saveq); 4266 if (cmdiocb) { 4267 /* Call the specified completion routine */ 4268 if (cmdiocb->cmd_cmpl) { 4269 spin_unlock_irqrestore(&phba->hbalock, iflag); 4270 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4271 spin_lock_irqsave(&phba->hbalock, iflag); 4272 } else { 4273 __lpfc_sli_release_iocbq(phba, cmdiocb); 4274 } 4275 } 4276 break; 4277 case LPFC_UNKNOWN_IOCB: 4278 if (ulp_command == CMD_ADAPTER_MSG) { 4279 char adaptermsg[LPFC_MAX_ADPTMSG]; 4280 4281 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4282 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4283 MAX_MSG_DATA); 4284 dev_warn(&((phba->pcidev)->dev), 4285 "lpfc%d: %s\n", 4286 phba->brd_no, adaptermsg); 4287 } else { 4288 /* Unknown command */ 4289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4290 "0335 Unknown IOCB " 4291 "command Data: x%x " 4292 "x%x x%x x%x\n", 4293 ulp_command, 4294 ulp_status, 4295 get_wqe_reqtag(rspiocbp), 4296 get_job_ulpcontext(phba, rspiocbp)); 4297 } 4298 break; 4299 } 4300 4301 if (free_saveq) { 4302 list_for_each_entry_safe(rspiocbp, next_iocb, 4303 &saveq->list, list) { 4304 list_del_init(&rspiocbp->list); 4305 __lpfc_sli_release_iocbq(phba, rspiocbp); 4306 } 4307 __lpfc_sli_release_iocbq(phba, saveq); 4308 } 4309 rspiocbp = NULL; 4310 spin_unlock_irqrestore(&phba->hbalock, iflag); 4311 return rspiocbp; 4312 } 4313 4314 /** 4315 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4316 * @phba: Pointer to HBA context object. 4317 * @pring: Pointer to driver SLI ring object. 4318 * @mask: Host attention register mask for this ring. 4319 * 4320 * This routine wraps the actual slow_ring event process routine from the 4321 * API jump table function pointer from the lpfc_hba struct. 4322 **/ 4323 void 4324 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4325 struct lpfc_sli_ring *pring, uint32_t mask) 4326 { 4327 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4328 } 4329 4330 /** 4331 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4332 * @phba: Pointer to HBA context object. 4333 * @pring: Pointer to driver SLI ring object. 4334 * @mask: Host attention register mask for this ring. 4335 * 4336 * This function is called from the worker thread when there is a ring event 4337 * for non-fcp rings. The caller does not hold any lock. The function will 4338 * remove each response iocb in the response ring and calls the handle 4339 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4340 **/ 4341 static void 4342 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4343 struct lpfc_sli_ring *pring, uint32_t mask) 4344 { 4345 struct lpfc_pgp *pgp; 4346 IOCB_t *entry; 4347 IOCB_t *irsp = NULL; 4348 struct lpfc_iocbq *rspiocbp = NULL; 4349 uint32_t portRspPut, portRspMax; 4350 unsigned long iflag; 4351 uint32_t status; 4352 4353 pgp = &phba->port_gp[pring->ringno]; 4354 spin_lock_irqsave(&phba->hbalock, iflag); 4355 pring->stats.iocb_event++; 4356 4357 /* 4358 * The next available response entry should never exceed the maximum 4359 * entries. If it does, treat it as an adapter hardware error. 4360 */ 4361 portRspMax = pring->sli.sli3.numRiocb; 4362 portRspPut = le32_to_cpu(pgp->rspPutInx); 4363 if (portRspPut >= portRspMax) { 4364 /* 4365 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4366 * rsp ring <portRspMax> 4367 */ 4368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4369 "0303 Ring %d handler: portRspPut %d " 4370 "is bigger than rsp ring %d\n", 4371 pring->ringno, portRspPut, portRspMax); 4372 4373 phba->link_state = LPFC_HBA_ERROR; 4374 spin_unlock_irqrestore(&phba->hbalock, iflag); 4375 4376 phba->work_hs = HS_FFER3; 4377 lpfc_handle_eratt(phba); 4378 4379 return; 4380 } 4381 4382 rmb(); 4383 while (pring->sli.sli3.rspidx != portRspPut) { 4384 /* 4385 * Build a completion list and call the appropriate handler. 4386 * The process is to get the next available response iocb, get 4387 * a free iocb from the list, copy the response data into the 4388 * free iocb, insert to the continuation list, and update the 4389 * next response index to slim. This process makes response 4390 * iocb's in the ring available to DMA as fast as possible but 4391 * pays a penalty for a copy operation. Since the iocb is 4392 * only 32 bytes, this penalty is considered small relative to 4393 * the PCI reads for register values and a slim write. When 4394 * the ulpLe field is set, the entire Command has been 4395 * received. 4396 */ 4397 entry = lpfc_resp_iocb(phba, pring); 4398 4399 phba->last_completion_time = jiffies; 4400 rspiocbp = __lpfc_sli_get_iocbq(phba); 4401 if (rspiocbp == NULL) { 4402 printk(KERN_ERR "%s: out of buffers! Failing " 4403 "completion.\n", __func__); 4404 break; 4405 } 4406 4407 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4408 phba->iocb_rsp_size); 4409 irsp = &rspiocbp->iocb; 4410 4411 if (++pring->sli.sli3.rspidx >= portRspMax) 4412 pring->sli.sli3.rspidx = 0; 4413 4414 if (pring->ringno == LPFC_ELS_RING) { 4415 lpfc_debugfs_slow_ring_trc(phba, 4416 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4417 *(((uint32_t *) irsp) + 4), 4418 *(((uint32_t *) irsp) + 6), 4419 *(((uint32_t *) irsp) + 7)); 4420 } 4421 4422 writel(pring->sli.sli3.rspidx, 4423 &phba->host_gp[pring->ringno].rspGetInx); 4424 4425 spin_unlock_irqrestore(&phba->hbalock, iflag); 4426 /* Handle the response IOCB */ 4427 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4428 spin_lock_irqsave(&phba->hbalock, iflag); 4429 4430 /* 4431 * If the port response put pointer has not been updated, sync 4432 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4433 * response put pointer. 4434 */ 4435 if (pring->sli.sli3.rspidx == portRspPut) { 4436 portRspPut = le32_to_cpu(pgp->rspPutInx); 4437 } 4438 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4439 4440 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4441 /* At least one response entry has been freed */ 4442 pring->stats.iocb_rsp_full++; 4443 /* SET RxRE_RSP in Chip Att register */ 4444 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4445 writel(status, phba->CAregaddr); 4446 readl(phba->CAregaddr); /* flush */ 4447 } 4448 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4449 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4450 pring->stats.iocb_cmd_empty++; 4451 4452 /* Force update of the local copy of cmdGetInx */ 4453 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4454 lpfc_sli_resume_iocb(phba, pring); 4455 4456 if ((pring->lpfc_sli_cmd_available)) 4457 (pring->lpfc_sli_cmd_available) (phba, pring); 4458 4459 } 4460 4461 spin_unlock_irqrestore(&phba->hbalock, iflag); 4462 return; 4463 } 4464 4465 /** 4466 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4467 * @phba: Pointer to HBA context object. 4468 * @pring: Pointer to driver SLI ring object. 4469 * @mask: Host attention register mask for this ring. 4470 * 4471 * This function is called from the worker thread when there is a pending 4472 * ELS response iocb on the driver internal slow-path response iocb worker 4473 * queue. The caller does not hold any lock. The function will remove each 4474 * response iocb from the response worker queue and calls the handle 4475 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4476 **/ 4477 static void 4478 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4479 struct lpfc_sli_ring *pring, uint32_t mask) 4480 { 4481 struct lpfc_iocbq *irspiocbq; 4482 struct hbq_dmabuf *dmabuf; 4483 struct lpfc_cq_event *cq_event; 4484 unsigned long iflag; 4485 int count = 0; 4486 4487 spin_lock_irqsave(&phba->hbalock, iflag); 4488 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4489 spin_unlock_irqrestore(&phba->hbalock, iflag); 4490 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4491 /* Get the response iocb from the head of work queue */ 4492 spin_lock_irqsave(&phba->hbalock, iflag); 4493 list_remove_head(&phba->sli4_hba.sp_queue_event, 4494 cq_event, struct lpfc_cq_event, list); 4495 spin_unlock_irqrestore(&phba->hbalock, iflag); 4496 4497 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4498 case CQE_CODE_COMPL_WQE: 4499 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4500 cq_event); 4501 /* Translate ELS WCQE to response IOCBQ */ 4502 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4503 irspiocbq); 4504 if (irspiocbq) 4505 lpfc_sli_sp_handle_rspiocb(phba, pring, 4506 irspiocbq); 4507 count++; 4508 break; 4509 case CQE_CODE_RECEIVE: 4510 case CQE_CODE_RECEIVE_V1: 4511 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4512 cq_event); 4513 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4514 count++; 4515 break; 4516 default: 4517 break; 4518 } 4519 4520 /* Limit the number of events to 64 to avoid soft lockups */ 4521 if (count == 64) 4522 break; 4523 } 4524 } 4525 4526 /** 4527 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4528 * @phba: Pointer to HBA context object. 4529 * @pring: Pointer to driver SLI ring object. 4530 * 4531 * This function aborts all iocbs in the given ring and frees all the iocb 4532 * objects in txq. This function issues an abort iocb for all the iocb commands 4533 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4534 * the return of this function. The caller is not required to hold any locks. 4535 **/ 4536 void 4537 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4538 { 4539 LIST_HEAD(completions); 4540 struct lpfc_iocbq *iocb, *next_iocb; 4541 4542 if (pring->ringno == LPFC_ELS_RING) { 4543 lpfc_fabric_abort_hba(phba); 4544 } 4545 4546 /* Error everything on txq and txcmplq 4547 * First do the txq. 4548 */ 4549 if (phba->sli_rev >= LPFC_SLI_REV4) { 4550 spin_lock_irq(&pring->ring_lock); 4551 list_splice_init(&pring->txq, &completions); 4552 pring->txq_cnt = 0; 4553 spin_unlock_irq(&pring->ring_lock); 4554 4555 spin_lock_irq(&phba->hbalock); 4556 /* Next issue ABTS for everything on the txcmplq */ 4557 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4558 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4559 spin_unlock_irq(&phba->hbalock); 4560 } else { 4561 spin_lock_irq(&phba->hbalock); 4562 list_splice_init(&pring->txq, &completions); 4563 pring->txq_cnt = 0; 4564 4565 /* Next issue ABTS for everything on the txcmplq */ 4566 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4567 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4568 spin_unlock_irq(&phba->hbalock); 4569 } 4570 /* Make sure HBA is alive */ 4571 lpfc_issue_hb_tmo(phba); 4572 4573 /* Cancel all the IOCBs from the completions list */ 4574 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4575 IOERR_SLI_ABORTED); 4576 } 4577 4578 /** 4579 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4580 * @phba: Pointer to HBA context object. 4581 * 4582 * This function aborts all iocbs in FCP rings and frees all the iocb 4583 * objects in txq. This function issues an abort iocb for all the iocb commands 4584 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4585 * the return of this function. The caller is not required to hold any locks. 4586 **/ 4587 void 4588 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4589 { 4590 struct lpfc_sli *psli = &phba->sli; 4591 struct lpfc_sli_ring *pring; 4592 uint32_t i; 4593 4594 /* Look on all the FCP Rings for the iotag */ 4595 if (phba->sli_rev >= LPFC_SLI_REV4) { 4596 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4597 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4598 lpfc_sli_abort_iocb_ring(phba, pring); 4599 } 4600 } else { 4601 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4602 lpfc_sli_abort_iocb_ring(phba, pring); 4603 } 4604 } 4605 4606 /** 4607 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4608 * @phba: Pointer to HBA context object. 4609 * 4610 * This function flushes all iocbs in the IO ring and frees all the iocb 4611 * objects in txq and txcmplq. This function will not issue abort iocbs 4612 * for all the iocb commands in txcmplq, they will just be returned with 4613 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4614 * slot has been permanently disabled. 4615 **/ 4616 void 4617 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4618 { 4619 LIST_HEAD(txq); 4620 LIST_HEAD(txcmplq); 4621 struct lpfc_sli *psli = &phba->sli; 4622 struct lpfc_sli_ring *pring; 4623 uint32_t i; 4624 struct lpfc_iocbq *piocb, *next_iocb; 4625 4626 spin_lock_irq(&phba->hbalock); 4627 if (phba->hba_flag & HBA_IOQ_FLUSH || 4628 !phba->sli4_hba.hdwq) { 4629 spin_unlock_irq(&phba->hbalock); 4630 return; 4631 } 4632 /* Indicate the I/O queues are flushed */ 4633 phba->hba_flag |= HBA_IOQ_FLUSH; 4634 spin_unlock_irq(&phba->hbalock); 4635 4636 /* Look on all the FCP Rings for the iotag */ 4637 if (phba->sli_rev >= LPFC_SLI_REV4) { 4638 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4639 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4640 4641 spin_lock_irq(&pring->ring_lock); 4642 /* Retrieve everything on txq */ 4643 list_splice_init(&pring->txq, &txq); 4644 list_for_each_entry_safe(piocb, next_iocb, 4645 &pring->txcmplq, list) 4646 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4647 /* Retrieve everything on the txcmplq */ 4648 list_splice_init(&pring->txcmplq, &txcmplq); 4649 pring->txq_cnt = 0; 4650 pring->txcmplq_cnt = 0; 4651 spin_unlock_irq(&pring->ring_lock); 4652 4653 /* Flush the txq */ 4654 lpfc_sli_cancel_iocbs(phba, &txq, 4655 IOSTAT_LOCAL_REJECT, 4656 IOERR_SLI_DOWN); 4657 /* Flush the txcmplq */ 4658 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4659 IOSTAT_LOCAL_REJECT, 4660 IOERR_SLI_DOWN); 4661 if (unlikely(pci_channel_offline(phba->pcidev))) 4662 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4663 } 4664 } else { 4665 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4666 4667 spin_lock_irq(&phba->hbalock); 4668 /* Retrieve everything on txq */ 4669 list_splice_init(&pring->txq, &txq); 4670 list_for_each_entry_safe(piocb, next_iocb, 4671 &pring->txcmplq, list) 4672 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4673 /* Retrieve everything on the txcmplq */ 4674 list_splice_init(&pring->txcmplq, &txcmplq); 4675 pring->txq_cnt = 0; 4676 pring->txcmplq_cnt = 0; 4677 spin_unlock_irq(&phba->hbalock); 4678 4679 /* Flush the txq */ 4680 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4681 IOERR_SLI_DOWN); 4682 /* Flush the txcmpq */ 4683 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4684 IOERR_SLI_DOWN); 4685 } 4686 } 4687 4688 /** 4689 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4690 * @phba: Pointer to HBA context object. 4691 * @mask: Bit mask to be checked. 4692 * 4693 * This function reads the host status register and compares 4694 * with the provided bit mask to check if HBA completed 4695 * the restart. This function will wait in a loop for the 4696 * HBA to complete restart. If the HBA does not restart within 4697 * 15 iterations, the function will reset the HBA again. The 4698 * function returns 1 when HBA fail to restart otherwise returns 4699 * zero. 4700 **/ 4701 static int 4702 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4703 { 4704 uint32_t status; 4705 int i = 0; 4706 int retval = 0; 4707 4708 /* Read the HBA Host Status Register */ 4709 if (lpfc_readl(phba->HSregaddr, &status)) 4710 return 1; 4711 4712 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4713 4714 /* 4715 * Check status register every 100ms for 5 retries, then every 4716 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4717 * every 2.5 sec for 4. 4718 * Break our of the loop if errors occurred during init. 4719 */ 4720 while (((status & mask) != mask) && 4721 !(status & HS_FFERM) && 4722 i++ < 20) { 4723 4724 if (i <= 5) 4725 msleep(10); 4726 else if (i <= 10) 4727 msleep(500); 4728 else 4729 msleep(2500); 4730 4731 if (i == 15) { 4732 /* Do post */ 4733 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4734 lpfc_sli_brdrestart(phba); 4735 } 4736 /* Read the HBA Host Status Register */ 4737 if (lpfc_readl(phba->HSregaddr, &status)) { 4738 retval = 1; 4739 break; 4740 } 4741 } 4742 4743 /* Check to see if any errors occurred during init */ 4744 if ((status & HS_FFERM) || (i >= 20)) { 4745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4746 "2751 Adapter failed to restart, " 4747 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4748 status, 4749 readl(phba->MBslimaddr + 0xa8), 4750 readl(phba->MBslimaddr + 0xac)); 4751 phba->link_state = LPFC_HBA_ERROR; 4752 retval = 1; 4753 } 4754 4755 return retval; 4756 } 4757 4758 /** 4759 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4760 * @phba: Pointer to HBA context object. 4761 * @mask: Bit mask to be checked. 4762 * 4763 * This function checks the host status register to check if HBA is 4764 * ready. This function will wait in a loop for the HBA to be ready 4765 * If the HBA is not ready , the function will will reset the HBA PCI 4766 * function again. The function returns 1 when HBA fail to be ready 4767 * otherwise returns zero. 4768 **/ 4769 static int 4770 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4771 { 4772 uint32_t status; 4773 int retval = 0; 4774 4775 /* Read the HBA Host Status Register */ 4776 status = lpfc_sli4_post_status_check(phba); 4777 4778 if (status) { 4779 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4780 lpfc_sli_brdrestart(phba); 4781 status = lpfc_sli4_post_status_check(phba); 4782 } 4783 4784 /* Check to see if any errors occurred during init */ 4785 if (status) { 4786 phba->link_state = LPFC_HBA_ERROR; 4787 retval = 1; 4788 } else 4789 phba->sli4_hba.intr_enable = 0; 4790 4791 phba->hba_flag &= ~HBA_SETUP; 4792 return retval; 4793 } 4794 4795 /** 4796 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4797 * @phba: Pointer to HBA context object. 4798 * @mask: Bit mask to be checked. 4799 * 4800 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4801 * from the API jump table function pointer from the lpfc_hba struct. 4802 **/ 4803 int 4804 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4805 { 4806 return phba->lpfc_sli_brdready(phba, mask); 4807 } 4808 4809 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4810 4811 /** 4812 * lpfc_reset_barrier - Make HBA ready for HBA reset 4813 * @phba: Pointer to HBA context object. 4814 * 4815 * This function is called before resetting an HBA. This function is called 4816 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4817 **/ 4818 void lpfc_reset_barrier(struct lpfc_hba *phba) 4819 { 4820 uint32_t __iomem *resp_buf; 4821 uint32_t __iomem *mbox_buf; 4822 volatile struct MAILBOX_word0 mbox; 4823 uint32_t hc_copy, ha_copy, resp_data; 4824 int i; 4825 uint8_t hdrtype; 4826 4827 lockdep_assert_held(&phba->hbalock); 4828 4829 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4830 if (hdrtype != 0x80 || 4831 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4832 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4833 return; 4834 4835 /* 4836 * Tell the other part of the chip to suspend temporarily all 4837 * its DMA activity. 4838 */ 4839 resp_buf = phba->MBslimaddr; 4840 4841 /* Disable the error attention */ 4842 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4843 return; 4844 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4845 readl(phba->HCregaddr); /* flush */ 4846 phba->link_flag |= LS_IGNORE_ERATT; 4847 4848 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4849 return; 4850 if (ha_copy & HA_ERATT) { 4851 /* Clear Chip error bit */ 4852 writel(HA_ERATT, phba->HAregaddr); 4853 phba->pport->stopped = 1; 4854 } 4855 4856 mbox.word0 = 0; 4857 mbox.mbxCommand = MBX_KILL_BOARD; 4858 mbox.mbxOwner = OWN_CHIP; 4859 4860 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4861 mbox_buf = phba->MBslimaddr; 4862 writel(mbox.word0, mbox_buf); 4863 4864 for (i = 0; i < 50; i++) { 4865 if (lpfc_readl((resp_buf + 1), &resp_data)) 4866 return; 4867 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4868 mdelay(1); 4869 else 4870 break; 4871 } 4872 resp_data = 0; 4873 if (lpfc_readl((resp_buf + 1), &resp_data)) 4874 return; 4875 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4876 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4877 phba->pport->stopped) 4878 goto restore_hc; 4879 else 4880 goto clear_errat; 4881 } 4882 4883 mbox.mbxOwner = OWN_HOST; 4884 resp_data = 0; 4885 for (i = 0; i < 500; i++) { 4886 if (lpfc_readl(resp_buf, &resp_data)) 4887 return; 4888 if (resp_data != mbox.word0) 4889 mdelay(1); 4890 else 4891 break; 4892 } 4893 4894 clear_errat: 4895 4896 while (++i < 500) { 4897 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4898 return; 4899 if (!(ha_copy & HA_ERATT)) 4900 mdelay(1); 4901 else 4902 break; 4903 } 4904 4905 if (readl(phba->HAregaddr) & HA_ERATT) { 4906 writel(HA_ERATT, phba->HAregaddr); 4907 phba->pport->stopped = 1; 4908 } 4909 4910 restore_hc: 4911 phba->link_flag &= ~LS_IGNORE_ERATT; 4912 writel(hc_copy, phba->HCregaddr); 4913 readl(phba->HCregaddr); /* flush */ 4914 } 4915 4916 /** 4917 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4918 * @phba: Pointer to HBA context object. 4919 * 4920 * This function issues a kill_board mailbox command and waits for 4921 * the error attention interrupt. This function is called for stopping 4922 * the firmware processing. The caller is not required to hold any 4923 * locks. This function calls lpfc_hba_down_post function to free 4924 * any pending commands after the kill. The function will return 1 when it 4925 * fails to kill the board else will return 0. 4926 **/ 4927 int 4928 lpfc_sli_brdkill(struct lpfc_hba *phba) 4929 { 4930 struct lpfc_sli *psli; 4931 LPFC_MBOXQ_t *pmb; 4932 uint32_t status; 4933 uint32_t ha_copy; 4934 int retval; 4935 int i = 0; 4936 4937 psli = &phba->sli; 4938 4939 /* Kill HBA */ 4940 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4941 "0329 Kill HBA Data: x%x x%x\n", 4942 phba->pport->port_state, psli->sli_flag); 4943 4944 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4945 if (!pmb) 4946 return 1; 4947 4948 /* Disable the error attention */ 4949 spin_lock_irq(&phba->hbalock); 4950 if (lpfc_readl(phba->HCregaddr, &status)) { 4951 spin_unlock_irq(&phba->hbalock); 4952 mempool_free(pmb, phba->mbox_mem_pool); 4953 return 1; 4954 } 4955 status &= ~HC_ERINT_ENA; 4956 writel(status, phba->HCregaddr); 4957 readl(phba->HCregaddr); /* flush */ 4958 phba->link_flag |= LS_IGNORE_ERATT; 4959 spin_unlock_irq(&phba->hbalock); 4960 4961 lpfc_kill_board(phba, pmb); 4962 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4963 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4964 4965 if (retval != MBX_SUCCESS) { 4966 if (retval != MBX_BUSY) 4967 mempool_free(pmb, phba->mbox_mem_pool); 4968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4969 "2752 KILL_BOARD command failed retval %d\n", 4970 retval); 4971 spin_lock_irq(&phba->hbalock); 4972 phba->link_flag &= ~LS_IGNORE_ERATT; 4973 spin_unlock_irq(&phba->hbalock); 4974 return 1; 4975 } 4976 4977 spin_lock_irq(&phba->hbalock); 4978 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4979 spin_unlock_irq(&phba->hbalock); 4980 4981 mempool_free(pmb, phba->mbox_mem_pool); 4982 4983 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4984 * attention every 100ms for 3 seconds. If we don't get ERATT after 4985 * 3 seconds we still set HBA_ERROR state because the status of the 4986 * board is now undefined. 4987 */ 4988 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4989 return 1; 4990 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4991 mdelay(100); 4992 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4993 return 1; 4994 } 4995 4996 del_timer_sync(&psli->mbox_tmo); 4997 if (ha_copy & HA_ERATT) { 4998 writel(HA_ERATT, phba->HAregaddr); 4999 phba->pport->stopped = 1; 5000 } 5001 spin_lock_irq(&phba->hbalock); 5002 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5003 psli->mbox_active = NULL; 5004 phba->link_flag &= ~LS_IGNORE_ERATT; 5005 spin_unlock_irq(&phba->hbalock); 5006 5007 lpfc_hba_down_post(phba); 5008 phba->link_state = LPFC_HBA_ERROR; 5009 5010 return ha_copy & HA_ERATT ? 0 : 1; 5011 } 5012 5013 /** 5014 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5015 * @phba: Pointer to HBA context object. 5016 * 5017 * This function resets the HBA by writing HC_INITFF to the control 5018 * register. After the HBA resets, this function resets all the iocb ring 5019 * indices. This function disables PCI layer parity checking during 5020 * the reset. 5021 * This function returns 0 always. 5022 * The caller is not required to hold any locks. 5023 **/ 5024 int 5025 lpfc_sli_brdreset(struct lpfc_hba *phba) 5026 { 5027 struct lpfc_sli *psli; 5028 struct lpfc_sli_ring *pring; 5029 uint16_t cfg_value; 5030 int i; 5031 5032 psli = &phba->sli; 5033 5034 /* Reset HBA */ 5035 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5036 "0325 Reset HBA Data: x%x x%x\n", 5037 (phba->pport) ? phba->pport->port_state : 0, 5038 psli->sli_flag); 5039 5040 /* perform board reset */ 5041 phba->fc_eventTag = 0; 5042 phba->link_events = 0; 5043 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5044 if (phba->pport) { 5045 phba->pport->fc_myDID = 0; 5046 phba->pport->fc_prevDID = 0; 5047 } 5048 5049 /* Turn off parity checking and serr during the physical reset */ 5050 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5051 return -EIO; 5052 5053 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5054 (cfg_value & 5055 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5056 5057 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5058 5059 /* Now toggle INITFF bit in the Host Control Register */ 5060 writel(HC_INITFF, phba->HCregaddr); 5061 mdelay(1); 5062 readl(phba->HCregaddr); /* flush */ 5063 writel(0, phba->HCregaddr); 5064 readl(phba->HCregaddr); /* flush */ 5065 5066 /* Restore PCI cmd register */ 5067 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5068 5069 /* Initialize relevant SLI info */ 5070 for (i = 0; i < psli->num_rings; i++) { 5071 pring = &psli->sli3_ring[i]; 5072 pring->flag = 0; 5073 pring->sli.sli3.rspidx = 0; 5074 pring->sli.sli3.next_cmdidx = 0; 5075 pring->sli.sli3.local_getidx = 0; 5076 pring->sli.sli3.cmdidx = 0; 5077 pring->missbufcnt = 0; 5078 } 5079 5080 phba->link_state = LPFC_WARM_START; 5081 return 0; 5082 } 5083 5084 /** 5085 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5086 * @phba: Pointer to HBA context object. 5087 * 5088 * This function resets a SLI4 HBA. This function disables PCI layer parity 5089 * checking during resets the device. The caller is not required to hold 5090 * any locks. 5091 * 5092 * This function returns 0 on success else returns negative error code. 5093 **/ 5094 int 5095 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5096 { 5097 struct lpfc_sli *psli = &phba->sli; 5098 uint16_t cfg_value; 5099 int rc = 0; 5100 5101 /* Reset HBA */ 5102 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5103 "0295 Reset HBA Data: x%x x%x x%x\n", 5104 phba->pport->port_state, psli->sli_flag, 5105 phba->hba_flag); 5106 5107 /* perform board reset */ 5108 phba->fc_eventTag = 0; 5109 phba->link_events = 0; 5110 phba->pport->fc_myDID = 0; 5111 phba->pport->fc_prevDID = 0; 5112 phba->hba_flag &= ~HBA_SETUP; 5113 5114 spin_lock_irq(&phba->hbalock); 5115 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5116 phba->fcf.fcf_flag = 0; 5117 spin_unlock_irq(&phba->hbalock); 5118 5119 /* Now physically reset the device */ 5120 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5121 "0389 Performing PCI function reset!\n"); 5122 5123 /* Turn off parity checking and serr during the physical reset */ 5124 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5125 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5126 "3205 PCI read Config failed\n"); 5127 return -EIO; 5128 } 5129 5130 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5131 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5132 5133 /* Perform FCoE PCI function reset before freeing queue memory */ 5134 rc = lpfc_pci_function_reset(phba); 5135 5136 /* Restore PCI cmd register */ 5137 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5138 5139 return rc; 5140 } 5141 5142 /** 5143 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5144 * @phba: Pointer to HBA context object. 5145 * 5146 * This function is called in the SLI initialization code path to 5147 * restart the HBA. The caller is not required to hold any lock. 5148 * This function writes MBX_RESTART mailbox command to the SLIM and 5149 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5150 * function to free any pending commands. The function enables 5151 * POST only during the first initialization. The function returns zero. 5152 * The function does not guarantee completion of MBX_RESTART mailbox 5153 * command before the return of this function. 5154 **/ 5155 static int 5156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5157 { 5158 volatile struct MAILBOX_word0 mb; 5159 struct lpfc_sli *psli; 5160 void __iomem *to_slim; 5161 uint32_t hba_aer_enabled; 5162 5163 spin_lock_irq(&phba->hbalock); 5164 5165 /* Take PCIe device Advanced Error Reporting (AER) state */ 5166 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5167 5168 psli = &phba->sli; 5169 5170 /* Restart HBA */ 5171 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5172 "0337 Restart HBA Data: x%x x%x\n", 5173 (phba->pport) ? phba->pport->port_state : 0, 5174 psli->sli_flag); 5175 5176 mb.word0 = 0; 5177 mb.mbxCommand = MBX_RESTART; 5178 mb.mbxHc = 1; 5179 5180 lpfc_reset_barrier(phba); 5181 5182 to_slim = phba->MBslimaddr; 5183 writel(mb.word0, to_slim); 5184 readl(to_slim); /* flush */ 5185 5186 /* Only skip post after fc_ffinit is completed */ 5187 if (phba->pport && phba->pport->port_state) 5188 mb.word0 = 1; /* This is really setting up word1 */ 5189 else 5190 mb.word0 = 0; /* This is really setting up word1 */ 5191 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5192 writel(mb.word0, to_slim); 5193 readl(to_slim); /* flush */ 5194 5195 lpfc_sli_brdreset(phba); 5196 if (phba->pport) 5197 phba->pport->stopped = 0; 5198 phba->link_state = LPFC_INIT_START; 5199 phba->hba_flag = 0; 5200 spin_unlock_irq(&phba->hbalock); 5201 5202 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5203 psli->stats_start = ktime_get_seconds(); 5204 5205 /* Give the INITFF and Post time to settle. */ 5206 mdelay(100); 5207 5208 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5209 if (hba_aer_enabled) 5210 pci_disable_pcie_error_reporting(phba->pcidev); 5211 5212 lpfc_hba_down_post(phba); 5213 5214 return 0; 5215 } 5216 5217 /** 5218 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5219 * @phba: Pointer to HBA context object. 5220 * 5221 * This function is called in the SLI initialization code path to restart 5222 * a SLI4 HBA. The caller is not required to hold any lock. 5223 * At the end of the function, it calls lpfc_hba_down_post function to 5224 * free any pending commands. 5225 **/ 5226 static int 5227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5228 { 5229 struct lpfc_sli *psli = &phba->sli; 5230 uint32_t hba_aer_enabled; 5231 int rc; 5232 5233 /* Restart HBA */ 5234 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5235 "0296 Restart HBA Data: x%x x%x\n", 5236 phba->pport->port_state, psli->sli_flag); 5237 5238 /* Take PCIe device Advanced Error Reporting (AER) state */ 5239 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5240 5241 rc = lpfc_sli4_brdreset(phba); 5242 if (rc) { 5243 phba->link_state = LPFC_HBA_ERROR; 5244 goto hba_down_queue; 5245 } 5246 5247 spin_lock_irq(&phba->hbalock); 5248 phba->pport->stopped = 0; 5249 phba->link_state = LPFC_INIT_START; 5250 phba->hba_flag = 0; 5251 spin_unlock_irq(&phba->hbalock); 5252 5253 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5254 psli->stats_start = ktime_get_seconds(); 5255 5256 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5257 if (hba_aer_enabled) 5258 pci_disable_pcie_error_reporting(phba->pcidev); 5259 5260 hba_down_queue: 5261 lpfc_hba_down_post(phba); 5262 lpfc_sli4_queue_destroy(phba); 5263 5264 return rc; 5265 } 5266 5267 /** 5268 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5269 * @phba: Pointer to HBA context object. 5270 * 5271 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5272 * API jump table function pointer from the lpfc_hba struct. 5273 **/ 5274 int 5275 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5276 { 5277 return phba->lpfc_sli_brdrestart(phba); 5278 } 5279 5280 /** 5281 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5282 * @phba: Pointer to HBA context object. 5283 * 5284 * This function is called after a HBA restart to wait for successful 5285 * restart of the HBA. Successful restart of the HBA is indicated by 5286 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5287 * iteration, the function will restart the HBA again. The function returns 5288 * zero if HBA successfully restarted else returns negative error code. 5289 **/ 5290 int 5291 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5292 { 5293 uint32_t status, i = 0; 5294 5295 /* Read the HBA Host Status Register */ 5296 if (lpfc_readl(phba->HSregaddr, &status)) 5297 return -EIO; 5298 5299 /* Check status register to see what current state is */ 5300 i = 0; 5301 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5302 5303 /* Check every 10ms for 10 retries, then every 100ms for 90 5304 * retries, then every 1 sec for 50 retires for a total of 5305 * ~60 seconds before reset the board again and check every 5306 * 1 sec for 50 retries. The up to 60 seconds before the 5307 * board ready is required by the Falcon FIPS zeroization 5308 * complete, and any reset the board in between shall cause 5309 * restart of zeroization, further delay the board ready. 5310 */ 5311 if (i++ >= 200) { 5312 /* Adapter failed to init, timeout, status reg 5313 <status> */ 5314 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5315 "0436 Adapter failed to init, " 5316 "timeout, status reg x%x, " 5317 "FW Data: A8 x%x AC x%x\n", status, 5318 readl(phba->MBslimaddr + 0xa8), 5319 readl(phba->MBslimaddr + 0xac)); 5320 phba->link_state = LPFC_HBA_ERROR; 5321 return -ETIMEDOUT; 5322 } 5323 5324 /* Check to see if any errors occurred during init */ 5325 if (status & HS_FFERM) { 5326 /* ERROR: During chipset initialization */ 5327 /* Adapter failed to init, chipset, status reg 5328 <status> */ 5329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5330 "0437 Adapter failed to init, " 5331 "chipset, status reg x%x, " 5332 "FW Data: A8 x%x AC x%x\n", status, 5333 readl(phba->MBslimaddr + 0xa8), 5334 readl(phba->MBslimaddr + 0xac)); 5335 phba->link_state = LPFC_HBA_ERROR; 5336 return -EIO; 5337 } 5338 5339 if (i <= 10) 5340 msleep(10); 5341 else if (i <= 100) 5342 msleep(100); 5343 else 5344 msleep(1000); 5345 5346 if (i == 150) { 5347 /* Do post */ 5348 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5349 lpfc_sli_brdrestart(phba); 5350 } 5351 /* Read the HBA Host Status Register */ 5352 if (lpfc_readl(phba->HSregaddr, &status)) 5353 return -EIO; 5354 } 5355 5356 /* Check to see if any errors occurred during init */ 5357 if (status & HS_FFERM) { 5358 /* ERROR: During chipset initialization */ 5359 /* Adapter failed to init, chipset, status reg <status> */ 5360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5361 "0438 Adapter failed to init, chipset, " 5362 "status reg x%x, " 5363 "FW Data: A8 x%x AC x%x\n", status, 5364 readl(phba->MBslimaddr + 0xa8), 5365 readl(phba->MBslimaddr + 0xac)); 5366 phba->link_state = LPFC_HBA_ERROR; 5367 return -EIO; 5368 } 5369 5370 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5371 5372 /* Clear all interrupt enable conditions */ 5373 writel(0, phba->HCregaddr); 5374 readl(phba->HCregaddr); /* flush */ 5375 5376 /* setup host attn register */ 5377 writel(0xffffffff, phba->HAregaddr); 5378 readl(phba->HAregaddr); /* flush */ 5379 return 0; 5380 } 5381 5382 /** 5383 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5384 * 5385 * This function calculates and returns the number of HBQs required to be 5386 * configured. 5387 **/ 5388 int 5389 lpfc_sli_hbq_count(void) 5390 { 5391 return ARRAY_SIZE(lpfc_hbq_defs); 5392 } 5393 5394 /** 5395 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5396 * 5397 * This function adds the number of hbq entries in every HBQ to get 5398 * the total number of hbq entries required for the HBA and returns 5399 * the total count. 5400 **/ 5401 static int 5402 lpfc_sli_hbq_entry_count(void) 5403 { 5404 int hbq_count = lpfc_sli_hbq_count(); 5405 int count = 0; 5406 int i; 5407 5408 for (i = 0; i < hbq_count; ++i) 5409 count += lpfc_hbq_defs[i]->entry_count; 5410 return count; 5411 } 5412 5413 /** 5414 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5415 * 5416 * This function calculates amount of memory required for all hbq entries 5417 * to be configured and returns the total memory required. 5418 **/ 5419 int 5420 lpfc_sli_hbq_size(void) 5421 { 5422 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5423 } 5424 5425 /** 5426 * lpfc_sli_hbq_setup - configure and initialize HBQs 5427 * @phba: Pointer to HBA context object. 5428 * 5429 * This function is called during the SLI initialization to configure 5430 * all the HBQs and post buffers to the HBQ. The caller is not 5431 * required to hold any locks. This function will return zero if successful 5432 * else it will return negative error code. 5433 **/ 5434 static int 5435 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5436 { 5437 int hbq_count = lpfc_sli_hbq_count(); 5438 LPFC_MBOXQ_t *pmb; 5439 MAILBOX_t *pmbox; 5440 uint32_t hbqno; 5441 uint32_t hbq_entry_index; 5442 5443 /* Get a Mailbox buffer to setup mailbox 5444 * commands for HBA initialization 5445 */ 5446 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5447 5448 if (!pmb) 5449 return -ENOMEM; 5450 5451 pmbox = &pmb->u.mb; 5452 5453 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5454 phba->link_state = LPFC_INIT_MBX_CMDS; 5455 phba->hbq_in_use = 1; 5456 5457 hbq_entry_index = 0; 5458 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5459 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5460 phba->hbqs[hbqno].hbqPutIdx = 0; 5461 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5462 phba->hbqs[hbqno].entry_count = 5463 lpfc_hbq_defs[hbqno]->entry_count; 5464 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5465 hbq_entry_index, pmb); 5466 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5467 5468 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5469 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5470 mbxStatus <status>, ring <num> */ 5471 5472 lpfc_printf_log(phba, KERN_ERR, 5473 LOG_SLI | LOG_VPORT, 5474 "1805 Adapter failed to init. " 5475 "Data: x%x x%x x%x\n", 5476 pmbox->mbxCommand, 5477 pmbox->mbxStatus, hbqno); 5478 5479 phba->link_state = LPFC_HBA_ERROR; 5480 mempool_free(pmb, phba->mbox_mem_pool); 5481 return -ENXIO; 5482 } 5483 } 5484 phba->hbq_count = hbq_count; 5485 5486 mempool_free(pmb, phba->mbox_mem_pool); 5487 5488 /* Initially populate or replenish the HBQs */ 5489 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5490 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5491 return 0; 5492 } 5493 5494 /** 5495 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5496 * @phba: Pointer to HBA context object. 5497 * 5498 * This function is called during the SLI initialization to configure 5499 * all the HBQs and post buffers to the HBQ. The caller is not 5500 * required to hold any locks. This function will return zero if successful 5501 * else it will return negative error code. 5502 **/ 5503 static int 5504 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5505 { 5506 phba->hbq_in_use = 1; 5507 /** 5508 * Specific case when the MDS diagnostics is enabled and supported. 5509 * The receive buffer count is truncated to manage the incoming 5510 * traffic. 5511 **/ 5512 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5513 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5514 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5515 else 5516 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5517 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5518 phba->hbq_count = 1; 5519 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5520 /* Initially populate or replenish the HBQs */ 5521 return 0; 5522 } 5523 5524 /** 5525 * lpfc_sli_config_port - Issue config port mailbox command 5526 * @phba: Pointer to HBA context object. 5527 * @sli_mode: sli mode - 2/3 5528 * 5529 * This function is called by the sli initialization code path 5530 * to issue config_port mailbox command. This function restarts the 5531 * HBA firmware and issues a config_port mailbox command to configure 5532 * the SLI interface in the sli mode specified by sli_mode 5533 * variable. The caller is not required to hold any locks. 5534 * The function returns 0 if successful, else returns negative error 5535 * code. 5536 **/ 5537 int 5538 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5539 { 5540 LPFC_MBOXQ_t *pmb; 5541 uint32_t resetcount = 0, rc = 0, done = 0; 5542 5543 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5544 if (!pmb) { 5545 phba->link_state = LPFC_HBA_ERROR; 5546 return -ENOMEM; 5547 } 5548 5549 phba->sli_rev = sli_mode; 5550 while (resetcount < 2 && !done) { 5551 spin_lock_irq(&phba->hbalock); 5552 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5553 spin_unlock_irq(&phba->hbalock); 5554 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5555 lpfc_sli_brdrestart(phba); 5556 rc = lpfc_sli_chipset_init(phba); 5557 if (rc) 5558 break; 5559 5560 spin_lock_irq(&phba->hbalock); 5561 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5562 spin_unlock_irq(&phba->hbalock); 5563 resetcount++; 5564 5565 /* Call pre CONFIG_PORT mailbox command initialization. A 5566 * value of 0 means the call was successful. Any other 5567 * nonzero value is a failure, but if ERESTART is returned, 5568 * the driver may reset the HBA and try again. 5569 */ 5570 rc = lpfc_config_port_prep(phba); 5571 if (rc == -ERESTART) { 5572 phba->link_state = LPFC_LINK_UNKNOWN; 5573 continue; 5574 } else if (rc) 5575 break; 5576 5577 phba->link_state = LPFC_INIT_MBX_CMDS; 5578 lpfc_config_port(phba, pmb); 5579 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5580 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5581 LPFC_SLI3_HBQ_ENABLED | 5582 LPFC_SLI3_CRP_ENABLED | 5583 LPFC_SLI3_DSS_ENABLED); 5584 if (rc != MBX_SUCCESS) { 5585 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5586 "0442 Adapter failed to init, mbxCmd x%x " 5587 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5588 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5589 spin_lock_irq(&phba->hbalock); 5590 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5591 spin_unlock_irq(&phba->hbalock); 5592 rc = -ENXIO; 5593 } else { 5594 /* Allow asynchronous mailbox command to go through */ 5595 spin_lock_irq(&phba->hbalock); 5596 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5597 spin_unlock_irq(&phba->hbalock); 5598 done = 1; 5599 5600 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5601 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5602 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5603 "3110 Port did not grant ASABT\n"); 5604 } 5605 } 5606 if (!done) { 5607 rc = -EINVAL; 5608 goto do_prep_failed; 5609 } 5610 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5611 if (!pmb->u.mb.un.varCfgPort.cMA) { 5612 rc = -ENXIO; 5613 goto do_prep_failed; 5614 } 5615 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5616 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5617 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5618 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5619 phba->max_vpi : phba->max_vports; 5620 5621 } else 5622 phba->max_vpi = 0; 5623 if (pmb->u.mb.un.varCfgPort.gerbm) 5624 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5625 if (pmb->u.mb.un.varCfgPort.gcrp) 5626 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5627 5628 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5629 phba->port_gp = phba->mbox->us.s3_pgp.port; 5630 5631 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5632 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5633 phba->cfg_enable_bg = 0; 5634 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5636 "0443 Adapter did not grant " 5637 "BlockGuard\n"); 5638 } 5639 } 5640 } else { 5641 phba->hbq_get = NULL; 5642 phba->port_gp = phba->mbox->us.s2.port; 5643 phba->max_vpi = 0; 5644 } 5645 do_prep_failed: 5646 mempool_free(pmb, phba->mbox_mem_pool); 5647 return rc; 5648 } 5649 5650 5651 /** 5652 * lpfc_sli_hba_setup - SLI initialization function 5653 * @phba: Pointer to HBA context object. 5654 * 5655 * This function is the main SLI initialization function. This function 5656 * is called by the HBA initialization code, HBA reset code and HBA 5657 * error attention handler code. Caller is not required to hold any 5658 * locks. This function issues config_port mailbox command to configure 5659 * the SLI, setup iocb rings and HBQ rings. In the end the function 5660 * calls the config_port_post function to issue init_link mailbox 5661 * command and to start the discovery. The function will return zero 5662 * if successful, else it will return negative error code. 5663 **/ 5664 int 5665 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5666 { 5667 uint32_t rc; 5668 int i; 5669 int longs; 5670 5671 /* Enable ISR already does config_port because of config_msi mbx */ 5672 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5673 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5674 if (rc) 5675 return -EIO; 5676 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5677 } 5678 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5679 5680 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5681 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5682 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5683 if (!rc) { 5684 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5685 "2709 This device supports " 5686 "Advanced Error Reporting (AER)\n"); 5687 spin_lock_irq(&phba->hbalock); 5688 phba->hba_flag |= HBA_AER_ENABLED; 5689 spin_unlock_irq(&phba->hbalock); 5690 } else { 5691 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5692 "2708 This device does not support " 5693 "Advanced Error Reporting (AER): %d\n", 5694 rc); 5695 phba->cfg_aer_support = 0; 5696 } 5697 } 5698 5699 if (phba->sli_rev == 3) { 5700 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5701 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5702 } else { 5703 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5704 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5705 phba->sli3_options = 0; 5706 } 5707 5708 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5709 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5710 phba->sli_rev, phba->max_vpi); 5711 rc = lpfc_sli_ring_map(phba); 5712 5713 if (rc) 5714 goto lpfc_sli_hba_setup_error; 5715 5716 /* Initialize VPIs. */ 5717 if (phba->sli_rev == LPFC_SLI_REV3) { 5718 /* 5719 * The VPI bitmask and physical ID array are allocated 5720 * and initialized once only - at driver load. A port 5721 * reset doesn't need to reinitialize this memory. 5722 */ 5723 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5724 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5725 phba->vpi_bmask = kcalloc(longs, 5726 sizeof(unsigned long), 5727 GFP_KERNEL); 5728 if (!phba->vpi_bmask) { 5729 rc = -ENOMEM; 5730 goto lpfc_sli_hba_setup_error; 5731 } 5732 5733 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5734 sizeof(uint16_t), 5735 GFP_KERNEL); 5736 if (!phba->vpi_ids) { 5737 kfree(phba->vpi_bmask); 5738 rc = -ENOMEM; 5739 goto lpfc_sli_hba_setup_error; 5740 } 5741 for (i = 0; i < phba->max_vpi; i++) 5742 phba->vpi_ids[i] = i; 5743 } 5744 } 5745 5746 /* Init HBQs */ 5747 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5748 rc = lpfc_sli_hbq_setup(phba); 5749 if (rc) 5750 goto lpfc_sli_hba_setup_error; 5751 } 5752 spin_lock_irq(&phba->hbalock); 5753 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5754 spin_unlock_irq(&phba->hbalock); 5755 5756 rc = lpfc_config_port_post(phba); 5757 if (rc) 5758 goto lpfc_sli_hba_setup_error; 5759 5760 return rc; 5761 5762 lpfc_sli_hba_setup_error: 5763 phba->link_state = LPFC_HBA_ERROR; 5764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5765 "0445 Firmware initialization failed\n"); 5766 return rc; 5767 } 5768 5769 /** 5770 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5771 * @phba: Pointer to HBA context object. 5772 * 5773 * This function issue a dump mailbox command to read config region 5774 * 23 and parse the records in the region and populate driver 5775 * data structure. 5776 **/ 5777 static int 5778 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5779 { 5780 LPFC_MBOXQ_t *mboxq; 5781 struct lpfc_dmabuf *mp; 5782 struct lpfc_mqe *mqe; 5783 uint32_t data_length; 5784 int rc; 5785 5786 /* Program the default value of vlan_id and fc_map */ 5787 phba->valid_vlan = 0; 5788 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5789 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5790 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5791 5792 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5793 if (!mboxq) 5794 return -ENOMEM; 5795 5796 mqe = &mboxq->u.mqe; 5797 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5798 rc = -ENOMEM; 5799 goto out_free_mboxq; 5800 } 5801 5802 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5803 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5804 5805 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5806 "(%d):2571 Mailbox cmd x%x Status x%x " 5807 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5808 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5809 "CQ: x%x x%x x%x x%x\n", 5810 mboxq->vport ? mboxq->vport->vpi : 0, 5811 bf_get(lpfc_mqe_command, mqe), 5812 bf_get(lpfc_mqe_status, mqe), 5813 mqe->un.mb_words[0], mqe->un.mb_words[1], 5814 mqe->un.mb_words[2], mqe->un.mb_words[3], 5815 mqe->un.mb_words[4], mqe->un.mb_words[5], 5816 mqe->un.mb_words[6], mqe->un.mb_words[7], 5817 mqe->un.mb_words[8], mqe->un.mb_words[9], 5818 mqe->un.mb_words[10], mqe->un.mb_words[11], 5819 mqe->un.mb_words[12], mqe->un.mb_words[13], 5820 mqe->un.mb_words[14], mqe->un.mb_words[15], 5821 mqe->un.mb_words[16], mqe->un.mb_words[50], 5822 mboxq->mcqe.word0, 5823 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5824 mboxq->mcqe.trailer); 5825 5826 if (rc) { 5827 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5828 kfree(mp); 5829 rc = -EIO; 5830 goto out_free_mboxq; 5831 } 5832 data_length = mqe->un.mb_words[5]; 5833 if (data_length > DMP_RGN23_SIZE) { 5834 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5835 kfree(mp); 5836 rc = -EIO; 5837 goto out_free_mboxq; 5838 } 5839 5840 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5841 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5842 kfree(mp); 5843 rc = 0; 5844 5845 out_free_mboxq: 5846 mempool_free(mboxq, phba->mbox_mem_pool); 5847 return rc; 5848 } 5849 5850 /** 5851 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5852 * @phba: pointer to lpfc hba data structure. 5853 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5854 * @vpd: pointer to the memory to hold resulting port vpd data. 5855 * @vpd_size: On input, the number of bytes allocated to @vpd. 5856 * On output, the number of data bytes in @vpd. 5857 * 5858 * This routine executes a READ_REV SLI4 mailbox command. In 5859 * addition, this routine gets the port vpd data. 5860 * 5861 * Return codes 5862 * 0 - successful 5863 * -ENOMEM - could not allocated memory. 5864 **/ 5865 static int 5866 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5867 uint8_t *vpd, uint32_t *vpd_size) 5868 { 5869 int rc = 0; 5870 uint32_t dma_size; 5871 struct lpfc_dmabuf *dmabuf; 5872 struct lpfc_mqe *mqe; 5873 5874 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5875 if (!dmabuf) 5876 return -ENOMEM; 5877 5878 /* 5879 * Get a DMA buffer for the vpd data resulting from the READ_REV 5880 * mailbox command. 5881 */ 5882 dma_size = *vpd_size; 5883 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5884 &dmabuf->phys, GFP_KERNEL); 5885 if (!dmabuf->virt) { 5886 kfree(dmabuf); 5887 return -ENOMEM; 5888 } 5889 5890 /* 5891 * The SLI4 implementation of READ_REV conflicts at word1, 5892 * bits 31:16 and SLI4 adds vpd functionality not present 5893 * in SLI3. This code corrects the conflicts. 5894 */ 5895 lpfc_read_rev(phba, mboxq); 5896 mqe = &mboxq->u.mqe; 5897 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5898 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5899 mqe->un.read_rev.word1 &= 0x0000FFFF; 5900 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5901 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5902 5903 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5904 if (rc) { 5905 dma_free_coherent(&phba->pcidev->dev, dma_size, 5906 dmabuf->virt, dmabuf->phys); 5907 kfree(dmabuf); 5908 return -EIO; 5909 } 5910 5911 /* 5912 * The available vpd length cannot be bigger than the 5913 * DMA buffer passed to the port. Catch the less than 5914 * case and update the caller's size. 5915 */ 5916 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5917 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5918 5919 memcpy(vpd, dmabuf->virt, *vpd_size); 5920 5921 dma_free_coherent(&phba->pcidev->dev, dma_size, 5922 dmabuf->virt, dmabuf->phys); 5923 kfree(dmabuf); 5924 return 0; 5925 } 5926 5927 /** 5928 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5929 * @phba: pointer to lpfc hba data structure. 5930 * 5931 * This routine retrieves SLI4 device physical port name this PCI function 5932 * is attached to. 5933 * 5934 * Return codes 5935 * 0 - successful 5936 * otherwise - failed to retrieve controller attributes 5937 **/ 5938 static int 5939 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5940 { 5941 LPFC_MBOXQ_t *mboxq; 5942 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5943 struct lpfc_controller_attribute *cntl_attr; 5944 void *virtaddr = NULL; 5945 uint32_t alloclen, reqlen; 5946 uint32_t shdr_status, shdr_add_status; 5947 union lpfc_sli4_cfg_shdr *shdr; 5948 int rc; 5949 5950 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5951 if (!mboxq) 5952 return -ENOMEM; 5953 5954 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5955 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5956 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5957 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5958 LPFC_SLI4_MBX_NEMBED); 5959 5960 if (alloclen < reqlen) { 5961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5962 "3084 Allocated DMA memory size (%d) is " 5963 "less than the requested DMA memory size " 5964 "(%d)\n", alloclen, reqlen); 5965 rc = -ENOMEM; 5966 goto out_free_mboxq; 5967 } 5968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5969 virtaddr = mboxq->sge_array->addr[0]; 5970 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5971 shdr = &mbx_cntl_attr->cfg_shdr; 5972 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5973 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5974 if (shdr_status || shdr_add_status || rc) { 5975 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5976 "3085 Mailbox x%x (x%x/x%x) failed, " 5977 "rc:x%x, status:x%x, add_status:x%x\n", 5978 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5979 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5980 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5981 rc, shdr_status, shdr_add_status); 5982 rc = -ENXIO; 5983 goto out_free_mboxq; 5984 } 5985 5986 cntl_attr = &mbx_cntl_attr->cntl_attr; 5987 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5988 phba->sli4_hba.lnk_info.lnk_tp = 5989 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5990 phba->sli4_hba.lnk_info.lnk_no = 5991 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5992 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5993 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5994 5995 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5996 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5997 sizeof(phba->BIOSVersion)); 5998 5999 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6000 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6001 "flash_id: x%02x, asic_rev: x%02x\n", 6002 phba->sli4_hba.lnk_info.lnk_tp, 6003 phba->sli4_hba.lnk_info.lnk_no, 6004 phba->BIOSVersion, phba->sli4_hba.flash_id, 6005 phba->sli4_hba.asic_rev); 6006 out_free_mboxq: 6007 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6008 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6009 else 6010 mempool_free(mboxq, phba->mbox_mem_pool); 6011 return rc; 6012 } 6013 6014 /** 6015 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6016 * @phba: pointer to lpfc hba data structure. 6017 * 6018 * This routine retrieves SLI4 device physical port name this PCI function 6019 * is attached to. 6020 * 6021 * Return codes 6022 * 0 - successful 6023 * otherwise - failed to retrieve physical port name 6024 **/ 6025 static int 6026 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6027 { 6028 LPFC_MBOXQ_t *mboxq; 6029 struct lpfc_mbx_get_port_name *get_port_name; 6030 uint32_t shdr_status, shdr_add_status; 6031 union lpfc_sli4_cfg_shdr *shdr; 6032 char cport_name = 0; 6033 int rc; 6034 6035 /* We assume nothing at this point */ 6036 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6037 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6038 6039 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6040 if (!mboxq) 6041 return -ENOMEM; 6042 /* obtain link type and link number via READ_CONFIG */ 6043 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6044 lpfc_sli4_read_config(phba); 6045 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6046 goto retrieve_ppname; 6047 6048 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6049 rc = lpfc_sli4_get_ctl_attr(phba); 6050 if (rc) 6051 goto out_free_mboxq; 6052 6053 retrieve_ppname: 6054 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6055 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6056 sizeof(struct lpfc_mbx_get_port_name) - 6057 sizeof(struct lpfc_sli4_cfg_mhdr), 6058 LPFC_SLI4_MBX_EMBED); 6059 get_port_name = &mboxq->u.mqe.un.get_port_name; 6060 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6061 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6062 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6063 phba->sli4_hba.lnk_info.lnk_tp); 6064 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6065 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6066 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6067 if (shdr_status || shdr_add_status || rc) { 6068 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6069 "3087 Mailbox x%x (x%x/x%x) failed: " 6070 "rc:x%x, status:x%x, add_status:x%x\n", 6071 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6072 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6073 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6074 rc, shdr_status, shdr_add_status); 6075 rc = -ENXIO; 6076 goto out_free_mboxq; 6077 } 6078 switch (phba->sli4_hba.lnk_info.lnk_no) { 6079 case LPFC_LINK_NUMBER_0: 6080 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6081 &get_port_name->u.response); 6082 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6083 break; 6084 case LPFC_LINK_NUMBER_1: 6085 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6086 &get_port_name->u.response); 6087 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6088 break; 6089 case LPFC_LINK_NUMBER_2: 6090 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6091 &get_port_name->u.response); 6092 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6093 break; 6094 case LPFC_LINK_NUMBER_3: 6095 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6096 &get_port_name->u.response); 6097 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6098 break; 6099 default: 6100 break; 6101 } 6102 6103 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6104 phba->Port[0] = cport_name; 6105 phba->Port[1] = '\0'; 6106 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6107 "3091 SLI get port name: %s\n", phba->Port); 6108 } 6109 6110 out_free_mboxq: 6111 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6112 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6113 else 6114 mempool_free(mboxq, phba->mbox_mem_pool); 6115 return rc; 6116 } 6117 6118 /** 6119 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6120 * @phba: pointer to lpfc hba data structure. 6121 * 6122 * This routine is called to explicitly arm the SLI4 device's completion and 6123 * event queues 6124 **/ 6125 static void 6126 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6127 { 6128 int qidx; 6129 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6130 struct lpfc_sli4_hdw_queue *qp; 6131 struct lpfc_queue *eq; 6132 6133 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6134 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6135 if (sli4_hba->nvmels_cq) 6136 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6137 LPFC_QUEUE_REARM); 6138 6139 if (sli4_hba->hdwq) { 6140 /* Loop thru all Hardware Queues */ 6141 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6142 qp = &sli4_hba->hdwq[qidx]; 6143 /* ARM the corresponding CQ */ 6144 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6145 LPFC_QUEUE_REARM); 6146 } 6147 6148 /* Loop thru all IRQ vectors */ 6149 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6150 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6151 /* ARM the corresponding EQ */ 6152 sli4_hba->sli4_write_eq_db(phba, eq, 6153 0, LPFC_QUEUE_REARM); 6154 } 6155 } 6156 6157 if (phba->nvmet_support) { 6158 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6159 sli4_hba->sli4_write_cq_db(phba, 6160 sli4_hba->nvmet_cqset[qidx], 0, 6161 LPFC_QUEUE_REARM); 6162 } 6163 } 6164 } 6165 6166 /** 6167 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6168 * @phba: Pointer to HBA context object. 6169 * @type: The resource extent type. 6170 * @extnt_count: buffer to hold port available extent count. 6171 * @extnt_size: buffer to hold element count per extent. 6172 * 6173 * This function calls the port and retrievs the number of available 6174 * extents and their size for a particular extent type. 6175 * 6176 * Returns: 0 if successful. Nonzero otherwise. 6177 **/ 6178 int 6179 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6180 uint16_t *extnt_count, uint16_t *extnt_size) 6181 { 6182 int rc = 0; 6183 uint32_t length; 6184 uint32_t mbox_tmo; 6185 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6186 LPFC_MBOXQ_t *mbox; 6187 6188 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6189 if (!mbox) 6190 return -ENOMEM; 6191 6192 /* Find out how many extents are available for this resource type */ 6193 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6194 sizeof(struct lpfc_sli4_cfg_mhdr)); 6195 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6196 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6197 length, LPFC_SLI4_MBX_EMBED); 6198 6199 /* Send an extents count of 0 - the GET doesn't use it. */ 6200 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6201 LPFC_SLI4_MBX_EMBED); 6202 if (unlikely(rc)) { 6203 rc = -EIO; 6204 goto err_exit; 6205 } 6206 6207 if (!phba->sli4_hba.intr_enable) 6208 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6209 else { 6210 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6211 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6212 } 6213 if (unlikely(rc)) { 6214 rc = -EIO; 6215 goto err_exit; 6216 } 6217 6218 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6219 if (bf_get(lpfc_mbox_hdr_status, 6220 &rsrc_info->header.cfg_shdr.response)) { 6221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6222 "2930 Failed to get resource extents " 6223 "Status 0x%x Add'l Status 0x%x\n", 6224 bf_get(lpfc_mbox_hdr_status, 6225 &rsrc_info->header.cfg_shdr.response), 6226 bf_get(lpfc_mbox_hdr_add_status, 6227 &rsrc_info->header.cfg_shdr.response)); 6228 rc = -EIO; 6229 goto err_exit; 6230 } 6231 6232 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6233 &rsrc_info->u.rsp); 6234 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6235 &rsrc_info->u.rsp); 6236 6237 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6238 "3162 Retrieved extents type-%d from port: count:%d, " 6239 "size:%d\n", type, *extnt_count, *extnt_size); 6240 6241 err_exit: 6242 mempool_free(mbox, phba->mbox_mem_pool); 6243 return rc; 6244 } 6245 6246 /** 6247 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6248 * @phba: Pointer to HBA context object. 6249 * @type: The extent type to check. 6250 * 6251 * This function reads the current available extents from the port and checks 6252 * if the extent count or extent size has changed since the last access. 6253 * Callers use this routine post port reset to understand if there is a 6254 * extent reprovisioning requirement. 6255 * 6256 * Returns: 6257 * -Error: error indicates problem. 6258 * 1: Extent count or size has changed. 6259 * 0: No changes. 6260 **/ 6261 static int 6262 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6263 { 6264 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6265 uint16_t size_diff, rsrc_ext_size; 6266 int rc = 0; 6267 struct lpfc_rsrc_blks *rsrc_entry; 6268 struct list_head *rsrc_blk_list = NULL; 6269 6270 size_diff = 0; 6271 curr_ext_cnt = 0; 6272 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6273 &rsrc_ext_cnt, 6274 &rsrc_ext_size); 6275 if (unlikely(rc)) 6276 return -EIO; 6277 6278 switch (type) { 6279 case LPFC_RSC_TYPE_FCOE_RPI: 6280 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6281 break; 6282 case LPFC_RSC_TYPE_FCOE_VPI: 6283 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6284 break; 6285 case LPFC_RSC_TYPE_FCOE_XRI: 6286 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6287 break; 6288 case LPFC_RSC_TYPE_FCOE_VFI: 6289 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6290 break; 6291 default: 6292 break; 6293 } 6294 6295 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6296 curr_ext_cnt++; 6297 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6298 size_diff++; 6299 } 6300 6301 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6302 rc = 1; 6303 6304 return rc; 6305 } 6306 6307 /** 6308 * lpfc_sli4_cfg_post_extnts - 6309 * @phba: Pointer to HBA context object. 6310 * @extnt_cnt: number of available extents. 6311 * @type: the extent type (rpi, xri, vfi, vpi). 6312 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6313 * @mbox: pointer to the caller's allocated mailbox structure. 6314 * 6315 * This function executes the extents allocation request. It also 6316 * takes care of the amount of memory needed to allocate or get the 6317 * allocated extents. It is the caller's responsibility to evaluate 6318 * the response. 6319 * 6320 * Returns: 6321 * -Error: Error value describes the condition found. 6322 * 0: if successful 6323 **/ 6324 static int 6325 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6326 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6327 { 6328 int rc = 0; 6329 uint32_t req_len; 6330 uint32_t emb_len; 6331 uint32_t alloc_len, mbox_tmo; 6332 6333 /* Calculate the total requested length of the dma memory */ 6334 req_len = extnt_cnt * sizeof(uint16_t); 6335 6336 /* 6337 * Calculate the size of an embedded mailbox. The uint32_t 6338 * accounts for extents-specific word. 6339 */ 6340 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6341 sizeof(uint32_t); 6342 6343 /* 6344 * Presume the allocation and response will fit into an embedded 6345 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6346 */ 6347 *emb = LPFC_SLI4_MBX_EMBED; 6348 if (req_len > emb_len) { 6349 req_len = extnt_cnt * sizeof(uint16_t) + 6350 sizeof(union lpfc_sli4_cfg_shdr) + 6351 sizeof(uint32_t); 6352 *emb = LPFC_SLI4_MBX_NEMBED; 6353 } 6354 6355 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6356 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6357 req_len, *emb); 6358 if (alloc_len < req_len) { 6359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6360 "2982 Allocated DMA memory size (x%x) is " 6361 "less than the requested DMA memory " 6362 "size (x%x)\n", alloc_len, req_len); 6363 return -ENOMEM; 6364 } 6365 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6366 if (unlikely(rc)) 6367 return -EIO; 6368 6369 if (!phba->sli4_hba.intr_enable) 6370 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6371 else { 6372 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6373 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6374 } 6375 6376 if (unlikely(rc)) 6377 rc = -EIO; 6378 return rc; 6379 } 6380 6381 /** 6382 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6383 * @phba: Pointer to HBA context object. 6384 * @type: The resource extent type to allocate. 6385 * 6386 * This function allocates the number of elements for the specified 6387 * resource type. 6388 **/ 6389 static int 6390 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6391 { 6392 bool emb = false; 6393 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6394 uint16_t rsrc_id, rsrc_start, j, k; 6395 uint16_t *ids; 6396 int i, rc; 6397 unsigned long longs; 6398 unsigned long *bmask; 6399 struct lpfc_rsrc_blks *rsrc_blks; 6400 LPFC_MBOXQ_t *mbox; 6401 uint32_t length; 6402 struct lpfc_id_range *id_array = NULL; 6403 void *virtaddr = NULL; 6404 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6405 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6406 struct list_head *ext_blk_list; 6407 6408 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6409 &rsrc_cnt, 6410 &rsrc_size); 6411 if (unlikely(rc)) 6412 return -EIO; 6413 6414 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6415 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6416 "3009 No available Resource Extents " 6417 "for resource type 0x%x: Count: 0x%x, " 6418 "Size 0x%x\n", type, rsrc_cnt, 6419 rsrc_size); 6420 return -ENOMEM; 6421 } 6422 6423 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6424 "2903 Post resource extents type-0x%x: " 6425 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6426 6427 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6428 if (!mbox) 6429 return -ENOMEM; 6430 6431 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6432 if (unlikely(rc)) { 6433 rc = -EIO; 6434 goto err_exit; 6435 } 6436 6437 /* 6438 * Figure out where the response is located. Then get local pointers 6439 * to the response data. The port does not guarantee to respond to 6440 * all extents counts request so update the local variable with the 6441 * allocated count from the port. 6442 */ 6443 if (emb == LPFC_SLI4_MBX_EMBED) { 6444 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6445 id_array = &rsrc_ext->u.rsp.id[0]; 6446 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6447 } else { 6448 virtaddr = mbox->sge_array->addr[0]; 6449 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6450 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6451 id_array = &n_rsrc->id; 6452 } 6453 6454 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6455 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6456 6457 /* 6458 * Based on the resource size and count, correct the base and max 6459 * resource values. 6460 */ 6461 length = sizeof(struct lpfc_rsrc_blks); 6462 switch (type) { 6463 case LPFC_RSC_TYPE_FCOE_RPI: 6464 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6465 sizeof(unsigned long), 6466 GFP_KERNEL); 6467 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6468 rc = -ENOMEM; 6469 goto err_exit; 6470 } 6471 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6472 sizeof(uint16_t), 6473 GFP_KERNEL); 6474 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6475 kfree(phba->sli4_hba.rpi_bmask); 6476 rc = -ENOMEM; 6477 goto err_exit; 6478 } 6479 6480 /* 6481 * The next_rpi was initialized with the maximum available 6482 * count but the port may allocate a smaller number. Catch 6483 * that case and update the next_rpi. 6484 */ 6485 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6486 6487 /* Initialize local ptrs for common extent processing later. */ 6488 bmask = phba->sli4_hba.rpi_bmask; 6489 ids = phba->sli4_hba.rpi_ids; 6490 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6491 break; 6492 case LPFC_RSC_TYPE_FCOE_VPI: 6493 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6494 GFP_KERNEL); 6495 if (unlikely(!phba->vpi_bmask)) { 6496 rc = -ENOMEM; 6497 goto err_exit; 6498 } 6499 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6500 GFP_KERNEL); 6501 if (unlikely(!phba->vpi_ids)) { 6502 kfree(phba->vpi_bmask); 6503 rc = -ENOMEM; 6504 goto err_exit; 6505 } 6506 6507 /* Initialize local ptrs for common extent processing later. */ 6508 bmask = phba->vpi_bmask; 6509 ids = phba->vpi_ids; 6510 ext_blk_list = &phba->lpfc_vpi_blk_list; 6511 break; 6512 case LPFC_RSC_TYPE_FCOE_XRI: 6513 phba->sli4_hba.xri_bmask = kcalloc(longs, 6514 sizeof(unsigned long), 6515 GFP_KERNEL); 6516 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6517 rc = -ENOMEM; 6518 goto err_exit; 6519 } 6520 phba->sli4_hba.max_cfg_param.xri_used = 0; 6521 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6522 sizeof(uint16_t), 6523 GFP_KERNEL); 6524 if (unlikely(!phba->sli4_hba.xri_ids)) { 6525 kfree(phba->sli4_hba.xri_bmask); 6526 rc = -ENOMEM; 6527 goto err_exit; 6528 } 6529 6530 /* Initialize local ptrs for common extent processing later. */ 6531 bmask = phba->sli4_hba.xri_bmask; 6532 ids = phba->sli4_hba.xri_ids; 6533 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6534 break; 6535 case LPFC_RSC_TYPE_FCOE_VFI: 6536 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6537 sizeof(unsigned long), 6538 GFP_KERNEL); 6539 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6540 rc = -ENOMEM; 6541 goto err_exit; 6542 } 6543 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6544 sizeof(uint16_t), 6545 GFP_KERNEL); 6546 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6547 kfree(phba->sli4_hba.vfi_bmask); 6548 rc = -ENOMEM; 6549 goto err_exit; 6550 } 6551 6552 /* Initialize local ptrs for common extent processing later. */ 6553 bmask = phba->sli4_hba.vfi_bmask; 6554 ids = phba->sli4_hba.vfi_ids; 6555 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6556 break; 6557 default: 6558 /* Unsupported Opcode. Fail call. */ 6559 id_array = NULL; 6560 bmask = NULL; 6561 ids = NULL; 6562 ext_blk_list = NULL; 6563 goto err_exit; 6564 } 6565 6566 /* 6567 * Complete initializing the extent configuration with the 6568 * allocated ids assigned to this function. The bitmask serves 6569 * as an index into the array and manages the available ids. The 6570 * array just stores the ids communicated to the port via the wqes. 6571 */ 6572 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6573 if ((i % 2) == 0) 6574 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6575 &id_array[k]); 6576 else 6577 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6578 &id_array[k]); 6579 6580 rsrc_blks = kzalloc(length, GFP_KERNEL); 6581 if (unlikely(!rsrc_blks)) { 6582 rc = -ENOMEM; 6583 kfree(bmask); 6584 kfree(ids); 6585 goto err_exit; 6586 } 6587 rsrc_blks->rsrc_start = rsrc_id; 6588 rsrc_blks->rsrc_size = rsrc_size; 6589 list_add_tail(&rsrc_blks->list, ext_blk_list); 6590 rsrc_start = rsrc_id; 6591 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6592 phba->sli4_hba.io_xri_start = rsrc_start + 6593 lpfc_sli4_get_iocb_cnt(phba); 6594 } 6595 6596 while (rsrc_id < (rsrc_start + rsrc_size)) { 6597 ids[j] = rsrc_id; 6598 rsrc_id++; 6599 j++; 6600 } 6601 /* Entire word processed. Get next word.*/ 6602 if ((i % 2) == 1) 6603 k++; 6604 } 6605 err_exit: 6606 lpfc_sli4_mbox_cmd_free(phba, mbox); 6607 return rc; 6608 } 6609 6610 6611 6612 /** 6613 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6614 * @phba: Pointer to HBA context object. 6615 * @type: the extent's type. 6616 * 6617 * This function deallocates all extents of a particular resource type. 6618 * SLI4 does not allow for deallocating a particular extent range. It 6619 * is the caller's responsibility to release all kernel memory resources. 6620 **/ 6621 static int 6622 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6623 { 6624 int rc; 6625 uint32_t length, mbox_tmo = 0; 6626 LPFC_MBOXQ_t *mbox; 6627 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6628 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6629 6630 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6631 if (!mbox) 6632 return -ENOMEM; 6633 6634 /* 6635 * This function sends an embedded mailbox because it only sends the 6636 * the resource type. All extents of this type are released by the 6637 * port. 6638 */ 6639 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6640 sizeof(struct lpfc_sli4_cfg_mhdr)); 6641 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6642 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6643 length, LPFC_SLI4_MBX_EMBED); 6644 6645 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6646 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6647 LPFC_SLI4_MBX_EMBED); 6648 if (unlikely(rc)) { 6649 rc = -EIO; 6650 goto out_free_mbox; 6651 } 6652 if (!phba->sli4_hba.intr_enable) 6653 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6654 else { 6655 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6656 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6657 } 6658 if (unlikely(rc)) { 6659 rc = -EIO; 6660 goto out_free_mbox; 6661 } 6662 6663 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6664 if (bf_get(lpfc_mbox_hdr_status, 6665 &dealloc_rsrc->header.cfg_shdr.response)) { 6666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6667 "2919 Failed to release resource extents " 6668 "for type %d - Status 0x%x Add'l Status 0x%x. " 6669 "Resource memory not released.\n", 6670 type, 6671 bf_get(lpfc_mbox_hdr_status, 6672 &dealloc_rsrc->header.cfg_shdr.response), 6673 bf_get(lpfc_mbox_hdr_add_status, 6674 &dealloc_rsrc->header.cfg_shdr.response)); 6675 rc = -EIO; 6676 goto out_free_mbox; 6677 } 6678 6679 /* Release kernel memory resources for the specific type. */ 6680 switch (type) { 6681 case LPFC_RSC_TYPE_FCOE_VPI: 6682 kfree(phba->vpi_bmask); 6683 kfree(phba->vpi_ids); 6684 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6685 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6686 &phba->lpfc_vpi_blk_list, list) { 6687 list_del_init(&rsrc_blk->list); 6688 kfree(rsrc_blk); 6689 } 6690 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6691 break; 6692 case LPFC_RSC_TYPE_FCOE_XRI: 6693 kfree(phba->sli4_hba.xri_bmask); 6694 kfree(phba->sli4_hba.xri_ids); 6695 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6696 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6697 list_del_init(&rsrc_blk->list); 6698 kfree(rsrc_blk); 6699 } 6700 break; 6701 case LPFC_RSC_TYPE_FCOE_VFI: 6702 kfree(phba->sli4_hba.vfi_bmask); 6703 kfree(phba->sli4_hba.vfi_ids); 6704 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6705 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6706 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6707 list_del_init(&rsrc_blk->list); 6708 kfree(rsrc_blk); 6709 } 6710 break; 6711 case LPFC_RSC_TYPE_FCOE_RPI: 6712 /* RPI bitmask and physical id array are cleaned up earlier. */ 6713 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6714 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6715 list_del_init(&rsrc_blk->list); 6716 kfree(rsrc_blk); 6717 } 6718 break; 6719 default: 6720 break; 6721 } 6722 6723 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6724 6725 out_free_mbox: 6726 mempool_free(mbox, phba->mbox_mem_pool); 6727 return rc; 6728 } 6729 6730 static void 6731 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6732 uint32_t feature) 6733 { 6734 uint32_t len; 6735 u32 sig_freq = 0; 6736 6737 len = sizeof(struct lpfc_mbx_set_feature) - 6738 sizeof(struct lpfc_sli4_cfg_mhdr); 6739 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6740 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6741 LPFC_SLI4_MBX_EMBED); 6742 6743 switch (feature) { 6744 case LPFC_SET_UE_RECOVERY: 6745 bf_set(lpfc_mbx_set_feature_UER, 6746 &mbox->u.mqe.un.set_feature, 1); 6747 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6748 mbox->u.mqe.un.set_feature.param_len = 8; 6749 break; 6750 case LPFC_SET_MDS_DIAGS: 6751 bf_set(lpfc_mbx_set_feature_mds, 6752 &mbox->u.mqe.un.set_feature, 1); 6753 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6754 &mbox->u.mqe.un.set_feature, 1); 6755 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6756 mbox->u.mqe.un.set_feature.param_len = 8; 6757 break; 6758 case LPFC_SET_CGN_SIGNAL: 6759 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6760 sig_freq = 0; 6761 else 6762 sig_freq = phba->cgn_sig_freq; 6763 6764 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6765 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6766 &mbox->u.mqe.un.set_feature, sig_freq); 6767 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6768 &mbox->u.mqe.un.set_feature, sig_freq); 6769 } 6770 6771 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6772 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6773 &mbox->u.mqe.un.set_feature, sig_freq); 6774 6775 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6776 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6777 sig_freq = 0; 6778 else 6779 sig_freq = lpfc_acqe_cgn_frequency; 6780 6781 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6782 &mbox->u.mqe.un.set_feature, sig_freq); 6783 6784 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6785 mbox->u.mqe.un.set_feature.param_len = 12; 6786 break; 6787 case LPFC_SET_DUAL_DUMP: 6788 bf_set(lpfc_mbx_set_feature_dd, 6789 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6790 bf_set(lpfc_mbx_set_feature_ddquery, 6791 &mbox->u.mqe.un.set_feature, 0); 6792 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6793 mbox->u.mqe.un.set_feature.param_len = 4; 6794 break; 6795 case LPFC_SET_ENABLE_MI: 6796 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6797 mbox->u.mqe.un.set_feature.param_len = 4; 6798 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6799 phba->pport->cfg_lun_queue_depth); 6800 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6801 phba->sli4_hba.pc_sli4_params.mi_ver); 6802 break; 6803 case LPFC_SET_ENABLE_CMF: 6804 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6805 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6806 mbox->u.mqe.un.set_feature.param_len = 4; 6807 bf_set(lpfc_mbx_set_feature_cmf, 6808 &mbox->u.mqe.un.set_feature, 1); 6809 break; 6810 } 6811 return; 6812 } 6813 6814 /** 6815 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6816 * @phba: Pointer to HBA context object. 6817 * 6818 * Disable FW logging into host memory on the adapter. To 6819 * be done before reading logs from the host memory. 6820 **/ 6821 void 6822 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6823 { 6824 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6825 6826 spin_lock_irq(&phba->hbalock); 6827 ras_fwlog->state = INACTIVE; 6828 spin_unlock_irq(&phba->hbalock); 6829 6830 /* Disable FW logging to host memory */ 6831 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6832 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6833 6834 /* Wait 10ms for firmware to stop using DMA buffer */ 6835 usleep_range(10 * 1000, 20 * 1000); 6836 } 6837 6838 /** 6839 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6840 * @phba: Pointer to HBA context object. 6841 * 6842 * This function is called to free memory allocated for RAS FW logging 6843 * support in the driver. 6844 **/ 6845 void 6846 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6847 { 6848 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6849 struct lpfc_dmabuf *dmabuf, *next; 6850 6851 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6852 list_for_each_entry_safe(dmabuf, next, 6853 &ras_fwlog->fwlog_buff_list, 6854 list) { 6855 list_del(&dmabuf->list); 6856 dma_free_coherent(&phba->pcidev->dev, 6857 LPFC_RAS_MAX_ENTRY_SIZE, 6858 dmabuf->virt, dmabuf->phys); 6859 kfree(dmabuf); 6860 } 6861 } 6862 6863 if (ras_fwlog->lwpd.virt) { 6864 dma_free_coherent(&phba->pcidev->dev, 6865 sizeof(uint32_t) * 2, 6866 ras_fwlog->lwpd.virt, 6867 ras_fwlog->lwpd.phys); 6868 ras_fwlog->lwpd.virt = NULL; 6869 } 6870 6871 spin_lock_irq(&phba->hbalock); 6872 ras_fwlog->state = INACTIVE; 6873 spin_unlock_irq(&phba->hbalock); 6874 } 6875 6876 /** 6877 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6878 * @phba: Pointer to HBA context object. 6879 * @fwlog_buff_count: Count of buffers to be created. 6880 * 6881 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6882 * to update FW log is posted to the adapter. 6883 * Buffer count is calculated based on module param ras_fwlog_buffsize 6884 * Size of each buffer posted to FW is 64K. 6885 **/ 6886 6887 static int 6888 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6889 uint32_t fwlog_buff_count) 6890 { 6891 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6892 struct lpfc_dmabuf *dmabuf; 6893 int rc = 0, i = 0; 6894 6895 /* Initialize List */ 6896 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6897 6898 /* Allocate memory for the LWPD */ 6899 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6900 sizeof(uint32_t) * 2, 6901 &ras_fwlog->lwpd.phys, 6902 GFP_KERNEL); 6903 if (!ras_fwlog->lwpd.virt) { 6904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6905 "6185 LWPD Memory Alloc Failed\n"); 6906 6907 return -ENOMEM; 6908 } 6909 6910 ras_fwlog->fw_buffcount = fwlog_buff_count; 6911 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6912 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6913 GFP_KERNEL); 6914 if (!dmabuf) { 6915 rc = -ENOMEM; 6916 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6917 "6186 Memory Alloc failed FW logging"); 6918 goto free_mem; 6919 } 6920 6921 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6922 LPFC_RAS_MAX_ENTRY_SIZE, 6923 &dmabuf->phys, GFP_KERNEL); 6924 if (!dmabuf->virt) { 6925 kfree(dmabuf); 6926 rc = -ENOMEM; 6927 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6928 "6187 DMA Alloc Failed FW logging"); 6929 goto free_mem; 6930 } 6931 dmabuf->buffer_tag = i; 6932 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6933 } 6934 6935 free_mem: 6936 if (rc) 6937 lpfc_sli4_ras_dma_free(phba); 6938 6939 return rc; 6940 } 6941 6942 /** 6943 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6944 * @phba: pointer to lpfc hba data structure. 6945 * @pmb: pointer to the driver internal queue element for mailbox command. 6946 * 6947 * Completion handler for driver's RAS MBX command to the device. 6948 **/ 6949 static void 6950 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6951 { 6952 MAILBOX_t *mb; 6953 union lpfc_sli4_cfg_shdr *shdr; 6954 uint32_t shdr_status, shdr_add_status; 6955 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6956 6957 mb = &pmb->u.mb; 6958 6959 shdr = (union lpfc_sli4_cfg_shdr *) 6960 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6961 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6962 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6963 6964 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6965 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6966 "6188 FW LOG mailbox " 6967 "completed with status x%x add_status x%x," 6968 " mbx status x%x\n", 6969 shdr_status, shdr_add_status, mb->mbxStatus); 6970 6971 ras_fwlog->ras_hwsupport = false; 6972 goto disable_ras; 6973 } 6974 6975 spin_lock_irq(&phba->hbalock); 6976 ras_fwlog->state = ACTIVE; 6977 spin_unlock_irq(&phba->hbalock); 6978 mempool_free(pmb, phba->mbox_mem_pool); 6979 6980 return; 6981 6982 disable_ras: 6983 /* Free RAS DMA memory */ 6984 lpfc_sli4_ras_dma_free(phba); 6985 mempool_free(pmb, phba->mbox_mem_pool); 6986 } 6987 6988 /** 6989 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6990 * @phba: pointer to lpfc hba data structure. 6991 * @fwlog_level: Logging verbosity level. 6992 * @fwlog_enable: Enable/Disable logging. 6993 * 6994 * Initialize memory and post mailbox command to enable FW logging in host 6995 * memory. 6996 **/ 6997 int 6998 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6999 uint32_t fwlog_level, 7000 uint32_t fwlog_enable) 7001 { 7002 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7003 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7004 struct lpfc_dmabuf *dmabuf; 7005 LPFC_MBOXQ_t *mbox; 7006 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7007 int rc = 0; 7008 7009 spin_lock_irq(&phba->hbalock); 7010 ras_fwlog->state = INACTIVE; 7011 spin_unlock_irq(&phba->hbalock); 7012 7013 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7014 phba->cfg_ras_fwlog_buffsize); 7015 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7016 7017 /* 7018 * If re-enabling FW logging support use earlier allocated 7019 * DMA buffers while posting MBX command. 7020 **/ 7021 if (!ras_fwlog->lwpd.virt) { 7022 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7023 if (rc) { 7024 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7025 "6189 FW Log Memory Allocation Failed"); 7026 return rc; 7027 } 7028 } 7029 7030 /* Setup Mailbox command */ 7031 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7032 if (!mbox) { 7033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7034 "6190 RAS MBX Alloc Failed"); 7035 rc = -ENOMEM; 7036 goto mem_free; 7037 } 7038 7039 ras_fwlog->fw_loglevel = fwlog_level; 7040 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7041 sizeof(struct lpfc_sli4_cfg_mhdr)); 7042 7043 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7044 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7045 len, LPFC_SLI4_MBX_EMBED); 7046 7047 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7048 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7049 fwlog_enable); 7050 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7051 ras_fwlog->fw_loglevel); 7052 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7053 ras_fwlog->fw_buffcount); 7054 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7055 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7056 7057 /* Update DMA buffer address */ 7058 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7059 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7060 7061 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7062 putPaddrLow(dmabuf->phys); 7063 7064 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7065 putPaddrHigh(dmabuf->phys); 7066 } 7067 7068 /* Update LPWD address */ 7069 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7070 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7071 7072 spin_lock_irq(&phba->hbalock); 7073 ras_fwlog->state = REG_INPROGRESS; 7074 spin_unlock_irq(&phba->hbalock); 7075 mbox->vport = phba->pport; 7076 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7077 7078 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7079 7080 if (rc == MBX_NOT_FINISHED) { 7081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7082 "6191 FW-Log Mailbox failed. " 7083 "status %d mbxStatus : x%x", rc, 7084 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7085 mempool_free(mbox, phba->mbox_mem_pool); 7086 rc = -EIO; 7087 goto mem_free; 7088 } else 7089 rc = 0; 7090 mem_free: 7091 if (rc) 7092 lpfc_sli4_ras_dma_free(phba); 7093 7094 return rc; 7095 } 7096 7097 /** 7098 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7099 * @phba: Pointer to HBA context object. 7100 * 7101 * Check if RAS is supported on the adapter and initialize it. 7102 **/ 7103 void 7104 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7105 { 7106 /* Check RAS FW Log needs to be enabled or not */ 7107 if (lpfc_check_fwlog_support(phba)) 7108 return; 7109 7110 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7111 LPFC_RAS_ENABLE_LOGGING); 7112 } 7113 7114 /** 7115 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7116 * @phba: Pointer to HBA context object. 7117 * 7118 * This function allocates all SLI4 resource identifiers. 7119 **/ 7120 int 7121 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7122 { 7123 int i, rc, error = 0; 7124 uint16_t count, base; 7125 unsigned long longs; 7126 7127 if (!phba->sli4_hba.rpi_hdrs_in_use) 7128 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7129 if (phba->sli4_hba.extents_in_use) { 7130 /* 7131 * The port supports resource extents. The XRI, VPI, VFI, RPI 7132 * resource extent count must be read and allocated before 7133 * provisioning the resource id arrays. 7134 */ 7135 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7136 LPFC_IDX_RSRC_RDY) { 7137 /* 7138 * Extent-based resources are set - the driver could 7139 * be in a port reset. Figure out if any corrective 7140 * actions need to be taken. 7141 */ 7142 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7143 LPFC_RSC_TYPE_FCOE_VFI); 7144 if (rc != 0) 7145 error++; 7146 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7147 LPFC_RSC_TYPE_FCOE_VPI); 7148 if (rc != 0) 7149 error++; 7150 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7151 LPFC_RSC_TYPE_FCOE_XRI); 7152 if (rc != 0) 7153 error++; 7154 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7155 LPFC_RSC_TYPE_FCOE_RPI); 7156 if (rc != 0) 7157 error++; 7158 7159 /* 7160 * It's possible that the number of resources 7161 * provided to this port instance changed between 7162 * resets. Detect this condition and reallocate 7163 * resources. Otherwise, there is no action. 7164 */ 7165 if (error) { 7166 lpfc_printf_log(phba, KERN_INFO, 7167 LOG_MBOX | LOG_INIT, 7168 "2931 Detected extent resource " 7169 "change. Reallocating all " 7170 "extents.\n"); 7171 rc = lpfc_sli4_dealloc_extent(phba, 7172 LPFC_RSC_TYPE_FCOE_VFI); 7173 rc = lpfc_sli4_dealloc_extent(phba, 7174 LPFC_RSC_TYPE_FCOE_VPI); 7175 rc = lpfc_sli4_dealloc_extent(phba, 7176 LPFC_RSC_TYPE_FCOE_XRI); 7177 rc = lpfc_sli4_dealloc_extent(phba, 7178 LPFC_RSC_TYPE_FCOE_RPI); 7179 } else 7180 return 0; 7181 } 7182 7183 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7184 if (unlikely(rc)) 7185 goto err_exit; 7186 7187 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7188 if (unlikely(rc)) 7189 goto err_exit; 7190 7191 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7192 if (unlikely(rc)) 7193 goto err_exit; 7194 7195 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7196 if (unlikely(rc)) 7197 goto err_exit; 7198 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7199 LPFC_IDX_RSRC_RDY); 7200 return rc; 7201 } else { 7202 /* 7203 * The port does not support resource extents. The XRI, VPI, 7204 * VFI, RPI resource ids were determined from READ_CONFIG. 7205 * Just allocate the bitmasks and provision the resource id 7206 * arrays. If a port reset is active, the resources don't 7207 * need any action - just exit. 7208 */ 7209 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7210 LPFC_IDX_RSRC_RDY) { 7211 lpfc_sli4_dealloc_resource_identifiers(phba); 7212 lpfc_sli4_remove_rpis(phba); 7213 } 7214 /* RPIs. */ 7215 count = phba->sli4_hba.max_cfg_param.max_rpi; 7216 if (count <= 0) { 7217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7218 "3279 Invalid provisioning of " 7219 "rpi:%d\n", count); 7220 rc = -EINVAL; 7221 goto err_exit; 7222 } 7223 base = phba->sli4_hba.max_cfg_param.rpi_base; 7224 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7225 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7226 sizeof(unsigned long), 7227 GFP_KERNEL); 7228 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7229 rc = -ENOMEM; 7230 goto err_exit; 7231 } 7232 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7233 GFP_KERNEL); 7234 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7235 rc = -ENOMEM; 7236 goto free_rpi_bmask; 7237 } 7238 7239 for (i = 0; i < count; i++) 7240 phba->sli4_hba.rpi_ids[i] = base + i; 7241 7242 /* VPIs. */ 7243 count = phba->sli4_hba.max_cfg_param.max_vpi; 7244 if (count <= 0) { 7245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7246 "3280 Invalid provisioning of " 7247 "vpi:%d\n", count); 7248 rc = -EINVAL; 7249 goto free_rpi_ids; 7250 } 7251 base = phba->sli4_hba.max_cfg_param.vpi_base; 7252 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7253 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7254 GFP_KERNEL); 7255 if (unlikely(!phba->vpi_bmask)) { 7256 rc = -ENOMEM; 7257 goto free_rpi_ids; 7258 } 7259 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7260 GFP_KERNEL); 7261 if (unlikely(!phba->vpi_ids)) { 7262 rc = -ENOMEM; 7263 goto free_vpi_bmask; 7264 } 7265 7266 for (i = 0; i < count; i++) 7267 phba->vpi_ids[i] = base + i; 7268 7269 /* XRIs. */ 7270 count = phba->sli4_hba.max_cfg_param.max_xri; 7271 if (count <= 0) { 7272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7273 "3281 Invalid provisioning of " 7274 "xri:%d\n", count); 7275 rc = -EINVAL; 7276 goto free_vpi_ids; 7277 } 7278 base = phba->sli4_hba.max_cfg_param.xri_base; 7279 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7280 phba->sli4_hba.xri_bmask = kcalloc(longs, 7281 sizeof(unsigned long), 7282 GFP_KERNEL); 7283 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7284 rc = -ENOMEM; 7285 goto free_vpi_ids; 7286 } 7287 phba->sli4_hba.max_cfg_param.xri_used = 0; 7288 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7289 GFP_KERNEL); 7290 if (unlikely(!phba->sli4_hba.xri_ids)) { 7291 rc = -ENOMEM; 7292 goto free_xri_bmask; 7293 } 7294 7295 for (i = 0; i < count; i++) 7296 phba->sli4_hba.xri_ids[i] = base + i; 7297 7298 /* VFIs. */ 7299 count = phba->sli4_hba.max_cfg_param.max_vfi; 7300 if (count <= 0) { 7301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7302 "3282 Invalid provisioning of " 7303 "vfi:%d\n", count); 7304 rc = -EINVAL; 7305 goto free_xri_ids; 7306 } 7307 base = phba->sli4_hba.max_cfg_param.vfi_base; 7308 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7309 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7310 sizeof(unsigned long), 7311 GFP_KERNEL); 7312 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7313 rc = -ENOMEM; 7314 goto free_xri_ids; 7315 } 7316 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7317 GFP_KERNEL); 7318 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7319 rc = -ENOMEM; 7320 goto free_vfi_bmask; 7321 } 7322 7323 for (i = 0; i < count; i++) 7324 phba->sli4_hba.vfi_ids[i] = base + i; 7325 7326 /* 7327 * Mark all resources ready. An HBA reset doesn't need 7328 * to reset the initialization. 7329 */ 7330 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7331 LPFC_IDX_RSRC_RDY); 7332 return 0; 7333 } 7334 7335 free_vfi_bmask: 7336 kfree(phba->sli4_hba.vfi_bmask); 7337 phba->sli4_hba.vfi_bmask = NULL; 7338 free_xri_ids: 7339 kfree(phba->sli4_hba.xri_ids); 7340 phba->sli4_hba.xri_ids = NULL; 7341 free_xri_bmask: 7342 kfree(phba->sli4_hba.xri_bmask); 7343 phba->sli4_hba.xri_bmask = NULL; 7344 free_vpi_ids: 7345 kfree(phba->vpi_ids); 7346 phba->vpi_ids = NULL; 7347 free_vpi_bmask: 7348 kfree(phba->vpi_bmask); 7349 phba->vpi_bmask = NULL; 7350 free_rpi_ids: 7351 kfree(phba->sli4_hba.rpi_ids); 7352 phba->sli4_hba.rpi_ids = NULL; 7353 free_rpi_bmask: 7354 kfree(phba->sli4_hba.rpi_bmask); 7355 phba->sli4_hba.rpi_bmask = NULL; 7356 err_exit: 7357 return rc; 7358 } 7359 7360 /** 7361 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7362 * @phba: Pointer to HBA context object. 7363 * 7364 * This function allocates the number of elements for the specified 7365 * resource type. 7366 **/ 7367 int 7368 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7369 { 7370 if (phba->sli4_hba.extents_in_use) { 7371 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7372 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7373 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7374 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7375 } else { 7376 kfree(phba->vpi_bmask); 7377 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7378 kfree(phba->vpi_ids); 7379 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7380 kfree(phba->sli4_hba.xri_bmask); 7381 kfree(phba->sli4_hba.xri_ids); 7382 kfree(phba->sli4_hba.vfi_bmask); 7383 kfree(phba->sli4_hba.vfi_ids); 7384 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7385 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7386 } 7387 7388 return 0; 7389 } 7390 7391 /** 7392 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7393 * @phba: Pointer to HBA context object. 7394 * @type: The resource extent type. 7395 * @extnt_cnt: buffer to hold port extent count response 7396 * @extnt_size: buffer to hold port extent size response. 7397 * 7398 * This function calls the port to read the host allocated extents 7399 * for a particular type. 7400 **/ 7401 int 7402 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7403 uint16_t *extnt_cnt, uint16_t *extnt_size) 7404 { 7405 bool emb; 7406 int rc = 0; 7407 uint16_t curr_blks = 0; 7408 uint32_t req_len, emb_len; 7409 uint32_t alloc_len, mbox_tmo; 7410 struct list_head *blk_list_head; 7411 struct lpfc_rsrc_blks *rsrc_blk; 7412 LPFC_MBOXQ_t *mbox; 7413 void *virtaddr = NULL; 7414 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7415 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7416 union lpfc_sli4_cfg_shdr *shdr; 7417 7418 switch (type) { 7419 case LPFC_RSC_TYPE_FCOE_VPI: 7420 blk_list_head = &phba->lpfc_vpi_blk_list; 7421 break; 7422 case LPFC_RSC_TYPE_FCOE_XRI: 7423 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7424 break; 7425 case LPFC_RSC_TYPE_FCOE_VFI: 7426 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7427 break; 7428 case LPFC_RSC_TYPE_FCOE_RPI: 7429 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7430 break; 7431 default: 7432 return -EIO; 7433 } 7434 7435 /* Count the number of extents currently allocatd for this type. */ 7436 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7437 if (curr_blks == 0) { 7438 /* 7439 * The GET_ALLOCATED mailbox does not return the size, 7440 * just the count. The size should be just the size 7441 * stored in the current allocated block and all sizes 7442 * for an extent type are the same so set the return 7443 * value now. 7444 */ 7445 *extnt_size = rsrc_blk->rsrc_size; 7446 } 7447 curr_blks++; 7448 } 7449 7450 /* 7451 * Calculate the size of an embedded mailbox. The uint32_t 7452 * accounts for extents-specific word. 7453 */ 7454 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7455 sizeof(uint32_t); 7456 7457 /* 7458 * Presume the allocation and response will fit into an embedded 7459 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7460 */ 7461 emb = LPFC_SLI4_MBX_EMBED; 7462 req_len = emb_len; 7463 if (req_len > emb_len) { 7464 req_len = curr_blks * sizeof(uint16_t) + 7465 sizeof(union lpfc_sli4_cfg_shdr) + 7466 sizeof(uint32_t); 7467 emb = LPFC_SLI4_MBX_NEMBED; 7468 } 7469 7470 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7471 if (!mbox) 7472 return -ENOMEM; 7473 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7474 7475 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7476 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7477 req_len, emb); 7478 if (alloc_len < req_len) { 7479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7480 "2983 Allocated DMA memory size (x%x) is " 7481 "less than the requested DMA memory " 7482 "size (x%x)\n", alloc_len, req_len); 7483 rc = -ENOMEM; 7484 goto err_exit; 7485 } 7486 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7487 if (unlikely(rc)) { 7488 rc = -EIO; 7489 goto err_exit; 7490 } 7491 7492 if (!phba->sli4_hba.intr_enable) 7493 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7494 else { 7495 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7496 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7497 } 7498 7499 if (unlikely(rc)) { 7500 rc = -EIO; 7501 goto err_exit; 7502 } 7503 7504 /* 7505 * Figure out where the response is located. Then get local pointers 7506 * to the response data. The port does not guarantee to respond to 7507 * all extents counts request so update the local variable with the 7508 * allocated count from the port. 7509 */ 7510 if (emb == LPFC_SLI4_MBX_EMBED) { 7511 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7512 shdr = &rsrc_ext->header.cfg_shdr; 7513 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7514 } else { 7515 virtaddr = mbox->sge_array->addr[0]; 7516 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7517 shdr = &n_rsrc->cfg_shdr; 7518 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7519 } 7520 7521 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7523 "2984 Failed to read allocated resources " 7524 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7525 type, 7526 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7527 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7528 rc = -EIO; 7529 goto err_exit; 7530 } 7531 err_exit: 7532 lpfc_sli4_mbox_cmd_free(phba, mbox); 7533 return rc; 7534 } 7535 7536 /** 7537 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7538 * @phba: pointer to lpfc hba data structure. 7539 * @sgl_list: linked link of sgl buffers to post 7540 * @cnt: number of linked list buffers 7541 * 7542 * This routine walks the list of buffers that have been allocated and 7543 * repost them to the port by using SGL block post. This is needed after a 7544 * pci_function_reset/warm_start or start. It attempts to construct blocks 7545 * of buffer sgls which contains contiguous xris and uses the non-embedded 7546 * SGL block post mailbox commands to post them to the port. For single 7547 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7548 * mailbox command for posting. 7549 * 7550 * Returns: 0 = success, non-zero failure. 7551 **/ 7552 static int 7553 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7554 struct list_head *sgl_list, int cnt) 7555 { 7556 struct lpfc_sglq *sglq_entry = NULL; 7557 struct lpfc_sglq *sglq_entry_next = NULL; 7558 struct lpfc_sglq *sglq_entry_first = NULL; 7559 int status, total_cnt; 7560 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7561 int last_xritag = NO_XRI; 7562 LIST_HEAD(prep_sgl_list); 7563 LIST_HEAD(blck_sgl_list); 7564 LIST_HEAD(allc_sgl_list); 7565 LIST_HEAD(post_sgl_list); 7566 LIST_HEAD(free_sgl_list); 7567 7568 spin_lock_irq(&phba->hbalock); 7569 spin_lock(&phba->sli4_hba.sgl_list_lock); 7570 list_splice_init(sgl_list, &allc_sgl_list); 7571 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7572 spin_unlock_irq(&phba->hbalock); 7573 7574 total_cnt = cnt; 7575 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7576 &allc_sgl_list, list) { 7577 list_del_init(&sglq_entry->list); 7578 block_cnt++; 7579 if ((last_xritag != NO_XRI) && 7580 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7581 /* a hole in xri block, form a sgl posting block */ 7582 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7583 post_cnt = block_cnt - 1; 7584 /* prepare list for next posting block */ 7585 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7586 block_cnt = 1; 7587 } else { 7588 /* prepare list for next posting block */ 7589 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7590 /* enough sgls for non-embed sgl mbox command */ 7591 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7592 list_splice_init(&prep_sgl_list, 7593 &blck_sgl_list); 7594 post_cnt = block_cnt; 7595 block_cnt = 0; 7596 } 7597 } 7598 num_posted++; 7599 7600 /* keep track of last sgl's xritag */ 7601 last_xritag = sglq_entry->sli4_xritag; 7602 7603 /* end of repost sgl list condition for buffers */ 7604 if (num_posted == total_cnt) { 7605 if (post_cnt == 0) { 7606 list_splice_init(&prep_sgl_list, 7607 &blck_sgl_list); 7608 post_cnt = block_cnt; 7609 } else if (block_cnt == 1) { 7610 status = lpfc_sli4_post_sgl(phba, 7611 sglq_entry->phys, 0, 7612 sglq_entry->sli4_xritag); 7613 if (!status) { 7614 /* successful, put sgl to posted list */ 7615 list_add_tail(&sglq_entry->list, 7616 &post_sgl_list); 7617 } else { 7618 /* Failure, put sgl to free list */ 7619 lpfc_printf_log(phba, KERN_WARNING, 7620 LOG_SLI, 7621 "3159 Failed to post " 7622 "sgl, xritag:x%x\n", 7623 sglq_entry->sli4_xritag); 7624 list_add_tail(&sglq_entry->list, 7625 &free_sgl_list); 7626 total_cnt--; 7627 } 7628 } 7629 } 7630 7631 /* continue until a nembed page worth of sgls */ 7632 if (post_cnt == 0) 7633 continue; 7634 7635 /* post the buffer list sgls as a block */ 7636 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7637 post_cnt); 7638 7639 if (!status) { 7640 /* success, put sgl list to posted sgl list */ 7641 list_splice_init(&blck_sgl_list, &post_sgl_list); 7642 } else { 7643 /* Failure, put sgl list to free sgl list */ 7644 sglq_entry_first = list_first_entry(&blck_sgl_list, 7645 struct lpfc_sglq, 7646 list); 7647 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7648 "3160 Failed to post sgl-list, " 7649 "xritag:x%x-x%x\n", 7650 sglq_entry_first->sli4_xritag, 7651 (sglq_entry_first->sli4_xritag + 7652 post_cnt - 1)); 7653 list_splice_init(&blck_sgl_list, &free_sgl_list); 7654 total_cnt -= post_cnt; 7655 } 7656 7657 /* don't reset xirtag due to hole in xri block */ 7658 if (block_cnt == 0) 7659 last_xritag = NO_XRI; 7660 7661 /* reset sgl post count for next round of posting */ 7662 post_cnt = 0; 7663 } 7664 7665 /* free the sgls failed to post */ 7666 lpfc_free_sgl_list(phba, &free_sgl_list); 7667 7668 /* push sgls posted to the available list */ 7669 if (!list_empty(&post_sgl_list)) { 7670 spin_lock_irq(&phba->hbalock); 7671 spin_lock(&phba->sli4_hba.sgl_list_lock); 7672 list_splice_init(&post_sgl_list, sgl_list); 7673 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7674 spin_unlock_irq(&phba->hbalock); 7675 } else { 7676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7677 "3161 Failure to post sgl to port.\n"); 7678 return -EIO; 7679 } 7680 7681 /* return the number of XRIs actually posted */ 7682 return total_cnt; 7683 } 7684 7685 /** 7686 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7687 * @phba: pointer to lpfc hba data structure. 7688 * 7689 * This routine walks the list of nvme buffers that have been allocated and 7690 * repost them to the port by using SGL block post. This is needed after a 7691 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7692 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7693 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7694 * 7695 * Returns: 0 = success, non-zero failure. 7696 **/ 7697 static int 7698 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7699 { 7700 LIST_HEAD(post_nblist); 7701 int num_posted, rc = 0; 7702 7703 /* get all NVME buffers need to repost to a local list */ 7704 lpfc_io_buf_flush(phba, &post_nblist); 7705 7706 /* post the list of nvme buffer sgls to port if available */ 7707 if (!list_empty(&post_nblist)) { 7708 num_posted = lpfc_sli4_post_io_sgl_list( 7709 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7710 /* failed to post any nvme buffer, return error */ 7711 if (num_posted == 0) 7712 rc = -EIO; 7713 } 7714 return rc; 7715 } 7716 7717 static void 7718 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7719 { 7720 uint32_t len; 7721 7722 len = sizeof(struct lpfc_mbx_set_host_data) - 7723 sizeof(struct lpfc_sli4_cfg_mhdr); 7724 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7725 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7726 LPFC_SLI4_MBX_EMBED); 7727 7728 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7729 mbox->u.mqe.un.set_host_data.param_len = 7730 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7731 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7732 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7733 "Linux %s v"LPFC_DRIVER_VERSION, 7734 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7735 } 7736 7737 int 7738 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7739 struct lpfc_queue *drq, int count, int idx) 7740 { 7741 int rc, i; 7742 struct lpfc_rqe hrqe; 7743 struct lpfc_rqe drqe; 7744 struct lpfc_rqb *rqbp; 7745 unsigned long flags; 7746 struct rqb_dmabuf *rqb_buffer; 7747 LIST_HEAD(rqb_buf_list); 7748 7749 rqbp = hrq->rqbp; 7750 for (i = 0; i < count; i++) { 7751 spin_lock_irqsave(&phba->hbalock, flags); 7752 /* IF RQ is already full, don't bother */ 7753 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7754 spin_unlock_irqrestore(&phba->hbalock, flags); 7755 break; 7756 } 7757 spin_unlock_irqrestore(&phba->hbalock, flags); 7758 7759 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7760 if (!rqb_buffer) 7761 break; 7762 rqb_buffer->hrq = hrq; 7763 rqb_buffer->drq = drq; 7764 rqb_buffer->idx = idx; 7765 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7766 } 7767 7768 spin_lock_irqsave(&phba->hbalock, flags); 7769 while (!list_empty(&rqb_buf_list)) { 7770 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7771 hbuf.list); 7772 7773 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7774 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7775 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7776 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7777 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7778 if (rc < 0) { 7779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7780 "6421 Cannot post to HRQ %d: %x %x %x " 7781 "DRQ %x %x\n", 7782 hrq->queue_id, 7783 hrq->host_index, 7784 hrq->hba_index, 7785 hrq->entry_count, 7786 drq->host_index, 7787 drq->hba_index); 7788 rqbp->rqb_free_buffer(phba, rqb_buffer); 7789 } else { 7790 list_add_tail(&rqb_buffer->hbuf.list, 7791 &rqbp->rqb_buffer_list); 7792 rqbp->buffer_count++; 7793 } 7794 } 7795 spin_unlock_irqrestore(&phba->hbalock, flags); 7796 return 1; 7797 } 7798 7799 static void 7800 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7801 { 7802 struct lpfc_vport *vport = pmb->vport; 7803 union lpfc_sli4_cfg_shdr *shdr; 7804 u32 shdr_status, shdr_add_status; 7805 u32 sig, acqe; 7806 7807 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7808 * is done. (2) Mailbox failed and send FPIN support only. 7809 */ 7810 shdr = (union lpfc_sli4_cfg_shdr *) 7811 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7812 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7813 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7814 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7815 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7816 "2516 CGN SET_FEATURE mbox failed with " 7817 "status x%x add_status x%x, mbx status x%x " 7818 "Reset Congestion to FPINs only\n", 7819 shdr_status, shdr_add_status, 7820 pmb->u.mb.mbxStatus); 7821 /* If there is a mbox error, move on to RDF */ 7822 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7823 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7824 goto out; 7825 } 7826 7827 /* Zero out Congestion Signal ACQE counter */ 7828 phba->cgn_acqe_cnt = 0; 7829 7830 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7831 &pmb->u.mqe.un.set_feature); 7832 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7833 &pmb->u.mqe.un.set_feature); 7834 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7835 "4620 SET_FEATURES Success: Freq: %ds %dms " 7836 " Reg: x%x x%x\n", acqe, sig, 7837 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7838 out: 7839 mempool_free(pmb, phba->mbox_mem_pool); 7840 7841 /* Register for FPIN events from the fabric now that the 7842 * EDC common_set_features has completed. 7843 */ 7844 lpfc_issue_els_rdf(vport, 0); 7845 } 7846 7847 int 7848 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7849 { 7850 LPFC_MBOXQ_t *mboxq; 7851 u32 rc; 7852 7853 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7854 if (!mboxq) 7855 goto out_rdf; 7856 7857 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7858 mboxq->vport = phba->pport; 7859 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7860 7861 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7862 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7863 "Reg: x%x x%x\n", 7864 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7865 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7866 7867 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7868 if (rc == MBX_NOT_FINISHED) 7869 goto out; 7870 return 0; 7871 7872 out: 7873 mempool_free(mboxq, phba->mbox_mem_pool); 7874 out_rdf: 7875 /* If there is a mbox error, move on to RDF */ 7876 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7877 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7878 lpfc_issue_els_rdf(phba->pport, 0); 7879 return -EIO; 7880 } 7881 7882 /** 7883 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7884 * @phba: pointer to lpfc hba data structure. 7885 * 7886 * This routine initializes the per-cq idle_stat to dynamically dictate 7887 * polling decisions. 7888 * 7889 * Return codes: 7890 * None 7891 **/ 7892 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7893 { 7894 int i; 7895 struct lpfc_sli4_hdw_queue *hdwq; 7896 struct lpfc_queue *cq; 7897 struct lpfc_idle_stat *idle_stat; 7898 u64 wall; 7899 7900 for_each_present_cpu(i) { 7901 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7902 cq = hdwq->io_cq; 7903 7904 /* Skip if we've already handled this cq's primary CPU */ 7905 if (cq->chann != i) 7906 continue; 7907 7908 idle_stat = &phba->sli4_hba.idle_stat[i]; 7909 7910 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7911 idle_stat->prev_wall = wall; 7912 7913 if (phba->nvmet_support || 7914 phba->cmf_active_mode != LPFC_CFG_OFF) 7915 cq->poll_mode = LPFC_QUEUE_WORK; 7916 else 7917 cq->poll_mode = LPFC_IRQ_POLL; 7918 } 7919 7920 if (!phba->nvmet_support) 7921 schedule_delayed_work(&phba->idle_stat_delay_work, 7922 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7923 } 7924 7925 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7926 { 7927 uint32_t if_type; 7928 7929 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7930 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7931 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7932 struct lpfc_register reg_data; 7933 7934 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7935 ®_data.word0)) 7936 return; 7937 7938 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7939 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7940 "2904 Firmware Dump Image Present" 7941 " on Adapter"); 7942 } 7943 } 7944 7945 /** 7946 * lpfc_cmf_setup - Initialize idle_stat tracking 7947 * @phba: Pointer to HBA context object. 7948 * 7949 * This is called from HBA setup during driver load or when the HBA 7950 * comes online. this does all the initialization to support CMF and MI. 7951 **/ 7952 static int 7953 lpfc_cmf_setup(struct lpfc_hba *phba) 7954 { 7955 LPFC_MBOXQ_t *mboxq; 7956 struct lpfc_dmabuf *mp; 7957 struct lpfc_pc_sli4_params *sli4_params; 7958 int rc, cmf, mi_ver; 7959 7960 rc = lpfc_sli4_refresh_params(phba); 7961 if (unlikely(rc)) 7962 return rc; 7963 7964 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7965 if (!mboxq) 7966 return -ENOMEM; 7967 7968 sli4_params = &phba->sli4_hba.pc_sli4_params; 7969 7970 /* Are we forcing MI off via module parameter? */ 7971 if (!phba->cfg_enable_mi) 7972 sli4_params->mi_ver = 0; 7973 7974 /* Always try to enable MI feature if we can */ 7975 if (sli4_params->mi_ver) { 7976 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7978 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7979 &mboxq->u.mqe.un.set_feature); 7980 7981 if (rc == MBX_SUCCESS) { 7982 if (mi_ver) { 7983 lpfc_printf_log(phba, 7984 KERN_WARNING, LOG_CGN_MGMT, 7985 "6215 MI is enabled\n"); 7986 sli4_params->mi_ver = mi_ver; 7987 } else { 7988 lpfc_printf_log(phba, 7989 KERN_WARNING, LOG_CGN_MGMT, 7990 "6338 MI is disabled\n"); 7991 sli4_params->mi_ver = 0; 7992 } 7993 } else { 7994 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7995 lpfc_printf_log(phba, KERN_INFO, 7996 LOG_CGN_MGMT | LOG_INIT, 7997 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7998 "failed, rc:x%x mi:x%x\n", 7999 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8000 lpfc_sli_config_mbox_subsys_get 8001 (phba, mboxq), 8002 lpfc_sli_config_mbox_opcode_get 8003 (phba, mboxq), 8004 rc, sli4_params->mi_ver); 8005 } 8006 } else { 8007 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8008 "6217 MI is disabled\n"); 8009 } 8010 8011 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8012 if (sli4_params->mi_ver) 8013 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8014 8015 /* Always try to enable CMF feature if we can */ 8016 if (sli4_params->cmf) { 8017 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8018 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8019 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8020 &mboxq->u.mqe.un.set_feature); 8021 if (rc == MBX_SUCCESS && cmf) { 8022 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8023 "6218 CMF is enabled: mode %d\n", 8024 phba->cmf_active_mode); 8025 } else { 8026 lpfc_printf_log(phba, KERN_WARNING, 8027 LOG_CGN_MGMT | LOG_INIT, 8028 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8029 "failed, rc:x%x dd:x%x\n", 8030 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8031 lpfc_sli_config_mbox_subsys_get 8032 (phba, mboxq), 8033 lpfc_sli_config_mbox_opcode_get 8034 (phba, mboxq), 8035 rc, cmf); 8036 sli4_params->cmf = 0; 8037 phba->cmf_active_mode = LPFC_CFG_OFF; 8038 goto no_cmf; 8039 } 8040 8041 /* Allocate Congestion Information Buffer */ 8042 if (!phba->cgn_i) { 8043 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8044 if (mp) 8045 mp->virt = dma_alloc_coherent 8046 (&phba->pcidev->dev, 8047 sizeof(struct lpfc_cgn_info), 8048 &mp->phys, GFP_KERNEL); 8049 if (!mp || !mp->virt) { 8050 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8051 "2640 Failed to alloc memory " 8052 "for Congestion Info\n"); 8053 kfree(mp); 8054 sli4_params->cmf = 0; 8055 phba->cmf_active_mode = LPFC_CFG_OFF; 8056 goto no_cmf; 8057 } 8058 phba->cgn_i = mp; 8059 8060 /* initialize congestion buffer info */ 8061 lpfc_init_congestion_buf(phba); 8062 lpfc_init_congestion_stat(phba); 8063 8064 /* Zero out Congestion Signal counters */ 8065 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8066 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8067 } 8068 8069 rc = lpfc_sli4_cgn_params_read(phba); 8070 if (rc < 0) { 8071 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8072 "6242 Error reading Cgn Params (%d)\n", 8073 rc); 8074 /* Ensure CGN Mode is off */ 8075 sli4_params->cmf = 0; 8076 } else if (!rc) { 8077 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8078 "6243 CGN Event empty object.\n"); 8079 /* Ensure CGN Mode is off */ 8080 sli4_params->cmf = 0; 8081 } 8082 } else { 8083 no_cmf: 8084 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8085 "6220 CMF is disabled\n"); 8086 } 8087 8088 /* Only register congestion buffer with firmware if BOTH 8089 * CMF and E2E are enabled. 8090 */ 8091 if (sli4_params->cmf && sli4_params->mi_ver) { 8092 rc = lpfc_reg_congestion_buf(phba); 8093 if (rc) { 8094 dma_free_coherent(&phba->pcidev->dev, 8095 sizeof(struct lpfc_cgn_info), 8096 phba->cgn_i->virt, phba->cgn_i->phys); 8097 kfree(phba->cgn_i); 8098 phba->cgn_i = NULL; 8099 /* Ensure CGN Mode is off */ 8100 phba->cmf_active_mode = LPFC_CFG_OFF; 8101 return 0; 8102 } 8103 } 8104 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8105 "6470 Setup MI version %d CMF %d mode %d\n", 8106 sli4_params->mi_ver, sli4_params->cmf, 8107 phba->cmf_active_mode); 8108 8109 mempool_free(mboxq, phba->mbox_mem_pool); 8110 8111 /* Initialize atomic counters */ 8112 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8113 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8114 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8115 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8116 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8117 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8118 atomic64_set(&phba->cgn_latency_evt, 0); 8119 8120 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8121 8122 /* Allocate RX Monitor Buffer */ 8123 if (!phba->rxtable) { 8124 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8125 sizeof(struct rxtable_entry), 8126 GFP_KERNEL); 8127 if (!phba->rxtable) { 8128 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8129 "2644 Failed to alloc memory " 8130 "for RX Monitor Buffer\n"); 8131 return -ENOMEM; 8132 } 8133 } 8134 atomic_set(&phba->rxtable_idx_head, 0); 8135 atomic_set(&phba->rxtable_idx_tail, 0); 8136 return 0; 8137 } 8138 8139 static int 8140 lpfc_set_host_tm(struct lpfc_hba *phba) 8141 { 8142 LPFC_MBOXQ_t *mboxq; 8143 uint32_t len, rc; 8144 struct timespec64 cur_time; 8145 struct tm broken; 8146 uint32_t month, day, year; 8147 uint32_t hour, minute, second; 8148 struct lpfc_mbx_set_host_date_time *tm; 8149 8150 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8151 if (!mboxq) 8152 return -ENOMEM; 8153 8154 len = sizeof(struct lpfc_mbx_set_host_data) - 8155 sizeof(struct lpfc_sli4_cfg_mhdr); 8156 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8157 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8158 LPFC_SLI4_MBX_EMBED); 8159 8160 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8161 mboxq->u.mqe.un.set_host_data.param_len = 8162 sizeof(struct lpfc_mbx_set_host_date_time); 8163 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8164 ktime_get_real_ts64(&cur_time); 8165 time64_to_tm(cur_time.tv_sec, 0, &broken); 8166 month = broken.tm_mon + 1; 8167 day = broken.tm_mday; 8168 year = broken.tm_year - 100; 8169 hour = broken.tm_hour; 8170 minute = broken.tm_min; 8171 second = broken.tm_sec; 8172 bf_set(lpfc_mbx_set_host_month, tm, month); 8173 bf_set(lpfc_mbx_set_host_day, tm, day); 8174 bf_set(lpfc_mbx_set_host_year, tm, year); 8175 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8176 bf_set(lpfc_mbx_set_host_min, tm, minute); 8177 bf_set(lpfc_mbx_set_host_sec, tm, second); 8178 8179 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8180 mempool_free(mboxq, phba->mbox_mem_pool); 8181 return rc; 8182 } 8183 8184 /** 8185 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8186 * @phba: Pointer to HBA context object. 8187 * 8188 * This function is the main SLI4 device initialization PCI function. This 8189 * function is called by the HBA initialization code, HBA reset code and 8190 * HBA error attention handler code. Caller is not required to hold any 8191 * locks. 8192 **/ 8193 int 8194 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8195 { 8196 int rc, i, cnt, len, dd; 8197 LPFC_MBOXQ_t *mboxq; 8198 struct lpfc_mqe *mqe; 8199 uint8_t *vpd; 8200 uint32_t vpd_size; 8201 uint32_t ftr_rsp = 0; 8202 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8203 struct lpfc_vport *vport = phba->pport; 8204 struct lpfc_dmabuf *mp; 8205 struct lpfc_rqb *rqbp; 8206 u32 flg; 8207 8208 /* Perform a PCI function reset to start from clean */ 8209 rc = lpfc_pci_function_reset(phba); 8210 if (unlikely(rc)) 8211 return -ENODEV; 8212 8213 /* Check the HBA Host Status Register for readyness */ 8214 rc = lpfc_sli4_post_status_check(phba); 8215 if (unlikely(rc)) 8216 return -ENODEV; 8217 else { 8218 spin_lock_irq(&phba->hbalock); 8219 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8220 flg = phba->sli.sli_flag; 8221 spin_unlock_irq(&phba->hbalock); 8222 /* Allow a little time after setting SLI_ACTIVE for any polled 8223 * MBX commands to complete via BSG. 8224 */ 8225 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8226 msleep(20); 8227 spin_lock_irq(&phba->hbalock); 8228 flg = phba->sli.sli_flag; 8229 spin_unlock_irq(&phba->hbalock); 8230 } 8231 } 8232 8233 lpfc_sli4_dip(phba); 8234 8235 /* 8236 * Allocate a single mailbox container for initializing the 8237 * port. 8238 */ 8239 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8240 if (!mboxq) 8241 return -ENOMEM; 8242 8243 /* Issue READ_REV to collect vpd and FW information. */ 8244 vpd_size = SLI4_PAGE_SIZE; 8245 vpd = kzalloc(vpd_size, GFP_KERNEL); 8246 if (!vpd) { 8247 rc = -ENOMEM; 8248 goto out_free_mbox; 8249 } 8250 8251 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8252 if (unlikely(rc)) { 8253 kfree(vpd); 8254 goto out_free_mbox; 8255 } 8256 8257 mqe = &mboxq->u.mqe; 8258 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8259 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8260 phba->hba_flag |= HBA_FCOE_MODE; 8261 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8262 } else { 8263 phba->hba_flag &= ~HBA_FCOE_MODE; 8264 } 8265 8266 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8267 LPFC_DCBX_CEE_MODE) 8268 phba->hba_flag |= HBA_FIP_SUPPORT; 8269 else 8270 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8271 8272 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8273 8274 if (phba->sli_rev != LPFC_SLI_REV4) { 8275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8276 "0376 READ_REV Error. SLI Level %d " 8277 "FCoE enabled %d\n", 8278 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8279 rc = -EIO; 8280 kfree(vpd); 8281 goto out_free_mbox; 8282 } 8283 8284 rc = lpfc_set_host_tm(phba); 8285 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8286 "6468 Set host date / time: Status x%x:\n", rc); 8287 8288 /* 8289 * Continue initialization with default values even if driver failed 8290 * to read FCoE param config regions, only read parameters if the 8291 * board is FCoE 8292 */ 8293 if (phba->hba_flag & HBA_FCOE_MODE && 8294 lpfc_sli4_read_fcoe_params(phba)) 8295 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8296 "2570 Failed to read FCoE parameters\n"); 8297 8298 /* 8299 * Retrieve sli4 device physical port name, failure of doing it 8300 * is considered as non-fatal. 8301 */ 8302 rc = lpfc_sli4_retrieve_pport_name(phba); 8303 if (!rc) 8304 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8305 "3080 Successful retrieving SLI4 device " 8306 "physical port name: %s.\n", phba->Port); 8307 8308 rc = lpfc_sli4_get_ctl_attr(phba); 8309 if (!rc) 8310 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8311 "8351 Successful retrieving SLI4 device " 8312 "CTL ATTR\n"); 8313 8314 /* 8315 * Evaluate the read rev and vpd data. Populate the driver 8316 * state with the results. If this routine fails, the failure 8317 * is not fatal as the driver will use generic values. 8318 */ 8319 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8320 if (unlikely(!rc)) { 8321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8322 "0377 Error %d parsing vpd. " 8323 "Using defaults.\n", rc); 8324 rc = 0; 8325 } 8326 kfree(vpd); 8327 8328 /* Save information as VPD data */ 8329 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8330 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8331 8332 /* 8333 * This is because first G7 ASIC doesn't support the standard 8334 * 0x5a NVME cmd descriptor type/subtype 8335 */ 8336 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8337 LPFC_SLI_INTF_IF_TYPE_6) && 8338 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8339 (phba->vpd.rev.smRev == 0) && 8340 (phba->cfg_nvme_embed_cmd == 1)) 8341 phba->cfg_nvme_embed_cmd = 0; 8342 8343 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8344 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8345 &mqe->un.read_rev); 8346 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8347 &mqe->un.read_rev); 8348 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8349 &mqe->un.read_rev); 8350 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8351 &mqe->un.read_rev); 8352 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8353 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8354 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8355 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8356 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8357 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8358 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8359 "(%d):0380 READ_REV Status x%x " 8360 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8361 mboxq->vport ? mboxq->vport->vpi : 0, 8362 bf_get(lpfc_mqe_status, mqe), 8363 phba->vpd.rev.opFwName, 8364 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8365 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8366 8367 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8368 LPFC_SLI_INTF_IF_TYPE_0) { 8369 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8370 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8371 if (rc == MBX_SUCCESS) { 8372 phba->hba_flag |= HBA_RECOVERABLE_UE; 8373 /* Set 1Sec interval to detect UE */ 8374 phba->eratt_poll_interval = 1; 8375 phba->sli4_hba.ue_to_sr = bf_get( 8376 lpfc_mbx_set_feature_UESR, 8377 &mboxq->u.mqe.un.set_feature); 8378 phba->sli4_hba.ue_to_rp = bf_get( 8379 lpfc_mbx_set_feature_UERP, 8380 &mboxq->u.mqe.un.set_feature); 8381 } 8382 } 8383 8384 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8385 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8386 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8387 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8388 if (rc != MBX_SUCCESS) 8389 phba->mds_diags_support = 0; 8390 } 8391 8392 /* 8393 * Discover the port's supported feature set and match it against the 8394 * hosts requests. 8395 */ 8396 lpfc_request_features(phba, mboxq); 8397 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8398 if (unlikely(rc)) { 8399 rc = -EIO; 8400 goto out_free_mbox; 8401 } 8402 8403 /* Disable VMID if app header is not supported */ 8404 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8405 &mqe->un.req_ftrs))) { 8406 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8407 phba->cfg_vmid_app_header = 0; 8408 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8409 "1242 vmid feature not supported\n"); 8410 } 8411 8412 /* 8413 * The port must support FCP initiator mode as this is the 8414 * only mode running in the host. 8415 */ 8416 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8417 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8418 "0378 No support for fcpi mode.\n"); 8419 ftr_rsp++; 8420 } 8421 8422 /* Performance Hints are ONLY for FCoE */ 8423 if (phba->hba_flag & HBA_FCOE_MODE) { 8424 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8425 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8426 else 8427 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8428 } 8429 8430 /* 8431 * If the port cannot support the host's requested features 8432 * then turn off the global config parameters to disable the 8433 * feature in the driver. This is not a fatal error. 8434 */ 8435 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8436 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8437 phba->cfg_enable_bg = 0; 8438 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8439 ftr_rsp++; 8440 } 8441 } 8442 8443 if (phba->max_vpi && phba->cfg_enable_npiv && 8444 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8445 ftr_rsp++; 8446 8447 if (ftr_rsp) { 8448 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8449 "0379 Feature Mismatch Data: x%08x %08x " 8450 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8451 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8452 phba->cfg_enable_npiv, phba->max_vpi); 8453 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8454 phba->cfg_enable_bg = 0; 8455 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8456 phba->cfg_enable_npiv = 0; 8457 } 8458 8459 /* These SLI3 features are assumed in SLI4 */ 8460 spin_lock_irq(&phba->hbalock); 8461 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8462 spin_unlock_irq(&phba->hbalock); 8463 8464 /* Always try to enable dual dump feature if we can */ 8465 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8466 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8467 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8468 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8469 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8470 "6448 Dual Dump is enabled\n"); 8471 else 8472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8473 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8474 "rc:x%x dd:x%x\n", 8475 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8476 lpfc_sli_config_mbox_subsys_get( 8477 phba, mboxq), 8478 lpfc_sli_config_mbox_opcode_get( 8479 phba, mboxq), 8480 rc, dd); 8481 /* 8482 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8483 * calls depends on these resources to complete port setup. 8484 */ 8485 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8486 if (rc) { 8487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8488 "2920 Failed to alloc Resource IDs " 8489 "rc = x%x\n", rc); 8490 goto out_free_mbox; 8491 } 8492 8493 lpfc_set_host_data(phba, mboxq); 8494 8495 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8496 if (rc) { 8497 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8498 "2134 Failed to set host os driver version %x", 8499 rc); 8500 } 8501 8502 /* Read the port's service parameters. */ 8503 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8504 if (rc) { 8505 phba->link_state = LPFC_HBA_ERROR; 8506 rc = -ENOMEM; 8507 goto out_free_mbox; 8508 } 8509 8510 mboxq->vport = vport; 8511 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8512 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8513 if (rc == MBX_SUCCESS) { 8514 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8515 rc = 0; 8516 } 8517 8518 /* 8519 * This memory was allocated by the lpfc_read_sparam routine. Release 8520 * it to the mbuf pool. 8521 */ 8522 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8523 kfree(mp); 8524 mboxq->ctx_buf = NULL; 8525 if (unlikely(rc)) { 8526 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8527 "0382 READ_SPARAM command failed " 8528 "status %d, mbxStatus x%x\n", 8529 rc, bf_get(lpfc_mqe_status, mqe)); 8530 phba->link_state = LPFC_HBA_ERROR; 8531 rc = -EIO; 8532 goto out_free_mbox; 8533 } 8534 8535 lpfc_update_vport_wwn(vport); 8536 8537 /* Update the fc_host data structures with new wwn. */ 8538 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8539 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8540 8541 /* Create all the SLI4 queues */ 8542 rc = lpfc_sli4_queue_create(phba); 8543 if (rc) { 8544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8545 "3089 Failed to allocate queues\n"); 8546 rc = -ENODEV; 8547 goto out_free_mbox; 8548 } 8549 /* Set up all the queues to the device */ 8550 rc = lpfc_sli4_queue_setup(phba); 8551 if (unlikely(rc)) { 8552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8553 "0381 Error %d during queue setup.\n ", rc); 8554 goto out_stop_timers; 8555 } 8556 /* Initialize the driver internal SLI layer lists. */ 8557 lpfc_sli4_setup(phba); 8558 lpfc_sli4_queue_init(phba); 8559 8560 /* update host els xri-sgl sizes and mappings */ 8561 rc = lpfc_sli4_els_sgl_update(phba); 8562 if (unlikely(rc)) { 8563 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8564 "1400 Failed to update xri-sgl size and " 8565 "mapping: %d\n", rc); 8566 goto out_destroy_queue; 8567 } 8568 8569 /* register the els sgl pool to the port */ 8570 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8571 phba->sli4_hba.els_xri_cnt); 8572 if (unlikely(rc < 0)) { 8573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8574 "0582 Error %d during els sgl post " 8575 "operation\n", rc); 8576 rc = -ENODEV; 8577 goto out_destroy_queue; 8578 } 8579 phba->sli4_hba.els_xri_cnt = rc; 8580 8581 if (phba->nvmet_support) { 8582 /* update host nvmet xri-sgl sizes and mappings */ 8583 rc = lpfc_sli4_nvmet_sgl_update(phba); 8584 if (unlikely(rc)) { 8585 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8586 "6308 Failed to update nvmet-sgl size " 8587 "and mapping: %d\n", rc); 8588 goto out_destroy_queue; 8589 } 8590 8591 /* register the nvmet sgl pool to the port */ 8592 rc = lpfc_sli4_repost_sgl_list( 8593 phba, 8594 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8595 phba->sli4_hba.nvmet_xri_cnt); 8596 if (unlikely(rc < 0)) { 8597 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8598 "3117 Error %d during nvmet " 8599 "sgl post\n", rc); 8600 rc = -ENODEV; 8601 goto out_destroy_queue; 8602 } 8603 phba->sli4_hba.nvmet_xri_cnt = rc; 8604 8605 /* We allocate an iocbq for every receive context SGL. 8606 * The additional allocation is for abort and ls handling. 8607 */ 8608 cnt = phba->sli4_hba.nvmet_xri_cnt + 8609 phba->sli4_hba.max_cfg_param.max_xri; 8610 } else { 8611 /* update host common xri-sgl sizes and mappings */ 8612 rc = lpfc_sli4_io_sgl_update(phba); 8613 if (unlikely(rc)) { 8614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8615 "6082 Failed to update nvme-sgl size " 8616 "and mapping: %d\n", rc); 8617 goto out_destroy_queue; 8618 } 8619 8620 /* register the allocated common sgl pool to the port */ 8621 rc = lpfc_sli4_repost_io_sgl_list(phba); 8622 if (unlikely(rc)) { 8623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8624 "6116 Error %d during nvme sgl post " 8625 "operation\n", rc); 8626 /* Some NVME buffers were moved to abort nvme list */ 8627 /* A pci function reset will repost them */ 8628 rc = -ENODEV; 8629 goto out_destroy_queue; 8630 } 8631 /* Each lpfc_io_buf job structure has an iocbq element. 8632 * This cnt provides for abort, els, ct and ls requests. 8633 */ 8634 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8635 } 8636 8637 if (!phba->sli.iocbq_lookup) { 8638 /* Initialize and populate the iocb list per host */ 8639 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8640 "2821 initialize iocb list with %d entries\n", 8641 cnt); 8642 rc = lpfc_init_iocb_list(phba, cnt); 8643 if (rc) { 8644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8645 "1413 Failed to init iocb list.\n"); 8646 goto out_destroy_queue; 8647 } 8648 } 8649 8650 if (phba->nvmet_support) 8651 lpfc_nvmet_create_targetport(phba); 8652 8653 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8654 /* Post initial buffers to all RQs created */ 8655 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8656 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8657 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8658 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8659 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8660 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8661 rqbp->buffer_count = 0; 8662 8663 lpfc_post_rq_buffer( 8664 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8665 phba->sli4_hba.nvmet_mrq_data[i], 8666 phba->cfg_nvmet_mrq_post, i); 8667 } 8668 } 8669 8670 /* Post the rpi header region to the device. */ 8671 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8672 if (unlikely(rc)) { 8673 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8674 "0393 Error %d during rpi post operation\n", 8675 rc); 8676 rc = -ENODEV; 8677 goto out_free_iocblist; 8678 } 8679 lpfc_sli4_node_prep(phba); 8680 8681 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8682 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8683 /* 8684 * The FC Port needs to register FCFI (index 0) 8685 */ 8686 lpfc_reg_fcfi(phba, mboxq); 8687 mboxq->vport = phba->pport; 8688 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8689 if (rc != MBX_SUCCESS) 8690 goto out_unset_queue; 8691 rc = 0; 8692 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8693 &mboxq->u.mqe.un.reg_fcfi); 8694 } else { 8695 /* We are a NVME Target mode with MRQ > 1 */ 8696 8697 /* First register the FCFI */ 8698 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8699 mboxq->vport = phba->pport; 8700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8701 if (rc != MBX_SUCCESS) 8702 goto out_unset_queue; 8703 rc = 0; 8704 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8705 &mboxq->u.mqe.un.reg_fcfi_mrq); 8706 8707 /* Next register the MRQs */ 8708 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8709 mboxq->vport = phba->pport; 8710 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8711 if (rc != MBX_SUCCESS) 8712 goto out_unset_queue; 8713 rc = 0; 8714 } 8715 /* Check if the port is configured to be disabled */ 8716 lpfc_sli_read_link_ste(phba); 8717 } 8718 8719 /* Don't post more new bufs if repost already recovered 8720 * the nvme sgls. 8721 */ 8722 if (phba->nvmet_support == 0) { 8723 if (phba->sli4_hba.io_xri_cnt == 0) { 8724 len = lpfc_new_io_buf( 8725 phba, phba->sli4_hba.io_xri_max); 8726 if (len == 0) { 8727 rc = -ENOMEM; 8728 goto out_unset_queue; 8729 } 8730 8731 if (phba->cfg_xri_rebalancing) 8732 lpfc_create_multixri_pools(phba); 8733 } 8734 } else { 8735 phba->cfg_xri_rebalancing = 0; 8736 } 8737 8738 /* Allow asynchronous mailbox command to go through */ 8739 spin_lock_irq(&phba->hbalock); 8740 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8741 spin_unlock_irq(&phba->hbalock); 8742 8743 /* Post receive buffers to the device */ 8744 lpfc_sli4_rb_setup(phba); 8745 8746 /* Reset HBA FCF states after HBA reset */ 8747 phba->fcf.fcf_flag = 0; 8748 phba->fcf.current_rec.flag = 0; 8749 8750 /* Start the ELS watchdog timer */ 8751 mod_timer(&vport->els_tmofunc, 8752 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8753 8754 /* Start heart beat timer */ 8755 mod_timer(&phba->hb_tmofunc, 8756 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8757 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8758 phba->last_completion_time = jiffies; 8759 8760 /* start eq_delay heartbeat */ 8761 if (phba->cfg_auto_imax) 8762 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8763 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8764 8765 /* start per phba idle_stat_delay heartbeat */ 8766 lpfc_init_idle_stat_hb(phba); 8767 8768 /* Start error attention (ERATT) polling timer */ 8769 mod_timer(&phba->eratt_poll, 8770 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8771 8772 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8773 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8774 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8775 if (!rc) { 8776 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8777 "2829 This device supports " 8778 "Advanced Error Reporting (AER)\n"); 8779 spin_lock_irq(&phba->hbalock); 8780 phba->hba_flag |= HBA_AER_ENABLED; 8781 spin_unlock_irq(&phba->hbalock); 8782 } else { 8783 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8784 "2830 This device does not support " 8785 "Advanced Error Reporting (AER)\n"); 8786 phba->cfg_aer_support = 0; 8787 } 8788 rc = 0; 8789 } 8790 8791 /* 8792 * The port is ready, set the host's link state to LINK_DOWN 8793 * in preparation for link interrupts. 8794 */ 8795 spin_lock_irq(&phba->hbalock); 8796 phba->link_state = LPFC_LINK_DOWN; 8797 8798 /* Check if physical ports are trunked */ 8799 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8800 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8801 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8802 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8803 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8804 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8805 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8806 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8807 spin_unlock_irq(&phba->hbalock); 8808 8809 /* Arm the CQs and then EQs on device */ 8810 lpfc_sli4_arm_cqeq_intr(phba); 8811 8812 /* Indicate device interrupt mode */ 8813 phba->sli4_hba.intr_enable = 1; 8814 8815 /* Setup CMF after HBA is initialized */ 8816 lpfc_cmf_setup(phba); 8817 8818 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8819 (phba->hba_flag & LINK_DISABLED)) { 8820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8821 "3103 Adapter Link is disabled.\n"); 8822 lpfc_down_link(phba, mboxq); 8823 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8824 if (rc != MBX_SUCCESS) { 8825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8826 "3104 Adapter failed to issue " 8827 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8828 goto out_io_buff_free; 8829 } 8830 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8831 /* don't perform init_link on SLI4 FC port loopback test */ 8832 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8833 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8834 if (rc) 8835 goto out_io_buff_free; 8836 } 8837 } 8838 mempool_free(mboxq, phba->mbox_mem_pool); 8839 8840 phba->hba_flag |= HBA_SETUP; 8841 return rc; 8842 8843 out_io_buff_free: 8844 /* Free allocated IO Buffers */ 8845 lpfc_io_free(phba); 8846 out_unset_queue: 8847 /* Unset all the queues set up in this routine when error out */ 8848 lpfc_sli4_queue_unset(phba); 8849 out_free_iocblist: 8850 lpfc_free_iocb_list(phba); 8851 out_destroy_queue: 8852 lpfc_sli4_queue_destroy(phba); 8853 out_stop_timers: 8854 lpfc_stop_hba_timers(phba); 8855 out_free_mbox: 8856 mempool_free(mboxq, phba->mbox_mem_pool); 8857 return rc; 8858 } 8859 8860 /** 8861 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8862 * @t: Context to fetch pointer to hba structure from. 8863 * 8864 * This is the callback function for mailbox timer. The mailbox 8865 * timer is armed when a new mailbox command is issued and the timer 8866 * is deleted when the mailbox complete. The function is called by 8867 * the kernel timer code when a mailbox does not complete within 8868 * expected time. This function wakes up the worker thread to 8869 * process the mailbox timeout and returns. All the processing is 8870 * done by the worker thread function lpfc_mbox_timeout_handler. 8871 **/ 8872 void 8873 lpfc_mbox_timeout(struct timer_list *t) 8874 { 8875 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8876 unsigned long iflag; 8877 uint32_t tmo_posted; 8878 8879 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8880 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8881 if (!tmo_posted) 8882 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8883 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8884 8885 if (!tmo_posted) 8886 lpfc_worker_wake_up(phba); 8887 return; 8888 } 8889 8890 /** 8891 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8892 * are pending 8893 * @phba: Pointer to HBA context object. 8894 * 8895 * This function checks if any mailbox completions are present on the mailbox 8896 * completion queue. 8897 **/ 8898 static bool 8899 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8900 { 8901 8902 uint32_t idx; 8903 struct lpfc_queue *mcq; 8904 struct lpfc_mcqe *mcqe; 8905 bool pending_completions = false; 8906 uint8_t qe_valid; 8907 8908 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8909 return false; 8910 8911 /* Check for completions on mailbox completion queue */ 8912 8913 mcq = phba->sli4_hba.mbx_cq; 8914 idx = mcq->hba_index; 8915 qe_valid = mcq->qe_valid; 8916 while (bf_get_le32(lpfc_cqe_valid, 8917 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8918 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8919 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8920 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8921 pending_completions = true; 8922 break; 8923 } 8924 idx = (idx + 1) % mcq->entry_count; 8925 if (mcq->hba_index == idx) 8926 break; 8927 8928 /* if the index wrapped around, toggle the valid bit */ 8929 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8930 qe_valid = (qe_valid) ? 0 : 1; 8931 } 8932 return pending_completions; 8933 8934 } 8935 8936 /** 8937 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8938 * that were missed. 8939 * @phba: Pointer to HBA context object. 8940 * 8941 * For sli4, it is possible to miss an interrupt. As such mbox completions 8942 * maybe missed causing erroneous mailbox timeouts to occur. This function 8943 * checks to see if mbox completions are on the mailbox completion queue 8944 * and will process all the completions associated with the eq for the 8945 * mailbox completion queue. 8946 **/ 8947 static bool 8948 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8949 { 8950 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8951 uint32_t eqidx; 8952 struct lpfc_queue *fpeq = NULL; 8953 struct lpfc_queue *eq; 8954 bool mbox_pending; 8955 8956 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8957 return false; 8958 8959 /* Find the EQ associated with the mbox CQ */ 8960 if (sli4_hba->hdwq) { 8961 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8962 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8963 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8964 fpeq = eq; 8965 break; 8966 } 8967 } 8968 } 8969 if (!fpeq) 8970 return false; 8971 8972 /* Turn off interrupts from this EQ */ 8973 8974 sli4_hba->sli4_eq_clr_intr(fpeq); 8975 8976 /* Check to see if a mbox completion is pending */ 8977 8978 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8979 8980 /* 8981 * If a mbox completion is pending, process all the events on EQ 8982 * associated with the mbox completion queue (this could include 8983 * mailbox commands, async events, els commands, receive queue data 8984 * and fcp commands) 8985 */ 8986 8987 if (mbox_pending) 8988 /* process and rearm the EQ */ 8989 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8990 else 8991 /* Always clear and re-arm the EQ */ 8992 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8993 8994 return mbox_pending; 8995 8996 } 8997 8998 /** 8999 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9000 * @phba: Pointer to HBA context object. 9001 * 9002 * This function is called from worker thread when a mailbox command times out. 9003 * The caller is not required to hold any locks. This function will reset the 9004 * HBA and recover all the pending commands. 9005 **/ 9006 void 9007 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9008 { 9009 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9010 MAILBOX_t *mb = NULL; 9011 9012 struct lpfc_sli *psli = &phba->sli; 9013 9014 /* If the mailbox completed, process the completion */ 9015 lpfc_sli4_process_missed_mbox_completions(phba); 9016 9017 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9018 return; 9019 9020 if (pmbox != NULL) 9021 mb = &pmbox->u.mb; 9022 /* Check the pmbox pointer first. There is a race condition 9023 * between the mbox timeout handler getting executed in the 9024 * worklist and the mailbox actually completing. When this 9025 * race condition occurs, the mbox_active will be NULL. 9026 */ 9027 spin_lock_irq(&phba->hbalock); 9028 if (pmbox == NULL) { 9029 lpfc_printf_log(phba, KERN_WARNING, 9030 LOG_MBOX | LOG_SLI, 9031 "0353 Active Mailbox cleared - mailbox timeout " 9032 "exiting\n"); 9033 spin_unlock_irq(&phba->hbalock); 9034 return; 9035 } 9036 9037 /* Mbox cmd <mbxCommand> timeout */ 9038 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9039 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9040 mb->mbxCommand, 9041 phba->pport->port_state, 9042 phba->sli.sli_flag, 9043 phba->sli.mbox_active); 9044 spin_unlock_irq(&phba->hbalock); 9045 9046 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9047 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9048 * it to fail all outstanding SCSI IO. 9049 */ 9050 spin_lock_irq(&phba->pport->work_port_lock); 9051 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9052 spin_unlock_irq(&phba->pport->work_port_lock); 9053 spin_lock_irq(&phba->hbalock); 9054 phba->link_state = LPFC_LINK_UNKNOWN; 9055 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9056 spin_unlock_irq(&phba->hbalock); 9057 9058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9059 "0345 Resetting board due to mailbox timeout\n"); 9060 9061 /* Reset the HBA device */ 9062 lpfc_reset_hba(phba); 9063 } 9064 9065 /** 9066 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9067 * @phba: Pointer to HBA context object. 9068 * @pmbox: Pointer to mailbox object. 9069 * @flag: Flag indicating how the mailbox need to be processed. 9070 * 9071 * This function is called by discovery code and HBA management code 9072 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9073 * function gets the hbalock to protect the data structures. 9074 * The mailbox command can be submitted in polling mode, in which case 9075 * this function will wait in a polling loop for the completion of the 9076 * mailbox. 9077 * If the mailbox is submitted in no_wait mode (not polling) the 9078 * function will submit the command and returns immediately without waiting 9079 * for the mailbox completion. The no_wait is supported only when HBA 9080 * is in SLI2/SLI3 mode - interrupts are enabled. 9081 * The SLI interface allows only one mailbox pending at a time. If the 9082 * mailbox is issued in polling mode and there is already a mailbox 9083 * pending, then the function will return an error. If the mailbox is issued 9084 * in NO_WAIT mode and there is a mailbox pending already, the function 9085 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9086 * The sli layer owns the mailbox object until the completion of mailbox 9087 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9088 * return codes the caller owns the mailbox command after the return of 9089 * the function. 9090 **/ 9091 static int 9092 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9093 uint32_t flag) 9094 { 9095 MAILBOX_t *mbx; 9096 struct lpfc_sli *psli = &phba->sli; 9097 uint32_t status, evtctr; 9098 uint32_t ha_copy, hc_copy; 9099 int i; 9100 unsigned long timeout; 9101 unsigned long drvr_flag = 0; 9102 uint32_t word0, ldata; 9103 void __iomem *to_slim; 9104 int processing_queue = 0; 9105 9106 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9107 if (!pmbox) { 9108 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9109 /* processing mbox queue from intr_handler */ 9110 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9111 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9112 return MBX_SUCCESS; 9113 } 9114 processing_queue = 1; 9115 pmbox = lpfc_mbox_get(phba); 9116 if (!pmbox) { 9117 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9118 return MBX_SUCCESS; 9119 } 9120 } 9121 9122 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9123 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9124 if(!pmbox->vport) { 9125 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9126 lpfc_printf_log(phba, KERN_ERR, 9127 LOG_MBOX | LOG_VPORT, 9128 "1806 Mbox x%x failed. No vport\n", 9129 pmbox->u.mb.mbxCommand); 9130 dump_stack(); 9131 goto out_not_finished; 9132 } 9133 } 9134 9135 /* If the PCI channel is in offline state, do not post mbox. */ 9136 if (unlikely(pci_channel_offline(phba->pcidev))) { 9137 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9138 goto out_not_finished; 9139 } 9140 9141 /* If HBA has a deferred error attention, fail the iocb. */ 9142 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9143 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9144 goto out_not_finished; 9145 } 9146 9147 psli = &phba->sli; 9148 9149 mbx = &pmbox->u.mb; 9150 status = MBX_SUCCESS; 9151 9152 if (phba->link_state == LPFC_HBA_ERROR) { 9153 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9154 9155 /* Mbox command <mbxCommand> cannot issue */ 9156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9157 "(%d):0311 Mailbox command x%x cannot " 9158 "issue Data: x%x x%x\n", 9159 pmbox->vport ? pmbox->vport->vpi : 0, 9160 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9161 goto out_not_finished; 9162 } 9163 9164 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9165 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9166 !(hc_copy & HC_MBINT_ENA)) { 9167 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9169 "(%d):2528 Mailbox command x%x cannot " 9170 "issue Data: x%x x%x\n", 9171 pmbox->vport ? pmbox->vport->vpi : 0, 9172 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9173 goto out_not_finished; 9174 } 9175 } 9176 9177 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9178 /* Polling for a mbox command when another one is already active 9179 * is not allowed in SLI. Also, the driver must have established 9180 * SLI2 mode to queue and process multiple mbox commands. 9181 */ 9182 9183 if (flag & MBX_POLL) { 9184 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9185 9186 /* Mbox command <mbxCommand> cannot issue */ 9187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9188 "(%d):2529 Mailbox command x%x " 9189 "cannot issue Data: x%x x%x\n", 9190 pmbox->vport ? pmbox->vport->vpi : 0, 9191 pmbox->u.mb.mbxCommand, 9192 psli->sli_flag, flag); 9193 goto out_not_finished; 9194 } 9195 9196 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9197 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9198 /* Mbox command <mbxCommand> cannot issue */ 9199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9200 "(%d):2530 Mailbox command x%x " 9201 "cannot issue Data: x%x x%x\n", 9202 pmbox->vport ? pmbox->vport->vpi : 0, 9203 pmbox->u.mb.mbxCommand, 9204 psli->sli_flag, flag); 9205 goto out_not_finished; 9206 } 9207 9208 /* Another mailbox command is still being processed, queue this 9209 * command to be processed later. 9210 */ 9211 lpfc_mbox_put(phba, pmbox); 9212 9213 /* Mbox cmd issue - BUSY */ 9214 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9215 "(%d):0308 Mbox cmd issue - BUSY Data: " 9216 "x%x x%x x%x x%x\n", 9217 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9218 mbx->mbxCommand, 9219 phba->pport ? phba->pport->port_state : 0xff, 9220 psli->sli_flag, flag); 9221 9222 psli->slistat.mbox_busy++; 9223 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9224 9225 if (pmbox->vport) { 9226 lpfc_debugfs_disc_trc(pmbox->vport, 9227 LPFC_DISC_TRC_MBOX_VPORT, 9228 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9229 (uint32_t)mbx->mbxCommand, 9230 mbx->un.varWords[0], mbx->un.varWords[1]); 9231 } 9232 else { 9233 lpfc_debugfs_disc_trc(phba->pport, 9234 LPFC_DISC_TRC_MBOX, 9235 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9236 (uint32_t)mbx->mbxCommand, 9237 mbx->un.varWords[0], mbx->un.varWords[1]); 9238 } 9239 9240 return MBX_BUSY; 9241 } 9242 9243 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9244 9245 /* If we are not polling, we MUST be in SLI2 mode */ 9246 if (flag != MBX_POLL) { 9247 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9248 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9249 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9250 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9251 /* Mbox command <mbxCommand> cannot issue */ 9252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9253 "(%d):2531 Mailbox command x%x " 9254 "cannot issue Data: x%x x%x\n", 9255 pmbox->vport ? pmbox->vport->vpi : 0, 9256 pmbox->u.mb.mbxCommand, 9257 psli->sli_flag, flag); 9258 goto out_not_finished; 9259 } 9260 /* timeout active mbox command */ 9261 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9262 1000); 9263 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9264 } 9265 9266 /* Mailbox cmd <cmd> issue */ 9267 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9268 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9269 "x%x\n", 9270 pmbox->vport ? pmbox->vport->vpi : 0, 9271 mbx->mbxCommand, 9272 phba->pport ? phba->pport->port_state : 0xff, 9273 psli->sli_flag, flag); 9274 9275 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9276 if (pmbox->vport) { 9277 lpfc_debugfs_disc_trc(pmbox->vport, 9278 LPFC_DISC_TRC_MBOX_VPORT, 9279 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9280 (uint32_t)mbx->mbxCommand, 9281 mbx->un.varWords[0], mbx->un.varWords[1]); 9282 } 9283 else { 9284 lpfc_debugfs_disc_trc(phba->pport, 9285 LPFC_DISC_TRC_MBOX, 9286 "MBOX Send: cmd:x%x mb:x%x x%x", 9287 (uint32_t)mbx->mbxCommand, 9288 mbx->un.varWords[0], mbx->un.varWords[1]); 9289 } 9290 } 9291 9292 psli->slistat.mbox_cmd++; 9293 evtctr = psli->slistat.mbox_event; 9294 9295 /* next set own bit for the adapter and copy over command word */ 9296 mbx->mbxOwner = OWN_CHIP; 9297 9298 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9299 /* Populate mbox extension offset word. */ 9300 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9301 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9302 = (uint8_t *)phba->mbox_ext 9303 - (uint8_t *)phba->mbox; 9304 } 9305 9306 /* Copy the mailbox extension data */ 9307 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9308 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9309 (uint8_t *)phba->mbox_ext, 9310 pmbox->in_ext_byte_len); 9311 } 9312 /* Copy command data to host SLIM area */ 9313 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9314 } else { 9315 /* Populate mbox extension offset word. */ 9316 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9317 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9318 = MAILBOX_HBA_EXT_OFFSET; 9319 9320 /* Copy the mailbox extension data */ 9321 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9322 lpfc_memcpy_to_slim(phba->MBslimaddr + 9323 MAILBOX_HBA_EXT_OFFSET, 9324 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9325 9326 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9327 /* copy command data into host mbox for cmpl */ 9328 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9329 MAILBOX_CMD_SIZE); 9330 9331 /* First copy mbox command data to HBA SLIM, skip past first 9332 word */ 9333 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9334 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9335 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9336 9337 /* Next copy over first word, with mbxOwner set */ 9338 ldata = *((uint32_t *)mbx); 9339 to_slim = phba->MBslimaddr; 9340 writel(ldata, to_slim); 9341 readl(to_slim); /* flush */ 9342 9343 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9344 /* switch over to host mailbox */ 9345 psli->sli_flag |= LPFC_SLI_ACTIVE; 9346 } 9347 9348 wmb(); 9349 9350 switch (flag) { 9351 case MBX_NOWAIT: 9352 /* Set up reference to mailbox command */ 9353 psli->mbox_active = pmbox; 9354 /* Interrupt board to do it */ 9355 writel(CA_MBATT, phba->CAregaddr); 9356 readl(phba->CAregaddr); /* flush */ 9357 /* Don't wait for it to finish, just return */ 9358 break; 9359 9360 case MBX_POLL: 9361 /* Set up null reference to mailbox command */ 9362 psli->mbox_active = NULL; 9363 /* Interrupt board to do it */ 9364 writel(CA_MBATT, phba->CAregaddr); 9365 readl(phba->CAregaddr); /* flush */ 9366 9367 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9368 /* First read mbox status word */ 9369 word0 = *((uint32_t *)phba->mbox); 9370 word0 = le32_to_cpu(word0); 9371 } else { 9372 /* First read mbox status word */ 9373 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9374 spin_unlock_irqrestore(&phba->hbalock, 9375 drvr_flag); 9376 goto out_not_finished; 9377 } 9378 } 9379 9380 /* Read the HBA Host Attention Register */ 9381 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9382 spin_unlock_irqrestore(&phba->hbalock, 9383 drvr_flag); 9384 goto out_not_finished; 9385 } 9386 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9387 1000) + jiffies; 9388 i = 0; 9389 /* Wait for command to complete */ 9390 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9391 (!(ha_copy & HA_MBATT) && 9392 (phba->link_state > LPFC_WARM_START))) { 9393 if (time_after(jiffies, timeout)) { 9394 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9395 spin_unlock_irqrestore(&phba->hbalock, 9396 drvr_flag); 9397 goto out_not_finished; 9398 } 9399 9400 /* Check if we took a mbox interrupt while we were 9401 polling */ 9402 if (((word0 & OWN_CHIP) != OWN_CHIP) 9403 && (evtctr != psli->slistat.mbox_event)) 9404 break; 9405 9406 if (i++ > 10) { 9407 spin_unlock_irqrestore(&phba->hbalock, 9408 drvr_flag); 9409 msleep(1); 9410 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9411 } 9412 9413 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9414 /* First copy command data */ 9415 word0 = *((uint32_t *)phba->mbox); 9416 word0 = le32_to_cpu(word0); 9417 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9418 MAILBOX_t *slimmb; 9419 uint32_t slimword0; 9420 /* Check real SLIM for any errors */ 9421 slimword0 = readl(phba->MBslimaddr); 9422 slimmb = (MAILBOX_t *) & slimword0; 9423 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9424 && slimmb->mbxStatus) { 9425 psli->sli_flag &= 9426 ~LPFC_SLI_ACTIVE; 9427 word0 = slimword0; 9428 } 9429 } 9430 } else { 9431 /* First copy command data */ 9432 word0 = readl(phba->MBslimaddr); 9433 } 9434 /* Read the HBA Host Attention Register */ 9435 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9436 spin_unlock_irqrestore(&phba->hbalock, 9437 drvr_flag); 9438 goto out_not_finished; 9439 } 9440 } 9441 9442 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9443 /* copy results back to user */ 9444 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9445 MAILBOX_CMD_SIZE); 9446 /* Copy the mailbox extension data */ 9447 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9448 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9449 pmbox->ctx_buf, 9450 pmbox->out_ext_byte_len); 9451 } 9452 } else { 9453 /* First copy command data */ 9454 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9455 MAILBOX_CMD_SIZE); 9456 /* Copy the mailbox extension data */ 9457 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9458 lpfc_memcpy_from_slim( 9459 pmbox->ctx_buf, 9460 phba->MBslimaddr + 9461 MAILBOX_HBA_EXT_OFFSET, 9462 pmbox->out_ext_byte_len); 9463 } 9464 } 9465 9466 writel(HA_MBATT, phba->HAregaddr); 9467 readl(phba->HAregaddr); /* flush */ 9468 9469 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9470 status = mbx->mbxStatus; 9471 } 9472 9473 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9474 return status; 9475 9476 out_not_finished: 9477 if (processing_queue) { 9478 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9479 lpfc_mbox_cmpl_put(phba, pmbox); 9480 } 9481 return MBX_NOT_FINISHED; 9482 } 9483 9484 /** 9485 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9486 * @phba: Pointer to HBA context object. 9487 * 9488 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9489 * the driver internal pending mailbox queue. It will then try to wait out the 9490 * possible outstanding mailbox command before return. 9491 * 9492 * Returns: 9493 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9494 * the outstanding mailbox command timed out. 9495 **/ 9496 static int 9497 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9498 { 9499 struct lpfc_sli *psli = &phba->sli; 9500 LPFC_MBOXQ_t *mboxq; 9501 int rc = 0; 9502 unsigned long timeout = 0; 9503 u32 sli_flag; 9504 u8 cmd, subsys, opcode; 9505 9506 /* Mark the asynchronous mailbox command posting as blocked */ 9507 spin_lock_irq(&phba->hbalock); 9508 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9509 /* Determine how long we might wait for the active mailbox 9510 * command to be gracefully completed by firmware. 9511 */ 9512 if (phba->sli.mbox_active) 9513 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9514 phba->sli.mbox_active) * 9515 1000) + jiffies; 9516 spin_unlock_irq(&phba->hbalock); 9517 9518 /* Make sure the mailbox is really active */ 9519 if (timeout) 9520 lpfc_sli4_process_missed_mbox_completions(phba); 9521 9522 /* Wait for the outstanding mailbox command to complete */ 9523 while (phba->sli.mbox_active) { 9524 /* Check active mailbox complete status every 2ms */ 9525 msleep(2); 9526 if (time_after(jiffies, timeout)) { 9527 /* Timeout, mark the outstanding cmd not complete */ 9528 9529 /* Sanity check sli.mbox_active has not completed or 9530 * cancelled from another context during last 2ms sleep, 9531 * so take hbalock to be sure before logging. 9532 */ 9533 spin_lock_irq(&phba->hbalock); 9534 if (phba->sli.mbox_active) { 9535 mboxq = phba->sli.mbox_active; 9536 cmd = mboxq->u.mb.mbxCommand; 9537 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9538 mboxq); 9539 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9540 mboxq); 9541 sli_flag = psli->sli_flag; 9542 spin_unlock_irq(&phba->hbalock); 9543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9544 "2352 Mailbox command x%x " 9545 "(x%x/x%x) sli_flag x%x could " 9546 "not complete\n", 9547 cmd, subsys, opcode, 9548 sli_flag); 9549 } else { 9550 spin_unlock_irq(&phba->hbalock); 9551 } 9552 9553 rc = 1; 9554 break; 9555 } 9556 } 9557 9558 /* Can not cleanly block async mailbox command, fails it */ 9559 if (rc) { 9560 spin_lock_irq(&phba->hbalock); 9561 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9562 spin_unlock_irq(&phba->hbalock); 9563 } 9564 return rc; 9565 } 9566 9567 /** 9568 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9569 * @phba: Pointer to HBA context object. 9570 * 9571 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9572 * commands from the driver internal pending mailbox queue. It makes sure 9573 * that there is no outstanding mailbox command before resuming posting 9574 * asynchronous mailbox commands. If, for any reason, there is outstanding 9575 * mailbox command, it will try to wait it out before resuming asynchronous 9576 * mailbox command posting. 9577 **/ 9578 static void 9579 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9580 { 9581 struct lpfc_sli *psli = &phba->sli; 9582 9583 spin_lock_irq(&phba->hbalock); 9584 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9585 /* Asynchronous mailbox posting is not blocked, do nothing */ 9586 spin_unlock_irq(&phba->hbalock); 9587 return; 9588 } 9589 9590 /* Outstanding synchronous mailbox command is guaranteed to be done, 9591 * successful or timeout, after timing-out the outstanding mailbox 9592 * command shall always be removed, so just unblock posting async 9593 * mailbox command and resume 9594 */ 9595 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9596 spin_unlock_irq(&phba->hbalock); 9597 9598 /* wake up worker thread to post asynchronous mailbox command */ 9599 lpfc_worker_wake_up(phba); 9600 } 9601 9602 /** 9603 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9604 * @phba: Pointer to HBA context object. 9605 * @mboxq: Pointer to mailbox object. 9606 * 9607 * The function waits for the bootstrap mailbox register ready bit from 9608 * port for twice the regular mailbox command timeout value. 9609 * 9610 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9611 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9612 **/ 9613 static int 9614 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9615 { 9616 uint32_t db_ready; 9617 unsigned long timeout; 9618 struct lpfc_register bmbx_reg; 9619 9620 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9621 * 1000) + jiffies; 9622 9623 do { 9624 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9625 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9626 if (!db_ready) 9627 mdelay(2); 9628 9629 if (time_after(jiffies, timeout)) 9630 return MBXERR_ERROR; 9631 } while (!db_ready); 9632 9633 return 0; 9634 } 9635 9636 /** 9637 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9638 * @phba: Pointer to HBA context object. 9639 * @mboxq: Pointer to mailbox object. 9640 * 9641 * The function posts a mailbox to the port. The mailbox is expected 9642 * to be comletely filled in and ready for the port to operate on it. 9643 * This routine executes a synchronous completion operation on the 9644 * mailbox by polling for its completion. 9645 * 9646 * The caller must not be holding any locks when calling this routine. 9647 * 9648 * Returns: 9649 * MBX_SUCCESS - mailbox posted successfully 9650 * Any of the MBX error values. 9651 **/ 9652 static int 9653 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9654 { 9655 int rc = MBX_SUCCESS; 9656 unsigned long iflag; 9657 uint32_t mcqe_status; 9658 uint32_t mbx_cmnd; 9659 struct lpfc_sli *psli = &phba->sli; 9660 struct lpfc_mqe *mb = &mboxq->u.mqe; 9661 struct lpfc_bmbx_create *mbox_rgn; 9662 struct dma_address *dma_address; 9663 9664 /* 9665 * Only one mailbox can be active to the bootstrap mailbox region 9666 * at a time and there is no queueing provided. 9667 */ 9668 spin_lock_irqsave(&phba->hbalock, iflag); 9669 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9670 spin_unlock_irqrestore(&phba->hbalock, iflag); 9671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9672 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9673 "cannot issue Data: x%x x%x\n", 9674 mboxq->vport ? mboxq->vport->vpi : 0, 9675 mboxq->u.mb.mbxCommand, 9676 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9677 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9678 psli->sli_flag, MBX_POLL); 9679 return MBXERR_ERROR; 9680 } 9681 /* The server grabs the token and owns it until release */ 9682 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9683 phba->sli.mbox_active = mboxq; 9684 spin_unlock_irqrestore(&phba->hbalock, iflag); 9685 9686 /* wait for bootstrap mbox register for readyness */ 9687 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9688 if (rc) 9689 goto exit; 9690 /* 9691 * Initialize the bootstrap memory region to avoid stale data areas 9692 * in the mailbox post. Then copy the caller's mailbox contents to 9693 * the bmbx mailbox region. 9694 */ 9695 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9696 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9697 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9698 sizeof(struct lpfc_mqe)); 9699 9700 /* Post the high mailbox dma address to the port and wait for ready. */ 9701 dma_address = &phba->sli4_hba.bmbx.dma_address; 9702 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9703 9704 /* wait for bootstrap mbox register for hi-address write done */ 9705 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9706 if (rc) 9707 goto exit; 9708 9709 /* Post the low mailbox dma address to the port. */ 9710 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9711 9712 /* wait for bootstrap mbox register for low address write done */ 9713 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9714 if (rc) 9715 goto exit; 9716 9717 /* 9718 * Read the CQ to ensure the mailbox has completed. 9719 * If so, update the mailbox status so that the upper layers 9720 * can complete the request normally. 9721 */ 9722 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9723 sizeof(struct lpfc_mqe)); 9724 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9725 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9726 sizeof(struct lpfc_mcqe)); 9727 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9728 /* 9729 * When the CQE status indicates a failure and the mailbox status 9730 * indicates success then copy the CQE status into the mailbox status 9731 * (and prefix it with x4000). 9732 */ 9733 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9734 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9735 bf_set(lpfc_mqe_status, mb, 9736 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9737 rc = MBXERR_ERROR; 9738 } else 9739 lpfc_sli4_swap_str(phba, mboxq); 9740 9741 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9742 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9743 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9744 " x%x x%x CQ: x%x x%x x%x x%x\n", 9745 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9746 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9747 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9748 bf_get(lpfc_mqe_status, mb), 9749 mb->un.mb_words[0], mb->un.mb_words[1], 9750 mb->un.mb_words[2], mb->un.mb_words[3], 9751 mb->un.mb_words[4], mb->un.mb_words[5], 9752 mb->un.mb_words[6], mb->un.mb_words[7], 9753 mb->un.mb_words[8], mb->un.mb_words[9], 9754 mb->un.mb_words[10], mb->un.mb_words[11], 9755 mb->un.mb_words[12], mboxq->mcqe.word0, 9756 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9757 mboxq->mcqe.trailer); 9758 exit: 9759 /* We are holding the token, no needed for lock when release */ 9760 spin_lock_irqsave(&phba->hbalock, iflag); 9761 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9762 phba->sli.mbox_active = NULL; 9763 spin_unlock_irqrestore(&phba->hbalock, iflag); 9764 return rc; 9765 } 9766 9767 /** 9768 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9769 * @phba: Pointer to HBA context object. 9770 * @mboxq: Pointer to mailbox object. 9771 * @flag: Flag indicating how the mailbox need to be processed. 9772 * 9773 * This function is called by discovery code and HBA management code to submit 9774 * a mailbox command to firmware with SLI-4 interface spec. 9775 * 9776 * Return codes the caller owns the mailbox command after the return of the 9777 * function. 9778 **/ 9779 static int 9780 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9781 uint32_t flag) 9782 { 9783 struct lpfc_sli *psli = &phba->sli; 9784 unsigned long iflags; 9785 int rc; 9786 9787 /* dump from issue mailbox command if setup */ 9788 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9789 9790 rc = lpfc_mbox_dev_check(phba); 9791 if (unlikely(rc)) { 9792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9793 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9794 "cannot issue Data: x%x x%x\n", 9795 mboxq->vport ? mboxq->vport->vpi : 0, 9796 mboxq->u.mb.mbxCommand, 9797 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9798 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9799 psli->sli_flag, flag); 9800 goto out_not_finished; 9801 } 9802 9803 /* Detect polling mode and jump to a handler */ 9804 if (!phba->sli4_hba.intr_enable) { 9805 if (flag == MBX_POLL) 9806 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9807 else 9808 rc = -EIO; 9809 if (rc != MBX_SUCCESS) 9810 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9811 "(%d):2541 Mailbox command x%x " 9812 "(x%x/x%x) failure: " 9813 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9814 "Data: x%x x%x\n", 9815 mboxq->vport ? mboxq->vport->vpi : 0, 9816 mboxq->u.mb.mbxCommand, 9817 lpfc_sli_config_mbox_subsys_get(phba, 9818 mboxq), 9819 lpfc_sli_config_mbox_opcode_get(phba, 9820 mboxq), 9821 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9822 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9823 bf_get(lpfc_mcqe_ext_status, 9824 &mboxq->mcqe), 9825 psli->sli_flag, flag); 9826 return rc; 9827 } else if (flag == MBX_POLL) { 9828 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9829 "(%d):2542 Try to issue mailbox command " 9830 "x%x (x%x/x%x) synchronously ahead of async " 9831 "mailbox command queue: x%x x%x\n", 9832 mboxq->vport ? mboxq->vport->vpi : 0, 9833 mboxq->u.mb.mbxCommand, 9834 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9835 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9836 psli->sli_flag, flag); 9837 /* Try to block the asynchronous mailbox posting */ 9838 rc = lpfc_sli4_async_mbox_block(phba); 9839 if (!rc) { 9840 /* Successfully blocked, now issue sync mbox cmd */ 9841 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9842 if (rc != MBX_SUCCESS) 9843 lpfc_printf_log(phba, KERN_WARNING, 9844 LOG_MBOX | LOG_SLI, 9845 "(%d):2597 Sync Mailbox command " 9846 "x%x (x%x/x%x) failure: " 9847 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9848 "Data: x%x x%x\n", 9849 mboxq->vport ? mboxq->vport->vpi : 0, 9850 mboxq->u.mb.mbxCommand, 9851 lpfc_sli_config_mbox_subsys_get(phba, 9852 mboxq), 9853 lpfc_sli_config_mbox_opcode_get(phba, 9854 mboxq), 9855 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9856 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9857 bf_get(lpfc_mcqe_ext_status, 9858 &mboxq->mcqe), 9859 psli->sli_flag, flag); 9860 /* Unblock the async mailbox posting afterward */ 9861 lpfc_sli4_async_mbox_unblock(phba); 9862 } 9863 return rc; 9864 } 9865 9866 /* Now, interrupt mode asynchronous mailbox command */ 9867 rc = lpfc_mbox_cmd_check(phba, mboxq); 9868 if (rc) { 9869 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9870 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9871 "cannot issue Data: x%x x%x\n", 9872 mboxq->vport ? mboxq->vport->vpi : 0, 9873 mboxq->u.mb.mbxCommand, 9874 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9875 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9876 psli->sli_flag, flag); 9877 goto out_not_finished; 9878 } 9879 9880 /* Put the mailbox command to the driver internal FIFO */ 9881 psli->slistat.mbox_busy++; 9882 spin_lock_irqsave(&phba->hbalock, iflags); 9883 lpfc_mbox_put(phba, mboxq); 9884 spin_unlock_irqrestore(&phba->hbalock, iflags); 9885 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9886 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9887 "x%x (x%x/x%x) x%x x%x x%x\n", 9888 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9889 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9890 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9891 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9892 phba->pport->port_state, 9893 psli->sli_flag, MBX_NOWAIT); 9894 /* Wake up worker thread to transport mailbox command from head */ 9895 lpfc_worker_wake_up(phba); 9896 9897 return MBX_BUSY; 9898 9899 out_not_finished: 9900 return MBX_NOT_FINISHED; 9901 } 9902 9903 /** 9904 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9905 * @phba: Pointer to HBA context object. 9906 * 9907 * This function is called by worker thread to send a mailbox command to 9908 * SLI4 HBA firmware. 9909 * 9910 **/ 9911 int 9912 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9913 { 9914 struct lpfc_sli *psli = &phba->sli; 9915 LPFC_MBOXQ_t *mboxq; 9916 int rc = MBX_SUCCESS; 9917 unsigned long iflags; 9918 struct lpfc_mqe *mqe; 9919 uint32_t mbx_cmnd; 9920 9921 /* Check interrupt mode before post async mailbox command */ 9922 if (unlikely(!phba->sli4_hba.intr_enable)) 9923 return MBX_NOT_FINISHED; 9924 9925 /* Check for mailbox command service token */ 9926 spin_lock_irqsave(&phba->hbalock, iflags); 9927 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9928 spin_unlock_irqrestore(&phba->hbalock, iflags); 9929 return MBX_NOT_FINISHED; 9930 } 9931 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9932 spin_unlock_irqrestore(&phba->hbalock, iflags); 9933 return MBX_NOT_FINISHED; 9934 } 9935 if (unlikely(phba->sli.mbox_active)) { 9936 spin_unlock_irqrestore(&phba->hbalock, iflags); 9937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9938 "0384 There is pending active mailbox cmd\n"); 9939 return MBX_NOT_FINISHED; 9940 } 9941 /* Take the mailbox command service token */ 9942 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9943 9944 /* Get the next mailbox command from head of queue */ 9945 mboxq = lpfc_mbox_get(phba); 9946 9947 /* If no more mailbox command waiting for post, we're done */ 9948 if (!mboxq) { 9949 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9950 spin_unlock_irqrestore(&phba->hbalock, iflags); 9951 return MBX_SUCCESS; 9952 } 9953 phba->sli.mbox_active = mboxq; 9954 spin_unlock_irqrestore(&phba->hbalock, iflags); 9955 9956 /* Check device readiness for posting mailbox command */ 9957 rc = lpfc_mbox_dev_check(phba); 9958 if (unlikely(rc)) 9959 /* Driver clean routine will clean up pending mailbox */ 9960 goto out_not_finished; 9961 9962 /* Prepare the mbox command to be posted */ 9963 mqe = &mboxq->u.mqe; 9964 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9965 9966 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9967 mod_timer(&psli->mbox_tmo, (jiffies + 9968 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9969 9970 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9971 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9972 "x%x x%x\n", 9973 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9974 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9975 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9976 phba->pport->port_state, psli->sli_flag); 9977 9978 if (mbx_cmnd != MBX_HEARTBEAT) { 9979 if (mboxq->vport) { 9980 lpfc_debugfs_disc_trc(mboxq->vport, 9981 LPFC_DISC_TRC_MBOX_VPORT, 9982 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9983 mbx_cmnd, mqe->un.mb_words[0], 9984 mqe->un.mb_words[1]); 9985 } else { 9986 lpfc_debugfs_disc_trc(phba->pport, 9987 LPFC_DISC_TRC_MBOX, 9988 "MBOX Send: cmd:x%x mb:x%x x%x", 9989 mbx_cmnd, mqe->un.mb_words[0], 9990 mqe->un.mb_words[1]); 9991 } 9992 } 9993 psli->slistat.mbox_cmd++; 9994 9995 /* Post the mailbox command to the port */ 9996 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9997 if (rc != MBX_SUCCESS) { 9998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9999 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10000 "cannot issue Data: x%x x%x\n", 10001 mboxq->vport ? mboxq->vport->vpi : 0, 10002 mboxq->u.mb.mbxCommand, 10003 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10004 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10005 psli->sli_flag, MBX_NOWAIT); 10006 goto out_not_finished; 10007 } 10008 10009 return rc; 10010 10011 out_not_finished: 10012 spin_lock_irqsave(&phba->hbalock, iflags); 10013 if (phba->sli.mbox_active) { 10014 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10015 __lpfc_mbox_cmpl_put(phba, mboxq); 10016 /* Release the token */ 10017 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10018 phba->sli.mbox_active = NULL; 10019 } 10020 spin_unlock_irqrestore(&phba->hbalock, iflags); 10021 10022 return MBX_NOT_FINISHED; 10023 } 10024 10025 /** 10026 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10027 * @phba: Pointer to HBA context object. 10028 * @pmbox: Pointer to mailbox object. 10029 * @flag: Flag indicating how the mailbox need to be processed. 10030 * 10031 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10032 * the API jump table function pointer from the lpfc_hba struct. 10033 * 10034 * Return codes the caller owns the mailbox command after the return of the 10035 * function. 10036 **/ 10037 int 10038 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10039 { 10040 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10041 } 10042 10043 /** 10044 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10045 * @phba: The hba struct for which this call is being executed. 10046 * @dev_grp: The HBA PCI-Device group number. 10047 * 10048 * This routine sets up the mbox interface API function jump table in @phba 10049 * struct. 10050 * Returns: 0 - success, -ENODEV - failure. 10051 **/ 10052 int 10053 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10054 { 10055 10056 switch (dev_grp) { 10057 case LPFC_PCI_DEV_LP: 10058 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10059 phba->lpfc_sli_handle_slow_ring_event = 10060 lpfc_sli_handle_slow_ring_event_s3; 10061 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10062 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10063 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10064 break; 10065 case LPFC_PCI_DEV_OC: 10066 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10067 phba->lpfc_sli_handle_slow_ring_event = 10068 lpfc_sli_handle_slow_ring_event_s4; 10069 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10070 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10071 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10072 break; 10073 default: 10074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10075 "1420 Invalid HBA PCI-device group: 0x%x\n", 10076 dev_grp); 10077 return -ENODEV; 10078 } 10079 return 0; 10080 } 10081 10082 /** 10083 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10084 * @phba: Pointer to HBA context object. 10085 * @pring: Pointer to driver SLI ring object. 10086 * @piocb: Pointer to address of newly added command iocb. 10087 * 10088 * This function is called with hbalock held for SLI3 ports or 10089 * the ring lock held for SLI4 ports to add a command 10090 * iocb to the txq when SLI layer cannot submit the command iocb 10091 * to the ring. 10092 **/ 10093 void 10094 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10095 struct lpfc_iocbq *piocb) 10096 { 10097 if (phba->sli_rev == LPFC_SLI_REV4) 10098 lockdep_assert_held(&pring->ring_lock); 10099 else 10100 lockdep_assert_held(&phba->hbalock); 10101 /* Insert the caller's iocb in the txq tail for later processing. */ 10102 list_add_tail(&piocb->list, &pring->txq); 10103 } 10104 10105 /** 10106 * lpfc_sli_next_iocb - Get the next iocb in the txq 10107 * @phba: Pointer to HBA context object. 10108 * @pring: Pointer to driver SLI ring object. 10109 * @piocb: Pointer to address of newly added command iocb. 10110 * 10111 * This function is called with hbalock held before a new 10112 * iocb is submitted to the firmware. This function checks 10113 * txq to flush the iocbs in txq to Firmware before 10114 * submitting new iocbs to the Firmware. 10115 * If there are iocbs in the txq which need to be submitted 10116 * to firmware, lpfc_sli_next_iocb returns the first element 10117 * of the txq after dequeuing it from txq. 10118 * If there is no iocb in the txq then the function will return 10119 * *piocb and *piocb is set to NULL. Caller needs to check 10120 * *piocb to find if there are more commands in the txq. 10121 **/ 10122 static struct lpfc_iocbq * 10123 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10124 struct lpfc_iocbq **piocb) 10125 { 10126 struct lpfc_iocbq * nextiocb; 10127 10128 lockdep_assert_held(&phba->hbalock); 10129 10130 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10131 if (!nextiocb) { 10132 nextiocb = *piocb; 10133 *piocb = NULL; 10134 } 10135 10136 return nextiocb; 10137 } 10138 10139 /** 10140 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10141 * @phba: Pointer to HBA context object. 10142 * @ring_number: SLI ring number to issue iocb on. 10143 * @piocb: Pointer to command iocb. 10144 * @flag: Flag indicating if this command can be put into txq. 10145 * 10146 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10147 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10148 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10149 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10150 * this function allows only iocbs for posting buffers. This function finds 10151 * next available slot in the command ring and posts the command to the 10152 * available slot and writes the port attention register to request HBA start 10153 * processing new iocb. If there is no slot available in the ring and 10154 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10155 * the function returns IOCB_BUSY. 10156 * 10157 * This function is called with hbalock held. The function will return success 10158 * after it successfully submit the iocb to firmware or after adding to the 10159 * txq. 10160 **/ 10161 static int 10162 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10163 struct lpfc_iocbq *piocb, uint32_t flag) 10164 { 10165 struct lpfc_iocbq *nextiocb; 10166 IOCB_t *iocb; 10167 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10168 10169 lockdep_assert_held(&phba->hbalock); 10170 10171 if (piocb->cmd_cmpl && (!piocb->vport) && 10172 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10173 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10174 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10175 "1807 IOCB x%x failed. No vport\n", 10176 piocb->iocb.ulpCommand); 10177 dump_stack(); 10178 return IOCB_ERROR; 10179 } 10180 10181 10182 /* If the PCI channel is in offline state, do not post iocbs. */ 10183 if (unlikely(pci_channel_offline(phba->pcidev))) 10184 return IOCB_ERROR; 10185 10186 /* If HBA has a deferred error attention, fail the iocb. */ 10187 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10188 return IOCB_ERROR; 10189 10190 /* 10191 * We should never get an IOCB if we are in a < LINK_DOWN state 10192 */ 10193 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10194 return IOCB_ERROR; 10195 10196 /* 10197 * Check to see if we are blocking IOCB processing because of a 10198 * outstanding event. 10199 */ 10200 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10201 goto iocb_busy; 10202 10203 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10204 /* 10205 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10206 * can be issued if the link is not up. 10207 */ 10208 switch (piocb->iocb.ulpCommand) { 10209 case CMD_GEN_REQUEST64_CR: 10210 case CMD_GEN_REQUEST64_CX: 10211 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10212 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10213 FC_RCTL_DD_UNSOL_CMD) || 10214 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10215 MENLO_TRANSPORT_TYPE)) 10216 10217 goto iocb_busy; 10218 break; 10219 case CMD_QUE_RING_BUF_CN: 10220 case CMD_QUE_RING_BUF64_CN: 10221 /* 10222 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10223 * completion, cmd_cmpl MUST be 0. 10224 */ 10225 if (piocb->cmd_cmpl) 10226 piocb->cmd_cmpl = NULL; 10227 fallthrough; 10228 case CMD_CREATE_XRI_CR: 10229 case CMD_CLOSE_XRI_CN: 10230 case CMD_CLOSE_XRI_CX: 10231 break; 10232 default: 10233 goto iocb_busy; 10234 } 10235 10236 /* 10237 * For FCP commands, we must be in a state where we can process link 10238 * attention events. 10239 */ 10240 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10241 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10242 goto iocb_busy; 10243 } 10244 10245 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10246 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10247 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10248 10249 if (iocb) 10250 lpfc_sli_update_ring(phba, pring); 10251 else 10252 lpfc_sli_update_full_ring(phba, pring); 10253 10254 if (!piocb) 10255 return IOCB_SUCCESS; 10256 10257 goto out_busy; 10258 10259 iocb_busy: 10260 pring->stats.iocb_cmd_delay++; 10261 10262 out_busy: 10263 10264 if (!(flag & SLI_IOCB_RET_IOCB)) { 10265 __lpfc_sli_ringtx_put(phba, pring, piocb); 10266 return IOCB_SUCCESS; 10267 } 10268 10269 return IOCB_BUSY; 10270 } 10271 10272 /** 10273 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10274 * @phba: Pointer to HBA context object. 10275 * @ring_number: SLI ring number to issue wqe on. 10276 * @piocb: Pointer to command iocb. 10277 * @flag: Flag indicating if this command can be put into txq. 10278 * 10279 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10280 * send an iocb command to an HBA with SLI-4 interface spec. 10281 * 10282 * This function takes the hbalock before invoking the lockless version. 10283 * The function will return success after it successfully submit the wqe to 10284 * firmware or after adding to the txq. 10285 **/ 10286 static int 10287 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10288 struct lpfc_iocbq *piocb, uint32_t flag) 10289 { 10290 unsigned long iflags; 10291 int rc; 10292 10293 spin_lock_irqsave(&phba->hbalock, iflags); 10294 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10295 spin_unlock_irqrestore(&phba->hbalock, iflags); 10296 10297 return rc; 10298 } 10299 10300 /** 10301 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10302 * @phba: Pointer to HBA context object. 10303 * @ring_number: SLI ring number to issue wqe on. 10304 * @piocb: Pointer to command iocb. 10305 * @flag: Flag indicating if this command can be put into txq. 10306 * 10307 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10308 * an wqe command to an HBA with SLI-4 interface spec. 10309 * 10310 * This function is a lockless version. The function will return success 10311 * after it successfully submit the wqe to firmware or after adding to the 10312 * txq. 10313 **/ 10314 static int 10315 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10316 struct lpfc_iocbq *piocb, uint32_t flag) 10317 { 10318 int rc; 10319 struct lpfc_io_buf *lpfc_cmd = 10320 (struct lpfc_io_buf *)piocb->context1; 10321 10322 lpfc_prep_embed_io(phba, lpfc_cmd); 10323 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10324 return rc; 10325 } 10326 10327 void 10328 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10329 { 10330 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10331 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10332 struct sli4_sge *sgl; 10333 10334 /* 128 byte wqe support here */ 10335 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10336 10337 if (phba->fcp_embed_io) { 10338 struct fcp_cmnd *fcp_cmnd; 10339 u32 *ptr; 10340 10341 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10342 10343 /* Word 0-2 - FCP_CMND */ 10344 wqe->generic.bde.tus.f.bdeFlags = 10345 BUFF_TYPE_BDE_IMMED; 10346 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10347 wqe->generic.bde.addrHigh = 0; 10348 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10349 10350 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10351 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10352 10353 /* Word 22-29 FCP CMND Payload */ 10354 ptr = &wqe->words[22]; 10355 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10356 } else { 10357 /* Word 0-2 - Inline BDE */ 10358 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10359 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10360 wqe->generic.bde.addrHigh = sgl->addr_hi; 10361 wqe->generic.bde.addrLow = sgl->addr_lo; 10362 10363 /* Word 10 */ 10364 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10365 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10366 } 10367 10368 /* add the VMID tags as per switch response */ 10369 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10370 if (phba->pport->vmid_priority_tagging) { 10371 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10372 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10373 (piocb->vmid_tag.cs_ctl_vmid)); 10374 } else { 10375 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10376 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10377 wqe->words[31] = piocb->vmid_tag.app_id; 10378 } 10379 } 10380 } 10381 10382 /** 10383 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10384 * @phba: Pointer to HBA context object. 10385 * @ring_number: SLI ring number to issue iocb on. 10386 * @piocb: Pointer to command iocb. 10387 * @flag: Flag indicating if this command can be put into txq. 10388 * 10389 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10390 * an iocb command to an HBA with SLI-4 interface spec. 10391 * 10392 * This function is called with ringlock held. The function will return success 10393 * after it successfully submit the iocb to firmware or after adding to the 10394 * txq. 10395 **/ 10396 static int 10397 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10398 struct lpfc_iocbq *piocb, uint32_t flag) 10399 { 10400 struct lpfc_sglq *sglq; 10401 union lpfc_wqe128 *wqe; 10402 struct lpfc_queue *wq; 10403 struct lpfc_sli_ring *pring; 10404 u32 ulp_command = get_job_cmnd(phba, piocb); 10405 10406 /* Get the WQ */ 10407 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10408 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10409 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10410 } else { 10411 wq = phba->sli4_hba.els_wq; 10412 } 10413 10414 /* Get corresponding ring */ 10415 pring = wq->pring; 10416 10417 /* 10418 * The WQE can be either 64 or 128 bytes, 10419 */ 10420 10421 lockdep_assert_held(&pring->ring_lock); 10422 wqe = &piocb->wqe; 10423 if (piocb->sli4_xritag == NO_XRI) { 10424 if (ulp_command == CMD_ABORT_XRI_CX) 10425 sglq = NULL; 10426 else { 10427 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10428 if (!sglq) { 10429 if (!(flag & SLI_IOCB_RET_IOCB)) { 10430 __lpfc_sli_ringtx_put(phba, 10431 pring, 10432 piocb); 10433 return IOCB_SUCCESS; 10434 } else { 10435 return IOCB_BUSY; 10436 } 10437 } 10438 } 10439 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10440 /* These IO's already have an XRI and a mapped sgl. */ 10441 sglq = NULL; 10442 } 10443 else { 10444 /* 10445 * This is a continuation of a commandi,(CX) so this 10446 * sglq is on the active list 10447 */ 10448 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10449 if (!sglq) 10450 return IOCB_ERROR; 10451 } 10452 10453 if (sglq) { 10454 piocb->sli4_lxritag = sglq->sli4_lxritag; 10455 piocb->sli4_xritag = sglq->sli4_xritag; 10456 10457 /* ABTS sent by initiator to CT exchange, the 10458 * RX_ID field will be filled with the newly 10459 * allocated responder XRI. 10460 */ 10461 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10462 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10463 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10464 piocb->sli4_xritag); 10465 10466 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10467 piocb->sli4_xritag); 10468 10469 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10470 return IOCB_ERROR; 10471 } 10472 10473 if (lpfc_sli4_wq_put(wq, wqe)) 10474 return IOCB_ERROR; 10475 10476 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10477 10478 return 0; 10479 } 10480 10481 /* 10482 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10483 * 10484 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10485 * or IOCB for sli-3 function. 10486 * pointer from the lpfc_hba struct. 10487 * 10488 * Return codes: 10489 * IOCB_ERROR - Error 10490 * IOCB_SUCCESS - Success 10491 * IOCB_BUSY - Busy 10492 **/ 10493 int 10494 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10495 struct lpfc_iocbq *piocb, uint32_t flag) 10496 { 10497 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10498 } 10499 10500 /* 10501 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10502 * 10503 * This routine wraps the actual lockless version for issusing IOCB function 10504 * pointer from the lpfc_hba struct. 10505 * 10506 * Return codes: 10507 * IOCB_ERROR - Error 10508 * IOCB_SUCCESS - Success 10509 * IOCB_BUSY - Busy 10510 **/ 10511 int 10512 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10513 struct lpfc_iocbq *piocb, uint32_t flag) 10514 { 10515 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10516 } 10517 10518 static void 10519 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10520 struct lpfc_vport *vport, 10521 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10522 u32 elscmd, u8 tmo, u8 expect_rsp) 10523 { 10524 struct lpfc_hba *phba = vport->phba; 10525 IOCB_t *cmd; 10526 10527 cmd = &cmdiocbq->iocb; 10528 memset(cmd, 0, sizeof(*cmd)); 10529 10530 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10531 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10532 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10533 10534 if (expect_rsp) { 10535 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10536 cmd->un.elsreq64.remoteID = did; /* DID */ 10537 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10538 cmd->ulpTimeout = tmo; 10539 } else { 10540 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10541 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10542 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10543 } 10544 cmd->ulpBdeCount = 1; 10545 cmd->ulpLe = 1; 10546 cmd->ulpClass = CLASS3; 10547 10548 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10549 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10550 if (expect_rsp) { 10551 cmd->un.elsreq64.myID = vport->fc_myDID; 10552 10553 /* For ELS_REQUEST64_CR, use the VPI by default */ 10554 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10555 } 10556 10557 cmd->ulpCt_h = 0; 10558 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10559 if (elscmd == ELS_CMD_ECHO) 10560 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10561 else 10562 cmd->ulpCt_l = 1; /* context = VPI */ 10563 } 10564 } 10565 10566 static void 10567 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10568 struct lpfc_vport *vport, 10569 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10570 u32 elscmd, u8 tmo, u8 expect_rsp) 10571 { 10572 struct lpfc_hba *phba = vport->phba; 10573 union lpfc_wqe128 *wqe; 10574 struct ulp_bde64_le *bde; 10575 10576 wqe = &cmdiocbq->wqe; 10577 memset(wqe, 0, sizeof(*wqe)); 10578 10579 /* Word 0 - 2 BDE */ 10580 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10581 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10582 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10583 bde->type_size = cpu_to_le32(cmd_size); 10584 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10585 10586 if (expect_rsp) { 10587 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_CR); 10588 10589 /* Transfer length */ 10590 wqe->els_req.payload_len = cmd_size; 10591 wqe->els_req.max_response_payload_len = FCELSSIZE; 10592 10593 /* DID */ 10594 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10595 } else { 10596 /* DID */ 10597 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10598 10599 /* Transfer length */ 10600 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10601 10602 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10603 CMD_XMIT_ELS_RSP64_CX); 10604 } 10605 10606 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10607 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10608 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10609 10610 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10611 * For SLI4, since the driver controls VPIs we also want to include 10612 * all ELS pt2pt protocol traffic as well. 10613 */ 10614 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10615 (vport->fc_flag & FC_PT2PT)) { 10616 if (expect_rsp) { 10617 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10618 10619 /* For ELS_REQUEST64_CR, use the VPI by default */ 10620 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10621 phba->vpi_ids[vport->vpi]); 10622 } 10623 10624 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10625 if (elscmd == ELS_CMD_ECHO) 10626 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10627 else 10628 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10629 } 10630 } 10631 10632 void 10633 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10634 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10635 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10636 u8 expect_rsp) 10637 { 10638 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10639 elscmd, tmo, expect_rsp); 10640 } 10641 10642 static void 10643 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10644 u16 rpi, u32 num_entry, u8 tmo) 10645 { 10646 IOCB_t *cmd; 10647 10648 cmd = &cmdiocbq->iocb; 10649 memset(cmd, 0, sizeof(*cmd)); 10650 10651 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10652 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10653 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10654 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10655 10656 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10657 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10658 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10659 10660 cmd->ulpContext = rpi; 10661 cmd->ulpClass = CLASS3; 10662 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10663 cmd->ulpBdeCount = 1; 10664 cmd->ulpLe = 1; 10665 cmd->ulpOwner = OWN_CHIP; 10666 cmd->ulpTimeout = tmo; 10667 } 10668 10669 static void 10670 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10671 u16 rpi, u32 num_entry, u8 tmo) 10672 { 10673 union lpfc_wqe128 *cmdwqe; 10674 struct ulp_bde64_le *bde, *bpl; 10675 u32 xmit_len = 0, total_len = 0, size, type, i; 10676 10677 cmdwqe = &cmdiocbq->wqe; 10678 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10679 10680 /* Calculate total_len and xmit_len */ 10681 bpl = (struct ulp_bde64_le *)bmp->virt; 10682 for (i = 0; i < num_entry; i++) { 10683 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10684 total_len += size; 10685 } 10686 for (i = 0; i < num_entry; i++) { 10687 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10688 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10689 if (type != ULP_BDE64_TYPE_BDE_64) 10690 break; 10691 xmit_len += size; 10692 } 10693 10694 /* Words 0 - 2 */ 10695 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10696 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10697 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10698 bde->type_size = cpu_to_le32(xmit_len); 10699 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BLP_64); 10700 10701 /* Word 3 */ 10702 cmdwqe->gen_req.request_payload_len = xmit_len; 10703 10704 /* Word 5 */ 10705 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10706 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10707 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10708 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10709 10710 /* Word 6 */ 10711 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10712 10713 /* Word 7 */ 10714 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10715 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10716 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10717 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10718 10719 /* Word 12 */ 10720 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10721 } 10722 10723 void 10724 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10725 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10726 { 10727 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10728 } 10729 10730 static void 10731 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 10732 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10733 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10734 { 10735 IOCB_t *icmd; 10736 10737 icmd = &cmdiocbq->iocb; 10738 memset(icmd, 0, sizeof(*icmd)); 10739 10740 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10741 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 10742 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10743 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 10744 icmd->un.xseq64.w5.hcsw.Fctl = LA; 10745 if (last_seq) 10746 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 10747 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 10748 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 10749 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 10750 10751 icmd->ulpBdeCount = 1; 10752 icmd->ulpLe = 1; 10753 icmd->ulpClass = CLASS3; 10754 10755 switch (cr_cx_cmd) { 10756 case CMD_XMIT_SEQUENCE64_CR: 10757 icmd->ulpContext = rpi; 10758 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 10759 break; 10760 case CMD_XMIT_SEQUENCE64_CX: 10761 icmd->ulpContext = ox_id; 10762 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 10763 break; 10764 default: 10765 break; 10766 } 10767 } 10768 10769 static void 10770 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 10771 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10772 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10773 { 10774 union lpfc_wqe128 *wqe; 10775 struct ulp_bde64 *bpl; 10776 struct ulp_bde64_le *bde; 10777 10778 wqe = &cmdiocbq->wqe; 10779 memset(wqe, 0, sizeof(*wqe)); 10780 10781 /* Words 0 - 2 */ 10782 bpl = (struct ulp_bde64 *)bmp->virt; 10783 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 10784 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 10785 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 10786 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 10787 } else { 10788 bde = (struct ulp_bde64_le *)&wqe->xmit_sequence.bde; 10789 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10790 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10791 bde->type_size = cpu_to_le32(bpl->tus.f.bdeSize); 10792 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10793 } 10794 10795 /* Word 5 */ 10796 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 10797 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 10798 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 10799 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 10800 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 10801 10802 /* Word 6 */ 10803 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 10804 10805 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 10806 CMD_XMIT_SEQUENCE64_WQE); 10807 10808 /* Word 7 */ 10809 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 10810 10811 /* Word 9 */ 10812 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 10813 10814 /* Word 12 */ 10815 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 10816 wqe->xmit_sequence.xmit_len = full_size; 10817 else 10818 wqe->xmit_sequence.xmit_len = 10819 wqe->xmit_sequence.bde.tus.f.bdeSize; 10820 } 10821 10822 void 10823 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10824 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10825 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10826 { 10827 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 10828 rctl, last_seq, cr_cx_cmd); 10829 } 10830 10831 static void 10832 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10833 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10834 { 10835 IOCB_t *icmd = NULL; 10836 10837 icmd = &cmdiocbq->iocb; 10838 memset(icmd, 0, sizeof(*icmd)); 10839 10840 /* Word 5 */ 10841 icmd->un.acxri.abortContextTag = ulp_context; 10842 icmd->un.acxri.abortIoTag = iotag; 10843 10844 if (ia) { 10845 /* Word 7 */ 10846 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 10847 } else { 10848 /* Word 3 */ 10849 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 10850 10851 /* Word 7 */ 10852 icmd->ulpClass = ulp_class; 10853 icmd->ulpCommand = CMD_ABORT_XRI_CN; 10854 } 10855 10856 /* Word 7 */ 10857 icmd->ulpLe = 1; 10858 } 10859 10860 static void 10861 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10862 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10863 { 10864 union lpfc_wqe128 *wqe; 10865 10866 wqe = &cmdiocbq->wqe; 10867 memset(wqe, 0, sizeof(*wqe)); 10868 10869 /* Word 3 */ 10870 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10871 if (ia) 10872 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10873 else 10874 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10875 10876 /* Word 7 */ 10877 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 10878 10879 /* Word 8 */ 10880 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 10881 10882 /* Word 9 */ 10883 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 10884 10885 /* Word 10 */ 10886 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10887 10888 /* Word 11 */ 10889 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 10890 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10891 } 10892 10893 void 10894 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10895 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 10896 bool ia) 10897 { 10898 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 10899 cqid, ia); 10900 } 10901 10902 /** 10903 * lpfc_sli_api_table_setup - Set up sli api function jump table 10904 * @phba: The hba struct for which this call is being executed. 10905 * @dev_grp: The HBA PCI-Device group number. 10906 * 10907 * This routine sets up the SLI interface API function jump table in @phba 10908 * struct. 10909 * Returns: 0 - success, -ENODEV - failure. 10910 **/ 10911 int 10912 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10913 { 10914 10915 switch (dev_grp) { 10916 case LPFC_PCI_DEV_LP: 10917 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10918 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10919 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10920 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 10921 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 10922 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 10923 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 10924 break; 10925 case LPFC_PCI_DEV_OC: 10926 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10927 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10928 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10929 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 10930 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 10931 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 10932 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 10933 break; 10934 default: 10935 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10936 "1419 Invalid HBA PCI-device group: 0x%x\n", 10937 dev_grp); 10938 return -ENODEV; 10939 } 10940 return 0; 10941 } 10942 10943 /** 10944 * lpfc_sli4_calc_ring - Calculates which ring to use 10945 * @phba: Pointer to HBA context object. 10946 * @piocb: Pointer to command iocb. 10947 * 10948 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10949 * hba_wqidx, thus we need to calculate the corresponding ring. 10950 * Since ABORTS must go on the same WQ of the command they are 10951 * aborting, we use command's hba_wqidx. 10952 */ 10953 struct lpfc_sli_ring * 10954 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10955 { 10956 struct lpfc_io_buf *lpfc_cmd; 10957 10958 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10959 if (unlikely(!phba->sli4_hba.hdwq)) 10960 return NULL; 10961 /* 10962 * for abort iocb hba_wqidx should already 10963 * be setup based on what work queue we used. 10964 */ 10965 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10966 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10967 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10968 } 10969 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10970 } else { 10971 if (unlikely(!phba->sli4_hba.els_wq)) 10972 return NULL; 10973 piocb->hba_wqidx = 0; 10974 return phba->sli4_hba.els_wq->pring; 10975 } 10976 } 10977 10978 /** 10979 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10980 * @phba: Pointer to HBA context object. 10981 * @ring_number: Ring number 10982 * @piocb: Pointer to command iocb. 10983 * @flag: Flag indicating if this command can be put into txq. 10984 * 10985 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10986 * function. This function gets the hbalock and calls 10987 * __lpfc_sli_issue_iocb function and will return the error returned 10988 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10989 * functions which do not hold hbalock. 10990 **/ 10991 int 10992 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10993 struct lpfc_iocbq *piocb, uint32_t flag) 10994 { 10995 struct lpfc_sli_ring *pring; 10996 struct lpfc_queue *eq; 10997 unsigned long iflags; 10998 int rc; 10999 11000 if (phba->sli_rev == LPFC_SLI_REV4) { 11001 lpfc_sli_prep_wqe(phba, piocb); 11002 11003 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11004 11005 pring = lpfc_sli4_calc_ring(phba, piocb); 11006 if (unlikely(pring == NULL)) 11007 return IOCB_ERROR; 11008 11009 spin_lock_irqsave(&pring->ring_lock, iflags); 11010 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11011 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11012 11013 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11014 } else { 11015 /* For now, SLI2/3 will still use hbalock */ 11016 spin_lock_irqsave(&phba->hbalock, iflags); 11017 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11018 spin_unlock_irqrestore(&phba->hbalock, iflags); 11019 } 11020 return rc; 11021 } 11022 11023 /** 11024 * lpfc_extra_ring_setup - Extra ring setup function 11025 * @phba: Pointer to HBA context object. 11026 * 11027 * This function is called while driver attaches with the 11028 * HBA to setup the extra ring. The extra ring is used 11029 * only when driver needs to support target mode functionality 11030 * or IP over FC functionalities. 11031 * 11032 * This function is called with no lock held. SLI3 only. 11033 **/ 11034 static int 11035 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11036 { 11037 struct lpfc_sli *psli; 11038 struct lpfc_sli_ring *pring; 11039 11040 psli = &phba->sli; 11041 11042 /* Adjust cmd/rsp ring iocb entries more evenly */ 11043 11044 /* Take some away from the FCP ring */ 11045 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11046 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11047 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11048 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11049 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11050 11051 /* and give them to the extra ring */ 11052 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11053 11054 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11055 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11056 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11057 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11058 11059 /* Setup default profile for this ring */ 11060 pring->iotag_max = 4096; 11061 pring->num_mask = 1; 11062 pring->prt[0].profile = 0; /* Mask 0 */ 11063 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11064 pring->prt[0].type = phba->cfg_multi_ring_type; 11065 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11066 return 0; 11067 } 11068 11069 static void 11070 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11071 struct lpfc_nodelist *ndlp) 11072 { 11073 unsigned long iflags; 11074 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11075 11076 spin_lock_irqsave(&phba->hbalock, iflags); 11077 if (!list_empty(&evtp->evt_listp)) { 11078 spin_unlock_irqrestore(&phba->hbalock, iflags); 11079 return; 11080 } 11081 11082 /* Incrementing the reference count until the queued work is done. */ 11083 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11084 if (!evtp->evt_arg1) { 11085 spin_unlock_irqrestore(&phba->hbalock, iflags); 11086 return; 11087 } 11088 evtp->evt = LPFC_EVT_RECOVER_PORT; 11089 list_add_tail(&evtp->evt_listp, &phba->work_list); 11090 spin_unlock_irqrestore(&phba->hbalock, iflags); 11091 11092 lpfc_worker_wake_up(phba); 11093 } 11094 11095 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11096 * @phba: Pointer to HBA context object. 11097 * @iocbq: Pointer to iocb object. 11098 * 11099 * The async_event handler calls this routine when it receives 11100 * an ASYNC_STATUS_CN event from the port. The port generates 11101 * this event when an Abort Sequence request to an rport fails 11102 * twice in succession. The abort could be originated by the 11103 * driver or by the port. The ABTS could have been for an ELS 11104 * or FCP IO. The port only generates this event when an ABTS 11105 * fails to complete after one retry. 11106 */ 11107 static void 11108 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11109 struct lpfc_iocbq *iocbq) 11110 { 11111 struct lpfc_nodelist *ndlp = NULL; 11112 uint16_t rpi = 0, vpi = 0; 11113 struct lpfc_vport *vport = NULL; 11114 11115 /* The rpi in the ulpContext is vport-sensitive. */ 11116 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11117 rpi = iocbq->iocb.ulpContext; 11118 11119 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11120 "3092 Port generated ABTS async event " 11121 "on vpi %d rpi %d status 0x%x\n", 11122 vpi, rpi, iocbq->iocb.ulpStatus); 11123 11124 vport = lpfc_find_vport_by_vpid(phba, vpi); 11125 if (!vport) 11126 goto err_exit; 11127 ndlp = lpfc_findnode_rpi(vport, rpi); 11128 if (!ndlp) 11129 goto err_exit; 11130 11131 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11132 lpfc_sli_abts_recover_port(vport, ndlp); 11133 return; 11134 11135 err_exit: 11136 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11137 "3095 Event Context not found, no " 11138 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11139 vpi, rpi, iocbq->iocb.ulpStatus, 11140 iocbq->iocb.ulpContext); 11141 } 11142 11143 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11144 * @phba: pointer to HBA context object. 11145 * @ndlp: nodelist pointer for the impacted rport. 11146 * @axri: pointer to the wcqe containing the failed exchange. 11147 * 11148 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11149 * port. The port generates this event when an abort exchange request to an 11150 * rport fails twice in succession with no reply. The abort could be originated 11151 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11152 */ 11153 void 11154 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11155 struct lpfc_nodelist *ndlp, 11156 struct sli4_wcqe_xri_aborted *axri) 11157 { 11158 uint32_t ext_status = 0; 11159 11160 if (!ndlp) { 11161 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11162 "3115 Node Context not found, driver " 11163 "ignoring abts err event\n"); 11164 return; 11165 } 11166 11167 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11168 "3116 Port generated FCP XRI ABORT event on " 11169 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11170 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11171 bf_get(lpfc_wcqe_xa_xri, axri), 11172 bf_get(lpfc_wcqe_xa_status, axri), 11173 axri->parameter); 11174 11175 /* 11176 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11177 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11178 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11179 */ 11180 ext_status = axri->parameter & IOERR_PARAM_MASK; 11181 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11182 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11183 lpfc_sli_post_recovery_event(phba, ndlp); 11184 } 11185 11186 /** 11187 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11188 * @phba: Pointer to HBA context object. 11189 * @pring: Pointer to driver SLI ring object. 11190 * @iocbq: Pointer to iocb object. 11191 * 11192 * This function is called by the slow ring event handler 11193 * function when there is an ASYNC event iocb in the ring. 11194 * This function is called with no lock held. 11195 * Currently this function handles only temperature related 11196 * ASYNC events. The function decodes the temperature sensor 11197 * event message and posts events for the management applications. 11198 **/ 11199 static void 11200 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11201 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11202 { 11203 IOCB_t *icmd; 11204 uint16_t evt_code; 11205 struct temp_event temp_event_data; 11206 struct Scsi_Host *shost; 11207 uint32_t *iocb_w; 11208 11209 icmd = &iocbq->iocb; 11210 evt_code = icmd->un.asyncstat.evt_code; 11211 11212 switch (evt_code) { 11213 case ASYNC_TEMP_WARN: 11214 case ASYNC_TEMP_SAFE: 11215 temp_event_data.data = (uint32_t) icmd->ulpContext; 11216 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11217 if (evt_code == ASYNC_TEMP_WARN) { 11218 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11220 "0347 Adapter is very hot, please take " 11221 "corrective action. temperature : %d Celsius\n", 11222 (uint32_t) icmd->ulpContext); 11223 } else { 11224 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11226 "0340 Adapter temperature is OK now. " 11227 "temperature : %d Celsius\n", 11228 (uint32_t) icmd->ulpContext); 11229 } 11230 11231 /* Send temperature change event to applications */ 11232 shost = lpfc_shost_from_vport(phba->pport); 11233 fc_host_post_vendor_event(shost, fc_get_event_number(), 11234 sizeof(temp_event_data), (char *) &temp_event_data, 11235 LPFC_NL_VENDOR_ID); 11236 break; 11237 case ASYNC_STATUS_CN: 11238 lpfc_sli_abts_err_handler(phba, iocbq); 11239 break; 11240 default: 11241 iocb_w = (uint32_t *) icmd; 11242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11243 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11244 " evt_code 0x%x\n" 11245 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11246 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11247 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11248 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11249 pring->ringno, icmd->un.asyncstat.evt_code, 11250 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11251 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11252 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11253 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11254 11255 break; 11256 } 11257 } 11258 11259 11260 /** 11261 * lpfc_sli4_setup - SLI ring setup function 11262 * @phba: Pointer to HBA context object. 11263 * 11264 * lpfc_sli_setup sets up rings of the SLI interface with 11265 * number of iocbs per ring and iotags. This function is 11266 * called while driver attach to the HBA and before the 11267 * interrupts are enabled. So there is no need for locking. 11268 * 11269 * This function always returns 0. 11270 **/ 11271 int 11272 lpfc_sli4_setup(struct lpfc_hba *phba) 11273 { 11274 struct lpfc_sli_ring *pring; 11275 11276 pring = phba->sli4_hba.els_wq->pring; 11277 pring->num_mask = LPFC_MAX_RING_MASK; 11278 pring->prt[0].profile = 0; /* Mask 0 */ 11279 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11280 pring->prt[0].type = FC_TYPE_ELS; 11281 pring->prt[0].lpfc_sli_rcv_unsol_event = 11282 lpfc_els_unsol_event; 11283 pring->prt[1].profile = 0; /* Mask 1 */ 11284 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11285 pring->prt[1].type = FC_TYPE_ELS; 11286 pring->prt[1].lpfc_sli_rcv_unsol_event = 11287 lpfc_els_unsol_event; 11288 pring->prt[2].profile = 0; /* Mask 2 */ 11289 /* NameServer Inquiry */ 11290 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11291 /* NameServer */ 11292 pring->prt[2].type = FC_TYPE_CT; 11293 pring->prt[2].lpfc_sli_rcv_unsol_event = 11294 lpfc_ct_unsol_event; 11295 pring->prt[3].profile = 0; /* Mask 3 */ 11296 /* NameServer response */ 11297 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11298 /* NameServer */ 11299 pring->prt[3].type = FC_TYPE_CT; 11300 pring->prt[3].lpfc_sli_rcv_unsol_event = 11301 lpfc_ct_unsol_event; 11302 return 0; 11303 } 11304 11305 /** 11306 * lpfc_sli_setup - SLI ring setup function 11307 * @phba: Pointer to HBA context object. 11308 * 11309 * lpfc_sli_setup sets up rings of the SLI interface with 11310 * number of iocbs per ring and iotags. This function is 11311 * called while driver attach to the HBA and before the 11312 * interrupts are enabled. So there is no need for locking. 11313 * 11314 * This function always returns 0. SLI3 only. 11315 **/ 11316 int 11317 lpfc_sli_setup(struct lpfc_hba *phba) 11318 { 11319 int i, totiocbsize = 0; 11320 struct lpfc_sli *psli = &phba->sli; 11321 struct lpfc_sli_ring *pring; 11322 11323 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11324 psli->sli_flag = 0; 11325 11326 psli->iocbq_lookup = NULL; 11327 psli->iocbq_lookup_len = 0; 11328 psli->last_iotag = 0; 11329 11330 for (i = 0; i < psli->num_rings; i++) { 11331 pring = &psli->sli3_ring[i]; 11332 switch (i) { 11333 case LPFC_FCP_RING: /* ring 0 - FCP */ 11334 /* numCiocb and numRiocb are used in config_port */ 11335 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11336 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11337 pring->sli.sli3.numCiocb += 11338 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11339 pring->sli.sli3.numRiocb += 11340 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11341 pring->sli.sli3.numCiocb += 11342 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11343 pring->sli.sli3.numRiocb += 11344 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11345 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11346 SLI3_IOCB_CMD_SIZE : 11347 SLI2_IOCB_CMD_SIZE; 11348 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11349 SLI3_IOCB_RSP_SIZE : 11350 SLI2_IOCB_RSP_SIZE; 11351 pring->iotag_ctr = 0; 11352 pring->iotag_max = 11353 (phba->cfg_hba_queue_depth * 2); 11354 pring->fast_iotag = pring->iotag_max; 11355 pring->num_mask = 0; 11356 break; 11357 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11358 /* numCiocb and numRiocb are used in config_port */ 11359 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11360 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11361 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11362 SLI3_IOCB_CMD_SIZE : 11363 SLI2_IOCB_CMD_SIZE; 11364 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11365 SLI3_IOCB_RSP_SIZE : 11366 SLI2_IOCB_RSP_SIZE; 11367 pring->iotag_max = phba->cfg_hba_queue_depth; 11368 pring->num_mask = 0; 11369 break; 11370 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11371 /* numCiocb and numRiocb are used in config_port */ 11372 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11373 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11374 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11375 SLI3_IOCB_CMD_SIZE : 11376 SLI2_IOCB_CMD_SIZE; 11377 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11378 SLI3_IOCB_RSP_SIZE : 11379 SLI2_IOCB_RSP_SIZE; 11380 pring->fast_iotag = 0; 11381 pring->iotag_ctr = 0; 11382 pring->iotag_max = 4096; 11383 pring->lpfc_sli_rcv_async_status = 11384 lpfc_sli_async_event_handler; 11385 pring->num_mask = LPFC_MAX_RING_MASK; 11386 pring->prt[0].profile = 0; /* Mask 0 */ 11387 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11388 pring->prt[0].type = FC_TYPE_ELS; 11389 pring->prt[0].lpfc_sli_rcv_unsol_event = 11390 lpfc_els_unsol_event; 11391 pring->prt[1].profile = 0; /* Mask 1 */ 11392 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11393 pring->prt[1].type = FC_TYPE_ELS; 11394 pring->prt[1].lpfc_sli_rcv_unsol_event = 11395 lpfc_els_unsol_event; 11396 pring->prt[2].profile = 0; /* Mask 2 */ 11397 /* NameServer Inquiry */ 11398 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11399 /* NameServer */ 11400 pring->prt[2].type = FC_TYPE_CT; 11401 pring->prt[2].lpfc_sli_rcv_unsol_event = 11402 lpfc_ct_unsol_event; 11403 pring->prt[3].profile = 0; /* Mask 3 */ 11404 /* NameServer response */ 11405 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11406 /* NameServer */ 11407 pring->prt[3].type = FC_TYPE_CT; 11408 pring->prt[3].lpfc_sli_rcv_unsol_event = 11409 lpfc_ct_unsol_event; 11410 break; 11411 } 11412 totiocbsize += (pring->sli.sli3.numCiocb * 11413 pring->sli.sli3.sizeCiocb) + 11414 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11415 } 11416 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11417 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11418 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11419 "SLI2 SLIM Data: x%x x%lx\n", 11420 phba->brd_no, totiocbsize, 11421 (unsigned long) MAX_SLIM_IOCB_SIZE); 11422 } 11423 if (phba->cfg_multi_ring_support == 2) 11424 lpfc_extra_ring_setup(phba); 11425 11426 return 0; 11427 } 11428 11429 /** 11430 * lpfc_sli4_queue_init - Queue initialization function 11431 * @phba: Pointer to HBA context object. 11432 * 11433 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11434 * ring. This function also initializes ring indices of each ring. 11435 * This function is called during the initialization of the SLI 11436 * interface of an HBA. 11437 * This function is called with no lock held and always returns 11438 * 1. 11439 **/ 11440 void 11441 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11442 { 11443 struct lpfc_sli *psli; 11444 struct lpfc_sli_ring *pring; 11445 int i; 11446 11447 psli = &phba->sli; 11448 spin_lock_irq(&phba->hbalock); 11449 INIT_LIST_HEAD(&psli->mboxq); 11450 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11451 /* Initialize list headers for txq and txcmplq as double linked lists */ 11452 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11453 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11454 pring->flag = 0; 11455 pring->ringno = LPFC_FCP_RING; 11456 pring->txcmplq_cnt = 0; 11457 INIT_LIST_HEAD(&pring->txq); 11458 INIT_LIST_HEAD(&pring->txcmplq); 11459 INIT_LIST_HEAD(&pring->iocb_continueq); 11460 spin_lock_init(&pring->ring_lock); 11461 } 11462 pring = phba->sli4_hba.els_wq->pring; 11463 pring->flag = 0; 11464 pring->ringno = LPFC_ELS_RING; 11465 pring->txcmplq_cnt = 0; 11466 INIT_LIST_HEAD(&pring->txq); 11467 INIT_LIST_HEAD(&pring->txcmplq); 11468 INIT_LIST_HEAD(&pring->iocb_continueq); 11469 spin_lock_init(&pring->ring_lock); 11470 11471 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11472 pring = phba->sli4_hba.nvmels_wq->pring; 11473 pring->flag = 0; 11474 pring->ringno = LPFC_ELS_RING; 11475 pring->txcmplq_cnt = 0; 11476 INIT_LIST_HEAD(&pring->txq); 11477 INIT_LIST_HEAD(&pring->txcmplq); 11478 INIT_LIST_HEAD(&pring->iocb_continueq); 11479 spin_lock_init(&pring->ring_lock); 11480 } 11481 11482 spin_unlock_irq(&phba->hbalock); 11483 } 11484 11485 /** 11486 * lpfc_sli_queue_init - Queue initialization function 11487 * @phba: Pointer to HBA context object. 11488 * 11489 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11490 * ring. This function also initializes ring indices of each ring. 11491 * This function is called during the initialization of the SLI 11492 * interface of an HBA. 11493 * This function is called with no lock held and always returns 11494 * 1. 11495 **/ 11496 void 11497 lpfc_sli_queue_init(struct lpfc_hba *phba) 11498 { 11499 struct lpfc_sli *psli; 11500 struct lpfc_sli_ring *pring; 11501 int i; 11502 11503 psli = &phba->sli; 11504 spin_lock_irq(&phba->hbalock); 11505 INIT_LIST_HEAD(&psli->mboxq); 11506 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11507 /* Initialize list headers for txq and txcmplq as double linked lists */ 11508 for (i = 0; i < psli->num_rings; i++) { 11509 pring = &psli->sli3_ring[i]; 11510 pring->ringno = i; 11511 pring->sli.sli3.next_cmdidx = 0; 11512 pring->sli.sli3.local_getidx = 0; 11513 pring->sli.sli3.cmdidx = 0; 11514 INIT_LIST_HEAD(&pring->iocb_continueq); 11515 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11516 INIT_LIST_HEAD(&pring->postbufq); 11517 pring->flag = 0; 11518 INIT_LIST_HEAD(&pring->txq); 11519 INIT_LIST_HEAD(&pring->txcmplq); 11520 spin_lock_init(&pring->ring_lock); 11521 } 11522 spin_unlock_irq(&phba->hbalock); 11523 } 11524 11525 /** 11526 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11527 * @phba: Pointer to HBA context object. 11528 * 11529 * This routine flushes the mailbox command subsystem. It will unconditionally 11530 * flush all the mailbox commands in the three possible stages in the mailbox 11531 * command sub-system: pending mailbox command queue; the outstanding mailbox 11532 * command; and completed mailbox command queue. It is caller's responsibility 11533 * to make sure that the driver is in the proper state to flush the mailbox 11534 * command sub-system. Namely, the posting of mailbox commands into the 11535 * pending mailbox command queue from the various clients must be stopped; 11536 * either the HBA is in a state that it will never works on the outstanding 11537 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11538 * mailbox command has been completed. 11539 **/ 11540 static void 11541 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11542 { 11543 LIST_HEAD(completions); 11544 struct lpfc_sli *psli = &phba->sli; 11545 LPFC_MBOXQ_t *pmb; 11546 unsigned long iflag; 11547 11548 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11549 local_bh_disable(); 11550 11551 /* Flush all the mailbox commands in the mbox system */ 11552 spin_lock_irqsave(&phba->hbalock, iflag); 11553 11554 /* The pending mailbox command queue */ 11555 list_splice_init(&phba->sli.mboxq, &completions); 11556 /* The outstanding active mailbox command */ 11557 if (psli->mbox_active) { 11558 list_add_tail(&psli->mbox_active->list, &completions); 11559 psli->mbox_active = NULL; 11560 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11561 } 11562 /* The completed mailbox command queue */ 11563 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11564 spin_unlock_irqrestore(&phba->hbalock, iflag); 11565 11566 /* Enable softirqs again, done with phba->hbalock */ 11567 local_bh_enable(); 11568 11569 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11570 while (!list_empty(&completions)) { 11571 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11572 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11573 if (pmb->mbox_cmpl) 11574 pmb->mbox_cmpl(phba, pmb); 11575 } 11576 } 11577 11578 /** 11579 * lpfc_sli_host_down - Vport cleanup function 11580 * @vport: Pointer to virtual port object. 11581 * 11582 * lpfc_sli_host_down is called to clean up the resources 11583 * associated with a vport before destroying virtual 11584 * port data structures. 11585 * This function does following operations: 11586 * - Free discovery resources associated with this virtual 11587 * port. 11588 * - Free iocbs associated with this virtual port in 11589 * the txq. 11590 * - Send abort for all iocb commands associated with this 11591 * vport in txcmplq. 11592 * 11593 * This function is called with no lock held and always returns 1. 11594 **/ 11595 int 11596 lpfc_sli_host_down(struct lpfc_vport *vport) 11597 { 11598 LIST_HEAD(completions); 11599 struct lpfc_hba *phba = vport->phba; 11600 struct lpfc_sli *psli = &phba->sli; 11601 struct lpfc_queue *qp = NULL; 11602 struct lpfc_sli_ring *pring; 11603 struct lpfc_iocbq *iocb, *next_iocb; 11604 int i; 11605 unsigned long flags = 0; 11606 uint16_t prev_pring_flag; 11607 11608 lpfc_cleanup_discovery_resources(vport); 11609 11610 spin_lock_irqsave(&phba->hbalock, flags); 11611 11612 /* 11613 * Error everything on the txq since these iocbs 11614 * have not been given to the FW yet. 11615 * Also issue ABTS for everything on the txcmplq 11616 */ 11617 if (phba->sli_rev != LPFC_SLI_REV4) { 11618 for (i = 0; i < psli->num_rings; i++) { 11619 pring = &psli->sli3_ring[i]; 11620 prev_pring_flag = pring->flag; 11621 /* Only slow rings */ 11622 if (pring->ringno == LPFC_ELS_RING) { 11623 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11624 /* Set the lpfc data pending flag */ 11625 set_bit(LPFC_DATA_READY, &phba->data_flags); 11626 } 11627 list_for_each_entry_safe(iocb, next_iocb, 11628 &pring->txq, list) { 11629 if (iocb->vport != vport) 11630 continue; 11631 list_move_tail(&iocb->list, &completions); 11632 } 11633 list_for_each_entry_safe(iocb, next_iocb, 11634 &pring->txcmplq, list) { 11635 if (iocb->vport != vport) 11636 continue; 11637 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11638 NULL); 11639 } 11640 pring->flag = prev_pring_flag; 11641 } 11642 } else { 11643 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11644 pring = qp->pring; 11645 if (!pring) 11646 continue; 11647 if (pring == phba->sli4_hba.els_wq->pring) { 11648 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11649 /* Set the lpfc data pending flag */ 11650 set_bit(LPFC_DATA_READY, &phba->data_flags); 11651 } 11652 prev_pring_flag = pring->flag; 11653 spin_lock(&pring->ring_lock); 11654 list_for_each_entry_safe(iocb, next_iocb, 11655 &pring->txq, list) { 11656 if (iocb->vport != vport) 11657 continue; 11658 list_move_tail(&iocb->list, &completions); 11659 } 11660 spin_unlock(&pring->ring_lock); 11661 list_for_each_entry_safe(iocb, next_iocb, 11662 &pring->txcmplq, list) { 11663 if (iocb->vport != vport) 11664 continue; 11665 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11666 NULL); 11667 } 11668 pring->flag = prev_pring_flag; 11669 } 11670 } 11671 spin_unlock_irqrestore(&phba->hbalock, flags); 11672 11673 /* Make sure HBA is alive */ 11674 lpfc_issue_hb_tmo(phba); 11675 11676 /* Cancel all the IOCBs from the completions list */ 11677 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11678 IOERR_SLI_DOWN); 11679 return 1; 11680 } 11681 11682 /** 11683 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11684 * @phba: Pointer to HBA context object. 11685 * 11686 * This function cleans up all iocb, buffers, mailbox commands 11687 * while shutting down the HBA. This function is called with no 11688 * lock held and always returns 1. 11689 * This function does the following to cleanup driver resources: 11690 * - Free discovery resources for each virtual port 11691 * - Cleanup any pending fabric iocbs 11692 * - Iterate through the iocb txq and free each entry 11693 * in the list. 11694 * - Free up any buffer posted to the HBA 11695 * - Free mailbox commands in the mailbox queue. 11696 **/ 11697 int 11698 lpfc_sli_hba_down(struct lpfc_hba *phba) 11699 { 11700 LIST_HEAD(completions); 11701 struct lpfc_sli *psli = &phba->sli; 11702 struct lpfc_queue *qp = NULL; 11703 struct lpfc_sli_ring *pring; 11704 struct lpfc_dmabuf *buf_ptr; 11705 unsigned long flags = 0; 11706 int i; 11707 11708 /* Shutdown the mailbox command sub-system */ 11709 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11710 11711 lpfc_hba_down_prep(phba); 11712 11713 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11714 local_bh_disable(); 11715 11716 lpfc_fabric_abort_hba(phba); 11717 11718 spin_lock_irqsave(&phba->hbalock, flags); 11719 11720 /* 11721 * Error everything on the txq since these iocbs 11722 * have not been given to the FW yet. 11723 */ 11724 if (phba->sli_rev != LPFC_SLI_REV4) { 11725 for (i = 0; i < psli->num_rings; i++) { 11726 pring = &psli->sli3_ring[i]; 11727 /* Only slow rings */ 11728 if (pring->ringno == LPFC_ELS_RING) { 11729 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11730 /* Set the lpfc data pending flag */ 11731 set_bit(LPFC_DATA_READY, &phba->data_flags); 11732 } 11733 list_splice_init(&pring->txq, &completions); 11734 } 11735 } else { 11736 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11737 pring = qp->pring; 11738 if (!pring) 11739 continue; 11740 spin_lock(&pring->ring_lock); 11741 list_splice_init(&pring->txq, &completions); 11742 spin_unlock(&pring->ring_lock); 11743 if (pring == phba->sli4_hba.els_wq->pring) { 11744 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11745 /* Set the lpfc data pending flag */ 11746 set_bit(LPFC_DATA_READY, &phba->data_flags); 11747 } 11748 } 11749 } 11750 spin_unlock_irqrestore(&phba->hbalock, flags); 11751 11752 /* Cancel all the IOCBs from the completions list */ 11753 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11754 IOERR_SLI_DOWN); 11755 11756 spin_lock_irqsave(&phba->hbalock, flags); 11757 list_splice_init(&phba->elsbuf, &completions); 11758 phba->elsbuf_cnt = 0; 11759 phba->elsbuf_prev_cnt = 0; 11760 spin_unlock_irqrestore(&phba->hbalock, flags); 11761 11762 while (!list_empty(&completions)) { 11763 list_remove_head(&completions, buf_ptr, 11764 struct lpfc_dmabuf, list); 11765 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11766 kfree(buf_ptr); 11767 } 11768 11769 /* Enable softirqs again, done with phba->hbalock */ 11770 local_bh_enable(); 11771 11772 /* Return any active mbox cmds */ 11773 del_timer_sync(&psli->mbox_tmo); 11774 11775 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11776 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11777 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11778 11779 return 1; 11780 } 11781 11782 /** 11783 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11784 * @srcp: Source memory pointer. 11785 * @destp: Destination memory pointer. 11786 * @cnt: Number of words required to be copied. 11787 * 11788 * This function is used for copying data between driver memory 11789 * and the SLI memory. This function also changes the endianness 11790 * of each word if native endianness is different from SLI 11791 * endianness. This function can be called with or without 11792 * lock. 11793 **/ 11794 void 11795 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11796 { 11797 uint32_t *src = srcp; 11798 uint32_t *dest = destp; 11799 uint32_t ldata; 11800 int i; 11801 11802 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11803 ldata = *src; 11804 ldata = le32_to_cpu(ldata); 11805 *dest = ldata; 11806 src++; 11807 dest++; 11808 } 11809 } 11810 11811 11812 /** 11813 * lpfc_sli_bemem_bcopy - SLI memory copy function 11814 * @srcp: Source memory pointer. 11815 * @destp: Destination memory pointer. 11816 * @cnt: Number of words required to be copied. 11817 * 11818 * This function is used for copying data between a data structure 11819 * with big endian representation to local endianness. 11820 * This function can be called with or without lock. 11821 **/ 11822 void 11823 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11824 { 11825 uint32_t *src = srcp; 11826 uint32_t *dest = destp; 11827 uint32_t ldata; 11828 int i; 11829 11830 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11831 ldata = *src; 11832 ldata = be32_to_cpu(ldata); 11833 *dest = ldata; 11834 src++; 11835 dest++; 11836 } 11837 } 11838 11839 /** 11840 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11841 * @phba: Pointer to HBA context object. 11842 * @pring: Pointer to driver SLI ring object. 11843 * @mp: Pointer to driver buffer object. 11844 * 11845 * This function is called with no lock held. 11846 * It always return zero after adding the buffer to the postbufq 11847 * buffer list. 11848 **/ 11849 int 11850 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11851 struct lpfc_dmabuf *mp) 11852 { 11853 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11854 later */ 11855 spin_lock_irq(&phba->hbalock); 11856 list_add_tail(&mp->list, &pring->postbufq); 11857 pring->postbufq_cnt++; 11858 spin_unlock_irq(&phba->hbalock); 11859 return 0; 11860 } 11861 11862 /** 11863 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11864 * @phba: Pointer to HBA context object. 11865 * 11866 * When HBQ is enabled, buffers are searched based on tags. This function 11867 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11868 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11869 * does not conflict with tags of buffer posted for unsolicited events. 11870 * The function returns the allocated tag. The function is called with 11871 * no locks held. 11872 **/ 11873 uint32_t 11874 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11875 { 11876 spin_lock_irq(&phba->hbalock); 11877 phba->buffer_tag_count++; 11878 /* 11879 * Always set the QUE_BUFTAG_BIT to distiguish between 11880 * a tag assigned by HBQ. 11881 */ 11882 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11883 spin_unlock_irq(&phba->hbalock); 11884 return phba->buffer_tag_count; 11885 } 11886 11887 /** 11888 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11889 * @phba: Pointer to HBA context object. 11890 * @pring: Pointer to driver SLI ring object. 11891 * @tag: Buffer tag. 11892 * 11893 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11894 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11895 * iocb is posted to the response ring with the tag of the buffer. 11896 * This function searches the pring->postbufq list using the tag 11897 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11898 * iocb. If the buffer is found then lpfc_dmabuf object of the 11899 * buffer is returned to the caller else NULL is returned. 11900 * This function is called with no lock held. 11901 **/ 11902 struct lpfc_dmabuf * 11903 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11904 uint32_t tag) 11905 { 11906 struct lpfc_dmabuf *mp, *next_mp; 11907 struct list_head *slp = &pring->postbufq; 11908 11909 /* Search postbufq, from the beginning, looking for a match on tag */ 11910 spin_lock_irq(&phba->hbalock); 11911 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11912 if (mp->buffer_tag == tag) { 11913 list_del_init(&mp->list); 11914 pring->postbufq_cnt--; 11915 spin_unlock_irq(&phba->hbalock); 11916 return mp; 11917 } 11918 } 11919 11920 spin_unlock_irq(&phba->hbalock); 11921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11922 "0402 Cannot find virtual addr for buffer tag on " 11923 "ring %d Data x%lx x%px x%px x%x\n", 11924 pring->ringno, (unsigned long) tag, 11925 slp->next, slp->prev, pring->postbufq_cnt); 11926 11927 return NULL; 11928 } 11929 11930 /** 11931 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11932 * @phba: Pointer to HBA context object. 11933 * @pring: Pointer to driver SLI ring object. 11934 * @phys: DMA address of the buffer. 11935 * 11936 * This function searches the buffer list using the dma_address 11937 * of unsolicited event to find the driver's lpfc_dmabuf object 11938 * corresponding to the dma_address. The function returns the 11939 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11940 * This function is called by the ct and els unsolicited event 11941 * handlers to get the buffer associated with the unsolicited 11942 * event. 11943 * 11944 * This function is called with no lock held. 11945 **/ 11946 struct lpfc_dmabuf * 11947 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11948 dma_addr_t phys) 11949 { 11950 struct lpfc_dmabuf *mp, *next_mp; 11951 struct list_head *slp = &pring->postbufq; 11952 11953 /* Search postbufq, from the beginning, looking for a match on phys */ 11954 spin_lock_irq(&phba->hbalock); 11955 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11956 if (mp->phys == phys) { 11957 list_del_init(&mp->list); 11958 pring->postbufq_cnt--; 11959 spin_unlock_irq(&phba->hbalock); 11960 return mp; 11961 } 11962 } 11963 11964 spin_unlock_irq(&phba->hbalock); 11965 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11966 "0410 Cannot find virtual addr for mapped buf on " 11967 "ring %d Data x%llx x%px x%px x%x\n", 11968 pring->ringno, (unsigned long long)phys, 11969 slp->next, slp->prev, pring->postbufq_cnt); 11970 return NULL; 11971 } 11972 11973 /** 11974 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11975 * @phba: Pointer to HBA context object. 11976 * @cmdiocb: Pointer to driver command iocb object. 11977 * @rspiocb: Pointer to driver response iocb object. 11978 * 11979 * This function is the completion handler for the abort iocbs for 11980 * ELS commands. This function is called from the ELS ring event 11981 * handler with no lock held. This function frees memory resources 11982 * associated with the abort iocb. 11983 **/ 11984 static void 11985 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11986 struct lpfc_iocbq *rspiocb) 11987 { 11988 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 11989 u32 ulp_word4 = get_job_word4(phba, rspiocb); 11990 u8 cmnd = get_job_cmnd(phba, cmdiocb); 11991 11992 if (ulp_status) { 11993 /* 11994 * Assume that the port already completed and returned, or 11995 * will return the iocb. Just Log the message. 11996 */ 11997 if (phba->sli_rev < LPFC_SLI_REV4) { 11998 if (cmnd == CMD_ABORT_XRI_CX && 11999 ulp_status == IOSTAT_LOCAL_REJECT && 12000 ulp_word4 == IOERR_ABORT_REQUESTED) { 12001 goto release_iocb; 12002 } 12003 } 12004 12005 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12006 "0327 Cannot abort els iocb x%px " 12007 "with io cmd xri %x abort tag : x%x, " 12008 "abort status %x abort code %x\n", 12009 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12010 (phba->sli_rev == LPFC_SLI_REV4) ? 12011 get_wqe_reqtag(cmdiocb) : 12012 cmdiocb->iocb.un.acxri.abortContextTag, 12013 ulp_status, ulp_word4); 12014 12015 } 12016 release_iocb: 12017 lpfc_sli_release_iocbq(phba, cmdiocb); 12018 return; 12019 } 12020 12021 /** 12022 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12023 * @phba: Pointer to HBA context object. 12024 * @cmdiocb: Pointer to driver command iocb object. 12025 * @rspiocb: Pointer to driver response iocb object. 12026 * 12027 * The function is called from SLI ring event handler with no 12028 * lock held. This function is the completion handler for ELS commands 12029 * which are aborted. The function frees memory resources used for 12030 * the aborted ELS commands. 12031 **/ 12032 void 12033 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12034 struct lpfc_iocbq *rspiocb) 12035 { 12036 struct lpfc_nodelist *ndlp = NULL; 12037 IOCB_t *irsp; 12038 u32 ulp_command, ulp_status, ulp_word4, iotag; 12039 12040 ulp_command = get_job_cmnd(phba, cmdiocb); 12041 ulp_status = get_job_ulpstatus(phba, rspiocb); 12042 ulp_word4 = get_job_word4(phba, rspiocb); 12043 12044 if (phba->sli_rev == LPFC_SLI_REV4) { 12045 iotag = get_wqe_reqtag(cmdiocb); 12046 } else { 12047 irsp = &rspiocb->iocb; 12048 iotag = irsp->ulpIoTag; 12049 } 12050 12051 /* ELS cmd tag <ulpIoTag> completes */ 12052 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12053 "0139 Ignoring ELS cmd code x%x completion Data: " 12054 "x%x x%x x%x\n", 12055 ulp_command, ulp_status, ulp_word4, iotag); 12056 12057 /* 12058 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12059 * if exchange is busy. 12060 */ 12061 if (ulp_command == CMD_GEN_REQUEST64_CR) { 12062 ndlp = cmdiocb->context_un.ndlp; 12063 lpfc_ct_free_iocb(phba, cmdiocb); 12064 } else { 12065 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12066 lpfc_els_free_iocb(phba, cmdiocb); 12067 } 12068 12069 lpfc_nlp_put(ndlp); 12070 } 12071 12072 /** 12073 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12074 * @phba: Pointer to HBA context object. 12075 * @pring: Pointer to driver SLI ring object. 12076 * @cmdiocb: Pointer to driver command iocb object. 12077 * @cmpl: completion function. 12078 * 12079 * This function issues an abort iocb for the provided command iocb. In case 12080 * of unloading, the abort iocb will not be issued to commands on the ELS 12081 * ring. Instead, the callback function shall be changed to those commands 12082 * so that nothing happens when them finishes. This function is called with 12083 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12084 * when the command iocb is an abort request. 12085 * 12086 **/ 12087 int 12088 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12089 struct lpfc_iocbq *cmdiocb, void *cmpl) 12090 { 12091 struct lpfc_vport *vport = cmdiocb->vport; 12092 struct lpfc_iocbq *abtsiocbp; 12093 int retval = IOCB_ERROR; 12094 unsigned long iflags; 12095 struct lpfc_nodelist *ndlp = NULL; 12096 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12097 u16 ulp_context, iotag; 12098 bool ia; 12099 12100 /* 12101 * There are certain command types we don't want to abort. And we 12102 * don't want to abort commands that are already in the process of 12103 * being aborted. 12104 */ 12105 if (ulp_command == CMD_ABORT_XRI_WQE || 12106 ulp_command == CMD_ABORT_XRI_CN || 12107 ulp_command == CMD_CLOSE_XRI_CN || 12108 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12109 return IOCB_ABORTING; 12110 12111 if (!pring) { 12112 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12113 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12114 else 12115 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12116 return retval; 12117 } 12118 12119 /* 12120 * If we're unloading, don't abort iocb on the ELS ring, but change 12121 * the callback so that nothing happens when it finishes. 12122 */ 12123 if ((vport->load_flag & FC_UNLOADING) && 12124 pring->ringno == LPFC_ELS_RING) { 12125 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12126 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12127 else 12128 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12129 return retval; 12130 } 12131 12132 /* issue ABTS for this IOCB based on iotag */ 12133 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12134 if (abtsiocbp == NULL) 12135 return IOCB_NORESOURCE; 12136 12137 /* This signals the response to set the correct status 12138 * before calling the completion handler 12139 */ 12140 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12141 12142 if (phba->sli_rev == LPFC_SLI_REV4) { 12143 ulp_context = cmdiocb->sli4_xritag; 12144 iotag = abtsiocbp->iotag; 12145 } else { 12146 iotag = cmdiocb->iocb.ulpIoTag; 12147 if (pring->ringno == LPFC_ELS_RING) { 12148 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12149 ulp_context = ndlp->nlp_rpi; 12150 } else { 12151 ulp_context = cmdiocb->iocb.ulpContext; 12152 } 12153 } 12154 12155 if (phba->link_state < LPFC_LINK_UP || 12156 (phba->sli_rev == LPFC_SLI_REV4 && 12157 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN)) 12158 ia = true; 12159 else 12160 ia = false; 12161 12162 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12163 cmdiocb->iocb.ulpClass, 12164 LPFC_WQE_CQ_ID_DEFAULT, ia); 12165 12166 abtsiocbp->vport = vport; 12167 12168 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12169 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12170 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12171 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12172 12173 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12174 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12175 12176 if (cmpl) 12177 abtsiocbp->cmd_cmpl = cmpl; 12178 else 12179 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12180 abtsiocbp->vport = vport; 12181 12182 if (phba->sli_rev == LPFC_SLI_REV4) { 12183 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12184 if (unlikely(pring == NULL)) 12185 goto abort_iotag_exit; 12186 /* Note: both hbalock and ring_lock need to be set here */ 12187 spin_lock_irqsave(&pring->ring_lock, iflags); 12188 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12189 abtsiocbp, 0); 12190 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12191 } else { 12192 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12193 abtsiocbp, 0); 12194 } 12195 12196 abort_iotag_exit: 12197 12198 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12199 "0339 Abort IO XRI x%x, Original iotag x%x, " 12200 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12201 "retval x%x\n", 12202 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12203 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12204 retval); 12205 if (retval) { 12206 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12207 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12208 } 12209 12210 /* 12211 * Caller to this routine should check for IOCB_ERROR 12212 * and handle it properly. This routine no longer removes 12213 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12214 */ 12215 return retval; 12216 } 12217 12218 /** 12219 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12220 * @phba: pointer to lpfc HBA data structure. 12221 * 12222 * This routine will abort all pending and outstanding iocbs to an HBA. 12223 **/ 12224 void 12225 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12226 { 12227 struct lpfc_sli *psli = &phba->sli; 12228 struct lpfc_sli_ring *pring; 12229 struct lpfc_queue *qp = NULL; 12230 int i; 12231 12232 if (phba->sli_rev != LPFC_SLI_REV4) { 12233 for (i = 0; i < psli->num_rings; i++) { 12234 pring = &psli->sli3_ring[i]; 12235 lpfc_sli_abort_iocb_ring(phba, pring); 12236 } 12237 return; 12238 } 12239 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12240 pring = qp->pring; 12241 if (!pring) 12242 continue; 12243 lpfc_sli_abort_iocb_ring(phba, pring); 12244 } 12245 } 12246 12247 /** 12248 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12249 * @iocbq: Pointer to iocb object. 12250 * @vport: Pointer to driver virtual port object. 12251 * 12252 * This function acts as an iocb filter for functions which abort FCP iocbs. 12253 * 12254 * Return values 12255 * -ENODEV, if a null iocb or vport ptr is encountered 12256 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12257 * driver already started the abort process, or is an abort iocb itself 12258 * 0, passes criteria for aborting the FCP I/O iocb 12259 **/ 12260 static int 12261 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12262 struct lpfc_vport *vport) 12263 { 12264 u8 ulp_command; 12265 12266 /* No null ptr vports */ 12267 if (!iocbq || iocbq->vport != vport) 12268 return -ENODEV; 12269 12270 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12271 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12272 */ 12273 ulp_command = get_job_cmnd(vport->phba, iocbq); 12274 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12275 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12276 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12277 (ulp_command == CMD_ABORT_XRI_CN || 12278 ulp_command == CMD_CLOSE_XRI_CN || 12279 ulp_command == CMD_ABORT_XRI_WQE)) 12280 return -EINVAL; 12281 12282 return 0; 12283 } 12284 12285 /** 12286 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12287 * @iocbq: Pointer to driver iocb object. 12288 * @vport: Pointer to driver virtual port object. 12289 * @tgt_id: SCSI ID of the target. 12290 * @lun_id: LUN ID of the scsi device. 12291 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12292 * 12293 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12294 * host. 12295 * 12296 * It will return 12297 * 0 if the filtering criteria is met for the given iocb and will return 12298 * 1 if the filtering criteria is not met. 12299 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12300 * given iocb is for the SCSI device specified by vport, tgt_id and 12301 * lun_id parameter. 12302 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12303 * given iocb is for the SCSI target specified by vport and tgt_id 12304 * parameters. 12305 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12306 * given iocb is for the SCSI host associated with the given vport. 12307 * This function is called with no locks held. 12308 **/ 12309 static int 12310 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12311 uint16_t tgt_id, uint64_t lun_id, 12312 lpfc_ctx_cmd ctx_cmd) 12313 { 12314 struct lpfc_io_buf *lpfc_cmd; 12315 int rc = 1; 12316 12317 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12318 12319 if (lpfc_cmd->pCmd == NULL) 12320 return rc; 12321 12322 switch (ctx_cmd) { 12323 case LPFC_CTX_LUN: 12324 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12325 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12326 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12327 rc = 0; 12328 break; 12329 case LPFC_CTX_TGT: 12330 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12331 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12332 rc = 0; 12333 break; 12334 case LPFC_CTX_HOST: 12335 rc = 0; 12336 break; 12337 default: 12338 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12339 __func__, ctx_cmd); 12340 break; 12341 } 12342 12343 return rc; 12344 } 12345 12346 /** 12347 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12348 * @vport: Pointer to virtual port. 12349 * @tgt_id: SCSI ID of the target. 12350 * @lun_id: LUN ID of the scsi device. 12351 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12352 * 12353 * This function returns number of FCP commands pending for the vport. 12354 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12355 * commands pending on the vport associated with SCSI device specified 12356 * by tgt_id and lun_id parameters. 12357 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12358 * commands pending on the vport associated with SCSI target specified 12359 * by tgt_id parameter. 12360 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12361 * commands pending on the vport. 12362 * This function returns the number of iocbs which satisfy the filter. 12363 * This function is called without any lock held. 12364 **/ 12365 int 12366 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12367 lpfc_ctx_cmd ctx_cmd) 12368 { 12369 struct lpfc_hba *phba = vport->phba; 12370 struct lpfc_iocbq *iocbq; 12371 int sum, i; 12372 unsigned long iflags; 12373 u8 ulp_command; 12374 12375 spin_lock_irqsave(&phba->hbalock, iflags); 12376 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12377 iocbq = phba->sli.iocbq_lookup[i]; 12378 12379 if (!iocbq || iocbq->vport != vport) 12380 continue; 12381 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12382 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12383 continue; 12384 12385 /* Include counting outstanding aborts */ 12386 ulp_command = get_job_cmnd(phba, iocbq); 12387 if (ulp_command == CMD_ABORT_XRI_CN || 12388 ulp_command == CMD_CLOSE_XRI_CN || 12389 ulp_command == CMD_ABORT_XRI_WQE) { 12390 sum++; 12391 continue; 12392 } 12393 12394 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12395 ctx_cmd) == 0) 12396 sum++; 12397 } 12398 spin_unlock_irqrestore(&phba->hbalock, iflags); 12399 12400 return sum; 12401 } 12402 12403 /** 12404 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12405 * @phba: Pointer to HBA context object 12406 * @cmdiocb: Pointer to command iocb object. 12407 * @rspiocb: Pointer to response iocb object. 12408 * 12409 * This function is called when an aborted FCP iocb completes. This 12410 * function is called by the ring event handler with no lock held. 12411 * This function frees the iocb. 12412 **/ 12413 void 12414 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12415 struct lpfc_iocbq *rspiocb) 12416 { 12417 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12418 "3096 ABORT_XRI_CX completing on rpi x%x " 12419 "original iotag x%x, abort cmd iotag x%x " 12420 "status 0x%x, reason 0x%x\n", 12421 (phba->sli_rev == LPFC_SLI_REV4) ? 12422 cmdiocb->sli4_xritag : 12423 cmdiocb->iocb.un.acxri.abortContextTag, 12424 get_job_abtsiotag(phba, cmdiocb), 12425 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12426 get_job_word4(phba, rspiocb)); 12427 lpfc_sli_release_iocbq(phba, cmdiocb); 12428 return; 12429 } 12430 12431 /** 12432 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12433 * @vport: Pointer to virtual port. 12434 * @tgt_id: SCSI ID of the target. 12435 * @lun_id: LUN ID of the scsi device. 12436 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12437 * 12438 * This function sends an abort command for every SCSI command 12439 * associated with the given virtual port pending on the ring 12440 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12441 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12442 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12443 * followed by lpfc_sli_validate_fcp_iocb. 12444 * 12445 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12446 * FCP iocbs associated with lun specified by tgt_id and lun_id 12447 * parameters 12448 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12449 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12450 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12451 * FCP iocbs associated with virtual port. 12452 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12453 * lpfc_sli4_calc_ring is used. 12454 * This function returns number of iocbs it failed to abort. 12455 * This function is called with no locks held. 12456 **/ 12457 int 12458 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12459 lpfc_ctx_cmd abort_cmd) 12460 { 12461 struct lpfc_hba *phba = vport->phba; 12462 struct lpfc_sli_ring *pring = NULL; 12463 struct lpfc_iocbq *iocbq; 12464 int errcnt = 0, ret_val = 0; 12465 unsigned long iflags; 12466 int i; 12467 12468 /* all I/Os are in process of being flushed */ 12469 if (phba->hba_flag & HBA_IOQ_FLUSH) 12470 return errcnt; 12471 12472 for (i = 1; i <= phba->sli.last_iotag; i++) { 12473 iocbq = phba->sli.iocbq_lookup[i]; 12474 12475 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12476 continue; 12477 12478 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12479 abort_cmd) != 0) 12480 continue; 12481 12482 spin_lock_irqsave(&phba->hbalock, iflags); 12483 if (phba->sli_rev == LPFC_SLI_REV3) { 12484 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12485 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12486 pring = lpfc_sli4_calc_ring(phba, iocbq); 12487 } 12488 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12489 lpfc_sli_abort_fcp_cmpl); 12490 spin_unlock_irqrestore(&phba->hbalock, iflags); 12491 if (ret_val != IOCB_SUCCESS) 12492 errcnt++; 12493 } 12494 12495 return errcnt; 12496 } 12497 12498 /** 12499 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12500 * @vport: Pointer to virtual port. 12501 * @pring: Pointer to driver SLI ring object. 12502 * @tgt_id: SCSI ID of the target. 12503 * @lun_id: LUN ID of the scsi device. 12504 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12505 * 12506 * This function sends an abort command for every SCSI command 12507 * associated with the given virtual port pending on the ring 12508 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12509 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12510 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12511 * followed by lpfc_sli_validate_fcp_iocb. 12512 * 12513 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12514 * FCP iocbs associated with lun specified by tgt_id and lun_id 12515 * parameters 12516 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12517 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12518 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12519 * FCP iocbs associated with virtual port. 12520 * This function returns number of iocbs it aborted . 12521 * This function is called with no locks held right after a taskmgmt 12522 * command is sent. 12523 **/ 12524 int 12525 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12526 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12527 { 12528 struct lpfc_hba *phba = vport->phba; 12529 struct lpfc_io_buf *lpfc_cmd; 12530 struct lpfc_iocbq *abtsiocbq; 12531 struct lpfc_nodelist *ndlp = NULL; 12532 struct lpfc_iocbq *iocbq; 12533 int sum, i, ret_val; 12534 unsigned long iflags; 12535 struct lpfc_sli_ring *pring_s4 = NULL; 12536 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12537 bool ia; 12538 12539 spin_lock_irqsave(&phba->hbalock, iflags); 12540 12541 /* all I/Os are in process of being flushed */ 12542 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12543 spin_unlock_irqrestore(&phba->hbalock, iflags); 12544 return 0; 12545 } 12546 sum = 0; 12547 12548 for (i = 1; i <= phba->sli.last_iotag; i++) { 12549 iocbq = phba->sli.iocbq_lookup[i]; 12550 12551 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12552 continue; 12553 12554 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12555 cmd) != 0) 12556 continue; 12557 12558 /* Guard against IO completion being called at same time */ 12559 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12560 spin_lock(&lpfc_cmd->buf_lock); 12561 12562 if (!lpfc_cmd->pCmd) { 12563 spin_unlock(&lpfc_cmd->buf_lock); 12564 continue; 12565 } 12566 12567 if (phba->sli_rev == LPFC_SLI_REV4) { 12568 pring_s4 = 12569 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12570 if (!pring_s4) { 12571 spin_unlock(&lpfc_cmd->buf_lock); 12572 continue; 12573 } 12574 /* Note: both hbalock and ring_lock must be set here */ 12575 spin_lock(&pring_s4->ring_lock); 12576 } 12577 12578 /* 12579 * If the iocbq is already being aborted, don't take a second 12580 * action, but do count it. 12581 */ 12582 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12583 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12584 if (phba->sli_rev == LPFC_SLI_REV4) 12585 spin_unlock(&pring_s4->ring_lock); 12586 spin_unlock(&lpfc_cmd->buf_lock); 12587 continue; 12588 } 12589 12590 /* issue ABTS for this IOCB based on iotag */ 12591 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12592 if (!abtsiocbq) { 12593 if (phba->sli_rev == LPFC_SLI_REV4) 12594 spin_unlock(&pring_s4->ring_lock); 12595 spin_unlock(&lpfc_cmd->buf_lock); 12596 continue; 12597 } 12598 12599 if (phba->sli_rev == LPFC_SLI_REV4) { 12600 iotag = abtsiocbq->iotag; 12601 ulp_context = iocbq->sli4_xritag; 12602 cqid = lpfc_cmd->hdwq->io_cq_map; 12603 } else { 12604 iotag = iocbq->iocb.ulpIoTag; 12605 if (pring->ringno == LPFC_ELS_RING) { 12606 ndlp = (struct lpfc_nodelist *)(iocbq->context1); 12607 ulp_context = ndlp->nlp_rpi; 12608 } else { 12609 ulp_context = iocbq->iocb.ulpContext; 12610 } 12611 } 12612 12613 ndlp = lpfc_cmd->rdata->pnode; 12614 12615 if (lpfc_is_link_up(phba) && 12616 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12617 ia = false; 12618 else 12619 ia = true; 12620 12621 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12622 iocbq->iocb.ulpClass, cqid, 12623 ia); 12624 12625 abtsiocbq->vport = vport; 12626 12627 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12628 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12629 if (iocbq->cmd_flag & LPFC_IO_FCP) 12630 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12631 if (iocbq->cmd_flag & LPFC_IO_FOF) 12632 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12633 12634 /* Setup callback routine and issue the command. */ 12635 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12636 12637 /* 12638 * Indicate the IO is being aborted by the driver and set 12639 * the caller's flag into the aborted IO. 12640 */ 12641 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12642 12643 if (phba->sli_rev == LPFC_SLI_REV4) { 12644 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12645 abtsiocbq, 0); 12646 spin_unlock(&pring_s4->ring_lock); 12647 } else { 12648 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12649 abtsiocbq, 0); 12650 } 12651 12652 spin_unlock(&lpfc_cmd->buf_lock); 12653 12654 if (ret_val == IOCB_ERROR) 12655 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12656 else 12657 sum++; 12658 } 12659 spin_unlock_irqrestore(&phba->hbalock, iflags); 12660 return sum; 12661 } 12662 12663 /** 12664 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12665 * @phba: Pointer to HBA context object. 12666 * @cmdiocbq: Pointer to command iocb. 12667 * @rspiocbq: Pointer to response iocb. 12668 * 12669 * This function is the completion handler for iocbs issued using 12670 * lpfc_sli_issue_iocb_wait function. This function is called by the 12671 * ring event handler function without any lock held. This function 12672 * can be called from both worker thread context and interrupt 12673 * context. This function also can be called from other thread which 12674 * cleans up the SLI layer objects. 12675 * This function copy the contents of the response iocb to the 12676 * response iocb memory object provided by the caller of 12677 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12678 * sleeps for the iocb completion. 12679 **/ 12680 static void 12681 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12682 struct lpfc_iocbq *cmdiocbq, 12683 struct lpfc_iocbq *rspiocbq) 12684 { 12685 wait_queue_head_t *pdone_q; 12686 unsigned long iflags; 12687 struct lpfc_io_buf *lpfc_cmd; 12688 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12689 12690 spin_lock_irqsave(&phba->hbalock, iflags); 12691 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12692 12693 /* 12694 * A time out has occurred for the iocb. If a time out 12695 * completion handler has been supplied, call it. Otherwise, 12696 * just free the iocbq. 12697 */ 12698 12699 spin_unlock_irqrestore(&phba->hbalock, iflags); 12700 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 12701 cmdiocbq->wait_cmd_cmpl = NULL; 12702 if (cmdiocbq->cmd_cmpl) 12703 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, NULL); 12704 else 12705 lpfc_sli_release_iocbq(phba, cmdiocbq); 12706 return; 12707 } 12708 12709 /* Copy the contents of the local rspiocb into the caller's buffer. */ 12710 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 12711 if (cmdiocbq->context2 && rspiocbq) 12712 memcpy((char *)cmdiocbq->context2 + offset, 12713 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 12714 12715 /* Set the exchange busy flag for task management commands */ 12716 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 12717 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 12718 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12719 cur_iocbq); 12720 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 12721 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12722 else 12723 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12724 } 12725 12726 pdone_q = cmdiocbq->context_un.wait_queue; 12727 if (pdone_q) 12728 wake_up(pdone_q); 12729 spin_unlock_irqrestore(&phba->hbalock, iflags); 12730 return; 12731 } 12732 12733 /** 12734 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12735 * @phba: Pointer to HBA context object.. 12736 * @piocbq: Pointer to command iocb. 12737 * @flag: Flag to test. 12738 * 12739 * This routine grabs the hbalock and then test the cmd_flag to 12740 * see if the passed in flag is set. 12741 * Returns: 12742 * 1 if flag is set. 12743 * 0 if flag is not set. 12744 **/ 12745 static int 12746 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12747 struct lpfc_iocbq *piocbq, uint32_t flag) 12748 { 12749 unsigned long iflags; 12750 int ret; 12751 12752 spin_lock_irqsave(&phba->hbalock, iflags); 12753 ret = piocbq->cmd_flag & flag; 12754 spin_unlock_irqrestore(&phba->hbalock, iflags); 12755 return ret; 12756 12757 } 12758 12759 /** 12760 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12761 * @phba: Pointer to HBA context object.. 12762 * @ring_number: Ring number 12763 * @piocb: Pointer to command iocb. 12764 * @prspiocbq: Pointer to response iocb. 12765 * @timeout: Timeout in number of seconds. 12766 * 12767 * This function issues the iocb to firmware and waits for the 12768 * iocb to complete. The cmd_cmpl field of the shall be used 12769 * to handle iocbs which time out. If the field is NULL, the 12770 * function shall free the iocbq structure. If more clean up is 12771 * needed, the caller is expected to provide a completion function 12772 * that will provide the needed clean up. If the iocb command is 12773 * not completed within timeout seconds, the function will either 12774 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 12775 * completion function set in the cmd_cmpl field and then return 12776 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12777 * resources if this function returns IOCB_TIMEDOUT. 12778 * The function waits for the iocb completion using an 12779 * non-interruptible wait. 12780 * This function will sleep while waiting for iocb completion. 12781 * So, this function should not be called from any context which 12782 * does not allow sleeping. Due to the same reason, this function 12783 * cannot be called with interrupt disabled. 12784 * This function assumes that the iocb completions occur while 12785 * this function sleep. So, this function cannot be called from 12786 * the thread which process iocb completion for this ring. 12787 * This function clears the cmd_flag of the iocb object before 12788 * issuing the iocb and the iocb completion handler sets this 12789 * flag and wakes this thread when the iocb completes. 12790 * The contents of the response iocb will be copied to prspiocbq 12791 * by the completion handler when the command completes. 12792 * This function returns IOCB_SUCCESS when success. 12793 * This function is called with no lock held. 12794 **/ 12795 int 12796 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12797 uint32_t ring_number, 12798 struct lpfc_iocbq *piocb, 12799 struct lpfc_iocbq *prspiocbq, 12800 uint32_t timeout) 12801 { 12802 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12803 long timeleft, timeout_req = 0; 12804 int retval = IOCB_SUCCESS; 12805 uint32_t creg_val; 12806 struct lpfc_iocbq *iocb; 12807 int txq_cnt = 0; 12808 int txcmplq_cnt = 0; 12809 struct lpfc_sli_ring *pring; 12810 unsigned long iflags; 12811 bool iocb_completed = true; 12812 12813 if (phba->sli_rev >= LPFC_SLI_REV4) { 12814 lpfc_sli_prep_wqe(phba, piocb); 12815 12816 pring = lpfc_sli4_calc_ring(phba, piocb); 12817 } else 12818 pring = &phba->sli.sli3_ring[ring_number]; 12819 /* 12820 * If the caller has provided a response iocbq buffer, then context2 12821 * is NULL or its an error. 12822 */ 12823 if (prspiocbq) { 12824 if (piocb->context2) 12825 return IOCB_ERROR; 12826 piocb->context2 = prspiocbq; 12827 } 12828 12829 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 12830 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 12831 piocb->context_un.wait_queue = &done_q; 12832 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12833 12834 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12835 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12836 return IOCB_ERROR; 12837 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12838 writel(creg_val, phba->HCregaddr); 12839 readl(phba->HCregaddr); /* flush */ 12840 } 12841 12842 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12843 SLI_IOCB_RET_IOCB); 12844 if (retval == IOCB_SUCCESS) { 12845 timeout_req = msecs_to_jiffies(timeout * 1000); 12846 timeleft = wait_event_timeout(done_q, 12847 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12848 timeout_req); 12849 spin_lock_irqsave(&phba->hbalock, iflags); 12850 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 12851 12852 /* 12853 * IOCB timed out. Inform the wake iocb wait 12854 * completion function and set local status 12855 */ 12856 12857 iocb_completed = false; 12858 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 12859 } 12860 spin_unlock_irqrestore(&phba->hbalock, iflags); 12861 if (iocb_completed) { 12862 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12863 "0331 IOCB wake signaled\n"); 12864 /* Note: we are not indicating if the IOCB has a success 12865 * status or not - that's for the caller to check. 12866 * IOCB_SUCCESS means just that the command was sent and 12867 * completed. Not that it completed successfully. 12868 * */ 12869 } else if (timeleft == 0) { 12870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12871 "0338 IOCB wait timeout error - no " 12872 "wake response Data x%x\n", timeout); 12873 retval = IOCB_TIMEDOUT; 12874 } else { 12875 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12876 "0330 IOCB wake NOT set, " 12877 "Data x%x x%lx\n", 12878 timeout, (timeleft / jiffies)); 12879 retval = IOCB_TIMEDOUT; 12880 } 12881 } else if (retval == IOCB_BUSY) { 12882 if (phba->cfg_log_verbose & LOG_SLI) { 12883 list_for_each_entry(iocb, &pring->txq, list) { 12884 txq_cnt++; 12885 } 12886 list_for_each_entry(iocb, &pring->txcmplq, list) { 12887 txcmplq_cnt++; 12888 } 12889 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12890 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12891 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12892 } 12893 return retval; 12894 } else { 12895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12896 "0332 IOCB wait issue failed, Data x%x\n", 12897 retval); 12898 retval = IOCB_ERROR; 12899 } 12900 12901 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12902 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12903 return IOCB_ERROR; 12904 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12905 writel(creg_val, phba->HCregaddr); 12906 readl(phba->HCregaddr); /* flush */ 12907 } 12908 12909 if (prspiocbq) 12910 piocb->context2 = NULL; 12911 12912 piocb->context_un.wait_queue = NULL; 12913 piocb->cmd_cmpl = NULL; 12914 return retval; 12915 } 12916 12917 /** 12918 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12919 * @phba: Pointer to HBA context object. 12920 * @pmboxq: Pointer to driver mailbox object. 12921 * @timeout: Timeout in number of seconds. 12922 * 12923 * This function issues the mailbox to firmware and waits for the 12924 * mailbox command to complete. If the mailbox command is not 12925 * completed within timeout seconds, it returns MBX_TIMEOUT. 12926 * The function waits for the mailbox completion using an 12927 * interruptible wait. If the thread is woken up due to a 12928 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12929 * should not free the mailbox resources, if this function returns 12930 * MBX_TIMEOUT. 12931 * This function will sleep while waiting for mailbox completion. 12932 * So, this function should not be called from any context which 12933 * does not allow sleeping. Due to the same reason, this function 12934 * cannot be called with interrupt disabled. 12935 * This function assumes that the mailbox completion occurs while 12936 * this function sleep. So, this function cannot be called from 12937 * the worker thread which processes mailbox completion. 12938 * This function is called in the context of HBA management 12939 * applications. 12940 * This function returns MBX_SUCCESS when successful. 12941 * This function is called with no lock held. 12942 **/ 12943 int 12944 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12945 uint32_t timeout) 12946 { 12947 struct completion mbox_done; 12948 int retval; 12949 unsigned long flag; 12950 12951 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12952 /* setup wake call as IOCB callback */ 12953 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12954 12955 /* setup context3 field to pass wait_queue pointer to wake function */ 12956 init_completion(&mbox_done); 12957 pmboxq->context3 = &mbox_done; 12958 /* now issue the command */ 12959 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12960 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12961 wait_for_completion_timeout(&mbox_done, 12962 msecs_to_jiffies(timeout * 1000)); 12963 12964 spin_lock_irqsave(&phba->hbalock, flag); 12965 pmboxq->context3 = NULL; 12966 /* 12967 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12968 * else do not free the resources. 12969 */ 12970 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12971 retval = MBX_SUCCESS; 12972 } else { 12973 retval = MBX_TIMEOUT; 12974 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12975 } 12976 spin_unlock_irqrestore(&phba->hbalock, flag); 12977 } 12978 return retval; 12979 } 12980 12981 /** 12982 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12983 * @phba: Pointer to HBA context. 12984 * @mbx_action: Mailbox shutdown options. 12985 * 12986 * This function is called to shutdown the driver's mailbox sub-system. 12987 * It first marks the mailbox sub-system is in a block state to prevent 12988 * the asynchronous mailbox command from issued off the pending mailbox 12989 * command queue. If the mailbox command sub-system shutdown is due to 12990 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12991 * the mailbox sub-system flush routine to forcefully bring down the 12992 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12993 * as with offline or HBA function reset), this routine will wait for the 12994 * outstanding mailbox command to complete before invoking the mailbox 12995 * sub-system flush routine to gracefully bring down mailbox sub-system. 12996 **/ 12997 void 12998 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12999 { 13000 struct lpfc_sli *psli = &phba->sli; 13001 unsigned long timeout; 13002 13003 if (mbx_action == LPFC_MBX_NO_WAIT) { 13004 /* delay 100ms for port state */ 13005 msleep(100); 13006 lpfc_sli_mbox_sys_flush(phba); 13007 return; 13008 } 13009 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13010 13011 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13012 local_bh_disable(); 13013 13014 spin_lock_irq(&phba->hbalock); 13015 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13016 13017 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13018 /* Determine how long we might wait for the active mailbox 13019 * command to be gracefully completed by firmware. 13020 */ 13021 if (phba->sli.mbox_active) 13022 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13023 phba->sli.mbox_active) * 13024 1000) + jiffies; 13025 spin_unlock_irq(&phba->hbalock); 13026 13027 /* Enable softirqs again, done with phba->hbalock */ 13028 local_bh_enable(); 13029 13030 while (phba->sli.mbox_active) { 13031 /* Check active mailbox complete status every 2ms */ 13032 msleep(2); 13033 if (time_after(jiffies, timeout)) 13034 /* Timeout, let the mailbox flush routine to 13035 * forcefully release active mailbox command 13036 */ 13037 break; 13038 } 13039 } else { 13040 spin_unlock_irq(&phba->hbalock); 13041 13042 /* Enable softirqs again, done with phba->hbalock */ 13043 local_bh_enable(); 13044 } 13045 13046 lpfc_sli_mbox_sys_flush(phba); 13047 } 13048 13049 /** 13050 * lpfc_sli_eratt_read - read sli-3 error attention events 13051 * @phba: Pointer to HBA context. 13052 * 13053 * This function is called to read the SLI3 device error attention registers 13054 * for possible error attention events. The caller must hold the hostlock 13055 * with spin_lock_irq(). 13056 * 13057 * This function returns 1 when there is Error Attention in the Host Attention 13058 * Register and returns 0 otherwise. 13059 **/ 13060 static int 13061 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13062 { 13063 uint32_t ha_copy; 13064 13065 /* Read chip Host Attention (HA) register */ 13066 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13067 goto unplug_err; 13068 13069 if (ha_copy & HA_ERATT) { 13070 /* Read host status register to retrieve error event */ 13071 if (lpfc_sli_read_hs(phba)) 13072 goto unplug_err; 13073 13074 /* Check if there is a deferred error condition is active */ 13075 if ((HS_FFER1 & phba->work_hs) && 13076 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13077 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13078 phba->hba_flag |= DEFER_ERATT; 13079 /* Clear all interrupt enable conditions */ 13080 writel(0, phba->HCregaddr); 13081 readl(phba->HCregaddr); 13082 } 13083 13084 /* Set the driver HA work bitmap */ 13085 phba->work_ha |= HA_ERATT; 13086 /* Indicate polling handles this ERATT */ 13087 phba->hba_flag |= HBA_ERATT_HANDLED; 13088 return 1; 13089 } 13090 return 0; 13091 13092 unplug_err: 13093 /* Set the driver HS work bitmap */ 13094 phba->work_hs |= UNPLUG_ERR; 13095 /* Set the driver HA work bitmap */ 13096 phba->work_ha |= HA_ERATT; 13097 /* Indicate polling handles this ERATT */ 13098 phba->hba_flag |= HBA_ERATT_HANDLED; 13099 return 1; 13100 } 13101 13102 /** 13103 * lpfc_sli4_eratt_read - read sli-4 error attention events 13104 * @phba: Pointer to HBA context. 13105 * 13106 * This function is called to read the SLI4 device error attention registers 13107 * for possible error attention events. The caller must hold the hostlock 13108 * with spin_lock_irq(). 13109 * 13110 * This function returns 1 when there is Error Attention in the Host Attention 13111 * Register and returns 0 otherwise. 13112 **/ 13113 static int 13114 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13115 { 13116 uint32_t uerr_sta_hi, uerr_sta_lo; 13117 uint32_t if_type, portsmphr; 13118 struct lpfc_register portstat_reg; 13119 u32 logmask; 13120 13121 /* 13122 * For now, use the SLI4 device internal unrecoverable error 13123 * registers for error attention. This can be changed later. 13124 */ 13125 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13126 switch (if_type) { 13127 case LPFC_SLI_INTF_IF_TYPE_0: 13128 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13129 &uerr_sta_lo) || 13130 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13131 &uerr_sta_hi)) { 13132 phba->work_hs |= UNPLUG_ERR; 13133 phba->work_ha |= HA_ERATT; 13134 phba->hba_flag |= HBA_ERATT_HANDLED; 13135 return 1; 13136 } 13137 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13138 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13139 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13140 "1423 HBA Unrecoverable error: " 13141 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13142 "ue_mask_lo_reg=0x%x, " 13143 "ue_mask_hi_reg=0x%x\n", 13144 uerr_sta_lo, uerr_sta_hi, 13145 phba->sli4_hba.ue_mask_lo, 13146 phba->sli4_hba.ue_mask_hi); 13147 phba->work_status[0] = uerr_sta_lo; 13148 phba->work_status[1] = uerr_sta_hi; 13149 phba->work_ha |= HA_ERATT; 13150 phba->hba_flag |= HBA_ERATT_HANDLED; 13151 return 1; 13152 } 13153 break; 13154 case LPFC_SLI_INTF_IF_TYPE_2: 13155 case LPFC_SLI_INTF_IF_TYPE_6: 13156 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13157 &portstat_reg.word0) || 13158 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13159 &portsmphr)){ 13160 phba->work_hs |= UNPLUG_ERR; 13161 phba->work_ha |= HA_ERATT; 13162 phba->hba_flag |= HBA_ERATT_HANDLED; 13163 return 1; 13164 } 13165 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13166 phba->work_status[0] = 13167 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13168 phba->work_status[1] = 13169 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13170 logmask = LOG_TRACE_EVENT; 13171 if (phba->work_status[0] == 13172 SLIPORT_ERR1_REG_ERR_CODE_2 && 13173 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13174 logmask = LOG_SLI; 13175 lpfc_printf_log(phba, KERN_ERR, logmask, 13176 "2885 Port Status Event: " 13177 "port status reg 0x%x, " 13178 "port smphr reg 0x%x, " 13179 "error 1=0x%x, error 2=0x%x\n", 13180 portstat_reg.word0, 13181 portsmphr, 13182 phba->work_status[0], 13183 phba->work_status[1]); 13184 phba->work_ha |= HA_ERATT; 13185 phba->hba_flag |= HBA_ERATT_HANDLED; 13186 return 1; 13187 } 13188 break; 13189 case LPFC_SLI_INTF_IF_TYPE_1: 13190 default: 13191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13192 "2886 HBA Error Attention on unsupported " 13193 "if type %d.", if_type); 13194 return 1; 13195 } 13196 13197 return 0; 13198 } 13199 13200 /** 13201 * lpfc_sli_check_eratt - check error attention events 13202 * @phba: Pointer to HBA context. 13203 * 13204 * This function is called from timer soft interrupt context to check HBA's 13205 * error attention register bit for error attention events. 13206 * 13207 * This function returns 1 when there is Error Attention in the Host Attention 13208 * Register and returns 0 otherwise. 13209 **/ 13210 int 13211 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13212 { 13213 uint32_t ha_copy; 13214 13215 /* If somebody is waiting to handle an eratt, don't process it 13216 * here. The brdkill function will do this. 13217 */ 13218 if (phba->link_flag & LS_IGNORE_ERATT) 13219 return 0; 13220 13221 /* Check if interrupt handler handles this ERATT */ 13222 spin_lock_irq(&phba->hbalock); 13223 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13224 /* Interrupt handler has handled ERATT */ 13225 spin_unlock_irq(&phba->hbalock); 13226 return 0; 13227 } 13228 13229 /* 13230 * If there is deferred error attention, do not check for error 13231 * attention 13232 */ 13233 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13234 spin_unlock_irq(&phba->hbalock); 13235 return 0; 13236 } 13237 13238 /* If PCI channel is offline, don't process it */ 13239 if (unlikely(pci_channel_offline(phba->pcidev))) { 13240 spin_unlock_irq(&phba->hbalock); 13241 return 0; 13242 } 13243 13244 switch (phba->sli_rev) { 13245 case LPFC_SLI_REV2: 13246 case LPFC_SLI_REV3: 13247 /* Read chip Host Attention (HA) register */ 13248 ha_copy = lpfc_sli_eratt_read(phba); 13249 break; 13250 case LPFC_SLI_REV4: 13251 /* Read device Uncoverable Error (UERR) registers */ 13252 ha_copy = lpfc_sli4_eratt_read(phba); 13253 break; 13254 default: 13255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13256 "0299 Invalid SLI revision (%d)\n", 13257 phba->sli_rev); 13258 ha_copy = 0; 13259 break; 13260 } 13261 spin_unlock_irq(&phba->hbalock); 13262 13263 return ha_copy; 13264 } 13265 13266 /** 13267 * lpfc_intr_state_check - Check device state for interrupt handling 13268 * @phba: Pointer to HBA context. 13269 * 13270 * This inline routine checks whether a device or its PCI slot is in a state 13271 * that the interrupt should be handled. 13272 * 13273 * This function returns 0 if the device or the PCI slot is in a state that 13274 * interrupt should be handled, otherwise -EIO. 13275 */ 13276 static inline int 13277 lpfc_intr_state_check(struct lpfc_hba *phba) 13278 { 13279 /* If the pci channel is offline, ignore all the interrupts */ 13280 if (unlikely(pci_channel_offline(phba->pcidev))) 13281 return -EIO; 13282 13283 /* Update device level interrupt statistics */ 13284 phba->sli.slistat.sli_intr++; 13285 13286 /* Ignore all interrupts during initialization. */ 13287 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13288 return -EIO; 13289 13290 return 0; 13291 } 13292 13293 /** 13294 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13295 * @irq: Interrupt number. 13296 * @dev_id: The device context pointer. 13297 * 13298 * This function is directly called from the PCI layer as an interrupt 13299 * service routine when device with SLI-3 interface spec is enabled with 13300 * MSI-X multi-message interrupt mode and there are slow-path events in 13301 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13302 * interrupt mode, this function is called as part of the device-level 13303 * interrupt handler. When the PCI slot is in error recovery or the HBA 13304 * is undergoing initialization, the interrupt handler will not process 13305 * the interrupt. The link attention and ELS ring attention events are 13306 * handled by the worker thread. The interrupt handler signals the worker 13307 * thread and returns for these events. This function is called without 13308 * any lock held. It gets the hbalock to access and update SLI data 13309 * structures. 13310 * 13311 * This function returns IRQ_HANDLED when interrupt is handled else it 13312 * returns IRQ_NONE. 13313 **/ 13314 irqreturn_t 13315 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13316 { 13317 struct lpfc_hba *phba; 13318 uint32_t ha_copy, hc_copy; 13319 uint32_t work_ha_copy; 13320 unsigned long status; 13321 unsigned long iflag; 13322 uint32_t control; 13323 13324 MAILBOX_t *mbox, *pmbox; 13325 struct lpfc_vport *vport; 13326 struct lpfc_nodelist *ndlp; 13327 struct lpfc_dmabuf *mp; 13328 LPFC_MBOXQ_t *pmb; 13329 int rc; 13330 13331 /* 13332 * Get the driver's phba structure from the dev_id and 13333 * assume the HBA is not interrupting. 13334 */ 13335 phba = (struct lpfc_hba *)dev_id; 13336 13337 if (unlikely(!phba)) 13338 return IRQ_NONE; 13339 13340 /* 13341 * Stuff needs to be attented to when this function is invoked as an 13342 * individual interrupt handler in MSI-X multi-message interrupt mode 13343 */ 13344 if (phba->intr_type == MSIX) { 13345 /* Check device state for handling interrupt */ 13346 if (lpfc_intr_state_check(phba)) 13347 return IRQ_NONE; 13348 /* Need to read HA REG for slow-path events */ 13349 spin_lock_irqsave(&phba->hbalock, iflag); 13350 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13351 goto unplug_error; 13352 /* If somebody is waiting to handle an eratt don't process it 13353 * here. The brdkill function will do this. 13354 */ 13355 if (phba->link_flag & LS_IGNORE_ERATT) 13356 ha_copy &= ~HA_ERATT; 13357 /* Check the need for handling ERATT in interrupt handler */ 13358 if (ha_copy & HA_ERATT) { 13359 if (phba->hba_flag & HBA_ERATT_HANDLED) 13360 /* ERATT polling has handled ERATT */ 13361 ha_copy &= ~HA_ERATT; 13362 else 13363 /* Indicate interrupt handler handles ERATT */ 13364 phba->hba_flag |= HBA_ERATT_HANDLED; 13365 } 13366 13367 /* 13368 * If there is deferred error attention, do not check for any 13369 * interrupt. 13370 */ 13371 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13372 spin_unlock_irqrestore(&phba->hbalock, iflag); 13373 return IRQ_NONE; 13374 } 13375 13376 /* Clear up only attention source related to slow-path */ 13377 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13378 goto unplug_error; 13379 13380 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13381 HC_LAINT_ENA | HC_ERINT_ENA), 13382 phba->HCregaddr); 13383 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13384 phba->HAregaddr); 13385 writel(hc_copy, phba->HCregaddr); 13386 readl(phba->HAregaddr); /* flush */ 13387 spin_unlock_irqrestore(&phba->hbalock, iflag); 13388 } else 13389 ha_copy = phba->ha_copy; 13390 13391 work_ha_copy = ha_copy & phba->work_ha_mask; 13392 13393 if (work_ha_copy) { 13394 if (work_ha_copy & HA_LATT) { 13395 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13396 /* 13397 * Turn off Link Attention interrupts 13398 * until CLEAR_LA done 13399 */ 13400 spin_lock_irqsave(&phba->hbalock, iflag); 13401 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13402 if (lpfc_readl(phba->HCregaddr, &control)) 13403 goto unplug_error; 13404 control &= ~HC_LAINT_ENA; 13405 writel(control, phba->HCregaddr); 13406 readl(phba->HCregaddr); /* flush */ 13407 spin_unlock_irqrestore(&phba->hbalock, iflag); 13408 } 13409 else 13410 work_ha_copy &= ~HA_LATT; 13411 } 13412 13413 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13414 /* 13415 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13416 * the only slow ring. 13417 */ 13418 status = (work_ha_copy & 13419 (HA_RXMASK << (4*LPFC_ELS_RING))); 13420 status >>= (4*LPFC_ELS_RING); 13421 if (status & HA_RXMASK) { 13422 spin_lock_irqsave(&phba->hbalock, iflag); 13423 if (lpfc_readl(phba->HCregaddr, &control)) 13424 goto unplug_error; 13425 13426 lpfc_debugfs_slow_ring_trc(phba, 13427 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13428 control, status, 13429 (uint32_t)phba->sli.slistat.sli_intr); 13430 13431 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13432 lpfc_debugfs_slow_ring_trc(phba, 13433 "ISR Disable ring:" 13434 "pwork:x%x hawork:x%x wait:x%x", 13435 phba->work_ha, work_ha_copy, 13436 (uint32_t)((unsigned long) 13437 &phba->work_waitq)); 13438 13439 control &= 13440 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13441 writel(control, phba->HCregaddr); 13442 readl(phba->HCregaddr); /* flush */ 13443 } 13444 else { 13445 lpfc_debugfs_slow_ring_trc(phba, 13446 "ISR slow ring: pwork:" 13447 "x%x hawork:x%x wait:x%x", 13448 phba->work_ha, work_ha_copy, 13449 (uint32_t)((unsigned long) 13450 &phba->work_waitq)); 13451 } 13452 spin_unlock_irqrestore(&phba->hbalock, iflag); 13453 } 13454 } 13455 spin_lock_irqsave(&phba->hbalock, iflag); 13456 if (work_ha_copy & HA_ERATT) { 13457 if (lpfc_sli_read_hs(phba)) 13458 goto unplug_error; 13459 /* 13460 * Check if there is a deferred error condition 13461 * is active 13462 */ 13463 if ((HS_FFER1 & phba->work_hs) && 13464 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13465 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13466 phba->work_hs)) { 13467 phba->hba_flag |= DEFER_ERATT; 13468 /* Clear all interrupt enable conditions */ 13469 writel(0, phba->HCregaddr); 13470 readl(phba->HCregaddr); 13471 } 13472 } 13473 13474 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13475 pmb = phba->sli.mbox_active; 13476 pmbox = &pmb->u.mb; 13477 mbox = phba->mbox; 13478 vport = pmb->vport; 13479 13480 /* First check out the status word */ 13481 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13482 if (pmbox->mbxOwner != OWN_HOST) { 13483 spin_unlock_irqrestore(&phba->hbalock, iflag); 13484 /* 13485 * Stray Mailbox Interrupt, mbxCommand <cmd> 13486 * mbxStatus <status> 13487 */ 13488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13489 "(%d):0304 Stray Mailbox " 13490 "Interrupt mbxCommand x%x " 13491 "mbxStatus x%x\n", 13492 (vport ? vport->vpi : 0), 13493 pmbox->mbxCommand, 13494 pmbox->mbxStatus); 13495 /* clear mailbox attention bit */ 13496 work_ha_copy &= ~HA_MBATT; 13497 } else { 13498 phba->sli.mbox_active = NULL; 13499 spin_unlock_irqrestore(&phba->hbalock, iflag); 13500 phba->last_completion_time = jiffies; 13501 del_timer(&phba->sli.mbox_tmo); 13502 if (pmb->mbox_cmpl) { 13503 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13504 MAILBOX_CMD_SIZE); 13505 if (pmb->out_ext_byte_len && 13506 pmb->ctx_buf) 13507 lpfc_sli_pcimem_bcopy( 13508 phba->mbox_ext, 13509 pmb->ctx_buf, 13510 pmb->out_ext_byte_len); 13511 } 13512 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13513 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13514 13515 lpfc_debugfs_disc_trc(vport, 13516 LPFC_DISC_TRC_MBOX_VPORT, 13517 "MBOX dflt rpi: : " 13518 "status:x%x rpi:x%x", 13519 (uint32_t)pmbox->mbxStatus, 13520 pmbox->un.varWords[0], 0); 13521 13522 if (!pmbox->mbxStatus) { 13523 mp = (struct lpfc_dmabuf *) 13524 (pmb->ctx_buf); 13525 ndlp = (struct lpfc_nodelist *) 13526 pmb->ctx_ndlp; 13527 13528 /* Reg_LOGIN of dflt RPI was 13529 * successful. new lets get 13530 * rid of the RPI using the 13531 * same mbox buffer. 13532 */ 13533 lpfc_unreg_login(phba, 13534 vport->vpi, 13535 pmbox->un.varWords[0], 13536 pmb); 13537 pmb->mbox_cmpl = 13538 lpfc_mbx_cmpl_dflt_rpi; 13539 pmb->ctx_buf = mp; 13540 pmb->ctx_ndlp = ndlp; 13541 pmb->vport = vport; 13542 rc = lpfc_sli_issue_mbox(phba, 13543 pmb, 13544 MBX_NOWAIT); 13545 if (rc != MBX_BUSY) 13546 lpfc_printf_log(phba, 13547 KERN_ERR, 13548 LOG_TRACE_EVENT, 13549 "0350 rc should have" 13550 "been MBX_BUSY\n"); 13551 if (rc != MBX_NOT_FINISHED) 13552 goto send_current_mbox; 13553 } 13554 } 13555 spin_lock_irqsave( 13556 &phba->pport->work_port_lock, 13557 iflag); 13558 phba->pport->work_port_events &= 13559 ~WORKER_MBOX_TMO; 13560 spin_unlock_irqrestore( 13561 &phba->pport->work_port_lock, 13562 iflag); 13563 13564 /* Do NOT queue MBX_HEARTBEAT to the worker 13565 * thread for processing. 13566 */ 13567 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13568 /* Process mbox now */ 13569 phba->sli.mbox_active = NULL; 13570 phba->sli.sli_flag &= 13571 ~LPFC_SLI_MBOX_ACTIVE; 13572 if (pmb->mbox_cmpl) 13573 pmb->mbox_cmpl(phba, pmb); 13574 } else { 13575 /* Queue to worker thread to process */ 13576 lpfc_mbox_cmpl_put(phba, pmb); 13577 } 13578 } 13579 } else 13580 spin_unlock_irqrestore(&phba->hbalock, iflag); 13581 13582 if ((work_ha_copy & HA_MBATT) && 13583 (phba->sli.mbox_active == NULL)) { 13584 send_current_mbox: 13585 /* Process next mailbox command if there is one */ 13586 do { 13587 rc = lpfc_sli_issue_mbox(phba, NULL, 13588 MBX_NOWAIT); 13589 } while (rc == MBX_NOT_FINISHED); 13590 if (rc != MBX_SUCCESS) 13591 lpfc_printf_log(phba, KERN_ERR, 13592 LOG_TRACE_EVENT, 13593 "0349 rc should be " 13594 "MBX_SUCCESS\n"); 13595 } 13596 13597 spin_lock_irqsave(&phba->hbalock, iflag); 13598 phba->work_ha |= work_ha_copy; 13599 spin_unlock_irqrestore(&phba->hbalock, iflag); 13600 lpfc_worker_wake_up(phba); 13601 } 13602 return IRQ_HANDLED; 13603 unplug_error: 13604 spin_unlock_irqrestore(&phba->hbalock, iflag); 13605 return IRQ_HANDLED; 13606 13607 } /* lpfc_sli_sp_intr_handler */ 13608 13609 /** 13610 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13611 * @irq: Interrupt number. 13612 * @dev_id: The device context pointer. 13613 * 13614 * This function is directly called from the PCI layer as an interrupt 13615 * service routine when device with SLI-3 interface spec is enabled with 13616 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13617 * ring event in the HBA. However, when the device is enabled with either 13618 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13619 * device-level interrupt handler. When the PCI slot is in error recovery 13620 * or the HBA is undergoing initialization, the interrupt handler will not 13621 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13622 * the intrrupt context. This function is called without any lock held. 13623 * It gets the hbalock to access and update SLI data structures. 13624 * 13625 * This function returns IRQ_HANDLED when interrupt is handled else it 13626 * returns IRQ_NONE. 13627 **/ 13628 irqreturn_t 13629 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13630 { 13631 struct lpfc_hba *phba; 13632 uint32_t ha_copy; 13633 unsigned long status; 13634 unsigned long iflag; 13635 struct lpfc_sli_ring *pring; 13636 13637 /* Get the driver's phba structure from the dev_id and 13638 * assume the HBA is not interrupting. 13639 */ 13640 phba = (struct lpfc_hba *) dev_id; 13641 13642 if (unlikely(!phba)) 13643 return IRQ_NONE; 13644 13645 /* 13646 * Stuff needs to be attented to when this function is invoked as an 13647 * individual interrupt handler in MSI-X multi-message interrupt mode 13648 */ 13649 if (phba->intr_type == MSIX) { 13650 /* Check device state for handling interrupt */ 13651 if (lpfc_intr_state_check(phba)) 13652 return IRQ_NONE; 13653 /* Need to read HA REG for FCP ring and other ring events */ 13654 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13655 return IRQ_HANDLED; 13656 /* Clear up only attention source related to fast-path */ 13657 spin_lock_irqsave(&phba->hbalock, iflag); 13658 /* 13659 * If there is deferred error attention, do not check for 13660 * any interrupt. 13661 */ 13662 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13663 spin_unlock_irqrestore(&phba->hbalock, iflag); 13664 return IRQ_NONE; 13665 } 13666 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13667 phba->HAregaddr); 13668 readl(phba->HAregaddr); /* flush */ 13669 spin_unlock_irqrestore(&phba->hbalock, iflag); 13670 } else 13671 ha_copy = phba->ha_copy; 13672 13673 /* 13674 * Process all events on FCP ring. Take the optimized path for FCP IO. 13675 */ 13676 ha_copy &= ~(phba->work_ha_mask); 13677 13678 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13679 status >>= (4*LPFC_FCP_RING); 13680 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13681 if (status & HA_RXMASK) 13682 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13683 13684 if (phba->cfg_multi_ring_support == 2) { 13685 /* 13686 * Process all events on extra ring. Take the optimized path 13687 * for extra ring IO. 13688 */ 13689 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13690 status >>= (4*LPFC_EXTRA_RING); 13691 if (status & HA_RXMASK) { 13692 lpfc_sli_handle_fast_ring_event(phba, 13693 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13694 status); 13695 } 13696 } 13697 return IRQ_HANDLED; 13698 } /* lpfc_sli_fp_intr_handler */ 13699 13700 /** 13701 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13702 * @irq: Interrupt number. 13703 * @dev_id: The device context pointer. 13704 * 13705 * This function is the HBA device-level interrupt handler to device with 13706 * SLI-3 interface spec, called from the PCI layer when either MSI or 13707 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13708 * requires driver attention. This function invokes the slow-path interrupt 13709 * attention handling function and fast-path interrupt attention handling 13710 * function in turn to process the relevant HBA attention events. This 13711 * function is called without any lock held. It gets the hbalock to access 13712 * and update SLI data structures. 13713 * 13714 * This function returns IRQ_HANDLED when interrupt is handled, else it 13715 * returns IRQ_NONE. 13716 **/ 13717 irqreturn_t 13718 lpfc_sli_intr_handler(int irq, void *dev_id) 13719 { 13720 struct lpfc_hba *phba; 13721 irqreturn_t sp_irq_rc, fp_irq_rc; 13722 unsigned long status1, status2; 13723 uint32_t hc_copy; 13724 13725 /* 13726 * Get the driver's phba structure from the dev_id and 13727 * assume the HBA is not interrupting. 13728 */ 13729 phba = (struct lpfc_hba *) dev_id; 13730 13731 if (unlikely(!phba)) 13732 return IRQ_NONE; 13733 13734 /* Check device state for handling interrupt */ 13735 if (lpfc_intr_state_check(phba)) 13736 return IRQ_NONE; 13737 13738 spin_lock(&phba->hbalock); 13739 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13740 spin_unlock(&phba->hbalock); 13741 return IRQ_HANDLED; 13742 } 13743 13744 if (unlikely(!phba->ha_copy)) { 13745 spin_unlock(&phba->hbalock); 13746 return IRQ_NONE; 13747 } else if (phba->ha_copy & HA_ERATT) { 13748 if (phba->hba_flag & HBA_ERATT_HANDLED) 13749 /* ERATT polling has handled ERATT */ 13750 phba->ha_copy &= ~HA_ERATT; 13751 else 13752 /* Indicate interrupt handler handles ERATT */ 13753 phba->hba_flag |= HBA_ERATT_HANDLED; 13754 } 13755 13756 /* 13757 * If there is deferred error attention, do not check for any interrupt. 13758 */ 13759 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13760 spin_unlock(&phba->hbalock); 13761 return IRQ_NONE; 13762 } 13763 13764 /* Clear attention sources except link and error attentions */ 13765 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13766 spin_unlock(&phba->hbalock); 13767 return IRQ_HANDLED; 13768 } 13769 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13770 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13771 phba->HCregaddr); 13772 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13773 writel(hc_copy, phba->HCregaddr); 13774 readl(phba->HAregaddr); /* flush */ 13775 spin_unlock(&phba->hbalock); 13776 13777 /* 13778 * Invokes slow-path host attention interrupt handling as appropriate. 13779 */ 13780 13781 /* status of events with mailbox and link attention */ 13782 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13783 13784 /* status of events with ELS ring */ 13785 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13786 status2 >>= (4*LPFC_ELS_RING); 13787 13788 if (status1 || (status2 & HA_RXMASK)) 13789 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13790 else 13791 sp_irq_rc = IRQ_NONE; 13792 13793 /* 13794 * Invoke fast-path host attention interrupt handling as appropriate. 13795 */ 13796 13797 /* status of events with FCP ring */ 13798 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13799 status1 >>= (4*LPFC_FCP_RING); 13800 13801 /* status of events with extra ring */ 13802 if (phba->cfg_multi_ring_support == 2) { 13803 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13804 status2 >>= (4*LPFC_EXTRA_RING); 13805 } else 13806 status2 = 0; 13807 13808 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13809 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13810 else 13811 fp_irq_rc = IRQ_NONE; 13812 13813 /* Return device-level interrupt handling status */ 13814 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13815 } /* lpfc_sli_intr_handler */ 13816 13817 /** 13818 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13819 * @phba: pointer to lpfc hba data structure. 13820 * 13821 * This routine is invoked by the worker thread to process all the pending 13822 * SLI4 els abort xri events. 13823 **/ 13824 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13825 { 13826 struct lpfc_cq_event *cq_event; 13827 unsigned long iflags; 13828 13829 /* First, declare the els xri abort event has been handled */ 13830 spin_lock_irqsave(&phba->hbalock, iflags); 13831 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13832 spin_unlock_irqrestore(&phba->hbalock, iflags); 13833 13834 /* Now, handle all the els xri abort events */ 13835 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13836 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13837 /* Get the first event from the head of the event queue */ 13838 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13839 cq_event, struct lpfc_cq_event, list); 13840 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13841 iflags); 13842 /* Notify aborted XRI for ELS work queue */ 13843 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13844 13845 /* Free the event processed back to the free pool */ 13846 lpfc_sli4_cq_event_release(phba, cq_event); 13847 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13848 iflags); 13849 } 13850 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13851 } 13852 13853 /** 13854 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 13855 * @phba: Pointer to HBA context object. 13856 * @irspiocbq: Pointer to work-queue completion queue entry. 13857 * 13858 * This routine handles an ELS work-queue completion event and construct 13859 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13860 * discovery engine to handle. 13861 * 13862 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13863 **/ 13864 static struct lpfc_iocbq * 13865 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 13866 struct lpfc_iocbq *irspiocbq) 13867 { 13868 struct lpfc_sli_ring *pring; 13869 struct lpfc_iocbq *cmdiocbq; 13870 struct lpfc_wcqe_complete *wcqe; 13871 unsigned long iflags; 13872 13873 pring = lpfc_phba_elsring(phba); 13874 if (unlikely(!pring)) 13875 return NULL; 13876 13877 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13878 spin_lock_irqsave(&pring->ring_lock, iflags); 13879 pring->stats.iocb_event++; 13880 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13881 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13882 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13883 if (unlikely(!cmdiocbq)) { 13884 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13885 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13886 "0386 ELS complete with no corresponding " 13887 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13888 wcqe->word0, wcqe->total_data_placed, 13889 wcqe->parameter, wcqe->word3); 13890 lpfc_sli_release_iocbq(phba, irspiocbq); 13891 return NULL; 13892 } 13893 13894 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 13895 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 13896 13897 /* Put the iocb back on the txcmplq */ 13898 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13899 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13900 13901 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13902 spin_lock_irqsave(&phba->hbalock, iflags); 13903 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 13904 spin_unlock_irqrestore(&phba->hbalock, iflags); 13905 } 13906 13907 return irspiocbq; 13908 } 13909 13910 inline struct lpfc_cq_event * 13911 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13912 { 13913 struct lpfc_cq_event *cq_event; 13914 13915 /* Allocate a new internal CQ_EVENT entry */ 13916 cq_event = lpfc_sli4_cq_event_alloc(phba); 13917 if (!cq_event) { 13918 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13919 "0602 Failed to alloc CQ_EVENT entry\n"); 13920 return NULL; 13921 } 13922 13923 /* Move the CQE into the event */ 13924 memcpy(&cq_event->cqe, entry, size); 13925 return cq_event; 13926 } 13927 13928 /** 13929 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13930 * @phba: Pointer to HBA context object. 13931 * @mcqe: Pointer to mailbox completion queue entry. 13932 * 13933 * This routine process a mailbox completion queue entry with asynchronous 13934 * event. 13935 * 13936 * Return: true if work posted to worker thread, otherwise false. 13937 **/ 13938 static bool 13939 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13940 { 13941 struct lpfc_cq_event *cq_event; 13942 unsigned long iflags; 13943 13944 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13945 "0392 Async Event: word0:x%x, word1:x%x, " 13946 "word2:x%x, word3:x%x\n", mcqe->word0, 13947 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13948 13949 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13950 if (!cq_event) 13951 return false; 13952 13953 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13954 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13955 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13956 13957 /* Set the async event flag */ 13958 spin_lock_irqsave(&phba->hbalock, iflags); 13959 phba->hba_flag |= ASYNC_EVENT; 13960 spin_unlock_irqrestore(&phba->hbalock, iflags); 13961 13962 return true; 13963 } 13964 13965 /** 13966 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13967 * @phba: Pointer to HBA context object. 13968 * @mcqe: Pointer to mailbox completion queue entry. 13969 * 13970 * This routine process a mailbox completion queue entry with mailbox 13971 * completion event. 13972 * 13973 * Return: true if work posted to worker thread, otherwise false. 13974 **/ 13975 static bool 13976 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13977 { 13978 uint32_t mcqe_status; 13979 MAILBOX_t *mbox, *pmbox; 13980 struct lpfc_mqe *mqe; 13981 struct lpfc_vport *vport; 13982 struct lpfc_nodelist *ndlp; 13983 struct lpfc_dmabuf *mp; 13984 unsigned long iflags; 13985 LPFC_MBOXQ_t *pmb; 13986 bool workposted = false; 13987 int rc; 13988 13989 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13990 if (!bf_get(lpfc_trailer_completed, mcqe)) 13991 goto out_no_mqe_complete; 13992 13993 /* Get the reference to the active mbox command */ 13994 spin_lock_irqsave(&phba->hbalock, iflags); 13995 pmb = phba->sli.mbox_active; 13996 if (unlikely(!pmb)) { 13997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13998 "1832 No pending MBOX command to handle\n"); 13999 spin_unlock_irqrestore(&phba->hbalock, iflags); 14000 goto out_no_mqe_complete; 14001 } 14002 spin_unlock_irqrestore(&phba->hbalock, iflags); 14003 mqe = &pmb->u.mqe; 14004 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14005 mbox = phba->mbox; 14006 vport = pmb->vport; 14007 14008 /* Reset heartbeat timer */ 14009 phba->last_completion_time = jiffies; 14010 del_timer(&phba->sli.mbox_tmo); 14011 14012 /* Move mbox data to caller's mailbox region, do endian swapping */ 14013 if (pmb->mbox_cmpl && mbox) 14014 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14015 14016 /* 14017 * For mcqe errors, conditionally move a modified error code to 14018 * the mbox so that the error will not be missed. 14019 */ 14020 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14021 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14022 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14023 bf_set(lpfc_mqe_status, mqe, 14024 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14025 } 14026 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14027 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14028 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14029 "MBOX dflt rpi: status:x%x rpi:x%x", 14030 mcqe_status, 14031 pmbox->un.varWords[0], 0); 14032 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14033 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14034 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14035 14036 /* Reg_LOGIN of dflt RPI was successful. Mark the 14037 * node as having an UNREG_LOGIN in progress to stop 14038 * an unsolicited PLOGI from the same NPortId from 14039 * starting another mailbox transaction. 14040 */ 14041 spin_lock_irqsave(&ndlp->lock, iflags); 14042 ndlp->nlp_flag |= NLP_UNREG_INP; 14043 spin_unlock_irqrestore(&ndlp->lock, iflags); 14044 lpfc_unreg_login(phba, vport->vpi, 14045 pmbox->un.varWords[0], pmb); 14046 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14047 pmb->ctx_buf = mp; 14048 14049 /* No reference taken here. This is a default 14050 * RPI reg/immediate unreg cycle. The reference was 14051 * taken in the reg rpi path and is released when 14052 * this mailbox completes. 14053 */ 14054 pmb->ctx_ndlp = ndlp; 14055 pmb->vport = vport; 14056 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14057 if (rc != MBX_BUSY) 14058 lpfc_printf_log(phba, KERN_ERR, 14059 LOG_TRACE_EVENT, 14060 "0385 rc should " 14061 "have been MBX_BUSY\n"); 14062 if (rc != MBX_NOT_FINISHED) 14063 goto send_current_mbox; 14064 } 14065 } 14066 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14067 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14068 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14069 14070 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14071 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14072 spin_lock_irqsave(&phba->hbalock, iflags); 14073 /* Release the mailbox command posting token */ 14074 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14075 phba->sli.mbox_active = NULL; 14076 if (bf_get(lpfc_trailer_consumed, mcqe)) 14077 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14078 spin_unlock_irqrestore(&phba->hbalock, iflags); 14079 14080 /* Post the next mbox command, if there is one */ 14081 lpfc_sli4_post_async_mbox(phba); 14082 14083 /* Process cmpl now */ 14084 if (pmb->mbox_cmpl) 14085 pmb->mbox_cmpl(phba, pmb); 14086 return false; 14087 } 14088 14089 /* There is mailbox completion work to queue to the worker thread */ 14090 spin_lock_irqsave(&phba->hbalock, iflags); 14091 __lpfc_mbox_cmpl_put(phba, pmb); 14092 phba->work_ha |= HA_MBATT; 14093 spin_unlock_irqrestore(&phba->hbalock, iflags); 14094 workposted = true; 14095 14096 send_current_mbox: 14097 spin_lock_irqsave(&phba->hbalock, iflags); 14098 /* Release the mailbox command posting token */ 14099 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14100 /* Setting active mailbox pointer need to be in sync to flag clear */ 14101 phba->sli.mbox_active = NULL; 14102 if (bf_get(lpfc_trailer_consumed, mcqe)) 14103 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14104 spin_unlock_irqrestore(&phba->hbalock, iflags); 14105 /* Wake up worker thread to post the next pending mailbox command */ 14106 lpfc_worker_wake_up(phba); 14107 return workposted; 14108 14109 out_no_mqe_complete: 14110 spin_lock_irqsave(&phba->hbalock, iflags); 14111 if (bf_get(lpfc_trailer_consumed, mcqe)) 14112 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14113 spin_unlock_irqrestore(&phba->hbalock, iflags); 14114 return false; 14115 } 14116 14117 /** 14118 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14119 * @phba: Pointer to HBA context object. 14120 * @cq: Pointer to associated CQ 14121 * @cqe: Pointer to mailbox completion queue entry. 14122 * 14123 * This routine process a mailbox completion queue entry, it invokes the 14124 * proper mailbox complete handling or asynchronous event handling routine 14125 * according to the MCQE's async bit. 14126 * 14127 * Return: true if work posted to worker thread, otherwise false. 14128 **/ 14129 static bool 14130 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14131 struct lpfc_cqe *cqe) 14132 { 14133 struct lpfc_mcqe mcqe; 14134 bool workposted; 14135 14136 cq->CQ_mbox++; 14137 14138 /* Copy the mailbox MCQE and convert endian order as needed */ 14139 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14140 14141 /* Invoke the proper event handling routine */ 14142 if (!bf_get(lpfc_trailer_async, &mcqe)) 14143 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14144 else 14145 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14146 return workposted; 14147 } 14148 14149 /** 14150 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14151 * @phba: Pointer to HBA context object. 14152 * @cq: Pointer to associated CQ 14153 * @wcqe: Pointer to work-queue completion queue entry. 14154 * 14155 * This routine handles an ELS work-queue completion event. 14156 * 14157 * Return: true if work posted to worker thread, otherwise false. 14158 **/ 14159 static bool 14160 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14161 struct lpfc_wcqe_complete *wcqe) 14162 { 14163 struct lpfc_iocbq *irspiocbq; 14164 unsigned long iflags; 14165 struct lpfc_sli_ring *pring = cq->pring; 14166 int txq_cnt = 0; 14167 int txcmplq_cnt = 0; 14168 14169 /* Check for response status */ 14170 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14171 /* Log the error status */ 14172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14173 "0357 ELS CQE error: status=x%x: " 14174 "CQE: %08x %08x %08x %08x\n", 14175 bf_get(lpfc_wcqe_c_status, wcqe), 14176 wcqe->word0, wcqe->total_data_placed, 14177 wcqe->parameter, wcqe->word3); 14178 } 14179 14180 /* Get an irspiocbq for later ELS response processing use */ 14181 irspiocbq = lpfc_sli_get_iocbq(phba); 14182 if (!irspiocbq) { 14183 if (!list_empty(&pring->txq)) 14184 txq_cnt++; 14185 if (!list_empty(&pring->txcmplq)) 14186 txcmplq_cnt++; 14187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14188 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14189 "els_txcmplq_cnt=%d\n", 14190 txq_cnt, phba->iocb_cnt, 14191 txcmplq_cnt); 14192 return false; 14193 } 14194 14195 /* Save off the slow-path queue event for work thread to process */ 14196 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14197 spin_lock_irqsave(&phba->hbalock, iflags); 14198 list_add_tail(&irspiocbq->cq_event.list, 14199 &phba->sli4_hba.sp_queue_event); 14200 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14201 spin_unlock_irqrestore(&phba->hbalock, iflags); 14202 14203 return true; 14204 } 14205 14206 /** 14207 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14208 * @phba: Pointer to HBA context object. 14209 * @wcqe: Pointer to work-queue completion queue entry. 14210 * 14211 * This routine handles slow-path WQ entry consumed event by invoking the 14212 * proper WQ release routine to the slow-path WQ. 14213 **/ 14214 static void 14215 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14216 struct lpfc_wcqe_release *wcqe) 14217 { 14218 /* sanity check on queue memory */ 14219 if (unlikely(!phba->sli4_hba.els_wq)) 14220 return; 14221 /* Check for the slow-path ELS work queue */ 14222 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14223 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14224 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14225 else 14226 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14227 "2579 Slow-path wqe consume event carries " 14228 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14229 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14230 phba->sli4_hba.els_wq->queue_id); 14231 } 14232 14233 /** 14234 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14235 * @phba: Pointer to HBA context object. 14236 * @cq: Pointer to a WQ completion queue. 14237 * @wcqe: Pointer to work-queue completion queue entry. 14238 * 14239 * This routine handles an XRI abort event. 14240 * 14241 * Return: true if work posted to worker thread, otherwise false. 14242 **/ 14243 static bool 14244 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14245 struct lpfc_queue *cq, 14246 struct sli4_wcqe_xri_aborted *wcqe) 14247 { 14248 bool workposted = false; 14249 struct lpfc_cq_event *cq_event; 14250 unsigned long iflags; 14251 14252 switch (cq->subtype) { 14253 case LPFC_IO: 14254 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14255 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14256 /* Notify aborted XRI for NVME work queue */ 14257 if (phba->nvmet_support) 14258 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14259 } 14260 workposted = false; 14261 break; 14262 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14263 case LPFC_ELS: 14264 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14265 if (!cq_event) { 14266 workposted = false; 14267 break; 14268 } 14269 cq_event->hdwq = cq->hdwq; 14270 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14271 iflags); 14272 list_add_tail(&cq_event->list, 14273 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14274 /* Set the els xri abort event flag */ 14275 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14276 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14277 iflags); 14278 workposted = true; 14279 break; 14280 default: 14281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14282 "0603 Invalid CQ subtype %d: " 14283 "%08x %08x %08x %08x\n", 14284 cq->subtype, wcqe->word0, wcqe->parameter, 14285 wcqe->word2, wcqe->word3); 14286 workposted = false; 14287 break; 14288 } 14289 return workposted; 14290 } 14291 14292 #define FC_RCTL_MDS_DIAGS 0xF4 14293 14294 /** 14295 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14296 * @phba: Pointer to HBA context object. 14297 * @rcqe: Pointer to receive-queue completion queue entry. 14298 * 14299 * This routine process a receive-queue completion queue entry. 14300 * 14301 * Return: true if work posted to worker thread, otherwise false. 14302 **/ 14303 static bool 14304 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14305 { 14306 bool workposted = false; 14307 struct fc_frame_header *fc_hdr; 14308 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14309 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14310 struct lpfc_nvmet_tgtport *tgtp; 14311 struct hbq_dmabuf *dma_buf; 14312 uint32_t status, rq_id; 14313 unsigned long iflags; 14314 14315 /* sanity check on queue memory */ 14316 if (unlikely(!hrq) || unlikely(!drq)) 14317 return workposted; 14318 14319 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14320 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14321 else 14322 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14323 if (rq_id != hrq->queue_id) 14324 goto out; 14325 14326 status = bf_get(lpfc_rcqe_status, rcqe); 14327 switch (status) { 14328 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14330 "2537 Receive Frame Truncated!!\n"); 14331 fallthrough; 14332 case FC_STATUS_RQ_SUCCESS: 14333 spin_lock_irqsave(&phba->hbalock, iflags); 14334 lpfc_sli4_rq_release(hrq, drq); 14335 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14336 if (!dma_buf) { 14337 hrq->RQ_no_buf_found++; 14338 spin_unlock_irqrestore(&phba->hbalock, iflags); 14339 goto out; 14340 } 14341 hrq->RQ_rcv_buf++; 14342 hrq->RQ_buf_posted--; 14343 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14344 14345 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14346 14347 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14348 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14349 spin_unlock_irqrestore(&phba->hbalock, iflags); 14350 /* Handle MDS Loopback frames */ 14351 if (!(phba->pport->load_flag & FC_UNLOADING)) 14352 lpfc_sli4_handle_mds_loopback(phba->pport, 14353 dma_buf); 14354 else 14355 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14356 break; 14357 } 14358 14359 /* save off the frame for the work thread to process */ 14360 list_add_tail(&dma_buf->cq_event.list, 14361 &phba->sli4_hba.sp_queue_event); 14362 /* Frame received */ 14363 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14364 spin_unlock_irqrestore(&phba->hbalock, iflags); 14365 workposted = true; 14366 break; 14367 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14368 if (phba->nvmet_support) { 14369 tgtp = phba->targetport->private; 14370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14371 "6402 RQE Error x%x, posted %d err_cnt " 14372 "%d: %x %x %x\n", 14373 status, hrq->RQ_buf_posted, 14374 hrq->RQ_no_posted_buf, 14375 atomic_read(&tgtp->rcv_fcp_cmd_in), 14376 atomic_read(&tgtp->rcv_fcp_cmd_out), 14377 atomic_read(&tgtp->xmt_fcp_release)); 14378 } 14379 fallthrough; 14380 14381 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14382 hrq->RQ_no_posted_buf++; 14383 /* Post more buffers if possible */ 14384 spin_lock_irqsave(&phba->hbalock, iflags); 14385 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14386 spin_unlock_irqrestore(&phba->hbalock, iflags); 14387 workposted = true; 14388 break; 14389 } 14390 out: 14391 return workposted; 14392 } 14393 14394 /** 14395 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14396 * @phba: Pointer to HBA context object. 14397 * @cq: Pointer to the completion queue. 14398 * @cqe: Pointer to a completion queue entry. 14399 * 14400 * This routine process a slow-path work-queue or receive queue completion queue 14401 * entry. 14402 * 14403 * Return: true if work posted to worker thread, otherwise false. 14404 **/ 14405 static bool 14406 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14407 struct lpfc_cqe *cqe) 14408 { 14409 struct lpfc_cqe cqevt; 14410 bool workposted = false; 14411 14412 /* Copy the work queue CQE and convert endian order if needed */ 14413 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14414 14415 /* Check and process for different type of WCQE and dispatch */ 14416 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14417 case CQE_CODE_COMPL_WQE: 14418 /* Process the WQ/RQ complete event */ 14419 phba->last_completion_time = jiffies; 14420 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14421 (struct lpfc_wcqe_complete *)&cqevt); 14422 break; 14423 case CQE_CODE_RELEASE_WQE: 14424 /* Process the WQ release event */ 14425 lpfc_sli4_sp_handle_rel_wcqe(phba, 14426 (struct lpfc_wcqe_release *)&cqevt); 14427 break; 14428 case CQE_CODE_XRI_ABORTED: 14429 /* Process the WQ XRI abort event */ 14430 phba->last_completion_time = jiffies; 14431 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14432 (struct sli4_wcqe_xri_aborted *)&cqevt); 14433 break; 14434 case CQE_CODE_RECEIVE: 14435 case CQE_CODE_RECEIVE_V1: 14436 /* Process the RQ event */ 14437 phba->last_completion_time = jiffies; 14438 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14439 (struct lpfc_rcqe *)&cqevt); 14440 break; 14441 default: 14442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14443 "0388 Not a valid WCQE code: x%x\n", 14444 bf_get(lpfc_cqe_code, &cqevt)); 14445 break; 14446 } 14447 return workposted; 14448 } 14449 14450 /** 14451 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14452 * @phba: Pointer to HBA context object. 14453 * @eqe: Pointer to fast-path event queue entry. 14454 * @speq: Pointer to slow-path event queue. 14455 * 14456 * This routine process a event queue entry from the slow-path event queue. 14457 * It will check the MajorCode and MinorCode to determine this is for a 14458 * completion event on a completion queue, if not, an error shall be logged 14459 * and just return. Otherwise, it will get to the corresponding completion 14460 * queue and process all the entries on that completion queue, rearm the 14461 * completion queue, and then return. 14462 * 14463 **/ 14464 static void 14465 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14466 struct lpfc_queue *speq) 14467 { 14468 struct lpfc_queue *cq = NULL, *childq; 14469 uint16_t cqid; 14470 int ret = 0; 14471 14472 /* Get the reference to the corresponding CQ */ 14473 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14474 14475 list_for_each_entry(childq, &speq->child_list, list) { 14476 if (childq->queue_id == cqid) { 14477 cq = childq; 14478 break; 14479 } 14480 } 14481 if (unlikely(!cq)) { 14482 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14484 "0365 Slow-path CQ identifier " 14485 "(%d) does not exist\n", cqid); 14486 return; 14487 } 14488 14489 /* Save EQ associated with this CQ */ 14490 cq->assoc_qp = speq; 14491 14492 if (is_kdump_kernel()) 14493 ret = queue_work(phba->wq, &cq->spwork); 14494 else 14495 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14496 14497 if (!ret) 14498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14499 "0390 Cannot schedule queue work " 14500 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14501 cqid, cq->queue_id, raw_smp_processor_id()); 14502 } 14503 14504 /** 14505 * __lpfc_sli4_process_cq - Process elements of a CQ 14506 * @phba: Pointer to HBA context object. 14507 * @cq: Pointer to CQ to be processed 14508 * @handler: Routine to process each cqe 14509 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14510 * @poll_mode: Polling mode we were called from 14511 * 14512 * This routine processes completion queue entries in a CQ. While a valid 14513 * queue element is found, the handler is called. During processing checks 14514 * are made for periodic doorbell writes to let the hardware know of 14515 * element consumption. 14516 * 14517 * If the max limit on cqes to process is hit, or there are no more valid 14518 * entries, the loop stops. If we processed a sufficient number of elements, 14519 * meaning there is sufficient load, rather than rearming and generating 14520 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14521 * indicates no rescheduling. 14522 * 14523 * Returns True if work scheduled, False otherwise. 14524 **/ 14525 static bool 14526 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14527 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14528 struct lpfc_cqe *), unsigned long *delay, 14529 enum lpfc_poll_mode poll_mode) 14530 { 14531 struct lpfc_cqe *cqe; 14532 bool workposted = false; 14533 int count = 0, consumed = 0; 14534 bool arm = true; 14535 14536 /* default - no reschedule */ 14537 *delay = 0; 14538 14539 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14540 goto rearm_and_exit; 14541 14542 /* Process all the entries to the CQ */ 14543 cq->q_flag = 0; 14544 cqe = lpfc_sli4_cq_get(cq); 14545 while (cqe) { 14546 workposted |= handler(phba, cq, cqe); 14547 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14548 14549 consumed++; 14550 if (!(++count % cq->max_proc_limit)) 14551 break; 14552 14553 if (!(count % cq->notify_interval)) { 14554 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14555 LPFC_QUEUE_NOARM); 14556 consumed = 0; 14557 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14558 } 14559 14560 if (count == LPFC_NVMET_CQ_NOTIFY) 14561 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14562 14563 cqe = lpfc_sli4_cq_get(cq); 14564 } 14565 if (count >= phba->cfg_cq_poll_threshold) { 14566 *delay = 1; 14567 arm = false; 14568 } 14569 14570 /* Note: complete the irq_poll softirq before rearming CQ */ 14571 if (poll_mode == LPFC_IRQ_POLL) 14572 irq_poll_complete(&cq->iop); 14573 14574 /* Track the max number of CQEs processed in 1 EQ */ 14575 if (count > cq->CQ_max_cqe) 14576 cq->CQ_max_cqe = count; 14577 14578 cq->assoc_qp->EQ_cqe_cnt += count; 14579 14580 /* Catch the no cq entry condition */ 14581 if (unlikely(count == 0)) 14582 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14583 "0369 No entry from completion queue " 14584 "qid=%d\n", cq->queue_id); 14585 14586 xchg(&cq->queue_claimed, 0); 14587 14588 rearm_and_exit: 14589 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14590 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14591 14592 return workposted; 14593 } 14594 14595 /** 14596 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14597 * @cq: pointer to CQ to process 14598 * 14599 * This routine calls the cq processing routine with a handler specific 14600 * to the type of queue bound to it. 14601 * 14602 * The CQ routine returns two values: the first is the calling status, 14603 * which indicates whether work was queued to the background discovery 14604 * thread. If true, the routine should wakeup the discovery thread; 14605 * the second is the delay parameter. If non-zero, rather than rearming 14606 * the CQ and yet another interrupt, the CQ handler should be queued so 14607 * that it is processed in a subsequent polling action. The value of 14608 * the delay indicates when to reschedule it. 14609 **/ 14610 static void 14611 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14612 { 14613 struct lpfc_hba *phba = cq->phba; 14614 unsigned long delay; 14615 bool workposted = false; 14616 int ret = 0; 14617 14618 /* Process and rearm the CQ */ 14619 switch (cq->type) { 14620 case LPFC_MCQ: 14621 workposted |= __lpfc_sli4_process_cq(phba, cq, 14622 lpfc_sli4_sp_handle_mcqe, 14623 &delay, LPFC_QUEUE_WORK); 14624 break; 14625 case LPFC_WCQ: 14626 if (cq->subtype == LPFC_IO) 14627 workposted |= __lpfc_sli4_process_cq(phba, cq, 14628 lpfc_sli4_fp_handle_cqe, 14629 &delay, LPFC_QUEUE_WORK); 14630 else 14631 workposted |= __lpfc_sli4_process_cq(phba, cq, 14632 lpfc_sli4_sp_handle_cqe, 14633 &delay, LPFC_QUEUE_WORK); 14634 break; 14635 default: 14636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14637 "0370 Invalid completion queue type (%d)\n", 14638 cq->type); 14639 return; 14640 } 14641 14642 if (delay) { 14643 if (is_kdump_kernel()) 14644 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14645 delay); 14646 else 14647 ret = queue_delayed_work_on(cq->chann, phba->wq, 14648 &cq->sched_spwork, delay); 14649 if (!ret) 14650 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14651 "0394 Cannot schedule queue work " 14652 "for cqid=%d on CPU %d\n", 14653 cq->queue_id, cq->chann); 14654 } 14655 14656 /* wake up worker thread if there are works to be done */ 14657 if (workposted) 14658 lpfc_worker_wake_up(phba); 14659 } 14660 14661 /** 14662 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14663 * interrupt 14664 * @work: pointer to work element 14665 * 14666 * translates from the work handler and calls the slow-path handler. 14667 **/ 14668 static void 14669 lpfc_sli4_sp_process_cq(struct work_struct *work) 14670 { 14671 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14672 14673 __lpfc_sli4_sp_process_cq(cq); 14674 } 14675 14676 /** 14677 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14678 * @work: pointer to work element 14679 * 14680 * translates from the work handler and calls the slow-path handler. 14681 **/ 14682 static void 14683 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14684 { 14685 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14686 struct lpfc_queue, sched_spwork); 14687 14688 __lpfc_sli4_sp_process_cq(cq); 14689 } 14690 14691 /** 14692 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14693 * @phba: Pointer to HBA context object. 14694 * @cq: Pointer to associated CQ 14695 * @wcqe: Pointer to work-queue completion queue entry. 14696 * 14697 * This routine process a fast-path work queue completion entry from fast-path 14698 * event queue for FCP command response completion. 14699 **/ 14700 static void 14701 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14702 struct lpfc_wcqe_complete *wcqe) 14703 { 14704 struct lpfc_sli_ring *pring = cq->pring; 14705 struct lpfc_iocbq *cmdiocbq; 14706 unsigned long iflags; 14707 14708 /* Check for response status */ 14709 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14710 /* If resource errors reported from HBA, reduce queue 14711 * depth of the SCSI device. 14712 */ 14713 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14714 IOSTAT_LOCAL_REJECT)) && 14715 ((wcqe->parameter & IOERR_PARAM_MASK) == 14716 IOERR_NO_RESOURCES)) 14717 phba->lpfc_rampdown_queue_depth(phba); 14718 14719 /* Log the cmpl status */ 14720 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14721 "0373 FCP CQE cmpl: status=x%x: " 14722 "CQE: %08x %08x %08x %08x\n", 14723 bf_get(lpfc_wcqe_c_status, wcqe), 14724 wcqe->word0, wcqe->total_data_placed, 14725 wcqe->parameter, wcqe->word3); 14726 } 14727 14728 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14729 spin_lock_irqsave(&pring->ring_lock, iflags); 14730 pring->stats.iocb_event++; 14731 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14732 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14733 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14734 if (unlikely(!cmdiocbq)) { 14735 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14736 "0374 FCP complete with no corresponding " 14737 "cmdiocb: iotag (%d)\n", 14738 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14739 return; 14740 } 14741 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14742 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14743 #endif 14744 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14745 spin_lock_irqsave(&phba->hbalock, iflags); 14746 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14747 spin_unlock_irqrestore(&phba->hbalock, iflags); 14748 } 14749 14750 if (cmdiocbq->cmd_cmpl) { 14751 /* For FCP the flag is cleared in cmd_cmpl */ 14752 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 14753 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 14754 spin_lock_irqsave(&phba->hbalock, iflags); 14755 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 14756 spin_unlock_irqrestore(&phba->hbalock, iflags); 14757 } 14758 14759 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14760 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 14761 sizeof(struct lpfc_wcqe_complete)); 14762 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, cmdiocbq); 14763 } else { 14764 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14765 "0375 FCP cmdiocb not callback function " 14766 "iotag: (%d)\n", 14767 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14768 } 14769 } 14770 14771 /** 14772 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14773 * @phba: Pointer to HBA context object. 14774 * @cq: Pointer to completion queue. 14775 * @wcqe: Pointer to work-queue completion queue entry. 14776 * 14777 * This routine handles an fast-path WQ entry consumed event by invoking the 14778 * proper WQ release routine to the slow-path WQ. 14779 **/ 14780 static void 14781 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14782 struct lpfc_wcqe_release *wcqe) 14783 { 14784 struct lpfc_queue *childwq; 14785 bool wqid_matched = false; 14786 uint16_t hba_wqid; 14787 14788 /* Check for fast-path FCP work queue release */ 14789 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14790 list_for_each_entry(childwq, &cq->child_list, list) { 14791 if (childwq->queue_id == hba_wqid) { 14792 lpfc_sli4_wq_release(childwq, 14793 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14794 if (childwq->q_flag & HBA_NVMET_WQFULL) 14795 lpfc_nvmet_wqfull_process(phba, childwq); 14796 wqid_matched = true; 14797 break; 14798 } 14799 } 14800 /* Report warning log message if no match found */ 14801 if (wqid_matched != true) 14802 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14803 "2580 Fast-path wqe consume event carries " 14804 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14805 } 14806 14807 /** 14808 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14809 * @phba: Pointer to HBA context object. 14810 * @cq: Pointer to completion queue. 14811 * @rcqe: Pointer to receive-queue completion queue entry. 14812 * 14813 * This routine process a receive-queue completion queue entry. 14814 * 14815 * Return: true if work posted to worker thread, otherwise false. 14816 **/ 14817 static bool 14818 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14819 struct lpfc_rcqe *rcqe) 14820 { 14821 bool workposted = false; 14822 struct lpfc_queue *hrq; 14823 struct lpfc_queue *drq; 14824 struct rqb_dmabuf *dma_buf; 14825 struct fc_frame_header *fc_hdr; 14826 struct lpfc_nvmet_tgtport *tgtp; 14827 uint32_t status, rq_id; 14828 unsigned long iflags; 14829 uint32_t fctl, idx; 14830 14831 if ((phba->nvmet_support == 0) || 14832 (phba->sli4_hba.nvmet_cqset == NULL)) 14833 return workposted; 14834 14835 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14836 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14837 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14838 14839 /* sanity check on queue memory */ 14840 if (unlikely(!hrq) || unlikely(!drq)) 14841 return workposted; 14842 14843 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14844 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14845 else 14846 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14847 14848 if ((phba->nvmet_support == 0) || 14849 (rq_id != hrq->queue_id)) 14850 return workposted; 14851 14852 status = bf_get(lpfc_rcqe_status, rcqe); 14853 switch (status) { 14854 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14856 "6126 Receive Frame Truncated!!\n"); 14857 fallthrough; 14858 case FC_STATUS_RQ_SUCCESS: 14859 spin_lock_irqsave(&phba->hbalock, iflags); 14860 lpfc_sli4_rq_release(hrq, drq); 14861 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14862 if (!dma_buf) { 14863 hrq->RQ_no_buf_found++; 14864 spin_unlock_irqrestore(&phba->hbalock, iflags); 14865 goto out; 14866 } 14867 spin_unlock_irqrestore(&phba->hbalock, iflags); 14868 hrq->RQ_rcv_buf++; 14869 hrq->RQ_buf_posted--; 14870 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14871 14872 /* Just some basic sanity checks on FCP Command frame */ 14873 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14874 fc_hdr->fh_f_ctl[1] << 8 | 14875 fc_hdr->fh_f_ctl[2]); 14876 if (((fctl & 14877 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14878 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14879 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14880 goto drop; 14881 14882 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14883 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14884 lpfc_nvmet_unsol_fcp_event( 14885 phba, idx, dma_buf, cq->isr_timestamp, 14886 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14887 return false; 14888 } 14889 drop: 14890 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14891 break; 14892 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14893 if (phba->nvmet_support) { 14894 tgtp = phba->targetport->private; 14895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14896 "6401 RQE Error x%x, posted %d err_cnt " 14897 "%d: %x %x %x\n", 14898 status, hrq->RQ_buf_posted, 14899 hrq->RQ_no_posted_buf, 14900 atomic_read(&tgtp->rcv_fcp_cmd_in), 14901 atomic_read(&tgtp->rcv_fcp_cmd_out), 14902 atomic_read(&tgtp->xmt_fcp_release)); 14903 } 14904 fallthrough; 14905 14906 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14907 hrq->RQ_no_posted_buf++; 14908 /* Post more buffers if possible */ 14909 break; 14910 } 14911 out: 14912 return workposted; 14913 } 14914 14915 /** 14916 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14917 * @phba: adapter with cq 14918 * @cq: Pointer to the completion queue. 14919 * @cqe: Pointer to fast-path completion queue entry. 14920 * 14921 * This routine process a fast-path work queue completion entry from fast-path 14922 * event queue for FCP command response completion. 14923 * 14924 * Return: true if work posted to worker thread, otherwise false. 14925 **/ 14926 static bool 14927 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14928 struct lpfc_cqe *cqe) 14929 { 14930 struct lpfc_wcqe_release wcqe; 14931 bool workposted = false; 14932 14933 /* Copy the work queue CQE and convert endian order if needed */ 14934 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14935 14936 /* Check and process for different type of WCQE and dispatch */ 14937 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14938 case CQE_CODE_COMPL_WQE: 14939 case CQE_CODE_NVME_ERSP: 14940 cq->CQ_wq++; 14941 /* Process the WQ complete event */ 14942 phba->last_completion_time = jiffies; 14943 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14944 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14945 (struct lpfc_wcqe_complete *)&wcqe); 14946 break; 14947 case CQE_CODE_RELEASE_WQE: 14948 cq->CQ_release_wqe++; 14949 /* Process the WQ release event */ 14950 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14951 (struct lpfc_wcqe_release *)&wcqe); 14952 break; 14953 case CQE_CODE_XRI_ABORTED: 14954 cq->CQ_xri_aborted++; 14955 /* Process the WQ XRI abort event */ 14956 phba->last_completion_time = jiffies; 14957 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14958 (struct sli4_wcqe_xri_aborted *)&wcqe); 14959 break; 14960 case CQE_CODE_RECEIVE_V1: 14961 case CQE_CODE_RECEIVE: 14962 phba->last_completion_time = jiffies; 14963 if (cq->subtype == LPFC_NVMET) { 14964 workposted = lpfc_sli4_nvmet_handle_rcqe( 14965 phba, cq, (struct lpfc_rcqe *)&wcqe); 14966 } 14967 break; 14968 default: 14969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14970 "0144 Not a valid CQE code: x%x\n", 14971 bf_get(lpfc_wcqe_c_code, &wcqe)); 14972 break; 14973 } 14974 return workposted; 14975 } 14976 14977 /** 14978 * lpfc_sli4_sched_cq_work - Schedules cq work 14979 * @phba: Pointer to HBA context object. 14980 * @cq: Pointer to CQ 14981 * @cqid: CQ ID 14982 * 14983 * This routine checks the poll mode of the CQ corresponding to 14984 * cq->chann, then either schedules a softirq or queue_work to complete 14985 * cq work. 14986 * 14987 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14988 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14989 * 14990 **/ 14991 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14992 struct lpfc_queue *cq, uint16_t cqid) 14993 { 14994 int ret = 0; 14995 14996 switch (cq->poll_mode) { 14997 case LPFC_IRQ_POLL: 14998 /* CGN mgmt is mutually exclusive from softirq processing */ 14999 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15000 irq_poll_sched(&cq->iop); 15001 break; 15002 } 15003 fallthrough; 15004 case LPFC_QUEUE_WORK: 15005 default: 15006 if (is_kdump_kernel()) 15007 ret = queue_work(phba->wq, &cq->irqwork); 15008 else 15009 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15010 if (!ret) 15011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15012 "0383 Cannot schedule queue work " 15013 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15014 cqid, cq->queue_id, 15015 raw_smp_processor_id()); 15016 } 15017 } 15018 15019 /** 15020 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15021 * @phba: Pointer to HBA context object. 15022 * @eq: Pointer to the queue structure. 15023 * @eqe: Pointer to fast-path event queue entry. 15024 * 15025 * This routine process a event queue entry from the fast-path event queue. 15026 * It will check the MajorCode and MinorCode to determine this is for a 15027 * completion event on a completion queue, if not, an error shall be logged 15028 * and just return. Otherwise, it will get to the corresponding completion 15029 * queue and process all the entries on the completion queue, rearm the 15030 * completion queue, and then return. 15031 **/ 15032 static void 15033 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15034 struct lpfc_eqe *eqe) 15035 { 15036 struct lpfc_queue *cq = NULL; 15037 uint32_t qidx = eq->hdwq; 15038 uint16_t cqid, id; 15039 15040 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15042 "0366 Not a valid completion " 15043 "event: majorcode=x%x, minorcode=x%x\n", 15044 bf_get_le32(lpfc_eqe_major_code, eqe), 15045 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15046 return; 15047 } 15048 15049 /* Get the reference to the corresponding CQ */ 15050 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15051 15052 /* Use the fast lookup method first */ 15053 if (cqid <= phba->sli4_hba.cq_max) { 15054 cq = phba->sli4_hba.cq_lookup[cqid]; 15055 if (cq) 15056 goto work_cq; 15057 } 15058 15059 /* Next check for NVMET completion */ 15060 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15061 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15062 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15063 /* Process NVMET unsol rcv */ 15064 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15065 goto process_cq; 15066 } 15067 } 15068 15069 if (phba->sli4_hba.nvmels_cq && 15070 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15071 /* Process NVME unsol rcv */ 15072 cq = phba->sli4_hba.nvmels_cq; 15073 } 15074 15075 /* Otherwise this is a Slow path event */ 15076 if (cq == NULL) { 15077 lpfc_sli4_sp_handle_eqe(phba, eqe, 15078 phba->sli4_hba.hdwq[qidx].hba_eq); 15079 return; 15080 } 15081 15082 process_cq: 15083 if (unlikely(cqid != cq->queue_id)) { 15084 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15085 "0368 Miss-matched fast-path completion " 15086 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15087 cqid, cq->queue_id); 15088 return; 15089 } 15090 15091 work_cq: 15092 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15093 if (phba->ktime_on) 15094 cq->isr_timestamp = ktime_get_ns(); 15095 else 15096 cq->isr_timestamp = 0; 15097 #endif 15098 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15099 } 15100 15101 /** 15102 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15103 * @cq: Pointer to CQ to be processed 15104 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15105 * 15106 * This routine calls the cq processing routine with the handler for 15107 * fast path CQEs. 15108 * 15109 * The CQ routine returns two values: the first is the calling status, 15110 * which indicates whether work was queued to the background discovery 15111 * thread. If true, the routine should wakeup the discovery thread; 15112 * the second is the delay parameter. If non-zero, rather than rearming 15113 * the CQ and yet another interrupt, the CQ handler should be queued so 15114 * that it is processed in a subsequent polling action. The value of 15115 * the delay indicates when to reschedule it. 15116 **/ 15117 static void 15118 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15119 enum lpfc_poll_mode poll_mode) 15120 { 15121 struct lpfc_hba *phba = cq->phba; 15122 unsigned long delay; 15123 bool workposted = false; 15124 int ret = 0; 15125 15126 /* process and rearm the CQ */ 15127 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15128 &delay, poll_mode); 15129 15130 if (delay) { 15131 if (is_kdump_kernel()) 15132 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15133 delay); 15134 else 15135 ret = queue_delayed_work_on(cq->chann, phba->wq, 15136 &cq->sched_irqwork, delay); 15137 if (!ret) 15138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15139 "0367 Cannot schedule queue work " 15140 "for cqid=%d on CPU %d\n", 15141 cq->queue_id, cq->chann); 15142 } 15143 15144 /* wake up worker thread if there are works to be done */ 15145 if (workposted) 15146 lpfc_worker_wake_up(phba); 15147 } 15148 15149 /** 15150 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15151 * interrupt 15152 * @work: pointer to work element 15153 * 15154 * translates from the work handler and calls the fast-path handler. 15155 **/ 15156 static void 15157 lpfc_sli4_hba_process_cq(struct work_struct *work) 15158 { 15159 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15160 15161 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15162 } 15163 15164 /** 15165 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15166 * @work: pointer to work element 15167 * 15168 * translates from the work handler and calls the fast-path handler. 15169 **/ 15170 static void 15171 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15172 { 15173 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15174 struct lpfc_queue, sched_irqwork); 15175 15176 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15177 } 15178 15179 /** 15180 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15181 * @irq: Interrupt number. 15182 * @dev_id: The device context pointer. 15183 * 15184 * This function is directly called from the PCI layer as an interrupt 15185 * service routine when device with SLI-4 interface spec is enabled with 15186 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15187 * ring event in the HBA. However, when the device is enabled with either 15188 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15189 * device-level interrupt handler. When the PCI slot is in error recovery 15190 * or the HBA is undergoing initialization, the interrupt handler will not 15191 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15192 * the intrrupt context. This function is called without any lock held. 15193 * It gets the hbalock to access and update SLI data structures. Note that, 15194 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15195 * equal to that of FCP CQ index. 15196 * 15197 * The link attention and ELS ring attention events are handled 15198 * by the worker thread. The interrupt handler signals the worker thread 15199 * and returns for these events. This function is called without any lock 15200 * held. It gets the hbalock to access and update SLI data structures. 15201 * 15202 * This function returns IRQ_HANDLED when interrupt is handled else it 15203 * returns IRQ_NONE. 15204 **/ 15205 irqreturn_t 15206 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15207 { 15208 struct lpfc_hba *phba; 15209 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15210 struct lpfc_queue *fpeq; 15211 unsigned long iflag; 15212 int ecount = 0; 15213 int hba_eqidx; 15214 struct lpfc_eq_intr_info *eqi; 15215 15216 /* Get the driver's phba structure from the dev_id */ 15217 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15218 phba = hba_eq_hdl->phba; 15219 hba_eqidx = hba_eq_hdl->idx; 15220 15221 if (unlikely(!phba)) 15222 return IRQ_NONE; 15223 if (unlikely(!phba->sli4_hba.hdwq)) 15224 return IRQ_NONE; 15225 15226 /* Get to the EQ struct associated with this vector */ 15227 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15228 if (unlikely(!fpeq)) 15229 return IRQ_NONE; 15230 15231 /* Check device state for handling interrupt */ 15232 if (unlikely(lpfc_intr_state_check(phba))) { 15233 /* Check again for link_state with lock held */ 15234 spin_lock_irqsave(&phba->hbalock, iflag); 15235 if (phba->link_state < LPFC_LINK_DOWN) 15236 /* Flush, clear interrupt, and rearm the EQ */ 15237 lpfc_sli4_eqcq_flush(phba, fpeq); 15238 spin_unlock_irqrestore(&phba->hbalock, iflag); 15239 return IRQ_NONE; 15240 } 15241 15242 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15243 eqi->icnt++; 15244 15245 fpeq->last_cpu = raw_smp_processor_id(); 15246 15247 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15248 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15249 phba->cfg_auto_imax && 15250 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15251 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15252 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15253 15254 /* process and rearm the EQ */ 15255 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15256 15257 if (unlikely(ecount == 0)) { 15258 fpeq->EQ_no_entry++; 15259 if (phba->intr_type == MSIX) 15260 /* MSI-X treated interrupt served as no EQ share INT */ 15261 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15262 "0358 MSI-X interrupt with no EQE\n"); 15263 else 15264 /* Non MSI-X treated on interrupt as EQ share INT */ 15265 return IRQ_NONE; 15266 } 15267 15268 return IRQ_HANDLED; 15269 } /* lpfc_sli4_hba_intr_handler */ 15270 15271 /** 15272 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15273 * @irq: Interrupt number. 15274 * @dev_id: The device context pointer. 15275 * 15276 * This function is the device-level interrupt handler to device with SLI-4 15277 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15278 * interrupt mode is enabled and there is an event in the HBA which requires 15279 * driver attention. This function invokes the slow-path interrupt attention 15280 * handling function and fast-path interrupt attention handling function in 15281 * turn to process the relevant HBA attention events. This function is called 15282 * without any lock held. It gets the hbalock to access and update SLI data 15283 * structures. 15284 * 15285 * This function returns IRQ_HANDLED when interrupt is handled, else it 15286 * returns IRQ_NONE. 15287 **/ 15288 irqreturn_t 15289 lpfc_sli4_intr_handler(int irq, void *dev_id) 15290 { 15291 struct lpfc_hba *phba; 15292 irqreturn_t hba_irq_rc; 15293 bool hba_handled = false; 15294 int qidx; 15295 15296 /* Get the driver's phba structure from the dev_id */ 15297 phba = (struct lpfc_hba *)dev_id; 15298 15299 if (unlikely(!phba)) 15300 return IRQ_NONE; 15301 15302 /* 15303 * Invoke fast-path host attention interrupt handling as appropriate. 15304 */ 15305 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15306 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15307 &phba->sli4_hba.hba_eq_hdl[qidx]); 15308 if (hba_irq_rc == IRQ_HANDLED) 15309 hba_handled |= true; 15310 } 15311 15312 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15313 } /* lpfc_sli4_intr_handler */ 15314 15315 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15316 { 15317 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15318 struct lpfc_queue *eq; 15319 int i = 0; 15320 15321 rcu_read_lock(); 15322 15323 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15324 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15325 if (!list_empty(&phba->poll_list)) 15326 mod_timer(&phba->cpuhp_poll_timer, 15327 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15328 15329 rcu_read_unlock(); 15330 } 15331 15332 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15333 { 15334 struct lpfc_hba *phba = eq->phba; 15335 int i = 0; 15336 15337 /* 15338 * Unlocking an irq is one of the entry point to check 15339 * for re-schedule, but we are good for io submission 15340 * path as midlayer does a get_cpu to glue us in. Flush 15341 * out the invalidate queue so we can see the updated 15342 * value for flag. 15343 */ 15344 smp_rmb(); 15345 15346 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15347 /* We will not likely get the completion for the caller 15348 * during this iteration but i guess that's fine. 15349 * Future io's coming on this eq should be able to 15350 * pick it up. As for the case of single io's, they 15351 * will be handled through a sched from polling timer 15352 * function which is currently triggered every 1msec. 15353 */ 15354 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15355 15356 return i; 15357 } 15358 15359 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15360 { 15361 struct lpfc_hba *phba = eq->phba; 15362 15363 /* kickstart slowpath processing if needed */ 15364 if (list_empty(&phba->poll_list)) 15365 mod_timer(&phba->cpuhp_poll_timer, 15366 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15367 15368 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15369 synchronize_rcu(); 15370 } 15371 15372 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15373 { 15374 struct lpfc_hba *phba = eq->phba; 15375 15376 /* Disable slowpath processing for this eq. Kick start the eq 15377 * by RE-ARMING the eq's ASAP 15378 */ 15379 list_del_rcu(&eq->_poll_list); 15380 synchronize_rcu(); 15381 15382 if (list_empty(&phba->poll_list)) 15383 del_timer_sync(&phba->cpuhp_poll_timer); 15384 } 15385 15386 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15387 { 15388 struct lpfc_queue *eq, *next; 15389 15390 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15391 list_del(&eq->_poll_list); 15392 15393 INIT_LIST_HEAD(&phba->poll_list); 15394 synchronize_rcu(); 15395 } 15396 15397 static inline void 15398 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15399 { 15400 if (mode == eq->mode) 15401 return; 15402 /* 15403 * currently this function is only called during a hotplug 15404 * event and the cpu on which this function is executing 15405 * is going offline. By now the hotplug has instructed 15406 * the scheduler to remove this cpu from cpu active mask. 15407 * So we don't need to work about being put aside by the 15408 * scheduler for a high priority process. Yes, the inte- 15409 * rrupts could come but they are known to retire ASAP. 15410 */ 15411 15412 /* Disable polling in the fastpath */ 15413 WRITE_ONCE(eq->mode, mode); 15414 /* flush out the store buffer */ 15415 smp_wmb(); 15416 15417 /* 15418 * Add this eq to the polling list and start polling. For 15419 * a grace period both interrupt handler and poller will 15420 * try to process the eq _but_ that's fine. We have a 15421 * synchronization mechanism in place (queue_claimed) to 15422 * deal with it. This is just a draining phase for int- 15423 * errupt handler (not eq's) as we have guranteed through 15424 * barrier that all the CPUs have seen the new CQ_POLLED 15425 * state. which will effectively disable the REARMING of 15426 * the EQ. The whole idea is eq's die off eventually as 15427 * we are not rearming EQ's anymore. 15428 */ 15429 mode ? lpfc_sli4_add_to_poll_list(eq) : 15430 lpfc_sli4_remove_from_poll_list(eq); 15431 } 15432 15433 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15434 { 15435 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15436 } 15437 15438 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15439 { 15440 struct lpfc_hba *phba = eq->phba; 15441 15442 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15443 15444 /* Kick start for the pending io's in h/w. 15445 * Once we switch back to interrupt processing on a eq 15446 * the io path completion will only arm eq's when it 15447 * receives a completion. But since eq's are in disa- 15448 * rmed state it doesn't receive a completion. This 15449 * creates a deadlock scenaro. 15450 */ 15451 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15452 } 15453 15454 /** 15455 * lpfc_sli4_queue_free - free a queue structure and associated memory 15456 * @queue: The queue structure to free. 15457 * 15458 * This function frees a queue structure and the DMAable memory used for 15459 * the host resident queue. This function must be called after destroying the 15460 * queue on the HBA. 15461 **/ 15462 void 15463 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15464 { 15465 struct lpfc_dmabuf *dmabuf; 15466 15467 if (!queue) 15468 return; 15469 15470 if (!list_empty(&queue->wq_list)) 15471 list_del(&queue->wq_list); 15472 15473 while (!list_empty(&queue->page_list)) { 15474 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15475 list); 15476 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15477 dmabuf->virt, dmabuf->phys); 15478 kfree(dmabuf); 15479 } 15480 if (queue->rqbp) { 15481 lpfc_free_rq_buffer(queue->phba, queue); 15482 kfree(queue->rqbp); 15483 } 15484 15485 if (!list_empty(&queue->cpu_list)) 15486 list_del(&queue->cpu_list); 15487 15488 kfree(queue); 15489 return; 15490 } 15491 15492 /** 15493 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15494 * @phba: The HBA that this queue is being created on. 15495 * @page_size: The size of a queue page 15496 * @entry_size: The size of each queue entry for this queue. 15497 * @entry_count: The number of entries that this queue will handle. 15498 * @cpu: The cpu that will primarily utilize this queue. 15499 * 15500 * This function allocates a queue structure and the DMAable memory used for 15501 * the host resident queue. This function must be called before creating the 15502 * queue on the HBA. 15503 **/ 15504 struct lpfc_queue * 15505 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15506 uint32_t entry_size, uint32_t entry_count, int cpu) 15507 { 15508 struct lpfc_queue *queue; 15509 struct lpfc_dmabuf *dmabuf; 15510 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15511 uint16_t x, pgcnt; 15512 15513 if (!phba->sli4_hba.pc_sli4_params.supported) 15514 hw_page_size = page_size; 15515 15516 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15517 15518 /* If needed, Adjust page count to match the max the adapter supports */ 15519 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15520 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15521 15522 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15523 GFP_KERNEL, cpu_to_node(cpu)); 15524 if (!queue) 15525 return NULL; 15526 15527 INIT_LIST_HEAD(&queue->list); 15528 INIT_LIST_HEAD(&queue->_poll_list); 15529 INIT_LIST_HEAD(&queue->wq_list); 15530 INIT_LIST_HEAD(&queue->wqfull_list); 15531 INIT_LIST_HEAD(&queue->page_list); 15532 INIT_LIST_HEAD(&queue->child_list); 15533 INIT_LIST_HEAD(&queue->cpu_list); 15534 15535 /* Set queue parameters now. If the system cannot provide memory 15536 * resources, the free routine needs to know what was allocated. 15537 */ 15538 queue->page_count = pgcnt; 15539 queue->q_pgs = (void **)&queue[1]; 15540 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15541 queue->entry_size = entry_size; 15542 queue->entry_count = entry_count; 15543 queue->page_size = hw_page_size; 15544 queue->phba = phba; 15545 15546 for (x = 0; x < queue->page_count; x++) { 15547 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15548 dev_to_node(&phba->pcidev->dev)); 15549 if (!dmabuf) 15550 goto out_fail; 15551 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15552 hw_page_size, &dmabuf->phys, 15553 GFP_KERNEL); 15554 if (!dmabuf->virt) { 15555 kfree(dmabuf); 15556 goto out_fail; 15557 } 15558 dmabuf->buffer_tag = x; 15559 list_add_tail(&dmabuf->list, &queue->page_list); 15560 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15561 queue->q_pgs[x] = dmabuf->virt; 15562 } 15563 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15564 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15565 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15566 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15567 15568 /* notify_interval will be set during q creation */ 15569 15570 return queue; 15571 out_fail: 15572 lpfc_sli4_queue_free(queue); 15573 return NULL; 15574 } 15575 15576 /** 15577 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15578 * @phba: HBA structure that indicates port to create a queue on. 15579 * @pci_barset: PCI BAR set flag. 15580 * 15581 * This function shall perform iomap of the specified PCI BAR address to host 15582 * memory address if not already done so and return it. The returned host 15583 * memory address can be NULL. 15584 */ 15585 static void __iomem * 15586 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15587 { 15588 if (!phba->pcidev) 15589 return NULL; 15590 15591 switch (pci_barset) { 15592 case WQ_PCI_BAR_0_AND_1: 15593 return phba->pci_bar0_memmap_p; 15594 case WQ_PCI_BAR_2_AND_3: 15595 return phba->pci_bar2_memmap_p; 15596 case WQ_PCI_BAR_4_AND_5: 15597 return phba->pci_bar4_memmap_p; 15598 default: 15599 break; 15600 } 15601 return NULL; 15602 } 15603 15604 /** 15605 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15606 * @phba: HBA structure that EQs are on. 15607 * @startq: The starting EQ index to modify 15608 * @numq: The number of EQs (consecutive indexes) to modify 15609 * @usdelay: amount of delay 15610 * 15611 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15612 * is set either by writing to a register (if supported by the SLI Port) 15613 * or by mailbox command. The mailbox command allows several EQs to be 15614 * updated at once. 15615 * 15616 * The @phba struct is used to send a mailbox command to HBA. The @startq 15617 * is used to get the starting EQ index to change. The @numq value is 15618 * used to specify how many consecutive EQ indexes, starting at EQ index, 15619 * are to be changed. This function is asynchronous and will wait for any 15620 * mailbox commands to finish before returning. 15621 * 15622 * On success this function will return a zero. If unable to allocate 15623 * enough memory this function will return -ENOMEM. If a mailbox command 15624 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15625 * have had their delay multipler changed. 15626 **/ 15627 void 15628 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15629 uint32_t numq, uint32_t usdelay) 15630 { 15631 struct lpfc_mbx_modify_eq_delay *eq_delay; 15632 LPFC_MBOXQ_t *mbox; 15633 struct lpfc_queue *eq; 15634 int cnt = 0, rc, length; 15635 uint32_t shdr_status, shdr_add_status; 15636 uint32_t dmult; 15637 int qidx; 15638 union lpfc_sli4_cfg_shdr *shdr; 15639 15640 if (startq >= phba->cfg_irq_chann) 15641 return; 15642 15643 if (usdelay > 0xFFFF) { 15644 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15645 "6429 usdelay %d too large. Scaled down to " 15646 "0xFFFF.\n", usdelay); 15647 usdelay = 0xFFFF; 15648 } 15649 15650 /* set values by EQ_DELAY register if supported */ 15651 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15652 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15653 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15654 if (!eq) 15655 continue; 15656 15657 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15658 15659 if (++cnt >= numq) 15660 break; 15661 } 15662 return; 15663 } 15664 15665 /* Otherwise, set values by mailbox cmd */ 15666 15667 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15668 if (!mbox) { 15669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15670 "6428 Failed allocating mailbox cmd buffer." 15671 " EQ delay was not set.\n"); 15672 return; 15673 } 15674 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15675 sizeof(struct lpfc_sli4_cfg_mhdr)); 15676 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15677 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15678 length, LPFC_SLI4_MBX_EMBED); 15679 eq_delay = &mbox->u.mqe.un.eq_delay; 15680 15681 /* Calculate delay multiper from maximum interrupt per second */ 15682 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15683 if (dmult) 15684 dmult--; 15685 if (dmult > LPFC_DMULT_MAX) 15686 dmult = LPFC_DMULT_MAX; 15687 15688 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15689 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15690 if (!eq) 15691 continue; 15692 eq->q_mode = usdelay; 15693 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15694 eq_delay->u.request.eq[cnt].phase = 0; 15695 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15696 15697 if (++cnt >= numq) 15698 break; 15699 } 15700 eq_delay->u.request.num_eq = cnt; 15701 15702 mbox->vport = phba->pport; 15703 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15704 mbox->ctx_buf = NULL; 15705 mbox->ctx_ndlp = NULL; 15706 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15707 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15708 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15709 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15710 if (shdr_status || shdr_add_status || rc) { 15711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15712 "2512 MODIFY_EQ_DELAY mailbox failed with " 15713 "status x%x add_status x%x, mbx status x%x\n", 15714 shdr_status, shdr_add_status, rc); 15715 } 15716 mempool_free(mbox, phba->mbox_mem_pool); 15717 return; 15718 } 15719 15720 /** 15721 * lpfc_eq_create - Create an Event Queue on the HBA 15722 * @phba: HBA structure that indicates port to create a queue on. 15723 * @eq: The queue structure to use to create the event queue. 15724 * @imax: The maximum interrupt per second limit. 15725 * 15726 * This function creates an event queue, as detailed in @eq, on a port, 15727 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15728 * 15729 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15730 * is used to get the entry count and entry size that are necessary to 15731 * determine the number of pages to allocate and use for this queue. This 15732 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15733 * event queue. This function is asynchronous and will wait for the mailbox 15734 * command to finish before continuing. 15735 * 15736 * On success this function will return a zero. If unable to allocate enough 15737 * memory this function will return -ENOMEM. If the queue create mailbox command 15738 * fails this function will return -ENXIO. 15739 **/ 15740 int 15741 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15742 { 15743 struct lpfc_mbx_eq_create *eq_create; 15744 LPFC_MBOXQ_t *mbox; 15745 int rc, length, status = 0; 15746 struct lpfc_dmabuf *dmabuf; 15747 uint32_t shdr_status, shdr_add_status; 15748 union lpfc_sli4_cfg_shdr *shdr; 15749 uint16_t dmult; 15750 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15751 15752 /* sanity check on queue memory */ 15753 if (!eq) 15754 return -ENODEV; 15755 if (!phba->sli4_hba.pc_sli4_params.supported) 15756 hw_page_size = SLI4_PAGE_SIZE; 15757 15758 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15759 if (!mbox) 15760 return -ENOMEM; 15761 length = (sizeof(struct lpfc_mbx_eq_create) - 15762 sizeof(struct lpfc_sli4_cfg_mhdr)); 15763 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15764 LPFC_MBOX_OPCODE_EQ_CREATE, 15765 length, LPFC_SLI4_MBX_EMBED); 15766 eq_create = &mbox->u.mqe.un.eq_create; 15767 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15768 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15769 eq->page_count); 15770 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15771 LPFC_EQE_SIZE); 15772 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15773 15774 /* Use version 2 of CREATE_EQ if eqav is set */ 15775 if (phba->sli4_hba.pc_sli4_params.eqav) { 15776 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15777 LPFC_Q_CREATE_VERSION_2); 15778 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15779 phba->sli4_hba.pc_sli4_params.eqav); 15780 } 15781 15782 /* don't setup delay multiplier using EQ_CREATE */ 15783 dmult = 0; 15784 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15785 dmult); 15786 switch (eq->entry_count) { 15787 default: 15788 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15789 "0360 Unsupported EQ count. (%d)\n", 15790 eq->entry_count); 15791 if (eq->entry_count < 256) { 15792 status = -EINVAL; 15793 goto out; 15794 } 15795 fallthrough; /* otherwise default to smallest count */ 15796 case 256: 15797 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15798 LPFC_EQ_CNT_256); 15799 break; 15800 case 512: 15801 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15802 LPFC_EQ_CNT_512); 15803 break; 15804 case 1024: 15805 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15806 LPFC_EQ_CNT_1024); 15807 break; 15808 case 2048: 15809 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15810 LPFC_EQ_CNT_2048); 15811 break; 15812 case 4096: 15813 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15814 LPFC_EQ_CNT_4096); 15815 break; 15816 } 15817 list_for_each_entry(dmabuf, &eq->page_list, list) { 15818 memset(dmabuf->virt, 0, hw_page_size); 15819 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15820 putPaddrLow(dmabuf->phys); 15821 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15822 putPaddrHigh(dmabuf->phys); 15823 } 15824 mbox->vport = phba->pport; 15825 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15826 mbox->ctx_buf = NULL; 15827 mbox->ctx_ndlp = NULL; 15828 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15829 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15830 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15831 if (shdr_status || shdr_add_status || rc) { 15832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15833 "2500 EQ_CREATE mailbox failed with " 15834 "status x%x add_status x%x, mbx status x%x\n", 15835 shdr_status, shdr_add_status, rc); 15836 status = -ENXIO; 15837 } 15838 eq->type = LPFC_EQ; 15839 eq->subtype = LPFC_NONE; 15840 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15841 if (eq->queue_id == 0xFFFF) 15842 status = -ENXIO; 15843 eq->host_index = 0; 15844 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15845 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15846 out: 15847 mempool_free(mbox, phba->mbox_mem_pool); 15848 return status; 15849 } 15850 15851 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15852 { 15853 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15854 15855 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15856 15857 return 1; 15858 } 15859 15860 /** 15861 * lpfc_cq_create - Create a Completion Queue on the HBA 15862 * @phba: HBA structure that indicates port to create a queue on. 15863 * @cq: The queue structure to use to create the completion queue. 15864 * @eq: The event queue to bind this completion queue to. 15865 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15866 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15867 * 15868 * This function creates a completion queue, as detailed in @wq, on a port, 15869 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15870 * 15871 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15872 * is used to get the entry count and entry size that are necessary to 15873 * determine the number of pages to allocate and use for this queue. The @eq 15874 * is used to indicate which event queue to bind this completion queue to. This 15875 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15876 * completion queue. This function is asynchronous and will wait for the mailbox 15877 * command to finish before continuing. 15878 * 15879 * On success this function will return a zero. If unable to allocate enough 15880 * memory this function will return -ENOMEM. If the queue create mailbox command 15881 * fails this function will return -ENXIO. 15882 **/ 15883 int 15884 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15885 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15886 { 15887 struct lpfc_mbx_cq_create *cq_create; 15888 struct lpfc_dmabuf *dmabuf; 15889 LPFC_MBOXQ_t *mbox; 15890 int rc, length, status = 0; 15891 uint32_t shdr_status, shdr_add_status; 15892 union lpfc_sli4_cfg_shdr *shdr; 15893 15894 /* sanity check on queue memory */ 15895 if (!cq || !eq) 15896 return -ENODEV; 15897 15898 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15899 if (!mbox) 15900 return -ENOMEM; 15901 length = (sizeof(struct lpfc_mbx_cq_create) - 15902 sizeof(struct lpfc_sli4_cfg_mhdr)); 15903 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15904 LPFC_MBOX_OPCODE_CQ_CREATE, 15905 length, LPFC_SLI4_MBX_EMBED); 15906 cq_create = &mbox->u.mqe.un.cq_create; 15907 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15908 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15909 cq->page_count); 15910 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15911 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15912 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15913 phba->sli4_hba.pc_sli4_params.cqv); 15914 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15915 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15916 (cq->page_size / SLI4_PAGE_SIZE)); 15917 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15918 eq->queue_id); 15919 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15920 phba->sli4_hba.pc_sli4_params.cqav); 15921 } else { 15922 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15923 eq->queue_id); 15924 } 15925 switch (cq->entry_count) { 15926 case 2048: 15927 case 4096: 15928 if (phba->sli4_hba.pc_sli4_params.cqv == 15929 LPFC_Q_CREATE_VERSION_2) { 15930 cq_create->u.request.context.lpfc_cq_context_count = 15931 cq->entry_count; 15932 bf_set(lpfc_cq_context_count, 15933 &cq_create->u.request.context, 15934 LPFC_CQ_CNT_WORD7); 15935 break; 15936 } 15937 fallthrough; 15938 default: 15939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15940 "0361 Unsupported CQ count: " 15941 "entry cnt %d sz %d pg cnt %d\n", 15942 cq->entry_count, cq->entry_size, 15943 cq->page_count); 15944 if (cq->entry_count < 256) { 15945 status = -EINVAL; 15946 goto out; 15947 } 15948 fallthrough; /* otherwise default to smallest count */ 15949 case 256: 15950 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15951 LPFC_CQ_CNT_256); 15952 break; 15953 case 512: 15954 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15955 LPFC_CQ_CNT_512); 15956 break; 15957 case 1024: 15958 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15959 LPFC_CQ_CNT_1024); 15960 break; 15961 } 15962 list_for_each_entry(dmabuf, &cq->page_list, list) { 15963 memset(dmabuf->virt, 0, cq->page_size); 15964 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15965 putPaddrLow(dmabuf->phys); 15966 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15967 putPaddrHigh(dmabuf->phys); 15968 } 15969 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15970 15971 /* The IOCTL status is embedded in the mailbox subheader. */ 15972 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15973 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15974 if (shdr_status || shdr_add_status || rc) { 15975 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15976 "2501 CQ_CREATE mailbox failed with " 15977 "status x%x add_status x%x, mbx status x%x\n", 15978 shdr_status, shdr_add_status, rc); 15979 status = -ENXIO; 15980 goto out; 15981 } 15982 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15983 if (cq->queue_id == 0xFFFF) { 15984 status = -ENXIO; 15985 goto out; 15986 } 15987 /* link the cq onto the parent eq child list */ 15988 list_add_tail(&cq->list, &eq->child_list); 15989 /* Set up completion queue's type and subtype */ 15990 cq->type = type; 15991 cq->subtype = subtype; 15992 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15993 cq->assoc_qid = eq->queue_id; 15994 cq->assoc_qp = eq; 15995 cq->host_index = 0; 15996 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15997 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15998 15999 if (cq->queue_id > phba->sli4_hba.cq_max) 16000 phba->sli4_hba.cq_max = cq->queue_id; 16001 16002 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16003 out: 16004 mempool_free(mbox, phba->mbox_mem_pool); 16005 return status; 16006 } 16007 16008 /** 16009 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16010 * @phba: HBA structure that indicates port to create a queue on. 16011 * @cqp: The queue structure array to use to create the completion queues. 16012 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16013 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16014 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16015 * 16016 * This function creates a set of completion queue, s to support MRQ 16017 * as detailed in @cqp, on a port, 16018 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16019 * 16020 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16021 * is used to get the entry count and entry size that are necessary to 16022 * determine the number of pages to allocate and use for this queue. The @eq 16023 * is used to indicate which event queue to bind this completion queue to. This 16024 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16025 * completion queue. This function is asynchronous and will wait for the mailbox 16026 * command to finish before continuing. 16027 * 16028 * On success this function will return a zero. If unable to allocate enough 16029 * memory this function will return -ENOMEM. If the queue create mailbox command 16030 * fails this function will return -ENXIO. 16031 **/ 16032 int 16033 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16034 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16035 uint32_t subtype) 16036 { 16037 struct lpfc_queue *cq; 16038 struct lpfc_queue *eq; 16039 struct lpfc_mbx_cq_create_set *cq_set; 16040 struct lpfc_dmabuf *dmabuf; 16041 LPFC_MBOXQ_t *mbox; 16042 int rc, length, alloclen, status = 0; 16043 int cnt, idx, numcq, page_idx = 0; 16044 uint32_t shdr_status, shdr_add_status; 16045 union lpfc_sli4_cfg_shdr *shdr; 16046 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16047 16048 /* sanity check on queue memory */ 16049 numcq = phba->cfg_nvmet_mrq; 16050 if (!cqp || !hdwq || !numcq) 16051 return -ENODEV; 16052 16053 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16054 if (!mbox) 16055 return -ENOMEM; 16056 16057 length = sizeof(struct lpfc_mbx_cq_create_set); 16058 length += ((numcq * cqp[0]->page_count) * 16059 sizeof(struct dma_address)); 16060 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16061 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16062 LPFC_SLI4_MBX_NEMBED); 16063 if (alloclen < length) { 16064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16065 "3098 Allocated DMA memory size (%d) is " 16066 "less than the requested DMA memory size " 16067 "(%d)\n", alloclen, length); 16068 status = -ENOMEM; 16069 goto out; 16070 } 16071 cq_set = mbox->sge_array->addr[0]; 16072 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16073 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16074 16075 for (idx = 0; idx < numcq; idx++) { 16076 cq = cqp[idx]; 16077 eq = hdwq[idx].hba_eq; 16078 if (!cq || !eq) { 16079 status = -ENOMEM; 16080 goto out; 16081 } 16082 if (!phba->sli4_hba.pc_sli4_params.supported) 16083 hw_page_size = cq->page_size; 16084 16085 switch (idx) { 16086 case 0: 16087 bf_set(lpfc_mbx_cq_create_set_page_size, 16088 &cq_set->u.request, 16089 (hw_page_size / SLI4_PAGE_SIZE)); 16090 bf_set(lpfc_mbx_cq_create_set_num_pages, 16091 &cq_set->u.request, cq->page_count); 16092 bf_set(lpfc_mbx_cq_create_set_evt, 16093 &cq_set->u.request, 1); 16094 bf_set(lpfc_mbx_cq_create_set_valid, 16095 &cq_set->u.request, 1); 16096 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16097 &cq_set->u.request, 0); 16098 bf_set(lpfc_mbx_cq_create_set_num_cq, 16099 &cq_set->u.request, numcq); 16100 bf_set(lpfc_mbx_cq_create_set_autovalid, 16101 &cq_set->u.request, 16102 phba->sli4_hba.pc_sli4_params.cqav); 16103 switch (cq->entry_count) { 16104 case 2048: 16105 case 4096: 16106 if (phba->sli4_hba.pc_sli4_params.cqv == 16107 LPFC_Q_CREATE_VERSION_2) { 16108 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16109 &cq_set->u.request, 16110 cq->entry_count); 16111 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16112 &cq_set->u.request, 16113 LPFC_CQ_CNT_WORD7); 16114 break; 16115 } 16116 fallthrough; 16117 default: 16118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16119 "3118 Bad CQ count. (%d)\n", 16120 cq->entry_count); 16121 if (cq->entry_count < 256) { 16122 status = -EINVAL; 16123 goto out; 16124 } 16125 fallthrough; /* otherwise default to smallest */ 16126 case 256: 16127 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16128 &cq_set->u.request, LPFC_CQ_CNT_256); 16129 break; 16130 case 512: 16131 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16132 &cq_set->u.request, LPFC_CQ_CNT_512); 16133 break; 16134 case 1024: 16135 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16136 &cq_set->u.request, LPFC_CQ_CNT_1024); 16137 break; 16138 } 16139 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16140 &cq_set->u.request, eq->queue_id); 16141 break; 16142 case 1: 16143 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16144 &cq_set->u.request, eq->queue_id); 16145 break; 16146 case 2: 16147 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16148 &cq_set->u.request, eq->queue_id); 16149 break; 16150 case 3: 16151 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16152 &cq_set->u.request, eq->queue_id); 16153 break; 16154 case 4: 16155 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16156 &cq_set->u.request, eq->queue_id); 16157 break; 16158 case 5: 16159 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16160 &cq_set->u.request, eq->queue_id); 16161 break; 16162 case 6: 16163 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16164 &cq_set->u.request, eq->queue_id); 16165 break; 16166 case 7: 16167 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16168 &cq_set->u.request, eq->queue_id); 16169 break; 16170 case 8: 16171 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16172 &cq_set->u.request, eq->queue_id); 16173 break; 16174 case 9: 16175 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16176 &cq_set->u.request, eq->queue_id); 16177 break; 16178 case 10: 16179 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16180 &cq_set->u.request, eq->queue_id); 16181 break; 16182 case 11: 16183 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16184 &cq_set->u.request, eq->queue_id); 16185 break; 16186 case 12: 16187 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16188 &cq_set->u.request, eq->queue_id); 16189 break; 16190 case 13: 16191 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16192 &cq_set->u.request, eq->queue_id); 16193 break; 16194 case 14: 16195 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16196 &cq_set->u.request, eq->queue_id); 16197 break; 16198 case 15: 16199 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16200 &cq_set->u.request, eq->queue_id); 16201 break; 16202 } 16203 16204 /* link the cq onto the parent eq child list */ 16205 list_add_tail(&cq->list, &eq->child_list); 16206 /* Set up completion queue's type and subtype */ 16207 cq->type = type; 16208 cq->subtype = subtype; 16209 cq->assoc_qid = eq->queue_id; 16210 cq->assoc_qp = eq; 16211 cq->host_index = 0; 16212 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16213 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16214 cq->entry_count); 16215 cq->chann = idx; 16216 16217 rc = 0; 16218 list_for_each_entry(dmabuf, &cq->page_list, list) { 16219 memset(dmabuf->virt, 0, hw_page_size); 16220 cnt = page_idx + dmabuf->buffer_tag; 16221 cq_set->u.request.page[cnt].addr_lo = 16222 putPaddrLow(dmabuf->phys); 16223 cq_set->u.request.page[cnt].addr_hi = 16224 putPaddrHigh(dmabuf->phys); 16225 rc++; 16226 } 16227 page_idx += rc; 16228 } 16229 16230 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16231 16232 /* The IOCTL status is embedded in the mailbox subheader. */ 16233 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16234 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16235 if (shdr_status || shdr_add_status || rc) { 16236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16237 "3119 CQ_CREATE_SET mailbox failed with " 16238 "status x%x add_status x%x, mbx status x%x\n", 16239 shdr_status, shdr_add_status, rc); 16240 status = -ENXIO; 16241 goto out; 16242 } 16243 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16244 if (rc == 0xFFFF) { 16245 status = -ENXIO; 16246 goto out; 16247 } 16248 16249 for (idx = 0; idx < numcq; idx++) { 16250 cq = cqp[idx]; 16251 cq->queue_id = rc + idx; 16252 if (cq->queue_id > phba->sli4_hba.cq_max) 16253 phba->sli4_hba.cq_max = cq->queue_id; 16254 } 16255 16256 out: 16257 lpfc_sli4_mbox_cmd_free(phba, mbox); 16258 return status; 16259 } 16260 16261 /** 16262 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16263 * @phba: HBA structure that indicates port to create a queue on. 16264 * @mq: The queue structure to use to create the mailbox queue. 16265 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16266 * @cq: The completion queue to associate with this cq. 16267 * 16268 * This function provides failback (fb) functionality when the 16269 * mq_create_ext fails on older FW generations. It's purpose is identical 16270 * to mq_create_ext otherwise. 16271 * 16272 * This routine cannot fail as all attributes were previously accessed and 16273 * initialized in mq_create_ext. 16274 **/ 16275 static void 16276 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16277 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16278 { 16279 struct lpfc_mbx_mq_create *mq_create; 16280 struct lpfc_dmabuf *dmabuf; 16281 int length; 16282 16283 length = (sizeof(struct lpfc_mbx_mq_create) - 16284 sizeof(struct lpfc_sli4_cfg_mhdr)); 16285 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16286 LPFC_MBOX_OPCODE_MQ_CREATE, 16287 length, LPFC_SLI4_MBX_EMBED); 16288 mq_create = &mbox->u.mqe.un.mq_create; 16289 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16290 mq->page_count); 16291 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16292 cq->queue_id); 16293 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16294 switch (mq->entry_count) { 16295 case 16: 16296 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16297 LPFC_MQ_RING_SIZE_16); 16298 break; 16299 case 32: 16300 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16301 LPFC_MQ_RING_SIZE_32); 16302 break; 16303 case 64: 16304 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16305 LPFC_MQ_RING_SIZE_64); 16306 break; 16307 case 128: 16308 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16309 LPFC_MQ_RING_SIZE_128); 16310 break; 16311 } 16312 list_for_each_entry(dmabuf, &mq->page_list, list) { 16313 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16314 putPaddrLow(dmabuf->phys); 16315 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16316 putPaddrHigh(dmabuf->phys); 16317 } 16318 } 16319 16320 /** 16321 * lpfc_mq_create - Create a mailbox Queue on the HBA 16322 * @phba: HBA structure that indicates port to create a queue on. 16323 * @mq: The queue structure to use to create the mailbox queue. 16324 * @cq: The completion queue to associate with this cq. 16325 * @subtype: The queue's subtype. 16326 * 16327 * This function creates a mailbox queue, as detailed in @mq, on a port, 16328 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16329 * 16330 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16331 * is used to get the entry count and entry size that are necessary to 16332 * determine the number of pages to allocate and use for this queue. This 16333 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16334 * mailbox queue. This function is asynchronous and will wait for the mailbox 16335 * command to finish before continuing. 16336 * 16337 * On success this function will return a zero. If unable to allocate enough 16338 * memory this function will return -ENOMEM. If the queue create mailbox command 16339 * fails this function will return -ENXIO. 16340 **/ 16341 int32_t 16342 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16343 struct lpfc_queue *cq, uint32_t subtype) 16344 { 16345 struct lpfc_mbx_mq_create *mq_create; 16346 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16347 struct lpfc_dmabuf *dmabuf; 16348 LPFC_MBOXQ_t *mbox; 16349 int rc, length, status = 0; 16350 uint32_t shdr_status, shdr_add_status; 16351 union lpfc_sli4_cfg_shdr *shdr; 16352 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16353 16354 /* sanity check on queue memory */ 16355 if (!mq || !cq) 16356 return -ENODEV; 16357 if (!phba->sli4_hba.pc_sli4_params.supported) 16358 hw_page_size = SLI4_PAGE_SIZE; 16359 16360 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16361 if (!mbox) 16362 return -ENOMEM; 16363 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16364 sizeof(struct lpfc_sli4_cfg_mhdr)); 16365 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16366 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16367 length, LPFC_SLI4_MBX_EMBED); 16368 16369 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16370 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16371 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16372 &mq_create_ext->u.request, mq->page_count); 16373 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16374 &mq_create_ext->u.request, 1); 16375 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16376 &mq_create_ext->u.request, 1); 16377 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16378 &mq_create_ext->u.request, 1); 16379 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16380 &mq_create_ext->u.request, 1); 16381 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16382 &mq_create_ext->u.request, 1); 16383 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16384 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16385 phba->sli4_hba.pc_sli4_params.mqv); 16386 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16387 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16388 cq->queue_id); 16389 else 16390 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16391 cq->queue_id); 16392 switch (mq->entry_count) { 16393 default: 16394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16395 "0362 Unsupported MQ count. (%d)\n", 16396 mq->entry_count); 16397 if (mq->entry_count < 16) { 16398 status = -EINVAL; 16399 goto out; 16400 } 16401 fallthrough; /* otherwise default to smallest count */ 16402 case 16: 16403 bf_set(lpfc_mq_context_ring_size, 16404 &mq_create_ext->u.request.context, 16405 LPFC_MQ_RING_SIZE_16); 16406 break; 16407 case 32: 16408 bf_set(lpfc_mq_context_ring_size, 16409 &mq_create_ext->u.request.context, 16410 LPFC_MQ_RING_SIZE_32); 16411 break; 16412 case 64: 16413 bf_set(lpfc_mq_context_ring_size, 16414 &mq_create_ext->u.request.context, 16415 LPFC_MQ_RING_SIZE_64); 16416 break; 16417 case 128: 16418 bf_set(lpfc_mq_context_ring_size, 16419 &mq_create_ext->u.request.context, 16420 LPFC_MQ_RING_SIZE_128); 16421 break; 16422 } 16423 list_for_each_entry(dmabuf, &mq->page_list, list) { 16424 memset(dmabuf->virt, 0, hw_page_size); 16425 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16426 putPaddrLow(dmabuf->phys); 16427 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16428 putPaddrHigh(dmabuf->phys); 16429 } 16430 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16431 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16432 &mq_create_ext->u.response); 16433 if (rc != MBX_SUCCESS) { 16434 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16435 "2795 MQ_CREATE_EXT failed with " 16436 "status x%x. Failback to MQ_CREATE.\n", 16437 rc); 16438 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16439 mq_create = &mbox->u.mqe.un.mq_create; 16440 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16441 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16442 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16443 &mq_create->u.response); 16444 } 16445 16446 /* The IOCTL status is embedded in the mailbox subheader. */ 16447 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16448 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16449 if (shdr_status || shdr_add_status || rc) { 16450 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16451 "2502 MQ_CREATE mailbox failed with " 16452 "status x%x add_status x%x, mbx status x%x\n", 16453 shdr_status, shdr_add_status, rc); 16454 status = -ENXIO; 16455 goto out; 16456 } 16457 if (mq->queue_id == 0xFFFF) { 16458 status = -ENXIO; 16459 goto out; 16460 } 16461 mq->type = LPFC_MQ; 16462 mq->assoc_qid = cq->queue_id; 16463 mq->subtype = subtype; 16464 mq->host_index = 0; 16465 mq->hba_index = 0; 16466 16467 /* link the mq onto the parent cq child list */ 16468 list_add_tail(&mq->list, &cq->child_list); 16469 out: 16470 mempool_free(mbox, phba->mbox_mem_pool); 16471 return status; 16472 } 16473 16474 /** 16475 * lpfc_wq_create - Create a Work Queue on the HBA 16476 * @phba: HBA structure that indicates port to create a queue on. 16477 * @wq: The queue structure to use to create the work queue. 16478 * @cq: The completion queue to bind this work queue to. 16479 * @subtype: The subtype of the work queue indicating its functionality. 16480 * 16481 * This function creates a work queue, as detailed in @wq, on a port, described 16482 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16483 * 16484 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16485 * is used to get the entry count and entry size that are necessary to 16486 * determine the number of pages to allocate and use for this queue. The @cq 16487 * is used to indicate which completion queue to bind this work queue to. This 16488 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16489 * work queue. This function is asynchronous and will wait for the mailbox 16490 * command to finish before continuing. 16491 * 16492 * On success this function will return a zero. If unable to allocate enough 16493 * memory this function will return -ENOMEM. If the queue create mailbox command 16494 * fails this function will return -ENXIO. 16495 **/ 16496 int 16497 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16498 struct lpfc_queue *cq, uint32_t subtype) 16499 { 16500 struct lpfc_mbx_wq_create *wq_create; 16501 struct lpfc_dmabuf *dmabuf; 16502 LPFC_MBOXQ_t *mbox; 16503 int rc, length, status = 0; 16504 uint32_t shdr_status, shdr_add_status; 16505 union lpfc_sli4_cfg_shdr *shdr; 16506 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16507 struct dma_address *page; 16508 void __iomem *bar_memmap_p; 16509 uint32_t db_offset; 16510 uint16_t pci_barset; 16511 uint8_t dpp_barset; 16512 uint32_t dpp_offset; 16513 uint8_t wq_create_version; 16514 #ifdef CONFIG_X86 16515 unsigned long pg_addr; 16516 #endif 16517 16518 /* sanity check on queue memory */ 16519 if (!wq || !cq) 16520 return -ENODEV; 16521 if (!phba->sli4_hba.pc_sli4_params.supported) 16522 hw_page_size = wq->page_size; 16523 16524 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16525 if (!mbox) 16526 return -ENOMEM; 16527 length = (sizeof(struct lpfc_mbx_wq_create) - 16528 sizeof(struct lpfc_sli4_cfg_mhdr)); 16529 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16530 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16531 length, LPFC_SLI4_MBX_EMBED); 16532 wq_create = &mbox->u.mqe.un.wq_create; 16533 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16534 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16535 wq->page_count); 16536 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16537 cq->queue_id); 16538 16539 /* wqv is the earliest version supported, NOT the latest */ 16540 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16541 phba->sli4_hba.pc_sli4_params.wqv); 16542 16543 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16544 (wq->page_size > SLI4_PAGE_SIZE)) 16545 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16546 else 16547 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16548 16549 switch (wq_create_version) { 16550 case LPFC_Q_CREATE_VERSION_1: 16551 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16552 wq->entry_count); 16553 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16554 LPFC_Q_CREATE_VERSION_1); 16555 16556 switch (wq->entry_size) { 16557 default: 16558 case 64: 16559 bf_set(lpfc_mbx_wq_create_wqe_size, 16560 &wq_create->u.request_1, 16561 LPFC_WQ_WQE_SIZE_64); 16562 break; 16563 case 128: 16564 bf_set(lpfc_mbx_wq_create_wqe_size, 16565 &wq_create->u.request_1, 16566 LPFC_WQ_WQE_SIZE_128); 16567 break; 16568 } 16569 /* Request DPP by default */ 16570 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16571 bf_set(lpfc_mbx_wq_create_page_size, 16572 &wq_create->u.request_1, 16573 (wq->page_size / SLI4_PAGE_SIZE)); 16574 page = wq_create->u.request_1.page; 16575 break; 16576 default: 16577 page = wq_create->u.request.page; 16578 break; 16579 } 16580 16581 list_for_each_entry(dmabuf, &wq->page_list, list) { 16582 memset(dmabuf->virt, 0, hw_page_size); 16583 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16584 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16585 } 16586 16587 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16588 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16589 16590 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16591 /* The IOCTL status is embedded in the mailbox subheader. */ 16592 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16593 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16594 if (shdr_status || shdr_add_status || rc) { 16595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16596 "2503 WQ_CREATE mailbox failed with " 16597 "status x%x add_status x%x, mbx status x%x\n", 16598 shdr_status, shdr_add_status, rc); 16599 status = -ENXIO; 16600 goto out; 16601 } 16602 16603 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16604 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16605 &wq_create->u.response); 16606 else 16607 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16608 &wq_create->u.response_1); 16609 16610 if (wq->queue_id == 0xFFFF) { 16611 status = -ENXIO; 16612 goto out; 16613 } 16614 16615 wq->db_format = LPFC_DB_LIST_FORMAT; 16616 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16617 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16618 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16619 &wq_create->u.response); 16620 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16621 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16623 "3265 WQ[%d] doorbell format " 16624 "not supported: x%x\n", 16625 wq->queue_id, wq->db_format); 16626 status = -EINVAL; 16627 goto out; 16628 } 16629 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16630 &wq_create->u.response); 16631 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16632 pci_barset); 16633 if (!bar_memmap_p) { 16634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16635 "3263 WQ[%d] failed to memmap " 16636 "pci barset:x%x\n", 16637 wq->queue_id, pci_barset); 16638 status = -ENOMEM; 16639 goto out; 16640 } 16641 db_offset = wq_create->u.response.doorbell_offset; 16642 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16643 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16645 "3252 WQ[%d] doorbell offset " 16646 "not supported: x%x\n", 16647 wq->queue_id, db_offset); 16648 status = -EINVAL; 16649 goto out; 16650 } 16651 wq->db_regaddr = bar_memmap_p + db_offset; 16652 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16653 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16654 "format:x%x\n", wq->queue_id, 16655 pci_barset, db_offset, wq->db_format); 16656 } else 16657 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16658 } else { 16659 /* Check if DPP was honored by the firmware */ 16660 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16661 &wq_create->u.response_1); 16662 if (wq->dpp_enable) { 16663 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16664 &wq_create->u.response_1); 16665 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16666 pci_barset); 16667 if (!bar_memmap_p) { 16668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16669 "3267 WQ[%d] failed to memmap " 16670 "pci barset:x%x\n", 16671 wq->queue_id, pci_barset); 16672 status = -ENOMEM; 16673 goto out; 16674 } 16675 db_offset = wq_create->u.response_1.doorbell_offset; 16676 wq->db_regaddr = bar_memmap_p + db_offset; 16677 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16678 &wq_create->u.response_1); 16679 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16680 &wq_create->u.response_1); 16681 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16682 dpp_barset); 16683 if (!bar_memmap_p) { 16684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16685 "3268 WQ[%d] failed to memmap " 16686 "pci barset:x%x\n", 16687 wq->queue_id, dpp_barset); 16688 status = -ENOMEM; 16689 goto out; 16690 } 16691 dpp_offset = wq_create->u.response_1.dpp_offset; 16692 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16693 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16694 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16695 "dpp_id:x%x dpp_barset:x%x " 16696 "dpp_offset:x%x\n", 16697 wq->queue_id, pci_barset, db_offset, 16698 wq->dpp_id, dpp_barset, dpp_offset); 16699 16700 #ifdef CONFIG_X86 16701 /* Enable combined writes for DPP aperture */ 16702 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16703 rc = set_memory_wc(pg_addr, 1); 16704 if (rc) { 16705 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16706 "3272 Cannot setup Combined " 16707 "Write on WQ[%d] - disable DPP\n", 16708 wq->queue_id); 16709 phba->cfg_enable_dpp = 0; 16710 } 16711 #else 16712 phba->cfg_enable_dpp = 0; 16713 #endif 16714 } else 16715 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16716 } 16717 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16718 if (wq->pring == NULL) { 16719 status = -ENOMEM; 16720 goto out; 16721 } 16722 wq->type = LPFC_WQ; 16723 wq->assoc_qid = cq->queue_id; 16724 wq->subtype = subtype; 16725 wq->host_index = 0; 16726 wq->hba_index = 0; 16727 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16728 16729 /* link the wq onto the parent cq child list */ 16730 list_add_tail(&wq->list, &cq->child_list); 16731 out: 16732 mempool_free(mbox, phba->mbox_mem_pool); 16733 return status; 16734 } 16735 16736 /** 16737 * lpfc_rq_create - Create a Receive Queue on the HBA 16738 * @phba: HBA structure that indicates port to create a queue on. 16739 * @hrq: The queue structure to use to create the header receive queue. 16740 * @drq: The queue structure to use to create the data receive queue. 16741 * @cq: The completion queue to bind this work queue to. 16742 * @subtype: The subtype of the work queue indicating its functionality. 16743 * 16744 * This function creates a receive buffer queue pair , as detailed in @hrq and 16745 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16746 * to the HBA. 16747 * 16748 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16749 * struct is used to get the entry count that is necessary to determine the 16750 * number of pages to use for this queue. The @cq is used to indicate which 16751 * completion queue to bind received buffers that are posted to these queues to. 16752 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16753 * receive queue pair. This function is asynchronous and will wait for the 16754 * mailbox command to finish before continuing. 16755 * 16756 * On success this function will return a zero. If unable to allocate enough 16757 * memory this function will return -ENOMEM. If the queue create mailbox command 16758 * fails this function will return -ENXIO. 16759 **/ 16760 int 16761 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16762 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16763 { 16764 struct lpfc_mbx_rq_create *rq_create; 16765 struct lpfc_dmabuf *dmabuf; 16766 LPFC_MBOXQ_t *mbox; 16767 int rc, length, status = 0; 16768 uint32_t shdr_status, shdr_add_status; 16769 union lpfc_sli4_cfg_shdr *shdr; 16770 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16771 void __iomem *bar_memmap_p; 16772 uint32_t db_offset; 16773 uint16_t pci_barset; 16774 16775 /* sanity check on queue memory */ 16776 if (!hrq || !drq || !cq) 16777 return -ENODEV; 16778 if (!phba->sli4_hba.pc_sli4_params.supported) 16779 hw_page_size = SLI4_PAGE_SIZE; 16780 16781 if (hrq->entry_count != drq->entry_count) 16782 return -EINVAL; 16783 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16784 if (!mbox) 16785 return -ENOMEM; 16786 length = (sizeof(struct lpfc_mbx_rq_create) - 16787 sizeof(struct lpfc_sli4_cfg_mhdr)); 16788 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16789 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16790 length, LPFC_SLI4_MBX_EMBED); 16791 rq_create = &mbox->u.mqe.un.rq_create; 16792 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16793 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16794 phba->sli4_hba.pc_sli4_params.rqv); 16795 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16796 bf_set(lpfc_rq_context_rqe_count_1, 16797 &rq_create->u.request.context, 16798 hrq->entry_count); 16799 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16800 bf_set(lpfc_rq_context_rqe_size, 16801 &rq_create->u.request.context, 16802 LPFC_RQE_SIZE_8); 16803 bf_set(lpfc_rq_context_page_size, 16804 &rq_create->u.request.context, 16805 LPFC_RQ_PAGE_SIZE_4096); 16806 } else { 16807 switch (hrq->entry_count) { 16808 default: 16809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16810 "2535 Unsupported RQ count. (%d)\n", 16811 hrq->entry_count); 16812 if (hrq->entry_count < 512) { 16813 status = -EINVAL; 16814 goto out; 16815 } 16816 fallthrough; /* otherwise default to smallest count */ 16817 case 512: 16818 bf_set(lpfc_rq_context_rqe_count, 16819 &rq_create->u.request.context, 16820 LPFC_RQ_RING_SIZE_512); 16821 break; 16822 case 1024: 16823 bf_set(lpfc_rq_context_rqe_count, 16824 &rq_create->u.request.context, 16825 LPFC_RQ_RING_SIZE_1024); 16826 break; 16827 case 2048: 16828 bf_set(lpfc_rq_context_rqe_count, 16829 &rq_create->u.request.context, 16830 LPFC_RQ_RING_SIZE_2048); 16831 break; 16832 case 4096: 16833 bf_set(lpfc_rq_context_rqe_count, 16834 &rq_create->u.request.context, 16835 LPFC_RQ_RING_SIZE_4096); 16836 break; 16837 } 16838 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16839 LPFC_HDR_BUF_SIZE); 16840 } 16841 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16842 cq->queue_id); 16843 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16844 hrq->page_count); 16845 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16846 memset(dmabuf->virt, 0, hw_page_size); 16847 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16848 putPaddrLow(dmabuf->phys); 16849 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16850 putPaddrHigh(dmabuf->phys); 16851 } 16852 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16853 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16854 16855 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16856 /* The IOCTL status is embedded in the mailbox subheader. */ 16857 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16858 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16859 if (shdr_status || shdr_add_status || rc) { 16860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16861 "2504 RQ_CREATE mailbox failed with " 16862 "status x%x add_status x%x, mbx status x%x\n", 16863 shdr_status, shdr_add_status, rc); 16864 status = -ENXIO; 16865 goto out; 16866 } 16867 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16868 if (hrq->queue_id == 0xFFFF) { 16869 status = -ENXIO; 16870 goto out; 16871 } 16872 16873 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16874 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16875 &rq_create->u.response); 16876 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16877 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16878 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16879 "3262 RQ [%d] doorbell format not " 16880 "supported: x%x\n", hrq->queue_id, 16881 hrq->db_format); 16882 status = -EINVAL; 16883 goto out; 16884 } 16885 16886 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16887 &rq_create->u.response); 16888 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16889 if (!bar_memmap_p) { 16890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16891 "3269 RQ[%d] failed to memmap pci " 16892 "barset:x%x\n", hrq->queue_id, 16893 pci_barset); 16894 status = -ENOMEM; 16895 goto out; 16896 } 16897 16898 db_offset = rq_create->u.response.doorbell_offset; 16899 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16900 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16902 "3270 RQ[%d] doorbell offset not " 16903 "supported: x%x\n", hrq->queue_id, 16904 db_offset); 16905 status = -EINVAL; 16906 goto out; 16907 } 16908 hrq->db_regaddr = bar_memmap_p + db_offset; 16909 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16910 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16911 "format:x%x\n", hrq->queue_id, pci_barset, 16912 db_offset, hrq->db_format); 16913 } else { 16914 hrq->db_format = LPFC_DB_RING_FORMAT; 16915 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16916 } 16917 hrq->type = LPFC_HRQ; 16918 hrq->assoc_qid = cq->queue_id; 16919 hrq->subtype = subtype; 16920 hrq->host_index = 0; 16921 hrq->hba_index = 0; 16922 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16923 16924 /* now create the data queue */ 16925 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16926 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16927 length, LPFC_SLI4_MBX_EMBED); 16928 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16929 phba->sli4_hba.pc_sli4_params.rqv); 16930 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16931 bf_set(lpfc_rq_context_rqe_count_1, 16932 &rq_create->u.request.context, hrq->entry_count); 16933 if (subtype == LPFC_NVMET) 16934 rq_create->u.request.context.buffer_size = 16935 LPFC_NVMET_DATA_BUF_SIZE; 16936 else 16937 rq_create->u.request.context.buffer_size = 16938 LPFC_DATA_BUF_SIZE; 16939 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16940 LPFC_RQE_SIZE_8); 16941 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16942 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16943 } else { 16944 switch (drq->entry_count) { 16945 default: 16946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16947 "2536 Unsupported RQ count. (%d)\n", 16948 drq->entry_count); 16949 if (drq->entry_count < 512) { 16950 status = -EINVAL; 16951 goto out; 16952 } 16953 fallthrough; /* otherwise default to smallest count */ 16954 case 512: 16955 bf_set(lpfc_rq_context_rqe_count, 16956 &rq_create->u.request.context, 16957 LPFC_RQ_RING_SIZE_512); 16958 break; 16959 case 1024: 16960 bf_set(lpfc_rq_context_rqe_count, 16961 &rq_create->u.request.context, 16962 LPFC_RQ_RING_SIZE_1024); 16963 break; 16964 case 2048: 16965 bf_set(lpfc_rq_context_rqe_count, 16966 &rq_create->u.request.context, 16967 LPFC_RQ_RING_SIZE_2048); 16968 break; 16969 case 4096: 16970 bf_set(lpfc_rq_context_rqe_count, 16971 &rq_create->u.request.context, 16972 LPFC_RQ_RING_SIZE_4096); 16973 break; 16974 } 16975 if (subtype == LPFC_NVMET) 16976 bf_set(lpfc_rq_context_buf_size, 16977 &rq_create->u.request.context, 16978 LPFC_NVMET_DATA_BUF_SIZE); 16979 else 16980 bf_set(lpfc_rq_context_buf_size, 16981 &rq_create->u.request.context, 16982 LPFC_DATA_BUF_SIZE); 16983 } 16984 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16985 cq->queue_id); 16986 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16987 drq->page_count); 16988 list_for_each_entry(dmabuf, &drq->page_list, list) { 16989 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16990 putPaddrLow(dmabuf->phys); 16991 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16992 putPaddrHigh(dmabuf->phys); 16993 } 16994 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16995 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16996 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16997 /* The IOCTL status is embedded in the mailbox subheader. */ 16998 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16999 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17000 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17001 if (shdr_status || shdr_add_status || rc) { 17002 status = -ENXIO; 17003 goto out; 17004 } 17005 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17006 if (drq->queue_id == 0xFFFF) { 17007 status = -ENXIO; 17008 goto out; 17009 } 17010 drq->type = LPFC_DRQ; 17011 drq->assoc_qid = cq->queue_id; 17012 drq->subtype = subtype; 17013 drq->host_index = 0; 17014 drq->hba_index = 0; 17015 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17016 17017 /* link the header and data RQs onto the parent cq child list */ 17018 list_add_tail(&hrq->list, &cq->child_list); 17019 list_add_tail(&drq->list, &cq->child_list); 17020 17021 out: 17022 mempool_free(mbox, phba->mbox_mem_pool); 17023 return status; 17024 } 17025 17026 /** 17027 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17028 * @phba: HBA structure that indicates port to create a queue on. 17029 * @hrqp: The queue structure array to use to create the header receive queues. 17030 * @drqp: The queue structure array to use to create the data receive queues. 17031 * @cqp: The completion queue array to bind these receive queues to. 17032 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17033 * 17034 * This function creates a receive buffer queue pair , as detailed in @hrq and 17035 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17036 * to the HBA. 17037 * 17038 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17039 * struct is used to get the entry count that is necessary to determine the 17040 * number of pages to use for this queue. The @cq is used to indicate which 17041 * completion queue to bind received buffers that are posted to these queues to. 17042 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17043 * receive queue pair. This function is asynchronous and will wait for the 17044 * mailbox command to finish before continuing. 17045 * 17046 * On success this function will return a zero. If unable to allocate enough 17047 * memory this function will return -ENOMEM. If the queue create mailbox command 17048 * fails this function will return -ENXIO. 17049 **/ 17050 int 17051 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17052 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17053 uint32_t subtype) 17054 { 17055 struct lpfc_queue *hrq, *drq, *cq; 17056 struct lpfc_mbx_rq_create_v2 *rq_create; 17057 struct lpfc_dmabuf *dmabuf; 17058 LPFC_MBOXQ_t *mbox; 17059 int rc, length, alloclen, status = 0; 17060 int cnt, idx, numrq, page_idx = 0; 17061 uint32_t shdr_status, shdr_add_status; 17062 union lpfc_sli4_cfg_shdr *shdr; 17063 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17064 17065 numrq = phba->cfg_nvmet_mrq; 17066 /* sanity check on array memory */ 17067 if (!hrqp || !drqp || !cqp || !numrq) 17068 return -ENODEV; 17069 if (!phba->sli4_hba.pc_sli4_params.supported) 17070 hw_page_size = SLI4_PAGE_SIZE; 17071 17072 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17073 if (!mbox) 17074 return -ENOMEM; 17075 17076 length = sizeof(struct lpfc_mbx_rq_create_v2); 17077 length += ((2 * numrq * hrqp[0]->page_count) * 17078 sizeof(struct dma_address)); 17079 17080 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17081 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17082 LPFC_SLI4_MBX_NEMBED); 17083 if (alloclen < length) { 17084 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17085 "3099 Allocated DMA memory size (%d) is " 17086 "less than the requested DMA memory size " 17087 "(%d)\n", alloclen, length); 17088 status = -ENOMEM; 17089 goto out; 17090 } 17091 17092 17093 17094 rq_create = mbox->sge_array->addr[0]; 17095 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17096 17097 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17098 cnt = 0; 17099 17100 for (idx = 0; idx < numrq; idx++) { 17101 hrq = hrqp[idx]; 17102 drq = drqp[idx]; 17103 cq = cqp[idx]; 17104 17105 /* sanity check on queue memory */ 17106 if (!hrq || !drq || !cq) { 17107 status = -ENODEV; 17108 goto out; 17109 } 17110 17111 if (hrq->entry_count != drq->entry_count) { 17112 status = -EINVAL; 17113 goto out; 17114 } 17115 17116 if (idx == 0) { 17117 bf_set(lpfc_mbx_rq_create_num_pages, 17118 &rq_create->u.request, 17119 hrq->page_count); 17120 bf_set(lpfc_mbx_rq_create_rq_cnt, 17121 &rq_create->u.request, (numrq * 2)); 17122 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17123 1); 17124 bf_set(lpfc_rq_context_base_cq, 17125 &rq_create->u.request.context, 17126 cq->queue_id); 17127 bf_set(lpfc_rq_context_data_size, 17128 &rq_create->u.request.context, 17129 LPFC_NVMET_DATA_BUF_SIZE); 17130 bf_set(lpfc_rq_context_hdr_size, 17131 &rq_create->u.request.context, 17132 LPFC_HDR_BUF_SIZE); 17133 bf_set(lpfc_rq_context_rqe_count_1, 17134 &rq_create->u.request.context, 17135 hrq->entry_count); 17136 bf_set(lpfc_rq_context_rqe_size, 17137 &rq_create->u.request.context, 17138 LPFC_RQE_SIZE_8); 17139 bf_set(lpfc_rq_context_page_size, 17140 &rq_create->u.request.context, 17141 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17142 } 17143 rc = 0; 17144 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17145 memset(dmabuf->virt, 0, hw_page_size); 17146 cnt = page_idx + dmabuf->buffer_tag; 17147 rq_create->u.request.page[cnt].addr_lo = 17148 putPaddrLow(dmabuf->phys); 17149 rq_create->u.request.page[cnt].addr_hi = 17150 putPaddrHigh(dmabuf->phys); 17151 rc++; 17152 } 17153 page_idx += rc; 17154 17155 rc = 0; 17156 list_for_each_entry(dmabuf, &drq->page_list, list) { 17157 memset(dmabuf->virt, 0, hw_page_size); 17158 cnt = page_idx + dmabuf->buffer_tag; 17159 rq_create->u.request.page[cnt].addr_lo = 17160 putPaddrLow(dmabuf->phys); 17161 rq_create->u.request.page[cnt].addr_hi = 17162 putPaddrHigh(dmabuf->phys); 17163 rc++; 17164 } 17165 page_idx += rc; 17166 17167 hrq->db_format = LPFC_DB_RING_FORMAT; 17168 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17169 hrq->type = LPFC_HRQ; 17170 hrq->assoc_qid = cq->queue_id; 17171 hrq->subtype = subtype; 17172 hrq->host_index = 0; 17173 hrq->hba_index = 0; 17174 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17175 17176 drq->db_format = LPFC_DB_RING_FORMAT; 17177 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17178 drq->type = LPFC_DRQ; 17179 drq->assoc_qid = cq->queue_id; 17180 drq->subtype = subtype; 17181 drq->host_index = 0; 17182 drq->hba_index = 0; 17183 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17184 17185 list_add_tail(&hrq->list, &cq->child_list); 17186 list_add_tail(&drq->list, &cq->child_list); 17187 } 17188 17189 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17190 /* The IOCTL status is embedded in the mailbox subheader. */ 17191 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17192 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17193 if (shdr_status || shdr_add_status || rc) { 17194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17195 "3120 RQ_CREATE mailbox failed with " 17196 "status x%x add_status x%x, mbx status x%x\n", 17197 shdr_status, shdr_add_status, rc); 17198 status = -ENXIO; 17199 goto out; 17200 } 17201 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17202 if (rc == 0xFFFF) { 17203 status = -ENXIO; 17204 goto out; 17205 } 17206 17207 /* Initialize all RQs with associated queue id */ 17208 for (idx = 0; idx < numrq; idx++) { 17209 hrq = hrqp[idx]; 17210 hrq->queue_id = rc + (2 * idx); 17211 drq = drqp[idx]; 17212 drq->queue_id = rc + (2 * idx) + 1; 17213 } 17214 17215 out: 17216 lpfc_sli4_mbox_cmd_free(phba, mbox); 17217 return status; 17218 } 17219 17220 /** 17221 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17222 * @phba: HBA structure that indicates port to destroy a queue on. 17223 * @eq: The queue structure associated with the queue to destroy. 17224 * 17225 * This function destroys a queue, as detailed in @eq by sending an mailbox 17226 * command, specific to the type of queue, to the HBA. 17227 * 17228 * The @eq struct is used to get the queue ID of the queue to destroy. 17229 * 17230 * On success this function will return a zero. If the queue destroy mailbox 17231 * command fails this function will return -ENXIO. 17232 **/ 17233 int 17234 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17235 { 17236 LPFC_MBOXQ_t *mbox; 17237 int rc, length, status = 0; 17238 uint32_t shdr_status, shdr_add_status; 17239 union lpfc_sli4_cfg_shdr *shdr; 17240 17241 /* sanity check on queue memory */ 17242 if (!eq) 17243 return -ENODEV; 17244 17245 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17246 if (!mbox) 17247 return -ENOMEM; 17248 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17249 sizeof(struct lpfc_sli4_cfg_mhdr)); 17250 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17251 LPFC_MBOX_OPCODE_EQ_DESTROY, 17252 length, LPFC_SLI4_MBX_EMBED); 17253 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17254 eq->queue_id); 17255 mbox->vport = eq->phba->pport; 17256 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17257 17258 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17259 /* The IOCTL status is embedded in the mailbox subheader. */ 17260 shdr = (union lpfc_sli4_cfg_shdr *) 17261 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17262 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17263 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17264 if (shdr_status || shdr_add_status || rc) { 17265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17266 "2505 EQ_DESTROY mailbox failed with " 17267 "status x%x add_status x%x, mbx status x%x\n", 17268 shdr_status, shdr_add_status, rc); 17269 status = -ENXIO; 17270 } 17271 17272 /* Remove eq from any list */ 17273 list_del_init(&eq->list); 17274 mempool_free(mbox, eq->phba->mbox_mem_pool); 17275 return status; 17276 } 17277 17278 /** 17279 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17280 * @phba: HBA structure that indicates port to destroy a queue on. 17281 * @cq: The queue structure associated with the queue to destroy. 17282 * 17283 * This function destroys a queue, as detailed in @cq by sending an mailbox 17284 * command, specific to the type of queue, to the HBA. 17285 * 17286 * The @cq struct is used to get the queue ID of the queue to destroy. 17287 * 17288 * On success this function will return a zero. If the queue destroy mailbox 17289 * command fails this function will return -ENXIO. 17290 **/ 17291 int 17292 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17293 { 17294 LPFC_MBOXQ_t *mbox; 17295 int rc, length, status = 0; 17296 uint32_t shdr_status, shdr_add_status; 17297 union lpfc_sli4_cfg_shdr *shdr; 17298 17299 /* sanity check on queue memory */ 17300 if (!cq) 17301 return -ENODEV; 17302 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17303 if (!mbox) 17304 return -ENOMEM; 17305 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17306 sizeof(struct lpfc_sli4_cfg_mhdr)); 17307 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17308 LPFC_MBOX_OPCODE_CQ_DESTROY, 17309 length, LPFC_SLI4_MBX_EMBED); 17310 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17311 cq->queue_id); 17312 mbox->vport = cq->phba->pport; 17313 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17314 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17315 /* The IOCTL status is embedded in the mailbox subheader. */ 17316 shdr = (union lpfc_sli4_cfg_shdr *) 17317 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17318 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17319 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17320 if (shdr_status || shdr_add_status || rc) { 17321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17322 "2506 CQ_DESTROY mailbox failed with " 17323 "status x%x add_status x%x, mbx status x%x\n", 17324 shdr_status, shdr_add_status, rc); 17325 status = -ENXIO; 17326 } 17327 /* Remove cq from any list */ 17328 list_del_init(&cq->list); 17329 mempool_free(mbox, cq->phba->mbox_mem_pool); 17330 return status; 17331 } 17332 17333 /** 17334 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17335 * @phba: HBA structure that indicates port to destroy a queue on. 17336 * @mq: The queue structure associated with the queue to destroy. 17337 * 17338 * This function destroys a queue, as detailed in @mq by sending an mailbox 17339 * command, specific to the type of queue, to the HBA. 17340 * 17341 * The @mq struct is used to get the queue ID of the queue to destroy. 17342 * 17343 * On success this function will return a zero. If the queue destroy mailbox 17344 * command fails this function will return -ENXIO. 17345 **/ 17346 int 17347 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17348 { 17349 LPFC_MBOXQ_t *mbox; 17350 int rc, length, status = 0; 17351 uint32_t shdr_status, shdr_add_status; 17352 union lpfc_sli4_cfg_shdr *shdr; 17353 17354 /* sanity check on queue memory */ 17355 if (!mq) 17356 return -ENODEV; 17357 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17358 if (!mbox) 17359 return -ENOMEM; 17360 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17361 sizeof(struct lpfc_sli4_cfg_mhdr)); 17362 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17363 LPFC_MBOX_OPCODE_MQ_DESTROY, 17364 length, LPFC_SLI4_MBX_EMBED); 17365 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17366 mq->queue_id); 17367 mbox->vport = mq->phba->pport; 17368 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17369 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17370 /* The IOCTL status is embedded in the mailbox subheader. */ 17371 shdr = (union lpfc_sli4_cfg_shdr *) 17372 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17373 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17374 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17375 if (shdr_status || shdr_add_status || rc) { 17376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17377 "2507 MQ_DESTROY mailbox failed with " 17378 "status x%x add_status x%x, mbx status x%x\n", 17379 shdr_status, shdr_add_status, rc); 17380 status = -ENXIO; 17381 } 17382 /* Remove mq from any list */ 17383 list_del_init(&mq->list); 17384 mempool_free(mbox, mq->phba->mbox_mem_pool); 17385 return status; 17386 } 17387 17388 /** 17389 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17390 * @phba: HBA structure that indicates port to destroy a queue on. 17391 * @wq: The queue structure associated with the queue to destroy. 17392 * 17393 * This function destroys a queue, as detailed in @wq by sending an mailbox 17394 * command, specific to the type of queue, to the HBA. 17395 * 17396 * The @wq struct is used to get the queue ID of the queue to destroy. 17397 * 17398 * On success this function will return a zero. If the queue destroy mailbox 17399 * command fails this function will return -ENXIO. 17400 **/ 17401 int 17402 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17403 { 17404 LPFC_MBOXQ_t *mbox; 17405 int rc, length, status = 0; 17406 uint32_t shdr_status, shdr_add_status; 17407 union lpfc_sli4_cfg_shdr *shdr; 17408 17409 /* sanity check on queue memory */ 17410 if (!wq) 17411 return -ENODEV; 17412 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17413 if (!mbox) 17414 return -ENOMEM; 17415 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17416 sizeof(struct lpfc_sli4_cfg_mhdr)); 17417 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17418 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17419 length, LPFC_SLI4_MBX_EMBED); 17420 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17421 wq->queue_id); 17422 mbox->vport = wq->phba->pport; 17423 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17424 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17425 shdr = (union lpfc_sli4_cfg_shdr *) 17426 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17427 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17428 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17429 if (shdr_status || shdr_add_status || rc) { 17430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17431 "2508 WQ_DESTROY mailbox failed with " 17432 "status x%x add_status x%x, mbx status x%x\n", 17433 shdr_status, shdr_add_status, rc); 17434 status = -ENXIO; 17435 } 17436 /* Remove wq from any list */ 17437 list_del_init(&wq->list); 17438 kfree(wq->pring); 17439 wq->pring = NULL; 17440 mempool_free(mbox, wq->phba->mbox_mem_pool); 17441 return status; 17442 } 17443 17444 /** 17445 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17446 * @phba: HBA structure that indicates port to destroy a queue on. 17447 * @hrq: The queue structure associated with the queue to destroy. 17448 * @drq: The queue structure associated with the queue to destroy. 17449 * 17450 * This function destroys a queue, as detailed in @rq by sending an mailbox 17451 * command, specific to the type of queue, to the HBA. 17452 * 17453 * The @rq struct is used to get the queue ID of the queue to destroy. 17454 * 17455 * On success this function will return a zero. If the queue destroy mailbox 17456 * command fails this function will return -ENXIO. 17457 **/ 17458 int 17459 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17460 struct lpfc_queue *drq) 17461 { 17462 LPFC_MBOXQ_t *mbox; 17463 int rc, length, status = 0; 17464 uint32_t shdr_status, shdr_add_status; 17465 union lpfc_sli4_cfg_shdr *shdr; 17466 17467 /* sanity check on queue memory */ 17468 if (!hrq || !drq) 17469 return -ENODEV; 17470 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17471 if (!mbox) 17472 return -ENOMEM; 17473 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17474 sizeof(struct lpfc_sli4_cfg_mhdr)); 17475 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17476 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17477 length, LPFC_SLI4_MBX_EMBED); 17478 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17479 hrq->queue_id); 17480 mbox->vport = hrq->phba->pport; 17481 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17482 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17483 /* The IOCTL status is embedded in the mailbox subheader. */ 17484 shdr = (union lpfc_sli4_cfg_shdr *) 17485 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17486 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17487 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17488 if (shdr_status || shdr_add_status || rc) { 17489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17490 "2509 RQ_DESTROY mailbox failed with " 17491 "status x%x add_status x%x, mbx status x%x\n", 17492 shdr_status, shdr_add_status, rc); 17493 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17494 return -ENXIO; 17495 } 17496 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17497 drq->queue_id); 17498 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17499 shdr = (union lpfc_sli4_cfg_shdr *) 17500 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17501 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17502 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17503 if (shdr_status || shdr_add_status || rc) { 17504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17505 "2510 RQ_DESTROY mailbox failed with " 17506 "status x%x add_status x%x, mbx status x%x\n", 17507 shdr_status, shdr_add_status, rc); 17508 status = -ENXIO; 17509 } 17510 list_del_init(&hrq->list); 17511 list_del_init(&drq->list); 17512 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17513 return status; 17514 } 17515 17516 /** 17517 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17518 * @phba: The virtual port for which this call being executed. 17519 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17520 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17521 * @xritag: the xritag that ties this io to the SGL pages. 17522 * 17523 * This routine will post the sgl pages for the IO that has the xritag 17524 * that is in the iocbq structure. The xritag is assigned during iocbq 17525 * creation and persists for as long as the driver is loaded. 17526 * if the caller has fewer than 256 scatter gather segments to map then 17527 * pdma_phys_addr1 should be 0. 17528 * If the caller needs to map more than 256 scatter gather segment then 17529 * pdma_phys_addr1 should be a valid physical address. 17530 * physical address for SGLs must be 64 byte aligned. 17531 * If you are going to map 2 SGL's then the first one must have 256 entries 17532 * the second sgl can have between 1 and 256 entries. 17533 * 17534 * Return codes: 17535 * 0 - Success 17536 * -ENXIO, -ENOMEM - Failure 17537 **/ 17538 int 17539 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17540 dma_addr_t pdma_phys_addr0, 17541 dma_addr_t pdma_phys_addr1, 17542 uint16_t xritag) 17543 { 17544 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17545 LPFC_MBOXQ_t *mbox; 17546 int rc; 17547 uint32_t shdr_status, shdr_add_status; 17548 uint32_t mbox_tmo; 17549 union lpfc_sli4_cfg_shdr *shdr; 17550 17551 if (xritag == NO_XRI) { 17552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17553 "0364 Invalid param:\n"); 17554 return -EINVAL; 17555 } 17556 17557 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17558 if (!mbox) 17559 return -ENOMEM; 17560 17561 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17562 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17563 sizeof(struct lpfc_mbx_post_sgl_pages) - 17564 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17565 17566 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17567 &mbox->u.mqe.un.post_sgl_pages; 17568 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17569 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17570 17571 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17572 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17573 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17574 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17575 17576 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17577 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17578 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17579 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17580 if (!phba->sli4_hba.intr_enable) 17581 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17582 else { 17583 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17584 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17585 } 17586 /* The IOCTL status is embedded in the mailbox subheader. */ 17587 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17588 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17589 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17590 if (!phba->sli4_hba.intr_enable) 17591 mempool_free(mbox, phba->mbox_mem_pool); 17592 else if (rc != MBX_TIMEOUT) 17593 mempool_free(mbox, phba->mbox_mem_pool); 17594 if (shdr_status || shdr_add_status || rc) { 17595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17596 "2511 POST_SGL mailbox failed with " 17597 "status x%x add_status x%x, mbx status x%x\n", 17598 shdr_status, shdr_add_status, rc); 17599 } 17600 return 0; 17601 } 17602 17603 /** 17604 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17605 * @phba: pointer to lpfc hba data structure. 17606 * 17607 * This routine is invoked to post rpi header templates to the 17608 * HBA consistent with the SLI-4 interface spec. This routine 17609 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17610 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17611 * 17612 * Returns 17613 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17614 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17615 **/ 17616 static uint16_t 17617 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17618 { 17619 unsigned long xri; 17620 17621 /* 17622 * Fetch the next logical xri. Because this index is logical, 17623 * the driver starts at 0 each time. 17624 */ 17625 spin_lock_irq(&phba->hbalock); 17626 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17627 phba->sli4_hba.max_cfg_param.max_xri); 17628 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17629 spin_unlock_irq(&phba->hbalock); 17630 return NO_XRI; 17631 } else { 17632 set_bit(xri, phba->sli4_hba.xri_bmask); 17633 phba->sli4_hba.max_cfg_param.xri_used++; 17634 } 17635 spin_unlock_irq(&phba->hbalock); 17636 return xri; 17637 } 17638 17639 /** 17640 * __lpfc_sli4_free_xri - Release an xri for reuse. 17641 * @phba: pointer to lpfc hba data structure. 17642 * @xri: xri to release. 17643 * 17644 * This routine is invoked to release an xri to the pool of 17645 * available rpis maintained by the driver. 17646 **/ 17647 static void 17648 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17649 { 17650 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17651 phba->sli4_hba.max_cfg_param.xri_used--; 17652 } 17653 } 17654 17655 /** 17656 * lpfc_sli4_free_xri - Release an xri for reuse. 17657 * @phba: pointer to lpfc hba data structure. 17658 * @xri: xri to release. 17659 * 17660 * This routine is invoked to release an xri to the pool of 17661 * available rpis maintained by the driver. 17662 **/ 17663 void 17664 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17665 { 17666 spin_lock_irq(&phba->hbalock); 17667 __lpfc_sli4_free_xri(phba, xri); 17668 spin_unlock_irq(&phba->hbalock); 17669 } 17670 17671 /** 17672 * lpfc_sli4_next_xritag - Get an xritag for the io 17673 * @phba: Pointer to HBA context object. 17674 * 17675 * This function gets an xritag for the iocb. If there is no unused xritag 17676 * it will return 0xffff. 17677 * The function returns the allocated xritag if successful, else returns zero. 17678 * Zero is not a valid xritag. 17679 * The caller is not required to hold any lock. 17680 **/ 17681 uint16_t 17682 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17683 { 17684 uint16_t xri_index; 17685 17686 xri_index = lpfc_sli4_alloc_xri(phba); 17687 if (xri_index == NO_XRI) 17688 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17689 "2004 Failed to allocate XRI.last XRITAG is %d" 17690 " Max XRI is %d, Used XRI is %d\n", 17691 xri_index, 17692 phba->sli4_hba.max_cfg_param.max_xri, 17693 phba->sli4_hba.max_cfg_param.xri_used); 17694 return xri_index; 17695 } 17696 17697 /** 17698 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17699 * @phba: pointer to lpfc hba data structure. 17700 * @post_sgl_list: pointer to els sgl entry list. 17701 * @post_cnt: number of els sgl entries on the list. 17702 * 17703 * This routine is invoked to post a block of driver's sgl pages to the 17704 * HBA using non-embedded mailbox command. No Lock is held. This routine 17705 * is only called when the driver is loading and after all IO has been 17706 * stopped. 17707 **/ 17708 static int 17709 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17710 struct list_head *post_sgl_list, 17711 int post_cnt) 17712 { 17713 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17714 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17715 struct sgl_page_pairs *sgl_pg_pairs; 17716 void *viraddr; 17717 LPFC_MBOXQ_t *mbox; 17718 uint32_t reqlen, alloclen, pg_pairs; 17719 uint32_t mbox_tmo; 17720 uint16_t xritag_start = 0; 17721 int rc = 0; 17722 uint32_t shdr_status, shdr_add_status; 17723 union lpfc_sli4_cfg_shdr *shdr; 17724 17725 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17726 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17727 if (reqlen > SLI4_PAGE_SIZE) { 17728 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17729 "2559 Block sgl registration required DMA " 17730 "size (%d) great than a page\n", reqlen); 17731 return -ENOMEM; 17732 } 17733 17734 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17735 if (!mbox) 17736 return -ENOMEM; 17737 17738 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17739 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17740 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17741 LPFC_SLI4_MBX_NEMBED); 17742 17743 if (alloclen < reqlen) { 17744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17745 "0285 Allocated DMA memory size (%d) is " 17746 "less than the requested DMA memory " 17747 "size (%d)\n", alloclen, reqlen); 17748 lpfc_sli4_mbox_cmd_free(phba, mbox); 17749 return -ENOMEM; 17750 } 17751 /* Set up the SGL pages in the non-embedded DMA pages */ 17752 viraddr = mbox->sge_array->addr[0]; 17753 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17754 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17755 17756 pg_pairs = 0; 17757 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17758 /* Set up the sge entry */ 17759 sgl_pg_pairs->sgl_pg0_addr_lo = 17760 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17761 sgl_pg_pairs->sgl_pg0_addr_hi = 17762 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17763 sgl_pg_pairs->sgl_pg1_addr_lo = 17764 cpu_to_le32(putPaddrLow(0)); 17765 sgl_pg_pairs->sgl_pg1_addr_hi = 17766 cpu_to_le32(putPaddrHigh(0)); 17767 17768 /* Keep the first xritag on the list */ 17769 if (pg_pairs == 0) 17770 xritag_start = sglq_entry->sli4_xritag; 17771 sgl_pg_pairs++; 17772 pg_pairs++; 17773 } 17774 17775 /* Complete initialization and perform endian conversion. */ 17776 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17777 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17778 sgl->word0 = cpu_to_le32(sgl->word0); 17779 17780 if (!phba->sli4_hba.intr_enable) 17781 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17782 else { 17783 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17784 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17785 } 17786 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17787 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17788 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17789 if (!phba->sli4_hba.intr_enable) 17790 lpfc_sli4_mbox_cmd_free(phba, mbox); 17791 else if (rc != MBX_TIMEOUT) 17792 lpfc_sli4_mbox_cmd_free(phba, mbox); 17793 if (shdr_status || shdr_add_status || rc) { 17794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17795 "2513 POST_SGL_BLOCK mailbox command failed " 17796 "status x%x add_status x%x mbx status x%x\n", 17797 shdr_status, shdr_add_status, rc); 17798 rc = -ENXIO; 17799 } 17800 return rc; 17801 } 17802 17803 /** 17804 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17805 * @phba: pointer to lpfc hba data structure. 17806 * @nblist: pointer to nvme buffer list. 17807 * @count: number of scsi buffers on the list. 17808 * 17809 * This routine is invoked to post a block of @count scsi sgl pages from a 17810 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17811 * No Lock is held. 17812 * 17813 **/ 17814 static int 17815 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17816 int count) 17817 { 17818 struct lpfc_io_buf *lpfc_ncmd; 17819 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17820 struct sgl_page_pairs *sgl_pg_pairs; 17821 void *viraddr; 17822 LPFC_MBOXQ_t *mbox; 17823 uint32_t reqlen, alloclen, pg_pairs; 17824 uint32_t mbox_tmo; 17825 uint16_t xritag_start = 0; 17826 int rc = 0; 17827 uint32_t shdr_status, shdr_add_status; 17828 dma_addr_t pdma_phys_bpl1; 17829 union lpfc_sli4_cfg_shdr *shdr; 17830 17831 /* Calculate the requested length of the dma memory */ 17832 reqlen = count * sizeof(struct sgl_page_pairs) + 17833 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17834 if (reqlen > SLI4_PAGE_SIZE) { 17835 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17836 "6118 Block sgl registration required DMA " 17837 "size (%d) great than a page\n", reqlen); 17838 return -ENOMEM; 17839 } 17840 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17841 if (!mbox) { 17842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17843 "6119 Failed to allocate mbox cmd memory\n"); 17844 return -ENOMEM; 17845 } 17846 17847 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17848 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17849 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17850 reqlen, LPFC_SLI4_MBX_NEMBED); 17851 17852 if (alloclen < reqlen) { 17853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17854 "6120 Allocated DMA memory size (%d) is " 17855 "less than the requested DMA memory " 17856 "size (%d)\n", alloclen, reqlen); 17857 lpfc_sli4_mbox_cmd_free(phba, mbox); 17858 return -ENOMEM; 17859 } 17860 17861 /* Get the first SGE entry from the non-embedded DMA memory */ 17862 viraddr = mbox->sge_array->addr[0]; 17863 17864 /* Set up the SGL pages in the non-embedded DMA pages */ 17865 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17866 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17867 17868 pg_pairs = 0; 17869 list_for_each_entry(lpfc_ncmd, nblist, list) { 17870 /* Set up the sge entry */ 17871 sgl_pg_pairs->sgl_pg0_addr_lo = 17872 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17873 sgl_pg_pairs->sgl_pg0_addr_hi = 17874 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17875 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17876 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17877 SGL_PAGE_SIZE; 17878 else 17879 pdma_phys_bpl1 = 0; 17880 sgl_pg_pairs->sgl_pg1_addr_lo = 17881 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17882 sgl_pg_pairs->sgl_pg1_addr_hi = 17883 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17884 /* Keep the first xritag on the list */ 17885 if (pg_pairs == 0) 17886 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17887 sgl_pg_pairs++; 17888 pg_pairs++; 17889 } 17890 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17891 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17892 /* Perform endian conversion if necessary */ 17893 sgl->word0 = cpu_to_le32(sgl->word0); 17894 17895 if (!phba->sli4_hba.intr_enable) { 17896 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17897 } else { 17898 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17899 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17900 } 17901 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17904 if (!phba->sli4_hba.intr_enable) 17905 lpfc_sli4_mbox_cmd_free(phba, mbox); 17906 else if (rc != MBX_TIMEOUT) 17907 lpfc_sli4_mbox_cmd_free(phba, mbox); 17908 if (shdr_status || shdr_add_status || rc) { 17909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17910 "6125 POST_SGL_BLOCK mailbox command failed " 17911 "status x%x add_status x%x mbx status x%x\n", 17912 shdr_status, shdr_add_status, rc); 17913 rc = -ENXIO; 17914 } 17915 return rc; 17916 } 17917 17918 /** 17919 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17920 * @phba: pointer to lpfc hba data structure. 17921 * @post_nblist: pointer to the nvme buffer list. 17922 * @sb_count: number of nvme buffers. 17923 * 17924 * This routine walks a list of nvme buffers that was passed in. It attempts 17925 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17926 * uses the non-embedded SGL block post mailbox commands to post to the port. 17927 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17928 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17929 * must be local list, thus no lock is needed when manipulate the list. 17930 * 17931 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17932 **/ 17933 int 17934 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17935 struct list_head *post_nblist, int sb_count) 17936 { 17937 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17938 int status, sgl_size; 17939 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17940 dma_addr_t pdma_phys_sgl1; 17941 int last_xritag = NO_XRI; 17942 int cur_xritag; 17943 LIST_HEAD(prep_nblist); 17944 LIST_HEAD(blck_nblist); 17945 LIST_HEAD(nvme_nblist); 17946 17947 /* sanity check */ 17948 if (sb_count <= 0) 17949 return -EINVAL; 17950 17951 sgl_size = phba->cfg_sg_dma_buf_size; 17952 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17953 list_del_init(&lpfc_ncmd->list); 17954 block_cnt++; 17955 if ((last_xritag != NO_XRI) && 17956 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17957 /* a hole in xri block, form a sgl posting block */ 17958 list_splice_init(&prep_nblist, &blck_nblist); 17959 post_cnt = block_cnt - 1; 17960 /* prepare list for next posting block */ 17961 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17962 block_cnt = 1; 17963 } else { 17964 /* prepare list for next posting block */ 17965 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17966 /* enough sgls for non-embed sgl mbox command */ 17967 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17968 list_splice_init(&prep_nblist, &blck_nblist); 17969 post_cnt = block_cnt; 17970 block_cnt = 0; 17971 } 17972 } 17973 num_posting++; 17974 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17975 17976 /* end of repost sgl list condition for NVME buffers */ 17977 if (num_posting == sb_count) { 17978 if (post_cnt == 0) { 17979 /* last sgl posting block */ 17980 list_splice_init(&prep_nblist, &blck_nblist); 17981 post_cnt = block_cnt; 17982 } else if (block_cnt == 1) { 17983 /* last single sgl with non-contiguous xri */ 17984 if (sgl_size > SGL_PAGE_SIZE) 17985 pdma_phys_sgl1 = 17986 lpfc_ncmd->dma_phys_sgl + 17987 SGL_PAGE_SIZE; 17988 else 17989 pdma_phys_sgl1 = 0; 17990 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17991 status = lpfc_sli4_post_sgl( 17992 phba, lpfc_ncmd->dma_phys_sgl, 17993 pdma_phys_sgl1, cur_xritag); 17994 if (status) { 17995 /* Post error. Buffer unavailable. */ 17996 lpfc_ncmd->flags |= 17997 LPFC_SBUF_NOT_POSTED; 17998 } else { 17999 /* Post success. Bffer available. */ 18000 lpfc_ncmd->flags &= 18001 ~LPFC_SBUF_NOT_POSTED; 18002 lpfc_ncmd->status = IOSTAT_SUCCESS; 18003 num_posted++; 18004 } 18005 /* success, put on NVME buffer sgl list */ 18006 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18007 } 18008 } 18009 18010 /* continue until a nembed page worth of sgls */ 18011 if (post_cnt == 0) 18012 continue; 18013 18014 /* post block of NVME buffer list sgls */ 18015 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18016 post_cnt); 18017 18018 /* don't reset xirtag due to hole in xri block */ 18019 if (block_cnt == 0) 18020 last_xritag = NO_XRI; 18021 18022 /* reset NVME buffer post count for next round of posting */ 18023 post_cnt = 0; 18024 18025 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18026 while (!list_empty(&blck_nblist)) { 18027 list_remove_head(&blck_nblist, lpfc_ncmd, 18028 struct lpfc_io_buf, list); 18029 if (status) { 18030 /* Post error. Mark buffer unavailable. */ 18031 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18032 } else { 18033 /* Post success, Mark buffer available. */ 18034 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18035 lpfc_ncmd->status = IOSTAT_SUCCESS; 18036 num_posted++; 18037 } 18038 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18039 } 18040 } 18041 /* Push NVME buffers with sgl posted to the available list */ 18042 lpfc_io_buf_replenish(phba, &nvme_nblist); 18043 18044 return num_posted; 18045 } 18046 18047 /** 18048 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18049 * @phba: pointer to lpfc_hba struct that the frame was received on 18050 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18051 * 18052 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18053 * valid type of frame that the LPFC driver will handle. This function will 18054 * return a zero if the frame is a valid frame or a non zero value when the 18055 * frame does not pass the check. 18056 **/ 18057 static int 18058 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18059 { 18060 /* make rctl_names static to save stack space */ 18061 struct fc_vft_header *fc_vft_hdr; 18062 uint32_t *header = (uint32_t *) fc_hdr; 18063 18064 #define FC_RCTL_MDS_DIAGS 0xF4 18065 18066 switch (fc_hdr->fh_r_ctl) { 18067 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18068 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18069 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18070 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18071 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18072 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18073 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18074 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18075 case FC_RCTL_ELS_REQ: /* extended link services request */ 18076 case FC_RCTL_ELS_REP: /* extended link services reply */ 18077 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18078 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18079 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18080 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18081 case FC_RCTL_BA_RMC: /* remove connection */ 18082 case FC_RCTL_BA_ACC: /* basic accept */ 18083 case FC_RCTL_BA_RJT: /* basic reject */ 18084 case FC_RCTL_BA_PRMT: 18085 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18086 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18087 case FC_RCTL_P_RJT: /* port reject */ 18088 case FC_RCTL_F_RJT: /* fabric reject */ 18089 case FC_RCTL_P_BSY: /* port busy */ 18090 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18091 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18092 case FC_RCTL_LCR: /* link credit reset */ 18093 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18094 case FC_RCTL_END: /* end */ 18095 break; 18096 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18097 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18098 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18099 return lpfc_fc_frame_check(phba, fc_hdr); 18100 default: 18101 goto drop; 18102 } 18103 18104 switch (fc_hdr->fh_type) { 18105 case FC_TYPE_BLS: 18106 case FC_TYPE_ELS: 18107 case FC_TYPE_FCP: 18108 case FC_TYPE_CT: 18109 case FC_TYPE_NVME: 18110 break; 18111 case FC_TYPE_IP: 18112 case FC_TYPE_ILS: 18113 default: 18114 goto drop; 18115 } 18116 18117 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18118 "2538 Received frame rctl:x%x, type:x%x, " 18119 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18120 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18121 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18122 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18123 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18124 be32_to_cpu(header[6])); 18125 return 0; 18126 drop: 18127 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18128 "2539 Dropped frame rctl:x%x type:x%x\n", 18129 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18130 return 1; 18131 } 18132 18133 /** 18134 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18135 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18136 * 18137 * This function processes the FC header to retrieve the VFI from the VF 18138 * header, if one exists. This function will return the VFI if one exists 18139 * or 0 if no VSAN Header exists. 18140 **/ 18141 static uint32_t 18142 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18143 { 18144 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18145 18146 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18147 return 0; 18148 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18149 } 18150 18151 /** 18152 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18153 * @phba: Pointer to the HBA structure to search for the vport on 18154 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18155 * @fcfi: The FC Fabric ID that the frame came from 18156 * @did: Destination ID to match against 18157 * 18158 * This function searches the @phba for a vport that matches the content of the 18159 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18160 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18161 * returns the matching vport pointer or NULL if unable to match frame to a 18162 * vport. 18163 **/ 18164 static struct lpfc_vport * 18165 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18166 uint16_t fcfi, uint32_t did) 18167 { 18168 struct lpfc_vport **vports; 18169 struct lpfc_vport *vport = NULL; 18170 int i; 18171 18172 if (did == Fabric_DID) 18173 return phba->pport; 18174 if ((phba->pport->fc_flag & FC_PT2PT) && 18175 !(phba->link_state == LPFC_HBA_READY)) 18176 return phba->pport; 18177 18178 vports = lpfc_create_vport_work_array(phba); 18179 if (vports != NULL) { 18180 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18181 if (phba->fcf.fcfi == fcfi && 18182 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18183 vports[i]->fc_myDID == did) { 18184 vport = vports[i]; 18185 break; 18186 } 18187 } 18188 } 18189 lpfc_destroy_vport_work_array(phba, vports); 18190 return vport; 18191 } 18192 18193 /** 18194 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18195 * @vport: The vport to work on. 18196 * 18197 * This function updates the receive sequence time stamp for this vport. The 18198 * receive sequence time stamp indicates the time that the last frame of the 18199 * the sequence that has been idle for the longest amount of time was received. 18200 * the driver uses this time stamp to indicate if any received sequences have 18201 * timed out. 18202 **/ 18203 static void 18204 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18205 { 18206 struct lpfc_dmabuf *h_buf; 18207 struct hbq_dmabuf *dmabuf = NULL; 18208 18209 /* get the oldest sequence on the rcv list */ 18210 h_buf = list_get_first(&vport->rcv_buffer_list, 18211 struct lpfc_dmabuf, list); 18212 if (!h_buf) 18213 return; 18214 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18215 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18216 } 18217 18218 /** 18219 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18220 * @vport: The vport that the received sequences were sent to. 18221 * 18222 * This function cleans up all outstanding received sequences. This is called 18223 * by the driver when a link event or user action invalidates all the received 18224 * sequences. 18225 **/ 18226 void 18227 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18228 { 18229 struct lpfc_dmabuf *h_buf, *hnext; 18230 struct lpfc_dmabuf *d_buf, *dnext; 18231 struct hbq_dmabuf *dmabuf = NULL; 18232 18233 /* start with the oldest sequence on the rcv list */ 18234 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18235 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18236 list_del_init(&dmabuf->hbuf.list); 18237 list_for_each_entry_safe(d_buf, dnext, 18238 &dmabuf->dbuf.list, list) { 18239 list_del_init(&d_buf->list); 18240 lpfc_in_buf_free(vport->phba, d_buf); 18241 } 18242 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18243 } 18244 } 18245 18246 /** 18247 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18248 * @vport: The vport that the received sequences were sent to. 18249 * 18250 * This function determines whether any received sequences have timed out by 18251 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18252 * indicates that there is at least one timed out sequence this routine will 18253 * go through the received sequences one at a time from most inactive to most 18254 * active to determine which ones need to be cleaned up. Once it has determined 18255 * that a sequence needs to be cleaned up it will simply free up the resources 18256 * without sending an abort. 18257 **/ 18258 void 18259 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18260 { 18261 struct lpfc_dmabuf *h_buf, *hnext; 18262 struct lpfc_dmabuf *d_buf, *dnext; 18263 struct hbq_dmabuf *dmabuf = NULL; 18264 unsigned long timeout; 18265 int abort_count = 0; 18266 18267 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18268 vport->rcv_buffer_time_stamp); 18269 if (list_empty(&vport->rcv_buffer_list) || 18270 time_before(jiffies, timeout)) 18271 return; 18272 /* start with the oldest sequence on the rcv list */ 18273 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18274 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18275 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18276 dmabuf->time_stamp); 18277 if (time_before(jiffies, timeout)) 18278 break; 18279 abort_count++; 18280 list_del_init(&dmabuf->hbuf.list); 18281 list_for_each_entry_safe(d_buf, dnext, 18282 &dmabuf->dbuf.list, list) { 18283 list_del_init(&d_buf->list); 18284 lpfc_in_buf_free(vport->phba, d_buf); 18285 } 18286 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18287 } 18288 if (abort_count) 18289 lpfc_update_rcv_time_stamp(vport); 18290 } 18291 18292 /** 18293 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18294 * @vport: pointer to a vitural port 18295 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18296 * 18297 * This function searches through the existing incomplete sequences that have 18298 * been sent to this @vport. If the frame matches one of the incomplete 18299 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18300 * make up that sequence. If no sequence is found that matches this frame then 18301 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18302 * This function returns a pointer to the first dmabuf in the sequence list that 18303 * the frame was linked to. 18304 **/ 18305 static struct hbq_dmabuf * 18306 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18307 { 18308 struct fc_frame_header *new_hdr; 18309 struct fc_frame_header *temp_hdr; 18310 struct lpfc_dmabuf *d_buf; 18311 struct lpfc_dmabuf *h_buf; 18312 struct hbq_dmabuf *seq_dmabuf = NULL; 18313 struct hbq_dmabuf *temp_dmabuf = NULL; 18314 uint8_t found = 0; 18315 18316 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18317 dmabuf->time_stamp = jiffies; 18318 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18319 18320 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18321 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18322 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18323 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18324 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18325 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18326 continue; 18327 /* found a pending sequence that matches this frame */ 18328 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18329 break; 18330 } 18331 if (!seq_dmabuf) { 18332 /* 18333 * This indicates first frame received for this sequence. 18334 * Queue the buffer on the vport's rcv_buffer_list. 18335 */ 18336 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18337 lpfc_update_rcv_time_stamp(vport); 18338 return dmabuf; 18339 } 18340 temp_hdr = seq_dmabuf->hbuf.virt; 18341 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18342 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18343 list_del_init(&seq_dmabuf->hbuf.list); 18344 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18345 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18346 lpfc_update_rcv_time_stamp(vport); 18347 return dmabuf; 18348 } 18349 /* move this sequence to the tail to indicate a young sequence */ 18350 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18351 seq_dmabuf->time_stamp = jiffies; 18352 lpfc_update_rcv_time_stamp(vport); 18353 if (list_empty(&seq_dmabuf->dbuf.list)) { 18354 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18355 return seq_dmabuf; 18356 } 18357 /* find the correct place in the sequence to insert this frame */ 18358 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18359 while (!found) { 18360 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18361 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18362 /* 18363 * If the frame's sequence count is greater than the frame on 18364 * the list then insert the frame right after this frame 18365 */ 18366 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18367 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18368 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18369 found = 1; 18370 break; 18371 } 18372 18373 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18374 break; 18375 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18376 } 18377 18378 if (found) 18379 return seq_dmabuf; 18380 return NULL; 18381 } 18382 18383 /** 18384 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18385 * @vport: pointer to a vitural port 18386 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18387 * 18388 * This function tries to abort from the partially assembed sequence, described 18389 * by the information from basic abbort @dmabuf. It checks to see whether such 18390 * partially assembled sequence held by the driver. If so, it shall free up all 18391 * the frames from the partially assembled sequence. 18392 * 18393 * Return 18394 * true -- if there is matching partially assembled sequence present and all 18395 * the frames freed with the sequence; 18396 * false -- if there is no matching partially assembled sequence present so 18397 * nothing got aborted in the lower layer driver 18398 **/ 18399 static bool 18400 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18401 struct hbq_dmabuf *dmabuf) 18402 { 18403 struct fc_frame_header *new_hdr; 18404 struct fc_frame_header *temp_hdr; 18405 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18406 struct hbq_dmabuf *seq_dmabuf = NULL; 18407 18408 /* Use the hdr_buf to find the sequence that matches this frame */ 18409 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18410 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18411 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18412 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18413 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18414 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18415 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18416 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18417 continue; 18418 /* found a pending sequence that matches this frame */ 18419 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18420 break; 18421 } 18422 18423 /* Free up all the frames from the partially assembled sequence */ 18424 if (seq_dmabuf) { 18425 list_for_each_entry_safe(d_buf, n_buf, 18426 &seq_dmabuf->dbuf.list, list) { 18427 list_del_init(&d_buf->list); 18428 lpfc_in_buf_free(vport->phba, d_buf); 18429 } 18430 return true; 18431 } 18432 return false; 18433 } 18434 18435 /** 18436 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18437 * @vport: pointer to a vitural port 18438 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18439 * 18440 * This function tries to abort from the assembed sequence from upper level 18441 * protocol, described by the information from basic abbort @dmabuf. It 18442 * checks to see whether such pending context exists at upper level protocol. 18443 * If so, it shall clean up the pending context. 18444 * 18445 * Return 18446 * true -- if there is matching pending context of the sequence cleaned 18447 * at ulp; 18448 * false -- if there is no matching pending context of the sequence present 18449 * at ulp. 18450 **/ 18451 static bool 18452 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18453 { 18454 struct lpfc_hba *phba = vport->phba; 18455 int handled; 18456 18457 /* Accepting abort at ulp with SLI4 only */ 18458 if (phba->sli_rev < LPFC_SLI_REV4) 18459 return false; 18460 18461 /* Register all caring upper level protocols to attend abort */ 18462 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18463 if (handled) 18464 return true; 18465 18466 return false; 18467 } 18468 18469 /** 18470 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18471 * @phba: Pointer to HBA context object. 18472 * @cmd_iocbq: pointer to the command iocbq structure. 18473 * @rsp_iocbq: pointer to the response iocbq structure. 18474 * 18475 * This function handles the sequence abort response iocb command complete 18476 * event. It properly releases the memory allocated to the sequence abort 18477 * accept iocb. 18478 **/ 18479 static void 18480 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18481 struct lpfc_iocbq *cmd_iocbq, 18482 struct lpfc_iocbq *rsp_iocbq) 18483 { 18484 struct lpfc_nodelist *ndlp; 18485 18486 if (cmd_iocbq) { 18487 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18488 lpfc_nlp_put(ndlp); 18489 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18490 } 18491 18492 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18493 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18495 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18496 get_job_ulpstatus(phba, rsp_iocbq), 18497 get_job_word4(phba, rsp_iocbq)); 18498 } 18499 18500 /** 18501 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18502 * @phba: Pointer to HBA context object. 18503 * @xri: xri id in transaction. 18504 * 18505 * This function validates the xri maps to the known range of XRIs allocated an 18506 * used by the driver. 18507 **/ 18508 uint16_t 18509 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18510 uint16_t xri) 18511 { 18512 uint16_t i; 18513 18514 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18515 if (xri == phba->sli4_hba.xri_ids[i]) 18516 return i; 18517 } 18518 return NO_XRI; 18519 } 18520 18521 /** 18522 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18523 * @vport: pointer to a virtual port. 18524 * @fc_hdr: pointer to a FC frame header. 18525 * @aborted: was the partially assembled receive sequence successfully aborted 18526 * 18527 * This function sends a basic response to a previous unsol sequence abort 18528 * event after aborting the sequence handling. 18529 **/ 18530 void 18531 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18532 struct fc_frame_header *fc_hdr, bool aborted) 18533 { 18534 struct lpfc_hba *phba = vport->phba; 18535 struct lpfc_iocbq *ctiocb = NULL; 18536 struct lpfc_nodelist *ndlp; 18537 uint16_t oxid, rxid, xri, lxri; 18538 uint32_t sid, fctl; 18539 union lpfc_wqe128 *icmd; 18540 int rc; 18541 18542 if (!lpfc_is_link_up(phba)) 18543 return; 18544 18545 sid = sli4_sid_from_fc_hdr(fc_hdr); 18546 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18547 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18548 18549 ndlp = lpfc_findnode_did(vport, sid); 18550 if (!ndlp) { 18551 ndlp = lpfc_nlp_init(vport, sid); 18552 if (!ndlp) { 18553 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18554 "1268 Failed to allocate ndlp for " 18555 "oxid:x%x SID:x%x\n", oxid, sid); 18556 return; 18557 } 18558 /* Put ndlp onto pport node list */ 18559 lpfc_enqueue_node(vport, ndlp); 18560 } 18561 18562 /* Allocate buffer for rsp iocb */ 18563 ctiocb = lpfc_sli_get_iocbq(phba); 18564 if (!ctiocb) 18565 return; 18566 18567 icmd = &ctiocb->wqe; 18568 18569 /* Extract the F_CTL field from FC_HDR */ 18570 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18571 18572 ctiocb->context1 = lpfc_nlp_get(ndlp); 18573 if (!ctiocb->context1) { 18574 lpfc_sli_release_iocbq(phba, ctiocb); 18575 return; 18576 } 18577 18578 ctiocb->vport = phba->pport; 18579 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18580 ctiocb->sli4_lxritag = NO_XRI; 18581 ctiocb->sli4_xritag = NO_XRI; 18582 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18583 18584 if (fctl & FC_FC_EX_CTX) 18585 /* Exchange responder sent the abort so we 18586 * own the oxid. 18587 */ 18588 xri = oxid; 18589 else 18590 xri = rxid; 18591 lxri = lpfc_sli4_xri_inrange(phba, xri); 18592 if (lxri != NO_XRI) 18593 lpfc_set_rrq_active(phba, ndlp, lxri, 18594 (xri == oxid) ? rxid : oxid, 0); 18595 /* For BA_ABTS from exchange responder, if the logical xri with 18596 * the oxid maps to the FCP XRI range, the port no longer has 18597 * that exchange context, send a BLS_RJT. Override the IOCB for 18598 * a BA_RJT. 18599 */ 18600 if ((fctl & FC_FC_EX_CTX) && 18601 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18602 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18603 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18604 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18605 FC_BA_RJT_INV_XID); 18606 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18607 FC_BA_RJT_UNABLE); 18608 } 18609 18610 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18611 * the driver no longer has that exchange, send a BLS_RJT. Override 18612 * the IOCB for a BA_RJT. 18613 */ 18614 if (aborted == false) { 18615 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18616 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18617 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18618 FC_BA_RJT_INV_XID); 18619 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18620 FC_BA_RJT_UNABLE); 18621 } 18622 18623 if (fctl & FC_FC_EX_CTX) { 18624 /* ABTS sent by responder to CT exchange, construction 18625 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18626 * field and RX_ID from ABTS for RX_ID field. 18627 */ 18628 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18629 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18630 } else { 18631 /* ABTS sent by initiator to CT exchange, construction 18632 * of BA_ACC will need to allocate a new XRI as for the 18633 * XRI_TAG field. 18634 */ 18635 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18636 } 18637 18638 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18639 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18640 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18641 18642 /* Use CT=VPI */ 18643 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18644 ndlp->nlp_DID); 18645 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18646 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18647 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18648 18649 18650 /* Xmit CT abts response on exchange <xid> */ 18651 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18652 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18653 ctiocb->abort_rctl, oxid, phba->link_state); 18654 18655 lpfc_sli_prep_wqe(phba, ctiocb); 18656 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18657 if (rc == IOCB_ERROR) { 18658 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18659 "2925 Failed to issue CT ABTS RSP x%x on " 18660 "xri x%x, Data x%x\n", 18661 ctiocb->abort_rctl, oxid, 18662 phba->link_state); 18663 lpfc_nlp_put(ndlp); 18664 ctiocb->context1 = NULL; 18665 lpfc_sli_release_iocbq(phba, ctiocb); 18666 } 18667 } 18668 18669 /** 18670 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18671 * @vport: Pointer to the vport on which this sequence was received 18672 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18673 * 18674 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18675 * receive sequence is only partially assembed by the driver, it shall abort 18676 * the partially assembled frames for the sequence. Otherwise, if the 18677 * unsolicited receive sequence has been completely assembled and passed to 18678 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18679 * unsolicited sequence has been aborted. After that, it will issue a basic 18680 * accept to accept the abort. 18681 **/ 18682 static void 18683 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18684 struct hbq_dmabuf *dmabuf) 18685 { 18686 struct lpfc_hba *phba = vport->phba; 18687 struct fc_frame_header fc_hdr; 18688 uint32_t fctl; 18689 bool aborted; 18690 18691 /* Make a copy of fc_hdr before the dmabuf being released */ 18692 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18693 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18694 18695 if (fctl & FC_FC_EX_CTX) { 18696 /* ABTS by responder to exchange, no cleanup needed */ 18697 aborted = true; 18698 } else { 18699 /* ABTS by initiator to exchange, need to do cleanup */ 18700 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18701 if (aborted == false) 18702 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18703 } 18704 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18705 18706 if (phba->nvmet_support) { 18707 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18708 return; 18709 } 18710 18711 /* Respond with BA_ACC or BA_RJT accordingly */ 18712 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18713 } 18714 18715 /** 18716 * lpfc_seq_complete - Indicates if a sequence is complete 18717 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18718 * 18719 * This function checks the sequence, starting with the frame described by 18720 * @dmabuf, to see if all the frames associated with this sequence are present. 18721 * the frames associated with this sequence are linked to the @dmabuf using the 18722 * dbuf list. This function looks for two major things. 1) That the first frame 18723 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18724 * set. 3) That there are no holes in the sequence count. The function will 18725 * return 1 when the sequence is complete, otherwise it will return 0. 18726 **/ 18727 static int 18728 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18729 { 18730 struct fc_frame_header *hdr; 18731 struct lpfc_dmabuf *d_buf; 18732 struct hbq_dmabuf *seq_dmabuf; 18733 uint32_t fctl; 18734 int seq_count = 0; 18735 18736 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18737 /* make sure first fame of sequence has a sequence count of zero */ 18738 if (hdr->fh_seq_cnt != seq_count) 18739 return 0; 18740 fctl = (hdr->fh_f_ctl[0] << 16 | 18741 hdr->fh_f_ctl[1] << 8 | 18742 hdr->fh_f_ctl[2]); 18743 /* If last frame of sequence we can return success. */ 18744 if (fctl & FC_FC_END_SEQ) 18745 return 1; 18746 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18747 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18748 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18749 /* If there is a hole in the sequence count then fail. */ 18750 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18751 return 0; 18752 fctl = (hdr->fh_f_ctl[0] << 16 | 18753 hdr->fh_f_ctl[1] << 8 | 18754 hdr->fh_f_ctl[2]); 18755 /* If last frame of sequence we can return success. */ 18756 if (fctl & FC_FC_END_SEQ) 18757 return 1; 18758 } 18759 return 0; 18760 } 18761 18762 /** 18763 * lpfc_prep_seq - Prep sequence for ULP processing 18764 * @vport: Pointer to the vport on which this sequence was received 18765 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18766 * 18767 * This function takes a sequence, described by a list of frames, and creates 18768 * a list of iocbq structures to describe the sequence. This iocbq list will be 18769 * used to issue to the generic unsolicited sequence handler. This routine 18770 * returns a pointer to the first iocbq in the list. If the function is unable 18771 * to allocate an iocbq then it throw out the received frames that were not 18772 * able to be described and return a pointer to the first iocbq. If unable to 18773 * allocate any iocbqs (including the first) this function will return NULL. 18774 **/ 18775 static struct lpfc_iocbq * 18776 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18777 { 18778 struct hbq_dmabuf *hbq_buf; 18779 struct lpfc_dmabuf *d_buf, *n_buf; 18780 struct lpfc_iocbq *first_iocbq, *iocbq; 18781 struct fc_frame_header *fc_hdr; 18782 uint32_t sid; 18783 uint32_t len, tot_len; 18784 18785 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18786 /* remove from receive buffer list */ 18787 list_del_init(&seq_dmabuf->hbuf.list); 18788 lpfc_update_rcv_time_stamp(vport); 18789 /* get the Remote Port's SID */ 18790 sid = sli4_sid_from_fc_hdr(fc_hdr); 18791 tot_len = 0; 18792 /* Get an iocbq struct to fill in. */ 18793 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18794 if (first_iocbq) { 18795 /* Initialize the first IOCB. */ 18796 first_iocbq->wcqe_cmpl.total_data_placed = 0; 18797 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 18798 IOSTAT_SUCCESS); 18799 first_iocbq->vport = vport; 18800 18801 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18802 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18803 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 18804 sli4_did_from_fc_hdr(fc_hdr)); 18805 } 18806 18807 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18808 NO_XRI); 18809 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18810 be16_to_cpu(fc_hdr->fh_ox_id)); 18811 18812 /* put the first buffer into the first iocb */ 18813 tot_len = bf_get(lpfc_rcqe_length, 18814 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18815 18816 first_iocbq->context2 = &seq_dmabuf->dbuf; 18817 first_iocbq->context3 = NULL; 18818 /* Keep track of the BDE count */ 18819 first_iocbq->wcqe_cmpl.word3 = 1; 18820 18821 if (tot_len > LPFC_DATA_BUF_SIZE) 18822 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 18823 LPFC_DATA_BUF_SIZE; 18824 else 18825 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 18826 18827 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 18828 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 18829 sid); 18830 } 18831 iocbq = first_iocbq; 18832 /* 18833 * Each IOCBq can have two Buffers assigned, so go through the list 18834 * of buffers for this sequence and save two buffers in each IOCBq 18835 */ 18836 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18837 if (!iocbq) { 18838 lpfc_in_buf_free(vport->phba, d_buf); 18839 continue; 18840 } 18841 if (!iocbq->context3) { 18842 iocbq->context3 = d_buf; 18843 iocbq->wcqe_cmpl.word3++; 18844 /* We need to get the size out of the right CQE */ 18845 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18846 len = bf_get(lpfc_rcqe_length, 18847 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18848 iocbq->unsol_rcv_len = len; 18849 iocbq->wcqe_cmpl.total_data_placed += len; 18850 tot_len += len; 18851 } else { 18852 iocbq = lpfc_sli_get_iocbq(vport->phba); 18853 if (!iocbq) { 18854 if (first_iocbq) { 18855 bf_set(lpfc_wcqe_c_status, 18856 &first_iocbq->wcqe_cmpl, 18857 IOSTAT_SUCCESS); 18858 first_iocbq->wcqe_cmpl.parameter = 18859 IOERR_NO_RESOURCES; 18860 } 18861 lpfc_in_buf_free(vport->phba, d_buf); 18862 continue; 18863 } 18864 /* We need to get the size out of the right CQE */ 18865 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18866 len = bf_get(lpfc_rcqe_length, 18867 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18868 iocbq->context2 = d_buf; 18869 iocbq->context3 = NULL; 18870 iocbq->wcqe_cmpl.word3 = 1; 18871 18872 if (len > LPFC_DATA_BUF_SIZE) 18873 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18874 LPFC_DATA_BUF_SIZE; 18875 else 18876 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18877 len; 18878 18879 tot_len += len; 18880 iocbq->wcqe_cmpl.total_data_placed = tot_len; 18881 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 18882 sid); 18883 list_add_tail(&iocbq->list, &first_iocbq->list); 18884 } 18885 } 18886 /* Free the sequence's header buffer */ 18887 if (!first_iocbq) 18888 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18889 18890 return first_iocbq; 18891 } 18892 18893 static void 18894 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18895 struct hbq_dmabuf *seq_dmabuf) 18896 { 18897 struct fc_frame_header *fc_hdr; 18898 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18899 struct lpfc_hba *phba = vport->phba; 18900 18901 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18902 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18903 if (!iocbq) { 18904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18905 "2707 Ring %d handler: Failed to allocate " 18906 "iocb Rctl x%x Type x%x received\n", 18907 LPFC_ELS_RING, 18908 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18909 return; 18910 } 18911 if (!lpfc_complete_unsol_iocb(phba, 18912 phba->sli4_hba.els_wq->pring, 18913 iocbq, fc_hdr->fh_r_ctl, 18914 fc_hdr->fh_type)) 18915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18916 "2540 Ring %d handler: unexpected Rctl " 18917 "x%x Type x%x received\n", 18918 LPFC_ELS_RING, 18919 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18920 18921 /* Free iocb created in lpfc_prep_seq */ 18922 list_for_each_entry_safe(curr_iocb, next_iocb, 18923 &iocbq->list, list) { 18924 list_del_init(&curr_iocb->list); 18925 lpfc_sli_release_iocbq(phba, curr_iocb); 18926 } 18927 lpfc_sli_release_iocbq(phba, iocbq); 18928 } 18929 18930 static void 18931 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18932 struct lpfc_iocbq *rspiocb) 18933 { 18934 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18935 18936 if (pcmd && pcmd->virt) 18937 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18938 kfree(pcmd); 18939 lpfc_sli_release_iocbq(phba, cmdiocb); 18940 lpfc_drain_txq(phba); 18941 } 18942 18943 static void 18944 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18945 struct hbq_dmabuf *dmabuf) 18946 { 18947 struct fc_frame_header *fc_hdr; 18948 struct lpfc_hba *phba = vport->phba; 18949 struct lpfc_iocbq *iocbq = NULL; 18950 union lpfc_wqe128 *pwqe; 18951 struct lpfc_dmabuf *pcmd = NULL; 18952 uint32_t frame_len; 18953 int rc; 18954 unsigned long iflags; 18955 18956 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18957 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18958 18959 /* Send the received frame back */ 18960 iocbq = lpfc_sli_get_iocbq(phba); 18961 if (!iocbq) { 18962 /* Queue cq event and wakeup worker thread to process it */ 18963 spin_lock_irqsave(&phba->hbalock, iflags); 18964 list_add_tail(&dmabuf->cq_event.list, 18965 &phba->sli4_hba.sp_queue_event); 18966 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18967 spin_unlock_irqrestore(&phba->hbalock, iflags); 18968 lpfc_worker_wake_up(phba); 18969 return; 18970 } 18971 18972 /* Allocate buffer for command payload */ 18973 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18974 if (pcmd) 18975 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18976 &pcmd->phys); 18977 if (!pcmd || !pcmd->virt) 18978 goto exit; 18979 18980 INIT_LIST_HEAD(&pcmd->list); 18981 18982 /* copyin the payload */ 18983 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18984 18985 iocbq->context2 = pcmd; 18986 iocbq->vport = vport; 18987 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 18988 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 18989 iocbq->num_bdes = 0; 18990 18991 pwqe = &iocbq->wqe; 18992 /* fill in BDE's for command */ 18993 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 18994 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 18995 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 18996 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 18997 18998 pwqe->send_frame.frame_len = frame_len; 18999 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19000 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19001 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19002 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19003 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19004 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19005 19006 pwqe->generic.wqe_com.word7 = 0; 19007 pwqe->generic.wqe_com.word10 = 0; 19008 19009 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19010 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19011 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19012 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19013 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19014 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19015 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19016 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19017 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19018 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19019 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19020 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19021 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19022 19023 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19024 19025 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19026 if (rc == IOCB_ERROR) 19027 goto exit; 19028 19029 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19030 return; 19031 19032 exit: 19033 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19034 "2023 Unable to process MDS loopback frame\n"); 19035 if (pcmd && pcmd->virt) 19036 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19037 kfree(pcmd); 19038 if (iocbq) 19039 lpfc_sli_release_iocbq(phba, iocbq); 19040 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19041 } 19042 19043 /** 19044 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19045 * @phba: Pointer to HBA context object. 19046 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19047 * 19048 * This function is called with no lock held. This function processes all 19049 * the received buffers and gives it to upper layers when a received buffer 19050 * indicates that it is the final frame in the sequence. The interrupt 19051 * service routine processes received buffers at interrupt contexts. 19052 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19053 * appropriate receive function when the final frame in a sequence is received. 19054 **/ 19055 void 19056 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19057 struct hbq_dmabuf *dmabuf) 19058 { 19059 struct hbq_dmabuf *seq_dmabuf; 19060 struct fc_frame_header *fc_hdr; 19061 struct lpfc_vport *vport; 19062 uint32_t fcfi; 19063 uint32_t did; 19064 19065 /* Process each received buffer */ 19066 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19067 19068 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19069 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19070 vport = phba->pport; 19071 /* Handle MDS Loopback frames */ 19072 if (!(phba->pport->load_flag & FC_UNLOADING)) 19073 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19074 else 19075 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19076 return; 19077 } 19078 19079 /* check to see if this a valid type of frame */ 19080 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19081 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19082 return; 19083 } 19084 19085 if ((bf_get(lpfc_cqe_code, 19086 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19087 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19088 &dmabuf->cq_event.cqe.rcqe_cmpl); 19089 else 19090 fcfi = bf_get(lpfc_rcqe_fcf_id, 19091 &dmabuf->cq_event.cqe.rcqe_cmpl); 19092 19093 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19094 vport = phba->pport; 19095 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19096 "2023 MDS Loopback %d bytes\n", 19097 bf_get(lpfc_rcqe_length, 19098 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19099 /* Handle MDS Loopback frames */ 19100 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19101 return; 19102 } 19103 19104 /* d_id this frame is directed to */ 19105 did = sli4_did_from_fc_hdr(fc_hdr); 19106 19107 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19108 if (!vport) { 19109 /* throw out the frame */ 19110 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19111 return; 19112 } 19113 19114 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19115 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19116 (did != Fabric_DID)) { 19117 /* 19118 * Throw out the frame if we are not pt2pt. 19119 * The pt2pt protocol allows for discovery frames 19120 * to be received without a registered VPI. 19121 */ 19122 if (!(vport->fc_flag & FC_PT2PT) || 19123 (phba->link_state == LPFC_HBA_READY)) { 19124 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19125 return; 19126 } 19127 } 19128 19129 /* Handle the basic abort sequence (BA_ABTS) event */ 19130 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19131 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19132 return; 19133 } 19134 19135 /* Link this frame */ 19136 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19137 if (!seq_dmabuf) { 19138 /* unable to add frame to vport - throw it out */ 19139 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19140 return; 19141 } 19142 /* If not last frame in sequence continue processing frames. */ 19143 if (!lpfc_seq_complete(seq_dmabuf)) 19144 return; 19145 19146 /* Send the complete sequence to the upper layer protocol */ 19147 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19148 } 19149 19150 /** 19151 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19152 * @phba: pointer to lpfc hba data structure. 19153 * 19154 * This routine is invoked to post rpi header templates to the 19155 * HBA consistent with the SLI-4 interface spec. This routine 19156 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19157 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19158 * 19159 * This routine does not require any locks. It's usage is expected 19160 * to be driver load or reset recovery when the driver is 19161 * sequential. 19162 * 19163 * Return codes 19164 * 0 - successful 19165 * -EIO - The mailbox failed to complete successfully. 19166 * When this error occurs, the driver is not guaranteed 19167 * to have any rpi regions posted to the device and 19168 * must either attempt to repost the regions or take a 19169 * fatal error. 19170 **/ 19171 int 19172 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19173 { 19174 struct lpfc_rpi_hdr *rpi_page; 19175 uint32_t rc = 0; 19176 uint16_t lrpi = 0; 19177 19178 /* SLI4 ports that support extents do not require RPI headers. */ 19179 if (!phba->sli4_hba.rpi_hdrs_in_use) 19180 goto exit; 19181 if (phba->sli4_hba.extents_in_use) 19182 return -EIO; 19183 19184 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19185 /* 19186 * Assign the rpi headers a physical rpi only if the driver 19187 * has not initialized those resources. A port reset only 19188 * needs the headers posted. 19189 */ 19190 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19191 LPFC_RPI_RSRC_RDY) 19192 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19193 19194 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19195 if (rc != MBX_SUCCESS) { 19196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19197 "2008 Error %d posting all rpi " 19198 "headers\n", rc); 19199 rc = -EIO; 19200 break; 19201 } 19202 } 19203 19204 exit: 19205 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19206 LPFC_RPI_RSRC_RDY); 19207 return rc; 19208 } 19209 19210 /** 19211 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19212 * @phba: pointer to lpfc hba data structure. 19213 * @rpi_page: pointer to the rpi memory region. 19214 * 19215 * This routine is invoked to post a single rpi header to the 19216 * HBA consistent with the SLI-4 interface spec. This memory region 19217 * maps up to 64 rpi context regions. 19218 * 19219 * Return codes 19220 * 0 - successful 19221 * -ENOMEM - No available memory 19222 * -EIO - The mailbox failed to complete successfully. 19223 **/ 19224 int 19225 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19226 { 19227 LPFC_MBOXQ_t *mboxq; 19228 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19229 uint32_t rc = 0; 19230 uint32_t shdr_status, shdr_add_status; 19231 union lpfc_sli4_cfg_shdr *shdr; 19232 19233 /* SLI4 ports that support extents do not require RPI headers. */ 19234 if (!phba->sli4_hba.rpi_hdrs_in_use) 19235 return rc; 19236 if (phba->sli4_hba.extents_in_use) 19237 return -EIO; 19238 19239 /* The port is notified of the header region via a mailbox command. */ 19240 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19241 if (!mboxq) { 19242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19243 "2001 Unable to allocate memory for issuing " 19244 "SLI_CONFIG_SPECIAL mailbox command\n"); 19245 return -ENOMEM; 19246 } 19247 19248 /* Post all rpi memory regions to the port. */ 19249 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19250 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19251 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19252 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19253 sizeof(struct lpfc_sli4_cfg_mhdr), 19254 LPFC_SLI4_MBX_EMBED); 19255 19256 19257 /* Post the physical rpi to the port for this rpi header. */ 19258 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19259 rpi_page->start_rpi); 19260 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19261 hdr_tmpl, rpi_page->page_count); 19262 19263 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19264 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19265 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19266 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19267 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19268 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19269 mempool_free(mboxq, phba->mbox_mem_pool); 19270 if (shdr_status || shdr_add_status || rc) { 19271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19272 "2514 POST_RPI_HDR mailbox failed with " 19273 "status x%x add_status x%x, mbx status x%x\n", 19274 shdr_status, shdr_add_status, rc); 19275 rc = -ENXIO; 19276 } else { 19277 /* 19278 * The next_rpi stores the next logical module-64 rpi value used 19279 * to post physical rpis in subsequent rpi postings. 19280 */ 19281 spin_lock_irq(&phba->hbalock); 19282 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19283 spin_unlock_irq(&phba->hbalock); 19284 } 19285 return rc; 19286 } 19287 19288 /** 19289 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19290 * @phba: pointer to lpfc hba data structure. 19291 * 19292 * This routine is invoked to post rpi header templates to the 19293 * HBA consistent with the SLI-4 interface spec. This routine 19294 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19295 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19296 * 19297 * Returns 19298 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19299 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19300 **/ 19301 int 19302 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19303 { 19304 unsigned long rpi; 19305 uint16_t max_rpi, rpi_limit; 19306 uint16_t rpi_remaining, lrpi = 0; 19307 struct lpfc_rpi_hdr *rpi_hdr; 19308 unsigned long iflag; 19309 19310 /* 19311 * Fetch the next logical rpi. Because this index is logical, 19312 * the driver starts at 0 each time. 19313 */ 19314 spin_lock_irqsave(&phba->hbalock, iflag); 19315 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19316 rpi_limit = phba->sli4_hba.next_rpi; 19317 19318 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19319 if (rpi >= rpi_limit) 19320 rpi = LPFC_RPI_ALLOC_ERROR; 19321 else { 19322 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19323 phba->sli4_hba.max_cfg_param.rpi_used++; 19324 phba->sli4_hba.rpi_count++; 19325 } 19326 lpfc_printf_log(phba, KERN_INFO, 19327 LOG_NODE | LOG_DISCOVERY, 19328 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19329 (int) rpi, max_rpi, rpi_limit); 19330 19331 /* 19332 * Don't try to allocate more rpi header regions if the device limit 19333 * has been exhausted. 19334 */ 19335 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19336 (phba->sli4_hba.rpi_count >= max_rpi)) { 19337 spin_unlock_irqrestore(&phba->hbalock, iflag); 19338 return rpi; 19339 } 19340 19341 /* 19342 * RPI header postings are not required for SLI4 ports capable of 19343 * extents. 19344 */ 19345 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19346 spin_unlock_irqrestore(&phba->hbalock, iflag); 19347 return rpi; 19348 } 19349 19350 /* 19351 * If the driver is running low on rpi resources, allocate another 19352 * page now. Note that the next_rpi value is used because 19353 * it represents how many are actually in use whereas max_rpi notes 19354 * how many are supported max by the device. 19355 */ 19356 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19357 spin_unlock_irqrestore(&phba->hbalock, iflag); 19358 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19359 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19360 if (!rpi_hdr) { 19361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19362 "2002 Error Could not grow rpi " 19363 "count\n"); 19364 } else { 19365 lrpi = rpi_hdr->start_rpi; 19366 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19367 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19368 } 19369 } 19370 19371 return rpi; 19372 } 19373 19374 /** 19375 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19376 * @phba: pointer to lpfc hba data structure. 19377 * @rpi: rpi to free 19378 * 19379 * This routine is invoked to release an rpi to the pool of 19380 * available rpis maintained by the driver. 19381 **/ 19382 static void 19383 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19384 { 19385 /* 19386 * if the rpi value indicates a prior unreg has already 19387 * been done, skip the unreg. 19388 */ 19389 if (rpi == LPFC_RPI_ALLOC_ERROR) 19390 return; 19391 19392 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19393 phba->sli4_hba.rpi_count--; 19394 phba->sli4_hba.max_cfg_param.rpi_used--; 19395 } else { 19396 lpfc_printf_log(phba, KERN_INFO, 19397 LOG_NODE | LOG_DISCOVERY, 19398 "2016 rpi %x not inuse\n", 19399 rpi); 19400 } 19401 } 19402 19403 /** 19404 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19405 * @phba: pointer to lpfc hba data structure. 19406 * @rpi: rpi to free 19407 * 19408 * This routine is invoked to release an rpi to the pool of 19409 * available rpis maintained by the driver. 19410 **/ 19411 void 19412 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19413 { 19414 spin_lock_irq(&phba->hbalock); 19415 __lpfc_sli4_free_rpi(phba, rpi); 19416 spin_unlock_irq(&phba->hbalock); 19417 } 19418 19419 /** 19420 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19421 * @phba: pointer to lpfc hba data structure. 19422 * 19423 * This routine is invoked to remove the memory region that 19424 * provided rpi via a bitmask. 19425 **/ 19426 void 19427 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19428 { 19429 kfree(phba->sli4_hba.rpi_bmask); 19430 kfree(phba->sli4_hba.rpi_ids); 19431 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19432 } 19433 19434 /** 19435 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19436 * @ndlp: pointer to lpfc nodelist data structure. 19437 * @cmpl: completion call-back. 19438 * @arg: data to load as MBox 'caller buffer information' 19439 * 19440 * This routine is invoked to remove the memory region that 19441 * provided rpi via a bitmask. 19442 **/ 19443 int 19444 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19445 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19446 { 19447 LPFC_MBOXQ_t *mboxq; 19448 struct lpfc_hba *phba = ndlp->phba; 19449 int rc; 19450 19451 /* The port is notified of the header region via a mailbox command. */ 19452 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19453 if (!mboxq) 19454 return -ENOMEM; 19455 19456 /* If cmpl assigned, then this nlp_get pairs with 19457 * lpfc_mbx_cmpl_resume_rpi. 19458 * 19459 * Else cmpl is NULL, then this nlp_get pairs with 19460 * lpfc_sli_def_mbox_cmpl. 19461 */ 19462 if (!lpfc_nlp_get(ndlp)) { 19463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19464 "2122 %s: Failed to get nlp ref\n", 19465 __func__); 19466 mempool_free(mboxq, phba->mbox_mem_pool); 19467 return -EIO; 19468 } 19469 19470 /* Post all rpi memory regions to the port. */ 19471 lpfc_resume_rpi(mboxq, ndlp); 19472 if (cmpl) { 19473 mboxq->mbox_cmpl = cmpl; 19474 mboxq->ctx_buf = arg; 19475 } else 19476 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19477 mboxq->ctx_ndlp = ndlp; 19478 mboxq->vport = ndlp->vport; 19479 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19480 if (rc == MBX_NOT_FINISHED) { 19481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19482 "2010 Resume RPI Mailbox failed " 19483 "status %d, mbxStatus x%x\n", rc, 19484 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19485 lpfc_nlp_put(ndlp); 19486 mempool_free(mboxq, phba->mbox_mem_pool); 19487 return -EIO; 19488 } 19489 return 0; 19490 } 19491 19492 /** 19493 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19494 * @vport: Pointer to the vport for which the vpi is being initialized 19495 * 19496 * This routine is invoked to activate a vpi with the port. 19497 * 19498 * Returns: 19499 * 0 success 19500 * -Evalue otherwise 19501 **/ 19502 int 19503 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19504 { 19505 LPFC_MBOXQ_t *mboxq; 19506 int rc = 0; 19507 int retval = MBX_SUCCESS; 19508 uint32_t mbox_tmo; 19509 struct lpfc_hba *phba = vport->phba; 19510 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19511 if (!mboxq) 19512 return -ENOMEM; 19513 lpfc_init_vpi(phba, mboxq, vport->vpi); 19514 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19515 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19516 if (rc != MBX_SUCCESS) { 19517 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19518 "2022 INIT VPI Mailbox failed " 19519 "status %d, mbxStatus x%x\n", rc, 19520 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19521 retval = -EIO; 19522 } 19523 if (rc != MBX_TIMEOUT) 19524 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19525 19526 return retval; 19527 } 19528 19529 /** 19530 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19531 * @phba: pointer to lpfc hba data structure. 19532 * @mboxq: Pointer to mailbox object. 19533 * 19534 * This routine is invoked to manually add a single FCF record. The caller 19535 * must pass a completely initialized FCF_Record. This routine takes 19536 * care of the nonembedded mailbox operations. 19537 **/ 19538 static void 19539 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19540 { 19541 void *virt_addr; 19542 union lpfc_sli4_cfg_shdr *shdr; 19543 uint32_t shdr_status, shdr_add_status; 19544 19545 virt_addr = mboxq->sge_array->addr[0]; 19546 /* The IOCTL status is embedded in the mailbox subheader. */ 19547 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19548 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19549 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19550 19551 if ((shdr_status || shdr_add_status) && 19552 (shdr_status != STATUS_FCF_IN_USE)) 19553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19554 "2558 ADD_FCF_RECORD mailbox failed with " 19555 "status x%x add_status x%x\n", 19556 shdr_status, shdr_add_status); 19557 19558 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19559 } 19560 19561 /** 19562 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19563 * @phba: pointer to lpfc hba data structure. 19564 * @fcf_record: pointer to the initialized fcf record to add. 19565 * 19566 * This routine is invoked to manually add a single FCF record. The caller 19567 * must pass a completely initialized FCF_Record. This routine takes 19568 * care of the nonembedded mailbox operations. 19569 **/ 19570 int 19571 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19572 { 19573 int rc = 0; 19574 LPFC_MBOXQ_t *mboxq; 19575 uint8_t *bytep; 19576 void *virt_addr; 19577 struct lpfc_mbx_sge sge; 19578 uint32_t alloc_len, req_len; 19579 uint32_t fcfindex; 19580 19581 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19582 if (!mboxq) { 19583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19584 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19585 return -ENOMEM; 19586 } 19587 19588 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19589 sizeof(uint32_t); 19590 19591 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19592 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19593 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19594 req_len, LPFC_SLI4_MBX_NEMBED); 19595 if (alloc_len < req_len) { 19596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19597 "2523 Allocated DMA memory size (x%x) is " 19598 "less than the requested DMA memory " 19599 "size (x%x)\n", alloc_len, req_len); 19600 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19601 return -ENOMEM; 19602 } 19603 19604 /* 19605 * Get the first SGE entry from the non-embedded DMA memory. This 19606 * routine only uses a single SGE. 19607 */ 19608 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19609 virt_addr = mboxq->sge_array->addr[0]; 19610 /* 19611 * Configure the FCF record for FCFI 0. This is the driver's 19612 * hardcoded default and gets used in nonFIP mode. 19613 */ 19614 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19615 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19616 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19617 19618 /* 19619 * Copy the fcf_index and the FCF Record Data. The data starts after 19620 * the FCoE header plus word10. The data copy needs to be endian 19621 * correct. 19622 */ 19623 bytep += sizeof(uint32_t); 19624 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19625 mboxq->vport = phba->pport; 19626 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19627 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19628 if (rc == MBX_NOT_FINISHED) { 19629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19630 "2515 ADD_FCF_RECORD mailbox failed with " 19631 "status 0x%x\n", rc); 19632 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19633 rc = -EIO; 19634 } else 19635 rc = 0; 19636 19637 return rc; 19638 } 19639 19640 /** 19641 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19642 * @phba: pointer to lpfc hba data structure. 19643 * @fcf_record: pointer to the fcf record to write the default data. 19644 * @fcf_index: FCF table entry index. 19645 * 19646 * This routine is invoked to build the driver's default FCF record. The 19647 * values used are hardcoded. This routine handles memory initialization. 19648 * 19649 **/ 19650 void 19651 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19652 struct fcf_record *fcf_record, 19653 uint16_t fcf_index) 19654 { 19655 memset(fcf_record, 0, sizeof(struct fcf_record)); 19656 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19657 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19658 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19659 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19660 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19661 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19662 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19663 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19664 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19665 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19666 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19667 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19668 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19669 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19670 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19671 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19672 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19673 /* Set the VLAN bit map */ 19674 if (phba->valid_vlan) { 19675 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19676 = 1 << (phba->vlan_id % 8); 19677 } 19678 } 19679 19680 /** 19681 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19682 * @phba: pointer to lpfc hba data structure. 19683 * @fcf_index: FCF table entry offset. 19684 * 19685 * This routine is invoked to scan the entire FCF table by reading FCF 19686 * record and processing it one at a time starting from the @fcf_index 19687 * for initial FCF discovery or fast FCF failover rediscovery. 19688 * 19689 * Return 0 if the mailbox command is submitted successfully, none 0 19690 * otherwise. 19691 **/ 19692 int 19693 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19694 { 19695 int rc = 0, error; 19696 LPFC_MBOXQ_t *mboxq; 19697 19698 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19699 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19700 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19701 if (!mboxq) { 19702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19703 "2000 Failed to allocate mbox for " 19704 "READ_FCF cmd\n"); 19705 error = -ENOMEM; 19706 goto fail_fcf_scan; 19707 } 19708 /* Construct the read FCF record mailbox command */ 19709 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19710 if (rc) { 19711 error = -EINVAL; 19712 goto fail_fcf_scan; 19713 } 19714 /* Issue the mailbox command asynchronously */ 19715 mboxq->vport = phba->pport; 19716 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19717 19718 spin_lock_irq(&phba->hbalock); 19719 phba->hba_flag |= FCF_TS_INPROG; 19720 spin_unlock_irq(&phba->hbalock); 19721 19722 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19723 if (rc == MBX_NOT_FINISHED) 19724 error = -EIO; 19725 else { 19726 /* Reset eligible FCF count for new scan */ 19727 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19728 phba->fcf.eligible_fcf_cnt = 0; 19729 error = 0; 19730 } 19731 fail_fcf_scan: 19732 if (error) { 19733 if (mboxq) 19734 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19735 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19736 spin_lock_irq(&phba->hbalock); 19737 phba->hba_flag &= ~FCF_TS_INPROG; 19738 spin_unlock_irq(&phba->hbalock); 19739 } 19740 return error; 19741 } 19742 19743 /** 19744 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19745 * @phba: pointer to lpfc hba data structure. 19746 * @fcf_index: FCF table entry offset. 19747 * 19748 * This routine is invoked to read an FCF record indicated by @fcf_index 19749 * and to use it for FLOGI roundrobin FCF failover. 19750 * 19751 * Return 0 if the mailbox command is submitted successfully, none 0 19752 * otherwise. 19753 **/ 19754 int 19755 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19756 { 19757 int rc = 0, error; 19758 LPFC_MBOXQ_t *mboxq; 19759 19760 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19761 if (!mboxq) { 19762 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19763 "2763 Failed to allocate mbox for " 19764 "READ_FCF cmd\n"); 19765 error = -ENOMEM; 19766 goto fail_fcf_read; 19767 } 19768 /* Construct the read FCF record mailbox command */ 19769 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19770 if (rc) { 19771 error = -EINVAL; 19772 goto fail_fcf_read; 19773 } 19774 /* Issue the mailbox command asynchronously */ 19775 mboxq->vport = phba->pport; 19776 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19777 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19778 if (rc == MBX_NOT_FINISHED) 19779 error = -EIO; 19780 else 19781 error = 0; 19782 19783 fail_fcf_read: 19784 if (error && mboxq) 19785 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19786 return error; 19787 } 19788 19789 /** 19790 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19791 * @phba: pointer to lpfc hba data structure. 19792 * @fcf_index: FCF table entry offset. 19793 * 19794 * This routine is invoked to read an FCF record indicated by @fcf_index to 19795 * determine whether it's eligible for FLOGI roundrobin failover list. 19796 * 19797 * Return 0 if the mailbox command is submitted successfully, none 0 19798 * otherwise. 19799 **/ 19800 int 19801 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19802 { 19803 int rc = 0, error; 19804 LPFC_MBOXQ_t *mboxq; 19805 19806 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19807 if (!mboxq) { 19808 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19809 "2758 Failed to allocate mbox for " 19810 "READ_FCF cmd\n"); 19811 error = -ENOMEM; 19812 goto fail_fcf_read; 19813 } 19814 /* Construct the read FCF record mailbox command */ 19815 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19816 if (rc) { 19817 error = -EINVAL; 19818 goto fail_fcf_read; 19819 } 19820 /* Issue the mailbox command asynchronously */ 19821 mboxq->vport = phba->pport; 19822 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19823 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19824 if (rc == MBX_NOT_FINISHED) 19825 error = -EIO; 19826 else 19827 error = 0; 19828 19829 fail_fcf_read: 19830 if (error && mboxq) 19831 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19832 return error; 19833 } 19834 19835 /** 19836 * lpfc_check_next_fcf_pri_level 19837 * @phba: pointer to the lpfc_hba struct for this port. 19838 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19839 * routine when the rr_bmask is empty. The FCF indecies are put into the 19840 * rr_bmask based on their priority level. Starting from the highest priority 19841 * to the lowest. The most likely FCF candidate will be in the highest 19842 * priority group. When this routine is called it searches the fcf_pri list for 19843 * next lowest priority group and repopulates the rr_bmask with only those 19844 * fcf_indexes. 19845 * returns: 19846 * 1=success 0=failure 19847 **/ 19848 static int 19849 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19850 { 19851 uint16_t next_fcf_pri; 19852 uint16_t last_index; 19853 struct lpfc_fcf_pri *fcf_pri; 19854 int rc; 19855 int ret = 0; 19856 19857 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19858 LPFC_SLI4_FCF_TBL_INDX_MAX); 19859 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19860 "3060 Last IDX %d\n", last_index); 19861 19862 /* Verify the priority list has 2 or more entries */ 19863 spin_lock_irq(&phba->hbalock); 19864 if (list_empty(&phba->fcf.fcf_pri_list) || 19865 list_is_singular(&phba->fcf.fcf_pri_list)) { 19866 spin_unlock_irq(&phba->hbalock); 19867 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19868 "3061 Last IDX %d\n", last_index); 19869 return 0; /* Empty rr list */ 19870 } 19871 spin_unlock_irq(&phba->hbalock); 19872 19873 next_fcf_pri = 0; 19874 /* 19875 * Clear the rr_bmask and set all of the bits that are at this 19876 * priority. 19877 */ 19878 memset(phba->fcf.fcf_rr_bmask, 0, 19879 sizeof(*phba->fcf.fcf_rr_bmask)); 19880 spin_lock_irq(&phba->hbalock); 19881 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19882 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19883 continue; 19884 /* 19885 * the 1st priority that has not FLOGI failed 19886 * will be the highest. 19887 */ 19888 if (!next_fcf_pri) 19889 next_fcf_pri = fcf_pri->fcf_rec.priority; 19890 spin_unlock_irq(&phba->hbalock); 19891 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19892 rc = lpfc_sli4_fcf_rr_index_set(phba, 19893 fcf_pri->fcf_rec.fcf_index); 19894 if (rc) 19895 return 0; 19896 } 19897 spin_lock_irq(&phba->hbalock); 19898 } 19899 /* 19900 * if next_fcf_pri was not set above and the list is not empty then 19901 * we have failed flogis on all of them. So reset flogi failed 19902 * and start at the beginning. 19903 */ 19904 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19905 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19906 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19907 /* 19908 * the 1st priority that has not FLOGI failed 19909 * will be the highest. 19910 */ 19911 if (!next_fcf_pri) 19912 next_fcf_pri = fcf_pri->fcf_rec.priority; 19913 spin_unlock_irq(&phba->hbalock); 19914 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19915 rc = lpfc_sli4_fcf_rr_index_set(phba, 19916 fcf_pri->fcf_rec.fcf_index); 19917 if (rc) 19918 return 0; 19919 } 19920 spin_lock_irq(&phba->hbalock); 19921 } 19922 } else 19923 ret = 1; 19924 spin_unlock_irq(&phba->hbalock); 19925 19926 return ret; 19927 } 19928 /** 19929 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19930 * @phba: pointer to lpfc hba data structure. 19931 * 19932 * This routine is to get the next eligible FCF record index in a round 19933 * robin fashion. If the next eligible FCF record index equals to the 19934 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19935 * shall be returned, otherwise, the next eligible FCF record's index 19936 * shall be returned. 19937 **/ 19938 uint16_t 19939 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19940 { 19941 uint16_t next_fcf_index; 19942 19943 initial_priority: 19944 /* Search start from next bit of currently registered FCF index */ 19945 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19946 19947 next_priority: 19948 /* Determine the next fcf index to check */ 19949 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19950 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19951 LPFC_SLI4_FCF_TBL_INDX_MAX, 19952 next_fcf_index); 19953 19954 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19955 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19956 /* 19957 * If we have wrapped then we need to clear the bits that 19958 * have been tested so that we can detect when we should 19959 * change the priority level. 19960 */ 19961 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19962 LPFC_SLI4_FCF_TBL_INDX_MAX); 19963 } 19964 19965 19966 /* Check roundrobin failover list empty condition */ 19967 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19968 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19969 /* 19970 * If next fcf index is not found check if there are lower 19971 * Priority level fcf's in the fcf_priority list. 19972 * Set up the rr_bmask with all of the avaiable fcf bits 19973 * at that level and continue the selection process. 19974 */ 19975 if (lpfc_check_next_fcf_pri_level(phba)) 19976 goto initial_priority; 19977 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19978 "2844 No roundrobin failover FCF available\n"); 19979 19980 return LPFC_FCOE_FCF_NEXT_NONE; 19981 } 19982 19983 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19984 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19985 LPFC_FCF_FLOGI_FAILED) { 19986 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19987 return LPFC_FCOE_FCF_NEXT_NONE; 19988 19989 goto next_priority; 19990 } 19991 19992 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19993 "2845 Get next roundrobin failover FCF (x%x)\n", 19994 next_fcf_index); 19995 19996 return next_fcf_index; 19997 } 19998 19999 /** 20000 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20001 * @phba: pointer to lpfc hba data structure. 20002 * @fcf_index: index into the FCF table to 'set' 20003 * 20004 * This routine sets the FCF record index in to the eligible bmask for 20005 * roundrobin failover search. It checks to make sure that the index 20006 * does not go beyond the range of the driver allocated bmask dimension 20007 * before setting the bit. 20008 * 20009 * Returns 0 if the index bit successfully set, otherwise, it returns 20010 * -EINVAL. 20011 **/ 20012 int 20013 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20014 { 20015 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20016 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20017 "2610 FCF (x%x) reached driver's book " 20018 "keeping dimension:x%x\n", 20019 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20020 return -EINVAL; 20021 } 20022 /* Set the eligible FCF record index bmask */ 20023 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20024 20025 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20026 "2790 Set FCF (x%x) to roundrobin FCF failover " 20027 "bmask\n", fcf_index); 20028 20029 return 0; 20030 } 20031 20032 /** 20033 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20034 * @phba: pointer to lpfc hba data structure. 20035 * @fcf_index: index into the FCF table to 'clear' 20036 * 20037 * This routine clears the FCF record index from the eligible bmask for 20038 * roundrobin failover search. It checks to make sure that the index 20039 * does not go beyond the range of the driver allocated bmask dimension 20040 * before clearing the bit. 20041 **/ 20042 void 20043 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20044 { 20045 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20046 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20047 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20048 "2762 FCF (x%x) reached driver's book " 20049 "keeping dimension:x%x\n", 20050 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20051 return; 20052 } 20053 /* Clear the eligible FCF record index bmask */ 20054 spin_lock_irq(&phba->hbalock); 20055 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20056 list) { 20057 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20058 list_del_init(&fcf_pri->list); 20059 break; 20060 } 20061 } 20062 spin_unlock_irq(&phba->hbalock); 20063 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20064 20065 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20066 "2791 Clear FCF (x%x) from roundrobin failover " 20067 "bmask\n", fcf_index); 20068 } 20069 20070 /** 20071 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20072 * @phba: pointer to lpfc hba data structure. 20073 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20074 * 20075 * This routine is the completion routine for the rediscover FCF table mailbox 20076 * command. If the mailbox command returned failure, it will try to stop the 20077 * FCF rediscover wait timer. 20078 **/ 20079 static void 20080 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20081 { 20082 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20083 uint32_t shdr_status, shdr_add_status; 20084 20085 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20086 20087 shdr_status = bf_get(lpfc_mbox_hdr_status, 20088 &redisc_fcf->header.cfg_shdr.response); 20089 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20090 &redisc_fcf->header.cfg_shdr.response); 20091 if (shdr_status || shdr_add_status) { 20092 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20093 "2746 Requesting for FCF rediscovery failed " 20094 "status x%x add_status x%x\n", 20095 shdr_status, shdr_add_status); 20096 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20097 spin_lock_irq(&phba->hbalock); 20098 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20099 spin_unlock_irq(&phba->hbalock); 20100 /* 20101 * CVL event triggered FCF rediscover request failed, 20102 * last resort to re-try current registered FCF entry. 20103 */ 20104 lpfc_retry_pport_discovery(phba); 20105 } else { 20106 spin_lock_irq(&phba->hbalock); 20107 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20108 spin_unlock_irq(&phba->hbalock); 20109 /* 20110 * DEAD FCF event triggered FCF rediscover request 20111 * failed, last resort to fail over as a link down 20112 * to FCF registration. 20113 */ 20114 lpfc_sli4_fcf_dead_failthrough(phba); 20115 } 20116 } else { 20117 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20118 "2775 Start FCF rediscover quiescent timer\n"); 20119 /* 20120 * Start FCF rediscovery wait timer for pending FCF 20121 * before rescan FCF record table. 20122 */ 20123 lpfc_fcf_redisc_wait_start_timer(phba); 20124 } 20125 20126 mempool_free(mbox, phba->mbox_mem_pool); 20127 } 20128 20129 /** 20130 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20131 * @phba: pointer to lpfc hba data structure. 20132 * 20133 * This routine is invoked to request for rediscovery of the entire FCF table 20134 * by the port. 20135 **/ 20136 int 20137 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20138 { 20139 LPFC_MBOXQ_t *mbox; 20140 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20141 int rc, length; 20142 20143 /* Cancel retry delay timers to all vports before FCF rediscover */ 20144 lpfc_cancel_all_vport_retry_delay_timer(phba); 20145 20146 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20147 if (!mbox) { 20148 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20149 "2745 Failed to allocate mbox for " 20150 "requesting FCF rediscover.\n"); 20151 return -ENOMEM; 20152 } 20153 20154 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20155 sizeof(struct lpfc_sli4_cfg_mhdr)); 20156 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20157 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20158 length, LPFC_SLI4_MBX_EMBED); 20159 20160 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20161 /* Set count to 0 for invalidating the entire FCF database */ 20162 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20163 20164 /* Issue the mailbox command asynchronously */ 20165 mbox->vport = phba->pport; 20166 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20167 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20168 20169 if (rc == MBX_NOT_FINISHED) { 20170 mempool_free(mbox, phba->mbox_mem_pool); 20171 return -EIO; 20172 } 20173 return 0; 20174 } 20175 20176 /** 20177 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20178 * @phba: pointer to lpfc hba data structure. 20179 * 20180 * This function is the failover routine as a last resort to the FCF DEAD 20181 * event when driver failed to perform fast FCF failover. 20182 **/ 20183 void 20184 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20185 { 20186 uint32_t link_state; 20187 20188 /* 20189 * Last resort as FCF DEAD event failover will treat this as 20190 * a link down, but save the link state because we don't want 20191 * it to be changed to Link Down unless it is already down. 20192 */ 20193 link_state = phba->link_state; 20194 lpfc_linkdown(phba); 20195 phba->link_state = link_state; 20196 20197 /* Unregister FCF if no devices connected to it */ 20198 lpfc_unregister_unused_fcf(phba); 20199 } 20200 20201 /** 20202 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20203 * @phba: pointer to lpfc hba data structure. 20204 * @rgn23_data: pointer to configure region 23 data. 20205 * 20206 * This function gets SLI3 port configure region 23 data through memory dump 20207 * mailbox command. When it successfully retrieves data, the size of the data 20208 * will be returned, otherwise, 0 will be returned. 20209 **/ 20210 static uint32_t 20211 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20212 { 20213 LPFC_MBOXQ_t *pmb = NULL; 20214 MAILBOX_t *mb; 20215 uint32_t offset = 0; 20216 int rc; 20217 20218 if (!rgn23_data) 20219 return 0; 20220 20221 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20222 if (!pmb) { 20223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20224 "2600 failed to allocate mailbox memory\n"); 20225 return 0; 20226 } 20227 mb = &pmb->u.mb; 20228 20229 do { 20230 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20231 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20232 20233 if (rc != MBX_SUCCESS) { 20234 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20235 "2601 failed to read config " 20236 "region 23, rc 0x%x Status 0x%x\n", 20237 rc, mb->mbxStatus); 20238 mb->un.varDmp.word_cnt = 0; 20239 } 20240 /* 20241 * dump mem may return a zero when finished or we got a 20242 * mailbox error, either way we are done. 20243 */ 20244 if (mb->un.varDmp.word_cnt == 0) 20245 break; 20246 20247 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20248 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20249 20250 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20251 rgn23_data + offset, 20252 mb->un.varDmp.word_cnt); 20253 offset += mb->un.varDmp.word_cnt; 20254 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20255 20256 mempool_free(pmb, phba->mbox_mem_pool); 20257 return offset; 20258 } 20259 20260 /** 20261 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20262 * @phba: pointer to lpfc hba data structure. 20263 * @rgn23_data: pointer to configure region 23 data. 20264 * 20265 * This function gets SLI4 port configure region 23 data through memory dump 20266 * mailbox command. When it successfully retrieves data, the size of the data 20267 * will be returned, otherwise, 0 will be returned. 20268 **/ 20269 static uint32_t 20270 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20271 { 20272 LPFC_MBOXQ_t *mboxq = NULL; 20273 struct lpfc_dmabuf *mp = NULL; 20274 struct lpfc_mqe *mqe; 20275 uint32_t data_length = 0; 20276 int rc; 20277 20278 if (!rgn23_data) 20279 return 0; 20280 20281 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20282 if (!mboxq) { 20283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20284 "3105 failed to allocate mailbox memory\n"); 20285 return 0; 20286 } 20287 20288 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20289 goto out; 20290 mqe = &mboxq->u.mqe; 20291 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20292 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20293 if (rc) 20294 goto out; 20295 data_length = mqe->un.mb_words[5]; 20296 if (data_length == 0) 20297 goto out; 20298 if (data_length > DMP_RGN23_SIZE) { 20299 data_length = 0; 20300 goto out; 20301 } 20302 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20303 out: 20304 mempool_free(mboxq, phba->mbox_mem_pool); 20305 if (mp) { 20306 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20307 kfree(mp); 20308 } 20309 return data_length; 20310 } 20311 20312 /** 20313 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20314 * @phba: pointer to lpfc hba data structure. 20315 * 20316 * This function read region 23 and parse TLV for port status to 20317 * decide if the user disaled the port. If the TLV indicates the 20318 * port is disabled, the hba_flag is set accordingly. 20319 **/ 20320 void 20321 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20322 { 20323 uint8_t *rgn23_data = NULL; 20324 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20325 uint32_t offset = 0; 20326 20327 /* Get adapter Region 23 data */ 20328 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20329 if (!rgn23_data) 20330 goto out; 20331 20332 if (phba->sli_rev < LPFC_SLI_REV4) 20333 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20334 else { 20335 if_type = bf_get(lpfc_sli_intf_if_type, 20336 &phba->sli4_hba.sli_intf); 20337 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20338 goto out; 20339 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20340 } 20341 20342 if (!data_size) 20343 goto out; 20344 20345 /* Check the region signature first */ 20346 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20348 "2619 Config region 23 has bad signature\n"); 20349 goto out; 20350 } 20351 offset += 4; 20352 20353 /* Check the data structure version */ 20354 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20356 "2620 Config region 23 has bad version\n"); 20357 goto out; 20358 } 20359 offset += 4; 20360 20361 /* Parse TLV entries in the region */ 20362 while (offset < data_size) { 20363 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20364 break; 20365 /* 20366 * If the TLV is not driver specific TLV or driver id is 20367 * not linux driver id, skip the record. 20368 */ 20369 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20370 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20371 (rgn23_data[offset + 3] != 0)) { 20372 offset += rgn23_data[offset + 1] * 4 + 4; 20373 continue; 20374 } 20375 20376 /* Driver found a driver specific TLV in the config region */ 20377 sub_tlv_len = rgn23_data[offset + 1] * 4; 20378 offset += 4; 20379 tlv_offset = 0; 20380 20381 /* 20382 * Search for configured port state sub-TLV. 20383 */ 20384 while ((offset < data_size) && 20385 (tlv_offset < sub_tlv_len)) { 20386 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20387 offset += 4; 20388 tlv_offset += 4; 20389 break; 20390 } 20391 if (rgn23_data[offset] != PORT_STE_TYPE) { 20392 offset += rgn23_data[offset + 1] * 4 + 4; 20393 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20394 continue; 20395 } 20396 20397 /* This HBA contains PORT_STE configured */ 20398 if (!rgn23_data[offset + 2]) 20399 phba->hba_flag |= LINK_DISABLED; 20400 20401 goto out; 20402 } 20403 } 20404 20405 out: 20406 kfree(rgn23_data); 20407 return; 20408 } 20409 20410 /** 20411 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20412 * @phba: pointer to lpfc hba data structure 20413 * @shdr_status: wr_object rsp's status field 20414 * @shdr_add_status: wr_object rsp's add_status field 20415 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20416 * @shdr_change_status: wr_object rsp's change_status field 20417 * @shdr_csf: wr_object rsp's csf bit 20418 * 20419 * This routine is intended to be called after a firmware write completes. 20420 * It will log next action items to be performed by the user to instantiate 20421 * the newly downloaded firmware or reason for incompatibility. 20422 **/ 20423 static void 20424 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20425 u32 shdr_add_status, u32 shdr_add_status_2, 20426 u32 shdr_change_status, u32 shdr_csf) 20427 { 20428 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20429 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20430 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20431 "change_status x%02x, csf %01x\n", __func__, 20432 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20433 shdr_status, shdr_add_status, shdr_add_status_2, 20434 shdr_change_status, shdr_csf); 20435 20436 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20437 switch (shdr_add_status_2) { 20438 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20439 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20440 "4199 Firmware write failed: " 20441 "image incompatible with flash x%02x\n", 20442 phba->sli4_hba.flash_id); 20443 break; 20444 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20445 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20446 "4200 Firmware write failed: " 20447 "image incompatible with ASIC " 20448 "architecture x%02x\n", 20449 phba->sli4_hba.asic_rev); 20450 break; 20451 default: 20452 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20453 "4210 Firmware write failed: " 20454 "add_status_2 x%02x\n", 20455 shdr_add_status_2); 20456 break; 20457 } 20458 } else if (!shdr_status && !shdr_add_status) { 20459 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20460 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20461 if (shdr_csf) 20462 shdr_change_status = 20463 LPFC_CHANGE_STATUS_PCI_RESET; 20464 } 20465 20466 switch (shdr_change_status) { 20467 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20468 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20469 "3198 Firmware write complete: System " 20470 "reboot required to instantiate\n"); 20471 break; 20472 case (LPFC_CHANGE_STATUS_FW_RESET): 20473 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20474 "3199 Firmware write complete: " 20475 "Firmware reset required to " 20476 "instantiate\n"); 20477 break; 20478 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20479 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20480 "3200 Firmware write complete: Port " 20481 "Migration or PCI Reset required to " 20482 "instantiate\n"); 20483 break; 20484 case (LPFC_CHANGE_STATUS_PCI_RESET): 20485 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20486 "3201 Firmware write complete: PCI " 20487 "Reset required to instantiate\n"); 20488 break; 20489 default: 20490 break; 20491 } 20492 } 20493 } 20494 20495 /** 20496 * lpfc_wr_object - write an object to the firmware 20497 * @phba: HBA structure that indicates port to create a queue on. 20498 * @dmabuf_list: list of dmabufs to write to the port. 20499 * @size: the total byte value of the objects to write to the port. 20500 * @offset: the current offset to be used to start the transfer. 20501 * 20502 * This routine will create a wr_object mailbox command to send to the port. 20503 * the mailbox command will be constructed using the dma buffers described in 20504 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20505 * BDEs that the imbedded mailbox can support. The @offset variable will be 20506 * used to indicate the starting offset of the transfer and will also return 20507 * the offset after the write object mailbox has completed. @size is used to 20508 * determine the end of the object and whether the eof bit should be set. 20509 * 20510 * Return 0 is successful and offset will contain the the new offset to use 20511 * for the next write. 20512 * Return negative value for error cases. 20513 **/ 20514 int 20515 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20516 uint32_t size, uint32_t *offset) 20517 { 20518 struct lpfc_mbx_wr_object *wr_object; 20519 LPFC_MBOXQ_t *mbox; 20520 int rc = 0, i = 0; 20521 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20522 uint32_t shdr_change_status = 0, shdr_csf = 0; 20523 uint32_t mbox_tmo; 20524 struct lpfc_dmabuf *dmabuf; 20525 uint32_t written = 0; 20526 bool check_change_status = false; 20527 20528 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20529 if (!mbox) 20530 return -ENOMEM; 20531 20532 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20533 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20534 sizeof(struct lpfc_mbx_wr_object) - 20535 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20536 20537 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20538 wr_object->u.request.write_offset = *offset; 20539 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20540 wr_object->u.request.object_name[0] = 20541 cpu_to_le32(wr_object->u.request.object_name[0]); 20542 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20543 list_for_each_entry(dmabuf, dmabuf_list, list) { 20544 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20545 break; 20546 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20547 wr_object->u.request.bde[i].addrHigh = 20548 putPaddrHigh(dmabuf->phys); 20549 if (written + SLI4_PAGE_SIZE >= size) { 20550 wr_object->u.request.bde[i].tus.f.bdeSize = 20551 (size - written); 20552 written += (size - written); 20553 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20554 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20555 check_change_status = true; 20556 } else { 20557 wr_object->u.request.bde[i].tus.f.bdeSize = 20558 SLI4_PAGE_SIZE; 20559 written += SLI4_PAGE_SIZE; 20560 } 20561 i++; 20562 } 20563 wr_object->u.request.bde_count = i; 20564 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20565 if (!phba->sli4_hba.intr_enable) 20566 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20567 else { 20568 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20569 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20570 } 20571 /* The IOCTL status is embedded in the mailbox subheader. */ 20572 shdr_status = bf_get(lpfc_mbox_hdr_status, 20573 &wr_object->header.cfg_shdr.response); 20574 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20575 &wr_object->header.cfg_shdr.response); 20576 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20577 &wr_object->header.cfg_shdr.response); 20578 if (check_change_status) { 20579 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20580 &wr_object->u.response); 20581 shdr_csf = bf_get(lpfc_wr_object_csf, 20582 &wr_object->u.response); 20583 } 20584 20585 if (!phba->sli4_hba.intr_enable) 20586 mempool_free(mbox, phba->mbox_mem_pool); 20587 else if (rc != MBX_TIMEOUT) 20588 mempool_free(mbox, phba->mbox_mem_pool); 20589 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20591 "3025 Write Object mailbox failed with " 20592 "status x%x add_status x%x, add_status_2 x%x, " 20593 "mbx status x%x\n", 20594 shdr_status, shdr_add_status, shdr_add_status_2, 20595 rc); 20596 rc = -ENXIO; 20597 *offset = shdr_add_status; 20598 } else { 20599 *offset += wr_object->u.response.actual_write_length; 20600 } 20601 20602 if (rc || check_change_status) 20603 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20604 shdr_add_status_2, shdr_change_status, 20605 shdr_csf); 20606 return rc; 20607 } 20608 20609 /** 20610 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20611 * @vport: pointer to vport data structure. 20612 * 20613 * This function iterate through the mailboxq and clean up all REG_LOGIN 20614 * and REG_VPI mailbox commands associated with the vport. This function 20615 * is called when driver want to restart discovery of the vport due to 20616 * a Clear Virtual Link event. 20617 **/ 20618 void 20619 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20620 { 20621 struct lpfc_hba *phba = vport->phba; 20622 LPFC_MBOXQ_t *mb, *nextmb; 20623 struct lpfc_dmabuf *mp; 20624 struct lpfc_nodelist *ndlp; 20625 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20626 LIST_HEAD(mbox_cmd_list); 20627 uint8_t restart_loop; 20628 20629 /* Clean up internally queued mailbox commands with the vport */ 20630 spin_lock_irq(&phba->hbalock); 20631 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20632 if (mb->vport != vport) 20633 continue; 20634 20635 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20636 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20637 continue; 20638 20639 list_move_tail(&mb->list, &mbox_cmd_list); 20640 } 20641 /* Clean up active mailbox command with the vport */ 20642 mb = phba->sli.mbox_active; 20643 if (mb && (mb->vport == vport)) { 20644 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20645 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20646 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20647 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20648 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20649 /* Put reference count for delayed processing */ 20650 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20651 /* Unregister the RPI when mailbox complete */ 20652 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20653 } 20654 } 20655 /* Cleanup any mailbox completions which are not yet processed */ 20656 do { 20657 restart_loop = 0; 20658 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20659 /* 20660 * If this mailox is already processed or it is 20661 * for another vport ignore it. 20662 */ 20663 if ((mb->vport != vport) || 20664 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20665 continue; 20666 20667 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20668 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20669 continue; 20670 20671 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20672 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20673 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20674 /* Unregister the RPI when mailbox complete */ 20675 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20676 restart_loop = 1; 20677 spin_unlock_irq(&phba->hbalock); 20678 spin_lock(&ndlp->lock); 20679 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20680 spin_unlock(&ndlp->lock); 20681 spin_lock_irq(&phba->hbalock); 20682 break; 20683 } 20684 } 20685 } while (restart_loop); 20686 20687 spin_unlock_irq(&phba->hbalock); 20688 20689 /* Release the cleaned-up mailbox commands */ 20690 while (!list_empty(&mbox_cmd_list)) { 20691 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20692 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20693 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20694 if (mp) { 20695 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20696 kfree(mp); 20697 } 20698 mb->ctx_buf = NULL; 20699 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20700 mb->ctx_ndlp = NULL; 20701 if (ndlp) { 20702 spin_lock(&ndlp->lock); 20703 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20704 spin_unlock(&ndlp->lock); 20705 lpfc_nlp_put(ndlp); 20706 } 20707 } 20708 mempool_free(mb, phba->mbox_mem_pool); 20709 } 20710 20711 /* Release the ndlp with the cleaned-up active mailbox command */ 20712 if (act_mbx_ndlp) { 20713 spin_lock(&act_mbx_ndlp->lock); 20714 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20715 spin_unlock(&act_mbx_ndlp->lock); 20716 lpfc_nlp_put(act_mbx_ndlp); 20717 } 20718 } 20719 20720 /** 20721 * lpfc_drain_txq - Drain the txq 20722 * @phba: Pointer to HBA context object. 20723 * 20724 * This function attempt to submit IOCBs on the txq 20725 * to the adapter. For SLI4 adapters, the txq contains 20726 * ELS IOCBs that have been deferred because the there 20727 * are no SGLs. This congestion can occur with large 20728 * vport counts during node discovery. 20729 **/ 20730 20731 uint32_t 20732 lpfc_drain_txq(struct lpfc_hba *phba) 20733 { 20734 LIST_HEAD(completions); 20735 struct lpfc_sli_ring *pring; 20736 struct lpfc_iocbq *piocbq = NULL; 20737 unsigned long iflags = 0; 20738 char *fail_msg = NULL; 20739 uint32_t txq_cnt = 0; 20740 struct lpfc_queue *wq; 20741 int ret = 0; 20742 20743 if (phba->link_flag & LS_MDS_LOOPBACK) { 20744 /* MDS WQE are posted only to first WQ*/ 20745 wq = phba->sli4_hba.hdwq[0].io_wq; 20746 if (unlikely(!wq)) 20747 return 0; 20748 pring = wq->pring; 20749 } else { 20750 wq = phba->sli4_hba.els_wq; 20751 if (unlikely(!wq)) 20752 return 0; 20753 pring = lpfc_phba_elsring(phba); 20754 } 20755 20756 if (unlikely(!pring) || list_empty(&pring->txq)) 20757 return 0; 20758 20759 spin_lock_irqsave(&pring->ring_lock, iflags); 20760 list_for_each_entry(piocbq, &pring->txq, list) { 20761 txq_cnt++; 20762 } 20763 20764 if (txq_cnt > pring->txq_max) 20765 pring->txq_max = txq_cnt; 20766 20767 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20768 20769 while (!list_empty(&pring->txq)) { 20770 spin_lock_irqsave(&pring->ring_lock, iflags); 20771 20772 piocbq = lpfc_sli_ringtx_get(phba, pring); 20773 if (!piocbq) { 20774 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20776 "2823 txq empty and txq_cnt is %d\n ", 20777 txq_cnt); 20778 break; 20779 } 20780 txq_cnt--; 20781 20782 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 20783 20784 if (ret && ret != IOCB_BUSY) { 20785 fail_msg = " - Cannot send IO "; 20786 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 20787 } 20788 if (fail_msg) { 20789 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 20790 /* Failed means we can't issue and need to cancel */ 20791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20792 "2822 IOCB failed %s iotag 0x%x " 20793 "xri 0x%x %d flg x%x\n", 20794 fail_msg, piocbq->iotag, 20795 piocbq->sli4_xritag, ret, 20796 piocbq->cmd_flag); 20797 list_add_tail(&piocbq->list, &completions); 20798 fail_msg = NULL; 20799 } 20800 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20801 if (txq_cnt == 0 || ret == IOCB_BUSY) 20802 break; 20803 } 20804 /* Cancel all the IOCBs that cannot be issued */ 20805 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20806 IOERR_SLI_ABORTED); 20807 20808 return txq_cnt; 20809 } 20810 20811 /** 20812 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20813 * @phba: Pointer to HBA context object. 20814 * @pwqeq: Pointer to command WQE. 20815 * @sglq: Pointer to the scatter gather queue object. 20816 * 20817 * This routine converts the bpl or bde that is in the WQE 20818 * to a sgl list for the sli4 hardware. The physical address 20819 * of the bpl/bde is converted back to a virtual address. 20820 * If the WQE contains a BPL then the list of BDE's is 20821 * converted to sli4_sge's. If the WQE contains a single 20822 * BDE then it is converted to a single sli_sge. 20823 * The WQE is still in cpu endianness so the contents of 20824 * the bpl can be used without byte swapping. 20825 * 20826 * Returns valid XRI = Success, NO_XRI = Failure. 20827 */ 20828 static uint16_t 20829 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20830 struct lpfc_sglq *sglq) 20831 { 20832 uint16_t xritag = NO_XRI; 20833 struct ulp_bde64 *bpl = NULL; 20834 struct ulp_bde64 bde; 20835 struct sli4_sge *sgl = NULL; 20836 struct lpfc_dmabuf *dmabuf; 20837 union lpfc_wqe128 *wqe; 20838 int numBdes = 0; 20839 int i = 0; 20840 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20841 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20842 uint32_t cmd; 20843 20844 if (!pwqeq || !sglq) 20845 return xritag; 20846 20847 sgl = (struct sli4_sge *)sglq->sgl; 20848 wqe = &pwqeq->wqe; 20849 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20850 20851 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20852 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20853 return sglq->sli4_xritag; 20854 numBdes = pwqeq->num_bdes; 20855 if (numBdes) { 20856 /* The addrHigh and addrLow fields within the WQE 20857 * have not been byteswapped yet so there is no 20858 * need to swap them back. 20859 */ 20860 if (pwqeq->context3) 20861 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20862 else 20863 return xritag; 20864 20865 bpl = (struct ulp_bde64 *)dmabuf->virt; 20866 if (!bpl) 20867 return xritag; 20868 20869 for (i = 0; i < numBdes; i++) { 20870 /* Should already be byte swapped. */ 20871 sgl->addr_hi = bpl->addrHigh; 20872 sgl->addr_lo = bpl->addrLow; 20873 20874 sgl->word2 = le32_to_cpu(sgl->word2); 20875 if ((i+1) == numBdes) 20876 bf_set(lpfc_sli4_sge_last, sgl, 1); 20877 else 20878 bf_set(lpfc_sli4_sge_last, sgl, 0); 20879 /* swap the size field back to the cpu so we 20880 * can assign it to the sgl. 20881 */ 20882 bde.tus.w = le32_to_cpu(bpl->tus.w); 20883 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20884 /* The offsets in the sgl need to be accumulated 20885 * separately for the request and reply lists. 20886 * The request is always first, the reply follows. 20887 */ 20888 switch (cmd) { 20889 case CMD_GEN_REQUEST64_WQE: 20890 /* add up the reply sg entries */ 20891 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20892 inbound++; 20893 /* first inbound? reset the offset */ 20894 if (inbound == 1) 20895 offset = 0; 20896 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20897 bf_set(lpfc_sli4_sge_type, sgl, 20898 LPFC_SGE_TYPE_DATA); 20899 offset += bde.tus.f.bdeSize; 20900 break; 20901 case CMD_FCP_TRSP64_WQE: 20902 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20903 bf_set(lpfc_sli4_sge_type, sgl, 20904 LPFC_SGE_TYPE_DATA); 20905 break; 20906 case CMD_FCP_TSEND64_WQE: 20907 case CMD_FCP_TRECEIVE64_WQE: 20908 bf_set(lpfc_sli4_sge_type, sgl, 20909 bpl->tus.f.bdeFlags); 20910 if (i < 3) 20911 offset = 0; 20912 else 20913 offset += bde.tus.f.bdeSize; 20914 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20915 break; 20916 } 20917 sgl->word2 = cpu_to_le32(sgl->word2); 20918 bpl++; 20919 sgl++; 20920 } 20921 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20922 /* The addrHigh and addrLow fields of the BDE have not 20923 * been byteswapped yet so they need to be swapped 20924 * before putting them in the sgl. 20925 */ 20926 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20927 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20928 sgl->word2 = le32_to_cpu(sgl->word2); 20929 bf_set(lpfc_sli4_sge_last, sgl, 1); 20930 sgl->word2 = cpu_to_le32(sgl->word2); 20931 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20932 } 20933 return sglq->sli4_xritag; 20934 } 20935 20936 /** 20937 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20938 * @phba: Pointer to HBA context object. 20939 * @qp: Pointer to HDW queue. 20940 * @pwqe: Pointer to command WQE. 20941 **/ 20942 int 20943 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20944 struct lpfc_iocbq *pwqe) 20945 { 20946 union lpfc_wqe128 *wqe = &pwqe->wqe; 20947 struct lpfc_async_xchg_ctx *ctxp; 20948 struct lpfc_queue *wq; 20949 struct lpfc_sglq *sglq; 20950 struct lpfc_sli_ring *pring; 20951 unsigned long iflags; 20952 uint32_t ret = 0; 20953 20954 /* NVME_LS and NVME_LS ABTS requests. */ 20955 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 20956 pring = phba->sli4_hba.nvmels_wq->pring; 20957 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20958 qp, wq_access); 20959 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20960 if (!sglq) { 20961 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20962 return WQE_BUSY; 20963 } 20964 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20965 pwqe->sli4_xritag = sglq->sli4_xritag; 20966 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20967 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20968 return WQE_ERROR; 20969 } 20970 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20971 pwqe->sli4_xritag); 20972 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20973 if (ret) { 20974 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20975 return ret; 20976 } 20977 20978 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20979 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20980 20981 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20982 return 0; 20983 } 20984 20985 /* NVME_FCREQ and NVME_ABTS requests */ 20986 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 20987 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20988 wq = qp->io_wq; 20989 pring = wq->pring; 20990 20991 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20992 20993 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20994 qp, wq_access); 20995 ret = lpfc_sli4_wq_put(wq, wqe); 20996 if (ret) { 20997 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20998 return ret; 20999 } 21000 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21001 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21002 21003 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21004 return 0; 21005 } 21006 21007 /* NVMET requests */ 21008 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21009 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21010 wq = qp->io_wq; 21011 pring = wq->pring; 21012 21013 ctxp = pwqe->context2; 21014 sglq = ctxp->ctxbuf->sglq; 21015 if (pwqe->sli4_xritag == NO_XRI) { 21016 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21017 pwqe->sli4_xritag = sglq->sli4_xritag; 21018 } 21019 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21020 pwqe->sli4_xritag); 21021 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21022 21023 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21024 qp, wq_access); 21025 ret = lpfc_sli4_wq_put(wq, wqe); 21026 if (ret) { 21027 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21028 return ret; 21029 } 21030 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21031 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21032 21033 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21034 return 0; 21035 } 21036 return WQE_ERROR; 21037 } 21038 21039 /** 21040 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21041 * @phba: Pointer to HBA context object. 21042 * @cmdiocb: Pointer to driver command iocb object. 21043 * @cmpl: completion function. 21044 * 21045 * Fill the appropriate fields for the abort WQE and call 21046 * internal routine lpfc_sli4_issue_wqe to send the WQE 21047 * This function is called with hbalock held and no ring_lock held. 21048 * 21049 * RETURNS 0 - SUCCESS 21050 **/ 21051 21052 int 21053 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21054 void *cmpl) 21055 { 21056 struct lpfc_vport *vport = cmdiocb->vport; 21057 struct lpfc_iocbq *abtsiocb = NULL; 21058 union lpfc_wqe128 *abtswqe; 21059 struct lpfc_io_buf *lpfc_cmd; 21060 int retval = IOCB_ERROR; 21061 u16 xritag = cmdiocb->sli4_xritag; 21062 21063 /* 21064 * The scsi command can not be in txq and it is in flight because the 21065 * pCmd is still pointing at the SCSI command we have to abort. There 21066 * is no need to search the txcmplq. Just send an abort to the FW. 21067 */ 21068 21069 abtsiocb = __lpfc_sli_get_iocbq(phba); 21070 if (!abtsiocb) 21071 return WQE_NORESOURCE; 21072 21073 /* Indicate the IO is being aborted by the driver. */ 21074 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21075 21076 abtswqe = &abtsiocb->wqe; 21077 memset(abtswqe, 0, sizeof(*abtswqe)); 21078 21079 if (!lpfc_is_link_up(phba)) 21080 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21081 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21082 abtswqe->abort_cmd.rsrvd5 = 0; 21083 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21084 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21085 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21086 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21087 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21088 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21089 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21090 21091 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21092 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21093 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21094 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21095 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21096 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21097 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21098 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21099 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21100 abtsiocb->vport = vport; 21101 abtsiocb->cmd_cmpl = cmpl; 21102 21103 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21104 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21105 21106 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21107 "0359 Abort xri x%x, original iotag x%x, " 21108 "abort cmd iotag x%x retval x%x\n", 21109 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21110 21111 if (retval) { 21112 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21113 __lpfc_sli_release_iocbq(phba, abtsiocb); 21114 } 21115 21116 return retval; 21117 } 21118 21119 #ifdef LPFC_MXP_STAT 21120 /** 21121 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21122 * @phba: pointer to lpfc hba data structure. 21123 * @hwqid: belong to which HWQ. 21124 * 21125 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21126 * 15 seconds after a test case is running. 21127 * 21128 * The user should call lpfc_debugfs_multixripools_write before running a test 21129 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21130 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21131 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21132 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21133 **/ 21134 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21135 { 21136 struct lpfc_sli4_hdw_queue *qp; 21137 struct lpfc_multixri_pool *multixri_pool; 21138 struct lpfc_pvt_pool *pvt_pool; 21139 struct lpfc_pbl_pool *pbl_pool; 21140 u32 txcmplq_cnt; 21141 21142 qp = &phba->sli4_hba.hdwq[hwqid]; 21143 multixri_pool = qp->p_multixri_pool; 21144 if (!multixri_pool) 21145 return; 21146 21147 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21148 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21149 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21150 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21151 21152 multixri_pool->stat_pbl_count = pbl_pool->count; 21153 multixri_pool->stat_pvt_count = pvt_pool->count; 21154 multixri_pool->stat_busy_count = txcmplq_cnt; 21155 } 21156 21157 multixri_pool->stat_snapshot_taken++; 21158 } 21159 #endif 21160 21161 /** 21162 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21163 * @phba: pointer to lpfc hba data structure. 21164 * @hwqid: belong to which HWQ. 21165 * 21166 * This routine moves some XRIs from private to public pool when private pool 21167 * is not busy. 21168 **/ 21169 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21170 { 21171 struct lpfc_multixri_pool *multixri_pool; 21172 u32 io_req_count; 21173 u32 prev_io_req_count; 21174 21175 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21176 if (!multixri_pool) 21177 return; 21178 io_req_count = multixri_pool->io_req_count; 21179 prev_io_req_count = multixri_pool->prev_io_req_count; 21180 21181 if (prev_io_req_count != io_req_count) { 21182 /* Private pool is busy */ 21183 multixri_pool->prev_io_req_count = io_req_count; 21184 } else { 21185 /* Private pool is not busy. 21186 * Move XRIs from private to public pool. 21187 */ 21188 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21189 } 21190 } 21191 21192 /** 21193 * lpfc_adjust_high_watermark - Adjust high watermark 21194 * @phba: pointer to lpfc hba data structure. 21195 * @hwqid: belong to which HWQ. 21196 * 21197 * This routine sets high watermark as number of outstanding XRIs, 21198 * but make sure the new value is between xri_limit/2 and xri_limit. 21199 **/ 21200 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21201 { 21202 u32 new_watermark; 21203 u32 watermark_max; 21204 u32 watermark_min; 21205 u32 xri_limit; 21206 u32 txcmplq_cnt; 21207 u32 abts_io_bufs; 21208 struct lpfc_multixri_pool *multixri_pool; 21209 struct lpfc_sli4_hdw_queue *qp; 21210 21211 qp = &phba->sli4_hba.hdwq[hwqid]; 21212 multixri_pool = qp->p_multixri_pool; 21213 if (!multixri_pool) 21214 return; 21215 xri_limit = multixri_pool->xri_limit; 21216 21217 watermark_max = xri_limit; 21218 watermark_min = xri_limit / 2; 21219 21220 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21221 abts_io_bufs = qp->abts_scsi_io_bufs; 21222 abts_io_bufs += qp->abts_nvme_io_bufs; 21223 21224 new_watermark = txcmplq_cnt + abts_io_bufs; 21225 new_watermark = min(watermark_max, new_watermark); 21226 new_watermark = max(watermark_min, new_watermark); 21227 multixri_pool->pvt_pool.high_watermark = new_watermark; 21228 21229 #ifdef LPFC_MXP_STAT 21230 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21231 new_watermark); 21232 #endif 21233 } 21234 21235 /** 21236 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21237 * @phba: pointer to lpfc hba data structure. 21238 * @hwqid: belong to which HWQ. 21239 * 21240 * This routine is called from hearbeat timer when pvt_pool is idle. 21241 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21242 * The first step moves (all - low_watermark) amount of XRIs. 21243 * The second step moves the rest of XRIs. 21244 **/ 21245 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21246 { 21247 struct lpfc_pbl_pool *pbl_pool; 21248 struct lpfc_pvt_pool *pvt_pool; 21249 struct lpfc_sli4_hdw_queue *qp; 21250 struct lpfc_io_buf *lpfc_ncmd; 21251 struct lpfc_io_buf *lpfc_ncmd_next; 21252 unsigned long iflag; 21253 struct list_head tmp_list; 21254 u32 tmp_count; 21255 21256 qp = &phba->sli4_hba.hdwq[hwqid]; 21257 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21258 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21259 tmp_count = 0; 21260 21261 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21262 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21263 21264 if (pvt_pool->count > pvt_pool->low_watermark) { 21265 /* Step 1: move (all - low_watermark) from pvt_pool 21266 * to pbl_pool 21267 */ 21268 21269 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21270 INIT_LIST_HEAD(&tmp_list); 21271 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21272 &pvt_pool->list, list) { 21273 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21274 tmp_count++; 21275 if (tmp_count >= pvt_pool->low_watermark) 21276 break; 21277 } 21278 21279 /* Move all bufs from pvt_pool to pbl_pool */ 21280 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21281 21282 /* Move all bufs from tmp_list to pvt_pool */ 21283 list_splice(&tmp_list, &pvt_pool->list); 21284 21285 pbl_pool->count += (pvt_pool->count - tmp_count); 21286 pvt_pool->count = tmp_count; 21287 } else { 21288 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21289 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21290 pbl_pool->count += pvt_pool->count; 21291 pvt_pool->count = 0; 21292 } 21293 21294 spin_unlock(&pvt_pool->lock); 21295 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21296 } 21297 21298 /** 21299 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21300 * @phba: pointer to lpfc hba data structure 21301 * @qp: pointer to HDW queue 21302 * @pbl_pool: specified public free XRI pool 21303 * @pvt_pool: specified private free XRI pool 21304 * @count: number of XRIs to move 21305 * 21306 * This routine tries to move some free common bufs from the specified pbl_pool 21307 * to the specified pvt_pool. It might move less than count XRIs if there's not 21308 * enough in public pool. 21309 * 21310 * Return: 21311 * true - if XRIs are successfully moved from the specified pbl_pool to the 21312 * specified pvt_pool 21313 * false - if the specified pbl_pool is empty or locked by someone else 21314 **/ 21315 static bool 21316 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21317 struct lpfc_pbl_pool *pbl_pool, 21318 struct lpfc_pvt_pool *pvt_pool, u32 count) 21319 { 21320 struct lpfc_io_buf *lpfc_ncmd; 21321 struct lpfc_io_buf *lpfc_ncmd_next; 21322 unsigned long iflag; 21323 int ret; 21324 21325 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21326 if (ret) { 21327 if (pbl_pool->count) { 21328 /* Move a batch of XRIs from public to private pool */ 21329 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21330 list_for_each_entry_safe(lpfc_ncmd, 21331 lpfc_ncmd_next, 21332 &pbl_pool->list, 21333 list) { 21334 list_move_tail(&lpfc_ncmd->list, 21335 &pvt_pool->list); 21336 pvt_pool->count++; 21337 pbl_pool->count--; 21338 count--; 21339 if (count == 0) 21340 break; 21341 } 21342 21343 spin_unlock(&pvt_pool->lock); 21344 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21345 return true; 21346 } 21347 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21348 } 21349 21350 return false; 21351 } 21352 21353 /** 21354 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21355 * @phba: pointer to lpfc hba data structure. 21356 * @hwqid: belong to which HWQ. 21357 * @count: number of XRIs to move 21358 * 21359 * This routine tries to find some free common bufs in one of public pools with 21360 * Round Robin method. The search always starts from local hwqid, then the next 21361 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21362 * a batch of free common bufs are moved to private pool on hwqid. 21363 * It might move less than count XRIs if there's not enough in public pool. 21364 **/ 21365 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21366 { 21367 struct lpfc_multixri_pool *multixri_pool; 21368 struct lpfc_multixri_pool *next_multixri_pool; 21369 struct lpfc_pvt_pool *pvt_pool; 21370 struct lpfc_pbl_pool *pbl_pool; 21371 struct lpfc_sli4_hdw_queue *qp; 21372 u32 next_hwqid; 21373 u32 hwq_count; 21374 int ret; 21375 21376 qp = &phba->sli4_hba.hdwq[hwqid]; 21377 multixri_pool = qp->p_multixri_pool; 21378 pvt_pool = &multixri_pool->pvt_pool; 21379 pbl_pool = &multixri_pool->pbl_pool; 21380 21381 /* Check if local pbl_pool is available */ 21382 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21383 if (ret) { 21384 #ifdef LPFC_MXP_STAT 21385 multixri_pool->local_pbl_hit_count++; 21386 #endif 21387 return; 21388 } 21389 21390 hwq_count = phba->cfg_hdw_queue; 21391 21392 /* Get the next hwqid which was found last time */ 21393 next_hwqid = multixri_pool->rrb_next_hwqid; 21394 21395 do { 21396 /* Go to next hwq */ 21397 next_hwqid = (next_hwqid + 1) % hwq_count; 21398 21399 next_multixri_pool = 21400 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21401 pbl_pool = &next_multixri_pool->pbl_pool; 21402 21403 /* Check if the public free xri pool is available */ 21404 ret = _lpfc_move_xri_pbl_to_pvt( 21405 phba, qp, pbl_pool, pvt_pool, count); 21406 21407 /* Exit while-loop if success or all hwqid are checked */ 21408 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21409 21410 /* Starting point for the next time */ 21411 multixri_pool->rrb_next_hwqid = next_hwqid; 21412 21413 if (!ret) { 21414 /* stats: all public pools are empty*/ 21415 multixri_pool->pbl_empty_count++; 21416 } 21417 21418 #ifdef LPFC_MXP_STAT 21419 if (ret) { 21420 if (next_hwqid == hwqid) 21421 multixri_pool->local_pbl_hit_count++; 21422 else 21423 multixri_pool->other_pbl_hit_count++; 21424 } 21425 #endif 21426 } 21427 21428 /** 21429 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21430 * @phba: pointer to lpfc hba data structure. 21431 * @hwqid: belong to which HWQ. 21432 * 21433 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21434 * low watermark. 21435 **/ 21436 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21437 { 21438 struct lpfc_multixri_pool *multixri_pool; 21439 struct lpfc_pvt_pool *pvt_pool; 21440 21441 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21442 pvt_pool = &multixri_pool->pvt_pool; 21443 21444 if (pvt_pool->count < pvt_pool->low_watermark) 21445 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21446 } 21447 21448 /** 21449 * lpfc_release_io_buf - Return one IO buf back to free pool 21450 * @phba: pointer to lpfc hba data structure. 21451 * @lpfc_ncmd: IO buf to be returned. 21452 * @qp: belong to which HWQ. 21453 * 21454 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21455 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21456 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21457 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21458 * lpfc_io_buf_list_put. 21459 **/ 21460 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21461 struct lpfc_sli4_hdw_queue *qp) 21462 { 21463 unsigned long iflag; 21464 struct lpfc_pbl_pool *pbl_pool; 21465 struct lpfc_pvt_pool *pvt_pool; 21466 struct lpfc_epd_pool *epd_pool; 21467 u32 txcmplq_cnt; 21468 u32 xri_owned; 21469 u32 xri_limit; 21470 u32 abts_io_bufs; 21471 21472 /* MUST zero fields if buffer is reused by another protocol */ 21473 lpfc_ncmd->nvmeCmd = NULL; 21474 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21475 21476 if (phba->cfg_xpsgl && !phba->nvmet_support && 21477 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21478 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21479 21480 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21481 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21482 21483 if (phba->cfg_xri_rebalancing) { 21484 if (lpfc_ncmd->expedite) { 21485 /* Return to expedite pool */ 21486 epd_pool = &phba->epd_pool; 21487 spin_lock_irqsave(&epd_pool->lock, iflag); 21488 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21489 epd_pool->count++; 21490 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21491 return; 21492 } 21493 21494 /* Avoid invalid access if an IO sneaks in and is being rejected 21495 * just _after_ xri pools are destroyed in lpfc_offline. 21496 * Nothing much can be done at this point. 21497 */ 21498 if (!qp->p_multixri_pool) 21499 return; 21500 21501 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21502 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21503 21504 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21505 abts_io_bufs = qp->abts_scsi_io_bufs; 21506 abts_io_bufs += qp->abts_nvme_io_bufs; 21507 21508 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21509 xri_limit = qp->p_multixri_pool->xri_limit; 21510 21511 #ifdef LPFC_MXP_STAT 21512 if (xri_owned <= xri_limit) 21513 qp->p_multixri_pool->below_limit_count++; 21514 else 21515 qp->p_multixri_pool->above_limit_count++; 21516 #endif 21517 21518 /* XRI goes to either public or private free xri pool 21519 * based on watermark and xri_limit 21520 */ 21521 if ((pvt_pool->count < pvt_pool->low_watermark) || 21522 (xri_owned < xri_limit && 21523 pvt_pool->count < pvt_pool->high_watermark)) { 21524 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21525 qp, free_pvt_pool); 21526 list_add_tail(&lpfc_ncmd->list, 21527 &pvt_pool->list); 21528 pvt_pool->count++; 21529 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21530 } else { 21531 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21532 qp, free_pub_pool); 21533 list_add_tail(&lpfc_ncmd->list, 21534 &pbl_pool->list); 21535 pbl_pool->count++; 21536 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21537 } 21538 } else { 21539 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21540 qp, free_xri); 21541 list_add_tail(&lpfc_ncmd->list, 21542 &qp->lpfc_io_buf_list_put); 21543 qp->put_io_bufs++; 21544 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21545 iflag); 21546 } 21547 } 21548 21549 /** 21550 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21551 * @phba: pointer to lpfc hba data structure. 21552 * @qp: pointer to HDW queue 21553 * @pvt_pool: pointer to private pool data structure. 21554 * @ndlp: pointer to lpfc nodelist data structure. 21555 * 21556 * This routine tries to get one free IO buf from private pool. 21557 * 21558 * Return: 21559 * pointer to one free IO buf - if private pool is not empty 21560 * NULL - if private pool is empty 21561 **/ 21562 static struct lpfc_io_buf * 21563 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21564 struct lpfc_sli4_hdw_queue *qp, 21565 struct lpfc_pvt_pool *pvt_pool, 21566 struct lpfc_nodelist *ndlp) 21567 { 21568 struct lpfc_io_buf *lpfc_ncmd; 21569 struct lpfc_io_buf *lpfc_ncmd_next; 21570 unsigned long iflag; 21571 21572 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21573 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21574 &pvt_pool->list, list) { 21575 if (lpfc_test_rrq_active( 21576 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21577 continue; 21578 list_del(&lpfc_ncmd->list); 21579 pvt_pool->count--; 21580 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21581 return lpfc_ncmd; 21582 } 21583 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21584 21585 return NULL; 21586 } 21587 21588 /** 21589 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21590 * @phba: pointer to lpfc hba data structure. 21591 * 21592 * This routine tries to get one free IO buf from expedite pool. 21593 * 21594 * Return: 21595 * pointer to one free IO buf - if expedite pool is not empty 21596 * NULL - if expedite pool is empty 21597 **/ 21598 static struct lpfc_io_buf * 21599 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21600 { 21601 struct lpfc_io_buf *lpfc_ncmd; 21602 struct lpfc_io_buf *lpfc_ncmd_next; 21603 unsigned long iflag; 21604 struct lpfc_epd_pool *epd_pool; 21605 21606 epd_pool = &phba->epd_pool; 21607 lpfc_ncmd = NULL; 21608 21609 spin_lock_irqsave(&epd_pool->lock, iflag); 21610 if (epd_pool->count > 0) { 21611 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21612 &epd_pool->list, list) { 21613 list_del(&lpfc_ncmd->list); 21614 epd_pool->count--; 21615 break; 21616 } 21617 } 21618 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21619 21620 return lpfc_ncmd; 21621 } 21622 21623 /** 21624 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21625 * @phba: pointer to lpfc hba data structure. 21626 * @ndlp: pointer to lpfc nodelist data structure. 21627 * @hwqid: belong to which HWQ 21628 * @expedite: 1 means this request is urgent. 21629 * 21630 * This routine will do the following actions and then return a pointer to 21631 * one free IO buf. 21632 * 21633 * 1. If private free xri count is empty, move some XRIs from public to 21634 * private pool. 21635 * 2. Get one XRI from private free xri pool. 21636 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21637 * get one free xri from expedite pool. 21638 * 21639 * Note: ndlp is only used on SCSI side for RRQ testing. 21640 * The caller should pass NULL for ndlp on NVME side. 21641 * 21642 * Return: 21643 * pointer to one free IO buf - if private pool is not empty 21644 * NULL - if private pool is empty 21645 **/ 21646 static struct lpfc_io_buf * 21647 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21648 struct lpfc_nodelist *ndlp, 21649 int hwqid, int expedite) 21650 { 21651 struct lpfc_sli4_hdw_queue *qp; 21652 struct lpfc_multixri_pool *multixri_pool; 21653 struct lpfc_pvt_pool *pvt_pool; 21654 struct lpfc_io_buf *lpfc_ncmd; 21655 21656 qp = &phba->sli4_hba.hdwq[hwqid]; 21657 lpfc_ncmd = NULL; 21658 if (!qp) { 21659 lpfc_printf_log(phba, KERN_INFO, 21660 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21661 "5556 NULL qp for hwqid x%x\n", hwqid); 21662 return lpfc_ncmd; 21663 } 21664 multixri_pool = qp->p_multixri_pool; 21665 if (!multixri_pool) { 21666 lpfc_printf_log(phba, KERN_INFO, 21667 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21668 "5557 NULL multixri for hwqid x%x\n", hwqid); 21669 return lpfc_ncmd; 21670 } 21671 pvt_pool = &multixri_pool->pvt_pool; 21672 if (!pvt_pool) { 21673 lpfc_printf_log(phba, KERN_INFO, 21674 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21675 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21676 return lpfc_ncmd; 21677 } 21678 multixri_pool->io_req_count++; 21679 21680 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21681 if (pvt_pool->count == 0) 21682 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21683 21684 /* Get one XRI from private free xri pool */ 21685 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21686 21687 if (lpfc_ncmd) { 21688 lpfc_ncmd->hdwq = qp; 21689 lpfc_ncmd->hdwq_no = hwqid; 21690 } else if (expedite) { 21691 /* If we fail to get one from pvt_pool and this is an expedite 21692 * request, get one free xri from expedite pool. 21693 */ 21694 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21695 } 21696 21697 return lpfc_ncmd; 21698 } 21699 21700 static inline struct lpfc_io_buf * 21701 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21702 { 21703 struct lpfc_sli4_hdw_queue *qp; 21704 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21705 21706 qp = &phba->sli4_hba.hdwq[idx]; 21707 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21708 &qp->lpfc_io_buf_list_get, list) { 21709 if (lpfc_test_rrq_active(phba, ndlp, 21710 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21711 continue; 21712 21713 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21714 continue; 21715 21716 list_del_init(&lpfc_cmd->list); 21717 qp->get_io_bufs--; 21718 lpfc_cmd->hdwq = qp; 21719 lpfc_cmd->hdwq_no = idx; 21720 return lpfc_cmd; 21721 } 21722 return NULL; 21723 } 21724 21725 /** 21726 * lpfc_get_io_buf - Get one IO buffer from free pool 21727 * @phba: The HBA for which this call is being executed. 21728 * @ndlp: pointer to lpfc nodelist data structure. 21729 * @hwqid: belong to which HWQ 21730 * @expedite: 1 means this request is urgent. 21731 * 21732 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21733 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21734 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21735 * 21736 * Note: ndlp is only used on SCSI side for RRQ testing. 21737 * The caller should pass NULL for ndlp on NVME side. 21738 * 21739 * Return codes: 21740 * NULL - Error 21741 * Pointer to lpfc_io_buf - Success 21742 **/ 21743 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21744 struct lpfc_nodelist *ndlp, 21745 u32 hwqid, int expedite) 21746 { 21747 struct lpfc_sli4_hdw_queue *qp; 21748 unsigned long iflag; 21749 struct lpfc_io_buf *lpfc_cmd; 21750 21751 qp = &phba->sli4_hba.hdwq[hwqid]; 21752 lpfc_cmd = NULL; 21753 if (!qp) { 21754 lpfc_printf_log(phba, KERN_WARNING, 21755 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21756 "5555 NULL qp for hwqid x%x\n", hwqid); 21757 return lpfc_cmd; 21758 } 21759 21760 if (phba->cfg_xri_rebalancing) 21761 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21762 phba, ndlp, hwqid, expedite); 21763 else { 21764 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21765 qp, alloc_xri_get); 21766 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21767 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21768 if (!lpfc_cmd) { 21769 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21770 qp, alloc_xri_put); 21771 list_splice(&qp->lpfc_io_buf_list_put, 21772 &qp->lpfc_io_buf_list_get); 21773 qp->get_io_bufs += qp->put_io_bufs; 21774 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21775 qp->put_io_bufs = 0; 21776 spin_unlock(&qp->io_buf_list_put_lock); 21777 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21778 expedite) 21779 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21780 } 21781 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21782 } 21783 21784 return lpfc_cmd; 21785 } 21786 21787 /** 21788 * lpfc_read_object - Retrieve object data from HBA 21789 * @phba: The HBA for which this call is being executed. 21790 * @rdobject: Pathname of object data we want to read. 21791 * @datap: Pointer to where data will be copied to. 21792 * @datasz: size of data area 21793 * 21794 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 21795 * The data will be truncated if datasz is not large enough. 21796 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 21797 * Returns the actual bytes read from the object. 21798 */ 21799 int 21800 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 21801 uint32_t datasz) 21802 { 21803 struct lpfc_mbx_read_object *read_object; 21804 LPFC_MBOXQ_t *mbox; 21805 int rc, length, eof, j, byte_cnt = 0; 21806 uint32_t shdr_status, shdr_add_status; 21807 union lpfc_sli4_cfg_shdr *shdr; 21808 struct lpfc_dmabuf *pcmd; 21809 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 21810 21811 /* sanity check on queue memory */ 21812 if (!datap) 21813 return -ENODEV; 21814 21815 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 21816 if (!mbox) 21817 return -ENOMEM; 21818 length = (sizeof(struct lpfc_mbx_read_object) - 21819 sizeof(struct lpfc_sli4_cfg_mhdr)); 21820 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 21821 LPFC_MBOX_OPCODE_READ_OBJECT, 21822 length, LPFC_SLI4_MBX_EMBED); 21823 read_object = &mbox->u.mqe.un.read_object; 21824 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 21825 21826 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 21827 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 21828 read_object->u.request.rd_object_offset = 0; 21829 read_object->u.request.rd_object_cnt = 1; 21830 21831 memset((void *)read_object->u.request.rd_object_name, 0, 21832 LPFC_OBJ_NAME_SZ); 21833 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 21834 for (j = 0; j < strlen(rdobject); j++) 21835 read_object->u.request.rd_object_name[j] = 21836 cpu_to_le32(rd_object_name[j]); 21837 21838 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 21839 if (pcmd) 21840 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 21841 if (!pcmd || !pcmd->virt) { 21842 kfree(pcmd); 21843 mempool_free(mbox, phba->mbox_mem_pool); 21844 return -ENOMEM; 21845 } 21846 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 21847 read_object->u.request.rd_object_hbuf[0].pa_lo = 21848 putPaddrLow(pcmd->phys); 21849 read_object->u.request.rd_object_hbuf[0].pa_hi = 21850 putPaddrHigh(pcmd->phys); 21851 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 21852 21853 mbox->vport = phba->pport; 21854 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21855 mbox->ctx_buf = NULL; 21856 mbox->ctx_ndlp = NULL; 21857 21858 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 21859 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 21860 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 21861 21862 if (shdr_status == STATUS_FAILED && 21863 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 21864 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21865 "4674 No port cfg file in FW.\n"); 21866 byte_cnt = -ENOENT; 21867 } else if (shdr_status || shdr_add_status || rc) { 21868 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21869 "2625 READ_OBJECT mailbox failed with " 21870 "status x%x add_status x%x, mbx status x%x\n", 21871 shdr_status, shdr_add_status, rc); 21872 byte_cnt = -ENXIO; 21873 } else { 21874 /* Success */ 21875 length = read_object->u.response.rd_object_actual_rlen; 21876 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 21877 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 21878 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 21879 length, datasz, eof); 21880 21881 /* Detect the port config file exists but is empty */ 21882 if (!length && eof) { 21883 byte_cnt = 0; 21884 goto exit; 21885 } 21886 21887 byte_cnt = length; 21888 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 21889 } 21890 21891 exit: 21892 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 21893 kfree(pcmd); 21894 mempool_free(mbox, phba->mbox_mem_pool); 21895 return byte_cnt; 21896 } 21897 21898 /** 21899 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21900 * @phba: The HBA for which this call is being executed. 21901 * @lpfc_buf: IO buf structure to append the SGL chunk 21902 * 21903 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21904 * and will allocate an SGL chunk if the pool is empty. 21905 * 21906 * Return codes: 21907 * NULL - Error 21908 * Pointer to sli4_hybrid_sgl - Success 21909 **/ 21910 struct sli4_hybrid_sgl * 21911 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21912 { 21913 struct sli4_hybrid_sgl *list_entry = NULL; 21914 struct sli4_hybrid_sgl *tmp = NULL; 21915 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21916 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21917 struct list_head *buf_list = &hdwq->sgl_list; 21918 unsigned long iflags; 21919 21920 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21921 21922 if (likely(!list_empty(buf_list))) { 21923 /* break off 1 chunk from the sgl_list */ 21924 list_for_each_entry_safe(list_entry, tmp, 21925 buf_list, list_node) { 21926 list_move_tail(&list_entry->list_node, 21927 &lpfc_buf->dma_sgl_xtra_list); 21928 break; 21929 } 21930 } else { 21931 /* allocate more */ 21932 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21933 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21934 cpu_to_node(hdwq->io_wq->chann)); 21935 if (!tmp) { 21936 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21937 "8353 error kmalloc memory for HDWQ " 21938 "%d %s\n", 21939 lpfc_buf->hdwq_no, __func__); 21940 return NULL; 21941 } 21942 21943 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21944 GFP_ATOMIC, &tmp->dma_phys_sgl); 21945 if (!tmp->dma_sgl) { 21946 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21947 "8354 error pool_alloc memory for HDWQ " 21948 "%d %s\n", 21949 lpfc_buf->hdwq_no, __func__); 21950 kfree(tmp); 21951 return NULL; 21952 } 21953 21954 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21955 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21956 } 21957 21958 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21959 struct sli4_hybrid_sgl, 21960 list_node); 21961 21962 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21963 21964 return allocated_sgl; 21965 } 21966 21967 /** 21968 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21969 * @phba: The HBA for which this call is being executed. 21970 * @lpfc_buf: IO buf structure with the SGL chunk 21971 * 21972 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21973 * 21974 * Return codes: 21975 * 0 - Success 21976 * -EINVAL - Error 21977 **/ 21978 int 21979 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21980 { 21981 int rc = 0; 21982 struct sli4_hybrid_sgl *list_entry = NULL; 21983 struct sli4_hybrid_sgl *tmp = NULL; 21984 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21985 struct list_head *buf_list = &hdwq->sgl_list; 21986 unsigned long iflags; 21987 21988 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21989 21990 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21991 list_for_each_entry_safe(list_entry, tmp, 21992 &lpfc_buf->dma_sgl_xtra_list, 21993 list_node) { 21994 list_move_tail(&list_entry->list_node, 21995 buf_list); 21996 } 21997 } else { 21998 rc = -EINVAL; 21999 } 22000 22001 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22002 return rc; 22003 } 22004 22005 /** 22006 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22007 * @phba: phba object 22008 * @hdwq: hdwq to cleanup sgl buff resources on 22009 * 22010 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22011 * 22012 * Return codes: 22013 * None 22014 **/ 22015 void 22016 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22017 struct lpfc_sli4_hdw_queue *hdwq) 22018 { 22019 struct list_head *buf_list = &hdwq->sgl_list; 22020 struct sli4_hybrid_sgl *list_entry = NULL; 22021 struct sli4_hybrid_sgl *tmp = NULL; 22022 unsigned long iflags; 22023 22024 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22025 22026 /* Free sgl pool */ 22027 list_for_each_entry_safe(list_entry, tmp, 22028 buf_list, list_node) { 22029 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22030 list_entry->dma_sgl, 22031 list_entry->dma_phys_sgl); 22032 list_del(&list_entry->list_node); 22033 kfree(list_entry); 22034 } 22035 22036 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22037 } 22038 22039 /** 22040 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22041 * @phba: The HBA for which this call is being executed. 22042 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22043 * 22044 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22045 * and will allocate an CMD/RSP buffer if the pool is empty. 22046 * 22047 * Return codes: 22048 * NULL - Error 22049 * Pointer to fcp_cmd_rsp_buf - Success 22050 **/ 22051 struct fcp_cmd_rsp_buf * 22052 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22053 struct lpfc_io_buf *lpfc_buf) 22054 { 22055 struct fcp_cmd_rsp_buf *list_entry = NULL; 22056 struct fcp_cmd_rsp_buf *tmp = NULL; 22057 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22058 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22059 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22060 unsigned long iflags; 22061 22062 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22063 22064 if (likely(!list_empty(buf_list))) { 22065 /* break off 1 chunk from the list */ 22066 list_for_each_entry_safe(list_entry, tmp, 22067 buf_list, 22068 list_node) { 22069 list_move_tail(&list_entry->list_node, 22070 &lpfc_buf->dma_cmd_rsp_list); 22071 break; 22072 } 22073 } else { 22074 /* allocate more */ 22075 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22076 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22077 cpu_to_node(hdwq->io_wq->chann)); 22078 if (!tmp) { 22079 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22080 "8355 error kmalloc memory for HDWQ " 22081 "%d %s\n", 22082 lpfc_buf->hdwq_no, __func__); 22083 return NULL; 22084 } 22085 22086 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22087 GFP_ATOMIC, 22088 &tmp->fcp_cmd_rsp_dma_handle); 22089 22090 if (!tmp->fcp_cmnd) { 22091 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22092 "8356 error pool_alloc memory for HDWQ " 22093 "%d %s\n", 22094 lpfc_buf->hdwq_no, __func__); 22095 kfree(tmp); 22096 return NULL; 22097 } 22098 22099 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22100 sizeof(struct fcp_cmnd)); 22101 22102 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22103 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22104 } 22105 22106 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22107 struct fcp_cmd_rsp_buf, 22108 list_node); 22109 22110 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22111 22112 return allocated_buf; 22113 } 22114 22115 /** 22116 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22117 * @phba: The HBA for which this call is being executed. 22118 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22119 * 22120 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22121 * 22122 * Return codes: 22123 * 0 - Success 22124 * -EINVAL - Error 22125 **/ 22126 int 22127 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22128 struct lpfc_io_buf *lpfc_buf) 22129 { 22130 int rc = 0; 22131 struct fcp_cmd_rsp_buf *list_entry = NULL; 22132 struct fcp_cmd_rsp_buf *tmp = NULL; 22133 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22134 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22135 unsigned long iflags; 22136 22137 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22138 22139 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22140 list_for_each_entry_safe(list_entry, tmp, 22141 &lpfc_buf->dma_cmd_rsp_list, 22142 list_node) { 22143 list_move_tail(&list_entry->list_node, 22144 buf_list); 22145 } 22146 } else { 22147 rc = -EINVAL; 22148 } 22149 22150 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22151 return rc; 22152 } 22153 22154 /** 22155 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22156 * @phba: phba object 22157 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22158 * 22159 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22160 * 22161 * Return codes: 22162 * None 22163 **/ 22164 void 22165 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22166 struct lpfc_sli4_hdw_queue *hdwq) 22167 { 22168 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22169 struct fcp_cmd_rsp_buf *list_entry = NULL; 22170 struct fcp_cmd_rsp_buf *tmp = NULL; 22171 unsigned long iflags; 22172 22173 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22174 22175 /* Free cmd_rsp buf pool */ 22176 list_for_each_entry_safe(list_entry, tmp, 22177 buf_list, 22178 list_node) { 22179 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22180 list_entry->fcp_cmnd, 22181 list_entry->fcp_cmd_rsp_dma_handle); 22182 list_del(&list_entry->list_node); 22183 kfree(list_entry); 22184 } 22185 22186 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22187 } 22188 22189 /** 22190 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22191 * @phba: phba object 22192 * @job: job entry of the command to be posted. 22193 * 22194 * Fill the common fields of the wqe for each of the command. 22195 * 22196 * Return codes: 22197 * None 22198 **/ 22199 void 22200 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22201 { 22202 u8 cmnd; 22203 u32 *pcmd; 22204 u32 if_type = 0; 22205 u32 fip, abort_tag; 22206 struct lpfc_nodelist *ndlp = NULL; 22207 union lpfc_wqe128 *wqe = &job->wqe; 22208 struct lpfc_dmabuf *context2; 22209 u32 els_id = LPFC_ELS_ID_DEFAULT; 22210 u8 command_type = ELS_COMMAND_NON_FIP; 22211 22212 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22213 /* The fcp commands will set command type */ 22214 if (job->cmd_flag & LPFC_IO_FCP) 22215 command_type = FCP_COMMAND; 22216 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22217 command_type = ELS_COMMAND_FIP; 22218 else 22219 command_type = ELS_COMMAND_NON_FIP; 22220 22221 abort_tag = job->iotag; 22222 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22223 22224 switch (cmnd) { 22225 case CMD_ELS_REQUEST64_WQE: 22226 if (job->cmd_flag & LPFC_IO_LIBDFC) 22227 ndlp = job->context_un.ndlp; 22228 else 22229 ndlp = (struct lpfc_nodelist *)job->context1; 22230 22231 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 22232 if (command_type == ELS_COMMAND_FIP) 22233 els_id = ((job->cmd_flag & LPFC_FIP_ELS_ID_MASK) 22234 >> LPFC_FIP_ELS_ID_SHIFT); 22235 22236 if_type = bf_get(lpfc_sli_intf_if_type, 22237 &phba->sli4_hba.sli_intf); 22238 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22239 context2 = (struct lpfc_dmabuf *)job->context2; 22240 pcmd = (u32 *)context2->virt; 22241 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22242 *pcmd == ELS_CMD_SCR || 22243 *pcmd == ELS_CMD_RDF || 22244 *pcmd == ELS_CMD_EDC || 22245 *pcmd == ELS_CMD_RSCN_XMT || 22246 *pcmd == ELS_CMD_FDISC || 22247 *pcmd == ELS_CMD_LOGO || 22248 *pcmd == ELS_CMD_QFPA || 22249 *pcmd == ELS_CMD_UVEM || 22250 *pcmd == ELS_CMD_PLOGI)) { 22251 bf_set(els_req64_sp, &wqe->els_req, 1); 22252 bf_set(els_req64_sid, &wqe->els_req, 22253 job->vport->fc_myDID); 22254 22255 if ((*pcmd == ELS_CMD_FLOGI) && 22256 !(phba->fc_topology == 22257 LPFC_TOPOLOGY_LOOP)) 22258 bf_set(els_req64_sid, &wqe->els_req, 0); 22259 22260 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22261 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22262 phba->vpi_ids[job->vport->vpi]); 22263 } else if (pcmd) { 22264 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22265 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22266 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22267 } 22268 } 22269 22270 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22271 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22272 22273 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 22274 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22275 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22276 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22277 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22278 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22279 break; 22280 case CMD_XMIT_ELS_RSP64_WQE: 22281 ndlp = (struct lpfc_nodelist *)job->context1; 22282 22283 /* word4 */ 22284 wqe->xmit_els_rsp.word4 = 0; 22285 22286 if_type = bf_get(lpfc_sli_intf_if_type, 22287 &phba->sli4_hba.sli_intf); 22288 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22289 if (job->vport->fc_flag & FC_PT2PT) { 22290 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22291 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22292 job->vport->fc_myDID); 22293 if (job->vport->fc_myDID == Fabric_DID) { 22294 bf_set(wqe_els_did, 22295 &wqe->xmit_els_rsp.wqe_dest, 0); 22296 } 22297 } 22298 } 22299 22300 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22301 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22302 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22303 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22304 LPFC_WQE_LENLOC_WORD3); 22305 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22306 22307 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22308 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22309 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22310 job->vport->fc_myDID); 22311 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22312 } 22313 22314 if (phba->sli_rev == LPFC_SLI_REV4) { 22315 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22316 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22317 22318 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22319 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22320 phba->vpi_ids[job->vport->vpi]); 22321 } 22322 command_type = OTHER_COMMAND; 22323 break; 22324 case CMD_GEN_REQUEST64_WQE: 22325 /* Word 10 */ 22326 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22327 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22328 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22329 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22330 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22331 command_type = OTHER_COMMAND; 22332 break; 22333 case CMD_XMIT_SEQUENCE64_WQE: 22334 if (phba->link_flag & LS_LOOPBACK_MODE) 22335 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22336 22337 wqe->xmit_sequence.rsvd3 = 0; 22338 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22339 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22340 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22341 LPFC_WQE_IOD_WRITE); 22342 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22343 LPFC_WQE_LENLOC_WORD12); 22344 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22345 command_type = OTHER_COMMAND; 22346 break; 22347 case CMD_XMIT_BLS_RSP64_WQE: 22348 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22349 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22350 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22351 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22352 phba->vpi_ids[phba->pport->vpi]); 22353 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22354 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22355 LPFC_WQE_LENLOC_NONE); 22356 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22357 command_type = OTHER_COMMAND; 22358 break; 22359 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22360 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22361 case CMD_SEND_FRAME: /* mds loopback */ 22362 /* cases already formatted for sli4 wqe - no chgs necessary */ 22363 return; 22364 default: 22365 dump_stack(); 22366 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22367 "6207 Invalid command 0x%x\n", 22368 cmnd); 22369 break; 22370 } 22371 22372 wqe->generic.wqe_com.abort_tag = abort_tag; 22373 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22374 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22375 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22376 } 22377