1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 82 struct lpfc_cqe *); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_eqe *eqe, uint32_t qidx); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 90 struct lpfc_sli_ring *pring, 91 struct lpfc_iocbq *cmdiocb); 92 93 static IOCB_t * 94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95 { 96 return &iocbq->iocb; 97 } 98 99 /** 100 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 101 * @q: The Work Queue to operate on. 102 * @wqe: The work Queue Entry to put on the Work queue. 103 * 104 * This routine will copy the contents of @wqe to the next available entry on 105 * the @q. This function will then ring the Work Queue Doorbell to signal the 106 * HBA to start processing the Work Queue Entry. This function returns 0 if 107 * successful. If no entries are available on @q then this function will return 108 * -ENOMEM. 109 * The caller is expected to hold the hbalock when calling this routine. 110 **/ 111 static int 112 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 113 { 114 union lpfc_wqe *temp_wqe; 115 struct lpfc_register doorbell; 116 uint32_t host_index; 117 uint32_t idx; 118 uint32_t i = 0; 119 uint8_t *tmp; 120 121 /* sanity check on queue memory */ 122 if (unlikely(!q)) 123 return -ENOMEM; 124 temp_wqe = q->qe[q->host_index].wqe; 125 126 /* If the host has not yet processed the next entry then we are done */ 127 idx = ((q->host_index + 1) % q->entry_count); 128 if (idx == q->hba_index) { 129 q->WQ_overflow++; 130 return -EBUSY; 131 } 132 q->WQ_posted++; 133 /* set consumption flag every once in a while */ 134 if (!((q->host_index + 1) % q->entry_repost)) 135 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 136 else 137 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 138 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 139 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 140 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 141 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 142 /* write to DPP aperture taking advatage of Combined Writes */ 143 tmp = (uint8_t *)temp_wqe; 144 #ifdef __raw_writeq 145 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 146 __raw_writeq(*((uint64_t *)(tmp + i)), 147 q->dpp_regaddr + i); 148 #else 149 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 150 __raw_writel(*((uint32_t *)(tmp + i)), 151 q->dpp_regaddr + i); 152 #endif 153 } 154 /* ensure WQE bcopy and DPP flushed before doorbell write */ 155 wmb(); 156 157 /* Update the host index before invoking device */ 158 host_index = q->host_index; 159 160 q->host_index = idx; 161 162 /* Ring Doorbell */ 163 doorbell.word0 = 0; 164 if (q->db_format == LPFC_DB_LIST_FORMAT) { 165 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 166 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 167 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 168 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 169 q->dpp_id); 170 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 171 q->queue_id); 172 } else { 173 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 174 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 175 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 176 } 177 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 178 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 179 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 180 } else { 181 return -EINVAL; 182 } 183 writel(doorbell.word0, q->db_regaddr); 184 185 return 0; 186 } 187 188 /** 189 * lpfc_sli4_wq_release - Updates internal hba index for WQ 190 * @q: The Work Queue to operate on. 191 * @index: The index to advance the hba index to. 192 * 193 * This routine will update the HBA index of a queue to reflect consumption of 194 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 195 * an entry the host calls this function to update the queue's internal 196 * pointers. This routine returns the number of entries that were consumed by 197 * the HBA. 198 **/ 199 static uint32_t 200 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 201 { 202 uint32_t released = 0; 203 204 /* sanity check on queue memory */ 205 if (unlikely(!q)) 206 return 0; 207 208 if (q->hba_index == index) 209 return 0; 210 do { 211 q->hba_index = ((q->hba_index + 1) % q->entry_count); 212 released++; 213 } while (q->hba_index != index); 214 return released; 215 } 216 217 /** 218 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 219 * @q: The Mailbox Queue to operate on. 220 * @wqe: The Mailbox Queue Entry to put on the Work queue. 221 * 222 * This routine will copy the contents of @mqe to the next available entry on 223 * the @q. This function will then ring the Work Queue Doorbell to signal the 224 * HBA to start processing the Work Queue Entry. This function returns 0 if 225 * successful. If no entries are available on @q then this function will return 226 * -ENOMEM. 227 * The caller is expected to hold the hbalock when calling this routine. 228 **/ 229 static uint32_t 230 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 231 { 232 struct lpfc_mqe *temp_mqe; 233 struct lpfc_register doorbell; 234 235 /* sanity check on queue memory */ 236 if (unlikely(!q)) 237 return -ENOMEM; 238 temp_mqe = q->qe[q->host_index].mqe; 239 240 /* If the host has not yet processed the next entry then we are done */ 241 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 242 return -ENOMEM; 243 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 244 /* Save off the mailbox pointer for completion */ 245 q->phba->mbox = (MAILBOX_t *)temp_mqe; 246 247 /* Update the host index before invoking device */ 248 q->host_index = ((q->host_index + 1) % q->entry_count); 249 250 /* Ring Doorbell */ 251 doorbell.word0 = 0; 252 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 253 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 254 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 255 return 0; 256 } 257 258 /** 259 * lpfc_sli4_mq_release - Updates internal hba index for MQ 260 * @q: The Mailbox Queue to operate on. 261 * 262 * This routine will update the HBA index of a queue to reflect consumption of 263 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 264 * an entry the host calls this function to update the queue's internal 265 * pointers. This routine returns the number of entries that were consumed by 266 * the HBA. 267 **/ 268 static uint32_t 269 lpfc_sli4_mq_release(struct lpfc_queue *q) 270 { 271 /* sanity check on queue memory */ 272 if (unlikely(!q)) 273 return 0; 274 275 /* Clear the mailbox pointer for completion */ 276 q->phba->mbox = NULL; 277 q->hba_index = ((q->hba_index + 1) % q->entry_count); 278 return 1; 279 } 280 281 /** 282 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 283 * @q: The Event Queue to get the first valid EQE from 284 * 285 * This routine will get the first valid Event Queue Entry from @q, update 286 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 287 * the Queue (no more work to do), or the Queue is full of EQEs that have been 288 * processed, but not popped back to the HBA then this routine will return NULL. 289 **/ 290 static struct lpfc_eqe * 291 lpfc_sli4_eq_get(struct lpfc_queue *q) 292 { 293 struct lpfc_hba *phba; 294 struct lpfc_eqe *eqe; 295 uint32_t idx; 296 297 /* sanity check on queue memory */ 298 if (unlikely(!q)) 299 return NULL; 300 phba = q->phba; 301 eqe = q->qe[q->hba_index].eqe; 302 303 /* If the next EQE is not valid then we are done */ 304 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 305 return NULL; 306 /* If the host has not yet processed the next entry then we are done */ 307 idx = ((q->hba_index + 1) % q->entry_count); 308 if (idx == q->host_index) 309 return NULL; 310 311 q->hba_index = idx; 312 /* if the index wrapped around, toggle the valid bit */ 313 if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index) 314 q->qe_valid = (q->qe_valid) ? 0 : 1; 315 316 317 /* 318 * insert barrier for instruction interlock : data from the hardware 319 * must have the valid bit checked before it can be copied and acted 320 * upon. Speculative instructions were allowing a bcopy at the start 321 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 322 * after our return, to copy data before the valid bit check above 323 * was done. As such, some of the copied data was stale. The barrier 324 * ensures the check is before any data is copied. 325 */ 326 mb(); 327 return eqe; 328 } 329 330 /** 331 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 332 * @q: The Event Queue to disable interrupts 333 * 334 **/ 335 inline void 336 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 337 { 338 struct lpfc_register doorbell; 339 340 doorbell.word0 = 0; 341 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 342 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 343 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 344 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 345 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 346 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 347 } 348 349 /** 350 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 351 * @q: The Event Queue to disable interrupts 352 * 353 **/ 354 inline void 355 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 356 { 357 struct lpfc_register doorbell; 358 359 doorbell.word0 = 0; 360 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 361 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 362 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 363 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 364 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 365 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 366 } 367 368 /** 369 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 370 * @q: The Event Queue that the host has completed processing for. 371 * @arm: Indicates whether the host wants to arms this CQ. 372 * 373 * This routine will mark all Event Queue Entries on @q, from the last 374 * known completed entry to the last entry that was processed, as completed 375 * by clearing the valid bit for each completion queue entry. Then it will 376 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 377 * The internal host index in the @q will be updated by this routine to indicate 378 * that the host has finished processing the entries. The @arm parameter 379 * indicates that the queue should be rearmed when ringing the doorbell. 380 * 381 * This function will return the number of EQEs that were popped. 382 **/ 383 uint32_t 384 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 385 { 386 uint32_t released = 0; 387 struct lpfc_hba *phba; 388 struct lpfc_eqe *temp_eqe; 389 struct lpfc_register doorbell; 390 391 /* sanity check on queue memory */ 392 if (unlikely(!q)) 393 return 0; 394 phba = q->phba; 395 396 /* while there are valid entries */ 397 while (q->hba_index != q->host_index) { 398 if (!phba->sli4_hba.pc_sli4_params.eqav) { 399 temp_eqe = q->qe[q->host_index].eqe; 400 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 401 } 402 released++; 403 q->host_index = ((q->host_index + 1) % q->entry_count); 404 } 405 if (unlikely(released == 0 && !arm)) 406 return 0; 407 408 /* ring doorbell for number popped */ 409 doorbell.word0 = 0; 410 if (arm) { 411 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 412 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 413 } 414 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 415 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 416 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 417 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 418 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 419 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 420 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 421 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 422 readl(q->phba->sli4_hba.EQDBregaddr); 423 return released; 424 } 425 426 /** 427 * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ 428 * @q: The Event Queue that the host has completed processing for. 429 * @arm: Indicates whether the host wants to arms this CQ. 430 * 431 * This routine will mark all Event Queue Entries on @q, from the last 432 * known completed entry to the last entry that was processed, as completed 433 * by clearing the valid bit for each completion queue entry. Then it will 434 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 435 * The internal host index in the @q will be updated by this routine to indicate 436 * that the host has finished processing the entries. The @arm parameter 437 * indicates that the queue should be rearmed when ringing the doorbell. 438 * 439 * This function will return the number of EQEs that were popped. 440 **/ 441 uint32_t 442 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm) 443 { 444 uint32_t released = 0; 445 struct lpfc_hba *phba; 446 struct lpfc_eqe *temp_eqe; 447 struct lpfc_register doorbell; 448 449 /* sanity check on queue memory */ 450 if (unlikely(!q)) 451 return 0; 452 phba = q->phba; 453 454 /* while there are valid entries */ 455 while (q->hba_index != q->host_index) { 456 if (!phba->sli4_hba.pc_sli4_params.eqav) { 457 temp_eqe = q->qe[q->host_index].eqe; 458 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 459 } 460 released++; 461 q->host_index = ((q->host_index + 1) % q->entry_count); 462 } 463 if (unlikely(released == 0 && !arm)) 464 return 0; 465 466 /* ring doorbell for number popped */ 467 doorbell.word0 = 0; 468 if (arm) 469 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 470 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released); 471 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 472 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 473 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 474 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 475 readl(q->phba->sli4_hba.EQDBregaddr); 476 return released; 477 } 478 479 /** 480 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 481 * @q: The Completion Queue to get the first valid CQE from 482 * 483 * This routine will get the first valid Completion Queue Entry from @q, update 484 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 485 * the Queue (no more work to do), or the Queue is full of CQEs that have been 486 * processed, but not popped back to the HBA then this routine will return NULL. 487 **/ 488 static struct lpfc_cqe * 489 lpfc_sli4_cq_get(struct lpfc_queue *q) 490 { 491 struct lpfc_hba *phba; 492 struct lpfc_cqe *cqe; 493 uint32_t idx; 494 495 /* sanity check on queue memory */ 496 if (unlikely(!q)) 497 return NULL; 498 phba = q->phba; 499 cqe = q->qe[q->hba_index].cqe; 500 501 /* If the next CQE is not valid then we are done */ 502 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 503 return NULL; 504 /* If the host has not yet processed the next entry then we are done */ 505 idx = ((q->hba_index + 1) % q->entry_count); 506 if (idx == q->host_index) 507 return NULL; 508 509 q->hba_index = idx; 510 /* if the index wrapped around, toggle the valid bit */ 511 if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index) 512 q->qe_valid = (q->qe_valid) ? 0 : 1; 513 514 /* 515 * insert barrier for instruction interlock : data from the hardware 516 * must have the valid bit checked before it can be copied and acted 517 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 518 * instructions allowing action on content before valid bit checked, 519 * add barrier here as well. May not be needed as "content" is a 520 * single 32-bit entity here (vs multi word structure for cq's). 521 */ 522 mb(); 523 return cqe; 524 } 525 526 /** 527 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 528 * @q: The Completion Queue that the host has completed processing for. 529 * @arm: Indicates whether the host wants to arms this CQ. 530 * 531 * This routine will mark all Completion queue entries on @q, from the last 532 * known completed entry to the last entry that was processed, as completed 533 * by clearing the valid bit for each completion queue entry. Then it will 534 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 535 * The internal host index in the @q will be updated by this routine to indicate 536 * that the host has finished processing the entries. The @arm parameter 537 * indicates that the queue should be rearmed when ringing the doorbell. 538 * 539 * This function will return the number of CQEs that were released. 540 **/ 541 uint32_t 542 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 543 { 544 uint32_t released = 0; 545 struct lpfc_hba *phba; 546 struct lpfc_cqe *temp_qe; 547 struct lpfc_register doorbell; 548 549 /* sanity check on queue memory */ 550 if (unlikely(!q)) 551 return 0; 552 phba = q->phba; 553 554 /* while there are valid entries */ 555 while (q->hba_index != q->host_index) { 556 if (!phba->sli4_hba.pc_sli4_params.cqav) { 557 temp_qe = q->qe[q->host_index].cqe; 558 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 559 } 560 released++; 561 q->host_index = ((q->host_index + 1) % q->entry_count); 562 } 563 if (unlikely(released == 0 && !arm)) 564 return 0; 565 566 /* ring doorbell for number popped */ 567 doorbell.word0 = 0; 568 if (arm) 569 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 570 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 571 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 572 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 573 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 574 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 575 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 576 return released; 577 } 578 579 /** 580 * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ 581 * @q: The Completion Queue that the host has completed processing for. 582 * @arm: Indicates whether the host wants to arms this CQ. 583 * 584 * This routine will mark all Completion queue entries on @q, from the last 585 * known completed entry to the last entry that was processed, as completed 586 * by clearing the valid bit for each completion queue entry. Then it will 587 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 588 * The internal host index in the @q will be updated by this routine to indicate 589 * that the host has finished processing the entries. The @arm parameter 590 * indicates that the queue should be rearmed when ringing the doorbell. 591 * 592 * This function will return the number of CQEs that were released. 593 **/ 594 uint32_t 595 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm) 596 { 597 uint32_t released = 0; 598 struct lpfc_hba *phba; 599 struct lpfc_cqe *temp_qe; 600 struct lpfc_register doorbell; 601 602 /* sanity check on queue memory */ 603 if (unlikely(!q)) 604 return 0; 605 phba = q->phba; 606 607 /* while there are valid entries */ 608 while (q->hba_index != q->host_index) { 609 if (!phba->sli4_hba.pc_sli4_params.cqav) { 610 temp_qe = q->qe[q->host_index].cqe; 611 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 612 } 613 released++; 614 q->host_index = ((q->host_index + 1) % q->entry_count); 615 } 616 if (unlikely(released == 0 && !arm)) 617 return 0; 618 619 /* ring doorbell for number popped */ 620 doorbell.word0 = 0; 621 if (arm) 622 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 623 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released); 624 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 625 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 626 return released; 627 } 628 629 /** 630 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 631 * @q: The Header Receive Queue to operate on. 632 * @wqe: The Receive Queue Entry to put on the Receive queue. 633 * 634 * This routine will copy the contents of @wqe to the next available entry on 635 * the @q. This function will then ring the Receive Queue Doorbell to signal the 636 * HBA to start processing the Receive Queue Entry. This function returns the 637 * index that the rqe was copied to if successful. If no entries are available 638 * on @q then this function will return -ENOMEM. 639 * The caller is expected to hold the hbalock when calling this routine. 640 **/ 641 int 642 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 643 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 644 { 645 struct lpfc_rqe *temp_hrqe; 646 struct lpfc_rqe *temp_drqe; 647 struct lpfc_register doorbell; 648 int hq_put_index; 649 int dq_put_index; 650 651 /* sanity check on queue memory */ 652 if (unlikely(!hq) || unlikely(!dq)) 653 return -ENOMEM; 654 hq_put_index = hq->host_index; 655 dq_put_index = dq->host_index; 656 temp_hrqe = hq->qe[hq_put_index].rqe; 657 temp_drqe = dq->qe[dq_put_index].rqe; 658 659 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 660 return -EINVAL; 661 if (hq_put_index != dq_put_index) 662 return -EINVAL; 663 /* If the host has not yet processed the next entry then we are done */ 664 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 665 return -EBUSY; 666 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 667 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 668 669 /* Update the host index to point to the next slot */ 670 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 671 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 672 hq->RQ_buf_posted++; 673 674 /* Ring The Header Receive Queue Doorbell */ 675 if (!(hq->host_index % hq->entry_repost)) { 676 doorbell.word0 = 0; 677 if (hq->db_format == LPFC_DB_RING_FORMAT) { 678 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 679 hq->entry_repost); 680 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 681 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 682 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 683 hq->entry_repost); 684 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 685 hq->host_index); 686 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 687 } else { 688 return -EINVAL; 689 } 690 writel(doorbell.word0, hq->db_regaddr); 691 } 692 return hq_put_index; 693 } 694 695 /** 696 * lpfc_sli4_rq_release - Updates internal hba index for RQ 697 * @q: The Header Receive Queue to operate on. 698 * 699 * This routine will update the HBA index of a queue to reflect consumption of 700 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 701 * consumed an entry the host calls this function to update the queue's 702 * internal pointers. This routine returns the number of entries that were 703 * consumed by the HBA. 704 **/ 705 static uint32_t 706 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 707 { 708 /* sanity check on queue memory */ 709 if (unlikely(!hq) || unlikely(!dq)) 710 return 0; 711 712 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 713 return 0; 714 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 715 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 716 return 1; 717 } 718 719 /** 720 * lpfc_cmd_iocb - Get next command iocb entry in the ring 721 * @phba: Pointer to HBA context object. 722 * @pring: Pointer to driver SLI ring object. 723 * 724 * This function returns pointer to next command iocb entry 725 * in the command ring. The caller must hold hbalock to prevent 726 * other threads consume the next command iocb. 727 * SLI-2/SLI-3 provide different sized iocbs. 728 **/ 729 static inline IOCB_t * 730 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 731 { 732 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 733 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 734 } 735 736 /** 737 * lpfc_resp_iocb - Get next response iocb entry in the ring 738 * @phba: Pointer to HBA context object. 739 * @pring: Pointer to driver SLI ring object. 740 * 741 * This function returns pointer to next response iocb entry 742 * in the response ring. The caller must hold hbalock to make sure 743 * that no other thread consume the next response iocb. 744 * SLI-2/SLI-3 provide different sized iocbs. 745 **/ 746 static inline IOCB_t * 747 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 748 { 749 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 750 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 751 } 752 753 /** 754 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 755 * @phba: Pointer to HBA context object. 756 * 757 * This function is called with hbalock held. This function 758 * allocates a new driver iocb object from the iocb pool. If the 759 * allocation is successful, it returns pointer to the newly 760 * allocated iocb object else it returns NULL. 761 **/ 762 struct lpfc_iocbq * 763 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 764 { 765 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 766 struct lpfc_iocbq * iocbq = NULL; 767 768 lockdep_assert_held(&phba->hbalock); 769 770 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 771 if (iocbq) 772 phba->iocb_cnt++; 773 if (phba->iocb_cnt > phba->iocb_max) 774 phba->iocb_max = phba->iocb_cnt; 775 return iocbq; 776 } 777 778 /** 779 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 780 * @phba: Pointer to HBA context object. 781 * @xritag: XRI value. 782 * 783 * This function clears the sglq pointer from the array of acive 784 * sglq's. The xritag that is passed in is used to index into the 785 * array. Before the xritag can be used it needs to be adjusted 786 * by subtracting the xribase. 787 * 788 * Returns sglq ponter = success, NULL = Failure. 789 **/ 790 struct lpfc_sglq * 791 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 792 { 793 struct lpfc_sglq *sglq; 794 795 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 796 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 797 return sglq; 798 } 799 800 /** 801 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 802 * @phba: Pointer to HBA context object. 803 * @xritag: XRI value. 804 * 805 * This function returns the sglq pointer from the array of acive 806 * sglq's. The xritag that is passed in is used to index into the 807 * array. Before the xritag can be used it needs to be adjusted 808 * by subtracting the xribase. 809 * 810 * Returns sglq ponter = success, NULL = Failure. 811 **/ 812 struct lpfc_sglq * 813 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 814 { 815 struct lpfc_sglq *sglq; 816 817 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 818 return sglq; 819 } 820 821 /** 822 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 823 * @phba: Pointer to HBA context object. 824 * @xritag: xri used in this exchange. 825 * @rrq: The RRQ to be cleared. 826 * 827 **/ 828 void 829 lpfc_clr_rrq_active(struct lpfc_hba *phba, 830 uint16_t xritag, 831 struct lpfc_node_rrq *rrq) 832 { 833 struct lpfc_nodelist *ndlp = NULL; 834 835 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 836 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 837 838 /* The target DID could have been swapped (cable swap) 839 * we should use the ndlp from the findnode if it is 840 * available. 841 */ 842 if ((!ndlp) && rrq->ndlp) 843 ndlp = rrq->ndlp; 844 845 if (!ndlp) 846 goto out; 847 848 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 849 rrq->send_rrq = 0; 850 rrq->xritag = 0; 851 rrq->rrq_stop_time = 0; 852 } 853 out: 854 mempool_free(rrq, phba->rrq_pool); 855 } 856 857 /** 858 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 859 * @phba: Pointer to HBA context object. 860 * 861 * This function is called with hbalock held. This function 862 * Checks if stop_time (ratov from setting rrq active) has 863 * been reached, if it has and the send_rrq flag is set then 864 * it will call lpfc_send_rrq. If the send_rrq flag is not set 865 * then it will just call the routine to clear the rrq and 866 * free the rrq resource. 867 * The timer is set to the next rrq that is going to expire before 868 * leaving the routine. 869 * 870 **/ 871 void 872 lpfc_handle_rrq_active(struct lpfc_hba *phba) 873 { 874 struct lpfc_node_rrq *rrq; 875 struct lpfc_node_rrq *nextrrq; 876 unsigned long next_time; 877 unsigned long iflags; 878 LIST_HEAD(send_rrq); 879 880 spin_lock_irqsave(&phba->hbalock, iflags); 881 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 882 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 883 list_for_each_entry_safe(rrq, nextrrq, 884 &phba->active_rrq_list, list) { 885 if (time_after(jiffies, rrq->rrq_stop_time)) 886 list_move(&rrq->list, &send_rrq); 887 else if (time_before(rrq->rrq_stop_time, next_time)) 888 next_time = rrq->rrq_stop_time; 889 } 890 spin_unlock_irqrestore(&phba->hbalock, iflags); 891 if ((!list_empty(&phba->active_rrq_list)) && 892 (!(phba->pport->load_flag & FC_UNLOADING))) 893 mod_timer(&phba->rrq_tmr, next_time); 894 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 895 list_del(&rrq->list); 896 if (!rrq->send_rrq) 897 /* this call will free the rrq */ 898 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 899 else if (lpfc_send_rrq(phba, rrq)) { 900 /* if we send the rrq then the completion handler 901 * will clear the bit in the xribitmap. 902 */ 903 lpfc_clr_rrq_active(phba, rrq->xritag, 904 rrq); 905 } 906 } 907 } 908 909 /** 910 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 911 * @vport: Pointer to vport context object. 912 * @xri: The xri used in the exchange. 913 * @did: The targets DID for this exchange. 914 * 915 * returns NULL = rrq not found in the phba->active_rrq_list. 916 * rrq = rrq for this xri and target. 917 **/ 918 struct lpfc_node_rrq * 919 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 920 { 921 struct lpfc_hba *phba = vport->phba; 922 struct lpfc_node_rrq *rrq; 923 struct lpfc_node_rrq *nextrrq; 924 unsigned long iflags; 925 926 if (phba->sli_rev != LPFC_SLI_REV4) 927 return NULL; 928 spin_lock_irqsave(&phba->hbalock, iflags); 929 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 930 if (rrq->vport == vport && rrq->xritag == xri && 931 rrq->nlp_DID == did){ 932 list_del(&rrq->list); 933 spin_unlock_irqrestore(&phba->hbalock, iflags); 934 return rrq; 935 } 936 } 937 spin_unlock_irqrestore(&phba->hbalock, iflags); 938 return NULL; 939 } 940 941 /** 942 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 943 * @vport: Pointer to vport context object. 944 * @ndlp: Pointer to the lpfc_node_list structure. 945 * If ndlp is NULL Remove all active RRQs for this vport from the 946 * phba->active_rrq_list and clear the rrq. 947 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 948 **/ 949 void 950 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 951 952 { 953 struct lpfc_hba *phba = vport->phba; 954 struct lpfc_node_rrq *rrq; 955 struct lpfc_node_rrq *nextrrq; 956 unsigned long iflags; 957 LIST_HEAD(rrq_list); 958 959 if (phba->sli_rev != LPFC_SLI_REV4) 960 return; 961 if (!ndlp) { 962 lpfc_sli4_vport_delete_els_xri_aborted(vport); 963 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 964 } 965 spin_lock_irqsave(&phba->hbalock, iflags); 966 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 967 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 968 list_move(&rrq->list, &rrq_list); 969 spin_unlock_irqrestore(&phba->hbalock, iflags); 970 971 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 972 list_del(&rrq->list); 973 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 974 } 975 } 976 977 /** 978 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 979 * @phba: Pointer to HBA context object. 980 * @ndlp: Targets nodelist pointer for this exchange. 981 * @xritag the xri in the bitmap to test. 982 * 983 * This function is called with hbalock held. This function 984 * returns 0 = rrq not active for this xri 985 * 1 = rrq is valid for this xri. 986 **/ 987 int 988 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 989 uint16_t xritag) 990 { 991 lockdep_assert_held(&phba->hbalock); 992 if (!ndlp) 993 return 0; 994 if (!ndlp->active_rrqs_xri_bitmap) 995 return 0; 996 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 997 return 1; 998 else 999 return 0; 1000 } 1001 1002 /** 1003 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1004 * @phba: Pointer to HBA context object. 1005 * @ndlp: nodelist pointer for this target. 1006 * @xritag: xri used in this exchange. 1007 * @rxid: Remote Exchange ID. 1008 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1009 * 1010 * This function takes the hbalock. 1011 * The active bit is always set in the active rrq xri_bitmap even 1012 * if there is no slot avaiable for the other rrq information. 1013 * 1014 * returns 0 rrq actived for this xri 1015 * < 0 No memory or invalid ndlp. 1016 **/ 1017 int 1018 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1019 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1020 { 1021 unsigned long iflags; 1022 struct lpfc_node_rrq *rrq; 1023 int empty; 1024 1025 if (!ndlp) 1026 return -EINVAL; 1027 1028 if (!phba->cfg_enable_rrq) 1029 return -EINVAL; 1030 1031 spin_lock_irqsave(&phba->hbalock, iflags); 1032 if (phba->pport->load_flag & FC_UNLOADING) { 1033 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1034 goto out; 1035 } 1036 1037 /* 1038 * set the active bit even if there is no mem available. 1039 */ 1040 if (NLP_CHK_FREE_REQ(ndlp)) 1041 goto out; 1042 1043 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1044 goto out; 1045 1046 if (!ndlp->active_rrqs_xri_bitmap) 1047 goto out; 1048 1049 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1050 goto out; 1051 1052 spin_unlock_irqrestore(&phba->hbalock, iflags); 1053 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1054 if (!rrq) { 1055 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1056 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1057 " DID:0x%x Send:%d\n", 1058 xritag, rxid, ndlp->nlp_DID, send_rrq); 1059 return -EINVAL; 1060 } 1061 if (phba->cfg_enable_rrq == 1) 1062 rrq->send_rrq = send_rrq; 1063 else 1064 rrq->send_rrq = 0; 1065 rrq->xritag = xritag; 1066 rrq->rrq_stop_time = jiffies + 1067 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1068 rrq->ndlp = ndlp; 1069 rrq->nlp_DID = ndlp->nlp_DID; 1070 rrq->vport = ndlp->vport; 1071 rrq->rxid = rxid; 1072 spin_lock_irqsave(&phba->hbalock, iflags); 1073 empty = list_empty(&phba->active_rrq_list); 1074 list_add_tail(&rrq->list, &phba->active_rrq_list); 1075 phba->hba_flag |= HBA_RRQ_ACTIVE; 1076 if (empty) 1077 lpfc_worker_wake_up(phba); 1078 spin_unlock_irqrestore(&phba->hbalock, iflags); 1079 return 0; 1080 out: 1081 spin_unlock_irqrestore(&phba->hbalock, iflags); 1082 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1083 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1084 " DID:0x%x Send:%d\n", 1085 xritag, rxid, ndlp->nlp_DID, send_rrq); 1086 return -EINVAL; 1087 } 1088 1089 /** 1090 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1091 * @phba: Pointer to HBA context object. 1092 * @piocb: Pointer to the iocbq. 1093 * 1094 * This function is called with the ring lock held. This function 1095 * gets a new driver sglq object from the sglq list. If the 1096 * list is not empty then it is successful, it returns pointer to the newly 1097 * allocated sglq object else it returns NULL. 1098 **/ 1099 static struct lpfc_sglq * 1100 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1101 { 1102 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1103 struct lpfc_sglq *sglq = NULL; 1104 struct lpfc_sglq *start_sglq = NULL; 1105 struct lpfc_scsi_buf *lpfc_cmd; 1106 struct lpfc_nodelist *ndlp; 1107 int found = 0; 1108 1109 lockdep_assert_held(&phba->hbalock); 1110 1111 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1112 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 1113 ndlp = lpfc_cmd->rdata->pnode; 1114 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1115 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1116 ndlp = piocbq->context_un.ndlp; 1117 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1118 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1119 ndlp = NULL; 1120 else 1121 ndlp = piocbq->context_un.ndlp; 1122 } else { 1123 ndlp = piocbq->context1; 1124 } 1125 1126 spin_lock(&phba->sli4_hba.sgl_list_lock); 1127 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1128 start_sglq = sglq; 1129 while (!found) { 1130 if (!sglq) 1131 break; 1132 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1133 test_bit(sglq->sli4_lxritag, 1134 ndlp->active_rrqs_xri_bitmap)) { 1135 /* This xri has an rrq outstanding for this DID. 1136 * put it back in the list and get another xri. 1137 */ 1138 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1139 sglq = NULL; 1140 list_remove_head(lpfc_els_sgl_list, sglq, 1141 struct lpfc_sglq, list); 1142 if (sglq == start_sglq) { 1143 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1144 sglq = NULL; 1145 break; 1146 } else 1147 continue; 1148 } 1149 sglq->ndlp = ndlp; 1150 found = 1; 1151 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1152 sglq->state = SGL_ALLOCATED; 1153 } 1154 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1155 return sglq; 1156 } 1157 1158 /** 1159 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1160 * @phba: Pointer to HBA context object. 1161 * @piocb: Pointer to the iocbq. 1162 * 1163 * This function is called with the sgl_list lock held. This function 1164 * gets a new driver sglq object from the sglq list. If the 1165 * list is not empty then it is successful, it returns pointer to the newly 1166 * allocated sglq object else it returns NULL. 1167 **/ 1168 struct lpfc_sglq * 1169 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1170 { 1171 struct list_head *lpfc_nvmet_sgl_list; 1172 struct lpfc_sglq *sglq = NULL; 1173 1174 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1175 1176 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1177 1178 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1179 if (!sglq) 1180 return NULL; 1181 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1182 sglq->state = SGL_ALLOCATED; 1183 return sglq; 1184 } 1185 1186 /** 1187 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1188 * @phba: Pointer to HBA context object. 1189 * 1190 * This function is called with no lock held. This function 1191 * allocates a new driver iocb object from the iocb pool. If the 1192 * allocation is successful, it returns pointer to the newly 1193 * allocated iocb object else it returns NULL. 1194 **/ 1195 struct lpfc_iocbq * 1196 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1197 { 1198 struct lpfc_iocbq * iocbq = NULL; 1199 unsigned long iflags; 1200 1201 spin_lock_irqsave(&phba->hbalock, iflags); 1202 iocbq = __lpfc_sli_get_iocbq(phba); 1203 spin_unlock_irqrestore(&phba->hbalock, iflags); 1204 return iocbq; 1205 } 1206 1207 /** 1208 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1209 * @phba: Pointer to HBA context object. 1210 * @iocbq: Pointer to driver iocb object. 1211 * 1212 * This function is called with hbalock held to release driver 1213 * iocb object to the iocb pool. The iotag in the iocb object 1214 * does not change for each use of the iocb object. This function 1215 * clears all other fields of the iocb object when it is freed. 1216 * The sqlq structure that holds the xritag and phys and virtual 1217 * mappings for the scatter gather list is retrieved from the 1218 * active array of sglq. The get of the sglq pointer also clears 1219 * the entry in the array. If the status of the IO indiactes that 1220 * this IO was aborted then the sglq entry it put on the 1221 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1222 * IO has good status or fails for any other reason then the sglq 1223 * entry is added to the free list (lpfc_els_sgl_list). 1224 **/ 1225 static void 1226 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1227 { 1228 struct lpfc_sglq *sglq; 1229 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1230 unsigned long iflag = 0; 1231 struct lpfc_sli_ring *pring; 1232 1233 lockdep_assert_held(&phba->hbalock); 1234 1235 if (iocbq->sli4_xritag == NO_XRI) 1236 sglq = NULL; 1237 else 1238 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1239 1240 1241 if (sglq) { 1242 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1243 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1244 iflag); 1245 sglq->state = SGL_FREED; 1246 sglq->ndlp = NULL; 1247 list_add_tail(&sglq->list, 1248 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1249 spin_unlock_irqrestore( 1250 &phba->sli4_hba.sgl_list_lock, iflag); 1251 goto out; 1252 } 1253 1254 pring = phba->sli4_hba.els_wq->pring; 1255 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1256 (sglq->state != SGL_XRI_ABORTED)) { 1257 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1258 iflag); 1259 list_add(&sglq->list, 1260 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1261 spin_unlock_irqrestore( 1262 &phba->sli4_hba.sgl_list_lock, iflag); 1263 } else { 1264 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1265 iflag); 1266 sglq->state = SGL_FREED; 1267 sglq->ndlp = NULL; 1268 list_add_tail(&sglq->list, 1269 &phba->sli4_hba.lpfc_els_sgl_list); 1270 spin_unlock_irqrestore( 1271 &phba->sli4_hba.sgl_list_lock, iflag); 1272 1273 /* Check if TXQ queue needs to be serviced */ 1274 if (!list_empty(&pring->txq)) 1275 lpfc_worker_wake_up(phba); 1276 } 1277 } 1278 1279 out: 1280 /* 1281 * Clean all volatile data fields, preserve iotag and node struct. 1282 */ 1283 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1284 iocbq->sli4_lxritag = NO_XRI; 1285 iocbq->sli4_xritag = NO_XRI; 1286 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1287 LPFC_IO_NVME_LS); 1288 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1289 } 1290 1291 1292 /** 1293 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1294 * @phba: Pointer to HBA context object. 1295 * @iocbq: Pointer to driver iocb object. 1296 * 1297 * This function is called with hbalock held to release driver 1298 * iocb object to the iocb pool. The iotag in the iocb object 1299 * does not change for each use of the iocb object. This function 1300 * clears all other fields of the iocb object when it is freed. 1301 **/ 1302 static void 1303 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1304 { 1305 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1306 1307 lockdep_assert_held(&phba->hbalock); 1308 1309 /* 1310 * Clean all volatile data fields, preserve iotag and node struct. 1311 */ 1312 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1313 iocbq->sli4_xritag = NO_XRI; 1314 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1315 } 1316 1317 /** 1318 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1319 * @phba: Pointer to HBA context object. 1320 * @iocbq: Pointer to driver iocb object. 1321 * 1322 * This function is called with hbalock held to release driver 1323 * iocb object to the iocb pool. The iotag in the iocb object 1324 * does not change for each use of the iocb object. This function 1325 * clears all other fields of the iocb object when it is freed. 1326 **/ 1327 static void 1328 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1329 { 1330 lockdep_assert_held(&phba->hbalock); 1331 1332 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1333 phba->iocb_cnt--; 1334 } 1335 1336 /** 1337 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1338 * @phba: Pointer to HBA context object. 1339 * @iocbq: Pointer to driver iocb object. 1340 * 1341 * This function is called with no lock held to release the iocb to 1342 * iocb pool. 1343 **/ 1344 void 1345 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1346 { 1347 unsigned long iflags; 1348 1349 /* 1350 * Clean all volatile data fields, preserve iotag and node struct. 1351 */ 1352 spin_lock_irqsave(&phba->hbalock, iflags); 1353 __lpfc_sli_release_iocbq(phba, iocbq); 1354 spin_unlock_irqrestore(&phba->hbalock, iflags); 1355 } 1356 1357 /** 1358 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1359 * @phba: Pointer to HBA context object. 1360 * @iocblist: List of IOCBs. 1361 * @ulpstatus: ULP status in IOCB command field. 1362 * @ulpWord4: ULP word-4 in IOCB command field. 1363 * 1364 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1365 * on the list by invoking the complete callback function associated with the 1366 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1367 * fields. 1368 **/ 1369 void 1370 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1371 uint32_t ulpstatus, uint32_t ulpWord4) 1372 { 1373 struct lpfc_iocbq *piocb; 1374 1375 while (!list_empty(iocblist)) { 1376 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1377 if (!piocb->iocb_cmpl) 1378 lpfc_sli_release_iocbq(phba, piocb); 1379 else { 1380 piocb->iocb.ulpStatus = ulpstatus; 1381 piocb->iocb.un.ulpWord[4] = ulpWord4; 1382 (piocb->iocb_cmpl) (phba, piocb, piocb); 1383 } 1384 } 1385 return; 1386 } 1387 1388 /** 1389 * lpfc_sli_iocb_cmd_type - Get the iocb type 1390 * @iocb_cmnd: iocb command code. 1391 * 1392 * This function is called by ring event handler function to get the iocb type. 1393 * This function translates the iocb command to an iocb command type used to 1394 * decide the final disposition of each completed IOCB. 1395 * The function returns 1396 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1397 * LPFC_SOL_IOCB if it is a solicited iocb completion 1398 * LPFC_ABORT_IOCB if it is an abort iocb 1399 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1400 * 1401 * The caller is not required to hold any lock. 1402 **/ 1403 static lpfc_iocb_type 1404 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1405 { 1406 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1407 1408 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1409 return 0; 1410 1411 switch (iocb_cmnd) { 1412 case CMD_XMIT_SEQUENCE_CR: 1413 case CMD_XMIT_SEQUENCE_CX: 1414 case CMD_XMIT_BCAST_CN: 1415 case CMD_XMIT_BCAST_CX: 1416 case CMD_ELS_REQUEST_CR: 1417 case CMD_ELS_REQUEST_CX: 1418 case CMD_CREATE_XRI_CR: 1419 case CMD_CREATE_XRI_CX: 1420 case CMD_GET_RPI_CN: 1421 case CMD_XMIT_ELS_RSP_CX: 1422 case CMD_GET_RPI_CR: 1423 case CMD_FCP_IWRITE_CR: 1424 case CMD_FCP_IWRITE_CX: 1425 case CMD_FCP_IREAD_CR: 1426 case CMD_FCP_IREAD_CX: 1427 case CMD_FCP_ICMND_CR: 1428 case CMD_FCP_ICMND_CX: 1429 case CMD_FCP_TSEND_CX: 1430 case CMD_FCP_TRSP_CX: 1431 case CMD_FCP_TRECEIVE_CX: 1432 case CMD_FCP_AUTO_TRSP_CX: 1433 case CMD_ADAPTER_MSG: 1434 case CMD_ADAPTER_DUMP: 1435 case CMD_XMIT_SEQUENCE64_CR: 1436 case CMD_XMIT_SEQUENCE64_CX: 1437 case CMD_XMIT_BCAST64_CN: 1438 case CMD_XMIT_BCAST64_CX: 1439 case CMD_ELS_REQUEST64_CR: 1440 case CMD_ELS_REQUEST64_CX: 1441 case CMD_FCP_IWRITE64_CR: 1442 case CMD_FCP_IWRITE64_CX: 1443 case CMD_FCP_IREAD64_CR: 1444 case CMD_FCP_IREAD64_CX: 1445 case CMD_FCP_ICMND64_CR: 1446 case CMD_FCP_ICMND64_CX: 1447 case CMD_FCP_TSEND64_CX: 1448 case CMD_FCP_TRSP64_CX: 1449 case CMD_FCP_TRECEIVE64_CX: 1450 case CMD_GEN_REQUEST64_CR: 1451 case CMD_GEN_REQUEST64_CX: 1452 case CMD_XMIT_ELS_RSP64_CX: 1453 case DSSCMD_IWRITE64_CR: 1454 case DSSCMD_IWRITE64_CX: 1455 case DSSCMD_IREAD64_CR: 1456 case DSSCMD_IREAD64_CX: 1457 type = LPFC_SOL_IOCB; 1458 break; 1459 case CMD_ABORT_XRI_CN: 1460 case CMD_ABORT_XRI_CX: 1461 case CMD_CLOSE_XRI_CN: 1462 case CMD_CLOSE_XRI_CX: 1463 case CMD_XRI_ABORTED_CX: 1464 case CMD_ABORT_MXRI64_CN: 1465 case CMD_XMIT_BLS_RSP64_CX: 1466 type = LPFC_ABORT_IOCB; 1467 break; 1468 case CMD_RCV_SEQUENCE_CX: 1469 case CMD_RCV_ELS_REQ_CX: 1470 case CMD_RCV_SEQUENCE64_CX: 1471 case CMD_RCV_ELS_REQ64_CX: 1472 case CMD_ASYNC_STATUS: 1473 case CMD_IOCB_RCV_SEQ64_CX: 1474 case CMD_IOCB_RCV_ELS64_CX: 1475 case CMD_IOCB_RCV_CONT64_CX: 1476 case CMD_IOCB_RET_XRI64_CX: 1477 type = LPFC_UNSOL_IOCB; 1478 break; 1479 case CMD_IOCB_XMIT_MSEQ64_CR: 1480 case CMD_IOCB_XMIT_MSEQ64_CX: 1481 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1482 case CMD_IOCB_RCV_ELS_LIST64_CX: 1483 case CMD_IOCB_CLOSE_EXTENDED_CN: 1484 case CMD_IOCB_ABORT_EXTENDED_CN: 1485 case CMD_IOCB_RET_HBQE64_CN: 1486 case CMD_IOCB_FCP_IBIDIR64_CR: 1487 case CMD_IOCB_FCP_IBIDIR64_CX: 1488 case CMD_IOCB_FCP_ITASKMGT64_CX: 1489 case CMD_IOCB_LOGENTRY_CN: 1490 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1491 printk("%s - Unhandled SLI-3 Command x%x\n", 1492 __func__, iocb_cmnd); 1493 type = LPFC_UNKNOWN_IOCB; 1494 break; 1495 default: 1496 type = LPFC_UNKNOWN_IOCB; 1497 break; 1498 } 1499 1500 return type; 1501 } 1502 1503 /** 1504 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1505 * @phba: Pointer to HBA context object. 1506 * 1507 * This function is called from SLI initialization code 1508 * to configure every ring of the HBA's SLI interface. The 1509 * caller is not required to hold any lock. This function issues 1510 * a config_ring mailbox command for each ring. 1511 * This function returns zero if successful else returns a negative 1512 * error code. 1513 **/ 1514 static int 1515 lpfc_sli_ring_map(struct lpfc_hba *phba) 1516 { 1517 struct lpfc_sli *psli = &phba->sli; 1518 LPFC_MBOXQ_t *pmb; 1519 MAILBOX_t *pmbox; 1520 int i, rc, ret = 0; 1521 1522 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1523 if (!pmb) 1524 return -ENOMEM; 1525 pmbox = &pmb->u.mb; 1526 phba->link_state = LPFC_INIT_MBX_CMDS; 1527 for (i = 0; i < psli->num_rings; i++) { 1528 lpfc_config_ring(phba, i, pmb); 1529 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1530 if (rc != MBX_SUCCESS) { 1531 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1532 "0446 Adapter failed to init (%d), " 1533 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1534 "ring %d\n", 1535 rc, pmbox->mbxCommand, 1536 pmbox->mbxStatus, i); 1537 phba->link_state = LPFC_HBA_ERROR; 1538 ret = -ENXIO; 1539 break; 1540 } 1541 } 1542 mempool_free(pmb, phba->mbox_mem_pool); 1543 return ret; 1544 } 1545 1546 /** 1547 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1548 * @phba: Pointer to HBA context object. 1549 * @pring: Pointer to driver SLI ring object. 1550 * @piocb: Pointer to the driver iocb object. 1551 * 1552 * This function is called with hbalock held. The function adds the 1553 * new iocb to txcmplq of the given ring. This function always returns 1554 * 0. If this function is called for ELS ring, this function checks if 1555 * there is a vport associated with the ELS command. This function also 1556 * starts els_tmofunc timer if this is an ELS command. 1557 **/ 1558 static int 1559 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1560 struct lpfc_iocbq *piocb) 1561 { 1562 lockdep_assert_held(&phba->hbalock); 1563 1564 BUG_ON(!piocb); 1565 1566 list_add_tail(&piocb->list, &pring->txcmplq); 1567 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1568 1569 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1570 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1571 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1572 BUG_ON(!piocb->vport); 1573 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1574 mod_timer(&piocb->vport->els_tmofunc, 1575 jiffies + 1576 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * lpfc_sli_ringtx_get - Get first element of the txq 1584 * @phba: Pointer to HBA context object. 1585 * @pring: Pointer to driver SLI ring object. 1586 * 1587 * This function is called with hbalock held to get next 1588 * iocb in txq of the given ring. If there is any iocb in 1589 * the txq, the function returns first iocb in the list after 1590 * removing the iocb from the list, else it returns NULL. 1591 **/ 1592 struct lpfc_iocbq * 1593 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1594 { 1595 struct lpfc_iocbq *cmd_iocb; 1596 1597 lockdep_assert_held(&phba->hbalock); 1598 1599 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1600 return cmd_iocb; 1601 } 1602 1603 /** 1604 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1605 * @phba: Pointer to HBA context object. 1606 * @pring: Pointer to driver SLI ring object. 1607 * 1608 * This function is called with hbalock held and the caller must post the 1609 * iocb without releasing the lock. If the caller releases the lock, 1610 * iocb slot returned by the function is not guaranteed to be available. 1611 * The function returns pointer to the next available iocb slot if there 1612 * is available slot in the ring, else it returns NULL. 1613 * If the get index of the ring is ahead of the put index, the function 1614 * will post an error attention event to the worker thread to take the 1615 * HBA to offline state. 1616 **/ 1617 static IOCB_t * 1618 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1619 { 1620 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1621 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1622 1623 lockdep_assert_held(&phba->hbalock); 1624 1625 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1626 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1627 pring->sli.sli3.next_cmdidx = 0; 1628 1629 if (unlikely(pring->sli.sli3.local_getidx == 1630 pring->sli.sli3.next_cmdidx)) { 1631 1632 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1633 1634 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1635 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1636 "0315 Ring %d issue: portCmdGet %d " 1637 "is bigger than cmd ring %d\n", 1638 pring->ringno, 1639 pring->sli.sli3.local_getidx, 1640 max_cmd_idx); 1641 1642 phba->link_state = LPFC_HBA_ERROR; 1643 /* 1644 * All error attention handlers are posted to 1645 * worker thread 1646 */ 1647 phba->work_ha |= HA_ERATT; 1648 phba->work_hs = HS_FFER3; 1649 1650 lpfc_worker_wake_up(phba); 1651 1652 return NULL; 1653 } 1654 1655 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1656 return NULL; 1657 } 1658 1659 return lpfc_cmd_iocb(phba, pring); 1660 } 1661 1662 /** 1663 * lpfc_sli_next_iotag - Get an iotag for the iocb 1664 * @phba: Pointer to HBA context object. 1665 * @iocbq: Pointer to driver iocb object. 1666 * 1667 * This function gets an iotag for the iocb. If there is no unused iotag and 1668 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1669 * array and assigns a new iotag. 1670 * The function returns the allocated iotag if successful, else returns zero. 1671 * Zero is not a valid iotag. 1672 * The caller is not required to hold any lock. 1673 **/ 1674 uint16_t 1675 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1676 { 1677 struct lpfc_iocbq **new_arr; 1678 struct lpfc_iocbq **old_arr; 1679 size_t new_len; 1680 struct lpfc_sli *psli = &phba->sli; 1681 uint16_t iotag; 1682 1683 spin_lock_irq(&phba->hbalock); 1684 iotag = psli->last_iotag; 1685 if(++iotag < psli->iocbq_lookup_len) { 1686 psli->last_iotag = iotag; 1687 psli->iocbq_lookup[iotag] = iocbq; 1688 spin_unlock_irq(&phba->hbalock); 1689 iocbq->iotag = iotag; 1690 return iotag; 1691 } else if (psli->iocbq_lookup_len < (0xffff 1692 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1693 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1694 spin_unlock_irq(&phba->hbalock); 1695 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1696 GFP_KERNEL); 1697 if (new_arr) { 1698 spin_lock_irq(&phba->hbalock); 1699 old_arr = psli->iocbq_lookup; 1700 if (new_len <= psli->iocbq_lookup_len) { 1701 /* highly unprobable case */ 1702 kfree(new_arr); 1703 iotag = psli->last_iotag; 1704 if(++iotag < psli->iocbq_lookup_len) { 1705 psli->last_iotag = iotag; 1706 psli->iocbq_lookup[iotag] = iocbq; 1707 spin_unlock_irq(&phba->hbalock); 1708 iocbq->iotag = iotag; 1709 return iotag; 1710 } 1711 spin_unlock_irq(&phba->hbalock); 1712 return 0; 1713 } 1714 if (psli->iocbq_lookup) 1715 memcpy(new_arr, old_arr, 1716 ((psli->last_iotag + 1) * 1717 sizeof (struct lpfc_iocbq *))); 1718 psli->iocbq_lookup = new_arr; 1719 psli->iocbq_lookup_len = new_len; 1720 psli->last_iotag = iotag; 1721 psli->iocbq_lookup[iotag] = iocbq; 1722 spin_unlock_irq(&phba->hbalock); 1723 iocbq->iotag = iotag; 1724 kfree(old_arr); 1725 return iotag; 1726 } 1727 } else 1728 spin_unlock_irq(&phba->hbalock); 1729 1730 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1731 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1732 psli->last_iotag); 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1739 * @phba: Pointer to HBA context object. 1740 * @pring: Pointer to driver SLI ring object. 1741 * @iocb: Pointer to iocb slot in the ring. 1742 * @nextiocb: Pointer to driver iocb object which need to be 1743 * posted to firmware. 1744 * 1745 * This function is called with hbalock held to post a new iocb to 1746 * the firmware. This function copies the new iocb to ring iocb slot and 1747 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1748 * a completion call back for this iocb else the function will free the 1749 * iocb object. 1750 **/ 1751 static void 1752 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1753 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1754 { 1755 lockdep_assert_held(&phba->hbalock); 1756 /* 1757 * Set up an iotag 1758 */ 1759 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1760 1761 1762 if (pring->ringno == LPFC_ELS_RING) { 1763 lpfc_debugfs_slow_ring_trc(phba, 1764 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1765 *(((uint32_t *) &nextiocb->iocb) + 4), 1766 *(((uint32_t *) &nextiocb->iocb) + 6), 1767 *(((uint32_t *) &nextiocb->iocb) + 7)); 1768 } 1769 1770 /* 1771 * Issue iocb command to adapter 1772 */ 1773 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1774 wmb(); 1775 pring->stats.iocb_cmd++; 1776 1777 /* 1778 * If there is no completion routine to call, we can release the 1779 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1780 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1781 */ 1782 if (nextiocb->iocb_cmpl) 1783 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1784 else 1785 __lpfc_sli_release_iocbq(phba, nextiocb); 1786 1787 /* 1788 * Let the HBA know what IOCB slot will be the next one the 1789 * driver will put a command into. 1790 */ 1791 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1792 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1793 } 1794 1795 /** 1796 * lpfc_sli_update_full_ring - Update the chip attention register 1797 * @phba: Pointer to HBA context object. 1798 * @pring: Pointer to driver SLI ring object. 1799 * 1800 * The caller is not required to hold any lock for calling this function. 1801 * This function updates the chip attention bits for the ring to inform firmware 1802 * that there are pending work to be done for this ring and requests an 1803 * interrupt when there is space available in the ring. This function is 1804 * called when the driver is unable to post more iocbs to the ring due 1805 * to unavailability of space in the ring. 1806 **/ 1807 static void 1808 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1809 { 1810 int ringno = pring->ringno; 1811 1812 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1813 1814 wmb(); 1815 1816 /* 1817 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1818 * The HBA will tell us when an IOCB entry is available. 1819 */ 1820 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1821 readl(phba->CAregaddr); /* flush */ 1822 1823 pring->stats.iocb_cmd_full++; 1824 } 1825 1826 /** 1827 * lpfc_sli_update_ring - Update chip attention register 1828 * @phba: Pointer to HBA context object. 1829 * @pring: Pointer to driver SLI ring object. 1830 * 1831 * This function updates the chip attention register bit for the 1832 * given ring to inform HBA that there is more work to be done 1833 * in this ring. The caller is not required to hold any lock. 1834 **/ 1835 static void 1836 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1837 { 1838 int ringno = pring->ringno; 1839 1840 /* 1841 * Tell the HBA that there is work to do in this ring. 1842 */ 1843 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1844 wmb(); 1845 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1846 readl(phba->CAregaddr); /* flush */ 1847 } 1848 } 1849 1850 /** 1851 * lpfc_sli_resume_iocb - Process iocbs in the txq 1852 * @phba: Pointer to HBA context object. 1853 * @pring: Pointer to driver SLI ring object. 1854 * 1855 * This function is called with hbalock held to post pending iocbs 1856 * in the txq to the firmware. This function is called when driver 1857 * detects space available in the ring. 1858 **/ 1859 static void 1860 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1861 { 1862 IOCB_t *iocb; 1863 struct lpfc_iocbq *nextiocb; 1864 1865 lockdep_assert_held(&phba->hbalock); 1866 1867 /* 1868 * Check to see if: 1869 * (a) there is anything on the txq to send 1870 * (b) link is up 1871 * (c) link attention events can be processed (fcp ring only) 1872 * (d) IOCB processing is not blocked by the outstanding mbox command. 1873 */ 1874 1875 if (lpfc_is_link_up(phba) && 1876 (!list_empty(&pring->txq)) && 1877 (pring->ringno != LPFC_FCP_RING || 1878 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1879 1880 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1881 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1882 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1883 1884 if (iocb) 1885 lpfc_sli_update_ring(phba, pring); 1886 else 1887 lpfc_sli_update_full_ring(phba, pring); 1888 } 1889 1890 return; 1891 } 1892 1893 /** 1894 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1895 * @phba: Pointer to HBA context object. 1896 * @hbqno: HBQ number. 1897 * 1898 * This function is called with hbalock held to get the next 1899 * available slot for the given HBQ. If there is free slot 1900 * available for the HBQ it will return pointer to the next available 1901 * HBQ entry else it will return NULL. 1902 **/ 1903 static struct lpfc_hbq_entry * 1904 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1905 { 1906 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1907 1908 lockdep_assert_held(&phba->hbalock); 1909 1910 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1911 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1912 hbqp->next_hbqPutIdx = 0; 1913 1914 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1915 uint32_t raw_index = phba->hbq_get[hbqno]; 1916 uint32_t getidx = le32_to_cpu(raw_index); 1917 1918 hbqp->local_hbqGetIdx = getidx; 1919 1920 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1921 lpfc_printf_log(phba, KERN_ERR, 1922 LOG_SLI | LOG_VPORT, 1923 "1802 HBQ %d: local_hbqGetIdx " 1924 "%u is > than hbqp->entry_count %u\n", 1925 hbqno, hbqp->local_hbqGetIdx, 1926 hbqp->entry_count); 1927 1928 phba->link_state = LPFC_HBA_ERROR; 1929 return NULL; 1930 } 1931 1932 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1933 return NULL; 1934 } 1935 1936 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1937 hbqp->hbqPutIdx; 1938 } 1939 1940 /** 1941 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1942 * @phba: Pointer to HBA context object. 1943 * 1944 * This function is called with no lock held to free all the 1945 * hbq buffers while uninitializing the SLI interface. It also 1946 * frees the HBQ buffers returned by the firmware but not yet 1947 * processed by the upper layers. 1948 **/ 1949 void 1950 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1951 { 1952 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1953 struct hbq_dmabuf *hbq_buf; 1954 unsigned long flags; 1955 int i, hbq_count; 1956 1957 hbq_count = lpfc_sli_hbq_count(); 1958 /* Return all memory used by all HBQs */ 1959 spin_lock_irqsave(&phba->hbalock, flags); 1960 for (i = 0; i < hbq_count; ++i) { 1961 list_for_each_entry_safe(dmabuf, next_dmabuf, 1962 &phba->hbqs[i].hbq_buffer_list, list) { 1963 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1964 list_del(&hbq_buf->dbuf.list); 1965 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1966 } 1967 phba->hbqs[i].buffer_count = 0; 1968 } 1969 1970 /* Mark the HBQs not in use */ 1971 phba->hbq_in_use = 0; 1972 spin_unlock_irqrestore(&phba->hbalock, flags); 1973 } 1974 1975 /** 1976 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1977 * @phba: Pointer to HBA context object. 1978 * @hbqno: HBQ number. 1979 * @hbq_buf: Pointer to HBQ buffer. 1980 * 1981 * This function is called with the hbalock held to post a 1982 * hbq buffer to the firmware. If the function finds an empty 1983 * slot in the HBQ, it will post the buffer. The function will return 1984 * pointer to the hbq entry if it successfully post the buffer 1985 * else it will return NULL. 1986 **/ 1987 static int 1988 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1989 struct hbq_dmabuf *hbq_buf) 1990 { 1991 lockdep_assert_held(&phba->hbalock); 1992 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1993 } 1994 1995 /** 1996 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1997 * @phba: Pointer to HBA context object. 1998 * @hbqno: HBQ number. 1999 * @hbq_buf: Pointer to HBQ buffer. 2000 * 2001 * This function is called with the hbalock held to post a hbq buffer to the 2002 * firmware. If the function finds an empty slot in the HBQ, it will post the 2003 * buffer and place it on the hbq_buffer_list. The function will return zero if 2004 * it successfully post the buffer else it will return an error. 2005 **/ 2006 static int 2007 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2008 struct hbq_dmabuf *hbq_buf) 2009 { 2010 struct lpfc_hbq_entry *hbqe; 2011 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2012 2013 lockdep_assert_held(&phba->hbalock); 2014 /* Get next HBQ entry slot to use */ 2015 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2016 if (hbqe) { 2017 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2018 2019 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2020 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2021 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2022 hbqe->bde.tus.f.bdeFlags = 0; 2023 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2024 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2025 /* Sync SLIM */ 2026 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2027 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2028 /* flush */ 2029 readl(phba->hbq_put + hbqno); 2030 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2031 return 0; 2032 } else 2033 return -ENOMEM; 2034 } 2035 2036 /** 2037 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2038 * @phba: Pointer to HBA context object. 2039 * @hbqno: HBQ number. 2040 * @hbq_buf: Pointer to HBQ buffer. 2041 * 2042 * This function is called with the hbalock held to post an RQE to the SLI4 2043 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2044 * the hbq_buffer_list and return zero, otherwise it will return an error. 2045 **/ 2046 static int 2047 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2048 struct hbq_dmabuf *hbq_buf) 2049 { 2050 int rc; 2051 struct lpfc_rqe hrqe; 2052 struct lpfc_rqe drqe; 2053 struct lpfc_queue *hrq; 2054 struct lpfc_queue *drq; 2055 2056 if (hbqno != LPFC_ELS_HBQ) 2057 return 1; 2058 hrq = phba->sli4_hba.hdr_rq; 2059 drq = phba->sli4_hba.dat_rq; 2060 2061 lockdep_assert_held(&phba->hbalock); 2062 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2063 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2064 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2065 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2066 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2067 if (rc < 0) 2068 return rc; 2069 hbq_buf->tag = (rc | (hbqno << 16)); 2070 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2071 return 0; 2072 } 2073 2074 /* HBQ for ELS and CT traffic. */ 2075 static struct lpfc_hbq_init lpfc_els_hbq = { 2076 .rn = 1, 2077 .entry_count = 256, 2078 .mask_count = 0, 2079 .profile = 0, 2080 .ring_mask = (1 << LPFC_ELS_RING), 2081 .buffer_count = 0, 2082 .init_count = 40, 2083 .add_count = 40, 2084 }; 2085 2086 /* Array of HBQs */ 2087 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2088 &lpfc_els_hbq, 2089 }; 2090 2091 /** 2092 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2093 * @phba: Pointer to HBA context object. 2094 * @hbqno: HBQ number. 2095 * @count: Number of HBQ buffers to be posted. 2096 * 2097 * This function is called with no lock held to post more hbq buffers to the 2098 * given HBQ. The function returns the number of HBQ buffers successfully 2099 * posted. 2100 **/ 2101 static int 2102 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2103 { 2104 uint32_t i, posted = 0; 2105 unsigned long flags; 2106 struct hbq_dmabuf *hbq_buffer; 2107 LIST_HEAD(hbq_buf_list); 2108 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2109 return 0; 2110 2111 if ((phba->hbqs[hbqno].buffer_count + count) > 2112 lpfc_hbq_defs[hbqno]->entry_count) 2113 count = lpfc_hbq_defs[hbqno]->entry_count - 2114 phba->hbqs[hbqno].buffer_count; 2115 if (!count) 2116 return 0; 2117 /* Allocate HBQ entries */ 2118 for (i = 0; i < count; i++) { 2119 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2120 if (!hbq_buffer) 2121 break; 2122 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2123 } 2124 /* Check whether HBQ is still in use */ 2125 spin_lock_irqsave(&phba->hbalock, flags); 2126 if (!phba->hbq_in_use) 2127 goto err; 2128 while (!list_empty(&hbq_buf_list)) { 2129 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2130 dbuf.list); 2131 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2132 (hbqno << 16)); 2133 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2134 phba->hbqs[hbqno].buffer_count++; 2135 posted++; 2136 } else 2137 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2138 } 2139 spin_unlock_irqrestore(&phba->hbalock, flags); 2140 return posted; 2141 err: 2142 spin_unlock_irqrestore(&phba->hbalock, flags); 2143 while (!list_empty(&hbq_buf_list)) { 2144 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2145 dbuf.list); 2146 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2147 } 2148 return 0; 2149 } 2150 2151 /** 2152 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2153 * @phba: Pointer to HBA context object. 2154 * @qno: HBQ number. 2155 * 2156 * This function posts more buffers to the HBQ. This function 2157 * is called with no lock held. The function returns the number of HBQ entries 2158 * successfully allocated. 2159 **/ 2160 int 2161 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2162 { 2163 if (phba->sli_rev == LPFC_SLI_REV4) 2164 return 0; 2165 else 2166 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2167 lpfc_hbq_defs[qno]->add_count); 2168 } 2169 2170 /** 2171 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2172 * @phba: Pointer to HBA context object. 2173 * @qno: HBQ queue number. 2174 * 2175 * This function is called from SLI initialization code path with 2176 * no lock held to post initial HBQ buffers to firmware. The 2177 * function returns the number of HBQ entries successfully allocated. 2178 **/ 2179 static int 2180 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2181 { 2182 if (phba->sli_rev == LPFC_SLI_REV4) 2183 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2184 lpfc_hbq_defs[qno]->entry_count); 2185 else 2186 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2187 lpfc_hbq_defs[qno]->init_count); 2188 } 2189 2190 /** 2191 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2192 * @phba: Pointer to HBA context object. 2193 * @hbqno: HBQ number. 2194 * 2195 * This function removes the first hbq buffer on an hbq list and returns a 2196 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2197 **/ 2198 static struct hbq_dmabuf * 2199 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2200 { 2201 struct lpfc_dmabuf *d_buf; 2202 2203 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2204 if (!d_buf) 2205 return NULL; 2206 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2207 } 2208 2209 /** 2210 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2211 * @phba: Pointer to HBA context object. 2212 * @hbqno: HBQ number. 2213 * 2214 * This function removes the first RQ buffer on an RQ buffer list and returns a 2215 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2216 **/ 2217 static struct rqb_dmabuf * 2218 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2219 { 2220 struct lpfc_dmabuf *h_buf; 2221 struct lpfc_rqb *rqbp; 2222 2223 rqbp = hrq->rqbp; 2224 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2225 struct lpfc_dmabuf, list); 2226 if (!h_buf) 2227 return NULL; 2228 rqbp->buffer_count--; 2229 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2230 } 2231 2232 /** 2233 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2234 * @phba: Pointer to HBA context object. 2235 * @tag: Tag of the hbq buffer. 2236 * 2237 * This function searches for the hbq buffer associated with the given tag in 2238 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2239 * otherwise it returns NULL. 2240 **/ 2241 static struct hbq_dmabuf * 2242 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2243 { 2244 struct lpfc_dmabuf *d_buf; 2245 struct hbq_dmabuf *hbq_buf; 2246 uint32_t hbqno; 2247 2248 hbqno = tag >> 16; 2249 if (hbqno >= LPFC_MAX_HBQS) 2250 return NULL; 2251 2252 spin_lock_irq(&phba->hbalock); 2253 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2254 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2255 if (hbq_buf->tag == tag) { 2256 spin_unlock_irq(&phba->hbalock); 2257 return hbq_buf; 2258 } 2259 } 2260 spin_unlock_irq(&phba->hbalock); 2261 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2262 "1803 Bad hbq tag. Data: x%x x%x\n", 2263 tag, phba->hbqs[tag >> 16].buffer_count); 2264 return NULL; 2265 } 2266 2267 /** 2268 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2269 * @phba: Pointer to HBA context object. 2270 * @hbq_buffer: Pointer to HBQ buffer. 2271 * 2272 * This function is called with hbalock. This function gives back 2273 * the hbq buffer to firmware. If the HBQ does not have space to 2274 * post the buffer, it will free the buffer. 2275 **/ 2276 void 2277 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2278 { 2279 uint32_t hbqno; 2280 2281 if (hbq_buffer) { 2282 hbqno = hbq_buffer->tag >> 16; 2283 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2284 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2285 } 2286 } 2287 2288 /** 2289 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2290 * @mbxCommand: mailbox command code. 2291 * 2292 * This function is called by the mailbox event handler function to verify 2293 * that the completed mailbox command is a legitimate mailbox command. If the 2294 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2295 * and the mailbox event handler will take the HBA offline. 2296 **/ 2297 static int 2298 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2299 { 2300 uint8_t ret; 2301 2302 switch (mbxCommand) { 2303 case MBX_LOAD_SM: 2304 case MBX_READ_NV: 2305 case MBX_WRITE_NV: 2306 case MBX_WRITE_VPARMS: 2307 case MBX_RUN_BIU_DIAG: 2308 case MBX_INIT_LINK: 2309 case MBX_DOWN_LINK: 2310 case MBX_CONFIG_LINK: 2311 case MBX_CONFIG_RING: 2312 case MBX_RESET_RING: 2313 case MBX_READ_CONFIG: 2314 case MBX_READ_RCONFIG: 2315 case MBX_READ_SPARM: 2316 case MBX_READ_STATUS: 2317 case MBX_READ_RPI: 2318 case MBX_READ_XRI: 2319 case MBX_READ_REV: 2320 case MBX_READ_LNK_STAT: 2321 case MBX_REG_LOGIN: 2322 case MBX_UNREG_LOGIN: 2323 case MBX_CLEAR_LA: 2324 case MBX_DUMP_MEMORY: 2325 case MBX_DUMP_CONTEXT: 2326 case MBX_RUN_DIAGS: 2327 case MBX_RESTART: 2328 case MBX_UPDATE_CFG: 2329 case MBX_DOWN_LOAD: 2330 case MBX_DEL_LD_ENTRY: 2331 case MBX_RUN_PROGRAM: 2332 case MBX_SET_MASK: 2333 case MBX_SET_VARIABLE: 2334 case MBX_UNREG_D_ID: 2335 case MBX_KILL_BOARD: 2336 case MBX_CONFIG_FARP: 2337 case MBX_BEACON: 2338 case MBX_LOAD_AREA: 2339 case MBX_RUN_BIU_DIAG64: 2340 case MBX_CONFIG_PORT: 2341 case MBX_READ_SPARM64: 2342 case MBX_READ_RPI64: 2343 case MBX_REG_LOGIN64: 2344 case MBX_READ_TOPOLOGY: 2345 case MBX_WRITE_WWN: 2346 case MBX_SET_DEBUG: 2347 case MBX_LOAD_EXP_ROM: 2348 case MBX_ASYNCEVT_ENABLE: 2349 case MBX_REG_VPI: 2350 case MBX_UNREG_VPI: 2351 case MBX_HEARTBEAT: 2352 case MBX_PORT_CAPABILITIES: 2353 case MBX_PORT_IOV_CONTROL: 2354 case MBX_SLI4_CONFIG: 2355 case MBX_SLI4_REQ_FTRS: 2356 case MBX_REG_FCFI: 2357 case MBX_UNREG_FCFI: 2358 case MBX_REG_VFI: 2359 case MBX_UNREG_VFI: 2360 case MBX_INIT_VPI: 2361 case MBX_INIT_VFI: 2362 case MBX_RESUME_RPI: 2363 case MBX_READ_EVENT_LOG_STATUS: 2364 case MBX_READ_EVENT_LOG: 2365 case MBX_SECURITY_MGMT: 2366 case MBX_AUTH_PORT: 2367 case MBX_ACCESS_VDATA: 2368 ret = mbxCommand; 2369 break; 2370 default: 2371 ret = MBX_SHUTDOWN; 2372 break; 2373 } 2374 return ret; 2375 } 2376 2377 /** 2378 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2379 * @phba: Pointer to HBA context object. 2380 * @pmboxq: Pointer to mailbox command. 2381 * 2382 * This is completion handler function for mailbox commands issued from 2383 * lpfc_sli_issue_mbox_wait function. This function is called by the 2384 * mailbox event handler function with no lock held. This function 2385 * will wake up thread waiting on the wait queue pointed by context1 2386 * of the mailbox. 2387 **/ 2388 void 2389 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2390 { 2391 unsigned long drvr_flag; 2392 struct completion *pmbox_done; 2393 2394 /* 2395 * If pmbox_done is empty, the driver thread gave up waiting and 2396 * continued running. 2397 */ 2398 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2399 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2400 pmbox_done = (struct completion *)pmboxq->context3; 2401 if (pmbox_done) 2402 complete(pmbox_done); 2403 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2404 return; 2405 } 2406 2407 2408 /** 2409 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2410 * @phba: Pointer to HBA context object. 2411 * @pmb: Pointer to mailbox object. 2412 * 2413 * This function is the default mailbox completion handler. It 2414 * frees the memory resources associated with the completed mailbox 2415 * command. If the completed command is a REG_LOGIN mailbox command, 2416 * this function will issue a UREG_LOGIN to re-claim the RPI. 2417 **/ 2418 void 2419 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2420 { 2421 struct lpfc_vport *vport = pmb->vport; 2422 struct lpfc_dmabuf *mp; 2423 struct lpfc_nodelist *ndlp; 2424 struct Scsi_Host *shost; 2425 uint16_t rpi, vpi; 2426 int rc; 2427 2428 mp = (struct lpfc_dmabuf *) (pmb->context1); 2429 2430 if (mp) { 2431 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2432 kfree(mp); 2433 } 2434 2435 /* 2436 * If a REG_LOGIN succeeded after node is destroyed or node 2437 * is in re-discovery driver need to cleanup the RPI. 2438 */ 2439 if (!(phba->pport->load_flag & FC_UNLOADING) && 2440 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2441 !pmb->u.mb.mbxStatus) { 2442 rpi = pmb->u.mb.un.varWords[0]; 2443 vpi = pmb->u.mb.un.varRegLogin.vpi; 2444 lpfc_unreg_login(phba, vpi, rpi, pmb); 2445 pmb->vport = vport; 2446 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2447 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2448 if (rc != MBX_NOT_FINISHED) 2449 return; 2450 } 2451 2452 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2453 !(phba->pport->load_flag & FC_UNLOADING) && 2454 !pmb->u.mb.mbxStatus) { 2455 shost = lpfc_shost_from_vport(vport); 2456 spin_lock_irq(shost->host_lock); 2457 vport->vpi_state |= LPFC_VPI_REGISTERED; 2458 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2459 spin_unlock_irq(shost->host_lock); 2460 } 2461 2462 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2463 ndlp = (struct lpfc_nodelist *)pmb->context2; 2464 lpfc_nlp_put(ndlp); 2465 pmb->context2 = NULL; 2466 } 2467 2468 /* Check security permission status on INIT_LINK mailbox command */ 2469 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2470 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2471 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2472 "2860 SLI authentication is required " 2473 "for INIT_LINK but has not done yet\n"); 2474 2475 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2476 lpfc_sli4_mbox_cmd_free(phba, pmb); 2477 else 2478 mempool_free(pmb, phba->mbox_mem_pool); 2479 } 2480 /** 2481 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2482 * @phba: Pointer to HBA context object. 2483 * @pmb: Pointer to mailbox object. 2484 * 2485 * This function is the unreg rpi mailbox completion handler. It 2486 * frees the memory resources associated with the completed mailbox 2487 * command. An additional refrenece is put on the ndlp to prevent 2488 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2489 * the unreg mailbox command completes, this routine puts the 2490 * reference back. 2491 * 2492 **/ 2493 void 2494 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2495 { 2496 struct lpfc_vport *vport = pmb->vport; 2497 struct lpfc_nodelist *ndlp; 2498 2499 ndlp = pmb->context1; 2500 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2501 if (phba->sli_rev == LPFC_SLI_REV4 && 2502 (bf_get(lpfc_sli_intf_if_type, 2503 &phba->sli4_hba.sli_intf) >= 2504 LPFC_SLI_INTF_IF_TYPE_2)) { 2505 if (ndlp) { 2506 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2507 "0010 UNREG_LOGIN vpi:%x " 2508 "rpi:%x DID:%x map:%x %p\n", 2509 vport->vpi, ndlp->nlp_rpi, 2510 ndlp->nlp_DID, 2511 ndlp->nlp_usg_map, ndlp); 2512 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2513 lpfc_nlp_put(ndlp); 2514 } 2515 } 2516 } 2517 2518 mempool_free(pmb, phba->mbox_mem_pool); 2519 } 2520 2521 /** 2522 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2523 * @phba: Pointer to HBA context object. 2524 * 2525 * This function is called with no lock held. This function processes all 2526 * the completed mailbox commands and gives it to upper layers. The interrupt 2527 * service routine processes mailbox completion interrupt and adds completed 2528 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2529 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2530 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2531 * function returns the mailbox commands to the upper layer by calling the 2532 * completion handler function of each mailbox. 2533 **/ 2534 int 2535 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2536 { 2537 MAILBOX_t *pmbox; 2538 LPFC_MBOXQ_t *pmb; 2539 int rc; 2540 LIST_HEAD(cmplq); 2541 2542 phba->sli.slistat.mbox_event++; 2543 2544 /* Get all completed mailboxe buffers into the cmplq */ 2545 spin_lock_irq(&phba->hbalock); 2546 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2547 spin_unlock_irq(&phba->hbalock); 2548 2549 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2550 do { 2551 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2552 if (pmb == NULL) 2553 break; 2554 2555 pmbox = &pmb->u.mb; 2556 2557 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2558 if (pmb->vport) { 2559 lpfc_debugfs_disc_trc(pmb->vport, 2560 LPFC_DISC_TRC_MBOX_VPORT, 2561 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2562 (uint32_t)pmbox->mbxCommand, 2563 pmbox->un.varWords[0], 2564 pmbox->un.varWords[1]); 2565 } 2566 else { 2567 lpfc_debugfs_disc_trc(phba->pport, 2568 LPFC_DISC_TRC_MBOX, 2569 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2570 (uint32_t)pmbox->mbxCommand, 2571 pmbox->un.varWords[0], 2572 pmbox->un.varWords[1]); 2573 } 2574 } 2575 2576 /* 2577 * It is a fatal error if unknown mbox command completion. 2578 */ 2579 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2580 MBX_SHUTDOWN) { 2581 /* Unknown mailbox command compl */ 2582 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2583 "(%d):0323 Unknown Mailbox command " 2584 "x%x (x%x/x%x) Cmpl\n", 2585 pmb->vport ? pmb->vport->vpi : 0, 2586 pmbox->mbxCommand, 2587 lpfc_sli_config_mbox_subsys_get(phba, 2588 pmb), 2589 lpfc_sli_config_mbox_opcode_get(phba, 2590 pmb)); 2591 phba->link_state = LPFC_HBA_ERROR; 2592 phba->work_hs = HS_FFER3; 2593 lpfc_handle_eratt(phba); 2594 continue; 2595 } 2596 2597 if (pmbox->mbxStatus) { 2598 phba->sli.slistat.mbox_stat_err++; 2599 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2600 /* Mbox cmd cmpl error - RETRYing */ 2601 lpfc_printf_log(phba, KERN_INFO, 2602 LOG_MBOX | LOG_SLI, 2603 "(%d):0305 Mbox cmd cmpl " 2604 "error - RETRYing Data: x%x " 2605 "(x%x/x%x) x%x x%x x%x\n", 2606 pmb->vport ? pmb->vport->vpi : 0, 2607 pmbox->mbxCommand, 2608 lpfc_sli_config_mbox_subsys_get(phba, 2609 pmb), 2610 lpfc_sli_config_mbox_opcode_get(phba, 2611 pmb), 2612 pmbox->mbxStatus, 2613 pmbox->un.varWords[0], 2614 pmb->vport->port_state); 2615 pmbox->mbxStatus = 0; 2616 pmbox->mbxOwner = OWN_HOST; 2617 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2618 if (rc != MBX_NOT_FINISHED) 2619 continue; 2620 } 2621 } 2622 2623 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2624 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2625 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2626 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2627 "x%x x%x x%x\n", 2628 pmb->vport ? pmb->vport->vpi : 0, 2629 pmbox->mbxCommand, 2630 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2631 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2632 pmb->mbox_cmpl, 2633 *((uint32_t *) pmbox), 2634 pmbox->un.varWords[0], 2635 pmbox->un.varWords[1], 2636 pmbox->un.varWords[2], 2637 pmbox->un.varWords[3], 2638 pmbox->un.varWords[4], 2639 pmbox->un.varWords[5], 2640 pmbox->un.varWords[6], 2641 pmbox->un.varWords[7], 2642 pmbox->un.varWords[8], 2643 pmbox->un.varWords[9], 2644 pmbox->un.varWords[10]); 2645 2646 if (pmb->mbox_cmpl) 2647 pmb->mbox_cmpl(phba,pmb); 2648 } while (1); 2649 return 0; 2650 } 2651 2652 /** 2653 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2654 * @phba: Pointer to HBA context object. 2655 * @pring: Pointer to driver SLI ring object. 2656 * @tag: buffer tag. 2657 * 2658 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2659 * is set in the tag the buffer is posted for a particular exchange, 2660 * the function will return the buffer without replacing the buffer. 2661 * If the buffer is for unsolicited ELS or CT traffic, this function 2662 * returns the buffer and also posts another buffer to the firmware. 2663 **/ 2664 static struct lpfc_dmabuf * 2665 lpfc_sli_get_buff(struct lpfc_hba *phba, 2666 struct lpfc_sli_ring *pring, 2667 uint32_t tag) 2668 { 2669 struct hbq_dmabuf *hbq_entry; 2670 2671 if (tag & QUE_BUFTAG_BIT) 2672 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2673 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2674 if (!hbq_entry) 2675 return NULL; 2676 return &hbq_entry->dbuf; 2677 } 2678 2679 /** 2680 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2681 * @phba: Pointer to HBA context object. 2682 * @pring: Pointer to driver SLI ring object. 2683 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2684 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2685 * @fch_type: the type for the first frame of the sequence. 2686 * 2687 * This function is called with no lock held. This function uses the r_ctl and 2688 * type of the received sequence to find the correct callback function to call 2689 * to process the sequence. 2690 **/ 2691 static int 2692 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2693 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2694 uint32_t fch_type) 2695 { 2696 int i; 2697 2698 switch (fch_type) { 2699 case FC_TYPE_NVME: 2700 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2701 return 1; 2702 default: 2703 break; 2704 } 2705 2706 /* unSolicited Responses */ 2707 if (pring->prt[0].profile) { 2708 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2709 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2710 saveq); 2711 return 1; 2712 } 2713 /* We must search, based on rctl / type 2714 for the right routine */ 2715 for (i = 0; i < pring->num_mask; i++) { 2716 if ((pring->prt[i].rctl == fch_r_ctl) && 2717 (pring->prt[i].type == fch_type)) { 2718 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2719 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2720 (phba, pring, saveq); 2721 return 1; 2722 } 2723 } 2724 return 0; 2725 } 2726 2727 /** 2728 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2729 * @phba: Pointer to HBA context object. 2730 * @pring: Pointer to driver SLI ring object. 2731 * @saveq: Pointer to the unsolicited iocb. 2732 * 2733 * This function is called with no lock held by the ring event handler 2734 * when there is an unsolicited iocb posted to the response ring by the 2735 * firmware. This function gets the buffer associated with the iocbs 2736 * and calls the event handler for the ring. This function handles both 2737 * qring buffers and hbq buffers. 2738 * When the function returns 1 the caller can free the iocb object otherwise 2739 * upper layer functions will free the iocb objects. 2740 **/ 2741 static int 2742 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2743 struct lpfc_iocbq *saveq) 2744 { 2745 IOCB_t * irsp; 2746 WORD5 * w5p; 2747 uint32_t Rctl, Type; 2748 struct lpfc_iocbq *iocbq; 2749 struct lpfc_dmabuf *dmzbuf; 2750 2751 irsp = &(saveq->iocb); 2752 2753 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2754 if (pring->lpfc_sli_rcv_async_status) 2755 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2756 else 2757 lpfc_printf_log(phba, 2758 KERN_WARNING, 2759 LOG_SLI, 2760 "0316 Ring %d handler: unexpected " 2761 "ASYNC_STATUS iocb received evt_code " 2762 "0x%x\n", 2763 pring->ringno, 2764 irsp->un.asyncstat.evt_code); 2765 return 1; 2766 } 2767 2768 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2769 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2770 if (irsp->ulpBdeCount > 0) { 2771 dmzbuf = lpfc_sli_get_buff(phba, pring, 2772 irsp->un.ulpWord[3]); 2773 lpfc_in_buf_free(phba, dmzbuf); 2774 } 2775 2776 if (irsp->ulpBdeCount > 1) { 2777 dmzbuf = lpfc_sli_get_buff(phba, pring, 2778 irsp->unsli3.sli3Words[3]); 2779 lpfc_in_buf_free(phba, dmzbuf); 2780 } 2781 2782 if (irsp->ulpBdeCount > 2) { 2783 dmzbuf = lpfc_sli_get_buff(phba, pring, 2784 irsp->unsli3.sli3Words[7]); 2785 lpfc_in_buf_free(phba, dmzbuf); 2786 } 2787 2788 return 1; 2789 } 2790 2791 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2792 if (irsp->ulpBdeCount != 0) { 2793 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2794 irsp->un.ulpWord[3]); 2795 if (!saveq->context2) 2796 lpfc_printf_log(phba, 2797 KERN_ERR, 2798 LOG_SLI, 2799 "0341 Ring %d Cannot find buffer for " 2800 "an unsolicited iocb. tag 0x%x\n", 2801 pring->ringno, 2802 irsp->un.ulpWord[3]); 2803 } 2804 if (irsp->ulpBdeCount == 2) { 2805 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2806 irsp->unsli3.sli3Words[7]); 2807 if (!saveq->context3) 2808 lpfc_printf_log(phba, 2809 KERN_ERR, 2810 LOG_SLI, 2811 "0342 Ring %d Cannot find buffer for an" 2812 " unsolicited iocb. tag 0x%x\n", 2813 pring->ringno, 2814 irsp->unsli3.sli3Words[7]); 2815 } 2816 list_for_each_entry(iocbq, &saveq->list, list) { 2817 irsp = &(iocbq->iocb); 2818 if (irsp->ulpBdeCount != 0) { 2819 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2820 irsp->un.ulpWord[3]); 2821 if (!iocbq->context2) 2822 lpfc_printf_log(phba, 2823 KERN_ERR, 2824 LOG_SLI, 2825 "0343 Ring %d Cannot find " 2826 "buffer for an unsolicited iocb" 2827 ". tag 0x%x\n", pring->ringno, 2828 irsp->un.ulpWord[3]); 2829 } 2830 if (irsp->ulpBdeCount == 2) { 2831 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2832 irsp->unsli3.sli3Words[7]); 2833 if (!iocbq->context3) 2834 lpfc_printf_log(phba, 2835 KERN_ERR, 2836 LOG_SLI, 2837 "0344 Ring %d Cannot find " 2838 "buffer for an unsolicited " 2839 "iocb. tag 0x%x\n", 2840 pring->ringno, 2841 irsp->unsli3.sli3Words[7]); 2842 } 2843 } 2844 } 2845 if (irsp->ulpBdeCount != 0 && 2846 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2847 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2848 int found = 0; 2849 2850 /* search continue save q for same XRI */ 2851 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2852 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2853 saveq->iocb.unsli3.rcvsli3.ox_id) { 2854 list_add_tail(&saveq->list, &iocbq->list); 2855 found = 1; 2856 break; 2857 } 2858 } 2859 if (!found) 2860 list_add_tail(&saveq->clist, 2861 &pring->iocb_continue_saveq); 2862 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2863 list_del_init(&iocbq->clist); 2864 saveq = iocbq; 2865 irsp = &(saveq->iocb); 2866 } else 2867 return 0; 2868 } 2869 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2870 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2871 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2872 Rctl = FC_RCTL_ELS_REQ; 2873 Type = FC_TYPE_ELS; 2874 } else { 2875 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2876 Rctl = w5p->hcsw.Rctl; 2877 Type = w5p->hcsw.Type; 2878 2879 /* Firmware Workaround */ 2880 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2881 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2882 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2883 Rctl = FC_RCTL_ELS_REQ; 2884 Type = FC_TYPE_ELS; 2885 w5p->hcsw.Rctl = Rctl; 2886 w5p->hcsw.Type = Type; 2887 } 2888 } 2889 2890 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2891 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2892 "0313 Ring %d handler: unexpected Rctl x%x " 2893 "Type x%x received\n", 2894 pring->ringno, Rctl, Type); 2895 2896 return 1; 2897 } 2898 2899 /** 2900 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2901 * @phba: Pointer to HBA context object. 2902 * @pring: Pointer to driver SLI ring object. 2903 * @prspiocb: Pointer to response iocb object. 2904 * 2905 * This function looks up the iocb_lookup table to get the command iocb 2906 * corresponding to the given response iocb using the iotag of the 2907 * response iocb. This function is called with the hbalock held 2908 * for sli3 devices or the ring_lock for sli4 devices. 2909 * This function returns the command iocb object if it finds the command 2910 * iocb else returns NULL. 2911 **/ 2912 static struct lpfc_iocbq * 2913 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2914 struct lpfc_sli_ring *pring, 2915 struct lpfc_iocbq *prspiocb) 2916 { 2917 struct lpfc_iocbq *cmd_iocb = NULL; 2918 uint16_t iotag; 2919 lockdep_assert_held(&phba->hbalock); 2920 2921 iotag = prspiocb->iocb.ulpIoTag; 2922 2923 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2924 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2925 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2926 /* remove from txcmpl queue list */ 2927 list_del_init(&cmd_iocb->list); 2928 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2929 return cmd_iocb; 2930 } 2931 } 2932 2933 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2934 "0317 iotag x%x is out of " 2935 "range: max iotag x%x wd0 x%x\n", 2936 iotag, phba->sli.last_iotag, 2937 *(((uint32_t *) &prspiocb->iocb) + 7)); 2938 return NULL; 2939 } 2940 2941 /** 2942 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2943 * @phba: Pointer to HBA context object. 2944 * @pring: Pointer to driver SLI ring object. 2945 * @iotag: IOCB tag. 2946 * 2947 * This function looks up the iocb_lookup table to get the command iocb 2948 * corresponding to the given iotag. This function is called with the 2949 * hbalock held. 2950 * This function returns the command iocb object if it finds the command 2951 * iocb else returns NULL. 2952 **/ 2953 static struct lpfc_iocbq * 2954 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2955 struct lpfc_sli_ring *pring, uint16_t iotag) 2956 { 2957 struct lpfc_iocbq *cmd_iocb = NULL; 2958 2959 lockdep_assert_held(&phba->hbalock); 2960 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2961 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2962 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2963 /* remove from txcmpl queue list */ 2964 list_del_init(&cmd_iocb->list); 2965 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2966 return cmd_iocb; 2967 } 2968 } 2969 2970 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2971 "0372 iotag x%x lookup error: max iotag (x%x) " 2972 "iocb_flag x%x\n", 2973 iotag, phba->sli.last_iotag, 2974 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 2975 return NULL; 2976 } 2977 2978 /** 2979 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2980 * @phba: Pointer to HBA context object. 2981 * @pring: Pointer to driver SLI ring object. 2982 * @saveq: Pointer to the response iocb to be processed. 2983 * 2984 * This function is called by the ring event handler for non-fcp 2985 * rings when there is a new response iocb in the response ring. 2986 * The caller is not required to hold any locks. This function 2987 * gets the command iocb associated with the response iocb and 2988 * calls the completion handler for the command iocb. If there 2989 * is no completion handler, the function will free the resources 2990 * associated with command iocb. If the response iocb is for 2991 * an already aborted command iocb, the status of the completion 2992 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2993 * This function always returns 1. 2994 **/ 2995 static int 2996 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2997 struct lpfc_iocbq *saveq) 2998 { 2999 struct lpfc_iocbq *cmdiocbp; 3000 int rc = 1; 3001 unsigned long iflag; 3002 3003 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 3004 if (phba->sli_rev == LPFC_SLI_REV4) 3005 spin_lock_irqsave(&pring->ring_lock, iflag); 3006 else 3007 spin_lock_irqsave(&phba->hbalock, iflag); 3008 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3009 if (phba->sli_rev == LPFC_SLI_REV4) 3010 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3011 else 3012 spin_unlock_irqrestore(&phba->hbalock, iflag); 3013 3014 if (cmdiocbp) { 3015 if (cmdiocbp->iocb_cmpl) { 3016 /* 3017 * If an ELS command failed send an event to mgmt 3018 * application. 3019 */ 3020 if (saveq->iocb.ulpStatus && 3021 (pring->ringno == LPFC_ELS_RING) && 3022 (cmdiocbp->iocb.ulpCommand == 3023 CMD_ELS_REQUEST64_CR)) 3024 lpfc_send_els_failure_event(phba, 3025 cmdiocbp, saveq); 3026 3027 /* 3028 * Post all ELS completions to the worker thread. 3029 * All other are passed to the completion callback. 3030 */ 3031 if (pring->ringno == LPFC_ELS_RING) { 3032 if ((phba->sli_rev < LPFC_SLI_REV4) && 3033 (cmdiocbp->iocb_flag & 3034 LPFC_DRIVER_ABORTED)) { 3035 spin_lock_irqsave(&phba->hbalock, 3036 iflag); 3037 cmdiocbp->iocb_flag &= 3038 ~LPFC_DRIVER_ABORTED; 3039 spin_unlock_irqrestore(&phba->hbalock, 3040 iflag); 3041 saveq->iocb.ulpStatus = 3042 IOSTAT_LOCAL_REJECT; 3043 saveq->iocb.un.ulpWord[4] = 3044 IOERR_SLI_ABORTED; 3045 3046 /* Firmware could still be in progress 3047 * of DMAing payload, so don't free data 3048 * buffer till after a hbeat. 3049 */ 3050 spin_lock_irqsave(&phba->hbalock, 3051 iflag); 3052 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3053 spin_unlock_irqrestore(&phba->hbalock, 3054 iflag); 3055 } 3056 if (phba->sli_rev == LPFC_SLI_REV4) { 3057 if (saveq->iocb_flag & 3058 LPFC_EXCHANGE_BUSY) { 3059 /* Set cmdiocb flag for the 3060 * exchange busy so sgl (xri) 3061 * will not be released until 3062 * the abort xri is received 3063 * from hba. 3064 */ 3065 spin_lock_irqsave( 3066 &phba->hbalock, iflag); 3067 cmdiocbp->iocb_flag |= 3068 LPFC_EXCHANGE_BUSY; 3069 spin_unlock_irqrestore( 3070 &phba->hbalock, iflag); 3071 } 3072 if (cmdiocbp->iocb_flag & 3073 LPFC_DRIVER_ABORTED) { 3074 /* 3075 * Clear LPFC_DRIVER_ABORTED 3076 * bit in case it was driver 3077 * initiated abort. 3078 */ 3079 spin_lock_irqsave( 3080 &phba->hbalock, iflag); 3081 cmdiocbp->iocb_flag &= 3082 ~LPFC_DRIVER_ABORTED; 3083 spin_unlock_irqrestore( 3084 &phba->hbalock, iflag); 3085 cmdiocbp->iocb.ulpStatus = 3086 IOSTAT_LOCAL_REJECT; 3087 cmdiocbp->iocb.un.ulpWord[4] = 3088 IOERR_ABORT_REQUESTED; 3089 /* 3090 * For SLI4, irsiocb contains 3091 * NO_XRI in sli_xritag, it 3092 * shall not affect releasing 3093 * sgl (xri) process. 3094 */ 3095 saveq->iocb.ulpStatus = 3096 IOSTAT_LOCAL_REJECT; 3097 saveq->iocb.un.ulpWord[4] = 3098 IOERR_SLI_ABORTED; 3099 spin_lock_irqsave( 3100 &phba->hbalock, iflag); 3101 saveq->iocb_flag |= 3102 LPFC_DELAY_MEM_FREE; 3103 spin_unlock_irqrestore( 3104 &phba->hbalock, iflag); 3105 } 3106 } 3107 } 3108 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3109 } else 3110 lpfc_sli_release_iocbq(phba, cmdiocbp); 3111 } else { 3112 /* 3113 * Unknown initiating command based on the response iotag. 3114 * This could be the case on the ELS ring because of 3115 * lpfc_els_abort(). 3116 */ 3117 if (pring->ringno != LPFC_ELS_RING) { 3118 /* 3119 * Ring <ringno> handler: unexpected completion IoTag 3120 * <IoTag> 3121 */ 3122 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3123 "0322 Ring %d handler: " 3124 "unexpected completion IoTag x%x " 3125 "Data: x%x x%x x%x x%x\n", 3126 pring->ringno, 3127 saveq->iocb.ulpIoTag, 3128 saveq->iocb.ulpStatus, 3129 saveq->iocb.un.ulpWord[4], 3130 saveq->iocb.ulpCommand, 3131 saveq->iocb.ulpContext); 3132 } 3133 } 3134 3135 return rc; 3136 } 3137 3138 /** 3139 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3140 * @phba: Pointer to HBA context object. 3141 * @pring: Pointer to driver SLI ring object. 3142 * 3143 * This function is called from the iocb ring event handlers when 3144 * put pointer is ahead of the get pointer for a ring. This function signal 3145 * an error attention condition to the worker thread and the worker 3146 * thread will transition the HBA to offline state. 3147 **/ 3148 static void 3149 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3150 { 3151 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3152 /* 3153 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3154 * rsp ring <portRspMax> 3155 */ 3156 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3157 "0312 Ring %d handler: portRspPut %d " 3158 "is bigger than rsp ring %d\n", 3159 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3160 pring->sli.sli3.numRiocb); 3161 3162 phba->link_state = LPFC_HBA_ERROR; 3163 3164 /* 3165 * All error attention handlers are posted to 3166 * worker thread 3167 */ 3168 phba->work_ha |= HA_ERATT; 3169 phba->work_hs = HS_FFER3; 3170 3171 lpfc_worker_wake_up(phba); 3172 3173 return; 3174 } 3175 3176 /** 3177 * lpfc_poll_eratt - Error attention polling timer timeout handler 3178 * @ptr: Pointer to address of HBA context object. 3179 * 3180 * This function is invoked by the Error Attention polling timer when the 3181 * timer times out. It will check the SLI Error Attention register for 3182 * possible attention events. If so, it will post an Error Attention event 3183 * and wake up worker thread to process it. Otherwise, it will set up the 3184 * Error Attention polling timer for the next poll. 3185 **/ 3186 void lpfc_poll_eratt(struct timer_list *t) 3187 { 3188 struct lpfc_hba *phba; 3189 uint32_t eratt = 0; 3190 uint64_t sli_intr, cnt; 3191 3192 phba = from_timer(phba, t, eratt_poll); 3193 3194 /* Here we will also keep track of interrupts per sec of the hba */ 3195 sli_intr = phba->sli.slistat.sli_intr; 3196 3197 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3198 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3199 sli_intr); 3200 else 3201 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3202 3203 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3204 do_div(cnt, phba->eratt_poll_interval); 3205 phba->sli.slistat.sli_ips = cnt; 3206 3207 phba->sli.slistat.sli_prev_intr = sli_intr; 3208 3209 /* Check chip HA register for error event */ 3210 eratt = lpfc_sli_check_eratt(phba); 3211 3212 if (eratt) 3213 /* Tell the worker thread there is work to do */ 3214 lpfc_worker_wake_up(phba); 3215 else 3216 /* Restart the timer for next eratt poll */ 3217 mod_timer(&phba->eratt_poll, 3218 jiffies + 3219 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3220 return; 3221 } 3222 3223 3224 /** 3225 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3226 * @phba: Pointer to HBA context object. 3227 * @pring: Pointer to driver SLI ring object. 3228 * @mask: Host attention register mask for this ring. 3229 * 3230 * This function is called from the interrupt context when there is a ring 3231 * event for the fcp ring. The caller does not hold any lock. 3232 * The function processes each response iocb in the response ring until it 3233 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3234 * LE bit set. The function will call the completion handler of the command iocb 3235 * if the response iocb indicates a completion for a command iocb or it is 3236 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3237 * function if this is an unsolicited iocb. 3238 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3239 * to check it explicitly. 3240 */ 3241 int 3242 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3243 struct lpfc_sli_ring *pring, uint32_t mask) 3244 { 3245 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3246 IOCB_t *irsp = NULL; 3247 IOCB_t *entry = NULL; 3248 struct lpfc_iocbq *cmdiocbq = NULL; 3249 struct lpfc_iocbq rspiocbq; 3250 uint32_t status; 3251 uint32_t portRspPut, portRspMax; 3252 int rc = 1; 3253 lpfc_iocb_type type; 3254 unsigned long iflag; 3255 uint32_t rsp_cmpl = 0; 3256 3257 spin_lock_irqsave(&phba->hbalock, iflag); 3258 pring->stats.iocb_event++; 3259 3260 /* 3261 * The next available response entry should never exceed the maximum 3262 * entries. If it does, treat it as an adapter hardware error. 3263 */ 3264 portRspMax = pring->sli.sli3.numRiocb; 3265 portRspPut = le32_to_cpu(pgp->rspPutInx); 3266 if (unlikely(portRspPut >= portRspMax)) { 3267 lpfc_sli_rsp_pointers_error(phba, pring); 3268 spin_unlock_irqrestore(&phba->hbalock, iflag); 3269 return 1; 3270 } 3271 if (phba->fcp_ring_in_use) { 3272 spin_unlock_irqrestore(&phba->hbalock, iflag); 3273 return 1; 3274 } else 3275 phba->fcp_ring_in_use = 1; 3276 3277 rmb(); 3278 while (pring->sli.sli3.rspidx != portRspPut) { 3279 /* 3280 * Fetch an entry off the ring and copy it into a local data 3281 * structure. The copy involves a byte-swap since the 3282 * network byte order and pci byte orders are different. 3283 */ 3284 entry = lpfc_resp_iocb(phba, pring); 3285 phba->last_completion_time = jiffies; 3286 3287 if (++pring->sli.sli3.rspidx >= portRspMax) 3288 pring->sli.sli3.rspidx = 0; 3289 3290 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3291 (uint32_t *) &rspiocbq.iocb, 3292 phba->iocb_rsp_size); 3293 INIT_LIST_HEAD(&(rspiocbq.list)); 3294 irsp = &rspiocbq.iocb; 3295 3296 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3297 pring->stats.iocb_rsp++; 3298 rsp_cmpl++; 3299 3300 if (unlikely(irsp->ulpStatus)) { 3301 /* 3302 * If resource errors reported from HBA, reduce 3303 * queuedepths of the SCSI device. 3304 */ 3305 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3306 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3307 IOERR_NO_RESOURCES)) { 3308 spin_unlock_irqrestore(&phba->hbalock, iflag); 3309 phba->lpfc_rampdown_queue_depth(phba); 3310 spin_lock_irqsave(&phba->hbalock, iflag); 3311 } 3312 3313 /* Rsp ring <ringno> error: IOCB */ 3314 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3315 "0336 Rsp Ring %d error: IOCB Data: " 3316 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3317 pring->ringno, 3318 irsp->un.ulpWord[0], 3319 irsp->un.ulpWord[1], 3320 irsp->un.ulpWord[2], 3321 irsp->un.ulpWord[3], 3322 irsp->un.ulpWord[4], 3323 irsp->un.ulpWord[5], 3324 *(uint32_t *)&irsp->un1, 3325 *((uint32_t *)&irsp->un1 + 1)); 3326 } 3327 3328 switch (type) { 3329 case LPFC_ABORT_IOCB: 3330 case LPFC_SOL_IOCB: 3331 /* 3332 * Idle exchange closed via ABTS from port. No iocb 3333 * resources need to be recovered. 3334 */ 3335 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3336 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3337 "0333 IOCB cmd 0x%x" 3338 " processed. Skipping" 3339 " completion\n", 3340 irsp->ulpCommand); 3341 break; 3342 } 3343 3344 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3345 &rspiocbq); 3346 if (unlikely(!cmdiocbq)) 3347 break; 3348 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3349 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3350 if (cmdiocbq->iocb_cmpl) { 3351 spin_unlock_irqrestore(&phba->hbalock, iflag); 3352 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3353 &rspiocbq); 3354 spin_lock_irqsave(&phba->hbalock, iflag); 3355 } 3356 break; 3357 case LPFC_UNSOL_IOCB: 3358 spin_unlock_irqrestore(&phba->hbalock, iflag); 3359 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3360 spin_lock_irqsave(&phba->hbalock, iflag); 3361 break; 3362 default: 3363 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3364 char adaptermsg[LPFC_MAX_ADPTMSG]; 3365 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3366 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3367 MAX_MSG_DATA); 3368 dev_warn(&((phba->pcidev)->dev), 3369 "lpfc%d: %s\n", 3370 phba->brd_no, adaptermsg); 3371 } else { 3372 /* Unknown IOCB command */ 3373 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3374 "0334 Unknown IOCB command " 3375 "Data: x%x, x%x x%x x%x x%x\n", 3376 type, irsp->ulpCommand, 3377 irsp->ulpStatus, 3378 irsp->ulpIoTag, 3379 irsp->ulpContext); 3380 } 3381 break; 3382 } 3383 3384 /* 3385 * The response IOCB has been processed. Update the ring 3386 * pointer in SLIM. If the port response put pointer has not 3387 * been updated, sync the pgp->rspPutInx and fetch the new port 3388 * response put pointer. 3389 */ 3390 writel(pring->sli.sli3.rspidx, 3391 &phba->host_gp[pring->ringno].rspGetInx); 3392 3393 if (pring->sli.sli3.rspidx == portRspPut) 3394 portRspPut = le32_to_cpu(pgp->rspPutInx); 3395 } 3396 3397 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3398 pring->stats.iocb_rsp_full++; 3399 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3400 writel(status, phba->CAregaddr); 3401 readl(phba->CAregaddr); 3402 } 3403 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3404 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3405 pring->stats.iocb_cmd_empty++; 3406 3407 /* Force update of the local copy of cmdGetInx */ 3408 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3409 lpfc_sli_resume_iocb(phba, pring); 3410 3411 if ((pring->lpfc_sli_cmd_available)) 3412 (pring->lpfc_sli_cmd_available) (phba, pring); 3413 3414 } 3415 3416 phba->fcp_ring_in_use = 0; 3417 spin_unlock_irqrestore(&phba->hbalock, iflag); 3418 return rc; 3419 } 3420 3421 /** 3422 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3423 * @phba: Pointer to HBA context object. 3424 * @pring: Pointer to driver SLI ring object. 3425 * @rspiocbp: Pointer to driver response IOCB object. 3426 * 3427 * This function is called from the worker thread when there is a slow-path 3428 * response IOCB to process. This function chains all the response iocbs until 3429 * seeing the iocb with the LE bit set. The function will call 3430 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3431 * completion of a command iocb. The function will call the 3432 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3433 * The function frees the resources or calls the completion handler if this 3434 * iocb is an abort completion. The function returns NULL when the response 3435 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3436 * this function shall chain the iocb on to the iocb_continueq and return the 3437 * response iocb passed in. 3438 **/ 3439 static struct lpfc_iocbq * 3440 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3441 struct lpfc_iocbq *rspiocbp) 3442 { 3443 struct lpfc_iocbq *saveq; 3444 struct lpfc_iocbq *cmdiocbp; 3445 struct lpfc_iocbq *next_iocb; 3446 IOCB_t *irsp = NULL; 3447 uint32_t free_saveq; 3448 uint8_t iocb_cmd_type; 3449 lpfc_iocb_type type; 3450 unsigned long iflag; 3451 int rc; 3452 3453 spin_lock_irqsave(&phba->hbalock, iflag); 3454 /* First add the response iocb to the countinueq list */ 3455 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3456 pring->iocb_continueq_cnt++; 3457 3458 /* Now, determine whether the list is completed for processing */ 3459 irsp = &rspiocbp->iocb; 3460 if (irsp->ulpLe) { 3461 /* 3462 * By default, the driver expects to free all resources 3463 * associated with this iocb completion. 3464 */ 3465 free_saveq = 1; 3466 saveq = list_get_first(&pring->iocb_continueq, 3467 struct lpfc_iocbq, list); 3468 irsp = &(saveq->iocb); 3469 list_del_init(&pring->iocb_continueq); 3470 pring->iocb_continueq_cnt = 0; 3471 3472 pring->stats.iocb_rsp++; 3473 3474 /* 3475 * If resource errors reported from HBA, reduce 3476 * queuedepths of the SCSI device. 3477 */ 3478 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3479 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3480 IOERR_NO_RESOURCES)) { 3481 spin_unlock_irqrestore(&phba->hbalock, iflag); 3482 phba->lpfc_rampdown_queue_depth(phba); 3483 spin_lock_irqsave(&phba->hbalock, iflag); 3484 } 3485 3486 if (irsp->ulpStatus) { 3487 /* Rsp ring <ringno> error: IOCB */ 3488 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3489 "0328 Rsp Ring %d error: " 3490 "IOCB Data: " 3491 "x%x x%x x%x x%x " 3492 "x%x x%x x%x x%x " 3493 "x%x x%x x%x x%x " 3494 "x%x x%x x%x x%x\n", 3495 pring->ringno, 3496 irsp->un.ulpWord[0], 3497 irsp->un.ulpWord[1], 3498 irsp->un.ulpWord[2], 3499 irsp->un.ulpWord[3], 3500 irsp->un.ulpWord[4], 3501 irsp->un.ulpWord[5], 3502 *(((uint32_t *) irsp) + 6), 3503 *(((uint32_t *) irsp) + 7), 3504 *(((uint32_t *) irsp) + 8), 3505 *(((uint32_t *) irsp) + 9), 3506 *(((uint32_t *) irsp) + 10), 3507 *(((uint32_t *) irsp) + 11), 3508 *(((uint32_t *) irsp) + 12), 3509 *(((uint32_t *) irsp) + 13), 3510 *(((uint32_t *) irsp) + 14), 3511 *(((uint32_t *) irsp) + 15)); 3512 } 3513 3514 /* 3515 * Fetch the IOCB command type and call the correct completion 3516 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3517 * get freed back to the lpfc_iocb_list by the discovery 3518 * kernel thread. 3519 */ 3520 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3521 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3522 switch (type) { 3523 case LPFC_SOL_IOCB: 3524 spin_unlock_irqrestore(&phba->hbalock, iflag); 3525 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3526 spin_lock_irqsave(&phba->hbalock, iflag); 3527 break; 3528 3529 case LPFC_UNSOL_IOCB: 3530 spin_unlock_irqrestore(&phba->hbalock, iflag); 3531 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3532 spin_lock_irqsave(&phba->hbalock, iflag); 3533 if (!rc) 3534 free_saveq = 0; 3535 break; 3536 3537 case LPFC_ABORT_IOCB: 3538 cmdiocbp = NULL; 3539 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3540 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3541 saveq); 3542 if (cmdiocbp) { 3543 /* Call the specified completion routine */ 3544 if (cmdiocbp->iocb_cmpl) { 3545 spin_unlock_irqrestore(&phba->hbalock, 3546 iflag); 3547 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3548 saveq); 3549 spin_lock_irqsave(&phba->hbalock, 3550 iflag); 3551 } else 3552 __lpfc_sli_release_iocbq(phba, 3553 cmdiocbp); 3554 } 3555 break; 3556 3557 case LPFC_UNKNOWN_IOCB: 3558 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3559 char adaptermsg[LPFC_MAX_ADPTMSG]; 3560 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3561 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3562 MAX_MSG_DATA); 3563 dev_warn(&((phba->pcidev)->dev), 3564 "lpfc%d: %s\n", 3565 phba->brd_no, adaptermsg); 3566 } else { 3567 /* Unknown IOCB command */ 3568 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3569 "0335 Unknown IOCB " 3570 "command Data: x%x " 3571 "x%x x%x x%x\n", 3572 irsp->ulpCommand, 3573 irsp->ulpStatus, 3574 irsp->ulpIoTag, 3575 irsp->ulpContext); 3576 } 3577 break; 3578 } 3579 3580 if (free_saveq) { 3581 list_for_each_entry_safe(rspiocbp, next_iocb, 3582 &saveq->list, list) { 3583 list_del_init(&rspiocbp->list); 3584 __lpfc_sli_release_iocbq(phba, rspiocbp); 3585 } 3586 __lpfc_sli_release_iocbq(phba, saveq); 3587 } 3588 rspiocbp = NULL; 3589 } 3590 spin_unlock_irqrestore(&phba->hbalock, iflag); 3591 return rspiocbp; 3592 } 3593 3594 /** 3595 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3596 * @phba: Pointer to HBA context object. 3597 * @pring: Pointer to driver SLI ring object. 3598 * @mask: Host attention register mask for this ring. 3599 * 3600 * This routine wraps the actual slow_ring event process routine from the 3601 * API jump table function pointer from the lpfc_hba struct. 3602 **/ 3603 void 3604 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3605 struct lpfc_sli_ring *pring, uint32_t mask) 3606 { 3607 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3608 } 3609 3610 /** 3611 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3612 * @phba: Pointer to HBA context object. 3613 * @pring: Pointer to driver SLI ring object. 3614 * @mask: Host attention register mask for this ring. 3615 * 3616 * This function is called from the worker thread when there is a ring event 3617 * for non-fcp rings. The caller does not hold any lock. The function will 3618 * remove each response iocb in the response ring and calls the handle 3619 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3620 **/ 3621 static void 3622 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3623 struct lpfc_sli_ring *pring, uint32_t mask) 3624 { 3625 struct lpfc_pgp *pgp; 3626 IOCB_t *entry; 3627 IOCB_t *irsp = NULL; 3628 struct lpfc_iocbq *rspiocbp = NULL; 3629 uint32_t portRspPut, portRspMax; 3630 unsigned long iflag; 3631 uint32_t status; 3632 3633 pgp = &phba->port_gp[pring->ringno]; 3634 spin_lock_irqsave(&phba->hbalock, iflag); 3635 pring->stats.iocb_event++; 3636 3637 /* 3638 * The next available response entry should never exceed the maximum 3639 * entries. If it does, treat it as an adapter hardware error. 3640 */ 3641 portRspMax = pring->sli.sli3.numRiocb; 3642 portRspPut = le32_to_cpu(pgp->rspPutInx); 3643 if (portRspPut >= portRspMax) { 3644 /* 3645 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3646 * rsp ring <portRspMax> 3647 */ 3648 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3649 "0303 Ring %d handler: portRspPut %d " 3650 "is bigger than rsp ring %d\n", 3651 pring->ringno, portRspPut, portRspMax); 3652 3653 phba->link_state = LPFC_HBA_ERROR; 3654 spin_unlock_irqrestore(&phba->hbalock, iflag); 3655 3656 phba->work_hs = HS_FFER3; 3657 lpfc_handle_eratt(phba); 3658 3659 return; 3660 } 3661 3662 rmb(); 3663 while (pring->sli.sli3.rspidx != portRspPut) { 3664 /* 3665 * Build a completion list and call the appropriate handler. 3666 * The process is to get the next available response iocb, get 3667 * a free iocb from the list, copy the response data into the 3668 * free iocb, insert to the continuation list, and update the 3669 * next response index to slim. This process makes response 3670 * iocb's in the ring available to DMA as fast as possible but 3671 * pays a penalty for a copy operation. Since the iocb is 3672 * only 32 bytes, this penalty is considered small relative to 3673 * the PCI reads for register values and a slim write. When 3674 * the ulpLe field is set, the entire Command has been 3675 * received. 3676 */ 3677 entry = lpfc_resp_iocb(phba, pring); 3678 3679 phba->last_completion_time = jiffies; 3680 rspiocbp = __lpfc_sli_get_iocbq(phba); 3681 if (rspiocbp == NULL) { 3682 printk(KERN_ERR "%s: out of buffers! Failing " 3683 "completion.\n", __func__); 3684 break; 3685 } 3686 3687 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3688 phba->iocb_rsp_size); 3689 irsp = &rspiocbp->iocb; 3690 3691 if (++pring->sli.sli3.rspidx >= portRspMax) 3692 pring->sli.sli3.rspidx = 0; 3693 3694 if (pring->ringno == LPFC_ELS_RING) { 3695 lpfc_debugfs_slow_ring_trc(phba, 3696 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3697 *(((uint32_t *) irsp) + 4), 3698 *(((uint32_t *) irsp) + 6), 3699 *(((uint32_t *) irsp) + 7)); 3700 } 3701 3702 writel(pring->sli.sli3.rspidx, 3703 &phba->host_gp[pring->ringno].rspGetInx); 3704 3705 spin_unlock_irqrestore(&phba->hbalock, iflag); 3706 /* Handle the response IOCB */ 3707 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3708 spin_lock_irqsave(&phba->hbalock, iflag); 3709 3710 /* 3711 * If the port response put pointer has not been updated, sync 3712 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3713 * response put pointer. 3714 */ 3715 if (pring->sli.sli3.rspidx == portRspPut) { 3716 portRspPut = le32_to_cpu(pgp->rspPutInx); 3717 } 3718 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3719 3720 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3721 /* At least one response entry has been freed */ 3722 pring->stats.iocb_rsp_full++; 3723 /* SET RxRE_RSP in Chip Att register */ 3724 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3725 writel(status, phba->CAregaddr); 3726 readl(phba->CAregaddr); /* flush */ 3727 } 3728 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3729 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3730 pring->stats.iocb_cmd_empty++; 3731 3732 /* Force update of the local copy of cmdGetInx */ 3733 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3734 lpfc_sli_resume_iocb(phba, pring); 3735 3736 if ((pring->lpfc_sli_cmd_available)) 3737 (pring->lpfc_sli_cmd_available) (phba, pring); 3738 3739 } 3740 3741 spin_unlock_irqrestore(&phba->hbalock, iflag); 3742 return; 3743 } 3744 3745 /** 3746 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3747 * @phba: Pointer to HBA context object. 3748 * @pring: Pointer to driver SLI ring object. 3749 * @mask: Host attention register mask for this ring. 3750 * 3751 * This function is called from the worker thread when there is a pending 3752 * ELS response iocb on the driver internal slow-path response iocb worker 3753 * queue. The caller does not hold any lock. The function will remove each 3754 * response iocb from the response worker queue and calls the handle 3755 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3756 **/ 3757 static void 3758 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3759 struct lpfc_sli_ring *pring, uint32_t mask) 3760 { 3761 struct lpfc_iocbq *irspiocbq; 3762 struct hbq_dmabuf *dmabuf; 3763 struct lpfc_cq_event *cq_event; 3764 unsigned long iflag; 3765 3766 spin_lock_irqsave(&phba->hbalock, iflag); 3767 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3768 spin_unlock_irqrestore(&phba->hbalock, iflag); 3769 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3770 /* Get the response iocb from the head of work queue */ 3771 spin_lock_irqsave(&phba->hbalock, iflag); 3772 list_remove_head(&phba->sli4_hba.sp_queue_event, 3773 cq_event, struct lpfc_cq_event, list); 3774 spin_unlock_irqrestore(&phba->hbalock, iflag); 3775 3776 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3777 case CQE_CODE_COMPL_WQE: 3778 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3779 cq_event); 3780 /* Translate ELS WCQE to response IOCBQ */ 3781 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3782 irspiocbq); 3783 if (irspiocbq) 3784 lpfc_sli_sp_handle_rspiocb(phba, pring, 3785 irspiocbq); 3786 break; 3787 case CQE_CODE_RECEIVE: 3788 case CQE_CODE_RECEIVE_V1: 3789 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3790 cq_event); 3791 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3792 break; 3793 default: 3794 break; 3795 } 3796 } 3797 } 3798 3799 /** 3800 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3801 * @phba: Pointer to HBA context object. 3802 * @pring: Pointer to driver SLI ring object. 3803 * 3804 * This function aborts all iocbs in the given ring and frees all the iocb 3805 * objects in txq. This function issues an abort iocb for all the iocb commands 3806 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3807 * the return of this function. The caller is not required to hold any locks. 3808 **/ 3809 void 3810 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3811 { 3812 LIST_HEAD(completions); 3813 struct lpfc_iocbq *iocb, *next_iocb; 3814 3815 if (pring->ringno == LPFC_ELS_RING) { 3816 lpfc_fabric_abort_hba(phba); 3817 } 3818 3819 /* Error everything on txq and txcmplq 3820 * First do the txq. 3821 */ 3822 if (phba->sli_rev >= LPFC_SLI_REV4) { 3823 spin_lock_irq(&pring->ring_lock); 3824 list_splice_init(&pring->txq, &completions); 3825 pring->txq_cnt = 0; 3826 spin_unlock_irq(&pring->ring_lock); 3827 3828 spin_lock_irq(&phba->hbalock); 3829 /* Next issue ABTS for everything on the txcmplq */ 3830 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3831 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3832 spin_unlock_irq(&phba->hbalock); 3833 } else { 3834 spin_lock_irq(&phba->hbalock); 3835 list_splice_init(&pring->txq, &completions); 3836 pring->txq_cnt = 0; 3837 3838 /* Next issue ABTS for everything on the txcmplq */ 3839 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3840 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3841 spin_unlock_irq(&phba->hbalock); 3842 } 3843 3844 /* Cancel all the IOCBs from the completions list */ 3845 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3846 IOERR_SLI_ABORTED); 3847 } 3848 3849 /** 3850 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3851 * @phba: Pointer to HBA context object. 3852 * @pring: Pointer to driver SLI ring object. 3853 * 3854 * This function aborts all iocbs in the given ring and frees all the iocb 3855 * objects in txq. This function issues an abort iocb for all the iocb commands 3856 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3857 * the return of this function. The caller is not required to hold any locks. 3858 **/ 3859 void 3860 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3861 { 3862 LIST_HEAD(completions); 3863 struct lpfc_iocbq *iocb, *next_iocb; 3864 3865 if (pring->ringno == LPFC_ELS_RING) 3866 lpfc_fabric_abort_hba(phba); 3867 3868 spin_lock_irq(&phba->hbalock); 3869 /* Next issue ABTS for everything on the txcmplq */ 3870 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3871 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3872 spin_unlock_irq(&phba->hbalock); 3873 } 3874 3875 3876 /** 3877 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3878 * @phba: Pointer to HBA context object. 3879 * @pring: Pointer to driver SLI ring object. 3880 * 3881 * This function aborts all iocbs in FCP rings and frees all the iocb 3882 * objects in txq. This function issues an abort iocb for all the iocb commands 3883 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3884 * the return of this function. The caller is not required to hold any locks. 3885 **/ 3886 void 3887 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3888 { 3889 struct lpfc_sli *psli = &phba->sli; 3890 struct lpfc_sli_ring *pring; 3891 uint32_t i; 3892 3893 /* Look on all the FCP Rings for the iotag */ 3894 if (phba->sli_rev >= LPFC_SLI_REV4) { 3895 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3896 pring = phba->sli4_hba.fcp_wq[i]->pring; 3897 lpfc_sli_abort_iocb_ring(phba, pring); 3898 } 3899 } else { 3900 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3901 lpfc_sli_abort_iocb_ring(phba, pring); 3902 } 3903 } 3904 3905 /** 3906 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3907 * @phba: Pointer to HBA context object. 3908 * 3909 * This function aborts all wqes in NVME rings. This function issues an 3910 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3911 * the txcmplq is not guaranteed to complete before the return of this 3912 * function. The caller is not required to hold any locks. 3913 **/ 3914 void 3915 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3916 { 3917 struct lpfc_sli_ring *pring; 3918 uint32_t i; 3919 3920 if (phba->sli_rev < LPFC_SLI_REV4) 3921 return; 3922 3923 /* Abort all IO on each NVME ring. */ 3924 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3925 pring = phba->sli4_hba.nvme_wq[i]->pring; 3926 lpfc_sli_abort_wqe_ring(phba, pring); 3927 } 3928 } 3929 3930 3931 /** 3932 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3933 * @phba: Pointer to HBA context object. 3934 * 3935 * This function flushes all iocbs in the fcp ring and frees all the iocb 3936 * objects in txq and txcmplq. This function will not issue abort iocbs 3937 * for all the iocb commands in txcmplq, they will just be returned with 3938 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3939 * slot has been permanently disabled. 3940 **/ 3941 void 3942 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3943 { 3944 LIST_HEAD(txq); 3945 LIST_HEAD(txcmplq); 3946 struct lpfc_sli *psli = &phba->sli; 3947 struct lpfc_sli_ring *pring; 3948 uint32_t i; 3949 struct lpfc_iocbq *piocb, *next_iocb; 3950 3951 spin_lock_irq(&phba->hbalock); 3952 /* Indicate the I/O queues are flushed */ 3953 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3954 spin_unlock_irq(&phba->hbalock); 3955 3956 /* Look on all the FCP Rings for the iotag */ 3957 if (phba->sli_rev >= LPFC_SLI_REV4) { 3958 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3959 pring = phba->sli4_hba.fcp_wq[i]->pring; 3960 3961 spin_lock_irq(&pring->ring_lock); 3962 /* Retrieve everything on txq */ 3963 list_splice_init(&pring->txq, &txq); 3964 list_for_each_entry_safe(piocb, next_iocb, 3965 &pring->txcmplq, list) 3966 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3967 /* Retrieve everything on the txcmplq */ 3968 list_splice_init(&pring->txcmplq, &txcmplq); 3969 pring->txq_cnt = 0; 3970 pring->txcmplq_cnt = 0; 3971 spin_unlock_irq(&pring->ring_lock); 3972 3973 /* Flush the txq */ 3974 lpfc_sli_cancel_iocbs(phba, &txq, 3975 IOSTAT_LOCAL_REJECT, 3976 IOERR_SLI_DOWN); 3977 /* Flush the txcmpq */ 3978 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3979 IOSTAT_LOCAL_REJECT, 3980 IOERR_SLI_DOWN); 3981 } 3982 } else { 3983 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3984 3985 spin_lock_irq(&phba->hbalock); 3986 /* Retrieve everything on txq */ 3987 list_splice_init(&pring->txq, &txq); 3988 list_for_each_entry_safe(piocb, next_iocb, 3989 &pring->txcmplq, list) 3990 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3991 /* Retrieve everything on the txcmplq */ 3992 list_splice_init(&pring->txcmplq, &txcmplq); 3993 pring->txq_cnt = 0; 3994 pring->txcmplq_cnt = 0; 3995 spin_unlock_irq(&phba->hbalock); 3996 3997 /* Flush the txq */ 3998 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3999 IOERR_SLI_DOWN); 4000 /* Flush the txcmpq */ 4001 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4002 IOERR_SLI_DOWN); 4003 } 4004 } 4005 4006 /** 4007 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 4008 * @phba: Pointer to HBA context object. 4009 * 4010 * This function flushes all wqes in the nvme rings and frees all resources 4011 * in the txcmplq. This function does not issue abort wqes for the IO 4012 * commands in txcmplq, they will just be returned with 4013 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4014 * slot has been permanently disabled. 4015 **/ 4016 void 4017 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 4018 { 4019 LIST_HEAD(txcmplq); 4020 struct lpfc_sli_ring *pring; 4021 uint32_t i; 4022 struct lpfc_iocbq *piocb, *next_iocb; 4023 4024 if (phba->sli_rev < LPFC_SLI_REV4) 4025 return; 4026 4027 /* Hint to other driver operations that a flush is in progress. */ 4028 spin_lock_irq(&phba->hbalock); 4029 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 4030 spin_unlock_irq(&phba->hbalock); 4031 4032 /* Cycle through all NVME rings and complete each IO with 4033 * a local driver reason code. This is a flush so no 4034 * abort exchange to FW. 4035 */ 4036 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4037 pring = phba->sli4_hba.nvme_wq[i]->pring; 4038 4039 spin_lock_irq(&pring->ring_lock); 4040 list_for_each_entry_safe(piocb, next_iocb, 4041 &pring->txcmplq, list) 4042 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4043 /* Retrieve everything on the txcmplq */ 4044 list_splice_init(&pring->txcmplq, &txcmplq); 4045 pring->txcmplq_cnt = 0; 4046 spin_unlock_irq(&pring->ring_lock); 4047 4048 /* Flush the txcmpq &&&PAE */ 4049 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4050 IOSTAT_LOCAL_REJECT, 4051 IOERR_SLI_DOWN); 4052 } 4053 } 4054 4055 /** 4056 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4057 * @phba: Pointer to HBA context object. 4058 * @mask: Bit mask to be checked. 4059 * 4060 * This function reads the host status register and compares 4061 * with the provided bit mask to check if HBA completed 4062 * the restart. This function will wait in a loop for the 4063 * HBA to complete restart. If the HBA does not restart within 4064 * 15 iterations, the function will reset the HBA again. The 4065 * function returns 1 when HBA fail to restart otherwise returns 4066 * zero. 4067 **/ 4068 static int 4069 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4070 { 4071 uint32_t status; 4072 int i = 0; 4073 int retval = 0; 4074 4075 /* Read the HBA Host Status Register */ 4076 if (lpfc_readl(phba->HSregaddr, &status)) 4077 return 1; 4078 4079 /* 4080 * Check status register every 100ms for 5 retries, then every 4081 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4082 * every 2.5 sec for 4. 4083 * Break our of the loop if errors occurred during init. 4084 */ 4085 while (((status & mask) != mask) && 4086 !(status & HS_FFERM) && 4087 i++ < 20) { 4088 4089 if (i <= 5) 4090 msleep(10); 4091 else if (i <= 10) 4092 msleep(500); 4093 else 4094 msleep(2500); 4095 4096 if (i == 15) { 4097 /* Do post */ 4098 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4099 lpfc_sli_brdrestart(phba); 4100 } 4101 /* Read the HBA Host Status Register */ 4102 if (lpfc_readl(phba->HSregaddr, &status)) { 4103 retval = 1; 4104 break; 4105 } 4106 } 4107 4108 /* Check to see if any errors occurred during init */ 4109 if ((status & HS_FFERM) || (i >= 20)) { 4110 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4111 "2751 Adapter failed to restart, " 4112 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4113 status, 4114 readl(phba->MBslimaddr + 0xa8), 4115 readl(phba->MBslimaddr + 0xac)); 4116 phba->link_state = LPFC_HBA_ERROR; 4117 retval = 1; 4118 } 4119 4120 return retval; 4121 } 4122 4123 /** 4124 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4125 * @phba: Pointer to HBA context object. 4126 * @mask: Bit mask to be checked. 4127 * 4128 * This function checks the host status register to check if HBA is 4129 * ready. This function will wait in a loop for the HBA to be ready 4130 * If the HBA is not ready , the function will will reset the HBA PCI 4131 * function again. The function returns 1 when HBA fail to be ready 4132 * otherwise returns zero. 4133 **/ 4134 static int 4135 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4136 { 4137 uint32_t status; 4138 int retval = 0; 4139 4140 /* Read the HBA Host Status Register */ 4141 status = lpfc_sli4_post_status_check(phba); 4142 4143 if (status) { 4144 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4145 lpfc_sli_brdrestart(phba); 4146 status = lpfc_sli4_post_status_check(phba); 4147 } 4148 4149 /* Check to see if any errors occurred during init */ 4150 if (status) { 4151 phba->link_state = LPFC_HBA_ERROR; 4152 retval = 1; 4153 } else 4154 phba->sli4_hba.intr_enable = 0; 4155 4156 return retval; 4157 } 4158 4159 /** 4160 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4161 * @phba: Pointer to HBA context object. 4162 * @mask: Bit mask to be checked. 4163 * 4164 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4165 * from the API jump table function pointer from the lpfc_hba struct. 4166 **/ 4167 int 4168 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4169 { 4170 return phba->lpfc_sli_brdready(phba, mask); 4171 } 4172 4173 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4174 4175 /** 4176 * lpfc_reset_barrier - Make HBA ready for HBA reset 4177 * @phba: Pointer to HBA context object. 4178 * 4179 * This function is called before resetting an HBA. This function is called 4180 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4181 **/ 4182 void lpfc_reset_barrier(struct lpfc_hba *phba) 4183 { 4184 uint32_t __iomem *resp_buf; 4185 uint32_t __iomem *mbox_buf; 4186 volatile uint32_t mbox; 4187 uint32_t hc_copy, ha_copy, resp_data; 4188 int i; 4189 uint8_t hdrtype; 4190 4191 lockdep_assert_held(&phba->hbalock); 4192 4193 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4194 if (hdrtype != 0x80 || 4195 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4196 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4197 return; 4198 4199 /* 4200 * Tell the other part of the chip to suspend temporarily all 4201 * its DMA activity. 4202 */ 4203 resp_buf = phba->MBslimaddr; 4204 4205 /* Disable the error attention */ 4206 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4207 return; 4208 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4209 readl(phba->HCregaddr); /* flush */ 4210 phba->link_flag |= LS_IGNORE_ERATT; 4211 4212 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4213 return; 4214 if (ha_copy & HA_ERATT) { 4215 /* Clear Chip error bit */ 4216 writel(HA_ERATT, phba->HAregaddr); 4217 phba->pport->stopped = 1; 4218 } 4219 4220 mbox = 0; 4221 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4222 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4223 4224 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4225 mbox_buf = phba->MBslimaddr; 4226 writel(mbox, mbox_buf); 4227 4228 for (i = 0; i < 50; i++) { 4229 if (lpfc_readl((resp_buf + 1), &resp_data)) 4230 return; 4231 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4232 mdelay(1); 4233 else 4234 break; 4235 } 4236 resp_data = 0; 4237 if (lpfc_readl((resp_buf + 1), &resp_data)) 4238 return; 4239 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4240 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4241 phba->pport->stopped) 4242 goto restore_hc; 4243 else 4244 goto clear_errat; 4245 } 4246 4247 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4248 resp_data = 0; 4249 for (i = 0; i < 500; i++) { 4250 if (lpfc_readl(resp_buf, &resp_data)) 4251 return; 4252 if (resp_data != mbox) 4253 mdelay(1); 4254 else 4255 break; 4256 } 4257 4258 clear_errat: 4259 4260 while (++i < 500) { 4261 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4262 return; 4263 if (!(ha_copy & HA_ERATT)) 4264 mdelay(1); 4265 else 4266 break; 4267 } 4268 4269 if (readl(phba->HAregaddr) & HA_ERATT) { 4270 writel(HA_ERATT, phba->HAregaddr); 4271 phba->pport->stopped = 1; 4272 } 4273 4274 restore_hc: 4275 phba->link_flag &= ~LS_IGNORE_ERATT; 4276 writel(hc_copy, phba->HCregaddr); 4277 readl(phba->HCregaddr); /* flush */ 4278 } 4279 4280 /** 4281 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4282 * @phba: Pointer to HBA context object. 4283 * 4284 * This function issues a kill_board mailbox command and waits for 4285 * the error attention interrupt. This function is called for stopping 4286 * the firmware processing. The caller is not required to hold any 4287 * locks. This function calls lpfc_hba_down_post function to free 4288 * any pending commands after the kill. The function will return 1 when it 4289 * fails to kill the board else will return 0. 4290 **/ 4291 int 4292 lpfc_sli_brdkill(struct lpfc_hba *phba) 4293 { 4294 struct lpfc_sli *psli; 4295 LPFC_MBOXQ_t *pmb; 4296 uint32_t status; 4297 uint32_t ha_copy; 4298 int retval; 4299 int i = 0; 4300 4301 psli = &phba->sli; 4302 4303 /* Kill HBA */ 4304 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4305 "0329 Kill HBA Data: x%x x%x\n", 4306 phba->pport->port_state, psli->sli_flag); 4307 4308 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4309 if (!pmb) 4310 return 1; 4311 4312 /* Disable the error attention */ 4313 spin_lock_irq(&phba->hbalock); 4314 if (lpfc_readl(phba->HCregaddr, &status)) { 4315 spin_unlock_irq(&phba->hbalock); 4316 mempool_free(pmb, phba->mbox_mem_pool); 4317 return 1; 4318 } 4319 status &= ~HC_ERINT_ENA; 4320 writel(status, phba->HCregaddr); 4321 readl(phba->HCregaddr); /* flush */ 4322 phba->link_flag |= LS_IGNORE_ERATT; 4323 spin_unlock_irq(&phba->hbalock); 4324 4325 lpfc_kill_board(phba, pmb); 4326 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4327 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4328 4329 if (retval != MBX_SUCCESS) { 4330 if (retval != MBX_BUSY) 4331 mempool_free(pmb, phba->mbox_mem_pool); 4332 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4333 "2752 KILL_BOARD command failed retval %d\n", 4334 retval); 4335 spin_lock_irq(&phba->hbalock); 4336 phba->link_flag &= ~LS_IGNORE_ERATT; 4337 spin_unlock_irq(&phba->hbalock); 4338 return 1; 4339 } 4340 4341 spin_lock_irq(&phba->hbalock); 4342 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4343 spin_unlock_irq(&phba->hbalock); 4344 4345 mempool_free(pmb, phba->mbox_mem_pool); 4346 4347 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4348 * attention every 100ms for 3 seconds. If we don't get ERATT after 4349 * 3 seconds we still set HBA_ERROR state because the status of the 4350 * board is now undefined. 4351 */ 4352 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4353 return 1; 4354 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4355 mdelay(100); 4356 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4357 return 1; 4358 } 4359 4360 del_timer_sync(&psli->mbox_tmo); 4361 if (ha_copy & HA_ERATT) { 4362 writel(HA_ERATT, phba->HAregaddr); 4363 phba->pport->stopped = 1; 4364 } 4365 spin_lock_irq(&phba->hbalock); 4366 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4367 psli->mbox_active = NULL; 4368 phba->link_flag &= ~LS_IGNORE_ERATT; 4369 spin_unlock_irq(&phba->hbalock); 4370 4371 lpfc_hba_down_post(phba); 4372 phba->link_state = LPFC_HBA_ERROR; 4373 4374 return ha_copy & HA_ERATT ? 0 : 1; 4375 } 4376 4377 /** 4378 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4379 * @phba: Pointer to HBA context object. 4380 * 4381 * This function resets the HBA by writing HC_INITFF to the control 4382 * register. After the HBA resets, this function resets all the iocb ring 4383 * indices. This function disables PCI layer parity checking during 4384 * the reset. 4385 * This function returns 0 always. 4386 * The caller is not required to hold any locks. 4387 **/ 4388 int 4389 lpfc_sli_brdreset(struct lpfc_hba *phba) 4390 { 4391 struct lpfc_sli *psli; 4392 struct lpfc_sli_ring *pring; 4393 uint16_t cfg_value; 4394 int i; 4395 4396 psli = &phba->sli; 4397 4398 /* Reset HBA */ 4399 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4400 "0325 Reset HBA Data: x%x x%x\n", 4401 (phba->pport) ? phba->pport->port_state : 0, 4402 psli->sli_flag); 4403 4404 /* perform board reset */ 4405 phba->fc_eventTag = 0; 4406 phba->link_events = 0; 4407 if (phba->pport) { 4408 phba->pport->fc_myDID = 0; 4409 phba->pport->fc_prevDID = 0; 4410 } 4411 4412 /* Turn off parity checking and serr during the physical reset */ 4413 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4414 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4415 (cfg_value & 4416 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4417 4418 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4419 4420 /* Now toggle INITFF bit in the Host Control Register */ 4421 writel(HC_INITFF, phba->HCregaddr); 4422 mdelay(1); 4423 readl(phba->HCregaddr); /* flush */ 4424 writel(0, phba->HCregaddr); 4425 readl(phba->HCregaddr); /* flush */ 4426 4427 /* Restore PCI cmd register */ 4428 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4429 4430 /* Initialize relevant SLI info */ 4431 for (i = 0; i < psli->num_rings; i++) { 4432 pring = &psli->sli3_ring[i]; 4433 pring->flag = 0; 4434 pring->sli.sli3.rspidx = 0; 4435 pring->sli.sli3.next_cmdidx = 0; 4436 pring->sli.sli3.local_getidx = 0; 4437 pring->sli.sli3.cmdidx = 0; 4438 pring->missbufcnt = 0; 4439 } 4440 4441 phba->link_state = LPFC_WARM_START; 4442 return 0; 4443 } 4444 4445 /** 4446 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4447 * @phba: Pointer to HBA context object. 4448 * 4449 * This function resets a SLI4 HBA. This function disables PCI layer parity 4450 * checking during resets the device. The caller is not required to hold 4451 * any locks. 4452 * 4453 * This function returns 0 always. 4454 **/ 4455 int 4456 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4457 { 4458 struct lpfc_sli *psli = &phba->sli; 4459 uint16_t cfg_value; 4460 int rc = 0; 4461 4462 /* Reset HBA */ 4463 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4464 "0295 Reset HBA Data: x%x x%x x%x\n", 4465 phba->pport->port_state, psli->sli_flag, 4466 phba->hba_flag); 4467 4468 /* perform board reset */ 4469 phba->fc_eventTag = 0; 4470 phba->link_events = 0; 4471 phba->pport->fc_myDID = 0; 4472 phba->pport->fc_prevDID = 0; 4473 4474 spin_lock_irq(&phba->hbalock); 4475 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4476 phba->fcf.fcf_flag = 0; 4477 spin_unlock_irq(&phba->hbalock); 4478 4479 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4480 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4481 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4482 return rc; 4483 } 4484 4485 /* Now physically reset the device */ 4486 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4487 "0389 Performing PCI function reset!\n"); 4488 4489 /* Turn off parity checking and serr during the physical reset */ 4490 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4491 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4492 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4493 4494 /* Perform FCoE PCI function reset before freeing queue memory */ 4495 rc = lpfc_pci_function_reset(phba); 4496 4497 /* Restore PCI cmd register */ 4498 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4499 4500 return rc; 4501 } 4502 4503 /** 4504 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4505 * @phba: Pointer to HBA context object. 4506 * 4507 * This function is called in the SLI initialization code path to 4508 * restart the HBA. The caller is not required to hold any lock. 4509 * This function writes MBX_RESTART mailbox command to the SLIM and 4510 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4511 * function to free any pending commands. The function enables 4512 * POST only during the first initialization. The function returns zero. 4513 * The function does not guarantee completion of MBX_RESTART mailbox 4514 * command before the return of this function. 4515 **/ 4516 static int 4517 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4518 { 4519 MAILBOX_t *mb; 4520 struct lpfc_sli *psli; 4521 volatile uint32_t word0; 4522 void __iomem *to_slim; 4523 uint32_t hba_aer_enabled; 4524 4525 spin_lock_irq(&phba->hbalock); 4526 4527 /* Take PCIe device Advanced Error Reporting (AER) state */ 4528 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4529 4530 psli = &phba->sli; 4531 4532 /* Restart HBA */ 4533 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4534 "0337 Restart HBA Data: x%x x%x\n", 4535 (phba->pport) ? phba->pport->port_state : 0, 4536 psli->sli_flag); 4537 4538 word0 = 0; 4539 mb = (MAILBOX_t *) &word0; 4540 mb->mbxCommand = MBX_RESTART; 4541 mb->mbxHc = 1; 4542 4543 lpfc_reset_barrier(phba); 4544 4545 to_slim = phba->MBslimaddr; 4546 writel(*(uint32_t *) mb, to_slim); 4547 readl(to_slim); /* flush */ 4548 4549 /* Only skip post after fc_ffinit is completed */ 4550 if (phba->pport && phba->pport->port_state) 4551 word0 = 1; /* This is really setting up word1 */ 4552 else 4553 word0 = 0; /* This is really setting up word1 */ 4554 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4555 writel(*(uint32_t *) mb, to_slim); 4556 readl(to_slim); /* flush */ 4557 4558 lpfc_sli_brdreset(phba); 4559 if (phba->pport) 4560 phba->pport->stopped = 0; 4561 phba->link_state = LPFC_INIT_START; 4562 phba->hba_flag = 0; 4563 spin_unlock_irq(&phba->hbalock); 4564 4565 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4566 psli->stats_start = get_seconds(); 4567 4568 /* Give the INITFF and Post time to settle. */ 4569 mdelay(100); 4570 4571 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4572 if (hba_aer_enabled) 4573 pci_disable_pcie_error_reporting(phba->pcidev); 4574 4575 lpfc_hba_down_post(phba); 4576 4577 return 0; 4578 } 4579 4580 /** 4581 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4582 * @phba: Pointer to HBA context object. 4583 * 4584 * This function is called in the SLI initialization code path to restart 4585 * a SLI4 HBA. The caller is not required to hold any lock. 4586 * At the end of the function, it calls lpfc_hba_down_post function to 4587 * free any pending commands. 4588 **/ 4589 static int 4590 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4591 { 4592 struct lpfc_sli *psli = &phba->sli; 4593 uint32_t hba_aer_enabled; 4594 int rc; 4595 4596 /* Restart HBA */ 4597 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4598 "0296 Restart HBA Data: x%x x%x\n", 4599 phba->pport->port_state, psli->sli_flag); 4600 4601 /* Take PCIe device Advanced Error Reporting (AER) state */ 4602 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4603 4604 rc = lpfc_sli4_brdreset(phba); 4605 4606 spin_lock_irq(&phba->hbalock); 4607 phba->pport->stopped = 0; 4608 phba->link_state = LPFC_INIT_START; 4609 phba->hba_flag = 0; 4610 spin_unlock_irq(&phba->hbalock); 4611 4612 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4613 psli->stats_start = get_seconds(); 4614 4615 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4616 if (hba_aer_enabled) 4617 pci_disable_pcie_error_reporting(phba->pcidev); 4618 4619 lpfc_hba_down_post(phba); 4620 lpfc_sli4_queue_destroy(phba); 4621 4622 return rc; 4623 } 4624 4625 /** 4626 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4627 * @phba: Pointer to HBA context object. 4628 * 4629 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4630 * API jump table function pointer from the lpfc_hba struct. 4631 **/ 4632 int 4633 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4634 { 4635 return phba->lpfc_sli_brdrestart(phba); 4636 } 4637 4638 /** 4639 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4640 * @phba: Pointer to HBA context object. 4641 * 4642 * This function is called after a HBA restart to wait for successful 4643 * restart of the HBA. Successful restart of the HBA is indicated by 4644 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4645 * iteration, the function will restart the HBA again. The function returns 4646 * zero if HBA successfully restarted else returns negative error code. 4647 **/ 4648 int 4649 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4650 { 4651 uint32_t status, i = 0; 4652 4653 /* Read the HBA Host Status Register */ 4654 if (lpfc_readl(phba->HSregaddr, &status)) 4655 return -EIO; 4656 4657 /* Check status register to see what current state is */ 4658 i = 0; 4659 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4660 4661 /* Check every 10ms for 10 retries, then every 100ms for 90 4662 * retries, then every 1 sec for 50 retires for a total of 4663 * ~60 seconds before reset the board again and check every 4664 * 1 sec for 50 retries. The up to 60 seconds before the 4665 * board ready is required by the Falcon FIPS zeroization 4666 * complete, and any reset the board in between shall cause 4667 * restart of zeroization, further delay the board ready. 4668 */ 4669 if (i++ >= 200) { 4670 /* Adapter failed to init, timeout, status reg 4671 <status> */ 4672 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4673 "0436 Adapter failed to init, " 4674 "timeout, status reg x%x, " 4675 "FW Data: A8 x%x AC x%x\n", status, 4676 readl(phba->MBslimaddr + 0xa8), 4677 readl(phba->MBslimaddr + 0xac)); 4678 phba->link_state = LPFC_HBA_ERROR; 4679 return -ETIMEDOUT; 4680 } 4681 4682 /* Check to see if any errors occurred during init */ 4683 if (status & HS_FFERM) { 4684 /* ERROR: During chipset initialization */ 4685 /* Adapter failed to init, chipset, status reg 4686 <status> */ 4687 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4688 "0437 Adapter failed to init, " 4689 "chipset, status reg x%x, " 4690 "FW Data: A8 x%x AC x%x\n", status, 4691 readl(phba->MBslimaddr + 0xa8), 4692 readl(phba->MBslimaddr + 0xac)); 4693 phba->link_state = LPFC_HBA_ERROR; 4694 return -EIO; 4695 } 4696 4697 if (i <= 10) 4698 msleep(10); 4699 else if (i <= 100) 4700 msleep(100); 4701 else 4702 msleep(1000); 4703 4704 if (i == 150) { 4705 /* Do post */ 4706 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4707 lpfc_sli_brdrestart(phba); 4708 } 4709 /* Read the HBA Host Status Register */ 4710 if (lpfc_readl(phba->HSregaddr, &status)) 4711 return -EIO; 4712 } 4713 4714 /* Check to see if any errors occurred during init */ 4715 if (status & HS_FFERM) { 4716 /* ERROR: During chipset initialization */ 4717 /* Adapter failed to init, chipset, status reg <status> */ 4718 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4719 "0438 Adapter failed to init, chipset, " 4720 "status reg x%x, " 4721 "FW Data: A8 x%x AC x%x\n", status, 4722 readl(phba->MBslimaddr + 0xa8), 4723 readl(phba->MBslimaddr + 0xac)); 4724 phba->link_state = LPFC_HBA_ERROR; 4725 return -EIO; 4726 } 4727 4728 /* Clear all interrupt enable conditions */ 4729 writel(0, phba->HCregaddr); 4730 readl(phba->HCregaddr); /* flush */ 4731 4732 /* setup host attn register */ 4733 writel(0xffffffff, phba->HAregaddr); 4734 readl(phba->HAregaddr); /* flush */ 4735 return 0; 4736 } 4737 4738 /** 4739 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4740 * 4741 * This function calculates and returns the number of HBQs required to be 4742 * configured. 4743 **/ 4744 int 4745 lpfc_sli_hbq_count(void) 4746 { 4747 return ARRAY_SIZE(lpfc_hbq_defs); 4748 } 4749 4750 /** 4751 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4752 * 4753 * This function adds the number of hbq entries in every HBQ to get 4754 * the total number of hbq entries required for the HBA and returns 4755 * the total count. 4756 **/ 4757 static int 4758 lpfc_sli_hbq_entry_count(void) 4759 { 4760 int hbq_count = lpfc_sli_hbq_count(); 4761 int count = 0; 4762 int i; 4763 4764 for (i = 0; i < hbq_count; ++i) 4765 count += lpfc_hbq_defs[i]->entry_count; 4766 return count; 4767 } 4768 4769 /** 4770 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4771 * 4772 * This function calculates amount of memory required for all hbq entries 4773 * to be configured and returns the total memory required. 4774 **/ 4775 int 4776 lpfc_sli_hbq_size(void) 4777 { 4778 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4779 } 4780 4781 /** 4782 * lpfc_sli_hbq_setup - configure and initialize HBQs 4783 * @phba: Pointer to HBA context object. 4784 * 4785 * This function is called during the SLI initialization to configure 4786 * all the HBQs and post buffers to the HBQ. The caller is not 4787 * required to hold any locks. This function will return zero if successful 4788 * else it will return negative error code. 4789 **/ 4790 static int 4791 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4792 { 4793 int hbq_count = lpfc_sli_hbq_count(); 4794 LPFC_MBOXQ_t *pmb; 4795 MAILBOX_t *pmbox; 4796 uint32_t hbqno; 4797 uint32_t hbq_entry_index; 4798 4799 /* Get a Mailbox buffer to setup mailbox 4800 * commands for HBA initialization 4801 */ 4802 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4803 4804 if (!pmb) 4805 return -ENOMEM; 4806 4807 pmbox = &pmb->u.mb; 4808 4809 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4810 phba->link_state = LPFC_INIT_MBX_CMDS; 4811 phba->hbq_in_use = 1; 4812 4813 hbq_entry_index = 0; 4814 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4815 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4816 phba->hbqs[hbqno].hbqPutIdx = 0; 4817 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4818 phba->hbqs[hbqno].entry_count = 4819 lpfc_hbq_defs[hbqno]->entry_count; 4820 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4821 hbq_entry_index, pmb); 4822 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4823 4824 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4825 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4826 mbxStatus <status>, ring <num> */ 4827 4828 lpfc_printf_log(phba, KERN_ERR, 4829 LOG_SLI | LOG_VPORT, 4830 "1805 Adapter failed to init. " 4831 "Data: x%x x%x x%x\n", 4832 pmbox->mbxCommand, 4833 pmbox->mbxStatus, hbqno); 4834 4835 phba->link_state = LPFC_HBA_ERROR; 4836 mempool_free(pmb, phba->mbox_mem_pool); 4837 return -ENXIO; 4838 } 4839 } 4840 phba->hbq_count = hbq_count; 4841 4842 mempool_free(pmb, phba->mbox_mem_pool); 4843 4844 /* Initially populate or replenish the HBQs */ 4845 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4846 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4847 return 0; 4848 } 4849 4850 /** 4851 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4852 * @phba: Pointer to HBA context object. 4853 * 4854 * This function is called during the SLI initialization to configure 4855 * all the HBQs and post buffers to the HBQ. The caller is not 4856 * required to hold any locks. This function will return zero if successful 4857 * else it will return negative error code. 4858 **/ 4859 static int 4860 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4861 { 4862 phba->hbq_in_use = 1; 4863 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4864 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4865 phba->hbq_count = 1; 4866 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4867 /* Initially populate or replenish the HBQs */ 4868 return 0; 4869 } 4870 4871 /** 4872 * lpfc_sli_config_port - Issue config port mailbox command 4873 * @phba: Pointer to HBA context object. 4874 * @sli_mode: sli mode - 2/3 4875 * 4876 * This function is called by the sli initialization code path 4877 * to issue config_port mailbox command. This function restarts the 4878 * HBA firmware and issues a config_port mailbox command to configure 4879 * the SLI interface in the sli mode specified by sli_mode 4880 * variable. The caller is not required to hold any locks. 4881 * The function returns 0 if successful, else returns negative error 4882 * code. 4883 **/ 4884 int 4885 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4886 { 4887 LPFC_MBOXQ_t *pmb; 4888 uint32_t resetcount = 0, rc = 0, done = 0; 4889 4890 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4891 if (!pmb) { 4892 phba->link_state = LPFC_HBA_ERROR; 4893 return -ENOMEM; 4894 } 4895 4896 phba->sli_rev = sli_mode; 4897 while (resetcount < 2 && !done) { 4898 spin_lock_irq(&phba->hbalock); 4899 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4900 spin_unlock_irq(&phba->hbalock); 4901 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4902 lpfc_sli_brdrestart(phba); 4903 rc = lpfc_sli_chipset_init(phba); 4904 if (rc) 4905 break; 4906 4907 spin_lock_irq(&phba->hbalock); 4908 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4909 spin_unlock_irq(&phba->hbalock); 4910 resetcount++; 4911 4912 /* Call pre CONFIG_PORT mailbox command initialization. A 4913 * value of 0 means the call was successful. Any other 4914 * nonzero value is a failure, but if ERESTART is returned, 4915 * the driver may reset the HBA and try again. 4916 */ 4917 rc = lpfc_config_port_prep(phba); 4918 if (rc == -ERESTART) { 4919 phba->link_state = LPFC_LINK_UNKNOWN; 4920 continue; 4921 } else if (rc) 4922 break; 4923 4924 phba->link_state = LPFC_INIT_MBX_CMDS; 4925 lpfc_config_port(phba, pmb); 4926 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4927 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4928 LPFC_SLI3_HBQ_ENABLED | 4929 LPFC_SLI3_CRP_ENABLED | 4930 LPFC_SLI3_BG_ENABLED | 4931 LPFC_SLI3_DSS_ENABLED); 4932 if (rc != MBX_SUCCESS) { 4933 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4934 "0442 Adapter failed to init, mbxCmd x%x " 4935 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4936 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4937 spin_lock_irq(&phba->hbalock); 4938 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4939 spin_unlock_irq(&phba->hbalock); 4940 rc = -ENXIO; 4941 } else { 4942 /* Allow asynchronous mailbox command to go through */ 4943 spin_lock_irq(&phba->hbalock); 4944 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4945 spin_unlock_irq(&phba->hbalock); 4946 done = 1; 4947 4948 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4949 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4950 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4951 "3110 Port did not grant ASABT\n"); 4952 } 4953 } 4954 if (!done) { 4955 rc = -EINVAL; 4956 goto do_prep_failed; 4957 } 4958 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4959 if (!pmb->u.mb.un.varCfgPort.cMA) { 4960 rc = -ENXIO; 4961 goto do_prep_failed; 4962 } 4963 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4964 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4965 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4966 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4967 phba->max_vpi : phba->max_vports; 4968 4969 } else 4970 phba->max_vpi = 0; 4971 phba->fips_level = 0; 4972 phba->fips_spec_rev = 0; 4973 if (pmb->u.mb.un.varCfgPort.gdss) { 4974 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4975 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4976 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4977 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4978 "2850 Security Crypto Active. FIPS x%d " 4979 "(Spec Rev: x%d)", 4980 phba->fips_level, phba->fips_spec_rev); 4981 } 4982 if (pmb->u.mb.un.varCfgPort.sec_err) { 4983 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4984 "2856 Config Port Security Crypto " 4985 "Error: x%x ", 4986 pmb->u.mb.un.varCfgPort.sec_err); 4987 } 4988 if (pmb->u.mb.un.varCfgPort.gerbm) 4989 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4990 if (pmb->u.mb.un.varCfgPort.gcrp) 4991 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4992 4993 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4994 phba->port_gp = phba->mbox->us.s3_pgp.port; 4995 4996 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 4997 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 4998 phba->cfg_enable_bg = 0; 4999 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5000 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5001 "0443 Adapter did not grant " 5002 "BlockGuard\n"); 5003 } 5004 } 5005 } else { 5006 phba->hbq_get = NULL; 5007 phba->port_gp = phba->mbox->us.s2.port; 5008 phba->max_vpi = 0; 5009 } 5010 do_prep_failed: 5011 mempool_free(pmb, phba->mbox_mem_pool); 5012 return rc; 5013 } 5014 5015 5016 /** 5017 * lpfc_sli_hba_setup - SLI initialization function 5018 * @phba: Pointer to HBA context object. 5019 * 5020 * This function is the main SLI initialization function. This function 5021 * is called by the HBA initialization code, HBA reset code and HBA 5022 * error attention handler code. Caller is not required to hold any 5023 * locks. This function issues config_port mailbox command to configure 5024 * the SLI, setup iocb rings and HBQ rings. In the end the function 5025 * calls the config_port_post function to issue init_link mailbox 5026 * command and to start the discovery. The function will return zero 5027 * if successful, else it will return negative error code. 5028 **/ 5029 int 5030 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5031 { 5032 uint32_t rc; 5033 int mode = 3, i; 5034 int longs; 5035 5036 switch (phba->cfg_sli_mode) { 5037 case 2: 5038 if (phba->cfg_enable_npiv) { 5039 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5040 "1824 NPIV enabled: Override sli_mode " 5041 "parameter (%d) to auto (0).\n", 5042 phba->cfg_sli_mode); 5043 break; 5044 } 5045 mode = 2; 5046 break; 5047 case 0: 5048 case 3: 5049 break; 5050 default: 5051 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5052 "1819 Unrecognized sli_mode parameter: %d.\n", 5053 phba->cfg_sli_mode); 5054 5055 break; 5056 } 5057 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5058 5059 rc = lpfc_sli_config_port(phba, mode); 5060 5061 if (rc && phba->cfg_sli_mode == 3) 5062 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5063 "1820 Unable to select SLI-3. " 5064 "Not supported by adapter.\n"); 5065 if (rc && mode != 2) 5066 rc = lpfc_sli_config_port(phba, 2); 5067 else if (rc && mode == 2) 5068 rc = lpfc_sli_config_port(phba, 3); 5069 if (rc) 5070 goto lpfc_sli_hba_setup_error; 5071 5072 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5073 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5074 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5075 if (!rc) { 5076 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5077 "2709 This device supports " 5078 "Advanced Error Reporting (AER)\n"); 5079 spin_lock_irq(&phba->hbalock); 5080 phba->hba_flag |= HBA_AER_ENABLED; 5081 spin_unlock_irq(&phba->hbalock); 5082 } else { 5083 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5084 "2708 This device does not support " 5085 "Advanced Error Reporting (AER): %d\n", 5086 rc); 5087 phba->cfg_aer_support = 0; 5088 } 5089 } 5090 5091 if (phba->sli_rev == 3) { 5092 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5093 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5094 } else { 5095 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5096 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5097 phba->sli3_options = 0; 5098 } 5099 5100 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5101 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5102 phba->sli_rev, phba->max_vpi); 5103 rc = lpfc_sli_ring_map(phba); 5104 5105 if (rc) 5106 goto lpfc_sli_hba_setup_error; 5107 5108 /* Initialize VPIs. */ 5109 if (phba->sli_rev == LPFC_SLI_REV3) { 5110 /* 5111 * The VPI bitmask and physical ID array are allocated 5112 * and initialized once only - at driver load. A port 5113 * reset doesn't need to reinitialize this memory. 5114 */ 5115 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5116 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5117 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 5118 GFP_KERNEL); 5119 if (!phba->vpi_bmask) { 5120 rc = -ENOMEM; 5121 goto lpfc_sli_hba_setup_error; 5122 } 5123 5124 phba->vpi_ids = kzalloc( 5125 (phba->max_vpi+1) * sizeof(uint16_t), 5126 GFP_KERNEL); 5127 if (!phba->vpi_ids) { 5128 kfree(phba->vpi_bmask); 5129 rc = -ENOMEM; 5130 goto lpfc_sli_hba_setup_error; 5131 } 5132 for (i = 0; i < phba->max_vpi; i++) 5133 phba->vpi_ids[i] = i; 5134 } 5135 } 5136 5137 /* Init HBQs */ 5138 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5139 rc = lpfc_sli_hbq_setup(phba); 5140 if (rc) 5141 goto lpfc_sli_hba_setup_error; 5142 } 5143 spin_lock_irq(&phba->hbalock); 5144 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5145 spin_unlock_irq(&phba->hbalock); 5146 5147 rc = lpfc_config_port_post(phba); 5148 if (rc) 5149 goto lpfc_sli_hba_setup_error; 5150 5151 return rc; 5152 5153 lpfc_sli_hba_setup_error: 5154 phba->link_state = LPFC_HBA_ERROR; 5155 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5156 "0445 Firmware initialization failed\n"); 5157 return rc; 5158 } 5159 5160 /** 5161 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5162 * @phba: Pointer to HBA context object. 5163 * @mboxq: mailbox pointer. 5164 * This function issue a dump mailbox command to read config region 5165 * 23 and parse the records in the region and populate driver 5166 * data structure. 5167 **/ 5168 static int 5169 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5170 { 5171 LPFC_MBOXQ_t *mboxq; 5172 struct lpfc_dmabuf *mp; 5173 struct lpfc_mqe *mqe; 5174 uint32_t data_length; 5175 int rc; 5176 5177 /* Program the default value of vlan_id and fc_map */ 5178 phba->valid_vlan = 0; 5179 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5180 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5181 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5182 5183 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5184 if (!mboxq) 5185 return -ENOMEM; 5186 5187 mqe = &mboxq->u.mqe; 5188 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5189 rc = -ENOMEM; 5190 goto out_free_mboxq; 5191 } 5192 5193 mp = (struct lpfc_dmabuf *) mboxq->context1; 5194 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5195 5196 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5197 "(%d):2571 Mailbox cmd x%x Status x%x " 5198 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5199 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5200 "CQ: x%x x%x x%x x%x\n", 5201 mboxq->vport ? mboxq->vport->vpi : 0, 5202 bf_get(lpfc_mqe_command, mqe), 5203 bf_get(lpfc_mqe_status, mqe), 5204 mqe->un.mb_words[0], mqe->un.mb_words[1], 5205 mqe->un.mb_words[2], mqe->un.mb_words[3], 5206 mqe->un.mb_words[4], mqe->un.mb_words[5], 5207 mqe->un.mb_words[6], mqe->un.mb_words[7], 5208 mqe->un.mb_words[8], mqe->un.mb_words[9], 5209 mqe->un.mb_words[10], mqe->un.mb_words[11], 5210 mqe->un.mb_words[12], mqe->un.mb_words[13], 5211 mqe->un.mb_words[14], mqe->un.mb_words[15], 5212 mqe->un.mb_words[16], mqe->un.mb_words[50], 5213 mboxq->mcqe.word0, 5214 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5215 mboxq->mcqe.trailer); 5216 5217 if (rc) { 5218 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5219 kfree(mp); 5220 rc = -EIO; 5221 goto out_free_mboxq; 5222 } 5223 data_length = mqe->un.mb_words[5]; 5224 if (data_length > DMP_RGN23_SIZE) { 5225 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5226 kfree(mp); 5227 rc = -EIO; 5228 goto out_free_mboxq; 5229 } 5230 5231 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5232 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5233 kfree(mp); 5234 rc = 0; 5235 5236 out_free_mboxq: 5237 mempool_free(mboxq, phba->mbox_mem_pool); 5238 return rc; 5239 } 5240 5241 /** 5242 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5243 * @phba: pointer to lpfc hba data structure. 5244 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5245 * @vpd: pointer to the memory to hold resulting port vpd data. 5246 * @vpd_size: On input, the number of bytes allocated to @vpd. 5247 * On output, the number of data bytes in @vpd. 5248 * 5249 * This routine executes a READ_REV SLI4 mailbox command. In 5250 * addition, this routine gets the port vpd data. 5251 * 5252 * Return codes 5253 * 0 - successful 5254 * -ENOMEM - could not allocated memory. 5255 **/ 5256 static int 5257 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5258 uint8_t *vpd, uint32_t *vpd_size) 5259 { 5260 int rc = 0; 5261 uint32_t dma_size; 5262 struct lpfc_dmabuf *dmabuf; 5263 struct lpfc_mqe *mqe; 5264 5265 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5266 if (!dmabuf) 5267 return -ENOMEM; 5268 5269 /* 5270 * Get a DMA buffer for the vpd data resulting from the READ_REV 5271 * mailbox command. 5272 */ 5273 dma_size = *vpd_size; 5274 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5275 &dmabuf->phys, GFP_KERNEL); 5276 if (!dmabuf->virt) { 5277 kfree(dmabuf); 5278 return -ENOMEM; 5279 } 5280 5281 /* 5282 * The SLI4 implementation of READ_REV conflicts at word1, 5283 * bits 31:16 and SLI4 adds vpd functionality not present 5284 * in SLI3. This code corrects the conflicts. 5285 */ 5286 lpfc_read_rev(phba, mboxq); 5287 mqe = &mboxq->u.mqe; 5288 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5289 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5290 mqe->un.read_rev.word1 &= 0x0000FFFF; 5291 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5292 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5293 5294 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5295 if (rc) { 5296 dma_free_coherent(&phba->pcidev->dev, dma_size, 5297 dmabuf->virt, dmabuf->phys); 5298 kfree(dmabuf); 5299 return -EIO; 5300 } 5301 5302 /* 5303 * The available vpd length cannot be bigger than the 5304 * DMA buffer passed to the port. Catch the less than 5305 * case and update the caller's size. 5306 */ 5307 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5308 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5309 5310 memcpy(vpd, dmabuf->virt, *vpd_size); 5311 5312 dma_free_coherent(&phba->pcidev->dev, dma_size, 5313 dmabuf->virt, dmabuf->phys); 5314 kfree(dmabuf); 5315 return 0; 5316 } 5317 5318 /** 5319 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5320 * @phba: pointer to lpfc hba data structure. 5321 * 5322 * This routine retrieves SLI4 device physical port name this PCI function 5323 * is attached to. 5324 * 5325 * Return codes 5326 * 0 - successful 5327 * otherwise - failed to retrieve physical port name 5328 **/ 5329 static int 5330 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5331 { 5332 LPFC_MBOXQ_t *mboxq; 5333 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5334 struct lpfc_controller_attribute *cntl_attr; 5335 struct lpfc_mbx_get_port_name *get_port_name; 5336 void *virtaddr = NULL; 5337 uint32_t alloclen, reqlen; 5338 uint32_t shdr_status, shdr_add_status; 5339 union lpfc_sli4_cfg_shdr *shdr; 5340 char cport_name = 0; 5341 int rc; 5342 5343 /* We assume nothing at this point */ 5344 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5345 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5346 5347 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5348 if (!mboxq) 5349 return -ENOMEM; 5350 /* obtain link type and link number via READ_CONFIG */ 5351 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5352 lpfc_sli4_read_config(phba); 5353 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5354 goto retrieve_ppname; 5355 5356 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5357 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5358 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5359 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5360 LPFC_SLI4_MBX_NEMBED); 5361 if (alloclen < reqlen) { 5362 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5363 "3084 Allocated DMA memory size (%d) is " 5364 "less than the requested DMA memory size " 5365 "(%d)\n", alloclen, reqlen); 5366 rc = -ENOMEM; 5367 goto out_free_mboxq; 5368 } 5369 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5370 virtaddr = mboxq->sge_array->addr[0]; 5371 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5372 shdr = &mbx_cntl_attr->cfg_shdr; 5373 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5374 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5375 if (shdr_status || shdr_add_status || rc) { 5376 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5377 "3085 Mailbox x%x (x%x/x%x) failed, " 5378 "rc:x%x, status:x%x, add_status:x%x\n", 5379 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5380 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5381 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5382 rc, shdr_status, shdr_add_status); 5383 rc = -ENXIO; 5384 goto out_free_mboxq; 5385 } 5386 cntl_attr = &mbx_cntl_attr->cntl_attr; 5387 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5388 phba->sli4_hba.lnk_info.lnk_tp = 5389 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5390 phba->sli4_hba.lnk_info.lnk_no = 5391 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5392 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5393 "3086 lnk_type:%d, lnk_numb:%d\n", 5394 phba->sli4_hba.lnk_info.lnk_tp, 5395 phba->sli4_hba.lnk_info.lnk_no); 5396 5397 retrieve_ppname: 5398 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5399 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5400 sizeof(struct lpfc_mbx_get_port_name) - 5401 sizeof(struct lpfc_sli4_cfg_mhdr), 5402 LPFC_SLI4_MBX_EMBED); 5403 get_port_name = &mboxq->u.mqe.un.get_port_name; 5404 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5405 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5406 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5407 phba->sli4_hba.lnk_info.lnk_tp); 5408 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5409 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5410 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5411 if (shdr_status || shdr_add_status || rc) { 5412 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5413 "3087 Mailbox x%x (x%x/x%x) failed: " 5414 "rc:x%x, status:x%x, add_status:x%x\n", 5415 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5416 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5417 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5418 rc, shdr_status, shdr_add_status); 5419 rc = -ENXIO; 5420 goto out_free_mboxq; 5421 } 5422 switch (phba->sli4_hba.lnk_info.lnk_no) { 5423 case LPFC_LINK_NUMBER_0: 5424 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5425 &get_port_name->u.response); 5426 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5427 break; 5428 case LPFC_LINK_NUMBER_1: 5429 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5430 &get_port_name->u.response); 5431 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5432 break; 5433 case LPFC_LINK_NUMBER_2: 5434 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5435 &get_port_name->u.response); 5436 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5437 break; 5438 case LPFC_LINK_NUMBER_3: 5439 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5440 &get_port_name->u.response); 5441 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5442 break; 5443 default: 5444 break; 5445 } 5446 5447 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5448 phba->Port[0] = cport_name; 5449 phba->Port[1] = '\0'; 5450 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5451 "3091 SLI get port name: %s\n", phba->Port); 5452 } 5453 5454 out_free_mboxq: 5455 if (rc != MBX_TIMEOUT) { 5456 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5457 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5458 else 5459 mempool_free(mboxq, phba->mbox_mem_pool); 5460 } 5461 return rc; 5462 } 5463 5464 /** 5465 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5466 * @phba: pointer to lpfc hba data structure. 5467 * 5468 * This routine is called to explicitly arm the SLI4 device's completion and 5469 * event queues 5470 **/ 5471 static void 5472 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5473 { 5474 int qidx; 5475 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5476 5477 sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM); 5478 sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM); 5479 if (sli4_hba->nvmels_cq) 5480 sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq, 5481 LPFC_QUEUE_REARM); 5482 5483 if (sli4_hba->fcp_cq) 5484 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5485 sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx], 5486 LPFC_QUEUE_REARM); 5487 5488 if (sli4_hba->nvme_cq) 5489 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5490 sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx], 5491 LPFC_QUEUE_REARM); 5492 5493 if (phba->cfg_fof) 5494 sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM); 5495 5496 if (sli4_hba->hba_eq) 5497 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5498 sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx], 5499 LPFC_QUEUE_REARM); 5500 5501 if (phba->nvmet_support) { 5502 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5503 sli4_hba->sli4_cq_release( 5504 sli4_hba->nvmet_cqset[qidx], 5505 LPFC_QUEUE_REARM); 5506 } 5507 } 5508 5509 if (phba->cfg_fof) 5510 sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM); 5511 } 5512 5513 /** 5514 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5515 * @phba: Pointer to HBA context object. 5516 * @type: The resource extent type. 5517 * @extnt_count: buffer to hold port available extent count. 5518 * @extnt_size: buffer to hold element count per extent. 5519 * 5520 * This function calls the port and retrievs the number of available 5521 * extents and their size for a particular extent type. 5522 * 5523 * Returns: 0 if successful. Nonzero otherwise. 5524 **/ 5525 int 5526 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5527 uint16_t *extnt_count, uint16_t *extnt_size) 5528 { 5529 int rc = 0; 5530 uint32_t length; 5531 uint32_t mbox_tmo; 5532 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5533 LPFC_MBOXQ_t *mbox; 5534 5535 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5536 if (!mbox) 5537 return -ENOMEM; 5538 5539 /* Find out how many extents are available for this resource type */ 5540 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5541 sizeof(struct lpfc_sli4_cfg_mhdr)); 5542 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5543 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5544 length, LPFC_SLI4_MBX_EMBED); 5545 5546 /* Send an extents count of 0 - the GET doesn't use it. */ 5547 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5548 LPFC_SLI4_MBX_EMBED); 5549 if (unlikely(rc)) { 5550 rc = -EIO; 5551 goto err_exit; 5552 } 5553 5554 if (!phba->sli4_hba.intr_enable) 5555 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5556 else { 5557 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5558 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5559 } 5560 if (unlikely(rc)) { 5561 rc = -EIO; 5562 goto err_exit; 5563 } 5564 5565 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5566 if (bf_get(lpfc_mbox_hdr_status, 5567 &rsrc_info->header.cfg_shdr.response)) { 5568 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5569 "2930 Failed to get resource extents " 5570 "Status 0x%x Add'l Status 0x%x\n", 5571 bf_get(lpfc_mbox_hdr_status, 5572 &rsrc_info->header.cfg_shdr.response), 5573 bf_get(lpfc_mbox_hdr_add_status, 5574 &rsrc_info->header.cfg_shdr.response)); 5575 rc = -EIO; 5576 goto err_exit; 5577 } 5578 5579 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5580 &rsrc_info->u.rsp); 5581 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5582 &rsrc_info->u.rsp); 5583 5584 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5585 "3162 Retrieved extents type-%d from port: count:%d, " 5586 "size:%d\n", type, *extnt_count, *extnt_size); 5587 5588 err_exit: 5589 mempool_free(mbox, phba->mbox_mem_pool); 5590 return rc; 5591 } 5592 5593 /** 5594 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5595 * @phba: Pointer to HBA context object. 5596 * @type: The extent type to check. 5597 * 5598 * This function reads the current available extents from the port and checks 5599 * if the extent count or extent size has changed since the last access. 5600 * Callers use this routine post port reset to understand if there is a 5601 * extent reprovisioning requirement. 5602 * 5603 * Returns: 5604 * -Error: error indicates problem. 5605 * 1: Extent count or size has changed. 5606 * 0: No changes. 5607 **/ 5608 static int 5609 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5610 { 5611 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5612 uint16_t size_diff, rsrc_ext_size; 5613 int rc = 0; 5614 struct lpfc_rsrc_blks *rsrc_entry; 5615 struct list_head *rsrc_blk_list = NULL; 5616 5617 size_diff = 0; 5618 curr_ext_cnt = 0; 5619 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5620 &rsrc_ext_cnt, 5621 &rsrc_ext_size); 5622 if (unlikely(rc)) 5623 return -EIO; 5624 5625 switch (type) { 5626 case LPFC_RSC_TYPE_FCOE_RPI: 5627 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5628 break; 5629 case LPFC_RSC_TYPE_FCOE_VPI: 5630 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5631 break; 5632 case LPFC_RSC_TYPE_FCOE_XRI: 5633 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5634 break; 5635 case LPFC_RSC_TYPE_FCOE_VFI: 5636 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5637 break; 5638 default: 5639 break; 5640 } 5641 5642 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5643 curr_ext_cnt++; 5644 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5645 size_diff++; 5646 } 5647 5648 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5649 rc = 1; 5650 5651 return rc; 5652 } 5653 5654 /** 5655 * lpfc_sli4_cfg_post_extnts - 5656 * @phba: Pointer to HBA context object. 5657 * @extnt_cnt - number of available extents. 5658 * @type - the extent type (rpi, xri, vfi, vpi). 5659 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5660 * @mbox - pointer to the caller's allocated mailbox structure. 5661 * 5662 * This function executes the extents allocation request. It also 5663 * takes care of the amount of memory needed to allocate or get the 5664 * allocated extents. It is the caller's responsibility to evaluate 5665 * the response. 5666 * 5667 * Returns: 5668 * -Error: Error value describes the condition found. 5669 * 0: if successful 5670 **/ 5671 static int 5672 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5673 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5674 { 5675 int rc = 0; 5676 uint32_t req_len; 5677 uint32_t emb_len; 5678 uint32_t alloc_len, mbox_tmo; 5679 5680 /* Calculate the total requested length of the dma memory */ 5681 req_len = extnt_cnt * sizeof(uint16_t); 5682 5683 /* 5684 * Calculate the size of an embedded mailbox. The uint32_t 5685 * accounts for extents-specific word. 5686 */ 5687 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5688 sizeof(uint32_t); 5689 5690 /* 5691 * Presume the allocation and response will fit into an embedded 5692 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5693 */ 5694 *emb = LPFC_SLI4_MBX_EMBED; 5695 if (req_len > emb_len) { 5696 req_len = extnt_cnt * sizeof(uint16_t) + 5697 sizeof(union lpfc_sli4_cfg_shdr) + 5698 sizeof(uint32_t); 5699 *emb = LPFC_SLI4_MBX_NEMBED; 5700 } 5701 5702 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5703 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5704 req_len, *emb); 5705 if (alloc_len < req_len) { 5706 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5707 "2982 Allocated DMA memory size (x%x) is " 5708 "less than the requested DMA memory " 5709 "size (x%x)\n", alloc_len, req_len); 5710 return -ENOMEM; 5711 } 5712 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5713 if (unlikely(rc)) 5714 return -EIO; 5715 5716 if (!phba->sli4_hba.intr_enable) 5717 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5718 else { 5719 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5720 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5721 } 5722 5723 if (unlikely(rc)) 5724 rc = -EIO; 5725 return rc; 5726 } 5727 5728 /** 5729 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5730 * @phba: Pointer to HBA context object. 5731 * @type: The resource extent type to allocate. 5732 * 5733 * This function allocates the number of elements for the specified 5734 * resource type. 5735 **/ 5736 static int 5737 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5738 { 5739 bool emb = false; 5740 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5741 uint16_t rsrc_id, rsrc_start, j, k; 5742 uint16_t *ids; 5743 int i, rc; 5744 unsigned long longs; 5745 unsigned long *bmask; 5746 struct lpfc_rsrc_blks *rsrc_blks; 5747 LPFC_MBOXQ_t *mbox; 5748 uint32_t length; 5749 struct lpfc_id_range *id_array = NULL; 5750 void *virtaddr = NULL; 5751 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5752 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5753 struct list_head *ext_blk_list; 5754 5755 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5756 &rsrc_cnt, 5757 &rsrc_size); 5758 if (unlikely(rc)) 5759 return -EIO; 5760 5761 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5762 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5763 "3009 No available Resource Extents " 5764 "for resource type 0x%x: Count: 0x%x, " 5765 "Size 0x%x\n", type, rsrc_cnt, 5766 rsrc_size); 5767 return -ENOMEM; 5768 } 5769 5770 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5771 "2903 Post resource extents type-0x%x: " 5772 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5773 5774 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5775 if (!mbox) 5776 return -ENOMEM; 5777 5778 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5779 if (unlikely(rc)) { 5780 rc = -EIO; 5781 goto err_exit; 5782 } 5783 5784 /* 5785 * Figure out where the response is located. Then get local pointers 5786 * to the response data. The port does not guarantee to respond to 5787 * all extents counts request so update the local variable with the 5788 * allocated count from the port. 5789 */ 5790 if (emb == LPFC_SLI4_MBX_EMBED) { 5791 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5792 id_array = &rsrc_ext->u.rsp.id[0]; 5793 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5794 } else { 5795 virtaddr = mbox->sge_array->addr[0]; 5796 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5797 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5798 id_array = &n_rsrc->id; 5799 } 5800 5801 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5802 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5803 5804 /* 5805 * Based on the resource size and count, correct the base and max 5806 * resource values. 5807 */ 5808 length = sizeof(struct lpfc_rsrc_blks); 5809 switch (type) { 5810 case LPFC_RSC_TYPE_FCOE_RPI: 5811 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5812 sizeof(unsigned long), 5813 GFP_KERNEL); 5814 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5815 rc = -ENOMEM; 5816 goto err_exit; 5817 } 5818 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5819 sizeof(uint16_t), 5820 GFP_KERNEL); 5821 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5822 kfree(phba->sli4_hba.rpi_bmask); 5823 rc = -ENOMEM; 5824 goto err_exit; 5825 } 5826 5827 /* 5828 * The next_rpi was initialized with the maximum available 5829 * count but the port may allocate a smaller number. Catch 5830 * that case and update the next_rpi. 5831 */ 5832 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5833 5834 /* Initialize local ptrs for common extent processing later. */ 5835 bmask = phba->sli4_hba.rpi_bmask; 5836 ids = phba->sli4_hba.rpi_ids; 5837 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5838 break; 5839 case LPFC_RSC_TYPE_FCOE_VPI: 5840 phba->vpi_bmask = kzalloc(longs * 5841 sizeof(unsigned long), 5842 GFP_KERNEL); 5843 if (unlikely(!phba->vpi_bmask)) { 5844 rc = -ENOMEM; 5845 goto err_exit; 5846 } 5847 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5848 sizeof(uint16_t), 5849 GFP_KERNEL); 5850 if (unlikely(!phba->vpi_ids)) { 5851 kfree(phba->vpi_bmask); 5852 rc = -ENOMEM; 5853 goto err_exit; 5854 } 5855 5856 /* Initialize local ptrs for common extent processing later. */ 5857 bmask = phba->vpi_bmask; 5858 ids = phba->vpi_ids; 5859 ext_blk_list = &phba->lpfc_vpi_blk_list; 5860 break; 5861 case LPFC_RSC_TYPE_FCOE_XRI: 5862 phba->sli4_hba.xri_bmask = kzalloc(longs * 5863 sizeof(unsigned long), 5864 GFP_KERNEL); 5865 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5866 rc = -ENOMEM; 5867 goto err_exit; 5868 } 5869 phba->sli4_hba.max_cfg_param.xri_used = 0; 5870 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5871 sizeof(uint16_t), 5872 GFP_KERNEL); 5873 if (unlikely(!phba->sli4_hba.xri_ids)) { 5874 kfree(phba->sli4_hba.xri_bmask); 5875 rc = -ENOMEM; 5876 goto err_exit; 5877 } 5878 5879 /* Initialize local ptrs for common extent processing later. */ 5880 bmask = phba->sli4_hba.xri_bmask; 5881 ids = phba->sli4_hba.xri_ids; 5882 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5883 break; 5884 case LPFC_RSC_TYPE_FCOE_VFI: 5885 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5886 sizeof(unsigned long), 5887 GFP_KERNEL); 5888 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5889 rc = -ENOMEM; 5890 goto err_exit; 5891 } 5892 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5893 sizeof(uint16_t), 5894 GFP_KERNEL); 5895 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5896 kfree(phba->sli4_hba.vfi_bmask); 5897 rc = -ENOMEM; 5898 goto err_exit; 5899 } 5900 5901 /* Initialize local ptrs for common extent processing later. */ 5902 bmask = phba->sli4_hba.vfi_bmask; 5903 ids = phba->sli4_hba.vfi_ids; 5904 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5905 break; 5906 default: 5907 /* Unsupported Opcode. Fail call. */ 5908 id_array = NULL; 5909 bmask = NULL; 5910 ids = NULL; 5911 ext_blk_list = NULL; 5912 goto err_exit; 5913 } 5914 5915 /* 5916 * Complete initializing the extent configuration with the 5917 * allocated ids assigned to this function. The bitmask serves 5918 * as an index into the array and manages the available ids. The 5919 * array just stores the ids communicated to the port via the wqes. 5920 */ 5921 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5922 if ((i % 2) == 0) 5923 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5924 &id_array[k]); 5925 else 5926 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5927 &id_array[k]); 5928 5929 rsrc_blks = kzalloc(length, GFP_KERNEL); 5930 if (unlikely(!rsrc_blks)) { 5931 rc = -ENOMEM; 5932 kfree(bmask); 5933 kfree(ids); 5934 goto err_exit; 5935 } 5936 rsrc_blks->rsrc_start = rsrc_id; 5937 rsrc_blks->rsrc_size = rsrc_size; 5938 list_add_tail(&rsrc_blks->list, ext_blk_list); 5939 rsrc_start = rsrc_id; 5940 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5941 phba->sli4_hba.scsi_xri_start = rsrc_start + 5942 lpfc_sli4_get_iocb_cnt(phba); 5943 phba->sli4_hba.nvme_xri_start = 5944 phba->sli4_hba.scsi_xri_start + 5945 phba->sli4_hba.scsi_xri_max; 5946 } 5947 5948 while (rsrc_id < (rsrc_start + rsrc_size)) { 5949 ids[j] = rsrc_id; 5950 rsrc_id++; 5951 j++; 5952 } 5953 /* Entire word processed. Get next word.*/ 5954 if ((i % 2) == 1) 5955 k++; 5956 } 5957 err_exit: 5958 lpfc_sli4_mbox_cmd_free(phba, mbox); 5959 return rc; 5960 } 5961 5962 5963 5964 /** 5965 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5966 * @phba: Pointer to HBA context object. 5967 * @type: the extent's type. 5968 * 5969 * This function deallocates all extents of a particular resource type. 5970 * SLI4 does not allow for deallocating a particular extent range. It 5971 * is the caller's responsibility to release all kernel memory resources. 5972 **/ 5973 static int 5974 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5975 { 5976 int rc; 5977 uint32_t length, mbox_tmo = 0; 5978 LPFC_MBOXQ_t *mbox; 5979 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5980 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5981 5982 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5983 if (!mbox) 5984 return -ENOMEM; 5985 5986 /* 5987 * This function sends an embedded mailbox because it only sends the 5988 * the resource type. All extents of this type are released by the 5989 * port. 5990 */ 5991 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5992 sizeof(struct lpfc_sli4_cfg_mhdr)); 5993 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5994 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5995 length, LPFC_SLI4_MBX_EMBED); 5996 5997 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5998 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5999 LPFC_SLI4_MBX_EMBED); 6000 if (unlikely(rc)) { 6001 rc = -EIO; 6002 goto out_free_mbox; 6003 } 6004 if (!phba->sli4_hba.intr_enable) 6005 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6006 else { 6007 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6008 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6009 } 6010 if (unlikely(rc)) { 6011 rc = -EIO; 6012 goto out_free_mbox; 6013 } 6014 6015 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6016 if (bf_get(lpfc_mbox_hdr_status, 6017 &dealloc_rsrc->header.cfg_shdr.response)) { 6018 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6019 "2919 Failed to release resource extents " 6020 "for type %d - Status 0x%x Add'l Status 0x%x. " 6021 "Resource memory not released.\n", 6022 type, 6023 bf_get(lpfc_mbox_hdr_status, 6024 &dealloc_rsrc->header.cfg_shdr.response), 6025 bf_get(lpfc_mbox_hdr_add_status, 6026 &dealloc_rsrc->header.cfg_shdr.response)); 6027 rc = -EIO; 6028 goto out_free_mbox; 6029 } 6030 6031 /* Release kernel memory resources for the specific type. */ 6032 switch (type) { 6033 case LPFC_RSC_TYPE_FCOE_VPI: 6034 kfree(phba->vpi_bmask); 6035 kfree(phba->vpi_ids); 6036 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6037 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6038 &phba->lpfc_vpi_blk_list, list) { 6039 list_del_init(&rsrc_blk->list); 6040 kfree(rsrc_blk); 6041 } 6042 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6043 break; 6044 case LPFC_RSC_TYPE_FCOE_XRI: 6045 kfree(phba->sli4_hba.xri_bmask); 6046 kfree(phba->sli4_hba.xri_ids); 6047 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6048 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6049 list_del_init(&rsrc_blk->list); 6050 kfree(rsrc_blk); 6051 } 6052 break; 6053 case LPFC_RSC_TYPE_FCOE_VFI: 6054 kfree(phba->sli4_hba.vfi_bmask); 6055 kfree(phba->sli4_hba.vfi_ids); 6056 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6057 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6058 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6059 list_del_init(&rsrc_blk->list); 6060 kfree(rsrc_blk); 6061 } 6062 break; 6063 case LPFC_RSC_TYPE_FCOE_RPI: 6064 /* RPI bitmask and physical id array are cleaned up earlier. */ 6065 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6066 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6067 list_del_init(&rsrc_blk->list); 6068 kfree(rsrc_blk); 6069 } 6070 break; 6071 default: 6072 break; 6073 } 6074 6075 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6076 6077 out_free_mbox: 6078 mempool_free(mbox, phba->mbox_mem_pool); 6079 return rc; 6080 } 6081 6082 static void 6083 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6084 uint32_t feature) 6085 { 6086 uint32_t len; 6087 6088 len = sizeof(struct lpfc_mbx_set_feature) - 6089 sizeof(struct lpfc_sli4_cfg_mhdr); 6090 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6091 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6092 LPFC_SLI4_MBX_EMBED); 6093 6094 switch (feature) { 6095 case LPFC_SET_UE_RECOVERY: 6096 bf_set(lpfc_mbx_set_feature_UER, 6097 &mbox->u.mqe.un.set_feature, 1); 6098 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6099 mbox->u.mqe.un.set_feature.param_len = 8; 6100 break; 6101 case LPFC_SET_MDS_DIAGS: 6102 bf_set(lpfc_mbx_set_feature_mds, 6103 &mbox->u.mqe.un.set_feature, 1); 6104 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6105 &mbox->u.mqe.un.set_feature, 1); 6106 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6107 mbox->u.mqe.un.set_feature.param_len = 8; 6108 break; 6109 } 6110 6111 return; 6112 } 6113 6114 /** 6115 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6116 * @phba: Pointer to HBA context object. 6117 * 6118 * This function allocates all SLI4 resource identifiers. 6119 **/ 6120 int 6121 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6122 { 6123 int i, rc, error = 0; 6124 uint16_t count, base; 6125 unsigned long longs; 6126 6127 if (!phba->sli4_hba.rpi_hdrs_in_use) 6128 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6129 if (phba->sli4_hba.extents_in_use) { 6130 /* 6131 * The port supports resource extents. The XRI, VPI, VFI, RPI 6132 * resource extent count must be read and allocated before 6133 * provisioning the resource id arrays. 6134 */ 6135 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6136 LPFC_IDX_RSRC_RDY) { 6137 /* 6138 * Extent-based resources are set - the driver could 6139 * be in a port reset. Figure out if any corrective 6140 * actions need to be taken. 6141 */ 6142 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6143 LPFC_RSC_TYPE_FCOE_VFI); 6144 if (rc != 0) 6145 error++; 6146 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6147 LPFC_RSC_TYPE_FCOE_VPI); 6148 if (rc != 0) 6149 error++; 6150 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6151 LPFC_RSC_TYPE_FCOE_XRI); 6152 if (rc != 0) 6153 error++; 6154 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6155 LPFC_RSC_TYPE_FCOE_RPI); 6156 if (rc != 0) 6157 error++; 6158 6159 /* 6160 * It's possible that the number of resources 6161 * provided to this port instance changed between 6162 * resets. Detect this condition and reallocate 6163 * resources. Otherwise, there is no action. 6164 */ 6165 if (error) { 6166 lpfc_printf_log(phba, KERN_INFO, 6167 LOG_MBOX | LOG_INIT, 6168 "2931 Detected extent resource " 6169 "change. Reallocating all " 6170 "extents.\n"); 6171 rc = lpfc_sli4_dealloc_extent(phba, 6172 LPFC_RSC_TYPE_FCOE_VFI); 6173 rc = lpfc_sli4_dealloc_extent(phba, 6174 LPFC_RSC_TYPE_FCOE_VPI); 6175 rc = lpfc_sli4_dealloc_extent(phba, 6176 LPFC_RSC_TYPE_FCOE_XRI); 6177 rc = lpfc_sli4_dealloc_extent(phba, 6178 LPFC_RSC_TYPE_FCOE_RPI); 6179 } else 6180 return 0; 6181 } 6182 6183 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6184 if (unlikely(rc)) 6185 goto err_exit; 6186 6187 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6188 if (unlikely(rc)) 6189 goto err_exit; 6190 6191 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6192 if (unlikely(rc)) 6193 goto err_exit; 6194 6195 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6196 if (unlikely(rc)) 6197 goto err_exit; 6198 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6199 LPFC_IDX_RSRC_RDY); 6200 return rc; 6201 } else { 6202 /* 6203 * The port does not support resource extents. The XRI, VPI, 6204 * VFI, RPI resource ids were determined from READ_CONFIG. 6205 * Just allocate the bitmasks and provision the resource id 6206 * arrays. If a port reset is active, the resources don't 6207 * need any action - just exit. 6208 */ 6209 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6210 LPFC_IDX_RSRC_RDY) { 6211 lpfc_sli4_dealloc_resource_identifiers(phba); 6212 lpfc_sli4_remove_rpis(phba); 6213 } 6214 /* RPIs. */ 6215 count = phba->sli4_hba.max_cfg_param.max_rpi; 6216 if (count <= 0) { 6217 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6218 "3279 Invalid provisioning of " 6219 "rpi:%d\n", count); 6220 rc = -EINVAL; 6221 goto err_exit; 6222 } 6223 base = phba->sli4_hba.max_cfg_param.rpi_base; 6224 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6225 phba->sli4_hba.rpi_bmask = kzalloc(longs * 6226 sizeof(unsigned long), 6227 GFP_KERNEL); 6228 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6229 rc = -ENOMEM; 6230 goto err_exit; 6231 } 6232 phba->sli4_hba.rpi_ids = kzalloc(count * 6233 sizeof(uint16_t), 6234 GFP_KERNEL); 6235 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6236 rc = -ENOMEM; 6237 goto free_rpi_bmask; 6238 } 6239 6240 for (i = 0; i < count; i++) 6241 phba->sli4_hba.rpi_ids[i] = base + i; 6242 6243 /* VPIs. */ 6244 count = phba->sli4_hba.max_cfg_param.max_vpi; 6245 if (count <= 0) { 6246 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6247 "3280 Invalid provisioning of " 6248 "vpi:%d\n", count); 6249 rc = -EINVAL; 6250 goto free_rpi_ids; 6251 } 6252 base = phba->sli4_hba.max_cfg_param.vpi_base; 6253 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6254 phba->vpi_bmask = kzalloc(longs * 6255 sizeof(unsigned long), 6256 GFP_KERNEL); 6257 if (unlikely(!phba->vpi_bmask)) { 6258 rc = -ENOMEM; 6259 goto free_rpi_ids; 6260 } 6261 phba->vpi_ids = kzalloc(count * 6262 sizeof(uint16_t), 6263 GFP_KERNEL); 6264 if (unlikely(!phba->vpi_ids)) { 6265 rc = -ENOMEM; 6266 goto free_vpi_bmask; 6267 } 6268 6269 for (i = 0; i < count; i++) 6270 phba->vpi_ids[i] = base + i; 6271 6272 /* XRIs. */ 6273 count = phba->sli4_hba.max_cfg_param.max_xri; 6274 if (count <= 0) { 6275 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6276 "3281 Invalid provisioning of " 6277 "xri:%d\n", count); 6278 rc = -EINVAL; 6279 goto free_vpi_ids; 6280 } 6281 base = phba->sli4_hba.max_cfg_param.xri_base; 6282 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6283 phba->sli4_hba.xri_bmask = kzalloc(longs * 6284 sizeof(unsigned long), 6285 GFP_KERNEL); 6286 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6287 rc = -ENOMEM; 6288 goto free_vpi_ids; 6289 } 6290 phba->sli4_hba.max_cfg_param.xri_used = 0; 6291 phba->sli4_hba.xri_ids = kzalloc(count * 6292 sizeof(uint16_t), 6293 GFP_KERNEL); 6294 if (unlikely(!phba->sli4_hba.xri_ids)) { 6295 rc = -ENOMEM; 6296 goto free_xri_bmask; 6297 } 6298 6299 for (i = 0; i < count; i++) 6300 phba->sli4_hba.xri_ids[i] = base + i; 6301 6302 /* VFIs. */ 6303 count = phba->sli4_hba.max_cfg_param.max_vfi; 6304 if (count <= 0) { 6305 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6306 "3282 Invalid provisioning of " 6307 "vfi:%d\n", count); 6308 rc = -EINVAL; 6309 goto free_xri_ids; 6310 } 6311 base = phba->sli4_hba.max_cfg_param.vfi_base; 6312 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6313 phba->sli4_hba.vfi_bmask = kzalloc(longs * 6314 sizeof(unsigned long), 6315 GFP_KERNEL); 6316 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6317 rc = -ENOMEM; 6318 goto free_xri_ids; 6319 } 6320 phba->sli4_hba.vfi_ids = kzalloc(count * 6321 sizeof(uint16_t), 6322 GFP_KERNEL); 6323 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6324 rc = -ENOMEM; 6325 goto free_vfi_bmask; 6326 } 6327 6328 for (i = 0; i < count; i++) 6329 phba->sli4_hba.vfi_ids[i] = base + i; 6330 6331 /* 6332 * Mark all resources ready. An HBA reset doesn't need 6333 * to reset the initialization. 6334 */ 6335 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6336 LPFC_IDX_RSRC_RDY); 6337 return 0; 6338 } 6339 6340 free_vfi_bmask: 6341 kfree(phba->sli4_hba.vfi_bmask); 6342 phba->sli4_hba.vfi_bmask = NULL; 6343 free_xri_ids: 6344 kfree(phba->sli4_hba.xri_ids); 6345 phba->sli4_hba.xri_ids = NULL; 6346 free_xri_bmask: 6347 kfree(phba->sli4_hba.xri_bmask); 6348 phba->sli4_hba.xri_bmask = NULL; 6349 free_vpi_ids: 6350 kfree(phba->vpi_ids); 6351 phba->vpi_ids = NULL; 6352 free_vpi_bmask: 6353 kfree(phba->vpi_bmask); 6354 phba->vpi_bmask = NULL; 6355 free_rpi_ids: 6356 kfree(phba->sli4_hba.rpi_ids); 6357 phba->sli4_hba.rpi_ids = NULL; 6358 free_rpi_bmask: 6359 kfree(phba->sli4_hba.rpi_bmask); 6360 phba->sli4_hba.rpi_bmask = NULL; 6361 err_exit: 6362 return rc; 6363 } 6364 6365 /** 6366 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6367 * @phba: Pointer to HBA context object. 6368 * 6369 * This function allocates the number of elements for the specified 6370 * resource type. 6371 **/ 6372 int 6373 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6374 { 6375 if (phba->sli4_hba.extents_in_use) { 6376 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6377 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6378 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6379 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6380 } else { 6381 kfree(phba->vpi_bmask); 6382 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6383 kfree(phba->vpi_ids); 6384 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6385 kfree(phba->sli4_hba.xri_bmask); 6386 kfree(phba->sli4_hba.xri_ids); 6387 kfree(phba->sli4_hba.vfi_bmask); 6388 kfree(phba->sli4_hba.vfi_ids); 6389 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6390 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6391 } 6392 6393 return 0; 6394 } 6395 6396 /** 6397 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6398 * @phba: Pointer to HBA context object. 6399 * @type: The resource extent type. 6400 * @extnt_count: buffer to hold port extent count response 6401 * @extnt_size: buffer to hold port extent size response. 6402 * 6403 * This function calls the port to read the host allocated extents 6404 * for a particular type. 6405 **/ 6406 int 6407 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6408 uint16_t *extnt_cnt, uint16_t *extnt_size) 6409 { 6410 bool emb; 6411 int rc = 0; 6412 uint16_t curr_blks = 0; 6413 uint32_t req_len, emb_len; 6414 uint32_t alloc_len, mbox_tmo; 6415 struct list_head *blk_list_head; 6416 struct lpfc_rsrc_blks *rsrc_blk; 6417 LPFC_MBOXQ_t *mbox; 6418 void *virtaddr = NULL; 6419 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6420 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6421 union lpfc_sli4_cfg_shdr *shdr; 6422 6423 switch (type) { 6424 case LPFC_RSC_TYPE_FCOE_VPI: 6425 blk_list_head = &phba->lpfc_vpi_blk_list; 6426 break; 6427 case LPFC_RSC_TYPE_FCOE_XRI: 6428 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6429 break; 6430 case LPFC_RSC_TYPE_FCOE_VFI: 6431 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6432 break; 6433 case LPFC_RSC_TYPE_FCOE_RPI: 6434 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6435 break; 6436 default: 6437 return -EIO; 6438 } 6439 6440 /* Count the number of extents currently allocatd for this type. */ 6441 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6442 if (curr_blks == 0) { 6443 /* 6444 * The GET_ALLOCATED mailbox does not return the size, 6445 * just the count. The size should be just the size 6446 * stored in the current allocated block and all sizes 6447 * for an extent type are the same so set the return 6448 * value now. 6449 */ 6450 *extnt_size = rsrc_blk->rsrc_size; 6451 } 6452 curr_blks++; 6453 } 6454 6455 /* 6456 * Calculate the size of an embedded mailbox. The uint32_t 6457 * accounts for extents-specific word. 6458 */ 6459 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6460 sizeof(uint32_t); 6461 6462 /* 6463 * Presume the allocation and response will fit into an embedded 6464 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6465 */ 6466 emb = LPFC_SLI4_MBX_EMBED; 6467 req_len = emb_len; 6468 if (req_len > emb_len) { 6469 req_len = curr_blks * sizeof(uint16_t) + 6470 sizeof(union lpfc_sli4_cfg_shdr) + 6471 sizeof(uint32_t); 6472 emb = LPFC_SLI4_MBX_NEMBED; 6473 } 6474 6475 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6476 if (!mbox) 6477 return -ENOMEM; 6478 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6479 6480 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6481 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6482 req_len, emb); 6483 if (alloc_len < req_len) { 6484 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6485 "2983 Allocated DMA memory size (x%x) is " 6486 "less than the requested DMA memory " 6487 "size (x%x)\n", alloc_len, req_len); 6488 rc = -ENOMEM; 6489 goto err_exit; 6490 } 6491 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6492 if (unlikely(rc)) { 6493 rc = -EIO; 6494 goto err_exit; 6495 } 6496 6497 if (!phba->sli4_hba.intr_enable) 6498 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6499 else { 6500 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6501 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6502 } 6503 6504 if (unlikely(rc)) { 6505 rc = -EIO; 6506 goto err_exit; 6507 } 6508 6509 /* 6510 * Figure out where the response is located. Then get local pointers 6511 * to the response data. The port does not guarantee to respond to 6512 * all extents counts request so update the local variable with the 6513 * allocated count from the port. 6514 */ 6515 if (emb == LPFC_SLI4_MBX_EMBED) { 6516 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6517 shdr = &rsrc_ext->header.cfg_shdr; 6518 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6519 } else { 6520 virtaddr = mbox->sge_array->addr[0]; 6521 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6522 shdr = &n_rsrc->cfg_shdr; 6523 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6524 } 6525 6526 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6527 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6528 "2984 Failed to read allocated resources " 6529 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6530 type, 6531 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6532 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6533 rc = -EIO; 6534 goto err_exit; 6535 } 6536 err_exit: 6537 lpfc_sli4_mbox_cmd_free(phba, mbox); 6538 return rc; 6539 } 6540 6541 /** 6542 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6543 * @phba: pointer to lpfc hba data structure. 6544 * @pring: Pointer to driver SLI ring object. 6545 * @sgl_list: linked link of sgl buffers to post 6546 * @cnt: number of linked list buffers 6547 * 6548 * This routine walks the list of buffers that have been allocated and 6549 * repost them to the port by using SGL block post. This is needed after a 6550 * pci_function_reset/warm_start or start. It attempts to construct blocks 6551 * of buffer sgls which contains contiguous xris and uses the non-embedded 6552 * SGL block post mailbox commands to post them to the port. For single 6553 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6554 * mailbox command for posting. 6555 * 6556 * Returns: 0 = success, non-zero failure. 6557 **/ 6558 static int 6559 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6560 struct list_head *sgl_list, int cnt) 6561 { 6562 struct lpfc_sglq *sglq_entry = NULL; 6563 struct lpfc_sglq *sglq_entry_next = NULL; 6564 struct lpfc_sglq *sglq_entry_first = NULL; 6565 int status, total_cnt; 6566 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6567 int last_xritag = NO_XRI; 6568 LIST_HEAD(prep_sgl_list); 6569 LIST_HEAD(blck_sgl_list); 6570 LIST_HEAD(allc_sgl_list); 6571 LIST_HEAD(post_sgl_list); 6572 LIST_HEAD(free_sgl_list); 6573 6574 spin_lock_irq(&phba->hbalock); 6575 spin_lock(&phba->sli4_hba.sgl_list_lock); 6576 list_splice_init(sgl_list, &allc_sgl_list); 6577 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6578 spin_unlock_irq(&phba->hbalock); 6579 6580 total_cnt = cnt; 6581 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6582 &allc_sgl_list, list) { 6583 list_del_init(&sglq_entry->list); 6584 block_cnt++; 6585 if ((last_xritag != NO_XRI) && 6586 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6587 /* a hole in xri block, form a sgl posting block */ 6588 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6589 post_cnt = block_cnt - 1; 6590 /* prepare list for next posting block */ 6591 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6592 block_cnt = 1; 6593 } else { 6594 /* prepare list for next posting block */ 6595 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6596 /* enough sgls for non-embed sgl mbox command */ 6597 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6598 list_splice_init(&prep_sgl_list, 6599 &blck_sgl_list); 6600 post_cnt = block_cnt; 6601 block_cnt = 0; 6602 } 6603 } 6604 num_posted++; 6605 6606 /* keep track of last sgl's xritag */ 6607 last_xritag = sglq_entry->sli4_xritag; 6608 6609 /* end of repost sgl list condition for buffers */ 6610 if (num_posted == total_cnt) { 6611 if (post_cnt == 0) { 6612 list_splice_init(&prep_sgl_list, 6613 &blck_sgl_list); 6614 post_cnt = block_cnt; 6615 } else if (block_cnt == 1) { 6616 status = lpfc_sli4_post_sgl(phba, 6617 sglq_entry->phys, 0, 6618 sglq_entry->sli4_xritag); 6619 if (!status) { 6620 /* successful, put sgl to posted list */ 6621 list_add_tail(&sglq_entry->list, 6622 &post_sgl_list); 6623 } else { 6624 /* Failure, put sgl to free list */ 6625 lpfc_printf_log(phba, KERN_WARNING, 6626 LOG_SLI, 6627 "3159 Failed to post " 6628 "sgl, xritag:x%x\n", 6629 sglq_entry->sli4_xritag); 6630 list_add_tail(&sglq_entry->list, 6631 &free_sgl_list); 6632 total_cnt--; 6633 } 6634 } 6635 } 6636 6637 /* continue until a nembed page worth of sgls */ 6638 if (post_cnt == 0) 6639 continue; 6640 6641 /* post the buffer list sgls as a block */ 6642 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6643 post_cnt); 6644 6645 if (!status) { 6646 /* success, put sgl list to posted sgl list */ 6647 list_splice_init(&blck_sgl_list, &post_sgl_list); 6648 } else { 6649 /* Failure, put sgl list to free sgl list */ 6650 sglq_entry_first = list_first_entry(&blck_sgl_list, 6651 struct lpfc_sglq, 6652 list); 6653 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6654 "3160 Failed to post sgl-list, " 6655 "xritag:x%x-x%x\n", 6656 sglq_entry_first->sli4_xritag, 6657 (sglq_entry_first->sli4_xritag + 6658 post_cnt - 1)); 6659 list_splice_init(&blck_sgl_list, &free_sgl_list); 6660 total_cnt -= post_cnt; 6661 } 6662 6663 /* don't reset xirtag due to hole in xri block */ 6664 if (block_cnt == 0) 6665 last_xritag = NO_XRI; 6666 6667 /* reset sgl post count for next round of posting */ 6668 post_cnt = 0; 6669 } 6670 6671 /* free the sgls failed to post */ 6672 lpfc_free_sgl_list(phba, &free_sgl_list); 6673 6674 /* push sgls posted to the available list */ 6675 if (!list_empty(&post_sgl_list)) { 6676 spin_lock_irq(&phba->hbalock); 6677 spin_lock(&phba->sli4_hba.sgl_list_lock); 6678 list_splice_init(&post_sgl_list, sgl_list); 6679 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6680 spin_unlock_irq(&phba->hbalock); 6681 } else { 6682 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6683 "3161 Failure to post sgl to port.\n"); 6684 return -EIO; 6685 } 6686 6687 /* return the number of XRIs actually posted */ 6688 return total_cnt; 6689 } 6690 6691 void 6692 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6693 { 6694 uint32_t len; 6695 6696 len = sizeof(struct lpfc_mbx_set_host_data) - 6697 sizeof(struct lpfc_sli4_cfg_mhdr); 6698 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6699 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6700 LPFC_SLI4_MBX_EMBED); 6701 6702 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6703 mbox->u.mqe.un.set_host_data.param_len = 6704 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6705 snprintf(mbox->u.mqe.un.set_host_data.data, 6706 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6707 "Linux %s v"LPFC_DRIVER_VERSION, 6708 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6709 } 6710 6711 int 6712 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 6713 struct lpfc_queue *drq, int count, int idx) 6714 { 6715 int rc, i; 6716 struct lpfc_rqe hrqe; 6717 struct lpfc_rqe drqe; 6718 struct lpfc_rqb *rqbp; 6719 unsigned long flags; 6720 struct rqb_dmabuf *rqb_buffer; 6721 LIST_HEAD(rqb_buf_list); 6722 6723 spin_lock_irqsave(&phba->hbalock, flags); 6724 rqbp = hrq->rqbp; 6725 for (i = 0; i < count; i++) { 6726 /* IF RQ is already full, don't bother */ 6727 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 6728 break; 6729 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 6730 if (!rqb_buffer) 6731 break; 6732 rqb_buffer->hrq = hrq; 6733 rqb_buffer->drq = drq; 6734 rqb_buffer->idx = idx; 6735 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 6736 } 6737 while (!list_empty(&rqb_buf_list)) { 6738 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 6739 hbuf.list); 6740 6741 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 6742 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 6743 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 6744 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 6745 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 6746 if (rc < 0) { 6747 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6748 "6421 Cannot post to HRQ %d: %x %x %x " 6749 "DRQ %x %x\n", 6750 hrq->queue_id, 6751 hrq->host_index, 6752 hrq->hba_index, 6753 hrq->entry_count, 6754 drq->host_index, 6755 drq->hba_index); 6756 rqbp->rqb_free_buffer(phba, rqb_buffer); 6757 } else { 6758 list_add_tail(&rqb_buffer->hbuf.list, 6759 &rqbp->rqb_buffer_list); 6760 rqbp->buffer_count++; 6761 } 6762 } 6763 spin_unlock_irqrestore(&phba->hbalock, flags); 6764 return 1; 6765 } 6766 6767 /** 6768 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6769 * @phba: Pointer to HBA context object. 6770 * 6771 * This function is the main SLI4 device initialization PCI function. This 6772 * function is called by the HBA initialization code, HBA reset code and 6773 * HBA error attention handler code. Caller is not required to hold any 6774 * locks. 6775 **/ 6776 int 6777 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6778 { 6779 int rc, i, cnt; 6780 LPFC_MBOXQ_t *mboxq; 6781 struct lpfc_mqe *mqe; 6782 uint8_t *vpd; 6783 uint32_t vpd_size; 6784 uint32_t ftr_rsp = 0; 6785 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6786 struct lpfc_vport *vport = phba->pport; 6787 struct lpfc_dmabuf *mp; 6788 struct lpfc_rqb *rqbp; 6789 6790 /* Perform a PCI function reset to start from clean */ 6791 rc = lpfc_pci_function_reset(phba); 6792 if (unlikely(rc)) 6793 return -ENODEV; 6794 6795 /* Check the HBA Host Status Register for readyness */ 6796 rc = lpfc_sli4_post_status_check(phba); 6797 if (unlikely(rc)) 6798 return -ENODEV; 6799 else { 6800 spin_lock_irq(&phba->hbalock); 6801 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6802 spin_unlock_irq(&phba->hbalock); 6803 } 6804 6805 /* 6806 * Allocate a single mailbox container for initializing the 6807 * port. 6808 */ 6809 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6810 if (!mboxq) 6811 return -ENOMEM; 6812 6813 /* Issue READ_REV to collect vpd and FW information. */ 6814 vpd_size = SLI4_PAGE_SIZE; 6815 vpd = kzalloc(vpd_size, GFP_KERNEL); 6816 if (!vpd) { 6817 rc = -ENOMEM; 6818 goto out_free_mbox; 6819 } 6820 6821 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6822 if (unlikely(rc)) { 6823 kfree(vpd); 6824 goto out_free_mbox; 6825 } 6826 6827 mqe = &mboxq->u.mqe; 6828 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6829 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6830 phba->hba_flag |= HBA_FCOE_MODE; 6831 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6832 } else { 6833 phba->hba_flag &= ~HBA_FCOE_MODE; 6834 } 6835 6836 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6837 LPFC_DCBX_CEE_MODE) 6838 phba->hba_flag |= HBA_FIP_SUPPORT; 6839 else 6840 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6841 6842 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6843 6844 if (phba->sli_rev != LPFC_SLI_REV4) { 6845 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6846 "0376 READ_REV Error. SLI Level %d " 6847 "FCoE enabled %d\n", 6848 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6849 rc = -EIO; 6850 kfree(vpd); 6851 goto out_free_mbox; 6852 } 6853 6854 /* 6855 * Continue initialization with default values even if driver failed 6856 * to read FCoE param config regions, only read parameters if the 6857 * board is FCoE 6858 */ 6859 if (phba->hba_flag & HBA_FCOE_MODE && 6860 lpfc_sli4_read_fcoe_params(phba)) 6861 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6862 "2570 Failed to read FCoE parameters\n"); 6863 6864 /* 6865 * Retrieve sli4 device physical port name, failure of doing it 6866 * is considered as non-fatal. 6867 */ 6868 rc = lpfc_sli4_retrieve_pport_name(phba); 6869 if (!rc) 6870 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6871 "3080 Successful retrieving SLI4 device " 6872 "physical port name: %s.\n", phba->Port); 6873 6874 /* 6875 * Evaluate the read rev and vpd data. Populate the driver 6876 * state with the results. If this routine fails, the failure 6877 * is not fatal as the driver will use generic values. 6878 */ 6879 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6880 if (unlikely(!rc)) { 6881 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6882 "0377 Error %d parsing vpd. " 6883 "Using defaults.\n", rc); 6884 rc = 0; 6885 } 6886 kfree(vpd); 6887 6888 /* Save information as VPD data */ 6889 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6890 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6891 6892 /* 6893 * This is because first G7 ASIC doesn't support the standard 6894 * 0x5a NVME cmd descriptor type/subtype 6895 */ 6896 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6897 LPFC_SLI_INTF_IF_TYPE_6) && 6898 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 6899 (phba->vpd.rev.smRev == 0) && 6900 (phba->cfg_nvme_embed_cmd == 1)) 6901 phba->cfg_nvme_embed_cmd = 0; 6902 6903 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6904 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6905 &mqe->un.read_rev); 6906 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6907 &mqe->un.read_rev); 6908 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6909 &mqe->un.read_rev); 6910 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6911 &mqe->un.read_rev); 6912 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6913 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6914 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6915 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6916 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6917 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6918 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6919 "(%d):0380 READ_REV Status x%x " 6920 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6921 mboxq->vport ? mboxq->vport->vpi : 0, 6922 bf_get(lpfc_mqe_status, mqe), 6923 phba->vpd.rev.opFwName, 6924 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6925 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6926 6927 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6928 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6929 if (phba->pport->cfg_lun_queue_depth > rc) { 6930 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6931 "3362 LUN queue depth changed from %d to %d\n", 6932 phba->pport->cfg_lun_queue_depth, rc); 6933 phba->pport->cfg_lun_queue_depth = rc; 6934 } 6935 6936 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6937 LPFC_SLI_INTF_IF_TYPE_0) { 6938 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6939 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6940 if (rc == MBX_SUCCESS) { 6941 phba->hba_flag |= HBA_RECOVERABLE_UE; 6942 /* Set 1Sec interval to detect UE */ 6943 phba->eratt_poll_interval = 1; 6944 phba->sli4_hba.ue_to_sr = bf_get( 6945 lpfc_mbx_set_feature_UESR, 6946 &mboxq->u.mqe.un.set_feature); 6947 phba->sli4_hba.ue_to_rp = bf_get( 6948 lpfc_mbx_set_feature_UERP, 6949 &mboxq->u.mqe.un.set_feature); 6950 } 6951 } 6952 6953 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6954 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6955 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6957 if (rc != MBX_SUCCESS) 6958 phba->mds_diags_support = 0; 6959 } 6960 6961 /* 6962 * Discover the port's supported feature set and match it against the 6963 * hosts requests. 6964 */ 6965 lpfc_request_features(phba, mboxq); 6966 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6967 if (unlikely(rc)) { 6968 rc = -EIO; 6969 goto out_free_mbox; 6970 } 6971 6972 /* 6973 * The port must support FCP initiator mode as this is the 6974 * only mode running in the host. 6975 */ 6976 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6977 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6978 "0378 No support for fcpi mode.\n"); 6979 ftr_rsp++; 6980 } 6981 6982 /* Performance Hints are ONLY for FCoE */ 6983 if (phba->hba_flag & HBA_FCOE_MODE) { 6984 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6985 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6986 else 6987 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6988 } 6989 6990 /* 6991 * If the port cannot support the host's requested features 6992 * then turn off the global config parameters to disable the 6993 * feature in the driver. This is not a fatal error. 6994 */ 6995 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 6996 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 6997 phba->cfg_enable_bg = 0; 6998 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6999 ftr_rsp++; 7000 } 7001 } 7002 7003 if (phba->max_vpi && phba->cfg_enable_npiv && 7004 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7005 ftr_rsp++; 7006 7007 if (ftr_rsp) { 7008 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7009 "0379 Feature Mismatch Data: x%08x %08x " 7010 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7011 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7012 phba->cfg_enable_npiv, phba->max_vpi); 7013 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7014 phba->cfg_enable_bg = 0; 7015 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7016 phba->cfg_enable_npiv = 0; 7017 } 7018 7019 /* These SLI3 features are assumed in SLI4 */ 7020 spin_lock_irq(&phba->hbalock); 7021 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7022 spin_unlock_irq(&phba->hbalock); 7023 7024 /* 7025 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7026 * calls depends on these resources to complete port setup. 7027 */ 7028 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7029 if (rc) { 7030 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7031 "2920 Failed to alloc Resource IDs " 7032 "rc = x%x\n", rc); 7033 goto out_free_mbox; 7034 } 7035 7036 lpfc_set_host_data(phba, mboxq); 7037 7038 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7039 if (rc) { 7040 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7041 "2134 Failed to set host os driver version %x", 7042 rc); 7043 } 7044 7045 /* Read the port's service parameters. */ 7046 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7047 if (rc) { 7048 phba->link_state = LPFC_HBA_ERROR; 7049 rc = -ENOMEM; 7050 goto out_free_mbox; 7051 } 7052 7053 mboxq->vport = vport; 7054 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7055 mp = (struct lpfc_dmabuf *) mboxq->context1; 7056 if (rc == MBX_SUCCESS) { 7057 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7058 rc = 0; 7059 } 7060 7061 /* 7062 * This memory was allocated by the lpfc_read_sparam routine. Release 7063 * it to the mbuf pool. 7064 */ 7065 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7066 kfree(mp); 7067 mboxq->context1 = NULL; 7068 if (unlikely(rc)) { 7069 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7070 "0382 READ_SPARAM command failed " 7071 "status %d, mbxStatus x%x\n", 7072 rc, bf_get(lpfc_mqe_status, mqe)); 7073 phba->link_state = LPFC_HBA_ERROR; 7074 rc = -EIO; 7075 goto out_free_mbox; 7076 } 7077 7078 lpfc_update_vport_wwn(vport); 7079 7080 /* Update the fc_host data structures with new wwn. */ 7081 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7082 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7083 7084 /* Create all the SLI4 queues */ 7085 rc = lpfc_sli4_queue_create(phba); 7086 if (rc) { 7087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7088 "3089 Failed to allocate queues\n"); 7089 rc = -ENODEV; 7090 goto out_free_mbox; 7091 } 7092 /* Set up all the queues to the device */ 7093 rc = lpfc_sli4_queue_setup(phba); 7094 if (unlikely(rc)) { 7095 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7096 "0381 Error %d during queue setup.\n ", rc); 7097 goto out_stop_timers; 7098 } 7099 /* Initialize the driver internal SLI layer lists. */ 7100 lpfc_sli4_setup(phba); 7101 lpfc_sli4_queue_init(phba); 7102 7103 /* update host els xri-sgl sizes and mappings */ 7104 rc = lpfc_sli4_els_sgl_update(phba); 7105 if (unlikely(rc)) { 7106 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7107 "1400 Failed to update xri-sgl size and " 7108 "mapping: %d\n", rc); 7109 goto out_destroy_queue; 7110 } 7111 7112 /* register the els sgl pool to the port */ 7113 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7114 phba->sli4_hba.els_xri_cnt); 7115 if (unlikely(rc < 0)) { 7116 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7117 "0582 Error %d during els sgl post " 7118 "operation\n", rc); 7119 rc = -ENODEV; 7120 goto out_destroy_queue; 7121 } 7122 phba->sli4_hba.els_xri_cnt = rc; 7123 7124 if (phba->nvmet_support) { 7125 /* update host nvmet xri-sgl sizes and mappings */ 7126 rc = lpfc_sli4_nvmet_sgl_update(phba); 7127 if (unlikely(rc)) { 7128 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7129 "6308 Failed to update nvmet-sgl size " 7130 "and mapping: %d\n", rc); 7131 goto out_destroy_queue; 7132 } 7133 7134 /* register the nvmet sgl pool to the port */ 7135 rc = lpfc_sli4_repost_sgl_list( 7136 phba, 7137 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7138 phba->sli4_hba.nvmet_xri_cnt); 7139 if (unlikely(rc < 0)) { 7140 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7141 "3117 Error %d during nvmet " 7142 "sgl post\n", rc); 7143 rc = -ENODEV; 7144 goto out_destroy_queue; 7145 } 7146 phba->sli4_hba.nvmet_xri_cnt = rc; 7147 7148 cnt = phba->cfg_iocb_cnt * 1024; 7149 /* We need 1 iocbq for every SGL, for IO processing */ 7150 cnt += phba->sli4_hba.nvmet_xri_cnt; 7151 } else { 7152 /* update host scsi xri-sgl sizes and mappings */ 7153 rc = lpfc_sli4_scsi_sgl_update(phba); 7154 if (unlikely(rc)) { 7155 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7156 "6309 Failed to update scsi-sgl size " 7157 "and mapping: %d\n", rc); 7158 goto out_destroy_queue; 7159 } 7160 7161 /* update host nvme xri-sgl sizes and mappings */ 7162 rc = lpfc_sli4_nvme_sgl_update(phba); 7163 if (unlikely(rc)) { 7164 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7165 "6082 Failed to update nvme-sgl size " 7166 "and mapping: %d\n", rc); 7167 goto out_destroy_queue; 7168 } 7169 7170 cnt = phba->cfg_iocb_cnt * 1024; 7171 } 7172 7173 if (!phba->sli.iocbq_lookup) { 7174 /* Initialize and populate the iocb list per host */ 7175 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7176 "2821 initialize iocb list %d total %d\n", 7177 phba->cfg_iocb_cnt, cnt); 7178 rc = lpfc_init_iocb_list(phba, cnt); 7179 if (rc) { 7180 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7181 "1413 Failed to init iocb list.\n"); 7182 goto out_destroy_queue; 7183 } 7184 } 7185 7186 if (phba->nvmet_support) 7187 lpfc_nvmet_create_targetport(phba); 7188 7189 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7190 /* Post initial buffers to all RQs created */ 7191 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7192 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7193 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7194 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7195 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7196 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7197 rqbp->buffer_count = 0; 7198 7199 lpfc_post_rq_buffer( 7200 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7201 phba->sli4_hba.nvmet_mrq_data[i], 7202 LPFC_NVMET_RQE_DEF_COUNT, i); 7203 } 7204 } 7205 7206 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 7207 /* register the allocated scsi sgl pool to the port */ 7208 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 7209 if (unlikely(rc)) { 7210 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7211 "0383 Error %d during scsi sgl post " 7212 "operation\n", rc); 7213 /* Some Scsi buffers were moved to abort scsi list */ 7214 /* A pci function reset will repost them */ 7215 rc = -ENODEV; 7216 goto out_destroy_queue; 7217 } 7218 } 7219 7220 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7221 (phba->nvmet_support == 0)) { 7222 7223 /* register the allocated nvme sgl pool to the port */ 7224 rc = lpfc_repost_nvme_sgl_list(phba); 7225 if (unlikely(rc)) { 7226 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7227 "6116 Error %d during nvme sgl post " 7228 "operation\n", rc); 7229 /* Some NVME buffers were moved to abort nvme list */ 7230 /* A pci function reset will repost them */ 7231 rc = -ENODEV; 7232 goto out_destroy_queue; 7233 } 7234 } 7235 7236 /* Post the rpi header region to the device. */ 7237 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7238 if (unlikely(rc)) { 7239 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7240 "0393 Error %d during rpi post operation\n", 7241 rc); 7242 rc = -ENODEV; 7243 goto out_destroy_queue; 7244 } 7245 lpfc_sli4_node_prep(phba); 7246 7247 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7248 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7249 /* 7250 * The FC Port needs to register FCFI (index 0) 7251 */ 7252 lpfc_reg_fcfi(phba, mboxq); 7253 mboxq->vport = phba->pport; 7254 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7255 if (rc != MBX_SUCCESS) 7256 goto out_unset_queue; 7257 rc = 0; 7258 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7259 &mboxq->u.mqe.un.reg_fcfi); 7260 } else { 7261 /* We are a NVME Target mode with MRQ > 1 */ 7262 7263 /* First register the FCFI */ 7264 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7265 mboxq->vport = phba->pport; 7266 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7267 if (rc != MBX_SUCCESS) 7268 goto out_unset_queue; 7269 rc = 0; 7270 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7271 &mboxq->u.mqe.un.reg_fcfi_mrq); 7272 7273 /* Next register the MRQs */ 7274 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7275 mboxq->vport = phba->pport; 7276 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7277 if (rc != MBX_SUCCESS) 7278 goto out_unset_queue; 7279 rc = 0; 7280 } 7281 /* Check if the port is configured to be disabled */ 7282 lpfc_sli_read_link_ste(phba); 7283 } 7284 7285 /* Arm the CQs and then EQs on device */ 7286 lpfc_sli4_arm_cqeq_intr(phba); 7287 7288 /* Indicate device interrupt mode */ 7289 phba->sli4_hba.intr_enable = 1; 7290 7291 /* Allow asynchronous mailbox command to go through */ 7292 spin_lock_irq(&phba->hbalock); 7293 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7294 spin_unlock_irq(&phba->hbalock); 7295 7296 /* Post receive buffers to the device */ 7297 lpfc_sli4_rb_setup(phba); 7298 7299 /* Reset HBA FCF states after HBA reset */ 7300 phba->fcf.fcf_flag = 0; 7301 phba->fcf.current_rec.flag = 0; 7302 7303 /* Start the ELS watchdog timer */ 7304 mod_timer(&vport->els_tmofunc, 7305 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7306 7307 /* Start heart beat timer */ 7308 mod_timer(&phba->hb_tmofunc, 7309 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7310 phba->hb_outstanding = 0; 7311 phba->last_completion_time = jiffies; 7312 7313 /* Start error attention (ERATT) polling timer */ 7314 mod_timer(&phba->eratt_poll, 7315 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7316 7317 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7318 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7319 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7320 if (!rc) { 7321 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7322 "2829 This device supports " 7323 "Advanced Error Reporting (AER)\n"); 7324 spin_lock_irq(&phba->hbalock); 7325 phba->hba_flag |= HBA_AER_ENABLED; 7326 spin_unlock_irq(&phba->hbalock); 7327 } else { 7328 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7329 "2830 This device does not support " 7330 "Advanced Error Reporting (AER)\n"); 7331 phba->cfg_aer_support = 0; 7332 } 7333 rc = 0; 7334 } 7335 7336 /* 7337 * The port is ready, set the host's link state to LINK_DOWN 7338 * in preparation for link interrupts. 7339 */ 7340 spin_lock_irq(&phba->hbalock); 7341 phba->link_state = LPFC_LINK_DOWN; 7342 spin_unlock_irq(&phba->hbalock); 7343 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7344 (phba->hba_flag & LINK_DISABLED)) { 7345 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7346 "3103 Adapter Link is disabled.\n"); 7347 lpfc_down_link(phba, mboxq); 7348 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7349 if (rc != MBX_SUCCESS) { 7350 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7351 "3104 Adapter failed to issue " 7352 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7353 goto out_unset_queue; 7354 } 7355 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7356 /* don't perform init_link on SLI4 FC port loopback test */ 7357 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7358 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7359 if (rc) 7360 goto out_unset_queue; 7361 } 7362 } 7363 mempool_free(mboxq, phba->mbox_mem_pool); 7364 return rc; 7365 out_unset_queue: 7366 /* Unset all the queues set up in this routine when error out */ 7367 lpfc_sli4_queue_unset(phba); 7368 out_destroy_queue: 7369 lpfc_free_iocb_list(phba); 7370 lpfc_sli4_queue_destroy(phba); 7371 out_stop_timers: 7372 lpfc_stop_hba_timers(phba); 7373 out_free_mbox: 7374 mempool_free(mboxq, phba->mbox_mem_pool); 7375 return rc; 7376 } 7377 7378 /** 7379 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7380 * @ptr: context object - pointer to hba structure. 7381 * 7382 * This is the callback function for mailbox timer. The mailbox 7383 * timer is armed when a new mailbox command is issued and the timer 7384 * is deleted when the mailbox complete. The function is called by 7385 * the kernel timer code when a mailbox does not complete within 7386 * expected time. This function wakes up the worker thread to 7387 * process the mailbox timeout and returns. All the processing is 7388 * done by the worker thread function lpfc_mbox_timeout_handler. 7389 **/ 7390 void 7391 lpfc_mbox_timeout(struct timer_list *t) 7392 { 7393 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7394 unsigned long iflag; 7395 uint32_t tmo_posted; 7396 7397 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7398 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7399 if (!tmo_posted) 7400 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7401 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7402 7403 if (!tmo_posted) 7404 lpfc_worker_wake_up(phba); 7405 return; 7406 } 7407 7408 /** 7409 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7410 * are pending 7411 * @phba: Pointer to HBA context object. 7412 * 7413 * This function checks if any mailbox completions are present on the mailbox 7414 * completion queue. 7415 **/ 7416 static bool 7417 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7418 { 7419 7420 uint32_t idx; 7421 struct lpfc_queue *mcq; 7422 struct lpfc_mcqe *mcqe; 7423 bool pending_completions = false; 7424 uint8_t qe_valid; 7425 7426 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7427 return false; 7428 7429 /* Check for completions on mailbox completion queue */ 7430 7431 mcq = phba->sli4_hba.mbx_cq; 7432 idx = mcq->hba_index; 7433 qe_valid = mcq->qe_valid; 7434 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) { 7435 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7436 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7437 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7438 pending_completions = true; 7439 break; 7440 } 7441 idx = (idx + 1) % mcq->entry_count; 7442 if (mcq->hba_index == idx) 7443 break; 7444 7445 /* if the index wrapped around, toggle the valid bit */ 7446 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7447 qe_valid = (qe_valid) ? 0 : 1; 7448 } 7449 return pending_completions; 7450 7451 } 7452 7453 /** 7454 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7455 * that were missed. 7456 * @phba: Pointer to HBA context object. 7457 * 7458 * For sli4, it is possible to miss an interrupt. As such mbox completions 7459 * maybe missed causing erroneous mailbox timeouts to occur. This function 7460 * checks to see if mbox completions are on the mailbox completion queue 7461 * and will process all the completions associated with the eq for the 7462 * mailbox completion queue. 7463 **/ 7464 bool 7465 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7466 { 7467 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7468 uint32_t eqidx; 7469 struct lpfc_queue *fpeq = NULL; 7470 struct lpfc_eqe *eqe; 7471 bool mbox_pending; 7472 7473 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7474 return false; 7475 7476 /* Find the eq associated with the mcq */ 7477 7478 if (sli4_hba->hba_eq) 7479 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7480 if (sli4_hba->hba_eq[eqidx]->queue_id == 7481 sli4_hba->mbx_cq->assoc_qid) { 7482 fpeq = sli4_hba->hba_eq[eqidx]; 7483 break; 7484 } 7485 if (!fpeq) 7486 return false; 7487 7488 /* Turn off interrupts from this EQ */ 7489 7490 sli4_hba->sli4_eq_clr_intr(fpeq); 7491 7492 /* Check to see if a mbox completion is pending */ 7493 7494 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7495 7496 /* 7497 * If a mbox completion is pending, process all the events on EQ 7498 * associated with the mbox completion queue (this could include 7499 * mailbox commands, async events, els commands, receive queue data 7500 * and fcp commands) 7501 */ 7502 7503 if (mbox_pending) 7504 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7505 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7506 fpeq->EQ_processed++; 7507 } 7508 7509 /* Always clear and re-arm the EQ */ 7510 7511 sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7512 7513 return mbox_pending; 7514 7515 } 7516 7517 /** 7518 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7519 * @phba: Pointer to HBA context object. 7520 * 7521 * This function is called from worker thread when a mailbox command times out. 7522 * The caller is not required to hold any locks. This function will reset the 7523 * HBA and recover all the pending commands. 7524 **/ 7525 void 7526 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7527 { 7528 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7529 MAILBOX_t *mb = NULL; 7530 7531 struct lpfc_sli *psli = &phba->sli; 7532 7533 /* If the mailbox completed, process the completion and return */ 7534 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7535 return; 7536 7537 if (pmbox != NULL) 7538 mb = &pmbox->u.mb; 7539 /* Check the pmbox pointer first. There is a race condition 7540 * between the mbox timeout handler getting executed in the 7541 * worklist and the mailbox actually completing. When this 7542 * race condition occurs, the mbox_active will be NULL. 7543 */ 7544 spin_lock_irq(&phba->hbalock); 7545 if (pmbox == NULL) { 7546 lpfc_printf_log(phba, KERN_WARNING, 7547 LOG_MBOX | LOG_SLI, 7548 "0353 Active Mailbox cleared - mailbox timeout " 7549 "exiting\n"); 7550 spin_unlock_irq(&phba->hbalock); 7551 return; 7552 } 7553 7554 /* Mbox cmd <mbxCommand> timeout */ 7555 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7556 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7557 mb->mbxCommand, 7558 phba->pport->port_state, 7559 phba->sli.sli_flag, 7560 phba->sli.mbox_active); 7561 spin_unlock_irq(&phba->hbalock); 7562 7563 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7564 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7565 * it to fail all outstanding SCSI IO. 7566 */ 7567 spin_lock_irq(&phba->pport->work_port_lock); 7568 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7569 spin_unlock_irq(&phba->pport->work_port_lock); 7570 spin_lock_irq(&phba->hbalock); 7571 phba->link_state = LPFC_LINK_UNKNOWN; 7572 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7573 spin_unlock_irq(&phba->hbalock); 7574 7575 lpfc_sli_abort_fcp_rings(phba); 7576 7577 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7578 "0345 Resetting board due to mailbox timeout\n"); 7579 7580 /* Reset the HBA device */ 7581 lpfc_reset_hba(phba); 7582 } 7583 7584 /** 7585 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7586 * @phba: Pointer to HBA context object. 7587 * @pmbox: Pointer to mailbox object. 7588 * @flag: Flag indicating how the mailbox need to be processed. 7589 * 7590 * This function is called by discovery code and HBA management code 7591 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7592 * function gets the hbalock to protect the data structures. 7593 * The mailbox command can be submitted in polling mode, in which case 7594 * this function will wait in a polling loop for the completion of the 7595 * mailbox. 7596 * If the mailbox is submitted in no_wait mode (not polling) the 7597 * function will submit the command and returns immediately without waiting 7598 * for the mailbox completion. The no_wait is supported only when HBA 7599 * is in SLI2/SLI3 mode - interrupts are enabled. 7600 * The SLI interface allows only one mailbox pending at a time. If the 7601 * mailbox is issued in polling mode and there is already a mailbox 7602 * pending, then the function will return an error. If the mailbox is issued 7603 * in NO_WAIT mode and there is a mailbox pending already, the function 7604 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7605 * The sli layer owns the mailbox object until the completion of mailbox 7606 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7607 * return codes the caller owns the mailbox command after the return of 7608 * the function. 7609 **/ 7610 static int 7611 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7612 uint32_t flag) 7613 { 7614 MAILBOX_t *mbx; 7615 struct lpfc_sli *psli = &phba->sli; 7616 uint32_t status, evtctr; 7617 uint32_t ha_copy, hc_copy; 7618 int i; 7619 unsigned long timeout; 7620 unsigned long drvr_flag = 0; 7621 uint32_t word0, ldata; 7622 void __iomem *to_slim; 7623 int processing_queue = 0; 7624 7625 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7626 if (!pmbox) { 7627 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7628 /* processing mbox queue from intr_handler */ 7629 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7630 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7631 return MBX_SUCCESS; 7632 } 7633 processing_queue = 1; 7634 pmbox = lpfc_mbox_get(phba); 7635 if (!pmbox) { 7636 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7637 return MBX_SUCCESS; 7638 } 7639 } 7640 7641 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7642 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7643 if(!pmbox->vport) { 7644 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7645 lpfc_printf_log(phba, KERN_ERR, 7646 LOG_MBOX | LOG_VPORT, 7647 "1806 Mbox x%x failed. No vport\n", 7648 pmbox->u.mb.mbxCommand); 7649 dump_stack(); 7650 goto out_not_finished; 7651 } 7652 } 7653 7654 /* If the PCI channel is in offline state, do not post mbox. */ 7655 if (unlikely(pci_channel_offline(phba->pcidev))) { 7656 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7657 goto out_not_finished; 7658 } 7659 7660 /* If HBA has a deferred error attention, fail the iocb. */ 7661 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7662 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7663 goto out_not_finished; 7664 } 7665 7666 psli = &phba->sli; 7667 7668 mbx = &pmbox->u.mb; 7669 status = MBX_SUCCESS; 7670 7671 if (phba->link_state == LPFC_HBA_ERROR) { 7672 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7673 7674 /* Mbox command <mbxCommand> cannot issue */ 7675 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7676 "(%d):0311 Mailbox command x%x cannot " 7677 "issue Data: x%x x%x\n", 7678 pmbox->vport ? pmbox->vport->vpi : 0, 7679 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7680 goto out_not_finished; 7681 } 7682 7683 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7684 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7685 !(hc_copy & HC_MBINT_ENA)) { 7686 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7687 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7688 "(%d):2528 Mailbox command x%x cannot " 7689 "issue Data: x%x x%x\n", 7690 pmbox->vport ? pmbox->vport->vpi : 0, 7691 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7692 goto out_not_finished; 7693 } 7694 } 7695 7696 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7697 /* Polling for a mbox command when another one is already active 7698 * is not allowed in SLI. Also, the driver must have established 7699 * SLI2 mode to queue and process multiple mbox commands. 7700 */ 7701 7702 if (flag & MBX_POLL) { 7703 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7704 7705 /* Mbox command <mbxCommand> cannot issue */ 7706 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7707 "(%d):2529 Mailbox command x%x " 7708 "cannot issue Data: x%x x%x\n", 7709 pmbox->vport ? pmbox->vport->vpi : 0, 7710 pmbox->u.mb.mbxCommand, 7711 psli->sli_flag, flag); 7712 goto out_not_finished; 7713 } 7714 7715 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7716 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7717 /* Mbox command <mbxCommand> cannot issue */ 7718 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7719 "(%d):2530 Mailbox command x%x " 7720 "cannot issue Data: x%x x%x\n", 7721 pmbox->vport ? pmbox->vport->vpi : 0, 7722 pmbox->u.mb.mbxCommand, 7723 psli->sli_flag, flag); 7724 goto out_not_finished; 7725 } 7726 7727 /* Another mailbox command is still being processed, queue this 7728 * command to be processed later. 7729 */ 7730 lpfc_mbox_put(phba, pmbox); 7731 7732 /* Mbox cmd issue - BUSY */ 7733 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7734 "(%d):0308 Mbox cmd issue - BUSY Data: " 7735 "x%x x%x x%x x%x\n", 7736 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7737 mbx->mbxCommand, 7738 phba->pport ? phba->pport->port_state : 0xff, 7739 psli->sli_flag, flag); 7740 7741 psli->slistat.mbox_busy++; 7742 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7743 7744 if (pmbox->vport) { 7745 lpfc_debugfs_disc_trc(pmbox->vport, 7746 LPFC_DISC_TRC_MBOX_VPORT, 7747 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7748 (uint32_t)mbx->mbxCommand, 7749 mbx->un.varWords[0], mbx->un.varWords[1]); 7750 } 7751 else { 7752 lpfc_debugfs_disc_trc(phba->pport, 7753 LPFC_DISC_TRC_MBOX, 7754 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7755 (uint32_t)mbx->mbxCommand, 7756 mbx->un.varWords[0], mbx->un.varWords[1]); 7757 } 7758 7759 return MBX_BUSY; 7760 } 7761 7762 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7763 7764 /* If we are not polling, we MUST be in SLI2 mode */ 7765 if (flag != MBX_POLL) { 7766 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7767 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7768 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7769 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7770 /* Mbox command <mbxCommand> cannot issue */ 7771 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7772 "(%d):2531 Mailbox command x%x " 7773 "cannot issue Data: x%x x%x\n", 7774 pmbox->vport ? pmbox->vport->vpi : 0, 7775 pmbox->u.mb.mbxCommand, 7776 psli->sli_flag, flag); 7777 goto out_not_finished; 7778 } 7779 /* timeout active mbox command */ 7780 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7781 1000); 7782 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7783 } 7784 7785 /* Mailbox cmd <cmd> issue */ 7786 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7787 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7788 "x%x\n", 7789 pmbox->vport ? pmbox->vport->vpi : 0, 7790 mbx->mbxCommand, 7791 phba->pport ? phba->pport->port_state : 0xff, 7792 psli->sli_flag, flag); 7793 7794 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7795 if (pmbox->vport) { 7796 lpfc_debugfs_disc_trc(pmbox->vport, 7797 LPFC_DISC_TRC_MBOX_VPORT, 7798 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7799 (uint32_t)mbx->mbxCommand, 7800 mbx->un.varWords[0], mbx->un.varWords[1]); 7801 } 7802 else { 7803 lpfc_debugfs_disc_trc(phba->pport, 7804 LPFC_DISC_TRC_MBOX, 7805 "MBOX Send: cmd:x%x mb:x%x x%x", 7806 (uint32_t)mbx->mbxCommand, 7807 mbx->un.varWords[0], mbx->un.varWords[1]); 7808 } 7809 } 7810 7811 psli->slistat.mbox_cmd++; 7812 evtctr = psli->slistat.mbox_event; 7813 7814 /* next set own bit for the adapter and copy over command word */ 7815 mbx->mbxOwner = OWN_CHIP; 7816 7817 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7818 /* Populate mbox extension offset word. */ 7819 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7820 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7821 = (uint8_t *)phba->mbox_ext 7822 - (uint8_t *)phba->mbox; 7823 } 7824 7825 /* Copy the mailbox extension data */ 7826 if (pmbox->in_ext_byte_len && pmbox->context2) { 7827 lpfc_sli_pcimem_bcopy(pmbox->context2, 7828 (uint8_t *)phba->mbox_ext, 7829 pmbox->in_ext_byte_len); 7830 } 7831 /* Copy command data to host SLIM area */ 7832 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7833 } else { 7834 /* Populate mbox extension offset word. */ 7835 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7836 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7837 = MAILBOX_HBA_EXT_OFFSET; 7838 7839 /* Copy the mailbox extension data */ 7840 if (pmbox->in_ext_byte_len && pmbox->context2) 7841 lpfc_memcpy_to_slim(phba->MBslimaddr + 7842 MAILBOX_HBA_EXT_OFFSET, 7843 pmbox->context2, pmbox->in_ext_byte_len); 7844 7845 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7846 /* copy command data into host mbox for cmpl */ 7847 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7848 MAILBOX_CMD_SIZE); 7849 7850 /* First copy mbox command data to HBA SLIM, skip past first 7851 word */ 7852 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7853 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7854 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7855 7856 /* Next copy over first word, with mbxOwner set */ 7857 ldata = *((uint32_t *)mbx); 7858 to_slim = phba->MBslimaddr; 7859 writel(ldata, to_slim); 7860 readl(to_slim); /* flush */ 7861 7862 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7863 /* switch over to host mailbox */ 7864 psli->sli_flag |= LPFC_SLI_ACTIVE; 7865 } 7866 7867 wmb(); 7868 7869 switch (flag) { 7870 case MBX_NOWAIT: 7871 /* Set up reference to mailbox command */ 7872 psli->mbox_active = pmbox; 7873 /* Interrupt board to do it */ 7874 writel(CA_MBATT, phba->CAregaddr); 7875 readl(phba->CAregaddr); /* flush */ 7876 /* Don't wait for it to finish, just return */ 7877 break; 7878 7879 case MBX_POLL: 7880 /* Set up null reference to mailbox command */ 7881 psli->mbox_active = NULL; 7882 /* Interrupt board to do it */ 7883 writel(CA_MBATT, phba->CAregaddr); 7884 readl(phba->CAregaddr); /* flush */ 7885 7886 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7887 /* First read mbox status word */ 7888 word0 = *((uint32_t *)phba->mbox); 7889 word0 = le32_to_cpu(word0); 7890 } else { 7891 /* First read mbox status word */ 7892 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7893 spin_unlock_irqrestore(&phba->hbalock, 7894 drvr_flag); 7895 goto out_not_finished; 7896 } 7897 } 7898 7899 /* Read the HBA Host Attention Register */ 7900 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7901 spin_unlock_irqrestore(&phba->hbalock, 7902 drvr_flag); 7903 goto out_not_finished; 7904 } 7905 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7906 1000) + jiffies; 7907 i = 0; 7908 /* Wait for command to complete */ 7909 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7910 (!(ha_copy & HA_MBATT) && 7911 (phba->link_state > LPFC_WARM_START))) { 7912 if (time_after(jiffies, timeout)) { 7913 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7914 spin_unlock_irqrestore(&phba->hbalock, 7915 drvr_flag); 7916 goto out_not_finished; 7917 } 7918 7919 /* Check if we took a mbox interrupt while we were 7920 polling */ 7921 if (((word0 & OWN_CHIP) != OWN_CHIP) 7922 && (evtctr != psli->slistat.mbox_event)) 7923 break; 7924 7925 if (i++ > 10) { 7926 spin_unlock_irqrestore(&phba->hbalock, 7927 drvr_flag); 7928 msleep(1); 7929 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7930 } 7931 7932 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7933 /* First copy command data */ 7934 word0 = *((uint32_t *)phba->mbox); 7935 word0 = le32_to_cpu(word0); 7936 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7937 MAILBOX_t *slimmb; 7938 uint32_t slimword0; 7939 /* Check real SLIM for any errors */ 7940 slimword0 = readl(phba->MBslimaddr); 7941 slimmb = (MAILBOX_t *) & slimword0; 7942 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7943 && slimmb->mbxStatus) { 7944 psli->sli_flag &= 7945 ~LPFC_SLI_ACTIVE; 7946 word0 = slimword0; 7947 } 7948 } 7949 } else { 7950 /* First copy command data */ 7951 word0 = readl(phba->MBslimaddr); 7952 } 7953 /* Read the HBA Host Attention Register */ 7954 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7955 spin_unlock_irqrestore(&phba->hbalock, 7956 drvr_flag); 7957 goto out_not_finished; 7958 } 7959 } 7960 7961 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7962 /* copy results back to user */ 7963 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7964 MAILBOX_CMD_SIZE); 7965 /* Copy the mailbox extension data */ 7966 if (pmbox->out_ext_byte_len && pmbox->context2) { 7967 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7968 pmbox->context2, 7969 pmbox->out_ext_byte_len); 7970 } 7971 } else { 7972 /* First copy command data */ 7973 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7974 MAILBOX_CMD_SIZE); 7975 /* Copy the mailbox extension data */ 7976 if (pmbox->out_ext_byte_len && pmbox->context2) { 7977 lpfc_memcpy_from_slim(pmbox->context2, 7978 phba->MBslimaddr + 7979 MAILBOX_HBA_EXT_OFFSET, 7980 pmbox->out_ext_byte_len); 7981 } 7982 } 7983 7984 writel(HA_MBATT, phba->HAregaddr); 7985 readl(phba->HAregaddr); /* flush */ 7986 7987 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7988 status = mbx->mbxStatus; 7989 } 7990 7991 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7992 return status; 7993 7994 out_not_finished: 7995 if (processing_queue) { 7996 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7997 lpfc_mbox_cmpl_put(phba, pmbox); 7998 } 7999 return MBX_NOT_FINISHED; 8000 } 8001 8002 /** 8003 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8004 * @phba: Pointer to HBA context object. 8005 * 8006 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8007 * the driver internal pending mailbox queue. It will then try to wait out the 8008 * possible outstanding mailbox command before return. 8009 * 8010 * Returns: 8011 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8012 * the outstanding mailbox command timed out. 8013 **/ 8014 static int 8015 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8016 { 8017 struct lpfc_sli *psli = &phba->sli; 8018 int rc = 0; 8019 unsigned long timeout = 0; 8020 8021 /* Mark the asynchronous mailbox command posting as blocked */ 8022 spin_lock_irq(&phba->hbalock); 8023 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8024 /* Determine how long we might wait for the active mailbox 8025 * command to be gracefully completed by firmware. 8026 */ 8027 if (phba->sli.mbox_active) 8028 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8029 phba->sli.mbox_active) * 8030 1000) + jiffies; 8031 spin_unlock_irq(&phba->hbalock); 8032 8033 /* Make sure the mailbox is really active */ 8034 if (timeout) 8035 lpfc_sli4_process_missed_mbox_completions(phba); 8036 8037 /* Wait for the outstnading mailbox command to complete */ 8038 while (phba->sli.mbox_active) { 8039 /* Check active mailbox complete status every 2ms */ 8040 msleep(2); 8041 if (time_after(jiffies, timeout)) { 8042 /* Timeout, marked the outstanding cmd not complete */ 8043 rc = 1; 8044 break; 8045 } 8046 } 8047 8048 /* Can not cleanly block async mailbox command, fails it */ 8049 if (rc) { 8050 spin_lock_irq(&phba->hbalock); 8051 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8052 spin_unlock_irq(&phba->hbalock); 8053 } 8054 return rc; 8055 } 8056 8057 /** 8058 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8059 * @phba: Pointer to HBA context object. 8060 * 8061 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8062 * commands from the driver internal pending mailbox queue. It makes sure 8063 * that there is no outstanding mailbox command before resuming posting 8064 * asynchronous mailbox commands. If, for any reason, there is outstanding 8065 * mailbox command, it will try to wait it out before resuming asynchronous 8066 * mailbox command posting. 8067 **/ 8068 static void 8069 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8070 { 8071 struct lpfc_sli *psli = &phba->sli; 8072 8073 spin_lock_irq(&phba->hbalock); 8074 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8075 /* Asynchronous mailbox posting is not blocked, do nothing */ 8076 spin_unlock_irq(&phba->hbalock); 8077 return; 8078 } 8079 8080 /* Outstanding synchronous mailbox command is guaranteed to be done, 8081 * successful or timeout, after timing-out the outstanding mailbox 8082 * command shall always be removed, so just unblock posting async 8083 * mailbox command and resume 8084 */ 8085 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8086 spin_unlock_irq(&phba->hbalock); 8087 8088 /* wake up worker thread to post asynchronlous mailbox command */ 8089 lpfc_worker_wake_up(phba); 8090 } 8091 8092 /** 8093 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8094 * @phba: Pointer to HBA context object. 8095 * @mboxq: Pointer to mailbox object. 8096 * 8097 * The function waits for the bootstrap mailbox register ready bit from 8098 * port for twice the regular mailbox command timeout value. 8099 * 8100 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8101 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8102 **/ 8103 static int 8104 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8105 { 8106 uint32_t db_ready; 8107 unsigned long timeout; 8108 struct lpfc_register bmbx_reg; 8109 8110 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8111 * 1000) + jiffies; 8112 8113 do { 8114 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8115 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8116 if (!db_ready) 8117 msleep(2); 8118 8119 if (time_after(jiffies, timeout)) 8120 return MBXERR_ERROR; 8121 } while (!db_ready); 8122 8123 return 0; 8124 } 8125 8126 /** 8127 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8128 * @phba: Pointer to HBA context object. 8129 * @mboxq: Pointer to mailbox object. 8130 * 8131 * The function posts a mailbox to the port. The mailbox is expected 8132 * to be comletely filled in and ready for the port to operate on it. 8133 * This routine executes a synchronous completion operation on the 8134 * mailbox by polling for its completion. 8135 * 8136 * The caller must not be holding any locks when calling this routine. 8137 * 8138 * Returns: 8139 * MBX_SUCCESS - mailbox posted successfully 8140 * Any of the MBX error values. 8141 **/ 8142 static int 8143 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8144 { 8145 int rc = MBX_SUCCESS; 8146 unsigned long iflag; 8147 uint32_t mcqe_status; 8148 uint32_t mbx_cmnd; 8149 struct lpfc_sli *psli = &phba->sli; 8150 struct lpfc_mqe *mb = &mboxq->u.mqe; 8151 struct lpfc_bmbx_create *mbox_rgn; 8152 struct dma_address *dma_address; 8153 8154 /* 8155 * Only one mailbox can be active to the bootstrap mailbox region 8156 * at a time and there is no queueing provided. 8157 */ 8158 spin_lock_irqsave(&phba->hbalock, iflag); 8159 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8160 spin_unlock_irqrestore(&phba->hbalock, iflag); 8161 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8162 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8163 "cannot issue Data: x%x x%x\n", 8164 mboxq->vport ? mboxq->vport->vpi : 0, 8165 mboxq->u.mb.mbxCommand, 8166 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8167 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8168 psli->sli_flag, MBX_POLL); 8169 return MBXERR_ERROR; 8170 } 8171 /* The server grabs the token and owns it until release */ 8172 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8173 phba->sli.mbox_active = mboxq; 8174 spin_unlock_irqrestore(&phba->hbalock, iflag); 8175 8176 /* wait for bootstrap mbox register for readyness */ 8177 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8178 if (rc) 8179 goto exit; 8180 8181 /* 8182 * Initialize the bootstrap memory region to avoid stale data areas 8183 * in the mailbox post. Then copy the caller's mailbox contents to 8184 * the bmbx mailbox region. 8185 */ 8186 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8187 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8188 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8189 sizeof(struct lpfc_mqe)); 8190 8191 /* Post the high mailbox dma address to the port and wait for ready. */ 8192 dma_address = &phba->sli4_hba.bmbx.dma_address; 8193 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8194 8195 /* wait for bootstrap mbox register for hi-address write done */ 8196 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8197 if (rc) 8198 goto exit; 8199 8200 /* Post the low mailbox dma address to the port. */ 8201 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8202 8203 /* wait for bootstrap mbox register for low address write done */ 8204 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8205 if (rc) 8206 goto exit; 8207 8208 /* 8209 * Read the CQ to ensure the mailbox has completed. 8210 * If so, update the mailbox status so that the upper layers 8211 * can complete the request normally. 8212 */ 8213 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8214 sizeof(struct lpfc_mqe)); 8215 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8216 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8217 sizeof(struct lpfc_mcqe)); 8218 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8219 /* 8220 * When the CQE status indicates a failure and the mailbox status 8221 * indicates success then copy the CQE status into the mailbox status 8222 * (and prefix it with x4000). 8223 */ 8224 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8225 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8226 bf_set(lpfc_mqe_status, mb, 8227 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8228 rc = MBXERR_ERROR; 8229 } else 8230 lpfc_sli4_swap_str(phba, mboxq); 8231 8232 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8233 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8234 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8235 " x%x x%x CQ: x%x x%x x%x x%x\n", 8236 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8237 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8238 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8239 bf_get(lpfc_mqe_status, mb), 8240 mb->un.mb_words[0], mb->un.mb_words[1], 8241 mb->un.mb_words[2], mb->un.mb_words[3], 8242 mb->un.mb_words[4], mb->un.mb_words[5], 8243 mb->un.mb_words[6], mb->un.mb_words[7], 8244 mb->un.mb_words[8], mb->un.mb_words[9], 8245 mb->un.mb_words[10], mb->un.mb_words[11], 8246 mb->un.mb_words[12], mboxq->mcqe.word0, 8247 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8248 mboxq->mcqe.trailer); 8249 exit: 8250 /* We are holding the token, no needed for lock when release */ 8251 spin_lock_irqsave(&phba->hbalock, iflag); 8252 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8253 phba->sli.mbox_active = NULL; 8254 spin_unlock_irqrestore(&phba->hbalock, iflag); 8255 return rc; 8256 } 8257 8258 /** 8259 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8260 * @phba: Pointer to HBA context object. 8261 * @pmbox: Pointer to mailbox object. 8262 * @flag: Flag indicating how the mailbox need to be processed. 8263 * 8264 * This function is called by discovery code and HBA management code to submit 8265 * a mailbox command to firmware with SLI-4 interface spec. 8266 * 8267 * Return codes the caller owns the mailbox command after the return of the 8268 * function. 8269 **/ 8270 static int 8271 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8272 uint32_t flag) 8273 { 8274 struct lpfc_sli *psli = &phba->sli; 8275 unsigned long iflags; 8276 int rc; 8277 8278 /* dump from issue mailbox command if setup */ 8279 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8280 8281 rc = lpfc_mbox_dev_check(phba); 8282 if (unlikely(rc)) { 8283 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8284 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8285 "cannot issue Data: x%x x%x\n", 8286 mboxq->vport ? mboxq->vport->vpi : 0, 8287 mboxq->u.mb.mbxCommand, 8288 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8289 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8290 psli->sli_flag, flag); 8291 goto out_not_finished; 8292 } 8293 8294 /* Detect polling mode and jump to a handler */ 8295 if (!phba->sli4_hba.intr_enable) { 8296 if (flag == MBX_POLL) 8297 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8298 else 8299 rc = -EIO; 8300 if (rc != MBX_SUCCESS) 8301 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8302 "(%d):2541 Mailbox command x%x " 8303 "(x%x/x%x) failure: " 8304 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8305 "Data: x%x x%x\n,", 8306 mboxq->vport ? mboxq->vport->vpi : 0, 8307 mboxq->u.mb.mbxCommand, 8308 lpfc_sli_config_mbox_subsys_get(phba, 8309 mboxq), 8310 lpfc_sli_config_mbox_opcode_get(phba, 8311 mboxq), 8312 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8313 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8314 bf_get(lpfc_mcqe_ext_status, 8315 &mboxq->mcqe), 8316 psli->sli_flag, flag); 8317 return rc; 8318 } else if (flag == MBX_POLL) { 8319 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8320 "(%d):2542 Try to issue mailbox command " 8321 "x%x (x%x/x%x) synchronously ahead of async " 8322 "mailbox command queue: x%x x%x\n", 8323 mboxq->vport ? mboxq->vport->vpi : 0, 8324 mboxq->u.mb.mbxCommand, 8325 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8326 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8327 psli->sli_flag, flag); 8328 /* Try to block the asynchronous mailbox posting */ 8329 rc = lpfc_sli4_async_mbox_block(phba); 8330 if (!rc) { 8331 /* Successfully blocked, now issue sync mbox cmd */ 8332 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8333 if (rc != MBX_SUCCESS) 8334 lpfc_printf_log(phba, KERN_WARNING, 8335 LOG_MBOX | LOG_SLI, 8336 "(%d):2597 Sync Mailbox command " 8337 "x%x (x%x/x%x) failure: " 8338 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8339 "Data: x%x x%x\n,", 8340 mboxq->vport ? mboxq->vport->vpi : 0, 8341 mboxq->u.mb.mbxCommand, 8342 lpfc_sli_config_mbox_subsys_get(phba, 8343 mboxq), 8344 lpfc_sli_config_mbox_opcode_get(phba, 8345 mboxq), 8346 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8347 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8348 bf_get(lpfc_mcqe_ext_status, 8349 &mboxq->mcqe), 8350 psli->sli_flag, flag); 8351 /* Unblock the async mailbox posting afterward */ 8352 lpfc_sli4_async_mbox_unblock(phba); 8353 } 8354 return rc; 8355 } 8356 8357 /* Now, interrupt mode asynchrous mailbox command */ 8358 rc = lpfc_mbox_cmd_check(phba, mboxq); 8359 if (rc) { 8360 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8361 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8362 "cannot issue Data: x%x x%x\n", 8363 mboxq->vport ? mboxq->vport->vpi : 0, 8364 mboxq->u.mb.mbxCommand, 8365 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8366 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8367 psli->sli_flag, flag); 8368 goto out_not_finished; 8369 } 8370 8371 /* Put the mailbox command to the driver internal FIFO */ 8372 psli->slistat.mbox_busy++; 8373 spin_lock_irqsave(&phba->hbalock, iflags); 8374 lpfc_mbox_put(phba, mboxq); 8375 spin_unlock_irqrestore(&phba->hbalock, iflags); 8376 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8377 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8378 "x%x (x%x/x%x) x%x x%x x%x\n", 8379 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8380 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8381 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8382 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8383 phba->pport->port_state, 8384 psli->sli_flag, MBX_NOWAIT); 8385 /* Wake up worker thread to transport mailbox command from head */ 8386 lpfc_worker_wake_up(phba); 8387 8388 return MBX_BUSY; 8389 8390 out_not_finished: 8391 return MBX_NOT_FINISHED; 8392 } 8393 8394 /** 8395 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8396 * @phba: Pointer to HBA context object. 8397 * 8398 * This function is called by worker thread to send a mailbox command to 8399 * SLI4 HBA firmware. 8400 * 8401 **/ 8402 int 8403 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8404 { 8405 struct lpfc_sli *psli = &phba->sli; 8406 LPFC_MBOXQ_t *mboxq; 8407 int rc = MBX_SUCCESS; 8408 unsigned long iflags; 8409 struct lpfc_mqe *mqe; 8410 uint32_t mbx_cmnd; 8411 8412 /* Check interrupt mode before post async mailbox command */ 8413 if (unlikely(!phba->sli4_hba.intr_enable)) 8414 return MBX_NOT_FINISHED; 8415 8416 /* Check for mailbox command service token */ 8417 spin_lock_irqsave(&phba->hbalock, iflags); 8418 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8419 spin_unlock_irqrestore(&phba->hbalock, iflags); 8420 return MBX_NOT_FINISHED; 8421 } 8422 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8423 spin_unlock_irqrestore(&phba->hbalock, iflags); 8424 return MBX_NOT_FINISHED; 8425 } 8426 if (unlikely(phba->sli.mbox_active)) { 8427 spin_unlock_irqrestore(&phba->hbalock, iflags); 8428 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8429 "0384 There is pending active mailbox cmd\n"); 8430 return MBX_NOT_FINISHED; 8431 } 8432 /* Take the mailbox command service token */ 8433 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8434 8435 /* Get the next mailbox command from head of queue */ 8436 mboxq = lpfc_mbox_get(phba); 8437 8438 /* If no more mailbox command waiting for post, we're done */ 8439 if (!mboxq) { 8440 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8441 spin_unlock_irqrestore(&phba->hbalock, iflags); 8442 return MBX_SUCCESS; 8443 } 8444 phba->sli.mbox_active = mboxq; 8445 spin_unlock_irqrestore(&phba->hbalock, iflags); 8446 8447 /* Check device readiness for posting mailbox command */ 8448 rc = lpfc_mbox_dev_check(phba); 8449 if (unlikely(rc)) 8450 /* Driver clean routine will clean up pending mailbox */ 8451 goto out_not_finished; 8452 8453 /* Prepare the mbox command to be posted */ 8454 mqe = &mboxq->u.mqe; 8455 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8456 8457 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8458 mod_timer(&psli->mbox_tmo, (jiffies + 8459 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8460 8461 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8462 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8463 "x%x x%x\n", 8464 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8465 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8466 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8467 phba->pport->port_state, psli->sli_flag); 8468 8469 if (mbx_cmnd != MBX_HEARTBEAT) { 8470 if (mboxq->vport) { 8471 lpfc_debugfs_disc_trc(mboxq->vport, 8472 LPFC_DISC_TRC_MBOX_VPORT, 8473 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8474 mbx_cmnd, mqe->un.mb_words[0], 8475 mqe->un.mb_words[1]); 8476 } else { 8477 lpfc_debugfs_disc_trc(phba->pport, 8478 LPFC_DISC_TRC_MBOX, 8479 "MBOX Send: cmd:x%x mb:x%x x%x", 8480 mbx_cmnd, mqe->un.mb_words[0], 8481 mqe->un.mb_words[1]); 8482 } 8483 } 8484 psli->slistat.mbox_cmd++; 8485 8486 /* Post the mailbox command to the port */ 8487 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8488 if (rc != MBX_SUCCESS) { 8489 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8490 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8491 "cannot issue Data: x%x x%x\n", 8492 mboxq->vport ? mboxq->vport->vpi : 0, 8493 mboxq->u.mb.mbxCommand, 8494 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8495 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8496 psli->sli_flag, MBX_NOWAIT); 8497 goto out_not_finished; 8498 } 8499 8500 return rc; 8501 8502 out_not_finished: 8503 spin_lock_irqsave(&phba->hbalock, iflags); 8504 if (phba->sli.mbox_active) { 8505 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8506 __lpfc_mbox_cmpl_put(phba, mboxq); 8507 /* Release the token */ 8508 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8509 phba->sli.mbox_active = NULL; 8510 } 8511 spin_unlock_irqrestore(&phba->hbalock, iflags); 8512 8513 return MBX_NOT_FINISHED; 8514 } 8515 8516 /** 8517 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8518 * @phba: Pointer to HBA context object. 8519 * @pmbox: Pointer to mailbox object. 8520 * @flag: Flag indicating how the mailbox need to be processed. 8521 * 8522 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8523 * the API jump table function pointer from the lpfc_hba struct. 8524 * 8525 * Return codes the caller owns the mailbox command after the return of the 8526 * function. 8527 **/ 8528 int 8529 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8530 { 8531 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8532 } 8533 8534 /** 8535 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8536 * @phba: The hba struct for which this call is being executed. 8537 * @dev_grp: The HBA PCI-Device group number. 8538 * 8539 * This routine sets up the mbox interface API function jump table in @phba 8540 * struct. 8541 * Returns: 0 - success, -ENODEV - failure. 8542 **/ 8543 int 8544 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8545 { 8546 8547 switch (dev_grp) { 8548 case LPFC_PCI_DEV_LP: 8549 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8550 phba->lpfc_sli_handle_slow_ring_event = 8551 lpfc_sli_handle_slow_ring_event_s3; 8552 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8553 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8554 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8555 break; 8556 case LPFC_PCI_DEV_OC: 8557 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8558 phba->lpfc_sli_handle_slow_ring_event = 8559 lpfc_sli_handle_slow_ring_event_s4; 8560 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8561 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8562 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8563 break; 8564 default: 8565 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8566 "1420 Invalid HBA PCI-device group: 0x%x\n", 8567 dev_grp); 8568 return -ENODEV; 8569 break; 8570 } 8571 return 0; 8572 } 8573 8574 /** 8575 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8576 * @phba: Pointer to HBA context object. 8577 * @pring: Pointer to driver SLI ring object. 8578 * @piocb: Pointer to address of newly added command iocb. 8579 * 8580 * This function is called with hbalock held to add a command 8581 * iocb to the txq when SLI layer cannot submit the command iocb 8582 * to the ring. 8583 **/ 8584 void 8585 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8586 struct lpfc_iocbq *piocb) 8587 { 8588 lockdep_assert_held(&phba->hbalock); 8589 /* Insert the caller's iocb in the txq tail for later processing. */ 8590 list_add_tail(&piocb->list, &pring->txq); 8591 } 8592 8593 /** 8594 * lpfc_sli_next_iocb - Get the next iocb in the txq 8595 * @phba: Pointer to HBA context object. 8596 * @pring: Pointer to driver SLI ring object. 8597 * @piocb: Pointer to address of newly added command iocb. 8598 * 8599 * This function is called with hbalock held before a new 8600 * iocb is submitted to the firmware. This function checks 8601 * txq to flush the iocbs in txq to Firmware before 8602 * submitting new iocbs to the Firmware. 8603 * If there are iocbs in the txq which need to be submitted 8604 * to firmware, lpfc_sli_next_iocb returns the first element 8605 * of the txq after dequeuing it from txq. 8606 * If there is no iocb in the txq then the function will return 8607 * *piocb and *piocb is set to NULL. Caller needs to check 8608 * *piocb to find if there are more commands in the txq. 8609 **/ 8610 static struct lpfc_iocbq * 8611 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8612 struct lpfc_iocbq **piocb) 8613 { 8614 struct lpfc_iocbq * nextiocb; 8615 8616 lockdep_assert_held(&phba->hbalock); 8617 8618 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8619 if (!nextiocb) { 8620 nextiocb = *piocb; 8621 *piocb = NULL; 8622 } 8623 8624 return nextiocb; 8625 } 8626 8627 /** 8628 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8629 * @phba: Pointer to HBA context object. 8630 * @ring_number: SLI ring number to issue iocb on. 8631 * @piocb: Pointer to command iocb. 8632 * @flag: Flag indicating if this command can be put into txq. 8633 * 8634 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8635 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8636 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8637 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8638 * this function allows only iocbs for posting buffers. This function finds 8639 * next available slot in the command ring and posts the command to the 8640 * available slot and writes the port attention register to request HBA start 8641 * processing new iocb. If there is no slot available in the ring and 8642 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8643 * the function returns IOCB_BUSY. 8644 * 8645 * This function is called with hbalock held. The function will return success 8646 * after it successfully submit the iocb to firmware or after adding to the 8647 * txq. 8648 **/ 8649 static int 8650 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8651 struct lpfc_iocbq *piocb, uint32_t flag) 8652 { 8653 struct lpfc_iocbq *nextiocb; 8654 IOCB_t *iocb; 8655 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8656 8657 lockdep_assert_held(&phba->hbalock); 8658 8659 if (piocb->iocb_cmpl && (!piocb->vport) && 8660 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8661 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8662 lpfc_printf_log(phba, KERN_ERR, 8663 LOG_SLI | LOG_VPORT, 8664 "1807 IOCB x%x failed. No vport\n", 8665 piocb->iocb.ulpCommand); 8666 dump_stack(); 8667 return IOCB_ERROR; 8668 } 8669 8670 8671 /* If the PCI channel is in offline state, do not post iocbs. */ 8672 if (unlikely(pci_channel_offline(phba->pcidev))) 8673 return IOCB_ERROR; 8674 8675 /* If HBA has a deferred error attention, fail the iocb. */ 8676 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8677 return IOCB_ERROR; 8678 8679 /* 8680 * We should never get an IOCB if we are in a < LINK_DOWN state 8681 */ 8682 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8683 return IOCB_ERROR; 8684 8685 /* 8686 * Check to see if we are blocking IOCB processing because of a 8687 * outstanding event. 8688 */ 8689 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8690 goto iocb_busy; 8691 8692 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8693 /* 8694 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8695 * can be issued if the link is not up. 8696 */ 8697 switch (piocb->iocb.ulpCommand) { 8698 case CMD_GEN_REQUEST64_CR: 8699 case CMD_GEN_REQUEST64_CX: 8700 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8701 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8702 FC_RCTL_DD_UNSOL_CMD) || 8703 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8704 MENLO_TRANSPORT_TYPE)) 8705 8706 goto iocb_busy; 8707 break; 8708 case CMD_QUE_RING_BUF_CN: 8709 case CMD_QUE_RING_BUF64_CN: 8710 /* 8711 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8712 * completion, iocb_cmpl MUST be 0. 8713 */ 8714 if (piocb->iocb_cmpl) 8715 piocb->iocb_cmpl = NULL; 8716 /*FALLTHROUGH*/ 8717 case CMD_CREATE_XRI_CR: 8718 case CMD_CLOSE_XRI_CN: 8719 case CMD_CLOSE_XRI_CX: 8720 break; 8721 default: 8722 goto iocb_busy; 8723 } 8724 8725 /* 8726 * For FCP commands, we must be in a state where we can process link 8727 * attention events. 8728 */ 8729 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8730 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8731 goto iocb_busy; 8732 } 8733 8734 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8735 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8736 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8737 8738 if (iocb) 8739 lpfc_sli_update_ring(phba, pring); 8740 else 8741 lpfc_sli_update_full_ring(phba, pring); 8742 8743 if (!piocb) 8744 return IOCB_SUCCESS; 8745 8746 goto out_busy; 8747 8748 iocb_busy: 8749 pring->stats.iocb_cmd_delay++; 8750 8751 out_busy: 8752 8753 if (!(flag & SLI_IOCB_RET_IOCB)) { 8754 __lpfc_sli_ringtx_put(phba, pring, piocb); 8755 return IOCB_SUCCESS; 8756 } 8757 8758 return IOCB_BUSY; 8759 } 8760 8761 /** 8762 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8763 * @phba: Pointer to HBA context object. 8764 * @piocb: Pointer to command iocb. 8765 * @sglq: Pointer to the scatter gather queue object. 8766 * 8767 * This routine converts the bpl or bde that is in the IOCB 8768 * to a sgl list for the sli4 hardware. The physical address 8769 * of the bpl/bde is converted back to a virtual address. 8770 * If the IOCB contains a BPL then the list of BDE's is 8771 * converted to sli4_sge's. If the IOCB contains a single 8772 * BDE then it is converted to a single sli_sge. 8773 * The IOCB is still in cpu endianess so the contents of 8774 * the bpl can be used without byte swapping. 8775 * 8776 * Returns valid XRI = Success, NO_XRI = Failure. 8777 **/ 8778 static uint16_t 8779 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8780 struct lpfc_sglq *sglq) 8781 { 8782 uint16_t xritag = NO_XRI; 8783 struct ulp_bde64 *bpl = NULL; 8784 struct ulp_bde64 bde; 8785 struct sli4_sge *sgl = NULL; 8786 struct lpfc_dmabuf *dmabuf; 8787 IOCB_t *icmd; 8788 int numBdes = 0; 8789 int i = 0; 8790 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8791 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8792 8793 if (!piocbq || !sglq) 8794 return xritag; 8795 8796 sgl = (struct sli4_sge *)sglq->sgl; 8797 icmd = &piocbq->iocb; 8798 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8799 return sglq->sli4_xritag; 8800 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8801 numBdes = icmd->un.genreq64.bdl.bdeSize / 8802 sizeof(struct ulp_bde64); 8803 /* The addrHigh and addrLow fields within the IOCB 8804 * have not been byteswapped yet so there is no 8805 * need to swap them back. 8806 */ 8807 if (piocbq->context3) 8808 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8809 else 8810 return xritag; 8811 8812 bpl = (struct ulp_bde64 *)dmabuf->virt; 8813 if (!bpl) 8814 return xritag; 8815 8816 for (i = 0; i < numBdes; i++) { 8817 /* Should already be byte swapped. */ 8818 sgl->addr_hi = bpl->addrHigh; 8819 sgl->addr_lo = bpl->addrLow; 8820 8821 sgl->word2 = le32_to_cpu(sgl->word2); 8822 if ((i+1) == numBdes) 8823 bf_set(lpfc_sli4_sge_last, sgl, 1); 8824 else 8825 bf_set(lpfc_sli4_sge_last, sgl, 0); 8826 /* swap the size field back to the cpu so we 8827 * can assign it to the sgl. 8828 */ 8829 bde.tus.w = le32_to_cpu(bpl->tus.w); 8830 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8831 /* The offsets in the sgl need to be accumulated 8832 * separately for the request and reply lists. 8833 * The request is always first, the reply follows. 8834 */ 8835 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8836 /* add up the reply sg entries */ 8837 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8838 inbound++; 8839 /* first inbound? reset the offset */ 8840 if (inbound == 1) 8841 offset = 0; 8842 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8843 bf_set(lpfc_sli4_sge_type, sgl, 8844 LPFC_SGE_TYPE_DATA); 8845 offset += bde.tus.f.bdeSize; 8846 } 8847 sgl->word2 = cpu_to_le32(sgl->word2); 8848 bpl++; 8849 sgl++; 8850 } 8851 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8852 /* The addrHigh and addrLow fields of the BDE have not 8853 * been byteswapped yet so they need to be swapped 8854 * before putting them in the sgl. 8855 */ 8856 sgl->addr_hi = 8857 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8858 sgl->addr_lo = 8859 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8860 sgl->word2 = le32_to_cpu(sgl->word2); 8861 bf_set(lpfc_sli4_sge_last, sgl, 1); 8862 sgl->word2 = cpu_to_le32(sgl->word2); 8863 sgl->sge_len = 8864 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8865 } 8866 return sglq->sli4_xritag; 8867 } 8868 8869 /** 8870 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8871 * @phba: Pointer to HBA context object. 8872 * @piocb: Pointer to command iocb. 8873 * @wqe: Pointer to the work queue entry. 8874 * 8875 * This routine converts the iocb command to its Work Queue Entry 8876 * equivalent. The wqe pointer should not have any fields set when 8877 * this routine is called because it will memcpy over them. 8878 * This routine does not set the CQ_ID or the WQEC bits in the 8879 * wqe. 8880 * 8881 * Returns: 0 = Success, IOCB_ERROR = Failure. 8882 **/ 8883 static int 8884 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8885 union lpfc_wqe128 *wqe) 8886 { 8887 uint32_t xmit_len = 0, total_len = 0; 8888 uint8_t ct = 0; 8889 uint32_t fip; 8890 uint32_t abort_tag; 8891 uint8_t command_type = ELS_COMMAND_NON_FIP; 8892 uint8_t cmnd; 8893 uint16_t xritag; 8894 uint16_t abrt_iotag; 8895 struct lpfc_iocbq *abrtiocbq; 8896 struct ulp_bde64 *bpl = NULL; 8897 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8898 int numBdes, i; 8899 struct ulp_bde64 bde; 8900 struct lpfc_nodelist *ndlp; 8901 uint32_t *pcmd; 8902 uint32_t if_type; 8903 8904 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8905 /* The fcp commands will set command type */ 8906 if (iocbq->iocb_flag & LPFC_IO_FCP) 8907 command_type = FCP_COMMAND; 8908 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8909 command_type = ELS_COMMAND_FIP; 8910 else 8911 command_type = ELS_COMMAND_NON_FIP; 8912 8913 if (phba->fcp_embed_io) 8914 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8915 /* Some of the fields are in the right position already */ 8916 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8917 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 8918 /* The ct field has moved so reset */ 8919 wqe->generic.wqe_com.word7 = 0; 8920 wqe->generic.wqe_com.word10 = 0; 8921 } 8922 8923 abort_tag = (uint32_t) iocbq->iotag; 8924 xritag = iocbq->sli4_xritag; 8925 /* words0-2 bpl convert bde */ 8926 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8927 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8928 sizeof(struct ulp_bde64); 8929 bpl = (struct ulp_bde64 *) 8930 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8931 if (!bpl) 8932 return IOCB_ERROR; 8933 8934 /* Should already be byte swapped. */ 8935 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8936 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8937 /* swap the size field back to the cpu so we 8938 * can assign it to the sgl. 8939 */ 8940 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8941 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8942 total_len = 0; 8943 for (i = 0; i < numBdes; i++) { 8944 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8945 total_len += bde.tus.f.bdeSize; 8946 } 8947 } else 8948 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8949 8950 iocbq->iocb.ulpIoTag = iocbq->iotag; 8951 cmnd = iocbq->iocb.ulpCommand; 8952 8953 switch (iocbq->iocb.ulpCommand) { 8954 case CMD_ELS_REQUEST64_CR: 8955 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8956 ndlp = iocbq->context_un.ndlp; 8957 else 8958 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8959 if (!iocbq->iocb.ulpLe) { 8960 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8961 "2007 Only Limited Edition cmd Format" 8962 " supported 0x%x\n", 8963 iocbq->iocb.ulpCommand); 8964 return IOCB_ERROR; 8965 } 8966 8967 wqe->els_req.payload_len = xmit_len; 8968 /* Els_reguest64 has a TMO */ 8969 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8970 iocbq->iocb.ulpTimeout); 8971 /* Need a VF for word 4 set the vf bit*/ 8972 bf_set(els_req64_vf, &wqe->els_req, 0); 8973 /* And a VFID for word 12 */ 8974 bf_set(els_req64_vfid, &wqe->els_req, 0); 8975 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8976 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8977 iocbq->iocb.ulpContext); 8978 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8979 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8980 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8981 if (command_type == ELS_COMMAND_FIP) 8982 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8983 >> LPFC_FIP_ELS_ID_SHIFT); 8984 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8985 iocbq->context2)->virt); 8986 if_type = bf_get(lpfc_sli_intf_if_type, 8987 &phba->sli4_hba.sli_intf); 8988 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 8989 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8990 *pcmd == ELS_CMD_SCR || 8991 *pcmd == ELS_CMD_FDISC || 8992 *pcmd == ELS_CMD_LOGO || 8993 *pcmd == ELS_CMD_PLOGI)) { 8994 bf_set(els_req64_sp, &wqe->els_req, 1); 8995 bf_set(els_req64_sid, &wqe->els_req, 8996 iocbq->vport->fc_myDID); 8997 if ((*pcmd == ELS_CMD_FLOGI) && 8998 !(phba->fc_topology == 8999 LPFC_TOPOLOGY_LOOP)) 9000 bf_set(els_req64_sid, &wqe->els_req, 0); 9001 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9002 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9003 phba->vpi_ids[iocbq->vport->vpi]); 9004 } else if (pcmd && iocbq->context1) { 9005 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9006 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9007 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9008 } 9009 } 9010 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9011 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9012 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9013 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9014 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9015 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9016 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9017 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9018 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9019 break; 9020 case CMD_XMIT_SEQUENCE64_CX: 9021 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9022 iocbq->iocb.un.ulpWord[3]); 9023 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9024 iocbq->iocb.unsli3.rcvsli3.ox_id); 9025 /* The entire sequence is transmitted for this IOCB */ 9026 xmit_len = total_len; 9027 cmnd = CMD_XMIT_SEQUENCE64_CR; 9028 if (phba->link_flag & LS_LOOPBACK_MODE) 9029 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9030 case CMD_XMIT_SEQUENCE64_CR: 9031 /* word3 iocb=io_tag32 wqe=reserved */ 9032 wqe->xmit_sequence.rsvd3 = 0; 9033 /* word4 relative_offset memcpy */ 9034 /* word5 r_ctl/df_ctl memcpy */ 9035 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9036 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9037 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9038 LPFC_WQE_IOD_WRITE); 9039 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9040 LPFC_WQE_LENLOC_WORD12); 9041 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9042 wqe->xmit_sequence.xmit_len = xmit_len; 9043 command_type = OTHER_COMMAND; 9044 break; 9045 case CMD_XMIT_BCAST64_CN: 9046 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9047 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9048 /* word4 iocb=rsvd wqe=rsvd */ 9049 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9050 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9051 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9052 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9053 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9054 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9055 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9056 LPFC_WQE_LENLOC_WORD3); 9057 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9058 break; 9059 case CMD_FCP_IWRITE64_CR: 9060 command_type = FCP_COMMAND_DATA_OUT; 9061 /* word3 iocb=iotag wqe=payload_offset_len */ 9062 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9063 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9064 xmit_len + sizeof(struct fcp_rsp)); 9065 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9066 0); 9067 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9068 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9069 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9070 iocbq->iocb.ulpFCP2Rcvy); 9071 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9072 /* Always open the exchange */ 9073 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9074 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9075 LPFC_WQE_LENLOC_WORD4); 9076 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9077 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9078 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9079 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9080 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9081 if (iocbq->priority) { 9082 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9083 (iocbq->priority << 1)); 9084 } else { 9085 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9086 (phba->cfg_XLanePriority << 1)); 9087 } 9088 } 9089 /* Note, word 10 is already initialized to 0 */ 9090 9091 /* Don't set PBDE for Perf hints, just fcp_embed_pbde */ 9092 if (phba->fcp_embed_pbde) 9093 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9094 else 9095 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9096 9097 if (phba->fcp_embed_io) { 9098 struct lpfc_scsi_buf *lpfc_cmd; 9099 struct sli4_sge *sgl; 9100 struct fcp_cmnd *fcp_cmnd; 9101 uint32_t *ptr; 9102 9103 /* 128 byte wqe support here */ 9104 9105 lpfc_cmd = iocbq->context1; 9106 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9107 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9108 9109 /* Word 0-2 - FCP_CMND */ 9110 wqe->generic.bde.tus.f.bdeFlags = 9111 BUFF_TYPE_BDE_IMMED; 9112 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9113 wqe->generic.bde.addrHigh = 0; 9114 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9115 9116 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9117 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9118 9119 /* Word 22-29 FCP CMND Payload */ 9120 ptr = &wqe->words[22]; 9121 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9122 } 9123 break; 9124 case CMD_FCP_IREAD64_CR: 9125 /* word3 iocb=iotag wqe=payload_offset_len */ 9126 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9127 bf_set(payload_offset_len, &wqe->fcp_iread, 9128 xmit_len + sizeof(struct fcp_rsp)); 9129 bf_set(cmd_buff_len, &wqe->fcp_iread, 9130 0); 9131 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9132 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9133 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9134 iocbq->iocb.ulpFCP2Rcvy); 9135 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9136 /* Always open the exchange */ 9137 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9138 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9139 LPFC_WQE_LENLOC_WORD4); 9140 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9141 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9142 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9143 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9144 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9145 if (iocbq->priority) { 9146 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9147 (iocbq->priority << 1)); 9148 } else { 9149 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9150 (phba->cfg_XLanePriority << 1)); 9151 } 9152 } 9153 /* Note, word 10 is already initialized to 0 */ 9154 9155 /* Don't set PBDE for Perf hints, just fcp_embed_pbde */ 9156 if (phba->fcp_embed_pbde) 9157 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9158 else 9159 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9160 9161 if (phba->fcp_embed_io) { 9162 struct lpfc_scsi_buf *lpfc_cmd; 9163 struct sli4_sge *sgl; 9164 struct fcp_cmnd *fcp_cmnd; 9165 uint32_t *ptr; 9166 9167 /* 128 byte wqe support here */ 9168 9169 lpfc_cmd = iocbq->context1; 9170 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9171 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9172 9173 /* Word 0-2 - FCP_CMND */ 9174 wqe->generic.bde.tus.f.bdeFlags = 9175 BUFF_TYPE_BDE_IMMED; 9176 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9177 wqe->generic.bde.addrHigh = 0; 9178 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9179 9180 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9181 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9182 9183 /* Word 22-29 FCP CMND Payload */ 9184 ptr = &wqe->words[22]; 9185 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9186 } 9187 break; 9188 case CMD_FCP_ICMND64_CR: 9189 /* word3 iocb=iotag wqe=payload_offset_len */ 9190 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9191 bf_set(payload_offset_len, &wqe->fcp_icmd, 9192 xmit_len + sizeof(struct fcp_rsp)); 9193 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9194 0); 9195 /* word3 iocb=IO_TAG wqe=reserved */ 9196 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9197 /* Always open the exchange */ 9198 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9199 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9200 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9201 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9202 LPFC_WQE_LENLOC_NONE); 9203 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9204 iocbq->iocb.ulpFCP2Rcvy); 9205 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9206 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9207 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9208 if (iocbq->priority) { 9209 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9210 (iocbq->priority << 1)); 9211 } else { 9212 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9213 (phba->cfg_XLanePriority << 1)); 9214 } 9215 } 9216 /* Note, word 10 is already initialized to 0 */ 9217 9218 if (phba->fcp_embed_io) { 9219 struct lpfc_scsi_buf *lpfc_cmd; 9220 struct sli4_sge *sgl; 9221 struct fcp_cmnd *fcp_cmnd; 9222 uint32_t *ptr; 9223 9224 /* 128 byte wqe support here */ 9225 9226 lpfc_cmd = iocbq->context1; 9227 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9228 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9229 9230 /* Word 0-2 - FCP_CMND */ 9231 wqe->generic.bde.tus.f.bdeFlags = 9232 BUFF_TYPE_BDE_IMMED; 9233 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9234 wqe->generic.bde.addrHigh = 0; 9235 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9236 9237 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9238 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9239 9240 /* Word 22-29 FCP CMND Payload */ 9241 ptr = &wqe->words[22]; 9242 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9243 } 9244 break; 9245 case CMD_GEN_REQUEST64_CR: 9246 /* For this command calculate the xmit length of the 9247 * request bde. 9248 */ 9249 xmit_len = 0; 9250 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9251 sizeof(struct ulp_bde64); 9252 for (i = 0; i < numBdes; i++) { 9253 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9254 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9255 break; 9256 xmit_len += bde.tus.f.bdeSize; 9257 } 9258 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9259 wqe->gen_req.request_payload_len = xmit_len; 9260 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9261 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9262 /* word6 context tag copied in memcpy */ 9263 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9264 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9265 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9266 "2015 Invalid CT %x command 0x%x\n", 9267 ct, iocbq->iocb.ulpCommand); 9268 return IOCB_ERROR; 9269 } 9270 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9271 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9272 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9273 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9274 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9275 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9276 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9277 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9278 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9279 command_type = OTHER_COMMAND; 9280 break; 9281 case CMD_XMIT_ELS_RSP64_CX: 9282 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9283 /* words0-2 BDE memcpy */ 9284 /* word3 iocb=iotag32 wqe=response_payload_len */ 9285 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9286 /* word4 */ 9287 wqe->xmit_els_rsp.word4 = 0; 9288 /* word5 iocb=rsvd wge=did */ 9289 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9290 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9291 9292 if_type = bf_get(lpfc_sli_intf_if_type, 9293 &phba->sli4_hba.sli_intf); 9294 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9295 if (iocbq->vport->fc_flag & FC_PT2PT) { 9296 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9297 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9298 iocbq->vport->fc_myDID); 9299 if (iocbq->vport->fc_myDID == Fabric_DID) { 9300 bf_set(wqe_els_did, 9301 &wqe->xmit_els_rsp.wqe_dest, 0); 9302 } 9303 } 9304 } 9305 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9306 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9307 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9308 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9309 iocbq->iocb.unsli3.rcvsli3.ox_id); 9310 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9311 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9312 phba->vpi_ids[iocbq->vport->vpi]); 9313 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9314 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9315 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9316 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9317 LPFC_WQE_LENLOC_WORD3); 9318 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9319 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9320 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9321 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9322 iocbq->context2)->virt); 9323 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9324 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9325 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9326 iocbq->vport->fc_myDID); 9327 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9328 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9329 phba->vpi_ids[phba->pport->vpi]); 9330 } 9331 command_type = OTHER_COMMAND; 9332 break; 9333 case CMD_CLOSE_XRI_CN: 9334 case CMD_ABORT_XRI_CN: 9335 case CMD_ABORT_XRI_CX: 9336 /* words 0-2 memcpy should be 0 rserved */ 9337 /* port will send abts */ 9338 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9339 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9340 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9341 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9342 } else 9343 fip = 0; 9344 9345 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9346 /* 9347 * The link is down, or the command was ELS_FIP 9348 * so the fw does not need to send abts 9349 * on the wire. 9350 */ 9351 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9352 else 9353 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9354 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9355 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9356 wqe->abort_cmd.rsrvd5 = 0; 9357 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9358 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9359 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9360 /* 9361 * The abort handler will send us CMD_ABORT_XRI_CN or 9362 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9363 */ 9364 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9365 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9366 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9367 LPFC_WQE_LENLOC_NONE); 9368 cmnd = CMD_ABORT_XRI_CX; 9369 command_type = OTHER_COMMAND; 9370 xritag = 0; 9371 break; 9372 case CMD_XMIT_BLS_RSP64_CX: 9373 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9374 /* As BLS ABTS RSP WQE is very different from other WQEs, 9375 * we re-construct this WQE here based on information in 9376 * iocbq from scratch. 9377 */ 9378 memset(wqe, 0, sizeof(union lpfc_wqe)); 9379 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9380 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9381 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9382 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9383 LPFC_ABTS_UNSOL_INT) { 9384 /* ABTS sent by initiator to CT exchange, the 9385 * RX_ID field will be filled with the newly 9386 * allocated responder XRI. 9387 */ 9388 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9389 iocbq->sli4_xritag); 9390 } else { 9391 /* ABTS sent by responder to CT exchange, the 9392 * RX_ID field will be filled with the responder 9393 * RX_ID from ABTS. 9394 */ 9395 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9396 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9397 } 9398 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9399 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9400 9401 /* Use CT=VPI */ 9402 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9403 ndlp->nlp_DID); 9404 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9405 iocbq->iocb.ulpContext); 9406 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9407 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9408 phba->vpi_ids[phba->pport->vpi]); 9409 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9410 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9411 LPFC_WQE_LENLOC_NONE); 9412 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9413 command_type = OTHER_COMMAND; 9414 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9415 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9416 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9417 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9418 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9419 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9420 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9421 } 9422 9423 break; 9424 case CMD_SEND_FRAME: 9425 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9426 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9427 return 0; 9428 case CMD_XRI_ABORTED_CX: 9429 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9430 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9431 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9432 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9433 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9434 default: 9435 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9436 "2014 Invalid command 0x%x\n", 9437 iocbq->iocb.ulpCommand); 9438 return IOCB_ERROR; 9439 break; 9440 } 9441 9442 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9443 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9444 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9445 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9446 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9447 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9448 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9449 LPFC_IO_DIF_INSERT); 9450 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9451 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9452 wqe->generic.wqe_com.abort_tag = abort_tag; 9453 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9454 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9455 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9456 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9457 return 0; 9458 } 9459 9460 /** 9461 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9462 * @phba: Pointer to HBA context object. 9463 * @ring_number: SLI ring number to issue iocb on. 9464 * @piocb: Pointer to command iocb. 9465 * @flag: Flag indicating if this command can be put into txq. 9466 * 9467 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9468 * an iocb command to an HBA with SLI-4 interface spec. 9469 * 9470 * This function is called with hbalock held. The function will return success 9471 * after it successfully submit the iocb to firmware or after adding to the 9472 * txq. 9473 **/ 9474 static int 9475 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9476 struct lpfc_iocbq *piocb, uint32_t flag) 9477 { 9478 struct lpfc_sglq *sglq; 9479 union lpfc_wqe128 wqe; 9480 struct lpfc_queue *wq; 9481 struct lpfc_sli_ring *pring; 9482 9483 /* Get the WQ */ 9484 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9485 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9486 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9487 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9488 else 9489 wq = phba->sli4_hba.oas_wq; 9490 } else { 9491 wq = phba->sli4_hba.els_wq; 9492 } 9493 9494 /* Get corresponding ring */ 9495 pring = wq->pring; 9496 9497 /* 9498 * The WQE can be either 64 or 128 bytes, 9499 */ 9500 9501 lockdep_assert_held(&phba->hbalock); 9502 9503 if (piocb->sli4_xritag == NO_XRI) { 9504 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9505 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9506 sglq = NULL; 9507 else { 9508 if (!list_empty(&pring->txq)) { 9509 if (!(flag & SLI_IOCB_RET_IOCB)) { 9510 __lpfc_sli_ringtx_put(phba, 9511 pring, piocb); 9512 return IOCB_SUCCESS; 9513 } else { 9514 return IOCB_BUSY; 9515 } 9516 } else { 9517 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9518 if (!sglq) { 9519 if (!(flag & SLI_IOCB_RET_IOCB)) { 9520 __lpfc_sli_ringtx_put(phba, 9521 pring, 9522 piocb); 9523 return IOCB_SUCCESS; 9524 } else 9525 return IOCB_BUSY; 9526 } 9527 } 9528 } 9529 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9530 /* These IO's already have an XRI and a mapped sgl. */ 9531 sglq = NULL; 9532 else { 9533 /* 9534 * This is a continuation of a commandi,(CX) so this 9535 * sglq is on the active list 9536 */ 9537 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9538 if (!sglq) 9539 return IOCB_ERROR; 9540 } 9541 9542 if (sglq) { 9543 piocb->sli4_lxritag = sglq->sli4_lxritag; 9544 piocb->sli4_xritag = sglq->sli4_xritag; 9545 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9546 return IOCB_ERROR; 9547 } 9548 9549 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 9550 return IOCB_ERROR; 9551 9552 if (lpfc_sli4_wq_put(wq, &wqe)) 9553 return IOCB_ERROR; 9554 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9555 9556 return 0; 9557 } 9558 9559 /** 9560 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9561 * 9562 * This routine wraps the actual lockless version for issusing IOCB function 9563 * pointer from the lpfc_hba struct. 9564 * 9565 * Return codes: 9566 * IOCB_ERROR - Error 9567 * IOCB_SUCCESS - Success 9568 * IOCB_BUSY - Busy 9569 **/ 9570 int 9571 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9572 struct lpfc_iocbq *piocb, uint32_t flag) 9573 { 9574 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9575 } 9576 9577 /** 9578 * lpfc_sli_api_table_setup - Set up sli api function jump table 9579 * @phba: The hba struct for which this call is being executed. 9580 * @dev_grp: The HBA PCI-Device group number. 9581 * 9582 * This routine sets up the SLI interface API function jump table in @phba 9583 * struct. 9584 * Returns: 0 - success, -ENODEV - failure. 9585 **/ 9586 int 9587 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9588 { 9589 9590 switch (dev_grp) { 9591 case LPFC_PCI_DEV_LP: 9592 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9593 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9594 break; 9595 case LPFC_PCI_DEV_OC: 9596 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9597 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9598 break; 9599 default: 9600 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9601 "1419 Invalid HBA PCI-device group: 0x%x\n", 9602 dev_grp); 9603 return -ENODEV; 9604 break; 9605 } 9606 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9607 return 0; 9608 } 9609 9610 /** 9611 * lpfc_sli4_calc_ring - Calculates which ring to use 9612 * @phba: Pointer to HBA context object. 9613 * @piocb: Pointer to command iocb. 9614 * 9615 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9616 * hba_wqidx, thus we need to calculate the corresponding ring. 9617 * Since ABORTS must go on the same WQ of the command they are 9618 * aborting, we use command's hba_wqidx. 9619 */ 9620 struct lpfc_sli_ring * 9621 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9622 { 9623 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9624 if (!(phba->cfg_fof) || 9625 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9626 if (unlikely(!phba->sli4_hba.fcp_wq)) 9627 return NULL; 9628 /* 9629 * for abort iocb hba_wqidx should already 9630 * be setup based on what work queue we used. 9631 */ 9632 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9633 piocb->hba_wqidx = 9634 lpfc_sli4_scmd_to_wqidx_distr(phba, 9635 piocb->context1); 9636 piocb->hba_wqidx = piocb->hba_wqidx % 9637 phba->cfg_fcp_io_channel; 9638 } 9639 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9640 } else { 9641 if (unlikely(!phba->sli4_hba.oas_wq)) 9642 return NULL; 9643 piocb->hba_wqidx = 0; 9644 return phba->sli4_hba.oas_wq->pring; 9645 } 9646 } else { 9647 if (unlikely(!phba->sli4_hba.els_wq)) 9648 return NULL; 9649 piocb->hba_wqidx = 0; 9650 return phba->sli4_hba.els_wq->pring; 9651 } 9652 } 9653 9654 /** 9655 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9656 * @phba: Pointer to HBA context object. 9657 * @pring: Pointer to driver SLI ring object. 9658 * @piocb: Pointer to command iocb. 9659 * @flag: Flag indicating if this command can be put into txq. 9660 * 9661 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9662 * function. This function gets the hbalock and calls 9663 * __lpfc_sli_issue_iocb function and will return the error returned 9664 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9665 * functions which do not hold hbalock. 9666 **/ 9667 int 9668 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9669 struct lpfc_iocbq *piocb, uint32_t flag) 9670 { 9671 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9672 struct lpfc_sli_ring *pring; 9673 struct lpfc_queue *fpeq; 9674 struct lpfc_eqe *eqe; 9675 unsigned long iflags; 9676 int rc, idx; 9677 9678 if (phba->sli_rev == LPFC_SLI_REV4) { 9679 pring = lpfc_sli4_calc_ring(phba, piocb); 9680 if (unlikely(pring == NULL)) 9681 return IOCB_ERROR; 9682 9683 spin_lock_irqsave(&pring->ring_lock, iflags); 9684 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9685 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9686 9687 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9688 idx = piocb->hba_wqidx; 9689 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9690 9691 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9692 9693 /* Get associated EQ with this index */ 9694 fpeq = phba->sli4_hba.hba_eq[idx]; 9695 9696 /* Turn off interrupts from this EQ */ 9697 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 9698 9699 /* 9700 * Process all the events on FCP EQ 9701 */ 9702 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9703 lpfc_sli4_hba_handle_eqe(phba, 9704 eqe, idx); 9705 fpeq->EQ_processed++; 9706 } 9707 9708 /* Always clear and re-arm the EQ */ 9709 phba->sli4_hba.sli4_eq_release(fpeq, 9710 LPFC_QUEUE_REARM); 9711 } 9712 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9713 } 9714 } else { 9715 /* For now, SLI2/3 will still use hbalock */ 9716 spin_lock_irqsave(&phba->hbalock, iflags); 9717 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9718 spin_unlock_irqrestore(&phba->hbalock, iflags); 9719 } 9720 return rc; 9721 } 9722 9723 /** 9724 * lpfc_extra_ring_setup - Extra ring setup function 9725 * @phba: Pointer to HBA context object. 9726 * 9727 * This function is called while driver attaches with the 9728 * HBA to setup the extra ring. The extra ring is used 9729 * only when driver needs to support target mode functionality 9730 * or IP over FC functionalities. 9731 * 9732 * This function is called with no lock held. SLI3 only. 9733 **/ 9734 static int 9735 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9736 { 9737 struct lpfc_sli *psli; 9738 struct lpfc_sli_ring *pring; 9739 9740 psli = &phba->sli; 9741 9742 /* Adjust cmd/rsp ring iocb entries more evenly */ 9743 9744 /* Take some away from the FCP ring */ 9745 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9746 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9747 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9748 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9749 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9750 9751 /* and give them to the extra ring */ 9752 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9753 9754 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9755 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9756 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9757 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9758 9759 /* Setup default profile for this ring */ 9760 pring->iotag_max = 4096; 9761 pring->num_mask = 1; 9762 pring->prt[0].profile = 0; /* Mask 0 */ 9763 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9764 pring->prt[0].type = phba->cfg_multi_ring_type; 9765 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9766 return 0; 9767 } 9768 9769 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9770 * @phba: Pointer to HBA context object. 9771 * @iocbq: Pointer to iocb object. 9772 * 9773 * The async_event handler calls this routine when it receives 9774 * an ASYNC_STATUS_CN event from the port. The port generates 9775 * this event when an Abort Sequence request to an rport fails 9776 * twice in succession. The abort could be originated by the 9777 * driver or by the port. The ABTS could have been for an ELS 9778 * or FCP IO. The port only generates this event when an ABTS 9779 * fails to complete after one retry. 9780 */ 9781 static void 9782 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9783 struct lpfc_iocbq *iocbq) 9784 { 9785 struct lpfc_nodelist *ndlp = NULL; 9786 uint16_t rpi = 0, vpi = 0; 9787 struct lpfc_vport *vport = NULL; 9788 9789 /* The rpi in the ulpContext is vport-sensitive. */ 9790 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9791 rpi = iocbq->iocb.ulpContext; 9792 9793 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9794 "3092 Port generated ABTS async event " 9795 "on vpi %d rpi %d status 0x%x\n", 9796 vpi, rpi, iocbq->iocb.ulpStatus); 9797 9798 vport = lpfc_find_vport_by_vpid(phba, vpi); 9799 if (!vport) 9800 goto err_exit; 9801 ndlp = lpfc_findnode_rpi(vport, rpi); 9802 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9803 goto err_exit; 9804 9805 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9806 lpfc_sli_abts_recover_port(vport, ndlp); 9807 return; 9808 9809 err_exit: 9810 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9811 "3095 Event Context not found, no " 9812 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9813 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9814 vpi, rpi); 9815 } 9816 9817 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9818 * @phba: pointer to HBA context object. 9819 * @ndlp: nodelist pointer for the impacted rport. 9820 * @axri: pointer to the wcqe containing the failed exchange. 9821 * 9822 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9823 * port. The port generates this event when an abort exchange request to an 9824 * rport fails twice in succession with no reply. The abort could be originated 9825 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9826 */ 9827 void 9828 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9829 struct lpfc_nodelist *ndlp, 9830 struct sli4_wcqe_xri_aborted *axri) 9831 { 9832 struct lpfc_vport *vport; 9833 uint32_t ext_status = 0; 9834 9835 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9836 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9837 "3115 Node Context not found, driver " 9838 "ignoring abts err event\n"); 9839 return; 9840 } 9841 9842 vport = ndlp->vport; 9843 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9844 "3116 Port generated FCP XRI ABORT event on " 9845 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9846 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9847 bf_get(lpfc_wcqe_xa_xri, axri), 9848 bf_get(lpfc_wcqe_xa_status, axri), 9849 axri->parameter); 9850 9851 /* 9852 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9853 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9854 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9855 */ 9856 ext_status = axri->parameter & IOERR_PARAM_MASK; 9857 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9858 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9859 lpfc_sli_abts_recover_port(vport, ndlp); 9860 } 9861 9862 /** 9863 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9864 * @phba: Pointer to HBA context object. 9865 * @pring: Pointer to driver SLI ring object. 9866 * @iocbq: Pointer to iocb object. 9867 * 9868 * This function is called by the slow ring event handler 9869 * function when there is an ASYNC event iocb in the ring. 9870 * This function is called with no lock held. 9871 * Currently this function handles only temperature related 9872 * ASYNC events. The function decodes the temperature sensor 9873 * event message and posts events for the management applications. 9874 **/ 9875 static void 9876 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9877 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9878 { 9879 IOCB_t *icmd; 9880 uint16_t evt_code; 9881 struct temp_event temp_event_data; 9882 struct Scsi_Host *shost; 9883 uint32_t *iocb_w; 9884 9885 icmd = &iocbq->iocb; 9886 evt_code = icmd->un.asyncstat.evt_code; 9887 9888 switch (evt_code) { 9889 case ASYNC_TEMP_WARN: 9890 case ASYNC_TEMP_SAFE: 9891 temp_event_data.data = (uint32_t) icmd->ulpContext; 9892 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9893 if (evt_code == ASYNC_TEMP_WARN) { 9894 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9895 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9896 "0347 Adapter is very hot, please take " 9897 "corrective action. temperature : %d Celsius\n", 9898 (uint32_t) icmd->ulpContext); 9899 } else { 9900 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9901 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9902 "0340 Adapter temperature is OK now. " 9903 "temperature : %d Celsius\n", 9904 (uint32_t) icmd->ulpContext); 9905 } 9906 9907 /* Send temperature change event to applications */ 9908 shost = lpfc_shost_from_vport(phba->pport); 9909 fc_host_post_vendor_event(shost, fc_get_event_number(), 9910 sizeof(temp_event_data), (char *) &temp_event_data, 9911 LPFC_NL_VENDOR_ID); 9912 break; 9913 case ASYNC_STATUS_CN: 9914 lpfc_sli_abts_err_handler(phba, iocbq); 9915 break; 9916 default: 9917 iocb_w = (uint32_t *) icmd; 9918 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9919 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9920 " evt_code 0x%x\n" 9921 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9922 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9923 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9924 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9925 pring->ringno, icmd->un.asyncstat.evt_code, 9926 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9927 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9928 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9929 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9930 9931 break; 9932 } 9933 } 9934 9935 9936 /** 9937 * lpfc_sli4_setup - SLI ring setup function 9938 * @phba: Pointer to HBA context object. 9939 * 9940 * lpfc_sli_setup sets up rings of the SLI interface with 9941 * number of iocbs per ring and iotags. This function is 9942 * called while driver attach to the HBA and before the 9943 * interrupts are enabled. So there is no need for locking. 9944 * 9945 * This function always returns 0. 9946 **/ 9947 int 9948 lpfc_sli4_setup(struct lpfc_hba *phba) 9949 { 9950 struct lpfc_sli_ring *pring; 9951 9952 pring = phba->sli4_hba.els_wq->pring; 9953 pring->num_mask = LPFC_MAX_RING_MASK; 9954 pring->prt[0].profile = 0; /* Mask 0 */ 9955 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9956 pring->prt[0].type = FC_TYPE_ELS; 9957 pring->prt[0].lpfc_sli_rcv_unsol_event = 9958 lpfc_els_unsol_event; 9959 pring->prt[1].profile = 0; /* Mask 1 */ 9960 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9961 pring->prt[1].type = FC_TYPE_ELS; 9962 pring->prt[1].lpfc_sli_rcv_unsol_event = 9963 lpfc_els_unsol_event; 9964 pring->prt[2].profile = 0; /* Mask 2 */ 9965 /* NameServer Inquiry */ 9966 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9967 /* NameServer */ 9968 pring->prt[2].type = FC_TYPE_CT; 9969 pring->prt[2].lpfc_sli_rcv_unsol_event = 9970 lpfc_ct_unsol_event; 9971 pring->prt[3].profile = 0; /* Mask 3 */ 9972 /* NameServer response */ 9973 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9974 /* NameServer */ 9975 pring->prt[3].type = FC_TYPE_CT; 9976 pring->prt[3].lpfc_sli_rcv_unsol_event = 9977 lpfc_ct_unsol_event; 9978 return 0; 9979 } 9980 9981 /** 9982 * lpfc_sli_setup - SLI ring setup function 9983 * @phba: Pointer to HBA context object. 9984 * 9985 * lpfc_sli_setup sets up rings of the SLI interface with 9986 * number of iocbs per ring and iotags. This function is 9987 * called while driver attach to the HBA and before the 9988 * interrupts are enabled. So there is no need for locking. 9989 * 9990 * This function always returns 0. SLI3 only. 9991 **/ 9992 int 9993 lpfc_sli_setup(struct lpfc_hba *phba) 9994 { 9995 int i, totiocbsize = 0; 9996 struct lpfc_sli *psli = &phba->sli; 9997 struct lpfc_sli_ring *pring; 9998 9999 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10000 psli->sli_flag = 0; 10001 10002 psli->iocbq_lookup = NULL; 10003 psli->iocbq_lookup_len = 0; 10004 psli->last_iotag = 0; 10005 10006 for (i = 0; i < psli->num_rings; i++) { 10007 pring = &psli->sli3_ring[i]; 10008 switch (i) { 10009 case LPFC_FCP_RING: /* ring 0 - FCP */ 10010 /* numCiocb and numRiocb are used in config_port */ 10011 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10012 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10013 pring->sli.sli3.numCiocb += 10014 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10015 pring->sli.sli3.numRiocb += 10016 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10017 pring->sli.sli3.numCiocb += 10018 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10019 pring->sli.sli3.numRiocb += 10020 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10021 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10022 SLI3_IOCB_CMD_SIZE : 10023 SLI2_IOCB_CMD_SIZE; 10024 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10025 SLI3_IOCB_RSP_SIZE : 10026 SLI2_IOCB_RSP_SIZE; 10027 pring->iotag_ctr = 0; 10028 pring->iotag_max = 10029 (phba->cfg_hba_queue_depth * 2); 10030 pring->fast_iotag = pring->iotag_max; 10031 pring->num_mask = 0; 10032 break; 10033 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10034 /* numCiocb and numRiocb are used in config_port */ 10035 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10036 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10037 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10038 SLI3_IOCB_CMD_SIZE : 10039 SLI2_IOCB_CMD_SIZE; 10040 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10041 SLI3_IOCB_RSP_SIZE : 10042 SLI2_IOCB_RSP_SIZE; 10043 pring->iotag_max = phba->cfg_hba_queue_depth; 10044 pring->num_mask = 0; 10045 break; 10046 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10047 /* numCiocb and numRiocb are used in config_port */ 10048 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10049 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10050 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10051 SLI3_IOCB_CMD_SIZE : 10052 SLI2_IOCB_CMD_SIZE; 10053 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10054 SLI3_IOCB_RSP_SIZE : 10055 SLI2_IOCB_RSP_SIZE; 10056 pring->fast_iotag = 0; 10057 pring->iotag_ctr = 0; 10058 pring->iotag_max = 4096; 10059 pring->lpfc_sli_rcv_async_status = 10060 lpfc_sli_async_event_handler; 10061 pring->num_mask = LPFC_MAX_RING_MASK; 10062 pring->prt[0].profile = 0; /* Mask 0 */ 10063 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10064 pring->prt[0].type = FC_TYPE_ELS; 10065 pring->prt[0].lpfc_sli_rcv_unsol_event = 10066 lpfc_els_unsol_event; 10067 pring->prt[1].profile = 0; /* Mask 1 */ 10068 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10069 pring->prt[1].type = FC_TYPE_ELS; 10070 pring->prt[1].lpfc_sli_rcv_unsol_event = 10071 lpfc_els_unsol_event; 10072 pring->prt[2].profile = 0; /* Mask 2 */ 10073 /* NameServer Inquiry */ 10074 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10075 /* NameServer */ 10076 pring->prt[2].type = FC_TYPE_CT; 10077 pring->prt[2].lpfc_sli_rcv_unsol_event = 10078 lpfc_ct_unsol_event; 10079 pring->prt[3].profile = 0; /* Mask 3 */ 10080 /* NameServer response */ 10081 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10082 /* NameServer */ 10083 pring->prt[3].type = FC_TYPE_CT; 10084 pring->prt[3].lpfc_sli_rcv_unsol_event = 10085 lpfc_ct_unsol_event; 10086 break; 10087 } 10088 totiocbsize += (pring->sli.sli3.numCiocb * 10089 pring->sli.sli3.sizeCiocb) + 10090 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10091 } 10092 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10093 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10094 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10095 "SLI2 SLIM Data: x%x x%lx\n", 10096 phba->brd_no, totiocbsize, 10097 (unsigned long) MAX_SLIM_IOCB_SIZE); 10098 } 10099 if (phba->cfg_multi_ring_support == 2) 10100 lpfc_extra_ring_setup(phba); 10101 10102 return 0; 10103 } 10104 10105 /** 10106 * lpfc_sli4_queue_init - Queue initialization function 10107 * @phba: Pointer to HBA context object. 10108 * 10109 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10110 * ring. This function also initializes ring indices of each ring. 10111 * This function is called during the initialization of the SLI 10112 * interface of an HBA. 10113 * This function is called with no lock held and always returns 10114 * 1. 10115 **/ 10116 void 10117 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10118 { 10119 struct lpfc_sli *psli; 10120 struct lpfc_sli_ring *pring; 10121 int i; 10122 10123 psli = &phba->sli; 10124 spin_lock_irq(&phba->hbalock); 10125 INIT_LIST_HEAD(&psli->mboxq); 10126 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10127 /* Initialize list headers for txq and txcmplq as double linked lists */ 10128 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 10129 pring = phba->sli4_hba.fcp_wq[i]->pring; 10130 pring->flag = 0; 10131 pring->ringno = LPFC_FCP_RING; 10132 INIT_LIST_HEAD(&pring->txq); 10133 INIT_LIST_HEAD(&pring->txcmplq); 10134 INIT_LIST_HEAD(&pring->iocb_continueq); 10135 spin_lock_init(&pring->ring_lock); 10136 } 10137 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 10138 pring = phba->sli4_hba.nvme_wq[i]->pring; 10139 pring->flag = 0; 10140 pring->ringno = LPFC_FCP_RING; 10141 INIT_LIST_HEAD(&pring->txq); 10142 INIT_LIST_HEAD(&pring->txcmplq); 10143 INIT_LIST_HEAD(&pring->iocb_continueq); 10144 spin_lock_init(&pring->ring_lock); 10145 } 10146 pring = phba->sli4_hba.els_wq->pring; 10147 pring->flag = 0; 10148 pring->ringno = LPFC_ELS_RING; 10149 INIT_LIST_HEAD(&pring->txq); 10150 INIT_LIST_HEAD(&pring->txcmplq); 10151 INIT_LIST_HEAD(&pring->iocb_continueq); 10152 spin_lock_init(&pring->ring_lock); 10153 10154 if (phba->cfg_nvme_io_channel) { 10155 pring = phba->sli4_hba.nvmels_wq->pring; 10156 pring->flag = 0; 10157 pring->ringno = LPFC_ELS_RING; 10158 INIT_LIST_HEAD(&pring->txq); 10159 INIT_LIST_HEAD(&pring->txcmplq); 10160 INIT_LIST_HEAD(&pring->iocb_continueq); 10161 spin_lock_init(&pring->ring_lock); 10162 } 10163 10164 if (phba->cfg_fof) { 10165 pring = phba->sli4_hba.oas_wq->pring; 10166 pring->flag = 0; 10167 pring->ringno = LPFC_FCP_RING; 10168 INIT_LIST_HEAD(&pring->txq); 10169 INIT_LIST_HEAD(&pring->txcmplq); 10170 INIT_LIST_HEAD(&pring->iocb_continueq); 10171 spin_lock_init(&pring->ring_lock); 10172 } 10173 10174 spin_unlock_irq(&phba->hbalock); 10175 } 10176 10177 /** 10178 * lpfc_sli_queue_init - Queue initialization function 10179 * @phba: Pointer to HBA context object. 10180 * 10181 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10182 * ring. This function also initializes ring indices of each ring. 10183 * This function is called during the initialization of the SLI 10184 * interface of an HBA. 10185 * This function is called with no lock held and always returns 10186 * 1. 10187 **/ 10188 void 10189 lpfc_sli_queue_init(struct lpfc_hba *phba) 10190 { 10191 struct lpfc_sli *psli; 10192 struct lpfc_sli_ring *pring; 10193 int i; 10194 10195 psli = &phba->sli; 10196 spin_lock_irq(&phba->hbalock); 10197 INIT_LIST_HEAD(&psli->mboxq); 10198 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10199 /* Initialize list headers for txq and txcmplq as double linked lists */ 10200 for (i = 0; i < psli->num_rings; i++) { 10201 pring = &psli->sli3_ring[i]; 10202 pring->ringno = i; 10203 pring->sli.sli3.next_cmdidx = 0; 10204 pring->sli.sli3.local_getidx = 0; 10205 pring->sli.sli3.cmdidx = 0; 10206 INIT_LIST_HEAD(&pring->iocb_continueq); 10207 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10208 INIT_LIST_HEAD(&pring->postbufq); 10209 pring->flag = 0; 10210 INIT_LIST_HEAD(&pring->txq); 10211 INIT_LIST_HEAD(&pring->txcmplq); 10212 spin_lock_init(&pring->ring_lock); 10213 } 10214 spin_unlock_irq(&phba->hbalock); 10215 } 10216 10217 /** 10218 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10219 * @phba: Pointer to HBA context object. 10220 * 10221 * This routine flushes the mailbox command subsystem. It will unconditionally 10222 * flush all the mailbox commands in the three possible stages in the mailbox 10223 * command sub-system: pending mailbox command queue; the outstanding mailbox 10224 * command; and completed mailbox command queue. It is caller's responsibility 10225 * to make sure that the driver is in the proper state to flush the mailbox 10226 * command sub-system. Namely, the posting of mailbox commands into the 10227 * pending mailbox command queue from the various clients must be stopped; 10228 * either the HBA is in a state that it will never works on the outstanding 10229 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10230 * mailbox command has been completed. 10231 **/ 10232 static void 10233 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10234 { 10235 LIST_HEAD(completions); 10236 struct lpfc_sli *psli = &phba->sli; 10237 LPFC_MBOXQ_t *pmb; 10238 unsigned long iflag; 10239 10240 /* Flush all the mailbox commands in the mbox system */ 10241 spin_lock_irqsave(&phba->hbalock, iflag); 10242 /* The pending mailbox command queue */ 10243 list_splice_init(&phba->sli.mboxq, &completions); 10244 /* The outstanding active mailbox command */ 10245 if (psli->mbox_active) { 10246 list_add_tail(&psli->mbox_active->list, &completions); 10247 psli->mbox_active = NULL; 10248 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10249 } 10250 /* The completed mailbox command queue */ 10251 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10252 spin_unlock_irqrestore(&phba->hbalock, iflag); 10253 10254 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10255 while (!list_empty(&completions)) { 10256 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10257 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10258 if (pmb->mbox_cmpl) 10259 pmb->mbox_cmpl(phba, pmb); 10260 } 10261 } 10262 10263 /** 10264 * lpfc_sli_host_down - Vport cleanup function 10265 * @vport: Pointer to virtual port object. 10266 * 10267 * lpfc_sli_host_down is called to clean up the resources 10268 * associated with a vport before destroying virtual 10269 * port data structures. 10270 * This function does following operations: 10271 * - Free discovery resources associated with this virtual 10272 * port. 10273 * - Free iocbs associated with this virtual port in 10274 * the txq. 10275 * - Send abort for all iocb commands associated with this 10276 * vport in txcmplq. 10277 * 10278 * This function is called with no lock held and always returns 1. 10279 **/ 10280 int 10281 lpfc_sli_host_down(struct lpfc_vport *vport) 10282 { 10283 LIST_HEAD(completions); 10284 struct lpfc_hba *phba = vport->phba; 10285 struct lpfc_sli *psli = &phba->sli; 10286 struct lpfc_queue *qp = NULL; 10287 struct lpfc_sli_ring *pring; 10288 struct lpfc_iocbq *iocb, *next_iocb; 10289 int i; 10290 unsigned long flags = 0; 10291 uint16_t prev_pring_flag; 10292 10293 lpfc_cleanup_discovery_resources(vport); 10294 10295 spin_lock_irqsave(&phba->hbalock, flags); 10296 10297 /* 10298 * Error everything on the txq since these iocbs 10299 * have not been given to the FW yet. 10300 * Also issue ABTS for everything on the txcmplq 10301 */ 10302 if (phba->sli_rev != LPFC_SLI_REV4) { 10303 for (i = 0; i < psli->num_rings; i++) { 10304 pring = &psli->sli3_ring[i]; 10305 prev_pring_flag = pring->flag; 10306 /* Only slow rings */ 10307 if (pring->ringno == LPFC_ELS_RING) { 10308 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10309 /* Set the lpfc data pending flag */ 10310 set_bit(LPFC_DATA_READY, &phba->data_flags); 10311 } 10312 list_for_each_entry_safe(iocb, next_iocb, 10313 &pring->txq, list) { 10314 if (iocb->vport != vport) 10315 continue; 10316 list_move_tail(&iocb->list, &completions); 10317 } 10318 list_for_each_entry_safe(iocb, next_iocb, 10319 &pring->txcmplq, list) { 10320 if (iocb->vport != vport) 10321 continue; 10322 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10323 } 10324 pring->flag = prev_pring_flag; 10325 } 10326 } else { 10327 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10328 pring = qp->pring; 10329 if (!pring) 10330 continue; 10331 if (pring == phba->sli4_hba.els_wq->pring) { 10332 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10333 /* Set the lpfc data pending flag */ 10334 set_bit(LPFC_DATA_READY, &phba->data_flags); 10335 } 10336 prev_pring_flag = pring->flag; 10337 spin_lock_irq(&pring->ring_lock); 10338 list_for_each_entry_safe(iocb, next_iocb, 10339 &pring->txq, list) { 10340 if (iocb->vport != vport) 10341 continue; 10342 list_move_tail(&iocb->list, &completions); 10343 } 10344 spin_unlock_irq(&pring->ring_lock); 10345 list_for_each_entry_safe(iocb, next_iocb, 10346 &pring->txcmplq, list) { 10347 if (iocb->vport != vport) 10348 continue; 10349 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10350 } 10351 pring->flag = prev_pring_flag; 10352 } 10353 } 10354 spin_unlock_irqrestore(&phba->hbalock, flags); 10355 10356 /* Cancel all the IOCBs from the completions list */ 10357 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10358 IOERR_SLI_DOWN); 10359 return 1; 10360 } 10361 10362 /** 10363 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10364 * @phba: Pointer to HBA context object. 10365 * 10366 * This function cleans up all iocb, buffers, mailbox commands 10367 * while shutting down the HBA. This function is called with no 10368 * lock held and always returns 1. 10369 * This function does the following to cleanup driver resources: 10370 * - Free discovery resources for each virtual port 10371 * - Cleanup any pending fabric iocbs 10372 * - Iterate through the iocb txq and free each entry 10373 * in the list. 10374 * - Free up any buffer posted to the HBA 10375 * - Free mailbox commands in the mailbox queue. 10376 **/ 10377 int 10378 lpfc_sli_hba_down(struct lpfc_hba *phba) 10379 { 10380 LIST_HEAD(completions); 10381 struct lpfc_sli *psli = &phba->sli; 10382 struct lpfc_queue *qp = NULL; 10383 struct lpfc_sli_ring *pring; 10384 struct lpfc_dmabuf *buf_ptr; 10385 unsigned long flags = 0; 10386 int i; 10387 10388 /* Shutdown the mailbox command sub-system */ 10389 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10390 10391 lpfc_hba_down_prep(phba); 10392 10393 lpfc_fabric_abort_hba(phba); 10394 10395 spin_lock_irqsave(&phba->hbalock, flags); 10396 10397 /* 10398 * Error everything on the txq since these iocbs 10399 * have not been given to the FW yet. 10400 */ 10401 if (phba->sli_rev != LPFC_SLI_REV4) { 10402 for (i = 0; i < psli->num_rings; i++) { 10403 pring = &psli->sli3_ring[i]; 10404 /* Only slow rings */ 10405 if (pring->ringno == LPFC_ELS_RING) { 10406 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10407 /* Set the lpfc data pending flag */ 10408 set_bit(LPFC_DATA_READY, &phba->data_flags); 10409 } 10410 list_splice_init(&pring->txq, &completions); 10411 } 10412 } else { 10413 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10414 pring = qp->pring; 10415 if (!pring) 10416 continue; 10417 spin_lock_irq(&pring->ring_lock); 10418 list_splice_init(&pring->txq, &completions); 10419 spin_unlock_irq(&pring->ring_lock); 10420 if (pring == phba->sli4_hba.els_wq->pring) { 10421 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10422 /* Set the lpfc data pending flag */ 10423 set_bit(LPFC_DATA_READY, &phba->data_flags); 10424 } 10425 } 10426 } 10427 spin_unlock_irqrestore(&phba->hbalock, flags); 10428 10429 /* Cancel all the IOCBs from the completions list */ 10430 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10431 IOERR_SLI_DOWN); 10432 10433 spin_lock_irqsave(&phba->hbalock, flags); 10434 list_splice_init(&phba->elsbuf, &completions); 10435 phba->elsbuf_cnt = 0; 10436 phba->elsbuf_prev_cnt = 0; 10437 spin_unlock_irqrestore(&phba->hbalock, flags); 10438 10439 while (!list_empty(&completions)) { 10440 list_remove_head(&completions, buf_ptr, 10441 struct lpfc_dmabuf, list); 10442 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10443 kfree(buf_ptr); 10444 } 10445 10446 /* Return any active mbox cmds */ 10447 del_timer_sync(&psli->mbox_tmo); 10448 10449 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10450 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10451 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10452 10453 return 1; 10454 } 10455 10456 /** 10457 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10458 * @srcp: Source memory pointer. 10459 * @destp: Destination memory pointer. 10460 * @cnt: Number of words required to be copied. 10461 * 10462 * This function is used for copying data between driver memory 10463 * and the SLI memory. This function also changes the endianness 10464 * of each word if native endianness is different from SLI 10465 * endianness. This function can be called with or without 10466 * lock. 10467 **/ 10468 void 10469 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10470 { 10471 uint32_t *src = srcp; 10472 uint32_t *dest = destp; 10473 uint32_t ldata; 10474 int i; 10475 10476 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10477 ldata = *src; 10478 ldata = le32_to_cpu(ldata); 10479 *dest = ldata; 10480 src++; 10481 dest++; 10482 } 10483 } 10484 10485 10486 /** 10487 * lpfc_sli_bemem_bcopy - SLI memory copy function 10488 * @srcp: Source memory pointer. 10489 * @destp: Destination memory pointer. 10490 * @cnt: Number of words required to be copied. 10491 * 10492 * This function is used for copying data between a data structure 10493 * with big endian representation to local endianness. 10494 * This function can be called with or without lock. 10495 **/ 10496 void 10497 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10498 { 10499 uint32_t *src = srcp; 10500 uint32_t *dest = destp; 10501 uint32_t ldata; 10502 int i; 10503 10504 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10505 ldata = *src; 10506 ldata = be32_to_cpu(ldata); 10507 *dest = ldata; 10508 src++; 10509 dest++; 10510 } 10511 } 10512 10513 /** 10514 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10515 * @phba: Pointer to HBA context object. 10516 * @pring: Pointer to driver SLI ring object. 10517 * @mp: Pointer to driver buffer object. 10518 * 10519 * This function is called with no lock held. 10520 * It always return zero after adding the buffer to the postbufq 10521 * buffer list. 10522 **/ 10523 int 10524 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10525 struct lpfc_dmabuf *mp) 10526 { 10527 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10528 later */ 10529 spin_lock_irq(&phba->hbalock); 10530 list_add_tail(&mp->list, &pring->postbufq); 10531 pring->postbufq_cnt++; 10532 spin_unlock_irq(&phba->hbalock); 10533 return 0; 10534 } 10535 10536 /** 10537 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10538 * @phba: Pointer to HBA context object. 10539 * 10540 * When HBQ is enabled, buffers are searched based on tags. This function 10541 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10542 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10543 * does not conflict with tags of buffer posted for unsolicited events. 10544 * The function returns the allocated tag. The function is called with 10545 * no locks held. 10546 **/ 10547 uint32_t 10548 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10549 { 10550 spin_lock_irq(&phba->hbalock); 10551 phba->buffer_tag_count++; 10552 /* 10553 * Always set the QUE_BUFTAG_BIT to distiguish between 10554 * a tag assigned by HBQ. 10555 */ 10556 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10557 spin_unlock_irq(&phba->hbalock); 10558 return phba->buffer_tag_count; 10559 } 10560 10561 /** 10562 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10563 * @phba: Pointer to HBA context object. 10564 * @pring: Pointer to driver SLI ring object. 10565 * @tag: Buffer tag. 10566 * 10567 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10568 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10569 * iocb is posted to the response ring with the tag of the buffer. 10570 * This function searches the pring->postbufq list using the tag 10571 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10572 * iocb. If the buffer is found then lpfc_dmabuf object of the 10573 * buffer is returned to the caller else NULL is returned. 10574 * This function is called with no lock held. 10575 **/ 10576 struct lpfc_dmabuf * 10577 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10578 uint32_t tag) 10579 { 10580 struct lpfc_dmabuf *mp, *next_mp; 10581 struct list_head *slp = &pring->postbufq; 10582 10583 /* Search postbufq, from the beginning, looking for a match on tag */ 10584 spin_lock_irq(&phba->hbalock); 10585 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10586 if (mp->buffer_tag == tag) { 10587 list_del_init(&mp->list); 10588 pring->postbufq_cnt--; 10589 spin_unlock_irq(&phba->hbalock); 10590 return mp; 10591 } 10592 } 10593 10594 spin_unlock_irq(&phba->hbalock); 10595 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10596 "0402 Cannot find virtual addr for buffer tag on " 10597 "ring %d Data x%lx x%p x%p x%x\n", 10598 pring->ringno, (unsigned long) tag, 10599 slp->next, slp->prev, pring->postbufq_cnt); 10600 10601 return NULL; 10602 } 10603 10604 /** 10605 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10606 * @phba: Pointer to HBA context object. 10607 * @pring: Pointer to driver SLI ring object. 10608 * @phys: DMA address of the buffer. 10609 * 10610 * This function searches the buffer list using the dma_address 10611 * of unsolicited event to find the driver's lpfc_dmabuf object 10612 * corresponding to the dma_address. The function returns the 10613 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10614 * This function is called by the ct and els unsolicited event 10615 * handlers to get the buffer associated with the unsolicited 10616 * event. 10617 * 10618 * This function is called with no lock held. 10619 **/ 10620 struct lpfc_dmabuf * 10621 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10622 dma_addr_t phys) 10623 { 10624 struct lpfc_dmabuf *mp, *next_mp; 10625 struct list_head *slp = &pring->postbufq; 10626 10627 /* Search postbufq, from the beginning, looking for a match on phys */ 10628 spin_lock_irq(&phba->hbalock); 10629 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10630 if (mp->phys == phys) { 10631 list_del_init(&mp->list); 10632 pring->postbufq_cnt--; 10633 spin_unlock_irq(&phba->hbalock); 10634 return mp; 10635 } 10636 } 10637 10638 spin_unlock_irq(&phba->hbalock); 10639 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10640 "0410 Cannot find virtual addr for mapped buf on " 10641 "ring %d Data x%llx x%p x%p x%x\n", 10642 pring->ringno, (unsigned long long)phys, 10643 slp->next, slp->prev, pring->postbufq_cnt); 10644 return NULL; 10645 } 10646 10647 /** 10648 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10649 * @phba: Pointer to HBA context object. 10650 * @cmdiocb: Pointer to driver command iocb object. 10651 * @rspiocb: Pointer to driver response iocb object. 10652 * 10653 * This function is the completion handler for the abort iocbs for 10654 * ELS commands. This function is called from the ELS ring event 10655 * handler with no lock held. This function frees memory resources 10656 * associated with the abort iocb. 10657 **/ 10658 static void 10659 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10660 struct lpfc_iocbq *rspiocb) 10661 { 10662 IOCB_t *irsp = &rspiocb->iocb; 10663 uint16_t abort_iotag, abort_context; 10664 struct lpfc_iocbq *abort_iocb = NULL; 10665 10666 if (irsp->ulpStatus) { 10667 10668 /* 10669 * Assume that the port already completed and returned, or 10670 * will return the iocb. Just Log the message. 10671 */ 10672 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10673 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10674 10675 spin_lock_irq(&phba->hbalock); 10676 if (phba->sli_rev < LPFC_SLI_REV4) { 10677 if (abort_iotag != 0 && 10678 abort_iotag <= phba->sli.last_iotag) 10679 abort_iocb = 10680 phba->sli.iocbq_lookup[abort_iotag]; 10681 } else 10682 /* For sli4 the abort_tag is the XRI, 10683 * so the abort routine puts the iotag of the iocb 10684 * being aborted in the context field of the abort 10685 * IOCB. 10686 */ 10687 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10688 10689 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10690 "0327 Cannot abort els iocb %p " 10691 "with tag %x context %x, abort status %x, " 10692 "abort code %x\n", 10693 abort_iocb, abort_iotag, abort_context, 10694 irsp->ulpStatus, irsp->un.ulpWord[4]); 10695 10696 spin_unlock_irq(&phba->hbalock); 10697 } 10698 lpfc_sli_release_iocbq(phba, cmdiocb); 10699 return; 10700 } 10701 10702 /** 10703 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10704 * @phba: Pointer to HBA context object. 10705 * @cmdiocb: Pointer to driver command iocb object. 10706 * @rspiocb: Pointer to driver response iocb object. 10707 * 10708 * The function is called from SLI ring event handler with no 10709 * lock held. This function is the completion handler for ELS commands 10710 * which are aborted. The function frees memory resources used for 10711 * the aborted ELS commands. 10712 **/ 10713 static void 10714 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10715 struct lpfc_iocbq *rspiocb) 10716 { 10717 IOCB_t *irsp = &rspiocb->iocb; 10718 10719 /* ELS cmd tag <ulpIoTag> completes */ 10720 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10721 "0139 Ignoring ELS cmd tag x%x completion Data: " 10722 "x%x x%x x%x\n", 10723 irsp->ulpIoTag, irsp->ulpStatus, 10724 irsp->un.ulpWord[4], irsp->ulpTimeout); 10725 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10726 lpfc_ct_free_iocb(phba, cmdiocb); 10727 else 10728 lpfc_els_free_iocb(phba, cmdiocb); 10729 return; 10730 } 10731 10732 /** 10733 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10734 * @phba: Pointer to HBA context object. 10735 * @pring: Pointer to driver SLI ring object. 10736 * @cmdiocb: Pointer to driver command iocb object. 10737 * 10738 * This function issues an abort iocb for the provided command iocb down to 10739 * the port. Other than the case the outstanding command iocb is an abort 10740 * request, this function issues abort out unconditionally. This function is 10741 * called with hbalock held. The function returns 0 when it fails due to 10742 * memory allocation failure or when the command iocb is an abort request. 10743 **/ 10744 static int 10745 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10746 struct lpfc_iocbq *cmdiocb) 10747 { 10748 struct lpfc_vport *vport = cmdiocb->vport; 10749 struct lpfc_iocbq *abtsiocbp; 10750 IOCB_t *icmd = NULL; 10751 IOCB_t *iabt = NULL; 10752 int retval; 10753 unsigned long iflags; 10754 10755 lockdep_assert_held(&phba->hbalock); 10756 10757 /* 10758 * There are certain command types we don't want to abort. And we 10759 * don't want to abort commands that are already in the process of 10760 * being aborted. 10761 */ 10762 icmd = &cmdiocb->iocb; 10763 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10764 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10765 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10766 return 0; 10767 10768 /* issue ABTS for this IOCB based on iotag */ 10769 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10770 if (abtsiocbp == NULL) 10771 return 0; 10772 10773 /* This signals the response to set the correct status 10774 * before calling the completion handler 10775 */ 10776 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10777 10778 iabt = &abtsiocbp->iocb; 10779 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10780 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10781 if (phba->sli_rev == LPFC_SLI_REV4) { 10782 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10783 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10784 } 10785 else 10786 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10787 iabt->ulpLe = 1; 10788 iabt->ulpClass = icmd->ulpClass; 10789 10790 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10791 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10792 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10793 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10794 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10795 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10796 10797 if (phba->link_state >= LPFC_LINK_UP) 10798 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10799 else 10800 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10801 10802 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10803 abtsiocbp->vport = vport; 10804 10805 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10806 "0339 Abort xri x%x, original iotag x%x, " 10807 "abort cmd iotag x%x\n", 10808 iabt->un.acxri.abortIoTag, 10809 iabt->un.acxri.abortContextTag, 10810 abtsiocbp->iotag); 10811 10812 if (phba->sli_rev == LPFC_SLI_REV4) { 10813 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10814 if (unlikely(pring == NULL)) 10815 return 0; 10816 /* Note: both hbalock and ring_lock need to be set here */ 10817 spin_lock_irqsave(&pring->ring_lock, iflags); 10818 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10819 abtsiocbp, 0); 10820 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10821 } else { 10822 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10823 abtsiocbp, 0); 10824 } 10825 10826 if (retval) 10827 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10828 10829 /* 10830 * Caller to this routine should check for IOCB_ERROR 10831 * and handle it properly. This routine no longer removes 10832 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10833 */ 10834 return retval; 10835 } 10836 10837 /** 10838 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10839 * @phba: Pointer to HBA context object. 10840 * @pring: Pointer to driver SLI ring object. 10841 * @cmdiocb: Pointer to driver command iocb object. 10842 * 10843 * This function issues an abort iocb for the provided command iocb. In case 10844 * of unloading, the abort iocb will not be issued to commands on the ELS 10845 * ring. Instead, the callback function shall be changed to those commands 10846 * so that nothing happens when them finishes. This function is called with 10847 * hbalock held. The function returns 0 when the command iocb is an abort 10848 * request. 10849 **/ 10850 int 10851 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10852 struct lpfc_iocbq *cmdiocb) 10853 { 10854 struct lpfc_vport *vport = cmdiocb->vport; 10855 int retval = IOCB_ERROR; 10856 IOCB_t *icmd = NULL; 10857 10858 lockdep_assert_held(&phba->hbalock); 10859 10860 /* 10861 * There are certain command types we don't want to abort. And we 10862 * don't want to abort commands that are already in the process of 10863 * being aborted. 10864 */ 10865 icmd = &cmdiocb->iocb; 10866 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10867 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10868 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10869 return 0; 10870 10871 if (!pring) { 10872 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10873 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10874 else 10875 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10876 goto abort_iotag_exit; 10877 } 10878 10879 /* 10880 * If we're unloading, don't abort iocb on the ELS ring, but change 10881 * the callback so that nothing happens when it finishes. 10882 */ 10883 if ((vport->load_flag & FC_UNLOADING) && 10884 (pring->ringno == LPFC_ELS_RING)) { 10885 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10886 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10887 else 10888 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10889 goto abort_iotag_exit; 10890 } 10891 10892 /* Now, we try to issue the abort to the cmdiocb out */ 10893 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10894 10895 abort_iotag_exit: 10896 /* 10897 * Caller to this routine should check for IOCB_ERROR 10898 * and handle it properly. This routine no longer removes 10899 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10900 */ 10901 return retval; 10902 } 10903 10904 /** 10905 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10906 * @phba: Pointer to HBA context object. 10907 * @pring: Pointer to driver SLI ring object. 10908 * @cmdiocb: Pointer to driver command iocb object. 10909 * 10910 * This function issues an abort iocb for the provided command iocb down to 10911 * the port. Other than the case the outstanding command iocb is an abort 10912 * request, this function issues abort out unconditionally. This function is 10913 * called with hbalock held. The function returns 0 when it fails due to 10914 * memory allocation failure or when the command iocb is an abort request. 10915 **/ 10916 static int 10917 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10918 struct lpfc_iocbq *cmdiocb) 10919 { 10920 struct lpfc_vport *vport = cmdiocb->vport; 10921 struct lpfc_iocbq *abtsiocbp; 10922 union lpfc_wqe128 *abts_wqe; 10923 int retval; 10924 10925 /* 10926 * There are certain command types we don't want to abort. And we 10927 * don't want to abort commands that are already in the process of 10928 * being aborted. 10929 */ 10930 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10931 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10932 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10933 return 0; 10934 10935 /* issue ABTS for this io based on iotag */ 10936 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10937 if (abtsiocbp == NULL) 10938 return 0; 10939 10940 /* This signals the response to set the correct status 10941 * before calling the completion handler 10942 */ 10943 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10944 10945 /* Complete prepping the abort wqe and issue to the FW. */ 10946 abts_wqe = &abtsiocbp->wqe; 10947 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10948 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10949 10950 /* Explicitly set reserved fields to zero.*/ 10951 abts_wqe->abort_cmd.rsrvd4 = 0; 10952 abts_wqe->abort_cmd.rsrvd5 = 0; 10953 10954 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10955 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10956 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10957 10958 /* word 7 */ 10959 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 10960 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10961 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 10962 cmdiocb->iocb.ulpClass); 10963 10964 /* word 8 - tell the FW to abort the IO associated with this 10965 * outstanding exchange ID. 10966 */ 10967 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 10968 10969 /* word 9 - this is the iotag for the abts_wqe completion. */ 10970 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 10971 abtsiocbp->iotag); 10972 10973 /* word 10 */ 10974 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 10975 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 10976 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 10977 10978 /* word 11 */ 10979 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10980 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 10981 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10982 10983 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10984 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 10985 abtsiocbp->vport = vport; 10986 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 10987 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 10988 if (retval) { 10989 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10990 "6147 Failed abts issue_wqe with status x%x " 10991 "for oxid x%x\n", 10992 retval, cmdiocb->sli4_xritag); 10993 lpfc_sli_release_iocbq(phba, abtsiocbp); 10994 return retval; 10995 } 10996 10997 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10998 "6148 Drv Abort NVME Request Issued for " 10999 "ox_id x%x on reqtag x%x\n", 11000 cmdiocb->sli4_xritag, 11001 abtsiocbp->iotag); 11002 11003 return retval; 11004 } 11005 11006 /** 11007 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11008 * @phba: pointer to lpfc HBA data structure. 11009 * 11010 * This routine will abort all pending and outstanding iocbs to an HBA. 11011 **/ 11012 void 11013 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11014 { 11015 struct lpfc_sli *psli = &phba->sli; 11016 struct lpfc_sli_ring *pring; 11017 struct lpfc_queue *qp = NULL; 11018 int i; 11019 11020 if (phba->sli_rev != LPFC_SLI_REV4) { 11021 for (i = 0; i < psli->num_rings; i++) { 11022 pring = &psli->sli3_ring[i]; 11023 lpfc_sli_abort_iocb_ring(phba, pring); 11024 } 11025 return; 11026 } 11027 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11028 pring = qp->pring; 11029 if (!pring) 11030 continue; 11031 lpfc_sli_abort_iocb_ring(phba, pring); 11032 } 11033 } 11034 11035 /** 11036 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11037 * @iocbq: Pointer to driver iocb object. 11038 * @vport: Pointer to driver virtual port object. 11039 * @tgt_id: SCSI ID of the target. 11040 * @lun_id: LUN ID of the scsi device. 11041 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11042 * 11043 * This function acts as an iocb filter for functions which abort or count 11044 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11045 * 0 if the filtering criteria is met for the given iocb and will return 11046 * 1 if the filtering criteria is not met. 11047 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11048 * given iocb is for the SCSI device specified by vport, tgt_id and 11049 * lun_id parameter. 11050 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11051 * given iocb is for the SCSI target specified by vport and tgt_id 11052 * parameters. 11053 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11054 * given iocb is for the SCSI host associated with the given vport. 11055 * This function is called with no locks held. 11056 **/ 11057 static int 11058 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11059 uint16_t tgt_id, uint64_t lun_id, 11060 lpfc_ctx_cmd ctx_cmd) 11061 { 11062 struct lpfc_scsi_buf *lpfc_cmd; 11063 int rc = 1; 11064 11065 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 11066 return rc; 11067 11068 if (iocbq->vport != vport) 11069 return rc; 11070 11071 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11072 11073 if (lpfc_cmd->pCmd == NULL) 11074 return rc; 11075 11076 switch (ctx_cmd) { 11077 case LPFC_CTX_LUN: 11078 if ((lpfc_cmd->rdata->pnode) && 11079 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11080 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11081 rc = 0; 11082 break; 11083 case LPFC_CTX_TGT: 11084 if ((lpfc_cmd->rdata->pnode) && 11085 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11086 rc = 0; 11087 break; 11088 case LPFC_CTX_HOST: 11089 rc = 0; 11090 break; 11091 default: 11092 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11093 __func__, ctx_cmd); 11094 break; 11095 } 11096 11097 return rc; 11098 } 11099 11100 /** 11101 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11102 * @vport: Pointer to virtual port. 11103 * @tgt_id: SCSI ID of the target. 11104 * @lun_id: LUN ID of the scsi device. 11105 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11106 * 11107 * This function returns number of FCP commands pending for the vport. 11108 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11109 * commands pending on the vport associated with SCSI device specified 11110 * by tgt_id and lun_id parameters. 11111 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11112 * commands pending on the vport associated with SCSI target specified 11113 * by tgt_id parameter. 11114 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11115 * commands pending on the vport. 11116 * This function returns the number of iocbs which satisfy the filter. 11117 * This function is called without any lock held. 11118 **/ 11119 int 11120 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11121 lpfc_ctx_cmd ctx_cmd) 11122 { 11123 struct lpfc_hba *phba = vport->phba; 11124 struct lpfc_iocbq *iocbq; 11125 int sum, i; 11126 11127 spin_lock_irq(&phba->hbalock); 11128 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11129 iocbq = phba->sli.iocbq_lookup[i]; 11130 11131 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11132 ctx_cmd) == 0) 11133 sum++; 11134 } 11135 spin_unlock_irq(&phba->hbalock); 11136 11137 return sum; 11138 } 11139 11140 /** 11141 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11142 * @phba: Pointer to HBA context object 11143 * @cmdiocb: Pointer to command iocb object. 11144 * @rspiocb: Pointer to response iocb object. 11145 * 11146 * This function is called when an aborted FCP iocb completes. This 11147 * function is called by the ring event handler with no lock held. 11148 * This function frees the iocb. 11149 **/ 11150 void 11151 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11152 struct lpfc_iocbq *rspiocb) 11153 { 11154 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11155 "3096 ABORT_XRI_CN completing on rpi x%x " 11156 "original iotag x%x, abort cmd iotag x%x " 11157 "status 0x%x, reason 0x%x\n", 11158 cmdiocb->iocb.un.acxri.abortContextTag, 11159 cmdiocb->iocb.un.acxri.abortIoTag, 11160 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11161 rspiocb->iocb.un.ulpWord[4]); 11162 lpfc_sli_release_iocbq(phba, cmdiocb); 11163 return; 11164 } 11165 11166 /** 11167 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11168 * @vport: Pointer to virtual port. 11169 * @pring: Pointer to driver SLI ring object. 11170 * @tgt_id: SCSI ID of the target. 11171 * @lun_id: LUN ID of the scsi device. 11172 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11173 * 11174 * This function sends an abort command for every SCSI command 11175 * associated with the given virtual port pending on the ring 11176 * filtered by lpfc_sli_validate_fcp_iocb function. 11177 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11178 * FCP iocbs associated with lun specified by tgt_id and lun_id 11179 * parameters 11180 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11181 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11182 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11183 * FCP iocbs associated with virtual port. 11184 * This function returns number of iocbs it failed to abort. 11185 * This function is called with no locks held. 11186 **/ 11187 int 11188 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11189 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11190 { 11191 struct lpfc_hba *phba = vport->phba; 11192 struct lpfc_iocbq *iocbq; 11193 struct lpfc_iocbq *abtsiocb; 11194 struct lpfc_sli_ring *pring_s4; 11195 IOCB_t *cmd = NULL; 11196 int errcnt = 0, ret_val = 0; 11197 int i; 11198 11199 for (i = 1; i <= phba->sli.last_iotag; i++) { 11200 iocbq = phba->sli.iocbq_lookup[i]; 11201 11202 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11203 abort_cmd) != 0) 11204 continue; 11205 11206 /* 11207 * If the iocbq is already being aborted, don't take a second 11208 * action, but do count it. 11209 */ 11210 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11211 continue; 11212 11213 /* issue ABTS for this IOCB based on iotag */ 11214 abtsiocb = lpfc_sli_get_iocbq(phba); 11215 if (abtsiocb == NULL) { 11216 errcnt++; 11217 continue; 11218 } 11219 11220 /* indicate the IO is being aborted by the driver. */ 11221 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11222 11223 cmd = &iocbq->iocb; 11224 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11225 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11226 if (phba->sli_rev == LPFC_SLI_REV4) 11227 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11228 else 11229 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11230 abtsiocb->iocb.ulpLe = 1; 11231 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11232 abtsiocb->vport = vport; 11233 11234 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11235 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11236 if (iocbq->iocb_flag & LPFC_IO_FCP) 11237 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11238 if (iocbq->iocb_flag & LPFC_IO_FOF) 11239 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11240 11241 if (lpfc_is_link_up(phba)) 11242 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11243 else 11244 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11245 11246 /* Setup callback routine and issue the command. */ 11247 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11248 if (phba->sli_rev == LPFC_SLI_REV4) { 11249 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11250 if (!pring_s4) 11251 continue; 11252 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11253 abtsiocb, 0); 11254 } else 11255 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11256 abtsiocb, 0); 11257 if (ret_val == IOCB_ERROR) { 11258 lpfc_sli_release_iocbq(phba, abtsiocb); 11259 errcnt++; 11260 continue; 11261 } 11262 } 11263 11264 return errcnt; 11265 } 11266 11267 /** 11268 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11269 * @vport: Pointer to virtual port. 11270 * @pring: Pointer to driver SLI ring object. 11271 * @tgt_id: SCSI ID of the target. 11272 * @lun_id: LUN ID of the scsi device. 11273 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11274 * 11275 * This function sends an abort command for every SCSI command 11276 * associated with the given virtual port pending on the ring 11277 * filtered by lpfc_sli_validate_fcp_iocb function. 11278 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11279 * FCP iocbs associated with lun specified by tgt_id and lun_id 11280 * parameters 11281 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11282 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11283 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11284 * FCP iocbs associated with virtual port. 11285 * This function returns number of iocbs it aborted . 11286 * This function is called with no locks held right after a taskmgmt 11287 * command is sent. 11288 **/ 11289 int 11290 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11291 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11292 { 11293 struct lpfc_hba *phba = vport->phba; 11294 struct lpfc_scsi_buf *lpfc_cmd; 11295 struct lpfc_iocbq *abtsiocbq; 11296 struct lpfc_nodelist *ndlp; 11297 struct lpfc_iocbq *iocbq; 11298 IOCB_t *icmd; 11299 int sum, i, ret_val; 11300 unsigned long iflags; 11301 struct lpfc_sli_ring *pring_s4; 11302 11303 spin_lock_irq(&phba->hbalock); 11304 11305 /* all I/Os are in process of being flushed */ 11306 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11307 spin_unlock_irq(&phba->hbalock); 11308 return 0; 11309 } 11310 sum = 0; 11311 11312 for (i = 1; i <= phba->sli.last_iotag; i++) { 11313 iocbq = phba->sli.iocbq_lookup[i]; 11314 11315 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11316 cmd) != 0) 11317 continue; 11318 11319 /* 11320 * If the iocbq is already being aborted, don't take a second 11321 * action, but do count it. 11322 */ 11323 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11324 continue; 11325 11326 /* issue ABTS for this IOCB based on iotag */ 11327 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11328 if (abtsiocbq == NULL) 11329 continue; 11330 11331 icmd = &iocbq->iocb; 11332 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11333 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11334 if (phba->sli_rev == LPFC_SLI_REV4) 11335 abtsiocbq->iocb.un.acxri.abortIoTag = 11336 iocbq->sli4_xritag; 11337 else 11338 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11339 abtsiocbq->iocb.ulpLe = 1; 11340 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11341 abtsiocbq->vport = vport; 11342 11343 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11344 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11345 if (iocbq->iocb_flag & LPFC_IO_FCP) 11346 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11347 if (iocbq->iocb_flag & LPFC_IO_FOF) 11348 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11349 11350 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11351 ndlp = lpfc_cmd->rdata->pnode; 11352 11353 if (lpfc_is_link_up(phba) && 11354 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11355 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11356 else 11357 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11358 11359 /* Setup callback routine and issue the command. */ 11360 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11361 11362 /* 11363 * Indicate the IO is being aborted by the driver and set 11364 * the caller's flag into the aborted IO. 11365 */ 11366 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11367 11368 if (phba->sli_rev == LPFC_SLI_REV4) { 11369 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11370 if (pring_s4 == NULL) 11371 continue; 11372 /* Note: both hbalock and ring_lock must be set here */ 11373 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 11374 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11375 abtsiocbq, 0); 11376 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 11377 } else { 11378 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11379 abtsiocbq, 0); 11380 } 11381 11382 11383 if (ret_val == IOCB_ERROR) 11384 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11385 else 11386 sum++; 11387 } 11388 spin_unlock_irq(&phba->hbalock); 11389 return sum; 11390 } 11391 11392 /** 11393 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11394 * @phba: Pointer to HBA context object. 11395 * @cmdiocbq: Pointer to command iocb. 11396 * @rspiocbq: Pointer to response iocb. 11397 * 11398 * This function is the completion handler for iocbs issued using 11399 * lpfc_sli_issue_iocb_wait function. This function is called by the 11400 * ring event handler function without any lock held. This function 11401 * can be called from both worker thread context and interrupt 11402 * context. This function also can be called from other thread which 11403 * cleans up the SLI layer objects. 11404 * This function copy the contents of the response iocb to the 11405 * response iocb memory object provided by the caller of 11406 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11407 * sleeps for the iocb completion. 11408 **/ 11409 static void 11410 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11411 struct lpfc_iocbq *cmdiocbq, 11412 struct lpfc_iocbq *rspiocbq) 11413 { 11414 wait_queue_head_t *pdone_q; 11415 unsigned long iflags; 11416 struct lpfc_scsi_buf *lpfc_cmd; 11417 11418 spin_lock_irqsave(&phba->hbalock, iflags); 11419 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11420 11421 /* 11422 * A time out has occurred for the iocb. If a time out 11423 * completion handler has been supplied, call it. Otherwise, 11424 * just free the iocbq. 11425 */ 11426 11427 spin_unlock_irqrestore(&phba->hbalock, iflags); 11428 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11429 cmdiocbq->wait_iocb_cmpl = NULL; 11430 if (cmdiocbq->iocb_cmpl) 11431 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11432 else 11433 lpfc_sli_release_iocbq(phba, cmdiocbq); 11434 return; 11435 } 11436 11437 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11438 if (cmdiocbq->context2 && rspiocbq) 11439 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11440 &rspiocbq->iocb, sizeof(IOCB_t)); 11441 11442 /* Set the exchange busy flag for task management commands */ 11443 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11444 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11445 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11446 cur_iocbq); 11447 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11448 } 11449 11450 pdone_q = cmdiocbq->context_un.wait_queue; 11451 if (pdone_q) 11452 wake_up(pdone_q); 11453 spin_unlock_irqrestore(&phba->hbalock, iflags); 11454 return; 11455 } 11456 11457 /** 11458 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11459 * @phba: Pointer to HBA context object.. 11460 * @piocbq: Pointer to command iocb. 11461 * @flag: Flag to test. 11462 * 11463 * This routine grabs the hbalock and then test the iocb_flag to 11464 * see if the passed in flag is set. 11465 * Returns: 11466 * 1 if flag is set. 11467 * 0 if flag is not set. 11468 **/ 11469 static int 11470 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11471 struct lpfc_iocbq *piocbq, uint32_t flag) 11472 { 11473 unsigned long iflags; 11474 int ret; 11475 11476 spin_lock_irqsave(&phba->hbalock, iflags); 11477 ret = piocbq->iocb_flag & flag; 11478 spin_unlock_irqrestore(&phba->hbalock, iflags); 11479 return ret; 11480 11481 } 11482 11483 /** 11484 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11485 * @phba: Pointer to HBA context object.. 11486 * @pring: Pointer to sli ring. 11487 * @piocb: Pointer to command iocb. 11488 * @prspiocbq: Pointer to response iocb. 11489 * @timeout: Timeout in number of seconds. 11490 * 11491 * This function issues the iocb to firmware and waits for the 11492 * iocb to complete. The iocb_cmpl field of the shall be used 11493 * to handle iocbs which time out. If the field is NULL, the 11494 * function shall free the iocbq structure. If more clean up is 11495 * needed, the caller is expected to provide a completion function 11496 * that will provide the needed clean up. If the iocb command is 11497 * not completed within timeout seconds, the function will either 11498 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11499 * completion function set in the iocb_cmpl field and then return 11500 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11501 * resources if this function returns IOCB_TIMEDOUT. 11502 * The function waits for the iocb completion using an 11503 * non-interruptible wait. 11504 * This function will sleep while waiting for iocb completion. 11505 * So, this function should not be called from any context which 11506 * does not allow sleeping. Due to the same reason, this function 11507 * cannot be called with interrupt disabled. 11508 * This function assumes that the iocb completions occur while 11509 * this function sleep. So, this function cannot be called from 11510 * the thread which process iocb completion for this ring. 11511 * This function clears the iocb_flag of the iocb object before 11512 * issuing the iocb and the iocb completion handler sets this 11513 * flag and wakes this thread when the iocb completes. 11514 * The contents of the response iocb will be copied to prspiocbq 11515 * by the completion handler when the command completes. 11516 * This function returns IOCB_SUCCESS when success. 11517 * This function is called with no lock held. 11518 **/ 11519 int 11520 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11521 uint32_t ring_number, 11522 struct lpfc_iocbq *piocb, 11523 struct lpfc_iocbq *prspiocbq, 11524 uint32_t timeout) 11525 { 11526 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11527 long timeleft, timeout_req = 0; 11528 int retval = IOCB_SUCCESS; 11529 uint32_t creg_val; 11530 struct lpfc_iocbq *iocb; 11531 int txq_cnt = 0; 11532 int txcmplq_cnt = 0; 11533 struct lpfc_sli_ring *pring; 11534 unsigned long iflags; 11535 bool iocb_completed = true; 11536 11537 if (phba->sli_rev >= LPFC_SLI_REV4) 11538 pring = lpfc_sli4_calc_ring(phba, piocb); 11539 else 11540 pring = &phba->sli.sli3_ring[ring_number]; 11541 /* 11542 * If the caller has provided a response iocbq buffer, then context2 11543 * is NULL or its an error. 11544 */ 11545 if (prspiocbq) { 11546 if (piocb->context2) 11547 return IOCB_ERROR; 11548 piocb->context2 = prspiocbq; 11549 } 11550 11551 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11552 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11553 piocb->context_un.wait_queue = &done_q; 11554 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11555 11556 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11557 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11558 return IOCB_ERROR; 11559 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11560 writel(creg_val, phba->HCregaddr); 11561 readl(phba->HCregaddr); /* flush */ 11562 } 11563 11564 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11565 SLI_IOCB_RET_IOCB); 11566 if (retval == IOCB_SUCCESS) { 11567 timeout_req = msecs_to_jiffies(timeout * 1000); 11568 timeleft = wait_event_timeout(done_q, 11569 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11570 timeout_req); 11571 spin_lock_irqsave(&phba->hbalock, iflags); 11572 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11573 11574 /* 11575 * IOCB timed out. Inform the wake iocb wait 11576 * completion function and set local status 11577 */ 11578 11579 iocb_completed = false; 11580 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11581 } 11582 spin_unlock_irqrestore(&phba->hbalock, iflags); 11583 if (iocb_completed) { 11584 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11585 "0331 IOCB wake signaled\n"); 11586 /* Note: we are not indicating if the IOCB has a success 11587 * status or not - that's for the caller to check. 11588 * IOCB_SUCCESS means just that the command was sent and 11589 * completed. Not that it completed successfully. 11590 * */ 11591 } else if (timeleft == 0) { 11592 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11593 "0338 IOCB wait timeout error - no " 11594 "wake response Data x%x\n", timeout); 11595 retval = IOCB_TIMEDOUT; 11596 } else { 11597 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11598 "0330 IOCB wake NOT set, " 11599 "Data x%x x%lx\n", 11600 timeout, (timeleft / jiffies)); 11601 retval = IOCB_TIMEDOUT; 11602 } 11603 } else if (retval == IOCB_BUSY) { 11604 if (phba->cfg_log_verbose & LOG_SLI) { 11605 list_for_each_entry(iocb, &pring->txq, list) { 11606 txq_cnt++; 11607 } 11608 list_for_each_entry(iocb, &pring->txcmplq, list) { 11609 txcmplq_cnt++; 11610 } 11611 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11612 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11613 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11614 } 11615 return retval; 11616 } else { 11617 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11618 "0332 IOCB wait issue failed, Data x%x\n", 11619 retval); 11620 retval = IOCB_ERROR; 11621 } 11622 11623 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11624 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11625 return IOCB_ERROR; 11626 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11627 writel(creg_val, phba->HCregaddr); 11628 readl(phba->HCregaddr); /* flush */ 11629 } 11630 11631 if (prspiocbq) 11632 piocb->context2 = NULL; 11633 11634 piocb->context_un.wait_queue = NULL; 11635 piocb->iocb_cmpl = NULL; 11636 return retval; 11637 } 11638 11639 /** 11640 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11641 * @phba: Pointer to HBA context object. 11642 * @pmboxq: Pointer to driver mailbox object. 11643 * @timeout: Timeout in number of seconds. 11644 * 11645 * This function issues the mailbox to firmware and waits for the 11646 * mailbox command to complete. If the mailbox command is not 11647 * completed within timeout seconds, it returns MBX_TIMEOUT. 11648 * The function waits for the mailbox completion using an 11649 * interruptible wait. If the thread is woken up due to a 11650 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11651 * should not free the mailbox resources, if this function returns 11652 * MBX_TIMEOUT. 11653 * This function will sleep while waiting for mailbox completion. 11654 * So, this function should not be called from any context which 11655 * does not allow sleeping. Due to the same reason, this function 11656 * cannot be called with interrupt disabled. 11657 * This function assumes that the mailbox completion occurs while 11658 * this function sleep. So, this function cannot be called from 11659 * the worker thread which processes mailbox completion. 11660 * This function is called in the context of HBA management 11661 * applications. 11662 * This function returns MBX_SUCCESS when successful. 11663 * This function is called with no lock held. 11664 **/ 11665 int 11666 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11667 uint32_t timeout) 11668 { 11669 struct completion mbox_done; 11670 int retval; 11671 unsigned long flag; 11672 11673 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11674 /* setup wake call as IOCB callback */ 11675 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11676 11677 /* setup context3 field to pass wait_queue pointer to wake function */ 11678 init_completion(&mbox_done); 11679 pmboxq->context3 = &mbox_done; 11680 /* now issue the command */ 11681 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11682 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11683 wait_for_completion_timeout(&mbox_done, 11684 msecs_to_jiffies(timeout * 1000)); 11685 11686 spin_lock_irqsave(&phba->hbalock, flag); 11687 pmboxq->context3 = NULL; 11688 /* 11689 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11690 * else do not free the resources. 11691 */ 11692 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11693 retval = MBX_SUCCESS; 11694 } else { 11695 retval = MBX_TIMEOUT; 11696 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11697 } 11698 spin_unlock_irqrestore(&phba->hbalock, flag); 11699 } 11700 return retval; 11701 } 11702 11703 /** 11704 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11705 * @phba: Pointer to HBA context. 11706 * 11707 * This function is called to shutdown the driver's mailbox sub-system. 11708 * It first marks the mailbox sub-system is in a block state to prevent 11709 * the asynchronous mailbox command from issued off the pending mailbox 11710 * command queue. If the mailbox command sub-system shutdown is due to 11711 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11712 * the mailbox sub-system flush routine to forcefully bring down the 11713 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11714 * as with offline or HBA function reset), this routine will wait for the 11715 * outstanding mailbox command to complete before invoking the mailbox 11716 * sub-system flush routine to gracefully bring down mailbox sub-system. 11717 **/ 11718 void 11719 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11720 { 11721 struct lpfc_sli *psli = &phba->sli; 11722 unsigned long timeout; 11723 11724 if (mbx_action == LPFC_MBX_NO_WAIT) { 11725 /* delay 100ms for port state */ 11726 msleep(100); 11727 lpfc_sli_mbox_sys_flush(phba); 11728 return; 11729 } 11730 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11731 11732 spin_lock_irq(&phba->hbalock); 11733 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11734 11735 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11736 /* Determine how long we might wait for the active mailbox 11737 * command to be gracefully completed by firmware. 11738 */ 11739 if (phba->sli.mbox_active) 11740 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11741 phba->sli.mbox_active) * 11742 1000) + jiffies; 11743 spin_unlock_irq(&phba->hbalock); 11744 11745 while (phba->sli.mbox_active) { 11746 /* Check active mailbox complete status every 2ms */ 11747 msleep(2); 11748 if (time_after(jiffies, timeout)) 11749 /* Timeout, let the mailbox flush routine to 11750 * forcefully release active mailbox command 11751 */ 11752 break; 11753 } 11754 } else 11755 spin_unlock_irq(&phba->hbalock); 11756 11757 lpfc_sli_mbox_sys_flush(phba); 11758 } 11759 11760 /** 11761 * lpfc_sli_eratt_read - read sli-3 error attention events 11762 * @phba: Pointer to HBA context. 11763 * 11764 * This function is called to read the SLI3 device error attention registers 11765 * for possible error attention events. The caller must hold the hostlock 11766 * with spin_lock_irq(). 11767 * 11768 * This function returns 1 when there is Error Attention in the Host Attention 11769 * Register and returns 0 otherwise. 11770 **/ 11771 static int 11772 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11773 { 11774 uint32_t ha_copy; 11775 11776 /* Read chip Host Attention (HA) register */ 11777 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11778 goto unplug_err; 11779 11780 if (ha_copy & HA_ERATT) { 11781 /* Read host status register to retrieve error event */ 11782 if (lpfc_sli_read_hs(phba)) 11783 goto unplug_err; 11784 11785 /* Check if there is a deferred error condition is active */ 11786 if ((HS_FFER1 & phba->work_hs) && 11787 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11788 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11789 phba->hba_flag |= DEFER_ERATT; 11790 /* Clear all interrupt enable conditions */ 11791 writel(0, phba->HCregaddr); 11792 readl(phba->HCregaddr); 11793 } 11794 11795 /* Set the driver HA work bitmap */ 11796 phba->work_ha |= HA_ERATT; 11797 /* Indicate polling handles this ERATT */ 11798 phba->hba_flag |= HBA_ERATT_HANDLED; 11799 return 1; 11800 } 11801 return 0; 11802 11803 unplug_err: 11804 /* Set the driver HS work bitmap */ 11805 phba->work_hs |= UNPLUG_ERR; 11806 /* Set the driver HA work bitmap */ 11807 phba->work_ha |= HA_ERATT; 11808 /* Indicate polling handles this ERATT */ 11809 phba->hba_flag |= HBA_ERATT_HANDLED; 11810 return 1; 11811 } 11812 11813 /** 11814 * lpfc_sli4_eratt_read - read sli-4 error attention events 11815 * @phba: Pointer to HBA context. 11816 * 11817 * This function is called to read the SLI4 device error attention registers 11818 * for possible error attention events. The caller must hold the hostlock 11819 * with spin_lock_irq(). 11820 * 11821 * This function returns 1 when there is Error Attention in the Host Attention 11822 * Register and returns 0 otherwise. 11823 **/ 11824 static int 11825 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11826 { 11827 uint32_t uerr_sta_hi, uerr_sta_lo; 11828 uint32_t if_type, portsmphr; 11829 struct lpfc_register portstat_reg; 11830 11831 /* 11832 * For now, use the SLI4 device internal unrecoverable error 11833 * registers for error attention. This can be changed later. 11834 */ 11835 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11836 switch (if_type) { 11837 case LPFC_SLI_INTF_IF_TYPE_0: 11838 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11839 &uerr_sta_lo) || 11840 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11841 &uerr_sta_hi)) { 11842 phba->work_hs |= UNPLUG_ERR; 11843 phba->work_ha |= HA_ERATT; 11844 phba->hba_flag |= HBA_ERATT_HANDLED; 11845 return 1; 11846 } 11847 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11848 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11849 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11850 "1423 HBA Unrecoverable error: " 11851 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11852 "ue_mask_lo_reg=0x%x, " 11853 "ue_mask_hi_reg=0x%x\n", 11854 uerr_sta_lo, uerr_sta_hi, 11855 phba->sli4_hba.ue_mask_lo, 11856 phba->sli4_hba.ue_mask_hi); 11857 phba->work_status[0] = uerr_sta_lo; 11858 phba->work_status[1] = uerr_sta_hi; 11859 phba->work_ha |= HA_ERATT; 11860 phba->hba_flag |= HBA_ERATT_HANDLED; 11861 return 1; 11862 } 11863 break; 11864 case LPFC_SLI_INTF_IF_TYPE_2: 11865 case LPFC_SLI_INTF_IF_TYPE_6: 11866 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11867 &portstat_reg.word0) || 11868 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11869 &portsmphr)){ 11870 phba->work_hs |= UNPLUG_ERR; 11871 phba->work_ha |= HA_ERATT; 11872 phba->hba_flag |= HBA_ERATT_HANDLED; 11873 return 1; 11874 } 11875 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11876 phba->work_status[0] = 11877 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11878 phba->work_status[1] = 11879 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11880 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11881 "2885 Port Status Event: " 11882 "port status reg 0x%x, " 11883 "port smphr reg 0x%x, " 11884 "error 1=0x%x, error 2=0x%x\n", 11885 portstat_reg.word0, 11886 portsmphr, 11887 phba->work_status[0], 11888 phba->work_status[1]); 11889 phba->work_ha |= HA_ERATT; 11890 phba->hba_flag |= HBA_ERATT_HANDLED; 11891 return 1; 11892 } 11893 break; 11894 case LPFC_SLI_INTF_IF_TYPE_1: 11895 default: 11896 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11897 "2886 HBA Error Attention on unsupported " 11898 "if type %d.", if_type); 11899 return 1; 11900 } 11901 11902 return 0; 11903 } 11904 11905 /** 11906 * lpfc_sli_check_eratt - check error attention events 11907 * @phba: Pointer to HBA context. 11908 * 11909 * This function is called from timer soft interrupt context to check HBA's 11910 * error attention register bit for error attention events. 11911 * 11912 * This function returns 1 when there is Error Attention in the Host Attention 11913 * Register and returns 0 otherwise. 11914 **/ 11915 int 11916 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11917 { 11918 uint32_t ha_copy; 11919 11920 /* If somebody is waiting to handle an eratt, don't process it 11921 * here. The brdkill function will do this. 11922 */ 11923 if (phba->link_flag & LS_IGNORE_ERATT) 11924 return 0; 11925 11926 /* Check if interrupt handler handles this ERATT */ 11927 spin_lock_irq(&phba->hbalock); 11928 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11929 /* Interrupt handler has handled ERATT */ 11930 spin_unlock_irq(&phba->hbalock); 11931 return 0; 11932 } 11933 11934 /* 11935 * If there is deferred error attention, do not check for error 11936 * attention 11937 */ 11938 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11939 spin_unlock_irq(&phba->hbalock); 11940 return 0; 11941 } 11942 11943 /* If PCI channel is offline, don't process it */ 11944 if (unlikely(pci_channel_offline(phba->pcidev))) { 11945 spin_unlock_irq(&phba->hbalock); 11946 return 0; 11947 } 11948 11949 switch (phba->sli_rev) { 11950 case LPFC_SLI_REV2: 11951 case LPFC_SLI_REV3: 11952 /* Read chip Host Attention (HA) register */ 11953 ha_copy = lpfc_sli_eratt_read(phba); 11954 break; 11955 case LPFC_SLI_REV4: 11956 /* Read device Uncoverable Error (UERR) registers */ 11957 ha_copy = lpfc_sli4_eratt_read(phba); 11958 break; 11959 default: 11960 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11961 "0299 Invalid SLI revision (%d)\n", 11962 phba->sli_rev); 11963 ha_copy = 0; 11964 break; 11965 } 11966 spin_unlock_irq(&phba->hbalock); 11967 11968 return ha_copy; 11969 } 11970 11971 /** 11972 * lpfc_intr_state_check - Check device state for interrupt handling 11973 * @phba: Pointer to HBA context. 11974 * 11975 * This inline routine checks whether a device or its PCI slot is in a state 11976 * that the interrupt should be handled. 11977 * 11978 * This function returns 0 if the device or the PCI slot is in a state that 11979 * interrupt should be handled, otherwise -EIO. 11980 */ 11981 static inline int 11982 lpfc_intr_state_check(struct lpfc_hba *phba) 11983 { 11984 /* If the pci channel is offline, ignore all the interrupts */ 11985 if (unlikely(pci_channel_offline(phba->pcidev))) 11986 return -EIO; 11987 11988 /* Update device level interrupt statistics */ 11989 phba->sli.slistat.sli_intr++; 11990 11991 /* Ignore all interrupts during initialization. */ 11992 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11993 return -EIO; 11994 11995 return 0; 11996 } 11997 11998 /** 11999 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12000 * @irq: Interrupt number. 12001 * @dev_id: The device context pointer. 12002 * 12003 * This function is directly called from the PCI layer as an interrupt 12004 * service routine when device with SLI-3 interface spec is enabled with 12005 * MSI-X multi-message interrupt mode and there are slow-path events in 12006 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12007 * interrupt mode, this function is called as part of the device-level 12008 * interrupt handler. When the PCI slot is in error recovery or the HBA 12009 * is undergoing initialization, the interrupt handler will not process 12010 * the interrupt. The link attention and ELS ring attention events are 12011 * handled by the worker thread. The interrupt handler signals the worker 12012 * thread and returns for these events. This function is called without 12013 * any lock held. It gets the hbalock to access and update SLI data 12014 * structures. 12015 * 12016 * This function returns IRQ_HANDLED when interrupt is handled else it 12017 * returns IRQ_NONE. 12018 **/ 12019 irqreturn_t 12020 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12021 { 12022 struct lpfc_hba *phba; 12023 uint32_t ha_copy, hc_copy; 12024 uint32_t work_ha_copy; 12025 unsigned long status; 12026 unsigned long iflag; 12027 uint32_t control; 12028 12029 MAILBOX_t *mbox, *pmbox; 12030 struct lpfc_vport *vport; 12031 struct lpfc_nodelist *ndlp; 12032 struct lpfc_dmabuf *mp; 12033 LPFC_MBOXQ_t *pmb; 12034 int rc; 12035 12036 /* 12037 * Get the driver's phba structure from the dev_id and 12038 * assume the HBA is not interrupting. 12039 */ 12040 phba = (struct lpfc_hba *)dev_id; 12041 12042 if (unlikely(!phba)) 12043 return IRQ_NONE; 12044 12045 /* 12046 * Stuff needs to be attented to when this function is invoked as an 12047 * individual interrupt handler in MSI-X multi-message interrupt mode 12048 */ 12049 if (phba->intr_type == MSIX) { 12050 /* Check device state for handling interrupt */ 12051 if (lpfc_intr_state_check(phba)) 12052 return IRQ_NONE; 12053 /* Need to read HA REG for slow-path events */ 12054 spin_lock_irqsave(&phba->hbalock, iflag); 12055 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12056 goto unplug_error; 12057 /* If somebody is waiting to handle an eratt don't process it 12058 * here. The brdkill function will do this. 12059 */ 12060 if (phba->link_flag & LS_IGNORE_ERATT) 12061 ha_copy &= ~HA_ERATT; 12062 /* Check the need for handling ERATT in interrupt handler */ 12063 if (ha_copy & HA_ERATT) { 12064 if (phba->hba_flag & HBA_ERATT_HANDLED) 12065 /* ERATT polling has handled ERATT */ 12066 ha_copy &= ~HA_ERATT; 12067 else 12068 /* Indicate interrupt handler handles ERATT */ 12069 phba->hba_flag |= HBA_ERATT_HANDLED; 12070 } 12071 12072 /* 12073 * If there is deferred error attention, do not check for any 12074 * interrupt. 12075 */ 12076 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12077 spin_unlock_irqrestore(&phba->hbalock, iflag); 12078 return IRQ_NONE; 12079 } 12080 12081 /* Clear up only attention source related to slow-path */ 12082 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12083 goto unplug_error; 12084 12085 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12086 HC_LAINT_ENA | HC_ERINT_ENA), 12087 phba->HCregaddr); 12088 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12089 phba->HAregaddr); 12090 writel(hc_copy, phba->HCregaddr); 12091 readl(phba->HAregaddr); /* flush */ 12092 spin_unlock_irqrestore(&phba->hbalock, iflag); 12093 } else 12094 ha_copy = phba->ha_copy; 12095 12096 work_ha_copy = ha_copy & phba->work_ha_mask; 12097 12098 if (work_ha_copy) { 12099 if (work_ha_copy & HA_LATT) { 12100 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12101 /* 12102 * Turn off Link Attention interrupts 12103 * until CLEAR_LA done 12104 */ 12105 spin_lock_irqsave(&phba->hbalock, iflag); 12106 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12107 if (lpfc_readl(phba->HCregaddr, &control)) 12108 goto unplug_error; 12109 control &= ~HC_LAINT_ENA; 12110 writel(control, phba->HCregaddr); 12111 readl(phba->HCregaddr); /* flush */ 12112 spin_unlock_irqrestore(&phba->hbalock, iflag); 12113 } 12114 else 12115 work_ha_copy &= ~HA_LATT; 12116 } 12117 12118 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12119 /* 12120 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12121 * the only slow ring. 12122 */ 12123 status = (work_ha_copy & 12124 (HA_RXMASK << (4*LPFC_ELS_RING))); 12125 status >>= (4*LPFC_ELS_RING); 12126 if (status & HA_RXMASK) { 12127 spin_lock_irqsave(&phba->hbalock, iflag); 12128 if (lpfc_readl(phba->HCregaddr, &control)) 12129 goto unplug_error; 12130 12131 lpfc_debugfs_slow_ring_trc(phba, 12132 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12133 control, status, 12134 (uint32_t)phba->sli.slistat.sli_intr); 12135 12136 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12137 lpfc_debugfs_slow_ring_trc(phba, 12138 "ISR Disable ring:" 12139 "pwork:x%x hawork:x%x wait:x%x", 12140 phba->work_ha, work_ha_copy, 12141 (uint32_t)((unsigned long) 12142 &phba->work_waitq)); 12143 12144 control &= 12145 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12146 writel(control, phba->HCregaddr); 12147 readl(phba->HCregaddr); /* flush */ 12148 } 12149 else { 12150 lpfc_debugfs_slow_ring_trc(phba, 12151 "ISR slow ring: pwork:" 12152 "x%x hawork:x%x wait:x%x", 12153 phba->work_ha, work_ha_copy, 12154 (uint32_t)((unsigned long) 12155 &phba->work_waitq)); 12156 } 12157 spin_unlock_irqrestore(&phba->hbalock, iflag); 12158 } 12159 } 12160 spin_lock_irqsave(&phba->hbalock, iflag); 12161 if (work_ha_copy & HA_ERATT) { 12162 if (lpfc_sli_read_hs(phba)) 12163 goto unplug_error; 12164 /* 12165 * Check if there is a deferred error condition 12166 * is active 12167 */ 12168 if ((HS_FFER1 & phba->work_hs) && 12169 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12170 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12171 phba->work_hs)) { 12172 phba->hba_flag |= DEFER_ERATT; 12173 /* Clear all interrupt enable conditions */ 12174 writel(0, phba->HCregaddr); 12175 readl(phba->HCregaddr); 12176 } 12177 } 12178 12179 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12180 pmb = phba->sli.mbox_active; 12181 pmbox = &pmb->u.mb; 12182 mbox = phba->mbox; 12183 vport = pmb->vport; 12184 12185 /* First check out the status word */ 12186 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12187 if (pmbox->mbxOwner != OWN_HOST) { 12188 spin_unlock_irqrestore(&phba->hbalock, iflag); 12189 /* 12190 * Stray Mailbox Interrupt, mbxCommand <cmd> 12191 * mbxStatus <status> 12192 */ 12193 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12194 LOG_SLI, 12195 "(%d):0304 Stray Mailbox " 12196 "Interrupt mbxCommand x%x " 12197 "mbxStatus x%x\n", 12198 (vport ? vport->vpi : 0), 12199 pmbox->mbxCommand, 12200 pmbox->mbxStatus); 12201 /* clear mailbox attention bit */ 12202 work_ha_copy &= ~HA_MBATT; 12203 } else { 12204 phba->sli.mbox_active = NULL; 12205 spin_unlock_irqrestore(&phba->hbalock, iflag); 12206 phba->last_completion_time = jiffies; 12207 del_timer(&phba->sli.mbox_tmo); 12208 if (pmb->mbox_cmpl) { 12209 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12210 MAILBOX_CMD_SIZE); 12211 if (pmb->out_ext_byte_len && 12212 pmb->context2) 12213 lpfc_sli_pcimem_bcopy( 12214 phba->mbox_ext, 12215 pmb->context2, 12216 pmb->out_ext_byte_len); 12217 } 12218 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12219 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12220 12221 lpfc_debugfs_disc_trc(vport, 12222 LPFC_DISC_TRC_MBOX_VPORT, 12223 "MBOX dflt rpi: : " 12224 "status:x%x rpi:x%x", 12225 (uint32_t)pmbox->mbxStatus, 12226 pmbox->un.varWords[0], 0); 12227 12228 if (!pmbox->mbxStatus) { 12229 mp = (struct lpfc_dmabuf *) 12230 (pmb->context1); 12231 ndlp = (struct lpfc_nodelist *) 12232 pmb->context2; 12233 12234 /* Reg_LOGIN of dflt RPI was 12235 * successful. new lets get 12236 * rid of the RPI using the 12237 * same mbox buffer. 12238 */ 12239 lpfc_unreg_login(phba, 12240 vport->vpi, 12241 pmbox->un.varWords[0], 12242 pmb); 12243 pmb->mbox_cmpl = 12244 lpfc_mbx_cmpl_dflt_rpi; 12245 pmb->context1 = mp; 12246 pmb->context2 = ndlp; 12247 pmb->vport = vport; 12248 rc = lpfc_sli_issue_mbox(phba, 12249 pmb, 12250 MBX_NOWAIT); 12251 if (rc != MBX_BUSY) 12252 lpfc_printf_log(phba, 12253 KERN_ERR, 12254 LOG_MBOX | LOG_SLI, 12255 "0350 rc should have" 12256 "been MBX_BUSY\n"); 12257 if (rc != MBX_NOT_FINISHED) 12258 goto send_current_mbox; 12259 } 12260 } 12261 spin_lock_irqsave( 12262 &phba->pport->work_port_lock, 12263 iflag); 12264 phba->pport->work_port_events &= 12265 ~WORKER_MBOX_TMO; 12266 spin_unlock_irqrestore( 12267 &phba->pport->work_port_lock, 12268 iflag); 12269 lpfc_mbox_cmpl_put(phba, pmb); 12270 } 12271 } else 12272 spin_unlock_irqrestore(&phba->hbalock, iflag); 12273 12274 if ((work_ha_copy & HA_MBATT) && 12275 (phba->sli.mbox_active == NULL)) { 12276 send_current_mbox: 12277 /* Process next mailbox command if there is one */ 12278 do { 12279 rc = lpfc_sli_issue_mbox(phba, NULL, 12280 MBX_NOWAIT); 12281 } while (rc == MBX_NOT_FINISHED); 12282 if (rc != MBX_SUCCESS) 12283 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12284 LOG_SLI, "0349 rc should be " 12285 "MBX_SUCCESS\n"); 12286 } 12287 12288 spin_lock_irqsave(&phba->hbalock, iflag); 12289 phba->work_ha |= work_ha_copy; 12290 spin_unlock_irqrestore(&phba->hbalock, iflag); 12291 lpfc_worker_wake_up(phba); 12292 } 12293 return IRQ_HANDLED; 12294 unplug_error: 12295 spin_unlock_irqrestore(&phba->hbalock, iflag); 12296 return IRQ_HANDLED; 12297 12298 } /* lpfc_sli_sp_intr_handler */ 12299 12300 /** 12301 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12302 * @irq: Interrupt number. 12303 * @dev_id: The device context pointer. 12304 * 12305 * This function is directly called from the PCI layer as an interrupt 12306 * service routine when device with SLI-3 interface spec is enabled with 12307 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12308 * ring event in the HBA. However, when the device is enabled with either 12309 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12310 * device-level interrupt handler. When the PCI slot is in error recovery 12311 * or the HBA is undergoing initialization, the interrupt handler will not 12312 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12313 * the intrrupt context. This function is called without any lock held. 12314 * It gets the hbalock to access and update SLI data structures. 12315 * 12316 * This function returns IRQ_HANDLED when interrupt is handled else it 12317 * returns IRQ_NONE. 12318 **/ 12319 irqreturn_t 12320 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12321 { 12322 struct lpfc_hba *phba; 12323 uint32_t ha_copy; 12324 unsigned long status; 12325 unsigned long iflag; 12326 struct lpfc_sli_ring *pring; 12327 12328 /* Get the driver's phba structure from the dev_id and 12329 * assume the HBA is not interrupting. 12330 */ 12331 phba = (struct lpfc_hba *) dev_id; 12332 12333 if (unlikely(!phba)) 12334 return IRQ_NONE; 12335 12336 /* 12337 * Stuff needs to be attented to when this function is invoked as an 12338 * individual interrupt handler in MSI-X multi-message interrupt mode 12339 */ 12340 if (phba->intr_type == MSIX) { 12341 /* Check device state for handling interrupt */ 12342 if (lpfc_intr_state_check(phba)) 12343 return IRQ_NONE; 12344 /* Need to read HA REG for FCP ring and other ring events */ 12345 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12346 return IRQ_HANDLED; 12347 /* Clear up only attention source related to fast-path */ 12348 spin_lock_irqsave(&phba->hbalock, iflag); 12349 /* 12350 * If there is deferred error attention, do not check for 12351 * any interrupt. 12352 */ 12353 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12354 spin_unlock_irqrestore(&phba->hbalock, iflag); 12355 return IRQ_NONE; 12356 } 12357 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12358 phba->HAregaddr); 12359 readl(phba->HAregaddr); /* flush */ 12360 spin_unlock_irqrestore(&phba->hbalock, iflag); 12361 } else 12362 ha_copy = phba->ha_copy; 12363 12364 /* 12365 * Process all events on FCP ring. Take the optimized path for FCP IO. 12366 */ 12367 ha_copy &= ~(phba->work_ha_mask); 12368 12369 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12370 status >>= (4*LPFC_FCP_RING); 12371 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12372 if (status & HA_RXMASK) 12373 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12374 12375 if (phba->cfg_multi_ring_support == 2) { 12376 /* 12377 * Process all events on extra ring. Take the optimized path 12378 * for extra ring IO. 12379 */ 12380 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12381 status >>= (4*LPFC_EXTRA_RING); 12382 if (status & HA_RXMASK) { 12383 lpfc_sli_handle_fast_ring_event(phba, 12384 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12385 status); 12386 } 12387 } 12388 return IRQ_HANDLED; 12389 } /* lpfc_sli_fp_intr_handler */ 12390 12391 /** 12392 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12393 * @irq: Interrupt number. 12394 * @dev_id: The device context pointer. 12395 * 12396 * This function is the HBA device-level interrupt handler to device with 12397 * SLI-3 interface spec, called from the PCI layer when either MSI or 12398 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12399 * requires driver attention. This function invokes the slow-path interrupt 12400 * attention handling function and fast-path interrupt attention handling 12401 * function in turn to process the relevant HBA attention events. This 12402 * function is called without any lock held. It gets the hbalock to access 12403 * and update SLI data structures. 12404 * 12405 * This function returns IRQ_HANDLED when interrupt is handled, else it 12406 * returns IRQ_NONE. 12407 **/ 12408 irqreturn_t 12409 lpfc_sli_intr_handler(int irq, void *dev_id) 12410 { 12411 struct lpfc_hba *phba; 12412 irqreturn_t sp_irq_rc, fp_irq_rc; 12413 unsigned long status1, status2; 12414 uint32_t hc_copy; 12415 12416 /* 12417 * Get the driver's phba structure from the dev_id and 12418 * assume the HBA is not interrupting. 12419 */ 12420 phba = (struct lpfc_hba *) dev_id; 12421 12422 if (unlikely(!phba)) 12423 return IRQ_NONE; 12424 12425 /* Check device state for handling interrupt */ 12426 if (lpfc_intr_state_check(phba)) 12427 return IRQ_NONE; 12428 12429 spin_lock(&phba->hbalock); 12430 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12431 spin_unlock(&phba->hbalock); 12432 return IRQ_HANDLED; 12433 } 12434 12435 if (unlikely(!phba->ha_copy)) { 12436 spin_unlock(&phba->hbalock); 12437 return IRQ_NONE; 12438 } else if (phba->ha_copy & HA_ERATT) { 12439 if (phba->hba_flag & HBA_ERATT_HANDLED) 12440 /* ERATT polling has handled ERATT */ 12441 phba->ha_copy &= ~HA_ERATT; 12442 else 12443 /* Indicate interrupt handler handles ERATT */ 12444 phba->hba_flag |= HBA_ERATT_HANDLED; 12445 } 12446 12447 /* 12448 * If there is deferred error attention, do not check for any interrupt. 12449 */ 12450 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12451 spin_unlock(&phba->hbalock); 12452 return IRQ_NONE; 12453 } 12454 12455 /* Clear attention sources except link and error attentions */ 12456 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12457 spin_unlock(&phba->hbalock); 12458 return IRQ_HANDLED; 12459 } 12460 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12461 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12462 phba->HCregaddr); 12463 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12464 writel(hc_copy, phba->HCregaddr); 12465 readl(phba->HAregaddr); /* flush */ 12466 spin_unlock(&phba->hbalock); 12467 12468 /* 12469 * Invokes slow-path host attention interrupt handling as appropriate. 12470 */ 12471 12472 /* status of events with mailbox and link attention */ 12473 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12474 12475 /* status of events with ELS ring */ 12476 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12477 status2 >>= (4*LPFC_ELS_RING); 12478 12479 if (status1 || (status2 & HA_RXMASK)) 12480 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12481 else 12482 sp_irq_rc = IRQ_NONE; 12483 12484 /* 12485 * Invoke fast-path host attention interrupt handling as appropriate. 12486 */ 12487 12488 /* status of events with FCP ring */ 12489 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12490 status1 >>= (4*LPFC_FCP_RING); 12491 12492 /* status of events with extra ring */ 12493 if (phba->cfg_multi_ring_support == 2) { 12494 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12495 status2 >>= (4*LPFC_EXTRA_RING); 12496 } else 12497 status2 = 0; 12498 12499 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12500 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12501 else 12502 fp_irq_rc = IRQ_NONE; 12503 12504 /* Return device-level interrupt handling status */ 12505 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12506 } /* lpfc_sli_intr_handler */ 12507 12508 /** 12509 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12510 * @phba: pointer to lpfc hba data structure. 12511 * 12512 * This routine is invoked by the worker thread to process all the pending 12513 * SLI4 FCP abort XRI events. 12514 **/ 12515 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12516 { 12517 struct lpfc_cq_event *cq_event; 12518 12519 /* First, declare the fcp xri abort event has been handled */ 12520 spin_lock_irq(&phba->hbalock); 12521 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12522 spin_unlock_irq(&phba->hbalock); 12523 /* Now, handle all the fcp xri abort events */ 12524 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12525 /* Get the first event from the head of the event queue */ 12526 spin_lock_irq(&phba->hbalock); 12527 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12528 cq_event, struct lpfc_cq_event, list); 12529 spin_unlock_irq(&phba->hbalock); 12530 /* Notify aborted XRI for FCP work queue */ 12531 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12532 /* Free the event processed back to the free pool */ 12533 lpfc_sli4_cq_event_release(phba, cq_event); 12534 } 12535 } 12536 12537 /** 12538 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12539 * @phba: pointer to lpfc hba data structure. 12540 * 12541 * This routine is invoked by the worker thread to process all the pending 12542 * SLI4 els abort xri events. 12543 **/ 12544 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12545 { 12546 struct lpfc_cq_event *cq_event; 12547 12548 /* First, declare the els xri abort event has been handled */ 12549 spin_lock_irq(&phba->hbalock); 12550 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12551 spin_unlock_irq(&phba->hbalock); 12552 /* Now, handle all the els xri abort events */ 12553 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12554 /* Get the first event from the head of the event queue */ 12555 spin_lock_irq(&phba->hbalock); 12556 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12557 cq_event, struct lpfc_cq_event, list); 12558 spin_unlock_irq(&phba->hbalock); 12559 /* Notify aborted XRI for ELS work queue */ 12560 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12561 /* Free the event processed back to the free pool */ 12562 lpfc_sli4_cq_event_release(phba, cq_event); 12563 } 12564 } 12565 12566 /** 12567 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12568 * @phba: pointer to lpfc hba data structure 12569 * @pIocbIn: pointer to the rspiocbq 12570 * @pIocbOut: pointer to the cmdiocbq 12571 * @wcqe: pointer to the complete wcqe 12572 * 12573 * This routine transfers the fields of a command iocbq to a response iocbq 12574 * by copying all the IOCB fields from command iocbq and transferring the 12575 * completion status information from the complete wcqe. 12576 **/ 12577 static void 12578 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12579 struct lpfc_iocbq *pIocbIn, 12580 struct lpfc_iocbq *pIocbOut, 12581 struct lpfc_wcqe_complete *wcqe) 12582 { 12583 int numBdes, i; 12584 unsigned long iflags; 12585 uint32_t status, max_response; 12586 struct lpfc_dmabuf *dmabuf; 12587 struct ulp_bde64 *bpl, bde; 12588 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12589 12590 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12591 sizeof(struct lpfc_iocbq) - offset); 12592 /* Map WCQE parameters into irspiocb parameters */ 12593 status = bf_get(lpfc_wcqe_c_status, wcqe); 12594 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12595 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12596 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12597 pIocbIn->iocb.un.fcpi.fcpi_parm = 12598 pIocbOut->iocb.un.fcpi.fcpi_parm - 12599 wcqe->total_data_placed; 12600 else 12601 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12602 else { 12603 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12604 switch (pIocbOut->iocb.ulpCommand) { 12605 case CMD_ELS_REQUEST64_CR: 12606 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12607 bpl = (struct ulp_bde64 *)dmabuf->virt; 12608 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12609 max_response = bde.tus.f.bdeSize; 12610 break; 12611 case CMD_GEN_REQUEST64_CR: 12612 max_response = 0; 12613 if (!pIocbOut->context3) 12614 break; 12615 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12616 sizeof(struct ulp_bde64); 12617 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12618 bpl = (struct ulp_bde64 *)dmabuf->virt; 12619 for (i = 0; i < numBdes; i++) { 12620 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12621 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12622 max_response += bde.tus.f.bdeSize; 12623 } 12624 break; 12625 default: 12626 max_response = wcqe->total_data_placed; 12627 break; 12628 } 12629 if (max_response < wcqe->total_data_placed) 12630 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12631 else 12632 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12633 wcqe->total_data_placed; 12634 } 12635 12636 /* Convert BG errors for completion status */ 12637 if (status == CQE_STATUS_DI_ERROR) { 12638 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12639 12640 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12641 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12642 else 12643 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12644 12645 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12646 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12647 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12648 BGS_GUARD_ERR_MASK; 12649 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12650 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12651 BGS_APPTAG_ERR_MASK; 12652 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12653 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12654 BGS_REFTAG_ERR_MASK; 12655 12656 /* Check to see if there was any good data before the error */ 12657 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12658 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12659 BGS_HI_WATER_MARK_PRESENT_MASK; 12660 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12661 wcqe->total_data_placed; 12662 } 12663 12664 /* 12665 * Set ALL the error bits to indicate we don't know what 12666 * type of error it is. 12667 */ 12668 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12669 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12670 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12671 BGS_GUARD_ERR_MASK); 12672 } 12673 12674 /* Pick up HBA exchange busy condition */ 12675 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12676 spin_lock_irqsave(&phba->hbalock, iflags); 12677 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12678 spin_unlock_irqrestore(&phba->hbalock, iflags); 12679 } 12680 } 12681 12682 /** 12683 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12684 * @phba: Pointer to HBA context object. 12685 * @wcqe: Pointer to work-queue completion queue entry. 12686 * 12687 * This routine handles an ELS work-queue completion event and construct 12688 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12689 * discovery engine to handle. 12690 * 12691 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12692 **/ 12693 static struct lpfc_iocbq * 12694 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12695 struct lpfc_iocbq *irspiocbq) 12696 { 12697 struct lpfc_sli_ring *pring; 12698 struct lpfc_iocbq *cmdiocbq; 12699 struct lpfc_wcqe_complete *wcqe; 12700 unsigned long iflags; 12701 12702 pring = lpfc_phba_elsring(phba); 12703 if (unlikely(!pring)) 12704 return NULL; 12705 12706 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12707 spin_lock_irqsave(&pring->ring_lock, iflags); 12708 pring->stats.iocb_event++; 12709 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12710 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12711 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12712 if (unlikely(!cmdiocbq)) { 12713 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12714 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12715 "0386 ELS complete with no corresponding " 12716 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 12717 wcqe->word0, wcqe->total_data_placed, 12718 wcqe->parameter, wcqe->word3); 12719 lpfc_sli_release_iocbq(phba, irspiocbq); 12720 return NULL; 12721 } 12722 12723 /* Put the iocb back on the txcmplq */ 12724 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12725 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12726 12727 /* Fake the irspiocbq and copy necessary response information */ 12728 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12729 12730 return irspiocbq; 12731 } 12732 12733 inline struct lpfc_cq_event * 12734 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 12735 { 12736 struct lpfc_cq_event *cq_event; 12737 12738 /* Allocate a new internal CQ_EVENT entry */ 12739 cq_event = lpfc_sli4_cq_event_alloc(phba); 12740 if (!cq_event) { 12741 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12742 "0602 Failed to alloc CQ_EVENT entry\n"); 12743 return NULL; 12744 } 12745 12746 /* Move the CQE into the event */ 12747 memcpy(&cq_event->cqe, entry, size); 12748 return cq_event; 12749 } 12750 12751 /** 12752 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12753 * @phba: Pointer to HBA context object. 12754 * @cqe: Pointer to mailbox completion queue entry. 12755 * 12756 * This routine process a mailbox completion queue entry with asynchrous 12757 * event. 12758 * 12759 * Return: true if work posted to worker thread, otherwise false. 12760 **/ 12761 static bool 12762 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12763 { 12764 struct lpfc_cq_event *cq_event; 12765 unsigned long iflags; 12766 12767 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12768 "0392 Async Event: word0:x%x, word1:x%x, " 12769 "word2:x%x, word3:x%x\n", mcqe->word0, 12770 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12771 12772 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 12773 if (!cq_event) 12774 return false; 12775 spin_lock_irqsave(&phba->hbalock, iflags); 12776 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12777 /* Set the async event flag */ 12778 phba->hba_flag |= ASYNC_EVENT; 12779 spin_unlock_irqrestore(&phba->hbalock, iflags); 12780 12781 return true; 12782 } 12783 12784 /** 12785 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12786 * @phba: Pointer to HBA context object. 12787 * @cqe: Pointer to mailbox completion queue entry. 12788 * 12789 * This routine process a mailbox completion queue entry with mailbox 12790 * completion event. 12791 * 12792 * Return: true if work posted to worker thread, otherwise false. 12793 **/ 12794 static bool 12795 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12796 { 12797 uint32_t mcqe_status; 12798 MAILBOX_t *mbox, *pmbox; 12799 struct lpfc_mqe *mqe; 12800 struct lpfc_vport *vport; 12801 struct lpfc_nodelist *ndlp; 12802 struct lpfc_dmabuf *mp; 12803 unsigned long iflags; 12804 LPFC_MBOXQ_t *pmb; 12805 bool workposted = false; 12806 int rc; 12807 12808 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12809 if (!bf_get(lpfc_trailer_completed, mcqe)) 12810 goto out_no_mqe_complete; 12811 12812 /* Get the reference to the active mbox command */ 12813 spin_lock_irqsave(&phba->hbalock, iflags); 12814 pmb = phba->sli.mbox_active; 12815 if (unlikely(!pmb)) { 12816 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12817 "1832 No pending MBOX command to handle\n"); 12818 spin_unlock_irqrestore(&phba->hbalock, iflags); 12819 goto out_no_mqe_complete; 12820 } 12821 spin_unlock_irqrestore(&phba->hbalock, iflags); 12822 mqe = &pmb->u.mqe; 12823 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12824 mbox = phba->mbox; 12825 vport = pmb->vport; 12826 12827 /* Reset heartbeat timer */ 12828 phba->last_completion_time = jiffies; 12829 del_timer(&phba->sli.mbox_tmo); 12830 12831 /* Move mbox data to caller's mailbox region, do endian swapping */ 12832 if (pmb->mbox_cmpl && mbox) 12833 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12834 12835 /* 12836 * For mcqe errors, conditionally move a modified error code to 12837 * the mbox so that the error will not be missed. 12838 */ 12839 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12840 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12841 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12842 bf_set(lpfc_mqe_status, mqe, 12843 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12844 } 12845 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12846 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12847 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12848 "MBOX dflt rpi: status:x%x rpi:x%x", 12849 mcqe_status, 12850 pmbox->un.varWords[0], 0); 12851 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12852 mp = (struct lpfc_dmabuf *)(pmb->context1); 12853 ndlp = (struct lpfc_nodelist *)pmb->context2; 12854 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12855 * RID of the PPI using the same mbox buffer. 12856 */ 12857 lpfc_unreg_login(phba, vport->vpi, 12858 pmbox->un.varWords[0], pmb); 12859 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12860 pmb->context1 = mp; 12861 pmb->context2 = ndlp; 12862 pmb->vport = vport; 12863 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12864 if (rc != MBX_BUSY) 12865 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12866 LOG_SLI, "0385 rc should " 12867 "have been MBX_BUSY\n"); 12868 if (rc != MBX_NOT_FINISHED) 12869 goto send_current_mbox; 12870 } 12871 } 12872 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12873 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12874 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12875 12876 /* There is mailbox completion work to do */ 12877 spin_lock_irqsave(&phba->hbalock, iflags); 12878 __lpfc_mbox_cmpl_put(phba, pmb); 12879 phba->work_ha |= HA_MBATT; 12880 spin_unlock_irqrestore(&phba->hbalock, iflags); 12881 workposted = true; 12882 12883 send_current_mbox: 12884 spin_lock_irqsave(&phba->hbalock, iflags); 12885 /* Release the mailbox command posting token */ 12886 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12887 /* Setting active mailbox pointer need to be in sync to flag clear */ 12888 phba->sli.mbox_active = NULL; 12889 spin_unlock_irqrestore(&phba->hbalock, iflags); 12890 /* Wake up worker thread to post the next pending mailbox command */ 12891 lpfc_worker_wake_up(phba); 12892 out_no_mqe_complete: 12893 if (bf_get(lpfc_trailer_consumed, mcqe)) 12894 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12895 return workposted; 12896 } 12897 12898 /** 12899 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12900 * @phba: Pointer to HBA context object. 12901 * @cqe: Pointer to mailbox completion queue entry. 12902 * 12903 * This routine process a mailbox completion queue entry, it invokes the 12904 * proper mailbox complete handling or asynchrous event handling routine 12905 * according to the MCQE's async bit. 12906 * 12907 * Return: true if work posted to worker thread, otherwise false. 12908 **/ 12909 static bool 12910 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12911 { 12912 struct lpfc_mcqe mcqe; 12913 bool workposted; 12914 12915 /* Copy the mailbox MCQE and convert endian order as needed */ 12916 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12917 12918 /* Invoke the proper event handling routine */ 12919 if (!bf_get(lpfc_trailer_async, &mcqe)) 12920 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12921 else 12922 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12923 return workposted; 12924 } 12925 12926 /** 12927 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12928 * @phba: Pointer to HBA context object. 12929 * @cq: Pointer to associated CQ 12930 * @wcqe: Pointer to work-queue completion queue entry. 12931 * 12932 * This routine handles an ELS work-queue completion event. 12933 * 12934 * Return: true if work posted to worker thread, otherwise false. 12935 **/ 12936 static bool 12937 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12938 struct lpfc_wcqe_complete *wcqe) 12939 { 12940 struct lpfc_iocbq *irspiocbq; 12941 unsigned long iflags; 12942 struct lpfc_sli_ring *pring = cq->pring; 12943 int txq_cnt = 0; 12944 int txcmplq_cnt = 0; 12945 int fcp_txcmplq_cnt = 0; 12946 12947 /* Get an irspiocbq for later ELS response processing use */ 12948 irspiocbq = lpfc_sli_get_iocbq(phba); 12949 if (!irspiocbq) { 12950 if (!list_empty(&pring->txq)) 12951 txq_cnt++; 12952 if (!list_empty(&pring->txcmplq)) 12953 txcmplq_cnt++; 12954 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12955 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12956 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12957 txq_cnt, phba->iocb_cnt, 12958 fcp_txcmplq_cnt, 12959 txcmplq_cnt); 12960 return false; 12961 } 12962 12963 /* Save off the slow-path queue event for work thread to process */ 12964 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12965 spin_lock_irqsave(&phba->hbalock, iflags); 12966 list_add_tail(&irspiocbq->cq_event.list, 12967 &phba->sli4_hba.sp_queue_event); 12968 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12969 spin_unlock_irqrestore(&phba->hbalock, iflags); 12970 12971 return true; 12972 } 12973 12974 /** 12975 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12976 * @phba: Pointer to HBA context object. 12977 * @wcqe: Pointer to work-queue completion queue entry. 12978 * 12979 * This routine handles slow-path WQ entry consumed event by invoking the 12980 * proper WQ release routine to the slow-path WQ. 12981 **/ 12982 static void 12983 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12984 struct lpfc_wcqe_release *wcqe) 12985 { 12986 /* sanity check on queue memory */ 12987 if (unlikely(!phba->sli4_hba.els_wq)) 12988 return; 12989 /* Check for the slow-path ELS work queue */ 12990 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12991 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12992 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12993 else 12994 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12995 "2579 Slow-path wqe consume event carries " 12996 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12997 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12998 phba->sli4_hba.els_wq->queue_id); 12999 } 13000 13001 /** 13002 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13003 * @phba: Pointer to HBA context object. 13004 * @cq: Pointer to a WQ completion queue. 13005 * @wcqe: Pointer to work-queue completion queue entry. 13006 * 13007 * This routine handles an XRI abort event. 13008 * 13009 * Return: true if work posted to worker thread, otherwise false. 13010 **/ 13011 static bool 13012 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13013 struct lpfc_queue *cq, 13014 struct sli4_wcqe_xri_aborted *wcqe) 13015 { 13016 bool workposted = false; 13017 struct lpfc_cq_event *cq_event; 13018 unsigned long iflags; 13019 13020 switch (cq->subtype) { 13021 case LPFC_FCP: 13022 cq_event = lpfc_cq_event_setup( 13023 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13024 if (!cq_event) 13025 return false; 13026 spin_lock_irqsave(&phba->hbalock, iflags); 13027 list_add_tail(&cq_event->list, 13028 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 13029 /* Set the fcp xri abort event flag */ 13030 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 13031 spin_unlock_irqrestore(&phba->hbalock, iflags); 13032 workposted = true; 13033 break; 13034 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13035 case LPFC_ELS: 13036 cq_event = lpfc_cq_event_setup( 13037 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13038 if (!cq_event) 13039 return false; 13040 spin_lock_irqsave(&phba->hbalock, iflags); 13041 list_add_tail(&cq_event->list, 13042 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13043 /* Set the els xri abort event flag */ 13044 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13045 spin_unlock_irqrestore(&phba->hbalock, iflags); 13046 workposted = true; 13047 break; 13048 case LPFC_NVME: 13049 /* Notify aborted XRI for NVME work queue */ 13050 if (phba->nvmet_support) 13051 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13052 else 13053 lpfc_sli4_nvme_xri_aborted(phba, wcqe); 13054 13055 workposted = false; 13056 break; 13057 default: 13058 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13059 "0603 Invalid CQ subtype %d: " 13060 "%08x %08x %08x %08x\n", 13061 cq->subtype, wcqe->word0, wcqe->parameter, 13062 wcqe->word2, wcqe->word3); 13063 workposted = false; 13064 break; 13065 } 13066 return workposted; 13067 } 13068 13069 /** 13070 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13071 * @phba: Pointer to HBA context object. 13072 * @rcqe: Pointer to receive-queue completion queue entry. 13073 * 13074 * This routine process a receive-queue completion queue entry. 13075 * 13076 * Return: true if work posted to worker thread, otherwise false. 13077 **/ 13078 static bool 13079 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13080 { 13081 bool workposted = false; 13082 struct fc_frame_header *fc_hdr; 13083 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13084 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13085 struct lpfc_nvmet_tgtport *tgtp; 13086 struct hbq_dmabuf *dma_buf; 13087 uint32_t status, rq_id; 13088 unsigned long iflags; 13089 13090 /* sanity check on queue memory */ 13091 if (unlikely(!hrq) || unlikely(!drq)) 13092 return workposted; 13093 13094 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13095 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13096 else 13097 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13098 if (rq_id != hrq->queue_id) 13099 goto out; 13100 13101 status = bf_get(lpfc_rcqe_status, rcqe); 13102 switch (status) { 13103 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13104 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13105 "2537 Receive Frame Truncated!!\n"); 13106 case FC_STATUS_RQ_SUCCESS: 13107 spin_lock_irqsave(&phba->hbalock, iflags); 13108 lpfc_sli4_rq_release(hrq, drq); 13109 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13110 if (!dma_buf) { 13111 hrq->RQ_no_buf_found++; 13112 spin_unlock_irqrestore(&phba->hbalock, iflags); 13113 goto out; 13114 } 13115 hrq->RQ_rcv_buf++; 13116 hrq->RQ_buf_posted--; 13117 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13118 13119 /* If a NVME LS event (type 0x28), treat it as Fast path */ 13120 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13121 13122 /* save off the frame for the word thread to process */ 13123 list_add_tail(&dma_buf->cq_event.list, 13124 &phba->sli4_hba.sp_queue_event); 13125 /* Frame received */ 13126 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13127 spin_unlock_irqrestore(&phba->hbalock, iflags); 13128 workposted = true; 13129 break; 13130 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13131 if (phba->nvmet_support) { 13132 tgtp = phba->targetport->private; 13133 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13134 "6402 RQE Error x%x, posted %d err_cnt " 13135 "%d: %x %x %x\n", 13136 status, hrq->RQ_buf_posted, 13137 hrq->RQ_no_posted_buf, 13138 atomic_read(&tgtp->rcv_fcp_cmd_in), 13139 atomic_read(&tgtp->rcv_fcp_cmd_out), 13140 atomic_read(&tgtp->xmt_fcp_release)); 13141 } 13142 /* fallthrough */ 13143 13144 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13145 hrq->RQ_no_posted_buf++; 13146 /* Post more buffers if possible */ 13147 spin_lock_irqsave(&phba->hbalock, iflags); 13148 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13149 spin_unlock_irqrestore(&phba->hbalock, iflags); 13150 workposted = true; 13151 break; 13152 } 13153 out: 13154 return workposted; 13155 } 13156 13157 /** 13158 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13159 * @phba: Pointer to HBA context object. 13160 * @cq: Pointer to the completion queue. 13161 * @wcqe: Pointer to a completion queue entry. 13162 * 13163 * This routine process a slow-path work-queue or receive queue completion queue 13164 * entry. 13165 * 13166 * Return: true if work posted to worker thread, otherwise false. 13167 **/ 13168 static bool 13169 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13170 struct lpfc_cqe *cqe) 13171 { 13172 struct lpfc_cqe cqevt; 13173 bool workposted = false; 13174 13175 /* Copy the work queue CQE and convert endian order if needed */ 13176 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13177 13178 /* Check and process for different type of WCQE and dispatch */ 13179 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13180 case CQE_CODE_COMPL_WQE: 13181 /* Process the WQ/RQ complete event */ 13182 phba->last_completion_time = jiffies; 13183 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13184 (struct lpfc_wcqe_complete *)&cqevt); 13185 break; 13186 case CQE_CODE_RELEASE_WQE: 13187 /* Process the WQ release event */ 13188 lpfc_sli4_sp_handle_rel_wcqe(phba, 13189 (struct lpfc_wcqe_release *)&cqevt); 13190 break; 13191 case CQE_CODE_XRI_ABORTED: 13192 /* Process the WQ XRI abort event */ 13193 phba->last_completion_time = jiffies; 13194 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13195 (struct sli4_wcqe_xri_aborted *)&cqevt); 13196 break; 13197 case CQE_CODE_RECEIVE: 13198 case CQE_CODE_RECEIVE_V1: 13199 /* Process the RQ event */ 13200 phba->last_completion_time = jiffies; 13201 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13202 (struct lpfc_rcqe *)&cqevt); 13203 break; 13204 default: 13205 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13206 "0388 Not a valid WCQE code: x%x\n", 13207 bf_get(lpfc_cqe_code, &cqevt)); 13208 break; 13209 } 13210 return workposted; 13211 } 13212 13213 /** 13214 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13215 * @phba: Pointer to HBA context object. 13216 * @eqe: Pointer to fast-path event queue entry. 13217 * 13218 * This routine process a event queue entry from the slow-path event queue. 13219 * It will check the MajorCode and MinorCode to determine this is for a 13220 * completion event on a completion queue, if not, an error shall be logged 13221 * and just return. Otherwise, it will get to the corresponding completion 13222 * queue and process all the entries on that completion queue, rearm the 13223 * completion queue, and then return. 13224 * 13225 **/ 13226 static void 13227 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13228 struct lpfc_queue *speq) 13229 { 13230 struct lpfc_queue *cq = NULL, *childq; 13231 uint16_t cqid; 13232 13233 /* Get the reference to the corresponding CQ */ 13234 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13235 13236 list_for_each_entry(childq, &speq->child_list, list) { 13237 if (childq->queue_id == cqid) { 13238 cq = childq; 13239 break; 13240 } 13241 } 13242 if (unlikely(!cq)) { 13243 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13244 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13245 "0365 Slow-path CQ identifier " 13246 "(%d) does not exist\n", cqid); 13247 return; 13248 } 13249 13250 /* Save EQ associated with this CQ */ 13251 cq->assoc_qp = speq; 13252 13253 if (!queue_work(phba->wq, &cq->spwork)) 13254 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13255 "0390 Cannot schedule soft IRQ " 13256 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13257 cqid, cq->queue_id, smp_processor_id()); 13258 } 13259 13260 /** 13261 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13262 * @phba: Pointer to HBA context object. 13263 * 13264 * This routine process a event queue entry from the slow-path event queue. 13265 * It will check the MajorCode and MinorCode to determine this is for a 13266 * completion event on a completion queue, if not, an error shall be logged 13267 * and just return. Otherwise, it will get to the corresponding completion 13268 * queue and process all the entries on that completion queue, rearm the 13269 * completion queue, and then return. 13270 * 13271 **/ 13272 static void 13273 lpfc_sli4_sp_process_cq(struct work_struct *work) 13274 { 13275 struct lpfc_queue *cq = 13276 container_of(work, struct lpfc_queue, spwork); 13277 struct lpfc_hba *phba = cq->phba; 13278 struct lpfc_cqe *cqe; 13279 bool workposted = false; 13280 int ccount = 0; 13281 13282 /* Process all the entries to the CQ */ 13283 switch (cq->type) { 13284 case LPFC_MCQ: 13285 while ((cqe = lpfc_sli4_cq_get(cq))) { 13286 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13287 if (!(++ccount % cq->entry_repost)) 13288 break; 13289 cq->CQ_mbox++; 13290 } 13291 break; 13292 case LPFC_WCQ: 13293 while ((cqe = lpfc_sli4_cq_get(cq))) { 13294 if (cq->subtype == LPFC_FCP || 13295 cq->subtype == LPFC_NVME) { 13296 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13297 if (phba->ktime_on) 13298 cq->isr_timestamp = ktime_get_ns(); 13299 else 13300 cq->isr_timestamp = 0; 13301 #endif 13302 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13303 cqe); 13304 } else { 13305 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13306 cqe); 13307 } 13308 if (!(++ccount % cq->entry_repost)) 13309 break; 13310 } 13311 13312 /* Track the max number of CQEs processed in 1 EQ */ 13313 if (ccount > cq->CQ_max_cqe) 13314 cq->CQ_max_cqe = ccount; 13315 break; 13316 default: 13317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13318 "0370 Invalid completion queue type (%d)\n", 13319 cq->type); 13320 return; 13321 } 13322 13323 /* Catch the no cq entry condition, log an error */ 13324 if (unlikely(ccount == 0)) 13325 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13326 "0371 No entry from the CQ: identifier " 13327 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13328 13329 /* In any case, flash and re-arm the RCQ */ 13330 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13331 13332 /* wake up worker thread if there are works to be done */ 13333 if (workposted) 13334 lpfc_worker_wake_up(phba); 13335 } 13336 13337 /** 13338 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13339 * @phba: Pointer to HBA context object. 13340 * @cq: Pointer to associated CQ 13341 * @wcqe: Pointer to work-queue completion queue entry. 13342 * 13343 * This routine process a fast-path work queue completion entry from fast-path 13344 * event queue for FCP command response completion. 13345 **/ 13346 static void 13347 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13348 struct lpfc_wcqe_complete *wcqe) 13349 { 13350 struct lpfc_sli_ring *pring = cq->pring; 13351 struct lpfc_iocbq *cmdiocbq; 13352 struct lpfc_iocbq irspiocbq; 13353 unsigned long iflags; 13354 13355 /* Check for response status */ 13356 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13357 /* If resource errors reported from HBA, reduce queue 13358 * depth of the SCSI device. 13359 */ 13360 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13361 IOSTAT_LOCAL_REJECT)) && 13362 ((wcqe->parameter & IOERR_PARAM_MASK) == 13363 IOERR_NO_RESOURCES)) 13364 phba->lpfc_rampdown_queue_depth(phba); 13365 13366 /* Log the error status */ 13367 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13368 "0373 FCP complete error: status=x%x, " 13369 "hw_status=x%x, total_data_specified=%d, " 13370 "parameter=x%x, word3=x%x\n", 13371 bf_get(lpfc_wcqe_c_status, wcqe), 13372 bf_get(lpfc_wcqe_c_hw_status, wcqe), 13373 wcqe->total_data_placed, wcqe->parameter, 13374 wcqe->word3); 13375 } 13376 13377 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13378 spin_lock_irqsave(&pring->ring_lock, iflags); 13379 pring->stats.iocb_event++; 13380 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13381 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13382 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13383 if (unlikely(!cmdiocbq)) { 13384 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13385 "0374 FCP complete with no corresponding " 13386 "cmdiocb: iotag (%d)\n", 13387 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13388 return; 13389 } 13390 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13391 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13392 #endif 13393 if (cmdiocbq->iocb_cmpl == NULL) { 13394 if (cmdiocbq->wqe_cmpl) { 13395 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13396 spin_lock_irqsave(&phba->hbalock, iflags); 13397 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13398 spin_unlock_irqrestore(&phba->hbalock, iflags); 13399 } 13400 13401 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13402 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13403 return; 13404 } 13405 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13406 "0375 FCP cmdiocb not callback function " 13407 "iotag: (%d)\n", 13408 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13409 return; 13410 } 13411 13412 /* Fake the irspiocb and copy necessary response information */ 13413 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13414 13415 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13416 spin_lock_irqsave(&phba->hbalock, iflags); 13417 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13418 spin_unlock_irqrestore(&phba->hbalock, iflags); 13419 } 13420 13421 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13422 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13423 } 13424 13425 /** 13426 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13427 * @phba: Pointer to HBA context object. 13428 * @cq: Pointer to completion queue. 13429 * @wcqe: Pointer to work-queue completion queue entry. 13430 * 13431 * This routine handles an fast-path WQ entry consumed event by invoking the 13432 * proper WQ release routine to the slow-path WQ. 13433 **/ 13434 static void 13435 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13436 struct lpfc_wcqe_release *wcqe) 13437 { 13438 struct lpfc_queue *childwq; 13439 bool wqid_matched = false; 13440 uint16_t hba_wqid; 13441 13442 /* Check for fast-path FCP work queue release */ 13443 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13444 list_for_each_entry(childwq, &cq->child_list, list) { 13445 if (childwq->queue_id == hba_wqid) { 13446 lpfc_sli4_wq_release(childwq, 13447 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13448 if (childwq->q_flag & HBA_NVMET_WQFULL) 13449 lpfc_nvmet_wqfull_process(phba, childwq); 13450 wqid_matched = true; 13451 break; 13452 } 13453 } 13454 /* Report warning log message if no match found */ 13455 if (wqid_matched != true) 13456 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13457 "2580 Fast-path wqe consume event carries " 13458 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13459 } 13460 13461 /** 13462 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13463 * @phba: Pointer to HBA context object. 13464 * @rcqe: Pointer to receive-queue completion queue entry. 13465 * 13466 * This routine process a receive-queue completion queue entry. 13467 * 13468 * Return: true if work posted to worker thread, otherwise false. 13469 **/ 13470 static bool 13471 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13472 struct lpfc_rcqe *rcqe) 13473 { 13474 bool workposted = false; 13475 struct lpfc_queue *hrq; 13476 struct lpfc_queue *drq; 13477 struct rqb_dmabuf *dma_buf; 13478 struct fc_frame_header *fc_hdr; 13479 struct lpfc_nvmet_tgtport *tgtp; 13480 uint32_t status, rq_id; 13481 unsigned long iflags; 13482 uint32_t fctl, idx; 13483 13484 if ((phba->nvmet_support == 0) || 13485 (phba->sli4_hba.nvmet_cqset == NULL)) 13486 return workposted; 13487 13488 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13489 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13490 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13491 13492 /* sanity check on queue memory */ 13493 if (unlikely(!hrq) || unlikely(!drq)) 13494 return workposted; 13495 13496 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13497 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13498 else 13499 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13500 13501 if ((phba->nvmet_support == 0) || 13502 (rq_id != hrq->queue_id)) 13503 return workposted; 13504 13505 status = bf_get(lpfc_rcqe_status, rcqe); 13506 switch (status) { 13507 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13508 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13509 "6126 Receive Frame Truncated!!\n"); 13510 /* Drop thru */ 13511 case FC_STATUS_RQ_SUCCESS: 13512 spin_lock_irqsave(&phba->hbalock, iflags); 13513 lpfc_sli4_rq_release(hrq, drq); 13514 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13515 if (!dma_buf) { 13516 hrq->RQ_no_buf_found++; 13517 spin_unlock_irqrestore(&phba->hbalock, iflags); 13518 goto out; 13519 } 13520 spin_unlock_irqrestore(&phba->hbalock, iflags); 13521 hrq->RQ_rcv_buf++; 13522 hrq->RQ_buf_posted--; 13523 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13524 13525 /* Just some basic sanity checks on FCP Command frame */ 13526 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13527 fc_hdr->fh_f_ctl[1] << 8 | 13528 fc_hdr->fh_f_ctl[2]); 13529 if (((fctl & 13530 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13531 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13532 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13533 goto drop; 13534 13535 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13536 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13537 lpfc_nvmet_unsol_fcp_event( 13538 phba, idx, dma_buf, 13539 cq->isr_timestamp); 13540 return false; 13541 } 13542 drop: 13543 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13544 break; 13545 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13546 if (phba->nvmet_support) { 13547 tgtp = phba->targetport->private; 13548 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13549 "6401 RQE Error x%x, posted %d err_cnt " 13550 "%d: %x %x %x\n", 13551 status, hrq->RQ_buf_posted, 13552 hrq->RQ_no_posted_buf, 13553 atomic_read(&tgtp->rcv_fcp_cmd_in), 13554 atomic_read(&tgtp->rcv_fcp_cmd_out), 13555 atomic_read(&tgtp->xmt_fcp_release)); 13556 } 13557 /* fallthrough */ 13558 13559 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13560 hrq->RQ_no_posted_buf++; 13561 /* Post more buffers if possible */ 13562 break; 13563 } 13564 out: 13565 return workposted; 13566 } 13567 13568 /** 13569 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13570 * @cq: Pointer to the completion queue. 13571 * @eqe: Pointer to fast-path completion queue entry. 13572 * 13573 * This routine process a fast-path work queue completion entry from fast-path 13574 * event queue for FCP command response completion. 13575 **/ 13576 static int 13577 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13578 struct lpfc_cqe *cqe) 13579 { 13580 struct lpfc_wcqe_release wcqe; 13581 bool workposted = false; 13582 13583 /* Copy the work queue CQE and convert endian order if needed */ 13584 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13585 13586 /* Check and process for different type of WCQE and dispatch */ 13587 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13588 case CQE_CODE_COMPL_WQE: 13589 case CQE_CODE_NVME_ERSP: 13590 cq->CQ_wq++; 13591 /* Process the WQ complete event */ 13592 phba->last_completion_time = jiffies; 13593 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13594 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13595 (struct lpfc_wcqe_complete *)&wcqe); 13596 if (cq->subtype == LPFC_NVME_LS) 13597 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13598 (struct lpfc_wcqe_complete *)&wcqe); 13599 break; 13600 case CQE_CODE_RELEASE_WQE: 13601 cq->CQ_release_wqe++; 13602 /* Process the WQ release event */ 13603 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13604 (struct lpfc_wcqe_release *)&wcqe); 13605 break; 13606 case CQE_CODE_XRI_ABORTED: 13607 cq->CQ_xri_aborted++; 13608 /* Process the WQ XRI abort event */ 13609 phba->last_completion_time = jiffies; 13610 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13611 (struct sli4_wcqe_xri_aborted *)&wcqe); 13612 break; 13613 case CQE_CODE_RECEIVE_V1: 13614 case CQE_CODE_RECEIVE: 13615 phba->last_completion_time = jiffies; 13616 if (cq->subtype == LPFC_NVMET) { 13617 workposted = lpfc_sli4_nvmet_handle_rcqe( 13618 phba, cq, (struct lpfc_rcqe *)&wcqe); 13619 } 13620 break; 13621 default: 13622 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13623 "0144 Not a valid CQE code: x%x\n", 13624 bf_get(lpfc_wcqe_c_code, &wcqe)); 13625 break; 13626 } 13627 return workposted; 13628 } 13629 13630 /** 13631 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13632 * @phba: Pointer to HBA context object. 13633 * @eqe: Pointer to fast-path event queue entry. 13634 * 13635 * This routine process a event queue entry from the fast-path event queue. 13636 * It will check the MajorCode and MinorCode to determine this is for a 13637 * completion event on a completion queue, if not, an error shall be logged 13638 * and just return. Otherwise, it will get to the corresponding completion 13639 * queue and process all the entries on the completion queue, rearm the 13640 * completion queue, and then return. 13641 **/ 13642 static void 13643 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13644 uint32_t qidx) 13645 { 13646 struct lpfc_queue *cq = NULL; 13647 uint16_t cqid, id; 13648 13649 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13650 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13651 "0366 Not a valid completion " 13652 "event: majorcode=x%x, minorcode=x%x\n", 13653 bf_get_le32(lpfc_eqe_major_code, eqe), 13654 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13655 return; 13656 } 13657 13658 /* Get the reference to the corresponding CQ */ 13659 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13660 13661 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13662 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13663 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13664 /* Process NVMET unsol rcv */ 13665 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13666 goto process_cq; 13667 } 13668 } 13669 13670 if (phba->sli4_hba.nvme_cq_map && 13671 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13672 /* Process NVME / NVMET command completion */ 13673 cq = phba->sli4_hba.nvme_cq[qidx]; 13674 goto process_cq; 13675 } 13676 13677 if (phba->sli4_hba.fcp_cq_map && 13678 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13679 /* Process FCP command completion */ 13680 cq = phba->sli4_hba.fcp_cq[qidx]; 13681 goto process_cq; 13682 } 13683 13684 if (phba->sli4_hba.nvmels_cq && 13685 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13686 /* Process NVME unsol rcv */ 13687 cq = phba->sli4_hba.nvmels_cq; 13688 } 13689 13690 /* Otherwise this is a Slow path event */ 13691 if (cq == NULL) { 13692 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 13693 return; 13694 } 13695 13696 process_cq: 13697 if (unlikely(cqid != cq->queue_id)) { 13698 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13699 "0368 Miss-matched fast-path completion " 13700 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13701 cqid, cq->queue_id); 13702 return; 13703 } 13704 13705 /* Save EQ associated with this CQ */ 13706 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13707 13708 if (!queue_work(phba->wq, &cq->irqwork)) 13709 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13710 "0363 Cannot schedule soft IRQ " 13711 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13712 cqid, cq->queue_id, smp_processor_id()); 13713 } 13714 13715 /** 13716 * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 13717 * @phba: Pointer to HBA context object. 13718 * @eqe: Pointer to fast-path event queue entry. 13719 * 13720 * This routine process a event queue entry from the fast-path event queue. 13721 * It will check the MajorCode and MinorCode to determine this is for a 13722 * completion event on a completion queue, if not, an error shall be logged 13723 * and just return. Otherwise, it will get to the corresponding completion 13724 * queue and process all the entries on the completion queue, rearm the 13725 * completion queue, and then return. 13726 **/ 13727 static void 13728 lpfc_sli4_hba_process_cq(struct work_struct *work) 13729 { 13730 struct lpfc_queue *cq = 13731 container_of(work, struct lpfc_queue, irqwork); 13732 struct lpfc_hba *phba = cq->phba; 13733 struct lpfc_cqe *cqe; 13734 bool workposted = false; 13735 int ccount = 0; 13736 13737 /* Process all the entries to the CQ */ 13738 while ((cqe = lpfc_sli4_cq_get(cq))) { 13739 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13740 if (phba->ktime_on) 13741 cq->isr_timestamp = ktime_get_ns(); 13742 else 13743 cq->isr_timestamp = 0; 13744 #endif 13745 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13746 if (!(++ccount % cq->entry_repost)) 13747 break; 13748 } 13749 13750 /* Track the max number of CQEs processed in 1 EQ */ 13751 if (ccount > cq->CQ_max_cqe) 13752 cq->CQ_max_cqe = ccount; 13753 cq->assoc_qp->EQ_cqe_cnt += ccount; 13754 13755 /* Catch the no cq entry condition */ 13756 if (unlikely(ccount == 0)) 13757 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13758 "0369 No entry from fast-path completion " 13759 "queue fcpcqid=%d\n", cq->queue_id); 13760 13761 /* In any case, flash and re-arm the CQ */ 13762 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13763 13764 /* wake up worker thread if there are works to be done */ 13765 if (workposted) 13766 lpfc_worker_wake_up(phba); 13767 } 13768 13769 static void 13770 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13771 { 13772 struct lpfc_eqe *eqe; 13773 13774 /* walk all the EQ entries and drop on the floor */ 13775 while ((eqe = lpfc_sli4_eq_get(eq))) 13776 ; 13777 13778 /* Clear and re-arm the EQ */ 13779 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 13780 } 13781 13782 13783 /** 13784 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13785 * entry 13786 * @phba: Pointer to HBA context object. 13787 * @eqe: Pointer to fast-path event queue entry. 13788 * 13789 * This routine process a event queue entry from the Flash Optimized Fabric 13790 * event queue. It will check the MajorCode and MinorCode to determine this 13791 * is for a completion event on a completion queue, if not, an error shall be 13792 * logged and just return. Otherwise, it will get to the corresponding 13793 * completion queue and process all the entries on the completion queue, rearm 13794 * the completion queue, and then return. 13795 **/ 13796 static void 13797 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13798 { 13799 struct lpfc_queue *cq; 13800 uint16_t cqid; 13801 13802 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13803 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13804 "9147 Not a valid completion " 13805 "event: majorcode=x%x, minorcode=x%x\n", 13806 bf_get_le32(lpfc_eqe_major_code, eqe), 13807 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13808 return; 13809 } 13810 13811 /* Get the reference to the corresponding CQ */ 13812 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13813 13814 /* Next check for OAS */ 13815 cq = phba->sli4_hba.oas_cq; 13816 if (unlikely(!cq)) { 13817 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13818 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13819 "9148 OAS completion queue " 13820 "does not exist\n"); 13821 return; 13822 } 13823 13824 if (unlikely(cqid != cq->queue_id)) { 13825 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13826 "9149 Miss-matched fast-path compl " 13827 "queue id: eqcqid=%d, fcpcqid=%d\n", 13828 cqid, cq->queue_id); 13829 return; 13830 } 13831 13832 /* Save EQ associated with this CQ */ 13833 cq->assoc_qp = phba->sli4_hba.fof_eq; 13834 13835 /* CQ work will be processed on CPU affinitized to this IRQ */ 13836 if (!queue_work(phba->wq, &cq->irqwork)) 13837 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13838 "0367 Cannot schedule soft IRQ " 13839 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13840 cqid, cq->queue_id, smp_processor_id()); 13841 } 13842 13843 /** 13844 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13845 * @irq: Interrupt number. 13846 * @dev_id: The device context pointer. 13847 * 13848 * This function is directly called from the PCI layer as an interrupt 13849 * service routine when device with SLI-4 interface spec is enabled with 13850 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13851 * IOCB ring event in the HBA. However, when the device is enabled with either 13852 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13853 * device-level interrupt handler. When the PCI slot is in error recovery 13854 * or the HBA is undergoing initialization, the interrupt handler will not 13855 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13856 * the intrrupt context. This function is called without any lock held. 13857 * It gets the hbalock to access and update SLI data structures. Note that, 13858 * the EQ to CQ are one-to-one map such that the EQ index is 13859 * equal to that of CQ index. 13860 * 13861 * This function returns IRQ_HANDLED when interrupt is handled else it 13862 * returns IRQ_NONE. 13863 **/ 13864 irqreturn_t 13865 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13866 { 13867 struct lpfc_hba *phba; 13868 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13869 struct lpfc_queue *eq; 13870 struct lpfc_eqe *eqe; 13871 unsigned long iflag; 13872 int ecount = 0; 13873 13874 /* Get the driver's phba structure from the dev_id */ 13875 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13876 phba = hba_eq_hdl->phba; 13877 13878 if (unlikely(!phba)) 13879 return IRQ_NONE; 13880 13881 /* Get to the EQ struct associated with this vector */ 13882 eq = phba->sli4_hba.fof_eq; 13883 if (unlikely(!eq)) 13884 return IRQ_NONE; 13885 13886 /* Check device state for handling interrupt */ 13887 if (unlikely(lpfc_intr_state_check(phba))) { 13888 /* Check again for link_state with lock held */ 13889 spin_lock_irqsave(&phba->hbalock, iflag); 13890 if (phba->link_state < LPFC_LINK_DOWN) 13891 /* Flush, clear interrupt, and rearm the EQ */ 13892 lpfc_sli4_eq_flush(phba, eq); 13893 spin_unlock_irqrestore(&phba->hbalock, iflag); 13894 return IRQ_NONE; 13895 } 13896 13897 /* 13898 * Process all the event on FCP fast-path EQ 13899 */ 13900 while ((eqe = lpfc_sli4_eq_get(eq))) { 13901 lpfc_sli4_fof_handle_eqe(phba, eqe); 13902 if (!(++ecount % eq->entry_repost)) 13903 break; 13904 eq->EQ_processed++; 13905 } 13906 13907 /* Track the max number of EQEs processed in 1 intr */ 13908 if (ecount > eq->EQ_max_eqe) 13909 eq->EQ_max_eqe = ecount; 13910 13911 13912 if (unlikely(ecount == 0)) { 13913 eq->EQ_no_entry++; 13914 13915 if (phba->intr_type == MSIX) 13916 /* MSI-X treated interrupt served as no EQ share INT */ 13917 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13918 "9145 MSI-X interrupt with no EQE\n"); 13919 else { 13920 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13921 "9146 ISR interrupt with no EQE\n"); 13922 /* Non MSI-X treated on interrupt as EQ share INT */ 13923 return IRQ_NONE; 13924 } 13925 } 13926 /* Always clear and re-arm the fast-path EQ */ 13927 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 13928 return IRQ_HANDLED; 13929 } 13930 13931 /** 13932 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13933 * @irq: Interrupt number. 13934 * @dev_id: The device context pointer. 13935 * 13936 * This function is directly called from the PCI layer as an interrupt 13937 * service routine when device with SLI-4 interface spec is enabled with 13938 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13939 * ring event in the HBA. However, when the device is enabled with either 13940 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13941 * device-level interrupt handler. When the PCI slot is in error recovery 13942 * or the HBA is undergoing initialization, the interrupt handler will not 13943 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13944 * the intrrupt context. This function is called without any lock held. 13945 * It gets the hbalock to access and update SLI data structures. Note that, 13946 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 13947 * equal to that of FCP CQ index. 13948 * 13949 * The link attention and ELS ring attention events are handled 13950 * by the worker thread. The interrupt handler signals the worker thread 13951 * and returns for these events. This function is called without any lock 13952 * held. It gets the hbalock to access and update SLI data structures. 13953 * 13954 * This function returns IRQ_HANDLED when interrupt is handled else it 13955 * returns IRQ_NONE. 13956 **/ 13957 irqreturn_t 13958 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 13959 { 13960 struct lpfc_hba *phba; 13961 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13962 struct lpfc_queue *fpeq; 13963 struct lpfc_eqe *eqe; 13964 unsigned long iflag; 13965 int ecount = 0; 13966 int hba_eqidx; 13967 13968 /* Get the driver's phba structure from the dev_id */ 13969 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13970 phba = hba_eq_hdl->phba; 13971 hba_eqidx = hba_eq_hdl->idx; 13972 13973 if (unlikely(!phba)) 13974 return IRQ_NONE; 13975 if (unlikely(!phba->sli4_hba.hba_eq)) 13976 return IRQ_NONE; 13977 13978 /* Get to the EQ struct associated with this vector */ 13979 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 13980 if (unlikely(!fpeq)) 13981 return IRQ_NONE; 13982 13983 if (lpfc_fcp_look_ahead) { 13984 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 13985 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 13986 else { 13987 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13988 return IRQ_NONE; 13989 } 13990 } 13991 13992 /* Check device state for handling interrupt */ 13993 if (unlikely(lpfc_intr_state_check(phba))) { 13994 /* Check again for link_state with lock held */ 13995 spin_lock_irqsave(&phba->hbalock, iflag); 13996 if (phba->link_state < LPFC_LINK_DOWN) 13997 /* Flush, clear interrupt, and rearm the EQ */ 13998 lpfc_sli4_eq_flush(phba, fpeq); 13999 spin_unlock_irqrestore(&phba->hbalock, iflag); 14000 if (lpfc_fcp_look_ahead) 14001 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14002 return IRQ_NONE; 14003 } 14004 14005 /* 14006 * Process all the event on FCP fast-path EQ 14007 */ 14008 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 14009 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 14010 if (!(++ecount % fpeq->entry_repost)) 14011 break; 14012 fpeq->EQ_processed++; 14013 } 14014 14015 /* Track the max number of EQEs processed in 1 intr */ 14016 if (ecount > fpeq->EQ_max_eqe) 14017 fpeq->EQ_max_eqe = ecount; 14018 14019 /* Always clear and re-arm the fast-path EQ */ 14020 phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 14021 14022 if (unlikely(ecount == 0)) { 14023 fpeq->EQ_no_entry++; 14024 14025 if (lpfc_fcp_look_ahead) { 14026 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14027 return IRQ_NONE; 14028 } 14029 14030 if (phba->intr_type == MSIX) 14031 /* MSI-X treated interrupt served as no EQ share INT */ 14032 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14033 "0358 MSI-X interrupt with no EQE\n"); 14034 else 14035 /* Non MSI-X treated on interrupt as EQ share INT */ 14036 return IRQ_NONE; 14037 } 14038 14039 if (lpfc_fcp_look_ahead) 14040 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14041 14042 return IRQ_HANDLED; 14043 } /* lpfc_sli4_fp_intr_handler */ 14044 14045 /** 14046 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14047 * @irq: Interrupt number. 14048 * @dev_id: The device context pointer. 14049 * 14050 * This function is the device-level interrupt handler to device with SLI-4 14051 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14052 * interrupt mode is enabled and there is an event in the HBA which requires 14053 * driver attention. This function invokes the slow-path interrupt attention 14054 * handling function and fast-path interrupt attention handling function in 14055 * turn to process the relevant HBA attention events. This function is called 14056 * without any lock held. It gets the hbalock to access and update SLI data 14057 * structures. 14058 * 14059 * This function returns IRQ_HANDLED when interrupt is handled, else it 14060 * returns IRQ_NONE. 14061 **/ 14062 irqreturn_t 14063 lpfc_sli4_intr_handler(int irq, void *dev_id) 14064 { 14065 struct lpfc_hba *phba; 14066 irqreturn_t hba_irq_rc; 14067 bool hba_handled = false; 14068 int qidx; 14069 14070 /* Get the driver's phba structure from the dev_id */ 14071 phba = (struct lpfc_hba *)dev_id; 14072 14073 if (unlikely(!phba)) 14074 return IRQ_NONE; 14075 14076 /* 14077 * Invoke fast-path host attention interrupt handling as appropriate. 14078 */ 14079 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 14080 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14081 &phba->sli4_hba.hba_eq_hdl[qidx]); 14082 if (hba_irq_rc == IRQ_HANDLED) 14083 hba_handled |= true; 14084 } 14085 14086 if (phba->cfg_fof) { 14087 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 14088 &phba->sli4_hba.hba_eq_hdl[qidx]); 14089 if (hba_irq_rc == IRQ_HANDLED) 14090 hba_handled |= true; 14091 } 14092 14093 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14094 } /* lpfc_sli4_intr_handler */ 14095 14096 /** 14097 * lpfc_sli4_queue_free - free a queue structure and associated memory 14098 * @queue: The queue structure to free. 14099 * 14100 * This function frees a queue structure and the DMAable memory used for 14101 * the host resident queue. This function must be called after destroying the 14102 * queue on the HBA. 14103 **/ 14104 void 14105 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14106 { 14107 struct lpfc_dmabuf *dmabuf; 14108 14109 if (!queue) 14110 return; 14111 14112 while (!list_empty(&queue->page_list)) { 14113 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14114 list); 14115 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14116 dmabuf->virt, dmabuf->phys); 14117 kfree(dmabuf); 14118 } 14119 if (queue->rqbp) { 14120 lpfc_free_rq_buffer(queue->phba, queue); 14121 kfree(queue->rqbp); 14122 } 14123 14124 if (!list_empty(&queue->wq_list)) 14125 list_del(&queue->wq_list); 14126 14127 kfree(queue); 14128 return; 14129 } 14130 14131 /** 14132 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14133 * @phba: The HBA that this queue is being created on. 14134 * @page_size: The size of a queue page 14135 * @entry_size: The size of each queue entry for this queue. 14136 * @entry count: The number of entries that this queue will handle. 14137 * 14138 * This function allocates a queue structure and the DMAable memory used for 14139 * the host resident queue. This function must be called before creating the 14140 * queue on the HBA. 14141 **/ 14142 struct lpfc_queue * 14143 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14144 uint32_t entry_size, uint32_t entry_count) 14145 { 14146 struct lpfc_queue *queue; 14147 struct lpfc_dmabuf *dmabuf; 14148 int x, total_qe_count; 14149 void *dma_pointer; 14150 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14151 14152 if (!phba->sli4_hba.pc_sli4_params.supported) 14153 hw_page_size = page_size; 14154 14155 queue = kzalloc(sizeof(struct lpfc_queue) + 14156 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 14157 if (!queue) 14158 return NULL; 14159 queue->page_count = (ALIGN(entry_size * entry_count, 14160 hw_page_size))/hw_page_size; 14161 14162 /* If needed, Adjust page count to match the max the adapter supports */ 14163 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 14164 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 14165 14166 INIT_LIST_HEAD(&queue->list); 14167 INIT_LIST_HEAD(&queue->wq_list); 14168 INIT_LIST_HEAD(&queue->wqfull_list); 14169 INIT_LIST_HEAD(&queue->page_list); 14170 INIT_LIST_HEAD(&queue->child_list); 14171 14172 /* Set queue parameters now. If the system cannot provide memory 14173 * resources, the free routine needs to know what was allocated. 14174 */ 14175 queue->entry_size = entry_size; 14176 queue->entry_count = entry_count; 14177 queue->page_size = hw_page_size; 14178 queue->phba = phba; 14179 14180 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 14181 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 14182 if (!dmabuf) 14183 goto out_fail; 14184 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 14185 hw_page_size, &dmabuf->phys, 14186 GFP_KERNEL); 14187 if (!dmabuf->virt) { 14188 kfree(dmabuf); 14189 goto out_fail; 14190 } 14191 dmabuf->buffer_tag = x; 14192 list_add_tail(&dmabuf->list, &queue->page_list); 14193 /* initialize queue's entry array */ 14194 dma_pointer = dmabuf->virt; 14195 for (; total_qe_count < entry_count && 14196 dma_pointer < (hw_page_size + dmabuf->virt); 14197 total_qe_count++, dma_pointer += entry_size) { 14198 queue->qe[total_qe_count].address = dma_pointer; 14199 } 14200 } 14201 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14202 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14203 14204 /* entry_repost will be set during q creation */ 14205 14206 return queue; 14207 out_fail: 14208 lpfc_sli4_queue_free(queue); 14209 return NULL; 14210 } 14211 14212 /** 14213 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14214 * @phba: HBA structure that indicates port to create a queue on. 14215 * @pci_barset: PCI BAR set flag. 14216 * 14217 * This function shall perform iomap of the specified PCI BAR address to host 14218 * memory address if not already done so and return it. The returned host 14219 * memory address can be NULL. 14220 */ 14221 static void __iomem * 14222 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14223 { 14224 if (!phba->pcidev) 14225 return NULL; 14226 14227 switch (pci_barset) { 14228 case WQ_PCI_BAR_0_AND_1: 14229 return phba->pci_bar0_memmap_p; 14230 case WQ_PCI_BAR_2_AND_3: 14231 return phba->pci_bar2_memmap_p; 14232 case WQ_PCI_BAR_4_AND_5: 14233 return phba->pci_bar4_memmap_p; 14234 default: 14235 break; 14236 } 14237 return NULL; 14238 } 14239 14240 /** 14241 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 14242 * @phba: HBA structure that indicates port to create a queue on. 14243 * @startq: The starting FCP EQ to modify 14244 * 14245 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 14246 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 14247 * updated in one mailbox command. 14248 * 14249 * The @phba struct is used to send mailbox command to HBA. The @startq 14250 * is used to get the starting FCP EQ to change. 14251 * This function is asynchronous and will wait for the mailbox 14252 * command to finish before continuing. 14253 * 14254 * On success this function will return a zero. If unable to allocate enough 14255 * memory this function will return -ENOMEM. If the queue create mailbox command 14256 * fails this function will return -ENXIO. 14257 **/ 14258 int 14259 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14260 uint32_t numq, uint32_t imax) 14261 { 14262 struct lpfc_mbx_modify_eq_delay *eq_delay; 14263 LPFC_MBOXQ_t *mbox; 14264 struct lpfc_queue *eq; 14265 int cnt, rc, length, status = 0; 14266 uint32_t shdr_status, shdr_add_status; 14267 uint32_t result, val; 14268 int qidx; 14269 union lpfc_sli4_cfg_shdr *shdr; 14270 uint16_t dmult; 14271 14272 if (startq >= phba->io_channel_irqs) 14273 return 0; 14274 14275 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14276 if (!mbox) 14277 return -ENOMEM; 14278 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14279 sizeof(struct lpfc_sli4_cfg_mhdr)); 14280 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14281 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14282 length, LPFC_SLI4_MBX_EMBED); 14283 eq_delay = &mbox->u.mqe.un.eq_delay; 14284 14285 /* Calculate delay multiper from maximum interrupt per second */ 14286 result = imax / phba->io_channel_irqs; 14287 if (result > LPFC_DMULT_CONST || result == 0) 14288 dmult = 0; 14289 else 14290 dmult = LPFC_DMULT_CONST/result - 1; 14291 if (dmult > LPFC_DMULT_MAX) 14292 dmult = LPFC_DMULT_MAX; 14293 14294 cnt = 0; 14295 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14296 eq = phba->sli4_hba.hba_eq[qidx]; 14297 if (!eq) 14298 continue; 14299 eq->q_mode = imax; 14300 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14301 eq_delay->u.request.eq[cnt].phase = 0; 14302 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14303 cnt++; 14304 14305 /* q_mode is only used for auto_imax */ 14306 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14307 /* Use EQ Delay Register method for q_mode */ 14308 14309 /* Convert for EQ Delay register */ 14310 val = phba->cfg_fcp_imax; 14311 if (val) { 14312 /* First, interrupts per sec per EQ */ 14313 val = phba->cfg_fcp_imax / 14314 phba->io_channel_irqs; 14315 14316 /* us delay between each interrupt */ 14317 val = LPFC_SEC_TO_USEC / val; 14318 } 14319 eq->q_mode = val; 14320 } else { 14321 eq->q_mode = imax; 14322 } 14323 14324 if (cnt >= numq) 14325 break; 14326 } 14327 eq_delay->u.request.num_eq = cnt; 14328 14329 mbox->vport = phba->pport; 14330 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14331 mbox->context1 = NULL; 14332 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14333 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14334 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14335 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14336 if (shdr_status || shdr_add_status || rc) { 14337 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14338 "2512 MODIFY_EQ_DELAY mailbox failed with " 14339 "status x%x add_status x%x, mbx status x%x\n", 14340 shdr_status, shdr_add_status, rc); 14341 status = -ENXIO; 14342 } 14343 mempool_free(mbox, phba->mbox_mem_pool); 14344 return status; 14345 } 14346 14347 /** 14348 * lpfc_eq_create - Create an Event Queue on the HBA 14349 * @phba: HBA structure that indicates port to create a queue on. 14350 * @eq: The queue structure to use to create the event queue. 14351 * @imax: The maximum interrupt per second limit. 14352 * 14353 * This function creates an event queue, as detailed in @eq, on a port, 14354 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14355 * 14356 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14357 * is used to get the entry count and entry size that are necessary to 14358 * determine the number of pages to allocate and use for this queue. This 14359 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14360 * event queue. This function is asynchronous and will wait for the mailbox 14361 * command to finish before continuing. 14362 * 14363 * On success this function will return a zero. If unable to allocate enough 14364 * memory this function will return -ENOMEM. If the queue create mailbox command 14365 * fails this function will return -ENXIO. 14366 **/ 14367 int 14368 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14369 { 14370 struct lpfc_mbx_eq_create *eq_create; 14371 LPFC_MBOXQ_t *mbox; 14372 int rc, length, status = 0; 14373 struct lpfc_dmabuf *dmabuf; 14374 uint32_t shdr_status, shdr_add_status; 14375 union lpfc_sli4_cfg_shdr *shdr; 14376 uint16_t dmult; 14377 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14378 14379 /* sanity check on queue memory */ 14380 if (!eq) 14381 return -ENODEV; 14382 if (!phba->sli4_hba.pc_sli4_params.supported) 14383 hw_page_size = SLI4_PAGE_SIZE; 14384 14385 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14386 if (!mbox) 14387 return -ENOMEM; 14388 length = (sizeof(struct lpfc_mbx_eq_create) - 14389 sizeof(struct lpfc_sli4_cfg_mhdr)); 14390 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14391 LPFC_MBOX_OPCODE_EQ_CREATE, 14392 length, LPFC_SLI4_MBX_EMBED); 14393 eq_create = &mbox->u.mqe.un.eq_create; 14394 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14395 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14396 eq->page_count); 14397 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14398 LPFC_EQE_SIZE); 14399 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14400 14401 /* Use version 2 of CREATE_EQ if eqav is set */ 14402 if (phba->sli4_hba.pc_sli4_params.eqav) { 14403 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14404 LPFC_Q_CREATE_VERSION_2); 14405 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14406 phba->sli4_hba.pc_sli4_params.eqav); 14407 } 14408 14409 /* don't setup delay multiplier using EQ_CREATE */ 14410 dmult = 0; 14411 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14412 dmult); 14413 switch (eq->entry_count) { 14414 default: 14415 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14416 "0360 Unsupported EQ count. (%d)\n", 14417 eq->entry_count); 14418 if (eq->entry_count < 256) 14419 return -EINVAL; 14420 /* otherwise default to smallest count (drop through) */ 14421 case 256: 14422 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14423 LPFC_EQ_CNT_256); 14424 break; 14425 case 512: 14426 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14427 LPFC_EQ_CNT_512); 14428 break; 14429 case 1024: 14430 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14431 LPFC_EQ_CNT_1024); 14432 break; 14433 case 2048: 14434 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14435 LPFC_EQ_CNT_2048); 14436 break; 14437 case 4096: 14438 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14439 LPFC_EQ_CNT_4096); 14440 break; 14441 } 14442 list_for_each_entry(dmabuf, &eq->page_list, list) { 14443 memset(dmabuf->virt, 0, hw_page_size); 14444 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14445 putPaddrLow(dmabuf->phys); 14446 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14447 putPaddrHigh(dmabuf->phys); 14448 } 14449 mbox->vport = phba->pport; 14450 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14451 mbox->context1 = NULL; 14452 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14453 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14454 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14455 if (shdr_status || shdr_add_status || rc) { 14456 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14457 "2500 EQ_CREATE mailbox failed with " 14458 "status x%x add_status x%x, mbx status x%x\n", 14459 shdr_status, shdr_add_status, rc); 14460 status = -ENXIO; 14461 } 14462 eq->type = LPFC_EQ; 14463 eq->subtype = LPFC_NONE; 14464 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14465 if (eq->queue_id == 0xFFFF) 14466 status = -ENXIO; 14467 eq->host_index = 0; 14468 eq->hba_index = 0; 14469 eq->entry_repost = LPFC_EQ_REPOST; 14470 14471 mempool_free(mbox, phba->mbox_mem_pool); 14472 return status; 14473 } 14474 14475 /** 14476 * lpfc_cq_create - Create a Completion Queue on the HBA 14477 * @phba: HBA structure that indicates port to create a queue on. 14478 * @cq: The queue structure to use to create the completion queue. 14479 * @eq: The event queue to bind this completion queue to. 14480 * 14481 * This function creates a completion queue, as detailed in @wq, on a port, 14482 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14483 * 14484 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14485 * is used to get the entry count and entry size that are necessary to 14486 * determine the number of pages to allocate and use for this queue. The @eq 14487 * is used to indicate which event queue to bind this completion queue to. This 14488 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14489 * completion queue. This function is asynchronous and will wait for the mailbox 14490 * command to finish before continuing. 14491 * 14492 * On success this function will return a zero. If unable to allocate enough 14493 * memory this function will return -ENOMEM. If the queue create mailbox command 14494 * fails this function will return -ENXIO. 14495 **/ 14496 int 14497 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14498 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14499 { 14500 struct lpfc_mbx_cq_create *cq_create; 14501 struct lpfc_dmabuf *dmabuf; 14502 LPFC_MBOXQ_t *mbox; 14503 int rc, length, status = 0; 14504 uint32_t shdr_status, shdr_add_status; 14505 union lpfc_sli4_cfg_shdr *shdr; 14506 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14507 14508 /* sanity check on queue memory */ 14509 if (!cq || !eq) 14510 return -ENODEV; 14511 if (!phba->sli4_hba.pc_sli4_params.supported) 14512 hw_page_size = cq->page_size; 14513 14514 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14515 if (!mbox) 14516 return -ENOMEM; 14517 length = (sizeof(struct lpfc_mbx_cq_create) - 14518 sizeof(struct lpfc_sli4_cfg_mhdr)); 14519 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14520 LPFC_MBOX_OPCODE_CQ_CREATE, 14521 length, LPFC_SLI4_MBX_EMBED); 14522 cq_create = &mbox->u.mqe.un.cq_create; 14523 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14524 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14525 cq->page_count); 14526 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14527 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14528 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14529 phba->sli4_hba.pc_sli4_params.cqv); 14530 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14531 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14532 (cq->page_size / SLI4_PAGE_SIZE)); 14533 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14534 eq->queue_id); 14535 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14536 phba->sli4_hba.pc_sli4_params.cqav); 14537 } else { 14538 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14539 eq->queue_id); 14540 } 14541 switch (cq->entry_count) { 14542 case 2048: 14543 case 4096: 14544 if (phba->sli4_hba.pc_sli4_params.cqv == 14545 LPFC_Q_CREATE_VERSION_2) { 14546 cq_create->u.request.context.lpfc_cq_context_count = 14547 cq->entry_count; 14548 bf_set(lpfc_cq_context_count, 14549 &cq_create->u.request.context, 14550 LPFC_CQ_CNT_WORD7); 14551 break; 14552 } 14553 /* Fall Thru */ 14554 default: 14555 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14556 "0361 Unsupported CQ count: " 14557 "entry cnt %d sz %d pg cnt %d\n", 14558 cq->entry_count, cq->entry_size, 14559 cq->page_count); 14560 if (cq->entry_count < 256) { 14561 status = -EINVAL; 14562 goto out; 14563 } 14564 /* otherwise default to smallest count (drop through) */ 14565 case 256: 14566 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14567 LPFC_CQ_CNT_256); 14568 break; 14569 case 512: 14570 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14571 LPFC_CQ_CNT_512); 14572 break; 14573 case 1024: 14574 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14575 LPFC_CQ_CNT_1024); 14576 break; 14577 } 14578 list_for_each_entry(dmabuf, &cq->page_list, list) { 14579 memset(dmabuf->virt, 0, cq->page_size); 14580 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14581 putPaddrLow(dmabuf->phys); 14582 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14583 putPaddrHigh(dmabuf->phys); 14584 } 14585 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14586 14587 /* The IOCTL status is embedded in the mailbox subheader. */ 14588 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14589 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14590 if (shdr_status || shdr_add_status || rc) { 14591 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14592 "2501 CQ_CREATE mailbox failed with " 14593 "status x%x add_status x%x, mbx status x%x\n", 14594 shdr_status, shdr_add_status, rc); 14595 status = -ENXIO; 14596 goto out; 14597 } 14598 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14599 if (cq->queue_id == 0xFFFF) { 14600 status = -ENXIO; 14601 goto out; 14602 } 14603 /* link the cq onto the parent eq child list */ 14604 list_add_tail(&cq->list, &eq->child_list); 14605 /* Set up completion queue's type and subtype */ 14606 cq->type = type; 14607 cq->subtype = subtype; 14608 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14609 cq->assoc_qid = eq->queue_id; 14610 cq->host_index = 0; 14611 cq->hba_index = 0; 14612 cq->entry_repost = LPFC_CQ_REPOST; 14613 14614 out: 14615 mempool_free(mbox, phba->mbox_mem_pool); 14616 return status; 14617 } 14618 14619 /** 14620 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14621 * @phba: HBA structure that indicates port to create a queue on. 14622 * @cqp: The queue structure array to use to create the completion queues. 14623 * @eqp: The event queue array to bind these completion queues to. 14624 * 14625 * This function creates a set of completion queue, s to support MRQ 14626 * as detailed in @cqp, on a port, 14627 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14628 * 14629 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14630 * is used to get the entry count and entry size that are necessary to 14631 * determine the number of pages to allocate and use for this queue. The @eq 14632 * is used to indicate which event queue to bind this completion queue to. This 14633 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14634 * completion queue. This function is asynchronous and will wait for the mailbox 14635 * command to finish before continuing. 14636 * 14637 * On success this function will return a zero. If unable to allocate enough 14638 * memory this function will return -ENOMEM. If the queue create mailbox command 14639 * fails this function will return -ENXIO. 14640 **/ 14641 int 14642 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14643 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14644 { 14645 struct lpfc_queue *cq; 14646 struct lpfc_queue *eq; 14647 struct lpfc_mbx_cq_create_set *cq_set; 14648 struct lpfc_dmabuf *dmabuf; 14649 LPFC_MBOXQ_t *mbox; 14650 int rc, length, alloclen, status = 0; 14651 int cnt, idx, numcq, page_idx = 0; 14652 uint32_t shdr_status, shdr_add_status; 14653 union lpfc_sli4_cfg_shdr *shdr; 14654 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14655 14656 /* sanity check on queue memory */ 14657 numcq = phba->cfg_nvmet_mrq; 14658 if (!cqp || !eqp || !numcq) 14659 return -ENODEV; 14660 14661 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14662 if (!mbox) 14663 return -ENOMEM; 14664 14665 length = sizeof(struct lpfc_mbx_cq_create_set); 14666 length += ((numcq * cqp[0]->page_count) * 14667 sizeof(struct dma_address)); 14668 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14669 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14670 LPFC_SLI4_MBX_NEMBED); 14671 if (alloclen < length) { 14672 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14673 "3098 Allocated DMA memory size (%d) is " 14674 "less than the requested DMA memory size " 14675 "(%d)\n", alloclen, length); 14676 status = -ENOMEM; 14677 goto out; 14678 } 14679 cq_set = mbox->sge_array->addr[0]; 14680 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14681 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14682 14683 for (idx = 0; idx < numcq; idx++) { 14684 cq = cqp[idx]; 14685 eq = eqp[idx]; 14686 if (!cq || !eq) { 14687 status = -ENOMEM; 14688 goto out; 14689 } 14690 if (!phba->sli4_hba.pc_sli4_params.supported) 14691 hw_page_size = cq->page_size; 14692 14693 switch (idx) { 14694 case 0: 14695 bf_set(lpfc_mbx_cq_create_set_page_size, 14696 &cq_set->u.request, 14697 (hw_page_size / SLI4_PAGE_SIZE)); 14698 bf_set(lpfc_mbx_cq_create_set_num_pages, 14699 &cq_set->u.request, cq->page_count); 14700 bf_set(lpfc_mbx_cq_create_set_evt, 14701 &cq_set->u.request, 1); 14702 bf_set(lpfc_mbx_cq_create_set_valid, 14703 &cq_set->u.request, 1); 14704 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14705 &cq_set->u.request, 0); 14706 bf_set(lpfc_mbx_cq_create_set_num_cq, 14707 &cq_set->u.request, numcq); 14708 bf_set(lpfc_mbx_cq_create_set_autovalid, 14709 &cq_set->u.request, 14710 phba->sli4_hba.pc_sli4_params.cqav); 14711 switch (cq->entry_count) { 14712 case 2048: 14713 case 4096: 14714 if (phba->sli4_hba.pc_sli4_params.cqv == 14715 LPFC_Q_CREATE_VERSION_2) { 14716 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14717 &cq_set->u.request, 14718 cq->entry_count); 14719 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14720 &cq_set->u.request, 14721 LPFC_CQ_CNT_WORD7); 14722 break; 14723 } 14724 /* Fall Thru */ 14725 default: 14726 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14727 "3118 Bad CQ count. (%d)\n", 14728 cq->entry_count); 14729 if (cq->entry_count < 256) { 14730 status = -EINVAL; 14731 goto out; 14732 } 14733 /* otherwise default to smallest (drop thru) */ 14734 case 256: 14735 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14736 &cq_set->u.request, LPFC_CQ_CNT_256); 14737 break; 14738 case 512: 14739 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14740 &cq_set->u.request, LPFC_CQ_CNT_512); 14741 break; 14742 case 1024: 14743 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14744 &cq_set->u.request, LPFC_CQ_CNT_1024); 14745 break; 14746 } 14747 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14748 &cq_set->u.request, eq->queue_id); 14749 break; 14750 case 1: 14751 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14752 &cq_set->u.request, eq->queue_id); 14753 break; 14754 case 2: 14755 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14756 &cq_set->u.request, eq->queue_id); 14757 break; 14758 case 3: 14759 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14760 &cq_set->u.request, eq->queue_id); 14761 break; 14762 case 4: 14763 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14764 &cq_set->u.request, eq->queue_id); 14765 break; 14766 case 5: 14767 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14768 &cq_set->u.request, eq->queue_id); 14769 break; 14770 case 6: 14771 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14772 &cq_set->u.request, eq->queue_id); 14773 break; 14774 case 7: 14775 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14776 &cq_set->u.request, eq->queue_id); 14777 break; 14778 case 8: 14779 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14780 &cq_set->u.request, eq->queue_id); 14781 break; 14782 case 9: 14783 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14784 &cq_set->u.request, eq->queue_id); 14785 break; 14786 case 10: 14787 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14788 &cq_set->u.request, eq->queue_id); 14789 break; 14790 case 11: 14791 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14792 &cq_set->u.request, eq->queue_id); 14793 break; 14794 case 12: 14795 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14796 &cq_set->u.request, eq->queue_id); 14797 break; 14798 case 13: 14799 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14800 &cq_set->u.request, eq->queue_id); 14801 break; 14802 case 14: 14803 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14804 &cq_set->u.request, eq->queue_id); 14805 break; 14806 case 15: 14807 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14808 &cq_set->u.request, eq->queue_id); 14809 break; 14810 } 14811 14812 /* link the cq onto the parent eq child list */ 14813 list_add_tail(&cq->list, &eq->child_list); 14814 /* Set up completion queue's type and subtype */ 14815 cq->type = type; 14816 cq->subtype = subtype; 14817 cq->assoc_qid = eq->queue_id; 14818 cq->host_index = 0; 14819 cq->hba_index = 0; 14820 cq->entry_repost = LPFC_CQ_REPOST; 14821 cq->chann = idx; 14822 14823 rc = 0; 14824 list_for_each_entry(dmabuf, &cq->page_list, list) { 14825 memset(dmabuf->virt, 0, hw_page_size); 14826 cnt = page_idx + dmabuf->buffer_tag; 14827 cq_set->u.request.page[cnt].addr_lo = 14828 putPaddrLow(dmabuf->phys); 14829 cq_set->u.request.page[cnt].addr_hi = 14830 putPaddrHigh(dmabuf->phys); 14831 rc++; 14832 } 14833 page_idx += rc; 14834 } 14835 14836 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14837 14838 /* The IOCTL status is embedded in the mailbox subheader. */ 14839 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14840 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14841 if (shdr_status || shdr_add_status || rc) { 14842 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14843 "3119 CQ_CREATE_SET mailbox failed with " 14844 "status x%x add_status x%x, mbx status x%x\n", 14845 shdr_status, shdr_add_status, rc); 14846 status = -ENXIO; 14847 goto out; 14848 } 14849 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14850 if (rc == 0xFFFF) { 14851 status = -ENXIO; 14852 goto out; 14853 } 14854 14855 for (idx = 0; idx < numcq; idx++) { 14856 cq = cqp[idx]; 14857 cq->queue_id = rc + idx; 14858 } 14859 14860 out: 14861 lpfc_sli4_mbox_cmd_free(phba, mbox); 14862 return status; 14863 } 14864 14865 /** 14866 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14867 * @phba: HBA structure that indicates port to create a queue on. 14868 * @mq: The queue structure to use to create the mailbox queue. 14869 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14870 * @cq: The completion queue to associate with this cq. 14871 * 14872 * This function provides failback (fb) functionality when the 14873 * mq_create_ext fails on older FW generations. It's purpose is identical 14874 * to mq_create_ext otherwise. 14875 * 14876 * This routine cannot fail as all attributes were previously accessed and 14877 * initialized in mq_create_ext. 14878 **/ 14879 static void 14880 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14881 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14882 { 14883 struct lpfc_mbx_mq_create *mq_create; 14884 struct lpfc_dmabuf *dmabuf; 14885 int length; 14886 14887 length = (sizeof(struct lpfc_mbx_mq_create) - 14888 sizeof(struct lpfc_sli4_cfg_mhdr)); 14889 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14890 LPFC_MBOX_OPCODE_MQ_CREATE, 14891 length, LPFC_SLI4_MBX_EMBED); 14892 mq_create = &mbox->u.mqe.un.mq_create; 14893 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14894 mq->page_count); 14895 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14896 cq->queue_id); 14897 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14898 switch (mq->entry_count) { 14899 case 16: 14900 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14901 LPFC_MQ_RING_SIZE_16); 14902 break; 14903 case 32: 14904 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14905 LPFC_MQ_RING_SIZE_32); 14906 break; 14907 case 64: 14908 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14909 LPFC_MQ_RING_SIZE_64); 14910 break; 14911 case 128: 14912 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14913 LPFC_MQ_RING_SIZE_128); 14914 break; 14915 } 14916 list_for_each_entry(dmabuf, &mq->page_list, list) { 14917 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14918 putPaddrLow(dmabuf->phys); 14919 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14920 putPaddrHigh(dmabuf->phys); 14921 } 14922 } 14923 14924 /** 14925 * lpfc_mq_create - Create a mailbox Queue on the HBA 14926 * @phba: HBA structure that indicates port to create a queue on. 14927 * @mq: The queue structure to use to create the mailbox queue. 14928 * @cq: The completion queue to associate with this cq. 14929 * @subtype: The queue's subtype. 14930 * 14931 * This function creates a mailbox queue, as detailed in @mq, on a port, 14932 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14933 * 14934 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14935 * is used to get the entry count and entry size that are necessary to 14936 * determine the number of pages to allocate and use for this queue. This 14937 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14938 * mailbox queue. This function is asynchronous and will wait for the mailbox 14939 * command to finish before continuing. 14940 * 14941 * On success this function will return a zero. If unable to allocate enough 14942 * memory this function will return -ENOMEM. If the queue create mailbox command 14943 * fails this function will return -ENXIO. 14944 **/ 14945 int32_t 14946 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 14947 struct lpfc_queue *cq, uint32_t subtype) 14948 { 14949 struct lpfc_mbx_mq_create *mq_create; 14950 struct lpfc_mbx_mq_create_ext *mq_create_ext; 14951 struct lpfc_dmabuf *dmabuf; 14952 LPFC_MBOXQ_t *mbox; 14953 int rc, length, status = 0; 14954 uint32_t shdr_status, shdr_add_status; 14955 union lpfc_sli4_cfg_shdr *shdr; 14956 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14957 14958 /* sanity check on queue memory */ 14959 if (!mq || !cq) 14960 return -ENODEV; 14961 if (!phba->sli4_hba.pc_sli4_params.supported) 14962 hw_page_size = SLI4_PAGE_SIZE; 14963 14964 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14965 if (!mbox) 14966 return -ENOMEM; 14967 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 14968 sizeof(struct lpfc_sli4_cfg_mhdr)); 14969 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14970 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 14971 length, LPFC_SLI4_MBX_EMBED); 14972 14973 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 14974 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 14975 bf_set(lpfc_mbx_mq_create_ext_num_pages, 14976 &mq_create_ext->u.request, mq->page_count); 14977 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 14978 &mq_create_ext->u.request, 1); 14979 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 14980 &mq_create_ext->u.request, 1); 14981 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 14982 &mq_create_ext->u.request, 1); 14983 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 14984 &mq_create_ext->u.request, 1); 14985 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 14986 &mq_create_ext->u.request, 1); 14987 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 14988 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14989 phba->sli4_hba.pc_sli4_params.mqv); 14990 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 14991 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 14992 cq->queue_id); 14993 else 14994 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 14995 cq->queue_id); 14996 switch (mq->entry_count) { 14997 default: 14998 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14999 "0362 Unsupported MQ count. (%d)\n", 15000 mq->entry_count); 15001 if (mq->entry_count < 16) { 15002 status = -EINVAL; 15003 goto out; 15004 } 15005 /* otherwise default to smallest count (drop through) */ 15006 case 16: 15007 bf_set(lpfc_mq_context_ring_size, 15008 &mq_create_ext->u.request.context, 15009 LPFC_MQ_RING_SIZE_16); 15010 break; 15011 case 32: 15012 bf_set(lpfc_mq_context_ring_size, 15013 &mq_create_ext->u.request.context, 15014 LPFC_MQ_RING_SIZE_32); 15015 break; 15016 case 64: 15017 bf_set(lpfc_mq_context_ring_size, 15018 &mq_create_ext->u.request.context, 15019 LPFC_MQ_RING_SIZE_64); 15020 break; 15021 case 128: 15022 bf_set(lpfc_mq_context_ring_size, 15023 &mq_create_ext->u.request.context, 15024 LPFC_MQ_RING_SIZE_128); 15025 break; 15026 } 15027 list_for_each_entry(dmabuf, &mq->page_list, list) { 15028 memset(dmabuf->virt, 0, hw_page_size); 15029 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15030 putPaddrLow(dmabuf->phys); 15031 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15032 putPaddrHigh(dmabuf->phys); 15033 } 15034 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15035 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15036 &mq_create_ext->u.response); 15037 if (rc != MBX_SUCCESS) { 15038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15039 "2795 MQ_CREATE_EXT failed with " 15040 "status x%x. Failback to MQ_CREATE.\n", 15041 rc); 15042 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15043 mq_create = &mbox->u.mqe.un.mq_create; 15044 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15045 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15046 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15047 &mq_create->u.response); 15048 } 15049 15050 /* The IOCTL status is embedded in the mailbox subheader. */ 15051 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15052 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15053 if (shdr_status || shdr_add_status || rc) { 15054 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15055 "2502 MQ_CREATE mailbox failed with " 15056 "status x%x add_status x%x, mbx status x%x\n", 15057 shdr_status, shdr_add_status, rc); 15058 status = -ENXIO; 15059 goto out; 15060 } 15061 if (mq->queue_id == 0xFFFF) { 15062 status = -ENXIO; 15063 goto out; 15064 } 15065 mq->type = LPFC_MQ; 15066 mq->assoc_qid = cq->queue_id; 15067 mq->subtype = subtype; 15068 mq->host_index = 0; 15069 mq->hba_index = 0; 15070 mq->entry_repost = LPFC_MQ_REPOST; 15071 15072 /* link the mq onto the parent cq child list */ 15073 list_add_tail(&mq->list, &cq->child_list); 15074 out: 15075 mempool_free(mbox, phba->mbox_mem_pool); 15076 return status; 15077 } 15078 15079 /** 15080 * lpfc_wq_create - Create a Work Queue on the HBA 15081 * @phba: HBA structure that indicates port to create a queue on. 15082 * @wq: The queue structure to use to create the work queue. 15083 * @cq: The completion queue to bind this work queue to. 15084 * @subtype: The subtype of the work queue indicating its functionality. 15085 * 15086 * This function creates a work queue, as detailed in @wq, on a port, described 15087 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15088 * 15089 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15090 * is used to get the entry count and entry size that are necessary to 15091 * determine the number of pages to allocate and use for this queue. The @cq 15092 * is used to indicate which completion queue to bind this work queue to. This 15093 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15094 * work queue. This function is asynchronous and will wait for the mailbox 15095 * command to finish before continuing. 15096 * 15097 * On success this function will return a zero. If unable to allocate enough 15098 * memory this function will return -ENOMEM. If the queue create mailbox command 15099 * fails this function will return -ENXIO. 15100 **/ 15101 int 15102 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15103 struct lpfc_queue *cq, uint32_t subtype) 15104 { 15105 struct lpfc_mbx_wq_create *wq_create; 15106 struct lpfc_dmabuf *dmabuf; 15107 LPFC_MBOXQ_t *mbox; 15108 int rc, length, status = 0; 15109 uint32_t shdr_status, shdr_add_status; 15110 union lpfc_sli4_cfg_shdr *shdr; 15111 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15112 struct dma_address *page; 15113 void __iomem *bar_memmap_p; 15114 uint32_t db_offset; 15115 uint16_t pci_barset; 15116 uint8_t dpp_barset; 15117 uint32_t dpp_offset; 15118 unsigned long pg_addr; 15119 uint8_t wq_create_version; 15120 15121 /* sanity check on queue memory */ 15122 if (!wq || !cq) 15123 return -ENODEV; 15124 if (!phba->sli4_hba.pc_sli4_params.supported) 15125 hw_page_size = wq->page_size; 15126 15127 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15128 if (!mbox) 15129 return -ENOMEM; 15130 length = (sizeof(struct lpfc_mbx_wq_create) - 15131 sizeof(struct lpfc_sli4_cfg_mhdr)); 15132 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15133 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15134 length, LPFC_SLI4_MBX_EMBED); 15135 wq_create = &mbox->u.mqe.un.wq_create; 15136 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15137 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15138 wq->page_count); 15139 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15140 cq->queue_id); 15141 15142 /* wqv is the earliest version supported, NOT the latest */ 15143 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15144 phba->sli4_hba.pc_sli4_params.wqv); 15145 15146 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15147 (wq->page_size > SLI4_PAGE_SIZE)) 15148 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15149 else 15150 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15151 15152 15153 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15154 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15155 else 15156 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15157 15158 switch (wq_create_version) { 15159 case LPFC_Q_CREATE_VERSION_1: 15160 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15161 wq->entry_count); 15162 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15163 LPFC_Q_CREATE_VERSION_1); 15164 15165 switch (wq->entry_size) { 15166 default: 15167 case 64: 15168 bf_set(lpfc_mbx_wq_create_wqe_size, 15169 &wq_create->u.request_1, 15170 LPFC_WQ_WQE_SIZE_64); 15171 break; 15172 case 128: 15173 bf_set(lpfc_mbx_wq_create_wqe_size, 15174 &wq_create->u.request_1, 15175 LPFC_WQ_WQE_SIZE_128); 15176 break; 15177 } 15178 /* Request DPP by default */ 15179 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15180 bf_set(lpfc_mbx_wq_create_page_size, 15181 &wq_create->u.request_1, 15182 (wq->page_size / SLI4_PAGE_SIZE)); 15183 page = wq_create->u.request_1.page; 15184 break; 15185 default: 15186 page = wq_create->u.request.page; 15187 break; 15188 } 15189 15190 list_for_each_entry(dmabuf, &wq->page_list, list) { 15191 memset(dmabuf->virt, 0, hw_page_size); 15192 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15193 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15194 } 15195 15196 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15197 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15198 15199 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15200 /* The IOCTL status is embedded in the mailbox subheader. */ 15201 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15202 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15203 if (shdr_status || shdr_add_status || rc) { 15204 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15205 "2503 WQ_CREATE mailbox failed with " 15206 "status x%x add_status x%x, mbx status x%x\n", 15207 shdr_status, shdr_add_status, rc); 15208 status = -ENXIO; 15209 goto out; 15210 } 15211 15212 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15213 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15214 &wq_create->u.response); 15215 else 15216 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15217 &wq_create->u.response_1); 15218 15219 if (wq->queue_id == 0xFFFF) { 15220 status = -ENXIO; 15221 goto out; 15222 } 15223 15224 wq->db_format = LPFC_DB_LIST_FORMAT; 15225 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15226 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15227 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15228 &wq_create->u.response); 15229 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15230 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15231 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15232 "3265 WQ[%d] doorbell format " 15233 "not supported: x%x\n", 15234 wq->queue_id, wq->db_format); 15235 status = -EINVAL; 15236 goto out; 15237 } 15238 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15239 &wq_create->u.response); 15240 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15241 pci_barset); 15242 if (!bar_memmap_p) { 15243 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15244 "3263 WQ[%d] failed to memmap " 15245 "pci barset:x%x\n", 15246 wq->queue_id, pci_barset); 15247 status = -ENOMEM; 15248 goto out; 15249 } 15250 db_offset = wq_create->u.response.doorbell_offset; 15251 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15252 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15253 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15254 "3252 WQ[%d] doorbell offset " 15255 "not supported: x%x\n", 15256 wq->queue_id, db_offset); 15257 status = -EINVAL; 15258 goto out; 15259 } 15260 wq->db_regaddr = bar_memmap_p + db_offset; 15261 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15262 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15263 "format:x%x\n", wq->queue_id, 15264 pci_barset, db_offset, wq->db_format); 15265 } else 15266 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15267 } else { 15268 /* Check if DPP was honored by the firmware */ 15269 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15270 &wq_create->u.response_1); 15271 if (wq->dpp_enable) { 15272 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15273 &wq_create->u.response_1); 15274 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15275 pci_barset); 15276 if (!bar_memmap_p) { 15277 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15278 "3267 WQ[%d] failed to memmap " 15279 "pci barset:x%x\n", 15280 wq->queue_id, pci_barset); 15281 status = -ENOMEM; 15282 goto out; 15283 } 15284 db_offset = wq_create->u.response_1.doorbell_offset; 15285 wq->db_regaddr = bar_memmap_p + db_offset; 15286 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15287 &wq_create->u.response_1); 15288 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15289 &wq_create->u.response_1); 15290 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15291 dpp_barset); 15292 if (!bar_memmap_p) { 15293 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15294 "3268 WQ[%d] failed to memmap " 15295 "pci barset:x%x\n", 15296 wq->queue_id, dpp_barset); 15297 status = -ENOMEM; 15298 goto out; 15299 } 15300 dpp_offset = wq_create->u.response_1.dpp_offset; 15301 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15302 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15303 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15304 "dpp_id:x%x dpp_barset:x%x " 15305 "dpp_offset:x%x\n", 15306 wq->queue_id, pci_barset, db_offset, 15307 wq->dpp_id, dpp_barset, dpp_offset); 15308 15309 /* Enable combined writes for DPP aperture */ 15310 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15311 #ifdef CONFIG_X86 15312 rc = set_memory_wc(pg_addr, 1); 15313 if (rc) { 15314 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15315 "3272 Cannot setup Combined " 15316 "Write on WQ[%d] - disable DPP\n", 15317 wq->queue_id); 15318 phba->cfg_enable_dpp = 0; 15319 } 15320 #else 15321 phba->cfg_enable_dpp = 0; 15322 #endif 15323 } else 15324 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15325 } 15326 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15327 if (wq->pring == NULL) { 15328 status = -ENOMEM; 15329 goto out; 15330 } 15331 wq->type = LPFC_WQ; 15332 wq->assoc_qid = cq->queue_id; 15333 wq->subtype = subtype; 15334 wq->host_index = 0; 15335 wq->hba_index = 0; 15336 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 15337 15338 /* link the wq onto the parent cq child list */ 15339 list_add_tail(&wq->list, &cq->child_list); 15340 out: 15341 mempool_free(mbox, phba->mbox_mem_pool); 15342 return status; 15343 } 15344 15345 /** 15346 * lpfc_rq_create - Create a Receive Queue on the HBA 15347 * @phba: HBA structure that indicates port to create a queue on. 15348 * @hrq: The queue structure to use to create the header receive queue. 15349 * @drq: The queue structure to use to create the data receive queue. 15350 * @cq: The completion queue to bind this work queue to. 15351 * 15352 * This function creates a receive buffer queue pair , as detailed in @hrq and 15353 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15354 * to the HBA. 15355 * 15356 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15357 * struct is used to get the entry count that is necessary to determine the 15358 * number of pages to use for this queue. The @cq is used to indicate which 15359 * completion queue to bind received buffers that are posted to these queues to. 15360 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15361 * receive queue pair. This function is asynchronous and will wait for the 15362 * mailbox command to finish before continuing. 15363 * 15364 * On success this function will return a zero. If unable to allocate enough 15365 * memory this function will return -ENOMEM. If the queue create mailbox command 15366 * fails this function will return -ENXIO. 15367 **/ 15368 int 15369 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15370 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15371 { 15372 struct lpfc_mbx_rq_create *rq_create; 15373 struct lpfc_dmabuf *dmabuf; 15374 LPFC_MBOXQ_t *mbox; 15375 int rc, length, status = 0; 15376 uint32_t shdr_status, shdr_add_status; 15377 union lpfc_sli4_cfg_shdr *shdr; 15378 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15379 void __iomem *bar_memmap_p; 15380 uint32_t db_offset; 15381 uint16_t pci_barset; 15382 15383 /* sanity check on queue memory */ 15384 if (!hrq || !drq || !cq) 15385 return -ENODEV; 15386 if (!phba->sli4_hba.pc_sli4_params.supported) 15387 hw_page_size = SLI4_PAGE_SIZE; 15388 15389 if (hrq->entry_count != drq->entry_count) 15390 return -EINVAL; 15391 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15392 if (!mbox) 15393 return -ENOMEM; 15394 length = (sizeof(struct lpfc_mbx_rq_create) - 15395 sizeof(struct lpfc_sli4_cfg_mhdr)); 15396 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15397 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15398 length, LPFC_SLI4_MBX_EMBED); 15399 rq_create = &mbox->u.mqe.un.rq_create; 15400 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15401 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15402 phba->sli4_hba.pc_sli4_params.rqv); 15403 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15404 bf_set(lpfc_rq_context_rqe_count_1, 15405 &rq_create->u.request.context, 15406 hrq->entry_count); 15407 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15408 bf_set(lpfc_rq_context_rqe_size, 15409 &rq_create->u.request.context, 15410 LPFC_RQE_SIZE_8); 15411 bf_set(lpfc_rq_context_page_size, 15412 &rq_create->u.request.context, 15413 LPFC_RQ_PAGE_SIZE_4096); 15414 } else { 15415 switch (hrq->entry_count) { 15416 default: 15417 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15418 "2535 Unsupported RQ count. (%d)\n", 15419 hrq->entry_count); 15420 if (hrq->entry_count < 512) { 15421 status = -EINVAL; 15422 goto out; 15423 } 15424 /* otherwise default to smallest count (drop through) */ 15425 case 512: 15426 bf_set(lpfc_rq_context_rqe_count, 15427 &rq_create->u.request.context, 15428 LPFC_RQ_RING_SIZE_512); 15429 break; 15430 case 1024: 15431 bf_set(lpfc_rq_context_rqe_count, 15432 &rq_create->u.request.context, 15433 LPFC_RQ_RING_SIZE_1024); 15434 break; 15435 case 2048: 15436 bf_set(lpfc_rq_context_rqe_count, 15437 &rq_create->u.request.context, 15438 LPFC_RQ_RING_SIZE_2048); 15439 break; 15440 case 4096: 15441 bf_set(lpfc_rq_context_rqe_count, 15442 &rq_create->u.request.context, 15443 LPFC_RQ_RING_SIZE_4096); 15444 break; 15445 } 15446 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15447 LPFC_HDR_BUF_SIZE); 15448 } 15449 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15450 cq->queue_id); 15451 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15452 hrq->page_count); 15453 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15454 memset(dmabuf->virt, 0, hw_page_size); 15455 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15456 putPaddrLow(dmabuf->phys); 15457 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15458 putPaddrHigh(dmabuf->phys); 15459 } 15460 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15461 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15462 15463 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15464 /* The IOCTL status is embedded in the mailbox subheader. */ 15465 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15466 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15467 if (shdr_status || shdr_add_status || rc) { 15468 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15469 "2504 RQ_CREATE mailbox failed with " 15470 "status x%x add_status x%x, mbx status x%x\n", 15471 shdr_status, shdr_add_status, rc); 15472 status = -ENXIO; 15473 goto out; 15474 } 15475 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15476 if (hrq->queue_id == 0xFFFF) { 15477 status = -ENXIO; 15478 goto out; 15479 } 15480 15481 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15482 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15483 &rq_create->u.response); 15484 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15485 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15486 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15487 "3262 RQ [%d] doorbell format not " 15488 "supported: x%x\n", hrq->queue_id, 15489 hrq->db_format); 15490 status = -EINVAL; 15491 goto out; 15492 } 15493 15494 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15495 &rq_create->u.response); 15496 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15497 if (!bar_memmap_p) { 15498 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15499 "3269 RQ[%d] failed to memmap pci " 15500 "barset:x%x\n", hrq->queue_id, 15501 pci_barset); 15502 status = -ENOMEM; 15503 goto out; 15504 } 15505 15506 db_offset = rq_create->u.response.doorbell_offset; 15507 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15508 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15509 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15510 "3270 RQ[%d] doorbell offset not " 15511 "supported: x%x\n", hrq->queue_id, 15512 db_offset); 15513 status = -EINVAL; 15514 goto out; 15515 } 15516 hrq->db_regaddr = bar_memmap_p + db_offset; 15517 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15518 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15519 "format:x%x\n", hrq->queue_id, pci_barset, 15520 db_offset, hrq->db_format); 15521 } else { 15522 hrq->db_format = LPFC_DB_RING_FORMAT; 15523 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15524 } 15525 hrq->type = LPFC_HRQ; 15526 hrq->assoc_qid = cq->queue_id; 15527 hrq->subtype = subtype; 15528 hrq->host_index = 0; 15529 hrq->hba_index = 0; 15530 hrq->entry_repost = LPFC_RQ_REPOST; 15531 15532 /* now create the data queue */ 15533 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15534 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15535 length, LPFC_SLI4_MBX_EMBED); 15536 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15537 phba->sli4_hba.pc_sli4_params.rqv); 15538 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15539 bf_set(lpfc_rq_context_rqe_count_1, 15540 &rq_create->u.request.context, hrq->entry_count); 15541 if (subtype == LPFC_NVMET) 15542 rq_create->u.request.context.buffer_size = 15543 LPFC_NVMET_DATA_BUF_SIZE; 15544 else 15545 rq_create->u.request.context.buffer_size = 15546 LPFC_DATA_BUF_SIZE; 15547 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15548 LPFC_RQE_SIZE_8); 15549 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15550 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15551 } else { 15552 switch (drq->entry_count) { 15553 default: 15554 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15555 "2536 Unsupported RQ count. (%d)\n", 15556 drq->entry_count); 15557 if (drq->entry_count < 512) { 15558 status = -EINVAL; 15559 goto out; 15560 } 15561 /* otherwise default to smallest count (drop through) */ 15562 case 512: 15563 bf_set(lpfc_rq_context_rqe_count, 15564 &rq_create->u.request.context, 15565 LPFC_RQ_RING_SIZE_512); 15566 break; 15567 case 1024: 15568 bf_set(lpfc_rq_context_rqe_count, 15569 &rq_create->u.request.context, 15570 LPFC_RQ_RING_SIZE_1024); 15571 break; 15572 case 2048: 15573 bf_set(lpfc_rq_context_rqe_count, 15574 &rq_create->u.request.context, 15575 LPFC_RQ_RING_SIZE_2048); 15576 break; 15577 case 4096: 15578 bf_set(lpfc_rq_context_rqe_count, 15579 &rq_create->u.request.context, 15580 LPFC_RQ_RING_SIZE_4096); 15581 break; 15582 } 15583 if (subtype == LPFC_NVMET) 15584 bf_set(lpfc_rq_context_buf_size, 15585 &rq_create->u.request.context, 15586 LPFC_NVMET_DATA_BUF_SIZE); 15587 else 15588 bf_set(lpfc_rq_context_buf_size, 15589 &rq_create->u.request.context, 15590 LPFC_DATA_BUF_SIZE); 15591 } 15592 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15593 cq->queue_id); 15594 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15595 drq->page_count); 15596 list_for_each_entry(dmabuf, &drq->page_list, list) { 15597 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15598 putPaddrLow(dmabuf->phys); 15599 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15600 putPaddrHigh(dmabuf->phys); 15601 } 15602 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15603 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15604 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15605 /* The IOCTL status is embedded in the mailbox subheader. */ 15606 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15607 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15608 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15609 if (shdr_status || shdr_add_status || rc) { 15610 status = -ENXIO; 15611 goto out; 15612 } 15613 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15614 if (drq->queue_id == 0xFFFF) { 15615 status = -ENXIO; 15616 goto out; 15617 } 15618 drq->type = LPFC_DRQ; 15619 drq->assoc_qid = cq->queue_id; 15620 drq->subtype = subtype; 15621 drq->host_index = 0; 15622 drq->hba_index = 0; 15623 drq->entry_repost = LPFC_RQ_REPOST; 15624 15625 /* link the header and data RQs onto the parent cq child list */ 15626 list_add_tail(&hrq->list, &cq->child_list); 15627 list_add_tail(&drq->list, &cq->child_list); 15628 15629 out: 15630 mempool_free(mbox, phba->mbox_mem_pool); 15631 return status; 15632 } 15633 15634 /** 15635 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15636 * @phba: HBA structure that indicates port to create a queue on. 15637 * @hrqp: The queue structure array to use to create the header receive queues. 15638 * @drqp: The queue structure array to use to create the data receive queues. 15639 * @cqp: The completion queue array to bind these receive queues to. 15640 * 15641 * This function creates a receive buffer queue pair , as detailed in @hrq and 15642 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15643 * to the HBA. 15644 * 15645 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15646 * struct is used to get the entry count that is necessary to determine the 15647 * number of pages to use for this queue. The @cq is used to indicate which 15648 * completion queue to bind received buffers that are posted to these queues to. 15649 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15650 * receive queue pair. This function is asynchronous and will wait for the 15651 * mailbox command to finish before continuing. 15652 * 15653 * On success this function will return a zero. If unable to allocate enough 15654 * memory this function will return -ENOMEM. If the queue create mailbox command 15655 * fails this function will return -ENXIO. 15656 **/ 15657 int 15658 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15659 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15660 uint32_t subtype) 15661 { 15662 struct lpfc_queue *hrq, *drq, *cq; 15663 struct lpfc_mbx_rq_create_v2 *rq_create; 15664 struct lpfc_dmabuf *dmabuf; 15665 LPFC_MBOXQ_t *mbox; 15666 int rc, length, alloclen, status = 0; 15667 int cnt, idx, numrq, page_idx = 0; 15668 uint32_t shdr_status, shdr_add_status; 15669 union lpfc_sli4_cfg_shdr *shdr; 15670 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15671 15672 numrq = phba->cfg_nvmet_mrq; 15673 /* sanity check on array memory */ 15674 if (!hrqp || !drqp || !cqp || !numrq) 15675 return -ENODEV; 15676 if (!phba->sli4_hba.pc_sli4_params.supported) 15677 hw_page_size = SLI4_PAGE_SIZE; 15678 15679 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15680 if (!mbox) 15681 return -ENOMEM; 15682 15683 length = sizeof(struct lpfc_mbx_rq_create_v2); 15684 length += ((2 * numrq * hrqp[0]->page_count) * 15685 sizeof(struct dma_address)); 15686 15687 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15688 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15689 LPFC_SLI4_MBX_NEMBED); 15690 if (alloclen < length) { 15691 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15692 "3099 Allocated DMA memory size (%d) is " 15693 "less than the requested DMA memory size " 15694 "(%d)\n", alloclen, length); 15695 status = -ENOMEM; 15696 goto out; 15697 } 15698 15699 15700 15701 rq_create = mbox->sge_array->addr[0]; 15702 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15703 15704 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15705 cnt = 0; 15706 15707 for (idx = 0; idx < numrq; idx++) { 15708 hrq = hrqp[idx]; 15709 drq = drqp[idx]; 15710 cq = cqp[idx]; 15711 15712 /* sanity check on queue memory */ 15713 if (!hrq || !drq || !cq) { 15714 status = -ENODEV; 15715 goto out; 15716 } 15717 15718 if (hrq->entry_count != drq->entry_count) { 15719 status = -EINVAL; 15720 goto out; 15721 } 15722 15723 if (idx == 0) { 15724 bf_set(lpfc_mbx_rq_create_num_pages, 15725 &rq_create->u.request, 15726 hrq->page_count); 15727 bf_set(lpfc_mbx_rq_create_rq_cnt, 15728 &rq_create->u.request, (numrq * 2)); 15729 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15730 1); 15731 bf_set(lpfc_rq_context_base_cq, 15732 &rq_create->u.request.context, 15733 cq->queue_id); 15734 bf_set(lpfc_rq_context_data_size, 15735 &rq_create->u.request.context, 15736 LPFC_NVMET_DATA_BUF_SIZE); 15737 bf_set(lpfc_rq_context_hdr_size, 15738 &rq_create->u.request.context, 15739 LPFC_HDR_BUF_SIZE); 15740 bf_set(lpfc_rq_context_rqe_count_1, 15741 &rq_create->u.request.context, 15742 hrq->entry_count); 15743 bf_set(lpfc_rq_context_rqe_size, 15744 &rq_create->u.request.context, 15745 LPFC_RQE_SIZE_8); 15746 bf_set(lpfc_rq_context_page_size, 15747 &rq_create->u.request.context, 15748 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15749 } 15750 rc = 0; 15751 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15752 memset(dmabuf->virt, 0, hw_page_size); 15753 cnt = page_idx + dmabuf->buffer_tag; 15754 rq_create->u.request.page[cnt].addr_lo = 15755 putPaddrLow(dmabuf->phys); 15756 rq_create->u.request.page[cnt].addr_hi = 15757 putPaddrHigh(dmabuf->phys); 15758 rc++; 15759 } 15760 page_idx += rc; 15761 15762 rc = 0; 15763 list_for_each_entry(dmabuf, &drq->page_list, list) { 15764 memset(dmabuf->virt, 0, hw_page_size); 15765 cnt = page_idx + dmabuf->buffer_tag; 15766 rq_create->u.request.page[cnt].addr_lo = 15767 putPaddrLow(dmabuf->phys); 15768 rq_create->u.request.page[cnt].addr_hi = 15769 putPaddrHigh(dmabuf->phys); 15770 rc++; 15771 } 15772 page_idx += rc; 15773 15774 hrq->db_format = LPFC_DB_RING_FORMAT; 15775 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15776 hrq->type = LPFC_HRQ; 15777 hrq->assoc_qid = cq->queue_id; 15778 hrq->subtype = subtype; 15779 hrq->host_index = 0; 15780 hrq->hba_index = 0; 15781 hrq->entry_repost = LPFC_RQ_REPOST; 15782 15783 drq->db_format = LPFC_DB_RING_FORMAT; 15784 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15785 drq->type = LPFC_DRQ; 15786 drq->assoc_qid = cq->queue_id; 15787 drq->subtype = subtype; 15788 drq->host_index = 0; 15789 drq->hba_index = 0; 15790 drq->entry_repost = LPFC_RQ_REPOST; 15791 15792 list_add_tail(&hrq->list, &cq->child_list); 15793 list_add_tail(&drq->list, &cq->child_list); 15794 } 15795 15796 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15797 /* The IOCTL status is embedded in the mailbox subheader. */ 15798 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15799 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15800 if (shdr_status || shdr_add_status || rc) { 15801 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15802 "3120 RQ_CREATE mailbox failed with " 15803 "status x%x add_status x%x, mbx status x%x\n", 15804 shdr_status, shdr_add_status, rc); 15805 status = -ENXIO; 15806 goto out; 15807 } 15808 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15809 if (rc == 0xFFFF) { 15810 status = -ENXIO; 15811 goto out; 15812 } 15813 15814 /* Initialize all RQs with associated queue id */ 15815 for (idx = 0; idx < numrq; idx++) { 15816 hrq = hrqp[idx]; 15817 hrq->queue_id = rc + (2 * idx); 15818 drq = drqp[idx]; 15819 drq->queue_id = rc + (2 * idx) + 1; 15820 } 15821 15822 out: 15823 lpfc_sli4_mbox_cmd_free(phba, mbox); 15824 return status; 15825 } 15826 15827 /** 15828 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15829 * @eq: The queue structure associated with the queue to destroy. 15830 * 15831 * This function destroys a queue, as detailed in @eq by sending an mailbox 15832 * command, specific to the type of queue, to the HBA. 15833 * 15834 * The @eq struct is used to get the queue ID of the queue to destroy. 15835 * 15836 * On success this function will return a zero. If the queue destroy mailbox 15837 * command fails this function will return -ENXIO. 15838 **/ 15839 int 15840 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15841 { 15842 LPFC_MBOXQ_t *mbox; 15843 int rc, length, status = 0; 15844 uint32_t shdr_status, shdr_add_status; 15845 union lpfc_sli4_cfg_shdr *shdr; 15846 15847 /* sanity check on queue memory */ 15848 if (!eq) 15849 return -ENODEV; 15850 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15851 if (!mbox) 15852 return -ENOMEM; 15853 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15854 sizeof(struct lpfc_sli4_cfg_mhdr)); 15855 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15856 LPFC_MBOX_OPCODE_EQ_DESTROY, 15857 length, LPFC_SLI4_MBX_EMBED); 15858 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15859 eq->queue_id); 15860 mbox->vport = eq->phba->pport; 15861 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15862 15863 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15864 /* The IOCTL status is embedded in the mailbox subheader. */ 15865 shdr = (union lpfc_sli4_cfg_shdr *) 15866 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15867 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15868 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15869 if (shdr_status || shdr_add_status || rc) { 15870 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15871 "2505 EQ_DESTROY mailbox failed with " 15872 "status x%x add_status x%x, mbx status x%x\n", 15873 shdr_status, shdr_add_status, rc); 15874 status = -ENXIO; 15875 } 15876 15877 /* Remove eq from any list */ 15878 list_del_init(&eq->list); 15879 mempool_free(mbox, eq->phba->mbox_mem_pool); 15880 return status; 15881 } 15882 15883 /** 15884 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15885 * @cq: The queue structure associated with the queue to destroy. 15886 * 15887 * This function destroys a queue, as detailed in @cq by sending an mailbox 15888 * command, specific to the type of queue, to the HBA. 15889 * 15890 * The @cq struct is used to get the queue ID of the queue to destroy. 15891 * 15892 * On success this function will return a zero. If the queue destroy mailbox 15893 * command fails this function will return -ENXIO. 15894 **/ 15895 int 15896 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15897 { 15898 LPFC_MBOXQ_t *mbox; 15899 int rc, length, status = 0; 15900 uint32_t shdr_status, shdr_add_status; 15901 union lpfc_sli4_cfg_shdr *shdr; 15902 15903 /* sanity check on queue memory */ 15904 if (!cq) 15905 return -ENODEV; 15906 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15907 if (!mbox) 15908 return -ENOMEM; 15909 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15910 sizeof(struct lpfc_sli4_cfg_mhdr)); 15911 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15912 LPFC_MBOX_OPCODE_CQ_DESTROY, 15913 length, LPFC_SLI4_MBX_EMBED); 15914 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15915 cq->queue_id); 15916 mbox->vport = cq->phba->pport; 15917 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15918 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15919 /* The IOCTL status is embedded in the mailbox subheader. */ 15920 shdr = (union lpfc_sli4_cfg_shdr *) 15921 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15922 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15923 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15924 if (shdr_status || shdr_add_status || rc) { 15925 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15926 "2506 CQ_DESTROY mailbox failed with " 15927 "status x%x add_status x%x, mbx status x%x\n", 15928 shdr_status, shdr_add_status, rc); 15929 status = -ENXIO; 15930 } 15931 /* Remove cq from any list */ 15932 list_del_init(&cq->list); 15933 mempool_free(mbox, cq->phba->mbox_mem_pool); 15934 return status; 15935 } 15936 15937 /** 15938 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15939 * @qm: The queue structure associated with the queue to destroy. 15940 * 15941 * This function destroys a queue, as detailed in @mq by sending an mailbox 15942 * command, specific to the type of queue, to the HBA. 15943 * 15944 * The @mq struct is used to get the queue ID of the queue to destroy. 15945 * 15946 * On success this function will return a zero. If the queue destroy mailbox 15947 * command fails this function will return -ENXIO. 15948 **/ 15949 int 15950 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 15951 { 15952 LPFC_MBOXQ_t *mbox; 15953 int rc, length, status = 0; 15954 uint32_t shdr_status, shdr_add_status; 15955 union lpfc_sli4_cfg_shdr *shdr; 15956 15957 /* sanity check on queue memory */ 15958 if (!mq) 15959 return -ENODEV; 15960 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 15961 if (!mbox) 15962 return -ENOMEM; 15963 length = (sizeof(struct lpfc_mbx_mq_destroy) - 15964 sizeof(struct lpfc_sli4_cfg_mhdr)); 15965 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15966 LPFC_MBOX_OPCODE_MQ_DESTROY, 15967 length, LPFC_SLI4_MBX_EMBED); 15968 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 15969 mq->queue_id); 15970 mbox->vport = mq->phba->pport; 15971 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15972 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 15973 /* The IOCTL status is embedded in the mailbox subheader. */ 15974 shdr = (union lpfc_sli4_cfg_shdr *) 15975 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 15976 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15977 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15978 if (shdr_status || shdr_add_status || rc) { 15979 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15980 "2507 MQ_DESTROY mailbox failed with " 15981 "status x%x add_status x%x, mbx status x%x\n", 15982 shdr_status, shdr_add_status, rc); 15983 status = -ENXIO; 15984 } 15985 /* Remove mq from any list */ 15986 list_del_init(&mq->list); 15987 mempool_free(mbox, mq->phba->mbox_mem_pool); 15988 return status; 15989 } 15990 15991 /** 15992 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 15993 * @wq: The queue structure associated with the queue to destroy. 15994 * 15995 * This function destroys a queue, as detailed in @wq by sending an mailbox 15996 * command, specific to the type of queue, to the HBA. 15997 * 15998 * The @wq struct is used to get the queue ID of the queue to destroy. 15999 * 16000 * On success this function will return a zero. If the queue destroy mailbox 16001 * command fails this function will return -ENXIO. 16002 **/ 16003 int 16004 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16005 { 16006 LPFC_MBOXQ_t *mbox; 16007 int rc, length, status = 0; 16008 uint32_t shdr_status, shdr_add_status; 16009 union lpfc_sli4_cfg_shdr *shdr; 16010 16011 /* sanity check on queue memory */ 16012 if (!wq) 16013 return -ENODEV; 16014 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16015 if (!mbox) 16016 return -ENOMEM; 16017 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16018 sizeof(struct lpfc_sli4_cfg_mhdr)); 16019 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16020 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16021 length, LPFC_SLI4_MBX_EMBED); 16022 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16023 wq->queue_id); 16024 mbox->vport = wq->phba->pport; 16025 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16026 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16027 shdr = (union lpfc_sli4_cfg_shdr *) 16028 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16029 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16030 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16031 if (shdr_status || shdr_add_status || rc) { 16032 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16033 "2508 WQ_DESTROY mailbox failed with " 16034 "status x%x add_status x%x, mbx status x%x\n", 16035 shdr_status, shdr_add_status, rc); 16036 status = -ENXIO; 16037 } 16038 /* Remove wq from any list */ 16039 list_del_init(&wq->list); 16040 kfree(wq->pring); 16041 wq->pring = NULL; 16042 mempool_free(mbox, wq->phba->mbox_mem_pool); 16043 return status; 16044 } 16045 16046 /** 16047 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16048 * @rq: The queue structure associated with the queue to destroy. 16049 * 16050 * This function destroys a queue, as detailed in @rq by sending an mailbox 16051 * command, specific to the type of queue, to the HBA. 16052 * 16053 * The @rq struct is used to get the queue ID of the queue to destroy. 16054 * 16055 * On success this function will return a zero. If the queue destroy mailbox 16056 * command fails this function will return -ENXIO. 16057 **/ 16058 int 16059 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16060 struct lpfc_queue *drq) 16061 { 16062 LPFC_MBOXQ_t *mbox; 16063 int rc, length, status = 0; 16064 uint32_t shdr_status, shdr_add_status; 16065 union lpfc_sli4_cfg_shdr *shdr; 16066 16067 /* sanity check on queue memory */ 16068 if (!hrq || !drq) 16069 return -ENODEV; 16070 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16071 if (!mbox) 16072 return -ENOMEM; 16073 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16074 sizeof(struct lpfc_sli4_cfg_mhdr)); 16075 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16076 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16077 length, LPFC_SLI4_MBX_EMBED); 16078 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16079 hrq->queue_id); 16080 mbox->vport = hrq->phba->pport; 16081 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16082 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16083 /* The IOCTL status is embedded in the mailbox subheader. */ 16084 shdr = (union lpfc_sli4_cfg_shdr *) 16085 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16086 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16087 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16088 if (shdr_status || shdr_add_status || rc) { 16089 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16090 "2509 RQ_DESTROY mailbox failed with " 16091 "status x%x add_status x%x, mbx status x%x\n", 16092 shdr_status, shdr_add_status, rc); 16093 if (rc != MBX_TIMEOUT) 16094 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16095 return -ENXIO; 16096 } 16097 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16098 drq->queue_id); 16099 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16100 shdr = (union lpfc_sli4_cfg_shdr *) 16101 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16102 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16103 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16104 if (shdr_status || shdr_add_status || rc) { 16105 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16106 "2510 RQ_DESTROY mailbox failed with " 16107 "status x%x add_status x%x, mbx status x%x\n", 16108 shdr_status, shdr_add_status, rc); 16109 status = -ENXIO; 16110 } 16111 list_del_init(&hrq->list); 16112 list_del_init(&drq->list); 16113 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16114 return status; 16115 } 16116 16117 /** 16118 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16119 * @phba: The virtual port for which this call being executed. 16120 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16121 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16122 * @xritag: the xritag that ties this io to the SGL pages. 16123 * 16124 * This routine will post the sgl pages for the IO that has the xritag 16125 * that is in the iocbq structure. The xritag is assigned during iocbq 16126 * creation and persists for as long as the driver is loaded. 16127 * if the caller has fewer than 256 scatter gather segments to map then 16128 * pdma_phys_addr1 should be 0. 16129 * If the caller needs to map more than 256 scatter gather segment then 16130 * pdma_phys_addr1 should be a valid physical address. 16131 * physical address for SGLs must be 64 byte aligned. 16132 * If you are going to map 2 SGL's then the first one must have 256 entries 16133 * the second sgl can have between 1 and 256 entries. 16134 * 16135 * Return codes: 16136 * 0 - Success 16137 * -ENXIO, -ENOMEM - Failure 16138 **/ 16139 int 16140 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16141 dma_addr_t pdma_phys_addr0, 16142 dma_addr_t pdma_phys_addr1, 16143 uint16_t xritag) 16144 { 16145 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16146 LPFC_MBOXQ_t *mbox; 16147 int rc; 16148 uint32_t shdr_status, shdr_add_status; 16149 uint32_t mbox_tmo; 16150 union lpfc_sli4_cfg_shdr *shdr; 16151 16152 if (xritag == NO_XRI) { 16153 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16154 "0364 Invalid param:\n"); 16155 return -EINVAL; 16156 } 16157 16158 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16159 if (!mbox) 16160 return -ENOMEM; 16161 16162 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16163 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16164 sizeof(struct lpfc_mbx_post_sgl_pages) - 16165 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16166 16167 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16168 &mbox->u.mqe.un.post_sgl_pages; 16169 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16170 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16171 16172 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16173 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16174 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16175 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16176 16177 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16178 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16179 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16180 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16181 if (!phba->sli4_hba.intr_enable) 16182 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16183 else { 16184 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16185 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16186 } 16187 /* The IOCTL status is embedded in the mailbox subheader. */ 16188 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16189 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16190 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16191 if (rc != MBX_TIMEOUT) 16192 mempool_free(mbox, phba->mbox_mem_pool); 16193 if (shdr_status || shdr_add_status || rc) { 16194 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16195 "2511 POST_SGL mailbox failed with " 16196 "status x%x add_status x%x, mbx status x%x\n", 16197 shdr_status, shdr_add_status, rc); 16198 } 16199 return 0; 16200 } 16201 16202 /** 16203 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16204 * @phba: pointer to lpfc hba data structure. 16205 * 16206 * This routine is invoked to post rpi header templates to the 16207 * HBA consistent with the SLI-4 interface spec. This routine 16208 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16209 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16210 * 16211 * Returns 16212 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16213 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16214 **/ 16215 static uint16_t 16216 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16217 { 16218 unsigned long xri; 16219 16220 /* 16221 * Fetch the next logical xri. Because this index is logical, 16222 * the driver starts at 0 each time. 16223 */ 16224 spin_lock_irq(&phba->hbalock); 16225 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16226 phba->sli4_hba.max_cfg_param.max_xri, 0); 16227 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16228 spin_unlock_irq(&phba->hbalock); 16229 return NO_XRI; 16230 } else { 16231 set_bit(xri, phba->sli4_hba.xri_bmask); 16232 phba->sli4_hba.max_cfg_param.xri_used++; 16233 } 16234 spin_unlock_irq(&phba->hbalock); 16235 return xri; 16236 } 16237 16238 /** 16239 * lpfc_sli4_free_xri - Release an xri for reuse. 16240 * @phba: pointer to lpfc hba data structure. 16241 * 16242 * This routine is invoked to release an xri to the pool of 16243 * available rpis maintained by the driver. 16244 **/ 16245 static void 16246 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16247 { 16248 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16249 phba->sli4_hba.max_cfg_param.xri_used--; 16250 } 16251 } 16252 16253 /** 16254 * lpfc_sli4_free_xri - Release an xri for reuse. 16255 * @phba: pointer to lpfc hba data structure. 16256 * 16257 * This routine is invoked to release an xri to the pool of 16258 * available rpis maintained by the driver. 16259 **/ 16260 void 16261 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16262 { 16263 spin_lock_irq(&phba->hbalock); 16264 __lpfc_sli4_free_xri(phba, xri); 16265 spin_unlock_irq(&phba->hbalock); 16266 } 16267 16268 /** 16269 * lpfc_sli4_next_xritag - Get an xritag for the io 16270 * @phba: Pointer to HBA context object. 16271 * 16272 * This function gets an xritag for the iocb. If there is no unused xritag 16273 * it will return 0xffff. 16274 * The function returns the allocated xritag if successful, else returns zero. 16275 * Zero is not a valid xritag. 16276 * The caller is not required to hold any lock. 16277 **/ 16278 uint16_t 16279 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16280 { 16281 uint16_t xri_index; 16282 16283 xri_index = lpfc_sli4_alloc_xri(phba); 16284 if (xri_index == NO_XRI) 16285 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16286 "2004 Failed to allocate XRI.last XRITAG is %d" 16287 " Max XRI is %d, Used XRI is %d\n", 16288 xri_index, 16289 phba->sli4_hba.max_cfg_param.max_xri, 16290 phba->sli4_hba.max_cfg_param.xri_used); 16291 return xri_index; 16292 } 16293 16294 /** 16295 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16296 * @phba: pointer to lpfc hba data structure. 16297 * @post_sgl_list: pointer to els sgl entry list. 16298 * @count: number of els sgl entries on the list. 16299 * 16300 * This routine is invoked to post a block of driver's sgl pages to the 16301 * HBA using non-embedded mailbox command. No Lock is held. This routine 16302 * is only called when the driver is loading and after all IO has been 16303 * stopped. 16304 **/ 16305 static int 16306 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16307 struct list_head *post_sgl_list, 16308 int post_cnt) 16309 { 16310 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16311 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16312 struct sgl_page_pairs *sgl_pg_pairs; 16313 void *viraddr; 16314 LPFC_MBOXQ_t *mbox; 16315 uint32_t reqlen, alloclen, pg_pairs; 16316 uint32_t mbox_tmo; 16317 uint16_t xritag_start = 0; 16318 int rc = 0; 16319 uint32_t shdr_status, shdr_add_status; 16320 union lpfc_sli4_cfg_shdr *shdr; 16321 16322 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16323 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16324 if (reqlen > SLI4_PAGE_SIZE) { 16325 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16326 "2559 Block sgl registration required DMA " 16327 "size (%d) great than a page\n", reqlen); 16328 return -ENOMEM; 16329 } 16330 16331 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16332 if (!mbox) 16333 return -ENOMEM; 16334 16335 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16336 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16337 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16338 LPFC_SLI4_MBX_NEMBED); 16339 16340 if (alloclen < reqlen) { 16341 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16342 "0285 Allocated DMA memory size (%d) is " 16343 "less than the requested DMA memory " 16344 "size (%d)\n", alloclen, reqlen); 16345 lpfc_sli4_mbox_cmd_free(phba, mbox); 16346 return -ENOMEM; 16347 } 16348 /* Set up the SGL pages in the non-embedded DMA pages */ 16349 viraddr = mbox->sge_array->addr[0]; 16350 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16351 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16352 16353 pg_pairs = 0; 16354 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16355 /* Set up the sge entry */ 16356 sgl_pg_pairs->sgl_pg0_addr_lo = 16357 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16358 sgl_pg_pairs->sgl_pg0_addr_hi = 16359 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16360 sgl_pg_pairs->sgl_pg1_addr_lo = 16361 cpu_to_le32(putPaddrLow(0)); 16362 sgl_pg_pairs->sgl_pg1_addr_hi = 16363 cpu_to_le32(putPaddrHigh(0)); 16364 16365 /* Keep the first xritag on the list */ 16366 if (pg_pairs == 0) 16367 xritag_start = sglq_entry->sli4_xritag; 16368 sgl_pg_pairs++; 16369 pg_pairs++; 16370 } 16371 16372 /* Complete initialization and perform endian conversion. */ 16373 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16374 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16375 sgl->word0 = cpu_to_le32(sgl->word0); 16376 16377 if (!phba->sli4_hba.intr_enable) 16378 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16379 else { 16380 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16381 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16382 } 16383 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16384 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16385 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16386 if (rc != MBX_TIMEOUT) 16387 lpfc_sli4_mbox_cmd_free(phba, mbox); 16388 if (shdr_status || shdr_add_status || rc) { 16389 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16390 "2513 POST_SGL_BLOCK mailbox command failed " 16391 "status x%x add_status x%x mbx status x%x\n", 16392 shdr_status, shdr_add_status, rc); 16393 rc = -ENXIO; 16394 } 16395 return rc; 16396 } 16397 16398 /** 16399 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16400 * @phba: pointer to lpfc hba data structure. 16401 * @sblist: pointer to scsi buffer list. 16402 * @count: number of scsi buffers on the list. 16403 * 16404 * This routine is invoked to post a block of @count scsi sgl pages from a 16405 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16406 * No Lock is held. 16407 * 16408 **/ 16409 int 16410 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16411 struct list_head *sblist, 16412 int count) 16413 { 16414 struct lpfc_scsi_buf *psb; 16415 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16416 struct sgl_page_pairs *sgl_pg_pairs; 16417 void *viraddr; 16418 LPFC_MBOXQ_t *mbox; 16419 uint32_t reqlen, alloclen, pg_pairs; 16420 uint32_t mbox_tmo; 16421 uint16_t xritag_start = 0; 16422 int rc = 0; 16423 uint32_t shdr_status, shdr_add_status; 16424 dma_addr_t pdma_phys_bpl1; 16425 union lpfc_sli4_cfg_shdr *shdr; 16426 16427 /* Calculate the requested length of the dma memory */ 16428 reqlen = count * sizeof(struct sgl_page_pairs) + 16429 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16430 if (reqlen > SLI4_PAGE_SIZE) { 16431 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16432 "0217 Block sgl registration required DMA " 16433 "size (%d) great than a page\n", reqlen); 16434 return -ENOMEM; 16435 } 16436 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16437 if (!mbox) { 16438 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16439 "0283 Failed to allocate mbox cmd memory\n"); 16440 return -ENOMEM; 16441 } 16442 16443 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16444 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16445 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16446 LPFC_SLI4_MBX_NEMBED); 16447 16448 if (alloclen < reqlen) { 16449 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16450 "2561 Allocated DMA memory size (%d) is " 16451 "less than the requested DMA memory " 16452 "size (%d)\n", alloclen, reqlen); 16453 lpfc_sli4_mbox_cmd_free(phba, mbox); 16454 return -ENOMEM; 16455 } 16456 16457 /* Get the first SGE entry from the non-embedded DMA memory */ 16458 viraddr = mbox->sge_array->addr[0]; 16459 16460 /* Set up the SGL pages in the non-embedded DMA pages */ 16461 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16462 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16463 16464 pg_pairs = 0; 16465 list_for_each_entry(psb, sblist, list) { 16466 /* Set up the sge entry */ 16467 sgl_pg_pairs->sgl_pg0_addr_lo = 16468 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16469 sgl_pg_pairs->sgl_pg0_addr_hi = 16470 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16471 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16472 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16473 else 16474 pdma_phys_bpl1 = 0; 16475 sgl_pg_pairs->sgl_pg1_addr_lo = 16476 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16477 sgl_pg_pairs->sgl_pg1_addr_hi = 16478 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16479 /* Keep the first xritag on the list */ 16480 if (pg_pairs == 0) 16481 xritag_start = psb->cur_iocbq.sli4_xritag; 16482 sgl_pg_pairs++; 16483 pg_pairs++; 16484 } 16485 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16486 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16487 /* Perform endian conversion if necessary */ 16488 sgl->word0 = cpu_to_le32(sgl->word0); 16489 16490 if (!phba->sli4_hba.intr_enable) 16491 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16492 else { 16493 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16494 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16495 } 16496 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16497 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16498 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16499 if (rc != MBX_TIMEOUT) 16500 lpfc_sli4_mbox_cmd_free(phba, mbox); 16501 if (shdr_status || shdr_add_status || rc) { 16502 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16503 "2564 POST_SGL_BLOCK mailbox command failed " 16504 "status x%x add_status x%x mbx status x%x\n", 16505 shdr_status, shdr_add_status, rc); 16506 rc = -ENXIO; 16507 } 16508 return rc; 16509 } 16510 16511 /** 16512 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16513 * @phba: pointer to lpfc_hba struct that the frame was received on 16514 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16515 * 16516 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16517 * valid type of frame that the LPFC driver will handle. This function will 16518 * return a zero if the frame is a valid frame or a non zero value when the 16519 * frame does not pass the check. 16520 **/ 16521 static int 16522 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16523 { 16524 /* make rctl_names static to save stack space */ 16525 struct fc_vft_header *fc_vft_hdr; 16526 uint32_t *header = (uint32_t *) fc_hdr; 16527 16528 #define FC_RCTL_MDS_DIAGS 0xF4 16529 16530 switch (fc_hdr->fh_r_ctl) { 16531 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16532 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16533 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16534 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16535 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16536 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16537 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16538 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16539 case FC_RCTL_ELS_REQ: /* extended link services request */ 16540 case FC_RCTL_ELS_REP: /* extended link services reply */ 16541 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16542 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16543 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16544 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16545 case FC_RCTL_BA_RMC: /* remove connection */ 16546 case FC_RCTL_BA_ACC: /* basic accept */ 16547 case FC_RCTL_BA_RJT: /* basic reject */ 16548 case FC_RCTL_BA_PRMT: 16549 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16550 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16551 case FC_RCTL_P_RJT: /* port reject */ 16552 case FC_RCTL_F_RJT: /* fabric reject */ 16553 case FC_RCTL_P_BSY: /* port busy */ 16554 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16555 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16556 case FC_RCTL_LCR: /* link credit reset */ 16557 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16558 case FC_RCTL_END: /* end */ 16559 break; 16560 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16561 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16562 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16563 return lpfc_fc_frame_check(phba, fc_hdr); 16564 default: 16565 goto drop; 16566 } 16567 16568 #define FC_TYPE_VENDOR_UNIQUE 0xFF 16569 16570 switch (fc_hdr->fh_type) { 16571 case FC_TYPE_BLS: 16572 case FC_TYPE_ELS: 16573 case FC_TYPE_FCP: 16574 case FC_TYPE_CT: 16575 case FC_TYPE_NVME: 16576 case FC_TYPE_VENDOR_UNIQUE: 16577 break; 16578 case FC_TYPE_IP: 16579 case FC_TYPE_ILS: 16580 default: 16581 goto drop; 16582 } 16583 16584 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16585 "2538 Received frame rctl:x%x, type:x%x, " 16586 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16587 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 16588 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16589 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16590 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16591 be32_to_cpu(header[6])); 16592 return 0; 16593 drop: 16594 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16595 "2539 Dropped frame rctl:x%x type:x%x\n", 16596 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16597 return 1; 16598 } 16599 16600 /** 16601 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16602 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16603 * 16604 * This function processes the FC header to retrieve the VFI from the VF 16605 * header, if one exists. This function will return the VFI if one exists 16606 * or 0 if no VSAN Header exists. 16607 **/ 16608 static uint32_t 16609 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16610 { 16611 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16612 16613 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16614 return 0; 16615 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16616 } 16617 16618 /** 16619 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16620 * @phba: Pointer to the HBA structure to search for the vport on 16621 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16622 * @fcfi: The FC Fabric ID that the frame came from 16623 * 16624 * This function searches the @phba for a vport that matches the content of the 16625 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16626 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16627 * returns the matching vport pointer or NULL if unable to match frame to a 16628 * vport. 16629 **/ 16630 static struct lpfc_vport * 16631 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16632 uint16_t fcfi, uint32_t did) 16633 { 16634 struct lpfc_vport **vports; 16635 struct lpfc_vport *vport = NULL; 16636 int i; 16637 16638 if (did == Fabric_DID) 16639 return phba->pport; 16640 if ((phba->pport->fc_flag & FC_PT2PT) && 16641 !(phba->link_state == LPFC_HBA_READY)) 16642 return phba->pport; 16643 16644 vports = lpfc_create_vport_work_array(phba); 16645 if (vports != NULL) { 16646 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16647 if (phba->fcf.fcfi == fcfi && 16648 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16649 vports[i]->fc_myDID == did) { 16650 vport = vports[i]; 16651 break; 16652 } 16653 } 16654 } 16655 lpfc_destroy_vport_work_array(phba, vports); 16656 return vport; 16657 } 16658 16659 /** 16660 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16661 * @vport: The vport to work on. 16662 * 16663 * This function updates the receive sequence time stamp for this vport. The 16664 * receive sequence time stamp indicates the time that the last frame of the 16665 * the sequence that has been idle for the longest amount of time was received. 16666 * the driver uses this time stamp to indicate if any received sequences have 16667 * timed out. 16668 **/ 16669 static void 16670 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16671 { 16672 struct lpfc_dmabuf *h_buf; 16673 struct hbq_dmabuf *dmabuf = NULL; 16674 16675 /* get the oldest sequence on the rcv list */ 16676 h_buf = list_get_first(&vport->rcv_buffer_list, 16677 struct lpfc_dmabuf, list); 16678 if (!h_buf) 16679 return; 16680 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16681 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16682 } 16683 16684 /** 16685 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16686 * @vport: The vport that the received sequences were sent to. 16687 * 16688 * This function cleans up all outstanding received sequences. This is called 16689 * by the driver when a link event or user action invalidates all the received 16690 * sequences. 16691 **/ 16692 void 16693 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16694 { 16695 struct lpfc_dmabuf *h_buf, *hnext; 16696 struct lpfc_dmabuf *d_buf, *dnext; 16697 struct hbq_dmabuf *dmabuf = NULL; 16698 16699 /* start with the oldest sequence on the rcv list */ 16700 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16701 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16702 list_del_init(&dmabuf->hbuf.list); 16703 list_for_each_entry_safe(d_buf, dnext, 16704 &dmabuf->dbuf.list, list) { 16705 list_del_init(&d_buf->list); 16706 lpfc_in_buf_free(vport->phba, d_buf); 16707 } 16708 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16709 } 16710 } 16711 16712 /** 16713 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16714 * @vport: The vport that the received sequences were sent to. 16715 * 16716 * This function determines whether any received sequences have timed out by 16717 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16718 * indicates that there is at least one timed out sequence this routine will 16719 * go through the received sequences one at a time from most inactive to most 16720 * active to determine which ones need to be cleaned up. Once it has determined 16721 * that a sequence needs to be cleaned up it will simply free up the resources 16722 * without sending an abort. 16723 **/ 16724 void 16725 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16726 { 16727 struct lpfc_dmabuf *h_buf, *hnext; 16728 struct lpfc_dmabuf *d_buf, *dnext; 16729 struct hbq_dmabuf *dmabuf = NULL; 16730 unsigned long timeout; 16731 int abort_count = 0; 16732 16733 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16734 vport->rcv_buffer_time_stamp); 16735 if (list_empty(&vport->rcv_buffer_list) || 16736 time_before(jiffies, timeout)) 16737 return; 16738 /* start with the oldest sequence on the rcv list */ 16739 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16740 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16741 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16742 dmabuf->time_stamp); 16743 if (time_before(jiffies, timeout)) 16744 break; 16745 abort_count++; 16746 list_del_init(&dmabuf->hbuf.list); 16747 list_for_each_entry_safe(d_buf, dnext, 16748 &dmabuf->dbuf.list, list) { 16749 list_del_init(&d_buf->list); 16750 lpfc_in_buf_free(vport->phba, d_buf); 16751 } 16752 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16753 } 16754 if (abort_count) 16755 lpfc_update_rcv_time_stamp(vport); 16756 } 16757 16758 /** 16759 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16760 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16761 * 16762 * This function searches through the existing incomplete sequences that have 16763 * been sent to this @vport. If the frame matches one of the incomplete 16764 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16765 * make up that sequence. If no sequence is found that matches this frame then 16766 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16767 * This function returns a pointer to the first dmabuf in the sequence list that 16768 * the frame was linked to. 16769 **/ 16770 static struct hbq_dmabuf * 16771 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16772 { 16773 struct fc_frame_header *new_hdr; 16774 struct fc_frame_header *temp_hdr; 16775 struct lpfc_dmabuf *d_buf; 16776 struct lpfc_dmabuf *h_buf; 16777 struct hbq_dmabuf *seq_dmabuf = NULL; 16778 struct hbq_dmabuf *temp_dmabuf = NULL; 16779 uint8_t found = 0; 16780 16781 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16782 dmabuf->time_stamp = jiffies; 16783 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16784 16785 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16786 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16787 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16788 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16789 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16790 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16791 continue; 16792 /* found a pending sequence that matches this frame */ 16793 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16794 break; 16795 } 16796 if (!seq_dmabuf) { 16797 /* 16798 * This indicates first frame received for this sequence. 16799 * Queue the buffer on the vport's rcv_buffer_list. 16800 */ 16801 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16802 lpfc_update_rcv_time_stamp(vport); 16803 return dmabuf; 16804 } 16805 temp_hdr = seq_dmabuf->hbuf.virt; 16806 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16807 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16808 list_del_init(&seq_dmabuf->hbuf.list); 16809 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16810 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16811 lpfc_update_rcv_time_stamp(vport); 16812 return dmabuf; 16813 } 16814 /* move this sequence to the tail to indicate a young sequence */ 16815 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16816 seq_dmabuf->time_stamp = jiffies; 16817 lpfc_update_rcv_time_stamp(vport); 16818 if (list_empty(&seq_dmabuf->dbuf.list)) { 16819 temp_hdr = dmabuf->hbuf.virt; 16820 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16821 return seq_dmabuf; 16822 } 16823 /* find the correct place in the sequence to insert this frame */ 16824 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16825 while (!found) { 16826 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16827 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16828 /* 16829 * If the frame's sequence count is greater than the frame on 16830 * the list then insert the frame right after this frame 16831 */ 16832 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16833 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16834 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16835 found = 1; 16836 break; 16837 } 16838 16839 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16840 break; 16841 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16842 } 16843 16844 if (found) 16845 return seq_dmabuf; 16846 return NULL; 16847 } 16848 16849 /** 16850 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16851 * @vport: pointer to a vitural port 16852 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16853 * 16854 * This function tries to abort from the partially assembed sequence, described 16855 * by the information from basic abbort @dmabuf. It checks to see whether such 16856 * partially assembled sequence held by the driver. If so, it shall free up all 16857 * the frames from the partially assembled sequence. 16858 * 16859 * Return 16860 * true -- if there is matching partially assembled sequence present and all 16861 * the frames freed with the sequence; 16862 * false -- if there is no matching partially assembled sequence present so 16863 * nothing got aborted in the lower layer driver 16864 **/ 16865 static bool 16866 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16867 struct hbq_dmabuf *dmabuf) 16868 { 16869 struct fc_frame_header *new_hdr; 16870 struct fc_frame_header *temp_hdr; 16871 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16872 struct hbq_dmabuf *seq_dmabuf = NULL; 16873 16874 /* Use the hdr_buf to find the sequence that matches this frame */ 16875 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16876 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16877 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16878 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16879 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16880 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16881 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16882 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16883 continue; 16884 /* found a pending sequence that matches this frame */ 16885 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16886 break; 16887 } 16888 16889 /* Free up all the frames from the partially assembled sequence */ 16890 if (seq_dmabuf) { 16891 list_for_each_entry_safe(d_buf, n_buf, 16892 &seq_dmabuf->dbuf.list, list) { 16893 list_del_init(&d_buf->list); 16894 lpfc_in_buf_free(vport->phba, d_buf); 16895 } 16896 return true; 16897 } 16898 return false; 16899 } 16900 16901 /** 16902 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16903 * @vport: pointer to a vitural port 16904 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16905 * 16906 * This function tries to abort from the assembed sequence from upper level 16907 * protocol, described by the information from basic abbort @dmabuf. It 16908 * checks to see whether such pending context exists at upper level protocol. 16909 * If so, it shall clean up the pending context. 16910 * 16911 * Return 16912 * true -- if there is matching pending context of the sequence cleaned 16913 * at ulp; 16914 * false -- if there is no matching pending context of the sequence present 16915 * at ulp. 16916 **/ 16917 static bool 16918 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16919 { 16920 struct lpfc_hba *phba = vport->phba; 16921 int handled; 16922 16923 /* Accepting abort at ulp with SLI4 only */ 16924 if (phba->sli_rev < LPFC_SLI_REV4) 16925 return false; 16926 16927 /* Register all caring upper level protocols to attend abort */ 16928 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16929 if (handled) 16930 return true; 16931 16932 return false; 16933 } 16934 16935 /** 16936 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16937 * @phba: Pointer to HBA context object. 16938 * @cmd_iocbq: pointer to the command iocbq structure. 16939 * @rsp_iocbq: pointer to the response iocbq structure. 16940 * 16941 * This function handles the sequence abort response iocb command complete 16942 * event. It properly releases the memory allocated to the sequence abort 16943 * accept iocb. 16944 **/ 16945 static void 16946 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 16947 struct lpfc_iocbq *cmd_iocbq, 16948 struct lpfc_iocbq *rsp_iocbq) 16949 { 16950 struct lpfc_nodelist *ndlp; 16951 16952 if (cmd_iocbq) { 16953 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 16954 lpfc_nlp_put(ndlp); 16955 lpfc_nlp_not_used(ndlp); 16956 lpfc_sli_release_iocbq(phba, cmd_iocbq); 16957 } 16958 16959 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 16960 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 16961 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16962 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 16963 rsp_iocbq->iocb.ulpStatus, 16964 rsp_iocbq->iocb.un.ulpWord[4]); 16965 } 16966 16967 /** 16968 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 16969 * @phba: Pointer to HBA context object. 16970 * @xri: xri id in transaction. 16971 * 16972 * This function validates the xri maps to the known range of XRIs allocated an 16973 * used by the driver. 16974 **/ 16975 uint16_t 16976 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 16977 uint16_t xri) 16978 { 16979 uint16_t i; 16980 16981 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 16982 if (xri == phba->sli4_hba.xri_ids[i]) 16983 return i; 16984 } 16985 return NO_XRI; 16986 } 16987 16988 /** 16989 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 16990 * @phba: Pointer to HBA context object. 16991 * @fc_hdr: pointer to a FC frame header. 16992 * 16993 * This function sends a basic response to a previous unsol sequence abort 16994 * event after aborting the sequence handling. 16995 **/ 16996 void 16997 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 16998 struct fc_frame_header *fc_hdr, bool aborted) 16999 { 17000 struct lpfc_hba *phba = vport->phba; 17001 struct lpfc_iocbq *ctiocb = NULL; 17002 struct lpfc_nodelist *ndlp; 17003 uint16_t oxid, rxid, xri, lxri; 17004 uint32_t sid, fctl; 17005 IOCB_t *icmd; 17006 int rc; 17007 17008 if (!lpfc_is_link_up(phba)) 17009 return; 17010 17011 sid = sli4_sid_from_fc_hdr(fc_hdr); 17012 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17013 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17014 17015 ndlp = lpfc_findnode_did(vport, sid); 17016 if (!ndlp) { 17017 ndlp = lpfc_nlp_init(vport, sid); 17018 if (!ndlp) { 17019 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17020 "1268 Failed to allocate ndlp for " 17021 "oxid:x%x SID:x%x\n", oxid, sid); 17022 return; 17023 } 17024 /* Put ndlp onto pport node list */ 17025 lpfc_enqueue_node(vport, ndlp); 17026 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17027 /* re-setup ndlp without removing from node list */ 17028 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17029 if (!ndlp) { 17030 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17031 "3275 Failed to active ndlp found " 17032 "for oxid:x%x SID:x%x\n", oxid, sid); 17033 return; 17034 } 17035 } 17036 17037 /* Allocate buffer for rsp iocb */ 17038 ctiocb = lpfc_sli_get_iocbq(phba); 17039 if (!ctiocb) 17040 return; 17041 17042 /* Extract the F_CTL field from FC_HDR */ 17043 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17044 17045 icmd = &ctiocb->iocb; 17046 icmd->un.xseq64.bdl.bdeSize = 0; 17047 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17048 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17049 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17050 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17051 17052 /* Fill in the rest of iocb fields */ 17053 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17054 icmd->ulpBdeCount = 0; 17055 icmd->ulpLe = 1; 17056 icmd->ulpClass = CLASS3; 17057 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17058 ctiocb->context1 = lpfc_nlp_get(ndlp); 17059 17060 ctiocb->iocb_cmpl = NULL; 17061 ctiocb->vport = phba->pport; 17062 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17063 ctiocb->sli4_lxritag = NO_XRI; 17064 ctiocb->sli4_xritag = NO_XRI; 17065 17066 if (fctl & FC_FC_EX_CTX) 17067 /* Exchange responder sent the abort so we 17068 * own the oxid. 17069 */ 17070 xri = oxid; 17071 else 17072 xri = rxid; 17073 lxri = lpfc_sli4_xri_inrange(phba, xri); 17074 if (lxri != NO_XRI) 17075 lpfc_set_rrq_active(phba, ndlp, lxri, 17076 (xri == oxid) ? rxid : oxid, 0); 17077 /* For BA_ABTS from exchange responder, if the logical xri with 17078 * the oxid maps to the FCP XRI range, the port no longer has 17079 * that exchange context, send a BLS_RJT. Override the IOCB for 17080 * a BA_RJT. 17081 */ 17082 if ((fctl & FC_FC_EX_CTX) && 17083 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17084 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17085 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17086 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17087 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17088 } 17089 17090 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17091 * the driver no longer has that exchange, send a BLS_RJT. Override 17092 * the IOCB for a BA_RJT. 17093 */ 17094 if (aborted == false) { 17095 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17096 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17097 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17098 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17099 } 17100 17101 if (fctl & FC_FC_EX_CTX) { 17102 /* ABTS sent by responder to CT exchange, construction 17103 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17104 * field and RX_ID from ABTS for RX_ID field. 17105 */ 17106 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17107 } else { 17108 /* ABTS sent by initiator to CT exchange, construction 17109 * of BA_ACC will need to allocate a new XRI as for the 17110 * XRI_TAG field. 17111 */ 17112 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17113 } 17114 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17115 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17116 17117 /* Xmit CT abts response on exchange <xid> */ 17118 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17119 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17120 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17121 17122 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17123 if (rc == IOCB_ERROR) { 17124 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17125 "2925 Failed to issue CT ABTS RSP x%x on " 17126 "xri x%x, Data x%x\n", 17127 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17128 phba->link_state); 17129 lpfc_nlp_put(ndlp); 17130 ctiocb->context1 = NULL; 17131 lpfc_sli_release_iocbq(phba, ctiocb); 17132 } 17133 } 17134 17135 /** 17136 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17137 * @vport: Pointer to the vport on which this sequence was received 17138 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17139 * 17140 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17141 * receive sequence is only partially assembed by the driver, it shall abort 17142 * the partially assembled frames for the sequence. Otherwise, if the 17143 * unsolicited receive sequence has been completely assembled and passed to 17144 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17145 * unsolicited sequence has been aborted. After that, it will issue a basic 17146 * accept to accept the abort. 17147 **/ 17148 static void 17149 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17150 struct hbq_dmabuf *dmabuf) 17151 { 17152 struct lpfc_hba *phba = vport->phba; 17153 struct fc_frame_header fc_hdr; 17154 uint32_t fctl; 17155 bool aborted; 17156 17157 /* Make a copy of fc_hdr before the dmabuf being released */ 17158 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17159 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17160 17161 if (fctl & FC_FC_EX_CTX) { 17162 /* ABTS by responder to exchange, no cleanup needed */ 17163 aborted = true; 17164 } else { 17165 /* ABTS by initiator to exchange, need to do cleanup */ 17166 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17167 if (aborted == false) 17168 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17169 } 17170 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17171 17172 if (phba->nvmet_support) { 17173 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17174 return; 17175 } 17176 17177 /* Respond with BA_ACC or BA_RJT accordingly */ 17178 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17179 } 17180 17181 /** 17182 * lpfc_seq_complete - Indicates if a sequence is complete 17183 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17184 * 17185 * This function checks the sequence, starting with the frame described by 17186 * @dmabuf, to see if all the frames associated with this sequence are present. 17187 * the frames associated with this sequence are linked to the @dmabuf using the 17188 * dbuf list. This function looks for two major things. 1) That the first frame 17189 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17190 * set. 3) That there are no holes in the sequence count. The function will 17191 * return 1 when the sequence is complete, otherwise it will return 0. 17192 **/ 17193 static int 17194 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17195 { 17196 struct fc_frame_header *hdr; 17197 struct lpfc_dmabuf *d_buf; 17198 struct hbq_dmabuf *seq_dmabuf; 17199 uint32_t fctl; 17200 int seq_count = 0; 17201 17202 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17203 /* make sure first fame of sequence has a sequence count of zero */ 17204 if (hdr->fh_seq_cnt != seq_count) 17205 return 0; 17206 fctl = (hdr->fh_f_ctl[0] << 16 | 17207 hdr->fh_f_ctl[1] << 8 | 17208 hdr->fh_f_ctl[2]); 17209 /* If last frame of sequence we can return success. */ 17210 if (fctl & FC_FC_END_SEQ) 17211 return 1; 17212 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17213 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17214 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17215 /* If there is a hole in the sequence count then fail. */ 17216 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17217 return 0; 17218 fctl = (hdr->fh_f_ctl[0] << 16 | 17219 hdr->fh_f_ctl[1] << 8 | 17220 hdr->fh_f_ctl[2]); 17221 /* If last frame of sequence we can return success. */ 17222 if (fctl & FC_FC_END_SEQ) 17223 return 1; 17224 } 17225 return 0; 17226 } 17227 17228 /** 17229 * lpfc_prep_seq - Prep sequence for ULP processing 17230 * @vport: Pointer to the vport on which this sequence was received 17231 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17232 * 17233 * This function takes a sequence, described by a list of frames, and creates 17234 * a list of iocbq structures to describe the sequence. This iocbq list will be 17235 * used to issue to the generic unsolicited sequence handler. This routine 17236 * returns a pointer to the first iocbq in the list. If the function is unable 17237 * to allocate an iocbq then it throw out the received frames that were not 17238 * able to be described and return a pointer to the first iocbq. If unable to 17239 * allocate any iocbqs (including the first) this function will return NULL. 17240 **/ 17241 static struct lpfc_iocbq * 17242 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17243 { 17244 struct hbq_dmabuf *hbq_buf; 17245 struct lpfc_dmabuf *d_buf, *n_buf; 17246 struct lpfc_iocbq *first_iocbq, *iocbq; 17247 struct fc_frame_header *fc_hdr; 17248 uint32_t sid; 17249 uint32_t len, tot_len; 17250 struct ulp_bde64 *pbde; 17251 17252 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17253 /* remove from receive buffer list */ 17254 list_del_init(&seq_dmabuf->hbuf.list); 17255 lpfc_update_rcv_time_stamp(vport); 17256 /* get the Remote Port's SID */ 17257 sid = sli4_sid_from_fc_hdr(fc_hdr); 17258 tot_len = 0; 17259 /* Get an iocbq struct to fill in. */ 17260 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17261 if (first_iocbq) { 17262 /* Initialize the first IOCB. */ 17263 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17264 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17265 first_iocbq->vport = vport; 17266 17267 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17268 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17269 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17270 first_iocbq->iocb.un.rcvels.parmRo = 17271 sli4_did_from_fc_hdr(fc_hdr); 17272 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17273 } else 17274 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17275 first_iocbq->iocb.ulpContext = NO_XRI; 17276 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17277 be16_to_cpu(fc_hdr->fh_ox_id); 17278 /* iocbq is prepped for internal consumption. Physical vpi. */ 17279 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17280 vport->phba->vpi_ids[vport->vpi]; 17281 /* put the first buffer into the first IOCBq */ 17282 tot_len = bf_get(lpfc_rcqe_length, 17283 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17284 17285 first_iocbq->context2 = &seq_dmabuf->dbuf; 17286 first_iocbq->context3 = NULL; 17287 first_iocbq->iocb.ulpBdeCount = 1; 17288 if (tot_len > LPFC_DATA_BUF_SIZE) 17289 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17290 LPFC_DATA_BUF_SIZE; 17291 else 17292 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17293 17294 first_iocbq->iocb.un.rcvels.remoteID = sid; 17295 17296 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17297 } 17298 iocbq = first_iocbq; 17299 /* 17300 * Each IOCBq can have two Buffers assigned, so go through the list 17301 * of buffers for this sequence and save two buffers in each IOCBq 17302 */ 17303 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17304 if (!iocbq) { 17305 lpfc_in_buf_free(vport->phba, d_buf); 17306 continue; 17307 } 17308 if (!iocbq->context3) { 17309 iocbq->context3 = d_buf; 17310 iocbq->iocb.ulpBdeCount++; 17311 /* We need to get the size out of the right CQE */ 17312 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17313 len = bf_get(lpfc_rcqe_length, 17314 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17315 pbde = (struct ulp_bde64 *) 17316 &iocbq->iocb.unsli3.sli3Words[4]; 17317 if (len > LPFC_DATA_BUF_SIZE) 17318 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17319 else 17320 pbde->tus.f.bdeSize = len; 17321 17322 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17323 tot_len += len; 17324 } else { 17325 iocbq = lpfc_sli_get_iocbq(vport->phba); 17326 if (!iocbq) { 17327 if (first_iocbq) { 17328 first_iocbq->iocb.ulpStatus = 17329 IOSTAT_FCP_RSP_ERROR; 17330 first_iocbq->iocb.un.ulpWord[4] = 17331 IOERR_NO_RESOURCES; 17332 } 17333 lpfc_in_buf_free(vport->phba, d_buf); 17334 continue; 17335 } 17336 /* We need to get the size out of the right CQE */ 17337 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17338 len = bf_get(lpfc_rcqe_length, 17339 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17340 iocbq->context2 = d_buf; 17341 iocbq->context3 = NULL; 17342 iocbq->iocb.ulpBdeCount = 1; 17343 if (len > LPFC_DATA_BUF_SIZE) 17344 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17345 LPFC_DATA_BUF_SIZE; 17346 else 17347 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17348 17349 tot_len += len; 17350 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17351 17352 iocbq->iocb.un.rcvels.remoteID = sid; 17353 list_add_tail(&iocbq->list, &first_iocbq->list); 17354 } 17355 } 17356 return first_iocbq; 17357 } 17358 17359 static void 17360 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17361 struct hbq_dmabuf *seq_dmabuf) 17362 { 17363 struct fc_frame_header *fc_hdr; 17364 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17365 struct lpfc_hba *phba = vport->phba; 17366 17367 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17368 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17369 if (!iocbq) { 17370 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17371 "2707 Ring %d handler: Failed to allocate " 17372 "iocb Rctl x%x Type x%x received\n", 17373 LPFC_ELS_RING, 17374 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17375 return; 17376 } 17377 if (!lpfc_complete_unsol_iocb(phba, 17378 phba->sli4_hba.els_wq->pring, 17379 iocbq, fc_hdr->fh_r_ctl, 17380 fc_hdr->fh_type)) 17381 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17382 "2540 Ring %d handler: unexpected Rctl " 17383 "x%x Type x%x received\n", 17384 LPFC_ELS_RING, 17385 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17386 17387 /* Free iocb created in lpfc_prep_seq */ 17388 list_for_each_entry_safe(curr_iocb, next_iocb, 17389 &iocbq->list, list) { 17390 list_del_init(&curr_iocb->list); 17391 lpfc_sli_release_iocbq(phba, curr_iocb); 17392 } 17393 lpfc_sli_release_iocbq(phba, iocbq); 17394 } 17395 17396 static void 17397 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17398 struct lpfc_iocbq *rspiocb) 17399 { 17400 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17401 17402 if (pcmd && pcmd->virt) 17403 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17404 kfree(pcmd); 17405 lpfc_sli_release_iocbq(phba, cmdiocb); 17406 } 17407 17408 static void 17409 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17410 struct hbq_dmabuf *dmabuf) 17411 { 17412 struct fc_frame_header *fc_hdr; 17413 struct lpfc_hba *phba = vport->phba; 17414 struct lpfc_iocbq *iocbq = NULL; 17415 union lpfc_wqe *wqe; 17416 struct lpfc_dmabuf *pcmd = NULL; 17417 uint32_t frame_len; 17418 int rc; 17419 17420 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17421 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17422 17423 /* Send the received frame back */ 17424 iocbq = lpfc_sli_get_iocbq(phba); 17425 if (!iocbq) 17426 goto exit; 17427 17428 /* Allocate buffer for command payload */ 17429 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17430 if (pcmd) 17431 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17432 &pcmd->phys); 17433 if (!pcmd || !pcmd->virt) 17434 goto exit; 17435 17436 INIT_LIST_HEAD(&pcmd->list); 17437 17438 /* copyin the payload */ 17439 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17440 17441 /* fill in BDE's for command */ 17442 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17443 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17444 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17445 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17446 17447 iocbq->context2 = pcmd; 17448 iocbq->vport = vport; 17449 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17450 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17451 17452 /* 17453 * Setup rest of the iocb as though it were a WQE 17454 * Build the SEND_FRAME WQE 17455 */ 17456 wqe = (union lpfc_wqe *)&iocbq->iocb; 17457 17458 wqe->send_frame.frame_len = frame_len; 17459 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17460 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17461 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17462 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17463 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17464 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17465 17466 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17467 iocbq->iocb.ulpLe = 1; 17468 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17469 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17470 if (rc == IOCB_ERROR) 17471 goto exit; 17472 17473 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17474 return; 17475 17476 exit: 17477 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17478 "2023 Unable to process MDS loopback frame\n"); 17479 if (pcmd && pcmd->virt) 17480 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17481 kfree(pcmd); 17482 if (iocbq) 17483 lpfc_sli_release_iocbq(phba, iocbq); 17484 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17485 } 17486 17487 /** 17488 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17489 * @phba: Pointer to HBA context object. 17490 * 17491 * This function is called with no lock held. This function processes all 17492 * the received buffers and gives it to upper layers when a received buffer 17493 * indicates that it is the final frame in the sequence. The interrupt 17494 * service routine processes received buffers at interrupt contexts. 17495 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17496 * appropriate receive function when the final frame in a sequence is received. 17497 **/ 17498 void 17499 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17500 struct hbq_dmabuf *dmabuf) 17501 { 17502 struct hbq_dmabuf *seq_dmabuf; 17503 struct fc_frame_header *fc_hdr; 17504 struct lpfc_vport *vport; 17505 uint32_t fcfi; 17506 uint32_t did; 17507 17508 /* Process each received buffer */ 17509 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17510 17511 /* check to see if this a valid type of frame */ 17512 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17513 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17514 return; 17515 } 17516 17517 if ((bf_get(lpfc_cqe_code, 17518 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17519 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17520 &dmabuf->cq_event.cqe.rcqe_cmpl); 17521 else 17522 fcfi = bf_get(lpfc_rcqe_fcf_id, 17523 &dmabuf->cq_event.cqe.rcqe_cmpl); 17524 17525 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 17526 vport = phba->pport; 17527 /* Handle MDS Loopback frames */ 17528 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17529 return; 17530 } 17531 17532 /* d_id this frame is directed to */ 17533 did = sli4_did_from_fc_hdr(fc_hdr); 17534 17535 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17536 if (!vport) { 17537 /* throw out the frame */ 17538 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17539 return; 17540 } 17541 17542 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17543 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17544 (did != Fabric_DID)) { 17545 /* 17546 * Throw out the frame if we are not pt2pt. 17547 * The pt2pt protocol allows for discovery frames 17548 * to be received without a registered VPI. 17549 */ 17550 if (!(vport->fc_flag & FC_PT2PT) || 17551 (phba->link_state == LPFC_HBA_READY)) { 17552 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17553 return; 17554 } 17555 } 17556 17557 /* Handle the basic abort sequence (BA_ABTS) event */ 17558 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17559 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17560 return; 17561 } 17562 17563 /* Link this frame */ 17564 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 17565 if (!seq_dmabuf) { 17566 /* unable to add frame to vport - throw it out */ 17567 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17568 return; 17569 } 17570 /* If not last frame in sequence continue processing frames. */ 17571 if (!lpfc_seq_complete(seq_dmabuf)) 17572 return; 17573 17574 /* Send the complete sequence to the upper layer protocol */ 17575 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 17576 } 17577 17578 /** 17579 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 17580 * @phba: pointer to lpfc hba data structure. 17581 * 17582 * This routine is invoked to post rpi header templates to the 17583 * HBA consistent with the SLI-4 interface spec. This routine 17584 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17585 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17586 * 17587 * This routine does not require any locks. It's usage is expected 17588 * to be driver load or reset recovery when the driver is 17589 * sequential. 17590 * 17591 * Return codes 17592 * 0 - successful 17593 * -EIO - The mailbox failed to complete successfully. 17594 * When this error occurs, the driver is not guaranteed 17595 * to have any rpi regions posted to the device and 17596 * must either attempt to repost the regions or take a 17597 * fatal error. 17598 **/ 17599 int 17600 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17601 { 17602 struct lpfc_rpi_hdr *rpi_page; 17603 uint32_t rc = 0; 17604 uint16_t lrpi = 0; 17605 17606 /* SLI4 ports that support extents do not require RPI headers. */ 17607 if (!phba->sli4_hba.rpi_hdrs_in_use) 17608 goto exit; 17609 if (phba->sli4_hba.extents_in_use) 17610 return -EIO; 17611 17612 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17613 /* 17614 * Assign the rpi headers a physical rpi only if the driver 17615 * has not initialized those resources. A port reset only 17616 * needs the headers posted. 17617 */ 17618 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17619 LPFC_RPI_RSRC_RDY) 17620 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17621 17622 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17623 if (rc != MBX_SUCCESS) { 17624 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17625 "2008 Error %d posting all rpi " 17626 "headers\n", rc); 17627 rc = -EIO; 17628 break; 17629 } 17630 } 17631 17632 exit: 17633 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17634 LPFC_RPI_RSRC_RDY); 17635 return rc; 17636 } 17637 17638 /** 17639 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17640 * @phba: pointer to lpfc hba data structure. 17641 * @rpi_page: pointer to the rpi memory region. 17642 * 17643 * This routine is invoked to post a single rpi header to the 17644 * HBA consistent with the SLI-4 interface spec. This memory region 17645 * maps up to 64 rpi context regions. 17646 * 17647 * Return codes 17648 * 0 - successful 17649 * -ENOMEM - No available memory 17650 * -EIO - The mailbox failed to complete successfully. 17651 **/ 17652 int 17653 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17654 { 17655 LPFC_MBOXQ_t *mboxq; 17656 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17657 uint32_t rc = 0; 17658 uint32_t shdr_status, shdr_add_status; 17659 union lpfc_sli4_cfg_shdr *shdr; 17660 17661 /* SLI4 ports that support extents do not require RPI headers. */ 17662 if (!phba->sli4_hba.rpi_hdrs_in_use) 17663 return rc; 17664 if (phba->sli4_hba.extents_in_use) 17665 return -EIO; 17666 17667 /* The port is notified of the header region via a mailbox command. */ 17668 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17669 if (!mboxq) { 17670 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17671 "2001 Unable to allocate memory for issuing " 17672 "SLI_CONFIG_SPECIAL mailbox command\n"); 17673 return -ENOMEM; 17674 } 17675 17676 /* Post all rpi memory regions to the port. */ 17677 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17678 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17679 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17680 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17681 sizeof(struct lpfc_sli4_cfg_mhdr), 17682 LPFC_SLI4_MBX_EMBED); 17683 17684 17685 /* Post the physical rpi to the port for this rpi header. */ 17686 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17687 rpi_page->start_rpi); 17688 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17689 hdr_tmpl, rpi_page->page_count); 17690 17691 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17692 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17693 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17694 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17695 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17696 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17697 if (rc != MBX_TIMEOUT) 17698 mempool_free(mboxq, phba->mbox_mem_pool); 17699 if (shdr_status || shdr_add_status || rc) { 17700 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17701 "2514 POST_RPI_HDR mailbox failed with " 17702 "status x%x add_status x%x, mbx status x%x\n", 17703 shdr_status, shdr_add_status, rc); 17704 rc = -ENXIO; 17705 } else { 17706 /* 17707 * The next_rpi stores the next logical module-64 rpi value used 17708 * to post physical rpis in subsequent rpi postings. 17709 */ 17710 spin_lock_irq(&phba->hbalock); 17711 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 17712 spin_unlock_irq(&phba->hbalock); 17713 } 17714 return rc; 17715 } 17716 17717 /** 17718 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17719 * @phba: pointer to lpfc hba data structure. 17720 * 17721 * This routine is invoked to post rpi header templates to the 17722 * HBA consistent with the SLI-4 interface spec. This routine 17723 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17724 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17725 * 17726 * Returns 17727 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17728 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17729 **/ 17730 int 17731 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17732 { 17733 unsigned long rpi; 17734 uint16_t max_rpi, rpi_limit; 17735 uint16_t rpi_remaining, lrpi = 0; 17736 struct lpfc_rpi_hdr *rpi_hdr; 17737 unsigned long iflag; 17738 17739 /* 17740 * Fetch the next logical rpi. Because this index is logical, 17741 * the driver starts at 0 each time. 17742 */ 17743 spin_lock_irqsave(&phba->hbalock, iflag); 17744 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17745 rpi_limit = phba->sli4_hba.next_rpi; 17746 17747 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17748 if (rpi >= rpi_limit) 17749 rpi = LPFC_RPI_ALLOC_ERROR; 17750 else { 17751 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17752 phba->sli4_hba.max_cfg_param.rpi_used++; 17753 phba->sli4_hba.rpi_count++; 17754 } 17755 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17756 "0001 rpi:%x max:%x lim:%x\n", 17757 (int) rpi, max_rpi, rpi_limit); 17758 17759 /* 17760 * Don't try to allocate more rpi header regions if the device limit 17761 * has been exhausted. 17762 */ 17763 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17764 (phba->sli4_hba.rpi_count >= max_rpi)) { 17765 spin_unlock_irqrestore(&phba->hbalock, iflag); 17766 return rpi; 17767 } 17768 17769 /* 17770 * RPI header postings are not required for SLI4 ports capable of 17771 * extents. 17772 */ 17773 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17774 spin_unlock_irqrestore(&phba->hbalock, iflag); 17775 return rpi; 17776 } 17777 17778 /* 17779 * If the driver is running low on rpi resources, allocate another 17780 * page now. Note that the next_rpi value is used because 17781 * it represents how many are actually in use whereas max_rpi notes 17782 * how many are supported max by the device. 17783 */ 17784 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17785 spin_unlock_irqrestore(&phba->hbalock, iflag); 17786 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17787 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17788 if (!rpi_hdr) { 17789 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17790 "2002 Error Could not grow rpi " 17791 "count\n"); 17792 } else { 17793 lrpi = rpi_hdr->start_rpi; 17794 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17795 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17796 } 17797 } 17798 17799 return rpi; 17800 } 17801 17802 /** 17803 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17804 * @phba: pointer to lpfc hba data structure. 17805 * 17806 * This routine is invoked to release an rpi to the pool of 17807 * available rpis maintained by the driver. 17808 **/ 17809 static void 17810 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17811 { 17812 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17813 phba->sli4_hba.rpi_count--; 17814 phba->sli4_hba.max_cfg_param.rpi_used--; 17815 } 17816 } 17817 17818 /** 17819 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17820 * @phba: pointer to lpfc hba data structure. 17821 * 17822 * This routine is invoked to release an rpi to the pool of 17823 * available rpis maintained by the driver. 17824 **/ 17825 void 17826 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17827 { 17828 spin_lock_irq(&phba->hbalock); 17829 __lpfc_sli4_free_rpi(phba, rpi); 17830 spin_unlock_irq(&phba->hbalock); 17831 } 17832 17833 /** 17834 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17835 * @phba: pointer to lpfc hba data structure. 17836 * 17837 * This routine is invoked to remove the memory region that 17838 * provided rpi via a bitmask. 17839 **/ 17840 void 17841 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17842 { 17843 kfree(phba->sli4_hba.rpi_bmask); 17844 kfree(phba->sli4_hba.rpi_ids); 17845 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17846 } 17847 17848 /** 17849 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17850 * @phba: pointer to lpfc hba data structure. 17851 * 17852 * This routine is invoked to remove the memory region that 17853 * provided rpi via a bitmask. 17854 **/ 17855 int 17856 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17857 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17858 { 17859 LPFC_MBOXQ_t *mboxq; 17860 struct lpfc_hba *phba = ndlp->phba; 17861 int rc; 17862 17863 /* The port is notified of the header region via a mailbox command. */ 17864 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17865 if (!mboxq) 17866 return -ENOMEM; 17867 17868 /* Post all rpi memory regions to the port. */ 17869 lpfc_resume_rpi(mboxq, ndlp); 17870 if (cmpl) { 17871 mboxq->mbox_cmpl = cmpl; 17872 mboxq->context1 = arg; 17873 mboxq->context2 = ndlp; 17874 } else 17875 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17876 mboxq->vport = ndlp->vport; 17877 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17878 if (rc == MBX_NOT_FINISHED) { 17879 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17880 "2010 Resume RPI Mailbox failed " 17881 "status %d, mbxStatus x%x\n", rc, 17882 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17883 mempool_free(mboxq, phba->mbox_mem_pool); 17884 return -EIO; 17885 } 17886 return 0; 17887 } 17888 17889 /** 17890 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17891 * @vport: Pointer to the vport for which the vpi is being initialized 17892 * 17893 * This routine is invoked to activate a vpi with the port. 17894 * 17895 * Returns: 17896 * 0 success 17897 * -Evalue otherwise 17898 **/ 17899 int 17900 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17901 { 17902 LPFC_MBOXQ_t *mboxq; 17903 int rc = 0; 17904 int retval = MBX_SUCCESS; 17905 uint32_t mbox_tmo; 17906 struct lpfc_hba *phba = vport->phba; 17907 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17908 if (!mboxq) 17909 return -ENOMEM; 17910 lpfc_init_vpi(phba, mboxq, vport->vpi); 17911 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17912 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17913 if (rc != MBX_SUCCESS) { 17914 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17915 "2022 INIT VPI Mailbox failed " 17916 "status %d, mbxStatus x%x\n", rc, 17917 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17918 retval = -EIO; 17919 } 17920 if (rc != MBX_TIMEOUT) 17921 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17922 17923 return retval; 17924 } 17925 17926 /** 17927 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17928 * @phba: pointer to lpfc hba data structure. 17929 * @mboxq: Pointer to mailbox object. 17930 * 17931 * This routine is invoked to manually add a single FCF record. The caller 17932 * must pass a completely initialized FCF_Record. This routine takes 17933 * care of the nonembedded mailbox operations. 17934 **/ 17935 static void 17936 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17937 { 17938 void *virt_addr; 17939 union lpfc_sli4_cfg_shdr *shdr; 17940 uint32_t shdr_status, shdr_add_status; 17941 17942 virt_addr = mboxq->sge_array->addr[0]; 17943 /* The IOCTL status is embedded in the mailbox subheader. */ 17944 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 17945 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17946 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17947 17948 if ((shdr_status || shdr_add_status) && 17949 (shdr_status != STATUS_FCF_IN_USE)) 17950 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17951 "2558 ADD_FCF_RECORD mailbox failed with " 17952 "status x%x add_status x%x\n", 17953 shdr_status, shdr_add_status); 17954 17955 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17956 } 17957 17958 /** 17959 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 17960 * @phba: pointer to lpfc hba data structure. 17961 * @fcf_record: pointer to the initialized fcf record to add. 17962 * 17963 * This routine is invoked to manually add a single FCF record. The caller 17964 * must pass a completely initialized FCF_Record. This routine takes 17965 * care of the nonembedded mailbox operations. 17966 **/ 17967 int 17968 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 17969 { 17970 int rc = 0; 17971 LPFC_MBOXQ_t *mboxq; 17972 uint8_t *bytep; 17973 void *virt_addr; 17974 struct lpfc_mbx_sge sge; 17975 uint32_t alloc_len, req_len; 17976 uint32_t fcfindex; 17977 17978 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17979 if (!mboxq) { 17980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17981 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 17982 return -ENOMEM; 17983 } 17984 17985 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 17986 sizeof(uint32_t); 17987 17988 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17989 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17990 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 17991 req_len, LPFC_SLI4_MBX_NEMBED); 17992 if (alloc_len < req_len) { 17993 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17994 "2523 Allocated DMA memory size (x%x) is " 17995 "less than the requested DMA memory " 17996 "size (x%x)\n", alloc_len, req_len); 17997 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17998 return -ENOMEM; 17999 } 18000 18001 /* 18002 * Get the first SGE entry from the non-embedded DMA memory. This 18003 * routine only uses a single SGE. 18004 */ 18005 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18006 virt_addr = mboxq->sge_array->addr[0]; 18007 /* 18008 * Configure the FCF record for FCFI 0. This is the driver's 18009 * hardcoded default and gets used in nonFIP mode. 18010 */ 18011 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18012 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18013 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18014 18015 /* 18016 * Copy the fcf_index and the FCF Record Data. The data starts after 18017 * the FCoE header plus word10. The data copy needs to be endian 18018 * correct. 18019 */ 18020 bytep += sizeof(uint32_t); 18021 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18022 mboxq->vport = phba->pport; 18023 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18024 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18025 if (rc == MBX_NOT_FINISHED) { 18026 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18027 "2515 ADD_FCF_RECORD mailbox failed with " 18028 "status 0x%x\n", rc); 18029 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18030 rc = -EIO; 18031 } else 18032 rc = 0; 18033 18034 return rc; 18035 } 18036 18037 /** 18038 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18039 * @phba: pointer to lpfc hba data structure. 18040 * @fcf_record: pointer to the fcf record to write the default data. 18041 * @fcf_index: FCF table entry index. 18042 * 18043 * This routine is invoked to build the driver's default FCF record. The 18044 * values used are hardcoded. This routine handles memory initialization. 18045 * 18046 **/ 18047 void 18048 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18049 struct fcf_record *fcf_record, 18050 uint16_t fcf_index) 18051 { 18052 memset(fcf_record, 0, sizeof(struct fcf_record)); 18053 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18054 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18055 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18056 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18057 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18058 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18059 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18060 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18061 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18062 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18063 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18064 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18065 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18066 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18067 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18068 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18069 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18070 /* Set the VLAN bit map */ 18071 if (phba->valid_vlan) { 18072 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18073 = 1 << (phba->vlan_id % 8); 18074 } 18075 } 18076 18077 /** 18078 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18079 * @phba: pointer to lpfc hba data structure. 18080 * @fcf_index: FCF table entry offset. 18081 * 18082 * This routine is invoked to scan the entire FCF table by reading FCF 18083 * record and processing it one at a time starting from the @fcf_index 18084 * for initial FCF discovery or fast FCF failover rediscovery. 18085 * 18086 * Return 0 if the mailbox command is submitted successfully, none 0 18087 * otherwise. 18088 **/ 18089 int 18090 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18091 { 18092 int rc = 0, error; 18093 LPFC_MBOXQ_t *mboxq; 18094 18095 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18096 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18097 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18098 if (!mboxq) { 18099 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18100 "2000 Failed to allocate mbox for " 18101 "READ_FCF cmd\n"); 18102 error = -ENOMEM; 18103 goto fail_fcf_scan; 18104 } 18105 /* Construct the read FCF record mailbox command */ 18106 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18107 if (rc) { 18108 error = -EINVAL; 18109 goto fail_fcf_scan; 18110 } 18111 /* Issue the mailbox command asynchronously */ 18112 mboxq->vport = phba->pport; 18113 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18114 18115 spin_lock_irq(&phba->hbalock); 18116 phba->hba_flag |= FCF_TS_INPROG; 18117 spin_unlock_irq(&phba->hbalock); 18118 18119 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18120 if (rc == MBX_NOT_FINISHED) 18121 error = -EIO; 18122 else { 18123 /* Reset eligible FCF count for new scan */ 18124 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18125 phba->fcf.eligible_fcf_cnt = 0; 18126 error = 0; 18127 } 18128 fail_fcf_scan: 18129 if (error) { 18130 if (mboxq) 18131 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18132 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18133 spin_lock_irq(&phba->hbalock); 18134 phba->hba_flag &= ~FCF_TS_INPROG; 18135 spin_unlock_irq(&phba->hbalock); 18136 } 18137 return error; 18138 } 18139 18140 /** 18141 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18142 * @phba: pointer to lpfc hba data structure. 18143 * @fcf_index: FCF table entry offset. 18144 * 18145 * This routine is invoked to read an FCF record indicated by @fcf_index 18146 * and to use it for FLOGI roundrobin FCF failover. 18147 * 18148 * Return 0 if the mailbox command is submitted successfully, none 0 18149 * otherwise. 18150 **/ 18151 int 18152 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18153 { 18154 int rc = 0, error; 18155 LPFC_MBOXQ_t *mboxq; 18156 18157 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18158 if (!mboxq) { 18159 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18160 "2763 Failed to allocate mbox for " 18161 "READ_FCF cmd\n"); 18162 error = -ENOMEM; 18163 goto fail_fcf_read; 18164 } 18165 /* Construct the read FCF record mailbox command */ 18166 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18167 if (rc) { 18168 error = -EINVAL; 18169 goto fail_fcf_read; 18170 } 18171 /* Issue the mailbox command asynchronously */ 18172 mboxq->vport = phba->pport; 18173 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18174 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18175 if (rc == MBX_NOT_FINISHED) 18176 error = -EIO; 18177 else 18178 error = 0; 18179 18180 fail_fcf_read: 18181 if (error && mboxq) 18182 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18183 return error; 18184 } 18185 18186 /** 18187 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18188 * @phba: pointer to lpfc hba data structure. 18189 * @fcf_index: FCF table entry offset. 18190 * 18191 * This routine is invoked to read an FCF record indicated by @fcf_index to 18192 * determine whether it's eligible for FLOGI roundrobin failover list. 18193 * 18194 * Return 0 if the mailbox command is submitted successfully, none 0 18195 * otherwise. 18196 **/ 18197 int 18198 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18199 { 18200 int rc = 0, error; 18201 LPFC_MBOXQ_t *mboxq; 18202 18203 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18204 if (!mboxq) { 18205 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18206 "2758 Failed to allocate mbox for " 18207 "READ_FCF cmd\n"); 18208 error = -ENOMEM; 18209 goto fail_fcf_read; 18210 } 18211 /* Construct the read FCF record mailbox command */ 18212 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18213 if (rc) { 18214 error = -EINVAL; 18215 goto fail_fcf_read; 18216 } 18217 /* Issue the mailbox command asynchronously */ 18218 mboxq->vport = phba->pport; 18219 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18220 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18221 if (rc == MBX_NOT_FINISHED) 18222 error = -EIO; 18223 else 18224 error = 0; 18225 18226 fail_fcf_read: 18227 if (error && mboxq) 18228 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18229 return error; 18230 } 18231 18232 /** 18233 * lpfc_check_next_fcf_pri_level 18234 * phba pointer to the lpfc_hba struct for this port. 18235 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18236 * routine when the rr_bmask is empty. The FCF indecies are put into the 18237 * rr_bmask based on their priority level. Starting from the highest priority 18238 * to the lowest. The most likely FCF candidate will be in the highest 18239 * priority group. When this routine is called it searches the fcf_pri list for 18240 * next lowest priority group and repopulates the rr_bmask with only those 18241 * fcf_indexes. 18242 * returns: 18243 * 1=success 0=failure 18244 **/ 18245 static int 18246 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18247 { 18248 uint16_t next_fcf_pri; 18249 uint16_t last_index; 18250 struct lpfc_fcf_pri *fcf_pri; 18251 int rc; 18252 int ret = 0; 18253 18254 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18255 LPFC_SLI4_FCF_TBL_INDX_MAX); 18256 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18257 "3060 Last IDX %d\n", last_index); 18258 18259 /* Verify the priority list has 2 or more entries */ 18260 spin_lock_irq(&phba->hbalock); 18261 if (list_empty(&phba->fcf.fcf_pri_list) || 18262 list_is_singular(&phba->fcf.fcf_pri_list)) { 18263 spin_unlock_irq(&phba->hbalock); 18264 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18265 "3061 Last IDX %d\n", last_index); 18266 return 0; /* Empty rr list */ 18267 } 18268 spin_unlock_irq(&phba->hbalock); 18269 18270 next_fcf_pri = 0; 18271 /* 18272 * Clear the rr_bmask and set all of the bits that are at this 18273 * priority. 18274 */ 18275 memset(phba->fcf.fcf_rr_bmask, 0, 18276 sizeof(*phba->fcf.fcf_rr_bmask)); 18277 spin_lock_irq(&phba->hbalock); 18278 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18279 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18280 continue; 18281 /* 18282 * the 1st priority that has not FLOGI failed 18283 * will be the highest. 18284 */ 18285 if (!next_fcf_pri) 18286 next_fcf_pri = fcf_pri->fcf_rec.priority; 18287 spin_unlock_irq(&phba->hbalock); 18288 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18289 rc = lpfc_sli4_fcf_rr_index_set(phba, 18290 fcf_pri->fcf_rec.fcf_index); 18291 if (rc) 18292 return 0; 18293 } 18294 spin_lock_irq(&phba->hbalock); 18295 } 18296 /* 18297 * if next_fcf_pri was not set above and the list is not empty then 18298 * we have failed flogis on all of them. So reset flogi failed 18299 * and start at the beginning. 18300 */ 18301 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18302 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18303 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18304 /* 18305 * the 1st priority that has not FLOGI failed 18306 * will be the highest. 18307 */ 18308 if (!next_fcf_pri) 18309 next_fcf_pri = fcf_pri->fcf_rec.priority; 18310 spin_unlock_irq(&phba->hbalock); 18311 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18312 rc = lpfc_sli4_fcf_rr_index_set(phba, 18313 fcf_pri->fcf_rec.fcf_index); 18314 if (rc) 18315 return 0; 18316 } 18317 spin_lock_irq(&phba->hbalock); 18318 } 18319 } else 18320 ret = 1; 18321 spin_unlock_irq(&phba->hbalock); 18322 18323 return ret; 18324 } 18325 /** 18326 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18327 * @phba: pointer to lpfc hba data structure. 18328 * 18329 * This routine is to get the next eligible FCF record index in a round 18330 * robin fashion. If the next eligible FCF record index equals to the 18331 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18332 * shall be returned, otherwise, the next eligible FCF record's index 18333 * shall be returned. 18334 **/ 18335 uint16_t 18336 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18337 { 18338 uint16_t next_fcf_index; 18339 18340 initial_priority: 18341 /* Search start from next bit of currently registered FCF index */ 18342 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18343 18344 next_priority: 18345 /* Determine the next fcf index to check */ 18346 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18347 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18348 LPFC_SLI4_FCF_TBL_INDX_MAX, 18349 next_fcf_index); 18350 18351 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18352 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18353 /* 18354 * If we have wrapped then we need to clear the bits that 18355 * have been tested so that we can detect when we should 18356 * change the priority level. 18357 */ 18358 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18359 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18360 } 18361 18362 18363 /* Check roundrobin failover list empty condition */ 18364 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18365 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18366 /* 18367 * If next fcf index is not found check if there are lower 18368 * Priority level fcf's in the fcf_priority list. 18369 * Set up the rr_bmask with all of the avaiable fcf bits 18370 * at that level and continue the selection process. 18371 */ 18372 if (lpfc_check_next_fcf_pri_level(phba)) 18373 goto initial_priority; 18374 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18375 "2844 No roundrobin failover FCF available\n"); 18376 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 18377 return LPFC_FCOE_FCF_NEXT_NONE; 18378 else { 18379 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18380 "3063 Only FCF available idx %d, flag %x\n", 18381 next_fcf_index, 18382 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 18383 return next_fcf_index; 18384 } 18385 } 18386 18387 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18388 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18389 LPFC_FCF_FLOGI_FAILED) { 18390 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18391 return LPFC_FCOE_FCF_NEXT_NONE; 18392 18393 goto next_priority; 18394 } 18395 18396 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18397 "2845 Get next roundrobin failover FCF (x%x)\n", 18398 next_fcf_index); 18399 18400 return next_fcf_index; 18401 } 18402 18403 /** 18404 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18405 * @phba: pointer to lpfc hba data structure. 18406 * 18407 * This routine sets the FCF record index in to the eligible bmask for 18408 * roundrobin failover search. It checks to make sure that the index 18409 * does not go beyond the range of the driver allocated bmask dimension 18410 * before setting the bit. 18411 * 18412 * Returns 0 if the index bit successfully set, otherwise, it returns 18413 * -EINVAL. 18414 **/ 18415 int 18416 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18417 { 18418 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18419 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18420 "2610 FCF (x%x) reached driver's book " 18421 "keeping dimension:x%x\n", 18422 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18423 return -EINVAL; 18424 } 18425 /* Set the eligible FCF record index bmask */ 18426 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18427 18428 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18429 "2790 Set FCF (x%x) to roundrobin FCF failover " 18430 "bmask\n", fcf_index); 18431 18432 return 0; 18433 } 18434 18435 /** 18436 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18437 * @phba: pointer to lpfc hba data structure. 18438 * 18439 * This routine clears the FCF record index from the eligible bmask for 18440 * roundrobin failover search. It checks to make sure that the index 18441 * does not go beyond the range of the driver allocated bmask dimension 18442 * before clearing the bit. 18443 **/ 18444 void 18445 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18446 { 18447 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18448 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18449 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18450 "2762 FCF (x%x) reached driver's book " 18451 "keeping dimension:x%x\n", 18452 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18453 return; 18454 } 18455 /* Clear the eligible FCF record index bmask */ 18456 spin_lock_irq(&phba->hbalock); 18457 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18458 list) { 18459 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18460 list_del_init(&fcf_pri->list); 18461 break; 18462 } 18463 } 18464 spin_unlock_irq(&phba->hbalock); 18465 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18466 18467 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18468 "2791 Clear FCF (x%x) from roundrobin failover " 18469 "bmask\n", fcf_index); 18470 } 18471 18472 /** 18473 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18474 * @phba: pointer to lpfc hba data structure. 18475 * 18476 * This routine is the completion routine for the rediscover FCF table mailbox 18477 * command. If the mailbox command returned failure, it will try to stop the 18478 * FCF rediscover wait timer. 18479 **/ 18480 static void 18481 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18482 { 18483 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18484 uint32_t shdr_status, shdr_add_status; 18485 18486 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18487 18488 shdr_status = bf_get(lpfc_mbox_hdr_status, 18489 &redisc_fcf->header.cfg_shdr.response); 18490 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18491 &redisc_fcf->header.cfg_shdr.response); 18492 if (shdr_status || shdr_add_status) { 18493 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18494 "2746 Requesting for FCF rediscovery failed " 18495 "status x%x add_status x%x\n", 18496 shdr_status, shdr_add_status); 18497 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18498 spin_lock_irq(&phba->hbalock); 18499 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18500 spin_unlock_irq(&phba->hbalock); 18501 /* 18502 * CVL event triggered FCF rediscover request failed, 18503 * last resort to re-try current registered FCF entry. 18504 */ 18505 lpfc_retry_pport_discovery(phba); 18506 } else { 18507 spin_lock_irq(&phba->hbalock); 18508 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18509 spin_unlock_irq(&phba->hbalock); 18510 /* 18511 * DEAD FCF event triggered FCF rediscover request 18512 * failed, last resort to fail over as a link down 18513 * to FCF registration. 18514 */ 18515 lpfc_sli4_fcf_dead_failthrough(phba); 18516 } 18517 } else { 18518 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18519 "2775 Start FCF rediscover quiescent timer\n"); 18520 /* 18521 * Start FCF rediscovery wait timer for pending FCF 18522 * before rescan FCF record table. 18523 */ 18524 lpfc_fcf_redisc_wait_start_timer(phba); 18525 } 18526 18527 mempool_free(mbox, phba->mbox_mem_pool); 18528 } 18529 18530 /** 18531 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18532 * @phba: pointer to lpfc hba data structure. 18533 * 18534 * This routine is invoked to request for rediscovery of the entire FCF table 18535 * by the port. 18536 **/ 18537 int 18538 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18539 { 18540 LPFC_MBOXQ_t *mbox; 18541 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18542 int rc, length; 18543 18544 /* Cancel retry delay timers to all vports before FCF rediscover */ 18545 lpfc_cancel_all_vport_retry_delay_timer(phba); 18546 18547 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18548 if (!mbox) { 18549 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18550 "2745 Failed to allocate mbox for " 18551 "requesting FCF rediscover.\n"); 18552 return -ENOMEM; 18553 } 18554 18555 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18556 sizeof(struct lpfc_sli4_cfg_mhdr)); 18557 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18558 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18559 length, LPFC_SLI4_MBX_EMBED); 18560 18561 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18562 /* Set count to 0 for invalidating the entire FCF database */ 18563 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18564 18565 /* Issue the mailbox command asynchronously */ 18566 mbox->vport = phba->pport; 18567 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18568 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18569 18570 if (rc == MBX_NOT_FINISHED) { 18571 mempool_free(mbox, phba->mbox_mem_pool); 18572 return -EIO; 18573 } 18574 return 0; 18575 } 18576 18577 /** 18578 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 18579 * @phba: pointer to lpfc hba data structure. 18580 * 18581 * This function is the failover routine as a last resort to the FCF DEAD 18582 * event when driver failed to perform fast FCF failover. 18583 **/ 18584 void 18585 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 18586 { 18587 uint32_t link_state; 18588 18589 /* 18590 * Last resort as FCF DEAD event failover will treat this as 18591 * a link down, but save the link state because we don't want 18592 * it to be changed to Link Down unless it is already down. 18593 */ 18594 link_state = phba->link_state; 18595 lpfc_linkdown(phba); 18596 phba->link_state = link_state; 18597 18598 /* Unregister FCF if no devices connected to it */ 18599 lpfc_unregister_unused_fcf(phba); 18600 } 18601 18602 /** 18603 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18604 * @phba: pointer to lpfc hba data structure. 18605 * @rgn23_data: pointer to configure region 23 data. 18606 * 18607 * This function gets SLI3 port configure region 23 data through memory dump 18608 * mailbox command. When it successfully retrieves data, the size of the data 18609 * will be returned, otherwise, 0 will be returned. 18610 **/ 18611 static uint32_t 18612 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18613 { 18614 LPFC_MBOXQ_t *pmb = NULL; 18615 MAILBOX_t *mb; 18616 uint32_t offset = 0; 18617 int rc; 18618 18619 if (!rgn23_data) 18620 return 0; 18621 18622 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18623 if (!pmb) { 18624 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18625 "2600 failed to allocate mailbox memory\n"); 18626 return 0; 18627 } 18628 mb = &pmb->u.mb; 18629 18630 do { 18631 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18632 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18633 18634 if (rc != MBX_SUCCESS) { 18635 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18636 "2601 failed to read config " 18637 "region 23, rc 0x%x Status 0x%x\n", 18638 rc, mb->mbxStatus); 18639 mb->un.varDmp.word_cnt = 0; 18640 } 18641 /* 18642 * dump mem may return a zero when finished or we got a 18643 * mailbox error, either way we are done. 18644 */ 18645 if (mb->un.varDmp.word_cnt == 0) 18646 break; 18647 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18648 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18649 18650 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18651 rgn23_data + offset, 18652 mb->un.varDmp.word_cnt); 18653 offset += mb->un.varDmp.word_cnt; 18654 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18655 18656 mempool_free(pmb, phba->mbox_mem_pool); 18657 return offset; 18658 } 18659 18660 /** 18661 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18662 * @phba: pointer to lpfc hba data structure. 18663 * @rgn23_data: pointer to configure region 23 data. 18664 * 18665 * This function gets SLI4 port configure region 23 data through memory dump 18666 * mailbox command. When it successfully retrieves data, the size of the data 18667 * will be returned, otherwise, 0 will be returned. 18668 **/ 18669 static uint32_t 18670 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18671 { 18672 LPFC_MBOXQ_t *mboxq = NULL; 18673 struct lpfc_dmabuf *mp = NULL; 18674 struct lpfc_mqe *mqe; 18675 uint32_t data_length = 0; 18676 int rc; 18677 18678 if (!rgn23_data) 18679 return 0; 18680 18681 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18682 if (!mboxq) { 18683 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18684 "3105 failed to allocate mailbox memory\n"); 18685 return 0; 18686 } 18687 18688 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18689 goto out; 18690 mqe = &mboxq->u.mqe; 18691 mp = (struct lpfc_dmabuf *) mboxq->context1; 18692 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18693 if (rc) 18694 goto out; 18695 data_length = mqe->un.mb_words[5]; 18696 if (data_length == 0) 18697 goto out; 18698 if (data_length > DMP_RGN23_SIZE) { 18699 data_length = 0; 18700 goto out; 18701 } 18702 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18703 out: 18704 mempool_free(mboxq, phba->mbox_mem_pool); 18705 if (mp) { 18706 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18707 kfree(mp); 18708 } 18709 return data_length; 18710 } 18711 18712 /** 18713 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18714 * @phba: pointer to lpfc hba data structure. 18715 * 18716 * This function read region 23 and parse TLV for port status to 18717 * decide if the user disaled the port. If the TLV indicates the 18718 * port is disabled, the hba_flag is set accordingly. 18719 **/ 18720 void 18721 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18722 { 18723 uint8_t *rgn23_data = NULL; 18724 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18725 uint32_t offset = 0; 18726 18727 /* Get adapter Region 23 data */ 18728 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18729 if (!rgn23_data) 18730 goto out; 18731 18732 if (phba->sli_rev < LPFC_SLI_REV4) 18733 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18734 else { 18735 if_type = bf_get(lpfc_sli_intf_if_type, 18736 &phba->sli4_hba.sli_intf); 18737 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18738 goto out; 18739 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18740 } 18741 18742 if (!data_size) 18743 goto out; 18744 18745 /* Check the region signature first */ 18746 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18747 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18748 "2619 Config region 23 has bad signature\n"); 18749 goto out; 18750 } 18751 offset += 4; 18752 18753 /* Check the data structure version */ 18754 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18756 "2620 Config region 23 has bad version\n"); 18757 goto out; 18758 } 18759 offset += 4; 18760 18761 /* Parse TLV entries in the region */ 18762 while (offset < data_size) { 18763 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18764 break; 18765 /* 18766 * If the TLV is not driver specific TLV or driver id is 18767 * not linux driver id, skip the record. 18768 */ 18769 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18770 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18771 (rgn23_data[offset + 3] != 0)) { 18772 offset += rgn23_data[offset + 1] * 4 + 4; 18773 continue; 18774 } 18775 18776 /* Driver found a driver specific TLV in the config region */ 18777 sub_tlv_len = rgn23_data[offset + 1] * 4; 18778 offset += 4; 18779 tlv_offset = 0; 18780 18781 /* 18782 * Search for configured port state sub-TLV. 18783 */ 18784 while ((offset < data_size) && 18785 (tlv_offset < sub_tlv_len)) { 18786 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18787 offset += 4; 18788 tlv_offset += 4; 18789 break; 18790 } 18791 if (rgn23_data[offset] != PORT_STE_TYPE) { 18792 offset += rgn23_data[offset + 1] * 4 + 4; 18793 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18794 continue; 18795 } 18796 18797 /* This HBA contains PORT_STE configured */ 18798 if (!rgn23_data[offset + 2]) 18799 phba->hba_flag |= LINK_DISABLED; 18800 18801 goto out; 18802 } 18803 } 18804 18805 out: 18806 kfree(rgn23_data); 18807 return; 18808 } 18809 18810 /** 18811 * lpfc_wr_object - write an object to the firmware 18812 * @phba: HBA structure that indicates port to create a queue on. 18813 * @dmabuf_list: list of dmabufs to write to the port. 18814 * @size: the total byte value of the objects to write to the port. 18815 * @offset: the current offset to be used to start the transfer. 18816 * 18817 * This routine will create a wr_object mailbox command to send to the port. 18818 * the mailbox command will be constructed using the dma buffers described in 18819 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18820 * BDEs that the imbedded mailbox can support. The @offset variable will be 18821 * used to indicate the starting offset of the transfer and will also return 18822 * the offset after the write object mailbox has completed. @size is used to 18823 * determine the end of the object and whether the eof bit should be set. 18824 * 18825 * Return 0 is successful and offset will contain the the new offset to use 18826 * for the next write. 18827 * Return negative value for error cases. 18828 **/ 18829 int 18830 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18831 uint32_t size, uint32_t *offset) 18832 { 18833 struct lpfc_mbx_wr_object *wr_object; 18834 LPFC_MBOXQ_t *mbox; 18835 int rc = 0, i = 0; 18836 uint32_t shdr_status, shdr_add_status; 18837 uint32_t mbox_tmo; 18838 union lpfc_sli4_cfg_shdr *shdr; 18839 struct lpfc_dmabuf *dmabuf; 18840 uint32_t written = 0; 18841 18842 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18843 if (!mbox) 18844 return -ENOMEM; 18845 18846 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18847 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18848 sizeof(struct lpfc_mbx_wr_object) - 18849 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18850 18851 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18852 wr_object->u.request.write_offset = *offset; 18853 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18854 wr_object->u.request.object_name[0] = 18855 cpu_to_le32(wr_object->u.request.object_name[0]); 18856 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18857 list_for_each_entry(dmabuf, dmabuf_list, list) { 18858 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18859 break; 18860 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18861 wr_object->u.request.bde[i].addrHigh = 18862 putPaddrHigh(dmabuf->phys); 18863 if (written + SLI4_PAGE_SIZE >= size) { 18864 wr_object->u.request.bde[i].tus.f.bdeSize = 18865 (size - written); 18866 written += (size - written); 18867 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18868 } else { 18869 wr_object->u.request.bde[i].tus.f.bdeSize = 18870 SLI4_PAGE_SIZE; 18871 written += SLI4_PAGE_SIZE; 18872 } 18873 i++; 18874 } 18875 wr_object->u.request.bde_count = i; 18876 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18877 if (!phba->sli4_hba.intr_enable) 18878 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18879 else { 18880 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18881 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18882 } 18883 /* The IOCTL status is embedded in the mailbox subheader. */ 18884 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18885 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18886 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18887 if (rc != MBX_TIMEOUT) 18888 mempool_free(mbox, phba->mbox_mem_pool); 18889 if (shdr_status || shdr_add_status || rc) { 18890 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18891 "3025 Write Object mailbox failed with " 18892 "status x%x add_status x%x, mbx status x%x\n", 18893 shdr_status, shdr_add_status, rc); 18894 rc = -ENXIO; 18895 *offset = shdr_add_status; 18896 } else 18897 *offset += wr_object->u.response.actual_write_length; 18898 return rc; 18899 } 18900 18901 /** 18902 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18903 * @vport: pointer to vport data structure. 18904 * 18905 * This function iterate through the mailboxq and clean up all REG_LOGIN 18906 * and REG_VPI mailbox commands associated with the vport. This function 18907 * is called when driver want to restart discovery of the vport due to 18908 * a Clear Virtual Link event. 18909 **/ 18910 void 18911 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18912 { 18913 struct lpfc_hba *phba = vport->phba; 18914 LPFC_MBOXQ_t *mb, *nextmb; 18915 struct lpfc_dmabuf *mp; 18916 struct lpfc_nodelist *ndlp; 18917 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18918 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18919 LIST_HEAD(mbox_cmd_list); 18920 uint8_t restart_loop; 18921 18922 /* Clean up internally queued mailbox commands with the vport */ 18923 spin_lock_irq(&phba->hbalock); 18924 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18925 if (mb->vport != vport) 18926 continue; 18927 18928 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18929 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18930 continue; 18931 18932 list_del(&mb->list); 18933 list_add_tail(&mb->list, &mbox_cmd_list); 18934 } 18935 /* Clean up active mailbox command with the vport */ 18936 mb = phba->sli.mbox_active; 18937 if (mb && (mb->vport == vport)) { 18938 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18939 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18940 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18941 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18942 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18943 /* Put reference count for delayed processing */ 18944 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 18945 /* Unregister the RPI when mailbox complete */ 18946 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18947 } 18948 } 18949 /* Cleanup any mailbox completions which are not yet processed */ 18950 do { 18951 restart_loop = 0; 18952 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 18953 /* 18954 * If this mailox is already processed or it is 18955 * for another vport ignore it. 18956 */ 18957 if ((mb->vport != vport) || 18958 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 18959 continue; 18960 18961 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18962 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18963 continue; 18964 18965 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18966 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18967 ndlp = (struct lpfc_nodelist *)mb->context2; 18968 /* Unregister the RPI when mailbox complete */ 18969 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18970 restart_loop = 1; 18971 spin_unlock_irq(&phba->hbalock); 18972 spin_lock(shost->host_lock); 18973 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18974 spin_unlock(shost->host_lock); 18975 spin_lock_irq(&phba->hbalock); 18976 break; 18977 } 18978 } 18979 } while (restart_loop); 18980 18981 spin_unlock_irq(&phba->hbalock); 18982 18983 /* Release the cleaned-up mailbox commands */ 18984 while (!list_empty(&mbox_cmd_list)) { 18985 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 18986 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18987 mp = (struct lpfc_dmabuf *) (mb->context1); 18988 if (mp) { 18989 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 18990 kfree(mp); 18991 } 18992 ndlp = (struct lpfc_nodelist *) mb->context2; 18993 mb->context2 = NULL; 18994 if (ndlp) { 18995 spin_lock(shost->host_lock); 18996 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18997 spin_unlock(shost->host_lock); 18998 lpfc_nlp_put(ndlp); 18999 } 19000 } 19001 mempool_free(mb, phba->mbox_mem_pool); 19002 } 19003 19004 /* Release the ndlp with the cleaned-up active mailbox command */ 19005 if (act_mbx_ndlp) { 19006 spin_lock(shost->host_lock); 19007 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19008 spin_unlock(shost->host_lock); 19009 lpfc_nlp_put(act_mbx_ndlp); 19010 } 19011 } 19012 19013 /** 19014 * lpfc_drain_txq - Drain the txq 19015 * @phba: Pointer to HBA context object. 19016 * 19017 * This function attempt to submit IOCBs on the txq 19018 * to the adapter. For SLI4 adapters, the txq contains 19019 * ELS IOCBs that have been deferred because the there 19020 * are no SGLs. This congestion can occur with large 19021 * vport counts during node discovery. 19022 **/ 19023 19024 uint32_t 19025 lpfc_drain_txq(struct lpfc_hba *phba) 19026 { 19027 LIST_HEAD(completions); 19028 struct lpfc_sli_ring *pring; 19029 struct lpfc_iocbq *piocbq = NULL; 19030 unsigned long iflags = 0; 19031 char *fail_msg = NULL; 19032 struct lpfc_sglq *sglq; 19033 union lpfc_wqe128 wqe; 19034 uint32_t txq_cnt = 0; 19035 19036 pring = lpfc_phba_elsring(phba); 19037 if (unlikely(!pring)) 19038 return 0; 19039 19040 spin_lock_irqsave(&pring->ring_lock, iflags); 19041 list_for_each_entry(piocbq, &pring->txq, list) { 19042 txq_cnt++; 19043 } 19044 19045 if (txq_cnt > pring->txq_max) 19046 pring->txq_max = txq_cnt; 19047 19048 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19049 19050 while (!list_empty(&pring->txq)) { 19051 spin_lock_irqsave(&pring->ring_lock, iflags); 19052 19053 piocbq = lpfc_sli_ringtx_get(phba, pring); 19054 if (!piocbq) { 19055 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19056 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19057 "2823 txq empty and txq_cnt is %d\n ", 19058 txq_cnt); 19059 break; 19060 } 19061 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19062 if (!sglq) { 19063 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19064 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19065 break; 19066 } 19067 txq_cnt--; 19068 19069 /* The xri and iocb resources secured, 19070 * attempt to issue request 19071 */ 19072 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19073 piocbq->sli4_xritag = sglq->sli4_xritag; 19074 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19075 fail_msg = "to convert bpl to sgl"; 19076 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19077 fail_msg = "to convert iocb to wqe"; 19078 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 19079 fail_msg = " - Wq is full"; 19080 else 19081 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19082 19083 if (fail_msg) { 19084 /* Failed means we can't issue and need to cancel */ 19085 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19086 "2822 IOCB failed %s iotag 0x%x " 19087 "xri 0x%x\n", 19088 fail_msg, 19089 piocbq->iotag, piocbq->sli4_xritag); 19090 list_add_tail(&piocbq->list, &completions); 19091 } 19092 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19093 } 19094 19095 /* Cancel all the IOCBs that cannot be issued */ 19096 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19097 IOERR_SLI_ABORTED); 19098 19099 return txq_cnt; 19100 } 19101 19102 /** 19103 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19104 * @phba: Pointer to HBA context object. 19105 * @pwqe: Pointer to command WQE. 19106 * @sglq: Pointer to the scatter gather queue object. 19107 * 19108 * This routine converts the bpl or bde that is in the WQE 19109 * to a sgl list for the sli4 hardware. The physical address 19110 * of the bpl/bde is converted back to a virtual address. 19111 * If the WQE contains a BPL then the list of BDE's is 19112 * converted to sli4_sge's. If the WQE contains a single 19113 * BDE then it is converted to a single sli_sge. 19114 * The WQE is still in cpu endianness so the contents of 19115 * the bpl can be used without byte swapping. 19116 * 19117 * Returns valid XRI = Success, NO_XRI = Failure. 19118 */ 19119 static uint16_t 19120 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19121 struct lpfc_sglq *sglq) 19122 { 19123 uint16_t xritag = NO_XRI; 19124 struct ulp_bde64 *bpl = NULL; 19125 struct ulp_bde64 bde; 19126 struct sli4_sge *sgl = NULL; 19127 struct lpfc_dmabuf *dmabuf; 19128 union lpfc_wqe128 *wqe; 19129 int numBdes = 0; 19130 int i = 0; 19131 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19132 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19133 uint32_t cmd; 19134 19135 if (!pwqeq || !sglq) 19136 return xritag; 19137 19138 sgl = (struct sli4_sge *)sglq->sgl; 19139 wqe = &pwqeq->wqe; 19140 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19141 19142 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19143 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19144 return sglq->sli4_xritag; 19145 numBdes = pwqeq->rsvd2; 19146 if (numBdes) { 19147 /* The addrHigh and addrLow fields within the WQE 19148 * have not been byteswapped yet so there is no 19149 * need to swap them back. 19150 */ 19151 if (pwqeq->context3) 19152 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19153 else 19154 return xritag; 19155 19156 bpl = (struct ulp_bde64 *)dmabuf->virt; 19157 if (!bpl) 19158 return xritag; 19159 19160 for (i = 0; i < numBdes; i++) { 19161 /* Should already be byte swapped. */ 19162 sgl->addr_hi = bpl->addrHigh; 19163 sgl->addr_lo = bpl->addrLow; 19164 19165 sgl->word2 = le32_to_cpu(sgl->word2); 19166 if ((i+1) == numBdes) 19167 bf_set(lpfc_sli4_sge_last, sgl, 1); 19168 else 19169 bf_set(lpfc_sli4_sge_last, sgl, 0); 19170 /* swap the size field back to the cpu so we 19171 * can assign it to the sgl. 19172 */ 19173 bde.tus.w = le32_to_cpu(bpl->tus.w); 19174 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19175 /* The offsets in the sgl need to be accumulated 19176 * separately for the request and reply lists. 19177 * The request is always first, the reply follows. 19178 */ 19179 switch (cmd) { 19180 case CMD_GEN_REQUEST64_WQE: 19181 /* add up the reply sg entries */ 19182 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19183 inbound++; 19184 /* first inbound? reset the offset */ 19185 if (inbound == 1) 19186 offset = 0; 19187 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19188 bf_set(lpfc_sli4_sge_type, sgl, 19189 LPFC_SGE_TYPE_DATA); 19190 offset += bde.tus.f.bdeSize; 19191 break; 19192 case CMD_FCP_TRSP64_WQE: 19193 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19194 bf_set(lpfc_sli4_sge_type, sgl, 19195 LPFC_SGE_TYPE_DATA); 19196 break; 19197 case CMD_FCP_TSEND64_WQE: 19198 case CMD_FCP_TRECEIVE64_WQE: 19199 bf_set(lpfc_sli4_sge_type, sgl, 19200 bpl->tus.f.bdeFlags); 19201 if (i < 3) 19202 offset = 0; 19203 else 19204 offset += bde.tus.f.bdeSize; 19205 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19206 break; 19207 } 19208 sgl->word2 = cpu_to_le32(sgl->word2); 19209 bpl++; 19210 sgl++; 19211 } 19212 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19213 /* The addrHigh and addrLow fields of the BDE have not 19214 * been byteswapped yet so they need to be swapped 19215 * before putting them in the sgl. 19216 */ 19217 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19218 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19219 sgl->word2 = le32_to_cpu(sgl->word2); 19220 bf_set(lpfc_sli4_sge_last, sgl, 1); 19221 sgl->word2 = cpu_to_le32(sgl->word2); 19222 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19223 } 19224 return sglq->sli4_xritag; 19225 } 19226 19227 /** 19228 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19229 * @phba: Pointer to HBA context object. 19230 * @ring_number: Base sli ring number 19231 * @pwqe: Pointer to command WQE. 19232 **/ 19233 int 19234 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 19235 struct lpfc_iocbq *pwqe) 19236 { 19237 union lpfc_wqe128 *wqe = &pwqe->wqe; 19238 struct lpfc_nvmet_rcv_ctx *ctxp; 19239 struct lpfc_queue *wq; 19240 struct lpfc_sglq *sglq; 19241 struct lpfc_sli_ring *pring; 19242 unsigned long iflags; 19243 uint32_t ret = 0; 19244 19245 /* NVME_LS and NVME_LS ABTS requests. */ 19246 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19247 pring = phba->sli4_hba.nvmels_wq->pring; 19248 spin_lock_irqsave(&pring->ring_lock, iflags); 19249 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19250 if (!sglq) { 19251 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19252 return WQE_BUSY; 19253 } 19254 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19255 pwqe->sli4_xritag = sglq->sli4_xritag; 19256 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19257 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19258 return WQE_ERROR; 19259 } 19260 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19261 pwqe->sli4_xritag); 19262 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19263 if (ret) { 19264 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19265 return ret; 19266 } 19267 19268 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19269 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19270 return 0; 19271 } 19272 19273 /* NVME_FCREQ and NVME_ABTS requests */ 19274 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19275 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19276 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19277 19278 spin_lock_irqsave(&pring->ring_lock, iflags); 19279 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19280 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19281 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19282 ret = lpfc_sli4_wq_put(wq, wqe); 19283 if (ret) { 19284 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19285 return ret; 19286 } 19287 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19288 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19289 return 0; 19290 } 19291 19292 /* NVMET requests */ 19293 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19294 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19295 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19296 19297 spin_lock_irqsave(&pring->ring_lock, iflags); 19298 ctxp = pwqe->context2; 19299 sglq = ctxp->ctxbuf->sglq; 19300 if (pwqe->sli4_xritag == NO_XRI) { 19301 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19302 pwqe->sli4_xritag = sglq->sli4_xritag; 19303 } 19304 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19305 pwqe->sli4_xritag); 19306 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19307 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19308 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19309 ret = lpfc_sli4_wq_put(wq, wqe); 19310 if (ret) { 19311 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19312 return ret; 19313 } 19314 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19315 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19316 return 0; 19317 } 19318 return WQE_ERROR; 19319 } 19320