1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1408 sglq->state != SGL_XRI_ABORTED) { 1409 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1410 iflag); 1411 1412 /* Check if we can get a reference on ndlp */ 1413 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1414 sglq->ndlp = NULL; 1415 1416 list_add(&sglq->list, 1417 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1418 spin_unlock_irqrestore( 1419 &phba->sli4_hba.sgl_list_lock, iflag); 1420 } else { 1421 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1422 iflag); 1423 sglq->state = SGL_FREED; 1424 sglq->ndlp = NULL; 1425 list_add_tail(&sglq->list, 1426 &phba->sli4_hba.lpfc_els_sgl_list); 1427 spin_unlock_irqrestore( 1428 &phba->sli4_hba.sgl_list_lock, iflag); 1429 pring = lpfc_phba_elsring(phba); 1430 /* Check if TXQ queue needs to be serviced */ 1431 if (pring && (!list_empty(&pring->txq))) 1432 lpfc_worker_wake_up(phba); 1433 } 1434 } 1435 1436 out: 1437 /* 1438 * Clean all volatile data fields, preserve iotag and node struct. 1439 */ 1440 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1441 iocbq->sli4_lxritag = NO_XRI; 1442 iocbq->sli4_xritag = NO_XRI; 1443 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1444 LPFC_IO_NVME_LS); 1445 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1446 } 1447 1448 1449 /** 1450 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1451 * @phba: Pointer to HBA context object. 1452 * @iocbq: Pointer to driver iocb object. 1453 * 1454 * This function is called to release the driver iocb object to the 1455 * iocb pool. The iotag in the iocb object does not change for each 1456 * use of the iocb object. This function clears all other fields of 1457 * the iocb object when it is freed. The hbalock is asserted held in 1458 * the code path calling this routine. 1459 **/ 1460 static void 1461 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1462 { 1463 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1464 1465 /* 1466 * Clean all volatile data fields, preserve iotag and node struct. 1467 */ 1468 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1469 iocbq->sli4_xritag = NO_XRI; 1470 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1471 } 1472 1473 /** 1474 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1475 * @phba: Pointer to HBA context object. 1476 * @iocbq: Pointer to driver iocb object. 1477 * 1478 * This function is called with hbalock held to release driver 1479 * iocb object to the iocb pool. The iotag in the iocb object 1480 * does not change for each use of the iocb object. This function 1481 * clears all other fields of the iocb object when it is freed. 1482 **/ 1483 static void 1484 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1485 { 1486 lockdep_assert_held(&phba->hbalock); 1487 1488 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1489 phba->iocb_cnt--; 1490 } 1491 1492 /** 1493 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1494 * @phba: Pointer to HBA context object. 1495 * @iocbq: Pointer to driver iocb object. 1496 * 1497 * This function is called with no lock held to release the iocb to 1498 * iocb pool. 1499 **/ 1500 void 1501 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1502 { 1503 unsigned long iflags; 1504 1505 /* 1506 * Clean all volatile data fields, preserve iotag and node struct. 1507 */ 1508 spin_lock_irqsave(&phba->hbalock, iflags); 1509 __lpfc_sli_release_iocbq(phba, iocbq); 1510 spin_unlock_irqrestore(&phba->hbalock, iflags); 1511 } 1512 1513 /** 1514 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1515 * @phba: Pointer to HBA context object. 1516 * @iocblist: List of IOCBs. 1517 * @ulpstatus: ULP status in IOCB command field. 1518 * @ulpWord4: ULP word-4 in IOCB command field. 1519 * 1520 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1521 * on the list by invoking the complete callback function associated with the 1522 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1523 * fields. 1524 **/ 1525 void 1526 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1527 uint32_t ulpstatus, uint32_t ulpWord4) 1528 { 1529 struct lpfc_iocbq *piocb; 1530 1531 while (!list_empty(iocblist)) { 1532 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1533 if (piocb->wqe_cmpl) { 1534 if (piocb->iocb_flag & LPFC_IO_NVME) 1535 lpfc_nvme_cancel_iocb(phba, piocb, 1536 ulpstatus, ulpWord4); 1537 else 1538 lpfc_sli_release_iocbq(phba, piocb); 1539 1540 } else if (piocb->iocb_cmpl) { 1541 piocb->iocb.ulpStatus = ulpstatus; 1542 piocb->iocb.un.ulpWord[4] = ulpWord4; 1543 (piocb->iocb_cmpl) (phba, piocb, piocb); 1544 } else { 1545 lpfc_sli_release_iocbq(phba, piocb); 1546 } 1547 } 1548 return; 1549 } 1550 1551 /** 1552 * lpfc_sli_iocb_cmd_type - Get the iocb type 1553 * @iocb_cmnd: iocb command code. 1554 * 1555 * This function is called by ring event handler function to get the iocb type. 1556 * This function translates the iocb command to an iocb command type used to 1557 * decide the final disposition of each completed IOCB. 1558 * The function returns 1559 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1560 * LPFC_SOL_IOCB if it is a solicited iocb completion 1561 * LPFC_ABORT_IOCB if it is an abort iocb 1562 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1563 * 1564 * The caller is not required to hold any lock. 1565 **/ 1566 static lpfc_iocb_type 1567 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1568 { 1569 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1570 1571 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1572 return 0; 1573 1574 switch (iocb_cmnd) { 1575 case CMD_XMIT_SEQUENCE_CR: 1576 case CMD_XMIT_SEQUENCE_CX: 1577 case CMD_XMIT_BCAST_CN: 1578 case CMD_XMIT_BCAST_CX: 1579 case CMD_ELS_REQUEST_CR: 1580 case CMD_ELS_REQUEST_CX: 1581 case CMD_CREATE_XRI_CR: 1582 case CMD_CREATE_XRI_CX: 1583 case CMD_GET_RPI_CN: 1584 case CMD_XMIT_ELS_RSP_CX: 1585 case CMD_GET_RPI_CR: 1586 case CMD_FCP_IWRITE_CR: 1587 case CMD_FCP_IWRITE_CX: 1588 case CMD_FCP_IREAD_CR: 1589 case CMD_FCP_IREAD_CX: 1590 case CMD_FCP_ICMND_CR: 1591 case CMD_FCP_ICMND_CX: 1592 case CMD_FCP_TSEND_CX: 1593 case CMD_FCP_TRSP_CX: 1594 case CMD_FCP_TRECEIVE_CX: 1595 case CMD_FCP_AUTO_TRSP_CX: 1596 case CMD_ADAPTER_MSG: 1597 case CMD_ADAPTER_DUMP: 1598 case CMD_XMIT_SEQUENCE64_CR: 1599 case CMD_XMIT_SEQUENCE64_CX: 1600 case CMD_XMIT_BCAST64_CN: 1601 case CMD_XMIT_BCAST64_CX: 1602 case CMD_ELS_REQUEST64_CR: 1603 case CMD_ELS_REQUEST64_CX: 1604 case CMD_FCP_IWRITE64_CR: 1605 case CMD_FCP_IWRITE64_CX: 1606 case CMD_FCP_IREAD64_CR: 1607 case CMD_FCP_IREAD64_CX: 1608 case CMD_FCP_ICMND64_CR: 1609 case CMD_FCP_ICMND64_CX: 1610 case CMD_FCP_TSEND64_CX: 1611 case CMD_FCP_TRSP64_CX: 1612 case CMD_FCP_TRECEIVE64_CX: 1613 case CMD_GEN_REQUEST64_CR: 1614 case CMD_GEN_REQUEST64_CX: 1615 case CMD_XMIT_ELS_RSP64_CX: 1616 case DSSCMD_IWRITE64_CR: 1617 case DSSCMD_IWRITE64_CX: 1618 case DSSCMD_IREAD64_CR: 1619 case DSSCMD_IREAD64_CX: 1620 case CMD_SEND_FRAME: 1621 type = LPFC_SOL_IOCB; 1622 break; 1623 case CMD_ABORT_XRI_CN: 1624 case CMD_ABORT_XRI_CX: 1625 case CMD_CLOSE_XRI_CN: 1626 case CMD_CLOSE_XRI_CX: 1627 case CMD_XRI_ABORTED_CX: 1628 case CMD_ABORT_MXRI64_CN: 1629 case CMD_XMIT_BLS_RSP64_CX: 1630 type = LPFC_ABORT_IOCB; 1631 break; 1632 case CMD_RCV_SEQUENCE_CX: 1633 case CMD_RCV_ELS_REQ_CX: 1634 case CMD_RCV_SEQUENCE64_CX: 1635 case CMD_RCV_ELS_REQ64_CX: 1636 case CMD_ASYNC_STATUS: 1637 case CMD_IOCB_RCV_SEQ64_CX: 1638 case CMD_IOCB_RCV_ELS64_CX: 1639 case CMD_IOCB_RCV_CONT64_CX: 1640 case CMD_IOCB_RET_XRI64_CX: 1641 type = LPFC_UNSOL_IOCB; 1642 break; 1643 case CMD_IOCB_XMIT_MSEQ64_CR: 1644 case CMD_IOCB_XMIT_MSEQ64_CX: 1645 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1646 case CMD_IOCB_RCV_ELS_LIST64_CX: 1647 case CMD_IOCB_CLOSE_EXTENDED_CN: 1648 case CMD_IOCB_ABORT_EXTENDED_CN: 1649 case CMD_IOCB_RET_HBQE64_CN: 1650 case CMD_IOCB_FCP_IBIDIR64_CR: 1651 case CMD_IOCB_FCP_IBIDIR64_CX: 1652 case CMD_IOCB_FCP_ITASKMGT64_CX: 1653 case CMD_IOCB_LOGENTRY_CN: 1654 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1655 printk("%s - Unhandled SLI-3 Command x%x\n", 1656 __func__, iocb_cmnd); 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 default: 1660 type = LPFC_UNKNOWN_IOCB; 1661 break; 1662 } 1663 1664 return type; 1665 } 1666 1667 /** 1668 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1669 * @phba: Pointer to HBA context object. 1670 * 1671 * This function is called from SLI initialization code 1672 * to configure every ring of the HBA's SLI interface. The 1673 * caller is not required to hold any lock. This function issues 1674 * a config_ring mailbox command for each ring. 1675 * This function returns zero if successful else returns a negative 1676 * error code. 1677 **/ 1678 static int 1679 lpfc_sli_ring_map(struct lpfc_hba *phba) 1680 { 1681 struct lpfc_sli *psli = &phba->sli; 1682 LPFC_MBOXQ_t *pmb; 1683 MAILBOX_t *pmbox; 1684 int i, rc, ret = 0; 1685 1686 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1687 if (!pmb) 1688 return -ENOMEM; 1689 pmbox = &pmb->u.mb; 1690 phba->link_state = LPFC_INIT_MBX_CMDS; 1691 for (i = 0; i < psli->num_rings; i++) { 1692 lpfc_config_ring(phba, i, pmb); 1693 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1694 if (rc != MBX_SUCCESS) { 1695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1696 "0446 Adapter failed to init (%d), " 1697 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1698 "ring %d\n", 1699 rc, pmbox->mbxCommand, 1700 pmbox->mbxStatus, i); 1701 phba->link_state = LPFC_HBA_ERROR; 1702 ret = -ENXIO; 1703 break; 1704 } 1705 } 1706 mempool_free(pmb, phba->mbox_mem_pool); 1707 return ret; 1708 } 1709 1710 /** 1711 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1712 * @phba: Pointer to HBA context object. 1713 * @pring: Pointer to driver SLI ring object. 1714 * @piocb: Pointer to the driver iocb object. 1715 * 1716 * The driver calls this function with the hbalock held for SLI3 ports or 1717 * the ring lock held for SLI4 ports. The function adds the 1718 * new iocb to txcmplq of the given ring. This function always returns 1719 * 0. If this function is called for ELS ring, this function checks if 1720 * there is a vport associated with the ELS command. This function also 1721 * starts els_tmofunc timer if this is an ELS command. 1722 **/ 1723 static int 1724 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1725 struct lpfc_iocbq *piocb) 1726 { 1727 if (phba->sli_rev == LPFC_SLI_REV4) 1728 lockdep_assert_held(&pring->ring_lock); 1729 else 1730 lockdep_assert_held(&phba->hbalock); 1731 1732 BUG_ON(!piocb); 1733 1734 list_add_tail(&piocb->list, &pring->txcmplq); 1735 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1736 pring->txcmplq_cnt++; 1737 1738 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1739 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1740 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1741 BUG_ON(!piocb->vport); 1742 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1743 mod_timer(&piocb->vport->els_tmofunc, 1744 jiffies + 1745 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1746 } 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * lpfc_sli_ringtx_get - Get first element of the txq 1753 * @phba: Pointer to HBA context object. 1754 * @pring: Pointer to driver SLI ring object. 1755 * 1756 * This function is called with hbalock held to get next 1757 * iocb in txq of the given ring. If there is any iocb in 1758 * the txq, the function returns first iocb in the list after 1759 * removing the iocb from the list, else it returns NULL. 1760 **/ 1761 struct lpfc_iocbq * 1762 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1763 { 1764 struct lpfc_iocbq *cmd_iocb; 1765 1766 lockdep_assert_held(&phba->hbalock); 1767 1768 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1769 return cmd_iocb; 1770 } 1771 1772 /** 1773 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1774 * @phba: Pointer to HBA context object. 1775 * @cmdiocb: Pointer to driver command iocb object. 1776 * @cmf_cmpl: Pointer to completed WCQE. 1777 * 1778 * This routine will inform the driver of any BW adjustments we need 1779 * to make. These changes will be picked up during the next CMF 1780 * timer interrupt. In addition, any BW changes will be logged 1781 * with LOG_CGN_MGMT. 1782 **/ 1783 static void 1784 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1785 struct lpfc_wcqe_complete *cmf_cmpl) 1786 { 1787 union lpfc_wqe128 *wqe; 1788 uint32_t status, info; 1789 uint64_t bw, bwdif, slop; 1790 uint64_t pcent, bwpcent; 1791 int asig, afpin, sigcnt, fpincnt; 1792 int wsigmax, wfpinmax, cg, tdp; 1793 char *s; 1794 1795 /* First check for error */ 1796 status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); 1797 if (status) { 1798 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1799 "6211 CMF_SYNC_WQE Error " 1800 "req_tag x%x status x%x hwstatus x%x " 1801 "tdatap x%x parm x%x\n", 1802 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), 1803 bf_get(lpfc_wcqe_c_status, cmf_cmpl), 1804 bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), 1805 cmf_cmpl->total_data_placed, 1806 cmf_cmpl->parameter); 1807 goto out; 1808 } 1809 1810 /* Gather congestion information on a successful cmpl */ 1811 info = cmf_cmpl->parameter; 1812 phba->cmf_active_info = info; 1813 1814 /* See if firmware info count is valid or has changed */ 1815 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1816 info = 0; 1817 else 1818 phba->cmf_info_per_interval = info; 1819 1820 tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); 1821 cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); 1822 1823 /* Get BW requirement from firmware */ 1824 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1825 if (!bw) { 1826 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1827 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1828 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); 1829 goto out; 1830 } 1831 1832 /* Gather information needed for logging if a BW change is required */ 1833 wqe = &cmdiocb->wqe; 1834 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1835 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1836 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1837 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1838 if (phba->cmf_max_bytes_per_interval != bw || 1839 (asig || afpin || sigcnt || fpincnt)) { 1840 /* Are we increasing or decreasing BW */ 1841 if (phba->cmf_max_bytes_per_interval < bw) { 1842 bwdif = bw - phba->cmf_max_bytes_per_interval; 1843 s = "Increase"; 1844 } else { 1845 bwdif = phba->cmf_max_bytes_per_interval - bw; 1846 s = "Decrease"; 1847 } 1848 1849 /* What is the change percentage */ 1850 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1851 pcent = div64_u64(bwdif * 100 + slop, 1852 phba->cmf_link_byte_count); 1853 bwpcent = div64_u64(bw * 100 + slop, 1854 phba->cmf_link_byte_count); 1855 if (asig) { 1856 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1857 "6237 BW Threshold %lld%% (%lld): " 1858 "%lld%% %s: Signal Alarm: cg:%d " 1859 "Info:%u\n", 1860 bwpcent, bw, pcent, s, cg, 1861 phba->cmf_active_info); 1862 } else if (afpin) { 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6238 BW Threshold %lld%% (%lld): " 1865 "%lld%% %s: FPIN Alarm: cg:%d " 1866 "Info:%u\n", 1867 bwpcent, bw, pcent, s, cg, 1868 phba->cmf_active_info); 1869 } else if (sigcnt) { 1870 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1871 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1872 "6239 BW Threshold %lld%% (%lld): " 1873 "%lld%% %s: Signal Warning: " 1874 "Cnt %d Max %d: cg:%d Info:%u\n", 1875 bwpcent, bw, pcent, s, sigcnt, 1876 wsigmax, cg, phba->cmf_active_info); 1877 } else if (fpincnt) { 1878 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1879 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1880 "6240 BW Threshold %lld%% (%lld): " 1881 "%lld%% %s: FPIN Warning: " 1882 "Cnt %d Max %d: cg:%d Info:%u\n", 1883 bwpcent, bw, pcent, s, fpincnt, 1884 wfpinmax, cg, phba->cmf_active_info); 1885 } else { 1886 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1887 "6241 BW Threshold %lld%% (%lld): " 1888 "CMF %lld%% %s: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, cg, 1890 phba->cmf_active_info); 1891 } 1892 } else if (info) { 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6246 Info Threshold %u\n", info); 1895 } 1896 1897 /* Save BW change to be picked up during next timer interrupt */ 1898 phba->cmf_last_sync_bw = bw; 1899 out: 1900 lpfc_sli_release_iocbq(phba, cmdiocb); 1901 } 1902 1903 /** 1904 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1905 * @phba: Pointer to HBA context object. 1906 * @ms: ms to set in WQE interval, 0 means use init op 1907 * @total: Total rcv bytes for this interval 1908 * 1909 * This routine is called every CMF timer interrupt. Its purpose is 1910 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1911 * that may indicate we have congestion (FPINs or Signals). Upon 1912 * completion, the firmware will indicate any BW restrictions the 1913 * driver may need to take. 1914 **/ 1915 int 1916 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1917 { 1918 union lpfc_wqe128 *wqe; 1919 struct lpfc_iocbq *sync_buf; 1920 unsigned long iflags; 1921 u32 ret_val; 1922 u32 atot, wtot, max; 1923 1924 /* First address any alarm / warning activity */ 1925 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1926 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1927 1928 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1929 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1930 phba->link_state == LPFC_LINK_DOWN) 1931 return 0; 1932 1933 spin_lock_irqsave(&phba->hbalock, iflags); 1934 sync_buf = __lpfc_sli_get_iocbq(phba); 1935 if (!sync_buf) { 1936 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1937 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1938 ret_val = ENOMEM; 1939 goto out_unlock; 1940 } 1941 1942 wqe = &sync_buf->wqe; 1943 1944 /* WQEs are reused. Clear stale data and set key fields to zero */ 1945 memset(wqe, 0, sizeof(*wqe)); 1946 1947 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1948 if (!ms) { 1949 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1950 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1951 phba->fc_eventTag); 1952 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1953 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1954 goto initpath; 1955 } 1956 1957 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1958 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1959 1960 /* Check for alarms / warnings */ 1961 if (atot) { 1962 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1963 /* We hit an Signal alarm condition */ 1964 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1965 } else { 1966 /* We hit a FPIN alarm condition */ 1967 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1968 } 1969 } else if (wtot) { 1970 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1971 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1972 /* We hit an Signal warning condition */ 1973 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1974 lpfc_acqe_cgn_frequency; 1975 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1976 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1977 } else { 1978 /* We hit a FPIN warning condition */ 1979 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1980 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1981 } 1982 } 1983 1984 /* Update total read blocks during previous timer interval */ 1985 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1986 1987 initpath: 1988 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1989 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1990 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1991 1992 /* Setup reqtag to match the wqe completion. */ 1993 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1994 1995 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1996 1997 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1998 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2000 2001 sync_buf->vport = phba->pport; 2002 sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; 2003 sync_buf->iocb_cmpl = NULL; 2004 sync_buf->context1 = NULL; 2005 sync_buf->context2 = NULL; 2006 sync_buf->context3 = NULL; 2007 sync_buf->sli4_xritag = NO_XRI; 2008 2009 sync_buf->iocb_flag |= LPFC_IO_CMF; 2010 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2011 if (ret_val) 2012 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2013 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2014 ret_val); 2015 out_unlock: 2016 spin_unlock_irqrestore(&phba->hbalock, iflags); 2017 return ret_val; 2018 } 2019 2020 /** 2021 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2022 * @phba: Pointer to HBA context object. 2023 * @pring: Pointer to driver SLI ring object. 2024 * 2025 * This function is called with hbalock held and the caller must post the 2026 * iocb without releasing the lock. If the caller releases the lock, 2027 * iocb slot returned by the function is not guaranteed to be available. 2028 * The function returns pointer to the next available iocb slot if there 2029 * is available slot in the ring, else it returns NULL. 2030 * If the get index of the ring is ahead of the put index, the function 2031 * will post an error attention event to the worker thread to take the 2032 * HBA to offline state. 2033 **/ 2034 static IOCB_t * 2035 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2036 { 2037 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2038 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2039 2040 lockdep_assert_held(&phba->hbalock); 2041 2042 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2043 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2044 pring->sli.sli3.next_cmdidx = 0; 2045 2046 if (unlikely(pring->sli.sli3.local_getidx == 2047 pring->sli.sli3.next_cmdidx)) { 2048 2049 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2050 2051 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2053 "0315 Ring %d issue: portCmdGet %d " 2054 "is bigger than cmd ring %d\n", 2055 pring->ringno, 2056 pring->sli.sli3.local_getidx, 2057 max_cmd_idx); 2058 2059 phba->link_state = LPFC_HBA_ERROR; 2060 /* 2061 * All error attention handlers are posted to 2062 * worker thread 2063 */ 2064 phba->work_ha |= HA_ERATT; 2065 phba->work_hs = HS_FFER3; 2066 2067 lpfc_worker_wake_up(phba); 2068 2069 return NULL; 2070 } 2071 2072 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2073 return NULL; 2074 } 2075 2076 return lpfc_cmd_iocb(phba, pring); 2077 } 2078 2079 /** 2080 * lpfc_sli_next_iotag - Get an iotag for the iocb 2081 * @phba: Pointer to HBA context object. 2082 * @iocbq: Pointer to driver iocb object. 2083 * 2084 * This function gets an iotag for the iocb. If there is no unused iotag and 2085 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2086 * array and assigns a new iotag. 2087 * The function returns the allocated iotag if successful, else returns zero. 2088 * Zero is not a valid iotag. 2089 * The caller is not required to hold any lock. 2090 **/ 2091 uint16_t 2092 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2093 { 2094 struct lpfc_iocbq **new_arr; 2095 struct lpfc_iocbq **old_arr; 2096 size_t new_len; 2097 struct lpfc_sli *psli = &phba->sli; 2098 uint16_t iotag; 2099 2100 spin_lock_irq(&phba->hbalock); 2101 iotag = psli->last_iotag; 2102 if(++iotag < psli->iocbq_lookup_len) { 2103 psli->last_iotag = iotag; 2104 psli->iocbq_lookup[iotag] = iocbq; 2105 spin_unlock_irq(&phba->hbalock); 2106 iocbq->iotag = iotag; 2107 return iotag; 2108 } else if (psli->iocbq_lookup_len < (0xffff 2109 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2110 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2111 spin_unlock_irq(&phba->hbalock); 2112 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2113 GFP_KERNEL); 2114 if (new_arr) { 2115 spin_lock_irq(&phba->hbalock); 2116 old_arr = psli->iocbq_lookup; 2117 if (new_len <= psli->iocbq_lookup_len) { 2118 /* highly unprobable case */ 2119 kfree(new_arr); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } 2128 spin_unlock_irq(&phba->hbalock); 2129 return 0; 2130 } 2131 if (psli->iocbq_lookup) 2132 memcpy(new_arr, old_arr, 2133 ((psli->last_iotag + 1) * 2134 sizeof (struct lpfc_iocbq *))); 2135 psli->iocbq_lookup = new_arr; 2136 psli->iocbq_lookup_len = new_len; 2137 psli->last_iotag = iotag; 2138 psli->iocbq_lookup[iotag] = iocbq; 2139 spin_unlock_irq(&phba->hbalock); 2140 iocbq->iotag = iotag; 2141 kfree(old_arr); 2142 return iotag; 2143 } 2144 } else 2145 spin_unlock_irq(&phba->hbalock); 2146 2147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2148 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2149 psli->last_iotag); 2150 2151 return 0; 2152 } 2153 2154 /** 2155 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2156 * @phba: Pointer to HBA context object. 2157 * @pring: Pointer to driver SLI ring object. 2158 * @iocb: Pointer to iocb slot in the ring. 2159 * @nextiocb: Pointer to driver iocb object which need to be 2160 * posted to firmware. 2161 * 2162 * This function is called to post a new iocb to the firmware. This 2163 * function copies the new iocb to ring iocb slot and updates the 2164 * ring pointers. It adds the new iocb to txcmplq if there is 2165 * a completion call back for this iocb else the function will free the 2166 * iocb object. The hbalock is asserted held in the code path calling 2167 * this routine. 2168 **/ 2169 static void 2170 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2171 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2172 { 2173 /* 2174 * Set up an iotag 2175 */ 2176 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 2177 2178 2179 if (pring->ringno == LPFC_ELS_RING) { 2180 lpfc_debugfs_slow_ring_trc(phba, 2181 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2182 *(((uint32_t *) &nextiocb->iocb) + 4), 2183 *(((uint32_t *) &nextiocb->iocb) + 6), 2184 *(((uint32_t *) &nextiocb->iocb) + 7)); 2185 } 2186 2187 /* 2188 * Issue iocb command to adapter 2189 */ 2190 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2191 wmb(); 2192 pring->stats.iocb_cmd++; 2193 2194 /* 2195 * If there is no completion routine to call, we can release the 2196 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2197 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 2198 */ 2199 if (nextiocb->iocb_cmpl) 2200 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2201 else 2202 __lpfc_sli_release_iocbq(phba, nextiocb); 2203 2204 /* 2205 * Let the HBA know what IOCB slot will be the next one the 2206 * driver will put a command into. 2207 */ 2208 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2209 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2210 } 2211 2212 /** 2213 * lpfc_sli_update_full_ring - Update the chip attention register 2214 * @phba: Pointer to HBA context object. 2215 * @pring: Pointer to driver SLI ring object. 2216 * 2217 * The caller is not required to hold any lock for calling this function. 2218 * This function updates the chip attention bits for the ring to inform firmware 2219 * that there are pending work to be done for this ring and requests an 2220 * interrupt when there is space available in the ring. This function is 2221 * called when the driver is unable to post more iocbs to the ring due 2222 * to unavailability of space in the ring. 2223 **/ 2224 static void 2225 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2226 { 2227 int ringno = pring->ringno; 2228 2229 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2230 2231 wmb(); 2232 2233 /* 2234 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2235 * The HBA will tell us when an IOCB entry is available. 2236 */ 2237 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2238 readl(phba->CAregaddr); /* flush */ 2239 2240 pring->stats.iocb_cmd_full++; 2241 } 2242 2243 /** 2244 * lpfc_sli_update_ring - Update chip attention register 2245 * @phba: Pointer to HBA context object. 2246 * @pring: Pointer to driver SLI ring object. 2247 * 2248 * This function updates the chip attention register bit for the 2249 * given ring to inform HBA that there is more work to be done 2250 * in this ring. The caller is not required to hold any lock. 2251 **/ 2252 static void 2253 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2254 { 2255 int ringno = pring->ringno; 2256 2257 /* 2258 * Tell the HBA that there is work to do in this ring. 2259 */ 2260 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2261 wmb(); 2262 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2263 readl(phba->CAregaddr); /* flush */ 2264 } 2265 } 2266 2267 /** 2268 * lpfc_sli_resume_iocb - Process iocbs in the txq 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function is called with hbalock held to post pending iocbs 2273 * in the txq to the firmware. This function is called when driver 2274 * detects space available in the ring. 2275 **/ 2276 static void 2277 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 IOCB_t *iocb; 2280 struct lpfc_iocbq *nextiocb; 2281 2282 lockdep_assert_held(&phba->hbalock); 2283 2284 /* 2285 * Check to see if: 2286 * (a) there is anything on the txq to send 2287 * (b) link is up 2288 * (c) link attention events can be processed (fcp ring only) 2289 * (d) IOCB processing is not blocked by the outstanding mbox command. 2290 */ 2291 2292 if (lpfc_is_link_up(phba) && 2293 (!list_empty(&pring->txq)) && 2294 (pring->ringno != LPFC_FCP_RING || 2295 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2296 2297 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2298 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2299 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2300 2301 if (iocb) 2302 lpfc_sli_update_ring(phba, pring); 2303 else 2304 lpfc_sli_update_full_ring(phba, pring); 2305 } 2306 2307 return; 2308 } 2309 2310 /** 2311 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2312 * @phba: Pointer to HBA context object. 2313 * @hbqno: HBQ number. 2314 * 2315 * This function is called with hbalock held to get the next 2316 * available slot for the given HBQ. If there is free slot 2317 * available for the HBQ it will return pointer to the next available 2318 * HBQ entry else it will return NULL. 2319 **/ 2320 static struct lpfc_hbq_entry * 2321 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2322 { 2323 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2324 2325 lockdep_assert_held(&phba->hbalock); 2326 2327 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2328 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2329 hbqp->next_hbqPutIdx = 0; 2330 2331 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2332 uint32_t raw_index = phba->hbq_get[hbqno]; 2333 uint32_t getidx = le32_to_cpu(raw_index); 2334 2335 hbqp->local_hbqGetIdx = getidx; 2336 2337 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2339 "1802 HBQ %d: local_hbqGetIdx " 2340 "%u is > than hbqp->entry_count %u\n", 2341 hbqno, hbqp->local_hbqGetIdx, 2342 hbqp->entry_count); 2343 2344 phba->link_state = LPFC_HBA_ERROR; 2345 return NULL; 2346 } 2347 2348 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2349 return NULL; 2350 } 2351 2352 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2353 hbqp->hbqPutIdx; 2354 } 2355 2356 /** 2357 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2358 * @phba: Pointer to HBA context object. 2359 * 2360 * This function is called with no lock held to free all the 2361 * hbq buffers while uninitializing the SLI interface. It also 2362 * frees the HBQ buffers returned by the firmware but not yet 2363 * processed by the upper layers. 2364 **/ 2365 void 2366 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2367 { 2368 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2369 struct hbq_dmabuf *hbq_buf; 2370 unsigned long flags; 2371 int i, hbq_count; 2372 2373 hbq_count = lpfc_sli_hbq_count(); 2374 /* Return all memory used by all HBQs */ 2375 spin_lock_irqsave(&phba->hbalock, flags); 2376 for (i = 0; i < hbq_count; ++i) { 2377 list_for_each_entry_safe(dmabuf, next_dmabuf, 2378 &phba->hbqs[i].hbq_buffer_list, list) { 2379 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2380 list_del(&hbq_buf->dbuf.list); 2381 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2382 } 2383 phba->hbqs[i].buffer_count = 0; 2384 } 2385 2386 /* Mark the HBQs not in use */ 2387 phba->hbq_in_use = 0; 2388 spin_unlock_irqrestore(&phba->hbalock, flags); 2389 } 2390 2391 /** 2392 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2393 * @phba: Pointer to HBA context object. 2394 * @hbqno: HBQ number. 2395 * @hbq_buf: Pointer to HBQ buffer. 2396 * 2397 * This function is called with the hbalock held to post a 2398 * hbq buffer to the firmware. If the function finds an empty 2399 * slot in the HBQ, it will post the buffer. The function will return 2400 * pointer to the hbq entry if it successfully post the buffer 2401 * else it will return NULL. 2402 **/ 2403 static int 2404 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2405 struct hbq_dmabuf *hbq_buf) 2406 { 2407 lockdep_assert_held(&phba->hbalock); 2408 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2409 } 2410 2411 /** 2412 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2413 * @phba: Pointer to HBA context object. 2414 * @hbqno: HBQ number. 2415 * @hbq_buf: Pointer to HBQ buffer. 2416 * 2417 * This function is called with the hbalock held to post a hbq buffer to the 2418 * firmware. If the function finds an empty slot in the HBQ, it will post the 2419 * buffer and place it on the hbq_buffer_list. The function will return zero if 2420 * it successfully post the buffer else it will return an error. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 struct lpfc_hbq_entry *hbqe; 2427 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2428 2429 lockdep_assert_held(&phba->hbalock); 2430 /* Get next HBQ entry slot to use */ 2431 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2432 if (hbqe) { 2433 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2434 2435 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2436 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2437 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2438 hbqe->bde.tus.f.bdeFlags = 0; 2439 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2440 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2441 /* Sync SLIM */ 2442 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2443 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2444 /* flush */ 2445 readl(phba->hbq_put + hbqno); 2446 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2447 return 0; 2448 } else 2449 return -ENOMEM; 2450 } 2451 2452 /** 2453 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2454 * @phba: Pointer to HBA context object. 2455 * @hbqno: HBQ number. 2456 * @hbq_buf: Pointer to HBQ buffer. 2457 * 2458 * This function is called with the hbalock held to post an RQE to the SLI4 2459 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2460 * the hbq_buffer_list and return zero, otherwise it will return an error. 2461 **/ 2462 static int 2463 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2464 struct hbq_dmabuf *hbq_buf) 2465 { 2466 int rc; 2467 struct lpfc_rqe hrqe; 2468 struct lpfc_rqe drqe; 2469 struct lpfc_queue *hrq; 2470 struct lpfc_queue *drq; 2471 2472 if (hbqno != LPFC_ELS_HBQ) 2473 return 1; 2474 hrq = phba->sli4_hba.hdr_rq; 2475 drq = phba->sli4_hba.dat_rq; 2476 2477 lockdep_assert_held(&phba->hbalock); 2478 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2479 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2480 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2481 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2482 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2483 if (rc < 0) 2484 return rc; 2485 hbq_buf->tag = (rc | (hbqno << 16)); 2486 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2487 return 0; 2488 } 2489 2490 /* HBQ for ELS and CT traffic. */ 2491 static struct lpfc_hbq_init lpfc_els_hbq = { 2492 .rn = 1, 2493 .entry_count = 256, 2494 .mask_count = 0, 2495 .profile = 0, 2496 .ring_mask = (1 << LPFC_ELS_RING), 2497 .buffer_count = 0, 2498 .init_count = 40, 2499 .add_count = 40, 2500 }; 2501 2502 /* Array of HBQs */ 2503 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2504 &lpfc_els_hbq, 2505 }; 2506 2507 /** 2508 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2509 * @phba: Pointer to HBA context object. 2510 * @hbqno: HBQ number. 2511 * @count: Number of HBQ buffers to be posted. 2512 * 2513 * This function is called with no lock held to post more hbq buffers to the 2514 * given HBQ. The function returns the number of HBQ buffers successfully 2515 * posted. 2516 **/ 2517 static int 2518 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2519 { 2520 uint32_t i, posted = 0; 2521 unsigned long flags; 2522 struct hbq_dmabuf *hbq_buffer; 2523 LIST_HEAD(hbq_buf_list); 2524 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2525 return 0; 2526 2527 if ((phba->hbqs[hbqno].buffer_count + count) > 2528 lpfc_hbq_defs[hbqno]->entry_count) 2529 count = lpfc_hbq_defs[hbqno]->entry_count - 2530 phba->hbqs[hbqno].buffer_count; 2531 if (!count) 2532 return 0; 2533 /* Allocate HBQ entries */ 2534 for (i = 0; i < count; i++) { 2535 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2536 if (!hbq_buffer) 2537 break; 2538 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2539 } 2540 /* Check whether HBQ is still in use */ 2541 spin_lock_irqsave(&phba->hbalock, flags); 2542 if (!phba->hbq_in_use) 2543 goto err; 2544 while (!list_empty(&hbq_buf_list)) { 2545 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2546 dbuf.list); 2547 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2548 (hbqno << 16)); 2549 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2550 phba->hbqs[hbqno].buffer_count++; 2551 posted++; 2552 } else 2553 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2554 } 2555 spin_unlock_irqrestore(&phba->hbalock, flags); 2556 return posted; 2557 err: 2558 spin_unlock_irqrestore(&phba->hbalock, flags); 2559 while (!list_empty(&hbq_buf_list)) { 2560 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2561 dbuf.list); 2562 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2563 } 2564 return 0; 2565 } 2566 2567 /** 2568 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2569 * @phba: Pointer to HBA context object. 2570 * @qno: HBQ number. 2571 * 2572 * This function posts more buffers to the HBQ. This function 2573 * is called with no lock held. The function returns the number of HBQ entries 2574 * successfully allocated. 2575 **/ 2576 int 2577 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2578 { 2579 if (phba->sli_rev == LPFC_SLI_REV4) 2580 return 0; 2581 else 2582 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2583 lpfc_hbq_defs[qno]->add_count); 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ queue number. 2590 * 2591 * This function is called from SLI initialization code path with 2592 * no lock held to post initial HBQ buffers to firmware. The 2593 * function returns the number of HBQ entries successfully allocated. 2594 **/ 2595 static int 2596 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2600 lpfc_hbq_defs[qno]->entry_count); 2601 else 2602 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2603 lpfc_hbq_defs[qno]->init_count); 2604 } 2605 2606 /* 2607 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2608 * 2609 * This function removes the first hbq buffer on an hbq list and returns a 2610 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2611 **/ 2612 static struct hbq_dmabuf * 2613 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2614 { 2615 struct lpfc_dmabuf *d_buf; 2616 2617 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2618 if (!d_buf) 2619 return NULL; 2620 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2621 } 2622 2623 /** 2624 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2625 * @phba: Pointer to HBA context object. 2626 * @hrq: HBQ number. 2627 * 2628 * This function removes the first RQ buffer on an RQ buffer list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct rqb_dmabuf * 2632 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2633 { 2634 struct lpfc_dmabuf *h_buf; 2635 struct lpfc_rqb *rqbp; 2636 2637 rqbp = hrq->rqbp; 2638 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2639 struct lpfc_dmabuf, list); 2640 if (!h_buf) 2641 return NULL; 2642 rqbp->buffer_count--; 2643 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2644 } 2645 2646 /** 2647 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2648 * @phba: Pointer to HBA context object. 2649 * @tag: Tag of the hbq buffer. 2650 * 2651 * This function searches for the hbq buffer associated with the given tag in 2652 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2653 * otherwise it returns NULL. 2654 **/ 2655 static struct hbq_dmabuf * 2656 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2657 { 2658 struct lpfc_dmabuf *d_buf; 2659 struct hbq_dmabuf *hbq_buf; 2660 uint32_t hbqno; 2661 2662 hbqno = tag >> 16; 2663 if (hbqno >= LPFC_MAX_HBQS) 2664 return NULL; 2665 2666 spin_lock_irq(&phba->hbalock); 2667 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2668 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2669 if (hbq_buf->tag == tag) { 2670 spin_unlock_irq(&phba->hbalock); 2671 return hbq_buf; 2672 } 2673 } 2674 spin_unlock_irq(&phba->hbalock); 2675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2676 "1803 Bad hbq tag. Data: x%x x%x\n", 2677 tag, phba->hbqs[tag >> 16].buffer_count); 2678 return NULL; 2679 } 2680 2681 /** 2682 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2683 * @phba: Pointer to HBA context object. 2684 * @hbq_buffer: Pointer to HBQ buffer. 2685 * 2686 * This function is called with hbalock. This function gives back 2687 * the hbq buffer to firmware. If the HBQ does not have space to 2688 * post the buffer, it will free the buffer. 2689 **/ 2690 void 2691 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2692 { 2693 uint32_t hbqno; 2694 2695 if (hbq_buffer) { 2696 hbqno = hbq_buffer->tag >> 16; 2697 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2698 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2699 } 2700 } 2701 2702 /** 2703 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2704 * @mbxCommand: mailbox command code. 2705 * 2706 * This function is called by the mailbox event handler function to verify 2707 * that the completed mailbox command is a legitimate mailbox command. If the 2708 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2709 * and the mailbox event handler will take the HBA offline. 2710 **/ 2711 static int 2712 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2713 { 2714 uint8_t ret; 2715 2716 switch (mbxCommand) { 2717 case MBX_LOAD_SM: 2718 case MBX_READ_NV: 2719 case MBX_WRITE_NV: 2720 case MBX_WRITE_VPARMS: 2721 case MBX_RUN_BIU_DIAG: 2722 case MBX_INIT_LINK: 2723 case MBX_DOWN_LINK: 2724 case MBX_CONFIG_LINK: 2725 case MBX_CONFIG_RING: 2726 case MBX_RESET_RING: 2727 case MBX_READ_CONFIG: 2728 case MBX_READ_RCONFIG: 2729 case MBX_READ_SPARM: 2730 case MBX_READ_STATUS: 2731 case MBX_READ_RPI: 2732 case MBX_READ_XRI: 2733 case MBX_READ_REV: 2734 case MBX_READ_LNK_STAT: 2735 case MBX_REG_LOGIN: 2736 case MBX_UNREG_LOGIN: 2737 case MBX_CLEAR_LA: 2738 case MBX_DUMP_MEMORY: 2739 case MBX_DUMP_CONTEXT: 2740 case MBX_RUN_DIAGS: 2741 case MBX_RESTART: 2742 case MBX_UPDATE_CFG: 2743 case MBX_DOWN_LOAD: 2744 case MBX_DEL_LD_ENTRY: 2745 case MBX_RUN_PROGRAM: 2746 case MBX_SET_MASK: 2747 case MBX_SET_VARIABLE: 2748 case MBX_UNREG_D_ID: 2749 case MBX_KILL_BOARD: 2750 case MBX_CONFIG_FARP: 2751 case MBX_BEACON: 2752 case MBX_LOAD_AREA: 2753 case MBX_RUN_BIU_DIAG64: 2754 case MBX_CONFIG_PORT: 2755 case MBX_READ_SPARM64: 2756 case MBX_READ_RPI64: 2757 case MBX_REG_LOGIN64: 2758 case MBX_READ_TOPOLOGY: 2759 case MBX_WRITE_WWN: 2760 case MBX_SET_DEBUG: 2761 case MBX_LOAD_EXP_ROM: 2762 case MBX_ASYNCEVT_ENABLE: 2763 case MBX_REG_VPI: 2764 case MBX_UNREG_VPI: 2765 case MBX_HEARTBEAT: 2766 case MBX_PORT_CAPABILITIES: 2767 case MBX_PORT_IOV_CONTROL: 2768 case MBX_SLI4_CONFIG: 2769 case MBX_SLI4_REQ_FTRS: 2770 case MBX_REG_FCFI: 2771 case MBX_UNREG_FCFI: 2772 case MBX_REG_VFI: 2773 case MBX_UNREG_VFI: 2774 case MBX_INIT_VPI: 2775 case MBX_INIT_VFI: 2776 case MBX_RESUME_RPI: 2777 case MBX_READ_EVENT_LOG_STATUS: 2778 case MBX_READ_EVENT_LOG: 2779 case MBX_SECURITY_MGMT: 2780 case MBX_AUTH_PORT: 2781 case MBX_ACCESS_VDATA: 2782 ret = mbxCommand; 2783 break; 2784 default: 2785 ret = MBX_SHUTDOWN; 2786 break; 2787 } 2788 return ret; 2789 } 2790 2791 /** 2792 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2793 * @phba: Pointer to HBA context object. 2794 * @pmboxq: Pointer to mailbox command. 2795 * 2796 * This is completion handler function for mailbox commands issued from 2797 * lpfc_sli_issue_mbox_wait function. This function is called by the 2798 * mailbox event handler function with no lock held. This function 2799 * will wake up thread waiting on the wait queue pointed by context1 2800 * of the mailbox. 2801 **/ 2802 void 2803 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2804 { 2805 unsigned long drvr_flag; 2806 struct completion *pmbox_done; 2807 2808 /* 2809 * If pmbox_done is empty, the driver thread gave up waiting and 2810 * continued running. 2811 */ 2812 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2813 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2814 pmbox_done = (struct completion *)pmboxq->context3; 2815 if (pmbox_done) 2816 complete(pmbox_done); 2817 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2818 return; 2819 } 2820 2821 static void 2822 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2823 { 2824 unsigned long iflags; 2825 2826 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2827 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2828 spin_lock_irqsave(&ndlp->lock, iflags); 2829 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2830 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2831 spin_unlock_irqrestore(&ndlp->lock, iflags); 2832 } 2833 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2834 } 2835 2836 /** 2837 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2838 * @phba: Pointer to HBA context object. 2839 * @pmb: Pointer to mailbox object. 2840 * 2841 * This function is the default mailbox completion handler. It 2842 * frees the memory resources associated with the completed mailbox 2843 * command. If the completed command is a REG_LOGIN mailbox command, 2844 * this function will issue a UREG_LOGIN to re-claim the RPI. 2845 **/ 2846 void 2847 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2848 { 2849 struct lpfc_vport *vport = pmb->vport; 2850 struct lpfc_dmabuf *mp; 2851 struct lpfc_nodelist *ndlp; 2852 struct Scsi_Host *shost; 2853 uint16_t rpi, vpi; 2854 int rc; 2855 2856 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2857 2858 if (mp) { 2859 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2860 kfree(mp); 2861 } 2862 2863 /* 2864 * If a REG_LOGIN succeeded after node is destroyed or node 2865 * is in re-discovery driver need to cleanup the RPI. 2866 */ 2867 if (!(phba->pport->load_flag & FC_UNLOADING) && 2868 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2869 !pmb->u.mb.mbxStatus) { 2870 rpi = pmb->u.mb.un.varWords[0]; 2871 vpi = pmb->u.mb.un.varRegLogin.vpi; 2872 if (phba->sli_rev == LPFC_SLI_REV4) 2873 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2874 lpfc_unreg_login(phba, vpi, rpi, pmb); 2875 pmb->vport = vport; 2876 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2877 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2878 if (rc != MBX_NOT_FINISHED) 2879 return; 2880 } 2881 2882 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2883 !(phba->pport->load_flag & FC_UNLOADING) && 2884 !pmb->u.mb.mbxStatus) { 2885 shost = lpfc_shost_from_vport(vport); 2886 spin_lock_irq(shost->host_lock); 2887 vport->vpi_state |= LPFC_VPI_REGISTERED; 2888 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2889 spin_unlock_irq(shost->host_lock); 2890 } 2891 2892 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2893 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2894 lpfc_nlp_put(ndlp); 2895 pmb->ctx_buf = NULL; 2896 pmb->ctx_ndlp = NULL; 2897 } 2898 2899 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2900 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2901 2902 /* Check to see if there are any deferred events to process */ 2903 if (ndlp) { 2904 lpfc_printf_vlog( 2905 vport, 2906 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2907 "1438 UNREG cmpl deferred mbox x%x " 2908 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2909 ndlp->nlp_rpi, ndlp->nlp_DID, 2910 ndlp->nlp_flag, ndlp->nlp_defer_did, 2911 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2912 2913 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2914 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2915 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2916 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2917 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2918 } else { 2919 __lpfc_sli_rpi_release(vport, ndlp); 2920 } 2921 2922 /* The unreg_login mailbox is complete and had a 2923 * reference that has to be released. The PLOGI 2924 * got its own ref. 2925 */ 2926 lpfc_nlp_put(ndlp); 2927 pmb->ctx_ndlp = NULL; 2928 } 2929 } 2930 2931 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2932 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2933 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2934 lpfc_nlp_put(ndlp); 2935 } 2936 2937 /* Check security permission status on INIT_LINK mailbox command */ 2938 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2939 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2941 "2860 SLI authentication is required " 2942 "for INIT_LINK but has not done yet\n"); 2943 2944 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2945 lpfc_sli4_mbox_cmd_free(phba, pmb); 2946 else 2947 mempool_free(pmb, phba->mbox_mem_pool); 2948 } 2949 /** 2950 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2951 * @phba: Pointer to HBA context object. 2952 * @pmb: Pointer to mailbox object. 2953 * 2954 * This function is the unreg rpi mailbox completion handler. It 2955 * frees the memory resources associated with the completed mailbox 2956 * command. An additional reference is put on the ndlp to prevent 2957 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2958 * the unreg mailbox command completes, this routine puts the 2959 * reference back. 2960 * 2961 **/ 2962 void 2963 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2964 { 2965 struct lpfc_vport *vport = pmb->vport; 2966 struct lpfc_nodelist *ndlp; 2967 2968 ndlp = pmb->ctx_ndlp; 2969 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2970 if (phba->sli_rev == LPFC_SLI_REV4 && 2971 (bf_get(lpfc_sli_intf_if_type, 2972 &phba->sli4_hba.sli_intf) >= 2973 LPFC_SLI_INTF_IF_TYPE_2)) { 2974 if (ndlp) { 2975 lpfc_printf_vlog( 2976 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2977 "0010 UNREG_LOGIN vpi:%x " 2978 "rpi:%x DID:%x defer x%x flg x%x " 2979 "x%px\n", 2980 vport->vpi, ndlp->nlp_rpi, 2981 ndlp->nlp_DID, ndlp->nlp_defer_did, 2982 ndlp->nlp_flag, 2983 ndlp); 2984 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2985 2986 /* Check to see if there are any deferred 2987 * events to process 2988 */ 2989 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2990 (ndlp->nlp_defer_did != 2991 NLP_EVT_NOTHING_PENDING)) { 2992 lpfc_printf_vlog( 2993 vport, KERN_INFO, LOG_DISCOVERY, 2994 "4111 UNREG cmpl deferred " 2995 "clr x%x on " 2996 "NPort x%x Data: x%x x%px\n", 2997 ndlp->nlp_rpi, ndlp->nlp_DID, 2998 ndlp->nlp_defer_did, ndlp); 2999 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3000 ndlp->nlp_defer_did = 3001 NLP_EVT_NOTHING_PENDING; 3002 lpfc_issue_els_plogi( 3003 vport, ndlp->nlp_DID, 0); 3004 } else { 3005 __lpfc_sli_rpi_release(vport, ndlp); 3006 } 3007 lpfc_nlp_put(ndlp); 3008 } 3009 } 3010 } 3011 3012 mempool_free(pmb, phba->mbox_mem_pool); 3013 } 3014 3015 /** 3016 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3017 * @phba: Pointer to HBA context object. 3018 * 3019 * This function is called with no lock held. This function processes all 3020 * the completed mailbox commands and gives it to upper layers. The interrupt 3021 * service routine processes mailbox completion interrupt and adds completed 3022 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3023 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3024 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3025 * function returns the mailbox commands to the upper layer by calling the 3026 * completion handler function of each mailbox. 3027 **/ 3028 int 3029 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3030 { 3031 MAILBOX_t *pmbox; 3032 LPFC_MBOXQ_t *pmb; 3033 int rc; 3034 LIST_HEAD(cmplq); 3035 3036 phba->sli.slistat.mbox_event++; 3037 3038 /* Get all completed mailboxe buffers into the cmplq */ 3039 spin_lock_irq(&phba->hbalock); 3040 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3041 spin_unlock_irq(&phba->hbalock); 3042 3043 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3044 do { 3045 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3046 if (pmb == NULL) 3047 break; 3048 3049 pmbox = &pmb->u.mb; 3050 3051 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3052 if (pmb->vport) { 3053 lpfc_debugfs_disc_trc(pmb->vport, 3054 LPFC_DISC_TRC_MBOX_VPORT, 3055 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3056 (uint32_t)pmbox->mbxCommand, 3057 pmbox->un.varWords[0], 3058 pmbox->un.varWords[1]); 3059 } 3060 else { 3061 lpfc_debugfs_disc_trc(phba->pport, 3062 LPFC_DISC_TRC_MBOX, 3063 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3064 (uint32_t)pmbox->mbxCommand, 3065 pmbox->un.varWords[0], 3066 pmbox->un.varWords[1]); 3067 } 3068 } 3069 3070 /* 3071 * It is a fatal error if unknown mbox command completion. 3072 */ 3073 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3074 MBX_SHUTDOWN) { 3075 /* Unknown mailbox command compl */ 3076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3077 "(%d):0323 Unknown Mailbox command " 3078 "x%x (x%x/x%x) Cmpl\n", 3079 pmb->vport ? pmb->vport->vpi : 3080 LPFC_VPORT_UNKNOWN, 3081 pmbox->mbxCommand, 3082 lpfc_sli_config_mbox_subsys_get(phba, 3083 pmb), 3084 lpfc_sli_config_mbox_opcode_get(phba, 3085 pmb)); 3086 phba->link_state = LPFC_HBA_ERROR; 3087 phba->work_hs = HS_FFER3; 3088 lpfc_handle_eratt(phba); 3089 continue; 3090 } 3091 3092 if (pmbox->mbxStatus) { 3093 phba->sli.slistat.mbox_stat_err++; 3094 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3095 /* Mbox cmd cmpl error - RETRYing */ 3096 lpfc_printf_log(phba, KERN_INFO, 3097 LOG_MBOX | LOG_SLI, 3098 "(%d):0305 Mbox cmd cmpl " 3099 "error - RETRYing Data: x%x " 3100 "(x%x/x%x) x%x x%x x%x\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb), 3108 pmbox->mbxStatus, 3109 pmbox->un.varWords[0], 3110 pmb->vport ? pmb->vport->port_state : 3111 LPFC_VPORT_UNKNOWN); 3112 pmbox->mbxStatus = 0; 3113 pmbox->mbxOwner = OWN_HOST; 3114 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3115 if (rc != MBX_NOT_FINISHED) 3116 continue; 3117 } 3118 } 3119 3120 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3121 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3122 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3123 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3124 "x%x x%x x%x\n", 3125 pmb->vport ? pmb->vport->vpi : 0, 3126 pmbox->mbxCommand, 3127 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3129 pmb->mbox_cmpl, 3130 *((uint32_t *) pmbox), 3131 pmbox->un.varWords[0], 3132 pmbox->un.varWords[1], 3133 pmbox->un.varWords[2], 3134 pmbox->un.varWords[3], 3135 pmbox->un.varWords[4], 3136 pmbox->un.varWords[5], 3137 pmbox->un.varWords[6], 3138 pmbox->un.varWords[7], 3139 pmbox->un.varWords[8], 3140 pmbox->un.varWords[9], 3141 pmbox->un.varWords[10]); 3142 3143 if (pmb->mbox_cmpl) 3144 pmb->mbox_cmpl(phba,pmb); 3145 } while (1); 3146 return 0; 3147 } 3148 3149 /** 3150 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3151 * @phba: Pointer to HBA context object. 3152 * @pring: Pointer to driver SLI ring object. 3153 * @tag: buffer tag. 3154 * 3155 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3156 * is set in the tag the buffer is posted for a particular exchange, 3157 * the function will return the buffer without replacing the buffer. 3158 * If the buffer is for unsolicited ELS or CT traffic, this function 3159 * returns the buffer and also posts another buffer to the firmware. 3160 **/ 3161 static struct lpfc_dmabuf * 3162 lpfc_sli_get_buff(struct lpfc_hba *phba, 3163 struct lpfc_sli_ring *pring, 3164 uint32_t tag) 3165 { 3166 struct hbq_dmabuf *hbq_entry; 3167 3168 if (tag & QUE_BUFTAG_BIT) 3169 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3170 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3171 if (!hbq_entry) 3172 return NULL; 3173 return &hbq_entry->dbuf; 3174 } 3175 3176 /** 3177 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3178 * containing a NVME LS request. 3179 * @phba: pointer to lpfc hba data structure. 3180 * @piocb: pointer to the iocbq struct representing the sequence starting 3181 * frame. 3182 * 3183 * This routine initially validates the NVME LS, validates there is a login 3184 * with the port that sent the LS, and then calls the appropriate nvme host 3185 * or target LS request handler. 3186 **/ 3187 static void 3188 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3189 { 3190 struct lpfc_nodelist *ndlp; 3191 struct lpfc_dmabuf *d_buf; 3192 struct hbq_dmabuf *nvmebuf; 3193 struct fc_frame_header *fc_hdr; 3194 struct lpfc_async_xchg_ctx *axchg = NULL; 3195 char *failwhy = NULL; 3196 uint32_t oxid, sid, did, fctl, size; 3197 int ret = 1; 3198 3199 d_buf = piocb->context2; 3200 3201 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3202 fc_hdr = nvmebuf->hbuf.virt; 3203 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3204 sid = sli4_sid_from_fc_hdr(fc_hdr); 3205 did = sli4_did_from_fc_hdr(fc_hdr); 3206 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3207 fc_hdr->fh_f_ctl[1] << 8 | 3208 fc_hdr->fh_f_ctl[2]); 3209 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3210 3211 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3212 oxid, size, sid); 3213 3214 if (phba->pport->load_flag & FC_UNLOADING) { 3215 failwhy = "Driver Unloading"; 3216 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3217 failwhy = "NVME FC4 Disabled"; 3218 } else if (!phba->nvmet_support && !phba->pport->localport) { 3219 failwhy = "No Localport"; 3220 } else if (phba->nvmet_support && !phba->targetport) { 3221 failwhy = "No Targetport"; 3222 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3223 failwhy = "Bad NVME LS R_CTL"; 3224 } else if (unlikely((fctl & 0x00FF0000) != 3225 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3226 failwhy = "Bad NVME LS F_CTL"; 3227 } else { 3228 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3229 if (!axchg) 3230 failwhy = "No CTX memory"; 3231 } 3232 3233 if (unlikely(failwhy)) { 3234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3235 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3236 sid, oxid, failwhy); 3237 goto out_fail; 3238 } 3239 3240 /* validate the source of the LS is logged in */ 3241 ndlp = lpfc_findnode_did(phba->pport, sid); 3242 if (!ndlp || 3243 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3244 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3245 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3246 "6216 NVME Unsol rcv: No ndlp: " 3247 "NPort_ID x%x oxid x%x\n", 3248 sid, oxid); 3249 goto out_fail; 3250 } 3251 3252 axchg->phba = phba; 3253 axchg->ndlp = ndlp; 3254 axchg->size = size; 3255 axchg->oxid = oxid; 3256 axchg->sid = sid; 3257 axchg->wqeq = NULL; 3258 axchg->state = LPFC_NVME_STE_LS_RCV; 3259 axchg->entry_cnt = 1; 3260 axchg->rqb_buffer = (void *)nvmebuf; 3261 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3262 axchg->payload = nvmebuf->dbuf.virt; 3263 INIT_LIST_HEAD(&axchg->list); 3264 3265 if (phba->nvmet_support) { 3266 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3267 spin_lock_irq(&ndlp->lock); 3268 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3269 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3270 spin_unlock_irq(&ndlp->lock); 3271 3272 /* This reference is a single occurrence to hold the 3273 * node valid until the nvmet transport calls 3274 * host_release. 3275 */ 3276 if (!lpfc_nlp_get(ndlp)) 3277 goto out_fail; 3278 3279 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3280 "6206 NVMET unsol ls_req ndlp x%px " 3281 "DID x%x xflags x%x refcnt %d\n", 3282 ndlp, ndlp->nlp_DID, 3283 ndlp->fc4_xpt_flags, 3284 kref_read(&ndlp->kref)); 3285 } else { 3286 spin_unlock_irq(&ndlp->lock); 3287 } 3288 } else { 3289 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3290 } 3291 3292 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3293 if (!ret) 3294 return; 3295 3296 out_fail: 3297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3298 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3299 "NVMe%s handler failed %d\n", 3300 did, sid, oxid, 3301 (phba->nvmet_support) ? "T" : "I", ret); 3302 3303 /* recycle receive buffer */ 3304 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3305 3306 /* If start of new exchange, abort it */ 3307 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3308 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3309 3310 if (ret) 3311 kfree(axchg); 3312 } 3313 3314 /** 3315 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3316 * @phba: Pointer to HBA context object. 3317 * @pring: Pointer to driver SLI ring object. 3318 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3319 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3320 * @fch_type: the type for the first frame of the sequence. 3321 * 3322 * This function is called with no lock held. This function uses the r_ctl and 3323 * type of the received sequence to find the correct callback function to call 3324 * to process the sequence. 3325 **/ 3326 static int 3327 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3328 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3329 uint32_t fch_type) 3330 { 3331 int i; 3332 3333 switch (fch_type) { 3334 case FC_TYPE_NVME: 3335 lpfc_nvme_unsol_ls_handler(phba, saveq); 3336 return 1; 3337 default: 3338 break; 3339 } 3340 3341 /* unSolicited Responses */ 3342 if (pring->prt[0].profile) { 3343 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3344 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3345 saveq); 3346 return 1; 3347 } 3348 /* We must search, based on rctl / type 3349 for the right routine */ 3350 for (i = 0; i < pring->num_mask; i++) { 3351 if ((pring->prt[i].rctl == fch_r_ctl) && 3352 (pring->prt[i].type == fch_type)) { 3353 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3354 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3355 (phba, pring, saveq); 3356 return 1; 3357 } 3358 } 3359 return 0; 3360 } 3361 3362 /** 3363 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3364 * @phba: Pointer to HBA context object. 3365 * @pring: Pointer to driver SLI ring object. 3366 * @saveq: Pointer to the unsolicited iocb. 3367 * 3368 * This function is called with no lock held by the ring event handler 3369 * when there is an unsolicited iocb posted to the response ring by the 3370 * firmware. This function gets the buffer associated with the iocbs 3371 * and calls the event handler for the ring. This function handles both 3372 * qring buffers and hbq buffers. 3373 * When the function returns 1 the caller can free the iocb object otherwise 3374 * upper layer functions will free the iocb objects. 3375 **/ 3376 static int 3377 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3378 struct lpfc_iocbq *saveq) 3379 { 3380 IOCB_t * irsp; 3381 WORD5 * w5p; 3382 uint32_t Rctl, Type; 3383 struct lpfc_iocbq *iocbq; 3384 struct lpfc_dmabuf *dmzbuf; 3385 3386 irsp = &(saveq->iocb); 3387 3388 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3389 if (pring->lpfc_sli_rcv_async_status) 3390 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3391 else 3392 lpfc_printf_log(phba, 3393 KERN_WARNING, 3394 LOG_SLI, 3395 "0316 Ring %d handler: unexpected " 3396 "ASYNC_STATUS iocb received evt_code " 3397 "0x%x\n", 3398 pring->ringno, 3399 irsp->un.asyncstat.evt_code); 3400 return 1; 3401 } 3402 3403 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3404 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3405 if (irsp->ulpBdeCount > 0) { 3406 dmzbuf = lpfc_sli_get_buff(phba, pring, 3407 irsp->un.ulpWord[3]); 3408 lpfc_in_buf_free(phba, dmzbuf); 3409 } 3410 3411 if (irsp->ulpBdeCount > 1) { 3412 dmzbuf = lpfc_sli_get_buff(phba, pring, 3413 irsp->unsli3.sli3Words[3]); 3414 lpfc_in_buf_free(phba, dmzbuf); 3415 } 3416 3417 if (irsp->ulpBdeCount > 2) { 3418 dmzbuf = lpfc_sli_get_buff(phba, pring, 3419 irsp->unsli3.sli3Words[7]); 3420 lpfc_in_buf_free(phba, dmzbuf); 3421 } 3422 3423 return 1; 3424 } 3425 3426 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3427 if (irsp->ulpBdeCount != 0) { 3428 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3429 irsp->un.ulpWord[3]); 3430 if (!saveq->context2) 3431 lpfc_printf_log(phba, 3432 KERN_ERR, 3433 LOG_SLI, 3434 "0341 Ring %d Cannot find buffer for " 3435 "an unsolicited iocb. tag 0x%x\n", 3436 pring->ringno, 3437 irsp->un.ulpWord[3]); 3438 } 3439 if (irsp->ulpBdeCount == 2) { 3440 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3441 irsp->unsli3.sli3Words[7]); 3442 if (!saveq->context3) 3443 lpfc_printf_log(phba, 3444 KERN_ERR, 3445 LOG_SLI, 3446 "0342 Ring %d Cannot find buffer for an" 3447 " unsolicited iocb. tag 0x%x\n", 3448 pring->ringno, 3449 irsp->unsli3.sli3Words[7]); 3450 } 3451 list_for_each_entry(iocbq, &saveq->list, list) { 3452 irsp = &(iocbq->iocb); 3453 if (irsp->ulpBdeCount != 0) { 3454 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3455 irsp->un.ulpWord[3]); 3456 if (!iocbq->context2) 3457 lpfc_printf_log(phba, 3458 KERN_ERR, 3459 LOG_SLI, 3460 "0343 Ring %d Cannot find " 3461 "buffer for an unsolicited iocb" 3462 ". tag 0x%x\n", pring->ringno, 3463 irsp->un.ulpWord[3]); 3464 } 3465 if (irsp->ulpBdeCount == 2) { 3466 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3467 irsp->unsli3.sli3Words[7]); 3468 if (!iocbq->context3) 3469 lpfc_printf_log(phba, 3470 KERN_ERR, 3471 LOG_SLI, 3472 "0344 Ring %d Cannot find " 3473 "buffer for an unsolicited " 3474 "iocb. tag 0x%x\n", 3475 pring->ringno, 3476 irsp->unsli3.sli3Words[7]); 3477 } 3478 } 3479 } 3480 if (irsp->ulpBdeCount != 0 && 3481 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3482 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3483 int found = 0; 3484 3485 /* search continue save q for same XRI */ 3486 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3487 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3488 saveq->iocb.unsli3.rcvsli3.ox_id) { 3489 list_add_tail(&saveq->list, &iocbq->list); 3490 found = 1; 3491 break; 3492 } 3493 } 3494 if (!found) 3495 list_add_tail(&saveq->clist, 3496 &pring->iocb_continue_saveq); 3497 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3498 list_del_init(&iocbq->clist); 3499 saveq = iocbq; 3500 irsp = &(saveq->iocb); 3501 } else 3502 return 0; 3503 } 3504 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3505 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3506 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3507 Rctl = FC_RCTL_ELS_REQ; 3508 Type = FC_TYPE_ELS; 3509 } else { 3510 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3511 Rctl = w5p->hcsw.Rctl; 3512 Type = w5p->hcsw.Type; 3513 3514 /* Firmware Workaround */ 3515 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3516 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3517 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3518 Rctl = FC_RCTL_ELS_REQ; 3519 Type = FC_TYPE_ELS; 3520 w5p->hcsw.Rctl = Rctl; 3521 w5p->hcsw.Type = Type; 3522 } 3523 } 3524 3525 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3527 "0313 Ring %d handler: unexpected Rctl x%x " 3528 "Type x%x received\n", 3529 pring->ringno, Rctl, Type); 3530 3531 return 1; 3532 } 3533 3534 /** 3535 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * @prspiocb: Pointer to response iocb object. 3539 * 3540 * This function looks up the iocb_lookup table to get the command iocb 3541 * corresponding to the given response iocb using the iotag of the 3542 * response iocb. The driver calls this function with the hbalock held 3543 * for SLI3 ports or the ring lock held for SLI4 ports. 3544 * This function returns the command iocb object if it finds the command 3545 * iocb else returns NULL. 3546 **/ 3547 static struct lpfc_iocbq * 3548 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3549 struct lpfc_sli_ring *pring, 3550 struct lpfc_iocbq *prspiocb) 3551 { 3552 struct lpfc_iocbq *cmd_iocb = NULL; 3553 uint16_t iotag; 3554 spinlock_t *temp_lock = NULL; 3555 unsigned long iflag = 0; 3556 3557 if (phba->sli_rev == LPFC_SLI_REV4) 3558 temp_lock = &pring->ring_lock; 3559 else 3560 temp_lock = &phba->hbalock; 3561 3562 spin_lock_irqsave(temp_lock, iflag); 3563 iotag = prspiocb->iocb.ulpIoTag; 3564 3565 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3566 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3567 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3568 /* remove from txcmpl queue list */ 3569 list_del_init(&cmd_iocb->list); 3570 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3571 pring->txcmplq_cnt--; 3572 spin_unlock_irqrestore(temp_lock, iflag); 3573 return cmd_iocb; 3574 } 3575 } 3576 3577 spin_unlock_irqrestore(temp_lock, iflag); 3578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3579 "0317 iotag x%x is out of " 3580 "range: max iotag x%x wd0 x%x\n", 3581 iotag, phba->sli.last_iotag, 3582 *(((uint32_t *) &prspiocb->iocb) + 7)); 3583 return NULL; 3584 } 3585 3586 /** 3587 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3588 * @phba: Pointer to HBA context object. 3589 * @pring: Pointer to driver SLI ring object. 3590 * @iotag: IOCB tag. 3591 * 3592 * This function looks up the iocb_lookup table to get the command iocb 3593 * corresponding to the given iotag. The driver calls this function with 3594 * the ring lock held because this function is an SLI4 port only helper. 3595 * This function returns the command iocb object if it finds the command 3596 * iocb else returns NULL. 3597 **/ 3598 static struct lpfc_iocbq * 3599 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3600 struct lpfc_sli_ring *pring, uint16_t iotag) 3601 { 3602 struct lpfc_iocbq *cmd_iocb = NULL; 3603 spinlock_t *temp_lock = NULL; 3604 unsigned long iflag = 0; 3605 3606 if (phba->sli_rev == LPFC_SLI_REV4) 3607 temp_lock = &pring->ring_lock; 3608 else 3609 temp_lock = &phba->hbalock; 3610 3611 spin_lock_irqsave(temp_lock, iflag); 3612 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3613 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3614 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3615 /* remove from txcmpl queue list */ 3616 list_del_init(&cmd_iocb->list); 3617 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3618 pring->txcmplq_cnt--; 3619 spin_unlock_irqrestore(temp_lock, iflag); 3620 return cmd_iocb; 3621 } 3622 } 3623 3624 spin_unlock_irqrestore(temp_lock, iflag); 3625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3626 "0372 iotag x%x lookup error: max iotag (x%x) " 3627 "iocb_flag x%x\n", 3628 iotag, phba->sli.last_iotag, 3629 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3630 return NULL; 3631 } 3632 3633 /** 3634 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3635 * @phba: Pointer to HBA context object. 3636 * @pring: Pointer to driver SLI ring object. 3637 * @saveq: Pointer to the response iocb to be processed. 3638 * 3639 * This function is called by the ring event handler for non-fcp 3640 * rings when there is a new response iocb in the response ring. 3641 * The caller is not required to hold any locks. This function 3642 * gets the command iocb associated with the response iocb and 3643 * calls the completion handler for the command iocb. If there 3644 * is no completion handler, the function will free the resources 3645 * associated with command iocb. If the response iocb is for 3646 * an already aborted command iocb, the status of the completion 3647 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3648 * This function always returns 1. 3649 **/ 3650 static int 3651 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3652 struct lpfc_iocbq *saveq) 3653 { 3654 struct lpfc_iocbq *cmdiocbp; 3655 int rc = 1; 3656 unsigned long iflag; 3657 3658 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3659 if (cmdiocbp) { 3660 if (cmdiocbp->iocb_cmpl) { 3661 /* 3662 * If an ELS command failed send an event to mgmt 3663 * application. 3664 */ 3665 if (saveq->iocb.ulpStatus && 3666 (pring->ringno == LPFC_ELS_RING) && 3667 (cmdiocbp->iocb.ulpCommand == 3668 CMD_ELS_REQUEST64_CR)) 3669 lpfc_send_els_failure_event(phba, 3670 cmdiocbp, saveq); 3671 3672 /* 3673 * Post all ELS completions to the worker thread. 3674 * All other are passed to the completion callback. 3675 */ 3676 if (pring->ringno == LPFC_ELS_RING) { 3677 if ((phba->sli_rev < LPFC_SLI_REV4) && 3678 (cmdiocbp->iocb_flag & 3679 LPFC_DRIVER_ABORTED)) { 3680 spin_lock_irqsave(&phba->hbalock, 3681 iflag); 3682 cmdiocbp->iocb_flag &= 3683 ~LPFC_DRIVER_ABORTED; 3684 spin_unlock_irqrestore(&phba->hbalock, 3685 iflag); 3686 saveq->iocb.ulpStatus = 3687 IOSTAT_LOCAL_REJECT; 3688 saveq->iocb.un.ulpWord[4] = 3689 IOERR_SLI_ABORTED; 3690 3691 /* Firmware could still be in progress 3692 * of DMAing payload, so don't free data 3693 * buffer till after a hbeat. 3694 */ 3695 spin_lock_irqsave(&phba->hbalock, 3696 iflag); 3697 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3698 spin_unlock_irqrestore(&phba->hbalock, 3699 iflag); 3700 } 3701 if (phba->sli_rev == LPFC_SLI_REV4) { 3702 if (saveq->iocb_flag & 3703 LPFC_EXCHANGE_BUSY) { 3704 /* Set cmdiocb flag for the 3705 * exchange busy so sgl (xri) 3706 * will not be released until 3707 * the abort xri is received 3708 * from hba. 3709 */ 3710 spin_lock_irqsave( 3711 &phba->hbalock, iflag); 3712 cmdiocbp->iocb_flag |= 3713 LPFC_EXCHANGE_BUSY; 3714 spin_unlock_irqrestore( 3715 &phba->hbalock, iflag); 3716 } 3717 if (cmdiocbp->iocb_flag & 3718 LPFC_DRIVER_ABORTED) { 3719 /* 3720 * Clear LPFC_DRIVER_ABORTED 3721 * bit in case it was driver 3722 * initiated abort. 3723 */ 3724 spin_lock_irqsave( 3725 &phba->hbalock, iflag); 3726 cmdiocbp->iocb_flag &= 3727 ~LPFC_DRIVER_ABORTED; 3728 spin_unlock_irqrestore( 3729 &phba->hbalock, iflag); 3730 cmdiocbp->iocb.ulpStatus = 3731 IOSTAT_LOCAL_REJECT; 3732 cmdiocbp->iocb.un.ulpWord[4] = 3733 IOERR_ABORT_REQUESTED; 3734 /* 3735 * For SLI4, irsiocb contains 3736 * NO_XRI in sli_xritag, it 3737 * shall not affect releasing 3738 * sgl (xri) process. 3739 */ 3740 saveq->iocb.ulpStatus = 3741 IOSTAT_LOCAL_REJECT; 3742 saveq->iocb.un.ulpWord[4] = 3743 IOERR_SLI_ABORTED; 3744 spin_lock_irqsave( 3745 &phba->hbalock, iflag); 3746 saveq->iocb_flag |= 3747 LPFC_DELAY_MEM_FREE; 3748 spin_unlock_irqrestore( 3749 &phba->hbalock, iflag); 3750 } 3751 } 3752 } 3753 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3754 } else 3755 lpfc_sli_release_iocbq(phba, cmdiocbp); 3756 } else { 3757 /* 3758 * Unknown initiating command based on the response iotag. 3759 * This could be the case on the ELS ring because of 3760 * lpfc_els_abort(). 3761 */ 3762 if (pring->ringno != LPFC_ELS_RING) { 3763 /* 3764 * Ring <ringno> handler: unexpected completion IoTag 3765 * <IoTag> 3766 */ 3767 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3768 "0322 Ring %d handler: " 3769 "unexpected completion IoTag x%x " 3770 "Data: x%x x%x x%x x%x\n", 3771 pring->ringno, 3772 saveq->iocb.ulpIoTag, 3773 saveq->iocb.ulpStatus, 3774 saveq->iocb.un.ulpWord[4], 3775 saveq->iocb.ulpCommand, 3776 saveq->iocb.ulpContext); 3777 } 3778 } 3779 3780 return rc; 3781 } 3782 3783 /** 3784 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3785 * @phba: Pointer to HBA context object. 3786 * @pring: Pointer to driver SLI ring object. 3787 * 3788 * This function is called from the iocb ring event handlers when 3789 * put pointer is ahead of the get pointer for a ring. This function signal 3790 * an error attention condition to the worker thread and the worker 3791 * thread will transition the HBA to offline state. 3792 **/ 3793 static void 3794 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3795 { 3796 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3797 /* 3798 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3799 * rsp ring <portRspMax> 3800 */ 3801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3802 "0312 Ring %d handler: portRspPut %d " 3803 "is bigger than rsp ring %d\n", 3804 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3805 pring->sli.sli3.numRiocb); 3806 3807 phba->link_state = LPFC_HBA_ERROR; 3808 3809 /* 3810 * All error attention handlers are posted to 3811 * worker thread 3812 */ 3813 phba->work_ha |= HA_ERATT; 3814 phba->work_hs = HS_FFER3; 3815 3816 lpfc_worker_wake_up(phba); 3817 3818 return; 3819 } 3820 3821 /** 3822 * lpfc_poll_eratt - Error attention polling timer timeout handler 3823 * @t: Context to fetch pointer to address of HBA context object from. 3824 * 3825 * This function is invoked by the Error Attention polling timer when the 3826 * timer times out. It will check the SLI Error Attention register for 3827 * possible attention events. If so, it will post an Error Attention event 3828 * and wake up worker thread to process it. Otherwise, it will set up the 3829 * Error Attention polling timer for the next poll. 3830 **/ 3831 void lpfc_poll_eratt(struct timer_list *t) 3832 { 3833 struct lpfc_hba *phba; 3834 uint32_t eratt = 0; 3835 uint64_t sli_intr, cnt; 3836 3837 phba = from_timer(phba, t, eratt_poll); 3838 3839 /* Here we will also keep track of interrupts per sec of the hba */ 3840 sli_intr = phba->sli.slistat.sli_intr; 3841 3842 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3843 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3844 sli_intr); 3845 else 3846 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3847 3848 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3849 do_div(cnt, phba->eratt_poll_interval); 3850 phba->sli.slistat.sli_ips = cnt; 3851 3852 phba->sli.slistat.sli_prev_intr = sli_intr; 3853 3854 /* Check chip HA register for error event */ 3855 eratt = lpfc_sli_check_eratt(phba); 3856 3857 if (eratt) 3858 /* Tell the worker thread there is work to do */ 3859 lpfc_worker_wake_up(phba); 3860 else 3861 /* Restart the timer for next eratt poll */ 3862 mod_timer(&phba->eratt_poll, 3863 jiffies + 3864 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3865 return; 3866 } 3867 3868 3869 /** 3870 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3871 * @phba: Pointer to HBA context object. 3872 * @pring: Pointer to driver SLI ring object. 3873 * @mask: Host attention register mask for this ring. 3874 * 3875 * This function is called from the interrupt context when there is a ring 3876 * event for the fcp ring. The caller does not hold any lock. 3877 * The function processes each response iocb in the response ring until it 3878 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3879 * LE bit set. The function will call the completion handler of the command iocb 3880 * if the response iocb indicates a completion for a command iocb or it is 3881 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3882 * function if this is an unsolicited iocb. 3883 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3884 * to check it explicitly. 3885 */ 3886 int 3887 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3888 struct lpfc_sli_ring *pring, uint32_t mask) 3889 { 3890 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3891 IOCB_t *irsp = NULL; 3892 IOCB_t *entry = NULL; 3893 struct lpfc_iocbq *cmdiocbq = NULL; 3894 struct lpfc_iocbq rspiocbq; 3895 uint32_t status; 3896 uint32_t portRspPut, portRspMax; 3897 int rc = 1; 3898 lpfc_iocb_type type; 3899 unsigned long iflag; 3900 uint32_t rsp_cmpl = 0; 3901 3902 spin_lock_irqsave(&phba->hbalock, iflag); 3903 pring->stats.iocb_event++; 3904 3905 /* 3906 * The next available response entry should never exceed the maximum 3907 * entries. If it does, treat it as an adapter hardware error. 3908 */ 3909 portRspMax = pring->sli.sli3.numRiocb; 3910 portRspPut = le32_to_cpu(pgp->rspPutInx); 3911 if (unlikely(portRspPut >= portRspMax)) { 3912 lpfc_sli_rsp_pointers_error(phba, pring); 3913 spin_unlock_irqrestore(&phba->hbalock, iflag); 3914 return 1; 3915 } 3916 if (phba->fcp_ring_in_use) { 3917 spin_unlock_irqrestore(&phba->hbalock, iflag); 3918 return 1; 3919 } else 3920 phba->fcp_ring_in_use = 1; 3921 3922 rmb(); 3923 while (pring->sli.sli3.rspidx != portRspPut) { 3924 /* 3925 * Fetch an entry off the ring and copy it into a local data 3926 * structure. The copy involves a byte-swap since the 3927 * network byte order and pci byte orders are different. 3928 */ 3929 entry = lpfc_resp_iocb(phba, pring); 3930 phba->last_completion_time = jiffies; 3931 3932 if (++pring->sli.sli3.rspidx >= portRspMax) 3933 pring->sli.sli3.rspidx = 0; 3934 3935 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3936 (uint32_t *) &rspiocbq.iocb, 3937 phba->iocb_rsp_size); 3938 INIT_LIST_HEAD(&(rspiocbq.list)); 3939 irsp = &rspiocbq.iocb; 3940 3941 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3942 pring->stats.iocb_rsp++; 3943 rsp_cmpl++; 3944 3945 if (unlikely(irsp->ulpStatus)) { 3946 /* 3947 * If resource errors reported from HBA, reduce 3948 * queuedepths of the SCSI device. 3949 */ 3950 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3951 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3952 IOERR_NO_RESOURCES)) { 3953 spin_unlock_irqrestore(&phba->hbalock, iflag); 3954 phba->lpfc_rampdown_queue_depth(phba); 3955 spin_lock_irqsave(&phba->hbalock, iflag); 3956 } 3957 3958 /* Rsp ring <ringno> error: IOCB */ 3959 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3960 "0336 Rsp Ring %d error: IOCB Data: " 3961 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3962 pring->ringno, 3963 irsp->un.ulpWord[0], 3964 irsp->un.ulpWord[1], 3965 irsp->un.ulpWord[2], 3966 irsp->un.ulpWord[3], 3967 irsp->un.ulpWord[4], 3968 irsp->un.ulpWord[5], 3969 *(uint32_t *)&irsp->un1, 3970 *((uint32_t *)&irsp->un1 + 1)); 3971 } 3972 3973 switch (type) { 3974 case LPFC_ABORT_IOCB: 3975 case LPFC_SOL_IOCB: 3976 /* 3977 * Idle exchange closed via ABTS from port. No iocb 3978 * resources need to be recovered. 3979 */ 3980 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3981 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3982 "0333 IOCB cmd 0x%x" 3983 " processed. Skipping" 3984 " completion\n", 3985 irsp->ulpCommand); 3986 break; 3987 } 3988 3989 spin_unlock_irqrestore(&phba->hbalock, iflag); 3990 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3991 &rspiocbq); 3992 spin_lock_irqsave(&phba->hbalock, iflag); 3993 if (unlikely(!cmdiocbq)) 3994 break; 3995 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3996 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3997 if (cmdiocbq->iocb_cmpl) { 3998 spin_unlock_irqrestore(&phba->hbalock, iflag); 3999 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 4000 &rspiocbq); 4001 spin_lock_irqsave(&phba->hbalock, iflag); 4002 } 4003 break; 4004 case LPFC_UNSOL_IOCB: 4005 spin_unlock_irqrestore(&phba->hbalock, iflag); 4006 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4007 spin_lock_irqsave(&phba->hbalock, iflag); 4008 break; 4009 default: 4010 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4011 char adaptermsg[LPFC_MAX_ADPTMSG]; 4012 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4013 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4014 MAX_MSG_DATA); 4015 dev_warn(&((phba->pcidev)->dev), 4016 "lpfc%d: %s\n", 4017 phba->brd_no, adaptermsg); 4018 } else { 4019 /* Unknown IOCB command */ 4020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4021 "0334 Unknown IOCB command " 4022 "Data: x%x, x%x x%x x%x x%x\n", 4023 type, irsp->ulpCommand, 4024 irsp->ulpStatus, 4025 irsp->ulpIoTag, 4026 irsp->ulpContext); 4027 } 4028 break; 4029 } 4030 4031 /* 4032 * The response IOCB has been processed. Update the ring 4033 * pointer in SLIM. If the port response put pointer has not 4034 * been updated, sync the pgp->rspPutInx and fetch the new port 4035 * response put pointer. 4036 */ 4037 writel(pring->sli.sli3.rspidx, 4038 &phba->host_gp[pring->ringno].rspGetInx); 4039 4040 if (pring->sli.sli3.rspidx == portRspPut) 4041 portRspPut = le32_to_cpu(pgp->rspPutInx); 4042 } 4043 4044 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4045 pring->stats.iocb_rsp_full++; 4046 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4047 writel(status, phba->CAregaddr); 4048 readl(phba->CAregaddr); 4049 } 4050 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4051 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4052 pring->stats.iocb_cmd_empty++; 4053 4054 /* Force update of the local copy of cmdGetInx */ 4055 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4056 lpfc_sli_resume_iocb(phba, pring); 4057 4058 if ((pring->lpfc_sli_cmd_available)) 4059 (pring->lpfc_sli_cmd_available) (phba, pring); 4060 4061 } 4062 4063 phba->fcp_ring_in_use = 0; 4064 spin_unlock_irqrestore(&phba->hbalock, iflag); 4065 return rc; 4066 } 4067 4068 /** 4069 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4070 * @phba: Pointer to HBA context object. 4071 * @pring: Pointer to driver SLI ring object. 4072 * @rspiocbp: Pointer to driver response IOCB object. 4073 * 4074 * This function is called from the worker thread when there is a slow-path 4075 * response IOCB to process. This function chains all the response iocbs until 4076 * seeing the iocb with the LE bit set. The function will call 4077 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4078 * completion of a command iocb. The function will call the 4079 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4080 * The function frees the resources or calls the completion handler if this 4081 * iocb is an abort completion. The function returns NULL when the response 4082 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4083 * this function shall chain the iocb on to the iocb_continueq and return the 4084 * response iocb passed in. 4085 **/ 4086 static struct lpfc_iocbq * 4087 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4088 struct lpfc_iocbq *rspiocbp) 4089 { 4090 struct lpfc_iocbq *saveq; 4091 struct lpfc_iocbq *cmdiocbp; 4092 struct lpfc_iocbq *next_iocb; 4093 IOCB_t *irsp = NULL; 4094 uint32_t free_saveq; 4095 uint8_t iocb_cmd_type; 4096 lpfc_iocb_type type; 4097 unsigned long iflag; 4098 int rc; 4099 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 /* First add the response iocb to the countinueq list */ 4102 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 4103 pring->iocb_continueq_cnt++; 4104 4105 /* Now, determine whether the list is completed for processing */ 4106 irsp = &rspiocbp->iocb; 4107 if (irsp->ulpLe) { 4108 /* 4109 * By default, the driver expects to free all resources 4110 * associated with this iocb completion. 4111 */ 4112 free_saveq = 1; 4113 saveq = list_get_first(&pring->iocb_continueq, 4114 struct lpfc_iocbq, list); 4115 irsp = &(saveq->iocb); 4116 list_del_init(&pring->iocb_continueq); 4117 pring->iocb_continueq_cnt = 0; 4118 4119 pring->stats.iocb_rsp++; 4120 4121 /* 4122 * If resource errors reported from HBA, reduce 4123 * queuedepths of the SCSI device. 4124 */ 4125 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4126 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4127 IOERR_NO_RESOURCES)) { 4128 spin_unlock_irqrestore(&phba->hbalock, iflag); 4129 phba->lpfc_rampdown_queue_depth(phba); 4130 spin_lock_irqsave(&phba->hbalock, iflag); 4131 } 4132 4133 if (irsp->ulpStatus) { 4134 /* Rsp ring <ringno> error: IOCB */ 4135 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4136 "0328 Rsp Ring %d error: " 4137 "IOCB Data: " 4138 "x%x x%x x%x x%x " 4139 "x%x x%x x%x x%x " 4140 "x%x x%x x%x x%x " 4141 "x%x x%x x%x x%x\n", 4142 pring->ringno, 4143 irsp->un.ulpWord[0], 4144 irsp->un.ulpWord[1], 4145 irsp->un.ulpWord[2], 4146 irsp->un.ulpWord[3], 4147 irsp->un.ulpWord[4], 4148 irsp->un.ulpWord[5], 4149 *(((uint32_t *) irsp) + 6), 4150 *(((uint32_t *) irsp) + 7), 4151 *(((uint32_t *) irsp) + 8), 4152 *(((uint32_t *) irsp) + 9), 4153 *(((uint32_t *) irsp) + 10), 4154 *(((uint32_t *) irsp) + 11), 4155 *(((uint32_t *) irsp) + 12), 4156 *(((uint32_t *) irsp) + 13), 4157 *(((uint32_t *) irsp) + 14), 4158 *(((uint32_t *) irsp) + 15)); 4159 } 4160 4161 /* 4162 * Fetch the IOCB command type and call the correct completion 4163 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4164 * get freed back to the lpfc_iocb_list by the discovery 4165 * kernel thread. 4166 */ 4167 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 4168 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 4169 switch (type) { 4170 case LPFC_SOL_IOCB: 4171 spin_unlock_irqrestore(&phba->hbalock, iflag); 4172 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 break; 4175 4176 case LPFC_UNSOL_IOCB: 4177 spin_unlock_irqrestore(&phba->hbalock, iflag); 4178 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4179 spin_lock_irqsave(&phba->hbalock, iflag); 4180 if (!rc) 4181 free_saveq = 0; 4182 break; 4183 4184 case LPFC_ABORT_IOCB: 4185 cmdiocbp = NULL; 4186 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 4187 spin_unlock_irqrestore(&phba->hbalock, iflag); 4188 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 4189 saveq); 4190 spin_lock_irqsave(&phba->hbalock, iflag); 4191 } 4192 if (cmdiocbp) { 4193 /* Call the specified completion routine */ 4194 if (cmdiocbp->iocb_cmpl) { 4195 spin_unlock_irqrestore(&phba->hbalock, 4196 iflag); 4197 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 4198 saveq); 4199 spin_lock_irqsave(&phba->hbalock, 4200 iflag); 4201 } else 4202 __lpfc_sli_release_iocbq(phba, 4203 cmdiocbp); 4204 } 4205 break; 4206 4207 case LPFC_UNKNOWN_IOCB: 4208 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4209 char adaptermsg[LPFC_MAX_ADPTMSG]; 4210 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4211 memcpy(&adaptermsg[0], (uint8_t *)irsp, 4212 MAX_MSG_DATA); 4213 dev_warn(&((phba->pcidev)->dev), 4214 "lpfc%d: %s\n", 4215 phba->brd_no, adaptermsg); 4216 } else { 4217 /* Unknown IOCB command */ 4218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4219 "0335 Unknown IOCB " 4220 "command Data: x%x " 4221 "x%x x%x x%x\n", 4222 irsp->ulpCommand, 4223 irsp->ulpStatus, 4224 irsp->ulpIoTag, 4225 irsp->ulpContext); 4226 } 4227 break; 4228 } 4229 4230 if (free_saveq) { 4231 list_for_each_entry_safe(rspiocbp, next_iocb, 4232 &saveq->list, list) { 4233 list_del_init(&rspiocbp->list); 4234 __lpfc_sli_release_iocbq(phba, rspiocbp); 4235 } 4236 __lpfc_sli_release_iocbq(phba, saveq); 4237 } 4238 rspiocbp = NULL; 4239 } 4240 spin_unlock_irqrestore(&phba->hbalock, iflag); 4241 return rspiocbp; 4242 } 4243 4244 /** 4245 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4246 * @phba: Pointer to HBA context object. 4247 * @pring: Pointer to driver SLI ring object. 4248 * @mask: Host attention register mask for this ring. 4249 * 4250 * This routine wraps the actual slow_ring event process routine from the 4251 * API jump table function pointer from the lpfc_hba struct. 4252 **/ 4253 void 4254 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4255 struct lpfc_sli_ring *pring, uint32_t mask) 4256 { 4257 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4258 } 4259 4260 /** 4261 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4262 * @phba: Pointer to HBA context object. 4263 * @pring: Pointer to driver SLI ring object. 4264 * @mask: Host attention register mask for this ring. 4265 * 4266 * This function is called from the worker thread when there is a ring event 4267 * for non-fcp rings. The caller does not hold any lock. The function will 4268 * remove each response iocb in the response ring and calls the handle 4269 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4270 **/ 4271 static void 4272 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4273 struct lpfc_sli_ring *pring, uint32_t mask) 4274 { 4275 struct lpfc_pgp *pgp; 4276 IOCB_t *entry; 4277 IOCB_t *irsp = NULL; 4278 struct lpfc_iocbq *rspiocbp = NULL; 4279 uint32_t portRspPut, portRspMax; 4280 unsigned long iflag; 4281 uint32_t status; 4282 4283 pgp = &phba->port_gp[pring->ringno]; 4284 spin_lock_irqsave(&phba->hbalock, iflag); 4285 pring->stats.iocb_event++; 4286 4287 /* 4288 * The next available response entry should never exceed the maximum 4289 * entries. If it does, treat it as an adapter hardware error. 4290 */ 4291 portRspMax = pring->sli.sli3.numRiocb; 4292 portRspPut = le32_to_cpu(pgp->rspPutInx); 4293 if (portRspPut >= portRspMax) { 4294 /* 4295 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4296 * rsp ring <portRspMax> 4297 */ 4298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4299 "0303 Ring %d handler: portRspPut %d " 4300 "is bigger than rsp ring %d\n", 4301 pring->ringno, portRspPut, portRspMax); 4302 4303 phba->link_state = LPFC_HBA_ERROR; 4304 spin_unlock_irqrestore(&phba->hbalock, iflag); 4305 4306 phba->work_hs = HS_FFER3; 4307 lpfc_handle_eratt(phba); 4308 4309 return; 4310 } 4311 4312 rmb(); 4313 while (pring->sli.sli3.rspidx != portRspPut) { 4314 /* 4315 * Build a completion list and call the appropriate handler. 4316 * The process is to get the next available response iocb, get 4317 * a free iocb from the list, copy the response data into the 4318 * free iocb, insert to the continuation list, and update the 4319 * next response index to slim. This process makes response 4320 * iocb's in the ring available to DMA as fast as possible but 4321 * pays a penalty for a copy operation. Since the iocb is 4322 * only 32 bytes, this penalty is considered small relative to 4323 * the PCI reads for register values and a slim write. When 4324 * the ulpLe field is set, the entire Command has been 4325 * received. 4326 */ 4327 entry = lpfc_resp_iocb(phba, pring); 4328 4329 phba->last_completion_time = jiffies; 4330 rspiocbp = __lpfc_sli_get_iocbq(phba); 4331 if (rspiocbp == NULL) { 4332 printk(KERN_ERR "%s: out of buffers! Failing " 4333 "completion.\n", __func__); 4334 break; 4335 } 4336 4337 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4338 phba->iocb_rsp_size); 4339 irsp = &rspiocbp->iocb; 4340 4341 if (++pring->sli.sli3.rspidx >= portRspMax) 4342 pring->sli.sli3.rspidx = 0; 4343 4344 if (pring->ringno == LPFC_ELS_RING) { 4345 lpfc_debugfs_slow_ring_trc(phba, 4346 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4347 *(((uint32_t *) irsp) + 4), 4348 *(((uint32_t *) irsp) + 6), 4349 *(((uint32_t *) irsp) + 7)); 4350 } 4351 4352 writel(pring->sli.sli3.rspidx, 4353 &phba->host_gp[pring->ringno].rspGetInx); 4354 4355 spin_unlock_irqrestore(&phba->hbalock, iflag); 4356 /* Handle the response IOCB */ 4357 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4358 spin_lock_irqsave(&phba->hbalock, iflag); 4359 4360 /* 4361 * If the port response put pointer has not been updated, sync 4362 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4363 * response put pointer. 4364 */ 4365 if (pring->sli.sli3.rspidx == portRspPut) { 4366 portRspPut = le32_to_cpu(pgp->rspPutInx); 4367 } 4368 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4369 4370 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4371 /* At least one response entry has been freed */ 4372 pring->stats.iocb_rsp_full++; 4373 /* SET RxRE_RSP in Chip Att register */ 4374 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4375 writel(status, phba->CAregaddr); 4376 readl(phba->CAregaddr); /* flush */ 4377 } 4378 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4379 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4380 pring->stats.iocb_cmd_empty++; 4381 4382 /* Force update of the local copy of cmdGetInx */ 4383 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4384 lpfc_sli_resume_iocb(phba, pring); 4385 4386 if ((pring->lpfc_sli_cmd_available)) 4387 (pring->lpfc_sli_cmd_available) (phba, pring); 4388 4389 } 4390 4391 spin_unlock_irqrestore(&phba->hbalock, iflag); 4392 return; 4393 } 4394 4395 /** 4396 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4397 * @phba: Pointer to HBA context object. 4398 * @pring: Pointer to driver SLI ring object. 4399 * @mask: Host attention register mask for this ring. 4400 * 4401 * This function is called from the worker thread when there is a pending 4402 * ELS response iocb on the driver internal slow-path response iocb worker 4403 * queue. The caller does not hold any lock. The function will remove each 4404 * response iocb from the response worker queue and calls the handle 4405 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4406 **/ 4407 static void 4408 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4409 struct lpfc_sli_ring *pring, uint32_t mask) 4410 { 4411 struct lpfc_iocbq *irspiocbq; 4412 struct hbq_dmabuf *dmabuf; 4413 struct lpfc_cq_event *cq_event; 4414 unsigned long iflag; 4415 int count = 0; 4416 4417 spin_lock_irqsave(&phba->hbalock, iflag); 4418 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4419 spin_unlock_irqrestore(&phba->hbalock, iflag); 4420 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4421 /* Get the response iocb from the head of work queue */ 4422 spin_lock_irqsave(&phba->hbalock, iflag); 4423 list_remove_head(&phba->sli4_hba.sp_queue_event, 4424 cq_event, struct lpfc_cq_event, list); 4425 spin_unlock_irqrestore(&phba->hbalock, iflag); 4426 4427 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4428 case CQE_CODE_COMPL_WQE: 4429 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4430 cq_event); 4431 /* Translate ELS WCQE to response IOCBQ */ 4432 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4433 irspiocbq); 4434 if (irspiocbq) 4435 lpfc_sli_sp_handle_rspiocb(phba, pring, 4436 irspiocbq); 4437 count++; 4438 break; 4439 case CQE_CODE_RECEIVE: 4440 case CQE_CODE_RECEIVE_V1: 4441 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4442 cq_event); 4443 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4444 count++; 4445 break; 4446 default: 4447 break; 4448 } 4449 4450 /* Limit the number of events to 64 to avoid soft lockups */ 4451 if (count == 64) 4452 break; 4453 } 4454 } 4455 4456 /** 4457 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4458 * @phba: Pointer to HBA context object. 4459 * @pring: Pointer to driver SLI ring object. 4460 * 4461 * This function aborts all iocbs in the given ring and frees all the iocb 4462 * objects in txq. This function issues an abort iocb for all the iocb commands 4463 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4464 * the return of this function. The caller is not required to hold any locks. 4465 **/ 4466 void 4467 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4468 { 4469 LIST_HEAD(completions); 4470 struct lpfc_iocbq *iocb, *next_iocb; 4471 4472 if (pring->ringno == LPFC_ELS_RING) { 4473 lpfc_fabric_abort_hba(phba); 4474 } 4475 4476 /* Error everything on txq and txcmplq 4477 * First do the txq. 4478 */ 4479 if (phba->sli_rev >= LPFC_SLI_REV4) { 4480 spin_lock_irq(&pring->ring_lock); 4481 list_splice_init(&pring->txq, &completions); 4482 pring->txq_cnt = 0; 4483 spin_unlock_irq(&pring->ring_lock); 4484 4485 spin_lock_irq(&phba->hbalock); 4486 /* Next issue ABTS for everything on the txcmplq */ 4487 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4488 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4489 spin_unlock_irq(&phba->hbalock); 4490 } else { 4491 spin_lock_irq(&phba->hbalock); 4492 list_splice_init(&pring->txq, &completions); 4493 pring->txq_cnt = 0; 4494 4495 /* Next issue ABTS for everything on the txcmplq */ 4496 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4497 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4498 spin_unlock_irq(&phba->hbalock); 4499 } 4500 /* Make sure HBA is alive */ 4501 lpfc_issue_hb_tmo(phba); 4502 4503 /* Cancel all the IOCBs from the completions list */ 4504 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4505 IOERR_SLI_ABORTED); 4506 } 4507 4508 /** 4509 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4510 * @phba: Pointer to HBA context object. 4511 * 4512 * This function aborts all iocbs in FCP rings and frees all the iocb 4513 * objects in txq. This function issues an abort iocb for all the iocb commands 4514 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4515 * the return of this function. The caller is not required to hold any locks. 4516 **/ 4517 void 4518 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4519 { 4520 struct lpfc_sli *psli = &phba->sli; 4521 struct lpfc_sli_ring *pring; 4522 uint32_t i; 4523 4524 /* Look on all the FCP Rings for the iotag */ 4525 if (phba->sli_rev >= LPFC_SLI_REV4) { 4526 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4527 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4528 lpfc_sli_abort_iocb_ring(phba, pring); 4529 } 4530 } else { 4531 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4532 lpfc_sli_abort_iocb_ring(phba, pring); 4533 } 4534 } 4535 4536 /** 4537 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4538 * @phba: Pointer to HBA context object. 4539 * 4540 * This function flushes all iocbs in the IO ring and frees all the iocb 4541 * objects in txq and txcmplq. This function will not issue abort iocbs 4542 * for all the iocb commands in txcmplq, they will just be returned with 4543 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4544 * slot has been permanently disabled. 4545 **/ 4546 void 4547 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4548 { 4549 LIST_HEAD(txq); 4550 LIST_HEAD(txcmplq); 4551 struct lpfc_sli *psli = &phba->sli; 4552 struct lpfc_sli_ring *pring; 4553 uint32_t i; 4554 struct lpfc_iocbq *piocb, *next_iocb; 4555 4556 spin_lock_irq(&phba->hbalock); 4557 if (phba->hba_flag & HBA_IOQ_FLUSH || 4558 !phba->sli4_hba.hdwq) { 4559 spin_unlock_irq(&phba->hbalock); 4560 return; 4561 } 4562 /* Indicate the I/O queues are flushed */ 4563 phba->hba_flag |= HBA_IOQ_FLUSH; 4564 spin_unlock_irq(&phba->hbalock); 4565 4566 /* Look on all the FCP Rings for the iotag */ 4567 if (phba->sli_rev >= LPFC_SLI_REV4) { 4568 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4569 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4570 4571 spin_lock_irq(&pring->ring_lock); 4572 /* Retrieve everything on txq */ 4573 list_splice_init(&pring->txq, &txq); 4574 list_for_each_entry_safe(piocb, next_iocb, 4575 &pring->txcmplq, list) 4576 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4577 /* Retrieve everything on the txcmplq */ 4578 list_splice_init(&pring->txcmplq, &txcmplq); 4579 pring->txq_cnt = 0; 4580 pring->txcmplq_cnt = 0; 4581 spin_unlock_irq(&pring->ring_lock); 4582 4583 /* Flush the txq */ 4584 lpfc_sli_cancel_iocbs(phba, &txq, 4585 IOSTAT_LOCAL_REJECT, 4586 IOERR_SLI_DOWN); 4587 /* Flush the txcmplq */ 4588 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4589 IOSTAT_LOCAL_REJECT, 4590 IOERR_SLI_DOWN); 4591 if (unlikely(pci_channel_offline(phba->pcidev))) 4592 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4593 } 4594 } else { 4595 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4596 4597 spin_lock_irq(&phba->hbalock); 4598 /* Retrieve everything on txq */ 4599 list_splice_init(&pring->txq, &txq); 4600 list_for_each_entry_safe(piocb, next_iocb, 4601 &pring->txcmplq, list) 4602 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4603 /* Retrieve everything on the txcmplq */ 4604 list_splice_init(&pring->txcmplq, &txcmplq); 4605 pring->txq_cnt = 0; 4606 pring->txcmplq_cnt = 0; 4607 spin_unlock_irq(&phba->hbalock); 4608 4609 /* Flush the txq */ 4610 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4611 IOERR_SLI_DOWN); 4612 /* Flush the txcmpq */ 4613 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4614 IOERR_SLI_DOWN); 4615 } 4616 } 4617 4618 /** 4619 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4620 * @phba: Pointer to HBA context object. 4621 * @mask: Bit mask to be checked. 4622 * 4623 * This function reads the host status register and compares 4624 * with the provided bit mask to check if HBA completed 4625 * the restart. This function will wait in a loop for the 4626 * HBA to complete restart. If the HBA does not restart within 4627 * 15 iterations, the function will reset the HBA again. The 4628 * function returns 1 when HBA fail to restart otherwise returns 4629 * zero. 4630 **/ 4631 static int 4632 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4633 { 4634 uint32_t status; 4635 int i = 0; 4636 int retval = 0; 4637 4638 /* Read the HBA Host Status Register */ 4639 if (lpfc_readl(phba->HSregaddr, &status)) 4640 return 1; 4641 4642 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4643 4644 /* 4645 * Check status register every 100ms for 5 retries, then every 4646 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4647 * every 2.5 sec for 4. 4648 * Break our of the loop if errors occurred during init. 4649 */ 4650 while (((status & mask) != mask) && 4651 !(status & HS_FFERM) && 4652 i++ < 20) { 4653 4654 if (i <= 5) 4655 msleep(10); 4656 else if (i <= 10) 4657 msleep(500); 4658 else 4659 msleep(2500); 4660 4661 if (i == 15) { 4662 /* Do post */ 4663 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4664 lpfc_sli_brdrestart(phba); 4665 } 4666 /* Read the HBA Host Status Register */ 4667 if (lpfc_readl(phba->HSregaddr, &status)) { 4668 retval = 1; 4669 break; 4670 } 4671 } 4672 4673 /* Check to see if any errors occurred during init */ 4674 if ((status & HS_FFERM) || (i >= 20)) { 4675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4676 "2751 Adapter failed to restart, " 4677 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4678 status, 4679 readl(phba->MBslimaddr + 0xa8), 4680 readl(phba->MBslimaddr + 0xac)); 4681 phba->link_state = LPFC_HBA_ERROR; 4682 retval = 1; 4683 } 4684 4685 return retval; 4686 } 4687 4688 /** 4689 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4690 * @phba: Pointer to HBA context object. 4691 * @mask: Bit mask to be checked. 4692 * 4693 * This function checks the host status register to check if HBA is 4694 * ready. This function will wait in a loop for the HBA to be ready 4695 * If the HBA is not ready , the function will will reset the HBA PCI 4696 * function again. The function returns 1 when HBA fail to be ready 4697 * otherwise returns zero. 4698 **/ 4699 static int 4700 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4701 { 4702 uint32_t status; 4703 int retval = 0; 4704 4705 /* Read the HBA Host Status Register */ 4706 status = lpfc_sli4_post_status_check(phba); 4707 4708 if (status) { 4709 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4710 lpfc_sli_brdrestart(phba); 4711 status = lpfc_sli4_post_status_check(phba); 4712 } 4713 4714 /* Check to see if any errors occurred during init */ 4715 if (status) { 4716 phba->link_state = LPFC_HBA_ERROR; 4717 retval = 1; 4718 } else 4719 phba->sli4_hba.intr_enable = 0; 4720 4721 phba->hba_flag &= ~HBA_SETUP; 4722 return retval; 4723 } 4724 4725 /** 4726 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4727 * @phba: Pointer to HBA context object. 4728 * @mask: Bit mask to be checked. 4729 * 4730 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4731 * from the API jump table function pointer from the lpfc_hba struct. 4732 **/ 4733 int 4734 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4735 { 4736 return phba->lpfc_sli_brdready(phba, mask); 4737 } 4738 4739 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4740 4741 /** 4742 * lpfc_reset_barrier - Make HBA ready for HBA reset 4743 * @phba: Pointer to HBA context object. 4744 * 4745 * This function is called before resetting an HBA. This function is called 4746 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4747 **/ 4748 void lpfc_reset_barrier(struct lpfc_hba *phba) 4749 { 4750 uint32_t __iomem *resp_buf; 4751 uint32_t __iomem *mbox_buf; 4752 volatile struct MAILBOX_word0 mbox; 4753 uint32_t hc_copy, ha_copy, resp_data; 4754 int i; 4755 uint8_t hdrtype; 4756 4757 lockdep_assert_held(&phba->hbalock); 4758 4759 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4760 if (hdrtype != 0x80 || 4761 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4762 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4763 return; 4764 4765 /* 4766 * Tell the other part of the chip to suspend temporarily all 4767 * its DMA activity. 4768 */ 4769 resp_buf = phba->MBslimaddr; 4770 4771 /* Disable the error attention */ 4772 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4773 return; 4774 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4775 readl(phba->HCregaddr); /* flush */ 4776 phba->link_flag |= LS_IGNORE_ERATT; 4777 4778 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4779 return; 4780 if (ha_copy & HA_ERATT) { 4781 /* Clear Chip error bit */ 4782 writel(HA_ERATT, phba->HAregaddr); 4783 phba->pport->stopped = 1; 4784 } 4785 4786 mbox.word0 = 0; 4787 mbox.mbxCommand = MBX_KILL_BOARD; 4788 mbox.mbxOwner = OWN_CHIP; 4789 4790 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4791 mbox_buf = phba->MBslimaddr; 4792 writel(mbox.word0, mbox_buf); 4793 4794 for (i = 0; i < 50; i++) { 4795 if (lpfc_readl((resp_buf + 1), &resp_data)) 4796 return; 4797 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4798 mdelay(1); 4799 else 4800 break; 4801 } 4802 resp_data = 0; 4803 if (lpfc_readl((resp_buf + 1), &resp_data)) 4804 return; 4805 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4806 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4807 phba->pport->stopped) 4808 goto restore_hc; 4809 else 4810 goto clear_errat; 4811 } 4812 4813 mbox.mbxOwner = OWN_HOST; 4814 resp_data = 0; 4815 for (i = 0; i < 500; i++) { 4816 if (lpfc_readl(resp_buf, &resp_data)) 4817 return; 4818 if (resp_data != mbox.word0) 4819 mdelay(1); 4820 else 4821 break; 4822 } 4823 4824 clear_errat: 4825 4826 while (++i < 500) { 4827 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4828 return; 4829 if (!(ha_copy & HA_ERATT)) 4830 mdelay(1); 4831 else 4832 break; 4833 } 4834 4835 if (readl(phba->HAregaddr) & HA_ERATT) { 4836 writel(HA_ERATT, phba->HAregaddr); 4837 phba->pport->stopped = 1; 4838 } 4839 4840 restore_hc: 4841 phba->link_flag &= ~LS_IGNORE_ERATT; 4842 writel(hc_copy, phba->HCregaddr); 4843 readl(phba->HCregaddr); /* flush */ 4844 } 4845 4846 /** 4847 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4848 * @phba: Pointer to HBA context object. 4849 * 4850 * This function issues a kill_board mailbox command and waits for 4851 * the error attention interrupt. This function is called for stopping 4852 * the firmware processing. The caller is not required to hold any 4853 * locks. This function calls lpfc_hba_down_post function to free 4854 * any pending commands after the kill. The function will return 1 when it 4855 * fails to kill the board else will return 0. 4856 **/ 4857 int 4858 lpfc_sli_brdkill(struct lpfc_hba *phba) 4859 { 4860 struct lpfc_sli *psli; 4861 LPFC_MBOXQ_t *pmb; 4862 uint32_t status; 4863 uint32_t ha_copy; 4864 int retval; 4865 int i = 0; 4866 4867 psli = &phba->sli; 4868 4869 /* Kill HBA */ 4870 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4871 "0329 Kill HBA Data: x%x x%x\n", 4872 phba->pport->port_state, psli->sli_flag); 4873 4874 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4875 if (!pmb) 4876 return 1; 4877 4878 /* Disable the error attention */ 4879 spin_lock_irq(&phba->hbalock); 4880 if (lpfc_readl(phba->HCregaddr, &status)) { 4881 spin_unlock_irq(&phba->hbalock); 4882 mempool_free(pmb, phba->mbox_mem_pool); 4883 return 1; 4884 } 4885 status &= ~HC_ERINT_ENA; 4886 writel(status, phba->HCregaddr); 4887 readl(phba->HCregaddr); /* flush */ 4888 phba->link_flag |= LS_IGNORE_ERATT; 4889 spin_unlock_irq(&phba->hbalock); 4890 4891 lpfc_kill_board(phba, pmb); 4892 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4893 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4894 4895 if (retval != MBX_SUCCESS) { 4896 if (retval != MBX_BUSY) 4897 mempool_free(pmb, phba->mbox_mem_pool); 4898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4899 "2752 KILL_BOARD command failed retval %d\n", 4900 retval); 4901 spin_lock_irq(&phba->hbalock); 4902 phba->link_flag &= ~LS_IGNORE_ERATT; 4903 spin_unlock_irq(&phba->hbalock); 4904 return 1; 4905 } 4906 4907 spin_lock_irq(&phba->hbalock); 4908 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4909 spin_unlock_irq(&phba->hbalock); 4910 4911 mempool_free(pmb, phba->mbox_mem_pool); 4912 4913 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4914 * attention every 100ms for 3 seconds. If we don't get ERATT after 4915 * 3 seconds we still set HBA_ERROR state because the status of the 4916 * board is now undefined. 4917 */ 4918 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4919 return 1; 4920 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4921 mdelay(100); 4922 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4923 return 1; 4924 } 4925 4926 del_timer_sync(&psli->mbox_tmo); 4927 if (ha_copy & HA_ERATT) { 4928 writel(HA_ERATT, phba->HAregaddr); 4929 phba->pport->stopped = 1; 4930 } 4931 spin_lock_irq(&phba->hbalock); 4932 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4933 psli->mbox_active = NULL; 4934 phba->link_flag &= ~LS_IGNORE_ERATT; 4935 spin_unlock_irq(&phba->hbalock); 4936 4937 lpfc_hba_down_post(phba); 4938 phba->link_state = LPFC_HBA_ERROR; 4939 4940 return ha_copy & HA_ERATT ? 0 : 1; 4941 } 4942 4943 /** 4944 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4945 * @phba: Pointer to HBA context object. 4946 * 4947 * This function resets the HBA by writing HC_INITFF to the control 4948 * register. After the HBA resets, this function resets all the iocb ring 4949 * indices. This function disables PCI layer parity checking during 4950 * the reset. 4951 * This function returns 0 always. 4952 * The caller is not required to hold any locks. 4953 **/ 4954 int 4955 lpfc_sli_brdreset(struct lpfc_hba *phba) 4956 { 4957 struct lpfc_sli *psli; 4958 struct lpfc_sli_ring *pring; 4959 uint16_t cfg_value; 4960 int i; 4961 4962 psli = &phba->sli; 4963 4964 /* Reset HBA */ 4965 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4966 "0325 Reset HBA Data: x%x x%x\n", 4967 (phba->pport) ? phba->pport->port_state : 0, 4968 psli->sli_flag); 4969 4970 /* perform board reset */ 4971 phba->fc_eventTag = 0; 4972 phba->link_events = 0; 4973 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4974 if (phba->pport) { 4975 phba->pport->fc_myDID = 0; 4976 phba->pport->fc_prevDID = 0; 4977 } 4978 4979 /* Turn off parity checking and serr during the physical reset */ 4980 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4981 return -EIO; 4982 4983 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4984 (cfg_value & 4985 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4986 4987 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4988 4989 /* Now toggle INITFF bit in the Host Control Register */ 4990 writel(HC_INITFF, phba->HCregaddr); 4991 mdelay(1); 4992 readl(phba->HCregaddr); /* flush */ 4993 writel(0, phba->HCregaddr); 4994 readl(phba->HCregaddr); /* flush */ 4995 4996 /* Restore PCI cmd register */ 4997 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4998 4999 /* Initialize relevant SLI info */ 5000 for (i = 0; i < psli->num_rings; i++) { 5001 pring = &psli->sli3_ring[i]; 5002 pring->flag = 0; 5003 pring->sli.sli3.rspidx = 0; 5004 pring->sli.sli3.next_cmdidx = 0; 5005 pring->sli.sli3.local_getidx = 0; 5006 pring->sli.sli3.cmdidx = 0; 5007 pring->missbufcnt = 0; 5008 } 5009 5010 phba->link_state = LPFC_WARM_START; 5011 return 0; 5012 } 5013 5014 /** 5015 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5016 * @phba: Pointer to HBA context object. 5017 * 5018 * This function resets a SLI4 HBA. This function disables PCI layer parity 5019 * checking during resets the device. The caller is not required to hold 5020 * any locks. 5021 * 5022 * This function returns 0 on success else returns negative error code. 5023 **/ 5024 int 5025 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5026 { 5027 struct lpfc_sli *psli = &phba->sli; 5028 uint16_t cfg_value; 5029 int rc = 0; 5030 5031 /* Reset HBA */ 5032 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5033 "0295 Reset HBA Data: x%x x%x x%x\n", 5034 phba->pport->port_state, psli->sli_flag, 5035 phba->hba_flag); 5036 5037 /* perform board reset */ 5038 phba->fc_eventTag = 0; 5039 phba->link_events = 0; 5040 phba->pport->fc_myDID = 0; 5041 phba->pport->fc_prevDID = 0; 5042 phba->hba_flag &= ~HBA_SETUP; 5043 5044 spin_lock_irq(&phba->hbalock); 5045 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5046 phba->fcf.fcf_flag = 0; 5047 spin_unlock_irq(&phba->hbalock); 5048 5049 /* Now physically reset the device */ 5050 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5051 "0389 Performing PCI function reset!\n"); 5052 5053 /* Turn off parity checking and serr during the physical reset */ 5054 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5055 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5056 "3205 PCI read Config failed\n"); 5057 return -EIO; 5058 } 5059 5060 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5061 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5062 5063 /* Perform FCoE PCI function reset before freeing queue memory */ 5064 rc = lpfc_pci_function_reset(phba); 5065 5066 /* Restore PCI cmd register */ 5067 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5068 5069 return rc; 5070 } 5071 5072 /** 5073 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5074 * @phba: Pointer to HBA context object. 5075 * 5076 * This function is called in the SLI initialization code path to 5077 * restart the HBA. The caller is not required to hold any lock. 5078 * This function writes MBX_RESTART mailbox command to the SLIM and 5079 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5080 * function to free any pending commands. The function enables 5081 * POST only during the first initialization. The function returns zero. 5082 * The function does not guarantee completion of MBX_RESTART mailbox 5083 * command before the return of this function. 5084 **/ 5085 static int 5086 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5087 { 5088 volatile struct MAILBOX_word0 mb; 5089 struct lpfc_sli *psli; 5090 void __iomem *to_slim; 5091 uint32_t hba_aer_enabled; 5092 5093 spin_lock_irq(&phba->hbalock); 5094 5095 /* Take PCIe device Advanced Error Reporting (AER) state */ 5096 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5097 5098 psli = &phba->sli; 5099 5100 /* Restart HBA */ 5101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5102 "0337 Restart HBA Data: x%x x%x\n", 5103 (phba->pport) ? phba->pport->port_state : 0, 5104 psli->sli_flag); 5105 5106 mb.word0 = 0; 5107 mb.mbxCommand = MBX_RESTART; 5108 mb.mbxHc = 1; 5109 5110 lpfc_reset_barrier(phba); 5111 5112 to_slim = phba->MBslimaddr; 5113 writel(mb.word0, to_slim); 5114 readl(to_slim); /* flush */ 5115 5116 /* Only skip post after fc_ffinit is completed */ 5117 if (phba->pport && phba->pport->port_state) 5118 mb.word0 = 1; /* This is really setting up word1 */ 5119 else 5120 mb.word0 = 0; /* This is really setting up word1 */ 5121 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5122 writel(mb.word0, to_slim); 5123 readl(to_slim); /* flush */ 5124 5125 lpfc_sli_brdreset(phba); 5126 if (phba->pport) 5127 phba->pport->stopped = 0; 5128 phba->link_state = LPFC_INIT_START; 5129 phba->hba_flag = 0; 5130 spin_unlock_irq(&phba->hbalock); 5131 5132 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5133 psli->stats_start = ktime_get_seconds(); 5134 5135 /* Give the INITFF and Post time to settle. */ 5136 mdelay(100); 5137 5138 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5139 if (hba_aer_enabled) 5140 pci_disable_pcie_error_reporting(phba->pcidev); 5141 5142 lpfc_hba_down_post(phba); 5143 5144 return 0; 5145 } 5146 5147 /** 5148 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5149 * @phba: Pointer to HBA context object. 5150 * 5151 * This function is called in the SLI initialization code path to restart 5152 * a SLI4 HBA. The caller is not required to hold any lock. 5153 * At the end of the function, it calls lpfc_hba_down_post function to 5154 * free any pending commands. 5155 **/ 5156 static int 5157 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5158 { 5159 struct lpfc_sli *psli = &phba->sli; 5160 uint32_t hba_aer_enabled; 5161 int rc; 5162 5163 /* Restart HBA */ 5164 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5165 "0296 Restart HBA Data: x%x x%x\n", 5166 phba->pport->port_state, psli->sli_flag); 5167 5168 /* Take PCIe device Advanced Error Reporting (AER) state */ 5169 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5170 5171 rc = lpfc_sli4_brdreset(phba); 5172 if (rc) { 5173 phba->link_state = LPFC_HBA_ERROR; 5174 goto hba_down_queue; 5175 } 5176 5177 spin_lock_irq(&phba->hbalock); 5178 phba->pport->stopped = 0; 5179 phba->link_state = LPFC_INIT_START; 5180 phba->hba_flag = 0; 5181 spin_unlock_irq(&phba->hbalock); 5182 5183 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5184 psli->stats_start = ktime_get_seconds(); 5185 5186 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5187 if (hba_aer_enabled) 5188 pci_disable_pcie_error_reporting(phba->pcidev); 5189 5190 hba_down_queue: 5191 lpfc_hba_down_post(phba); 5192 lpfc_sli4_queue_destroy(phba); 5193 5194 return rc; 5195 } 5196 5197 /** 5198 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5199 * @phba: Pointer to HBA context object. 5200 * 5201 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5202 * API jump table function pointer from the lpfc_hba struct. 5203 **/ 5204 int 5205 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5206 { 5207 return phba->lpfc_sli_brdrestart(phba); 5208 } 5209 5210 /** 5211 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5212 * @phba: Pointer to HBA context object. 5213 * 5214 * This function is called after a HBA restart to wait for successful 5215 * restart of the HBA. Successful restart of the HBA is indicated by 5216 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5217 * iteration, the function will restart the HBA again. The function returns 5218 * zero if HBA successfully restarted else returns negative error code. 5219 **/ 5220 int 5221 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5222 { 5223 uint32_t status, i = 0; 5224 5225 /* Read the HBA Host Status Register */ 5226 if (lpfc_readl(phba->HSregaddr, &status)) 5227 return -EIO; 5228 5229 /* Check status register to see what current state is */ 5230 i = 0; 5231 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5232 5233 /* Check every 10ms for 10 retries, then every 100ms for 90 5234 * retries, then every 1 sec for 50 retires for a total of 5235 * ~60 seconds before reset the board again and check every 5236 * 1 sec for 50 retries. The up to 60 seconds before the 5237 * board ready is required by the Falcon FIPS zeroization 5238 * complete, and any reset the board in between shall cause 5239 * restart of zeroization, further delay the board ready. 5240 */ 5241 if (i++ >= 200) { 5242 /* Adapter failed to init, timeout, status reg 5243 <status> */ 5244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5245 "0436 Adapter failed to init, " 5246 "timeout, status reg x%x, " 5247 "FW Data: A8 x%x AC x%x\n", status, 5248 readl(phba->MBslimaddr + 0xa8), 5249 readl(phba->MBslimaddr + 0xac)); 5250 phba->link_state = LPFC_HBA_ERROR; 5251 return -ETIMEDOUT; 5252 } 5253 5254 /* Check to see if any errors occurred during init */ 5255 if (status & HS_FFERM) { 5256 /* ERROR: During chipset initialization */ 5257 /* Adapter failed to init, chipset, status reg 5258 <status> */ 5259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5260 "0437 Adapter failed to init, " 5261 "chipset, status reg x%x, " 5262 "FW Data: A8 x%x AC x%x\n", status, 5263 readl(phba->MBslimaddr + 0xa8), 5264 readl(phba->MBslimaddr + 0xac)); 5265 phba->link_state = LPFC_HBA_ERROR; 5266 return -EIO; 5267 } 5268 5269 if (i <= 10) 5270 msleep(10); 5271 else if (i <= 100) 5272 msleep(100); 5273 else 5274 msleep(1000); 5275 5276 if (i == 150) { 5277 /* Do post */ 5278 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5279 lpfc_sli_brdrestart(phba); 5280 } 5281 /* Read the HBA Host Status Register */ 5282 if (lpfc_readl(phba->HSregaddr, &status)) 5283 return -EIO; 5284 } 5285 5286 /* Check to see if any errors occurred during init */ 5287 if (status & HS_FFERM) { 5288 /* ERROR: During chipset initialization */ 5289 /* Adapter failed to init, chipset, status reg <status> */ 5290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5291 "0438 Adapter failed to init, chipset, " 5292 "status reg x%x, " 5293 "FW Data: A8 x%x AC x%x\n", status, 5294 readl(phba->MBslimaddr + 0xa8), 5295 readl(phba->MBslimaddr + 0xac)); 5296 phba->link_state = LPFC_HBA_ERROR; 5297 return -EIO; 5298 } 5299 5300 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5301 5302 /* Clear all interrupt enable conditions */ 5303 writel(0, phba->HCregaddr); 5304 readl(phba->HCregaddr); /* flush */ 5305 5306 /* setup host attn register */ 5307 writel(0xffffffff, phba->HAregaddr); 5308 readl(phba->HAregaddr); /* flush */ 5309 return 0; 5310 } 5311 5312 /** 5313 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5314 * 5315 * This function calculates and returns the number of HBQs required to be 5316 * configured. 5317 **/ 5318 int 5319 lpfc_sli_hbq_count(void) 5320 { 5321 return ARRAY_SIZE(lpfc_hbq_defs); 5322 } 5323 5324 /** 5325 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5326 * 5327 * This function adds the number of hbq entries in every HBQ to get 5328 * the total number of hbq entries required for the HBA and returns 5329 * the total count. 5330 **/ 5331 static int 5332 lpfc_sli_hbq_entry_count(void) 5333 { 5334 int hbq_count = lpfc_sli_hbq_count(); 5335 int count = 0; 5336 int i; 5337 5338 for (i = 0; i < hbq_count; ++i) 5339 count += lpfc_hbq_defs[i]->entry_count; 5340 return count; 5341 } 5342 5343 /** 5344 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5345 * 5346 * This function calculates amount of memory required for all hbq entries 5347 * to be configured and returns the total memory required. 5348 **/ 5349 int 5350 lpfc_sli_hbq_size(void) 5351 { 5352 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5353 } 5354 5355 /** 5356 * lpfc_sli_hbq_setup - configure and initialize HBQs 5357 * @phba: Pointer to HBA context object. 5358 * 5359 * This function is called during the SLI initialization to configure 5360 * all the HBQs and post buffers to the HBQ. The caller is not 5361 * required to hold any locks. This function will return zero if successful 5362 * else it will return negative error code. 5363 **/ 5364 static int 5365 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5366 { 5367 int hbq_count = lpfc_sli_hbq_count(); 5368 LPFC_MBOXQ_t *pmb; 5369 MAILBOX_t *pmbox; 5370 uint32_t hbqno; 5371 uint32_t hbq_entry_index; 5372 5373 /* Get a Mailbox buffer to setup mailbox 5374 * commands for HBA initialization 5375 */ 5376 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5377 5378 if (!pmb) 5379 return -ENOMEM; 5380 5381 pmbox = &pmb->u.mb; 5382 5383 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5384 phba->link_state = LPFC_INIT_MBX_CMDS; 5385 phba->hbq_in_use = 1; 5386 5387 hbq_entry_index = 0; 5388 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5389 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5390 phba->hbqs[hbqno].hbqPutIdx = 0; 5391 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5392 phba->hbqs[hbqno].entry_count = 5393 lpfc_hbq_defs[hbqno]->entry_count; 5394 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5395 hbq_entry_index, pmb); 5396 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5397 5398 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5399 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5400 mbxStatus <status>, ring <num> */ 5401 5402 lpfc_printf_log(phba, KERN_ERR, 5403 LOG_SLI | LOG_VPORT, 5404 "1805 Adapter failed to init. " 5405 "Data: x%x x%x x%x\n", 5406 pmbox->mbxCommand, 5407 pmbox->mbxStatus, hbqno); 5408 5409 phba->link_state = LPFC_HBA_ERROR; 5410 mempool_free(pmb, phba->mbox_mem_pool); 5411 return -ENXIO; 5412 } 5413 } 5414 phba->hbq_count = hbq_count; 5415 5416 mempool_free(pmb, phba->mbox_mem_pool); 5417 5418 /* Initially populate or replenish the HBQs */ 5419 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5420 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5421 return 0; 5422 } 5423 5424 /** 5425 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5426 * @phba: Pointer to HBA context object. 5427 * 5428 * This function is called during the SLI initialization to configure 5429 * all the HBQs and post buffers to the HBQ. The caller is not 5430 * required to hold any locks. This function will return zero if successful 5431 * else it will return negative error code. 5432 **/ 5433 static int 5434 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5435 { 5436 phba->hbq_in_use = 1; 5437 /** 5438 * Specific case when the MDS diagnostics is enabled and supported. 5439 * The receive buffer count is truncated to manage the incoming 5440 * traffic. 5441 **/ 5442 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5443 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5444 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5445 else 5446 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5447 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5448 phba->hbq_count = 1; 5449 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5450 /* Initially populate or replenish the HBQs */ 5451 return 0; 5452 } 5453 5454 /** 5455 * lpfc_sli_config_port - Issue config port mailbox command 5456 * @phba: Pointer to HBA context object. 5457 * @sli_mode: sli mode - 2/3 5458 * 5459 * This function is called by the sli initialization code path 5460 * to issue config_port mailbox command. This function restarts the 5461 * HBA firmware and issues a config_port mailbox command to configure 5462 * the SLI interface in the sli mode specified by sli_mode 5463 * variable. The caller is not required to hold any locks. 5464 * The function returns 0 if successful, else returns negative error 5465 * code. 5466 **/ 5467 int 5468 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5469 { 5470 LPFC_MBOXQ_t *pmb; 5471 uint32_t resetcount = 0, rc = 0, done = 0; 5472 5473 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5474 if (!pmb) { 5475 phba->link_state = LPFC_HBA_ERROR; 5476 return -ENOMEM; 5477 } 5478 5479 phba->sli_rev = sli_mode; 5480 while (resetcount < 2 && !done) { 5481 spin_lock_irq(&phba->hbalock); 5482 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5483 spin_unlock_irq(&phba->hbalock); 5484 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5485 lpfc_sli_brdrestart(phba); 5486 rc = lpfc_sli_chipset_init(phba); 5487 if (rc) 5488 break; 5489 5490 spin_lock_irq(&phba->hbalock); 5491 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5492 spin_unlock_irq(&phba->hbalock); 5493 resetcount++; 5494 5495 /* Call pre CONFIG_PORT mailbox command initialization. A 5496 * value of 0 means the call was successful. Any other 5497 * nonzero value is a failure, but if ERESTART is returned, 5498 * the driver may reset the HBA and try again. 5499 */ 5500 rc = lpfc_config_port_prep(phba); 5501 if (rc == -ERESTART) { 5502 phba->link_state = LPFC_LINK_UNKNOWN; 5503 continue; 5504 } else if (rc) 5505 break; 5506 5507 phba->link_state = LPFC_INIT_MBX_CMDS; 5508 lpfc_config_port(phba, pmb); 5509 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5510 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5511 LPFC_SLI3_HBQ_ENABLED | 5512 LPFC_SLI3_CRP_ENABLED | 5513 LPFC_SLI3_DSS_ENABLED); 5514 if (rc != MBX_SUCCESS) { 5515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5516 "0442 Adapter failed to init, mbxCmd x%x " 5517 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5518 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5519 spin_lock_irq(&phba->hbalock); 5520 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5521 spin_unlock_irq(&phba->hbalock); 5522 rc = -ENXIO; 5523 } else { 5524 /* Allow asynchronous mailbox command to go through */ 5525 spin_lock_irq(&phba->hbalock); 5526 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5527 spin_unlock_irq(&phba->hbalock); 5528 done = 1; 5529 5530 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5531 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5532 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5533 "3110 Port did not grant ASABT\n"); 5534 } 5535 } 5536 if (!done) { 5537 rc = -EINVAL; 5538 goto do_prep_failed; 5539 } 5540 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5541 if (!pmb->u.mb.un.varCfgPort.cMA) { 5542 rc = -ENXIO; 5543 goto do_prep_failed; 5544 } 5545 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5546 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5547 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5548 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5549 phba->max_vpi : phba->max_vports; 5550 5551 } else 5552 phba->max_vpi = 0; 5553 if (pmb->u.mb.un.varCfgPort.gerbm) 5554 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5555 if (pmb->u.mb.un.varCfgPort.gcrp) 5556 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5557 5558 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5559 phba->port_gp = phba->mbox->us.s3_pgp.port; 5560 5561 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5562 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5563 phba->cfg_enable_bg = 0; 5564 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5566 "0443 Adapter did not grant " 5567 "BlockGuard\n"); 5568 } 5569 } 5570 } else { 5571 phba->hbq_get = NULL; 5572 phba->port_gp = phba->mbox->us.s2.port; 5573 phba->max_vpi = 0; 5574 } 5575 do_prep_failed: 5576 mempool_free(pmb, phba->mbox_mem_pool); 5577 return rc; 5578 } 5579 5580 5581 /** 5582 * lpfc_sli_hba_setup - SLI initialization function 5583 * @phba: Pointer to HBA context object. 5584 * 5585 * This function is the main SLI initialization function. This function 5586 * is called by the HBA initialization code, HBA reset code and HBA 5587 * error attention handler code. Caller is not required to hold any 5588 * locks. This function issues config_port mailbox command to configure 5589 * the SLI, setup iocb rings and HBQ rings. In the end the function 5590 * calls the config_port_post function to issue init_link mailbox 5591 * command and to start the discovery. The function will return zero 5592 * if successful, else it will return negative error code. 5593 **/ 5594 int 5595 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5596 { 5597 uint32_t rc; 5598 int i; 5599 int longs; 5600 5601 /* Enable ISR already does config_port because of config_msi mbx */ 5602 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5603 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5604 if (rc) 5605 return -EIO; 5606 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5607 } 5608 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5609 5610 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5611 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5612 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5613 if (!rc) { 5614 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5615 "2709 This device supports " 5616 "Advanced Error Reporting (AER)\n"); 5617 spin_lock_irq(&phba->hbalock); 5618 phba->hba_flag |= HBA_AER_ENABLED; 5619 spin_unlock_irq(&phba->hbalock); 5620 } else { 5621 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5622 "2708 This device does not support " 5623 "Advanced Error Reporting (AER): %d\n", 5624 rc); 5625 phba->cfg_aer_support = 0; 5626 } 5627 } 5628 5629 if (phba->sli_rev == 3) { 5630 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5631 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5632 } else { 5633 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5634 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5635 phba->sli3_options = 0; 5636 } 5637 5638 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5639 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5640 phba->sli_rev, phba->max_vpi); 5641 rc = lpfc_sli_ring_map(phba); 5642 5643 if (rc) 5644 goto lpfc_sli_hba_setup_error; 5645 5646 /* Initialize VPIs. */ 5647 if (phba->sli_rev == LPFC_SLI_REV3) { 5648 /* 5649 * The VPI bitmask and physical ID array are allocated 5650 * and initialized once only - at driver load. A port 5651 * reset doesn't need to reinitialize this memory. 5652 */ 5653 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5654 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5655 phba->vpi_bmask = kcalloc(longs, 5656 sizeof(unsigned long), 5657 GFP_KERNEL); 5658 if (!phba->vpi_bmask) { 5659 rc = -ENOMEM; 5660 goto lpfc_sli_hba_setup_error; 5661 } 5662 5663 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5664 sizeof(uint16_t), 5665 GFP_KERNEL); 5666 if (!phba->vpi_ids) { 5667 kfree(phba->vpi_bmask); 5668 rc = -ENOMEM; 5669 goto lpfc_sli_hba_setup_error; 5670 } 5671 for (i = 0; i < phba->max_vpi; i++) 5672 phba->vpi_ids[i] = i; 5673 } 5674 } 5675 5676 /* Init HBQs */ 5677 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5678 rc = lpfc_sli_hbq_setup(phba); 5679 if (rc) 5680 goto lpfc_sli_hba_setup_error; 5681 } 5682 spin_lock_irq(&phba->hbalock); 5683 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5684 spin_unlock_irq(&phba->hbalock); 5685 5686 rc = lpfc_config_port_post(phba); 5687 if (rc) 5688 goto lpfc_sli_hba_setup_error; 5689 5690 return rc; 5691 5692 lpfc_sli_hba_setup_error: 5693 phba->link_state = LPFC_HBA_ERROR; 5694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5695 "0445 Firmware initialization failed\n"); 5696 return rc; 5697 } 5698 5699 /** 5700 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5701 * @phba: Pointer to HBA context object. 5702 * 5703 * This function issue a dump mailbox command to read config region 5704 * 23 and parse the records in the region and populate driver 5705 * data structure. 5706 **/ 5707 static int 5708 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5709 { 5710 LPFC_MBOXQ_t *mboxq; 5711 struct lpfc_dmabuf *mp; 5712 struct lpfc_mqe *mqe; 5713 uint32_t data_length; 5714 int rc; 5715 5716 /* Program the default value of vlan_id and fc_map */ 5717 phba->valid_vlan = 0; 5718 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5719 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5720 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5721 5722 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5723 if (!mboxq) 5724 return -ENOMEM; 5725 5726 mqe = &mboxq->u.mqe; 5727 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5728 rc = -ENOMEM; 5729 goto out_free_mboxq; 5730 } 5731 5732 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5733 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5734 5735 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5736 "(%d):2571 Mailbox cmd x%x Status x%x " 5737 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5738 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5739 "CQ: x%x x%x x%x x%x\n", 5740 mboxq->vport ? mboxq->vport->vpi : 0, 5741 bf_get(lpfc_mqe_command, mqe), 5742 bf_get(lpfc_mqe_status, mqe), 5743 mqe->un.mb_words[0], mqe->un.mb_words[1], 5744 mqe->un.mb_words[2], mqe->un.mb_words[3], 5745 mqe->un.mb_words[4], mqe->un.mb_words[5], 5746 mqe->un.mb_words[6], mqe->un.mb_words[7], 5747 mqe->un.mb_words[8], mqe->un.mb_words[9], 5748 mqe->un.mb_words[10], mqe->un.mb_words[11], 5749 mqe->un.mb_words[12], mqe->un.mb_words[13], 5750 mqe->un.mb_words[14], mqe->un.mb_words[15], 5751 mqe->un.mb_words[16], mqe->un.mb_words[50], 5752 mboxq->mcqe.word0, 5753 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5754 mboxq->mcqe.trailer); 5755 5756 if (rc) { 5757 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5758 kfree(mp); 5759 rc = -EIO; 5760 goto out_free_mboxq; 5761 } 5762 data_length = mqe->un.mb_words[5]; 5763 if (data_length > DMP_RGN23_SIZE) { 5764 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5765 kfree(mp); 5766 rc = -EIO; 5767 goto out_free_mboxq; 5768 } 5769 5770 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5771 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5772 kfree(mp); 5773 rc = 0; 5774 5775 out_free_mboxq: 5776 mempool_free(mboxq, phba->mbox_mem_pool); 5777 return rc; 5778 } 5779 5780 /** 5781 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5782 * @phba: pointer to lpfc hba data structure. 5783 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5784 * @vpd: pointer to the memory to hold resulting port vpd data. 5785 * @vpd_size: On input, the number of bytes allocated to @vpd. 5786 * On output, the number of data bytes in @vpd. 5787 * 5788 * This routine executes a READ_REV SLI4 mailbox command. In 5789 * addition, this routine gets the port vpd data. 5790 * 5791 * Return codes 5792 * 0 - successful 5793 * -ENOMEM - could not allocated memory. 5794 **/ 5795 static int 5796 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5797 uint8_t *vpd, uint32_t *vpd_size) 5798 { 5799 int rc = 0; 5800 uint32_t dma_size; 5801 struct lpfc_dmabuf *dmabuf; 5802 struct lpfc_mqe *mqe; 5803 5804 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5805 if (!dmabuf) 5806 return -ENOMEM; 5807 5808 /* 5809 * Get a DMA buffer for the vpd data resulting from the READ_REV 5810 * mailbox command. 5811 */ 5812 dma_size = *vpd_size; 5813 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5814 &dmabuf->phys, GFP_KERNEL); 5815 if (!dmabuf->virt) { 5816 kfree(dmabuf); 5817 return -ENOMEM; 5818 } 5819 5820 /* 5821 * The SLI4 implementation of READ_REV conflicts at word1, 5822 * bits 31:16 and SLI4 adds vpd functionality not present 5823 * in SLI3. This code corrects the conflicts. 5824 */ 5825 lpfc_read_rev(phba, mboxq); 5826 mqe = &mboxq->u.mqe; 5827 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5828 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5829 mqe->un.read_rev.word1 &= 0x0000FFFF; 5830 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5831 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5832 5833 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5834 if (rc) { 5835 dma_free_coherent(&phba->pcidev->dev, dma_size, 5836 dmabuf->virt, dmabuf->phys); 5837 kfree(dmabuf); 5838 return -EIO; 5839 } 5840 5841 /* 5842 * The available vpd length cannot be bigger than the 5843 * DMA buffer passed to the port. Catch the less than 5844 * case and update the caller's size. 5845 */ 5846 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5847 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5848 5849 memcpy(vpd, dmabuf->virt, *vpd_size); 5850 5851 dma_free_coherent(&phba->pcidev->dev, dma_size, 5852 dmabuf->virt, dmabuf->phys); 5853 kfree(dmabuf); 5854 return 0; 5855 } 5856 5857 /** 5858 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5859 * @phba: pointer to lpfc hba data structure. 5860 * 5861 * This routine retrieves SLI4 device physical port name this PCI function 5862 * is attached to. 5863 * 5864 * Return codes 5865 * 0 - successful 5866 * otherwise - failed to retrieve controller attributes 5867 **/ 5868 static int 5869 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5870 { 5871 LPFC_MBOXQ_t *mboxq; 5872 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5873 struct lpfc_controller_attribute *cntl_attr; 5874 void *virtaddr = NULL; 5875 uint32_t alloclen, reqlen; 5876 uint32_t shdr_status, shdr_add_status; 5877 union lpfc_sli4_cfg_shdr *shdr; 5878 int rc; 5879 5880 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5881 if (!mboxq) 5882 return -ENOMEM; 5883 5884 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5885 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5886 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5887 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5888 LPFC_SLI4_MBX_NEMBED); 5889 5890 if (alloclen < reqlen) { 5891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5892 "3084 Allocated DMA memory size (%d) is " 5893 "less than the requested DMA memory size " 5894 "(%d)\n", alloclen, reqlen); 5895 rc = -ENOMEM; 5896 goto out_free_mboxq; 5897 } 5898 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5899 virtaddr = mboxq->sge_array->addr[0]; 5900 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5901 shdr = &mbx_cntl_attr->cfg_shdr; 5902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5904 if (shdr_status || shdr_add_status || rc) { 5905 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5906 "3085 Mailbox x%x (x%x/x%x) failed, " 5907 "rc:x%x, status:x%x, add_status:x%x\n", 5908 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5909 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5910 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5911 rc, shdr_status, shdr_add_status); 5912 rc = -ENXIO; 5913 goto out_free_mboxq; 5914 } 5915 5916 cntl_attr = &mbx_cntl_attr->cntl_attr; 5917 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5918 phba->sli4_hba.lnk_info.lnk_tp = 5919 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5920 phba->sli4_hba.lnk_info.lnk_no = 5921 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5922 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5923 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5924 5925 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5926 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5927 sizeof(phba->BIOSVersion)); 5928 5929 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5930 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5931 "flash_id: x%02x, asic_rev: x%02x\n", 5932 phba->sli4_hba.lnk_info.lnk_tp, 5933 phba->sli4_hba.lnk_info.lnk_no, 5934 phba->BIOSVersion, phba->sli4_hba.flash_id, 5935 phba->sli4_hba.asic_rev); 5936 out_free_mboxq: 5937 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5938 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5939 else 5940 mempool_free(mboxq, phba->mbox_mem_pool); 5941 return rc; 5942 } 5943 5944 /** 5945 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5946 * @phba: pointer to lpfc hba data structure. 5947 * 5948 * This routine retrieves SLI4 device physical port name this PCI function 5949 * is attached to. 5950 * 5951 * Return codes 5952 * 0 - successful 5953 * otherwise - failed to retrieve physical port name 5954 **/ 5955 static int 5956 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5957 { 5958 LPFC_MBOXQ_t *mboxq; 5959 struct lpfc_mbx_get_port_name *get_port_name; 5960 uint32_t shdr_status, shdr_add_status; 5961 union lpfc_sli4_cfg_shdr *shdr; 5962 char cport_name = 0; 5963 int rc; 5964 5965 /* We assume nothing at this point */ 5966 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5967 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5968 5969 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5970 if (!mboxq) 5971 return -ENOMEM; 5972 /* obtain link type and link number via READ_CONFIG */ 5973 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5974 lpfc_sli4_read_config(phba); 5975 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5976 goto retrieve_ppname; 5977 5978 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5979 rc = lpfc_sli4_get_ctl_attr(phba); 5980 if (rc) 5981 goto out_free_mboxq; 5982 5983 retrieve_ppname: 5984 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5985 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5986 sizeof(struct lpfc_mbx_get_port_name) - 5987 sizeof(struct lpfc_sli4_cfg_mhdr), 5988 LPFC_SLI4_MBX_EMBED); 5989 get_port_name = &mboxq->u.mqe.un.get_port_name; 5990 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5991 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5992 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5993 phba->sli4_hba.lnk_info.lnk_tp); 5994 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5995 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5996 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5997 if (shdr_status || shdr_add_status || rc) { 5998 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5999 "3087 Mailbox x%x (x%x/x%x) failed: " 6000 "rc:x%x, status:x%x, add_status:x%x\n", 6001 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6002 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6003 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6004 rc, shdr_status, shdr_add_status); 6005 rc = -ENXIO; 6006 goto out_free_mboxq; 6007 } 6008 switch (phba->sli4_hba.lnk_info.lnk_no) { 6009 case LPFC_LINK_NUMBER_0: 6010 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6011 &get_port_name->u.response); 6012 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6013 break; 6014 case LPFC_LINK_NUMBER_1: 6015 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6016 &get_port_name->u.response); 6017 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6018 break; 6019 case LPFC_LINK_NUMBER_2: 6020 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6021 &get_port_name->u.response); 6022 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6023 break; 6024 case LPFC_LINK_NUMBER_3: 6025 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6026 &get_port_name->u.response); 6027 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6028 break; 6029 default: 6030 break; 6031 } 6032 6033 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6034 phba->Port[0] = cport_name; 6035 phba->Port[1] = '\0'; 6036 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6037 "3091 SLI get port name: %s\n", phba->Port); 6038 } 6039 6040 out_free_mboxq: 6041 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6042 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6043 else 6044 mempool_free(mboxq, phba->mbox_mem_pool); 6045 return rc; 6046 } 6047 6048 /** 6049 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6050 * @phba: pointer to lpfc hba data structure. 6051 * 6052 * This routine is called to explicitly arm the SLI4 device's completion and 6053 * event queues 6054 **/ 6055 static void 6056 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6057 { 6058 int qidx; 6059 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6060 struct lpfc_sli4_hdw_queue *qp; 6061 struct lpfc_queue *eq; 6062 6063 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6064 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6065 if (sli4_hba->nvmels_cq) 6066 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6067 LPFC_QUEUE_REARM); 6068 6069 if (sli4_hba->hdwq) { 6070 /* Loop thru all Hardware Queues */ 6071 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6072 qp = &sli4_hba->hdwq[qidx]; 6073 /* ARM the corresponding CQ */ 6074 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6075 LPFC_QUEUE_REARM); 6076 } 6077 6078 /* Loop thru all IRQ vectors */ 6079 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6080 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6081 /* ARM the corresponding EQ */ 6082 sli4_hba->sli4_write_eq_db(phba, eq, 6083 0, LPFC_QUEUE_REARM); 6084 } 6085 } 6086 6087 if (phba->nvmet_support) { 6088 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6089 sli4_hba->sli4_write_cq_db(phba, 6090 sli4_hba->nvmet_cqset[qidx], 0, 6091 LPFC_QUEUE_REARM); 6092 } 6093 } 6094 } 6095 6096 /** 6097 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6098 * @phba: Pointer to HBA context object. 6099 * @type: The resource extent type. 6100 * @extnt_count: buffer to hold port available extent count. 6101 * @extnt_size: buffer to hold element count per extent. 6102 * 6103 * This function calls the port and retrievs the number of available 6104 * extents and their size for a particular extent type. 6105 * 6106 * Returns: 0 if successful. Nonzero otherwise. 6107 **/ 6108 int 6109 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6110 uint16_t *extnt_count, uint16_t *extnt_size) 6111 { 6112 int rc = 0; 6113 uint32_t length; 6114 uint32_t mbox_tmo; 6115 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6116 LPFC_MBOXQ_t *mbox; 6117 6118 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6119 if (!mbox) 6120 return -ENOMEM; 6121 6122 /* Find out how many extents are available for this resource type */ 6123 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6124 sizeof(struct lpfc_sli4_cfg_mhdr)); 6125 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6126 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6127 length, LPFC_SLI4_MBX_EMBED); 6128 6129 /* Send an extents count of 0 - the GET doesn't use it. */ 6130 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6131 LPFC_SLI4_MBX_EMBED); 6132 if (unlikely(rc)) { 6133 rc = -EIO; 6134 goto err_exit; 6135 } 6136 6137 if (!phba->sli4_hba.intr_enable) 6138 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6139 else { 6140 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6141 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6142 } 6143 if (unlikely(rc)) { 6144 rc = -EIO; 6145 goto err_exit; 6146 } 6147 6148 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6149 if (bf_get(lpfc_mbox_hdr_status, 6150 &rsrc_info->header.cfg_shdr.response)) { 6151 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6152 "2930 Failed to get resource extents " 6153 "Status 0x%x Add'l Status 0x%x\n", 6154 bf_get(lpfc_mbox_hdr_status, 6155 &rsrc_info->header.cfg_shdr.response), 6156 bf_get(lpfc_mbox_hdr_add_status, 6157 &rsrc_info->header.cfg_shdr.response)); 6158 rc = -EIO; 6159 goto err_exit; 6160 } 6161 6162 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6163 &rsrc_info->u.rsp); 6164 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6165 &rsrc_info->u.rsp); 6166 6167 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6168 "3162 Retrieved extents type-%d from port: count:%d, " 6169 "size:%d\n", type, *extnt_count, *extnt_size); 6170 6171 err_exit: 6172 mempool_free(mbox, phba->mbox_mem_pool); 6173 return rc; 6174 } 6175 6176 /** 6177 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6178 * @phba: Pointer to HBA context object. 6179 * @type: The extent type to check. 6180 * 6181 * This function reads the current available extents from the port and checks 6182 * if the extent count or extent size has changed since the last access. 6183 * Callers use this routine post port reset to understand if there is a 6184 * extent reprovisioning requirement. 6185 * 6186 * Returns: 6187 * -Error: error indicates problem. 6188 * 1: Extent count or size has changed. 6189 * 0: No changes. 6190 **/ 6191 static int 6192 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6193 { 6194 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6195 uint16_t size_diff, rsrc_ext_size; 6196 int rc = 0; 6197 struct lpfc_rsrc_blks *rsrc_entry; 6198 struct list_head *rsrc_blk_list = NULL; 6199 6200 size_diff = 0; 6201 curr_ext_cnt = 0; 6202 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6203 &rsrc_ext_cnt, 6204 &rsrc_ext_size); 6205 if (unlikely(rc)) 6206 return -EIO; 6207 6208 switch (type) { 6209 case LPFC_RSC_TYPE_FCOE_RPI: 6210 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6211 break; 6212 case LPFC_RSC_TYPE_FCOE_VPI: 6213 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6214 break; 6215 case LPFC_RSC_TYPE_FCOE_XRI: 6216 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6217 break; 6218 case LPFC_RSC_TYPE_FCOE_VFI: 6219 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6220 break; 6221 default: 6222 break; 6223 } 6224 6225 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6226 curr_ext_cnt++; 6227 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6228 size_diff++; 6229 } 6230 6231 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6232 rc = 1; 6233 6234 return rc; 6235 } 6236 6237 /** 6238 * lpfc_sli4_cfg_post_extnts - 6239 * @phba: Pointer to HBA context object. 6240 * @extnt_cnt: number of available extents. 6241 * @type: the extent type (rpi, xri, vfi, vpi). 6242 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6243 * @mbox: pointer to the caller's allocated mailbox structure. 6244 * 6245 * This function executes the extents allocation request. It also 6246 * takes care of the amount of memory needed to allocate or get the 6247 * allocated extents. It is the caller's responsibility to evaluate 6248 * the response. 6249 * 6250 * Returns: 6251 * -Error: Error value describes the condition found. 6252 * 0: if successful 6253 **/ 6254 static int 6255 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6256 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6257 { 6258 int rc = 0; 6259 uint32_t req_len; 6260 uint32_t emb_len; 6261 uint32_t alloc_len, mbox_tmo; 6262 6263 /* Calculate the total requested length of the dma memory */ 6264 req_len = extnt_cnt * sizeof(uint16_t); 6265 6266 /* 6267 * Calculate the size of an embedded mailbox. The uint32_t 6268 * accounts for extents-specific word. 6269 */ 6270 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6271 sizeof(uint32_t); 6272 6273 /* 6274 * Presume the allocation and response will fit into an embedded 6275 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6276 */ 6277 *emb = LPFC_SLI4_MBX_EMBED; 6278 if (req_len > emb_len) { 6279 req_len = extnt_cnt * sizeof(uint16_t) + 6280 sizeof(union lpfc_sli4_cfg_shdr) + 6281 sizeof(uint32_t); 6282 *emb = LPFC_SLI4_MBX_NEMBED; 6283 } 6284 6285 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6286 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6287 req_len, *emb); 6288 if (alloc_len < req_len) { 6289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6290 "2982 Allocated DMA memory size (x%x) is " 6291 "less than the requested DMA memory " 6292 "size (x%x)\n", alloc_len, req_len); 6293 return -ENOMEM; 6294 } 6295 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6296 if (unlikely(rc)) 6297 return -EIO; 6298 6299 if (!phba->sli4_hba.intr_enable) 6300 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6301 else { 6302 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6303 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6304 } 6305 6306 if (unlikely(rc)) 6307 rc = -EIO; 6308 return rc; 6309 } 6310 6311 /** 6312 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6313 * @phba: Pointer to HBA context object. 6314 * @type: The resource extent type to allocate. 6315 * 6316 * This function allocates the number of elements for the specified 6317 * resource type. 6318 **/ 6319 static int 6320 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6321 { 6322 bool emb = false; 6323 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6324 uint16_t rsrc_id, rsrc_start, j, k; 6325 uint16_t *ids; 6326 int i, rc; 6327 unsigned long longs; 6328 unsigned long *bmask; 6329 struct lpfc_rsrc_blks *rsrc_blks; 6330 LPFC_MBOXQ_t *mbox; 6331 uint32_t length; 6332 struct lpfc_id_range *id_array = NULL; 6333 void *virtaddr = NULL; 6334 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6335 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6336 struct list_head *ext_blk_list; 6337 6338 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6339 &rsrc_cnt, 6340 &rsrc_size); 6341 if (unlikely(rc)) 6342 return -EIO; 6343 6344 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6346 "3009 No available Resource Extents " 6347 "for resource type 0x%x: Count: 0x%x, " 6348 "Size 0x%x\n", type, rsrc_cnt, 6349 rsrc_size); 6350 return -ENOMEM; 6351 } 6352 6353 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6354 "2903 Post resource extents type-0x%x: " 6355 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6356 6357 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6358 if (!mbox) 6359 return -ENOMEM; 6360 6361 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6362 if (unlikely(rc)) { 6363 rc = -EIO; 6364 goto err_exit; 6365 } 6366 6367 /* 6368 * Figure out where the response is located. Then get local pointers 6369 * to the response data. The port does not guarantee to respond to 6370 * all extents counts request so update the local variable with the 6371 * allocated count from the port. 6372 */ 6373 if (emb == LPFC_SLI4_MBX_EMBED) { 6374 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6375 id_array = &rsrc_ext->u.rsp.id[0]; 6376 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6377 } else { 6378 virtaddr = mbox->sge_array->addr[0]; 6379 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6380 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6381 id_array = &n_rsrc->id; 6382 } 6383 6384 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6385 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6386 6387 /* 6388 * Based on the resource size and count, correct the base and max 6389 * resource values. 6390 */ 6391 length = sizeof(struct lpfc_rsrc_blks); 6392 switch (type) { 6393 case LPFC_RSC_TYPE_FCOE_RPI: 6394 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6395 sizeof(unsigned long), 6396 GFP_KERNEL); 6397 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6398 rc = -ENOMEM; 6399 goto err_exit; 6400 } 6401 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6402 sizeof(uint16_t), 6403 GFP_KERNEL); 6404 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6405 kfree(phba->sli4_hba.rpi_bmask); 6406 rc = -ENOMEM; 6407 goto err_exit; 6408 } 6409 6410 /* 6411 * The next_rpi was initialized with the maximum available 6412 * count but the port may allocate a smaller number. Catch 6413 * that case and update the next_rpi. 6414 */ 6415 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6416 6417 /* Initialize local ptrs for common extent processing later. */ 6418 bmask = phba->sli4_hba.rpi_bmask; 6419 ids = phba->sli4_hba.rpi_ids; 6420 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6421 break; 6422 case LPFC_RSC_TYPE_FCOE_VPI: 6423 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6424 GFP_KERNEL); 6425 if (unlikely(!phba->vpi_bmask)) { 6426 rc = -ENOMEM; 6427 goto err_exit; 6428 } 6429 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6430 GFP_KERNEL); 6431 if (unlikely(!phba->vpi_ids)) { 6432 kfree(phba->vpi_bmask); 6433 rc = -ENOMEM; 6434 goto err_exit; 6435 } 6436 6437 /* Initialize local ptrs for common extent processing later. */ 6438 bmask = phba->vpi_bmask; 6439 ids = phba->vpi_ids; 6440 ext_blk_list = &phba->lpfc_vpi_blk_list; 6441 break; 6442 case LPFC_RSC_TYPE_FCOE_XRI: 6443 phba->sli4_hba.xri_bmask = kcalloc(longs, 6444 sizeof(unsigned long), 6445 GFP_KERNEL); 6446 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6447 rc = -ENOMEM; 6448 goto err_exit; 6449 } 6450 phba->sli4_hba.max_cfg_param.xri_used = 0; 6451 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6452 sizeof(uint16_t), 6453 GFP_KERNEL); 6454 if (unlikely(!phba->sli4_hba.xri_ids)) { 6455 kfree(phba->sli4_hba.xri_bmask); 6456 rc = -ENOMEM; 6457 goto err_exit; 6458 } 6459 6460 /* Initialize local ptrs for common extent processing later. */ 6461 bmask = phba->sli4_hba.xri_bmask; 6462 ids = phba->sli4_hba.xri_ids; 6463 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6464 break; 6465 case LPFC_RSC_TYPE_FCOE_VFI: 6466 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6467 sizeof(unsigned long), 6468 GFP_KERNEL); 6469 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6470 rc = -ENOMEM; 6471 goto err_exit; 6472 } 6473 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6474 sizeof(uint16_t), 6475 GFP_KERNEL); 6476 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6477 kfree(phba->sli4_hba.vfi_bmask); 6478 rc = -ENOMEM; 6479 goto err_exit; 6480 } 6481 6482 /* Initialize local ptrs for common extent processing later. */ 6483 bmask = phba->sli4_hba.vfi_bmask; 6484 ids = phba->sli4_hba.vfi_ids; 6485 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6486 break; 6487 default: 6488 /* Unsupported Opcode. Fail call. */ 6489 id_array = NULL; 6490 bmask = NULL; 6491 ids = NULL; 6492 ext_blk_list = NULL; 6493 goto err_exit; 6494 } 6495 6496 /* 6497 * Complete initializing the extent configuration with the 6498 * allocated ids assigned to this function. The bitmask serves 6499 * as an index into the array and manages the available ids. The 6500 * array just stores the ids communicated to the port via the wqes. 6501 */ 6502 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6503 if ((i % 2) == 0) 6504 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6505 &id_array[k]); 6506 else 6507 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6508 &id_array[k]); 6509 6510 rsrc_blks = kzalloc(length, GFP_KERNEL); 6511 if (unlikely(!rsrc_blks)) { 6512 rc = -ENOMEM; 6513 kfree(bmask); 6514 kfree(ids); 6515 goto err_exit; 6516 } 6517 rsrc_blks->rsrc_start = rsrc_id; 6518 rsrc_blks->rsrc_size = rsrc_size; 6519 list_add_tail(&rsrc_blks->list, ext_blk_list); 6520 rsrc_start = rsrc_id; 6521 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6522 phba->sli4_hba.io_xri_start = rsrc_start + 6523 lpfc_sli4_get_iocb_cnt(phba); 6524 } 6525 6526 while (rsrc_id < (rsrc_start + rsrc_size)) { 6527 ids[j] = rsrc_id; 6528 rsrc_id++; 6529 j++; 6530 } 6531 /* Entire word processed. Get next word.*/ 6532 if ((i % 2) == 1) 6533 k++; 6534 } 6535 err_exit: 6536 lpfc_sli4_mbox_cmd_free(phba, mbox); 6537 return rc; 6538 } 6539 6540 6541 6542 /** 6543 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6544 * @phba: Pointer to HBA context object. 6545 * @type: the extent's type. 6546 * 6547 * This function deallocates all extents of a particular resource type. 6548 * SLI4 does not allow for deallocating a particular extent range. It 6549 * is the caller's responsibility to release all kernel memory resources. 6550 **/ 6551 static int 6552 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6553 { 6554 int rc; 6555 uint32_t length, mbox_tmo = 0; 6556 LPFC_MBOXQ_t *mbox; 6557 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6558 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6559 6560 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6561 if (!mbox) 6562 return -ENOMEM; 6563 6564 /* 6565 * This function sends an embedded mailbox because it only sends the 6566 * the resource type. All extents of this type are released by the 6567 * port. 6568 */ 6569 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6570 sizeof(struct lpfc_sli4_cfg_mhdr)); 6571 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6572 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6573 length, LPFC_SLI4_MBX_EMBED); 6574 6575 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6576 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6577 LPFC_SLI4_MBX_EMBED); 6578 if (unlikely(rc)) { 6579 rc = -EIO; 6580 goto out_free_mbox; 6581 } 6582 if (!phba->sli4_hba.intr_enable) 6583 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6584 else { 6585 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6586 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6587 } 6588 if (unlikely(rc)) { 6589 rc = -EIO; 6590 goto out_free_mbox; 6591 } 6592 6593 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6594 if (bf_get(lpfc_mbox_hdr_status, 6595 &dealloc_rsrc->header.cfg_shdr.response)) { 6596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6597 "2919 Failed to release resource extents " 6598 "for type %d - Status 0x%x Add'l Status 0x%x. " 6599 "Resource memory not released.\n", 6600 type, 6601 bf_get(lpfc_mbox_hdr_status, 6602 &dealloc_rsrc->header.cfg_shdr.response), 6603 bf_get(lpfc_mbox_hdr_add_status, 6604 &dealloc_rsrc->header.cfg_shdr.response)); 6605 rc = -EIO; 6606 goto out_free_mbox; 6607 } 6608 6609 /* Release kernel memory resources for the specific type. */ 6610 switch (type) { 6611 case LPFC_RSC_TYPE_FCOE_VPI: 6612 kfree(phba->vpi_bmask); 6613 kfree(phba->vpi_ids); 6614 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6615 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6616 &phba->lpfc_vpi_blk_list, list) { 6617 list_del_init(&rsrc_blk->list); 6618 kfree(rsrc_blk); 6619 } 6620 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6621 break; 6622 case LPFC_RSC_TYPE_FCOE_XRI: 6623 kfree(phba->sli4_hba.xri_bmask); 6624 kfree(phba->sli4_hba.xri_ids); 6625 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6626 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6627 list_del_init(&rsrc_blk->list); 6628 kfree(rsrc_blk); 6629 } 6630 break; 6631 case LPFC_RSC_TYPE_FCOE_VFI: 6632 kfree(phba->sli4_hba.vfi_bmask); 6633 kfree(phba->sli4_hba.vfi_ids); 6634 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6635 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6636 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6637 list_del_init(&rsrc_blk->list); 6638 kfree(rsrc_blk); 6639 } 6640 break; 6641 case LPFC_RSC_TYPE_FCOE_RPI: 6642 /* RPI bitmask and physical id array are cleaned up earlier. */ 6643 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6644 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6645 list_del_init(&rsrc_blk->list); 6646 kfree(rsrc_blk); 6647 } 6648 break; 6649 default: 6650 break; 6651 } 6652 6653 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6654 6655 out_free_mbox: 6656 mempool_free(mbox, phba->mbox_mem_pool); 6657 return rc; 6658 } 6659 6660 static void 6661 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6662 uint32_t feature) 6663 { 6664 uint32_t len; 6665 u32 sig_freq = 0; 6666 6667 len = sizeof(struct lpfc_mbx_set_feature) - 6668 sizeof(struct lpfc_sli4_cfg_mhdr); 6669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6670 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6671 LPFC_SLI4_MBX_EMBED); 6672 6673 switch (feature) { 6674 case LPFC_SET_UE_RECOVERY: 6675 bf_set(lpfc_mbx_set_feature_UER, 6676 &mbox->u.mqe.un.set_feature, 1); 6677 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6678 mbox->u.mqe.un.set_feature.param_len = 8; 6679 break; 6680 case LPFC_SET_MDS_DIAGS: 6681 bf_set(lpfc_mbx_set_feature_mds, 6682 &mbox->u.mqe.un.set_feature, 1); 6683 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6684 &mbox->u.mqe.un.set_feature, 1); 6685 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6686 mbox->u.mqe.un.set_feature.param_len = 8; 6687 break; 6688 case LPFC_SET_CGN_SIGNAL: 6689 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6690 sig_freq = 0; 6691 else 6692 sig_freq = phba->cgn_sig_freq; 6693 6694 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6695 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6696 &mbox->u.mqe.un.set_feature, sig_freq); 6697 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6698 &mbox->u.mqe.un.set_feature, sig_freq); 6699 } 6700 6701 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6702 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6703 &mbox->u.mqe.un.set_feature, sig_freq); 6704 6705 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6706 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6707 sig_freq = 0; 6708 else 6709 sig_freq = lpfc_acqe_cgn_frequency; 6710 6711 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6712 &mbox->u.mqe.un.set_feature, sig_freq); 6713 6714 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6715 mbox->u.mqe.un.set_feature.param_len = 12; 6716 break; 6717 case LPFC_SET_DUAL_DUMP: 6718 bf_set(lpfc_mbx_set_feature_dd, 6719 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6720 bf_set(lpfc_mbx_set_feature_ddquery, 6721 &mbox->u.mqe.un.set_feature, 0); 6722 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6723 mbox->u.mqe.un.set_feature.param_len = 4; 6724 break; 6725 case LPFC_SET_ENABLE_MI: 6726 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6727 mbox->u.mqe.un.set_feature.param_len = 4; 6728 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6729 phba->pport->cfg_lun_queue_depth); 6730 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6731 phba->sli4_hba.pc_sli4_params.mi_ver); 6732 break; 6733 case LPFC_SET_ENABLE_CMF: 6734 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6735 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6736 mbox->u.mqe.un.set_feature.param_len = 4; 6737 bf_set(lpfc_mbx_set_feature_cmf, 6738 &mbox->u.mqe.un.set_feature, 1); 6739 break; 6740 } 6741 return; 6742 } 6743 6744 /** 6745 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6746 * @phba: Pointer to HBA context object. 6747 * 6748 * Disable FW logging into host memory on the adapter. To 6749 * be done before reading logs from the host memory. 6750 **/ 6751 void 6752 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6753 { 6754 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6755 6756 spin_lock_irq(&phba->hbalock); 6757 ras_fwlog->state = INACTIVE; 6758 spin_unlock_irq(&phba->hbalock); 6759 6760 /* Disable FW logging to host memory */ 6761 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6762 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6763 6764 /* Wait 10ms for firmware to stop using DMA buffer */ 6765 usleep_range(10 * 1000, 20 * 1000); 6766 } 6767 6768 /** 6769 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6770 * @phba: Pointer to HBA context object. 6771 * 6772 * This function is called to free memory allocated for RAS FW logging 6773 * support in the driver. 6774 **/ 6775 void 6776 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6777 { 6778 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6779 struct lpfc_dmabuf *dmabuf, *next; 6780 6781 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6782 list_for_each_entry_safe(dmabuf, next, 6783 &ras_fwlog->fwlog_buff_list, 6784 list) { 6785 list_del(&dmabuf->list); 6786 dma_free_coherent(&phba->pcidev->dev, 6787 LPFC_RAS_MAX_ENTRY_SIZE, 6788 dmabuf->virt, dmabuf->phys); 6789 kfree(dmabuf); 6790 } 6791 } 6792 6793 if (ras_fwlog->lwpd.virt) { 6794 dma_free_coherent(&phba->pcidev->dev, 6795 sizeof(uint32_t) * 2, 6796 ras_fwlog->lwpd.virt, 6797 ras_fwlog->lwpd.phys); 6798 ras_fwlog->lwpd.virt = NULL; 6799 } 6800 6801 spin_lock_irq(&phba->hbalock); 6802 ras_fwlog->state = INACTIVE; 6803 spin_unlock_irq(&phba->hbalock); 6804 } 6805 6806 /** 6807 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6808 * @phba: Pointer to HBA context object. 6809 * @fwlog_buff_count: Count of buffers to be created. 6810 * 6811 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6812 * to update FW log is posted to the adapter. 6813 * Buffer count is calculated based on module param ras_fwlog_buffsize 6814 * Size of each buffer posted to FW is 64K. 6815 **/ 6816 6817 static int 6818 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6819 uint32_t fwlog_buff_count) 6820 { 6821 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6822 struct lpfc_dmabuf *dmabuf; 6823 int rc = 0, i = 0; 6824 6825 /* Initialize List */ 6826 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6827 6828 /* Allocate memory for the LWPD */ 6829 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6830 sizeof(uint32_t) * 2, 6831 &ras_fwlog->lwpd.phys, 6832 GFP_KERNEL); 6833 if (!ras_fwlog->lwpd.virt) { 6834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6835 "6185 LWPD Memory Alloc Failed\n"); 6836 6837 return -ENOMEM; 6838 } 6839 6840 ras_fwlog->fw_buffcount = fwlog_buff_count; 6841 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6842 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6843 GFP_KERNEL); 6844 if (!dmabuf) { 6845 rc = -ENOMEM; 6846 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6847 "6186 Memory Alloc failed FW logging"); 6848 goto free_mem; 6849 } 6850 6851 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6852 LPFC_RAS_MAX_ENTRY_SIZE, 6853 &dmabuf->phys, GFP_KERNEL); 6854 if (!dmabuf->virt) { 6855 kfree(dmabuf); 6856 rc = -ENOMEM; 6857 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6858 "6187 DMA Alloc Failed FW logging"); 6859 goto free_mem; 6860 } 6861 dmabuf->buffer_tag = i; 6862 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6863 } 6864 6865 free_mem: 6866 if (rc) 6867 lpfc_sli4_ras_dma_free(phba); 6868 6869 return rc; 6870 } 6871 6872 /** 6873 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6874 * @phba: pointer to lpfc hba data structure. 6875 * @pmb: pointer to the driver internal queue element for mailbox command. 6876 * 6877 * Completion handler for driver's RAS MBX command to the device. 6878 **/ 6879 static void 6880 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6881 { 6882 MAILBOX_t *mb; 6883 union lpfc_sli4_cfg_shdr *shdr; 6884 uint32_t shdr_status, shdr_add_status; 6885 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6886 6887 mb = &pmb->u.mb; 6888 6889 shdr = (union lpfc_sli4_cfg_shdr *) 6890 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6891 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6892 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6893 6894 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6896 "6188 FW LOG mailbox " 6897 "completed with status x%x add_status x%x," 6898 " mbx status x%x\n", 6899 shdr_status, shdr_add_status, mb->mbxStatus); 6900 6901 ras_fwlog->ras_hwsupport = false; 6902 goto disable_ras; 6903 } 6904 6905 spin_lock_irq(&phba->hbalock); 6906 ras_fwlog->state = ACTIVE; 6907 spin_unlock_irq(&phba->hbalock); 6908 mempool_free(pmb, phba->mbox_mem_pool); 6909 6910 return; 6911 6912 disable_ras: 6913 /* Free RAS DMA memory */ 6914 lpfc_sli4_ras_dma_free(phba); 6915 mempool_free(pmb, phba->mbox_mem_pool); 6916 } 6917 6918 /** 6919 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6920 * @phba: pointer to lpfc hba data structure. 6921 * @fwlog_level: Logging verbosity level. 6922 * @fwlog_enable: Enable/Disable logging. 6923 * 6924 * Initialize memory and post mailbox command to enable FW logging in host 6925 * memory. 6926 **/ 6927 int 6928 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6929 uint32_t fwlog_level, 6930 uint32_t fwlog_enable) 6931 { 6932 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6933 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6934 struct lpfc_dmabuf *dmabuf; 6935 LPFC_MBOXQ_t *mbox; 6936 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6937 int rc = 0; 6938 6939 spin_lock_irq(&phba->hbalock); 6940 ras_fwlog->state = INACTIVE; 6941 spin_unlock_irq(&phba->hbalock); 6942 6943 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6944 phba->cfg_ras_fwlog_buffsize); 6945 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6946 6947 /* 6948 * If re-enabling FW logging support use earlier allocated 6949 * DMA buffers while posting MBX command. 6950 **/ 6951 if (!ras_fwlog->lwpd.virt) { 6952 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6953 if (rc) { 6954 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6955 "6189 FW Log Memory Allocation Failed"); 6956 return rc; 6957 } 6958 } 6959 6960 /* Setup Mailbox command */ 6961 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6962 if (!mbox) { 6963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6964 "6190 RAS MBX Alloc Failed"); 6965 rc = -ENOMEM; 6966 goto mem_free; 6967 } 6968 6969 ras_fwlog->fw_loglevel = fwlog_level; 6970 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6971 sizeof(struct lpfc_sli4_cfg_mhdr)); 6972 6973 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6974 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6975 len, LPFC_SLI4_MBX_EMBED); 6976 6977 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6978 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6979 fwlog_enable); 6980 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6981 ras_fwlog->fw_loglevel); 6982 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6983 ras_fwlog->fw_buffcount); 6984 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6985 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6986 6987 /* Update DMA buffer address */ 6988 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6989 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6990 6991 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6992 putPaddrLow(dmabuf->phys); 6993 6994 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6995 putPaddrHigh(dmabuf->phys); 6996 } 6997 6998 /* Update LPWD address */ 6999 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7000 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7001 7002 spin_lock_irq(&phba->hbalock); 7003 ras_fwlog->state = REG_INPROGRESS; 7004 spin_unlock_irq(&phba->hbalock); 7005 mbox->vport = phba->pport; 7006 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7007 7008 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7009 7010 if (rc == MBX_NOT_FINISHED) { 7011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7012 "6191 FW-Log Mailbox failed. " 7013 "status %d mbxStatus : x%x", rc, 7014 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7015 mempool_free(mbox, phba->mbox_mem_pool); 7016 rc = -EIO; 7017 goto mem_free; 7018 } else 7019 rc = 0; 7020 mem_free: 7021 if (rc) 7022 lpfc_sli4_ras_dma_free(phba); 7023 7024 return rc; 7025 } 7026 7027 /** 7028 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7029 * @phba: Pointer to HBA context object. 7030 * 7031 * Check if RAS is supported on the adapter and initialize it. 7032 **/ 7033 void 7034 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7035 { 7036 /* Check RAS FW Log needs to be enabled or not */ 7037 if (lpfc_check_fwlog_support(phba)) 7038 return; 7039 7040 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7041 LPFC_RAS_ENABLE_LOGGING); 7042 } 7043 7044 /** 7045 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7046 * @phba: Pointer to HBA context object. 7047 * 7048 * This function allocates all SLI4 resource identifiers. 7049 **/ 7050 int 7051 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7052 { 7053 int i, rc, error = 0; 7054 uint16_t count, base; 7055 unsigned long longs; 7056 7057 if (!phba->sli4_hba.rpi_hdrs_in_use) 7058 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7059 if (phba->sli4_hba.extents_in_use) { 7060 /* 7061 * The port supports resource extents. The XRI, VPI, VFI, RPI 7062 * resource extent count must be read and allocated before 7063 * provisioning the resource id arrays. 7064 */ 7065 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7066 LPFC_IDX_RSRC_RDY) { 7067 /* 7068 * Extent-based resources are set - the driver could 7069 * be in a port reset. Figure out if any corrective 7070 * actions need to be taken. 7071 */ 7072 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7073 LPFC_RSC_TYPE_FCOE_VFI); 7074 if (rc != 0) 7075 error++; 7076 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7077 LPFC_RSC_TYPE_FCOE_VPI); 7078 if (rc != 0) 7079 error++; 7080 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7081 LPFC_RSC_TYPE_FCOE_XRI); 7082 if (rc != 0) 7083 error++; 7084 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7085 LPFC_RSC_TYPE_FCOE_RPI); 7086 if (rc != 0) 7087 error++; 7088 7089 /* 7090 * It's possible that the number of resources 7091 * provided to this port instance changed between 7092 * resets. Detect this condition and reallocate 7093 * resources. Otherwise, there is no action. 7094 */ 7095 if (error) { 7096 lpfc_printf_log(phba, KERN_INFO, 7097 LOG_MBOX | LOG_INIT, 7098 "2931 Detected extent resource " 7099 "change. Reallocating all " 7100 "extents.\n"); 7101 rc = lpfc_sli4_dealloc_extent(phba, 7102 LPFC_RSC_TYPE_FCOE_VFI); 7103 rc = lpfc_sli4_dealloc_extent(phba, 7104 LPFC_RSC_TYPE_FCOE_VPI); 7105 rc = lpfc_sli4_dealloc_extent(phba, 7106 LPFC_RSC_TYPE_FCOE_XRI); 7107 rc = lpfc_sli4_dealloc_extent(phba, 7108 LPFC_RSC_TYPE_FCOE_RPI); 7109 } else 7110 return 0; 7111 } 7112 7113 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7114 if (unlikely(rc)) 7115 goto err_exit; 7116 7117 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7118 if (unlikely(rc)) 7119 goto err_exit; 7120 7121 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7122 if (unlikely(rc)) 7123 goto err_exit; 7124 7125 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7126 if (unlikely(rc)) 7127 goto err_exit; 7128 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7129 LPFC_IDX_RSRC_RDY); 7130 return rc; 7131 } else { 7132 /* 7133 * The port does not support resource extents. The XRI, VPI, 7134 * VFI, RPI resource ids were determined from READ_CONFIG. 7135 * Just allocate the bitmasks and provision the resource id 7136 * arrays. If a port reset is active, the resources don't 7137 * need any action - just exit. 7138 */ 7139 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7140 LPFC_IDX_RSRC_RDY) { 7141 lpfc_sli4_dealloc_resource_identifiers(phba); 7142 lpfc_sli4_remove_rpis(phba); 7143 } 7144 /* RPIs. */ 7145 count = phba->sli4_hba.max_cfg_param.max_rpi; 7146 if (count <= 0) { 7147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7148 "3279 Invalid provisioning of " 7149 "rpi:%d\n", count); 7150 rc = -EINVAL; 7151 goto err_exit; 7152 } 7153 base = phba->sli4_hba.max_cfg_param.rpi_base; 7154 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7155 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7156 sizeof(unsigned long), 7157 GFP_KERNEL); 7158 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7159 rc = -ENOMEM; 7160 goto err_exit; 7161 } 7162 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7163 GFP_KERNEL); 7164 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7165 rc = -ENOMEM; 7166 goto free_rpi_bmask; 7167 } 7168 7169 for (i = 0; i < count; i++) 7170 phba->sli4_hba.rpi_ids[i] = base + i; 7171 7172 /* VPIs. */ 7173 count = phba->sli4_hba.max_cfg_param.max_vpi; 7174 if (count <= 0) { 7175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7176 "3280 Invalid provisioning of " 7177 "vpi:%d\n", count); 7178 rc = -EINVAL; 7179 goto free_rpi_ids; 7180 } 7181 base = phba->sli4_hba.max_cfg_param.vpi_base; 7182 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7183 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7184 GFP_KERNEL); 7185 if (unlikely(!phba->vpi_bmask)) { 7186 rc = -ENOMEM; 7187 goto free_rpi_ids; 7188 } 7189 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7190 GFP_KERNEL); 7191 if (unlikely(!phba->vpi_ids)) { 7192 rc = -ENOMEM; 7193 goto free_vpi_bmask; 7194 } 7195 7196 for (i = 0; i < count; i++) 7197 phba->vpi_ids[i] = base + i; 7198 7199 /* XRIs. */ 7200 count = phba->sli4_hba.max_cfg_param.max_xri; 7201 if (count <= 0) { 7202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7203 "3281 Invalid provisioning of " 7204 "xri:%d\n", count); 7205 rc = -EINVAL; 7206 goto free_vpi_ids; 7207 } 7208 base = phba->sli4_hba.max_cfg_param.xri_base; 7209 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7210 phba->sli4_hba.xri_bmask = kcalloc(longs, 7211 sizeof(unsigned long), 7212 GFP_KERNEL); 7213 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7214 rc = -ENOMEM; 7215 goto free_vpi_ids; 7216 } 7217 phba->sli4_hba.max_cfg_param.xri_used = 0; 7218 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7219 GFP_KERNEL); 7220 if (unlikely(!phba->sli4_hba.xri_ids)) { 7221 rc = -ENOMEM; 7222 goto free_xri_bmask; 7223 } 7224 7225 for (i = 0; i < count; i++) 7226 phba->sli4_hba.xri_ids[i] = base + i; 7227 7228 /* VFIs. */ 7229 count = phba->sli4_hba.max_cfg_param.max_vfi; 7230 if (count <= 0) { 7231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7232 "3282 Invalid provisioning of " 7233 "vfi:%d\n", count); 7234 rc = -EINVAL; 7235 goto free_xri_ids; 7236 } 7237 base = phba->sli4_hba.max_cfg_param.vfi_base; 7238 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7239 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7240 sizeof(unsigned long), 7241 GFP_KERNEL); 7242 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7243 rc = -ENOMEM; 7244 goto free_xri_ids; 7245 } 7246 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7247 GFP_KERNEL); 7248 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7249 rc = -ENOMEM; 7250 goto free_vfi_bmask; 7251 } 7252 7253 for (i = 0; i < count; i++) 7254 phba->sli4_hba.vfi_ids[i] = base + i; 7255 7256 /* 7257 * Mark all resources ready. An HBA reset doesn't need 7258 * to reset the initialization. 7259 */ 7260 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7261 LPFC_IDX_RSRC_RDY); 7262 return 0; 7263 } 7264 7265 free_vfi_bmask: 7266 kfree(phba->sli4_hba.vfi_bmask); 7267 phba->sli4_hba.vfi_bmask = NULL; 7268 free_xri_ids: 7269 kfree(phba->sli4_hba.xri_ids); 7270 phba->sli4_hba.xri_ids = NULL; 7271 free_xri_bmask: 7272 kfree(phba->sli4_hba.xri_bmask); 7273 phba->sli4_hba.xri_bmask = NULL; 7274 free_vpi_ids: 7275 kfree(phba->vpi_ids); 7276 phba->vpi_ids = NULL; 7277 free_vpi_bmask: 7278 kfree(phba->vpi_bmask); 7279 phba->vpi_bmask = NULL; 7280 free_rpi_ids: 7281 kfree(phba->sli4_hba.rpi_ids); 7282 phba->sli4_hba.rpi_ids = NULL; 7283 free_rpi_bmask: 7284 kfree(phba->sli4_hba.rpi_bmask); 7285 phba->sli4_hba.rpi_bmask = NULL; 7286 err_exit: 7287 return rc; 7288 } 7289 7290 /** 7291 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7292 * @phba: Pointer to HBA context object. 7293 * 7294 * This function allocates the number of elements for the specified 7295 * resource type. 7296 **/ 7297 int 7298 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7299 { 7300 if (phba->sli4_hba.extents_in_use) { 7301 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7302 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7303 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7304 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7305 } else { 7306 kfree(phba->vpi_bmask); 7307 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7308 kfree(phba->vpi_ids); 7309 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7310 kfree(phba->sli4_hba.xri_bmask); 7311 kfree(phba->sli4_hba.xri_ids); 7312 kfree(phba->sli4_hba.vfi_bmask); 7313 kfree(phba->sli4_hba.vfi_ids); 7314 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7315 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7316 } 7317 7318 return 0; 7319 } 7320 7321 /** 7322 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7323 * @phba: Pointer to HBA context object. 7324 * @type: The resource extent type. 7325 * @extnt_cnt: buffer to hold port extent count response 7326 * @extnt_size: buffer to hold port extent size response. 7327 * 7328 * This function calls the port to read the host allocated extents 7329 * for a particular type. 7330 **/ 7331 int 7332 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7333 uint16_t *extnt_cnt, uint16_t *extnt_size) 7334 { 7335 bool emb; 7336 int rc = 0; 7337 uint16_t curr_blks = 0; 7338 uint32_t req_len, emb_len; 7339 uint32_t alloc_len, mbox_tmo; 7340 struct list_head *blk_list_head; 7341 struct lpfc_rsrc_blks *rsrc_blk; 7342 LPFC_MBOXQ_t *mbox; 7343 void *virtaddr = NULL; 7344 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7345 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7346 union lpfc_sli4_cfg_shdr *shdr; 7347 7348 switch (type) { 7349 case LPFC_RSC_TYPE_FCOE_VPI: 7350 blk_list_head = &phba->lpfc_vpi_blk_list; 7351 break; 7352 case LPFC_RSC_TYPE_FCOE_XRI: 7353 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7354 break; 7355 case LPFC_RSC_TYPE_FCOE_VFI: 7356 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7357 break; 7358 case LPFC_RSC_TYPE_FCOE_RPI: 7359 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7360 break; 7361 default: 7362 return -EIO; 7363 } 7364 7365 /* Count the number of extents currently allocatd for this type. */ 7366 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7367 if (curr_blks == 0) { 7368 /* 7369 * The GET_ALLOCATED mailbox does not return the size, 7370 * just the count. The size should be just the size 7371 * stored in the current allocated block and all sizes 7372 * for an extent type are the same so set the return 7373 * value now. 7374 */ 7375 *extnt_size = rsrc_blk->rsrc_size; 7376 } 7377 curr_blks++; 7378 } 7379 7380 /* 7381 * Calculate the size of an embedded mailbox. The uint32_t 7382 * accounts for extents-specific word. 7383 */ 7384 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7385 sizeof(uint32_t); 7386 7387 /* 7388 * Presume the allocation and response will fit into an embedded 7389 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7390 */ 7391 emb = LPFC_SLI4_MBX_EMBED; 7392 req_len = emb_len; 7393 if (req_len > emb_len) { 7394 req_len = curr_blks * sizeof(uint16_t) + 7395 sizeof(union lpfc_sli4_cfg_shdr) + 7396 sizeof(uint32_t); 7397 emb = LPFC_SLI4_MBX_NEMBED; 7398 } 7399 7400 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7401 if (!mbox) 7402 return -ENOMEM; 7403 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7404 7405 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7406 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7407 req_len, emb); 7408 if (alloc_len < req_len) { 7409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7410 "2983 Allocated DMA memory size (x%x) is " 7411 "less than the requested DMA memory " 7412 "size (x%x)\n", alloc_len, req_len); 7413 rc = -ENOMEM; 7414 goto err_exit; 7415 } 7416 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7417 if (unlikely(rc)) { 7418 rc = -EIO; 7419 goto err_exit; 7420 } 7421 7422 if (!phba->sli4_hba.intr_enable) 7423 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7424 else { 7425 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7426 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7427 } 7428 7429 if (unlikely(rc)) { 7430 rc = -EIO; 7431 goto err_exit; 7432 } 7433 7434 /* 7435 * Figure out where the response is located. Then get local pointers 7436 * to the response data. The port does not guarantee to respond to 7437 * all extents counts request so update the local variable with the 7438 * allocated count from the port. 7439 */ 7440 if (emb == LPFC_SLI4_MBX_EMBED) { 7441 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7442 shdr = &rsrc_ext->header.cfg_shdr; 7443 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7444 } else { 7445 virtaddr = mbox->sge_array->addr[0]; 7446 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7447 shdr = &n_rsrc->cfg_shdr; 7448 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7449 } 7450 7451 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7453 "2984 Failed to read allocated resources " 7454 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7455 type, 7456 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7457 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7458 rc = -EIO; 7459 goto err_exit; 7460 } 7461 err_exit: 7462 lpfc_sli4_mbox_cmd_free(phba, mbox); 7463 return rc; 7464 } 7465 7466 /** 7467 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7468 * @phba: pointer to lpfc hba data structure. 7469 * @sgl_list: linked link of sgl buffers to post 7470 * @cnt: number of linked list buffers 7471 * 7472 * This routine walks the list of buffers that have been allocated and 7473 * repost them to the port by using SGL block post. This is needed after a 7474 * pci_function_reset/warm_start or start. It attempts to construct blocks 7475 * of buffer sgls which contains contiguous xris and uses the non-embedded 7476 * SGL block post mailbox commands to post them to the port. For single 7477 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7478 * mailbox command for posting. 7479 * 7480 * Returns: 0 = success, non-zero failure. 7481 **/ 7482 static int 7483 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7484 struct list_head *sgl_list, int cnt) 7485 { 7486 struct lpfc_sglq *sglq_entry = NULL; 7487 struct lpfc_sglq *sglq_entry_next = NULL; 7488 struct lpfc_sglq *sglq_entry_first = NULL; 7489 int status, total_cnt; 7490 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7491 int last_xritag = NO_XRI; 7492 LIST_HEAD(prep_sgl_list); 7493 LIST_HEAD(blck_sgl_list); 7494 LIST_HEAD(allc_sgl_list); 7495 LIST_HEAD(post_sgl_list); 7496 LIST_HEAD(free_sgl_list); 7497 7498 spin_lock_irq(&phba->hbalock); 7499 spin_lock(&phba->sli4_hba.sgl_list_lock); 7500 list_splice_init(sgl_list, &allc_sgl_list); 7501 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7502 spin_unlock_irq(&phba->hbalock); 7503 7504 total_cnt = cnt; 7505 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7506 &allc_sgl_list, list) { 7507 list_del_init(&sglq_entry->list); 7508 block_cnt++; 7509 if ((last_xritag != NO_XRI) && 7510 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7511 /* a hole in xri block, form a sgl posting block */ 7512 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7513 post_cnt = block_cnt - 1; 7514 /* prepare list for next posting block */ 7515 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7516 block_cnt = 1; 7517 } else { 7518 /* prepare list for next posting block */ 7519 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7520 /* enough sgls for non-embed sgl mbox command */ 7521 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7522 list_splice_init(&prep_sgl_list, 7523 &blck_sgl_list); 7524 post_cnt = block_cnt; 7525 block_cnt = 0; 7526 } 7527 } 7528 num_posted++; 7529 7530 /* keep track of last sgl's xritag */ 7531 last_xritag = sglq_entry->sli4_xritag; 7532 7533 /* end of repost sgl list condition for buffers */ 7534 if (num_posted == total_cnt) { 7535 if (post_cnt == 0) { 7536 list_splice_init(&prep_sgl_list, 7537 &blck_sgl_list); 7538 post_cnt = block_cnt; 7539 } else if (block_cnt == 1) { 7540 status = lpfc_sli4_post_sgl(phba, 7541 sglq_entry->phys, 0, 7542 sglq_entry->sli4_xritag); 7543 if (!status) { 7544 /* successful, put sgl to posted list */ 7545 list_add_tail(&sglq_entry->list, 7546 &post_sgl_list); 7547 } else { 7548 /* Failure, put sgl to free list */ 7549 lpfc_printf_log(phba, KERN_WARNING, 7550 LOG_SLI, 7551 "3159 Failed to post " 7552 "sgl, xritag:x%x\n", 7553 sglq_entry->sli4_xritag); 7554 list_add_tail(&sglq_entry->list, 7555 &free_sgl_list); 7556 total_cnt--; 7557 } 7558 } 7559 } 7560 7561 /* continue until a nembed page worth of sgls */ 7562 if (post_cnt == 0) 7563 continue; 7564 7565 /* post the buffer list sgls as a block */ 7566 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7567 post_cnt); 7568 7569 if (!status) { 7570 /* success, put sgl list to posted sgl list */ 7571 list_splice_init(&blck_sgl_list, &post_sgl_list); 7572 } else { 7573 /* Failure, put sgl list to free sgl list */ 7574 sglq_entry_first = list_first_entry(&blck_sgl_list, 7575 struct lpfc_sglq, 7576 list); 7577 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7578 "3160 Failed to post sgl-list, " 7579 "xritag:x%x-x%x\n", 7580 sglq_entry_first->sli4_xritag, 7581 (sglq_entry_first->sli4_xritag + 7582 post_cnt - 1)); 7583 list_splice_init(&blck_sgl_list, &free_sgl_list); 7584 total_cnt -= post_cnt; 7585 } 7586 7587 /* don't reset xirtag due to hole in xri block */ 7588 if (block_cnt == 0) 7589 last_xritag = NO_XRI; 7590 7591 /* reset sgl post count for next round of posting */ 7592 post_cnt = 0; 7593 } 7594 7595 /* free the sgls failed to post */ 7596 lpfc_free_sgl_list(phba, &free_sgl_list); 7597 7598 /* push sgls posted to the available list */ 7599 if (!list_empty(&post_sgl_list)) { 7600 spin_lock_irq(&phba->hbalock); 7601 spin_lock(&phba->sli4_hba.sgl_list_lock); 7602 list_splice_init(&post_sgl_list, sgl_list); 7603 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7604 spin_unlock_irq(&phba->hbalock); 7605 } else { 7606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7607 "3161 Failure to post sgl to port.\n"); 7608 return -EIO; 7609 } 7610 7611 /* return the number of XRIs actually posted */ 7612 return total_cnt; 7613 } 7614 7615 /** 7616 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7617 * @phba: pointer to lpfc hba data structure. 7618 * 7619 * This routine walks the list of nvme buffers that have been allocated and 7620 * repost them to the port by using SGL block post. This is needed after a 7621 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7622 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7623 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7624 * 7625 * Returns: 0 = success, non-zero failure. 7626 **/ 7627 static int 7628 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7629 { 7630 LIST_HEAD(post_nblist); 7631 int num_posted, rc = 0; 7632 7633 /* get all NVME buffers need to repost to a local list */ 7634 lpfc_io_buf_flush(phba, &post_nblist); 7635 7636 /* post the list of nvme buffer sgls to port if available */ 7637 if (!list_empty(&post_nblist)) { 7638 num_posted = lpfc_sli4_post_io_sgl_list( 7639 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7640 /* failed to post any nvme buffer, return error */ 7641 if (num_posted == 0) 7642 rc = -EIO; 7643 } 7644 return rc; 7645 } 7646 7647 static void 7648 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7649 { 7650 uint32_t len; 7651 7652 len = sizeof(struct lpfc_mbx_set_host_data) - 7653 sizeof(struct lpfc_sli4_cfg_mhdr); 7654 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7655 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7656 LPFC_SLI4_MBX_EMBED); 7657 7658 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7659 mbox->u.mqe.un.set_host_data.param_len = 7660 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7661 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7662 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7663 "Linux %s v"LPFC_DRIVER_VERSION, 7664 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7665 } 7666 7667 int 7668 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7669 struct lpfc_queue *drq, int count, int idx) 7670 { 7671 int rc, i; 7672 struct lpfc_rqe hrqe; 7673 struct lpfc_rqe drqe; 7674 struct lpfc_rqb *rqbp; 7675 unsigned long flags; 7676 struct rqb_dmabuf *rqb_buffer; 7677 LIST_HEAD(rqb_buf_list); 7678 7679 rqbp = hrq->rqbp; 7680 for (i = 0; i < count; i++) { 7681 spin_lock_irqsave(&phba->hbalock, flags); 7682 /* IF RQ is already full, don't bother */ 7683 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7684 spin_unlock_irqrestore(&phba->hbalock, flags); 7685 break; 7686 } 7687 spin_unlock_irqrestore(&phba->hbalock, flags); 7688 7689 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7690 if (!rqb_buffer) 7691 break; 7692 rqb_buffer->hrq = hrq; 7693 rqb_buffer->drq = drq; 7694 rqb_buffer->idx = idx; 7695 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7696 } 7697 7698 spin_lock_irqsave(&phba->hbalock, flags); 7699 while (!list_empty(&rqb_buf_list)) { 7700 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7701 hbuf.list); 7702 7703 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7704 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7705 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7706 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7707 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7708 if (rc < 0) { 7709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7710 "6421 Cannot post to HRQ %d: %x %x %x " 7711 "DRQ %x %x\n", 7712 hrq->queue_id, 7713 hrq->host_index, 7714 hrq->hba_index, 7715 hrq->entry_count, 7716 drq->host_index, 7717 drq->hba_index); 7718 rqbp->rqb_free_buffer(phba, rqb_buffer); 7719 } else { 7720 list_add_tail(&rqb_buffer->hbuf.list, 7721 &rqbp->rqb_buffer_list); 7722 rqbp->buffer_count++; 7723 } 7724 } 7725 spin_unlock_irqrestore(&phba->hbalock, flags); 7726 return 1; 7727 } 7728 7729 static void 7730 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7731 { 7732 struct lpfc_vport *vport = pmb->vport; 7733 union lpfc_sli4_cfg_shdr *shdr; 7734 u32 shdr_status, shdr_add_status; 7735 u32 sig, acqe; 7736 7737 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7738 * is done. (2) Mailbox failed and send FPIN support only. 7739 */ 7740 shdr = (union lpfc_sli4_cfg_shdr *) 7741 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7742 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7743 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7744 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7746 "2516 CGN SET_FEATURE mbox failed with " 7747 "status x%x add_status x%x, mbx status x%x " 7748 "Reset Congestion to FPINs only\n", 7749 shdr_status, shdr_add_status, 7750 pmb->u.mb.mbxStatus); 7751 /* If there is a mbox error, move on to RDF */ 7752 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7753 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7754 goto out; 7755 } 7756 7757 /* Zero out Congestion Signal ACQE counter */ 7758 phba->cgn_acqe_cnt = 0; 7759 7760 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7761 &pmb->u.mqe.un.set_feature); 7762 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7763 &pmb->u.mqe.un.set_feature); 7764 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7765 "4620 SET_FEATURES Success: Freq: %ds %dms " 7766 " Reg: x%x x%x\n", acqe, sig, 7767 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7768 out: 7769 mempool_free(pmb, phba->mbox_mem_pool); 7770 7771 /* Register for FPIN events from the fabric now that the 7772 * EDC common_set_features has completed. 7773 */ 7774 lpfc_issue_els_rdf(vport, 0); 7775 } 7776 7777 int 7778 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7779 { 7780 LPFC_MBOXQ_t *mboxq; 7781 u32 rc; 7782 7783 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7784 if (!mboxq) 7785 goto out_rdf; 7786 7787 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7788 mboxq->vport = phba->pport; 7789 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7790 7791 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7792 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7793 "Reg: x%x x%x\n", 7794 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7795 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7796 7797 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7798 if (rc == MBX_NOT_FINISHED) 7799 goto out; 7800 return 0; 7801 7802 out: 7803 mempool_free(mboxq, phba->mbox_mem_pool); 7804 out_rdf: 7805 /* If there is a mbox error, move on to RDF */ 7806 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7807 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7808 lpfc_issue_els_rdf(phba->pport, 0); 7809 return -EIO; 7810 } 7811 7812 /** 7813 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7814 * @phba: pointer to lpfc hba data structure. 7815 * 7816 * This routine initializes the per-cq idle_stat to dynamically dictate 7817 * polling decisions. 7818 * 7819 * Return codes: 7820 * None 7821 **/ 7822 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7823 { 7824 int i; 7825 struct lpfc_sli4_hdw_queue *hdwq; 7826 struct lpfc_queue *cq; 7827 struct lpfc_idle_stat *idle_stat; 7828 u64 wall; 7829 7830 for_each_present_cpu(i) { 7831 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7832 cq = hdwq->io_cq; 7833 7834 /* Skip if we've already handled this cq's primary CPU */ 7835 if (cq->chann != i) 7836 continue; 7837 7838 idle_stat = &phba->sli4_hba.idle_stat[i]; 7839 7840 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7841 idle_stat->prev_wall = wall; 7842 7843 if (phba->nvmet_support || 7844 phba->cmf_active_mode != LPFC_CFG_OFF) 7845 cq->poll_mode = LPFC_QUEUE_WORK; 7846 else 7847 cq->poll_mode = LPFC_IRQ_POLL; 7848 } 7849 7850 if (!phba->nvmet_support) 7851 schedule_delayed_work(&phba->idle_stat_delay_work, 7852 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7853 } 7854 7855 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7856 { 7857 uint32_t if_type; 7858 7859 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7860 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7861 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7862 struct lpfc_register reg_data; 7863 7864 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7865 ®_data.word0)) 7866 return; 7867 7868 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7869 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7870 "2904 Firmware Dump Image Present" 7871 " on Adapter"); 7872 } 7873 } 7874 7875 /** 7876 * lpfc_cmf_setup - Initialize idle_stat tracking 7877 * @phba: Pointer to HBA context object. 7878 * 7879 * This is called from HBA setup during driver load or when the HBA 7880 * comes online. this does all the initialization to support CMF and MI. 7881 **/ 7882 static int 7883 lpfc_cmf_setup(struct lpfc_hba *phba) 7884 { 7885 LPFC_MBOXQ_t *mboxq; 7886 struct lpfc_dmabuf *mp; 7887 struct lpfc_pc_sli4_params *sli4_params; 7888 int rc, cmf, mi_ver; 7889 7890 rc = lpfc_sli4_refresh_params(phba); 7891 if (unlikely(rc)) 7892 return rc; 7893 7894 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7895 if (!mboxq) 7896 return -ENOMEM; 7897 7898 sli4_params = &phba->sli4_hba.pc_sli4_params; 7899 7900 /* Are we forcing MI off via module parameter? */ 7901 if (!phba->cfg_enable_mi) 7902 sli4_params->mi_ver = 0; 7903 7904 /* Always try to enable MI feature if we can */ 7905 if (sli4_params->mi_ver) { 7906 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7907 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7908 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7909 &mboxq->u.mqe.un.set_feature); 7910 7911 if (rc == MBX_SUCCESS) { 7912 if (mi_ver) { 7913 lpfc_printf_log(phba, 7914 KERN_WARNING, LOG_CGN_MGMT, 7915 "6215 MI is enabled\n"); 7916 sli4_params->mi_ver = mi_ver; 7917 } else { 7918 lpfc_printf_log(phba, 7919 KERN_WARNING, LOG_CGN_MGMT, 7920 "6338 MI is disabled\n"); 7921 sli4_params->mi_ver = 0; 7922 } 7923 } else { 7924 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7925 lpfc_printf_log(phba, KERN_INFO, 7926 LOG_CGN_MGMT | LOG_INIT, 7927 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7928 "failed, rc:x%x mi:x%x\n", 7929 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7930 lpfc_sli_config_mbox_subsys_get 7931 (phba, mboxq), 7932 lpfc_sli_config_mbox_opcode_get 7933 (phba, mboxq), 7934 rc, sli4_params->mi_ver); 7935 } 7936 } else { 7937 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7938 "6217 MI is disabled\n"); 7939 } 7940 7941 /* Ensure FDMI is enabled for MI if enable_mi is set */ 7942 if (sli4_params->mi_ver) 7943 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 7944 7945 /* Always try to enable CMF feature if we can */ 7946 if (sli4_params->cmf) { 7947 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 7948 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7949 cmf = bf_get(lpfc_mbx_set_feature_cmf, 7950 &mboxq->u.mqe.un.set_feature); 7951 if (rc == MBX_SUCCESS && cmf) { 7952 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7953 "6218 CMF is enabled: mode %d\n", 7954 phba->cmf_active_mode); 7955 } else { 7956 lpfc_printf_log(phba, KERN_WARNING, 7957 LOG_CGN_MGMT | LOG_INIT, 7958 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 7959 "failed, rc:x%x dd:x%x\n", 7960 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7961 lpfc_sli_config_mbox_subsys_get 7962 (phba, mboxq), 7963 lpfc_sli_config_mbox_opcode_get 7964 (phba, mboxq), 7965 rc, cmf); 7966 sli4_params->cmf = 0; 7967 phba->cmf_active_mode = LPFC_CFG_OFF; 7968 goto no_cmf; 7969 } 7970 7971 /* Allocate Congestion Information Buffer */ 7972 if (!phba->cgn_i) { 7973 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 7974 if (mp) 7975 mp->virt = dma_alloc_coherent 7976 (&phba->pcidev->dev, 7977 sizeof(struct lpfc_cgn_info), 7978 &mp->phys, GFP_KERNEL); 7979 if (!mp || !mp->virt) { 7980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7981 "2640 Failed to alloc memory " 7982 "for Congestion Info\n"); 7983 kfree(mp); 7984 sli4_params->cmf = 0; 7985 phba->cmf_active_mode = LPFC_CFG_OFF; 7986 goto no_cmf; 7987 } 7988 phba->cgn_i = mp; 7989 7990 /* initialize congestion buffer info */ 7991 lpfc_init_congestion_buf(phba); 7992 lpfc_init_congestion_stat(phba); 7993 7994 /* Zero out Congestion Signal counters */ 7995 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 7996 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 7997 } 7998 7999 rc = lpfc_sli4_cgn_params_read(phba); 8000 if (rc < 0) { 8001 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8002 "6242 Error reading Cgn Params (%d)\n", 8003 rc); 8004 /* Ensure CGN Mode is off */ 8005 sli4_params->cmf = 0; 8006 } else if (!rc) { 8007 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8008 "6243 CGN Event empty object.\n"); 8009 /* Ensure CGN Mode is off */ 8010 sli4_params->cmf = 0; 8011 } 8012 } else { 8013 no_cmf: 8014 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8015 "6220 CMF is disabled\n"); 8016 } 8017 8018 /* Only register congestion buffer with firmware if BOTH 8019 * CMF and E2E are enabled. 8020 */ 8021 if (sli4_params->cmf && sli4_params->mi_ver) { 8022 rc = lpfc_reg_congestion_buf(phba); 8023 if (rc) { 8024 dma_free_coherent(&phba->pcidev->dev, 8025 sizeof(struct lpfc_cgn_info), 8026 phba->cgn_i->virt, phba->cgn_i->phys); 8027 kfree(phba->cgn_i); 8028 phba->cgn_i = NULL; 8029 /* Ensure CGN Mode is off */ 8030 phba->cmf_active_mode = LPFC_CFG_OFF; 8031 return 0; 8032 } 8033 } 8034 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8035 "6470 Setup MI version %d CMF %d mode %d\n", 8036 sli4_params->mi_ver, sli4_params->cmf, 8037 phba->cmf_active_mode); 8038 8039 mempool_free(mboxq, phba->mbox_mem_pool); 8040 8041 /* Initialize atomic counters */ 8042 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8043 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8044 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8045 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8046 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8047 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8048 atomic64_set(&phba->cgn_latency_evt, 0); 8049 8050 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8051 8052 /* Allocate RX Monitor Buffer */ 8053 if (!phba->rxtable) { 8054 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8055 sizeof(struct rxtable_entry), 8056 GFP_KERNEL); 8057 if (!phba->rxtable) { 8058 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8059 "2644 Failed to alloc memory " 8060 "for RX Monitor Buffer\n"); 8061 return -ENOMEM; 8062 } 8063 } 8064 atomic_set(&phba->rxtable_idx_head, 0); 8065 atomic_set(&phba->rxtable_idx_tail, 0); 8066 return 0; 8067 } 8068 8069 static int 8070 lpfc_set_host_tm(struct lpfc_hba *phba) 8071 { 8072 LPFC_MBOXQ_t *mboxq; 8073 uint32_t len, rc; 8074 struct timespec64 cur_time; 8075 struct tm broken; 8076 uint32_t month, day, year; 8077 uint32_t hour, minute, second; 8078 struct lpfc_mbx_set_host_date_time *tm; 8079 8080 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8081 if (!mboxq) 8082 return -ENOMEM; 8083 8084 len = sizeof(struct lpfc_mbx_set_host_data) - 8085 sizeof(struct lpfc_sli4_cfg_mhdr); 8086 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8087 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8088 LPFC_SLI4_MBX_EMBED); 8089 8090 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8091 mboxq->u.mqe.un.set_host_data.param_len = 8092 sizeof(struct lpfc_mbx_set_host_date_time); 8093 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8094 ktime_get_real_ts64(&cur_time); 8095 time64_to_tm(cur_time.tv_sec, 0, &broken); 8096 month = broken.tm_mon + 1; 8097 day = broken.tm_mday; 8098 year = broken.tm_year - 100; 8099 hour = broken.tm_hour; 8100 minute = broken.tm_min; 8101 second = broken.tm_sec; 8102 bf_set(lpfc_mbx_set_host_month, tm, month); 8103 bf_set(lpfc_mbx_set_host_day, tm, day); 8104 bf_set(lpfc_mbx_set_host_year, tm, year); 8105 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8106 bf_set(lpfc_mbx_set_host_min, tm, minute); 8107 bf_set(lpfc_mbx_set_host_sec, tm, second); 8108 8109 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8110 mempool_free(mboxq, phba->mbox_mem_pool); 8111 return rc; 8112 } 8113 8114 /** 8115 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8116 * @phba: Pointer to HBA context object. 8117 * 8118 * This function is the main SLI4 device initialization PCI function. This 8119 * function is called by the HBA initialization code, HBA reset code and 8120 * HBA error attention handler code. Caller is not required to hold any 8121 * locks. 8122 **/ 8123 int 8124 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8125 { 8126 int rc, i, cnt, len, dd; 8127 LPFC_MBOXQ_t *mboxq; 8128 struct lpfc_mqe *mqe; 8129 uint8_t *vpd; 8130 uint32_t vpd_size; 8131 uint32_t ftr_rsp = 0; 8132 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8133 struct lpfc_vport *vport = phba->pport; 8134 struct lpfc_dmabuf *mp; 8135 struct lpfc_rqb *rqbp; 8136 u32 flg; 8137 8138 /* Perform a PCI function reset to start from clean */ 8139 rc = lpfc_pci_function_reset(phba); 8140 if (unlikely(rc)) 8141 return -ENODEV; 8142 8143 /* Check the HBA Host Status Register for readyness */ 8144 rc = lpfc_sli4_post_status_check(phba); 8145 if (unlikely(rc)) 8146 return -ENODEV; 8147 else { 8148 spin_lock_irq(&phba->hbalock); 8149 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8150 flg = phba->sli.sli_flag; 8151 spin_unlock_irq(&phba->hbalock); 8152 /* Allow a little time after setting SLI_ACTIVE for any polled 8153 * MBX commands to complete via BSG. 8154 */ 8155 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8156 msleep(20); 8157 spin_lock_irq(&phba->hbalock); 8158 flg = phba->sli.sli_flag; 8159 spin_unlock_irq(&phba->hbalock); 8160 } 8161 } 8162 8163 lpfc_sli4_dip(phba); 8164 8165 /* 8166 * Allocate a single mailbox container for initializing the 8167 * port. 8168 */ 8169 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8170 if (!mboxq) 8171 return -ENOMEM; 8172 8173 /* Issue READ_REV to collect vpd and FW information. */ 8174 vpd_size = SLI4_PAGE_SIZE; 8175 vpd = kzalloc(vpd_size, GFP_KERNEL); 8176 if (!vpd) { 8177 rc = -ENOMEM; 8178 goto out_free_mbox; 8179 } 8180 8181 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8182 if (unlikely(rc)) { 8183 kfree(vpd); 8184 goto out_free_mbox; 8185 } 8186 8187 mqe = &mboxq->u.mqe; 8188 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8189 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8190 phba->hba_flag |= HBA_FCOE_MODE; 8191 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8192 } else { 8193 phba->hba_flag &= ~HBA_FCOE_MODE; 8194 } 8195 8196 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8197 LPFC_DCBX_CEE_MODE) 8198 phba->hba_flag |= HBA_FIP_SUPPORT; 8199 else 8200 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8201 8202 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8203 8204 if (phba->sli_rev != LPFC_SLI_REV4) { 8205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8206 "0376 READ_REV Error. SLI Level %d " 8207 "FCoE enabled %d\n", 8208 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8209 rc = -EIO; 8210 kfree(vpd); 8211 goto out_free_mbox; 8212 } 8213 8214 rc = lpfc_set_host_tm(phba); 8215 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8216 "6468 Set host date / time: Status x%x:\n", rc); 8217 8218 /* 8219 * Continue initialization with default values even if driver failed 8220 * to read FCoE param config regions, only read parameters if the 8221 * board is FCoE 8222 */ 8223 if (phba->hba_flag & HBA_FCOE_MODE && 8224 lpfc_sli4_read_fcoe_params(phba)) 8225 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8226 "2570 Failed to read FCoE parameters\n"); 8227 8228 /* 8229 * Retrieve sli4 device physical port name, failure of doing it 8230 * is considered as non-fatal. 8231 */ 8232 rc = lpfc_sli4_retrieve_pport_name(phba); 8233 if (!rc) 8234 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8235 "3080 Successful retrieving SLI4 device " 8236 "physical port name: %s.\n", phba->Port); 8237 8238 rc = lpfc_sli4_get_ctl_attr(phba); 8239 if (!rc) 8240 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8241 "8351 Successful retrieving SLI4 device " 8242 "CTL ATTR\n"); 8243 8244 /* 8245 * Evaluate the read rev and vpd data. Populate the driver 8246 * state with the results. If this routine fails, the failure 8247 * is not fatal as the driver will use generic values. 8248 */ 8249 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8250 if (unlikely(!rc)) { 8251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8252 "0377 Error %d parsing vpd. " 8253 "Using defaults.\n", rc); 8254 rc = 0; 8255 } 8256 kfree(vpd); 8257 8258 /* Save information as VPD data */ 8259 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8260 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8261 8262 /* 8263 * This is because first G7 ASIC doesn't support the standard 8264 * 0x5a NVME cmd descriptor type/subtype 8265 */ 8266 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8267 LPFC_SLI_INTF_IF_TYPE_6) && 8268 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8269 (phba->vpd.rev.smRev == 0) && 8270 (phba->cfg_nvme_embed_cmd == 1)) 8271 phba->cfg_nvme_embed_cmd = 0; 8272 8273 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8274 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8275 &mqe->un.read_rev); 8276 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8277 &mqe->un.read_rev); 8278 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8279 &mqe->un.read_rev); 8280 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8281 &mqe->un.read_rev); 8282 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8283 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8284 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8285 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8286 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8287 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8288 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8289 "(%d):0380 READ_REV Status x%x " 8290 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8291 mboxq->vport ? mboxq->vport->vpi : 0, 8292 bf_get(lpfc_mqe_status, mqe), 8293 phba->vpd.rev.opFwName, 8294 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8295 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8296 8297 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8298 LPFC_SLI_INTF_IF_TYPE_0) { 8299 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8300 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8301 if (rc == MBX_SUCCESS) { 8302 phba->hba_flag |= HBA_RECOVERABLE_UE; 8303 /* Set 1Sec interval to detect UE */ 8304 phba->eratt_poll_interval = 1; 8305 phba->sli4_hba.ue_to_sr = bf_get( 8306 lpfc_mbx_set_feature_UESR, 8307 &mboxq->u.mqe.un.set_feature); 8308 phba->sli4_hba.ue_to_rp = bf_get( 8309 lpfc_mbx_set_feature_UERP, 8310 &mboxq->u.mqe.un.set_feature); 8311 } 8312 } 8313 8314 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8315 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8316 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8317 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8318 if (rc != MBX_SUCCESS) 8319 phba->mds_diags_support = 0; 8320 } 8321 8322 /* 8323 * Discover the port's supported feature set and match it against the 8324 * hosts requests. 8325 */ 8326 lpfc_request_features(phba, mboxq); 8327 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8328 if (unlikely(rc)) { 8329 rc = -EIO; 8330 goto out_free_mbox; 8331 } 8332 8333 /* Disable VMID if app header is not supported */ 8334 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8335 &mqe->un.req_ftrs))) { 8336 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8337 phba->cfg_vmid_app_header = 0; 8338 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8339 "1242 vmid feature not supported\n"); 8340 } 8341 8342 /* 8343 * The port must support FCP initiator mode as this is the 8344 * only mode running in the host. 8345 */ 8346 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8347 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8348 "0378 No support for fcpi mode.\n"); 8349 ftr_rsp++; 8350 } 8351 8352 /* Performance Hints are ONLY for FCoE */ 8353 if (phba->hba_flag & HBA_FCOE_MODE) { 8354 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8355 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8356 else 8357 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8358 } 8359 8360 /* 8361 * If the port cannot support the host's requested features 8362 * then turn off the global config parameters to disable the 8363 * feature in the driver. This is not a fatal error. 8364 */ 8365 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8366 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8367 phba->cfg_enable_bg = 0; 8368 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8369 ftr_rsp++; 8370 } 8371 } 8372 8373 if (phba->max_vpi && phba->cfg_enable_npiv && 8374 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8375 ftr_rsp++; 8376 8377 if (ftr_rsp) { 8378 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8379 "0379 Feature Mismatch Data: x%08x %08x " 8380 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8381 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8382 phba->cfg_enable_npiv, phba->max_vpi); 8383 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8384 phba->cfg_enable_bg = 0; 8385 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8386 phba->cfg_enable_npiv = 0; 8387 } 8388 8389 /* These SLI3 features are assumed in SLI4 */ 8390 spin_lock_irq(&phba->hbalock); 8391 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8392 spin_unlock_irq(&phba->hbalock); 8393 8394 /* Always try to enable dual dump feature if we can */ 8395 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8396 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8397 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8398 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8399 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8400 "6448 Dual Dump is enabled\n"); 8401 else 8402 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8403 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8404 "rc:x%x dd:x%x\n", 8405 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8406 lpfc_sli_config_mbox_subsys_get( 8407 phba, mboxq), 8408 lpfc_sli_config_mbox_opcode_get( 8409 phba, mboxq), 8410 rc, dd); 8411 /* 8412 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8413 * calls depends on these resources to complete port setup. 8414 */ 8415 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8416 if (rc) { 8417 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8418 "2920 Failed to alloc Resource IDs " 8419 "rc = x%x\n", rc); 8420 goto out_free_mbox; 8421 } 8422 8423 lpfc_set_host_data(phba, mboxq); 8424 8425 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8426 if (rc) { 8427 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8428 "2134 Failed to set host os driver version %x", 8429 rc); 8430 } 8431 8432 /* Read the port's service parameters. */ 8433 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8434 if (rc) { 8435 phba->link_state = LPFC_HBA_ERROR; 8436 rc = -ENOMEM; 8437 goto out_free_mbox; 8438 } 8439 8440 mboxq->vport = vport; 8441 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8442 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8443 if (rc == MBX_SUCCESS) { 8444 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8445 rc = 0; 8446 } 8447 8448 /* 8449 * This memory was allocated by the lpfc_read_sparam routine. Release 8450 * it to the mbuf pool. 8451 */ 8452 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8453 kfree(mp); 8454 mboxq->ctx_buf = NULL; 8455 if (unlikely(rc)) { 8456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8457 "0382 READ_SPARAM command failed " 8458 "status %d, mbxStatus x%x\n", 8459 rc, bf_get(lpfc_mqe_status, mqe)); 8460 phba->link_state = LPFC_HBA_ERROR; 8461 rc = -EIO; 8462 goto out_free_mbox; 8463 } 8464 8465 lpfc_update_vport_wwn(vport); 8466 8467 /* Update the fc_host data structures with new wwn. */ 8468 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8469 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8470 8471 /* Create all the SLI4 queues */ 8472 rc = lpfc_sli4_queue_create(phba); 8473 if (rc) { 8474 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8475 "3089 Failed to allocate queues\n"); 8476 rc = -ENODEV; 8477 goto out_free_mbox; 8478 } 8479 /* Set up all the queues to the device */ 8480 rc = lpfc_sli4_queue_setup(phba); 8481 if (unlikely(rc)) { 8482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8483 "0381 Error %d during queue setup.\n ", rc); 8484 goto out_stop_timers; 8485 } 8486 /* Initialize the driver internal SLI layer lists. */ 8487 lpfc_sli4_setup(phba); 8488 lpfc_sli4_queue_init(phba); 8489 8490 /* update host els xri-sgl sizes and mappings */ 8491 rc = lpfc_sli4_els_sgl_update(phba); 8492 if (unlikely(rc)) { 8493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8494 "1400 Failed to update xri-sgl size and " 8495 "mapping: %d\n", rc); 8496 goto out_destroy_queue; 8497 } 8498 8499 /* register the els sgl pool to the port */ 8500 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8501 phba->sli4_hba.els_xri_cnt); 8502 if (unlikely(rc < 0)) { 8503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8504 "0582 Error %d during els sgl post " 8505 "operation\n", rc); 8506 rc = -ENODEV; 8507 goto out_destroy_queue; 8508 } 8509 phba->sli4_hba.els_xri_cnt = rc; 8510 8511 if (phba->nvmet_support) { 8512 /* update host nvmet xri-sgl sizes and mappings */ 8513 rc = lpfc_sli4_nvmet_sgl_update(phba); 8514 if (unlikely(rc)) { 8515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8516 "6308 Failed to update nvmet-sgl size " 8517 "and mapping: %d\n", rc); 8518 goto out_destroy_queue; 8519 } 8520 8521 /* register the nvmet sgl pool to the port */ 8522 rc = lpfc_sli4_repost_sgl_list( 8523 phba, 8524 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8525 phba->sli4_hba.nvmet_xri_cnt); 8526 if (unlikely(rc < 0)) { 8527 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8528 "3117 Error %d during nvmet " 8529 "sgl post\n", rc); 8530 rc = -ENODEV; 8531 goto out_destroy_queue; 8532 } 8533 phba->sli4_hba.nvmet_xri_cnt = rc; 8534 8535 /* We allocate an iocbq for every receive context SGL. 8536 * The additional allocation is for abort and ls handling. 8537 */ 8538 cnt = phba->sli4_hba.nvmet_xri_cnt + 8539 phba->sli4_hba.max_cfg_param.max_xri; 8540 } else { 8541 /* update host common xri-sgl sizes and mappings */ 8542 rc = lpfc_sli4_io_sgl_update(phba); 8543 if (unlikely(rc)) { 8544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8545 "6082 Failed to update nvme-sgl size " 8546 "and mapping: %d\n", rc); 8547 goto out_destroy_queue; 8548 } 8549 8550 /* register the allocated common sgl pool to the port */ 8551 rc = lpfc_sli4_repost_io_sgl_list(phba); 8552 if (unlikely(rc)) { 8553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8554 "6116 Error %d during nvme sgl post " 8555 "operation\n", rc); 8556 /* Some NVME buffers were moved to abort nvme list */ 8557 /* A pci function reset will repost them */ 8558 rc = -ENODEV; 8559 goto out_destroy_queue; 8560 } 8561 /* Each lpfc_io_buf job structure has an iocbq element. 8562 * This cnt provides for abort, els, ct and ls requests. 8563 */ 8564 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8565 } 8566 8567 if (!phba->sli.iocbq_lookup) { 8568 /* Initialize and populate the iocb list per host */ 8569 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8570 "2821 initialize iocb list with %d entries\n", 8571 cnt); 8572 rc = lpfc_init_iocb_list(phba, cnt); 8573 if (rc) { 8574 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8575 "1413 Failed to init iocb list.\n"); 8576 goto out_destroy_queue; 8577 } 8578 } 8579 8580 if (phba->nvmet_support) 8581 lpfc_nvmet_create_targetport(phba); 8582 8583 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8584 /* Post initial buffers to all RQs created */ 8585 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8586 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8587 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8588 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8589 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8590 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8591 rqbp->buffer_count = 0; 8592 8593 lpfc_post_rq_buffer( 8594 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8595 phba->sli4_hba.nvmet_mrq_data[i], 8596 phba->cfg_nvmet_mrq_post, i); 8597 } 8598 } 8599 8600 /* Post the rpi header region to the device. */ 8601 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8602 if (unlikely(rc)) { 8603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8604 "0393 Error %d during rpi post operation\n", 8605 rc); 8606 rc = -ENODEV; 8607 goto out_free_iocblist; 8608 } 8609 lpfc_sli4_node_prep(phba); 8610 8611 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8612 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8613 /* 8614 * The FC Port needs to register FCFI (index 0) 8615 */ 8616 lpfc_reg_fcfi(phba, mboxq); 8617 mboxq->vport = phba->pport; 8618 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8619 if (rc != MBX_SUCCESS) 8620 goto out_unset_queue; 8621 rc = 0; 8622 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8623 &mboxq->u.mqe.un.reg_fcfi); 8624 } else { 8625 /* We are a NVME Target mode with MRQ > 1 */ 8626 8627 /* First register the FCFI */ 8628 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8629 mboxq->vport = phba->pport; 8630 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8631 if (rc != MBX_SUCCESS) 8632 goto out_unset_queue; 8633 rc = 0; 8634 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8635 &mboxq->u.mqe.un.reg_fcfi_mrq); 8636 8637 /* Next register the MRQs */ 8638 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8639 mboxq->vport = phba->pport; 8640 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8641 if (rc != MBX_SUCCESS) 8642 goto out_unset_queue; 8643 rc = 0; 8644 } 8645 /* Check if the port is configured to be disabled */ 8646 lpfc_sli_read_link_ste(phba); 8647 } 8648 8649 /* Don't post more new bufs if repost already recovered 8650 * the nvme sgls. 8651 */ 8652 if (phba->nvmet_support == 0) { 8653 if (phba->sli4_hba.io_xri_cnt == 0) { 8654 len = lpfc_new_io_buf( 8655 phba, phba->sli4_hba.io_xri_max); 8656 if (len == 0) { 8657 rc = -ENOMEM; 8658 goto out_unset_queue; 8659 } 8660 8661 if (phba->cfg_xri_rebalancing) 8662 lpfc_create_multixri_pools(phba); 8663 } 8664 } else { 8665 phba->cfg_xri_rebalancing = 0; 8666 } 8667 8668 /* Allow asynchronous mailbox command to go through */ 8669 spin_lock_irq(&phba->hbalock); 8670 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8671 spin_unlock_irq(&phba->hbalock); 8672 8673 /* Post receive buffers to the device */ 8674 lpfc_sli4_rb_setup(phba); 8675 8676 /* Reset HBA FCF states after HBA reset */ 8677 phba->fcf.fcf_flag = 0; 8678 phba->fcf.current_rec.flag = 0; 8679 8680 /* Start the ELS watchdog timer */ 8681 mod_timer(&vport->els_tmofunc, 8682 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8683 8684 /* Start heart beat timer */ 8685 mod_timer(&phba->hb_tmofunc, 8686 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8687 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8688 phba->last_completion_time = jiffies; 8689 8690 /* start eq_delay heartbeat */ 8691 if (phba->cfg_auto_imax) 8692 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8693 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8694 8695 /* start per phba idle_stat_delay heartbeat */ 8696 lpfc_init_idle_stat_hb(phba); 8697 8698 /* Start error attention (ERATT) polling timer */ 8699 mod_timer(&phba->eratt_poll, 8700 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8701 8702 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8703 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8704 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8705 if (!rc) { 8706 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8707 "2829 This device supports " 8708 "Advanced Error Reporting (AER)\n"); 8709 spin_lock_irq(&phba->hbalock); 8710 phba->hba_flag |= HBA_AER_ENABLED; 8711 spin_unlock_irq(&phba->hbalock); 8712 } else { 8713 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8714 "2830 This device does not support " 8715 "Advanced Error Reporting (AER)\n"); 8716 phba->cfg_aer_support = 0; 8717 } 8718 rc = 0; 8719 } 8720 8721 /* 8722 * The port is ready, set the host's link state to LINK_DOWN 8723 * in preparation for link interrupts. 8724 */ 8725 spin_lock_irq(&phba->hbalock); 8726 phba->link_state = LPFC_LINK_DOWN; 8727 8728 /* Check if physical ports are trunked */ 8729 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8730 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8731 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8732 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8733 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8734 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8735 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8736 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8737 spin_unlock_irq(&phba->hbalock); 8738 8739 /* Arm the CQs and then EQs on device */ 8740 lpfc_sli4_arm_cqeq_intr(phba); 8741 8742 /* Indicate device interrupt mode */ 8743 phba->sli4_hba.intr_enable = 1; 8744 8745 /* Setup CMF after HBA is initialized */ 8746 lpfc_cmf_setup(phba); 8747 8748 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8749 (phba->hba_flag & LINK_DISABLED)) { 8750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8751 "3103 Adapter Link is disabled.\n"); 8752 lpfc_down_link(phba, mboxq); 8753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8754 if (rc != MBX_SUCCESS) { 8755 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8756 "3104 Adapter failed to issue " 8757 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8758 goto out_io_buff_free; 8759 } 8760 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8761 /* don't perform init_link on SLI4 FC port loopback test */ 8762 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8763 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8764 if (rc) 8765 goto out_io_buff_free; 8766 } 8767 } 8768 mempool_free(mboxq, phba->mbox_mem_pool); 8769 8770 phba->hba_flag |= HBA_SETUP; 8771 return rc; 8772 8773 out_io_buff_free: 8774 /* Free allocated IO Buffers */ 8775 lpfc_io_free(phba); 8776 out_unset_queue: 8777 /* Unset all the queues set up in this routine when error out */ 8778 lpfc_sli4_queue_unset(phba); 8779 out_free_iocblist: 8780 lpfc_free_iocb_list(phba); 8781 out_destroy_queue: 8782 lpfc_sli4_queue_destroy(phba); 8783 out_stop_timers: 8784 lpfc_stop_hba_timers(phba); 8785 out_free_mbox: 8786 mempool_free(mboxq, phba->mbox_mem_pool); 8787 return rc; 8788 } 8789 8790 /** 8791 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8792 * @t: Context to fetch pointer to hba structure from. 8793 * 8794 * This is the callback function for mailbox timer. The mailbox 8795 * timer is armed when a new mailbox command is issued and the timer 8796 * is deleted when the mailbox complete. The function is called by 8797 * the kernel timer code when a mailbox does not complete within 8798 * expected time. This function wakes up the worker thread to 8799 * process the mailbox timeout and returns. All the processing is 8800 * done by the worker thread function lpfc_mbox_timeout_handler. 8801 **/ 8802 void 8803 lpfc_mbox_timeout(struct timer_list *t) 8804 { 8805 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8806 unsigned long iflag; 8807 uint32_t tmo_posted; 8808 8809 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8810 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8811 if (!tmo_posted) 8812 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8813 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8814 8815 if (!tmo_posted) 8816 lpfc_worker_wake_up(phba); 8817 return; 8818 } 8819 8820 /** 8821 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8822 * are pending 8823 * @phba: Pointer to HBA context object. 8824 * 8825 * This function checks if any mailbox completions are present on the mailbox 8826 * completion queue. 8827 **/ 8828 static bool 8829 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8830 { 8831 8832 uint32_t idx; 8833 struct lpfc_queue *mcq; 8834 struct lpfc_mcqe *mcqe; 8835 bool pending_completions = false; 8836 uint8_t qe_valid; 8837 8838 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8839 return false; 8840 8841 /* Check for completions on mailbox completion queue */ 8842 8843 mcq = phba->sli4_hba.mbx_cq; 8844 idx = mcq->hba_index; 8845 qe_valid = mcq->qe_valid; 8846 while (bf_get_le32(lpfc_cqe_valid, 8847 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8848 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8849 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8850 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8851 pending_completions = true; 8852 break; 8853 } 8854 idx = (idx + 1) % mcq->entry_count; 8855 if (mcq->hba_index == idx) 8856 break; 8857 8858 /* if the index wrapped around, toggle the valid bit */ 8859 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8860 qe_valid = (qe_valid) ? 0 : 1; 8861 } 8862 return pending_completions; 8863 8864 } 8865 8866 /** 8867 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8868 * that were missed. 8869 * @phba: Pointer to HBA context object. 8870 * 8871 * For sli4, it is possible to miss an interrupt. As such mbox completions 8872 * maybe missed causing erroneous mailbox timeouts to occur. This function 8873 * checks to see if mbox completions are on the mailbox completion queue 8874 * and will process all the completions associated with the eq for the 8875 * mailbox completion queue. 8876 **/ 8877 static bool 8878 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8879 { 8880 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8881 uint32_t eqidx; 8882 struct lpfc_queue *fpeq = NULL; 8883 struct lpfc_queue *eq; 8884 bool mbox_pending; 8885 8886 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8887 return false; 8888 8889 /* Find the EQ associated with the mbox CQ */ 8890 if (sli4_hba->hdwq) { 8891 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8892 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8893 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8894 fpeq = eq; 8895 break; 8896 } 8897 } 8898 } 8899 if (!fpeq) 8900 return false; 8901 8902 /* Turn off interrupts from this EQ */ 8903 8904 sli4_hba->sli4_eq_clr_intr(fpeq); 8905 8906 /* Check to see if a mbox completion is pending */ 8907 8908 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8909 8910 /* 8911 * If a mbox completion is pending, process all the events on EQ 8912 * associated with the mbox completion queue (this could include 8913 * mailbox commands, async events, els commands, receive queue data 8914 * and fcp commands) 8915 */ 8916 8917 if (mbox_pending) 8918 /* process and rearm the EQ */ 8919 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8920 else 8921 /* Always clear and re-arm the EQ */ 8922 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8923 8924 return mbox_pending; 8925 8926 } 8927 8928 /** 8929 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8930 * @phba: Pointer to HBA context object. 8931 * 8932 * This function is called from worker thread when a mailbox command times out. 8933 * The caller is not required to hold any locks. This function will reset the 8934 * HBA and recover all the pending commands. 8935 **/ 8936 void 8937 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8938 { 8939 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8940 MAILBOX_t *mb = NULL; 8941 8942 struct lpfc_sli *psli = &phba->sli; 8943 8944 /* If the mailbox completed, process the completion */ 8945 lpfc_sli4_process_missed_mbox_completions(phba); 8946 8947 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8948 return; 8949 8950 if (pmbox != NULL) 8951 mb = &pmbox->u.mb; 8952 /* Check the pmbox pointer first. There is a race condition 8953 * between the mbox timeout handler getting executed in the 8954 * worklist and the mailbox actually completing. When this 8955 * race condition occurs, the mbox_active will be NULL. 8956 */ 8957 spin_lock_irq(&phba->hbalock); 8958 if (pmbox == NULL) { 8959 lpfc_printf_log(phba, KERN_WARNING, 8960 LOG_MBOX | LOG_SLI, 8961 "0353 Active Mailbox cleared - mailbox timeout " 8962 "exiting\n"); 8963 spin_unlock_irq(&phba->hbalock); 8964 return; 8965 } 8966 8967 /* Mbox cmd <mbxCommand> timeout */ 8968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8969 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8970 mb->mbxCommand, 8971 phba->pport->port_state, 8972 phba->sli.sli_flag, 8973 phba->sli.mbox_active); 8974 spin_unlock_irq(&phba->hbalock); 8975 8976 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8977 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8978 * it to fail all outstanding SCSI IO. 8979 */ 8980 spin_lock_irq(&phba->pport->work_port_lock); 8981 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8982 spin_unlock_irq(&phba->pport->work_port_lock); 8983 spin_lock_irq(&phba->hbalock); 8984 phba->link_state = LPFC_LINK_UNKNOWN; 8985 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8986 spin_unlock_irq(&phba->hbalock); 8987 8988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8989 "0345 Resetting board due to mailbox timeout\n"); 8990 8991 /* Reset the HBA device */ 8992 lpfc_reset_hba(phba); 8993 } 8994 8995 /** 8996 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8997 * @phba: Pointer to HBA context object. 8998 * @pmbox: Pointer to mailbox object. 8999 * @flag: Flag indicating how the mailbox need to be processed. 9000 * 9001 * This function is called by discovery code and HBA management code 9002 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9003 * function gets the hbalock to protect the data structures. 9004 * The mailbox command can be submitted in polling mode, in which case 9005 * this function will wait in a polling loop for the completion of the 9006 * mailbox. 9007 * If the mailbox is submitted in no_wait mode (not polling) the 9008 * function will submit the command and returns immediately without waiting 9009 * for the mailbox completion. The no_wait is supported only when HBA 9010 * is in SLI2/SLI3 mode - interrupts are enabled. 9011 * The SLI interface allows only one mailbox pending at a time. If the 9012 * mailbox is issued in polling mode and there is already a mailbox 9013 * pending, then the function will return an error. If the mailbox is issued 9014 * in NO_WAIT mode and there is a mailbox pending already, the function 9015 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9016 * The sli layer owns the mailbox object until the completion of mailbox 9017 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9018 * return codes the caller owns the mailbox command after the return of 9019 * the function. 9020 **/ 9021 static int 9022 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9023 uint32_t flag) 9024 { 9025 MAILBOX_t *mbx; 9026 struct lpfc_sli *psli = &phba->sli; 9027 uint32_t status, evtctr; 9028 uint32_t ha_copy, hc_copy; 9029 int i; 9030 unsigned long timeout; 9031 unsigned long drvr_flag = 0; 9032 uint32_t word0, ldata; 9033 void __iomem *to_slim; 9034 int processing_queue = 0; 9035 9036 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9037 if (!pmbox) { 9038 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9039 /* processing mbox queue from intr_handler */ 9040 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9041 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9042 return MBX_SUCCESS; 9043 } 9044 processing_queue = 1; 9045 pmbox = lpfc_mbox_get(phba); 9046 if (!pmbox) { 9047 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9048 return MBX_SUCCESS; 9049 } 9050 } 9051 9052 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9053 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9054 if(!pmbox->vport) { 9055 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9056 lpfc_printf_log(phba, KERN_ERR, 9057 LOG_MBOX | LOG_VPORT, 9058 "1806 Mbox x%x failed. No vport\n", 9059 pmbox->u.mb.mbxCommand); 9060 dump_stack(); 9061 goto out_not_finished; 9062 } 9063 } 9064 9065 /* If the PCI channel is in offline state, do not post mbox. */ 9066 if (unlikely(pci_channel_offline(phba->pcidev))) { 9067 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9068 goto out_not_finished; 9069 } 9070 9071 /* If HBA has a deferred error attention, fail the iocb. */ 9072 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9073 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9074 goto out_not_finished; 9075 } 9076 9077 psli = &phba->sli; 9078 9079 mbx = &pmbox->u.mb; 9080 status = MBX_SUCCESS; 9081 9082 if (phba->link_state == LPFC_HBA_ERROR) { 9083 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9084 9085 /* Mbox command <mbxCommand> cannot issue */ 9086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9087 "(%d):0311 Mailbox command x%x cannot " 9088 "issue Data: x%x x%x\n", 9089 pmbox->vport ? pmbox->vport->vpi : 0, 9090 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9091 goto out_not_finished; 9092 } 9093 9094 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9095 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9096 !(hc_copy & HC_MBINT_ENA)) { 9097 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9099 "(%d):2528 Mailbox command x%x cannot " 9100 "issue Data: x%x x%x\n", 9101 pmbox->vport ? pmbox->vport->vpi : 0, 9102 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9103 goto out_not_finished; 9104 } 9105 } 9106 9107 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9108 /* Polling for a mbox command when another one is already active 9109 * is not allowed in SLI. Also, the driver must have established 9110 * SLI2 mode to queue and process multiple mbox commands. 9111 */ 9112 9113 if (flag & MBX_POLL) { 9114 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9115 9116 /* Mbox command <mbxCommand> cannot issue */ 9117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9118 "(%d):2529 Mailbox command x%x " 9119 "cannot issue Data: x%x x%x\n", 9120 pmbox->vport ? pmbox->vport->vpi : 0, 9121 pmbox->u.mb.mbxCommand, 9122 psli->sli_flag, flag); 9123 goto out_not_finished; 9124 } 9125 9126 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9127 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9128 /* Mbox command <mbxCommand> cannot issue */ 9129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9130 "(%d):2530 Mailbox command x%x " 9131 "cannot issue Data: x%x x%x\n", 9132 pmbox->vport ? pmbox->vport->vpi : 0, 9133 pmbox->u.mb.mbxCommand, 9134 psli->sli_flag, flag); 9135 goto out_not_finished; 9136 } 9137 9138 /* Another mailbox command is still being processed, queue this 9139 * command to be processed later. 9140 */ 9141 lpfc_mbox_put(phba, pmbox); 9142 9143 /* Mbox cmd issue - BUSY */ 9144 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9145 "(%d):0308 Mbox cmd issue - BUSY Data: " 9146 "x%x x%x x%x x%x\n", 9147 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9148 mbx->mbxCommand, 9149 phba->pport ? phba->pport->port_state : 0xff, 9150 psli->sli_flag, flag); 9151 9152 psli->slistat.mbox_busy++; 9153 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9154 9155 if (pmbox->vport) { 9156 lpfc_debugfs_disc_trc(pmbox->vport, 9157 LPFC_DISC_TRC_MBOX_VPORT, 9158 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9159 (uint32_t)mbx->mbxCommand, 9160 mbx->un.varWords[0], mbx->un.varWords[1]); 9161 } 9162 else { 9163 lpfc_debugfs_disc_trc(phba->pport, 9164 LPFC_DISC_TRC_MBOX, 9165 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9166 (uint32_t)mbx->mbxCommand, 9167 mbx->un.varWords[0], mbx->un.varWords[1]); 9168 } 9169 9170 return MBX_BUSY; 9171 } 9172 9173 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9174 9175 /* If we are not polling, we MUST be in SLI2 mode */ 9176 if (flag != MBX_POLL) { 9177 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9178 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9179 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9180 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9181 /* Mbox command <mbxCommand> cannot issue */ 9182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9183 "(%d):2531 Mailbox command x%x " 9184 "cannot issue Data: x%x x%x\n", 9185 pmbox->vport ? pmbox->vport->vpi : 0, 9186 pmbox->u.mb.mbxCommand, 9187 psli->sli_flag, flag); 9188 goto out_not_finished; 9189 } 9190 /* timeout active mbox command */ 9191 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9192 1000); 9193 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9194 } 9195 9196 /* Mailbox cmd <cmd> issue */ 9197 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9198 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9199 "x%x\n", 9200 pmbox->vport ? pmbox->vport->vpi : 0, 9201 mbx->mbxCommand, 9202 phba->pport ? phba->pport->port_state : 0xff, 9203 psli->sli_flag, flag); 9204 9205 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9206 if (pmbox->vport) { 9207 lpfc_debugfs_disc_trc(pmbox->vport, 9208 LPFC_DISC_TRC_MBOX_VPORT, 9209 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9210 (uint32_t)mbx->mbxCommand, 9211 mbx->un.varWords[0], mbx->un.varWords[1]); 9212 } 9213 else { 9214 lpfc_debugfs_disc_trc(phba->pport, 9215 LPFC_DISC_TRC_MBOX, 9216 "MBOX Send: cmd:x%x mb:x%x x%x", 9217 (uint32_t)mbx->mbxCommand, 9218 mbx->un.varWords[0], mbx->un.varWords[1]); 9219 } 9220 } 9221 9222 psli->slistat.mbox_cmd++; 9223 evtctr = psli->slistat.mbox_event; 9224 9225 /* next set own bit for the adapter and copy over command word */ 9226 mbx->mbxOwner = OWN_CHIP; 9227 9228 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9229 /* Populate mbox extension offset word. */ 9230 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9231 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9232 = (uint8_t *)phba->mbox_ext 9233 - (uint8_t *)phba->mbox; 9234 } 9235 9236 /* Copy the mailbox extension data */ 9237 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9238 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9239 (uint8_t *)phba->mbox_ext, 9240 pmbox->in_ext_byte_len); 9241 } 9242 /* Copy command data to host SLIM area */ 9243 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9244 } else { 9245 /* Populate mbox extension offset word. */ 9246 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9247 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9248 = MAILBOX_HBA_EXT_OFFSET; 9249 9250 /* Copy the mailbox extension data */ 9251 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9252 lpfc_memcpy_to_slim(phba->MBslimaddr + 9253 MAILBOX_HBA_EXT_OFFSET, 9254 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9255 9256 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9257 /* copy command data into host mbox for cmpl */ 9258 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9259 MAILBOX_CMD_SIZE); 9260 9261 /* First copy mbox command data to HBA SLIM, skip past first 9262 word */ 9263 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9264 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9265 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9266 9267 /* Next copy over first word, with mbxOwner set */ 9268 ldata = *((uint32_t *)mbx); 9269 to_slim = phba->MBslimaddr; 9270 writel(ldata, to_slim); 9271 readl(to_slim); /* flush */ 9272 9273 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9274 /* switch over to host mailbox */ 9275 psli->sli_flag |= LPFC_SLI_ACTIVE; 9276 } 9277 9278 wmb(); 9279 9280 switch (flag) { 9281 case MBX_NOWAIT: 9282 /* Set up reference to mailbox command */ 9283 psli->mbox_active = pmbox; 9284 /* Interrupt board to do it */ 9285 writel(CA_MBATT, phba->CAregaddr); 9286 readl(phba->CAregaddr); /* flush */ 9287 /* Don't wait for it to finish, just return */ 9288 break; 9289 9290 case MBX_POLL: 9291 /* Set up null reference to mailbox command */ 9292 psli->mbox_active = NULL; 9293 /* Interrupt board to do it */ 9294 writel(CA_MBATT, phba->CAregaddr); 9295 readl(phba->CAregaddr); /* flush */ 9296 9297 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9298 /* First read mbox status word */ 9299 word0 = *((uint32_t *)phba->mbox); 9300 word0 = le32_to_cpu(word0); 9301 } else { 9302 /* First read mbox status word */ 9303 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9304 spin_unlock_irqrestore(&phba->hbalock, 9305 drvr_flag); 9306 goto out_not_finished; 9307 } 9308 } 9309 9310 /* Read the HBA Host Attention Register */ 9311 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9312 spin_unlock_irqrestore(&phba->hbalock, 9313 drvr_flag); 9314 goto out_not_finished; 9315 } 9316 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9317 1000) + jiffies; 9318 i = 0; 9319 /* Wait for command to complete */ 9320 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9321 (!(ha_copy & HA_MBATT) && 9322 (phba->link_state > LPFC_WARM_START))) { 9323 if (time_after(jiffies, timeout)) { 9324 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9325 spin_unlock_irqrestore(&phba->hbalock, 9326 drvr_flag); 9327 goto out_not_finished; 9328 } 9329 9330 /* Check if we took a mbox interrupt while we were 9331 polling */ 9332 if (((word0 & OWN_CHIP) != OWN_CHIP) 9333 && (evtctr != psli->slistat.mbox_event)) 9334 break; 9335 9336 if (i++ > 10) { 9337 spin_unlock_irqrestore(&phba->hbalock, 9338 drvr_flag); 9339 msleep(1); 9340 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9341 } 9342 9343 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9344 /* First copy command data */ 9345 word0 = *((uint32_t *)phba->mbox); 9346 word0 = le32_to_cpu(word0); 9347 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9348 MAILBOX_t *slimmb; 9349 uint32_t slimword0; 9350 /* Check real SLIM for any errors */ 9351 slimword0 = readl(phba->MBslimaddr); 9352 slimmb = (MAILBOX_t *) & slimword0; 9353 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9354 && slimmb->mbxStatus) { 9355 psli->sli_flag &= 9356 ~LPFC_SLI_ACTIVE; 9357 word0 = slimword0; 9358 } 9359 } 9360 } else { 9361 /* First copy command data */ 9362 word0 = readl(phba->MBslimaddr); 9363 } 9364 /* Read the HBA Host Attention Register */ 9365 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9366 spin_unlock_irqrestore(&phba->hbalock, 9367 drvr_flag); 9368 goto out_not_finished; 9369 } 9370 } 9371 9372 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9373 /* copy results back to user */ 9374 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9375 MAILBOX_CMD_SIZE); 9376 /* Copy the mailbox extension data */ 9377 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9378 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9379 pmbox->ctx_buf, 9380 pmbox->out_ext_byte_len); 9381 } 9382 } else { 9383 /* First copy command data */ 9384 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9385 MAILBOX_CMD_SIZE); 9386 /* Copy the mailbox extension data */ 9387 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9388 lpfc_memcpy_from_slim( 9389 pmbox->ctx_buf, 9390 phba->MBslimaddr + 9391 MAILBOX_HBA_EXT_OFFSET, 9392 pmbox->out_ext_byte_len); 9393 } 9394 } 9395 9396 writel(HA_MBATT, phba->HAregaddr); 9397 readl(phba->HAregaddr); /* flush */ 9398 9399 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9400 status = mbx->mbxStatus; 9401 } 9402 9403 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9404 return status; 9405 9406 out_not_finished: 9407 if (processing_queue) { 9408 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9409 lpfc_mbox_cmpl_put(phba, pmbox); 9410 } 9411 return MBX_NOT_FINISHED; 9412 } 9413 9414 /** 9415 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9416 * @phba: Pointer to HBA context object. 9417 * 9418 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9419 * the driver internal pending mailbox queue. It will then try to wait out the 9420 * possible outstanding mailbox command before return. 9421 * 9422 * Returns: 9423 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9424 * the outstanding mailbox command timed out. 9425 **/ 9426 static int 9427 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9428 { 9429 struct lpfc_sli *psli = &phba->sli; 9430 LPFC_MBOXQ_t *mboxq; 9431 int rc = 0; 9432 unsigned long timeout = 0; 9433 u32 sli_flag; 9434 u8 cmd, subsys, opcode; 9435 9436 /* Mark the asynchronous mailbox command posting as blocked */ 9437 spin_lock_irq(&phba->hbalock); 9438 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9439 /* Determine how long we might wait for the active mailbox 9440 * command to be gracefully completed by firmware. 9441 */ 9442 if (phba->sli.mbox_active) 9443 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9444 phba->sli.mbox_active) * 9445 1000) + jiffies; 9446 spin_unlock_irq(&phba->hbalock); 9447 9448 /* Make sure the mailbox is really active */ 9449 if (timeout) 9450 lpfc_sli4_process_missed_mbox_completions(phba); 9451 9452 /* Wait for the outstanding mailbox command to complete */ 9453 while (phba->sli.mbox_active) { 9454 /* Check active mailbox complete status every 2ms */ 9455 msleep(2); 9456 if (time_after(jiffies, timeout)) { 9457 /* Timeout, mark the outstanding cmd not complete */ 9458 9459 /* Sanity check sli.mbox_active has not completed or 9460 * cancelled from another context during last 2ms sleep, 9461 * so take hbalock to be sure before logging. 9462 */ 9463 spin_lock_irq(&phba->hbalock); 9464 if (phba->sli.mbox_active) { 9465 mboxq = phba->sli.mbox_active; 9466 cmd = mboxq->u.mb.mbxCommand; 9467 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9468 mboxq); 9469 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9470 mboxq); 9471 sli_flag = psli->sli_flag; 9472 spin_unlock_irq(&phba->hbalock); 9473 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9474 "2352 Mailbox command x%x " 9475 "(x%x/x%x) sli_flag x%x could " 9476 "not complete\n", 9477 cmd, subsys, opcode, 9478 sli_flag); 9479 } else { 9480 spin_unlock_irq(&phba->hbalock); 9481 } 9482 9483 rc = 1; 9484 break; 9485 } 9486 } 9487 9488 /* Can not cleanly block async mailbox command, fails it */ 9489 if (rc) { 9490 spin_lock_irq(&phba->hbalock); 9491 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9492 spin_unlock_irq(&phba->hbalock); 9493 } 9494 return rc; 9495 } 9496 9497 /** 9498 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9499 * @phba: Pointer to HBA context object. 9500 * 9501 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9502 * commands from the driver internal pending mailbox queue. It makes sure 9503 * that there is no outstanding mailbox command before resuming posting 9504 * asynchronous mailbox commands. If, for any reason, there is outstanding 9505 * mailbox command, it will try to wait it out before resuming asynchronous 9506 * mailbox command posting. 9507 **/ 9508 static void 9509 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9510 { 9511 struct lpfc_sli *psli = &phba->sli; 9512 9513 spin_lock_irq(&phba->hbalock); 9514 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9515 /* Asynchronous mailbox posting is not blocked, do nothing */ 9516 spin_unlock_irq(&phba->hbalock); 9517 return; 9518 } 9519 9520 /* Outstanding synchronous mailbox command is guaranteed to be done, 9521 * successful or timeout, after timing-out the outstanding mailbox 9522 * command shall always be removed, so just unblock posting async 9523 * mailbox command and resume 9524 */ 9525 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9526 spin_unlock_irq(&phba->hbalock); 9527 9528 /* wake up worker thread to post asynchronous mailbox command */ 9529 lpfc_worker_wake_up(phba); 9530 } 9531 9532 /** 9533 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9534 * @phba: Pointer to HBA context object. 9535 * @mboxq: Pointer to mailbox object. 9536 * 9537 * The function waits for the bootstrap mailbox register ready bit from 9538 * port for twice the regular mailbox command timeout value. 9539 * 9540 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9541 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9542 **/ 9543 static int 9544 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9545 { 9546 uint32_t db_ready; 9547 unsigned long timeout; 9548 struct lpfc_register bmbx_reg; 9549 9550 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9551 * 1000) + jiffies; 9552 9553 do { 9554 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9555 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9556 if (!db_ready) 9557 mdelay(2); 9558 9559 if (time_after(jiffies, timeout)) 9560 return MBXERR_ERROR; 9561 } while (!db_ready); 9562 9563 return 0; 9564 } 9565 9566 /** 9567 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9568 * @phba: Pointer to HBA context object. 9569 * @mboxq: Pointer to mailbox object. 9570 * 9571 * The function posts a mailbox to the port. The mailbox is expected 9572 * to be comletely filled in and ready for the port to operate on it. 9573 * This routine executes a synchronous completion operation on the 9574 * mailbox by polling for its completion. 9575 * 9576 * The caller must not be holding any locks when calling this routine. 9577 * 9578 * Returns: 9579 * MBX_SUCCESS - mailbox posted successfully 9580 * Any of the MBX error values. 9581 **/ 9582 static int 9583 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9584 { 9585 int rc = MBX_SUCCESS; 9586 unsigned long iflag; 9587 uint32_t mcqe_status; 9588 uint32_t mbx_cmnd; 9589 struct lpfc_sli *psli = &phba->sli; 9590 struct lpfc_mqe *mb = &mboxq->u.mqe; 9591 struct lpfc_bmbx_create *mbox_rgn; 9592 struct dma_address *dma_address; 9593 9594 /* 9595 * Only one mailbox can be active to the bootstrap mailbox region 9596 * at a time and there is no queueing provided. 9597 */ 9598 spin_lock_irqsave(&phba->hbalock, iflag); 9599 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9600 spin_unlock_irqrestore(&phba->hbalock, iflag); 9601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9602 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9603 "cannot issue Data: x%x x%x\n", 9604 mboxq->vport ? mboxq->vport->vpi : 0, 9605 mboxq->u.mb.mbxCommand, 9606 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9607 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9608 psli->sli_flag, MBX_POLL); 9609 return MBXERR_ERROR; 9610 } 9611 /* The server grabs the token and owns it until release */ 9612 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9613 phba->sli.mbox_active = mboxq; 9614 spin_unlock_irqrestore(&phba->hbalock, iflag); 9615 9616 /* wait for bootstrap mbox register for readyness */ 9617 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9618 if (rc) 9619 goto exit; 9620 /* 9621 * Initialize the bootstrap memory region to avoid stale data areas 9622 * in the mailbox post. Then copy the caller's mailbox contents to 9623 * the bmbx mailbox region. 9624 */ 9625 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9626 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9627 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9628 sizeof(struct lpfc_mqe)); 9629 9630 /* Post the high mailbox dma address to the port and wait for ready. */ 9631 dma_address = &phba->sli4_hba.bmbx.dma_address; 9632 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9633 9634 /* wait for bootstrap mbox register for hi-address write done */ 9635 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9636 if (rc) 9637 goto exit; 9638 9639 /* Post the low mailbox dma address to the port. */ 9640 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9641 9642 /* wait for bootstrap mbox register for low address write done */ 9643 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9644 if (rc) 9645 goto exit; 9646 9647 /* 9648 * Read the CQ to ensure the mailbox has completed. 9649 * If so, update the mailbox status so that the upper layers 9650 * can complete the request normally. 9651 */ 9652 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9653 sizeof(struct lpfc_mqe)); 9654 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9655 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9656 sizeof(struct lpfc_mcqe)); 9657 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9658 /* 9659 * When the CQE status indicates a failure and the mailbox status 9660 * indicates success then copy the CQE status into the mailbox status 9661 * (and prefix it with x4000). 9662 */ 9663 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9664 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9665 bf_set(lpfc_mqe_status, mb, 9666 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9667 rc = MBXERR_ERROR; 9668 } else 9669 lpfc_sli4_swap_str(phba, mboxq); 9670 9671 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9672 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9673 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9674 " x%x x%x CQ: x%x x%x x%x x%x\n", 9675 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9676 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9677 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9678 bf_get(lpfc_mqe_status, mb), 9679 mb->un.mb_words[0], mb->un.mb_words[1], 9680 mb->un.mb_words[2], mb->un.mb_words[3], 9681 mb->un.mb_words[4], mb->un.mb_words[5], 9682 mb->un.mb_words[6], mb->un.mb_words[7], 9683 mb->un.mb_words[8], mb->un.mb_words[9], 9684 mb->un.mb_words[10], mb->un.mb_words[11], 9685 mb->un.mb_words[12], mboxq->mcqe.word0, 9686 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9687 mboxq->mcqe.trailer); 9688 exit: 9689 /* We are holding the token, no needed for lock when release */ 9690 spin_lock_irqsave(&phba->hbalock, iflag); 9691 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9692 phba->sli.mbox_active = NULL; 9693 spin_unlock_irqrestore(&phba->hbalock, iflag); 9694 return rc; 9695 } 9696 9697 /** 9698 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9699 * @phba: Pointer to HBA context object. 9700 * @mboxq: Pointer to mailbox object. 9701 * @flag: Flag indicating how the mailbox need to be processed. 9702 * 9703 * This function is called by discovery code and HBA management code to submit 9704 * a mailbox command to firmware with SLI-4 interface spec. 9705 * 9706 * Return codes the caller owns the mailbox command after the return of the 9707 * function. 9708 **/ 9709 static int 9710 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9711 uint32_t flag) 9712 { 9713 struct lpfc_sli *psli = &phba->sli; 9714 unsigned long iflags; 9715 int rc; 9716 9717 /* dump from issue mailbox command if setup */ 9718 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9719 9720 rc = lpfc_mbox_dev_check(phba); 9721 if (unlikely(rc)) { 9722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9723 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9724 "cannot issue Data: x%x x%x\n", 9725 mboxq->vport ? mboxq->vport->vpi : 0, 9726 mboxq->u.mb.mbxCommand, 9727 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9728 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9729 psli->sli_flag, flag); 9730 goto out_not_finished; 9731 } 9732 9733 /* Detect polling mode and jump to a handler */ 9734 if (!phba->sli4_hba.intr_enable) { 9735 if (flag == MBX_POLL) 9736 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9737 else 9738 rc = -EIO; 9739 if (rc != MBX_SUCCESS) 9740 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9741 "(%d):2541 Mailbox command x%x " 9742 "(x%x/x%x) failure: " 9743 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9744 "Data: x%x x%x\n", 9745 mboxq->vport ? mboxq->vport->vpi : 0, 9746 mboxq->u.mb.mbxCommand, 9747 lpfc_sli_config_mbox_subsys_get(phba, 9748 mboxq), 9749 lpfc_sli_config_mbox_opcode_get(phba, 9750 mboxq), 9751 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9752 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9753 bf_get(lpfc_mcqe_ext_status, 9754 &mboxq->mcqe), 9755 psli->sli_flag, flag); 9756 return rc; 9757 } else if (flag == MBX_POLL) { 9758 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9759 "(%d):2542 Try to issue mailbox command " 9760 "x%x (x%x/x%x) synchronously ahead of async " 9761 "mailbox command queue: x%x x%x\n", 9762 mboxq->vport ? mboxq->vport->vpi : 0, 9763 mboxq->u.mb.mbxCommand, 9764 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9765 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9766 psli->sli_flag, flag); 9767 /* Try to block the asynchronous mailbox posting */ 9768 rc = lpfc_sli4_async_mbox_block(phba); 9769 if (!rc) { 9770 /* Successfully blocked, now issue sync mbox cmd */ 9771 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9772 if (rc != MBX_SUCCESS) 9773 lpfc_printf_log(phba, KERN_WARNING, 9774 LOG_MBOX | LOG_SLI, 9775 "(%d):2597 Sync Mailbox command " 9776 "x%x (x%x/x%x) failure: " 9777 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9778 "Data: x%x x%x\n", 9779 mboxq->vport ? mboxq->vport->vpi : 0, 9780 mboxq->u.mb.mbxCommand, 9781 lpfc_sli_config_mbox_subsys_get(phba, 9782 mboxq), 9783 lpfc_sli_config_mbox_opcode_get(phba, 9784 mboxq), 9785 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9786 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9787 bf_get(lpfc_mcqe_ext_status, 9788 &mboxq->mcqe), 9789 psli->sli_flag, flag); 9790 /* Unblock the async mailbox posting afterward */ 9791 lpfc_sli4_async_mbox_unblock(phba); 9792 } 9793 return rc; 9794 } 9795 9796 /* Now, interrupt mode asynchronous mailbox command */ 9797 rc = lpfc_mbox_cmd_check(phba, mboxq); 9798 if (rc) { 9799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9800 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9801 "cannot issue Data: x%x x%x\n", 9802 mboxq->vport ? mboxq->vport->vpi : 0, 9803 mboxq->u.mb.mbxCommand, 9804 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9805 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9806 psli->sli_flag, flag); 9807 goto out_not_finished; 9808 } 9809 9810 /* Put the mailbox command to the driver internal FIFO */ 9811 psli->slistat.mbox_busy++; 9812 spin_lock_irqsave(&phba->hbalock, iflags); 9813 lpfc_mbox_put(phba, mboxq); 9814 spin_unlock_irqrestore(&phba->hbalock, iflags); 9815 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9816 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9817 "x%x (x%x/x%x) x%x x%x x%x\n", 9818 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9819 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9820 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9821 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9822 phba->pport->port_state, 9823 psli->sli_flag, MBX_NOWAIT); 9824 /* Wake up worker thread to transport mailbox command from head */ 9825 lpfc_worker_wake_up(phba); 9826 9827 return MBX_BUSY; 9828 9829 out_not_finished: 9830 return MBX_NOT_FINISHED; 9831 } 9832 9833 /** 9834 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9835 * @phba: Pointer to HBA context object. 9836 * 9837 * This function is called by worker thread to send a mailbox command to 9838 * SLI4 HBA firmware. 9839 * 9840 **/ 9841 int 9842 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9843 { 9844 struct lpfc_sli *psli = &phba->sli; 9845 LPFC_MBOXQ_t *mboxq; 9846 int rc = MBX_SUCCESS; 9847 unsigned long iflags; 9848 struct lpfc_mqe *mqe; 9849 uint32_t mbx_cmnd; 9850 9851 /* Check interrupt mode before post async mailbox command */ 9852 if (unlikely(!phba->sli4_hba.intr_enable)) 9853 return MBX_NOT_FINISHED; 9854 9855 /* Check for mailbox command service token */ 9856 spin_lock_irqsave(&phba->hbalock, iflags); 9857 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9858 spin_unlock_irqrestore(&phba->hbalock, iflags); 9859 return MBX_NOT_FINISHED; 9860 } 9861 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9862 spin_unlock_irqrestore(&phba->hbalock, iflags); 9863 return MBX_NOT_FINISHED; 9864 } 9865 if (unlikely(phba->sli.mbox_active)) { 9866 spin_unlock_irqrestore(&phba->hbalock, iflags); 9867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9868 "0384 There is pending active mailbox cmd\n"); 9869 return MBX_NOT_FINISHED; 9870 } 9871 /* Take the mailbox command service token */ 9872 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9873 9874 /* Get the next mailbox command from head of queue */ 9875 mboxq = lpfc_mbox_get(phba); 9876 9877 /* If no more mailbox command waiting for post, we're done */ 9878 if (!mboxq) { 9879 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9880 spin_unlock_irqrestore(&phba->hbalock, iflags); 9881 return MBX_SUCCESS; 9882 } 9883 phba->sli.mbox_active = mboxq; 9884 spin_unlock_irqrestore(&phba->hbalock, iflags); 9885 9886 /* Check device readiness for posting mailbox command */ 9887 rc = lpfc_mbox_dev_check(phba); 9888 if (unlikely(rc)) 9889 /* Driver clean routine will clean up pending mailbox */ 9890 goto out_not_finished; 9891 9892 /* Prepare the mbox command to be posted */ 9893 mqe = &mboxq->u.mqe; 9894 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9895 9896 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9897 mod_timer(&psli->mbox_tmo, (jiffies + 9898 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9899 9900 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9901 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9902 "x%x x%x\n", 9903 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9904 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9905 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9906 phba->pport->port_state, psli->sli_flag); 9907 9908 if (mbx_cmnd != MBX_HEARTBEAT) { 9909 if (mboxq->vport) { 9910 lpfc_debugfs_disc_trc(mboxq->vport, 9911 LPFC_DISC_TRC_MBOX_VPORT, 9912 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9913 mbx_cmnd, mqe->un.mb_words[0], 9914 mqe->un.mb_words[1]); 9915 } else { 9916 lpfc_debugfs_disc_trc(phba->pport, 9917 LPFC_DISC_TRC_MBOX, 9918 "MBOX Send: cmd:x%x mb:x%x x%x", 9919 mbx_cmnd, mqe->un.mb_words[0], 9920 mqe->un.mb_words[1]); 9921 } 9922 } 9923 psli->slistat.mbox_cmd++; 9924 9925 /* Post the mailbox command to the port */ 9926 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9927 if (rc != MBX_SUCCESS) { 9928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9929 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9930 "cannot issue Data: x%x x%x\n", 9931 mboxq->vport ? mboxq->vport->vpi : 0, 9932 mboxq->u.mb.mbxCommand, 9933 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9934 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9935 psli->sli_flag, MBX_NOWAIT); 9936 goto out_not_finished; 9937 } 9938 9939 return rc; 9940 9941 out_not_finished: 9942 spin_lock_irqsave(&phba->hbalock, iflags); 9943 if (phba->sli.mbox_active) { 9944 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9945 __lpfc_mbox_cmpl_put(phba, mboxq); 9946 /* Release the token */ 9947 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9948 phba->sli.mbox_active = NULL; 9949 } 9950 spin_unlock_irqrestore(&phba->hbalock, iflags); 9951 9952 return MBX_NOT_FINISHED; 9953 } 9954 9955 /** 9956 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9957 * @phba: Pointer to HBA context object. 9958 * @pmbox: Pointer to mailbox object. 9959 * @flag: Flag indicating how the mailbox need to be processed. 9960 * 9961 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9962 * the API jump table function pointer from the lpfc_hba struct. 9963 * 9964 * Return codes the caller owns the mailbox command after the return of the 9965 * function. 9966 **/ 9967 int 9968 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9969 { 9970 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9971 } 9972 9973 /** 9974 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9975 * @phba: The hba struct for which this call is being executed. 9976 * @dev_grp: The HBA PCI-Device group number. 9977 * 9978 * This routine sets up the mbox interface API function jump table in @phba 9979 * struct. 9980 * Returns: 0 - success, -ENODEV - failure. 9981 **/ 9982 int 9983 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9984 { 9985 9986 switch (dev_grp) { 9987 case LPFC_PCI_DEV_LP: 9988 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9989 phba->lpfc_sli_handle_slow_ring_event = 9990 lpfc_sli_handle_slow_ring_event_s3; 9991 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9992 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9993 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9994 break; 9995 case LPFC_PCI_DEV_OC: 9996 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9997 phba->lpfc_sli_handle_slow_ring_event = 9998 lpfc_sli_handle_slow_ring_event_s4; 9999 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10000 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10001 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10002 break; 10003 default: 10004 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10005 "1420 Invalid HBA PCI-device group: 0x%x\n", 10006 dev_grp); 10007 return -ENODEV; 10008 } 10009 return 0; 10010 } 10011 10012 /** 10013 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10014 * @phba: Pointer to HBA context object. 10015 * @pring: Pointer to driver SLI ring object. 10016 * @piocb: Pointer to address of newly added command iocb. 10017 * 10018 * This function is called with hbalock held for SLI3 ports or 10019 * the ring lock held for SLI4 ports to add a command 10020 * iocb to the txq when SLI layer cannot submit the command iocb 10021 * to the ring. 10022 **/ 10023 void 10024 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10025 struct lpfc_iocbq *piocb) 10026 { 10027 if (phba->sli_rev == LPFC_SLI_REV4) 10028 lockdep_assert_held(&pring->ring_lock); 10029 else 10030 lockdep_assert_held(&phba->hbalock); 10031 /* Insert the caller's iocb in the txq tail for later processing. */ 10032 list_add_tail(&piocb->list, &pring->txq); 10033 } 10034 10035 /** 10036 * lpfc_sli_next_iocb - Get the next iocb in the txq 10037 * @phba: Pointer to HBA context object. 10038 * @pring: Pointer to driver SLI ring object. 10039 * @piocb: Pointer to address of newly added command iocb. 10040 * 10041 * This function is called with hbalock held before a new 10042 * iocb is submitted to the firmware. This function checks 10043 * txq to flush the iocbs in txq to Firmware before 10044 * submitting new iocbs to the Firmware. 10045 * If there are iocbs in the txq which need to be submitted 10046 * to firmware, lpfc_sli_next_iocb returns the first element 10047 * of the txq after dequeuing it from txq. 10048 * If there is no iocb in the txq then the function will return 10049 * *piocb and *piocb is set to NULL. Caller needs to check 10050 * *piocb to find if there are more commands in the txq. 10051 **/ 10052 static struct lpfc_iocbq * 10053 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10054 struct lpfc_iocbq **piocb) 10055 { 10056 struct lpfc_iocbq * nextiocb; 10057 10058 lockdep_assert_held(&phba->hbalock); 10059 10060 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10061 if (!nextiocb) { 10062 nextiocb = *piocb; 10063 *piocb = NULL; 10064 } 10065 10066 return nextiocb; 10067 } 10068 10069 /** 10070 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10071 * @phba: Pointer to HBA context object. 10072 * @ring_number: SLI ring number to issue iocb on. 10073 * @piocb: Pointer to command iocb. 10074 * @flag: Flag indicating if this command can be put into txq. 10075 * 10076 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10077 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10078 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10079 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10080 * this function allows only iocbs for posting buffers. This function finds 10081 * next available slot in the command ring and posts the command to the 10082 * available slot and writes the port attention register to request HBA start 10083 * processing new iocb. If there is no slot available in the ring and 10084 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10085 * the function returns IOCB_BUSY. 10086 * 10087 * This function is called with hbalock held. The function will return success 10088 * after it successfully submit the iocb to firmware or after adding to the 10089 * txq. 10090 **/ 10091 static int 10092 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10093 struct lpfc_iocbq *piocb, uint32_t flag) 10094 { 10095 struct lpfc_iocbq *nextiocb; 10096 IOCB_t *iocb; 10097 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10098 10099 lockdep_assert_held(&phba->hbalock); 10100 10101 if (piocb->iocb_cmpl && (!piocb->vport) && 10102 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10103 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10105 "1807 IOCB x%x failed. No vport\n", 10106 piocb->iocb.ulpCommand); 10107 dump_stack(); 10108 return IOCB_ERROR; 10109 } 10110 10111 10112 /* If the PCI channel is in offline state, do not post iocbs. */ 10113 if (unlikely(pci_channel_offline(phba->pcidev))) 10114 return IOCB_ERROR; 10115 10116 /* If HBA has a deferred error attention, fail the iocb. */ 10117 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10118 return IOCB_ERROR; 10119 10120 /* 10121 * We should never get an IOCB if we are in a < LINK_DOWN state 10122 */ 10123 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10124 return IOCB_ERROR; 10125 10126 /* 10127 * Check to see if we are blocking IOCB processing because of a 10128 * outstanding event. 10129 */ 10130 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10131 goto iocb_busy; 10132 10133 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10134 /* 10135 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10136 * can be issued if the link is not up. 10137 */ 10138 switch (piocb->iocb.ulpCommand) { 10139 case CMD_GEN_REQUEST64_CR: 10140 case CMD_GEN_REQUEST64_CX: 10141 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10142 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10143 FC_RCTL_DD_UNSOL_CMD) || 10144 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10145 MENLO_TRANSPORT_TYPE)) 10146 10147 goto iocb_busy; 10148 break; 10149 case CMD_QUE_RING_BUF_CN: 10150 case CMD_QUE_RING_BUF64_CN: 10151 /* 10152 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10153 * completion, iocb_cmpl MUST be 0. 10154 */ 10155 if (piocb->iocb_cmpl) 10156 piocb->iocb_cmpl = NULL; 10157 fallthrough; 10158 case CMD_CREATE_XRI_CR: 10159 case CMD_CLOSE_XRI_CN: 10160 case CMD_CLOSE_XRI_CX: 10161 break; 10162 default: 10163 goto iocb_busy; 10164 } 10165 10166 /* 10167 * For FCP commands, we must be in a state where we can process link 10168 * attention events. 10169 */ 10170 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10171 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10172 goto iocb_busy; 10173 } 10174 10175 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10176 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10177 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10178 10179 if (iocb) 10180 lpfc_sli_update_ring(phba, pring); 10181 else 10182 lpfc_sli_update_full_ring(phba, pring); 10183 10184 if (!piocb) 10185 return IOCB_SUCCESS; 10186 10187 goto out_busy; 10188 10189 iocb_busy: 10190 pring->stats.iocb_cmd_delay++; 10191 10192 out_busy: 10193 10194 if (!(flag & SLI_IOCB_RET_IOCB)) { 10195 __lpfc_sli_ringtx_put(phba, pring, piocb); 10196 return IOCB_SUCCESS; 10197 } 10198 10199 return IOCB_BUSY; 10200 } 10201 10202 /** 10203 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 10204 * @phba: Pointer to HBA context object. 10205 * @piocbq: Pointer to command iocb. 10206 * @sglq: Pointer to the scatter gather queue object. 10207 * 10208 * This routine converts the bpl or bde that is in the IOCB 10209 * to a sgl list for the sli4 hardware. The physical address 10210 * of the bpl/bde is converted back to a virtual address. 10211 * If the IOCB contains a BPL then the list of BDE's is 10212 * converted to sli4_sge's. If the IOCB contains a single 10213 * BDE then it is converted to a single sli_sge. 10214 * The IOCB is still in cpu endianess so the contents of 10215 * the bpl can be used without byte swapping. 10216 * 10217 * Returns valid XRI = Success, NO_XRI = Failure. 10218 **/ 10219 static uint16_t 10220 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 10221 struct lpfc_sglq *sglq) 10222 { 10223 uint16_t xritag = NO_XRI; 10224 struct ulp_bde64 *bpl = NULL; 10225 struct ulp_bde64 bde; 10226 struct sli4_sge *sgl = NULL; 10227 struct lpfc_dmabuf *dmabuf; 10228 IOCB_t *icmd; 10229 int numBdes = 0; 10230 int i = 0; 10231 uint32_t offset = 0; /* accumulated offset in the sg request list */ 10232 int inbound = 0; /* number of sg reply entries inbound from firmware */ 10233 10234 if (!piocbq || !sglq) 10235 return xritag; 10236 10237 sgl = (struct sli4_sge *)sglq->sgl; 10238 icmd = &piocbq->iocb; 10239 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 10240 return sglq->sli4_xritag; 10241 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10242 numBdes = icmd->un.genreq64.bdl.bdeSize / 10243 sizeof(struct ulp_bde64); 10244 /* The addrHigh and addrLow fields within the IOCB 10245 * have not been byteswapped yet so there is no 10246 * need to swap them back. 10247 */ 10248 if (piocbq->context3) 10249 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 10250 else 10251 return xritag; 10252 10253 bpl = (struct ulp_bde64 *)dmabuf->virt; 10254 if (!bpl) 10255 return xritag; 10256 10257 for (i = 0; i < numBdes; i++) { 10258 /* Should already be byte swapped. */ 10259 sgl->addr_hi = bpl->addrHigh; 10260 sgl->addr_lo = bpl->addrLow; 10261 10262 sgl->word2 = le32_to_cpu(sgl->word2); 10263 if ((i+1) == numBdes) 10264 bf_set(lpfc_sli4_sge_last, sgl, 1); 10265 else 10266 bf_set(lpfc_sli4_sge_last, sgl, 0); 10267 /* swap the size field back to the cpu so we 10268 * can assign it to the sgl. 10269 */ 10270 bde.tus.w = le32_to_cpu(bpl->tus.w); 10271 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 10272 /* The offsets in the sgl need to be accumulated 10273 * separately for the request and reply lists. 10274 * The request is always first, the reply follows. 10275 */ 10276 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 10277 /* add up the reply sg entries */ 10278 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 10279 inbound++; 10280 /* first inbound? reset the offset */ 10281 if (inbound == 1) 10282 offset = 0; 10283 bf_set(lpfc_sli4_sge_offset, sgl, offset); 10284 bf_set(lpfc_sli4_sge_type, sgl, 10285 LPFC_SGE_TYPE_DATA); 10286 offset += bde.tus.f.bdeSize; 10287 } 10288 sgl->word2 = cpu_to_le32(sgl->word2); 10289 bpl++; 10290 sgl++; 10291 } 10292 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 10293 /* The addrHigh and addrLow fields of the BDE have not 10294 * been byteswapped yet so they need to be swapped 10295 * before putting them in the sgl. 10296 */ 10297 sgl->addr_hi = 10298 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 10299 sgl->addr_lo = 10300 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 10301 sgl->word2 = le32_to_cpu(sgl->word2); 10302 bf_set(lpfc_sli4_sge_last, sgl, 1); 10303 sgl->word2 = cpu_to_le32(sgl->word2); 10304 sgl->sge_len = 10305 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 10306 } 10307 return sglq->sli4_xritag; 10308 } 10309 10310 /** 10311 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 10312 * @phba: Pointer to HBA context object. 10313 * @iocbq: Pointer to command iocb. 10314 * @wqe: Pointer to the work queue entry. 10315 * 10316 * This routine converts the iocb command to its Work Queue Entry 10317 * equivalent. The wqe pointer should not have any fields set when 10318 * this routine is called because it will memcpy over them. 10319 * This routine does not set the CQ_ID or the WQEC bits in the 10320 * wqe. 10321 * 10322 * Returns: 0 = Success, IOCB_ERROR = Failure. 10323 **/ 10324 static int 10325 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 10326 union lpfc_wqe128 *wqe) 10327 { 10328 uint32_t xmit_len = 0, total_len = 0; 10329 uint8_t ct = 0; 10330 uint32_t fip; 10331 uint32_t abort_tag; 10332 uint8_t command_type = ELS_COMMAND_NON_FIP; 10333 uint8_t cmnd; 10334 uint16_t xritag; 10335 uint16_t abrt_iotag; 10336 struct lpfc_iocbq *abrtiocbq; 10337 struct ulp_bde64 *bpl = NULL; 10338 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 10339 int numBdes, i; 10340 struct ulp_bde64 bde; 10341 struct lpfc_nodelist *ndlp; 10342 uint32_t *pcmd; 10343 uint32_t if_type; 10344 10345 fip = phba->hba_flag & HBA_FIP_SUPPORT; 10346 /* The fcp commands will set command type */ 10347 if (iocbq->iocb_flag & LPFC_IO_FCP) 10348 command_type = FCP_COMMAND; 10349 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 10350 command_type = ELS_COMMAND_FIP; 10351 else 10352 command_type = ELS_COMMAND_NON_FIP; 10353 10354 if (phba->fcp_embed_io) 10355 memset(wqe, 0, sizeof(union lpfc_wqe128)); 10356 /* Some of the fields are in the right position already */ 10357 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 10358 /* The ct field has moved so reset */ 10359 wqe->generic.wqe_com.word7 = 0; 10360 wqe->generic.wqe_com.word10 = 0; 10361 10362 abort_tag = (uint32_t) iocbq->iotag; 10363 xritag = iocbq->sli4_xritag; 10364 /* words0-2 bpl convert bde */ 10365 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10366 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10367 sizeof(struct ulp_bde64); 10368 bpl = (struct ulp_bde64 *) 10369 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 10370 if (!bpl) 10371 return IOCB_ERROR; 10372 10373 /* Should already be byte swapped. */ 10374 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 10375 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 10376 /* swap the size field back to the cpu so we 10377 * can assign it to the sgl. 10378 */ 10379 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 10380 xmit_len = wqe->generic.bde.tus.f.bdeSize; 10381 total_len = 0; 10382 for (i = 0; i < numBdes; i++) { 10383 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10384 total_len += bde.tus.f.bdeSize; 10385 } 10386 } else 10387 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 10388 10389 iocbq->iocb.ulpIoTag = iocbq->iotag; 10390 cmnd = iocbq->iocb.ulpCommand; 10391 10392 switch (iocbq->iocb.ulpCommand) { 10393 case CMD_ELS_REQUEST64_CR: 10394 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 10395 ndlp = iocbq->context_un.ndlp; 10396 else 10397 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10398 if (!iocbq->iocb.ulpLe) { 10399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10400 "2007 Only Limited Edition cmd Format" 10401 " supported 0x%x\n", 10402 iocbq->iocb.ulpCommand); 10403 return IOCB_ERROR; 10404 } 10405 10406 wqe->els_req.payload_len = xmit_len; 10407 /* Els_reguest64 has a TMO */ 10408 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 10409 iocbq->iocb.ulpTimeout); 10410 /* Need a VF for word 4 set the vf bit*/ 10411 bf_set(els_req64_vf, &wqe->els_req, 0); 10412 /* And a VFID for word 12 */ 10413 bf_set(els_req64_vfid, &wqe->els_req, 0); 10414 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10415 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10416 iocbq->iocb.ulpContext); 10417 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 10418 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 10419 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 10420 if (command_type == ELS_COMMAND_FIP) 10421 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 10422 >> LPFC_FIP_ELS_ID_SHIFT); 10423 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10424 iocbq->context2)->virt); 10425 if_type = bf_get(lpfc_sli_intf_if_type, 10426 &phba->sli4_hba.sli_intf); 10427 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10428 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 10429 *pcmd == ELS_CMD_SCR || 10430 *pcmd == ELS_CMD_RDF || 10431 *pcmd == ELS_CMD_EDC || 10432 *pcmd == ELS_CMD_RSCN_XMT || 10433 *pcmd == ELS_CMD_FDISC || 10434 *pcmd == ELS_CMD_LOGO || 10435 *pcmd == ELS_CMD_QFPA || 10436 *pcmd == ELS_CMD_UVEM || 10437 *pcmd == ELS_CMD_PLOGI)) { 10438 bf_set(els_req64_sp, &wqe->els_req, 1); 10439 bf_set(els_req64_sid, &wqe->els_req, 10440 iocbq->vport->fc_myDID); 10441 if ((*pcmd == ELS_CMD_FLOGI) && 10442 !(phba->fc_topology == 10443 LPFC_TOPOLOGY_LOOP)) 10444 bf_set(els_req64_sid, &wqe->els_req, 0); 10445 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 10446 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10447 phba->vpi_ids[iocbq->vport->vpi]); 10448 } else if (pcmd && iocbq->context1) { 10449 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 10450 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10451 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10452 } 10453 } 10454 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 10455 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10456 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10457 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 10458 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 10459 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 10460 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10461 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 10462 wqe->els_req.max_response_payload_len = total_len - xmit_len; 10463 break; 10464 case CMD_XMIT_SEQUENCE64_CX: 10465 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 10466 iocbq->iocb.un.ulpWord[3]); 10467 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 10468 iocbq->iocb.unsli3.rcvsli3.ox_id); 10469 /* The entire sequence is transmitted for this IOCB */ 10470 xmit_len = total_len; 10471 cmnd = CMD_XMIT_SEQUENCE64_CR; 10472 if (phba->link_flag & LS_LOOPBACK_MODE) 10473 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 10474 fallthrough; 10475 case CMD_XMIT_SEQUENCE64_CR: 10476 /* word3 iocb=io_tag32 wqe=reserved */ 10477 wqe->xmit_sequence.rsvd3 = 0; 10478 /* word4 relative_offset memcpy */ 10479 /* word5 r_ctl/df_ctl memcpy */ 10480 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 10481 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 10482 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 10483 LPFC_WQE_IOD_WRITE); 10484 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 10485 LPFC_WQE_LENLOC_WORD12); 10486 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 10487 wqe->xmit_sequence.xmit_len = xmit_len; 10488 command_type = OTHER_COMMAND; 10489 break; 10490 case CMD_XMIT_BCAST64_CN: 10491 /* word3 iocb=iotag32 wqe=seq_payload_len */ 10492 wqe->xmit_bcast64.seq_payload_len = xmit_len; 10493 /* word4 iocb=rsvd wqe=rsvd */ 10494 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 10495 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 10496 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 10497 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10498 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 10499 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 10500 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 10501 LPFC_WQE_LENLOC_WORD3); 10502 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 10503 break; 10504 case CMD_FCP_IWRITE64_CR: 10505 command_type = FCP_COMMAND_DATA_OUT; 10506 /* word3 iocb=iotag wqe=payload_offset_len */ 10507 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10508 bf_set(payload_offset_len, &wqe->fcp_iwrite, 10509 xmit_len + sizeof(struct fcp_rsp)); 10510 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 10511 0); 10512 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10513 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10514 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 10515 iocbq->iocb.ulpFCP2Rcvy); 10516 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 10517 /* Always open the exchange */ 10518 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 10519 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 10520 LPFC_WQE_LENLOC_WORD4); 10521 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 10522 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 10523 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10524 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 10525 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10526 if (iocbq->priority) { 10527 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10528 (iocbq->priority << 1)); 10529 } else { 10530 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10531 (phba->cfg_XLanePriority << 1)); 10532 } 10533 } 10534 /* Note, word 10 is already initialized to 0 */ 10535 10536 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10537 if (phba->cfg_enable_pbde) 10538 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 10539 else 10540 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 10541 10542 if (phba->fcp_embed_io) { 10543 struct lpfc_io_buf *lpfc_cmd; 10544 struct sli4_sge *sgl; 10545 struct fcp_cmnd *fcp_cmnd; 10546 uint32_t *ptr; 10547 10548 /* 128 byte wqe support here */ 10549 10550 lpfc_cmd = iocbq->context1; 10551 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10552 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10553 10554 /* Word 0-2 - FCP_CMND */ 10555 wqe->generic.bde.tus.f.bdeFlags = 10556 BUFF_TYPE_BDE_IMMED; 10557 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10558 wqe->generic.bde.addrHigh = 0; 10559 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10560 10561 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10562 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10563 10564 /* Word 22-29 FCP CMND Payload */ 10565 ptr = &wqe->words[22]; 10566 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10567 } 10568 break; 10569 case CMD_FCP_IREAD64_CR: 10570 /* word3 iocb=iotag wqe=payload_offset_len */ 10571 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10572 bf_set(payload_offset_len, &wqe->fcp_iread, 10573 xmit_len + sizeof(struct fcp_rsp)); 10574 bf_set(cmd_buff_len, &wqe->fcp_iread, 10575 0); 10576 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10577 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10578 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 10579 iocbq->iocb.ulpFCP2Rcvy); 10580 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 10581 /* Always open the exchange */ 10582 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 10583 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 10584 LPFC_WQE_LENLOC_WORD4); 10585 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 10586 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 10587 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10588 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 10589 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 10590 if (iocbq->priority) { 10591 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10592 (iocbq->priority << 1)); 10593 } else { 10594 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10595 (phba->cfg_XLanePriority << 1)); 10596 } 10597 } 10598 /* Note, word 10 is already initialized to 0 */ 10599 10600 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10601 if (phba->cfg_enable_pbde) 10602 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 10603 else 10604 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 10605 10606 if (phba->fcp_embed_io) { 10607 struct lpfc_io_buf *lpfc_cmd; 10608 struct sli4_sge *sgl; 10609 struct fcp_cmnd *fcp_cmnd; 10610 uint32_t *ptr; 10611 10612 /* 128 byte wqe support here */ 10613 10614 lpfc_cmd = iocbq->context1; 10615 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10616 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10617 10618 /* Word 0-2 - FCP_CMND */ 10619 wqe->generic.bde.tus.f.bdeFlags = 10620 BUFF_TYPE_BDE_IMMED; 10621 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10622 wqe->generic.bde.addrHigh = 0; 10623 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10624 10625 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 10626 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 10627 10628 /* Word 22-29 FCP CMND Payload */ 10629 ptr = &wqe->words[22]; 10630 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10631 } 10632 break; 10633 case CMD_FCP_ICMND64_CR: 10634 /* word3 iocb=iotag wqe=payload_offset_len */ 10635 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10636 bf_set(payload_offset_len, &wqe->fcp_icmd, 10637 xmit_len + sizeof(struct fcp_rsp)); 10638 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10639 0); 10640 /* word3 iocb=IO_TAG wqe=reserved */ 10641 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10642 /* Always open the exchange */ 10643 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10644 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10645 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10646 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10647 LPFC_WQE_LENLOC_NONE); 10648 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10649 iocbq->iocb.ulpFCP2Rcvy); 10650 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10651 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10652 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10653 if (iocbq->priority) { 10654 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10655 (iocbq->priority << 1)); 10656 } else { 10657 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10658 (phba->cfg_XLanePriority << 1)); 10659 } 10660 } 10661 /* Note, word 10 is already initialized to 0 */ 10662 10663 if (phba->fcp_embed_io) { 10664 struct lpfc_io_buf *lpfc_cmd; 10665 struct sli4_sge *sgl; 10666 struct fcp_cmnd *fcp_cmnd; 10667 uint32_t *ptr; 10668 10669 /* 128 byte wqe support here */ 10670 10671 lpfc_cmd = iocbq->context1; 10672 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10673 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10674 10675 /* Word 0-2 - FCP_CMND */ 10676 wqe->generic.bde.tus.f.bdeFlags = 10677 BUFF_TYPE_BDE_IMMED; 10678 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10679 wqe->generic.bde.addrHigh = 0; 10680 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10681 10682 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10683 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10684 10685 /* Word 22-29 FCP CMND Payload */ 10686 ptr = &wqe->words[22]; 10687 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10688 } 10689 break; 10690 case CMD_GEN_REQUEST64_CR: 10691 /* For this command calculate the xmit length of the 10692 * request bde. 10693 */ 10694 xmit_len = 0; 10695 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10696 sizeof(struct ulp_bde64); 10697 for (i = 0; i < numBdes; i++) { 10698 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10699 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10700 break; 10701 xmit_len += bde.tus.f.bdeSize; 10702 } 10703 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10704 wqe->gen_req.request_payload_len = xmit_len; 10705 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10706 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10707 /* word6 context tag copied in memcpy */ 10708 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10709 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10711 "2015 Invalid CT %x command 0x%x\n", 10712 ct, iocbq->iocb.ulpCommand); 10713 return IOCB_ERROR; 10714 } 10715 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10716 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10717 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10718 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10719 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10720 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10721 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10722 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10723 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10724 command_type = OTHER_COMMAND; 10725 break; 10726 case CMD_XMIT_ELS_RSP64_CX: 10727 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10728 /* words0-2 BDE memcpy */ 10729 /* word3 iocb=iotag32 wqe=response_payload_len */ 10730 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10731 /* word4 */ 10732 wqe->xmit_els_rsp.word4 = 0; 10733 /* word5 iocb=rsvd wge=did */ 10734 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10735 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10736 10737 if_type = bf_get(lpfc_sli_intf_if_type, 10738 &phba->sli4_hba.sli_intf); 10739 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10740 if (iocbq->vport->fc_flag & FC_PT2PT) { 10741 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10742 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10743 iocbq->vport->fc_myDID); 10744 if (iocbq->vport->fc_myDID == Fabric_DID) { 10745 bf_set(wqe_els_did, 10746 &wqe->xmit_els_rsp.wqe_dest, 0); 10747 } 10748 } 10749 } 10750 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10751 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10752 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10753 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10754 iocbq->iocb.unsli3.rcvsli3.ox_id); 10755 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10756 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10757 phba->vpi_ids[iocbq->vport->vpi]); 10758 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10759 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10760 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10761 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10762 LPFC_WQE_LENLOC_WORD3); 10763 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10764 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10765 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10766 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10767 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10768 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10769 iocbq->vport->fc_myDID); 10770 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10771 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10772 phba->vpi_ids[phba->pport->vpi]); 10773 } 10774 command_type = OTHER_COMMAND; 10775 break; 10776 case CMD_CLOSE_XRI_CN: 10777 case CMD_ABORT_XRI_CN: 10778 case CMD_ABORT_XRI_CX: 10779 /* words 0-2 memcpy should be 0 rserved */ 10780 /* port will send abts */ 10781 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10782 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10783 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10784 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10785 } else 10786 fip = 0; 10787 10788 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10789 /* 10790 * The link is down, or the command was ELS_FIP 10791 * so the fw does not need to send abts 10792 * on the wire. 10793 */ 10794 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10795 else 10796 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10797 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10798 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10799 wqe->abort_cmd.rsrvd5 = 0; 10800 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10801 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10802 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10803 /* 10804 * The abort handler will send us CMD_ABORT_XRI_CN or 10805 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10806 */ 10807 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10808 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10809 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10810 LPFC_WQE_LENLOC_NONE); 10811 cmnd = CMD_ABORT_XRI_CX; 10812 command_type = OTHER_COMMAND; 10813 xritag = 0; 10814 break; 10815 case CMD_XMIT_BLS_RSP64_CX: 10816 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10817 /* As BLS ABTS RSP WQE is very different from other WQEs, 10818 * we re-construct this WQE here based on information in 10819 * iocbq from scratch. 10820 */ 10821 memset(wqe, 0, sizeof(*wqe)); 10822 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10823 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10824 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10825 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10826 LPFC_ABTS_UNSOL_INT) { 10827 /* ABTS sent by initiator to CT exchange, the 10828 * RX_ID field will be filled with the newly 10829 * allocated responder XRI. 10830 */ 10831 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10832 iocbq->sli4_xritag); 10833 } else { 10834 /* ABTS sent by responder to CT exchange, the 10835 * RX_ID field will be filled with the responder 10836 * RX_ID from ABTS. 10837 */ 10838 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10839 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10840 } 10841 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10842 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10843 10844 /* Use CT=VPI */ 10845 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10846 ndlp->nlp_DID); 10847 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10848 iocbq->iocb.ulpContext); 10849 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10850 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10851 phba->vpi_ids[phba->pport->vpi]); 10852 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10853 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10854 LPFC_WQE_LENLOC_NONE); 10855 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10856 command_type = OTHER_COMMAND; 10857 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10858 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10859 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10860 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10861 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10862 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10863 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10864 } 10865 10866 break; 10867 case CMD_SEND_FRAME: 10868 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10869 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10870 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10871 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10872 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10873 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10874 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10875 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10876 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10877 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10878 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10879 return 0; 10880 case CMD_XRI_ABORTED_CX: 10881 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10882 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10883 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10884 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10885 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10886 default: 10887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10888 "2014 Invalid command 0x%x\n", 10889 iocbq->iocb.ulpCommand); 10890 return IOCB_ERROR; 10891 } 10892 10893 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10894 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10895 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10896 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10897 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10898 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10899 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10900 LPFC_IO_DIF_INSERT); 10901 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10902 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10903 wqe->generic.wqe_com.abort_tag = abort_tag; 10904 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10905 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10906 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10907 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10908 return 0; 10909 } 10910 10911 /** 10912 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10913 * @phba: Pointer to HBA context object. 10914 * @ring_number: SLI ring number to issue wqe on. 10915 * @piocb: Pointer to command iocb. 10916 * @flag: Flag indicating if this command can be put into txq. 10917 * 10918 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10919 * send an iocb command to an HBA with SLI-4 interface spec. 10920 * 10921 * This function takes the hbalock before invoking the lockless version. 10922 * The function will return success after it successfully submit the wqe to 10923 * firmware or after adding to the txq. 10924 **/ 10925 static int 10926 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10927 struct lpfc_iocbq *piocb, uint32_t flag) 10928 { 10929 unsigned long iflags; 10930 int rc; 10931 10932 spin_lock_irqsave(&phba->hbalock, iflags); 10933 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10934 spin_unlock_irqrestore(&phba->hbalock, iflags); 10935 10936 return rc; 10937 } 10938 10939 /** 10940 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10941 * @phba: Pointer to HBA context object. 10942 * @ring_number: SLI ring number to issue wqe on. 10943 * @piocb: Pointer to command iocb. 10944 * @flag: Flag indicating if this command can be put into txq. 10945 * 10946 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10947 * an wqe command to an HBA with SLI-4 interface spec. 10948 * 10949 * This function is a lockless version. The function will return success 10950 * after it successfully submit the wqe to firmware or after adding to the 10951 * txq. 10952 **/ 10953 static int 10954 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10955 struct lpfc_iocbq *piocb, uint32_t flag) 10956 { 10957 int rc; 10958 struct lpfc_io_buf *lpfc_cmd = 10959 (struct lpfc_io_buf *)piocb->context1; 10960 union lpfc_wqe128 *wqe = &piocb->wqe; 10961 struct sli4_sge *sgl; 10962 10963 /* 128 byte wqe support here */ 10964 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10965 10966 if (phba->fcp_embed_io) { 10967 struct fcp_cmnd *fcp_cmnd; 10968 u32 *ptr; 10969 10970 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10971 10972 /* Word 0-2 - FCP_CMND */ 10973 wqe->generic.bde.tus.f.bdeFlags = 10974 BUFF_TYPE_BDE_IMMED; 10975 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10976 wqe->generic.bde.addrHigh = 0; 10977 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10978 10979 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10980 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10981 10982 /* Word 22-29 FCP CMND Payload */ 10983 ptr = &wqe->words[22]; 10984 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10985 } else { 10986 /* Word 0-2 - Inline BDE */ 10987 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10988 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10989 wqe->generic.bde.addrHigh = sgl->addr_hi; 10990 wqe->generic.bde.addrLow = sgl->addr_lo; 10991 10992 /* Word 10 */ 10993 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10994 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10995 } 10996 10997 /* add the VMID tags as per switch response */ 10998 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 10999 if (phba->pport->vmid_priority_tagging) { 11000 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 11001 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 11002 (piocb->vmid_tag.cs_ctl_vmid)); 11003 } else { 11004 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 11005 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11006 wqe->words[31] = piocb->vmid_tag.app_id; 11007 } 11008 } 11009 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 11010 return rc; 11011 } 11012 11013 /** 11014 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 11015 * @phba: Pointer to HBA context object. 11016 * @ring_number: SLI ring number to issue iocb on. 11017 * @piocb: Pointer to command iocb. 11018 * @flag: Flag indicating if this command can be put into txq. 11019 * 11020 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 11021 * an iocb command to an HBA with SLI-4 interface spec. 11022 * 11023 * This function is called with ringlock held. The function will return success 11024 * after it successfully submit the iocb to firmware or after adding to the 11025 * txq. 11026 **/ 11027 static int 11028 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 11029 struct lpfc_iocbq *piocb, uint32_t flag) 11030 { 11031 struct lpfc_sglq *sglq; 11032 union lpfc_wqe128 wqe; 11033 struct lpfc_queue *wq; 11034 struct lpfc_sli_ring *pring; 11035 11036 /* Get the WQ */ 11037 if ((piocb->iocb_flag & LPFC_IO_FCP) || 11038 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11039 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 11040 } else { 11041 wq = phba->sli4_hba.els_wq; 11042 } 11043 11044 /* Get corresponding ring */ 11045 pring = wq->pring; 11046 11047 /* 11048 * The WQE can be either 64 or 128 bytes, 11049 */ 11050 11051 lockdep_assert_held(&pring->ring_lock); 11052 11053 if (piocb->sli4_xritag == NO_XRI) { 11054 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11055 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 11056 sglq = NULL; 11057 else { 11058 if (!list_empty(&pring->txq)) { 11059 if (!(flag & SLI_IOCB_RET_IOCB)) { 11060 __lpfc_sli_ringtx_put(phba, 11061 pring, piocb); 11062 return IOCB_SUCCESS; 11063 } else { 11064 return IOCB_BUSY; 11065 } 11066 } else { 11067 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 11068 if (!sglq) { 11069 if (!(flag & SLI_IOCB_RET_IOCB)) { 11070 __lpfc_sli_ringtx_put(phba, 11071 pring, 11072 piocb); 11073 return IOCB_SUCCESS; 11074 } else 11075 return IOCB_BUSY; 11076 } 11077 } 11078 } 11079 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 11080 /* These IO's already have an XRI and a mapped sgl. */ 11081 sglq = NULL; 11082 } 11083 else { 11084 /* 11085 * This is a continuation of a commandi,(CX) so this 11086 * sglq is on the active list 11087 */ 11088 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 11089 if (!sglq) 11090 return IOCB_ERROR; 11091 } 11092 11093 if (sglq) { 11094 piocb->sli4_lxritag = sglq->sli4_lxritag; 11095 piocb->sli4_xritag = sglq->sli4_xritag; 11096 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 11097 return IOCB_ERROR; 11098 } 11099 11100 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 11101 return IOCB_ERROR; 11102 11103 if (lpfc_sli4_wq_put(wq, &wqe)) 11104 return IOCB_ERROR; 11105 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 11106 11107 return 0; 11108 } 11109 11110 /* 11111 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 11112 * 11113 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 11114 * or IOCB for sli-3 function. 11115 * pointer from the lpfc_hba struct. 11116 * 11117 * Return codes: 11118 * IOCB_ERROR - Error 11119 * IOCB_SUCCESS - Success 11120 * IOCB_BUSY - Busy 11121 **/ 11122 int 11123 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 11124 struct lpfc_iocbq *piocb, uint32_t flag) 11125 { 11126 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 11127 } 11128 11129 /* 11130 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 11131 * 11132 * This routine wraps the actual lockless version for issusing IOCB function 11133 * pointer from the lpfc_hba struct. 11134 * 11135 * Return codes: 11136 * IOCB_ERROR - Error 11137 * IOCB_SUCCESS - Success 11138 * IOCB_BUSY - Busy 11139 **/ 11140 int 11141 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11142 struct lpfc_iocbq *piocb, uint32_t flag) 11143 { 11144 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11145 } 11146 11147 /** 11148 * lpfc_sli_api_table_setup - Set up sli api function jump table 11149 * @phba: The hba struct for which this call is being executed. 11150 * @dev_grp: The HBA PCI-Device group number. 11151 * 11152 * This routine sets up the SLI interface API function jump table in @phba 11153 * struct. 11154 * Returns: 0 - success, -ENODEV - failure. 11155 **/ 11156 int 11157 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11158 { 11159 11160 switch (dev_grp) { 11161 case LPFC_PCI_DEV_LP: 11162 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11163 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11164 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11165 break; 11166 case LPFC_PCI_DEV_OC: 11167 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11168 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11169 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11170 break; 11171 default: 11172 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11173 "1419 Invalid HBA PCI-device group: 0x%x\n", 11174 dev_grp); 11175 return -ENODEV; 11176 } 11177 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 11178 return 0; 11179 } 11180 11181 /** 11182 * lpfc_sli4_calc_ring - Calculates which ring to use 11183 * @phba: Pointer to HBA context object. 11184 * @piocb: Pointer to command iocb. 11185 * 11186 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11187 * hba_wqidx, thus we need to calculate the corresponding ring. 11188 * Since ABORTS must go on the same WQ of the command they are 11189 * aborting, we use command's hba_wqidx. 11190 */ 11191 struct lpfc_sli_ring * 11192 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11193 { 11194 struct lpfc_io_buf *lpfc_cmd; 11195 11196 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11197 if (unlikely(!phba->sli4_hba.hdwq)) 11198 return NULL; 11199 /* 11200 * for abort iocb hba_wqidx should already 11201 * be setup based on what work queue we used. 11202 */ 11203 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11204 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 11205 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11206 } 11207 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11208 } else { 11209 if (unlikely(!phba->sli4_hba.els_wq)) 11210 return NULL; 11211 piocb->hba_wqidx = 0; 11212 return phba->sli4_hba.els_wq->pring; 11213 } 11214 } 11215 11216 /** 11217 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11218 * @phba: Pointer to HBA context object. 11219 * @ring_number: Ring number 11220 * @piocb: Pointer to command iocb. 11221 * @flag: Flag indicating if this command can be put into txq. 11222 * 11223 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11224 * function. This function gets the hbalock and calls 11225 * __lpfc_sli_issue_iocb function and will return the error returned 11226 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11227 * functions which do not hold hbalock. 11228 **/ 11229 int 11230 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11231 struct lpfc_iocbq *piocb, uint32_t flag) 11232 { 11233 struct lpfc_sli_ring *pring; 11234 struct lpfc_queue *eq; 11235 unsigned long iflags; 11236 int rc; 11237 11238 if (phba->sli_rev == LPFC_SLI_REV4) { 11239 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11240 11241 pring = lpfc_sli4_calc_ring(phba, piocb); 11242 if (unlikely(pring == NULL)) 11243 return IOCB_ERROR; 11244 11245 spin_lock_irqsave(&pring->ring_lock, iflags); 11246 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11247 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11248 11249 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11250 } else { 11251 /* For now, SLI2/3 will still use hbalock */ 11252 spin_lock_irqsave(&phba->hbalock, iflags); 11253 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11254 spin_unlock_irqrestore(&phba->hbalock, iflags); 11255 } 11256 return rc; 11257 } 11258 11259 /** 11260 * lpfc_extra_ring_setup - Extra ring setup function 11261 * @phba: Pointer to HBA context object. 11262 * 11263 * This function is called while driver attaches with the 11264 * HBA to setup the extra ring. The extra ring is used 11265 * only when driver needs to support target mode functionality 11266 * or IP over FC functionalities. 11267 * 11268 * This function is called with no lock held. SLI3 only. 11269 **/ 11270 static int 11271 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11272 { 11273 struct lpfc_sli *psli; 11274 struct lpfc_sli_ring *pring; 11275 11276 psli = &phba->sli; 11277 11278 /* Adjust cmd/rsp ring iocb entries more evenly */ 11279 11280 /* Take some away from the FCP ring */ 11281 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11282 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11283 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11284 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11285 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11286 11287 /* and give them to the extra ring */ 11288 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11289 11290 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11291 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11292 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11293 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11294 11295 /* Setup default profile for this ring */ 11296 pring->iotag_max = 4096; 11297 pring->num_mask = 1; 11298 pring->prt[0].profile = 0; /* Mask 0 */ 11299 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11300 pring->prt[0].type = phba->cfg_multi_ring_type; 11301 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11302 return 0; 11303 } 11304 11305 static void 11306 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11307 struct lpfc_nodelist *ndlp) 11308 { 11309 unsigned long iflags; 11310 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11311 11312 spin_lock_irqsave(&phba->hbalock, iflags); 11313 if (!list_empty(&evtp->evt_listp)) { 11314 spin_unlock_irqrestore(&phba->hbalock, iflags); 11315 return; 11316 } 11317 11318 /* Incrementing the reference count until the queued work is done. */ 11319 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11320 if (!evtp->evt_arg1) { 11321 spin_unlock_irqrestore(&phba->hbalock, iflags); 11322 return; 11323 } 11324 evtp->evt = LPFC_EVT_RECOVER_PORT; 11325 list_add_tail(&evtp->evt_listp, &phba->work_list); 11326 spin_unlock_irqrestore(&phba->hbalock, iflags); 11327 11328 lpfc_worker_wake_up(phba); 11329 } 11330 11331 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11332 * @phba: Pointer to HBA context object. 11333 * @iocbq: Pointer to iocb object. 11334 * 11335 * The async_event handler calls this routine when it receives 11336 * an ASYNC_STATUS_CN event from the port. The port generates 11337 * this event when an Abort Sequence request to an rport fails 11338 * twice in succession. The abort could be originated by the 11339 * driver or by the port. The ABTS could have been for an ELS 11340 * or FCP IO. The port only generates this event when an ABTS 11341 * fails to complete after one retry. 11342 */ 11343 static void 11344 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11345 struct lpfc_iocbq *iocbq) 11346 { 11347 struct lpfc_nodelist *ndlp = NULL; 11348 uint16_t rpi = 0, vpi = 0; 11349 struct lpfc_vport *vport = NULL; 11350 11351 /* The rpi in the ulpContext is vport-sensitive. */ 11352 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11353 rpi = iocbq->iocb.ulpContext; 11354 11355 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11356 "3092 Port generated ABTS async event " 11357 "on vpi %d rpi %d status 0x%x\n", 11358 vpi, rpi, iocbq->iocb.ulpStatus); 11359 11360 vport = lpfc_find_vport_by_vpid(phba, vpi); 11361 if (!vport) 11362 goto err_exit; 11363 ndlp = lpfc_findnode_rpi(vport, rpi); 11364 if (!ndlp) 11365 goto err_exit; 11366 11367 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11368 lpfc_sli_abts_recover_port(vport, ndlp); 11369 return; 11370 11371 err_exit: 11372 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11373 "3095 Event Context not found, no " 11374 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11375 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 11376 vpi, rpi); 11377 } 11378 11379 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11380 * @phba: pointer to HBA context object. 11381 * @ndlp: nodelist pointer for the impacted rport. 11382 * @axri: pointer to the wcqe containing the failed exchange. 11383 * 11384 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11385 * port. The port generates this event when an abort exchange request to an 11386 * rport fails twice in succession with no reply. The abort could be originated 11387 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11388 */ 11389 void 11390 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11391 struct lpfc_nodelist *ndlp, 11392 struct sli4_wcqe_xri_aborted *axri) 11393 { 11394 uint32_t ext_status = 0; 11395 11396 if (!ndlp) { 11397 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11398 "3115 Node Context not found, driver " 11399 "ignoring abts err event\n"); 11400 return; 11401 } 11402 11403 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11404 "3116 Port generated FCP XRI ABORT event on " 11405 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11406 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11407 bf_get(lpfc_wcqe_xa_xri, axri), 11408 bf_get(lpfc_wcqe_xa_status, axri), 11409 axri->parameter); 11410 11411 /* 11412 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11413 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11414 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11415 */ 11416 ext_status = axri->parameter & IOERR_PARAM_MASK; 11417 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11418 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11419 lpfc_sli_post_recovery_event(phba, ndlp); 11420 } 11421 11422 /** 11423 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11424 * @phba: Pointer to HBA context object. 11425 * @pring: Pointer to driver SLI ring object. 11426 * @iocbq: Pointer to iocb object. 11427 * 11428 * This function is called by the slow ring event handler 11429 * function when there is an ASYNC event iocb in the ring. 11430 * This function is called with no lock held. 11431 * Currently this function handles only temperature related 11432 * ASYNC events. The function decodes the temperature sensor 11433 * event message and posts events for the management applications. 11434 **/ 11435 static void 11436 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11437 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11438 { 11439 IOCB_t *icmd; 11440 uint16_t evt_code; 11441 struct temp_event temp_event_data; 11442 struct Scsi_Host *shost; 11443 uint32_t *iocb_w; 11444 11445 icmd = &iocbq->iocb; 11446 evt_code = icmd->un.asyncstat.evt_code; 11447 11448 switch (evt_code) { 11449 case ASYNC_TEMP_WARN: 11450 case ASYNC_TEMP_SAFE: 11451 temp_event_data.data = (uint32_t) icmd->ulpContext; 11452 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11453 if (evt_code == ASYNC_TEMP_WARN) { 11454 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11456 "0347 Adapter is very hot, please take " 11457 "corrective action. temperature : %d Celsius\n", 11458 (uint32_t) icmd->ulpContext); 11459 } else { 11460 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11462 "0340 Adapter temperature is OK now. " 11463 "temperature : %d Celsius\n", 11464 (uint32_t) icmd->ulpContext); 11465 } 11466 11467 /* Send temperature change event to applications */ 11468 shost = lpfc_shost_from_vport(phba->pport); 11469 fc_host_post_vendor_event(shost, fc_get_event_number(), 11470 sizeof(temp_event_data), (char *) &temp_event_data, 11471 LPFC_NL_VENDOR_ID); 11472 break; 11473 case ASYNC_STATUS_CN: 11474 lpfc_sli_abts_err_handler(phba, iocbq); 11475 break; 11476 default: 11477 iocb_w = (uint32_t *) icmd; 11478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11479 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11480 " evt_code 0x%x\n" 11481 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11482 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11483 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11484 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11485 pring->ringno, icmd->un.asyncstat.evt_code, 11486 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11487 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11488 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11489 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11490 11491 break; 11492 } 11493 } 11494 11495 11496 /** 11497 * lpfc_sli4_setup - SLI ring setup function 11498 * @phba: Pointer to HBA context object. 11499 * 11500 * lpfc_sli_setup sets up rings of the SLI interface with 11501 * number of iocbs per ring and iotags. This function is 11502 * called while driver attach to the HBA and before the 11503 * interrupts are enabled. So there is no need for locking. 11504 * 11505 * This function always returns 0. 11506 **/ 11507 int 11508 lpfc_sli4_setup(struct lpfc_hba *phba) 11509 { 11510 struct lpfc_sli_ring *pring; 11511 11512 pring = phba->sli4_hba.els_wq->pring; 11513 pring->num_mask = LPFC_MAX_RING_MASK; 11514 pring->prt[0].profile = 0; /* Mask 0 */ 11515 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11516 pring->prt[0].type = FC_TYPE_ELS; 11517 pring->prt[0].lpfc_sli_rcv_unsol_event = 11518 lpfc_els_unsol_event; 11519 pring->prt[1].profile = 0; /* Mask 1 */ 11520 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11521 pring->prt[1].type = FC_TYPE_ELS; 11522 pring->prt[1].lpfc_sli_rcv_unsol_event = 11523 lpfc_els_unsol_event; 11524 pring->prt[2].profile = 0; /* Mask 2 */ 11525 /* NameServer Inquiry */ 11526 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11527 /* NameServer */ 11528 pring->prt[2].type = FC_TYPE_CT; 11529 pring->prt[2].lpfc_sli_rcv_unsol_event = 11530 lpfc_ct_unsol_event; 11531 pring->prt[3].profile = 0; /* Mask 3 */ 11532 /* NameServer response */ 11533 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11534 /* NameServer */ 11535 pring->prt[3].type = FC_TYPE_CT; 11536 pring->prt[3].lpfc_sli_rcv_unsol_event = 11537 lpfc_ct_unsol_event; 11538 return 0; 11539 } 11540 11541 /** 11542 * lpfc_sli_setup - SLI ring setup function 11543 * @phba: Pointer to HBA context object. 11544 * 11545 * lpfc_sli_setup sets up rings of the SLI interface with 11546 * number of iocbs per ring and iotags. This function is 11547 * called while driver attach to the HBA and before the 11548 * interrupts are enabled. So there is no need for locking. 11549 * 11550 * This function always returns 0. SLI3 only. 11551 **/ 11552 int 11553 lpfc_sli_setup(struct lpfc_hba *phba) 11554 { 11555 int i, totiocbsize = 0; 11556 struct lpfc_sli *psli = &phba->sli; 11557 struct lpfc_sli_ring *pring; 11558 11559 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11560 psli->sli_flag = 0; 11561 11562 psli->iocbq_lookup = NULL; 11563 psli->iocbq_lookup_len = 0; 11564 psli->last_iotag = 0; 11565 11566 for (i = 0; i < psli->num_rings; i++) { 11567 pring = &psli->sli3_ring[i]; 11568 switch (i) { 11569 case LPFC_FCP_RING: /* ring 0 - FCP */ 11570 /* numCiocb and numRiocb are used in config_port */ 11571 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11572 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11573 pring->sli.sli3.numCiocb += 11574 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11575 pring->sli.sli3.numRiocb += 11576 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11577 pring->sli.sli3.numCiocb += 11578 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11579 pring->sli.sli3.numRiocb += 11580 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11581 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11582 SLI3_IOCB_CMD_SIZE : 11583 SLI2_IOCB_CMD_SIZE; 11584 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11585 SLI3_IOCB_RSP_SIZE : 11586 SLI2_IOCB_RSP_SIZE; 11587 pring->iotag_ctr = 0; 11588 pring->iotag_max = 11589 (phba->cfg_hba_queue_depth * 2); 11590 pring->fast_iotag = pring->iotag_max; 11591 pring->num_mask = 0; 11592 break; 11593 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11594 /* numCiocb and numRiocb are used in config_port */ 11595 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11596 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11597 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11598 SLI3_IOCB_CMD_SIZE : 11599 SLI2_IOCB_CMD_SIZE; 11600 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11601 SLI3_IOCB_RSP_SIZE : 11602 SLI2_IOCB_RSP_SIZE; 11603 pring->iotag_max = phba->cfg_hba_queue_depth; 11604 pring->num_mask = 0; 11605 break; 11606 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11607 /* numCiocb and numRiocb are used in config_port */ 11608 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11609 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11610 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11611 SLI3_IOCB_CMD_SIZE : 11612 SLI2_IOCB_CMD_SIZE; 11613 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11614 SLI3_IOCB_RSP_SIZE : 11615 SLI2_IOCB_RSP_SIZE; 11616 pring->fast_iotag = 0; 11617 pring->iotag_ctr = 0; 11618 pring->iotag_max = 4096; 11619 pring->lpfc_sli_rcv_async_status = 11620 lpfc_sli_async_event_handler; 11621 pring->num_mask = LPFC_MAX_RING_MASK; 11622 pring->prt[0].profile = 0; /* Mask 0 */ 11623 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11624 pring->prt[0].type = FC_TYPE_ELS; 11625 pring->prt[0].lpfc_sli_rcv_unsol_event = 11626 lpfc_els_unsol_event; 11627 pring->prt[1].profile = 0; /* Mask 1 */ 11628 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11629 pring->prt[1].type = FC_TYPE_ELS; 11630 pring->prt[1].lpfc_sli_rcv_unsol_event = 11631 lpfc_els_unsol_event; 11632 pring->prt[2].profile = 0; /* Mask 2 */ 11633 /* NameServer Inquiry */ 11634 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11635 /* NameServer */ 11636 pring->prt[2].type = FC_TYPE_CT; 11637 pring->prt[2].lpfc_sli_rcv_unsol_event = 11638 lpfc_ct_unsol_event; 11639 pring->prt[3].profile = 0; /* Mask 3 */ 11640 /* NameServer response */ 11641 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11642 /* NameServer */ 11643 pring->prt[3].type = FC_TYPE_CT; 11644 pring->prt[3].lpfc_sli_rcv_unsol_event = 11645 lpfc_ct_unsol_event; 11646 break; 11647 } 11648 totiocbsize += (pring->sli.sli3.numCiocb * 11649 pring->sli.sli3.sizeCiocb) + 11650 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11651 } 11652 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11653 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11654 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11655 "SLI2 SLIM Data: x%x x%lx\n", 11656 phba->brd_no, totiocbsize, 11657 (unsigned long) MAX_SLIM_IOCB_SIZE); 11658 } 11659 if (phba->cfg_multi_ring_support == 2) 11660 lpfc_extra_ring_setup(phba); 11661 11662 return 0; 11663 } 11664 11665 /** 11666 * lpfc_sli4_queue_init - Queue initialization function 11667 * @phba: Pointer to HBA context object. 11668 * 11669 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11670 * ring. This function also initializes ring indices of each ring. 11671 * This function is called during the initialization of the SLI 11672 * interface of an HBA. 11673 * This function is called with no lock held and always returns 11674 * 1. 11675 **/ 11676 void 11677 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11678 { 11679 struct lpfc_sli *psli; 11680 struct lpfc_sli_ring *pring; 11681 int i; 11682 11683 psli = &phba->sli; 11684 spin_lock_irq(&phba->hbalock); 11685 INIT_LIST_HEAD(&psli->mboxq); 11686 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11687 /* Initialize list headers for txq and txcmplq as double linked lists */ 11688 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11689 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11690 pring->flag = 0; 11691 pring->ringno = LPFC_FCP_RING; 11692 pring->txcmplq_cnt = 0; 11693 INIT_LIST_HEAD(&pring->txq); 11694 INIT_LIST_HEAD(&pring->txcmplq); 11695 INIT_LIST_HEAD(&pring->iocb_continueq); 11696 spin_lock_init(&pring->ring_lock); 11697 } 11698 pring = phba->sli4_hba.els_wq->pring; 11699 pring->flag = 0; 11700 pring->ringno = LPFC_ELS_RING; 11701 pring->txcmplq_cnt = 0; 11702 INIT_LIST_HEAD(&pring->txq); 11703 INIT_LIST_HEAD(&pring->txcmplq); 11704 INIT_LIST_HEAD(&pring->iocb_continueq); 11705 spin_lock_init(&pring->ring_lock); 11706 11707 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11708 pring = phba->sli4_hba.nvmels_wq->pring; 11709 pring->flag = 0; 11710 pring->ringno = LPFC_ELS_RING; 11711 pring->txcmplq_cnt = 0; 11712 INIT_LIST_HEAD(&pring->txq); 11713 INIT_LIST_HEAD(&pring->txcmplq); 11714 INIT_LIST_HEAD(&pring->iocb_continueq); 11715 spin_lock_init(&pring->ring_lock); 11716 } 11717 11718 spin_unlock_irq(&phba->hbalock); 11719 } 11720 11721 /** 11722 * lpfc_sli_queue_init - Queue initialization function 11723 * @phba: Pointer to HBA context object. 11724 * 11725 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11726 * ring. This function also initializes ring indices of each ring. 11727 * This function is called during the initialization of the SLI 11728 * interface of an HBA. 11729 * This function is called with no lock held and always returns 11730 * 1. 11731 **/ 11732 void 11733 lpfc_sli_queue_init(struct lpfc_hba *phba) 11734 { 11735 struct lpfc_sli *psli; 11736 struct lpfc_sli_ring *pring; 11737 int i; 11738 11739 psli = &phba->sli; 11740 spin_lock_irq(&phba->hbalock); 11741 INIT_LIST_HEAD(&psli->mboxq); 11742 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11743 /* Initialize list headers for txq and txcmplq as double linked lists */ 11744 for (i = 0; i < psli->num_rings; i++) { 11745 pring = &psli->sli3_ring[i]; 11746 pring->ringno = i; 11747 pring->sli.sli3.next_cmdidx = 0; 11748 pring->sli.sli3.local_getidx = 0; 11749 pring->sli.sli3.cmdidx = 0; 11750 INIT_LIST_HEAD(&pring->iocb_continueq); 11751 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11752 INIT_LIST_HEAD(&pring->postbufq); 11753 pring->flag = 0; 11754 INIT_LIST_HEAD(&pring->txq); 11755 INIT_LIST_HEAD(&pring->txcmplq); 11756 spin_lock_init(&pring->ring_lock); 11757 } 11758 spin_unlock_irq(&phba->hbalock); 11759 } 11760 11761 /** 11762 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11763 * @phba: Pointer to HBA context object. 11764 * 11765 * This routine flushes the mailbox command subsystem. It will unconditionally 11766 * flush all the mailbox commands in the three possible stages in the mailbox 11767 * command sub-system: pending mailbox command queue; the outstanding mailbox 11768 * command; and completed mailbox command queue. It is caller's responsibility 11769 * to make sure that the driver is in the proper state to flush the mailbox 11770 * command sub-system. Namely, the posting of mailbox commands into the 11771 * pending mailbox command queue from the various clients must be stopped; 11772 * either the HBA is in a state that it will never works on the outstanding 11773 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11774 * mailbox command has been completed. 11775 **/ 11776 static void 11777 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11778 { 11779 LIST_HEAD(completions); 11780 struct lpfc_sli *psli = &phba->sli; 11781 LPFC_MBOXQ_t *pmb; 11782 unsigned long iflag; 11783 11784 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11785 local_bh_disable(); 11786 11787 /* Flush all the mailbox commands in the mbox system */ 11788 spin_lock_irqsave(&phba->hbalock, iflag); 11789 11790 /* The pending mailbox command queue */ 11791 list_splice_init(&phba->sli.mboxq, &completions); 11792 /* The outstanding active mailbox command */ 11793 if (psli->mbox_active) { 11794 list_add_tail(&psli->mbox_active->list, &completions); 11795 psli->mbox_active = NULL; 11796 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11797 } 11798 /* The completed mailbox command queue */ 11799 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11800 spin_unlock_irqrestore(&phba->hbalock, iflag); 11801 11802 /* Enable softirqs again, done with phba->hbalock */ 11803 local_bh_enable(); 11804 11805 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11806 while (!list_empty(&completions)) { 11807 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11808 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11809 if (pmb->mbox_cmpl) 11810 pmb->mbox_cmpl(phba, pmb); 11811 } 11812 } 11813 11814 /** 11815 * lpfc_sli_host_down - Vport cleanup function 11816 * @vport: Pointer to virtual port object. 11817 * 11818 * lpfc_sli_host_down is called to clean up the resources 11819 * associated with a vport before destroying virtual 11820 * port data structures. 11821 * This function does following operations: 11822 * - Free discovery resources associated with this virtual 11823 * port. 11824 * - Free iocbs associated with this virtual port in 11825 * the txq. 11826 * - Send abort for all iocb commands associated with this 11827 * vport in txcmplq. 11828 * 11829 * This function is called with no lock held and always returns 1. 11830 **/ 11831 int 11832 lpfc_sli_host_down(struct lpfc_vport *vport) 11833 { 11834 LIST_HEAD(completions); 11835 struct lpfc_hba *phba = vport->phba; 11836 struct lpfc_sli *psli = &phba->sli; 11837 struct lpfc_queue *qp = NULL; 11838 struct lpfc_sli_ring *pring; 11839 struct lpfc_iocbq *iocb, *next_iocb; 11840 int i; 11841 unsigned long flags = 0; 11842 uint16_t prev_pring_flag; 11843 11844 lpfc_cleanup_discovery_resources(vport); 11845 11846 spin_lock_irqsave(&phba->hbalock, flags); 11847 11848 /* 11849 * Error everything on the txq since these iocbs 11850 * have not been given to the FW yet. 11851 * Also issue ABTS for everything on the txcmplq 11852 */ 11853 if (phba->sli_rev != LPFC_SLI_REV4) { 11854 for (i = 0; i < psli->num_rings; i++) { 11855 pring = &psli->sli3_ring[i]; 11856 prev_pring_flag = pring->flag; 11857 /* Only slow rings */ 11858 if (pring->ringno == LPFC_ELS_RING) { 11859 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11860 /* Set the lpfc data pending flag */ 11861 set_bit(LPFC_DATA_READY, &phba->data_flags); 11862 } 11863 list_for_each_entry_safe(iocb, next_iocb, 11864 &pring->txq, list) { 11865 if (iocb->vport != vport) 11866 continue; 11867 list_move_tail(&iocb->list, &completions); 11868 } 11869 list_for_each_entry_safe(iocb, next_iocb, 11870 &pring->txcmplq, list) { 11871 if (iocb->vport != vport) 11872 continue; 11873 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11874 NULL); 11875 } 11876 pring->flag = prev_pring_flag; 11877 } 11878 } else { 11879 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11880 pring = qp->pring; 11881 if (!pring) 11882 continue; 11883 if (pring == phba->sli4_hba.els_wq->pring) { 11884 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11885 /* Set the lpfc data pending flag */ 11886 set_bit(LPFC_DATA_READY, &phba->data_flags); 11887 } 11888 prev_pring_flag = pring->flag; 11889 spin_lock(&pring->ring_lock); 11890 list_for_each_entry_safe(iocb, next_iocb, 11891 &pring->txq, list) { 11892 if (iocb->vport != vport) 11893 continue; 11894 list_move_tail(&iocb->list, &completions); 11895 } 11896 spin_unlock(&pring->ring_lock); 11897 list_for_each_entry_safe(iocb, next_iocb, 11898 &pring->txcmplq, list) { 11899 if (iocb->vport != vport) 11900 continue; 11901 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11902 NULL); 11903 } 11904 pring->flag = prev_pring_flag; 11905 } 11906 } 11907 spin_unlock_irqrestore(&phba->hbalock, flags); 11908 11909 /* Make sure HBA is alive */ 11910 lpfc_issue_hb_tmo(phba); 11911 11912 /* Cancel all the IOCBs from the completions list */ 11913 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11914 IOERR_SLI_DOWN); 11915 return 1; 11916 } 11917 11918 /** 11919 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11920 * @phba: Pointer to HBA context object. 11921 * 11922 * This function cleans up all iocb, buffers, mailbox commands 11923 * while shutting down the HBA. This function is called with no 11924 * lock held and always returns 1. 11925 * This function does the following to cleanup driver resources: 11926 * - Free discovery resources for each virtual port 11927 * - Cleanup any pending fabric iocbs 11928 * - Iterate through the iocb txq and free each entry 11929 * in the list. 11930 * - Free up any buffer posted to the HBA 11931 * - Free mailbox commands in the mailbox queue. 11932 **/ 11933 int 11934 lpfc_sli_hba_down(struct lpfc_hba *phba) 11935 { 11936 LIST_HEAD(completions); 11937 struct lpfc_sli *psli = &phba->sli; 11938 struct lpfc_queue *qp = NULL; 11939 struct lpfc_sli_ring *pring; 11940 struct lpfc_dmabuf *buf_ptr; 11941 unsigned long flags = 0; 11942 int i; 11943 11944 /* Shutdown the mailbox command sub-system */ 11945 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11946 11947 lpfc_hba_down_prep(phba); 11948 11949 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11950 local_bh_disable(); 11951 11952 lpfc_fabric_abort_hba(phba); 11953 11954 spin_lock_irqsave(&phba->hbalock, flags); 11955 11956 /* 11957 * Error everything on the txq since these iocbs 11958 * have not been given to the FW yet. 11959 */ 11960 if (phba->sli_rev != LPFC_SLI_REV4) { 11961 for (i = 0; i < psli->num_rings; i++) { 11962 pring = &psli->sli3_ring[i]; 11963 /* Only slow rings */ 11964 if (pring->ringno == LPFC_ELS_RING) { 11965 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11966 /* Set the lpfc data pending flag */ 11967 set_bit(LPFC_DATA_READY, &phba->data_flags); 11968 } 11969 list_splice_init(&pring->txq, &completions); 11970 } 11971 } else { 11972 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11973 pring = qp->pring; 11974 if (!pring) 11975 continue; 11976 spin_lock(&pring->ring_lock); 11977 list_splice_init(&pring->txq, &completions); 11978 spin_unlock(&pring->ring_lock); 11979 if (pring == phba->sli4_hba.els_wq->pring) { 11980 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11981 /* Set the lpfc data pending flag */ 11982 set_bit(LPFC_DATA_READY, &phba->data_flags); 11983 } 11984 } 11985 } 11986 spin_unlock_irqrestore(&phba->hbalock, flags); 11987 11988 /* Cancel all the IOCBs from the completions list */ 11989 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11990 IOERR_SLI_DOWN); 11991 11992 spin_lock_irqsave(&phba->hbalock, flags); 11993 list_splice_init(&phba->elsbuf, &completions); 11994 phba->elsbuf_cnt = 0; 11995 phba->elsbuf_prev_cnt = 0; 11996 spin_unlock_irqrestore(&phba->hbalock, flags); 11997 11998 while (!list_empty(&completions)) { 11999 list_remove_head(&completions, buf_ptr, 12000 struct lpfc_dmabuf, list); 12001 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12002 kfree(buf_ptr); 12003 } 12004 12005 /* Enable softirqs again, done with phba->hbalock */ 12006 local_bh_enable(); 12007 12008 /* Return any active mbox cmds */ 12009 del_timer_sync(&psli->mbox_tmo); 12010 12011 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12012 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12013 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12014 12015 return 1; 12016 } 12017 12018 /** 12019 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12020 * @srcp: Source memory pointer. 12021 * @destp: Destination memory pointer. 12022 * @cnt: Number of words required to be copied. 12023 * 12024 * This function is used for copying data between driver memory 12025 * and the SLI memory. This function also changes the endianness 12026 * of each word if native endianness is different from SLI 12027 * endianness. This function can be called with or without 12028 * lock. 12029 **/ 12030 void 12031 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12032 { 12033 uint32_t *src = srcp; 12034 uint32_t *dest = destp; 12035 uint32_t ldata; 12036 int i; 12037 12038 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12039 ldata = *src; 12040 ldata = le32_to_cpu(ldata); 12041 *dest = ldata; 12042 src++; 12043 dest++; 12044 } 12045 } 12046 12047 12048 /** 12049 * lpfc_sli_bemem_bcopy - SLI memory copy function 12050 * @srcp: Source memory pointer. 12051 * @destp: Destination memory pointer. 12052 * @cnt: Number of words required to be copied. 12053 * 12054 * This function is used for copying data between a data structure 12055 * with big endian representation to local endianness. 12056 * This function can be called with or without lock. 12057 **/ 12058 void 12059 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12060 { 12061 uint32_t *src = srcp; 12062 uint32_t *dest = destp; 12063 uint32_t ldata; 12064 int i; 12065 12066 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12067 ldata = *src; 12068 ldata = be32_to_cpu(ldata); 12069 *dest = ldata; 12070 src++; 12071 dest++; 12072 } 12073 } 12074 12075 /** 12076 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12077 * @phba: Pointer to HBA context object. 12078 * @pring: Pointer to driver SLI ring object. 12079 * @mp: Pointer to driver buffer object. 12080 * 12081 * This function is called with no lock held. 12082 * It always return zero after adding the buffer to the postbufq 12083 * buffer list. 12084 **/ 12085 int 12086 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12087 struct lpfc_dmabuf *mp) 12088 { 12089 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12090 later */ 12091 spin_lock_irq(&phba->hbalock); 12092 list_add_tail(&mp->list, &pring->postbufq); 12093 pring->postbufq_cnt++; 12094 spin_unlock_irq(&phba->hbalock); 12095 return 0; 12096 } 12097 12098 /** 12099 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12100 * @phba: Pointer to HBA context object. 12101 * 12102 * When HBQ is enabled, buffers are searched based on tags. This function 12103 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12104 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12105 * does not conflict with tags of buffer posted for unsolicited events. 12106 * The function returns the allocated tag. The function is called with 12107 * no locks held. 12108 **/ 12109 uint32_t 12110 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12111 { 12112 spin_lock_irq(&phba->hbalock); 12113 phba->buffer_tag_count++; 12114 /* 12115 * Always set the QUE_BUFTAG_BIT to distiguish between 12116 * a tag assigned by HBQ. 12117 */ 12118 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12119 spin_unlock_irq(&phba->hbalock); 12120 return phba->buffer_tag_count; 12121 } 12122 12123 /** 12124 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12125 * @phba: Pointer to HBA context object. 12126 * @pring: Pointer to driver SLI ring object. 12127 * @tag: Buffer tag. 12128 * 12129 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12130 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12131 * iocb is posted to the response ring with the tag of the buffer. 12132 * This function searches the pring->postbufq list using the tag 12133 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12134 * iocb. If the buffer is found then lpfc_dmabuf object of the 12135 * buffer is returned to the caller else NULL is returned. 12136 * This function is called with no lock held. 12137 **/ 12138 struct lpfc_dmabuf * 12139 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12140 uint32_t tag) 12141 { 12142 struct lpfc_dmabuf *mp, *next_mp; 12143 struct list_head *slp = &pring->postbufq; 12144 12145 /* Search postbufq, from the beginning, looking for a match on tag */ 12146 spin_lock_irq(&phba->hbalock); 12147 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12148 if (mp->buffer_tag == tag) { 12149 list_del_init(&mp->list); 12150 pring->postbufq_cnt--; 12151 spin_unlock_irq(&phba->hbalock); 12152 return mp; 12153 } 12154 } 12155 12156 spin_unlock_irq(&phba->hbalock); 12157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12158 "0402 Cannot find virtual addr for buffer tag on " 12159 "ring %d Data x%lx x%px x%px x%x\n", 12160 pring->ringno, (unsigned long) tag, 12161 slp->next, slp->prev, pring->postbufq_cnt); 12162 12163 return NULL; 12164 } 12165 12166 /** 12167 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12168 * @phba: Pointer to HBA context object. 12169 * @pring: Pointer to driver SLI ring object. 12170 * @phys: DMA address of the buffer. 12171 * 12172 * This function searches the buffer list using the dma_address 12173 * of unsolicited event to find the driver's lpfc_dmabuf object 12174 * corresponding to the dma_address. The function returns the 12175 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12176 * This function is called by the ct and els unsolicited event 12177 * handlers to get the buffer associated with the unsolicited 12178 * event. 12179 * 12180 * This function is called with no lock held. 12181 **/ 12182 struct lpfc_dmabuf * 12183 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12184 dma_addr_t phys) 12185 { 12186 struct lpfc_dmabuf *mp, *next_mp; 12187 struct list_head *slp = &pring->postbufq; 12188 12189 /* Search postbufq, from the beginning, looking for a match on phys */ 12190 spin_lock_irq(&phba->hbalock); 12191 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12192 if (mp->phys == phys) { 12193 list_del_init(&mp->list); 12194 pring->postbufq_cnt--; 12195 spin_unlock_irq(&phba->hbalock); 12196 return mp; 12197 } 12198 } 12199 12200 spin_unlock_irq(&phba->hbalock); 12201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12202 "0410 Cannot find virtual addr for mapped buf on " 12203 "ring %d Data x%llx x%px x%px x%x\n", 12204 pring->ringno, (unsigned long long)phys, 12205 slp->next, slp->prev, pring->postbufq_cnt); 12206 return NULL; 12207 } 12208 12209 /** 12210 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12211 * @phba: Pointer to HBA context object. 12212 * @cmdiocb: Pointer to driver command iocb object. 12213 * @rspiocb: Pointer to driver response iocb object. 12214 * 12215 * This function is the completion handler for the abort iocbs for 12216 * ELS commands. This function is called from the ELS ring event 12217 * handler with no lock held. This function frees memory resources 12218 * associated with the abort iocb. 12219 **/ 12220 static void 12221 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12222 struct lpfc_iocbq *rspiocb) 12223 { 12224 IOCB_t *irsp = &rspiocb->iocb; 12225 uint16_t abort_iotag, abort_context; 12226 struct lpfc_iocbq *abort_iocb = NULL; 12227 12228 if (irsp->ulpStatus) { 12229 12230 /* 12231 * Assume that the port already completed and returned, or 12232 * will return the iocb. Just Log the message. 12233 */ 12234 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 12235 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 12236 12237 spin_lock_irq(&phba->hbalock); 12238 if (phba->sli_rev < LPFC_SLI_REV4) { 12239 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 12240 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 12241 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 12242 spin_unlock_irq(&phba->hbalock); 12243 goto release_iocb; 12244 } 12245 if (abort_iotag != 0 && 12246 abort_iotag <= phba->sli.last_iotag) 12247 abort_iocb = 12248 phba->sli.iocbq_lookup[abort_iotag]; 12249 } else 12250 /* For sli4 the abort_tag is the XRI, 12251 * so the abort routine puts the iotag of the iocb 12252 * being aborted in the context field of the abort 12253 * IOCB. 12254 */ 12255 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 12256 12257 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12258 "0327 Cannot abort els iocb x%px " 12259 "with tag %x context %x, abort status %x, " 12260 "abort code %x\n", 12261 abort_iocb, abort_iotag, abort_context, 12262 irsp->ulpStatus, irsp->un.ulpWord[4]); 12263 12264 spin_unlock_irq(&phba->hbalock); 12265 } 12266 release_iocb: 12267 lpfc_sli_release_iocbq(phba, cmdiocb); 12268 return; 12269 } 12270 12271 /** 12272 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12273 * @phba: Pointer to HBA context object. 12274 * @cmdiocb: Pointer to driver command iocb object. 12275 * @rspiocb: Pointer to driver response iocb object. 12276 * 12277 * The function is called from SLI ring event handler with no 12278 * lock held. This function is the completion handler for ELS commands 12279 * which are aborted. The function frees memory resources used for 12280 * the aborted ELS commands. 12281 **/ 12282 void 12283 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12284 struct lpfc_iocbq *rspiocb) 12285 { 12286 struct lpfc_nodelist *ndlp = NULL; 12287 IOCB_t *irsp = &rspiocb->iocb; 12288 12289 /* ELS cmd tag <ulpIoTag> completes */ 12290 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12291 "0139 Ignoring ELS cmd code x%x completion Data: " 12292 "x%x x%x x%x\n", 12293 irsp->ulpIoTag, irsp->ulpStatus, 12294 irsp->un.ulpWord[4], irsp->ulpTimeout); 12295 /* 12296 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12297 * if exchange is busy. 12298 */ 12299 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 12300 ndlp = cmdiocb->context_un.ndlp; 12301 lpfc_ct_free_iocb(phba, cmdiocb); 12302 } else { 12303 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12304 lpfc_els_free_iocb(phba, cmdiocb); 12305 } 12306 12307 lpfc_nlp_put(ndlp); 12308 } 12309 12310 /** 12311 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12312 * @phba: Pointer to HBA context object. 12313 * @pring: Pointer to driver SLI ring object. 12314 * @cmdiocb: Pointer to driver command iocb object. 12315 * @cmpl: completion function. 12316 * 12317 * This function issues an abort iocb for the provided command iocb. In case 12318 * of unloading, the abort iocb will not be issued to commands on the ELS 12319 * ring. Instead, the callback function shall be changed to those commands 12320 * so that nothing happens when them finishes. This function is called with 12321 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12322 * when the command iocb is an abort request. 12323 * 12324 **/ 12325 int 12326 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12327 struct lpfc_iocbq *cmdiocb, void *cmpl) 12328 { 12329 struct lpfc_vport *vport = cmdiocb->vport; 12330 struct lpfc_iocbq *abtsiocbp; 12331 IOCB_t *icmd = NULL; 12332 IOCB_t *iabt = NULL; 12333 int retval = IOCB_ERROR; 12334 unsigned long iflags; 12335 struct lpfc_nodelist *ndlp; 12336 12337 /* 12338 * There are certain command types we don't want to abort. And we 12339 * don't want to abort commands that are already in the process of 12340 * being aborted. 12341 */ 12342 icmd = &cmdiocb->iocb; 12343 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12344 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 12345 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 12346 return IOCB_ABORTING; 12347 12348 if (!pring) { 12349 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12350 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12351 else 12352 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12353 return retval; 12354 } 12355 12356 /* 12357 * If we're unloading, don't abort iocb on the ELS ring, but change 12358 * the callback so that nothing happens when it finishes. 12359 */ 12360 if ((vport->load_flag & FC_UNLOADING) && 12361 pring->ringno == LPFC_ELS_RING) { 12362 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12363 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12364 else 12365 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12366 return retval; 12367 } 12368 12369 /* issue ABTS for this IOCB based on iotag */ 12370 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12371 if (abtsiocbp == NULL) 12372 return IOCB_NORESOURCE; 12373 12374 /* This signals the response to set the correct status 12375 * before calling the completion handler 12376 */ 12377 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 12378 12379 iabt = &abtsiocbp->iocb; 12380 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 12381 iabt->un.acxri.abortContextTag = icmd->ulpContext; 12382 if (phba->sli_rev == LPFC_SLI_REV4) { 12383 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 12384 if (pring->ringno == LPFC_ELS_RING) 12385 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 12386 } else { 12387 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 12388 if (pring->ringno == LPFC_ELS_RING) { 12389 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12390 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 12391 } 12392 } 12393 iabt->ulpLe = 1; 12394 iabt->ulpClass = icmd->ulpClass; 12395 12396 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12397 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12398 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 12399 abtsiocbp->iocb_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12400 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 12401 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 12402 12403 if (phba->link_state < LPFC_LINK_UP || 12404 (phba->sli_rev == LPFC_SLI_REV4 && 12405 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN)) 12406 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 12407 else 12408 iabt->ulpCommand = CMD_ABORT_XRI_CN; 12409 12410 if (cmpl) 12411 abtsiocbp->iocb_cmpl = cmpl; 12412 else 12413 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 12414 abtsiocbp->vport = vport; 12415 12416 if (phba->sli_rev == LPFC_SLI_REV4) { 12417 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12418 if (unlikely(pring == NULL)) 12419 goto abort_iotag_exit; 12420 /* Note: both hbalock and ring_lock need to be set here */ 12421 spin_lock_irqsave(&pring->ring_lock, iflags); 12422 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12423 abtsiocbp, 0); 12424 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12425 } else { 12426 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12427 abtsiocbp, 0); 12428 } 12429 12430 abort_iotag_exit: 12431 12432 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12433 "0339 Abort xri x%x, original iotag x%x, " 12434 "abort cmd iotag x%x retval x%x\n", 12435 iabt->un.acxri.abortIoTag, 12436 iabt->un.acxri.abortContextTag, 12437 abtsiocbp->iotag, retval); 12438 12439 if (retval) { 12440 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12441 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12442 } 12443 12444 /* 12445 * Caller to this routine should check for IOCB_ERROR 12446 * and handle it properly. This routine no longer removes 12447 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12448 */ 12449 return retval; 12450 } 12451 12452 /** 12453 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12454 * @phba: pointer to lpfc HBA data structure. 12455 * 12456 * This routine will abort all pending and outstanding iocbs to an HBA. 12457 **/ 12458 void 12459 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12460 { 12461 struct lpfc_sli *psli = &phba->sli; 12462 struct lpfc_sli_ring *pring; 12463 struct lpfc_queue *qp = NULL; 12464 int i; 12465 12466 if (phba->sli_rev != LPFC_SLI_REV4) { 12467 for (i = 0; i < psli->num_rings; i++) { 12468 pring = &psli->sli3_ring[i]; 12469 lpfc_sli_abort_iocb_ring(phba, pring); 12470 } 12471 return; 12472 } 12473 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12474 pring = qp->pring; 12475 if (!pring) 12476 continue; 12477 lpfc_sli_abort_iocb_ring(phba, pring); 12478 } 12479 } 12480 12481 /** 12482 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12483 * @iocbq: Pointer to iocb object. 12484 * @vport: Pointer to driver virtual port object. 12485 * 12486 * This function acts as an iocb filter for functions which abort FCP iocbs. 12487 * 12488 * Return values 12489 * -ENODEV, if a null iocb or vport ptr is encountered 12490 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12491 * driver already started the abort process, or is an abort iocb itself 12492 * 0, passes criteria for aborting the FCP I/O iocb 12493 **/ 12494 static int 12495 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12496 struct lpfc_vport *vport) 12497 { 12498 IOCB_t *icmd = NULL; 12499 12500 /* No null ptr vports */ 12501 if (!iocbq || iocbq->vport != vport) 12502 return -ENODEV; 12503 12504 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12505 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12506 */ 12507 icmd = &iocbq->iocb; 12508 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12509 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 12510 (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12511 (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12512 icmd->ulpCommand == CMD_CLOSE_XRI_CN)) 12513 return -EINVAL; 12514 12515 return 0; 12516 } 12517 12518 /** 12519 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12520 * @iocbq: Pointer to driver iocb object. 12521 * @vport: Pointer to driver virtual port object. 12522 * @tgt_id: SCSI ID of the target. 12523 * @lun_id: LUN ID of the scsi device. 12524 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12525 * 12526 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12527 * host. 12528 * 12529 * It will return 12530 * 0 if the filtering criteria is met for the given iocb and will return 12531 * 1 if the filtering criteria is not met. 12532 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12533 * given iocb is for the SCSI device specified by vport, tgt_id and 12534 * lun_id parameter. 12535 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12536 * given iocb is for the SCSI target specified by vport and tgt_id 12537 * parameters. 12538 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12539 * given iocb is for the SCSI host associated with the given vport. 12540 * This function is called with no locks held. 12541 **/ 12542 static int 12543 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12544 uint16_t tgt_id, uint64_t lun_id, 12545 lpfc_ctx_cmd ctx_cmd) 12546 { 12547 struct lpfc_io_buf *lpfc_cmd; 12548 int rc = 1; 12549 12550 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12551 12552 if (lpfc_cmd->pCmd == NULL) 12553 return rc; 12554 12555 switch (ctx_cmd) { 12556 case LPFC_CTX_LUN: 12557 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12558 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12559 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12560 rc = 0; 12561 break; 12562 case LPFC_CTX_TGT: 12563 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12564 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12565 rc = 0; 12566 break; 12567 case LPFC_CTX_HOST: 12568 rc = 0; 12569 break; 12570 default: 12571 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12572 __func__, ctx_cmd); 12573 break; 12574 } 12575 12576 return rc; 12577 } 12578 12579 /** 12580 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12581 * @vport: Pointer to virtual port. 12582 * @tgt_id: SCSI ID of the target. 12583 * @lun_id: LUN ID of the scsi device. 12584 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12585 * 12586 * This function returns number of FCP commands pending for the vport. 12587 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12588 * commands pending on the vport associated with SCSI device specified 12589 * by tgt_id and lun_id parameters. 12590 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12591 * commands pending on the vport associated with SCSI target specified 12592 * by tgt_id parameter. 12593 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12594 * commands pending on the vport. 12595 * This function returns the number of iocbs which satisfy the filter. 12596 * This function is called without any lock held. 12597 **/ 12598 int 12599 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12600 lpfc_ctx_cmd ctx_cmd) 12601 { 12602 struct lpfc_hba *phba = vport->phba; 12603 struct lpfc_iocbq *iocbq; 12604 IOCB_t *icmd = NULL; 12605 int sum, i; 12606 unsigned long iflags; 12607 12608 spin_lock_irqsave(&phba->hbalock, iflags); 12609 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12610 iocbq = phba->sli.iocbq_lookup[i]; 12611 12612 if (!iocbq || iocbq->vport != vport) 12613 continue; 12614 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12615 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 12616 continue; 12617 12618 /* Include counting outstanding aborts */ 12619 icmd = &iocbq->iocb; 12620 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12621 icmd->ulpCommand == CMD_CLOSE_XRI_CN) { 12622 sum++; 12623 continue; 12624 } 12625 12626 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12627 ctx_cmd) == 0) 12628 sum++; 12629 } 12630 spin_unlock_irqrestore(&phba->hbalock, iflags); 12631 12632 return sum; 12633 } 12634 12635 /** 12636 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12637 * @phba: Pointer to HBA context object 12638 * @cmdiocb: Pointer to command iocb object. 12639 * @wcqe: pointer to the complete wcqe 12640 * 12641 * This function is called when an aborted FCP iocb completes. This 12642 * function is called by the ring event handler with no lock held. 12643 * This function frees the iocb. It is called for sli-4 adapters. 12644 **/ 12645 void 12646 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12647 struct lpfc_wcqe_complete *wcqe) 12648 { 12649 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12650 "3017 ABORT_XRI_CN completing on rpi x%x " 12651 "original iotag x%x, abort cmd iotag x%x " 12652 "status 0x%x, reason 0x%x\n", 12653 cmdiocb->iocb.un.acxri.abortContextTag, 12654 cmdiocb->iocb.un.acxri.abortIoTag, 12655 cmdiocb->iotag, 12656 (bf_get(lpfc_wcqe_c_status, wcqe) 12657 & LPFC_IOCB_STATUS_MASK), 12658 wcqe->parameter); 12659 lpfc_sli_release_iocbq(phba, cmdiocb); 12660 } 12661 12662 /** 12663 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12664 * @phba: Pointer to HBA context object 12665 * @cmdiocb: Pointer to command iocb object. 12666 * @rspiocb: Pointer to response iocb object. 12667 * 12668 * This function is called when an aborted FCP iocb completes. This 12669 * function is called by the ring event handler with no lock held. 12670 * This function frees the iocb. 12671 **/ 12672 void 12673 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12674 struct lpfc_iocbq *rspiocb) 12675 { 12676 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12677 "3096 ABORT_XRI_CN completing on rpi x%x " 12678 "original iotag x%x, abort cmd iotag x%x " 12679 "status 0x%x, reason 0x%x\n", 12680 cmdiocb->iocb.un.acxri.abortContextTag, 12681 cmdiocb->iocb.un.acxri.abortIoTag, 12682 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12683 rspiocb->iocb.un.ulpWord[4]); 12684 lpfc_sli_release_iocbq(phba, cmdiocb); 12685 return; 12686 } 12687 12688 /** 12689 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12690 * @vport: Pointer to virtual port. 12691 * @tgt_id: SCSI ID of the target. 12692 * @lun_id: LUN ID of the scsi device. 12693 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12694 * 12695 * This function sends an abort command for every SCSI command 12696 * associated with the given virtual port pending on the ring 12697 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12698 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12699 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12700 * followed by lpfc_sli_validate_fcp_iocb. 12701 * 12702 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12703 * FCP iocbs associated with lun specified by tgt_id and lun_id 12704 * parameters 12705 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12706 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12707 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12708 * FCP iocbs associated with virtual port. 12709 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12710 * lpfc_sli4_calc_ring is used. 12711 * This function returns number of iocbs it failed to abort. 12712 * This function is called with no locks held. 12713 **/ 12714 int 12715 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12716 lpfc_ctx_cmd abort_cmd) 12717 { 12718 struct lpfc_hba *phba = vport->phba; 12719 struct lpfc_sli_ring *pring = NULL; 12720 struct lpfc_iocbq *iocbq; 12721 int errcnt = 0, ret_val = 0; 12722 unsigned long iflags; 12723 int i; 12724 void *fcp_cmpl = NULL; 12725 12726 /* all I/Os are in process of being flushed */ 12727 if (phba->hba_flag & HBA_IOQ_FLUSH) 12728 return errcnt; 12729 12730 for (i = 1; i <= phba->sli.last_iotag; i++) { 12731 iocbq = phba->sli.iocbq_lookup[i]; 12732 12733 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12734 continue; 12735 12736 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12737 abort_cmd) != 0) 12738 continue; 12739 12740 spin_lock_irqsave(&phba->hbalock, iflags); 12741 if (phba->sli_rev == LPFC_SLI_REV3) { 12742 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12743 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12744 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12745 pring = lpfc_sli4_calc_ring(phba, iocbq); 12746 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12747 } 12748 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12749 fcp_cmpl); 12750 spin_unlock_irqrestore(&phba->hbalock, iflags); 12751 if (ret_val != IOCB_SUCCESS) 12752 errcnt++; 12753 } 12754 12755 return errcnt; 12756 } 12757 12758 /** 12759 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12760 * @vport: Pointer to virtual port. 12761 * @pring: Pointer to driver SLI ring object. 12762 * @tgt_id: SCSI ID of the target. 12763 * @lun_id: LUN ID of the scsi device. 12764 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12765 * 12766 * This function sends an abort command for every SCSI command 12767 * associated with the given virtual port pending on the ring 12768 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12769 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12770 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12771 * followed by lpfc_sli_validate_fcp_iocb. 12772 * 12773 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12774 * FCP iocbs associated with lun specified by tgt_id and lun_id 12775 * parameters 12776 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12777 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12778 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12779 * FCP iocbs associated with virtual port. 12780 * This function returns number of iocbs it aborted . 12781 * This function is called with no locks held right after a taskmgmt 12782 * command is sent. 12783 **/ 12784 int 12785 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12786 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12787 { 12788 struct lpfc_hba *phba = vport->phba; 12789 struct lpfc_io_buf *lpfc_cmd; 12790 struct lpfc_iocbq *abtsiocbq; 12791 struct lpfc_nodelist *ndlp; 12792 struct lpfc_iocbq *iocbq; 12793 IOCB_t *icmd; 12794 int sum, i, ret_val; 12795 unsigned long iflags; 12796 struct lpfc_sli_ring *pring_s4 = NULL; 12797 12798 spin_lock_irqsave(&phba->hbalock, iflags); 12799 12800 /* all I/Os are in process of being flushed */ 12801 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12802 spin_unlock_irqrestore(&phba->hbalock, iflags); 12803 return 0; 12804 } 12805 sum = 0; 12806 12807 for (i = 1; i <= phba->sli.last_iotag; i++) { 12808 iocbq = phba->sli.iocbq_lookup[i]; 12809 12810 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12811 continue; 12812 12813 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12814 cmd) != 0) 12815 continue; 12816 12817 /* Guard against IO completion being called at same time */ 12818 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12819 spin_lock(&lpfc_cmd->buf_lock); 12820 12821 if (!lpfc_cmd->pCmd) { 12822 spin_unlock(&lpfc_cmd->buf_lock); 12823 continue; 12824 } 12825 12826 if (phba->sli_rev == LPFC_SLI_REV4) { 12827 pring_s4 = 12828 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12829 if (!pring_s4) { 12830 spin_unlock(&lpfc_cmd->buf_lock); 12831 continue; 12832 } 12833 /* Note: both hbalock and ring_lock must be set here */ 12834 spin_lock(&pring_s4->ring_lock); 12835 } 12836 12837 /* 12838 * If the iocbq is already being aborted, don't take a second 12839 * action, but do count it. 12840 */ 12841 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12842 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12843 if (phba->sli_rev == LPFC_SLI_REV4) 12844 spin_unlock(&pring_s4->ring_lock); 12845 spin_unlock(&lpfc_cmd->buf_lock); 12846 continue; 12847 } 12848 12849 /* issue ABTS for this IOCB based on iotag */ 12850 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12851 if (!abtsiocbq) { 12852 if (phba->sli_rev == LPFC_SLI_REV4) 12853 spin_unlock(&pring_s4->ring_lock); 12854 spin_unlock(&lpfc_cmd->buf_lock); 12855 continue; 12856 } 12857 12858 icmd = &iocbq->iocb; 12859 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12860 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12861 if (phba->sli_rev == LPFC_SLI_REV4) 12862 abtsiocbq->iocb.un.acxri.abortIoTag = 12863 iocbq->sli4_xritag; 12864 else 12865 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12866 abtsiocbq->iocb.ulpLe = 1; 12867 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12868 abtsiocbq->vport = vport; 12869 12870 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12871 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12872 if (iocbq->iocb_flag & LPFC_IO_FCP) 12873 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12874 if (iocbq->iocb_flag & LPFC_IO_FOF) 12875 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12876 12877 ndlp = lpfc_cmd->rdata->pnode; 12878 12879 if (lpfc_is_link_up(phba) && 12880 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12881 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12882 else 12883 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12884 12885 /* Setup callback routine and issue the command. */ 12886 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12887 12888 /* 12889 * Indicate the IO is being aborted by the driver and set 12890 * the caller's flag into the aborted IO. 12891 */ 12892 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12893 12894 if (phba->sli_rev == LPFC_SLI_REV4) { 12895 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12896 abtsiocbq, 0); 12897 spin_unlock(&pring_s4->ring_lock); 12898 } else { 12899 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12900 abtsiocbq, 0); 12901 } 12902 12903 spin_unlock(&lpfc_cmd->buf_lock); 12904 12905 if (ret_val == IOCB_ERROR) 12906 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12907 else 12908 sum++; 12909 } 12910 spin_unlock_irqrestore(&phba->hbalock, iflags); 12911 return sum; 12912 } 12913 12914 /** 12915 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12916 * @phba: Pointer to HBA context object. 12917 * @cmdiocbq: Pointer to command iocb. 12918 * @rspiocbq: Pointer to response iocb. 12919 * 12920 * This function is the completion handler for iocbs issued using 12921 * lpfc_sli_issue_iocb_wait function. This function is called by the 12922 * ring event handler function without any lock held. This function 12923 * can be called from both worker thread context and interrupt 12924 * context. This function also can be called from other thread which 12925 * cleans up the SLI layer objects. 12926 * This function copy the contents of the response iocb to the 12927 * response iocb memory object provided by the caller of 12928 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12929 * sleeps for the iocb completion. 12930 **/ 12931 static void 12932 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12933 struct lpfc_iocbq *cmdiocbq, 12934 struct lpfc_iocbq *rspiocbq) 12935 { 12936 wait_queue_head_t *pdone_q; 12937 unsigned long iflags; 12938 struct lpfc_io_buf *lpfc_cmd; 12939 12940 spin_lock_irqsave(&phba->hbalock, iflags); 12941 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12942 12943 /* 12944 * A time out has occurred for the iocb. If a time out 12945 * completion handler has been supplied, call it. Otherwise, 12946 * just free the iocbq. 12947 */ 12948 12949 spin_unlock_irqrestore(&phba->hbalock, iflags); 12950 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12951 cmdiocbq->wait_iocb_cmpl = NULL; 12952 if (cmdiocbq->iocb_cmpl) 12953 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12954 else 12955 lpfc_sli_release_iocbq(phba, cmdiocbq); 12956 return; 12957 } 12958 12959 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12960 if (cmdiocbq->context2 && rspiocbq) 12961 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12962 &rspiocbq->iocb, sizeof(IOCB_t)); 12963 12964 /* Set the exchange busy flag for task management commands */ 12965 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12966 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12967 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12968 cur_iocbq); 12969 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12970 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12971 else 12972 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12973 } 12974 12975 pdone_q = cmdiocbq->context_un.wait_queue; 12976 if (pdone_q) 12977 wake_up(pdone_q); 12978 spin_unlock_irqrestore(&phba->hbalock, iflags); 12979 return; 12980 } 12981 12982 /** 12983 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12984 * @phba: Pointer to HBA context object.. 12985 * @piocbq: Pointer to command iocb. 12986 * @flag: Flag to test. 12987 * 12988 * This routine grabs the hbalock and then test the iocb_flag to 12989 * see if the passed in flag is set. 12990 * Returns: 12991 * 1 if flag is set. 12992 * 0 if flag is not set. 12993 **/ 12994 static int 12995 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12996 struct lpfc_iocbq *piocbq, uint32_t flag) 12997 { 12998 unsigned long iflags; 12999 int ret; 13000 13001 spin_lock_irqsave(&phba->hbalock, iflags); 13002 ret = piocbq->iocb_flag & flag; 13003 spin_unlock_irqrestore(&phba->hbalock, iflags); 13004 return ret; 13005 13006 } 13007 13008 /** 13009 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13010 * @phba: Pointer to HBA context object.. 13011 * @ring_number: Ring number 13012 * @piocb: Pointer to command iocb. 13013 * @prspiocbq: Pointer to response iocb. 13014 * @timeout: Timeout in number of seconds. 13015 * 13016 * This function issues the iocb to firmware and waits for the 13017 * iocb to complete. The iocb_cmpl field of the shall be used 13018 * to handle iocbs which time out. If the field is NULL, the 13019 * function shall free the iocbq structure. If more clean up is 13020 * needed, the caller is expected to provide a completion function 13021 * that will provide the needed clean up. If the iocb command is 13022 * not completed within timeout seconds, the function will either 13023 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 13024 * completion function set in the iocb_cmpl field and then return 13025 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13026 * resources if this function returns IOCB_TIMEDOUT. 13027 * The function waits for the iocb completion using an 13028 * non-interruptible wait. 13029 * This function will sleep while waiting for iocb completion. 13030 * So, this function should not be called from any context which 13031 * does not allow sleeping. Due to the same reason, this function 13032 * cannot be called with interrupt disabled. 13033 * This function assumes that the iocb completions occur while 13034 * this function sleep. So, this function cannot be called from 13035 * the thread which process iocb completion for this ring. 13036 * This function clears the iocb_flag of the iocb object before 13037 * issuing the iocb and the iocb completion handler sets this 13038 * flag and wakes this thread when the iocb completes. 13039 * The contents of the response iocb will be copied to prspiocbq 13040 * by the completion handler when the command completes. 13041 * This function returns IOCB_SUCCESS when success. 13042 * This function is called with no lock held. 13043 **/ 13044 int 13045 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13046 uint32_t ring_number, 13047 struct lpfc_iocbq *piocb, 13048 struct lpfc_iocbq *prspiocbq, 13049 uint32_t timeout) 13050 { 13051 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13052 long timeleft, timeout_req = 0; 13053 int retval = IOCB_SUCCESS; 13054 uint32_t creg_val; 13055 struct lpfc_iocbq *iocb; 13056 int txq_cnt = 0; 13057 int txcmplq_cnt = 0; 13058 struct lpfc_sli_ring *pring; 13059 unsigned long iflags; 13060 bool iocb_completed = true; 13061 13062 if (phba->sli_rev >= LPFC_SLI_REV4) 13063 pring = lpfc_sli4_calc_ring(phba, piocb); 13064 else 13065 pring = &phba->sli.sli3_ring[ring_number]; 13066 /* 13067 * If the caller has provided a response iocbq buffer, then context2 13068 * is NULL or its an error. 13069 */ 13070 if (prspiocbq) { 13071 if (piocb->context2) 13072 return IOCB_ERROR; 13073 piocb->context2 = prspiocbq; 13074 } 13075 13076 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 13077 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 13078 piocb->context_un.wait_queue = &done_q; 13079 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13080 13081 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13082 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13083 return IOCB_ERROR; 13084 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13085 writel(creg_val, phba->HCregaddr); 13086 readl(phba->HCregaddr); /* flush */ 13087 } 13088 13089 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13090 SLI_IOCB_RET_IOCB); 13091 if (retval == IOCB_SUCCESS) { 13092 timeout_req = msecs_to_jiffies(timeout * 1000); 13093 timeleft = wait_event_timeout(done_q, 13094 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13095 timeout_req); 13096 spin_lock_irqsave(&phba->hbalock, iflags); 13097 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 13098 13099 /* 13100 * IOCB timed out. Inform the wake iocb wait 13101 * completion function and set local status 13102 */ 13103 13104 iocb_completed = false; 13105 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 13106 } 13107 spin_unlock_irqrestore(&phba->hbalock, iflags); 13108 if (iocb_completed) { 13109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13110 "0331 IOCB wake signaled\n"); 13111 /* Note: we are not indicating if the IOCB has a success 13112 * status or not - that's for the caller to check. 13113 * IOCB_SUCCESS means just that the command was sent and 13114 * completed. Not that it completed successfully. 13115 * */ 13116 } else if (timeleft == 0) { 13117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13118 "0338 IOCB wait timeout error - no " 13119 "wake response Data x%x\n", timeout); 13120 retval = IOCB_TIMEDOUT; 13121 } else { 13122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13123 "0330 IOCB wake NOT set, " 13124 "Data x%x x%lx\n", 13125 timeout, (timeleft / jiffies)); 13126 retval = IOCB_TIMEDOUT; 13127 } 13128 } else if (retval == IOCB_BUSY) { 13129 if (phba->cfg_log_verbose & LOG_SLI) { 13130 list_for_each_entry(iocb, &pring->txq, list) { 13131 txq_cnt++; 13132 } 13133 list_for_each_entry(iocb, &pring->txcmplq, list) { 13134 txcmplq_cnt++; 13135 } 13136 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13137 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13138 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13139 } 13140 return retval; 13141 } else { 13142 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13143 "0332 IOCB wait issue failed, Data x%x\n", 13144 retval); 13145 retval = IOCB_ERROR; 13146 } 13147 13148 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13149 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13150 return IOCB_ERROR; 13151 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13152 writel(creg_val, phba->HCregaddr); 13153 readl(phba->HCregaddr); /* flush */ 13154 } 13155 13156 if (prspiocbq) 13157 piocb->context2 = NULL; 13158 13159 piocb->context_un.wait_queue = NULL; 13160 piocb->iocb_cmpl = NULL; 13161 return retval; 13162 } 13163 13164 /** 13165 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13166 * @phba: Pointer to HBA context object. 13167 * @pmboxq: Pointer to driver mailbox object. 13168 * @timeout: Timeout in number of seconds. 13169 * 13170 * This function issues the mailbox to firmware and waits for the 13171 * mailbox command to complete. If the mailbox command is not 13172 * completed within timeout seconds, it returns MBX_TIMEOUT. 13173 * The function waits for the mailbox completion using an 13174 * interruptible wait. If the thread is woken up due to a 13175 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13176 * should not free the mailbox resources, if this function returns 13177 * MBX_TIMEOUT. 13178 * This function will sleep while waiting for mailbox completion. 13179 * So, this function should not be called from any context which 13180 * does not allow sleeping. Due to the same reason, this function 13181 * cannot be called with interrupt disabled. 13182 * This function assumes that the mailbox completion occurs while 13183 * this function sleep. So, this function cannot be called from 13184 * the worker thread which processes mailbox completion. 13185 * This function is called in the context of HBA management 13186 * applications. 13187 * This function returns MBX_SUCCESS when successful. 13188 * This function is called with no lock held. 13189 **/ 13190 int 13191 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13192 uint32_t timeout) 13193 { 13194 struct completion mbox_done; 13195 int retval; 13196 unsigned long flag; 13197 13198 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13199 /* setup wake call as IOCB callback */ 13200 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13201 13202 /* setup context3 field to pass wait_queue pointer to wake function */ 13203 init_completion(&mbox_done); 13204 pmboxq->context3 = &mbox_done; 13205 /* now issue the command */ 13206 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13207 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13208 wait_for_completion_timeout(&mbox_done, 13209 msecs_to_jiffies(timeout * 1000)); 13210 13211 spin_lock_irqsave(&phba->hbalock, flag); 13212 pmboxq->context3 = NULL; 13213 /* 13214 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13215 * else do not free the resources. 13216 */ 13217 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13218 retval = MBX_SUCCESS; 13219 } else { 13220 retval = MBX_TIMEOUT; 13221 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13222 } 13223 spin_unlock_irqrestore(&phba->hbalock, flag); 13224 } 13225 return retval; 13226 } 13227 13228 /** 13229 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13230 * @phba: Pointer to HBA context. 13231 * @mbx_action: Mailbox shutdown options. 13232 * 13233 * This function is called to shutdown the driver's mailbox sub-system. 13234 * It first marks the mailbox sub-system is in a block state to prevent 13235 * the asynchronous mailbox command from issued off the pending mailbox 13236 * command queue. If the mailbox command sub-system shutdown is due to 13237 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13238 * the mailbox sub-system flush routine to forcefully bring down the 13239 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13240 * as with offline or HBA function reset), this routine will wait for the 13241 * outstanding mailbox command to complete before invoking the mailbox 13242 * sub-system flush routine to gracefully bring down mailbox sub-system. 13243 **/ 13244 void 13245 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13246 { 13247 struct lpfc_sli *psli = &phba->sli; 13248 unsigned long timeout; 13249 13250 if (mbx_action == LPFC_MBX_NO_WAIT) { 13251 /* delay 100ms for port state */ 13252 msleep(100); 13253 lpfc_sli_mbox_sys_flush(phba); 13254 return; 13255 } 13256 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13257 13258 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13259 local_bh_disable(); 13260 13261 spin_lock_irq(&phba->hbalock); 13262 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13263 13264 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13265 /* Determine how long we might wait for the active mailbox 13266 * command to be gracefully completed by firmware. 13267 */ 13268 if (phba->sli.mbox_active) 13269 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13270 phba->sli.mbox_active) * 13271 1000) + jiffies; 13272 spin_unlock_irq(&phba->hbalock); 13273 13274 /* Enable softirqs again, done with phba->hbalock */ 13275 local_bh_enable(); 13276 13277 while (phba->sli.mbox_active) { 13278 /* Check active mailbox complete status every 2ms */ 13279 msleep(2); 13280 if (time_after(jiffies, timeout)) 13281 /* Timeout, let the mailbox flush routine to 13282 * forcefully release active mailbox command 13283 */ 13284 break; 13285 } 13286 } else { 13287 spin_unlock_irq(&phba->hbalock); 13288 13289 /* Enable softirqs again, done with phba->hbalock */ 13290 local_bh_enable(); 13291 } 13292 13293 lpfc_sli_mbox_sys_flush(phba); 13294 } 13295 13296 /** 13297 * lpfc_sli_eratt_read - read sli-3 error attention events 13298 * @phba: Pointer to HBA context. 13299 * 13300 * This function is called to read the SLI3 device error attention registers 13301 * for possible error attention events. The caller must hold the hostlock 13302 * with spin_lock_irq(). 13303 * 13304 * This function returns 1 when there is Error Attention in the Host Attention 13305 * Register and returns 0 otherwise. 13306 **/ 13307 static int 13308 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13309 { 13310 uint32_t ha_copy; 13311 13312 /* Read chip Host Attention (HA) register */ 13313 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13314 goto unplug_err; 13315 13316 if (ha_copy & HA_ERATT) { 13317 /* Read host status register to retrieve error event */ 13318 if (lpfc_sli_read_hs(phba)) 13319 goto unplug_err; 13320 13321 /* Check if there is a deferred error condition is active */ 13322 if ((HS_FFER1 & phba->work_hs) && 13323 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13324 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13325 phba->hba_flag |= DEFER_ERATT; 13326 /* Clear all interrupt enable conditions */ 13327 writel(0, phba->HCregaddr); 13328 readl(phba->HCregaddr); 13329 } 13330 13331 /* Set the driver HA work bitmap */ 13332 phba->work_ha |= HA_ERATT; 13333 /* Indicate polling handles this ERATT */ 13334 phba->hba_flag |= HBA_ERATT_HANDLED; 13335 return 1; 13336 } 13337 return 0; 13338 13339 unplug_err: 13340 /* Set the driver HS work bitmap */ 13341 phba->work_hs |= UNPLUG_ERR; 13342 /* Set the driver HA work bitmap */ 13343 phba->work_ha |= HA_ERATT; 13344 /* Indicate polling handles this ERATT */ 13345 phba->hba_flag |= HBA_ERATT_HANDLED; 13346 return 1; 13347 } 13348 13349 /** 13350 * lpfc_sli4_eratt_read - read sli-4 error attention events 13351 * @phba: Pointer to HBA context. 13352 * 13353 * This function is called to read the SLI4 device error attention registers 13354 * for possible error attention events. The caller must hold the hostlock 13355 * with spin_lock_irq(). 13356 * 13357 * This function returns 1 when there is Error Attention in the Host Attention 13358 * Register and returns 0 otherwise. 13359 **/ 13360 static int 13361 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13362 { 13363 uint32_t uerr_sta_hi, uerr_sta_lo; 13364 uint32_t if_type, portsmphr; 13365 struct lpfc_register portstat_reg; 13366 u32 logmask; 13367 13368 /* 13369 * For now, use the SLI4 device internal unrecoverable error 13370 * registers for error attention. This can be changed later. 13371 */ 13372 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13373 switch (if_type) { 13374 case LPFC_SLI_INTF_IF_TYPE_0: 13375 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13376 &uerr_sta_lo) || 13377 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13378 &uerr_sta_hi)) { 13379 phba->work_hs |= UNPLUG_ERR; 13380 phba->work_ha |= HA_ERATT; 13381 phba->hba_flag |= HBA_ERATT_HANDLED; 13382 return 1; 13383 } 13384 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13385 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13387 "1423 HBA Unrecoverable error: " 13388 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13389 "ue_mask_lo_reg=0x%x, " 13390 "ue_mask_hi_reg=0x%x\n", 13391 uerr_sta_lo, uerr_sta_hi, 13392 phba->sli4_hba.ue_mask_lo, 13393 phba->sli4_hba.ue_mask_hi); 13394 phba->work_status[0] = uerr_sta_lo; 13395 phba->work_status[1] = uerr_sta_hi; 13396 phba->work_ha |= HA_ERATT; 13397 phba->hba_flag |= HBA_ERATT_HANDLED; 13398 return 1; 13399 } 13400 break; 13401 case LPFC_SLI_INTF_IF_TYPE_2: 13402 case LPFC_SLI_INTF_IF_TYPE_6: 13403 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13404 &portstat_reg.word0) || 13405 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13406 &portsmphr)){ 13407 phba->work_hs |= UNPLUG_ERR; 13408 phba->work_ha |= HA_ERATT; 13409 phba->hba_flag |= HBA_ERATT_HANDLED; 13410 return 1; 13411 } 13412 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13413 phba->work_status[0] = 13414 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13415 phba->work_status[1] = 13416 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13417 logmask = LOG_TRACE_EVENT; 13418 if (phba->work_status[0] == 13419 SLIPORT_ERR1_REG_ERR_CODE_2 && 13420 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13421 logmask = LOG_SLI; 13422 lpfc_printf_log(phba, KERN_ERR, logmask, 13423 "2885 Port Status Event: " 13424 "port status reg 0x%x, " 13425 "port smphr reg 0x%x, " 13426 "error 1=0x%x, error 2=0x%x\n", 13427 portstat_reg.word0, 13428 portsmphr, 13429 phba->work_status[0], 13430 phba->work_status[1]); 13431 phba->work_ha |= HA_ERATT; 13432 phba->hba_flag |= HBA_ERATT_HANDLED; 13433 return 1; 13434 } 13435 break; 13436 case LPFC_SLI_INTF_IF_TYPE_1: 13437 default: 13438 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13439 "2886 HBA Error Attention on unsupported " 13440 "if type %d.", if_type); 13441 return 1; 13442 } 13443 13444 return 0; 13445 } 13446 13447 /** 13448 * lpfc_sli_check_eratt - check error attention events 13449 * @phba: Pointer to HBA context. 13450 * 13451 * This function is called from timer soft interrupt context to check HBA's 13452 * error attention register bit for error attention events. 13453 * 13454 * This function returns 1 when there is Error Attention in the Host Attention 13455 * Register and returns 0 otherwise. 13456 **/ 13457 int 13458 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13459 { 13460 uint32_t ha_copy; 13461 13462 /* If somebody is waiting to handle an eratt, don't process it 13463 * here. The brdkill function will do this. 13464 */ 13465 if (phba->link_flag & LS_IGNORE_ERATT) 13466 return 0; 13467 13468 /* Check if interrupt handler handles this ERATT */ 13469 spin_lock_irq(&phba->hbalock); 13470 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13471 /* Interrupt handler has handled ERATT */ 13472 spin_unlock_irq(&phba->hbalock); 13473 return 0; 13474 } 13475 13476 /* 13477 * If there is deferred error attention, do not check for error 13478 * attention 13479 */ 13480 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13481 spin_unlock_irq(&phba->hbalock); 13482 return 0; 13483 } 13484 13485 /* If PCI channel is offline, don't process it */ 13486 if (unlikely(pci_channel_offline(phba->pcidev))) { 13487 spin_unlock_irq(&phba->hbalock); 13488 return 0; 13489 } 13490 13491 switch (phba->sli_rev) { 13492 case LPFC_SLI_REV2: 13493 case LPFC_SLI_REV3: 13494 /* Read chip Host Attention (HA) register */ 13495 ha_copy = lpfc_sli_eratt_read(phba); 13496 break; 13497 case LPFC_SLI_REV4: 13498 /* Read device Uncoverable Error (UERR) registers */ 13499 ha_copy = lpfc_sli4_eratt_read(phba); 13500 break; 13501 default: 13502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13503 "0299 Invalid SLI revision (%d)\n", 13504 phba->sli_rev); 13505 ha_copy = 0; 13506 break; 13507 } 13508 spin_unlock_irq(&phba->hbalock); 13509 13510 return ha_copy; 13511 } 13512 13513 /** 13514 * lpfc_intr_state_check - Check device state for interrupt handling 13515 * @phba: Pointer to HBA context. 13516 * 13517 * This inline routine checks whether a device or its PCI slot is in a state 13518 * that the interrupt should be handled. 13519 * 13520 * This function returns 0 if the device or the PCI slot is in a state that 13521 * interrupt should be handled, otherwise -EIO. 13522 */ 13523 static inline int 13524 lpfc_intr_state_check(struct lpfc_hba *phba) 13525 { 13526 /* If the pci channel is offline, ignore all the interrupts */ 13527 if (unlikely(pci_channel_offline(phba->pcidev))) 13528 return -EIO; 13529 13530 /* Update device level interrupt statistics */ 13531 phba->sli.slistat.sli_intr++; 13532 13533 /* Ignore all interrupts during initialization. */ 13534 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13535 return -EIO; 13536 13537 return 0; 13538 } 13539 13540 /** 13541 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13542 * @irq: Interrupt number. 13543 * @dev_id: The device context pointer. 13544 * 13545 * This function is directly called from the PCI layer as an interrupt 13546 * service routine when device with SLI-3 interface spec is enabled with 13547 * MSI-X multi-message interrupt mode and there are slow-path events in 13548 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13549 * interrupt mode, this function is called as part of the device-level 13550 * interrupt handler. When the PCI slot is in error recovery or the HBA 13551 * is undergoing initialization, the interrupt handler will not process 13552 * the interrupt. The link attention and ELS ring attention events are 13553 * handled by the worker thread. The interrupt handler signals the worker 13554 * thread and returns for these events. This function is called without 13555 * any lock held. It gets the hbalock to access and update SLI data 13556 * structures. 13557 * 13558 * This function returns IRQ_HANDLED when interrupt is handled else it 13559 * returns IRQ_NONE. 13560 **/ 13561 irqreturn_t 13562 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13563 { 13564 struct lpfc_hba *phba; 13565 uint32_t ha_copy, hc_copy; 13566 uint32_t work_ha_copy; 13567 unsigned long status; 13568 unsigned long iflag; 13569 uint32_t control; 13570 13571 MAILBOX_t *mbox, *pmbox; 13572 struct lpfc_vport *vport; 13573 struct lpfc_nodelist *ndlp; 13574 struct lpfc_dmabuf *mp; 13575 LPFC_MBOXQ_t *pmb; 13576 int rc; 13577 13578 /* 13579 * Get the driver's phba structure from the dev_id and 13580 * assume the HBA is not interrupting. 13581 */ 13582 phba = (struct lpfc_hba *)dev_id; 13583 13584 if (unlikely(!phba)) 13585 return IRQ_NONE; 13586 13587 /* 13588 * Stuff needs to be attented to when this function is invoked as an 13589 * individual interrupt handler in MSI-X multi-message interrupt mode 13590 */ 13591 if (phba->intr_type == MSIX) { 13592 /* Check device state for handling interrupt */ 13593 if (lpfc_intr_state_check(phba)) 13594 return IRQ_NONE; 13595 /* Need to read HA REG for slow-path events */ 13596 spin_lock_irqsave(&phba->hbalock, iflag); 13597 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13598 goto unplug_error; 13599 /* If somebody is waiting to handle an eratt don't process it 13600 * here. The brdkill function will do this. 13601 */ 13602 if (phba->link_flag & LS_IGNORE_ERATT) 13603 ha_copy &= ~HA_ERATT; 13604 /* Check the need for handling ERATT in interrupt handler */ 13605 if (ha_copy & HA_ERATT) { 13606 if (phba->hba_flag & HBA_ERATT_HANDLED) 13607 /* ERATT polling has handled ERATT */ 13608 ha_copy &= ~HA_ERATT; 13609 else 13610 /* Indicate interrupt handler handles ERATT */ 13611 phba->hba_flag |= HBA_ERATT_HANDLED; 13612 } 13613 13614 /* 13615 * If there is deferred error attention, do not check for any 13616 * interrupt. 13617 */ 13618 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13619 spin_unlock_irqrestore(&phba->hbalock, iflag); 13620 return IRQ_NONE; 13621 } 13622 13623 /* Clear up only attention source related to slow-path */ 13624 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13625 goto unplug_error; 13626 13627 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13628 HC_LAINT_ENA | HC_ERINT_ENA), 13629 phba->HCregaddr); 13630 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13631 phba->HAregaddr); 13632 writel(hc_copy, phba->HCregaddr); 13633 readl(phba->HAregaddr); /* flush */ 13634 spin_unlock_irqrestore(&phba->hbalock, iflag); 13635 } else 13636 ha_copy = phba->ha_copy; 13637 13638 work_ha_copy = ha_copy & phba->work_ha_mask; 13639 13640 if (work_ha_copy) { 13641 if (work_ha_copy & HA_LATT) { 13642 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13643 /* 13644 * Turn off Link Attention interrupts 13645 * until CLEAR_LA done 13646 */ 13647 spin_lock_irqsave(&phba->hbalock, iflag); 13648 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13649 if (lpfc_readl(phba->HCregaddr, &control)) 13650 goto unplug_error; 13651 control &= ~HC_LAINT_ENA; 13652 writel(control, phba->HCregaddr); 13653 readl(phba->HCregaddr); /* flush */ 13654 spin_unlock_irqrestore(&phba->hbalock, iflag); 13655 } 13656 else 13657 work_ha_copy &= ~HA_LATT; 13658 } 13659 13660 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13661 /* 13662 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13663 * the only slow ring. 13664 */ 13665 status = (work_ha_copy & 13666 (HA_RXMASK << (4*LPFC_ELS_RING))); 13667 status >>= (4*LPFC_ELS_RING); 13668 if (status & HA_RXMASK) { 13669 spin_lock_irqsave(&phba->hbalock, iflag); 13670 if (lpfc_readl(phba->HCregaddr, &control)) 13671 goto unplug_error; 13672 13673 lpfc_debugfs_slow_ring_trc(phba, 13674 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13675 control, status, 13676 (uint32_t)phba->sli.slistat.sli_intr); 13677 13678 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13679 lpfc_debugfs_slow_ring_trc(phba, 13680 "ISR Disable ring:" 13681 "pwork:x%x hawork:x%x wait:x%x", 13682 phba->work_ha, work_ha_copy, 13683 (uint32_t)((unsigned long) 13684 &phba->work_waitq)); 13685 13686 control &= 13687 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13688 writel(control, phba->HCregaddr); 13689 readl(phba->HCregaddr); /* flush */ 13690 } 13691 else { 13692 lpfc_debugfs_slow_ring_trc(phba, 13693 "ISR slow ring: pwork:" 13694 "x%x hawork:x%x wait:x%x", 13695 phba->work_ha, work_ha_copy, 13696 (uint32_t)((unsigned long) 13697 &phba->work_waitq)); 13698 } 13699 spin_unlock_irqrestore(&phba->hbalock, iflag); 13700 } 13701 } 13702 spin_lock_irqsave(&phba->hbalock, iflag); 13703 if (work_ha_copy & HA_ERATT) { 13704 if (lpfc_sli_read_hs(phba)) 13705 goto unplug_error; 13706 /* 13707 * Check if there is a deferred error condition 13708 * is active 13709 */ 13710 if ((HS_FFER1 & phba->work_hs) && 13711 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13712 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13713 phba->work_hs)) { 13714 phba->hba_flag |= DEFER_ERATT; 13715 /* Clear all interrupt enable conditions */ 13716 writel(0, phba->HCregaddr); 13717 readl(phba->HCregaddr); 13718 } 13719 } 13720 13721 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13722 pmb = phba->sli.mbox_active; 13723 pmbox = &pmb->u.mb; 13724 mbox = phba->mbox; 13725 vport = pmb->vport; 13726 13727 /* First check out the status word */ 13728 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13729 if (pmbox->mbxOwner != OWN_HOST) { 13730 spin_unlock_irqrestore(&phba->hbalock, iflag); 13731 /* 13732 * Stray Mailbox Interrupt, mbxCommand <cmd> 13733 * mbxStatus <status> 13734 */ 13735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13736 "(%d):0304 Stray Mailbox " 13737 "Interrupt mbxCommand x%x " 13738 "mbxStatus x%x\n", 13739 (vport ? vport->vpi : 0), 13740 pmbox->mbxCommand, 13741 pmbox->mbxStatus); 13742 /* clear mailbox attention bit */ 13743 work_ha_copy &= ~HA_MBATT; 13744 } else { 13745 phba->sli.mbox_active = NULL; 13746 spin_unlock_irqrestore(&phba->hbalock, iflag); 13747 phba->last_completion_time = jiffies; 13748 del_timer(&phba->sli.mbox_tmo); 13749 if (pmb->mbox_cmpl) { 13750 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13751 MAILBOX_CMD_SIZE); 13752 if (pmb->out_ext_byte_len && 13753 pmb->ctx_buf) 13754 lpfc_sli_pcimem_bcopy( 13755 phba->mbox_ext, 13756 pmb->ctx_buf, 13757 pmb->out_ext_byte_len); 13758 } 13759 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13760 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13761 13762 lpfc_debugfs_disc_trc(vport, 13763 LPFC_DISC_TRC_MBOX_VPORT, 13764 "MBOX dflt rpi: : " 13765 "status:x%x rpi:x%x", 13766 (uint32_t)pmbox->mbxStatus, 13767 pmbox->un.varWords[0], 0); 13768 13769 if (!pmbox->mbxStatus) { 13770 mp = (struct lpfc_dmabuf *) 13771 (pmb->ctx_buf); 13772 ndlp = (struct lpfc_nodelist *) 13773 pmb->ctx_ndlp; 13774 13775 /* Reg_LOGIN of dflt RPI was 13776 * successful. new lets get 13777 * rid of the RPI using the 13778 * same mbox buffer. 13779 */ 13780 lpfc_unreg_login(phba, 13781 vport->vpi, 13782 pmbox->un.varWords[0], 13783 pmb); 13784 pmb->mbox_cmpl = 13785 lpfc_mbx_cmpl_dflt_rpi; 13786 pmb->ctx_buf = mp; 13787 pmb->ctx_ndlp = ndlp; 13788 pmb->vport = vport; 13789 rc = lpfc_sli_issue_mbox(phba, 13790 pmb, 13791 MBX_NOWAIT); 13792 if (rc != MBX_BUSY) 13793 lpfc_printf_log(phba, 13794 KERN_ERR, 13795 LOG_TRACE_EVENT, 13796 "0350 rc should have" 13797 "been MBX_BUSY\n"); 13798 if (rc != MBX_NOT_FINISHED) 13799 goto send_current_mbox; 13800 } 13801 } 13802 spin_lock_irqsave( 13803 &phba->pport->work_port_lock, 13804 iflag); 13805 phba->pport->work_port_events &= 13806 ~WORKER_MBOX_TMO; 13807 spin_unlock_irqrestore( 13808 &phba->pport->work_port_lock, 13809 iflag); 13810 13811 /* Do NOT queue MBX_HEARTBEAT to the worker 13812 * thread for processing. 13813 */ 13814 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13815 /* Process mbox now */ 13816 phba->sli.mbox_active = NULL; 13817 phba->sli.sli_flag &= 13818 ~LPFC_SLI_MBOX_ACTIVE; 13819 if (pmb->mbox_cmpl) 13820 pmb->mbox_cmpl(phba, pmb); 13821 } else { 13822 /* Queue to worker thread to process */ 13823 lpfc_mbox_cmpl_put(phba, pmb); 13824 } 13825 } 13826 } else 13827 spin_unlock_irqrestore(&phba->hbalock, iflag); 13828 13829 if ((work_ha_copy & HA_MBATT) && 13830 (phba->sli.mbox_active == NULL)) { 13831 send_current_mbox: 13832 /* Process next mailbox command if there is one */ 13833 do { 13834 rc = lpfc_sli_issue_mbox(phba, NULL, 13835 MBX_NOWAIT); 13836 } while (rc == MBX_NOT_FINISHED); 13837 if (rc != MBX_SUCCESS) 13838 lpfc_printf_log(phba, KERN_ERR, 13839 LOG_TRACE_EVENT, 13840 "0349 rc should be " 13841 "MBX_SUCCESS\n"); 13842 } 13843 13844 spin_lock_irqsave(&phba->hbalock, iflag); 13845 phba->work_ha |= work_ha_copy; 13846 spin_unlock_irqrestore(&phba->hbalock, iflag); 13847 lpfc_worker_wake_up(phba); 13848 } 13849 return IRQ_HANDLED; 13850 unplug_error: 13851 spin_unlock_irqrestore(&phba->hbalock, iflag); 13852 return IRQ_HANDLED; 13853 13854 } /* lpfc_sli_sp_intr_handler */ 13855 13856 /** 13857 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13858 * @irq: Interrupt number. 13859 * @dev_id: The device context pointer. 13860 * 13861 * This function is directly called from the PCI layer as an interrupt 13862 * service routine when device with SLI-3 interface spec is enabled with 13863 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13864 * ring event in the HBA. However, when the device is enabled with either 13865 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13866 * device-level interrupt handler. When the PCI slot is in error recovery 13867 * or the HBA is undergoing initialization, the interrupt handler will not 13868 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13869 * the intrrupt context. This function is called without any lock held. 13870 * It gets the hbalock to access and update SLI data structures. 13871 * 13872 * This function returns IRQ_HANDLED when interrupt is handled else it 13873 * returns IRQ_NONE. 13874 **/ 13875 irqreturn_t 13876 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13877 { 13878 struct lpfc_hba *phba; 13879 uint32_t ha_copy; 13880 unsigned long status; 13881 unsigned long iflag; 13882 struct lpfc_sli_ring *pring; 13883 13884 /* Get the driver's phba structure from the dev_id and 13885 * assume the HBA is not interrupting. 13886 */ 13887 phba = (struct lpfc_hba *) dev_id; 13888 13889 if (unlikely(!phba)) 13890 return IRQ_NONE; 13891 13892 /* 13893 * Stuff needs to be attented to when this function is invoked as an 13894 * individual interrupt handler in MSI-X multi-message interrupt mode 13895 */ 13896 if (phba->intr_type == MSIX) { 13897 /* Check device state for handling interrupt */ 13898 if (lpfc_intr_state_check(phba)) 13899 return IRQ_NONE; 13900 /* Need to read HA REG for FCP ring and other ring events */ 13901 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13902 return IRQ_HANDLED; 13903 /* Clear up only attention source related to fast-path */ 13904 spin_lock_irqsave(&phba->hbalock, iflag); 13905 /* 13906 * If there is deferred error attention, do not check for 13907 * any interrupt. 13908 */ 13909 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13910 spin_unlock_irqrestore(&phba->hbalock, iflag); 13911 return IRQ_NONE; 13912 } 13913 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13914 phba->HAregaddr); 13915 readl(phba->HAregaddr); /* flush */ 13916 spin_unlock_irqrestore(&phba->hbalock, iflag); 13917 } else 13918 ha_copy = phba->ha_copy; 13919 13920 /* 13921 * Process all events on FCP ring. Take the optimized path for FCP IO. 13922 */ 13923 ha_copy &= ~(phba->work_ha_mask); 13924 13925 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13926 status >>= (4*LPFC_FCP_RING); 13927 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13928 if (status & HA_RXMASK) 13929 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13930 13931 if (phba->cfg_multi_ring_support == 2) { 13932 /* 13933 * Process all events on extra ring. Take the optimized path 13934 * for extra ring IO. 13935 */ 13936 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13937 status >>= (4*LPFC_EXTRA_RING); 13938 if (status & HA_RXMASK) { 13939 lpfc_sli_handle_fast_ring_event(phba, 13940 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13941 status); 13942 } 13943 } 13944 return IRQ_HANDLED; 13945 } /* lpfc_sli_fp_intr_handler */ 13946 13947 /** 13948 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13949 * @irq: Interrupt number. 13950 * @dev_id: The device context pointer. 13951 * 13952 * This function is the HBA device-level interrupt handler to device with 13953 * SLI-3 interface spec, called from the PCI layer when either MSI or 13954 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13955 * requires driver attention. This function invokes the slow-path interrupt 13956 * attention handling function and fast-path interrupt attention handling 13957 * function in turn to process the relevant HBA attention events. This 13958 * function is called without any lock held. It gets the hbalock to access 13959 * and update SLI data structures. 13960 * 13961 * This function returns IRQ_HANDLED when interrupt is handled, else it 13962 * returns IRQ_NONE. 13963 **/ 13964 irqreturn_t 13965 lpfc_sli_intr_handler(int irq, void *dev_id) 13966 { 13967 struct lpfc_hba *phba; 13968 irqreturn_t sp_irq_rc, fp_irq_rc; 13969 unsigned long status1, status2; 13970 uint32_t hc_copy; 13971 13972 /* 13973 * Get the driver's phba structure from the dev_id and 13974 * assume the HBA is not interrupting. 13975 */ 13976 phba = (struct lpfc_hba *) dev_id; 13977 13978 if (unlikely(!phba)) 13979 return IRQ_NONE; 13980 13981 /* Check device state for handling interrupt */ 13982 if (lpfc_intr_state_check(phba)) 13983 return IRQ_NONE; 13984 13985 spin_lock(&phba->hbalock); 13986 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13987 spin_unlock(&phba->hbalock); 13988 return IRQ_HANDLED; 13989 } 13990 13991 if (unlikely(!phba->ha_copy)) { 13992 spin_unlock(&phba->hbalock); 13993 return IRQ_NONE; 13994 } else if (phba->ha_copy & HA_ERATT) { 13995 if (phba->hba_flag & HBA_ERATT_HANDLED) 13996 /* ERATT polling has handled ERATT */ 13997 phba->ha_copy &= ~HA_ERATT; 13998 else 13999 /* Indicate interrupt handler handles ERATT */ 14000 phba->hba_flag |= HBA_ERATT_HANDLED; 14001 } 14002 14003 /* 14004 * If there is deferred error attention, do not check for any interrupt. 14005 */ 14006 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14007 spin_unlock(&phba->hbalock); 14008 return IRQ_NONE; 14009 } 14010 14011 /* Clear attention sources except link and error attentions */ 14012 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14013 spin_unlock(&phba->hbalock); 14014 return IRQ_HANDLED; 14015 } 14016 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14017 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14018 phba->HCregaddr); 14019 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14020 writel(hc_copy, phba->HCregaddr); 14021 readl(phba->HAregaddr); /* flush */ 14022 spin_unlock(&phba->hbalock); 14023 14024 /* 14025 * Invokes slow-path host attention interrupt handling as appropriate. 14026 */ 14027 14028 /* status of events with mailbox and link attention */ 14029 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14030 14031 /* status of events with ELS ring */ 14032 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14033 status2 >>= (4*LPFC_ELS_RING); 14034 14035 if (status1 || (status2 & HA_RXMASK)) 14036 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14037 else 14038 sp_irq_rc = IRQ_NONE; 14039 14040 /* 14041 * Invoke fast-path host attention interrupt handling as appropriate. 14042 */ 14043 14044 /* status of events with FCP ring */ 14045 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14046 status1 >>= (4*LPFC_FCP_RING); 14047 14048 /* status of events with extra ring */ 14049 if (phba->cfg_multi_ring_support == 2) { 14050 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14051 status2 >>= (4*LPFC_EXTRA_RING); 14052 } else 14053 status2 = 0; 14054 14055 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14056 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14057 else 14058 fp_irq_rc = IRQ_NONE; 14059 14060 /* Return device-level interrupt handling status */ 14061 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14062 } /* lpfc_sli_intr_handler */ 14063 14064 /** 14065 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14066 * @phba: pointer to lpfc hba data structure. 14067 * 14068 * This routine is invoked by the worker thread to process all the pending 14069 * SLI4 els abort xri events. 14070 **/ 14071 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14072 { 14073 struct lpfc_cq_event *cq_event; 14074 unsigned long iflags; 14075 14076 /* First, declare the els xri abort event has been handled */ 14077 spin_lock_irqsave(&phba->hbalock, iflags); 14078 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14079 spin_unlock_irqrestore(&phba->hbalock, iflags); 14080 14081 /* Now, handle all the els xri abort events */ 14082 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14083 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14084 /* Get the first event from the head of the event queue */ 14085 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14086 cq_event, struct lpfc_cq_event, list); 14087 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14088 iflags); 14089 /* Notify aborted XRI for ELS work queue */ 14090 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14091 14092 /* Free the event processed back to the free pool */ 14093 lpfc_sli4_cq_event_release(phba, cq_event); 14094 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14095 iflags); 14096 } 14097 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14098 } 14099 14100 /** 14101 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 14102 * @phba: pointer to lpfc hba data structure 14103 * @pIocbIn: pointer to the rspiocbq 14104 * @pIocbOut: pointer to the cmdiocbq 14105 * @wcqe: pointer to the complete wcqe 14106 * 14107 * This routine transfers the fields of a command iocbq to a response iocbq 14108 * by copying all the IOCB fields from command iocbq and transferring the 14109 * completion status information from the complete wcqe. 14110 **/ 14111 static void 14112 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 14113 struct lpfc_iocbq *pIocbIn, 14114 struct lpfc_iocbq *pIocbOut, 14115 struct lpfc_wcqe_complete *wcqe) 14116 { 14117 int numBdes, i; 14118 unsigned long iflags; 14119 uint32_t status, max_response; 14120 struct lpfc_dmabuf *dmabuf; 14121 struct ulp_bde64 *bpl, bde; 14122 size_t offset = offsetof(struct lpfc_iocbq, iocb); 14123 14124 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 14125 sizeof(struct lpfc_iocbq) - offset); 14126 /* Map WCQE parameters into irspiocb parameters */ 14127 status = bf_get(lpfc_wcqe_c_status, wcqe); 14128 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 14129 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 14130 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 14131 pIocbIn->iocb.un.fcpi.fcpi_parm = 14132 pIocbOut->iocb.un.fcpi.fcpi_parm - 14133 wcqe->total_data_placed; 14134 else 14135 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14136 else { 14137 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14138 switch (pIocbOut->iocb.ulpCommand) { 14139 case CMD_ELS_REQUEST64_CR: 14140 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14141 bpl = (struct ulp_bde64 *)dmabuf->virt; 14142 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 14143 max_response = bde.tus.f.bdeSize; 14144 break; 14145 case CMD_GEN_REQUEST64_CR: 14146 max_response = 0; 14147 if (!pIocbOut->context3) 14148 break; 14149 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 14150 sizeof(struct ulp_bde64); 14151 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14152 bpl = (struct ulp_bde64 *)dmabuf->virt; 14153 for (i = 0; i < numBdes; i++) { 14154 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 14155 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 14156 max_response += bde.tus.f.bdeSize; 14157 } 14158 break; 14159 default: 14160 max_response = wcqe->total_data_placed; 14161 break; 14162 } 14163 if (max_response < wcqe->total_data_placed) 14164 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 14165 else 14166 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 14167 wcqe->total_data_placed; 14168 } 14169 14170 /* Convert BG errors for completion status */ 14171 if (status == CQE_STATUS_DI_ERROR) { 14172 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 14173 14174 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 14175 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 14176 else 14177 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 14178 14179 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 14180 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 14181 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14182 BGS_GUARD_ERR_MASK; 14183 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 14184 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14185 BGS_APPTAG_ERR_MASK; 14186 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 14187 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14188 BGS_REFTAG_ERR_MASK; 14189 14190 /* Check to see if there was any good data before the error */ 14191 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 14192 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14193 BGS_HI_WATER_MARK_PRESENT_MASK; 14194 pIocbIn->iocb.unsli3.sli3_bg.bghm = 14195 wcqe->total_data_placed; 14196 } 14197 14198 /* 14199 * Set ALL the error bits to indicate we don't know what 14200 * type of error it is. 14201 */ 14202 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 14203 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14204 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 14205 BGS_GUARD_ERR_MASK); 14206 } 14207 14208 /* Pick up HBA exchange busy condition */ 14209 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14210 spin_lock_irqsave(&phba->hbalock, iflags); 14211 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 14212 spin_unlock_irqrestore(&phba->hbalock, iflags); 14213 } 14214 } 14215 14216 /** 14217 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 14218 * @phba: Pointer to HBA context object. 14219 * @irspiocbq: Pointer to work-queue completion queue entry. 14220 * 14221 * This routine handles an ELS work-queue completion event and construct 14222 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 14223 * discovery engine to handle. 14224 * 14225 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14226 **/ 14227 static struct lpfc_iocbq * 14228 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 14229 struct lpfc_iocbq *irspiocbq) 14230 { 14231 struct lpfc_sli_ring *pring; 14232 struct lpfc_iocbq *cmdiocbq; 14233 struct lpfc_wcqe_complete *wcqe; 14234 unsigned long iflags; 14235 14236 pring = lpfc_phba_elsring(phba); 14237 if (unlikely(!pring)) 14238 return NULL; 14239 14240 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14241 pring->stats.iocb_event++; 14242 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14243 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14244 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14245 if (unlikely(!cmdiocbq)) { 14246 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14247 "0386 ELS complete with no corresponding " 14248 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14249 wcqe->word0, wcqe->total_data_placed, 14250 wcqe->parameter, wcqe->word3); 14251 lpfc_sli_release_iocbq(phba, irspiocbq); 14252 return NULL; 14253 } 14254 14255 spin_lock_irqsave(&pring->ring_lock, iflags); 14256 /* Put the iocb back on the txcmplq */ 14257 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14258 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14259 14260 /* Fake the irspiocbq and copy necessary response information */ 14261 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 14262 14263 return irspiocbq; 14264 } 14265 14266 inline struct lpfc_cq_event * 14267 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14268 { 14269 struct lpfc_cq_event *cq_event; 14270 14271 /* Allocate a new internal CQ_EVENT entry */ 14272 cq_event = lpfc_sli4_cq_event_alloc(phba); 14273 if (!cq_event) { 14274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14275 "0602 Failed to alloc CQ_EVENT entry\n"); 14276 return NULL; 14277 } 14278 14279 /* Move the CQE into the event */ 14280 memcpy(&cq_event->cqe, entry, size); 14281 return cq_event; 14282 } 14283 14284 /** 14285 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14286 * @phba: Pointer to HBA context object. 14287 * @mcqe: Pointer to mailbox completion queue entry. 14288 * 14289 * This routine process a mailbox completion queue entry with asynchronous 14290 * event. 14291 * 14292 * Return: true if work posted to worker thread, otherwise false. 14293 **/ 14294 static bool 14295 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14296 { 14297 struct lpfc_cq_event *cq_event; 14298 unsigned long iflags; 14299 14300 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14301 "0392 Async Event: word0:x%x, word1:x%x, " 14302 "word2:x%x, word3:x%x\n", mcqe->word0, 14303 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14304 14305 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14306 if (!cq_event) 14307 return false; 14308 14309 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14310 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14311 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14312 14313 /* Set the async event flag */ 14314 spin_lock_irqsave(&phba->hbalock, iflags); 14315 phba->hba_flag |= ASYNC_EVENT; 14316 spin_unlock_irqrestore(&phba->hbalock, iflags); 14317 14318 return true; 14319 } 14320 14321 /** 14322 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14323 * @phba: Pointer to HBA context object. 14324 * @mcqe: Pointer to mailbox completion queue entry. 14325 * 14326 * This routine process a mailbox completion queue entry with mailbox 14327 * completion event. 14328 * 14329 * Return: true if work posted to worker thread, otherwise false. 14330 **/ 14331 static bool 14332 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14333 { 14334 uint32_t mcqe_status; 14335 MAILBOX_t *mbox, *pmbox; 14336 struct lpfc_mqe *mqe; 14337 struct lpfc_vport *vport; 14338 struct lpfc_nodelist *ndlp; 14339 struct lpfc_dmabuf *mp; 14340 unsigned long iflags; 14341 LPFC_MBOXQ_t *pmb; 14342 bool workposted = false; 14343 int rc; 14344 14345 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14346 if (!bf_get(lpfc_trailer_completed, mcqe)) 14347 goto out_no_mqe_complete; 14348 14349 /* Get the reference to the active mbox command */ 14350 spin_lock_irqsave(&phba->hbalock, iflags); 14351 pmb = phba->sli.mbox_active; 14352 if (unlikely(!pmb)) { 14353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14354 "1832 No pending MBOX command to handle\n"); 14355 spin_unlock_irqrestore(&phba->hbalock, iflags); 14356 goto out_no_mqe_complete; 14357 } 14358 spin_unlock_irqrestore(&phba->hbalock, iflags); 14359 mqe = &pmb->u.mqe; 14360 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14361 mbox = phba->mbox; 14362 vport = pmb->vport; 14363 14364 /* Reset heartbeat timer */ 14365 phba->last_completion_time = jiffies; 14366 del_timer(&phba->sli.mbox_tmo); 14367 14368 /* Move mbox data to caller's mailbox region, do endian swapping */ 14369 if (pmb->mbox_cmpl && mbox) 14370 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14371 14372 /* 14373 * For mcqe errors, conditionally move a modified error code to 14374 * the mbox so that the error will not be missed. 14375 */ 14376 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14377 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14378 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14379 bf_set(lpfc_mqe_status, mqe, 14380 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14381 } 14382 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14383 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14384 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14385 "MBOX dflt rpi: status:x%x rpi:x%x", 14386 mcqe_status, 14387 pmbox->un.varWords[0], 0); 14388 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14389 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14390 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14391 14392 /* Reg_LOGIN of dflt RPI was successful. Mark the 14393 * node as having an UNREG_LOGIN in progress to stop 14394 * an unsolicited PLOGI from the same NPortId from 14395 * starting another mailbox transaction. 14396 */ 14397 spin_lock_irqsave(&ndlp->lock, iflags); 14398 ndlp->nlp_flag |= NLP_UNREG_INP; 14399 spin_unlock_irqrestore(&ndlp->lock, iflags); 14400 lpfc_unreg_login(phba, vport->vpi, 14401 pmbox->un.varWords[0], pmb); 14402 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14403 pmb->ctx_buf = mp; 14404 14405 /* No reference taken here. This is a default 14406 * RPI reg/immediate unreg cycle. The reference was 14407 * taken in the reg rpi path and is released when 14408 * this mailbox completes. 14409 */ 14410 pmb->ctx_ndlp = ndlp; 14411 pmb->vport = vport; 14412 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14413 if (rc != MBX_BUSY) 14414 lpfc_printf_log(phba, KERN_ERR, 14415 LOG_TRACE_EVENT, 14416 "0385 rc should " 14417 "have been MBX_BUSY\n"); 14418 if (rc != MBX_NOT_FINISHED) 14419 goto send_current_mbox; 14420 } 14421 } 14422 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14423 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14424 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14425 14426 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14427 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14428 spin_lock_irqsave(&phba->hbalock, iflags); 14429 /* Release the mailbox command posting token */ 14430 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14431 phba->sli.mbox_active = NULL; 14432 if (bf_get(lpfc_trailer_consumed, mcqe)) 14433 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14434 spin_unlock_irqrestore(&phba->hbalock, iflags); 14435 14436 /* Post the next mbox command, if there is one */ 14437 lpfc_sli4_post_async_mbox(phba); 14438 14439 /* Process cmpl now */ 14440 if (pmb->mbox_cmpl) 14441 pmb->mbox_cmpl(phba, pmb); 14442 return false; 14443 } 14444 14445 /* There is mailbox completion work to queue to the worker thread */ 14446 spin_lock_irqsave(&phba->hbalock, iflags); 14447 __lpfc_mbox_cmpl_put(phba, pmb); 14448 phba->work_ha |= HA_MBATT; 14449 spin_unlock_irqrestore(&phba->hbalock, iflags); 14450 workposted = true; 14451 14452 send_current_mbox: 14453 spin_lock_irqsave(&phba->hbalock, iflags); 14454 /* Release the mailbox command posting token */ 14455 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14456 /* Setting active mailbox pointer need to be in sync to flag clear */ 14457 phba->sli.mbox_active = NULL; 14458 if (bf_get(lpfc_trailer_consumed, mcqe)) 14459 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14460 spin_unlock_irqrestore(&phba->hbalock, iflags); 14461 /* Wake up worker thread to post the next pending mailbox command */ 14462 lpfc_worker_wake_up(phba); 14463 return workposted; 14464 14465 out_no_mqe_complete: 14466 spin_lock_irqsave(&phba->hbalock, iflags); 14467 if (bf_get(lpfc_trailer_consumed, mcqe)) 14468 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14469 spin_unlock_irqrestore(&phba->hbalock, iflags); 14470 return false; 14471 } 14472 14473 /** 14474 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14475 * @phba: Pointer to HBA context object. 14476 * @cq: Pointer to associated CQ 14477 * @cqe: Pointer to mailbox completion queue entry. 14478 * 14479 * This routine process a mailbox completion queue entry, it invokes the 14480 * proper mailbox complete handling or asynchronous event handling routine 14481 * according to the MCQE's async bit. 14482 * 14483 * Return: true if work posted to worker thread, otherwise false. 14484 **/ 14485 static bool 14486 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14487 struct lpfc_cqe *cqe) 14488 { 14489 struct lpfc_mcqe mcqe; 14490 bool workposted; 14491 14492 cq->CQ_mbox++; 14493 14494 /* Copy the mailbox MCQE and convert endian order as needed */ 14495 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14496 14497 /* Invoke the proper event handling routine */ 14498 if (!bf_get(lpfc_trailer_async, &mcqe)) 14499 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14500 else 14501 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14502 return workposted; 14503 } 14504 14505 /** 14506 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14507 * @phba: Pointer to HBA context object. 14508 * @cq: Pointer to associated CQ 14509 * @wcqe: Pointer to work-queue completion queue entry. 14510 * 14511 * This routine handles an ELS work-queue completion event. 14512 * 14513 * Return: true if work posted to worker thread, otherwise false. 14514 **/ 14515 static bool 14516 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14517 struct lpfc_wcqe_complete *wcqe) 14518 { 14519 struct lpfc_iocbq *irspiocbq; 14520 unsigned long iflags; 14521 struct lpfc_sli_ring *pring = cq->pring; 14522 int txq_cnt = 0; 14523 int txcmplq_cnt = 0; 14524 14525 /* Check for response status */ 14526 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14527 /* Log the error status */ 14528 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14529 "0357 ELS CQE error: status=x%x: " 14530 "CQE: %08x %08x %08x %08x\n", 14531 bf_get(lpfc_wcqe_c_status, wcqe), 14532 wcqe->word0, wcqe->total_data_placed, 14533 wcqe->parameter, wcqe->word3); 14534 } 14535 14536 /* Get an irspiocbq for later ELS response processing use */ 14537 irspiocbq = lpfc_sli_get_iocbq(phba); 14538 if (!irspiocbq) { 14539 if (!list_empty(&pring->txq)) 14540 txq_cnt++; 14541 if (!list_empty(&pring->txcmplq)) 14542 txcmplq_cnt++; 14543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14544 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14545 "els_txcmplq_cnt=%d\n", 14546 txq_cnt, phba->iocb_cnt, 14547 txcmplq_cnt); 14548 return false; 14549 } 14550 14551 /* Save off the slow-path queue event for work thread to process */ 14552 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14553 spin_lock_irqsave(&phba->hbalock, iflags); 14554 list_add_tail(&irspiocbq->cq_event.list, 14555 &phba->sli4_hba.sp_queue_event); 14556 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14557 spin_unlock_irqrestore(&phba->hbalock, iflags); 14558 14559 return true; 14560 } 14561 14562 /** 14563 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14564 * @phba: Pointer to HBA context object. 14565 * @wcqe: Pointer to work-queue completion queue entry. 14566 * 14567 * This routine handles slow-path WQ entry consumed event by invoking the 14568 * proper WQ release routine to the slow-path WQ. 14569 **/ 14570 static void 14571 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14572 struct lpfc_wcqe_release *wcqe) 14573 { 14574 /* sanity check on queue memory */ 14575 if (unlikely(!phba->sli4_hba.els_wq)) 14576 return; 14577 /* Check for the slow-path ELS work queue */ 14578 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14579 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14580 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14581 else 14582 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14583 "2579 Slow-path wqe consume event carries " 14584 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14585 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14586 phba->sli4_hba.els_wq->queue_id); 14587 } 14588 14589 /** 14590 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14591 * @phba: Pointer to HBA context object. 14592 * @cq: Pointer to a WQ completion queue. 14593 * @wcqe: Pointer to work-queue completion queue entry. 14594 * 14595 * This routine handles an XRI abort event. 14596 * 14597 * Return: true if work posted to worker thread, otherwise false. 14598 **/ 14599 static bool 14600 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14601 struct lpfc_queue *cq, 14602 struct sli4_wcqe_xri_aborted *wcqe) 14603 { 14604 bool workposted = false; 14605 struct lpfc_cq_event *cq_event; 14606 unsigned long iflags; 14607 14608 switch (cq->subtype) { 14609 case LPFC_IO: 14610 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14611 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14612 /* Notify aborted XRI for NVME work queue */ 14613 if (phba->nvmet_support) 14614 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14615 } 14616 workposted = false; 14617 break; 14618 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14619 case LPFC_ELS: 14620 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14621 if (!cq_event) { 14622 workposted = false; 14623 break; 14624 } 14625 cq_event->hdwq = cq->hdwq; 14626 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14627 iflags); 14628 list_add_tail(&cq_event->list, 14629 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14630 /* Set the els xri abort event flag */ 14631 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14632 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14633 iflags); 14634 workposted = true; 14635 break; 14636 default: 14637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14638 "0603 Invalid CQ subtype %d: " 14639 "%08x %08x %08x %08x\n", 14640 cq->subtype, wcqe->word0, wcqe->parameter, 14641 wcqe->word2, wcqe->word3); 14642 workposted = false; 14643 break; 14644 } 14645 return workposted; 14646 } 14647 14648 #define FC_RCTL_MDS_DIAGS 0xF4 14649 14650 /** 14651 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14652 * @phba: Pointer to HBA context object. 14653 * @rcqe: Pointer to receive-queue completion queue entry. 14654 * 14655 * This routine process a receive-queue completion queue entry. 14656 * 14657 * Return: true if work posted to worker thread, otherwise false. 14658 **/ 14659 static bool 14660 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14661 { 14662 bool workposted = false; 14663 struct fc_frame_header *fc_hdr; 14664 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14665 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14666 struct lpfc_nvmet_tgtport *tgtp; 14667 struct hbq_dmabuf *dma_buf; 14668 uint32_t status, rq_id; 14669 unsigned long iflags; 14670 14671 /* sanity check on queue memory */ 14672 if (unlikely(!hrq) || unlikely(!drq)) 14673 return workposted; 14674 14675 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14676 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14677 else 14678 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14679 if (rq_id != hrq->queue_id) 14680 goto out; 14681 14682 status = bf_get(lpfc_rcqe_status, rcqe); 14683 switch (status) { 14684 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14686 "2537 Receive Frame Truncated!!\n"); 14687 fallthrough; 14688 case FC_STATUS_RQ_SUCCESS: 14689 spin_lock_irqsave(&phba->hbalock, iflags); 14690 lpfc_sli4_rq_release(hrq, drq); 14691 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14692 if (!dma_buf) { 14693 hrq->RQ_no_buf_found++; 14694 spin_unlock_irqrestore(&phba->hbalock, iflags); 14695 goto out; 14696 } 14697 hrq->RQ_rcv_buf++; 14698 hrq->RQ_buf_posted--; 14699 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14700 14701 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14702 14703 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14704 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14705 spin_unlock_irqrestore(&phba->hbalock, iflags); 14706 /* Handle MDS Loopback frames */ 14707 if (!(phba->pport->load_flag & FC_UNLOADING)) 14708 lpfc_sli4_handle_mds_loopback(phba->pport, 14709 dma_buf); 14710 else 14711 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14712 break; 14713 } 14714 14715 /* save off the frame for the work thread to process */ 14716 list_add_tail(&dma_buf->cq_event.list, 14717 &phba->sli4_hba.sp_queue_event); 14718 /* Frame received */ 14719 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14720 spin_unlock_irqrestore(&phba->hbalock, iflags); 14721 workposted = true; 14722 break; 14723 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14724 if (phba->nvmet_support) { 14725 tgtp = phba->targetport->private; 14726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14727 "6402 RQE Error x%x, posted %d err_cnt " 14728 "%d: %x %x %x\n", 14729 status, hrq->RQ_buf_posted, 14730 hrq->RQ_no_posted_buf, 14731 atomic_read(&tgtp->rcv_fcp_cmd_in), 14732 atomic_read(&tgtp->rcv_fcp_cmd_out), 14733 atomic_read(&tgtp->xmt_fcp_release)); 14734 } 14735 fallthrough; 14736 14737 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14738 hrq->RQ_no_posted_buf++; 14739 /* Post more buffers if possible */ 14740 spin_lock_irqsave(&phba->hbalock, iflags); 14741 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14742 spin_unlock_irqrestore(&phba->hbalock, iflags); 14743 workposted = true; 14744 break; 14745 } 14746 out: 14747 return workposted; 14748 } 14749 14750 /** 14751 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14752 * @phba: Pointer to HBA context object. 14753 * @cq: Pointer to the completion queue. 14754 * @cqe: Pointer to a completion queue entry. 14755 * 14756 * This routine process a slow-path work-queue or receive queue completion queue 14757 * entry. 14758 * 14759 * Return: true if work posted to worker thread, otherwise false. 14760 **/ 14761 static bool 14762 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14763 struct lpfc_cqe *cqe) 14764 { 14765 struct lpfc_cqe cqevt; 14766 bool workposted = false; 14767 14768 /* Copy the work queue CQE and convert endian order if needed */ 14769 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14770 14771 /* Check and process for different type of WCQE and dispatch */ 14772 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14773 case CQE_CODE_COMPL_WQE: 14774 /* Process the WQ/RQ complete event */ 14775 phba->last_completion_time = jiffies; 14776 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14777 (struct lpfc_wcqe_complete *)&cqevt); 14778 break; 14779 case CQE_CODE_RELEASE_WQE: 14780 /* Process the WQ release event */ 14781 lpfc_sli4_sp_handle_rel_wcqe(phba, 14782 (struct lpfc_wcqe_release *)&cqevt); 14783 break; 14784 case CQE_CODE_XRI_ABORTED: 14785 /* Process the WQ XRI abort event */ 14786 phba->last_completion_time = jiffies; 14787 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14788 (struct sli4_wcqe_xri_aborted *)&cqevt); 14789 break; 14790 case CQE_CODE_RECEIVE: 14791 case CQE_CODE_RECEIVE_V1: 14792 /* Process the RQ event */ 14793 phba->last_completion_time = jiffies; 14794 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14795 (struct lpfc_rcqe *)&cqevt); 14796 break; 14797 default: 14798 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14799 "0388 Not a valid WCQE code: x%x\n", 14800 bf_get(lpfc_cqe_code, &cqevt)); 14801 break; 14802 } 14803 return workposted; 14804 } 14805 14806 /** 14807 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14808 * @phba: Pointer to HBA context object. 14809 * @eqe: Pointer to fast-path event queue entry. 14810 * @speq: Pointer to slow-path event queue. 14811 * 14812 * This routine process a event queue entry from the slow-path event queue. 14813 * It will check the MajorCode and MinorCode to determine this is for a 14814 * completion event on a completion queue, if not, an error shall be logged 14815 * and just return. Otherwise, it will get to the corresponding completion 14816 * queue and process all the entries on that completion queue, rearm the 14817 * completion queue, and then return. 14818 * 14819 **/ 14820 static void 14821 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14822 struct lpfc_queue *speq) 14823 { 14824 struct lpfc_queue *cq = NULL, *childq; 14825 uint16_t cqid; 14826 int ret = 0; 14827 14828 /* Get the reference to the corresponding CQ */ 14829 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14830 14831 list_for_each_entry(childq, &speq->child_list, list) { 14832 if (childq->queue_id == cqid) { 14833 cq = childq; 14834 break; 14835 } 14836 } 14837 if (unlikely(!cq)) { 14838 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14840 "0365 Slow-path CQ identifier " 14841 "(%d) does not exist\n", cqid); 14842 return; 14843 } 14844 14845 /* Save EQ associated with this CQ */ 14846 cq->assoc_qp = speq; 14847 14848 if (is_kdump_kernel()) 14849 ret = queue_work(phba->wq, &cq->spwork); 14850 else 14851 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14852 14853 if (!ret) 14854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14855 "0390 Cannot schedule queue work " 14856 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14857 cqid, cq->queue_id, raw_smp_processor_id()); 14858 } 14859 14860 /** 14861 * __lpfc_sli4_process_cq - Process elements of a CQ 14862 * @phba: Pointer to HBA context object. 14863 * @cq: Pointer to CQ to be processed 14864 * @handler: Routine to process each cqe 14865 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14866 * @poll_mode: Polling mode we were called from 14867 * 14868 * This routine processes completion queue entries in a CQ. While a valid 14869 * queue element is found, the handler is called. During processing checks 14870 * are made for periodic doorbell writes to let the hardware know of 14871 * element consumption. 14872 * 14873 * If the max limit on cqes to process is hit, or there are no more valid 14874 * entries, the loop stops. If we processed a sufficient number of elements, 14875 * meaning there is sufficient load, rather than rearming and generating 14876 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14877 * indicates no rescheduling. 14878 * 14879 * Returns True if work scheduled, False otherwise. 14880 **/ 14881 static bool 14882 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14883 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14884 struct lpfc_cqe *), unsigned long *delay, 14885 enum lpfc_poll_mode poll_mode) 14886 { 14887 struct lpfc_cqe *cqe; 14888 bool workposted = false; 14889 int count = 0, consumed = 0; 14890 bool arm = true; 14891 14892 /* default - no reschedule */ 14893 *delay = 0; 14894 14895 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14896 goto rearm_and_exit; 14897 14898 /* Process all the entries to the CQ */ 14899 cq->q_flag = 0; 14900 cqe = lpfc_sli4_cq_get(cq); 14901 while (cqe) { 14902 workposted |= handler(phba, cq, cqe); 14903 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14904 14905 consumed++; 14906 if (!(++count % cq->max_proc_limit)) 14907 break; 14908 14909 if (!(count % cq->notify_interval)) { 14910 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14911 LPFC_QUEUE_NOARM); 14912 consumed = 0; 14913 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14914 } 14915 14916 if (count == LPFC_NVMET_CQ_NOTIFY) 14917 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14918 14919 cqe = lpfc_sli4_cq_get(cq); 14920 } 14921 if (count >= phba->cfg_cq_poll_threshold) { 14922 *delay = 1; 14923 arm = false; 14924 } 14925 14926 /* Note: complete the irq_poll softirq before rearming CQ */ 14927 if (poll_mode == LPFC_IRQ_POLL) 14928 irq_poll_complete(&cq->iop); 14929 14930 /* Track the max number of CQEs processed in 1 EQ */ 14931 if (count > cq->CQ_max_cqe) 14932 cq->CQ_max_cqe = count; 14933 14934 cq->assoc_qp->EQ_cqe_cnt += count; 14935 14936 /* Catch the no cq entry condition */ 14937 if (unlikely(count == 0)) 14938 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14939 "0369 No entry from completion queue " 14940 "qid=%d\n", cq->queue_id); 14941 14942 xchg(&cq->queue_claimed, 0); 14943 14944 rearm_and_exit: 14945 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14946 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14947 14948 return workposted; 14949 } 14950 14951 /** 14952 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14953 * @cq: pointer to CQ to process 14954 * 14955 * This routine calls the cq processing routine with a handler specific 14956 * to the type of queue bound to it. 14957 * 14958 * The CQ routine returns two values: the first is the calling status, 14959 * which indicates whether work was queued to the background discovery 14960 * thread. If true, the routine should wakeup the discovery thread; 14961 * the second is the delay parameter. If non-zero, rather than rearming 14962 * the CQ and yet another interrupt, the CQ handler should be queued so 14963 * that it is processed in a subsequent polling action. The value of 14964 * the delay indicates when to reschedule it. 14965 **/ 14966 static void 14967 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14968 { 14969 struct lpfc_hba *phba = cq->phba; 14970 unsigned long delay; 14971 bool workposted = false; 14972 int ret = 0; 14973 14974 /* Process and rearm the CQ */ 14975 switch (cq->type) { 14976 case LPFC_MCQ: 14977 workposted |= __lpfc_sli4_process_cq(phba, cq, 14978 lpfc_sli4_sp_handle_mcqe, 14979 &delay, LPFC_QUEUE_WORK); 14980 break; 14981 case LPFC_WCQ: 14982 if (cq->subtype == LPFC_IO) 14983 workposted |= __lpfc_sli4_process_cq(phba, cq, 14984 lpfc_sli4_fp_handle_cqe, 14985 &delay, LPFC_QUEUE_WORK); 14986 else 14987 workposted |= __lpfc_sli4_process_cq(phba, cq, 14988 lpfc_sli4_sp_handle_cqe, 14989 &delay, LPFC_QUEUE_WORK); 14990 break; 14991 default: 14992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14993 "0370 Invalid completion queue type (%d)\n", 14994 cq->type); 14995 return; 14996 } 14997 14998 if (delay) { 14999 if (is_kdump_kernel()) 15000 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 15001 delay); 15002 else 15003 ret = queue_delayed_work_on(cq->chann, phba->wq, 15004 &cq->sched_spwork, delay); 15005 if (!ret) 15006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15007 "0394 Cannot schedule queue work " 15008 "for cqid=%d on CPU %d\n", 15009 cq->queue_id, cq->chann); 15010 } 15011 15012 /* wake up worker thread if there are works to be done */ 15013 if (workposted) 15014 lpfc_worker_wake_up(phba); 15015 } 15016 15017 /** 15018 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15019 * interrupt 15020 * @work: pointer to work element 15021 * 15022 * translates from the work handler and calls the slow-path handler. 15023 **/ 15024 static void 15025 lpfc_sli4_sp_process_cq(struct work_struct *work) 15026 { 15027 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15028 15029 __lpfc_sli4_sp_process_cq(cq); 15030 } 15031 15032 /** 15033 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15034 * @work: pointer to work element 15035 * 15036 * translates from the work handler and calls the slow-path handler. 15037 **/ 15038 static void 15039 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15040 { 15041 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15042 struct lpfc_queue, sched_spwork); 15043 15044 __lpfc_sli4_sp_process_cq(cq); 15045 } 15046 15047 /** 15048 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15049 * @phba: Pointer to HBA context object. 15050 * @cq: Pointer to associated CQ 15051 * @wcqe: Pointer to work-queue completion queue entry. 15052 * 15053 * This routine process a fast-path work queue completion entry from fast-path 15054 * event queue for FCP command response completion. 15055 **/ 15056 static void 15057 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15058 struct lpfc_wcqe_complete *wcqe) 15059 { 15060 struct lpfc_sli_ring *pring = cq->pring; 15061 struct lpfc_iocbq *cmdiocbq; 15062 struct lpfc_iocbq irspiocbq; 15063 unsigned long iflags; 15064 15065 /* Check for response status */ 15066 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15067 /* If resource errors reported from HBA, reduce queue 15068 * depth of the SCSI device. 15069 */ 15070 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15071 IOSTAT_LOCAL_REJECT)) && 15072 ((wcqe->parameter & IOERR_PARAM_MASK) == 15073 IOERR_NO_RESOURCES)) 15074 phba->lpfc_rampdown_queue_depth(phba); 15075 15076 /* Log the cmpl status */ 15077 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15078 "0373 FCP CQE cmpl: status=x%x: " 15079 "CQE: %08x %08x %08x %08x\n", 15080 bf_get(lpfc_wcqe_c_status, wcqe), 15081 wcqe->word0, wcqe->total_data_placed, 15082 wcqe->parameter, wcqe->word3); 15083 } 15084 15085 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15086 spin_lock_irqsave(&pring->ring_lock, iflags); 15087 pring->stats.iocb_event++; 15088 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15089 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15090 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15091 if (unlikely(!cmdiocbq)) { 15092 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15093 "0374 FCP complete with no corresponding " 15094 "cmdiocb: iotag (%d)\n", 15095 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15096 return; 15097 } 15098 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15099 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15100 #endif 15101 if (cmdiocbq->iocb_cmpl == NULL) { 15102 if (cmdiocbq->wqe_cmpl) { 15103 /* For FCP the flag is cleared in wqe_cmpl */ 15104 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 15105 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15106 spin_lock_irqsave(&phba->hbalock, iflags); 15107 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15108 spin_unlock_irqrestore(&phba->hbalock, iflags); 15109 } 15110 15111 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15112 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 15113 return; 15114 } 15115 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15116 "0375 FCP cmdiocb not callback function " 15117 "iotag: (%d)\n", 15118 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15119 return; 15120 } 15121 15122 /* Only SLI4 non-IO commands stil use IOCB */ 15123 /* Fake the irspiocb and copy necessary response information */ 15124 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 15125 15126 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15127 spin_lock_irqsave(&phba->hbalock, iflags); 15128 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15129 spin_unlock_irqrestore(&phba->hbalock, iflags); 15130 } 15131 15132 /* Pass the cmd_iocb and the rsp state to the upper layer */ 15133 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 15134 } 15135 15136 /** 15137 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15138 * @phba: Pointer to HBA context object. 15139 * @cq: Pointer to completion queue. 15140 * @wcqe: Pointer to work-queue completion queue entry. 15141 * 15142 * This routine handles an fast-path WQ entry consumed event by invoking the 15143 * proper WQ release routine to the slow-path WQ. 15144 **/ 15145 static void 15146 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15147 struct lpfc_wcqe_release *wcqe) 15148 { 15149 struct lpfc_queue *childwq; 15150 bool wqid_matched = false; 15151 uint16_t hba_wqid; 15152 15153 /* Check for fast-path FCP work queue release */ 15154 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15155 list_for_each_entry(childwq, &cq->child_list, list) { 15156 if (childwq->queue_id == hba_wqid) { 15157 lpfc_sli4_wq_release(childwq, 15158 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15159 if (childwq->q_flag & HBA_NVMET_WQFULL) 15160 lpfc_nvmet_wqfull_process(phba, childwq); 15161 wqid_matched = true; 15162 break; 15163 } 15164 } 15165 /* Report warning log message if no match found */ 15166 if (wqid_matched != true) 15167 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15168 "2580 Fast-path wqe consume event carries " 15169 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15170 } 15171 15172 /** 15173 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15174 * @phba: Pointer to HBA context object. 15175 * @cq: Pointer to completion queue. 15176 * @rcqe: Pointer to receive-queue completion queue entry. 15177 * 15178 * This routine process a receive-queue completion queue entry. 15179 * 15180 * Return: true if work posted to worker thread, otherwise false. 15181 **/ 15182 static bool 15183 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15184 struct lpfc_rcqe *rcqe) 15185 { 15186 bool workposted = false; 15187 struct lpfc_queue *hrq; 15188 struct lpfc_queue *drq; 15189 struct rqb_dmabuf *dma_buf; 15190 struct fc_frame_header *fc_hdr; 15191 struct lpfc_nvmet_tgtport *tgtp; 15192 uint32_t status, rq_id; 15193 unsigned long iflags; 15194 uint32_t fctl, idx; 15195 15196 if ((phba->nvmet_support == 0) || 15197 (phba->sli4_hba.nvmet_cqset == NULL)) 15198 return workposted; 15199 15200 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15201 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15202 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15203 15204 /* sanity check on queue memory */ 15205 if (unlikely(!hrq) || unlikely(!drq)) 15206 return workposted; 15207 15208 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15209 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15210 else 15211 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15212 15213 if ((phba->nvmet_support == 0) || 15214 (rq_id != hrq->queue_id)) 15215 return workposted; 15216 15217 status = bf_get(lpfc_rcqe_status, rcqe); 15218 switch (status) { 15219 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15221 "6126 Receive Frame Truncated!!\n"); 15222 fallthrough; 15223 case FC_STATUS_RQ_SUCCESS: 15224 spin_lock_irqsave(&phba->hbalock, iflags); 15225 lpfc_sli4_rq_release(hrq, drq); 15226 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15227 if (!dma_buf) { 15228 hrq->RQ_no_buf_found++; 15229 spin_unlock_irqrestore(&phba->hbalock, iflags); 15230 goto out; 15231 } 15232 spin_unlock_irqrestore(&phba->hbalock, iflags); 15233 hrq->RQ_rcv_buf++; 15234 hrq->RQ_buf_posted--; 15235 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15236 15237 /* Just some basic sanity checks on FCP Command frame */ 15238 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15239 fc_hdr->fh_f_ctl[1] << 8 | 15240 fc_hdr->fh_f_ctl[2]); 15241 if (((fctl & 15242 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15243 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15244 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15245 goto drop; 15246 15247 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15248 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15249 lpfc_nvmet_unsol_fcp_event( 15250 phba, idx, dma_buf, cq->isr_timestamp, 15251 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15252 return false; 15253 } 15254 drop: 15255 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15256 break; 15257 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15258 if (phba->nvmet_support) { 15259 tgtp = phba->targetport->private; 15260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15261 "6401 RQE Error x%x, posted %d err_cnt " 15262 "%d: %x %x %x\n", 15263 status, hrq->RQ_buf_posted, 15264 hrq->RQ_no_posted_buf, 15265 atomic_read(&tgtp->rcv_fcp_cmd_in), 15266 atomic_read(&tgtp->rcv_fcp_cmd_out), 15267 atomic_read(&tgtp->xmt_fcp_release)); 15268 } 15269 fallthrough; 15270 15271 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15272 hrq->RQ_no_posted_buf++; 15273 /* Post more buffers if possible */ 15274 break; 15275 } 15276 out: 15277 return workposted; 15278 } 15279 15280 /** 15281 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15282 * @phba: adapter with cq 15283 * @cq: Pointer to the completion queue. 15284 * @cqe: Pointer to fast-path completion queue entry. 15285 * 15286 * This routine process a fast-path work queue completion entry from fast-path 15287 * event queue for FCP command response completion. 15288 * 15289 * Return: true if work posted to worker thread, otherwise false. 15290 **/ 15291 static bool 15292 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15293 struct lpfc_cqe *cqe) 15294 { 15295 struct lpfc_wcqe_release wcqe; 15296 bool workposted = false; 15297 15298 /* Copy the work queue CQE and convert endian order if needed */ 15299 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15300 15301 /* Check and process for different type of WCQE and dispatch */ 15302 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15303 case CQE_CODE_COMPL_WQE: 15304 case CQE_CODE_NVME_ERSP: 15305 cq->CQ_wq++; 15306 /* Process the WQ complete event */ 15307 phba->last_completion_time = jiffies; 15308 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15309 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15310 (struct lpfc_wcqe_complete *)&wcqe); 15311 break; 15312 case CQE_CODE_RELEASE_WQE: 15313 cq->CQ_release_wqe++; 15314 /* Process the WQ release event */ 15315 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15316 (struct lpfc_wcqe_release *)&wcqe); 15317 break; 15318 case CQE_CODE_XRI_ABORTED: 15319 cq->CQ_xri_aborted++; 15320 /* Process the WQ XRI abort event */ 15321 phba->last_completion_time = jiffies; 15322 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15323 (struct sli4_wcqe_xri_aborted *)&wcqe); 15324 break; 15325 case CQE_CODE_RECEIVE_V1: 15326 case CQE_CODE_RECEIVE: 15327 phba->last_completion_time = jiffies; 15328 if (cq->subtype == LPFC_NVMET) { 15329 workposted = lpfc_sli4_nvmet_handle_rcqe( 15330 phba, cq, (struct lpfc_rcqe *)&wcqe); 15331 } 15332 break; 15333 default: 15334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15335 "0144 Not a valid CQE code: x%x\n", 15336 bf_get(lpfc_wcqe_c_code, &wcqe)); 15337 break; 15338 } 15339 return workposted; 15340 } 15341 15342 /** 15343 * lpfc_sli4_sched_cq_work - Schedules cq work 15344 * @phba: Pointer to HBA context object. 15345 * @cq: Pointer to CQ 15346 * @cqid: CQ ID 15347 * 15348 * This routine checks the poll mode of the CQ corresponding to 15349 * cq->chann, then either schedules a softirq or queue_work to complete 15350 * cq work. 15351 * 15352 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15353 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15354 * 15355 **/ 15356 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15357 struct lpfc_queue *cq, uint16_t cqid) 15358 { 15359 int ret = 0; 15360 15361 switch (cq->poll_mode) { 15362 case LPFC_IRQ_POLL: 15363 /* CGN mgmt is mutually exclusive from softirq processing */ 15364 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15365 irq_poll_sched(&cq->iop); 15366 break; 15367 } 15368 fallthrough; 15369 case LPFC_QUEUE_WORK: 15370 default: 15371 if (is_kdump_kernel()) 15372 ret = queue_work(phba->wq, &cq->irqwork); 15373 else 15374 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15375 if (!ret) 15376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15377 "0383 Cannot schedule queue work " 15378 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15379 cqid, cq->queue_id, 15380 raw_smp_processor_id()); 15381 } 15382 } 15383 15384 /** 15385 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15386 * @phba: Pointer to HBA context object. 15387 * @eq: Pointer to the queue structure. 15388 * @eqe: Pointer to fast-path event queue entry. 15389 * 15390 * This routine process a event queue entry from the fast-path event queue. 15391 * It will check the MajorCode and MinorCode to determine this is for a 15392 * completion event on a completion queue, if not, an error shall be logged 15393 * and just return. Otherwise, it will get to the corresponding completion 15394 * queue and process all the entries on the completion queue, rearm the 15395 * completion queue, and then return. 15396 **/ 15397 static void 15398 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15399 struct lpfc_eqe *eqe) 15400 { 15401 struct lpfc_queue *cq = NULL; 15402 uint32_t qidx = eq->hdwq; 15403 uint16_t cqid, id; 15404 15405 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15407 "0366 Not a valid completion " 15408 "event: majorcode=x%x, minorcode=x%x\n", 15409 bf_get_le32(lpfc_eqe_major_code, eqe), 15410 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15411 return; 15412 } 15413 15414 /* Get the reference to the corresponding CQ */ 15415 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15416 15417 /* Use the fast lookup method first */ 15418 if (cqid <= phba->sli4_hba.cq_max) { 15419 cq = phba->sli4_hba.cq_lookup[cqid]; 15420 if (cq) 15421 goto work_cq; 15422 } 15423 15424 /* Next check for NVMET completion */ 15425 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15426 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15427 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15428 /* Process NVMET unsol rcv */ 15429 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15430 goto process_cq; 15431 } 15432 } 15433 15434 if (phba->sli4_hba.nvmels_cq && 15435 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15436 /* Process NVME unsol rcv */ 15437 cq = phba->sli4_hba.nvmels_cq; 15438 } 15439 15440 /* Otherwise this is a Slow path event */ 15441 if (cq == NULL) { 15442 lpfc_sli4_sp_handle_eqe(phba, eqe, 15443 phba->sli4_hba.hdwq[qidx].hba_eq); 15444 return; 15445 } 15446 15447 process_cq: 15448 if (unlikely(cqid != cq->queue_id)) { 15449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15450 "0368 Miss-matched fast-path completion " 15451 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15452 cqid, cq->queue_id); 15453 return; 15454 } 15455 15456 work_cq: 15457 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15458 if (phba->ktime_on) 15459 cq->isr_timestamp = ktime_get_ns(); 15460 else 15461 cq->isr_timestamp = 0; 15462 #endif 15463 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15464 } 15465 15466 /** 15467 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15468 * @cq: Pointer to CQ to be processed 15469 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15470 * 15471 * This routine calls the cq processing routine with the handler for 15472 * fast path CQEs. 15473 * 15474 * The CQ routine returns two values: the first is the calling status, 15475 * which indicates whether work was queued to the background discovery 15476 * thread. If true, the routine should wakeup the discovery thread; 15477 * the second is the delay parameter. If non-zero, rather than rearming 15478 * the CQ and yet another interrupt, the CQ handler should be queued so 15479 * that it is processed in a subsequent polling action. The value of 15480 * the delay indicates when to reschedule it. 15481 **/ 15482 static void 15483 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15484 enum lpfc_poll_mode poll_mode) 15485 { 15486 struct lpfc_hba *phba = cq->phba; 15487 unsigned long delay; 15488 bool workposted = false; 15489 int ret = 0; 15490 15491 /* process and rearm the CQ */ 15492 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15493 &delay, poll_mode); 15494 15495 if (delay) { 15496 if (is_kdump_kernel()) 15497 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15498 delay); 15499 else 15500 ret = queue_delayed_work_on(cq->chann, phba->wq, 15501 &cq->sched_irqwork, delay); 15502 if (!ret) 15503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15504 "0367 Cannot schedule queue work " 15505 "for cqid=%d on CPU %d\n", 15506 cq->queue_id, cq->chann); 15507 } 15508 15509 /* wake up worker thread if there are works to be done */ 15510 if (workposted) 15511 lpfc_worker_wake_up(phba); 15512 } 15513 15514 /** 15515 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15516 * interrupt 15517 * @work: pointer to work element 15518 * 15519 * translates from the work handler and calls the fast-path handler. 15520 **/ 15521 static void 15522 lpfc_sli4_hba_process_cq(struct work_struct *work) 15523 { 15524 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15525 15526 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15527 } 15528 15529 /** 15530 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15531 * @work: pointer to work element 15532 * 15533 * translates from the work handler and calls the fast-path handler. 15534 **/ 15535 static void 15536 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15537 { 15538 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15539 struct lpfc_queue, sched_irqwork); 15540 15541 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15542 } 15543 15544 /** 15545 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15546 * @irq: Interrupt number. 15547 * @dev_id: The device context pointer. 15548 * 15549 * This function is directly called from the PCI layer as an interrupt 15550 * service routine when device with SLI-4 interface spec is enabled with 15551 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15552 * ring event in the HBA. However, when the device is enabled with either 15553 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15554 * device-level interrupt handler. When the PCI slot is in error recovery 15555 * or the HBA is undergoing initialization, the interrupt handler will not 15556 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15557 * the intrrupt context. This function is called without any lock held. 15558 * It gets the hbalock to access and update SLI data structures. Note that, 15559 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15560 * equal to that of FCP CQ index. 15561 * 15562 * The link attention and ELS ring attention events are handled 15563 * by the worker thread. The interrupt handler signals the worker thread 15564 * and returns for these events. This function is called without any lock 15565 * held. It gets the hbalock to access and update SLI data structures. 15566 * 15567 * This function returns IRQ_HANDLED when interrupt is handled else it 15568 * returns IRQ_NONE. 15569 **/ 15570 irqreturn_t 15571 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15572 { 15573 struct lpfc_hba *phba; 15574 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15575 struct lpfc_queue *fpeq; 15576 unsigned long iflag; 15577 int ecount = 0; 15578 int hba_eqidx; 15579 struct lpfc_eq_intr_info *eqi; 15580 15581 /* Get the driver's phba structure from the dev_id */ 15582 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15583 phba = hba_eq_hdl->phba; 15584 hba_eqidx = hba_eq_hdl->idx; 15585 15586 if (unlikely(!phba)) 15587 return IRQ_NONE; 15588 if (unlikely(!phba->sli4_hba.hdwq)) 15589 return IRQ_NONE; 15590 15591 /* Get to the EQ struct associated with this vector */ 15592 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15593 if (unlikely(!fpeq)) 15594 return IRQ_NONE; 15595 15596 /* Check device state for handling interrupt */ 15597 if (unlikely(lpfc_intr_state_check(phba))) { 15598 /* Check again for link_state with lock held */ 15599 spin_lock_irqsave(&phba->hbalock, iflag); 15600 if (phba->link_state < LPFC_LINK_DOWN) 15601 /* Flush, clear interrupt, and rearm the EQ */ 15602 lpfc_sli4_eqcq_flush(phba, fpeq); 15603 spin_unlock_irqrestore(&phba->hbalock, iflag); 15604 return IRQ_NONE; 15605 } 15606 15607 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15608 eqi->icnt++; 15609 15610 fpeq->last_cpu = raw_smp_processor_id(); 15611 15612 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15613 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15614 phba->cfg_auto_imax && 15615 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15616 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15617 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15618 15619 /* process and rearm the EQ */ 15620 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15621 15622 if (unlikely(ecount == 0)) { 15623 fpeq->EQ_no_entry++; 15624 if (phba->intr_type == MSIX) 15625 /* MSI-X treated interrupt served as no EQ share INT */ 15626 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15627 "0358 MSI-X interrupt with no EQE\n"); 15628 else 15629 /* Non MSI-X treated on interrupt as EQ share INT */ 15630 return IRQ_NONE; 15631 } 15632 15633 return IRQ_HANDLED; 15634 } /* lpfc_sli4_hba_intr_handler */ 15635 15636 /** 15637 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15638 * @irq: Interrupt number. 15639 * @dev_id: The device context pointer. 15640 * 15641 * This function is the device-level interrupt handler to device with SLI-4 15642 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15643 * interrupt mode is enabled and there is an event in the HBA which requires 15644 * driver attention. This function invokes the slow-path interrupt attention 15645 * handling function and fast-path interrupt attention handling function in 15646 * turn to process the relevant HBA attention events. This function is called 15647 * without any lock held. It gets the hbalock to access and update SLI data 15648 * structures. 15649 * 15650 * This function returns IRQ_HANDLED when interrupt is handled, else it 15651 * returns IRQ_NONE. 15652 **/ 15653 irqreturn_t 15654 lpfc_sli4_intr_handler(int irq, void *dev_id) 15655 { 15656 struct lpfc_hba *phba; 15657 irqreturn_t hba_irq_rc; 15658 bool hba_handled = false; 15659 int qidx; 15660 15661 /* Get the driver's phba structure from the dev_id */ 15662 phba = (struct lpfc_hba *)dev_id; 15663 15664 if (unlikely(!phba)) 15665 return IRQ_NONE; 15666 15667 /* 15668 * Invoke fast-path host attention interrupt handling as appropriate. 15669 */ 15670 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15671 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15672 &phba->sli4_hba.hba_eq_hdl[qidx]); 15673 if (hba_irq_rc == IRQ_HANDLED) 15674 hba_handled |= true; 15675 } 15676 15677 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15678 } /* lpfc_sli4_intr_handler */ 15679 15680 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15681 { 15682 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15683 struct lpfc_queue *eq; 15684 int i = 0; 15685 15686 rcu_read_lock(); 15687 15688 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15689 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15690 if (!list_empty(&phba->poll_list)) 15691 mod_timer(&phba->cpuhp_poll_timer, 15692 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15693 15694 rcu_read_unlock(); 15695 } 15696 15697 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15698 { 15699 struct lpfc_hba *phba = eq->phba; 15700 int i = 0; 15701 15702 /* 15703 * Unlocking an irq is one of the entry point to check 15704 * for re-schedule, but we are good for io submission 15705 * path as midlayer does a get_cpu to glue us in. Flush 15706 * out the invalidate queue so we can see the updated 15707 * value for flag. 15708 */ 15709 smp_rmb(); 15710 15711 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15712 /* We will not likely get the completion for the caller 15713 * during this iteration but i guess that's fine. 15714 * Future io's coming on this eq should be able to 15715 * pick it up. As for the case of single io's, they 15716 * will be handled through a sched from polling timer 15717 * function which is currently triggered every 1msec. 15718 */ 15719 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15720 15721 return i; 15722 } 15723 15724 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15725 { 15726 struct lpfc_hba *phba = eq->phba; 15727 15728 /* kickstart slowpath processing if needed */ 15729 if (list_empty(&phba->poll_list)) 15730 mod_timer(&phba->cpuhp_poll_timer, 15731 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15732 15733 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15734 synchronize_rcu(); 15735 } 15736 15737 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15738 { 15739 struct lpfc_hba *phba = eq->phba; 15740 15741 /* Disable slowpath processing for this eq. Kick start the eq 15742 * by RE-ARMING the eq's ASAP 15743 */ 15744 list_del_rcu(&eq->_poll_list); 15745 synchronize_rcu(); 15746 15747 if (list_empty(&phba->poll_list)) 15748 del_timer_sync(&phba->cpuhp_poll_timer); 15749 } 15750 15751 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15752 { 15753 struct lpfc_queue *eq, *next; 15754 15755 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15756 list_del(&eq->_poll_list); 15757 15758 INIT_LIST_HEAD(&phba->poll_list); 15759 synchronize_rcu(); 15760 } 15761 15762 static inline void 15763 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15764 { 15765 if (mode == eq->mode) 15766 return; 15767 /* 15768 * currently this function is only called during a hotplug 15769 * event and the cpu on which this function is executing 15770 * is going offline. By now the hotplug has instructed 15771 * the scheduler to remove this cpu from cpu active mask. 15772 * So we don't need to work about being put aside by the 15773 * scheduler for a high priority process. Yes, the inte- 15774 * rrupts could come but they are known to retire ASAP. 15775 */ 15776 15777 /* Disable polling in the fastpath */ 15778 WRITE_ONCE(eq->mode, mode); 15779 /* flush out the store buffer */ 15780 smp_wmb(); 15781 15782 /* 15783 * Add this eq to the polling list and start polling. For 15784 * a grace period both interrupt handler and poller will 15785 * try to process the eq _but_ that's fine. We have a 15786 * synchronization mechanism in place (queue_claimed) to 15787 * deal with it. This is just a draining phase for int- 15788 * errupt handler (not eq's) as we have guranteed through 15789 * barrier that all the CPUs have seen the new CQ_POLLED 15790 * state. which will effectively disable the REARMING of 15791 * the EQ. The whole idea is eq's die off eventually as 15792 * we are not rearming EQ's anymore. 15793 */ 15794 mode ? lpfc_sli4_add_to_poll_list(eq) : 15795 lpfc_sli4_remove_from_poll_list(eq); 15796 } 15797 15798 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15799 { 15800 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15801 } 15802 15803 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15804 { 15805 struct lpfc_hba *phba = eq->phba; 15806 15807 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15808 15809 /* Kick start for the pending io's in h/w. 15810 * Once we switch back to interrupt processing on a eq 15811 * the io path completion will only arm eq's when it 15812 * receives a completion. But since eq's are in disa- 15813 * rmed state it doesn't receive a completion. This 15814 * creates a deadlock scenaro. 15815 */ 15816 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15817 } 15818 15819 /** 15820 * lpfc_sli4_queue_free - free a queue structure and associated memory 15821 * @queue: The queue structure to free. 15822 * 15823 * This function frees a queue structure and the DMAable memory used for 15824 * the host resident queue. This function must be called after destroying the 15825 * queue on the HBA. 15826 **/ 15827 void 15828 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15829 { 15830 struct lpfc_dmabuf *dmabuf; 15831 15832 if (!queue) 15833 return; 15834 15835 if (!list_empty(&queue->wq_list)) 15836 list_del(&queue->wq_list); 15837 15838 while (!list_empty(&queue->page_list)) { 15839 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15840 list); 15841 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15842 dmabuf->virt, dmabuf->phys); 15843 kfree(dmabuf); 15844 } 15845 if (queue->rqbp) { 15846 lpfc_free_rq_buffer(queue->phba, queue); 15847 kfree(queue->rqbp); 15848 } 15849 15850 if (!list_empty(&queue->cpu_list)) 15851 list_del(&queue->cpu_list); 15852 15853 kfree(queue); 15854 return; 15855 } 15856 15857 /** 15858 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15859 * @phba: The HBA that this queue is being created on. 15860 * @page_size: The size of a queue page 15861 * @entry_size: The size of each queue entry for this queue. 15862 * @entry_count: The number of entries that this queue will handle. 15863 * @cpu: The cpu that will primarily utilize this queue. 15864 * 15865 * This function allocates a queue structure and the DMAable memory used for 15866 * the host resident queue. This function must be called before creating the 15867 * queue on the HBA. 15868 **/ 15869 struct lpfc_queue * 15870 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15871 uint32_t entry_size, uint32_t entry_count, int cpu) 15872 { 15873 struct lpfc_queue *queue; 15874 struct lpfc_dmabuf *dmabuf; 15875 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15876 uint16_t x, pgcnt; 15877 15878 if (!phba->sli4_hba.pc_sli4_params.supported) 15879 hw_page_size = page_size; 15880 15881 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15882 15883 /* If needed, Adjust page count to match the max the adapter supports */ 15884 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15885 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15886 15887 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15888 GFP_KERNEL, cpu_to_node(cpu)); 15889 if (!queue) 15890 return NULL; 15891 15892 INIT_LIST_HEAD(&queue->list); 15893 INIT_LIST_HEAD(&queue->_poll_list); 15894 INIT_LIST_HEAD(&queue->wq_list); 15895 INIT_LIST_HEAD(&queue->wqfull_list); 15896 INIT_LIST_HEAD(&queue->page_list); 15897 INIT_LIST_HEAD(&queue->child_list); 15898 INIT_LIST_HEAD(&queue->cpu_list); 15899 15900 /* Set queue parameters now. If the system cannot provide memory 15901 * resources, the free routine needs to know what was allocated. 15902 */ 15903 queue->page_count = pgcnt; 15904 queue->q_pgs = (void **)&queue[1]; 15905 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15906 queue->entry_size = entry_size; 15907 queue->entry_count = entry_count; 15908 queue->page_size = hw_page_size; 15909 queue->phba = phba; 15910 15911 for (x = 0; x < queue->page_count; x++) { 15912 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15913 dev_to_node(&phba->pcidev->dev)); 15914 if (!dmabuf) 15915 goto out_fail; 15916 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15917 hw_page_size, &dmabuf->phys, 15918 GFP_KERNEL); 15919 if (!dmabuf->virt) { 15920 kfree(dmabuf); 15921 goto out_fail; 15922 } 15923 dmabuf->buffer_tag = x; 15924 list_add_tail(&dmabuf->list, &queue->page_list); 15925 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15926 queue->q_pgs[x] = dmabuf->virt; 15927 } 15928 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15929 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15930 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15931 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15932 15933 /* notify_interval will be set during q creation */ 15934 15935 return queue; 15936 out_fail: 15937 lpfc_sli4_queue_free(queue); 15938 return NULL; 15939 } 15940 15941 /** 15942 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15943 * @phba: HBA structure that indicates port to create a queue on. 15944 * @pci_barset: PCI BAR set flag. 15945 * 15946 * This function shall perform iomap of the specified PCI BAR address to host 15947 * memory address if not already done so and return it. The returned host 15948 * memory address can be NULL. 15949 */ 15950 static void __iomem * 15951 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15952 { 15953 if (!phba->pcidev) 15954 return NULL; 15955 15956 switch (pci_barset) { 15957 case WQ_PCI_BAR_0_AND_1: 15958 return phba->pci_bar0_memmap_p; 15959 case WQ_PCI_BAR_2_AND_3: 15960 return phba->pci_bar2_memmap_p; 15961 case WQ_PCI_BAR_4_AND_5: 15962 return phba->pci_bar4_memmap_p; 15963 default: 15964 break; 15965 } 15966 return NULL; 15967 } 15968 15969 /** 15970 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15971 * @phba: HBA structure that EQs are on. 15972 * @startq: The starting EQ index to modify 15973 * @numq: The number of EQs (consecutive indexes) to modify 15974 * @usdelay: amount of delay 15975 * 15976 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15977 * is set either by writing to a register (if supported by the SLI Port) 15978 * or by mailbox command. The mailbox command allows several EQs to be 15979 * updated at once. 15980 * 15981 * The @phba struct is used to send a mailbox command to HBA. The @startq 15982 * is used to get the starting EQ index to change. The @numq value is 15983 * used to specify how many consecutive EQ indexes, starting at EQ index, 15984 * are to be changed. This function is asynchronous and will wait for any 15985 * mailbox commands to finish before returning. 15986 * 15987 * On success this function will return a zero. If unable to allocate 15988 * enough memory this function will return -ENOMEM. If a mailbox command 15989 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15990 * have had their delay multipler changed. 15991 **/ 15992 void 15993 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15994 uint32_t numq, uint32_t usdelay) 15995 { 15996 struct lpfc_mbx_modify_eq_delay *eq_delay; 15997 LPFC_MBOXQ_t *mbox; 15998 struct lpfc_queue *eq; 15999 int cnt = 0, rc, length; 16000 uint32_t shdr_status, shdr_add_status; 16001 uint32_t dmult; 16002 int qidx; 16003 union lpfc_sli4_cfg_shdr *shdr; 16004 16005 if (startq >= phba->cfg_irq_chann) 16006 return; 16007 16008 if (usdelay > 0xFFFF) { 16009 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 16010 "6429 usdelay %d too large. Scaled down to " 16011 "0xFFFF.\n", usdelay); 16012 usdelay = 0xFFFF; 16013 } 16014 16015 /* set values by EQ_DELAY register if supported */ 16016 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 16017 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16018 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16019 if (!eq) 16020 continue; 16021 16022 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 16023 16024 if (++cnt >= numq) 16025 break; 16026 } 16027 return; 16028 } 16029 16030 /* Otherwise, set values by mailbox cmd */ 16031 16032 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16033 if (!mbox) { 16034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16035 "6428 Failed allocating mailbox cmd buffer." 16036 " EQ delay was not set.\n"); 16037 return; 16038 } 16039 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16040 sizeof(struct lpfc_sli4_cfg_mhdr)); 16041 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16042 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16043 length, LPFC_SLI4_MBX_EMBED); 16044 eq_delay = &mbox->u.mqe.un.eq_delay; 16045 16046 /* Calculate delay multiper from maximum interrupt per second */ 16047 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16048 if (dmult) 16049 dmult--; 16050 if (dmult > LPFC_DMULT_MAX) 16051 dmult = LPFC_DMULT_MAX; 16052 16053 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16054 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16055 if (!eq) 16056 continue; 16057 eq->q_mode = usdelay; 16058 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16059 eq_delay->u.request.eq[cnt].phase = 0; 16060 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16061 16062 if (++cnt >= numq) 16063 break; 16064 } 16065 eq_delay->u.request.num_eq = cnt; 16066 16067 mbox->vport = phba->pport; 16068 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16069 mbox->ctx_buf = NULL; 16070 mbox->ctx_ndlp = NULL; 16071 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16072 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16073 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16074 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16075 if (shdr_status || shdr_add_status || rc) { 16076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16077 "2512 MODIFY_EQ_DELAY mailbox failed with " 16078 "status x%x add_status x%x, mbx status x%x\n", 16079 shdr_status, shdr_add_status, rc); 16080 } 16081 mempool_free(mbox, phba->mbox_mem_pool); 16082 return; 16083 } 16084 16085 /** 16086 * lpfc_eq_create - Create an Event Queue on the HBA 16087 * @phba: HBA structure that indicates port to create a queue on. 16088 * @eq: The queue structure to use to create the event queue. 16089 * @imax: The maximum interrupt per second limit. 16090 * 16091 * This function creates an event queue, as detailed in @eq, on a port, 16092 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16093 * 16094 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16095 * is used to get the entry count and entry size that are necessary to 16096 * determine the number of pages to allocate and use for this queue. This 16097 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16098 * event queue. This function is asynchronous and will wait for the mailbox 16099 * command to finish before continuing. 16100 * 16101 * On success this function will return a zero. If unable to allocate enough 16102 * memory this function will return -ENOMEM. If the queue create mailbox command 16103 * fails this function will return -ENXIO. 16104 **/ 16105 int 16106 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16107 { 16108 struct lpfc_mbx_eq_create *eq_create; 16109 LPFC_MBOXQ_t *mbox; 16110 int rc, length, status = 0; 16111 struct lpfc_dmabuf *dmabuf; 16112 uint32_t shdr_status, shdr_add_status; 16113 union lpfc_sli4_cfg_shdr *shdr; 16114 uint16_t dmult; 16115 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16116 16117 /* sanity check on queue memory */ 16118 if (!eq) 16119 return -ENODEV; 16120 if (!phba->sli4_hba.pc_sli4_params.supported) 16121 hw_page_size = SLI4_PAGE_SIZE; 16122 16123 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16124 if (!mbox) 16125 return -ENOMEM; 16126 length = (sizeof(struct lpfc_mbx_eq_create) - 16127 sizeof(struct lpfc_sli4_cfg_mhdr)); 16128 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16129 LPFC_MBOX_OPCODE_EQ_CREATE, 16130 length, LPFC_SLI4_MBX_EMBED); 16131 eq_create = &mbox->u.mqe.un.eq_create; 16132 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16133 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16134 eq->page_count); 16135 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16136 LPFC_EQE_SIZE); 16137 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16138 16139 /* Use version 2 of CREATE_EQ if eqav is set */ 16140 if (phba->sli4_hba.pc_sli4_params.eqav) { 16141 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16142 LPFC_Q_CREATE_VERSION_2); 16143 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16144 phba->sli4_hba.pc_sli4_params.eqav); 16145 } 16146 16147 /* don't setup delay multiplier using EQ_CREATE */ 16148 dmult = 0; 16149 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16150 dmult); 16151 switch (eq->entry_count) { 16152 default: 16153 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16154 "0360 Unsupported EQ count. (%d)\n", 16155 eq->entry_count); 16156 if (eq->entry_count < 256) { 16157 status = -EINVAL; 16158 goto out; 16159 } 16160 fallthrough; /* otherwise default to smallest count */ 16161 case 256: 16162 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16163 LPFC_EQ_CNT_256); 16164 break; 16165 case 512: 16166 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16167 LPFC_EQ_CNT_512); 16168 break; 16169 case 1024: 16170 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16171 LPFC_EQ_CNT_1024); 16172 break; 16173 case 2048: 16174 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16175 LPFC_EQ_CNT_2048); 16176 break; 16177 case 4096: 16178 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16179 LPFC_EQ_CNT_4096); 16180 break; 16181 } 16182 list_for_each_entry(dmabuf, &eq->page_list, list) { 16183 memset(dmabuf->virt, 0, hw_page_size); 16184 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16185 putPaddrLow(dmabuf->phys); 16186 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16187 putPaddrHigh(dmabuf->phys); 16188 } 16189 mbox->vport = phba->pport; 16190 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16191 mbox->ctx_buf = NULL; 16192 mbox->ctx_ndlp = NULL; 16193 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16194 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16195 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16196 if (shdr_status || shdr_add_status || rc) { 16197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16198 "2500 EQ_CREATE mailbox failed with " 16199 "status x%x add_status x%x, mbx status x%x\n", 16200 shdr_status, shdr_add_status, rc); 16201 status = -ENXIO; 16202 } 16203 eq->type = LPFC_EQ; 16204 eq->subtype = LPFC_NONE; 16205 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16206 if (eq->queue_id == 0xFFFF) 16207 status = -ENXIO; 16208 eq->host_index = 0; 16209 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16210 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16211 out: 16212 mempool_free(mbox, phba->mbox_mem_pool); 16213 return status; 16214 } 16215 16216 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16217 { 16218 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16219 16220 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16221 16222 return 1; 16223 } 16224 16225 /** 16226 * lpfc_cq_create - Create a Completion Queue on the HBA 16227 * @phba: HBA structure that indicates port to create a queue on. 16228 * @cq: The queue structure to use to create the completion queue. 16229 * @eq: The event queue to bind this completion queue to. 16230 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16231 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16232 * 16233 * This function creates a completion queue, as detailed in @wq, on a port, 16234 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16235 * 16236 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16237 * is used to get the entry count and entry size that are necessary to 16238 * determine the number of pages to allocate and use for this queue. The @eq 16239 * is used to indicate which event queue to bind this completion queue to. This 16240 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16241 * completion queue. This function is asynchronous and will wait for the mailbox 16242 * command to finish before continuing. 16243 * 16244 * On success this function will return a zero. If unable to allocate enough 16245 * memory this function will return -ENOMEM. If the queue create mailbox command 16246 * fails this function will return -ENXIO. 16247 **/ 16248 int 16249 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16250 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16251 { 16252 struct lpfc_mbx_cq_create *cq_create; 16253 struct lpfc_dmabuf *dmabuf; 16254 LPFC_MBOXQ_t *mbox; 16255 int rc, length, status = 0; 16256 uint32_t shdr_status, shdr_add_status; 16257 union lpfc_sli4_cfg_shdr *shdr; 16258 16259 /* sanity check on queue memory */ 16260 if (!cq || !eq) 16261 return -ENODEV; 16262 16263 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16264 if (!mbox) 16265 return -ENOMEM; 16266 length = (sizeof(struct lpfc_mbx_cq_create) - 16267 sizeof(struct lpfc_sli4_cfg_mhdr)); 16268 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16269 LPFC_MBOX_OPCODE_CQ_CREATE, 16270 length, LPFC_SLI4_MBX_EMBED); 16271 cq_create = &mbox->u.mqe.un.cq_create; 16272 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16273 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16274 cq->page_count); 16275 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16276 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16277 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16278 phba->sli4_hba.pc_sli4_params.cqv); 16279 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16280 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16281 (cq->page_size / SLI4_PAGE_SIZE)); 16282 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16283 eq->queue_id); 16284 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16285 phba->sli4_hba.pc_sli4_params.cqav); 16286 } else { 16287 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16288 eq->queue_id); 16289 } 16290 switch (cq->entry_count) { 16291 case 2048: 16292 case 4096: 16293 if (phba->sli4_hba.pc_sli4_params.cqv == 16294 LPFC_Q_CREATE_VERSION_2) { 16295 cq_create->u.request.context.lpfc_cq_context_count = 16296 cq->entry_count; 16297 bf_set(lpfc_cq_context_count, 16298 &cq_create->u.request.context, 16299 LPFC_CQ_CNT_WORD7); 16300 break; 16301 } 16302 fallthrough; 16303 default: 16304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16305 "0361 Unsupported CQ count: " 16306 "entry cnt %d sz %d pg cnt %d\n", 16307 cq->entry_count, cq->entry_size, 16308 cq->page_count); 16309 if (cq->entry_count < 256) { 16310 status = -EINVAL; 16311 goto out; 16312 } 16313 fallthrough; /* otherwise default to smallest count */ 16314 case 256: 16315 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16316 LPFC_CQ_CNT_256); 16317 break; 16318 case 512: 16319 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16320 LPFC_CQ_CNT_512); 16321 break; 16322 case 1024: 16323 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16324 LPFC_CQ_CNT_1024); 16325 break; 16326 } 16327 list_for_each_entry(dmabuf, &cq->page_list, list) { 16328 memset(dmabuf->virt, 0, cq->page_size); 16329 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16330 putPaddrLow(dmabuf->phys); 16331 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16332 putPaddrHigh(dmabuf->phys); 16333 } 16334 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16335 16336 /* The IOCTL status is embedded in the mailbox subheader. */ 16337 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16338 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16339 if (shdr_status || shdr_add_status || rc) { 16340 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16341 "2501 CQ_CREATE mailbox failed with " 16342 "status x%x add_status x%x, mbx status x%x\n", 16343 shdr_status, shdr_add_status, rc); 16344 status = -ENXIO; 16345 goto out; 16346 } 16347 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16348 if (cq->queue_id == 0xFFFF) { 16349 status = -ENXIO; 16350 goto out; 16351 } 16352 /* link the cq onto the parent eq child list */ 16353 list_add_tail(&cq->list, &eq->child_list); 16354 /* Set up completion queue's type and subtype */ 16355 cq->type = type; 16356 cq->subtype = subtype; 16357 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16358 cq->assoc_qid = eq->queue_id; 16359 cq->assoc_qp = eq; 16360 cq->host_index = 0; 16361 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16362 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16363 16364 if (cq->queue_id > phba->sli4_hba.cq_max) 16365 phba->sli4_hba.cq_max = cq->queue_id; 16366 16367 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16368 out: 16369 mempool_free(mbox, phba->mbox_mem_pool); 16370 return status; 16371 } 16372 16373 /** 16374 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16375 * @phba: HBA structure that indicates port to create a queue on. 16376 * @cqp: The queue structure array to use to create the completion queues. 16377 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16378 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16379 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16380 * 16381 * This function creates a set of completion queue, s to support MRQ 16382 * as detailed in @cqp, on a port, 16383 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16384 * 16385 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16386 * is used to get the entry count and entry size that are necessary to 16387 * determine the number of pages to allocate and use for this queue. The @eq 16388 * is used to indicate which event queue to bind this completion queue to. This 16389 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16390 * completion queue. This function is asynchronous and will wait for the mailbox 16391 * command to finish before continuing. 16392 * 16393 * On success this function will return a zero. If unable to allocate enough 16394 * memory this function will return -ENOMEM. If the queue create mailbox command 16395 * fails this function will return -ENXIO. 16396 **/ 16397 int 16398 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16399 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16400 uint32_t subtype) 16401 { 16402 struct lpfc_queue *cq; 16403 struct lpfc_queue *eq; 16404 struct lpfc_mbx_cq_create_set *cq_set; 16405 struct lpfc_dmabuf *dmabuf; 16406 LPFC_MBOXQ_t *mbox; 16407 int rc, length, alloclen, status = 0; 16408 int cnt, idx, numcq, page_idx = 0; 16409 uint32_t shdr_status, shdr_add_status; 16410 union lpfc_sli4_cfg_shdr *shdr; 16411 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16412 16413 /* sanity check on queue memory */ 16414 numcq = phba->cfg_nvmet_mrq; 16415 if (!cqp || !hdwq || !numcq) 16416 return -ENODEV; 16417 16418 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16419 if (!mbox) 16420 return -ENOMEM; 16421 16422 length = sizeof(struct lpfc_mbx_cq_create_set); 16423 length += ((numcq * cqp[0]->page_count) * 16424 sizeof(struct dma_address)); 16425 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16426 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16427 LPFC_SLI4_MBX_NEMBED); 16428 if (alloclen < length) { 16429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16430 "3098 Allocated DMA memory size (%d) is " 16431 "less than the requested DMA memory size " 16432 "(%d)\n", alloclen, length); 16433 status = -ENOMEM; 16434 goto out; 16435 } 16436 cq_set = mbox->sge_array->addr[0]; 16437 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16438 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16439 16440 for (idx = 0; idx < numcq; idx++) { 16441 cq = cqp[idx]; 16442 eq = hdwq[idx].hba_eq; 16443 if (!cq || !eq) { 16444 status = -ENOMEM; 16445 goto out; 16446 } 16447 if (!phba->sli4_hba.pc_sli4_params.supported) 16448 hw_page_size = cq->page_size; 16449 16450 switch (idx) { 16451 case 0: 16452 bf_set(lpfc_mbx_cq_create_set_page_size, 16453 &cq_set->u.request, 16454 (hw_page_size / SLI4_PAGE_SIZE)); 16455 bf_set(lpfc_mbx_cq_create_set_num_pages, 16456 &cq_set->u.request, cq->page_count); 16457 bf_set(lpfc_mbx_cq_create_set_evt, 16458 &cq_set->u.request, 1); 16459 bf_set(lpfc_mbx_cq_create_set_valid, 16460 &cq_set->u.request, 1); 16461 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16462 &cq_set->u.request, 0); 16463 bf_set(lpfc_mbx_cq_create_set_num_cq, 16464 &cq_set->u.request, numcq); 16465 bf_set(lpfc_mbx_cq_create_set_autovalid, 16466 &cq_set->u.request, 16467 phba->sli4_hba.pc_sli4_params.cqav); 16468 switch (cq->entry_count) { 16469 case 2048: 16470 case 4096: 16471 if (phba->sli4_hba.pc_sli4_params.cqv == 16472 LPFC_Q_CREATE_VERSION_2) { 16473 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16474 &cq_set->u.request, 16475 cq->entry_count); 16476 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16477 &cq_set->u.request, 16478 LPFC_CQ_CNT_WORD7); 16479 break; 16480 } 16481 fallthrough; 16482 default: 16483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16484 "3118 Bad CQ count. (%d)\n", 16485 cq->entry_count); 16486 if (cq->entry_count < 256) { 16487 status = -EINVAL; 16488 goto out; 16489 } 16490 fallthrough; /* otherwise default to smallest */ 16491 case 256: 16492 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16493 &cq_set->u.request, LPFC_CQ_CNT_256); 16494 break; 16495 case 512: 16496 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16497 &cq_set->u.request, LPFC_CQ_CNT_512); 16498 break; 16499 case 1024: 16500 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16501 &cq_set->u.request, LPFC_CQ_CNT_1024); 16502 break; 16503 } 16504 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16505 &cq_set->u.request, eq->queue_id); 16506 break; 16507 case 1: 16508 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16509 &cq_set->u.request, eq->queue_id); 16510 break; 16511 case 2: 16512 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16513 &cq_set->u.request, eq->queue_id); 16514 break; 16515 case 3: 16516 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16517 &cq_set->u.request, eq->queue_id); 16518 break; 16519 case 4: 16520 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16521 &cq_set->u.request, eq->queue_id); 16522 break; 16523 case 5: 16524 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16525 &cq_set->u.request, eq->queue_id); 16526 break; 16527 case 6: 16528 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16529 &cq_set->u.request, eq->queue_id); 16530 break; 16531 case 7: 16532 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16533 &cq_set->u.request, eq->queue_id); 16534 break; 16535 case 8: 16536 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16537 &cq_set->u.request, eq->queue_id); 16538 break; 16539 case 9: 16540 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16541 &cq_set->u.request, eq->queue_id); 16542 break; 16543 case 10: 16544 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16545 &cq_set->u.request, eq->queue_id); 16546 break; 16547 case 11: 16548 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16549 &cq_set->u.request, eq->queue_id); 16550 break; 16551 case 12: 16552 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16553 &cq_set->u.request, eq->queue_id); 16554 break; 16555 case 13: 16556 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16557 &cq_set->u.request, eq->queue_id); 16558 break; 16559 case 14: 16560 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16561 &cq_set->u.request, eq->queue_id); 16562 break; 16563 case 15: 16564 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16565 &cq_set->u.request, eq->queue_id); 16566 break; 16567 } 16568 16569 /* link the cq onto the parent eq child list */ 16570 list_add_tail(&cq->list, &eq->child_list); 16571 /* Set up completion queue's type and subtype */ 16572 cq->type = type; 16573 cq->subtype = subtype; 16574 cq->assoc_qid = eq->queue_id; 16575 cq->assoc_qp = eq; 16576 cq->host_index = 0; 16577 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16578 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16579 cq->entry_count); 16580 cq->chann = idx; 16581 16582 rc = 0; 16583 list_for_each_entry(dmabuf, &cq->page_list, list) { 16584 memset(dmabuf->virt, 0, hw_page_size); 16585 cnt = page_idx + dmabuf->buffer_tag; 16586 cq_set->u.request.page[cnt].addr_lo = 16587 putPaddrLow(dmabuf->phys); 16588 cq_set->u.request.page[cnt].addr_hi = 16589 putPaddrHigh(dmabuf->phys); 16590 rc++; 16591 } 16592 page_idx += rc; 16593 } 16594 16595 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16596 16597 /* The IOCTL status is embedded in the mailbox subheader. */ 16598 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16600 if (shdr_status || shdr_add_status || rc) { 16601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16602 "3119 CQ_CREATE_SET mailbox failed with " 16603 "status x%x add_status x%x, mbx status x%x\n", 16604 shdr_status, shdr_add_status, rc); 16605 status = -ENXIO; 16606 goto out; 16607 } 16608 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16609 if (rc == 0xFFFF) { 16610 status = -ENXIO; 16611 goto out; 16612 } 16613 16614 for (idx = 0; idx < numcq; idx++) { 16615 cq = cqp[idx]; 16616 cq->queue_id = rc + idx; 16617 if (cq->queue_id > phba->sli4_hba.cq_max) 16618 phba->sli4_hba.cq_max = cq->queue_id; 16619 } 16620 16621 out: 16622 lpfc_sli4_mbox_cmd_free(phba, mbox); 16623 return status; 16624 } 16625 16626 /** 16627 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16628 * @phba: HBA structure that indicates port to create a queue on. 16629 * @mq: The queue structure to use to create the mailbox queue. 16630 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16631 * @cq: The completion queue to associate with this cq. 16632 * 16633 * This function provides failback (fb) functionality when the 16634 * mq_create_ext fails on older FW generations. It's purpose is identical 16635 * to mq_create_ext otherwise. 16636 * 16637 * This routine cannot fail as all attributes were previously accessed and 16638 * initialized in mq_create_ext. 16639 **/ 16640 static void 16641 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16642 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16643 { 16644 struct lpfc_mbx_mq_create *mq_create; 16645 struct lpfc_dmabuf *dmabuf; 16646 int length; 16647 16648 length = (sizeof(struct lpfc_mbx_mq_create) - 16649 sizeof(struct lpfc_sli4_cfg_mhdr)); 16650 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16651 LPFC_MBOX_OPCODE_MQ_CREATE, 16652 length, LPFC_SLI4_MBX_EMBED); 16653 mq_create = &mbox->u.mqe.un.mq_create; 16654 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16655 mq->page_count); 16656 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16657 cq->queue_id); 16658 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16659 switch (mq->entry_count) { 16660 case 16: 16661 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16662 LPFC_MQ_RING_SIZE_16); 16663 break; 16664 case 32: 16665 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16666 LPFC_MQ_RING_SIZE_32); 16667 break; 16668 case 64: 16669 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16670 LPFC_MQ_RING_SIZE_64); 16671 break; 16672 case 128: 16673 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16674 LPFC_MQ_RING_SIZE_128); 16675 break; 16676 } 16677 list_for_each_entry(dmabuf, &mq->page_list, list) { 16678 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16679 putPaddrLow(dmabuf->phys); 16680 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16681 putPaddrHigh(dmabuf->phys); 16682 } 16683 } 16684 16685 /** 16686 * lpfc_mq_create - Create a mailbox Queue on the HBA 16687 * @phba: HBA structure that indicates port to create a queue on. 16688 * @mq: The queue structure to use to create the mailbox queue. 16689 * @cq: The completion queue to associate with this cq. 16690 * @subtype: The queue's subtype. 16691 * 16692 * This function creates a mailbox queue, as detailed in @mq, on a port, 16693 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16694 * 16695 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16696 * is used to get the entry count and entry size that are necessary to 16697 * determine the number of pages to allocate and use for this queue. This 16698 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16699 * mailbox queue. This function is asynchronous and will wait for the mailbox 16700 * command to finish before continuing. 16701 * 16702 * On success this function will return a zero. If unable to allocate enough 16703 * memory this function will return -ENOMEM. If the queue create mailbox command 16704 * fails this function will return -ENXIO. 16705 **/ 16706 int32_t 16707 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16708 struct lpfc_queue *cq, uint32_t subtype) 16709 { 16710 struct lpfc_mbx_mq_create *mq_create; 16711 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16712 struct lpfc_dmabuf *dmabuf; 16713 LPFC_MBOXQ_t *mbox; 16714 int rc, length, status = 0; 16715 uint32_t shdr_status, shdr_add_status; 16716 union lpfc_sli4_cfg_shdr *shdr; 16717 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16718 16719 /* sanity check on queue memory */ 16720 if (!mq || !cq) 16721 return -ENODEV; 16722 if (!phba->sli4_hba.pc_sli4_params.supported) 16723 hw_page_size = SLI4_PAGE_SIZE; 16724 16725 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16726 if (!mbox) 16727 return -ENOMEM; 16728 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16729 sizeof(struct lpfc_sli4_cfg_mhdr)); 16730 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16731 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16732 length, LPFC_SLI4_MBX_EMBED); 16733 16734 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16735 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16736 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16737 &mq_create_ext->u.request, mq->page_count); 16738 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16739 &mq_create_ext->u.request, 1); 16740 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16741 &mq_create_ext->u.request, 1); 16742 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16743 &mq_create_ext->u.request, 1); 16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16745 &mq_create_ext->u.request, 1); 16746 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16747 &mq_create_ext->u.request, 1); 16748 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16749 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16750 phba->sli4_hba.pc_sli4_params.mqv); 16751 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16752 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16753 cq->queue_id); 16754 else 16755 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16756 cq->queue_id); 16757 switch (mq->entry_count) { 16758 default: 16759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16760 "0362 Unsupported MQ count. (%d)\n", 16761 mq->entry_count); 16762 if (mq->entry_count < 16) { 16763 status = -EINVAL; 16764 goto out; 16765 } 16766 fallthrough; /* otherwise default to smallest count */ 16767 case 16: 16768 bf_set(lpfc_mq_context_ring_size, 16769 &mq_create_ext->u.request.context, 16770 LPFC_MQ_RING_SIZE_16); 16771 break; 16772 case 32: 16773 bf_set(lpfc_mq_context_ring_size, 16774 &mq_create_ext->u.request.context, 16775 LPFC_MQ_RING_SIZE_32); 16776 break; 16777 case 64: 16778 bf_set(lpfc_mq_context_ring_size, 16779 &mq_create_ext->u.request.context, 16780 LPFC_MQ_RING_SIZE_64); 16781 break; 16782 case 128: 16783 bf_set(lpfc_mq_context_ring_size, 16784 &mq_create_ext->u.request.context, 16785 LPFC_MQ_RING_SIZE_128); 16786 break; 16787 } 16788 list_for_each_entry(dmabuf, &mq->page_list, list) { 16789 memset(dmabuf->virt, 0, hw_page_size); 16790 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16791 putPaddrLow(dmabuf->phys); 16792 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16793 putPaddrHigh(dmabuf->phys); 16794 } 16795 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16796 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16797 &mq_create_ext->u.response); 16798 if (rc != MBX_SUCCESS) { 16799 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16800 "2795 MQ_CREATE_EXT failed with " 16801 "status x%x. Failback to MQ_CREATE.\n", 16802 rc); 16803 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16804 mq_create = &mbox->u.mqe.un.mq_create; 16805 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16806 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16807 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16808 &mq_create->u.response); 16809 } 16810 16811 /* The IOCTL status is embedded in the mailbox subheader. */ 16812 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16813 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16814 if (shdr_status || shdr_add_status || rc) { 16815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16816 "2502 MQ_CREATE mailbox failed with " 16817 "status x%x add_status x%x, mbx status x%x\n", 16818 shdr_status, shdr_add_status, rc); 16819 status = -ENXIO; 16820 goto out; 16821 } 16822 if (mq->queue_id == 0xFFFF) { 16823 status = -ENXIO; 16824 goto out; 16825 } 16826 mq->type = LPFC_MQ; 16827 mq->assoc_qid = cq->queue_id; 16828 mq->subtype = subtype; 16829 mq->host_index = 0; 16830 mq->hba_index = 0; 16831 16832 /* link the mq onto the parent cq child list */ 16833 list_add_tail(&mq->list, &cq->child_list); 16834 out: 16835 mempool_free(mbox, phba->mbox_mem_pool); 16836 return status; 16837 } 16838 16839 /** 16840 * lpfc_wq_create - Create a Work Queue on the HBA 16841 * @phba: HBA structure that indicates port to create a queue on. 16842 * @wq: The queue structure to use to create the work queue. 16843 * @cq: The completion queue to bind this work queue to. 16844 * @subtype: The subtype of the work queue indicating its functionality. 16845 * 16846 * This function creates a work queue, as detailed in @wq, on a port, described 16847 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16848 * 16849 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16850 * is used to get the entry count and entry size that are necessary to 16851 * determine the number of pages to allocate and use for this queue. The @cq 16852 * is used to indicate which completion queue to bind this work queue to. This 16853 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16854 * work queue. This function is asynchronous and will wait for the mailbox 16855 * command to finish before continuing. 16856 * 16857 * On success this function will return a zero. If unable to allocate enough 16858 * memory this function will return -ENOMEM. If the queue create mailbox command 16859 * fails this function will return -ENXIO. 16860 **/ 16861 int 16862 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16863 struct lpfc_queue *cq, uint32_t subtype) 16864 { 16865 struct lpfc_mbx_wq_create *wq_create; 16866 struct lpfc_dmabuf *dmabuf; 16867 LPFC_MBOXQ_t *mbox; 16868 int rc, length, status = 0; 16869 uint32_t shdr_status, shdr_add_status; 16870 union lpfc_sli4_cfg_shdr *shdr; 16871 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16872 struct dma_address *page; 16873 void __iomem *bar_memmap_p; 16874 uint32_t db_offset; 16875 uint16_t pci_barset; 16876 uint8_t dpp_barset; 16877 uint32_t dpp_offset; 16878 uint8_t wq_create_version; 16879 #ifdef CONFIG_X86 16880 unsigned long pg_addr; 16881 #endif 16882 16883 /* sanity check on queue memory */ 16884 if (!wq || !cq) 16885 return -ENODEV; 16886 if (!phba->sli4_hba.pc_sli4_params.supported) 16887 hw_page_size = wq->page_size; 16888 16889 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16890 if (!mbox) 16891 return -ENOMEM; 16892 length = (sizeof(struct lpfc_mbx_wq_create) - 16893 sizeof(struct lpfc_sli4_cfg_mhdr)); 16894 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16895 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16896 length, LPFC_SLI4_MBX_EMBED); 16897 wq_create = &mbox->u.mqe.un.wq_create; 16898 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16899 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16900 wq->page_count); 16901 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16902 cq->queue_id); 16903 16904 /* wqv is the earliest version supported, NOT the latest */ 16905 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16906 phba->sli4_hba.pc_sli4_params.wqv); 16907 16908 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16909 (wq->page_size > SLI4_PAGE_SIZE)) 16910 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16911 else 16912 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16913 16914 switch (wq_create_version) { 16915 case LPFC_Q_CREATE_VERSION_1: 16916 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16917 wq->entry_count); 16918 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16919 LPFC_Q_CREATE_VERSION_1); 16920 16921 switch (wq->entry_size) { 16922 default: 16923 case 64: 16924 bf_set(lpfc_mbx_wq_create_wqe_size, 16925 &wq_create->u.request_1, 16926 LPFC_WQ_WQE_SIZE_64); 16927 break; 16928 case 128: 16929 bf_set(lpfc_mbx_wq_create_wqe_size, 16930 &wq_create->u.request_1, 16931 LPFC_WQ_WQE_SIZE_128); 16932 break; 16933 } 16934 /* Request DPP by default */ 16935 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16936 bf_set(lpfc_mbx_wq_create_page_size, 16937 &wq_create->u.request_1, 16938 (wq->page_size / SLI4_PAGE_SIZE)); 16939 page = wq_create->u.request_1.page; 16940 break; 16941 default: 16942 page = wq_create->u.request.page; 16943 break; 16944 } 16945 16946 list_for_each_entry(dmabuf, &wq->page_list, list) { 16947 memset(dmabuf->virt, 0, hw_page_size); 16948 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16949 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16950 } 16951 16952 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16953 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16954 16955 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16956 /* The IOCTL status is embedded in the mailbox subheader. */ 16957 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16958 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16959 if (shdr_status || shdr_add_status || rc) { 16960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16961 "2503 WQ_CREATE mailbox failed with " 16962 "status x%x add_status x%x, mbx status x%x\n", 16963 shdr_status, shdr_add_status, rc); 16964 status = -ENXIO; 16965 goto out; 16966 } 16967 16968 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16969 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16970 &wq_create->u.response); 16971 else 16972 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16973 &wq_create->u.response_1); 16974 16975 if (wq->queue_id == 0xFFFF) { 16976 status = -ENXIO; 16977 goto out; 16978 } 16979 16980 wq->db_format = LPFC_DB_LIST_FORMAT; 16981 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16982 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16983 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16984 &wq_create->u.response); 16985 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16986 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16988 "3265 WQ[%d] doorbell format " 16989 "not supported: x%x\n", 16990 wq->queue_id, wq->db_format); 16991 status = -EINVAL; 16992 goto out; 16993 } 16994 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16995 &wq_create->u.response); 16996 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16997 pci_barset); 16998 if (!bar_memmap_p) { 16999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17000 "3263 WQ[%d] failed to memmap " 17001 "pci barset:x%x\n", 17002 wq->queue_id, pci_barset); 17003 status = -ENOMEM; 17004 goto out; 17005 } 17006 db_offset = wq_create->u.response.doorbell_offset; 17007 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17008 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17010 "3252 WQ[%d] doorbell offset " 17011 "not supported: x%x\n", 17012 wq->queue_id, db_offset); 17013 status = -EINVAL; 17014 goto out; 17015 } 17016 wq->db_regaddr = bar_memmap_p + db_offset; 17017 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17018 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17019 "format:x%x\n", wq->queue_id, 17020 pci_barset, db_offset, wq->db_format); 17021 } else 17022 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17023 } else { 17024 /* Check if DPP was honored by the firmware */ 17025 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17026 &wq_create->u.response_1); 17027 if (wq->dpp_enable) { 17028 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17029 &wq_create->u.response_1); 17030 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17031 pci_barset); 17032 if (!bar_memmap_p) { 17033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17034 "3267 WQ[%d] failed to memmap " 17035 "pci barset:x%x\n", 17036 wq->queue_id, pci_barset); 17037 status = -ENOMEM; 17038 goto out; 17039 } 17040 db_offset = wq_create->u.response_1.doorbell_offset; 17041 wq->db_regaddr = bar_memmap_p + db_offset; 17042 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17043 &wq_create->u.response_1); 17044 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17045 &wq_create->u.response_1); 17046 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17047 dpp_barset); 17048 if (!bar_memmap_p) { 17049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17050 "3268 WQ[%d] failed to memmap " 17051 "pci barset:x%x\n", 17052 wq->queue_id, dpp_barset); 17053 status = -ENOMEM; 17054 goto out; 17055 } 17056 dpp_offset = wq_create->u.response_1.dpp_offset; 17057 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17058 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17059 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17060 "dpp_id:x%x dpp_barset:x%x " 17061 "dpp_offset:x%x\n", 17062 wq->queue_id, pci_barset, db_offset, 17063 wq->dpp_id, dpp_barset, dpp_offset); 17064 17065 #ifdef CONFIG_X86 17066 /* Enable combined writes for DPP aperture */ 17067 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17068 rc = set_memory_wc(pg_addr, 1); 17069 if (rc) { 17070 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17071 "3272 Cannot setup Combined " 17072 "Write on WQ[%d] - disable DPP\n", 17073 wq->queue_id); 17074 phba->cfg_enable_dpp = 0; 17075 } 17076 #else 17077 phba->cfg_enable_dpp = 0; 17078 #endif 17079 } else 17080 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17081 } 17082 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17083 if (wq->pring == NULL) { 17084 status = -ENOMEM; 17085 goto out; 17086 } 17087 wq->type = LPFC_WQ; 17088 wq->assoc_qid = cq->queue_id; 17089 wq->subtype = subtype; 17090 wq->host_index = 0; 17091 wq->hba_index = 0; 17092 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17093 17094 /* link the wq onto the parent cq child list */ 17095 list_add_tail(&wq->list, &cq->child_list); 17096 out: 17097 mempool_free(mbox, phba->mbox_mem_pool); 17098 return status; 17099 } 17100 17101 /** 17102 * lpfc_rq_create - Create a Receive Queue on the HBA 17103 * @phba: HBA structure that indicates port to create a queue on. 17104 * @hrq: The queue structure to use to create the header receive queue. 17105 * @drq: The queue structure to use to create the data receive queue. 17106 * @cq: The completion queue to bind this work queue to. 17107 * @subtype: The subtype of the work queue indicating its functionality. 17108 * 17109 * This function creates a receive buffer queue pair , as detailed in @hrq and 17110 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17111 * to the HBA. 17112 * 17113 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17114 * struct is used to get the entry count that is necessary to determine the 17115 * number of pages to use for this queue. The @cq is used to indicate which 17116 * completion queue to bind received buffers that are posted to these queues to. 17117 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17118 * receive queue pair. This function is asynchronous and will wait for the 17119 * mailbox command to finish before continuing. 17120 * 17121 * On success this function will return a zero. If unable to allocate enough 17122 * memory this function will return -ENOMEM. If the queue create mailbox command 17123 * fails this function will return -ENXIO. 17124 **/ 17125 int 17126 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17127 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17128 { 17129 struct lpfc_mbx_rq_create *rq_create; 17130 struct lpfc_dmabuf *dmabuf; 17131 LPFC_MBOXQ_t *mbox; 17132 int rc, length, status = 0; 17133 uint32_t shdr_status, shdr_add_status; 17134 union lpfc_sli4_cfg_shdr *shdr; 17135 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17136 void __iomem *bar_memmap_p; 17137 uint32_t db_offset; 17138 uint16_t pci_barset; 17139 17140 /* sanity check on queue memory */ 17141 if (!hrq || !drq || !cq) 17142 return -ENODEV; 17143 if (!phba->sli4_hba.pc_sli4_params.supported) 17144 hw_page_size = SLI4_PAGE_SIZE; 17145 17146 if (hrq->entry_count != drq->entry_count) 17147 return -EINVAL; 17148 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17149 if (!mbox) 17150 return -ENOMEM; 17151 length = (sizeof(struct lpfc_mbx_rq_create) - 17152 sizeof(struct lpfc_sli4_cfg_mhdr)); 17153 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17154 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17155 length, LPFC_SLI4_MBX_EMBED); 17156 rq_create = &mbox->u.mqe.un.rq_create; 17157 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17158 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17159 phba->sli4_hba.pc_sli4_params.rqv); 17160 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17161 bf_set(lpfc_rq_context_rqe_count_1, 17162 &rq_create->u.request.context, 17163 hrq->entry_count); 17164 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17165 bf_set(lpfc_rq_context_rqe_size, 17166 &rq_create->u.request.context, 17167 LPFC_RQE_SIZE_8); 17168 bf_set(lpfc_rq_context_page_size, 17169 &rq_create->u.request.context, 17170 LPFC_RQ_PAGE_SIZE_4096); 17171 } else { 17172 switch (hrq->entry_count) { 17173 default: 17174 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17175 "2535 Unsupported RQ count. (%d)\n", 17176 hrq->entry_count); 17177 if (hrq->entry_count < 512) { 17178 status = -EINVAL; 17179 goto out; 17180 } 17181 fallthrough; /* otherwise default to smallest count */ 17182 case 512: 17183 bf_set(lpfc_rq_context_rqe_count, 17184 &rq_create->u.request.context, 17185 LPFC_RQ_RING_SIZE_512); 17186 break; 17187 case 1024: 17188 bf_set(lpfc_rq_context_rqe_count, 17189 &rq_create->u.request.context, 17190 LPFC_RQ_RING_SIZE_1024); 17191 break; 17192 case 2048: 17193 bf_set(lpfc_rq_context_rqe_count, 17194 &rq_create->u.request.context, 17195 LPFC_RQ_RING_SIZE_2048); 17196 break; 17197 case 4096: 17198 bf_set(lpfc_rq_context_rqe_count, 17199 &rq_create->u.request.context, 17200 LPFC_RQ_RING_SIZE_4096); 17201 break; 17202 } 17203 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17204 LPFC_HDR_BUF_SIZE); 17205 } 17206 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17207 cq->queue_id); 17208 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17209 hrq->page_count); 17210 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17211 memset(dmabuf->virt, 0, hw_page_size); 17212 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17213 putPaddrLow(dmabuf->phys); 17214 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17215 putPaddrHigh(dmabuf->phys); 17216 } 17217 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17218 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17219 17220 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17221 /* The IOCTL status is embedded in the mailbox subheader. */ 17222 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17223 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17224 if (shdr_status || shdr_add_status || rc) { 17225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17226 "2504 RQ_CREATE mailbox failed with " 17227 "status x%x add_status x%x, mbx status x%x\n", 17228 shdr_status, shdr_add_status, rc); 17229 status = -ENXIO; 17230 goto out; 17231 } 17232 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17233 if (hrq->queue_id == 0xFFFF) { 17234 status = -ENXIO; 17235 goto out; 17236 } 17237 17238 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17239 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17240 &rq_create->u.response); 17241 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17242 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17244 "3262 RQ [%d] doorbell format not " 17245 "supported: x%x\n", hrq->queue_id, 17246 hrq->db_format); 17247 status = -EINVAL; 17248 goto out; 17249 } 17250 17251 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17252 &rq_create->u.response); 17253 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17254 if (!bar_memmap_p) { 17255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17256 "3269 RQ[%d] failed to memmap pci " 17257 "barset:x%x\n", hrq->queue_id, 17258 pci_barset); 17259 status = -ENOMEM; 17260 goto out; 17261 } 17262 17263 db_offset = rq_create->u.response.doorbell_offset; 17264 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17265 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17267 "3270 RQ[%d] doorbell offset not " 17268 "supported: x%x\n", hrq->queue_id, 17269 db_offset); 17270 status = -EINVAL; 17271 goto out; 17272 } 17273 hrq->db_regaddr = bar_memmap_p + db_offset; 17274 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17275 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17276 "format:x%x\n", hrq->queue_id, pci_barset, 17277 db_offset, hrq->db_format); 17278 } else { 17279 hrq->db_format = LPFC_DB_RING_FORMAT; 17280 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17281 } 17282 hrq->type = LPFC_HRQ; 17283 hrq->assoc_qid = cq->queue_id; 17284 hrq->subtype = subtype; 17285 hrq->host_index = 0; 17286 hrq->hba_index = 0; 17287 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17288 17289 /* now create the data queue */ 17290 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17291 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17292 length, LPFC_SLI4_MBX_EMBED); 17293 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17294 phba->sli4_hba.pc_sli4_params.rqv); 17295 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17296 bf_set(lpfc_rq_context_rqe_count_1, 17297 &rq_create->u.request.context, hrq->entry_count); 17298 if (subtype == LPFC_NVMET) 17299 rq_create->u.request.context.buffer_size = 17300 LPFC_NVMET_DATA_BUF_SIZE; 17301 else 17302 rq_create->u.request.context.buffer_size = 17303 LPFC_DATA_BUF_SIZE; 17304 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17305 LPFC_RQE_SIZE_8); 17306 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17307 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17308 } else { 17309 switch (drq->entry_count) { 17310 default: 17311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17312 "2536 Unsupported RQ count. (%d)\n", 17313 drq->entry_count); 17314 if (drq->entry_count < 512) { 17315 status = -EINVAL; 17316 goto out; 17317 } 17318 fallthrough; /* otherwise default to smallest count */ 17319 case 512: 17320 bf_set(lpfc_rq_context_rqe_count, 17321 &rq_create->u.request.context, 17322 LPFC_RQ_RING_SIZE_512); 17323 break; 17324 case 1024: 17325 bf_set(lpfc_rq_context_rqe_count, 17326 &rq_create->u.request.context, 17327 LPFC_RQ_RING_SIZE_1024); 17328 break; 17329 case 2048: 17330 bf_set(lpfc_rq_context_rqe_count, 17331 &rq_create->u.request.context, 17332 LPFC_RQ_RING_SIZE_2048); 17333 break; 17334 case 4096: 17335 bf_set(lpfc_rq_context_rqe_count, 17336 &rq_create->u.request.context, 17337 LPFC_RQ_RING_SIZE_4096); 17338 break; 17339 } 17340 if (subtype == LPFC_NVMET) 17341 bf_set(lpfc_rq_context_buf_size, 17342 &rq_create->u.request.context, 17343 LPFC_NVMET_DATA_BUF_SIZE); 17344 else 17345 bf_set(lpfc_rq_context_buf_size, 17346 &rq_create->u.request.context, 17347 LPFC_DATA_BUF_SIZE); 17348 } 17349 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17350 cq->queue_id); 17351 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17352 drq->page_count); 17353 list_for_each_entry(dmabuf, &drq->page_list, list) { 17354 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17355 putPaddrLow(dmabuf->phys); 17356 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17357 putPaddrHigh(dmabuf->phys); 17358 } 17359 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17360 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17361 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17362 /* The IOCTL status is embedded in the mailbox subheader. */ 17363 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17364 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17365 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17366 if (shdr_status || shdr_add_status || rc) { 17367 status = -ENXIO; 17368 goto out; 17369 } 17370 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17371 if (drq->queue_id == 0xFFFF) { 17372 status = -ENXIO; 17373 goto out; 17374 } 17375 drq->type = LPFC_DRQ; 17376 drq->assoc_qid = cq->queue_id; 17377 drq->subtype = subtype; 17378 drq->host_index = 0; 17379 drq->hba_index = 0; 17380 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17381 17382 /* link the header and data RQs onto the parent cq child list */ 17383 list_add_tail(&hrq->list, &cq->child_list); 17384 list_add_tail(&drq->list, &cq->child_list); 17385 17386 out: 17387 mempool_free(mbox, phba->mbox_mem_pool); 17388 return status; 17389 } 17390 17391 /** 17392 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17393 * @phba: HBA structure that indicates port to create a queue on. 17394 * @hrqp: The queue structure array to use to create the header receive queues. 17395 * @drqp: The queue structure array to use to create the data receive queues. 17396 * @cqp: The completion queue array to bind these receive queues to. 17397 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17398 * 17399 * This function creates a receive buffer queue pair , as detailed in @hrq and 17400 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17401 * to the HBA. 17402 * 17403 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17404 * struct is used to get the entry count that is necessary to determine the 17405 * number of pages to use for this queue. The @cq is used to indicate which 17406 * completion queue to bind received buffers that are posted to these queues to. 17407 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17408 * receive queue pair. This function is asynchronous and will wait for the 17409 * mailbox command to finish before continuing. 17410 * 17411 * On success this function will return a zero. If unable to allocate enough 17412 * memory this function will return -ENOMEM. If the queue create mailbox command 17413 * fails this function will return -ENXIO. 17414 **/ 17415 int 17416 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17417 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17418 uint32_t subtype) 17419 { 17420 struct lpfc_queue *hrq, *drq, *cq; 17421 struct lpfc_mbx_rq_create_v2 *rq_create; 17422 struct lpfc_dmabuf *dmabuf; 17423 LPFC_MBOXQ_t *mbox; 17424 int rc, length, alloclen, status = 0; 17425 int cnt, idx, numrq, page_idx = 0; 17426 uint32_t shdr_status, shdr_add_status; 17427 union lpfc_sli4_cfg_shdr *shdr; 17428 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17429 17430 numrq = phba->cfg_nvmet_mrq; 17431 /* sanity check on array memory */ 17432 if (!hrqp || !drqp || !cqp || !numrq) 17433 return -ENODEV; 17434 if (!phba->sli4_hba.pc_sli4_params.supported) 17435 hw_page_size = SLI4_PAGE_SIZE; 17436 17437 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17438 if (!mbox) 17439 return -ENOMEM; 17440 17441 length = sizeof(struct lpfc_mbx_rq_create_v2); 17442 length += ((2 * numrq * hrqp[0]->page_count) * 17443 sizeof(struct dma_address)); 17444 17445 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17446 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17447 LPFC_SLI4_MBX_NEMBED); 17448 if (alloclen < length) { 17449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17450 "3099 Allocated DMA memory size (%d) is " 17451 "less than the requested DMA memory size " 17452 "(%d)\n", alloclen, length); 17453 status = -ENOMEM; 17454 goto out; 17455 } 17456 17457 17458 17459 rq_create = mbox->sge_array->addr[0]; 17460 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17461 17462 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17463 cnt = 0; 17464 17465 for (idx = 0; idx < numrq; idx++) { 17466 hrq = hrqp[idx]; 17467 drq = drqp[idx]; 17468 cq = cqp[idx]; 17469 17470 /* sanity check on queue memory */ 17471 if (!hrq || !drq || !cq) { 17472 status = -ENODEV; 17473 goto out; 17474 } 17475 17476 if (hrq->entry_count != drq->entry_count) { 17477 status = -EINVAL; 17478 goto out; 17479 } 17480 17481 if (idx == 0) { 17482 bf_set(lpfc_mbx_rq_create_num_pages, 17483 &rq_create->u.request, 17484 hrq->page_count); 17485 bf_set(lpfc_mbx_rq_create_rq_cnt, 17486 &rq_create->u.request, (numrq * 2)); 17487 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17488 1); 17489 bf_set(lpfc_rq_context_base_cq, 17490 &rq_create->u.request.context, 17491 cq->queue_id); 17492 bf_set(lpfc_rq_context_data_size, 17493 &rq_create->u.request.context, 17494 LPFC_NVMET_DATA_BUF_SIZE); 17495 bf_set(lpfc_rq_context_hdr_size, 17496 &rq_create->u.request.context, 17497 LPFC_HDR_BUF_SIZE); 17498 bf_set(lpfc_rq_context_rqe_count_1, 17499 &rq_create->u.request.context, 17500 hrq->entry_count); 17501 bf_set(lpfc_rq_context_rqe_size, 17502 &rq_create->u.request.context, 17503 LPFC_RQE_SIZE_8); 17504 bf_set(lpfc_rq_context_page_size, 17505 &rq_create->u.request.context, 17506 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17507 } 17508 rc = 0; 17509 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17510 memset(dmabuf->virt, 0, hw_page_size); 17511 cnt = page_idx + dmabuf->buffer_tag; 17512 rq_create->u.request.page[cnt].addr_lo = 17513 putPaddrLow(dmabuf->phys); 17514 rq_create->u.request.page[cnt].addr_hi = 17515 putPaddrHigh(dmabuf->phys); 17516 rc++; 17517 } 17518 page_idx += rc; 17519 17520 rc = 0; 17521 list_for_each_entry(dmabuf, &drq->page_list, list) { 17522 memset(dmabuf->virt, 0, hw_page_size); 17523 cnt = page_idx + dmabuf->buffer_tag; 17524 rq_create->u.request.page[cnt].addr_lo = 17525 putPaddrLow(dmabuf->phys); 17526 rq_create->u.request.page[cnt].addr_hi = 17527 putPaddrHigh(dmabuf->phys); 17528 rc++; 17529 } 17530 page_idx += rc; 17531 17532 hrq->db_format = LPFC_DB_RING_FORMAT; 17533 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17534 hrq->type = LPFC_HRQ; 17535 hrq->assoc_qid = cq->queue_id; 17536 hrq->subtype = subtype; 17537 hrq->host_index = 0; 17538 hrq->hba_index = 0; 17539 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17540 17541 drq->db_format = LPFC_DB_RING_FORMAT; 17542 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17543 drq->type = LPFC_DRQ; 17544 drq->assoc_qid = cq->queue_id; 17545 drq->subtype = subtype; 17546 drq->host_index = 0; 17547 drq->hba_index = 0; 17548 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17549 17550 list_add_tail(&hrq->list, &cq->child_list); 17551 list_add_tail(&drq->list, &cq->child_list); 17552 } 17553 17554 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17555 /* The IOCTL status is embedded in the mailbox subheader. */ 17556 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17557 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17558 if (shdr_status || shdr_add_status || rc) { 17559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17560 "3120 RQ_CREATE mailbox failed with " 17561 "status x%x add_status x%x, mbx status x%x\n", 17562 shdr_status, shdr_add_status, rc); 17563 status = -ENXIO; 17564 goto out; 17565 } 17566 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17567 if (rc == 0xFFFF) { 17568 status = -ENXIO; 17569 goto out; 17570 } 17571 17572 /* Initialize all RQs with associated queue id */ 17573 for (idx = 0; idx < numrq; idx++) { 17574 hrq = hrqp[idx]; 17575 hrq->queue_id = rc + (2 * idx); 17576 drq = drqp[idx]; 17577 drq->queue_id = rc + (2 * idx) + 1; 17578 } 17579 17580 out: 17581 lpfc_sli4_mbox_cmd_free(phba, mbox); 17582 return status; 17583 } 17584 17585 /** 17586 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17587 * @phba: HBA structure that indicates port to destroy a queue on. 17588 * @eq: The queue structure associated with the queue to destroy. 17589 * 17590 * This function destroys a queue, as detailed in @eq by sending an mailbox 17591 * command, specific to the type of queue, to the HBA. 17592 * 17593 * The @eq struct is used to get the queue ID of the queue to destroy. 17594 * 17595 * On success this function will return a zero. If the queue destroy mailbox 17596 * command fails this function will return -ENXIO. 17597 **/ 17598 int 17599 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17600 { 17601 LPFC_MBOXQ_t *mbox; 17602 int rc, length, status = 0; 17603 uint32_t shdr_status, shdr_add_status; 17604 union lpfc_sli4_cfg_shdr *shdr; 17605 17606 /* sanity check on queue memory */ 17607 if (!eq) 17608 return -ENODEV; 17609 17610 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17611 if (!mbox) 17612 return -ENOMEM; 17613 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17614 sizeof(struct lpfc_sli4_cfg_mhdr)); 17615 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17616 LPFC_MBOX_OPCODE_EQ_DESTROY, 17617 length, LPFC_SLI4_MBX_EMBED); 17618 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17619 eq->queue_id); 17620 mbox->vport = eq->phba->pport; 17621 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17622 17623 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17624 /* The IOCTL status is embedded in the mailbox subheader. */ 17625 shdr = (union lpfc_sli4_cfg_shdr *) 17626 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17627 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17628 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17629 if (shdr_status || shdr_add_status || rc) { 17630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17631 "2505 EQ_DESTROY mailbox failed with " 17632 "status x%x add_status x%x, mbx status x%x\n", 17633 shdr_status, shdr_add_status, rc); 17634 status = -ENXIO; 17635 } 17636 17637 /* Remove eq from any list */ 17638 list_del_init(&eq->list); 17639 mempool_free(mbox, eq->phba->mbox_mem_pool); 17640 return status; 17641 } 17642 17643 /** 17644 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17645 * @phba: HBA structure that indicates port to destroy a queue on. 17646 * @cq: The queue structure associated with the queue to destroy. 17647 * 17648 * This function destroys a queue, as detailed in @cq by sending an mailbox 17649 * command, specific to the type of queue, to the HBA. 17650 * 17651 * The @cq struct is used to get the queue ID of the queue to destroy. 17652 * 17653 * On success this function will return a zero. If the queue destroy mailbox 17654 * command fails this function will return -ENXIO. 17655 **/ 17656 int 17657 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17658 { 17659 LPFC_MBOXQ_t *mbox; 17660 int rc, length, status = 0; 17661 uint32_t shdr_status, shdr_add_status; 17662 union lpfc_sli4_cfg_shdr *shdr; 17663 17664 /* sanity check on queue memory */ 17665 if (!cq) 17666 return -ENODEV; 17667 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17668 if (!mbox) 17669 return -ENOMEM; 17670 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17671 sizeof(struct lpfc_sli4_cfg_mhdr)); 17672 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17673 LPFC_MBOX_OPCODE_CQ_DESTROY, 17674 length, LPFC_SLI4_MBX_EMBED); 17675 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17676 cq->queue_id); 17677 mbox->vport = cq->phba->pport; 17678 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17679 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17680 /* The IOCTL status is embedded in the mailbox subheader. */ 17681 shdr = (union lpfc_sli4_cfg_shdr *) 17682 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17683 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17684 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17685 if (shdr_status || shdr_add_status || rc) { 17686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17687 "2506 CQ_DESTROY mailbox failed with " 17688 "status x%x add_status x%x, mbx status x%x\n", 17689 shdr_status, shdr_add_status, rc); 17690 status = -ENXIO; 17691 } 17692 /* Remove cq from any list */ 17693 list_del_init(&cq->list); 17694 mempool_free(mbox, cq->phba->mbox_mem_pool); 17695 return status; 17696 } 17697 17698 /** 17699 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17700 * @phba: HBA structure that indicates port to destroy a queue on. 17701 * @mq: The queue structure associated with the queue to destroy. 17702 * 17703 * This function destroys a queue, as detailed in @mq by sending an mailbox 17704 * command, specific to the type of queue, to the HBA. 17705 * 17706 * The @mq struct is used to get the queue ID of the queue to destroy. 17707 * 17708 * On success this function will return a zero. If the queue destroy mailbox 17709 * command fails this function will return -ENXIO. 17710 **/ 17711 int 17712 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17713 { 17714 LPFC_MBOXQ_t *mbox; 17715 int rc, length, status = 0; 17716 uint32_t shdr_status, shdr_add_status; 17717 union lpfc_sli4_cfg_shdr *shdr; 17718 17719 /* sanity check on queue memory */ 17720 if (!mq) 17721 return -ENODEV; 17722 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17723 if (!mbox) 17724 return -ENOMEM; 17725 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17726 sizeof(struct lpfc_sli4_cfg_mhdr)); 17727 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17728 LPFC_MBOX_OPCODE_MQ_DESTROY, 17729 length, LPFC_SLI4_MBX_EMBED); 17730 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17731 mq->queue_id); 17732 mbox->vport = mq->phba->pport; 17733 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17734 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17735 /* The IOCTL status is embedded in the mailbox subheader. */ 17736 shdr = (union lpfc_sli4_cfg_shdr *) 17737 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17738 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17739 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17740 if (shdr_status || shdr_add_status || rc) { 17741 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17742 "2507 MQ_DESTROY mailbox failed with " 17743 "status x%x add_status x%x, mbx status x%x\n", 17744 shdr_status, shdr_add_status, rc); 17745 status = -ENXIO; 17746 } 17747 /* Remove mq from any list */ 17748 list_del_init(&mq->list); 17749 mempool_free(mbox, mq->phba->mbox_mem_pool); 17750 return status; 17751 } 17752 17753 /** 17754 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17755 * @phba: HBA structure that indicates port to destroy a queue on. 17756 * @wq: The queue structure associated with the queue to destroy. 17757 * 17758 * This function destroys a queue, as detailed in @wq by sending an mailbox 17759 * command, specific to the type of queue, to the HBA. 17760 * 17761 * The @wq struct is used to get the queue ID of the queue to destroy. 17762 * 17763 * On success this function will return a zero. If the queue destroy mailbox 17764 * command fails this function will return -ENXIO. 17765 **/ 17766 int 17767 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17768 { 17769 LPFC_MBOXQ_t *mbox; 17770 int rc, length, status = 0; 17771 uint32_t shdr_status, shdr_add_status; 17772 union lpfc_sli4_cfg_shdr *shdr; 17773 17774 /* sanity check on queue memory */ 17775 if (!wq) 17776 return -ENODEV; 17777 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17778 if (!mbox) 17779 return -ENOMEM; 17780 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17781 sizeof(struct lpfc_sli4_cfg_mhdr)); 17782 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17783 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17784 length, LPFC_SLI4_MBX_EMBED); 17785 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17786 wq->queue_id); 17787 mbox->vport = wq->phba->pport; 17788 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17789 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17790 shdr = (union lpfc_sli4_cfg_shdr *) 17791 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17792 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17793 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17794 if (shdr_status || shdr_add_status || rc) { 17795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17796 "2508 WQ_DESTROY mailbox failed with " 17797 "status x%x add_status x%x, mbx status x%x\n", 17798 shdr_status, shdr_add_status, rc); 17799 status = -ENXIO; 17800 } 17801 /* Remove wq from any list */ 17802 list_del_init(&wq->list); 17803 kfree(wq->pring); 17804 wq->pring = NULL; 17805 mempool_free(mbox, wq->phba->mbox_mem_pool); 17806 return status; 17807 } 17808 17809 /** 17810 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17811 * @phba: HBA structure that indicates port to destroy a queue on. 17812 * @hrq: The queue structure associated with the queue to destroy. 17813 * @drq: The queue structure associated with the queue to destroy. 17814 * 17815 * This function destroys a queue, as detailed in @rq by sending an mailbox 17816 * command, specific to the type of queue, to the HBA. 17817 * 17818 * The @rq struct is used to get the queue ID of the queue to destroy. 17819 * 17820 * On success this function will return a zero. If the queue destroy mailbox 17821 * command fails this function will return -ENXIO. 17822 **/ 17823 int 17824 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17825 struct lpfc_queue *drq) 17826 { 17827 LPFC_MBOXQ_t *mbox; 17828 int rc, length, status = 0; 17829 uint32_t shdr_status, shdr_add_status; 17830 union lpfc_sli4_cfg_shdr *shdr; 17831 17832 /* sanity check on queue memory */ 17833 if (!hrq || !drq) 17834 return -ENODEV; 17835 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17836 if (!mbox) 17837 return -ENOMEM; 17838 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17839 sizeof(struct lpfc_sli4_cfg_mhdr)); 17840 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17841 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17842 length, LPFC_SLI4_MBX_EMBED); 17843 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17844 hrq->queue_id); 17845 mbox->vport = hrq->phba->pport; 17846 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17847 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17848 /* The IOCTL status is embedded in the mailbox subheader. */ 17849 shdr = (union lpfc_sli4_cfg_shdr *) 17850 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17851 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17852 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17853 if (shdr_status || shdr_add_status || rc) { 17854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17855 "2509 RQ_DESTROY mailbox failed with " 17856 "status x%x add_status x%x, mbx status x%x\n", 17857 shdr_status, shdr_add_status, rc); 17858 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17859 return -ENXIO; 17860 } 17861 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17862 drq->queue_id); 17863 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17864 shdr = (union lpfc_sli4_cfg_shdr *) 17865 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17866 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17867 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17868 if (shdr_status || shdr_add_status || rc) { 17869 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17870 "2510 RQ_DESTROY mailbox failed with " 17871 "status x%x add_status x%x, mbx status x%x\n", 17872 shdr_status, shdr_add_status, rc); 17873 status = -ENXIO; 17874 } 17875 list_del_init(&hrq->list); 17876 list_del_init(&drq->list); 17877 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17878 return status; 17879 } 17880 17881 /** 17882 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17883 * @phba: The virtual port for which this call being executed. 17884 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17885 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17886 * @xritag: the xritag that ties this io to the SGL pages. 17887 * 17888 * This routine will post the sgl pages for the IO that has the xritag 17889 * that is in the iocbq structure. The xritag is assigned during iocbq 17890 * creation and persists for as long as the driver is loaded. 17891 * if the caller has fewer than 256 scatter gather segments to map then 17892 * pdma_phys_addr1 should be 0. 17893 * If the caller needs to map more than 256 scatter gather segment then 17894 * pdma_phys_addr1 should be a valid physical address. 17895 * physical address for SGLs must be 64 byte aligned. 17896 * If you are going to map 2 SGL's then the first one must have 256 entries 17897 * the second sgl can have between 1 and 256 entries. 17898 * 17899 * Return codes: 17900 * 0 - Success 17901 * -ENXIO, -ENOMEM - Failure 17902 **/ 17903 int 17904 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17905 dma_addr_t pdma_phys_addr0, 17906 dma_addr_t pdma_phys_addr1, 17907 uint16_t xritag) 17908 { 17909 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17910 LPFC_MBOXQ_t *mbox; 17911 int rc; 17912 uint32_t shdr_status, shdr_add_status; 17913 uint32_t mbox_tmo; 17914 union lpfc_sli4_cfg_shdr *shdr; 17915 17916 if (xritag == NO_XRI) { 17917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17918 "0364 Invalid param:\n"); 17919 return -EINVAL; 17920 } 17921 17922 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17923 if (!mbox) 17924 return -ENOMEM; 17925 17926 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17927 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17928 sizeof(struct lpfc_mbx_post_sgl_pages) - 17929 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17930 17931 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17932 &mbox->u.mqe.un.post_sgl_pages; 17933 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17934 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17935 17936 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17937 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17938 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17939 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17940 17941 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17942 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17943 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17944 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17945 if (!phba->sli4_hba.intr_enable) 17946 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17947 else { 17948 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17949 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17950 } 17951 /* The IOCTL status is embedded in the mailbox subheader. */ 17952 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17953 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17954 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17955 if (!phba->sli4_hba.intr_enable) 17956 mempool_free(mbox, phba->mbox_mem_pool); 17957 else if (rc != MBX_TIMEOUT) 17958 mempool_free(mbox, phba->mbox_mem_pool); 17959 if (shdr_status || shdr_add_status || rc) { 17960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17961 "2511 POST_SGL mailbox failed with " 17962 "status x%x add_status x%x, mbx status x%x\n", 17963 shdr_status, shdr_add_status, rc); 17964 } 17965 return 0; 17966 } 17967 17968 /** 17969 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17970 * @phba: pointer to lpfc hba data structure. 17971 * 17972 * This routine is invoked to post rpi header templates to the 17973 * HBA consistent with the SLI-4 interface spec. This routine 17974 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17975 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17976 * 17977 * Returns 17978 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17979 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17980 **/ 17981 static uint16_t 17982 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17983 { 17984 unsigned long xri; 17985 17986 /* 17987 * Fetch the next logical xri. Because this index is logical, 17988 * the driver starts at 0 each time. 17989 */ 17990 spin_lock_irq(&phba->hbalock); 17991 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17992 phba->sli4_hba.max_cfg_param.max_xri); 17993 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17994 spin_unlock_irq(&phba->hbalock); 17995 return NO_XRI; 17996 } else { 17997 set_bit(xri, phba->sli4_hba.xri_bmask); 17998 phba->sli4_hba.max_cfg_param.xri_used++; 17999 } 18000 spin_unlock_irq(&phba->hbalock); 18001 return xri; 18002 } 18003 18004 /** 18005 * __lpfc_sli4_free_xri - Release an xri for reuse. 18006 * @phba: pointer to lpfc hba data structure. 18007 * @xri: xri to release. 18008 * 18009 * This routine is invoked to release an xri to the pool of 18010 * available rpis maintained by the driver. 18011 **/ 18012 static void 18013 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18014 { 18015 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18016 phba->sli4_hba.max_cfg_param.xri_used--; 18017 } 18018 } 18019 18020 /** 18021 * lpfc_sli4_free_xri - Release an xri for reuse. 18022 * @phba: pointer to lpfc hba data structure. 18023 * @xri: xri to release. 18024 * 18025 * This routine is invoked to release an xri to the pool of 18026 * available rpis maintained by the driver. 18027 **/ 18028 void 18029 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18030 { 18031 spin_lock_irq(&phba->hbalock); 18032 __lpfc_sli4_free_xri(phba, xri); 18033 spin_unlock_irq(&phba->hbalock); 18034 } 18035 18036 /** 18037 * lpfc_sli4_next_xritag - Get an xritag for the io 18038 * @phba: Pointer to HBA context object. 18039 * 18040 * This function gets an xritag for the iocb. If there is no unused xritag 18041 * it will return 0xffff. 18042 * The function returns the allocated xritag if successful, else returns zero. 18043 * Zero is not a valid xritag. 18044 * The caller is not required to hold any lock. 18045 **/ 18046 uint16_t 18047 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18048 { 18049 uint16_t xri_index; 18050 18051 xri_index = lpfc_sli4_alloc_xri(phba); 18052 if (xri_index == NO_XRI) 18053 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18054 "2004 Failed to allocate XRI.last XRITAG is %d" 18055 " Max XRI is %d, Used XRI is %d\n", 18056 xri_index, 18057 phba->sli4_hba.max_cfg_param.max_xri, 18058 phba->sli4_hba.max_cfg_param.xri_used); 18059 return xri_index; 18060 } 18061 18062 /** 18063 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18064 * @phba: pointer to lpfc hba data structure. 18065 * @post_sgl_list: pointer to els sgl entry list. 18066 * @post_cnt: number of els sgl entries on the list. 18067 * 18068 * This routine is invoked to post a block of driver's sgl pages to the 18069 * HBA using non-embedded mailbox command. No Lock is held. This routine 18070 * is only called when the driver is loading and after all IO has been 18071 * stopped. 18072 **/ 18073 static int 18074 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18075 struct list_head *post_sgl_list, 18076 int post_cnt) 18077 { 18078 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18079 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18080 struct sgl_page_pairs *sgl_pg_pairs; 18081 void *viraddr; 18082 LPFC_MBOXQ_t *mbox; 18083 uint32_t reqlen, alloclen, pg_pairs; 18084 uint32_t mbox_tmo; 18085 uint16_t xritag_start = 0; 18086 int rc = 0; 18087 uint32_t shdr_status, shdr_add_status; 18088 union lpfc_sli4_cfg_shdr *shdr; 18089 18090 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18091 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18092 if (reqlen > SLI4_PAGE_SIZE) { 18093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18094 "2559 Block sgl registration required DMA " 18095 "size (%d) great than a page\n", reqlen); 18096 return -ENOMEM; 18097 } 18098 18099 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18100 if (!mbox) 18101 return -ENOMEM; 18102 18103 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18104 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18105 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18106 LPFC_SLI4_MBX_NEMBED); 18107 18108 if (alloclen < reqlen) { 18109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18110 "0285 Allocated DMA memory size (%d) is " 18111 "less than the requested DMA memory " 18112 "size (%d)\n", alloclen, reqlen); 18113 lpfc_sli4_mbox_cmd_free(phba, mbox); 18114 return -ENOMEM; 18115 } 18116 /* Set up the SGL pages in the non-embedded DMA pages */ 18117 viraddr = mbox->sge_array->addr[0]; 18118 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18119 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18120 18121 pg_pairs = 0; 18122 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18123 /* Set up the sge entry */ 18124 sgl_pg_pairs->sgl_pg0_addr_lo = 18125 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18126 sgl_pg_pairs->sgl_pg0_addr_hi = 18127 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18128 sgl_pg_pairs->sgl_pg1_addr_lo = 18129 cpu_to_le32(putPaddrLow(0)); 18130 sgl_pg_pairs->sgl_pg1_addr_hi = 18131 cpu_to_le32(putPaddrHigh(0)); 18132 18133 /* Keep the first xritag on the list */ 18134 if (pg_pairs == 0) 18135 xritag_start = sglq_entry->sli4_xritag; 18136 sgl_pg_pairs++; 18137 pg_pairs++; 18138 } 18139 18140 /* Complete initialization and perform endian conversion. */ 18141 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18142 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18143 sgl->word0 = cpu_to_le32(sgl->word0); 18144 18145 if (!phba->sli4_hba.intr_enable) 18146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18147 else { 18148 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18149 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18150 } 18151 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18152 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18153 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18154 if (!phba->sli4_hba.intr_enable) 18155 lpfc_sli4_mbox_cmd_free(phba, mbox); 18156 else if (rc != MBX_TIMEOUT) 18157 lpfc_sli4_mbox_cmd_free(phba, mbox); 18158 if (shdr_status || shdr_add_status || rc) { 18159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18160 "2513 POST_SGL_BLOCK mailbox command failed " 18161 "status x%x add_status x%x mbx status x%x\n", 18162 shdr_status, shdr_add_status, rc); 18163 rc = -ENXIO; 18164 } 18165 return rc; 18166 } 18167 18168 /** 18169 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18170 * @phba: pointer to lpfc hba data structure. 18171 * @nblist: pointer to nvme buffer list. 18172 * @count: number of scsi buffers on the list. 18173 * 18174 * This routine is invoked to post a block of @count scsi sgl pages from a 18175 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18176 * No Lock is held. 18177 * 18178 **/ 18179 static int 18180 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18181 int count) 18182 { 18183 struct lpfc_io_buf *lpfc_ncmd; 18184 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18185 struct sgl_page_pairs *sgl_pg_pairs; 18186 void *viraddr; 18187 LPFC_MBOXQ_t *mbox; 18188 uint32_t reqlen, alloclen, pg_pairs; 18189 uint32_t mbox_tmo; 18190 uint16_t xritag_start = 0; 18191 int rc = 0; 18192 uint32_t shdr_status, shdr_add_status; 18193 dma_addr_t pdma_phys_bpl1; 18194 union lpfc_sli4_cfg_shdr *shdr; 18195 18196 /* Calculate the requested length of the dma memory */ 18197 reqlen = count * sizeof(struct sgl_page_pairs) + 18198 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18199 if (reqlen > SLI4_PAGE_SIZE) { 18200 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18201 "6118 Block sgl registration required DMA " 18202 "size (%d) great than a page\n", reqlen); 18203 return -ENOMEM; 18204 } 18205 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18206 if (!mbox) { 18207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18208 "6119 Failed to allocate mbox cmd memory\n"); 18209 return -ENOMEM; 18210 } 18211 18212 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18213 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18214 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18215 reqlen, LPFC_SLI4_MBX_NEMBED); 18216 18217 if (alloclen < reqlen) { 18218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18219 "6120 Allocated DMA memory size (%d) is " 18220 "less than the requested DMA memory " 18221 "size (%d)\n", alloclen, reqlen); 18222 lpfc_sli4_mbox_cmd_free(phba, mbox); 18223 return -ENOMEM; 18224 } 18225 18226 /* Get the first SGE entry from the non-embedded DMA memory */ 18227 viraddr = mbox->sge_array->addr[0]; 18228 18229 /* Set up the SGL pages in the non-embedded DMA pages */ 18230 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18231 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18232 18233 pg_pairs = 0; 18234 list_for_each_entry(lpfc_ncmd, nblist, list) { 18235 /* Set up the sge entry */ 18236 sgl_pg_pairs->sgl_pg0_addr_lo = 18237 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18238 sgl_pg_pairs->sgl_pg0_addr_hi = 18239 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18240 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18241 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18242 SGL_PAGE_SIZE; 18243 else 18244 pdma_phys_bpl1 = 0; 18245 sgl_pg_pairs->sgl_pg1_addr_lo = 18246 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18247 sgl_pg_pairs->sgl_pg1_addr_hi = 18248 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18249 /* Keep the first xritag on the list */ 18250 if (pg_pairs == 0) 18251 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18252 sgl_pg_pairs++; 18253 pg_pairs++; 18254 } 18255 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18256 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18257 /* Perform endian conversion if necessary */ 18258 sgl->word0 = cpu_to_le32(sgl->word0); 18259 18260 if (!phba->sli4_hba.intr_enable) { 18261 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18262 } else { 18263 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18264 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18265 } 18266 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18267 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18268 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18269 if (!phba->sli4_hba.intr_enable) 18270 lpfc_sli4_mbox_cmd_free(phba, mbox); 18271 else if (rc != MBX_TIMEOUT) 18272 lpfc_sli4_mbox_cmd_free(phba, mbox); 18273 if (shdr_status || shdr_add_status || rc) { 18274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18275 "6125 POST_SGL_BLOCK mailbox command failed " 18276 "status x%x add_status x%x mbx status x%x\n", 18277 shdr_status, shdr_add_status, rc); 18278 rc = -ENXIO; 18279 } 18280 return rc; 18281 } 18282 18283 /** 18284 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18285 * @phba: pointer to lpfc hba data structure. 18286 * @post_nblist: pointer to the nvme buffer list. 18287 * @sb_count: number of nvme buffers. 18288 * 18289 * This routine walks a list of nvme buffers that was passed in. It attempts 18290 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18291 * uses the non-embedded SGL block post mailbox commands to post to the port. 18292 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18293 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18294 * must be local list, thus no lock is needed when manipulate the list. 18295 * 18296 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18297 **/ 18298 int 18299 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18300 struct list_head *post_nblist, int sb_count) 18301 { 18302 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18303 int status, sgl_size; 18304 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18305 dma_addr_t pdma_phys_sgl1; 18306 int last_xritag = NO_XRI; 18307 int cur_xritag; 18308 LIST_HEAD(prep_nblist); 18309 LIST_HEAD(blck_nblist); 18310 LIST_HEAD(nvme_nblist); 18311 18312 /* sanity check */ 18313 if (sb_count <= 0) 18314 return -EINVAL; 18315 18316 sgl_size = phba->cfg_sg_dma_buf_size; 18317 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18318 list_del_init(&lpfc_ncmd->list); 18319 block_cnt++; 18320 if ((last_xritag != NO_XRI) && 18321 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18322 /* a hole in xri block, form a sgl posting block */ 18323 list_splice_init(&prep_nblist, &blck_nblist); 18324 post_cnt = block_cnt - 1; 18325 /* prepare list for next posting block */ 18326 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18327 block_cnt = 1; 18328 } else { 18329 /* prepare list for next posting block */ 18330 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18331 /* enough sgls for non-embed sgl mbox command */ 18332 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18333 list_splice_init(&prep_nblist, &blck_nblist); 18334 post_cnt = block_cnt; 18335 block_cnt = 0; 18336 } 18337 } 18338 num_posting++; 18339 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18340 18341 /* end of repost sgl list condition for NVME buffers */ 18342 if (num_posting == sb_count) { 18343 if (post_cnt == 0) { 18344 /* last sgl posting block */ 18345 list_splice_init(&prep_nblist, &blck_nblist); 18346 post_cnt = block_cnt; 18347 } else if (block_cnt == 1) { 18348 /* last single sgl with non-contiguous xri */ 18349 if (sgl_size > SGL_PAGE_SIZE) 18350 pdma_phys_sgl1 = 18351 lpfc_ncmd->dma_phys_sgl + 18352 SGL_PAGE_SIZE; 18353 else 18354 pdma_phys_sgl1 = 0; 18355 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18356 status = lpfc_sli4_post_sgl( 18357 phba, lpfc_ncmd->dma_phys_sgl, 18358 pdma_phys_sgl1, cur_xritag); 18359 if (status) { 18360 /* Post error. Buffer unavailable. */ 18361 lpfc_ncmd->flags |= 18362 LPFC_SBUF_NOT_POSTED; 18363 } else { 18364 /* Post success. Bffer available. */ 18365 lpfc_ncmd->flags &= 18366 ~LPFC_SBUF_NOT_POSTED; 18367 lpfc_ncmd->status = IOSTAT_SUCCESS; 18368 num_posted++; 18369 } 18370 /* success, put on NVME buffer sgl list */ 18371 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18372 } 18373 } 18374 18375 /* continue until a nembed page worth of sgls */ 18376 if (post_cnt == 0) 18377 continue; 18378 18379 /* post block of NVME buffer list sgls */ 18380 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18381 post_cnt); 18382 18383 /* don't reset xirtag due to hole in xri block */ 18384 if (block_cnt == 0) 18385 last_xritag = NO_XRI; 18386 18387 /* reset NVME buffer post count for next round of posting */ 18388 post_cnt = 0; 18389 18390 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18391 while (!list_empty(&blck_nblist)) { 18392 list_remove_head(&blck_nblist, lpfc_ncmd, 18393 struct lpfc_io_buf, list); 18394 if (status) { 18395 /* Post error. Mark buffer unavailable. */ 18396 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18397 } else { 18398 /* Post success, Mark buffer available. */ 18399 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18400 lpfc_ncmd->status = IOSTAT_SUCCESS; 18401 num_posted++; 18402 } 18403 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18404 } 18405 } 18406 /* Push NVME buffers with sgl posted to the available list */ 18407 lpfc_io_buf_replenish(phba, &nvme_nblist); 18408 18409 return num_posted; 18410 } 18411 18412 /** 18413 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18414 * @phba: pointer to lpfc_hba struct that the frame was received on 18415 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18416 * 18417 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18418 * valid type of frame that the LPFC driver will handle. This function will 18419 * return a zero if the frame is a valid frame or a non zero value when the 18420 * frame does not pass the check. 18421 **/ 18422 static int 18423 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18424 { 18425 /* make rctl_names static to save stack space */ 18426 struct fc_vft_header *fc_vft_hdr; 18427 uint32_t *header = (uint32_t *) fc_hdr; 18428 18429 #define FC_RCTL_MDS_DIAGS 0xF4 18430 18431 switch (fc_hdr->fh_r_ctl) { 18432 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18433 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18434 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18435 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18436 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18437 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18438 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18439 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18440 case FC_RCTL_ELS_REQ: /* extended link services request */ 18441 case FC_RCTL_ELS_REP: /* extended link services reply */ 18442 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18443 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18444 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18445 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18446 case FC_RCTL_BA_RMC: /* remove connection */ 18447 case FC_RCTL_BA_ACC: /* basic accept */ 18448 case FC_RCTL_BA_RJT: /* basic reject */ 18449 case FC_RCTL_BA_PRMT: 18450 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18451 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18452 case FC_RCTL_P_RJT: /* port reject */ 18453 case FC_RCTL_F_RJT: /* fabric reject */ 18454 case FC_RCTL_P_BSY: /* port busy */ 18455 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18456 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18457 case FC_RCTL_LCR: /* link credit reset */ 18458 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18459 case FC_RCTL_END: /* end */ 18460 break; 18461 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18462 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18463 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18464 return lpfc_fc_frame_check(phba, fc_hdr); 18465 default: 18466 goto drop; 18467 } 18468 18469 switch (fc_hdr->fh_type) { 18470 case FC_TYPE_BLS: 18471 case FC_TYPE_ELS: 18472 case FC_TYPE_FCP: 18473 case FC_TYPE_CT: 18474 case FC_TYPE_NVME: 18475 break; 18476 case FC_TYPE_IP: 18477 case FC_TYPE_ILS: 18478 default: 18479 goto drop; 18480 } 18481 18482 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18483 "2538 Received frame rctl:x%x, type:x%x, " 18484 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18485 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18486 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18487 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18488 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18489 be32_to_cpu(header[6])); 18490 return 0; 18491 drop: 18492 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18493 "2539 Dropped frame rctl:x%x type:x%x\n", 18494 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18495 return 1; 18496 } 18497 18498 /** 18499 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18500 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18501 * 18502 * This function processes the FC header to retrieve the VFI from the VF 18503 * header, if one exists. This function will return the VFI if one exists 18504 * or 0 if no VSAN Header exists. 18505 **/ 18506 static uint32_t 18507 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18508 { 18509 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18510 18511 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18512 return 0; 18513 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18514 } 18515 18516 /** 18517 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18518 * @phba: Pointer to the HBA structure to search for the vport on 18519 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18520 * @fcfi: The FC Fabric ID that the frame came from 18521 * @did: Destination ID to match against 18522 * 18523 * This function searches the @phba for a vport that matches the content of the 18524 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18525 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18526 * returns the matching vport pointer or NULL if unable to match frame to a 18527 * vport. 18528 **/ 18529 static struct lpfc_vport * 18530 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18531 uint16_t fcfi, uint32_t did) 18532 { 18533 struct lpfc_vport **vports; 18534 struct lpfc_vport *vport = NULL; 18535 int i; 18536 18537 if (did == Fabric_DID) 18538 return phba->pport; 18539 if ((phba->pport->fc_flag & FC_PT2PT) && 18540 !(phba->link_state == LPFC_HBA_READY)) 18541 return phba->pport; 18542 18543 vports = lpfc_create_vport_work_array(phba); 18544 if (vports != NULL) { 18545 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18546 if (phba->fcf.fcfi == fcfi && 18547 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18548 vports[i]->fc_myDID == did) { 18549 vport = vports[i]; 18550 break; 18551 } 18552 } 18553 } 18554 lpfc_destroy_vport_work_array(phba, vports); 18555 return vport; 18556 } 18557 18558 /** 18559 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18560 * @vport: The vport to work on. 18561 * 18562 * This function updates the receive sequence time stamp for this vport. The 18563 * receive sequence time stamp indicates the time that the last frame of the 18564 * the sequence that has been idle for the longest amount of time was received. 18565 * the driver uses this time stamp to indicate if any received sequences have 18566 * timed out. 18567 **/ 18568 static void 18569 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18570 { 18571 struct lpfc_dmabuf *h_buf; 18572 struct hbq_dmabuf *dmabuf = NULL; 18573 18574 /* get the oldest sequence on the rcv list */ 18575 h_buf = list_get_first(&vport->rcv_buffer_list, 18576 struct lpfc_dmabuf, list); 18577 if (!h_buf) 18578 return; 18579 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18580 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18581 } 18582 18583 /** 18584 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18585 * @vport: The vport that the received sequences were sent to. 18586 * 18587 * This function cleans up all outstanding received sequences. This is called 18588 * by the driver when a link event or user action invalidates all the received 18589 * sequences. 18590 **/ 18591 void 18592 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18593 { 18594 struct lpfc_dmabuf *h_buf, *hnext; 18595 struct lpfc_dmabuf *d_buf, *dnext; 18596 struct hbq_dmabuf *dmabuf = NULL; 18597 18598 /* start with the oldest sequence on the rcv list */ 18599 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18600 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18601 list_del_init(&dmabuf->hbuf.list); 18602 list_for_each_entry_safe(d_buf, dnext, 18603 &dmabuf->dbuf.list, list) { 18604 list_del_init(&d_buf->list); 18605 lpfc_in_buf_free(vport->phba, d_buf); 18606 } 18607 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18608 } 18609 } 18610 18611 /** 18612 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18613 * @vport: The vport that the received sequences were sent to. 18614 * 18615 * This function determines whether any received sequences have timed out by 18616 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18617 * indicates that there is at least one timed out sequence this routine will 18618 * go through the received sequences one at a time from most inactive to most 18619 * active to determine which ones need to be cleaned up. Once it has determined 18620 * that a sequence needs to be cleaned up it will simply free up the resources 18621 * without sending an abort. 18622 **/ 18623 void 18624 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18625 { 18626 struct lpfc_dmabuf *h_buf, *hnext; 18627 struct lpfc_dmabuf *d_buf, *dnext; 18628 struct hbq_dmabuf *dmabuf = NULL; 18629 unsigned long timeout; 18630 int abort_count = 0; 18631 18632 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18633 vport->rcv_buffer_time_stamp); 18634 if (list_empty(&vport->rcv_buffer_list) || 18635 time_before(jiffies, timeout)) 18636 return; 18637 /* start with the oldest sequence on the rcv list */ 18638 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18639 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18640 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18641 dmabuf->time_stamp); 18642 if (time_before(jiffies, timeout)) 18643 break; 18644 abort_count++; 18645 list_del_init(&dmabuf->hbuf.list); 18646 list_for_each_entry_safe(d_buf, dnext, 18647 &dmabuf->dbuf.list, list) { 18648 list_del_init(&d_buf->list); 18649 lpfc_in_buf_free(vport->phba, d_buf); 18650 } 18651 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18652 } 18653 if (abort_count) 18654 lpfc_update_rcv_time_stamp(vport); 18655 } 18656 18657 /** 18658 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18659 * @vport: pointer to a vitural port 18660 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18661 * 18662 * This function searches through the existing incomplete sequences that have 18663 * been sent to this @vport. If the frame matches one of the incomplete 18664 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18665 * make up that sequence. If no sequence is found that matches this frame then 18666 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18667 * This function returns a pointer to the first dmabuf in the sequence list that 18668 * the frame was linked to. 18669 **/ 18670 static struct hbq_dmabuf * 18671 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18672 { 18673 struct fc_frame_header *new_hdr; 18674 struct fc_frame_header *temp_hdr; 18675 struct lpfc_dmabuf *d_buf; 18676 struct lpfc_dmabuf *h_buf; 18677 struct hbq_dmabuf *seq_dmabuf = NULL; 18678 struct hbq_dmabuf *temp_dmabuf = NULL; 18679 uint8_t found = 0; 18680 18681 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18682 dmabuf->time_stamp = jiffies; 18683 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18684 18685 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18686 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18687 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18688 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18689 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18690 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18691 continue; 18692 /* found a pending sequence that matches this frame */ 18693 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18694 break; 18695 } 18696 if (!seq_dmabuf) { 18697 /* 18698 * This indicates first frame received for this sequence. 18699 * Queue the buffer on the vport's rcv_buffer_list. 18700 */ 18701 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18702 lpfc_update_rcv_time_stamp(vport); 18703 return dmabuf; 18704 } 18705 temp_hdr = seq_dmabuf->hbuf.virt; 18706 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18707 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18708 list_del_init(&seq_dmabuf->hbuf.list); 18709 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18710 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18711 lpfc_update_rcv_time_stamp(vport); 18712 return dmabuf; 18713 } 18714 /* move this sequence to the tail to indicate a young sequence */ 18715 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18716 seq_dmabuf->time_stamp = jiffies; 18717 lpfc_update_rcv_time_stamp(vport); 18718 if (list_empty(&seq_dmabuf->dbuf.list)) { 18719 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18720 return seq_dmabuf; 18721 } 18722 /* find the correct place in the sequence to insert this frame */ 18723 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18724 while (!found) { 18725 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18726 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18727 /* 18728 * If the frame's sequence count is greater than the frame on 18729 * the list then insert the frame right after this frame 18730 */ 18731 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18732 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18733 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18734 found = 1; 18735 break; 18736 } 18737 18738 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18739 break; 18740 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18741 } 18742 18743 if (found) 18744 return seq_dmabuf; 18745 return NULL; 18746 } 18747 18748 /** 18749 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18750 * @vport: pointer to a vitural port 18751 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18752 * 18753 * This function tries to abort from the partially assembed sequence, described 18754 * by the information from basic abbort @dmabuf. It checks to see whether such 18755 * partially assembled sequence held by the driver. If so, it shall free up all 18756 * the frames from the partially assembled sequence. 18757 * 18758 * Return 18759 * true -- if there is matching partially assembled sequence present and all 18760 * the frames freed with the sequence; 18761 * false -- if there is no matching partially assembled sequence present so 18762 * nothing got aborted in the lower layer driver 18763 **/ 18764 static bool 18765 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18766 struct hbq_dmabuf *dmabuf) 18767 { 18768 struct fc_frame_header *new_hdr; 18769 struct fc_frame_header *temp_hdr; 18770 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18771 struct hbq_dmabuf *seq_dmabuf = NULL; 18772 18773 /* Use the hdr_buf to find the sequence that matches this frame */ 18774 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18775 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18776 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18777 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18778 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18779 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18780 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18781 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18782 continue; 18783 /* found a pending sequence that matches this frame */ 18784 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18785 break; 18786 } 18787 18788 /* Free up all the frames from the partially assembled sequence */ 18789 if (seq_dmabuf) { 18790 list_for_each_entry_safe(d_buf, n_buf, 18791 &seq_dmabuf->dbuf.list, list) { 18792 list_del_init(&d_buf->list); 18793 lpfc_in_buf_free(vport->phba, d_buf); 18794 } 18795 return true; 18796 } 18797 return false; 18798 } 18799 18800 /** 18801 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18802 * @vport: pointer to a vitural port 18803 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18804 * 18805 * This function tries to abort from the assembed sequence from upper level 18806 * protocol, described by the information from basic abbort @dmabuf. It 18807 * checks to see whether such pending context exists at upper level protocol. 18808 * If so, it shall clean up the pending context. 18809 * 18810 * Return 18811 * true -- if there is matching pending context of the sequence cleaned 18812 * at ulp; 18813 * false -- if there is no matching pending context of the sequence present 18814 * at ulp. 18815 **/ 18816 static bool 18817 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18818 { 18819 struct lpfc_hba *phba = vport->phba; 18820 int handled; 18821 18822 /* Accepting abort at ulp with SLI4 only */ 18823 if (phba->sli_rev < LPFC_SLI_REV4) 18824 return false; 18825 18826 /* Register all caring upper level protocols to attend abort */ 18827 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18828 if (handled) 18829 return true; 18830 18831 return false; 18832 } 18833 18834 /** 18835 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18836 * @phba: Pointer to HBA context object. 18837 * @cmd_iocbq: pointer to the command iocbq structure. 18838 * @rsp_iocbq: pointer to the response iocbq structure. 18839 * 18840 * This function handles the sequence abort response iocb command complete 18841 * event. It properly releases the memory allocated to the sequence abort 18842 * accept iocb. 18843 **/ 18844 static void 18845 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18846 struct lpfc_iocbq *cmd_iocbq, 18847 struct lpfc_iocbq *rsp_iocbq) 18848 { 18849 struct lpfc_nodelist *ndlp; 18850 18851 if (cmd_iocbq) { 18852 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18853 lpfc_nlp_put(ndlp); 18854 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18855 } 18856 18857 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18858 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18859 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18860 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18861 rsp_iocbq->iocb.ulpStatus, 18862 rsp_iocbq->iocb.un.ulpWord[4]); 18863 } 18864 18865 /** 18866 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18867 * @phba: Pointer to HBA context object. 18868 * @xri: xri id in transaction. 18869 * 18870 * This function validates the xri maps to the known range of XRIs allocated an 18871 * used by the driver. 18872 **/ 18873 uint16_t 18874 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18875 uint16_t xri) 18876 { 18877 uint16_t i; 18878 18879 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18880 if (xri == phba->sli4_hba.xri_ids[i]) 18881 return i; 18882 } 18883 return NO_XRI; 18884 } 18885 18886 /** 18887 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18888 * @vport: pointer to a virtual port. 18889 * @fc_hdr: pointer to a FC frame header. 18890 * @aborted: was the partially assembled receive sequence successfully aborted 18891 * 18892 * This function sends a basic response to a previous unsol sequence abort 18893 * event after aborting the sequence handling. 18894 **/ 18895 void 18896 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18897 struct fc_frame_header *fc_hdr, bool aborted) 18898 { 18899 struct lpfc_hba *phba = vport->phba; 18900 struct lpfc_iocbq *ctiocb = NULL; 18901 struct lpfc_nodelist *ndlp; 18902 uint16_t oxid, rxid, xri, lxri; 18903 uint32_t sid, fctl; 18904 IOCB_t *icmd; 18905 int rc; 18906 18907 if (!lpfc_is_link_up(phba)) 18908 return; 18909 18910 sid = sli4_sid_from_fc_hdr(fc_hdr); 18911 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18912 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18913 18914 ndlp = lpfc_findnode_did(vport, sid); 18915 if (!ndlp) { 18916 ndlp = lpfc_nlp_init(vport, sid); 18917 if (!ndlp) { 18918 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18919 "1268 Failed to allocate ndlp for " 18920 "oxid:x%x SID:x%x\n", oxid, sid); 18921 return; 18922 } 18923 /* Put ndlp onto pport node list */ 18924 lpfc_enqueue_node(vport, ndlp); 18925 } 18926 18927 /* Allocate buffer for rsp iocb */ 18928 ctiocb = lpfc_sli_get_iocbq(phba); 18929 if (!ctiocb) 18930 return; 18931 18932 /* Extract the F_CTL field from FC_HDR */ 18933 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18934 18935 icmd = &ctiocb->iocb; 18936 icmd->un.xseq64.bdl.bdeSize = 0; 18937 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18938 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18939 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18940 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18941 18942 /* Fill in the rest of iocb fields */ 18943 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18944 icmd->ulpBdeCount = 0; 18945 icmd->ulpLe = 1; 18946 icmd->ulpClass = CLASS3; 18947 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18948 ctiocb->context1 = lpfc_nlp_get(ndlp); 18949 if (!ctiocb->context1) { 18950 lpfc_sli_release_iocbq(phba, ctiocb); 18951 return; 18952 } 18953 18954 ctiocb->vport = phba->pport; 18955 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18956 ctiocb->sli4_lxritag = NO_XRI; 18957 ctiocb->sli4_xritag = NO_XRI; 18958 18959 if (fctl & FC_FC_EX_CTX) 18960 /* Exchange responder sent the abort so we 18961 * own the oxid. 18962 */ 18963 xri = oxid; 18964 else 18965 xri = rxid; 18966 lxri = lpfc_sli4_xri_inrange(phba, xri); 18967 if (lxri != NO_XRI) 18968 lpfc_set_rrq_active(phba, ndlp, lxri, 18969 (xri == oxid) ? rxid : oxid, 0); 18970 /* For BA_ABTS from exchange responder, if the logical xri with 18971 * the oxid maps to the FCP XRI range, the port no longer has 18972 * that exchange context, send a BLS_RJT. Override the IOCB for 18973 * a BA_RJT. 18974 */ 18975 if ((fctl & FC_FC_EX_CTX) && 18976 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18977 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18978 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18979 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18980 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18981 } 18982 18983 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18984 * the driver no longer has that exchange, send a BLS_RJT. Override 18985 * the IOCB for a BA_RJT. 18986 */ 18987 if (aborted == false) { 18988 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18989 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18990 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18991 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18992 } 18993 18994 if (fctl & FC_FC_EX_CTX) { 18995 /* ABTS sent by responder to CT exchange, construction 18996 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18997 * field and RX_ID from ABTS for RX_ID field. 18998 */ 18999 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 19000 } else { 19001 /* ABTS sent by initiator to CT exchange, construction 19002 * of BA_ACC will need to allocate a new XRI as for the 19003 * XRI_TAG field. 19004 */ 19005 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 19006 } 19007 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 19008 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 19009 19010 /* Xmit CT abts response on exchange <xid> */ 19011 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19012 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19013 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 19014 19015 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19016 if (rc == IOCB_ERROR) { 19017 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19018 "2925 Failed to issue CT ABTS RSP x%x on " 19019 "xri x%x, Data x%x\n", 19020 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 19021 phba->link_state); 19022 lpfc_nlp_put(ndlp); 19023 ctiocb->context1 = NULL; 19024 lpfc_sli_release_iocbq(phba, ctiocb); 19025 } 19026 } 19027 19028 /** 19029 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19030 * @vport: Pointer to the vport on which this sequence was received 19031 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19032 * 19033 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19034 * receive sequence is only partially assembed by the driver, it shall abort 19035 * the partially assembled frames for the sequence. Otherwise, if the 19036 * unsolicited receive sequence has been completely assembled and passed to 19037 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19038 * unsolicited sequence has been aborted. After that, it will issue a basic 19039 * accept to accept the abort. 19040 **/ 19041 static void 19042 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19043 struct hbq_dmabuf *dmabuf) 19044 { 19045 struct lpfc_hba *phba = vport->phba; 19046 struct fc_frame_header fc_hdr; 19047 uint32_t fctl; 19048 bool aborted; 19049 19050 /* Make a copy of fc_hdr before the dmabuf being released */ 19051 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19052 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19053 19054 if (fctl & FC_FC_EX_CTX) { 19055 /* ABTS by responder to exchange, no cleanup needed */ 19056 aborted = true; 19057 } else { 19058 /* ABTS by initiator to exchange, need to do cleanup */ 19059 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19060 if (aborted == false) 19061 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19062 } 19063 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19064 19065 if (phba->nvmet_support) { 19066 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19067 return; 19068 } 19069 19070 /* Respond with BA_ACC or BA_RJT accordingly */ 19071 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19072 } 19073 19074 /** 19075 * lpfc_seq_complete - Indicates if a sequence is complete 19076 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19077 * 19078 * This function checks the sequence, starting with the frame described by 19079 * @dmabuf, to see if all the frames associated with this sequence are present. 19080 * the frames associated with this sequence are linked to the @dmabuf using the 19081 * dbuf list. This function looks for two major things. 1) That the first frame 19082 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19083 * set. 3) That there are no holes in the sequence count. The function will 19084 * return 1 when the sequence is complete, otherwise it will return 0. 19085 **/ 19086 static int 19087 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19088 { 19089 struct fc_frame_header *hdr; 19090 struct lpfc_dmabuf *d_buf; 19091 struct hbq_dmabuf *seq_dmabuf; 19092 uint32_t fctl; 19093 int seq_count = 0; 19094 19095 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19096 /* make sure first fame of sequence has a sequence count of zero */ 19097 if (hdr->fh_seq_cnt != seq_count) 19098 return 0; 19099 fctl = (hdr->fh_f_ctl[0] << 16 | 19100 hdr->fh_f_ctl[1] << 8 | 19101 hdr->fh_f_ctl[2]); 19102 /* If last frame of sequence we can return success. */ 19103 if (fctl & FC_FC_END_SEQ) 19104 return 1; 19105 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19106 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19107 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19108 /* If there is a hole in the sequence count then fail. */ 19109 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19110 return 0; 19111 fctl = (hdr->fh_f_ctl[0] << 16 | 19112 hdr->fh_f_ctl[1] << 8 | 19113 hdr->fh_f_ctl[2]); 19114 /* If last frame of sequence we can return success. */ 19115 if (fctl & FC_FC_END_SEQ) 19116 return 1; 19117 } 19118 return 0; 19119 } 19120 19121 /** 19122 * lpfc_prep_seq - Prep sequence for ULP processing 19123 * @vport: Pointer to the vport on which this sequence was received 19124 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19125 * 19126 * This function takes a sequence, described by a list of frames, and creates 19127 * a list of iocbq structures to describe the sequence. This iocbq list will be 19128 * used to issue to the generic unsolicited sequence handler. This routine 19129 * returns a pointer to the first iocbq in the list. If the function is unable 19130 * to allocate an iocbq then it throw out the received frames that were not 19131 * able to be described and return a pointer to the first iocbq. If unable to 19132 * allocate any iocbqs (including the first) this function will return NULL. 19133 **/ 19134 static struct lpfc_iocbq * 19135 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19136 { 19137 struct hbq_dmabuf *hbq_buf; 19138 struct lpfc_dmabuf *d_buf, *n_buf; 19139 struct lpfc_iocbq *first_iocbq, *iocbq; 19140 struct fc_frame_header *fc_hdr; 19141 uint32_t sid; 19142 uint32_t len, tot_len; 19143 struct ulp_bde64 *pbde; 19144 19145 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19146 /* remove from receive buffer list */ 19147 list_del_init(&seq_dmabuf->hbuf.list); 19148 lpfc_update_rcv_time_stamp(vport); 19149 /* get the Remote Port's SID */ 19150 sid = sli4_sid_from_fc_hdr(fc_hdr); 19151 tot_len = 0; 19152 /* Get an iocbq struct to fill in. */ 19153 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19154 if (first_iocbq) { 19155 /* Initialize the first IOCB. */ 19156 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 19157 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 19158 first_iocbq->vport = vport; 19159 19160 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19161 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19162 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 19163 first_iocbq->iocb.un.rcvels.parmRo = 19164 sli4_did_from_fc_hdr(fc_hdr); 19165 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 19166 } else 19167 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 19168 first_iocbq->iocb.ulpContext = NO_XRI; 19169 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 19170 be16_to_cpu(fc_hdr->fh_ox_id); 19171 /* iocbq is prepped for internal consumption. Physical vpi. */ 19172 first_iocbq->iocb.unsli3.rcvsli3.vpi = 19173 vport->phba->vpi_ids[vport->vpi]; 19174 /* put the first buffer into the first IOCBq */ 19175 tot_len = bf_get(lpfc_rcqe_length, 19176 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19177 19178 first_iocbq->context2 = &seq_dmabuf->dbuf; 19179 first_iocbq->context3 = NULL; 19180 first_iocbq->iocb.ulpBdeCount = 1; 19181 if (tot_len > LPFC_DATA_BUF_SIZE) 19182 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19183 LPFC_DATA_BUF_SIZE; 19184 else 19185 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 19186 19187 first_iocbq->iocb.un.rcvels.remoteID = sid; 19188 19189 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19190 } 19191 iocbq = first_iocbq; 19192 /* 19193 * Each IOCBq can have two Buffers assigned, so go through the list 19194 * of buffers for this sequence and save two buffers in each IOCBq 19195 */ 19196 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19197 if (!iocbq) { 19198 lpfc_in_buf_free(vport->phba, d_buf); 19199 continue; 19200 } 19201 if (!iocbq->context3) { 19202 iocbq->context3 = d_buf; 19203 iocbq->iocb.ulpBdeCount++; 19204 /* We need to get the size out of the right CQE */ 19205 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19206 len = bf_get(lpfc_rcqe_length, 19207 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19208 pbde = (struct ulp_bde64 *) 19209 &iocbq->iocb.unsli3.sli3Words[4]; 19210 if (len > LPFC_DATA_BUF_SIZE) 19211 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 19212 else 19213 pbde->tus.f.bdeSize = len; 19214 19215 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 19216 tot_len += len; 19217 } else { 19218 iocbq = lpfc_sli_get_iocbq(vport->phba); 19219 if (!iocbq) { 19220 if (first_iocbq) { 19221 first_iocbq->iocb.ulpStatus = 19222 IOSTAT_FCP_RSP_ERROR; 19223 first_iocbq->iocb.un.ulpWord[4] = 19224 IOERR_NO_RESOURCES; 19225 } 19226 lpfc_in_buf_free(vport->phba, d_buf); 19227 continue; 19228 } 19229 /* We need to get the size out of the right CQE */ 19230 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19231 len = bf_get(lpfc_rcqe_length, 19232 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19233 iocbq->context2 = d_buf; 19234 iocbq->context3 = NULL; 19235 iocbq->iocb.ulpBdeCount = 1; 19236 if (len > LPFC_DATA_BUF_SIZE) 19237 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19238 LPFC_DATA_BUF_SIZE; 19239 else 19240 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 19241 19242 tot_len += len; 19243 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19244 19245 iocbq->iocb.un.rcvels.remoteID = sid; 19246 list_add_tail(&iocbq->list, &first_iocbq->list); 19247 } 19248 } 19249 /* Free the sequence's header buffer */ 19250 if (!first_iocbq) 19251 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19252 19253 return first_iocbq; 19254 } 19255 19256 static void 19257 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19258 struct hbq_dmabuf *seq_dmabuf) 19259 { 19260 struct fc_frame_header *fc_hdr; 19261 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19262 struct lpfc_hba *phba = vport->phba; 19263 19264 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19265 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19266 if (!iocbq) { 19267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19268 "2707 Ring %d handler: Failed to allocate " 19269 "iocb Rctl x%x Type x%x received\n", 19270 LPFC_ELS_RING, 19271 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19272 return; 19273 } 19274 if (!lpfc_complete_unsol_iocb(phba, 19275 phba->sli4_hba.els_wq->pring, 19276 iocbq, fc_hdr->fh_r_ctl, 19277 fc_hdr->fh_type)) 19278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19279 "2540 Ring %d handler: unexpected Rctl " 19280 "x%x Type x%x received\n", 19281 LPFC_ELS_RING, 19282 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19283 19284 /* Free iocb created in lpfc_prep_seq */ 19285 list_for_each_entry_safe(curr_iocb, next_iocb, 19286 &iocbq->list, list) { 19287 list_del_init(&curr_iocb->list); 19288 lpfc_sli_release_iocbq(phba, curr_iocb); 19289 } 19290 lpfc_sli_release_iocbq(phba, iocbq); 19291 } 19292 19293 static void 19294 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19295 struct lpfc_iocbq *rspiocb) 19296 { 19297 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 19298 19299 if (pcmd && pcmd->virt) 19300 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19301 kfree(pcmd); 19302 lpfc_sli_release_iocbq(phba, cmdiocb); 19303 lpfc_drain_txq(phba); 19304 } 19305 19306 static void 19307 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19308 struct hbq_dmabuf *dmabuf) 19309 { 19310 struct fc_frame_header *fc_hdr; 19311 struct lpfc_hba *phba = vport->phba; 19312 struct lpfc_iocbq *iocbq = NULL; 19313 union lpfc_wqe *wqe; 19314 struct lpfc_dmabuf *pcmd = NULL; 19315 uint32_t frame_len; 19316 int rc; 19317 unsigned long iflags; 19318 19319 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19320 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19321 19322 /* Send the received frame back */ 19323 iocbq = lpfc_sli_get_iocbq(phba); 19324 if (!iocbq) { 19325 /* Queue cq event and wakeup worker thread to process it */ 19326 spin_lock_irqsave(&phba->hbalock, iflags); 19327 list_add_tail(&dmabuf->cq_event.list, 19328 &phba->sli4_hba.sp_queue_event); 19329 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19330 spin_unlock_irqrestore(&phba->hbalock, iflags); 19331 lpfc_worker_wake_up(phba); 19332 return; 19333 } 19334 19335 /* Allocate buffer for command payload */ 19336 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19337 if (pcmd) 19338 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19339 &pcmd->phys); 19340 if (!pcmd || !pcmd->virt) 19341 goto exit; 19342 19343 INIT_LIST_HEAD(&pcmd->list); 19344 19345 /* copyin the payload */ 19346 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19347 19348 /* fill in BDE's for command */ 19349 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 19350 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 19351 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 19352 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 19353 19354 iocbq->context2 = pcmd; 19355 iocbq->vport = vport; 19356 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 19357 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 19358 19359 /* 19360 * Setup rest of the iocb as though it were a WQE 19361 * Build the SEND_FRAME WQE 19362 */ 19363 wqe = (union lpfc_wqe *)&iocbq->iocb; 19364 19365 wqe->send_frame.frame_len = frame_len; 19366 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 19367 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 19368 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 19369 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 19370 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 19371 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 19372 19373 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 19374 iocbq->iocb.ulpLe = 1; 19375 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 19376 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19377 if (rc == IOCB_ERROR) 19378 goto exit; 19379 19380 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19381 return; 19382 19383 exit: 19384 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19385 "2023 Unable to process MDS loopback frame\n"); 19386 if (pcmd && pcmd->virt) 19387 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19388 kfree(pcmd); 19389 if (iocbq) 19390 lpfc_sli_release_iocbq(phba, iocbq); 19391 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19392 } 19393 19394 /** 19395 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19396 * @phba: Pointer to HBA context object. 19397 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19398 * 19399 * This function is called with no lock held. This function processes all 19400 * the received buffers and gives it to upper layers when a received buffer 19401 * indicates that it is the final frame in the sequence. The interrupt 19402 * service routine processes received buffers at interrupt contexts. 19403 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19404 * appropriate receive function when the final frame in a sequence is received. 19405 **/ 19406 void 19407 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19408 struct hbq_dmabuf *dmabuf) 19409 { 19410 struct hbq_dmabuf *seq_dmabuf; 19411 struct fc_frame_header *fc_hdr; 19412 struct lpfc_vport *vport; 19413 uint32_t fcfi; 19414 uint32_t did; 19415 19416 /* Process each received buffer */ 19417 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19418 19419 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19420 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19421 vport = phba->pport; 19422 /* Handle MDS Loopback frames */ 19423 if (!(phba->pport->load_flag & FC_UNLOADING)) 19424 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19425 else 19426 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19427 return; 19428 } 19429 19430 /* check to see if this a valid type of frame */ 19431 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19432 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19433 return; 19434 } 19435 19436 if ((bf_get(lpfc_cqe_code, 19437 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19438 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19439 &dmabuf->cq_event.cqe.rcqe_cmpl); 19440 else 19441 fcfi = bf_get(lpfc_rcqe_fcf_id, 19442 &dmabuf->cq_event.cqe.rcqe_cmpl); 19443 19444 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19445 vport = phba->pport; 19446 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19447 "2023 MDS Loopback %d bytes\n", 19448 bf_get(lpfc_rcqe_length, 19449 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19450 /* Handle MDS Loopback frames */ 19451 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19452 return; 19453 } 19454 19455 /* d_id this frame is directed to */ 19456 did = sli4_did_from_fc_hdr(fc_hdr); 19457 19458 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19459 if (!vport) { 19460 /* throw out the frame */ 19461 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19462 return; 19463 } 19464 19465 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19466 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19467 (did != Fabric_DID)) { 19468 /* 19469 * Throw out the frame if we are not pt2pt. 19470 * The pt2pt protocol allows for discovery frames 19471 * to be received without a registered VPI. 19472 */ 19473 if (!(vport->fc_flag & FC_PT2PT) || 19474 (phba->link_state == LPFC_HBA_READY)) { 19475 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19476 return; 19477 } 19478 } 19479 19480 /* Handle the basic abort sequence (BA_ABTS) event */ 19481 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19482 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19483 return; 19484 } 19485 19486 /* Link this frame */ 19487 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19488 if (!seq_dmabuf) { 19489 /* unable to add frame to vport - throw it out */ 19490 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19491 return; 19492 } 19493 /* If not last frame in sequence continue processing frames. */ 19494 if (!lpfc_seq_complete(seq_dmabuf)) 19495 return; 19496 19497 /* Send the complete sequence to the upper layer protocol */ 19498 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19499 } 19500 19501 /** 19502 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19503 * @phba: pointer to lpfc hba data structure. 19504 * 19505 * This routine is invoked to post rpi header templates to the 19506 * HBA consistent with the SLI-4 interface spec. This routine 19507 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19508 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19509 * 19510 * This routine does not require any locks. It's usage is expected 19511 * to be driver load or reset recovery when the driver is 19512 * sequential. 19513 * 19514 * Return codes 19515 * 0 - successful 19516 * -EIO - The mailbox failed to complete successfully. 19517 * When this error occurs, the driver is not guaranteed 19518 * to have any rpi regions posted to the device and 19519 * must either attempt to repost the regions or take a 19520 * fatal error. 19521 **/ 19522 int 19523 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19524 { 19525 struct lpfc_rpi_hdr *rpi_page; 19526 uint32_t rc = 0; 19527 uint16_t lrpi = 0; 19528 19529 /* SLI4 ports that support extents do not require RPI headers. */ 19530 if (!phba->sli4_hba.rpi_hdrs_in_use) 19531 goto exit; 19532 if (phba->sli4_hba.extents_in_use) 19533 return -EIO; 19534 19535 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19536 /* 19537 * Assign the rpi headers a physical rpi only if the driver 19538 * has not initialized those resources. A port reset only 19539 * needs the headers posted. 19540 */ 19541 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19542 LPFC_RPI_RSRC_RDY) 19543 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19544 19545 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19546 if (rc != MBX_SUCCESS) { 19547 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19548 "2008 Error %d posting all rpi " 19549 "headers\n", rc); 19550 rc = -EIO; 19551 break; 19552 } 19553 } 19554 19555 exit: 19556 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19557 LPFC_RPI_RSRC_RDY); 19558 return rc; 19559 } 19560 19561 /** 19562 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19563 * @phba: pointer to lpfc hba data structure. 19564 * @rpi_page: pointer to the rpi memory region. 19565 * 19566 * This routine is invoked to post a single rpi header to the 19567 * HBA consistent with the SLI-4 interface spec. This memory region 19568 * maps up to 64 rpi context regions. 19569 * 19570 * Return codes 19571 * 0 - successful 19572 * -ENOMEM - No available memory 19573 * -EIO - The mailbox failed to complete successfully. 19574 **/ 19575 int 19576 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19577 { 19578 LPFC_MBOXQ_t *mboxq; 19579 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19580 uint32_t rc = 0; 19581 uint32_t shdr_status, shdr_add_status; 19582 union lpfc_sli4_cfg_shdr *shdr; 19583 19584 /* SLI4 ports that support extents do not require RPI headers. */ 19585 if (!phba->sli4_hba.rpi_hdrs_in_use) 19586 return rc; 19587 if (phba->sli4_hba.extents_in_use) 19588 return -EIO; 19589 19590 /* The port is notified of the header region via a mailbox command. */ 19591 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19592 if (!mboxq) { 19593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19594 "2001 Unable to allocate memory for issuing " 19595 "SLI_CONFIG_SPECIAL mailbox command\n"); 19596 return -ENOMEM; 19597 } 19598 19599 /* Post all rpi memory regions to the port. */ 19600 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19601 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19602 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19603 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19604 sizeof(struct lpfc_sli4_cfg_mhdr), 19605 LPFC_SLI4_MBX_EMBED); 19606 19607 19608 /* Post the physical rpi to the port for this rpi header. */ 19609 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19610 rpi_page->start_rpi); 19611 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19612 hdr_tmpl, rpi_page->page_count); 19613 19614 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19615 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19616 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19617 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19618 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19619 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19620 mempool_free(mboxq, phba->mbox_mem_pool); 19621 if (shdr_status || shdr_add_status || rc) { 19622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19623 "2514 POST_RPI_HDR mailbox failed with " 19624 "status x%x add_status x%x, mbx status x%x\n", 19625 shdr_status, shdr_add_status, rc); 19626 rc = -ENXIO; 19627 } else { 19628 /* 19629 * The next_rpi stores the next logical module-64 rpi value used 19630 * to post physical rpis in subsequent rpi postings. 19631 */ 19632 spin_lock_irq(&phba->hbalock); 19633 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19634 spin_unlock_irq(&phba->hbalock); 19635 } 19636 return rc; 19637 } 19638 19639 /** 19640 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19641 * @phba: pointer to lpfc hba data structure. 19642 * 19643 * This routine is invoked to post rpi header templates to the 19644 * HBA consistent with the SLI-4 interface spec. This routine 19645 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19646 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19647 * 19648 * Returns 19649 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19650 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19651 **/ 19652 int 19653 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19654 { 19655 unsigned long rpi; 19656 uint16_t max_rpi, rpi_limit; 19657 uint16_t rpi_remaining, lrpi = 0; 19658 struct lpfc_rpi_hdr *rpi_hdr; 19659 unsigned long iflag; 19660 19661 /* 19662 * Fetch the next logical rpi. Because this index is logical, 19663 * the driver starts at 0 each time. 19664 */ 19665 spin_lock_irqsave(&phba->hbalock, iflag); 19666 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19667 rpi_limit = phba->sli4_hba.next_rpi; 19668 19669 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19670 if (rpi >= rpi_limit) 19671 rpi = LPFC_RPI_ALLOC_ERROR; 19672 else { 19673 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19674 phba->sli4_hba.max_cfg_param.rpi_used++; 19675 phba->sli4_hba.rpi_count++; 19676 } 19677 lpfc_printf_log(phba, KERN_INFO, 19678 LOG_NODE | LOG_DISCOVERY, 19679 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19680 (int) rpi, max_rpi, rpi_limit); 19681 19682 /* 19683 * Don't try to allocate more rpi header regions if the device limit 19684 * has been exhausted. 19685 */ 19686 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19687 (phba->sli4_hba.rpi_count >= max_rpi)) { 19688 spin_unlock_irqrestore(&phba->hbalock, iflag); 19689 return rpi; 19690 } 19691 19692 /* 19693 * RPI header postings are not required for SLI4 ports capable of 19694 * extents. 19695 */ 19696 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19697 spin_unlock_irqrestore(&phba->hbalock, iflag); 19698 return rpi; 19699 } 19700 19701 /* 19702 * If the driver is running low on rpi resources, allocate another 19703 * page now. Note that the next_rpi value is used because 19704 * it represents how many are actually in use whereas max_rpi notes 19705 * how many are supported max by the device. 19706 */ 19707 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19708 spin_unlock_irqrestore(&phba->hbalock, iflag); 19709 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19710 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19711 if (!rpi_hdr) { 19712 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19713 "2002 Error Could not grow rpi " 19714 "count\n"); 19715 } else { 19716 lrpi = rpi_hdr->start_rpi; 19717 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19718 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19719 } 19720 } 19721 19722 return rpi; 19723 } 19724 19725 /** 19726 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19727 * @phba: pointer to lpfc hba data structure. 19728 * @rpi: rpi to free 19729 * 19730 * This routine is invoked to release an rpi to the pool of 19731 * available rpis maintained by the driver. 19732 **/ 19733 static void 19734 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19735 { 19736 /* 19737 * if the rpi value indicates a prior unreg has already 19738 * been done, skip the unreg. 19739 */ 19740 if (rpi == LPFC_RPI_ALLOC_ERROR) 19741 return; 19742 19743 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19744 phba->sli4_hba.rpi_count--; 19745 phba->sli4_hba.max_cfg_param.rpi_used--; 19746 } else { 19747 lpfc_printf_log(phba, KERN_INFO, 19748 LOG_NODE | LOG_DISCOVERY, 19749 "2016 rpi %x not inuse\n", 19750 rpi); 19751 } 19752 } 19753 19754 /** 19755 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19756 * @phba: pointer to lpfc hba data structure. 19757 * @rpi: rpi to free 19758 * 19759 * This routine is invoked to release an rpi to the pool of 19760 * available rpis maintained by the driver. 19761 **/ 19762 void 19763 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19764 { 19765 spin_lock_irq(&phba->hbalock); 19766 __lpfc_sli4_free_rpi(phba, rpi); 19767 spin_unlock_irq(&phba->hbalock); 19768 } 19769 19770 /** 19771 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19772 * @phba: pointer to lpfc hba data structure. 19773 * 19774 * This routine is invoked to remove the memory region that 19775 * provided rpi via a bitmask. 19776 **/ 19777 void 19778 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19779 { 19780 kfree(phba->sli4_hba.rpi_bmask); 19781 kfree(phba->sli4_hba.rpi_ids); 19782 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19783 } 19784 19785 /** 19786 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19787 * @ndlp: pointer to lpfc nodelist data structure. 19788 * @cmpl: completion call-back. 19789 * @arg: data to load as MBox 'caller buffer information' 19790 * 19791 * This routine is invoked to remove the memory region that 19792 * provided rpi via a bitmask. 19793 **/ 19794 int 19795 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19796 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19797 { 19798 LPFC_MBOXQ_t *mboxq; 19799 struct lpfc_hba *phba = ndlp->phba; 19800 int rc; 19801 19802 /* The port is notified of the header region via a mailbox command. */ 19803 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19804 if (!mboxq) 19805 return -ENOMEM; 19806 19807 /* If cmpl assigned, then this nlp_get pairs with 19808 * lpfc_mbx_cmpl_resume_rpi. 19809 * 19810 * Else cmpl is NULL, then this nlp_get pairs with 19811 * lpfc_sli_def_mbox_cmpl. 19812 */ 19813 if (!lpfc_nlp_get(ndlp)) { 19814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19815 "2122 %s: Failed to get nlp ref\n", 19816 __func__); 19817 mempool_free(mboxq, phba->mbox_mem_pool); 19818 return -EIO; 19819 } 19820 19821 /* Post all rpi memory regions to the port. */ 19822 lpfc_resume_rpi(mboxq, ndlp); 19823 if (cmpl) { 19824 mboxq->mbox_cmpl = cmpl; 19825 mboxq->ctx_buf = arg; 19826 } else 19827 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19828 mboxq->ctx_ndlp = ndlp; 19829 mboxq->vport = ndlp->vport; 19830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19831 if (rc == MBX_NOT_FINISHED) { 19832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19833 "2010 Resume RPI Mailbox failed " 19834 "status %d, mbxStatus x%x\n", rc, 19835 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19836 lpfc_nlp_put(ndlp); 19837 mempool_free(mboxq, phba->mbox_mem_pool); 19838 return -EIO; 19839 } 19840 return 0; 19841 } 19842 19843 /** 19844 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19845 * @vport: Pointer to the vport for which the vpi is being initialized 19846 * 19847 * This routine is invoked to activate a vpi with the port. 19848 * 19849 * Returns: 19850 * 0 success 19851 * -Evalue otherwise 19852 **/ 19853 int 19854 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19855 { 19856 LPFC_MBOXQ_t *mboxq; 19857 int rc = 0; 19858 int retval = MBX_SUCCESS; 19859 uint32_t mbox_tmo; 19860 struct lpfc_hba *phba = vport->phba; 19861 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19862 if (!mboxq) 19863 return -ENOMEM; 19864 lpfc_init_vpi(phba, mboxq, vport->vpi); 19865 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19866 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19867 if (rc != MBX_SUCCESS) { 19868 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19869 "2022 INIT VPI Mailbox failed " 19870 "status %d, mbxStatus x%x\n", rc, 19871 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19872 retval = -EIO; 19873 } 19874 if (rc != MBX_TIMEOUT) 19875 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19876 19877 return retval; 19878 } 19879 19880 /** 19881 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19882 * @phba: pointer to lpfc hba data structure. 19883 * @mboxq: Pointer to mailbox object. 19884 * 19885 * This routine is invoked to manually add a single FCF record. The caller 19886 * must pass a completely initialized FCF_Record. This routine takes 19887 * care of the nonembedded mailbox operations. 19888 **/ 19889 static void 19890 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19891 { 19892 void *virt_addr; 19893 union lpfc_sli4_cfg_shdr *shdr; 19894 uint32_t shdr_status, shdr_add_status; 19895 19896 virt_addr = mboxq->sge_array->addr[0]; 19897 /* The IOCTL status is embedded in the mailbox subheader. */ 19898 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19899 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19900 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19901 19902 if ((shdr_status || shdr_add_status) && 19903 (shdr_status != STATUS_FCF_IN_USE)) 19904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19905 "2558 ADD_FCF_RECORD mailbox failed with " 19906 "status x%x add_status x%x\n", 19907 shdr_status, shdr_add_status); 19908 19909 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19910 } 19911 19912 /** 19913 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19914 * @phba: pointer to lpfc hba data structure. 19915 * @fcf_record: pointer to the initialized fcf record to add. 19916 * 19917 * This routine is invoked to manually add a single FCF record. The caller 19918 * must pass a completely initialized FCF_Record. This routine takes 19919 * care of the nonembedded mailbox operations. 19920 **/ 19921 int 19922 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19923 { 19924 int rc = 0; 19925 LPFC_MBOXQ_t *mboxq; 19926 uint8_t *bytep; 19927 void *virt_addr; 19928 struct lpfc_mbx_sge sge; 19929 uint32_t alloc_len, req_len; 19930 uint32_t fcfindex; 19931 19932 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19933 if (!mboxq) { 19934 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19935 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19936 return -ENOMEM; 19937 } 19938 19939 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19940 sizeof(uint32_t); 19941 19942 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19943 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19944 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19945 req_len, LPFC_SLI4_MBX_NEMBED); 19946 if (alloc_len < req_len) { 19947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19948 "2523 Allocated DMA memory size (x%x) is " 19949 "less than the requested DMA memory " 19950 "size (x%x)\n", alloc_len, req_len); 19951 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19952 return -ENOMEM; 19953 } 19954 19955 /* 19956 * Get the first SGE entry from the non-embedded DMA memory. This 19957 * routine only uses a single SGE. 19958 */ 19959 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19960 virt_addr = mboxq->sge_array->addr[0]; 19961 /* 19962 * Configure the FCF record for FCFI 0. This is the driver's 19963 * hardcoded default and gets used in nonFIP mode. 19964 */ 19965 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19966 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19967 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19968 19969 /* 19970 * Copy the fcf_index and the FCF Record Data. The data starts after 19971 * the FCoE header plus word10. The data copy needs to be endian 19972 * correct. 19973 */ 19974 bytep += sizeof(uint32_t); 19975 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19976 mboxq->vport = phba->pport; 19977 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19979 if (rc == MBX_NOT_FINISHED) { 19980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19981 "2515 ADD_FCF_RECORD mailbox failed with " 19982 "status 0x%x\n", rc); 19983 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19984 rc = -EIO; 19985 } else 19986 rc = 0; 19987 19988 return rc; 19989 } 19990 19991 /** 19992 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19993 * @phba: pointer to lpfc hba data structure. 19994 * @fcf_record: pointer to the fcf record to write the default data. 19995 * @fcf_index: FCF table entry index. 19996 * 19997 * This routine is invoked to build the driver's default FCF record. The 19998 * values used are hardcoded. This routine handles memory initialization. 19999 * 20000 **/ 20001 void 20002 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20003 struct fcf_record *fcf_record, 20004 uint16_t fcf_index) 20005 { 20006 memset(fcf_record, 0, sizeof(struct fcf_record)); 20007 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20008 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20009 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20010 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20011 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20012 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20013 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20014 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20015 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20016 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20017 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20018 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20019 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20020 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20021 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20022 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20023 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20024 /* Set the VLAN bit map */ 20025 if (phba->valid_vlan) { 20026 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20027 = 1 << (phba->vlan_id % 8); 20028 } 20029 } 20030 20031 /** 20032 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20033 * @phba: pointer to lpfc hba data structure. 20034 * @fcf_index: FCF table entry offset. 20035 * 20036 * This routine is invoked to scan the entire FCF table by reading FCF 20037 * record and processing it one at a time starting from the @fcf_index 20038 * for initial FCF discovery or fast FCF failover rediscovery. 20039 * 20040 * Return 0 if the mailbox command is submitted successfully, none 0 20041 * otherwise. 20042 **/ 20043 int 20044 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20045 { 20046 int rc = 0, error; 20047 LPFC_MBOXQ_t *mboxq; 20048 20049 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20050 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20051 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20052 if (!mboxq) { 20053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20054 "2000 Failed to allocate mbox for " 20055 "READ_FCF cmd\n"); 20056 error = -ENOMEM; 20057 goto fail_fcf_scan; 20058 } 20059 /* Construct the read FCF record mailbox command */ 20060 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20061 if (rc) { 20062 error = -EINVAL; 20063 goto fail_fcf_scan; 20064 } 20065 /* Issue the mailbox command asynchronously */ 20066 mboxq->vport = phba->pport; 20067 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20068 20069 spin_lock_irq(&phba->hbalock); 20070 phba->hba_flag |= FCF_TS_INPROG; 20071 spin_unlock_irq(&phba->hbalock); 20072 20073 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20074 if (rc == MBX_NOT_FINISHED) 20075 error = -EIO; 20076 else { 20077 /* Reset eligible FCF count for new scan */ 20078 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20079 phba->fcf.eligible_fcf_cnt = 0; 20080 error = 0; 20081 } 20082 fail_fcf_scan: 20083 if (error) { 20084 if (mboxq) 20085 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20086 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20087 spin_lock_irq(&phba->hbalock); 20088 phba->hba_flag &= ~FCF_TS_INPROG; 20089 spin_unlock_irq(&phba->hbalock); 20090 } 20091 return error; 20092 } 20093 20094 /** 20095 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20096 * @phba: pointer to lpfc hba data structure. 20097 * @fcf_index: FCF table entry offset. 20098 * 20099 * This routine is invoked to read an FCF record indicated by @fcf_index 20100 * and to use it for FLOGI roundrobin FCF failover. 20101 * 20102 * Return 0 if the mailbox command is submitted successfully, none 0 20103 * otherwise. 20104 **/ 20105 int 20106 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20107 { 20108 int rc = 0, error; 20109 LPFC_MBOXQ_t *mboxq; 20110 20111 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20112 if (!mboxq) { 20113 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20114 "2763 Failed to allocate mbox for " 20115 "READ_FCF cmd\n"); 20116 error = -ENOMEM; 20117 goto fail_fcf_read; 20118 } 20119 /* Construct the read FCF record mailbox command */ 20120 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20121 if (rc) { 20122 error = -EINVAL; 20123 goto fail_fcf_read; 20124 } 20125 /* Issue the mailbox command asynchronously */ 20126 mboxq->vport = phba->pport; 20127 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20128 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20129 if (rc == MBX_NOT_FINISHED) 20130 error = -EIO; 20131 else 20132 error = 0; 20133 20134 fail_fcf_read: 20135 if (error && mboxq) 20136 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20137 return error; 20138 } 20139 20140 /** 20141 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20142 * @phba: pointer to lpfc hba data structure. 20143 * @fcf_index: FCF table entry offset. 20144 * 20145 * This routine is invoked to read an FCF record indicated by @fcf_index to 20146 * determine whether it's eligible for FLOGI roundrobin failover list. 20147 * 20148 * Return 0 if the mailbox command is submitted successfully, none 0 20149 * otherwise. 20150 **/ 20151 int 20152 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20153 { 20154 int rc = 0, error; 20155 LPFC_MBOXQ_t *mboxq; 20156 20157 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20158 if (!mboxq) { 20159 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20160 "2758 Failed to allocate mbox for " 20161 "READ_FCF cmd\n"); 20162 error = -ENOMEM; 20163 goto fail_fcf_read; 20164 } 20165 /* Construct the read FCF record mailbox command */ 20166 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20167 if (rc) { 20168 error = -EINVAL; 20169 goto fail_fcf_read; 20170 } 20171 /* Issue the mailbox command asynchronously */ 20172 mboxq->vport = phba->pport; 20173 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20174 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20175 if (rc == MBX_NOT_FINISHED) 20176 error = -EIO; 20177 else 20178 error = 0; 20179 20180 fail_fcf_read: 20181 if (error && mboxq) 20182 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20183 return error; 20184 } 20185 20186 /** 20187 * lpfc_check_next_fcf_pri_level 20188 * @phba: pointer to the lpfc_hba struct for this port. 20189 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20190 * routine when the rr_bmask is empty. The FCF indecies are put into the 20191 * rr_bmask based on their priority level. Starting from the highest priority 20192 * to the lowest. The most likely FCF candidate will be in the highest 20193 * priority group. When this routine is called it searches the fcf_pri list for 20194 * next lowest priority group and repopulates the rr_bmask with only those 20195 * fcf_indexes. 20196 * returns: 20197 * 1=success 0=failure 20198 **/ 20199 static int 20200 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20201 { 20202 uint16_t next_fcf_pri; 20203 uint16_t last_index; 20204 struct lpfc_fcf_pri *fcf_pri; 20205 int rc; 20206 int ret = 0; 20207 20208 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20209 LPFC_SLI4_FCF_TBL_INDX_MAX); 20210 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20211 "3060 Last IDX %d\n", last_index); 20212 20213 /* Verify the priority list has 2 or more entries */ 20214 spin_lock_irq(&phba->hbalock); 20215 if (list_empty(&phba->fcf.fcf_pri_list) || 20216 list_is_singular(&phba->fcf.fcf_pri_list)) { 20217 spin_unlock_irq(&phba->hbalock); 20218 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20219 "3061 Last IDX %d\n", last_index); 20220 return 0; /* Empty rr list */ 20221 } 20222 spin_unlock_irq(&phba->hbalock); 20223 20224 next_fcf_pri = 0; 20225 /* 20226 * Clear the rr_bmask and set all of the bits that are at this 20227 * priority. 20228 */ 20229 memset(phba->fcf.fcf_rr_bmask, 0, 20230 sizeof(*phba->fcf.fcf_rr_bmask)); 20231 spin_lock_irq(&phba->hbalock); 20232 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20233 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20234 continue; 20235 /* 20236 * the 1st priority that has not FLOGI failed 20237 * will be the highest. 20238 */ 20239 if (!next_fcf_pri) 20240 next_fcf_pri = fcf_pri->fcf_rec.priority; 20241 spin_unlock_irq(&phba->hbalock); 20242 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20243 rc = lpfc_sli4_fcf_rr_index_set(phba, 20244 fcf_pri->fcf_rec.fcf_index); 20245 if (rc) 20246 return 0; 20247 } 20248 spin_lock_irq(&phba->hbalock); 20249 } 20250 /* 20251 * if next_fcf_pri was not set above and the list is not empty then 20252 * we have failed flogis on all of them. So reset flogi failed 20253 * and start at the beginning. 20254 */ 20255 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20256 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20257 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20258 /* 20259 * the 1st priority that has not FLOGI failed 20260 * will be the highest. 20261 */ 20262 if (!next_fcf_pri) 20263 next_fcf_pri = fcf_pri->fcf_rec.priority; 20264 spin_unlock_irq(&phba->hbalock); 20265 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20266 rc = lpfc_sli4_fcf_rr_index_set(phba, 20267 fcf_pri->fcf_rec.fcf_index); 20268 if (rc) 20269 return 0; 20270 } 20271 spin_lock_irq(&phba->hbalock); 20272 } 20273 } else 20274 ret = 1; 20275 spin_unlock_irq(&phba->hbalock); 20276 20277 return ret; 20278 } 20279 /** 20280 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20281 * @phba: pointer to lpfc hba data structure. 20282 * 20283 * This routine is to get the next eligible FCF record index in a round 20284 * robin fashion. If the next eligible FCF record index equals to the 20285 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20286 * shall be returned, otherwise, the next eligible FCF record's index 20287 * shall be returned. 20288 **/ 20289 uint16_t 20290 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20291 { 20292 uint16_t next_fcf_index; 20293 20294 initial_priority: 20295 /* Search start from next bit of currently registered FCF index */ 20296 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20297 20298 next_priority: 20299 /* Determine the next fcf index to check */ 20300 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20301 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20302 LPFC_SLI4_FCF_TBL_INDX_MAX, 20303 next_fcf_index); 20304 20305 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20306 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20307 /* 20308 * If we have wrapped then we need to clear the bits that 20309 * have been tested so that we can detect when we should 20310 * change the priority level. 20311 */ 20312 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20313 LPFC_SLI4_FCF_TBL_INDX_MAX); 20314 } 20315 20316 20317 /* Check roundrobin failover list empty condition */ 20318 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20319 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20320 /* 20321 * If next fcf index is not found check if there are lower 20322 * Priority level fcf's in the fcf_priority list. 20323 * Set up the rr_bmask with all of the avaiable fcf bits 20324 * at that level and continue the selection process. 20325 */ 20326 if (lpfc_check_next_fcf_pri_level(phba)) 20327 goto initial_priority; 20328 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20329 "2844 No roundrobin failover FCF available\n"); 20330 20331 return LPFC_FCOE_FCF_NEXT_NONE; 20332 } 20333 20334 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20335 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20336 LPFC_FCF_FLOGI_FAILED) { 20337 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20338 return LPFC_FCOE_FCF_NEXT_NONE; 20339 20340 goto next_priority; 20341 } 20342 20343 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20344 "2845 Get next roundrobin failover FCF (x%x)\n", 20345 next_fcf_index); 20346 20347 return next_fcf_index; 20348 } 20349 20350 /** 20351 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20352 * @phba: pointer to lpfc hba data structure. 20353 * @fcf_index: index into the FCF table to 'set' 20354 * 20355 * This routine sets the FCF record index in to the eligible bmask for 20356 * roundrobin failover search. It checks to make sure that the index 20357 * does not go beyond the range of the driver allocated bmask dimension 20358 * before setting the bit. 20359 * 20360 * Returns 0 if the index bit successfully set, otherwise, it returns 20361 * -EINVAL. 20362 **/ 20363 int 20364 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20365 { 20366 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20367 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20368 "2610 FCF (x%x) reached driver's book " 20369 "keeping dimension:x%x\n", 20370 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20371 return -EINVAL; 20372 } 20373 /* Set the eligible FCF record index bmask */ 20374 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20375 20376 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20377 "2790 Set FCF (x%x) to roundrobin FCF failover " 20378 "bmask\n", fcf_index); 20379 20380 return 0; 20381 } 20382 20383 /** 20384 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20385 * @phba: pointer to lpfc hba data structure. 20386 * @fcf_index: index into the FCF table to 'clear' 20387 * 20388 * This routine clears the FCF record index from the eligible bmask for 20389 * roundrobin failover search. It checks to make sure that the index 20390 * does not go beyond the range of the driver allocated bmask dimension 20391 * before clearing the bit. 20392 **/ 20393 void 20394 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20395 { 20396 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20397 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20398 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20399 "2762 FCF (x%x) reached driver's book " 20400 "keeping dimension:x%x\n", 20401 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20402 return; 20403 } 20404 /* Clear the eligible FCF record index bmask */ 20405 spin_lock_irq(&phba->hbalock); 20406 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20407 list) { 20408 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20409 list_del_init(&fcf_pri->list); 20410 break; 20411 } 20412 } 20413 spin_unlock_irq(&phba->hbalock); 20414 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20415 20416 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20417 "2791 Clear FCF (x%x) from roundrobin failover " 20418 "bmask\n", fcf_index); 20419 } 20420 20421 /** 20422 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20423 * @phba: pointer to lpfc hba data structure. 20424 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20425 * 20426 * This routine is the completion routine for the rediscover FCF table mailbox 20427 * command. If the mailbox command returned failure, it will try to stop the 20428 * FCF rediscover wait timer. 20429 **/ 20430 static void 20431 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20432 { 20433 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20434 uint32_t shdr_status, shdr_add_status; 20435 20436 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20437 20438 shdr_status = bf_get(lpfc_mbox_hdr_status, 20439 &redisc_fcf->header.cfg_shdr.response); 20440 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20441 &redisc_fcf->header.cfg_shdr.response); 20442 if (shdr_status || shdr_add_status) { 20443 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20444 "2746 Requesting for FCF rediscovery failed " 20445 "status x%x add_status x%x\n", 20446 shdr_status, shdr_add_status); 20447 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20448 spin_lock_irq(&phba->hbalock); 20449 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20450 spin_unlock_irq(&phba->hbalock); 20451 /* 20452 * CVL event triggered FCF rediscover request failed, 20453 * last resort to re-try current registered FCF entry. 20454 */ 20455 lpfc_retry_pport_discovery(phba); 20456 } else { 20457 spin_lock_irq(&phba->hbalock); 20458 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20459 spin_unlock_irq(&phba->hbalock); 20460 /* 20461 * DEAD FCF event triggered FCF rediscover request 20462 * failed, last resort to fail over as a link down 20463 * to FCF registration. 20464 */ 20465 lpfc_sli4_fcf_dead_failthrough(phba); 20466 } 20467 } else { 20468 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20469 "2775 Start FCF rediscover quiescent timer\n"); 20470 /* 20471 * Start FCF rediscovery wait timer for pending FCF 20472 * before rescan FCF record table. 20473 */ 20474 lpfc_fcf_redisc_wait_start_timer(phba); 20475 } 20476 20477 mempool_free(mbox, phba->mbox_mem_pool); 20478 } 20479 20480 /** 20481 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20482 * @phba: pointer to lpfc hba data structure. 20483 * 20484 * This routine is invoked to request for rediscovery of the entire FCF table 20485 * by the port. 20486 **/ 20487 int 20488 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20489 { 20490 LPFC_MBOXQ_t *mbox; 20491 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20492 int rc, length; 20493 20494 /* Cancel retry delay timers to all vports before FCF rediscover */ 20495 lpfc_cancel_all_vport_retry_delay_timer(phba); 20496 20497 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20498 if (!mbox) { 20499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20500 "2745 Failed to allocate mbox for " 20501 "requesting FCF rediscover.\n"); 20502 return -ENOMEM; 20503 } 20504 20505 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20506 sizeof(struct lpfc_sli4_cfg_mhdr)); 20507 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20508 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20509 length, LPFC_SLI4_MBX_EMBED); 20510 20511 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20512 /* Set count to 0 for invalidating the entire FCF database */ 20513 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20514 20515 /* Issue the mailbox command asynchronously */ 20516 mbox->vport = phba->pport; 20517 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20518 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20519 20520 if (rc == MBX_NOT_FINISHED) { 20521 mempool_free(mbox, phba->mbox_mem_pool); 20522 return -EIO; 20523 } 20524 return 0; 20525 } 20526 20527 /** 20528 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20529 * @phba: pointer to lpfc hba data structure. 20530 * 20531 * This function is the failover routine as a last resort to the FCF DEAD 20532 * event when driver failed to perform fast FCF failover. 20533 **/ 20534 void 20535 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20536 { 20537 uint32_t link_state; 20538 20539 /* 20540 * Last resort as FCF DEAD event failover will treat this as 20541 * a link down, but save the link state because we don't want 20542 * it to be changed to Link Down unless it is already down. 20543 */ 20544 link_state = phba->link_state; 20545 lpfc_linkdown(phba); 20546 phba->link_state = link_state; 20547 20548 /* Unregister FCF if no devices connected to it */ 20549 lpfc_unregister_unused_fcf(phba); 20550 } 20551 20552 /** 20553 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20554 * @phba: pointer to lpfc hba data structure. 20555 * @rgn23_data: pointer to configure region 23 data. 20556 * 20557 * This function gets SLI3 port configure region 23 data through memory dump 20558 * mailbox command. When it successfully retrieves data, the size of the data 20559 * will be returned, otherwise, 0 will be returned. 20560 **/ 20561 static uint32_t 20562 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20563 { 20564 LPFC_MBOXQ_t *pmb = NULL; 20565 MAILBOX_t *mb; 20566 uint32_t offset = 0; 20567 int rc; 20568 20569 if (!rgn23_data) 20570 return 0; 20571 20572 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20573 if (!pmb) { 20574 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20575 "2600 failed to allocate mailbox memory\n"); 20576 return 0; 20577 } 20578 mb = &pmb->u.mb; 20579 20580 do { 20581 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20582 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20583 20584 if (rc != MBX_SUCCESS) { 20585 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20586 "2601 failed to read config " 20587 "region 23, rc 0x%x Status 0x%x\n", 20588 rc, mb->mbxStatus); 20589 mb->un.varDmp.word_cnt = 0; 20590 } 20591 /* 20592 * dump mem may return a zero when finished or we got a 20593 * mailbox error, either way we are done. 20594 */ 20595 if (mb->un.varDmp.word_cnt == 0) 20596 break; 20597 20598 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20599 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20600 20601 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20602 rgn23_data + offset, 20603 mb->un.varDmp.word_cnt); 20604 offset += mb->un.varDmp.word_cnt; 20605 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20606 20607 mempool_free(pmb, phba->mbox_mem_pool); 20608 return offset; 20609 } 20610 20611 /** 20612 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20613 * @phba: pointer to lpfc hba data structure. 20614 * @rgn23_data: pointer to configure region 23 data. 20615 * 20616 * This function gets SLI4 port configure region 23 data through memory dump 20617 * mailbox command. When it successfully retrieves data, the size of the data 20618 * will be returned, otherwise, 0 will be returned. 20619 **/ 20620 static uint32_t 20621 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20622 { 20623 LPFC_MBOXQ_t *mboxq = NULL; 20624 struct lpfc_dmabuf *mp = NULL; 20625 struct lpfc_mqe *mqe; 20626 uint32_t data_length = 0; 20627 int rc; 20628 20629 if (!rgn23_data) 20630 return 0; 20631 20632 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20633 if (!mboxq) { 20634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20635 "3105 failed to allocate mailbox memory\n"); 20636 return 0; 20637 } 20638 20639 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20640 goto out; 20641 mqe = &mboxq->u.mqe; 20642 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20643 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20644 if (rc) 20645 goto out; 20646 data_length = mqe->un.mb_words[5]; 20647 if (data_length == 0) 20648 goto out; 20649 if (data_length > DMP_RGN23_SIZE) { 20650 data_length = 0; 20651 goto out; 20652 } 20653 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20654 out: 20655 mempool_free(mboxq, phba->mbox_mem_pool); 20656 if (mp) { 20657 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20658 kfree(mp); 20659 } 20660 return data_length; 20661 } 20662 20663 /** 20664 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20665 * @phba: pointer to lpfc hba data structure. 20666 * 20667 * This function read region 23 and parse TLV for port status to 20668 * decide if the user disaled the port. If the TLV indicates the 20669 * port is disabled, the hba_flag is set accordingly. 20670 **/ 20671 void 20672 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20673 { 20674 uint8_t *rgn23_data = NULL; 20675 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20676 uint32_t offset = 0; 20677 20678 /* Get adapter Region 23 data */ 20679 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20680 if (!rgn23_data) 20681 goto out; 20682 20683 if (phba->sli_rev < LPFC_SLI_REV4) 20684 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20685 else { 20686 if_type = bf_get(lpfc_sli_intf_if_type, 20687 &phba->sli4_hba.sli_intf); 20688 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20689 goto out; 20690 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20691 } 20692 20693 if (!data_size) 20694 goto out; 20695 20696 /* Check the region signature first */ 20697 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20698 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20699 "2619 Config region 23 has bad signature\n"); 20700 goto out; 20701 } 20702 offset += 4; 20703 20704 /* Check the data structure version */ 20705 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20707 "2620 Config region 23 has bad version\n"); 20708 goto out; 20709 } 20710 offset += 4; 20711 20712 /* Parse TLV entries in the region */ 20713 while (offset < data_size) { 20714 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20715 break; 20716 /* 20717 * If the TLV is not driver specific TLV or driver id is 20718 * not linux driver id, skip the record. 20719 */ 20720 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20721 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20722 (rgn23_data[offset + 3] != 0)) { 20723 offset += rgn23_data[offset + 1] * 4 + 4; 20724 continue; 20725 } 20726 20727 /* Driver found a driver specific TLV in the config region */ 20728 sub_tlv_len = rgn23_data[offset + 1] * 4; 20729 offset += 4; 20730 tlv_offset = 0; 20731 20732 /* 20733 * Search for configured port state sub-TLV. 20734 */ 20735 while ((offset < data_size) && 20736 (tlv_offset < sub_tlv_len)) { 20737 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20738 offset += 4; 20739 tlv_offset += 4; 20740 break; 20741 } 20742 if (rgn23_data[offset] != PORT_STE_TYPE) { 20743 offset += rgn23_data[offset + 1] * 4 + 4; 20744 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20745 continue; 20746 } 20747 20748 /* This HBA contains PORT_STE configured */ 20749 if (!rgn23_data[offset + 2]) 20750 phba->hba_flag |= LINK_DISABLED; 20751 20752 goto out; 20753 } 20754 } 20755 20756 out: 20757 kfree(rgn23_data); 20758 return; 20759 } 20760 20761 /** 20762 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20763 * @phba: pointer to lpfc hba data structure 20764 * @shdr_status: wr_object rsp's status field 20765 * @shdr_add_status: wr_object rsp's add_status field 20766 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20767 * @shdr_change_status: wr_object rsp's change_status field 20768 * @shdr_csf: wr_object rsp's csf bit 20769 * 20770 * This routine is intended to be called after a firmware write completes. 20771 * It will log next action items to be performed by the user to instantiate 20772 * the newly downloaded firmware or reason for incompatibility. 20773 **/ 20774 static void 20775 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20776 u32 shdr_add_status, u32 shdr_add_status_2, 20777 u32 shdr_change_status, u32 shdr_csf) 20778 { 20779 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20780 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20781 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20782 "change_status x%02x, csf %01x\n", __func__, 20783 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20784 shdr_status, shdr_add_status, shdr_add_status_2, 20785 shdr_change_status, shdr_csf); 20786 20787 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20788 switch (shdr_add_status_2) { 20789 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20790 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20791 "4199 Firmware write failed: " 20792 "image incompatible with flash x%02x\n", 20793 phba->sli4_hba.flash_id); 20794 break; 20795 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20796 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20797 "4200 Firmware write failed: " 20798 "image incompatible with ASIC " 20799 "architecture x%02x\n", 20800 phba->sli4_hba.asic_rev); 20801 break; 20802 default: 20803 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20804 "4210 Firmware write failed: " 20805 "add_status_2 x%02x\n", 20806 shdr_add_status_2); 20807 break; 20808 } 20809 } else if (!shdr_status && !shdr_add_status) { 20810 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20811 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20812 if (shdr_csf) 20813 shdr_change_status = 20814 LPFC_CHANGE_STATUS_PCI_RESET; 20815 } 20816 20817 switch (shdr_change_status) { 20818 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20819 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20820 "3198 Firmware write complete: System " 20821 "reboot required to instantiate\n"); 20822 break; 20823 case (LPFC_CHANGE_STATUS_FW_RESET): 20824 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20825 "3199 Firmware write complete: " 20826 "Firmware reset required to " 20827 "instantiate\n"); 20828 break; 20829 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20830 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20831 "3200 Firmware write complete: Port " 20832 "Migration or PCI Reset required to " 20833 "instantiate\n"); 20834 break; 20835 case (LPFC_CHANGE_STATUS_PCI_RESET): 20836 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20837 "3201 Firmware write complete: PCI " 20838 "Reset required to instantiate\n"); 20839 break; 20840 default: 20841 break; 20842 } 20843 } 20844 } 20845 20846 /** 20847 * lpfc_wr_object - write an object to the firmware 20848 * @phba: HBA structure that indicates port to create a queue on. 20849 * @dmabuf_list: list of dmabufs to write to the port. 20850 * @size: the total byte value of the objects to write to the port. 20851 * @offset: the current offset to be used to start the transfer. 20852 * 20853 * This routine will create a wr_object mailbox command to send to the port. 20854 * the mailbox command will be constructed using the dma buffers described in 20855 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20856 * BDEs that the imbedded mailbox can support. The @offset variable will be 20857 * used to indicate the starting offset of the transfer and will also return 20858 * the offset after the write object mailbox has completed. @size is used to 20859 * determine the end of the object and whether the eof bit should be set. 20860 * 20861 * Return 0 is successful and offset will contain the the new offset to use 20862 * for the next write. 20863 * Return negative value for error cases. 20864 **/ 20865 int 20866 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20867 uint32_t size, uint32_t *offset) 20868 { 20869 struct lpfc_mbx_wr_object *wr_object; 20870 LPFC_MBOXQ_t *mbox; 20871 int rc = 0, i = 0; 20872 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20873 uint32_t shdr_change_status = 0, shdr_csf = 0; 20874 uint32_t mbox_tmo; 20875 struct lpfc_dmabuf *dmabuf; 20876 uint32_t written = 0; 20877 bool check_change_status = false; 20878 20879 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20880 if (!mbox) 20881 return -ENOMEM; 20882 20883 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20884 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20885 sizeof(struct lpfc_mbx_wr_object) - 20886 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20887 20888 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20889 wr_object->u.request.write_offset = *offset; 20890 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20891 wr_object->u.request.object_name[0] = 20892 cpu_to_le32(wr_object->u.request.object_name[0]); 20893 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20894 list_for_each_entry(dmabuf, dmabuf_list, list) { 20895 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20896 break; 20897 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20898 wr_object->u.request.bde[i].addrHigh = 20899 putPaddrHigh(dmabuf->phys); 20900 if (written + SLI4_PAGE_SIZE >= size) { 20901 wr_object->u.request.bde[i].tus.f.bdeSize = 20902 (size - written); 20903 written += (size - written); 20904 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20905 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20906 check_change_status = true; 20907 } else { 20908 wr_object->u.request.bde[i].tus.f.bdeSize = 20909 SLI4_PAGE_SIZE; 20910 written += SLI4_PAGE_SIZE; 20911 } 20912 i++; 20913 } 20914 wr_object->u.request.bde_count = i; 20915 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20916 if (!phba->sli4_hba.intr_enable) 20917 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20918 else { 20919 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20920 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20921 } 20922 /* The IOCTL status is embedded in the mailbox subheader. */ 20923 shdr_status = bf_get(lpfc_mbox_hdr_status, 20924 &wr_object->header.cfg_shdr.response); 20925 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20926 &wr_object->header.cfg_shdr.response); 20927 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20928 &wr_object->header.cfg_shdr.response); 20929 if (check_change_status) { 20930 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20931 &wr_object->u.response); 20932 shdr_csf = bf_get(lpfc_wr_object_csf, 20933 &wr_object->u.response); 20934 } 20935 20936 if (!phba->sli4_hba.intr_enable) 20937 mempool_free(mbox, phba->mbox_mem_pool); 20938 else if (rc != MBX_TIMEOUT) 20939 mempool_free(mbox, phba->mbox_mem_pool); 20940 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20942 "3025 Write Object mailbox failed with " 20943 "status x%x add_status x%x, add_status_2 x%x, " 20944 "mbx status x%x\n", 20945 shdr_status, shdr_add_status, shdr_add_status_2, 20946 rc); 20947 rc = -ENXIO; 20948 *offset = shdr_add_status; 20949 } else { 20950 *offset += wr_object->u.response.actual_write_length; 20951 } 20952 20953 if (rc || check_change_status) 20954 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20955 shdr_add_status_2, shdr_change_status, 20956 shdr_csf); 20957 return rc; 20958 } 20959 20960 /** 20961 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20962 * @vport: pointer to vport data structure. 20963 * 20964 * This function iterate through the mailboxq and clean up all REG_LOGIN 20965 * and REG_VPI mailbox commands associated with the vport. This function 20966 * is called when driver want to restart discovery of the vport due to 20967 * a Clear Virtual Link event. 20968 **/ 20969 void 20970 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20971 { 20972 struct lpfc_hba *phba = vport->phba; 20973 LPFC_MBOXQ_t *mb, *nextmb; 20974 struct lpfc_dmabuf *mp; 20975 struct lpfc_nodelist *ndlp; 20976 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20977 LIST_HEAD(mbox_cmd_list); 20978 uint8_t restart_loop; 20979 20980 /* Clean up internally queued mailbox commands with the vport */ 20981 spin_lock_irq(&phba->hbalock); 20982 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20983 if (mb->vport != vport) 20984 continue; 20985 20986 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20987 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20988 continue; 20989 20990 list_move_tail(&mb->list, &mbox_cmd_list); 20991 } 20992 /* Clean up active mailbox command with the vport */ 20993 mb = phba->sli.mbox_active; 20994 if (mb && (mb->vport == vport)) { 20995 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20996 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20997 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20998 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20999 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21000 /* Put reference count for delayed processing */ 21001 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21002 /* Unregister the RPI when mailbox complete */ 21003 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21004 } 21005 } 21006 /* Cleanup any mailbox completions which are not yet processed */ 21007 do { 21008 restart_loop = 0; 21009 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21010 /* 21011 * If this mailox is already processed or it is 21012 * for another vport ignore it. 21013 */ 21014 if ((mb->vport != vport) || 21015 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21016 continue; 21017 21018 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21019 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21020 continue; 21021 21022 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21023 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21024 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21025 /* Unregister the RPI when mailbox complete */ 21026 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21027 restart_loop = 1; 21028 spin_unlock_irq(&phba->hbalock); 21029 spin_lock(&ndlp->lock); 21030 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21031 spin_unlock(&ndlp->lock); 21032 spin_lock_irq(&phba->hbalock); 21033 break; 21034 } 21035 } 21036 } while (restart_loop); 21037 21038 spin_unlock_irq(&phba->hbalock); 21039 21040 /* Release the cleaned-up mailbox commands */ 21041 while (!list_empty(&mbox_cmd_list)) { 21042 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21043 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21044 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 21045 if (mp) { 21046 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 21047 kfree(mp); 21048 } 21049 mb->ctx_buf = NULL; 21050 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21051 mb->ctx_ndlp = NULL; 21052 if (ndlp) { 21053 spin_lock(&ndlp->lock); 21054 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21055 spin_unlock(&ndlp->lock); 21056 lpfc_nlp_put(ndlp); 21057 } 21058 } 21059 mempool_free(mb, phba->mbox_mem_pool); 21060 } 21061 21062 /* Release the ndlp with the cleaned-up active mailbox command */ 21063 if (act_mbx_ndlp) { 21064 spin_lock(&act_mbx_ndlp->lock); 21065 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21066 spin_unlock(&act_mbx_ndlp->lock); 21067 lpfc_nlp_put(act_mbx_ndlp); 21068 } 21069 } 21070 21071 /** 21072 * lpfc_drain_txq - Drain the txq 21073 * @phba: Pointer to HBA context object. 21074 * 21075 * This function attempt to submit IOCBs on the txq 21076 * to the adapter. For SLI4 adapters, the txq contains 21077 * ELS IOCBs that have been deferred because the there 21078 * are no SGLs. This congestion can occur with large 21079 * vport counts during node discovery. 21080 **/ 21081 21082 uint32_t 21083 lpfc_drain_txq(struct lpfc_hba *phba) 21084 { 21085 LIST_HEAD(completions); 21086 struct lpfc_sli_ring *pring; 21087 struct lpfc_iocbq *piocbq = NULL; 21088 unsigned long iflags = 0; 21089 char *fail_msg = NULL; 21090 struct lpfc_sglq *sglq; 21091 union lpfc_wqe128 wqe; 21092 uint32_t txq_cnt = 0; 21093 struct lpfc_queue *wq; 21094 21095 if (phba->link_flag & LS_MDS_LOOPBACK) { 21096 /* MDS WQE are posted only to first WQ*/ 21097 wq = phba->sli4_hba.hdwq[0].io_wq; 21098 if (unlikely(!wq)) 21099 return 0; 21100 pring = wq->pring; 21101 } else { 21102 wq = phba->sli4_hba.els_wq; 21103 if (unlikely(!wq)) 21104 return 0; 21105 pring = lpfc_phba_elsring(phba); 21106 } 21107 21108 if (unlikely(!pring) || list_empty(&pring->txq)) 21109 return 0; 21110 21111 spin_lock_irqsave(&pring->ring_lock, iflags); 21112 list_for_each_entry(piocbq, &pring->txq, list) { 21113 txq_cnt++; 21114 } 21115 21116 if (txq_cnt > pring->txq_max) 21117 pring->txq_max = txq_cnt; 21118 21119 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21120 21121 while (!list_empty(&pring->txq)) { 21122 spin_lock_irqsave(&pring->ring_lock, iflags); 21123 21124 piocbq = lpfc_sli_ringtx_get(phba, pring); 21125 if (!piocbq) { 21126 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21128 "2823 txq empty and txq_cnt is %d\n ", 21129 txq_cnt); 21130 break; 21131 } 21132 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 21133 if (!sglq) { 21134 __lpfc_sli_ringtx_put(phba, pring, piocbq); 21135 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21136 break; 21137 } 21138 txq_cnt--; 21139 21140 /* The xri and iocb resources secured, 21141 * attempt to issue request 21142 */ 21143 piocbq->sli4_lxritag = sglq->sli4_lxritag; 21144 piocbq->sli4_xritag = sglq->sli4_xritag; 21145 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 21146 fail_msg = "to convert bpl to sgl"; 21147 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 21148 fail_msg = "to convert iocb to wqe"; 21149 else if (lpfc_sli4_wq_put(wq, &wqe)) 21150 fail_msg = " - Wq is full"; 21151 else 21152 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 21153 21154 if (fail_msg) { 21155 /* Failed means we can't issue and need to cancel */ 21156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21157 "2822 IOCB failed %s iotag 0x%x " 21158 "xri 0x%x\n", 21159 fail_msg, 21160 piocbq->iotag, piocbq->sli4_xritag); 21161 list_add_tail(&piocbq->list, &completions); 21162 fail_msg = NULL; 21163 } 21164 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21165 } 21166 21167 /* Cancel all the IOCBs that cannot be issued */ 21168 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21169 IOERR_SLI_ABORTED); 21170 21171 return txq_cnt; 21172 } 21173 21174 /** 21175 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21176 * @phba: Pointer to HBA context object. 21177 * @pwqeq: Pointer to command WQE. 21178 * @sglq: Pointer to the scatter gather queue object. 21179 * 21180 * This routine converts the bpl or bde that is in the WQE 21181 * to a sgl list for the sli4 hardware. The physical address 21182 * of the bpl/bde is converted back to a virtual address. 21183 * If the WQE contains a BPL then the list of BDE's is 21184 * converted to sli4_sge's. If the WQE contains a single 21185 * BDE then it is converted to a single sli_sge. 21186 * The WQE is still in cpu endianness so the contents of 21187 * the bpl can be used without byte swapping. 21188 * 21189 * Returns valid XRI = Success, NO_XRI = Failure. 21190 */ 21191 static uint16_t 21192 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21193 struct lpfc_sglq *sglq) 21194 { 21195 uint16_t xritag = NO_XRI; 21196 struct ulp_bde64 *bpl = NULL; 21197 struct ulp_bde64 bde; 21198 struct sli4_sge *sgl = NULL; 21199 struct lpfc_dmabuf *dmabuf; 21200 union lpfc_wqe128 *wqe; 21201 int numBdes = 0; 21202 int i = 0; 21203 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21204 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21205 uint32_t cmd; 21206 21207 if (!pwqeq || !sglq) 21208 return xritag; 21209 21210 sgl = (struct sli4_sge *)sglq->sgl; 21211 wqe = &pwqeq->wqe; 21212 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21213 21214 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21215 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21216 return sglq->sli4_xritag; 21217 numBdes = pwqeq->rsvd2; 21218 if (numBdes) { 21219 /* The addrHigh and addrLow fields within the WQE 21220 * have not been byteswapped yet so there is no 21221 * need to swap them back. 21222 */ 21223 if (pwqeq->context3) 21224 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 21225 else 21226 return xritag; 21227 21228 bpl = (struct ulp_bde64 *)dmabuf->virt; 21229 if (!bpl) 21230 return xritag; 21231 21232 for (i = 0; i < numBdes; i++) { 21233 /* Should already be byte swapped. */ 21234 sgl->addr_hi = bpl->addrHigh; 21235 sgl->addr_lo = bpl->addrLow; 21236 21237 sgl->word2 = le32_to_cpu(sgl->word2); 21238 if ((i+1) == numBdes) 21239 bf_set(lpfc_sli4_sge_last, sgl, 1); 21240 else 21241 bf_set(lpfc_sli4_sge_last, sgl, 0); 21242 /* swap the size field back to the cpu so we 21243 * can assign it to the sgl. 21244 */ 21245 bde.tus.w = le32_to_cpu(bpl->tus.w); 21246 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21247 /* The offsets in the sgl need to be accumulated 21248 * separately for the request and reply lists. 21249 * The request is always first, the reply follows. 21250 */ 21251 switch (cmd) { 21252 case CMD_GEN_REQUEST64_WQE: 21253 /* add up the reply sg entries */ 21254 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21255 inbound++; 21256 /* first inbound? reset the offset */ 21257 if (inbound == 1) 21258 offset = 0; 21259 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21260 bf_set(lpfc_sli4_sge_type, sgl, 21261 LPFC_SGE_TYPE_DATA); 21262 offset += bde.tus.f.bdeSize; 21263 break; 21264 case CMD_FCP_TRSP64_WQE: 21265 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21266 bf_set(lpfc_sli4_sge_type, sgl, 21267 LPFC_SGE_TYPE_DATA); 21268 break; 21269 case CMD_FCP_TSEND64_WQE: 21270 case CMD_FCP_TRECEIVE64_WQE: 21271 bf_set(lpfc_sli4_sge_type, sgl, 21272 bpl->tus.f.bdeFlags); 21273 if (i < 3) 21274 offset = 0; 21275 else 21276 offset += bde.tus.f.bdeSize; 21277 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21278 break; 21279 } 21280 sgl->word2 = cpu_to_le32(sgl->word2); 21281 bpl++; 21282 sgl++; 21283 } 21284 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21285 /* The addrHigh and addrLow fields of the BDE have not 21286 * been byteswapped yet so they need to be swapped 21287 * before putting them in the sgl. 21288 */ 21289 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21290 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21291 sgl->word2 = le32_to_cpu(sgl->word2); 21292 bf_set(lpfc_sli4_sge_last, sgl, 1); 21293 sgl->word2 = cpu_to_le32(sgl->word2); 21294 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21295 } 21296 return sglq->sli4_xritag; 21297 } 21298 21299 /** 21300 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21301 * @phba: Pointer to HBA context object. 21302 * @qp: Pointer to HDW queue. 21303 * @pwqe: Pointer to command WQE. 21304 **/ 21305 int 21306 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21307 struct lpfc_iocbq *pwqe) 21308 { 21309 union lpfc_wqe128 *wqe = &pwqe->wqe; 21310 struct lpfc_async_xchg_ctx *ctxp; 21311 struct lpfc_queue *wq; 21312 struct lpfc_sglq *sglq; 21313 struct lpfc_sli_ring *pring; 21314 unsigned long iflags; 21315 uint32_t ret = 0; 21316 21317 /* NVME_LS and NVME_LS ABTS requests. */ 21318 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 21319 pring = phba->sli4_hba.nvmels_wq->pring; 21320 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21321 qp, wq_access); 21322 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21323 if (!sglq) { 21324 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21325 return WQE_BUSY; 21326 } 21327 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21328 pwqe->sli4_xritag = sglq->sli4_xritag; 21329 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21330 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21331 return WQE_ERROR; 21332 } 21333 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21334 pwqe->sli4_xritag); 21335 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21336 if (ret) { 21337 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21338 return ret; 21339 } 21340 21341 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21342 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21343 21344 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21345 return 0; 21346 } 21347 21348 /* NVME_FCREQ and NVME_ABTS requests */ 21349 if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21350 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21351 wq = qp->io_wq; 21352 pring = wq->pring; 21353 21354 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21355 21356 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21357 qp, wq_access); 21358 ret = lpfc_sli4_wq_put(wq, wqe); 21359 if (ret) { 21360 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21361 return ret; 21362 } 21363 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21364 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21365 21366 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21367 return 0; 21368 } 21369 21370 /* NVMET requests */ 21371 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 21372 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21373 wq = qp->io_wq; 21374 pring = wq->pring; 21375 21376 ctxp = pwqe->context2; 21377 sglq = ctxp->ctxbuf->sglq; 21378 if (pwqe->sli4_xritag == NO_XRI) { 21379 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21380 pwqe->sli4_xritag = sglq->sli4_xritag; 21381 } 21382 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21383 pwqe->sli4_xritag); 21384 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21385 21386 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21387 qp, wq_access); 21388 ret = lpfc_sli4_wq_put(wq, wqe); 21389 if (ret) { 21390 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21391 return ret; 21392 } 21393 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21394 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21395 21396 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21397 return 0; 21398 } 21399 return WQE_ERROR; 21400 } 21401 21402 /** 21403 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21404 * @phba: Pointer to HBA context object. 21405 * @cmdiocb: Pointer to driver command iocb object. 21406 * @cmpl: completion function. 21407 * 21408 * Fill the appropriate fields for the abort WQE and call 21409 * internal routine lpfc_sli4_issue_wqe to send the WQE 21410 * This function is called with hbalock held and no ring_lock held. 21411 * 21412 * RETURNS 0 - SUCCESS 21413 **/ 21414 21415 int 21416 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21417 void *cmpl) 21418 { 21419 struct lpfc_vport *vport = cmdiocb->vport; 21420 struct lpfc_iocbq *abtsiocb = NULL; 21421 union lpfc_wqe128 *abtswqe; 21422 struct lpfc_io_buf *lpfc_cmd; 21423 int retval = IOCB_ERROR; 21424 u16 xritag = cmdiocb->sli4_xritag; 21425 21426 /* 21427 * The scsi command can not be in txq and it is in flight because the 21428 * pCmd is still pointing at the SCSI command we have to abort. There 21429 * is no need to search the txcmplq. Just send an abort to the FW. 21430 */ 21431 21432 abtsiocb = __lpfc_sli_get_iocbq(phba); 21433 if (!abtsiocb) 21434 return WQE_NORESOURCE; 21435 21436 /* Indicate the IO is being aborted by the driver. */ 21437 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 21438 21439 abtswqe = &abtsiocb->wqe; 21440 memset(abtswqe, 0, sizeof(*abtswqe)); 21441 21442 if (!lpfc_is_link_up(phba)) 21443 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21444 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21445 abtswqe->abort_cmd.rsrvd5 = 0; 21446 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21447 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21448 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21449 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21450 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21451 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21452 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21453 21454 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21455 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21456 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 21457 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 21458 abtsiocb->iocb_flag |= LPFC_IO_FCP; 21459 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 21460 abtsiocb->iocb_flag |= LPFC_IO_NVME; 21461 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 21462 abtsiocb->iocb_flag |= LPFC_IO_FOF; 21463 abtsiocb->vport = vport; 21464 abtsiocb->wqe_cmpl = cmpl; 21465 21466 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21467 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21468 21469 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21470 "0359 Abort xri x%x, original iotag x%x, " 21471 "abort cmd iotag x%x retval x%x\n", 21472 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21473 21474 if (retval) { 21475 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 21476 __lpfc_sli_release_iocbq(phba, abtsiocb); 21477 } 21478 21479 return retval; 21480 } 21481 21482 #ifdef LPFC_MXP_STAT 21483 /** 21484 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21485 * @phba: pointer to lpfc hba data structure. 21486 * @hwqid: belong to which HWQ. 21487 * 21488 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21489 * 15 seconds after a test case is running. 21490 * 21491 * The user should call lpfc_debugfs_multixripools_write before running a test 21492 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21493 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21494 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21495 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21496 **/ 21497 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21498 { 21499 struct lpfc_sli4_hdw_queue *qp; 21500 struct lpfc_multixri_pool *multixri_pool; 21501 struct lpfc_pvt_pool *pvt_pool; 21502 struct lpfc_pbl_pool *pbl_pool; 21503 u32 txcmplq_cnt; 21504 21505 qp = &phba->sli4_hba.hdwq[hwqid]; 21506 multixri_pool = qp->p_multixri_pool; 21507 if (!multixri_pool) 21508 return; 21509 21510 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21511 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21512 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21513 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21514 21515 multixri_pool->stat_pbl_count = pbl_pool->count; 21516 multixri_pool->stat_pvt_count = pvt_pool->count; 21517 multixri_pool->stat_busy_count = txcmplq_cnt; 21518 } 21519 21520 multixri_pool->stat_snapshot_taken++; 21521 } 21522 #endif 21523 21524 /** 21525 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21526 * @phba: pointer to lpfc hba data structure. 21527 * @hwqid: belong to which HWQ. 21528 * 21529 * This routine moves some XRIs from private to public pool when private pool 21530 * is not busy. 21531 **/ 21532 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21533 { 21534 struct lpfc_multixri_pool *multixri_pool; 21535 u32 io_req_count; 21536 u32 prev_io_req_count; 21537 21538 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21539 if (!multixri_pool) 21540 return; 21541 io_req_count = multixri_pool->io_req_count; 21542 prev_io_req_count = multixri_pool->prev_io_req_count; 21543 21544 if (prev_io_req_count != io_req_count) { 21545 /* Private pool is busy */ 21546 multixri_pool->prev_io_req_count = io_req_count; 21547 } else { 21548 /* Private pool is not busy. 21549 * Move XRIs from private to public pool. 21550 */ 21551 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21552 } 21553 } 21554 21555 /** 21556 * lpfc_adjust_high_watermark - Adjust high watermark 21557 * @phba: pointer to lpfc hba data structure. 21558 * @hwqid: belong to which HWQ. 21559 * 21560 * This routine sets high watermark as number of outstanding XRIs, 21561 * but make sure the new value is between xri_limit/2 and xri_limit. 21562 **/ 21563 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21564 { 21565 u32 new_watermark; 21566 u32 watermark_max; 21567 u32 watermark_min; 21568 u32 xri_limit; 21569 u32 txcmplq_cnt; 21570 u32 abts_io_bufs; 21571 struct lpfc_multixri_pool *multixri_pool; 21572 struct lpfc_sli4_hdw_queue *qp; 21573 21574 qp = &phba->sli4_hba.hdwq[hwqid]; 21575 multixri_pool = qp->p_multixri_pool; 21576 if (!multixri_pool) 21577 return; 21578 xri_limit = multixri_pool->xri_limit; 21579 21580 watermark_max = xri_limit; 21581 watermark_min = xri_limit / 2; 21582 21583 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21584 abts_io_bufs = qp->abts_scsi_io_bufs; 21585 abts_io_bufs += qp->abts_nvme_io_bufs; 21586 21587 new_watermark = txcmplq_cnt + abts_io_bufs; 21588 new_watermark = min(watermark_max, new_watermark); 21589 new_watermark = max(watermark_min, new_watermark); 21590 multixri_pool->pvt_pool.high_watermark = new_watermark; 21591 21592 #ifdef LPFC_MXP_STAT 21593 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21594 new_watermark); 21595 #endif 21596 } 21597 21598 /** 21599 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21600 * @phba: pointer to lpfc hba data structure. 21601 * @hwqid: belong to which HWQ. 21602 * 21603 * This routine is called from hearbeat timer when pvt_pool is idle. 21604 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21605 * The first step moves (all - low_watermark) amount of XRIs. 21606 * The second step moves the rest of XRIs. 21607 **/ 21608 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21609 { 21610 struct lpfc_pbl_pool *pbl_pool; 21611 struct lpfc_pvt_pool *pvt_pool; 21612 struct lpfc_sli4_hdw_queue *qp; 21613 struct lpfc_io_buf *lpfc_ncmd; 21614 struct lpfc_io_buf *lpfc_ncmd_next; 21615 unsigned long iflag; 21616 struct list_head tmp_list; 21617 u32 tmp_count; 21618 21619 qp = &phba->sli4_hba.hdwq[hwqid]; 21620 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21621 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21622 tmp_count = 0; 21623 21624 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21625 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21626 21627 if (pvt_pool->count > pvt_pool->low_watermark) { 21628 /* Step 1: move (all - low_watermark) from pvt_pool 21629 * to pbl_pool 21630 */ 21631 21632 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21633 INIT_LIST_HEAD(&tmp_list); 21634 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21635 &pvt_pool->list, list) { 21636 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21637 tmp_count++; 21638 if (tmp_count >= pvt_pool->low_watermark) 21639 break; 21640 } 21641 21642 /* Move all bufs from pvt_pool to pbl_pool */ 21643 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21644 21645 /* Move all bufs from tmp_list to pvt_pool */ 21646 list_splice(&tmp_list, &pvt_pool->list); 21647 21648 pbl_pool->count += (pvt_pool->count - tmp_count); 21649 pvt_pool->count = tmp_count; 21650 } else { 21651 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21652 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21653 pbl_pool->count += pvt_pool->count; 21654 pvt_pool->count = 0; 21655 } 21656 21657 spin_unlock(&pvt_pool->lock); 21658 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21659 } 21660 21661 /** 21662 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21663 * @phba: pointer to lpfc hba data structure 21664 * @qp: pointer to HDW queue 21665 * @pbl_pool: specified public free XRI pool 21666 * @pvt_pool: specified private free XRI pool 21667 * @count: number of XRIs to move 21668 * 21669 * This routine tries to move some free common bufs from the specified pbl_pool 21670 * to the specified pvt_pool. It might move less than count XRIs if there's not 21671 * enough in public pool. 21672 * 21673 * Return: 21674 * true - if XRIs are successfully moved from the specified pbl_pool to the 21675 * specified pvt_pool 21676 * false - if the specified pbl_pool is empty or locked by someone else 21677 **/ 21678 static bool 21679 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21680 struct lpfc_pbl_pool *pbl_pool, 21681 struct lpfc_pvt_pool *pvt_pool, u32 count) 21682 { 21683 struct lpfc_io_buf *lpfc_ncmd; 21684 struct lpfc_io_buf *lpfc_ncmd_next; 21685 unsigned long iflag; 21686 int ret; 21687 21688 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21689 if (ret) { 21690 if (pbl_pool->count) { 21691 /* Move a batch of XRIs from public to private pool */ 21692 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21693 list_for_each_entry_safe(lpfc_ncmd, 21694 lpfc_ncmd_next, 21695 &pbl_pool->list, 21696 list) { 21697 list_move_tail(&lpfc_ncmd->list, 21698 &pvt_pool->list); 21699 pvt_pool->count++; 21700 pbl_pool->count--; 21701 count--; 21702 if (count == 0) 21703 break; 21704 } 21705 21706 spin_unlock(&pvt_pool->lock); 21707 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21708 return true; 21709 } 21710 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21711 } 21712 21713 return false; 21714 } 21715 21716 /** 21717 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21718 * @phba: pointer to lpfc hba data structure. 21719 * @hwqid: belong to which HWQ. 21720 * @count: number of XRIs to move 21721 * 21722 * This routine tries to find some free common bufs in one of public pools with 21723 * Round Robin method. The search always starts from local hwqid, then the next 21724 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21725 * a batch of free common bufs are moved to private pool on hwqid. 21726 * It might move less than count XRIs if there's not enough in public pool. 21727 **/ 21728 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21729 { 21730 struct lpfc_multixri_pool *multixri_pool; 21731 struct lpfc_multixri_pool *next_multixri_pool; 21732 struct lpfc_pvt_pool *pvt_pool; 21733 struct lpfc_pbl_pool *pbl_pool; 21734 struct lpfc_sli4_hdw_queue *qp; 21735 u32 next_hwqid; 21736 u32 hwq_count; 21737 int ret; 21738 21739 qp = &phba->sli4_hba.hdwq[hwqid]; 21740 multixri_pool = qp->p_multixri_pool; 21741 pvt_pool = &multixri_pool->pvt_pool; 21742 pbl_pool = &multixri_pool->pbl_pool; 21743 21744 /* Check if local pbl_pool is available */ 21745 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21746 if (ret) { 21747 #ifdef LPFC_MXP_STAT 21748 multixri_pool->local_pbl_hit_count++; 21749 #endif 21750 return; 21751 } 21752 21753 hwq_count = phba->cfg_hdw_queue; 21754 21755 /* Get the next hwqid which was found last time */ 21756 next_hwqid = multixri_pool->rrb_next_hwqid; 21757 21758 do { 21759 /* Go to next hwq */ 21760 next_hwqid = (next_hwqid + 1) % hwq_count; 21761 21762 next_multixri_pool = 21763 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21764 pbl_pool = &next_multixri_pool->pbl_pool; 21765 21766 /* Check if the public free xri pool is available */ 21767 ret = _lpfc_move_xri_pbl_to_pvt( 21768 phba, qp, pbl_pool, pvt_pool, count); 21769 21770 /* Exit while-loop if success or all hwqid are checked */ 21771 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21772 21773 /* Starting point for the next time */ 21774 multixri_pool->rrb_next_hwqid = next_hwqid; 21775 21776 if (!ret) { 21777 /* stats: all public pools are empty*/ 21778 multixri_pool->pbl_empty_count++; 21779 } 21780 21781 #ifdef LPFC_MXP_STAT 21782 if (ret) { 21783 if (next_hwqid == hwqid) 21784 multixri_pool->local_pbl_hit_count++; 21785 else 21786 multixri_pool->other_pbl_hit_count++; 21787 } 21788 #endif 21789 } 21790 21791 /** 21792 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21793 * @phba: pointer to lpfc hba data structure. 21794 * @hwqid: belong to which HWQ. 21795 * 21796 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21797 * low watermark. 21798 **/ 21799 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21800 { 21801 struct lpfc_multixri_pool *multixri_pool; 21802 struct lpfc_pvt_pool *pvt_pool; 21803 21804 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21805 pvt_pool = &multixri_pool->pvt_pool; 21806 21807 if (pvt_pool->count < pvt_pool->low_watermark) 21808 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21809 } 21810 21811 /** 21812 * lpfc_release_io_buf - Return one IO buf back to free pool 21813 * @phba: pointer to lpfc hba data structure. 21814 * @lpfc_ncmd: IO buf to be returned. 21815 * @qp: belong to which HWQ. 21816 * 21817 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21818 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21819 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21820 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21821 * lpfc_io_buf_list_put. 21822 **/ 21823 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21824 struct lpfc_sli4_hdw_queue *qp) 21825 { 21826 unsigned long iflag; 21827 struct lpfc_pbl_pool *pbl_pool; 21828 struct lpfc_pvt_pool *pvt_pool; 21829 struct lpfc_epd_pool *epd_pool; 21830 u32 txcmplq_cnt; 21831 u32 xri_owned; 21832 u32 xri_limit; 21833 u32 abts_io_bufs; 21834 21835 /* MUST zero fields if buffer is reused by another protocol */ 21836 lpfc_ncmd->nvmeCmd = NULL; 21837 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21838 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21839 21840 if (phba->cfg_xpsgl && !phba->nvmet_support && 21841 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21842 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21843 21844 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21845 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21846 21847 if (phba->cfg_xri_rebalancing) { 21848 if (lpfc_ncmd->expedite) { 21849 /* Return to expedite pool */ 21850 epd_pool = &phba->epd_pool; 21851 spin_lock_irqsave(&epd_pool->lock, iflag); 21852 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21853 epd_pool->count++; 21854 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21855 return; 21856 } 21857 21858 /* Avoid invalid access if an IO sneaks in and is being rejected 21859 * just _after_ xri pools are destroyed in lpfc_offline. 21860 * Nothing much can be done at this point. 21861 */ 21862 if (!qp->p_multixri_pool) 21863 return; 21864 21865 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21866 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21867 21868 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21869 abts_io_bufs = qp->abts_scsi_io_bufs; 21870 abts_io_bufs += qp->abts_nvme_io_bufs; 21871 21872 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21873 xri_limit = qp->p_multixri_pool->xri_limit; 21874 21875 #ifdef LPFC_MXP_STAT 21876 if (xri_owned <= xri_limit) 21877 qp->p_multixri_pool->below_limit_count++; 21878 else 21879 qp->p_multixri_pool->above_limit_count++; 21880 #endif 21881 21882 /* XRI goes to either public or private free xri pool 21883 * based on watermark and xri_limit 21884 */ 21885 if ((pvt_pool->count < pvt_pool->low_watermark) || 21886 (xri_owned < xri_limit && 21887 pvt_pool->count < pvt_pool->high_watermark)) { 21888 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21889 qp, free_pvt_pool); 21890 list_add_tail(&lpfc_ncmd->list, 21891 &pvt_pool->list); 21892 pvt_pool->count++; 21893 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21894 } else { 21895 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21896 qp, free_pub_pool); 21897 list_add_tail(&lpfc_ncmd->list, 21898 &pbl_pool->list); 21899 pbl_pool->count++; 21900 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21901 } 21902 } else { 21903 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21904 qp, free_xri); 21905 list_add_tail(&lpfc_ncmd->list, 21906 &qp->lpfc_io_buf_list_put); 21907 qp->put_io_bufs++; 21908 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21909 iflag); 21910 } 21911 } 21912 21913 /** 21914 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21915 * @phba: pointer to lpfc hba data structure. 21916 * @qp: pointer to HDW queue 21917 * @pvt_pool: pointer to private pool data structure. 21918 * @ndlp: pointer to lpfc nodelist data structure. 21919 * 21920 * This routine tries to get one free IO buf from private pool. 21921 * 21922 * Return: 21923 * pointer to one free IO buf - if private pool is not empty 21924 * NULL - if private pool is empty 21925 **/ 21926 static struct lpfc_io_buf * 21927 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21928 struct lpfc_sli4_hdw_queue *qp, 21929 struct lpfc_pvt_pool *pvt_pool, 21930 struct lpfc_nodelist *ndlp) 21931 { 21932 struct lpfc_io_buf *lpfc_ncmd; 21933 struct lpfc_io_buf *lpfc_ncmd_next; 21934 unsigned long iflag; 21935 21936 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21937 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21938 &pvt_pool->list, list) { 21939 if (lpfc_test_rrq_active( 21940 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21941 continue; 21942 list_del(&lpfc_ncmd->list); 21943 pvt_pool->count--; 21944 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21945 return lpfc_ncmd; 21946 } 21947 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21948 21949 return NULL; 21950 } 21951 21952 /** 21953 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21954 * @phba: pointer to lpfc hba data structure. 21955 * 21956 * This routine tries to get one free IO buf from expedite pool. 21957 * 21958 * Return: 21959 * pointer to one free IO buf - if expedite pool is not empty 21960 * NULL - if expedite pool is empty 21961 **/ 21962 static struct lpfc_io_buf * 21963 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21964 { 21965 struct lpfc_io_buf *lpfc_ncmd; 21966 struct lpfc_io_buf *lpfc_ncmd_next; 21967 unsigned long iflag; 21968 struct lpfc_epd_pool *epd_pool; 21969 21970 epd_pool = &phba->epd_pool; 21971 lpfc_ncmd = NULL; 21972 21973 spin_lock_irqsave(&epd_pool->lock, iflag); 21974 if (epd_pool->count > 0) { 21975 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21976 &epd_pool->list, list) { 21977 list_del(&lpfc_ncmd->list); 21978 epd_pool->count--; 21979 break; 21980 } 21981 } 21982 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21983 21984 return lpfc_ncmd; 21985 } 21986 21987 /** 21988 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21989 * @phba: pointer to lpfc hba data structure. 21990 * @ndlp: pointer to lpfc nodelist data structure. 21991 * @hwqid: belong to which HWQ 21992 * @expedite: 1 means this request is urgent. 21993 * 21994 * This routine will do the following actions and then return a pointer to 21995 * one free IO buf. 21996 * 21997 * 1. If private free xri count is empty, move some XRIs from public to 21998 * private pool. 21999 * 2. Get one XRI from private free xri pool. 22000 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22001 * get one free xri from expedite pool. 22002 * 22003 * Note: ndlp is only used on SCSI side for RRQ testing. 22004 * The caller should pass NULL for ndlp on NVME side. 22005 * 22006 * Return: 22007 * pointer to one free IO buf - if private pool is not empty 22008 * NULL - if private pool is empty 22009 **/ 22010 static struct lpfc_io_buf * 22011 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22012 struct lpfc_nodelist *ndlp, 22013 int hwqid, int expedite) 22014 { 22015 struct lpfc_sli4_hdw_queue *qp; 22016 struct lpfc_multixri_pool *multixri_pool; 22017 struct lpfc_pvt_pool *pvt_pool; 22018 struct lpfc_io_buf *lpfc_ncmd; 22019 22020 qp = &phba->sli4_hba.hdwq[hwqid]; 22021 lpfc_ncmd = NULL; 22022 if (!qp) { 22023 lpfc_printf_log(phba, KERN_INFO, 22024 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22025 "5556 NULL qp for hwqid x%x\n", hwqid); 22026 return lpfc_ncmd; 22027 } 22028 multixri_pool = qp->p_multixri_pool; 22029 if (!multixri_pool) { 22030 lpfc_printf_log(phba, KERN_INFO, 22031 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22032 "5557 NULL multixri for hwqid x%x\n", hwqid); 22033 return lpfc_ncmd; 22034 } 22035 pvt_pool = &multixri_pool->pvt_pool; 22036 if (!pvt_pool) { 22037 lpfc_printf_log(phba, KERN_INFO, 22038 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22039 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22040 return lpfc_ncmd; 22041 } 22042 multixri_pool->io_req_count++; 22043 22044 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22045 if (pvt_pool->count == 0) 22046 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22047 22048 /* Get one XRI from private free xri pool */ 22049 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22050 22051 if (lpfc_ncmd) { 22052 lpfc_ncmd->hdwq = qp; 22053 lpfc_ncmd->hdwq_no = hwqid; 22054 } else if (expedite) { 22055 /* If we fail to get one from pvt_pool and this is an expedite 22056 * request, get one free xri from expedite pool. 22057 */ 22058 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22059 } 22060 22061 return lpfc_ncmd; 22062 } 22063 22064 static inline struct lpfc_io_buf * 22065 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22066 { 22067 struct lpfc_sli4_hdw_queue *qp; 22068 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22069 22070 qp = &phba->sli4_hba.hdwq[idx]; 22071 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22072 &qp->lpfc_io_buf_list_get, list) { 22073 if (lpfc_test_rrq_active(phba, ndlp, 22074 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22075 continue; 22076 22077 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22078 continue; 22079 22080 list_del_init(&lpfc_cmd->list); 22081 qp->get_io_bufs--; 22082 lpfc_cmd->hdwq = qp; 22083 lpfc_cmd->hdwq_no = idx; 22084 return lpfc_cmd; 22085 } 22086 return NULL; 22087 } 22088 22089 /** 22090 * lpfc_get_io_buf - Get one IO buffer from free pool 22091 * @phba: The HBA for which this call is being executed. 22092 * @ndlp: pointer to lpfc nodelist data structure. 22093 * @hwqid: belong to which HWQ 22094 * @expedite: 1 means this request is urgent. 22095 * 22096 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22097 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22098 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22099 * 22100 * Note: ndlp is only used on SCSI side for RRQ testing. 22101 * The caller should pass NULL for ndlp on NVME side. 22102 * 22103 * Return codes: 22104 * NULL - Error 22105 * Pointer to lpfc_io_buf - Success 22106 **/ 22107 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22108 struct lpfc_nodelist *ndlp, 22109 u32 hwqid, int expedite) 22110 { 22111 struct lpfc_sli4_hdw_queue *qp; 22112 unsigned long iflag; 22113 struct lpfc_io_buf *lpfc_cmd; 22114 22115 qp = &phba->sli4_hba.hdwq[hwqid]; 22116 lpfc_cmd = NULL; 22117 if (!qp) { 22118 lpfc_printf_log(phba, KERN_WARNING, 22119 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22120 "5555 NULL qp for hwqid x%x\n", hwqid); 22121 return lpfc_cmd; 22122 } 22123 22124 if (phba->cfg_xri_rebalancing) 22125 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22126 phba, ndlp, hwqid, expedite); 22127 else { 22128 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22129 qp, alloc_xri_get); 22130 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22131 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22132 if (!lpfc_cmd) { 22133 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22134 qp, alloc_xri_put); 22135 list_splice(&qp->lpfc_io_buf_list_put, 22136 &qp->lpfc_io_buf_list_get); 22137 qp->get_io_bufs += qp->put_io_bufs; 22138 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22139 qp->put_io_bufs = 0; 22140 spin_unlock(&qp->io_buf_list_put_lock); 22141 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22142 expedite) 22143 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22144 } 22145 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22146 } 22147 22148 return lpfc_cmd; 22149 } 22150 22151 /** 22152 * lpfc_read_object - Retrieve object data from HBA 22153 * @phba: The HBA for which this call is being executed. 22154 * @rdobject: Pathname of object data we want to read. 22155 * @datap: Pointer to where data will be copied to. 22156 * @datasz: size of data area 22157 * 22158 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22159 * The data will be truncated if datasz is not large enough. 22160 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22161 * Returns the actual bytes read from the object. 22162 */ 22163 int 22164 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22165 uint32_t datasz) 22166 { 22167 struct lpfc_mbx_read_object *read_object; 22168 LPFC_MBOXQ_t *mbox; 22169 int rc, length, eof, j, byte_cnt = 0; 22170 uint32_t shdr_status, shdr_add_status; 22171 union lpfc_sli4_cfg_shdr *shdr; 22172 struct lpfc_dmabuf *pcmd; 22173 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22174 22175 /* sanity check on queue memory */ 22176 if (!datap) 22177 return -ENODEV; 22178 22179 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22180 if (!mbox) 22181 return -ENOMEM; 22182 length = (sizeof(struct lpfc_mbx_read_object) - 22183 sizeof(struct lpfc_sli4_cfg_mhdr)); 22184 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22185 LPFC_MBOX_OPCODE_READ_OBJECT, 22186 length, LPFC_SLI4_MBX_EMBED); 22187 read_object = &mbox->u.mqe.un.read_object; 22188 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22189 22190 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22191 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22192 read_object->u.request.rd_object_offset = 0; 22193 read_object->u.request.rd_object_cnt = 1; 22194 22195 memset((void *)read_object->u.request.rd_object_name, 0, 22196 LPFC_OBJ_NAME_SZ); 22197 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22198 for (j = 0; j < strlen(rdobject); j++) 22199 read_object->u.request.rd_object_name[j] = 22200 cpu_to_le32(rd_object_name[j]); 22201 22202 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22203 if (pcmd) 22204 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22205 if (!pcmd || !pcmd->virt) { 22206 kfree(pcmd); 22207 mempool_free(mbox, phba->mbox_mem_pool); 22208 return -ENOMEM; 22209 } 22210 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22211 read_object->u.request.rd_object_hbuf[0].pa_lo = 22212 putPaddrLow(pcmd->phys); 22213 read_object->u.request.rd_object_hbuf[0].pa_hi = 22214 putPaddrHigh(pcmd->phys); 22215 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22216 22217 mbox->vport = phba->pport; 22218 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22219 mbox->ctx_buf = NULL; 22220 mbox->ctx_ndlp = NULL; 22221 22222 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22223 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22224 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22225 22226 if (shdr_status == STATUS_FAILED && 22227 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22228 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22229 "4674 No port cfg file in FW.\n"); 22230 byte_cnt = -ENOENT; 22231 } else if (shdr_status || shdr_add_status || rc) { 22232 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22233 "2625 READ_OBJECT mailbox failed with " 22234 "status x%x add_status x%x, mbx status x%x\n", 22235 shdr_status, shdr_add_status, rc); 22236 byte_cnt = -ENXIO; 22237 } else { 22238 /* Success */ 22239 length = read_object->u.response.rd_object_actual_rlen; 22240 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22241 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22242 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22243 length, datasz, eof); 22244 22245 /* Detect the port config file exists but is empty */ 22246 if (!length && eof) { 22247 byte_cnt = 0; 22248 goto exit; 22249 } 22250 22251 byte_cnt = length; 22252 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22253 } 22254 22255 exit: 22256 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22257 kfree(pcmd); 22258 mempool_free(mbox, phba->mbox_mem_pool); 22259 return byte_cnt; 22260 } 22261 22262 /** 22263 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22264 * @phba: The HBA for which this call is being executed. 22265 * @lpfc_buf: IO buf structure to append the SGL chunk 22266 * 22267 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22268 * and will allocate an SGL chunk if the pool is empty. 22269 * 22270 * Return codes: 22271 * NULL - Error 22272 * Pointer to sli4_hybrid_sgl - Success 22273 **/ 22274 struct sli4_hybrid_sgl * 22275 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22276 { 22277 struct sli4_hybrid_sgl *list_entry = NULL; 22278 struct sli4_hybrid_sgl *tmp = NULL; 22279 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22280 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22281 struct list_head *buf_list = &hdwq->sgl_list; 22282 unsigned long iflags; 22283 22284 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22285 22286 if (likely(!list_empty(buf_list))) { 22287 /* break off 1 chunk from the sgl_list */ 22288 list_for_each_entry_safe(list_entry, tmp, 22289 buf_list, list_node) { 22290 list_move_tail(&list_entry->list_node, 22291 &lpfc_buf->dma_sgl_xtra_list); 22292 break; 22293 } 22294 } else { 22295 /* allocate more */ 22296 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22297 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22298 cpu_to_node(hdwq->io_wq->chann)); 22299 if (!tmp) { 22300 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22301 "8353 error kmalloc memory for HDWQ " 22302 "%d %s\n", 22303 lpfc_buf->hdwq_no, __func__); 22304 return NULL; 22305 } 22306 22307 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22308 GFP_ATOMIC, &tmp->dma_phys_sgl); 22309 if (!tmp->dma_sgl) { 22310 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22311 "8354 error pool_alloc memory for HDWQ " 22312 "%d %s\n", 22313 lpfc_buf->hdwq_no, __func__); 22314 kfree(tmp); 22315 return NULL; 22316 } 22317 22318 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22319 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22320 } 22321 22322 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22323 struct sli4_hybrid_sgl, 22324 list_node); 22325 22326 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22327 22328 return allocated_sgl; 22329 } 22330 22331 /** 22332 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22333 * @phba: The HBA for which this call is being executed. 22334 * @lpfc_buf: IO buf structure with the SGL chunk 22335 * 22336 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22337 * 22338 * Return codes: 22339 * 0 - Success 22340 * -EINVAL - Error 22341 **/ 22342 int 22343 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22344 { 22345 int rc = 0; 22346 struct sli4_hybrid_sgl *list_entry = NULL; 22347 struct sli4_hybrid_sgl *tmp = NULL; 22348 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22349 struct list_head *buf_list = &hdwq->sgl_list; 22350 unsigned long iflags; 22351 22352 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22353 22354 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22355 list_for_each_entry_safe(list_entry, tmp, 22356 &lpfc_buf->dma_sgl_xtra_list, 22357 list_node) { 22358 list_move_tail(&list_entry->list_node, 22359 buf_list); 22360 } 22361 } else { 22362 rc = -EINVAL; 22363 } 22364 22365 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22366 return rc; 22367 } 22368 22369 /** 22370 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22371 * @phba: phba object 22372 * @hdwq: hdwq to cleanup sgl buff resources on 22373 * 22374 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22375 * 22376 * Return codes: 22377 * None 22378 **/ 22379 void 22380 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22381 struct lpfc_sli4_hdw_queue *hdwq) 22382 { 22383 struct list_head *buf_list = &hdwq->sgl_list; 22384 struct sli4_hybrid_sgl *list_entry = NULL; 22385 struct sli4_hybrid_sgl *tmp = NULL; 22386 unsigned long iflags; 22387 22388 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22389 22390 /* Free sgl pool */ 22391 list_for_each_entry_safe(list_entry, tmp, 22392 buf_list, list_node) { 22393 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22394 list_entry->dma_sgl, 22395 list_entry->dma_phys_sgl); 22396 list_del(&list_entry->list_node); 22397 kfree(list_entry); 22398 } 22399 22400 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22401 } 22402 22403 /** 22404 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22405 * @phba: The HBA for which this call is being executed. 22406 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22407 * 22408 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22409 * and will allocate an CMD/RSP buffer if the pool is empty. 22410 * 22411 * Return codes: 22412 * NULL - Error 22413 * Pointer to fcp_cmd_rsp_buf - Success 22414 **/ 22415 struct fcp_cmd_rsp_buf * 22416 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22417 struct lpfc_io_buf *lpfc_buf) 22418 { 22419 struct fcp_cmd_rsp_buf *list_entry = NULL; 22420 struct fcp_cmd_rsp_buf *tmp = NULL; 22421 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22422 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22423 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22424 unsigned long iflags; 22425 22426 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22427 22428 if (likely(!list_empty(buf_list))) { 22429 /* break off 1 chunk from the list */ 22430 list_for_each_entry_safe(list_entry, tmp, 22431 buf_list, 22432 list_node) { 22433 list_move_tail(&list_entry->list_node, 22434 &lpfc_buf->dma_cmd_rsp_list); 22435 break; 22436 } 22437 } else { 22438 /* allocate more */ 22439 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22440 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22441 cpu_to_node(hdwq->io_wq->chann)); 22442 if (!tmp) { 22443 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22444 "8355 error kmalloc memory for HDWQ " 22445 "%d %s\n", 22446 lpfc_buf->hdwq_no, __func__); 22447 return NULL; 22448 } 22449 22450 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22451 GFP_ATOMIC, 22452 &tmp->fcp_cmd_rsp_dma_handle); 22453 22454 if (!tmp->fcp_cmnd) { 22455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22456 "8356 error pool_alloc memory for HDWQ " 22457 "%d %s\n", 22458 lpfc_buf->hdwq_no, __func__); 22459 kfree(tmp); 22460 return NULL; 22461 } 22462 22463 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22464 sizeof(struct fcp_cmnd)); 22465 22466 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22467 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22468 } 22469 22470 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22471 struct fcp_cmd_rsp_buf, 22472 list_node); 22473 22474 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22475 22476 return allocated_buf; 22477 } 22478 22479 /** 22480 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22481 * @phba: The HBA for which this call is being executed. 22482 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22483 * 22484 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22485 * 22486 * Return codes: 22487 * 0 - Success 22488 * -EINVAL - Error 22489 **/ 22490 int 22491 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22492 struct lpfc_io_buf *lpfc_buf) 22493 { 22494 int rc = 0; 22495 struct fcp_cmd_rsp_buf *list_entry = NULL; 22496 struct fcp_cmd_rsp_buf *tmp = NULL; 22497 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22498 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22499 unsigned long iflags; 22500 22501 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22502 22503 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22504 list_for_each_entry_safe(list_entry, tmp, 22505 &lpfc_buf->dma_cmd_rsp_list, 22506 list_node) { 22507 list_move_tail(&list_entry->list_node, 22508 buf_list); 22509 } 22510 } else { 22511 rc = -EINVAL; 22512 } 22513 22514 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22515 return rc; 22516 } 22517 22518 /** 22519 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22520 * @phba: phba object 22521 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22522 * 22523 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22524 * 22525 * Return codes: 22526 * None 22527 **/ 22528 void 22529 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22530 struct lpfc_sli4_hdw_queue *hdwq) 22531 { 22532 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22533 struct fcp_cmd_rsp_buf *list_entry = NULL; 22534 struct fcp_cmd_rsp_buf *tmp = NULL; 22535 unsigned long iflags; 22536 22537 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22538 22539 /* Free cmd_rsp buf pool */ 22540 list_for_each_entry_safe(list_entry, tmp, 22541 buf_list, 22542 list_node) { 22543 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22544 list_entry->fcp_cmnd, 22545 list_entry->fcp_cmd_rsp_dma_handle); 22546 list_del(&list_entry->list_node); 22547 kfree(list_entry); 22548 } 22549 22550 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22551 } 22552