1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 static IOCB_t * 94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95 { 96 return &iocbq->iocb; 97 } 98 99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 100 /** 101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 102 * @srcp: Source memory pointer. 103 * @destp: Destination memory pointer. 104 * @cnt: Number of words required to be copied. 105 * Must be a multiple of sizeof(uint64_t) 106 * 107 * This function is used for copying data between driver memory 108 * and the SLI WQ. This function also changes the endianness 109 * of each word if native endianness is different from SLI 110 * endianness. This function can be called with or without 111 * lock. 112 **/ 113 static void 114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 115 { 116 uint64_t *src = srcp; 117 uint64_t *dest = destp; 118 int i; 119 120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 121 *dest++ = *src++; 122 } 123 #else 124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 125 #endif 126 127 /** 128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 129 * @q: The Work Queue to operate on. 130 * @wqe: The work Queue Entry to put on the Work queue. 131 * 132 * This routine will copy the contents of @wqe to the next available entry on 133 * the @q. This function will then ring the Work Queue Doorbell to signal the 134 * HBA to start processing the Work Queue Entry. This function returns 0 if 135 * successful. If no entries are available on @q then this function will return 136 * -ENOMEM. 137 * The caller is expected to hold the hbalock when calling this routine. 138 **/ 139 static int 140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 141 { 142 union lpfc_wqe *temp_wqe; 143 struct lpfc_register doorbell; 144 uint32_t host_index; 145 uint32_t idx; 146 uint32_t i = 0; 147 uint8_t *tmp; 148 u32 if_type; 149 150 /* sanity check on queue memory */ 151 if (unlikely(!q)) 152 return -ENOMEM; 153 temp_wqe = lpfc_sli4_qe(q, q->host_index); 154 155 /* If the host has not yet processed the next entry then we are done */ 156 idx = ((q->host_index + 1) % q->entry_count); 157 if (idx == q->hba_index) { 158 q->WQ_overflow++; 159 return -EBUSY; 160 } 161 q->WQ_posted++; 162 /* set consumption flag every once in a while */ 163 if (!((q->host_index + 1) % q->notify_interval)) 164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 165 else 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 170 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 171 /* write to DPP aperture taking advatage of Combined Writes */ 172 tmp = (uint8_t *)temp_wqe; 173 #ifdef __raw_writeq 174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 175 __raw_writeq(*((uint64_t *)(tmp + i)), 176 q->dpp_regaddr + i); 177 #else 178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 179 __raw_writel(*((uint32_t *)(tmp + i)), 180 q->dpp_regaddr + i); 181 #endif 182 } 183 /* ensure WQE bcopy and DPP flushed before doorbell write */ 184 wmb(); 185 186 /* Update the host index before invoking device */ 187 host_index = q->host_index; 188 189 q->host_index = idx; 190 191 /* Ring Doorbell */ 192 doorbell.word0 = 0; 193 if (q->db_format == LPFC_DB_LIST_FORMAT) { 194 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 198 q->dpp_id); 199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 200 q->queue_id); 201 } else { 202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 204 205 /* Leave bits <23:16> clear for if_type 6 dpp */ 206 if_type = bf_get(lpfc_sli_intf_if_type, 207 &q->phba->sli4_hba.sli_intf); 208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 209 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 210 host_index); 211 } 212 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 215 } else { 216 return -EINVAL; 217 } 218 writel(doorbell.word0, q->db_regaddr); 219 220 return 0; 221 } 222 223 /** 224 * lpfc_sli4_wq_release - Updates internal hba index for WQ 225 * @q: The Work Queue to operate on. 226 * @index: The index to advance the hba index to. 227 * 228 * This routine will update the HBA index of a queue to reflect consumption of 229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 230 * an entry the host calls this function to update the queue's internal 231 * pointers. 232 **/ 233 static void 234 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 235 { 236 /* sanity check on queue memory */ 237 if (unlikely(!q)) 238 return; 239 240 q->hba_index = index; 241 } 242 243 /** 244 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 245 * @q: The Mailbox Queue to operate on. 246 * @mqe: The Mailbox Queue Entry to put on the Work queue. 247 * 248 * This routine will copy the contents of @mqe to the next available entry on 249 * the @q. This function will then ring the Work Queue Doorbell to signal the 250 * HBA to start processing the Work Queue Entry. This function returns 0 if 251 * successful. If no entries are available on @q then this function will return 252 * -ENOMEM. 253 * The caller is expected to hold the hbalock when calling this routine. 254 **/ 255 static uint32_t 256 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 257 { 258 struct lpfc_mqe *temp_mqe; 259 struct lpfc_register doorbell; 260 261 /* sanity check on queue memory */ 262 if (unlikely(!q)) 263 return -ENOMEM; 264 temp_mqe = lpfc_sli4_qe(q, q->host_index); 265 266 /* If the host has not yet processed the next entry then we are done */ 267 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 268 return -ENOMEM; 269 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 270 /* Save off the mailbox pointer for completion */ 271 q->phba->mbox = (MAILBOX_t *)temp_mqe; 272 273 /* Update the host index before invoking device */ 274 q->host_index = ((q->host_index + 1) % q->entry_count); 275 276 /* Ring Doorbell */ 277 doorbell.word0 = 0; 278 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 279 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 280 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 281 return 0; 282 } 283 284 /** 285 * lpfc_sli4_mq_release - Updates internal hba index for MQ 286 * @q: The Mailbox Queue to operate on. 287 * 288 * This routine will update the HBA index of a queue to reflect consumption of 289 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 290 * an entry the host calls this function to update the queue's internal 291 * pointers. This routine returns the number of entries that were consumed by 292 * the HBA. 293 **/ 294 static uint32_t 295 lpfc_sli4_mq_release(struct lpfc_queue *q) 296 { 297 /* sanity check on queue memory */ 298 if (unlikely(!q)) 299 return 0; 300 301 /* Clear the mailbox pointer for completion */ 302 q->phba->mbox = NULL; 303 q->hba_index = ((q->hba_index + 1) % q->entry_count); 304 return 1; 305 } 306 307 /** 308 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 309 * @q: The Event Queue to get the first valid EQE from 310 * 311 * This routine will get the first valid Event Queue Entry from @q, update 312 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 313 * the Queue (no more work to do), or the Queue is full of EQEs that have been 314 * processed, but not popped back to the HBA then this routine will return NULL. 315 **/ 316 static struct lpfc_eqe * 317 lpfc_sli4_eq_get(struct lpfc_queue *q) 318 { 319 struct lpfc_eqe *eqe; 320 321 /* sanity check on queue memory */ 322 if (unlikely(!q)) 323 return NULL; 324 eqe = lpfc_sli4_qe(q, q->host_index); 325 326 /* If the next EQE is not valid then we are done */ 327 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 328 return NULL; 329 330 /* 331 * insert barrier for instruction interlock : data from the hardware 332 * must have the valid bit checked before it can be copied and acted 333 * upon. Speculative instructions were allowing a bcopy at the start 334 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 335 * after our return, to copy data before the valid bit check above 336 * was done. As such, some of the copied data was stale. The barrier 337 * ensures the check is before any data is copied. 338 */ 339 mb(); 340 return eqe; 341 } 342 343 /** 344 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 345 * @q: The Event Queue to disable interrupts 346 * 347 **/ 348 void 349 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 350 { 351 struct lpfc_register doorbell; 352 353 doorbell.word0 = 0; 354 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 355 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 356 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 357 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 358 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 359 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 360 } 361 362 /** 363 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 364 * @q: The Event Queue to disable interrupts 365 * 366 **/ 367 void 368 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 369 { 370 struct lpfc_register doorbell; 371 372 doorbell.word0 = 0; 373 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 374 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 375 } 376 377 /** 378 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 379 * @phba: adapter with EQ 380 * @q: The Event Queue that the host has completed processing for. 381 * @count: Number of elements that have been consumed 382 * @arm: Indicates whether the host wants to arms this CQ. 383 * 384 * This routine will notify the HBA, by ringing the doorbell, that count 385 * number of EQEs have been processed. The @arm parameter indicates whether 386 * the queue should be rearmed when ringing the doorbell. 387 **/ 388 void 389 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 390 uint32_t count, bool arm) 391 { 392 struct lpfc_register doorbell; 393 394 /* sanity check on queue memory */ 395 if (unlikely(!q || (count == 0 && !arm))) 396 return; 397 398 /* ring doorbell for number popped */ 399 doorbell.word0 = 0; 400 if (arm) { 401 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 402 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 403 } 404 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 405 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 406 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 407 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 408 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 409 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 410 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 411 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 412 readl(q->phba->sli4_hba.EQDBregaddr); 413 } 414 415 /** 416 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 417 * @phba: adapter with EQ 418 * @q: The Event Queue that the host has completed processing for. 419 * @count: Number of elements that have been consumed 420 * @arm: Indicates whether the host wants to arms this CQ. 421 * 422 * This routine will notify the HBA, by ringing the doorbell, that count 423 * number of EQEs have been processed. The @arm parameter indicates whether 424 * the queue should be rearmed when ringing the doorbell. 425 **/ 426 void 427 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 428 uint32_t count, bool arm) 429 { 430 struct lpfc_register doorbell; 431 432 /* sanity check on queue memory */ 433 if (unlikely(!q || (count == 0 && !arm))) 434 return; 435 436 /* ring doorbell for number popped */ 437 doorbell.word0 = 0; 438 if (arm) 439 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 440 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 441 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 442 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 443 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 444 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 445 readl(q->phba->sli4_hba.EQDBregaddr); 446 } 447 448 static void 449 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 450 struct lpfc_eqe *eqe) 451 { 452 if (!phba->sli4_hba.pc_sli4_params.eqav) 453 bf_set_le32(lpfc_eqe_valid, eqe, 0); 454 455 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 456 457 /* if the index wrapped around, toggle the valid bit */ 458 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 459 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 460 } 461 462 static void 463 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 464 { 465 struct lpfc_eqe *eqe = NULL; 466 u32 eq_count = 0, cq_count = 0; 467 struct lpfc_cqe *cqe = NULL; 468 struct lpfc_queue *cq = NULL, *childq = NULL; 469 int cqid = 0; 470 471 /* walk all the EQ entries and drop on the floor */ 472 eqe = lpfc_sli4_eq_get(eq); 473 while (eqe) { 474 /* Get the reference to the corresponding CQ */ 475 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 476 cq = NULL; 477 478 list_for_each_entry(childq, &eq->child_list, list) { 479 if (childq->queue_id == cqid) { 480 cq = childq; 481 break; 482 } 483 } 484 /* If CQ is valid, iterate through it and drop all the CQEs */ 485 if (cq) { 486 cqe = lpfc_sli4_cq_get(cq); 487 while (cqe) { 488 __lpfc_sli4_consume_cqe(phba, cq, cqe); 489 cq_count++; 490 cqe = lpfc_sli4_cq_get(cq); 491 } 492 /* Clear and re-arm the CQ */ 493 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 494 LPFC_QUEUE_REARM); 495 cq_count = 0; 496 } 497 __lpfc_sli4_consume_eqe(phba, eq, eqe); 498 eq_count++; 499 eqe = lpfc_sli4_eq_get(eq); 500 } 501 502 /* Clear and re-arm the EQ */ 503 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 504 } 505 506 static int 507 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 508 uint8_t rearm) 509 { 510 struct lpfc_eqe *eqe; 511 int count = 0, consumed = 0; 512 513 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 514 goto rearm_and_exit; 515 516 eqe = lpfc_sli4_eq_get(eq); 517 while (eqe) { 518 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 519 __lpfc_sli4_consume_eqe(phba, eq, eqe); 520 521 consumed++; 522 if (!(++count % eq->max_proc_limit)) 523 break; 524 525 if (!(count % eq->notify_interval)) { 526 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 527 LPFC_QUEUE_NOARM); 528 consumed = 0; 529 } 530 531 eqe = lpfc_sli4_eq_get(eq); 532 } 533 eq->EQ_processed += count; 534 535 /* Track the max number of EQEs processed in 1 intr */ 536 if (count > eq->EQ_max_eqe) 537 eq->EQ_max_eqe = count; 538 539 xchg(&eq->queue_claimed, 0); 540 541 rearm_and_exit: 542 /* Always clear the EQ. */ 543 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 544 545 return count; 546 } 547 548 /** 549 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 550 * @q: The Completion Queue to get the first valid CQE from 551 * 552 * This routine will get the first valid Completion Queue Entry from @q, update 553 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 554 * the Queue (no more work to do), or the Queue is full of CQEs that have been 555 * processed, but not popped back to the HBA then this routine will return NULL. 556 **/ 557 static struct lpfc_cqe * 558 lpfc_sli4_cq_get(struct lpfc_queue *q) 559 { 560 struct lpfc_cqe *cqe; 561 562 /* sanity check on queue memory */ 563 if (unlikely(!q)) 564 return NULL; 565 cqe = lpfc_sli4_qe(q, q->host_index); 566 567 /* If the next CQE is not valid then we are done */ 568 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 569 return NULL; 570 571 /* 572 * insert barrier for instruction interlock : data from the hardware 573 * must have the valid bit checked before it can be copied and acted 574 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 575 * instructions allowing action on content before valid bit checked, 576 * add barrier here as well. May not be needed as "content" is a 577 * single 32-bit entity here (vs multi word structure for cq's). 578 */ 579 mb(); 580 return cqe; 581 } 582 583 static void 584 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 585 struct lpfc_cqe *cqe) 586 { 587 if (!phba->sli4_hba.pc_sli4_params.cqav) 588 bf_set_le32(lpfc_cqe_valid, cqe, 0); 589 590 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 591 592 /* if the index wrapped around, toggle the valid bit */ 593 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 594 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 595 } 596 597 /** 598 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 599 * @phba: the adapter with the CQ 600 * @q: The Completion Queue that the host has completed processing for. 601 * @count: the number of elements that were consumed 602 * @arm: Indicates whether the host wants to arms this CQ. 603 * 604 * This routine will notify the HBA, by ringing the doorbell, that the 605 * CQEs have been processed. The @arm parameter specifies whether the 606 * queue should be rearmed when ringing the doorbell. 607 **/ 608 void 609 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 610 uint32_t count, bool arm) 611 { 612 struct lpfc_register doorbell; 613 614 /* sanity check on queue memory */ 615 if (unlikely(!q || (count == 0 && !arm))) 616 return; 617 618 /* ring doorbell for number popped */ 619 doorbell.word0 = 0; 620 if (arm) 621 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 622 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 623 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 624 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 625 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 626 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 627 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 628 } 629 630 /** 631 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 632 * @phba: the adapter with the CQ 633 * @q: The Completion Queue that the host has completed processing for. 634 * @count: the number of elements that were consumed 635 * @arm: Indicates whether the host wants to arms this CQ. 636 * 637 * This routine will notify the HBA, by ringing the doorbell, that the 638 * CQEs have been processed. The @arm parameter specifies whether the 639 * queue should be rearmed when ringing the doorbell. 640 **/ 641 void 642 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 643 uint32_t count, bool arm) 644 { 645 struct lpfc_register doorbell; 646 647 /* sanity check on queue memory */ 648 if (unlikely(!q || (count == 0 && !arm))) 649 return; 650 651 /* ring doorbell for number popped */ 652 doorbell.word0 = 0; 653 if (arm) 654 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 655 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 656 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 657 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 658 } 659 660 /* 661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 662 * 663 * This routine will copy the contents of @wqe to the next available entry on 664 * the @q. This function will then ring the Receive Queue Doorbell to signal the 665 * HBA to start processing the Receive Queue Entry. This function returns the 666 * index that the rqe was copied to if successful. If no entries are available 667 * on @q then this function will return -ENOMEM. 668 * The caller is expected to hold the hbalock when calling this routine. 669 **/ 670 int 671 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 672 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 673 { 674 struct lpfc_rqe *temp_hrqe; 675 struct lpfc_rqe *temp_drqe; 676 struct lpfc_register doorbell; 677 int hq_put_index; 678 int dq_put_index; 679 680 /* sanity check on queue memory */ 681 if (unlikely(!hq) || unlikely(!dq)) 682 return -ENOMEM; 683 hq_put_index = hq->host_index; 684 dq_put_index = dq->host_index; 685 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 686 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 687 688 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 689 return -EINVAL; 690 if (hq_put_index != dq_put_index) 691 return -EINVAL; 692 /* If the host has not yet processed the next entry then we are done */ 693 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 694 return -EBUSY; 695 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 696 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 697 698 /* Update the host index to point to the next slot */ 699 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 700 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 701 hq->RQ_buf_posted++; 702 703 /* Ring The Header Receive Queue Doorbell */ 704 if (!(hq->host_index % hq->notify_interval)) { 705 doorbell.word0 = 0; 706 if (hq->db_format == LPFC_DB_RING_FORMAT) { 707 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 708 hq->notify_interval); 709 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 710 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 711 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 712 hq->notify_interval); 713 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 714 hq->host_index); 715 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 716 } else { 717 return -EINVAL; 718 } 719 writel(doorbell.word0, hq->db_regaddr); 720 } 721 return hq_put_index; 722 } 723 724 /* 725 * lpfc_sli4_rq_release - Updates internal hba index for RQ 726 * 727 * This routine will update the HBA index of a queue to reflect consumption of 728 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 729 * consumed an entry the host calls this function to update the queue's 730 * internal pointers. This routine returns the number of entries that were 731 * consumed by the HBA. 732 **/ 733 static uint32_t 734 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 735 { 736 /* sanity check on queue memory */ 737 if (unlikely(!hq) || unlikely(!dq)) 738 return 0; 739 740 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 741 return 0; 742 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 743 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 744 return 1; 745 } 746 747 /** 748 * lpfc_cmd_iocb - Get next command iocb entry in the ring 749 * @phba: Pointer to HBA context object. 750 * @pring: Pointer to driver SLI ring object. 751 * 752 * This function returns pointer to next command iocb entry 753 * in the command ring. The caller must hold hbalock to prevent 754 * other threads consume the next command iocb. 755 * SLI-2/SLI-3 provide different sized iocbs. 756 **/ 757 static inline IOCB_t * 758 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 759 { 760 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 761 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 762 } 763 764 /** 765 * lpfc_resp_iocb - Get next response iocb entry in the ring 766 * @phba: Pointer to HBA context object. 767 * @pring: Pointer to driver SLI ring object. 768 * 769 * This function returns pointer to next response iocb entry 770 * in the response ring. The caller must hold hbalock to make sure 771 * that no other thread consume the next response iocb. 772 * SLI-2/SLI-3 provide different sized iocbs. 773 **/ 774 static inline IOCB_t * 775 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 776 { 777 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 778 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 779 } 780 781 /** 782 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 783 * @phba: Pointer to HBA context object. 784 * 785 * This function is called with hbalock held. This function 786 * allocates a new driver iocb object from the iocb pool. If the 787 * allocation is successful, it returns pointer to the newly 788 * allocated iocb object else it returns NULL. 789 **/ 790 struct lpfc_iocbq * 791 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 792 { 793 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 794 struct lpfc_iocbq * iocbq = NULL; 795 796 lockdep_assert_held(&phba->hbalock); 797 798 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 799 if (iocbq) 800 phba->iocb_cnt++; 801 if (phba->iocb_cnt > phba->iocb_max) 802 phba->iocb_max = phba->iocb_cnt; 803 return iocbq; 804 } 805 806 /** 807 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 808 * @phba: Pointer to HBA context object. 809 * @xritag: XRI value. 810 * 811 * This function clears the sglq pointer from the array of acive 812 * sglq's. The xritag that is passed in is used to index into the 813 * array. Before the xritag can be used it needs to be adjusted 814 * by subtracting the xribase. 815 * 816 * Returns sglq ponter = success, NULL = Failure. 817 **/ 818 struct lpfc_sglq * 819 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 820 { 821 struct lpfc_sglq *sglq; 822 823 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 824 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 825 return sglq; 826 } 827 828 /** 829 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 830 * @phba: Pointer to HBA context object. 831 * @xritag: XRI value. 832 * 833 * This function returns the sglq pointer from the array of acive 834 * sglq's. The xritag that is passed in is used to index into the 835 * array. Before the xritag can be used it needs to be adjusted 836 * by subtracting the xribase. 837 * 838 * Returns sglq ponter = success, NULL = Failure. 839 **/ 840 struct lpfc_sglq * 841 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 842 { 843 struct lpfc_sglq *sglq; 844 845 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 846 return sglq; 847 } 848 849 /** 850 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 851 * @phba: Pointer to HBA context object. 852 * @xritag: xri used in this exchange. 853 * @rrq: The RRQ to be cleared. 854 * 855 **/ 856 void 857 lpfc_clr_rrq_active(struct lpfc_hba *phba, 858 uint16_t xritag, 859 struct lpfc_node_rrq *rrq) 860 { 861 struct lpfc_nodelist *ndlp = NULL; 862 863 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 864 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 865 866 /* The target DID could have been swapped (cable swap) 867 * we should use the ndlp from the findnode if it is 868 * available. 869 */ 870 if ((!ndlp) && rrq->ndlp) 871 ndlp = rrq->ndlp; 872 873 if (!ndlp) 874 goto out; 875 876 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 877 rrq->send_rrq = 0; 878 rrq->xritag = 0; 879 rrq->rrq_stop_time = 0; 880 } 881 out: 882 mempool_free(rrq, phba->rrq_pool); 883 } 884 885 /** 886 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 887 * @phba: Pointer to HBA context object. 888 * 889 * This function is called with hbalock held. This function 890 * Checks if stop_time (ratov from setting rrq active) has 891 * been reached, if it has and the send_rrq flag is set then 892 * it will call lpfc_send_rrq. If the send_rrq flag is not set 893 * then it will just call the routine to clear the rrq and 894 * free the rrq resource. 895 * The timer is set to the next rrq that is going to expire before 896 * leaving the routine. 897 * 898 **/ 899 void 900 lpfc_handle_rrq_active(struct lpfc_hba *phba) 901 { 902 struct lpfc_node_rrq *rrq; 903 struct lpfc_node_rrq *nextrrq; 904 unsigned long next_time; 905 unsigned long iflags; 906 LIST_HEAD(send_rrq); 907 908 spin_lock_irqsave(&phba->hbalock, iflags); 909 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 910 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 911 list_for_each_entry_safe(rrq, nextrrq, 912 &phba->active_rrq_list, list) { 913 if (time_after(jiffies, rrq->rrq_stop_time)) 914 list_move(&rrq->list, &send_rrq); 915 else if (time_before(rrq->rrq_stop_time, next_time)) 916 next_time = rrq->rrq_stop_time; 917 } 918 spin_unlock_irqrestore(&phba->hbalock, iflags); 919 if ((!list_empty(&phba->active_rrq_list)) && 920 (!(phba->pport->load_flag & FC_UNLOADING))) 921 mod_timer(&phba->rrq_tmr, next_time); 922 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 923 list_del(&rrq->list); 924 if (!rrq->send_rrq) { 925 /* this call will free the rrq */ 926 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 927 } else if (lpfc_send_rrq(phba, rrq)) { 928 /* if we send the rrq then the completion handler 929 * will clear the bit in the xribitmap. 930 */ 931 lpfc_clr_rrq_active(phba, rrq->xritag, 932 rrq); 933 } 934 } 935 } 936 937 /** 938 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 939 * @vport: Pointer to vport context object. 940 * @xri: The xri used in the exchange. 941 * @did: The targets DID for this exchange. 942 * 943 * returns NULL = rrq not found in the phba->active_rrq_list. 944 * rrq = rrq for this xri and target. 945 **/ 946 struct lpfc_node_rrq * 947 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 948 { 949 struct lpfc_hba *phba = vport->phba; 950 struct lpfc_node_rrq *rrq; 951 struct lpfc_node_rrq *nextrrq; 952 unsigned long iflags; 953 954 if (phba->sli_rev != LPFC_SLI_REV4) 955 return NULL; 956 spin_lock_irqsave(&phba->hbalock, iflags); 957 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 958 if (rrq->vport == vport && rrq->xritag == xri && 959 rrq->nlp_DID == did){ 960 list_del(&rrq->list); 961 spin_unlock_irqrestore(&phba->hbalock, iflags); 962 return rrq; 963 } 964 } 965 spin_unlock_irqrestore(&phba->hbalock, iflags); 966 return NULL; 967 } 968 969 /** 970 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 971 * @vport: Pointer to vport context object. 972 * @ndlp: Pointer to the lpfc_node_list structure. 973 * If ndlp is NULL Remove all active RRQs for this vport from the 974 * phba->active_rrq_list and clear the rrq. 975 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 976 **/ 977 void 978 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 979 980 { 981 struct lpfc_hba *phba = vport->phba; 982 struct lpfc_node_rrq *rrq; 983 struct lpfc_node_rrq *nextrrq; 984 unsigned long iflags; 985 LIST_HEAD(rrq_list); 986 987 if (phba->sli_rev != LPFC_SLI_REV4) 988 return; 989 if (!ndlp) { 990 lpfc_sli4_vport_delete_els_xri_aborted(vport); 991 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 992 } 993 spin_lock_irqsave(&phba->hbalock, iflags); 994 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 995 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 996 list_move(&rrq->list, &rrq_list); 997 spin_unlock_irqrestore(&phba->hbalock, iflags); 998 999 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1000 list_del(&rrq->list); 1001 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1002 } 1003 } 1004 1005 /** 1006 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1007 * @phba: Pointer to HBA context object. 1008 * @ndlp: Targets nodelist pointer for this exchange. 1009 * @xritag: the xri in the bitmap to test. 1010 * 1011 * This function returns: 1012 * 0 = rrq not active for this xri 1013 * 1 = rrq is valid for this xri. 1014 **/ 1015 int 1016 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1017 uint16_t xritag) 1018 { 1019 if (!ndlp) 1020 return 0; 1021 if (!ndlp->active_rrqs_xri_bitmap) 1022 return 0; 1023 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1024 return 1; 1025 else 1026 return 0; 1027 } 1028 1029 /** 1030 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1031 * @phba: Pointer to HBA context object. 1032 * @ndlp: nodelist pointer for this target. 1033 * @xritag: xri used in this exchange. 1034 * @rxid: Remote Exchange ID. 1035 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1036 * 1037 * This function takes the hbalock. 1038 * The active bit is always set in the active rrq xri_bitmap even 1039 * if there is no slot avaiable for the other rrq information. 1040 * 1041 * returns 0 rrq actived for this xri 1042 * < 0 No memory or invalid ndlp. 1043 **/ 1044 int 1045 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1046 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1047 { 1048 unsigned long iflags; 1049 struct lpfc_node_rrq *rrq; 1050 int empty; 1051 1052 if (!ndlp) 1053 return -EINVAL; 1054 1055 if (!phba->cfg_enable_rrq) 1056 return -EINVAL; 1057 1058 spin_lock_irqsave(&phba->hbalock, iflags); 1059 if (phba->pport->load_flag & FC_UNLOADING) { 1060 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1061 goto out; 1062 } 1063 1064 /* 1065 * set the active bit even if there is no mem available. 1066 */ 1067 if (NLP_CHK_FREE_REQ(ndlp)) 1068 goto out; 1069 1070 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1071 goto out; 1072 1073 if (!ndlp->active_rrqs_xri_bitmap) 1074 goto out; 1075 1076 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1077 goto out; 1078 1079 spin_unlock_irqrestore(&phba->hbalock, iflags); 1080 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1081 if (!rrq) { 1082 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1083 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1084 " DID:0x%x Send:%d\n", 1085 xritag, rxid, ndlp->nlp_DID, send_rrq); 1086 return -EINVAL; 1087 } 1088 if (phba->cfg_enable_rrq == 1) 1089 rrq->send_rrq = send_rrq; 1090 else 1091 rrq->send_rrq = 0; 1092 rrq->xritag = xritag; 1093 rrq->rrq_stop_time = jiffies + 1094 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1095 rrq->ndlp = ndlp; 1096 rrq->nlp_DID = ndlp->nlp_DID; 1097 rrq->vport = ndlp->vport; 1098 rrq->rxid = rxid; 1099 spin_lock_irqsave(&phba->hbalock, iflags); 1100 empty = list_empty(&phba->active_rrq_list); 1101 list_add_tail(&rrq->list, &phba->active_rrq_list); 1102 phba->hba_flag |= HBA_RRQ_ACTIVE; 1103 if (empty) 1104 lpfc_worker_wake_up(phba); 1105 spin_unlock_irqrestore(&phba->hbalock, iflags); 1106 return 0; 1107 out: 1108 spin_unlock_irqrestore(&phba->hbalock, iflags); 1109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1110 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1111 " DID:0x%x Send:%d\n", 1112 xritag, rxid, ndlp->nlp_DID, send_rrq); 1113 return -EINVAL; 1114 } 1115 1116 /** 1117 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1118 * @phba: Pointer to HBA context object. 1119 * @piocbq: Pointer to the iocbq. 1120 * 1121 * The driver calls this function with either the nvme ls ring lock 1122 * or the fc els ring lock held depending on the iocb usage. This function 1123 * gets a new driver sglq object from the sglq list. If the list is not empty 1124 * then it is successful, it returns pointer to the newly allocated sglq 1125 * object else it returns NULL. 1126 **/ 1127 static struct lpfc_sglq * 1128 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1129 { 1130 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1131 struct lpfc_sglq *sglq = NULL; 1132 struct lpfc_sglq *start_sglq = NULL; 1133 struct lpfc_io_buf *lpfc_cmd; 1134 struct lpfc_nodelist *ndlp; 1135 struct lpfc_sli_ring *pring = NULL; 1136 int found = 0; 1137 1138 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1139 pring = phba->sli4_hba.nvmels_wq->pring; 1140 else 1141 pring = lpfc_phba_elsring(phba); 1142 1143 lockdep_assert_held(&pring->ring_lock); 1144 1145 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1146 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1147 ndlp = lpfc_cmd->rdata->pnode; 1148 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1149 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1150 ndlp = piocbq->context_un.ndlp; 1151 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1152 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1153 ndlp = NULL; 1154 else 1155 ndlp = piocbq->context_un.ndlp; 1156 } else { 1157 ndlp = piocbq->context1; 1158 } 1159 1160 spin_lock(&phba->sli4_hba.sgl_list_lock); 1161 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1162 start_sglq = sglq; 1163 while (!found) { 1164 if (!sglq) 1165 break; 1166 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1167 test_bit(sglq->sli4_lxritag, 1168 ndlp->active_rrqs_xri_bitmap)) { 1169 /* This xri has an rrq outstanding for this DID. 1170 * put it back in the list and get another xri. 1171 */ 1172 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1173 sglq = NULL; 1174 list_remove_head(lpfc_els_sgl_list, sglq, 1175 struct lpfc_sglq, list); 1176 if (sglq == start_sglq) { 1177 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1178 sglq = NULL; 1179 break; 1180 } else 1181 continue; 1182 } 1183 sglq->ndlp = ndlp; 1184 found = 1; 1185 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1186 sglq->state = SGL_ALLOCATED; 1187 } 1188 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1189 return sglq; 1190 } 1191 1192 /** 1193 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1194 * @phba: Pointer to HBA context object. 1195 * @piocbq: Pointer to the iocbq. 1196 * 1197 * This function is called with the sgl_list lock held. This function 1198 * gets a new driver sglq object from the sglq list. If the 1199 * list is not empty then it is successful, it returns pointer to the newly 1200 * allocated sglq object else it returns NULL. 1201 **/ 1202 struct lpfc_sglq * 1203 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1204 { 1205 struct list_head *lpfc_nvmet_sgl_list; 1206 struct lpfc_sglq *sglq = NULL; 1207 1208 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1209 1210 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1211 1212 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1213 if (!sglq) 1214 return NULL; 1215 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1216 sglq->state = SGL_ALLOCATED; 1217 return sglq; 1218 } 1219 1220 /** 1221 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1222 * @phba: Pointer to HBA context object. 1223 * 1224 * This function is called with no lock held. This function 1225 * allocates a new driver iocb object from the iocb pool. If the 1226 * allocation is successful, it returns pointer to the newly 1227 * allocated iocb object else it returns NULL. 1228 **/ 1229 struct lpfc_iocbq * 1230 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1231 { 1232 struct lpfc_iocbq * iocbq = NULL; 1233 unsigned long iflags; 1234 1235 spin_lock_irqsave(&phba->hbalock, iflags); 1236 iocbq = __lpfc_sli_get_iocbq(phba); 1237 spin_unlock_irqrestore(&phba->hbalock, iflags); 1238 return iocbq; 1239 } 1240 1241 /** 1242 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1243 * @phba: Pointer to HBA context object. 1244 * @iocbq: Pointer to driver iocb object. 1245 * 1246 * This function is called to release the driver iocb object 1247 * to the iocb pool. The iotag in the iocb object 1248 * does not change for each use of the iocb object. This function 1249 * clears all other fields of the iocb object when it is freed. 1250 * The sqlq structure that holds the xritag and phys and virtual 1251 * mappings for the scatter gather list is retrieved from the 1252 * active array of sglq. The get of the sglq pointer also clears 1253 * the entry in the array. If the status of the IO indiactes that 1254 * this IO was aborted then the sglq entry it put on the 1255 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1256 * IO has good status or fails for any other reason then the sglq 1257 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1258 * asserted held in the code path calling this routine. 1259 **/ 1260 static void 1261 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1262 { 1263 struct lpfc_sglq *sglq; 1264 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1265 unsigned long iflag = 0; 1266 struct lpfc_sli_ring *pring; 1267 1268 if (iocbq->sli4_xritag == NO_XRI) 1269 sglq = NULL; 1270 else 1271 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1272 1273 1274 if (sglq) { 1275 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1276 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1277 iflag); 1278 sglq->state = SGL_FREED; 1279 sglq->ndlp = NULL; 1280 list_add_tail(&sglq->list, 1281 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1282 spin_unlock_irqrestore( 1283 &phba->sli4_hba.sgl_list_lock, iflag); 1284 goto out; 1285 } 1286 1287 pring = phba->sli4_hba.els_wq->pring; 1288 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1289 (sglq->state != SGL_XRI_ABORTED)) { 1290 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1291 iflag); 1292 list_add(&sglq->list, 1293 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1294 spin_unlock_irqrestore( 1295 &phba->sli4_hba.sgl_list_lock, iflag); 1296 } else { 1297 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1298 iflag); 1299 sglq->state = SGL_FREED; 1300 sglq->ndlp = NULL; 1301 list_add_tail(&sglq->list, 1302 &phba->sli4_hba.lpfc_els_sgl_list); 1303 spin_unlock_irqrestore( 1304 &phba->sli4_hba.sgl_list_lock, iflag); 1305 1306 /* Check if TXQ queue needs to be serviced */ 1307 if (!list_empty(&pring->txq)) 1308 lpfc_worker_wake_up(phba); 1309 } 1310 } 1311 1312 out: 1313 /* 1314 * Clean all volatile data fields, preserve iotag and node struct. 1315 */ 1316 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1317 iocbq->sli4_lxritag = NO_XRI; 1318 iocbq->sli4_xritag = NO_XRI; 1319 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1320 LPFC_IO_NVME_LS); 1321 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1322 } 1323 1324 1325 /** 1326 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1327 * @phba: Pointer to HBA context object. 1328 * @iocbq: Pointer to driver iocb object. 1329 * 1330 * This function is called to release the driver iocb object to the 1331 * iocb pool. The iotag in the iocb object does not change for each 1332 * use of the iocb object. This function clears all other fields of 1333 * the iocb object when it is freed. The hbalock is asserted held in 1334 * the code path calling this routine. 1335 **/ 1336 static void 1337 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1338 { 1339 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1340 1341 /* 1342 * Clean all volatile data fields, preserve iotag and node struct. 1343 */ 1344 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1345 iocbq->sli4_xritag = NO_XRI; 1346 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1347 } 1348 1349 /** 1350 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1351 * @phba: Pointer to HBA context object. 1352 * @iocbq: Pointer to driver iocb object. 1353 * 1354 * This function is called with hbalock held to release driver 1355 * iocb object to the iocb pool. The iotag in the iocb object 1356 * does not change for each use of the iocb object. This function 1357 * clears all other fields of the iocb object when it is freed. 1358 **/ 1359 static void 1360 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1361 { 1362 lockdep_assert_held(&phba->hbalock); 1363 1364 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1365 phba->iocb_cnt--; 1366 } 1367 1368 /** 1369 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1370 * @phba: Pointer to HBA context object. 1371 * @iocbq: Pointer to driver iocb object. 1372 * 1373 * This function is called with no lock held to release the iocb to 1374 * iocb pool. 1375 **/ 1376 void 1377 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1378 { 1379 unsigned long iflags; 1380 1381 /* 1382 * Clean all volatile data fields, preserve iotag and node struct. 1383 */ 1384 spin_lock_irqsave(&phba->hbalock, iflags); 1385 __lpfc_sli_release_iocbq(phba, iocbq); 1386 spin_unlock_irqrestore(&phba->hbalock, iflags); 1387 } 1388 1389 /** 1390 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1391 * @phba: Pointer to HBA context object. 1392 * @iocblist: List of IOCBs. 1393 * @ulpstatus: ULP status in IOCB command field. 1394 * @ulpWord4: ULP word-4 in IOCB command field. 1395 * 1396 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1397 * on the list by invoking the complete callback function associated with the 1398 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1399 * fields. 1400 **/ 1401 void 1402 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1403 uint32_t ulpstatus, uint32_t ulpWord4) 1404 { 1405 struct lpfc_iocbq *piocb; 1406 1407 while (!list_empty(iocblist)) { 1408 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1409 if (!piocb->iocb_cmpl) { 1410 if (piocb->iocb_flag & LPFC_IO_NVME) 1411 lpfc_nvme_cancel_iocb(phba, piocb); 1412 else 1413 lpfc_sli_release_iocbq(phba, piocb); 1414 } else { 1415 piocb->iocb.ulpStatus = ulpstatus; 1416 piocb->iocb.un.ulpWord[4] = ulpWord4; 1417 (piocb->iocb_cmpl) (phba, piocb, piocb); 1418 } 1419 } 1420 return; 1421 } 1422 1423 /** 1424 * lpfc_sli_iocb_cmd_type - Get the iocb type 1425 * @iocb_cmnd: iocb command code. 1426 * 1427 * This function is called by ring event handler function to get the iocb type. 1428 * This function translates the iocb command to an iocb command type used to 1429 * decide the final disposition of each completed IOCB. 1430 * The function returns 1431 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1432 * LPFC_SOL_IOCB if it is a solicited iocb completion 1433 * LPFC_ABORT_IOCB if it is an abort iocb 1434 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1435 * 1436 * The caller is not required to hold any lock. 1437 **/ 1438 static lpfc_iocb_type 1439 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1440 { 1441 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1442 1443 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1444 return 0; 1445 1446 switch (iocb_cmnd) { 1447 case CMD_XMIT_SEQUENCE_CR: 1448 case CMD_XMIT_SEQUENCE_CX: 1449 case CMD_XMIT_BCAST_CN: 1450 case CMD_XMIT_BCAST_CX: 1451 case CMD_ELS_REQUEST_CR: 1452 case CMD_ELS_REQUEST_CX: 1453 case CMD_CREATE_XRI_CR: 1454 case CMD_CREATE_XRI_CX: 1455 case CMD_GET_RPI_CN: 1456 case CMD_XMIT_ELS_RSP_CX: 1457 case CMD_GET_RPI_CR: 1458 case CMD_FCP_IWRITE_CR: 1459 case CMD_FCP_IWRITE_CX: 1460 case CMD_FCP_IREAD_CR: 1461 case CMD_FCP_IREAD_CX: 1462 case CMD_FCP_ICMND_CR: 1463 case CMD_FCP_ICMND_CX: 1464 case CMD_FCP_TSEND_CX: 1465 case CMD_FCP_TRSP_CX: 1466 case CMD_FCP_TRECEIVE_CX: 1467 case CMD_FCP_AUTO_TRSP_CX: 1468 case CMD_ADAPTER_MSG: 1469 case CMD_ADAPTER_DUMP: 1470 case CMD_XMIT_SEQUENCE64_CR: 1471 case CMD_XMIT_SEQUENCE64_CX: 1472 case CMD_XMIT_BCAST64_CN: 1473 case CMD_XMIT_BCAST64_CX: 1474 case CMD_ELS_REQUEST64_CR: 1475 case CMD_ELS_REQUEST64_CX: 1476 case CMD_FCP_IWRITE64_CR: 1477 case CMD_FCP_IWRITE64_CX: 1478 case CMD_FCP_IREAD64_CR: 1479 case CMD_FCP_IREAD64_CX: 1480 case CMD_FCP_ICMND64_CR: 1481 case CMD_FCP_ICMND64_CX: 1482 case CMD_FCP_TSEND64_CX: 1483 case CMD_FCP_TRSP64_CX: 1484 case CMD_FCP_TRECEIVE64_CX: 1485 case CMD_GEN_REQUEST64_CR: 1486 case CMD_GEN_REQUEST64_CX: 1487 case CMD_XMIT_ELS_RSP64_CX: 1488 case DSSCMD_IWRITE64_CR: 1489 case DSSCMD_IWRITE64_CX: 1490 case DSSCMD_IREAD64_CR: 1491 case DSSCMD_IREAD64_CX: 1492 case CMD_SEND_FRAME: 1493 type = LPFC_SOL_IOCB; 1494 break; 1495 case CMD_ABORT_XRI_CN: 1496 case CMD_ABORT_XRI_CX: 1497 case CMD_CLOSE_XRI_CN: 1498 case CMD_CLOSE_XRI_CX: 1499 case CMD_XRI_ABORTED_CX: 1500 case CMD_ABORT_MXRI64_CN: 1501 case CMD_XMIT_BLS_RSP64_CX: 1502 type = LPFC_ABORT_IOCB; 1503 break; 1504 case CMD_RCV_SEQUENCE_CX: 1505 case CMD_RCV_ELS_REQ_CX: 1506 case CMD_RCV_SEQUENCE64_CX: 1507 case CMD_RCV_ELS_REQ64_CX: 1508 case CMD_ASYNC_STATUS: 1509 case CMD_IOCB_RCV_SEQ64_CX: 1510 case CMD_IOCB_RCV_ELS64_CX: 1511 case CMD_IOCB_RCV_CONT64_CX: 1512 case CMD_IOCB_RET_XRI64_CX: 1513 type = LPFC_UNSOL_IOCB; 1514 break; 1515 case CMD_IOCB_XMIT_MSEQ64_CR: 1516 case CMD_IOCB_XMIT_MSEQ64_CX: 1517 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1518 case CMD_IOCB_RCV_ELS_LIST64_CX: 1519 case CMD_IOCB_CLOSE_EXTENDED_CN: 1520 case CMD_IOCB_ABORT_EXTENDED_CN: 1521 case CMD_IOCB_RET_HBQE64_CN: 1522 case CMD_IOCB_FCP_IBIDIR64_CR: 1523 case CMD_IOCB_FCP_IBIDIR64_CX: 1524 case CMD_IOCB_FCP_ITASKMGT64_CX: 1525 case CMD_IOCB_LOGENTRY_CN: 1526 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1527 printk("%s - Unhandled SLI-3 Command x%x\n", 1528 __func__, iocb_cmnd); 1529 type = LPFC_UNKNOWN_IOCB; 1530 break; 1531 default: 1532 type = LPFC_UNKNOWN_IOCB; 1533 break; 1534 } 1535 1536 return type; 1537 } 1538 1539 /** 1540 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1541 * @phba: Pointer to HBA context object. 1542 * 1543 * This function is called from SLI initialization code 1544 * to configure every ring of the HBA's SLI interface. The 1545 * caller is not required to hold any lock. This function issues 1546 * a config_ring mailbox command for each ring. 1547 * This function returns zero if successful else returns a negative 1548 * error code. 1549 **/ 1550 static int 1551 lpfc_sli_ring_map(struct lpfc_hba *phba) 1552 { 1553 struct lpfc_sli *psli = &phba->sli; 1554 LPFC_MBOXQ_t *pmb; 1555 MAILBOX_t *pmbox; 1556 int i, rc, ret = 0; 1557 1558 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1559 if (!pmb) 1560 return -ENOMEM; 1561 pmbox = &pmb->u.mb; 1562 phba->link_state = LPFC_INIT_MBX_CMDS; 1563 for (i = 0; i < psli->num_rings; i++) { 1564 lpfc_config_ring(phba, i, pmb); 1565 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1566 if (rc != MBX_SUCCESS) { 1567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1568 "0446 Adapter failed to init (%d), " 1569 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1570 "ring %d\n", 1571 rc, pmbox->mbxCommand, 1572 pmbox->mbxStatus, i); 1573 phba->link_state = LPFC_HBA_ERROR; 1574 ret = -ENXIO; 1575 break; 1576 } 1577 } 1578 mempool_free(pmb, phba->mbox_mem_pool); 1579 return ret; 1580 } 1581 1582 /** 1583 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1584 * @phba: Pointer to HBA context object. 1585 * @pring: Pointer to driver SLI ring object. 1586 * @piocb: Pointer to the driver iocb object. 1587 * 1588 * The driver calls this function with the hbalock held for SLI3 ports or 1589 * the ring lock held for SLI4 ports. The function adds the 1590 * new iocb to txcmplq of the given ring. This function always returns 1591 * 0. If this function is called for ELS ring, this function checks if 1592 * there is a vport associated with the ELS command. This function also 1593 * starts els_tmofunc timer if this is an ELS command. 1594 **/ 1595 static int 1596 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1597 struct lpfc_iocbq *piocb) 1598 { 1599 if (phba->sli_rev == LPFC_SLI_REV4) 1600 lockdep_assert_held(&pring->ring_lock); 1601 else 1602 lockdep_assert_held(&phba->hbalock); 1603 1604 BUG_ON(!piocb); 1605 1606 list_add_tail(&piocb->list, &pring->txcmplq); 1607 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1608 pring->txcmplq_cnt++; 1609 1610 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1611 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1612 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1613 BUG_ON(!piocb->vport); 1614 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1615 mod_timer(&piocb->vport->els_tmofunc, 1616 jiffies + 1617 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1618 } 1619 1620 return 0; 1621 } 1622 1623 /** 1624 * lpfc_sli_ringtx_get - Get first element of the txq 1625 * @phba: Pointer to HBA context object. 1626 * @pring: Pointer to driver SLI ring object. 1627 * 1628 * This function is called with hbalock held to get next 1629 * iocb in txq of the given ring. If there is any iocb in 1630 * the txq, the function returns first iocb in the list after 1631 * removing the iocb from the list, else it returns NULL. 1632 **/ 1633 struct lpfc_iocbq * 1634 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1635 { 1636 struct lpfc_iocbq *cmd_iocb; 1637 1638 lockdep_assert_held(&phba->hbalock); 1639 1640 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1641 return cmd_iocb; 1642 } 1643 1644 /** 1645 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1646 * @phba: Pointer to HBA context object. 1647 * @pring: Pointer to driver SLI ring object. 1648 * 1649 * This function is called with hbalock held and the caller must post the 1650 * iocb without releasing the lock. If the caller releases the lock, 1651 * iocb slot returned by the function is not guaranteed to be available. 1652 * The function returns pointer to the next available iocb slot if there 1653 * is available slot in the ring, else it returns NULL. 1654 * If the get index of the ring is ahead of the put index, the function 1655 * will post an error attention event to the worker thread to take the 1656 * HBA to offline state. 1657 **/ 1658 static IOCB_t * 1659 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1660 { 1661 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1662 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1663 1664 lockdep_assert_held(&phba->hbalock); 1665 1666 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1667 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1668 pring->sli.sli3.next_cmdidx = 0; 1669 1670 if (unlikely(pring->sli.sli3.local_getidx == 1671 pring->sli.sli3.next_cmdidx)) { 1672 1673 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1674 1675 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1677 "0315 Ring %d issue: portCmdGet %d " 1678 "is bigger than cmd ring %d\n", 1679 pring->ringno, 1680 pring->sli.sli3.local_getidx, 1681 max_cmd_idx); 1682 1683 phba->link_state = LPFC_HBA_ERROR; 1684 /* 1685 * All error attention handlers are posted to 1686 * worker thread 1687 */ 1688 phba->work_ha |= HA_ERATT; 1689 phba->work_hs = HS_FFER3; 1690 1691 lpfc_worker_wake_up(phba); 1692 1693 return NULL; 1694 } 1695 1696 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1697 return NULL; 1698 } 1699 1700 return lpfc_cmd_iocb(phba, pring); 1701 } 1702 1703 /** 1704 * lpfc_sli_next_iotag - Get an iotag for the iocb 1705 * @phba: Pointer to HBA context object. 1706 * @iocbq: Pointer to driver iocb object. 1707 * 1708 * This function gets an iotag for the iocb. If there is no unused iotag and 1709 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1710 * array and assigns a new iotag. 1711 * The function returns the allocated iotag if successful, else returns zero. 1712 * Zero is not a valid iotag. 1713 * The caller is not required to hold any lock. 1714 **/ 1715 uint16_t 1716 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1717 { 1718 struct lpfc_iocbq **new_arr; 1719 struct lpfc_iocbq **old_arr; 1720 size_t new_len; 1721 struct lpfc_sli *psli = &phba->sli; 1722 uint16_t iotag; 1723 1724 spin_lock_irq(&phba->hbalock); 1725 iotag = psli->last_iotag; 1726 if(++iotag < psli->iocbq_lookup_len) { 1727 psli->last_iotag = iotag; 1728 psli->iocbq_lookup[iotag] = iocbq; 1729 spin_unlock_irq(&phba->hbalock); 1730 iocbq->iotag = iotag; 1731 return iotag; 1732 } else if (psli->iocbq_lookup_len < (0xffff 1733 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1734 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1735 spin_unlock_irq(&phba->hbalock); 1736 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1737 GFP_KERNEL); 1738 if (new_arr) { 1739 spin_lock_irq(&phba->hbalock); 1740 old_arr = psli->iocbq_lookup; 1741 if (new_len <= psli->iocbq_lookup_len) { 1742 /* highly unprobable case */ 1743 kfree(new_arr); 1744 iotag = psli->last_iotag; 1745 if(++iotag < psli->iocbq_lookup_len) { 1746 psli->last_iotag = iotag; 1747 psli->iocbq_lookup[iotag] = iocbq; 1748 spin_unlock_irq(&phba->hbalock); 1749 iocbq->iotag = iotag; 1750 return iotag; 1751 } 1752 spin_unlock_irq(&phba->hbalock); 1753 return 0; 1754 } 1755 if (psli->iocbq_lookup) 1756 memcpy(new_arr, old_arr, 1757 ((psli->last_iotag + 1) * 1758 sizeof (struct lpfc_iocbq *))); 1759 psli->iocbq_lookup = new_arr; 1760 psli->iocbq_lookup_len = new_len; 1761 psli->last_iotag = iotag; 1762 psli->iocbq_lookup[iotag] = iocbq; 1763 spin_unlock_irq(&phba->hbalock); 1764 iocbq->iotag = iotag; 1765 kfree(old_arr); 1766 return iotag; 1767 } 1768 } else 1769 spin_unlock_irq(&phba->hbalock); 1770 1771 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1772 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1773 psli->last_iotag); 1774 1775 return 0; 1776 } 1777 1778 /** 1779 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1780 * @phba: Pointer to HBA context object. 1781 * @pring: Pointer to driver SLI ring object. 1782 * @iocb: Pointer to iocb slot in the ring. 1783 * @nextiocb: Pointer to driver iocb object which need to be 1784 * posted to firmware. 1785 * 1786 * This function is called to post a new iocb to the firmware. This 1787 * function copies the new iocb to ring iocb slot and updates the 1788 * ring pointers. It adds the new iocb to txcmplq if there is 1789 * a completion call back for this iocb else the function will free the 1790 * iocb object. The hbalock is asserted held in the code path calling 1791 * this routine. 1792 **/ 1793 static void 1794 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1795 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1796 { 1797 /* 1798 * Set up an iotag 1799 */ 1800 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1801 1802 1803 if (pring->ringno == LPFC_ELS_RING) { 1804 lpfc_debugfs_slow_ring_trc(phba, 1805 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1806 *(((uint32_t *) &nextiocb->iocb) + 4), 1807 *(((uint32_t *) &nextiocb->iocb) + 6), 1808 *(((uint32_t *) &nextiocb->iocb) + 7)); 1809 } 1810 1811 /* 1812 * Issue iocb command to adapter 1813 */ 1814 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1815 wmb(); 1816 pring->stats.iocb_cmd++; 1817 1818 /* 1819 * If there is no completion routine to call, we can release the 1820 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1821 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1822 */ 1823 if (nextiocb->iocb_cmpl) 1824 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1825 else 1826 __lpfc_sli_release_iocbq(phba, nextiocb); 1827 1828 /* 1829 * Let the HBA know what IOCB slot will be the next one the 1830 * driver will put a command into. 1831 */ 1832 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1833 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1834 } 1835 1836 /** 1837 * lpfc_sli_update_full_ring - Update the chip attention register 1838 * @phba: Pointer to HBA context object. 1839 * @pring: Pointer to driver SLI ring object. 1840 * 1841 * The caller is not required to hold any lock for calling this function. 1842 * This function updates the chip attention bits for the ring to inform firmware 1843 * that there are pending work to be done for this ring and requests an 1844 * interrupt when there is space available in the ring. This function is 1845 * called when the driver is unable to post more iocbs to the ring due 1846 * to unavailability of space in the ring. 1847 **/ 1848 static void 1849 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1850 { 1851 int ringno = pring->ringno; 1852 1853 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1854 1855 wmb(); 1856 1857 /* 1858 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1859 * The HBA will tell us when an IOCB entry is available. 1860 */ 1861 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1862 readl(phba->CAregaddr); /* flush */ 1863 1864 pring->stats.iocb_cmd_full++; 1865 } 1866 1867 /** 1868 * lpfc_sli_update_ring - Update chip attention register 1869 * @phba: Pointer to HBA context object. 1870 * @pring: Pointer to driver SLI ring object. 1871 * 1872 * This function updates the chip attention register bit for the 1873 * given ring to inform HBA that there is more work to be done 1874 * in this ring. The caller is not required to hold any lock. 1875 **/ 1876 static void 1877 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1878 { 1879 int ringno = pring->ringno; 1880 1881 /* 1882 * Tell the HBA that there is work to do in this ring. 1883 */ 1884 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1885 wmb(); 1886 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1887 readl(phba->CAregaddr); /* flush */ 1888 } 1889 } 1890 1891 /** 1892 * lpfc_sli_resume_iocb - Process iocbs in the txq 1893 * @phba: Pointer to HBA context object. 1894 * @pring: Pointer to driver SLI ring object. 1895 * 1896 * This function is called with hbalock held to post pending iocbs 1897 * in the txq to the firmware. This function is called when driver 1898 * detects space available in the ring. 1899 **/ 1900 static void 1901 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1902 { 1903 IOCB_t *iocb; 1904 struct lpfc_iocbq *nextiocb; 1905 1906 lockdep_assert_held(&phba->hbalock); 1907 1908 /* 1909 * Check to see if: 1910 * (a) there is anything on the txq to send 1911 * (b) link is up 1912 * (c) link attention events can be processed (fcp ring only) 1913 * (d) IOCB processing is not blocked by the outstanding mbox command. 1914 */ 1915 1916 if (lpfc_is_link_up(phba) && 1917 (!list_empty(&pring->txq)) && 1918 (pring->ringno != LPFC_FCP_RING || 1919 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1920 1921 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1922 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1923 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1924 1925 if (iocb) 1926 lpfc_sli_update_ring(phba, pring); 1927 else 1928 lpfc_sli_update_full_ring(phba, pring); 1929 } 1930 1931 return; 1932 } 1933 1934 /** 1935 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1936 * @phba: Pointer to HBA context object. 1937 * @hbqno: HBQ number. 1938 * 1939 * This function is called with hbalock held to get the next 1940 * available slot for the given HBQ. If there is free slot 1941 * available for the HBQ it will return pointer to the next available 1942 * HBQ entry else it will return NULL. 1943 **/ 1944 static struct lpfc_hbq_entry * 1945 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1946 { 1947 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1948 1949 lockdep_assert_held(&phba->hbalock); 1950 1951 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1952 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1953 hbqp->next_hbqPutIdx = 0; 1954 1955 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1956 uint32_t raw_index = phba->hbq_get[hbqno]; 1957 uint32_t getidx = le32_to_cpu(raw_index); 1958 1959 hbqp->local_hbqGetIdx = getidx; 1960 1961 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1963 "1802 HBQ %d: local_hbqGetIdx " 1964 "%u is > than hbqp->entry_count %u\n", 1965 hbqno, hbqp->local_hbqGetIdx, 1966 hbqp->entry_count); 1967 1968 phba->link_state = LPFC_HBA_ERROR; 1969 return NULL; 1970 } 1971 1972 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1973 return NULL; 1974 } 1975 1976 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1977 hbqp->hbqPutIdx; 1978 } 1979 1980 /** 1981 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1982 * @phba: Pointer to HBA context object. 1983 * 1984 * This function is called with no lock held to free all the 1985 * hbq buffers while uninitializing the SLI interface. It also 1986 * frees the HBQ buffers returned by the firmware but not yet 1987 * processed by the upper layers. 1988 **/ 1989 void 1990 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1991 { 1992 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1993 struct hbq_dmabuf *hbq_buf; 1994 unsigned long flags; 1995 int i, hbq_count; 1996 1997 hbq_count = lpfc_sli_hbq_count(); 1998 /* Return all memory used by all HBQs */ 1999 spin_lock_irqsave(&phba->hbalock, flags); 2000 for (i = 0; i < hbq_count; ++i) { 2001 list_for_each_entry_safe(dmabuf, next_dmabuf, 2002 &phba->hbqs[i].hbq_buffer_list, list) { 2003 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2004 list_del(&hbq_buf->dbuf.list); 2005 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2006 } 2007 phba->hbqs[i].buffer_count = 0; 2008 } 2009 2010 /* Mark the HBQs not in use */ 2011 phba->hbq_in_use = 0; 2012 spin_unlock_irqrestore(&phba->hbalock, flags); 2013 } 2014 2015 /** 2016 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2017 * @phba: Pointer to HBA context object. 2018 * @hbqno: HBQ number. 2019 * @hbq_buf: Pointer to HBQ buffer. 2020 * 2021 * This function is called with the hbalock held to post a 2022 * hbq buffer to the firmware. If the function finds an empty 2023 * slot in the HBQ, it will post the buffer. The function will return 2024 * pointer to the hbq entry if it successfully post the buffer 2025 * else it will return NULL. 2026 **/ 2027 static int 2028 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2029 struct hbq_dmabuf *hbq_buf) 2030 { 2031 lockdep_assert_held(&phba->hbalock); 2032 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2033 } 2034 2035 /** 2036 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2037 * @phba: Pointer to HBA context object. 2038 * @hbqno: HBQ number. 2039 * @hbq_buf: Pointer to HBQ buffer. 2040 * 2041 * This function is called with the hbalock held to post a hbq buffer to the 2042 * firmware. If the function finds an empty slot in the HBQ, it will post the 2043 * buffer and place it on the hbq_buffer_list. The function will return zero if 2044 * it successfully post the buffer else it will return an error. 2045 **/ 2046 static int 2047 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2048 struct hbq_dmabuf *hbq_buf) 2049 { 2050 struct lpfc_hbq_entry *hbqe; 2051 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2052 2053 lockdep_assert_held(&phba->hbalock); 2054 /* Get next HBQ entry slot to use */ 2055 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2056 if (hbqe) { 2057 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2058 2059 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2060 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2061 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2062 hbqe->bde.tus.f.bdeFlags = 0; 2063 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2064 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2065 /* Sync SLIM */ 2066 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2067 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2068 /* flush */ 2069 readl(phba->hbq_put + hbqno); 2070 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2071 return 0; 2072 } else 2073 return -ENOMEM; 2074 } 2075 2076 /** 2077 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2078 * @phba: Pointer to HBA context object. 2079 * @hbqno: HBQ number. 2080 * @hbq_buf: Pointer to HBQ buffer. 2081 * 2082 * This function is called with the hbalock held to post an RQE to the SLI4 2083 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2084 * the hbq_buffer_list and return zero, otherwise it will return an error. 2085 **/ 2086 static int 2087 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2088 struct hbq_dmabuf *hbq_buf) 2089 { 2090 int rc; 2091 struct lpfc_rqe hrqe; 2092 struct lpfc_rqe drqe; 2093 struct lpfc_queue *hrq; 2094 struct lpfc_queue *drq; 2095 2096 if (hbqno != LPFC_ELS_HBQ) 2097 return 1; 2098 hrq = phba->sli4_hba.hdr_rq; 2099 drq = phba->sli4_hba.dat_rq; 2100 2101 lockdep_assert_held(&phba->hbalock); 2102 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2103 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2104 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2105 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2106 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2107 if (rc < 0) 2108 return rc; 2109 hbq_buf->tag = (rc | (hbqno << 16)); 2110 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2111 return 0; 2112 } 2113 2114 /* HBQ for ELS and CT traffic. */ 2115 static struct lpfc_hbq_init lpfc_els_hbq = { 2116 .rn = 1, 2117 .entry_count = 256, 2118 .mask_count = 0, 2119 .profile = 0, 2120 .ring_mask = (1 << LPFC_ELS_RING), 2121 .buffer_count = 0, 2122 .init_count = 40, 2123 .add_count = 40, 2124 }; 2125 2126 /* Array of HBQs */ 2127 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2128 &lpfc_els_hbq, 2129 }; 2130 2131 /** 2132 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2133 * @phba: Pointer to HBA context object. 2134 * @hbqno: HBQ number. 2135 * @count: Number of HBQ buffers to be posted. 2136 * 2137 * This function is called with no lock held to post more hbq buffers to the 2138 * given HBQ. The function returns the number of HBQ buffers successfully 2139 * posted. 2140 **/ 2141 static int 2142 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2143 { 2144 uint32_t i, posted = 0; 2145 unsigned long flags; 2146 struct hbq_dmabuf *hbq_buffer; 2147 LIST_HEAD(hbq_buf_list); 2148 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2149 return 0; 2150 2151 if ((phba->hbqs[hbqno].buffer_count + count) > 2152 lpfc_hbq_defs[hbqno]->entry_count) 2153 count = lpfc_hbq_defs[hbqno]->entry_count - 2154 phba->hbqs[hbqno].buffer_count; 2155 if (!count) 2156 return 0; 2157 /* Allocate HBQ entries */ 2158 for (i = 0; i < count; i++) { 2159 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2160 if (!hbq_buffer) 2161 break; 2162 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2163 } 2164 /* Check whether HBQ is still in use */ 2165 spin_lock_irqsave(&phba->hbalock, flags); 2166 if (!phba->hbq_in_use) 2167 goto err; 2168 while (!list_empty(&hbq_buf_list)) { 2169 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2170 dbuf.list); 2171 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2172 (hbqno << 16)); 2173 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2174 phba->hbqs[hbqno].buffer_count++; 2175 posted++; 2176 } else 2177 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2178 } 2179 spin_unlock_irqrestore(&phba->hbalock, flags); 2180 return posted; 2181 err: 2182 spin_unlock_irqrestore(&phba->hbalock, flags); 2183 while (!list_empty(&hbq_buf_list)) { 2184 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2185 dbuf.list); 2186 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2187 } 2188 return 0; 2189 } 2190 2191 /** 2192 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2193 * @phba: Pointer to HBA context object. 2194 * @qno: HBQ number. 2195 * 2196 * This function posts more buffers to the HBQ. This function 2197 * is called with no lock held. The function returns the number of HBQ entries 2198 * successfully allocated. 2199 **/ 2200 int 2201 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2202 { 2203 if (phba->sli_rev == LPFC_SLI_REV4) 2204 return 0; 2205 else 2206 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2207 lpfc_hbq_defs[qno]->add_count); 2208 } 2209 2210 /** 2211 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2212 * @phba: Pointer to HBA context object. 2213 * @qno: HBQ queue number. 2214 * 2215 * This function is called from SLI initialization code path with 2216 * no lock held to post initial HBQ buffers to firmware. The 2217 * function returns the number of HBQ entries successfully allocated. 2218 **/ 2219 static int 2220 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2221 { 2222 if (phba->sli_rev == LPFC_SLI_REV4) 2223 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2224 lpfc_hbq_defs[qno]->entry_count); 2225 else 2226 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2227 lpfc_hbq_defs[qno]->init_count); 2228 } 2229 2230 /* 2231 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2232 * 2233 * This function removes the first hbq buffer on an hbq list and returns a 2234 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2235 **/ 2236 static struct hbq_dmabuf * 2237 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2238 { 2239 struct lpfc_dmabuf *d_buf; 2240 2241 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2242 if (!d_buf) 2243 return NULL; 2244 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2245 } 2246 2247 /** 2248 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2249 * @phba: Pointer to HBA context object. 2250 * @hrq: HBQ number. 2251 * 2252 * This function removes the first RQ buffer on an RQ buffer list and returns a 2253 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2254 **/ 2255 static struct rqb_dmabuf * 2256 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2257 { 2258 struct lpfc_dmabuf *h_buf; 2259 struct lpfc_rqb *rqbp; 2260 2261 rqbp = hrq->rqbp; 2262 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2263 struct lpfc_dmabuf, list); 2264 if (!h_buf) 2265 return NULL; 2266 rqbp->buffer_count--; 2267 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2268 } 2269 2270 /** 2271 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2272 * @phba: Pointer to HBA context object. 2273 * @tag: Tag of the hbq buffer. 2274 * 2275 * This function searches for the hbq buffer associated with the given tag in 2276 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2277 * otherwise it returns NULL. 2278 **/ 2279 static struct hbq_dmabuf * 2280 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2281 { 2282 struct lpfc_dmabuf *d_buf; 2283 struct hbq_dmabuf *hbq_buf; 2284 uint32_t hbqno; 2285 2286 hbqno = tag >> 16; 2287 if (hbqno >= LPFC_MAX_HBQS) 2288 return NULL; 2289 2290 spin_lock_irq(&phba->hbalock); 2291 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2292 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2293 if (hbq_buf->tag == tag) { 2294 spin_unlock_irq(&phba->hbalock); 2295 return hbq_buf; 2296 } 2297 } 2298 spin_unlock_irq(&phba->hbalock); 2299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2300 "1803 Bad hbq tag. Data: x%x x%x\n", 2301 tag, phba->hbqs[tag >> 16].buffer_count); 2302 return NULL; 2303 } 2304 2305 /** 2306 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2307 * @phba: Pointer to HBA context object. 2308 * @hbq_buffer: Pointer to HBQ buffer. 2309 * 2310 * This function is called with hbalock. This function gives back 2311 * the hbq buffer to firmware. If the HBQ does not have space to 2312 * post the buffer, it will free the buffer. 2313 **/ 2314 void 2315 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2316 { 2317 uint32_t hbqno; 2318 2319 if (hbq_buffer) { 2320 hbqno = hbq_buffer->tag >> 16; 2321 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2322 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2323 } 2324 } 2325 2326 /** 2327 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2328 * @mbxCommand: mailbox command code. 2329 * 2330 * This function is called by the mailbox event handler function to verify 2331 * that the completed mailbox command is a legitimate mailbox command. If the 2332 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2333 * and the mailbox event handler will take the HBA offline. 2334 **/ 2335 static int 2336 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2337 { 2338 uint8_t ret; 2339 2340 switch (mbxCommand) { 2341 case MBX_LOAD_SM: 2342 case MBX_READ_NV: 2343 case MBX_WRITE_NV: 2344 case MBX_WRITE_VPARMS: 2345 case MBX_RUN_BIU_DIAG: 2346 case MBX_INIT_LINK: 2347 case MBX_DOWN_LINK: 2348 case MBX_CONFIG_LINK: 2349 case MBX_CONFIG_RING: 2350 case MBX_RESET_RING: 2351 case MBX_READ_CONFIG: 2352 case MBX_READ_RCONFIG: 2353 case MBX_READ_SPARM: 2354 case MBX_READ_STATUS: 2355 case MBX_READ_RPI: 2356 case MBX_READ_XRI: 2357 case MBX_READ_REV: 2358 case MBX_READ_LNK_STAT: 2359 case MBX_REG_LOGIN: 2360 case MBX_UNREG_LOGIN: 2361 case MBX_CLEAR_LA: 2362 case MBX_DUMP_MEMORY: 2363 case MBX_DUMP_CONTEXT: 2364 case MBX_RUN_DIAGS: 2365 case MBX_RESTART: 2366 case MBX_UPDATE_CFG: 2367 case MBX_DOWN_LOAD: 2368 case MBX_DEL_LD_ENTRY: 2369 case MBX_RUN_PROGRAM: 2370 case MBX_SET_MASK: 2371 case MBX_SET_VARIABLE: 2372 case MBX_UNREG_D_ID: 2373 case MBX_KILL_BOARD: 2374 case MBX_CONFIG_FARP: 2375 case MBX_BEACON: 2376 case MBX_LOAD_AREA: 2377 case MBX_RUN_BIU_DIAG64: 2378 case MBX_CONFIG_PORT: 2379 case MBX_READ_SPARM64: 2380 case MBX_READ_RPI64: 2381 case MBX_REG_LOGIN64: 2382 case MBX_READ_TOPOLOGY: 2383 case MBX_WRITE_WWN: 2384 case MBX_SET_DEBUG: 2385 case MBX_LOAD_EXP_ROM: 2386 case MBX_ASYNCEVT_ENABLE: 2387 case MBX_REG_VPI: 2388 case MBX_UNREG_VPI: 2389 case MBX_HEARTBEAT: 2390 case MBX_PORT_CAPABILITIES: 2391 case MBX_PORT_IOV_CONTROL: 2392 case MBX_SLI4_CONFIG: 2393 case MBX_SLI4_REQ_FTRS: 2394 case MBX_REG_FCFI: 2395 case MBX_UNREG_FCFI: 2396 case MBX_REG_VFI: 2397 case MBX_UNREG_VFI: 2398 case MBX_INIT_VPI: 2399 case MBX_INIT_VFI: 2400 case MBX_RESUME_RPI: 2401 case MBX_READ_EVENT_LOG_STATUS: 2402 case MBX_READ_EVENT_LOG: 2403 case MBX_SECURITY_MGMT: 2404 case MBX_AUTH_PORT: 2405 case MBX_ACCESS_VDATA: 2406 ret = mbxCommand; 2407 break; 2408 default: 2409 ret = MBX_SHUTDOWN; 2410 break; 2411 } 2412 return ret; 2413 } 2414 2415 /** 2416 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2417 * @phba: Pointer to HBA context object. 2418 * @pmboxq: Pointer to mailbox command. 2419 * 2420 * This is completion handler function for mailbox commands issued from 2421 * lpfc_sli_issue_mbox_wait function. This function is called by the 2422 * mailbox event handler function with no lock held. This function 2423 * will wake up thread waiting on the wait queue pointed by context1 2424 * of the mailbox. 2425 **/ 2426 void 2427 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2428 { 2429 unsigned long drvr_flag; 2430 struct completion *pmbox_done; 2431 2432 /* 2433 * If pmbox_done is empty, the driver thread gave up waiting and 2434 * continued running. 2435 */ 2436 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2437 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2438 pmbox_done = (struct completion *)pmboxq->context3; 2439 if (pmbox_done) 2440 complete(pmbox_done); 2441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2442 return; 2443 } 2444 2445 static void 2446 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2447 { 2448 unsigned long iflags; 2449 2450 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2451 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2452 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags); 2453 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2454 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2455 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags); 2456 } 2457 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2458 } 2459 2460 /** 2461 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2462 * @phba: Pointer to HBA context object. 2463 * @pmb: Pointer to mailbox object. 2464 * 2465 * This function is the default mailbox completion handler. It 2466 * frees the memory resources associated with the completed mailbox 2467 * command. If the completed command is a REG_LOGIN mailbox command, 2468 * this function will issue a UREG_LOGIN to re-claim the RPI. 2469 **/ 2470 void 2471 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2472 { 2473 struct lpfc_vport *vport = pmb->vport; 2474 struct lpfc_dmabuf *mp; 2475 struct lpfc_nodelist *ndlp; 2476 struct Scsi_Host *shost; 2477 uint16_t rpi, vpi; 2478 int rc; 2479 2480 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2481 2482 if (mp) { 2483 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2484 kfree(mp); 2485 } 2486 2487 /* 2488 * If a REG_LOGIN succeeded after node is destroyed or node 2489 * is in re-discovery driver need to cleanup the RPI. 2490 */ 2491 if (!(phba->pport->load_flag & FC_UNLOADING) && 2492 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2493 !pmb->u.mb.mbxStatus) { 2494 rpi = pmb->u.mb.un.varWords[0]; 2495 vpi = pmb->u.mb.un.varRegLogin.vpi; 2496 if (phba->sli_rev == LPFC_SLI_REV4) 2497 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2498 lpfc_unreg_login(phba, vpi, rpi, pmb); 2499 pmb->vport = vport; 2500 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2501 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2502 if (rc != MBX_NOT_FINISHED) 2503 return; 2504 } 2505 2506 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2507 !(phba->pport->load_flag & FC_UNLOADING) && 2508 !pmb->u.mb.mbxStatus) { 2509 shost = lpfc_shost_from_vport(vport); 2510 spin_lock_irq(shost->host_lock); 2511 vport->vpi_state |= LPFC_VPI_REGISTERED; 2512 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2513 spin_unlock_irq(shost->host_lock); 2514 } 2515 2516 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2517 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2518 lpfc_nlp_put(ndlp); 2519 pmb->ctx_buf = NULL; 2520 pmb->ctx_ndlp = NULL; 2521 } 2522 2523 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2524 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2525 2526 /* Check to see if there are any deferred events to process */ 2527 if (ndlp) { 2528 lpfc_printf_vlog( 2529 vport, 2530 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2531 "1438 UNREG cmpl deferred mbox x%x " 2532 "on NPort x%x Data: x%x x%x %px\n", 2533 ndlp->nlp_rpi, ndlp->nlp_DID, 2534 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2535 2536 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2537 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2538 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2539 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2540 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2541 } else { 2542 __lpfc_sli_rpi_release(vport, ndlp); 2543 } 2544 if (vport->load_flag & FC_UNLOADING) 2545 lpfc_nlp_put(ndlp); 2546 pmb->ctx_ndlp = NULL; 2547 } 2548 } 2549 2550 /* Check security permission status on INIT_LINK mailbox command */ 2551 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2552 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2554 "2860 SLI authentication is required " 2555 "for INIT_LINK but has not done yet\n"); 2556 2557 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2558 lpfc_sli4_mbox_cmd_free(phba, pmb); 2559 else 2560 mempool_free(pmb, phba->mbox_mem_pool); 2561 } 2562 /** 2563 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2564 * @phba: Pointer to HBA context object. 2565 * @pmb: Pointer to mailbox object. 2566 * 2567 * This function is the unreg rpi mailbox completion handler. It 2568 * frees the memory resources associated with the completed mailbox 2569 * command. An additional refrenece is put on the ndlp to prevent 2570 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2571 * the unreg mailbox command completes, this routine puts the 2572 * reference back. 2573 * 2574 **/ 2575 void 2576 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2577 { 2578 struct lpfc_vport *vport = pmb->vport; 2579 struct lpfc_nodelist *ndlp; 2580 2581 ndlp = pmb->ctx_ndlp; 2582 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2583 if (phba->sli_rev == LPFC_SLI_REV4 && 2584 (bf_get(lpfc_sli_intf_if_type, 2585 &phba->sli4_hba.sli_intf) >= 2586 LPFC_SLI_INTF_IF_TYPE_2)) { 2587 if (ndlp) { 2588 lpfc_printf_vlog( 2589 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2590 "0010 UNREG_LOGIN vpi:%x " 2591 "rpi:%x DID:%x defer x%x flg x%x " 2592 "map:%x %px\n", 2593 vport->vpi, ndlp->nlp_rpi, 2594 ndlp->nlp_DID, ndlp->nlp_defer_did, 2595 ndlp->nlp_flag, 2596 ndlp->nlp_usg_map, ndlp); 2597 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2598 lpfc_nlp_put(ndlp); 2599 2600 /* Check to see if there are any deferred 2601 * events to process 2602 */ 2603 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2604 (ndlp->nlp_defer_did != 2605 NLP_EVT_NOTHING_PENDING)) { 2606 lpfc_printf_vlog( 2607 vport, KERN_INFO, LOG_DISCOVERY, 2608 "4111 UNREG cmpl deferred " 2609 "clr x%x on " 2610 "NPort x%x Data: x%x x%px\n", 2611 ndlp->nlp_rpi, ndlp->nlp_DID, 2612 ndlp->nlp_defer_did, ndlp); 2613 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2614 ndlp->nlp_defer_did = 2615 NLP_EVT_NOTHING_PENDING; 2616 lpfc_issue_els_plogi( 2617 vport, ndlp->nlp_DID, 0); 2618 } else { 2619 __lpfc_sli_rpi_release(vport, ndlp); 2620 } 2621 } 2622 } 2623 } 2624 2625 mempool_free(pmb, phba->mbox_mem_pool); 2626 } 2627 2628 /** 2629 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2630 * @phba: Pointer to HBA context object. 2631 * 2632 * This function is called with no lock held. This function processes all 2633 * the completed mailbox commands and gives it to upper layers. The interrupt 2634 * service routine processes mailbox completion interrupt and adds completed 2635 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2636 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2637 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2638 * function returns the mailbox commands to the upper layer by calling the 2639 * completion handler function of each mailbox. 2640 **/ 2641 int 2642 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2643 { 2644 MAILBOX_t *pmbox; 2645 LPFC_MBOXQ_t *pmb; 2646 int rc; 2647 LIST_HEAD(cmplq); 2648 2649 phba->sli.slistat.mbox_event++; 2650 2651 /* Get all completed mailboxe buffers into the cmplq */ 2652 spin_lock_irq(&phba->hbalock); 2653 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2654 spin_unlock_irq(&phba->hbalock); 2655 2656 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2657 do { 2658 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2659 if (pmb == NULL) 2660 break; 2661 2662 pmbox = &pmb->u.mb; 2663 2664 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2665 if (pmb->vport) { 2666 lpfc_debugfs_disc_trc(pmb->vport, 2667 LPFC_DISC_TRC_MBOX_VPORT, 2668 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2669 (uint32_t)pmbox->mbxCommand, 2670 pmbox->un.varWords[0], 2671 pmbox->un.varWords[1]); 2672 } 2673 else { 2674 lpfc_debugfs_disc_trc(phba->pport, 2675 LPFC_DISC_TRC_MBOX, 2676 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2677 (uint32_t)pmbox->mbxCommand, 2678 pmbox->un.varWords[0], 2679 pmbox->un.varWords[1]); 2680 } 2681 } 2682 2683 /* 2684 * It is a fatal error if unknown mbox command completion. 2685 */ 2686 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2687 MBX_SHUTDOWN) { 2688 /* Unknown mailbox command compl */ 2689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2690 "(%d):0323 Unknown Mailbox command " 2691 "x%x (x%x/x%x) Cmpl\n", 2692 pmb->vport ? pmb->vport->vpi : 2693 LPFC_VPORT_UNKNOWN, 2694 pmbox->mbxCommand, 2695 lpfc_sli_config_mbox_subsys_get(phba, 2696 pmb), 2697 lpfc_sli_config_mbox_opcode_get(phba, 2698 pmb)); 2699 phba->link_state = LPFC_HBA_ERROR; 2700 phba->work_hs = HS_FFER3; 2701 lpfc_handle_eratt(phba); 2702 continue; 2703 } 2704 2705 if (pmbox->mbxStatus) { 2706 phba->sli.slistat.mbox_stat_err++; 2707 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2708 /* Mbox cmd cmpl error - RETRYing */ 2709 lpfc_printf_log(phba, KERN_INFO, 2710 LOG_MBOX | LOG_SLI, 2711 "(%d):0305 Mbox cmd cmpl " 2712 "error - RETRYing Data: x%x " 2713 "(x%x/x%x) x%x x%x x%x\n", 2714 pmb->vport ? pmb->vport->vpi : 2715 LPFC_VPORT_UNKNOWN, 2716 pmbox->mbxCommand, 2717 lpfc_sli_config_mbox_subsys_get(phba, 2718 pmb), 2719 lpfc_sli_config_mbox_opcode_get(phba, 2720 pmb), 2721 pmbox->mbxStatus, 2722 pmbox->un.varWords[0], 2723 pmb->vport ? pmb->vport->port_state : 2724 LPFC_VPORT_UNKNOWN); 2725 pmbox->mbxStatus = 0; 2726 pmbox->mbxOwner = OWN_HOST; 2727 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2728 if (rc != MBX_NOT_FINISHED) 2729 continue; 2730 } 2731 } 2732 2733 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2734 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2735 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2736 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2737 "x%x x%x x%x\n", 2738 pmb->vport ? pmb->vport->vpi : 0, 2739 pmbox->mbxCommand, 2740 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2741 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2742 pmb->mbox_cmpl, 2743 *((uint32_t *) pmbox), 2744 pmbox->un.varWords[0], 2745 pmbox->un.varWords[1], 2746 pmbox->un.varWords[2], 2747 pmbox->un.varWords[3], 2748 pmbox->un.varWords[4], 2749 pmbox->un.varWords[5], 2750 pmbox->un.varWords[6], 2751 pmbox->un.varWords[7], 2752 pmbox->un.varWords[8], 2753 pmbox->un.varWords[9], 2754 pmbox->un.varWords[10]); 2755 2756 if (pmb->mbox_cmpl) 2757 pmb->mbox_cmpl(phba,pmb); 2758 } while (1); 2759 return 0; 2760 } 2761 2762 /** 2763 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2764 * @phba: Pointer to HBA context object. 2765 * @pring: Pointer to driver SLI ring object. 2766 * @tag: buffer tag. 2767 * 2768 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2769 * is set in the tag the buffer is posted for a particular exchange, 2770 * the function will return the buffer without replacing the buffer. 2771 * If the buffer is for unsolicited ELS or CT traffic, this function 2772 * returns the buffer and also posts another buffer to the firmware. 2773 **/ 2774 static struct lpfc_dmabuf * 2775 lpfc_sli_get_buff(struct lpfc_hba *phba, 2776 struct lpfc_sli_ring *pring, 2777 uint32_t tag) 2778 { 2779 struct hbq_dmabuf *hbq_entry; 2780 2781 if (tag & QUE_BUFTAG_BIT) 2782 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2783 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2784 if (!hbq_entry) 2785 return NULL; 2786 return &hbq_entry->dbuf; 2787 } 2788 2789 /** 2790 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2791 * containing a NVME LS request. 2792 * @phba: pointer to lpfc hba data structure. 2793 * @piocb: pointer to the iocbq struct representing the sequence starting 2794 * frame. 2795 * 2796 * This routine initially validates the NVME LS, validates there is a login 2797 * with the port that sent the LS, and then calls the appropriate nvme host 2798 * or target LS request handler. 2799 **/ 2800 static void 2801 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2802 { 2803 struct lpfc_nodelist *ndlp; 2804 struct lpfc_dmabuf *d_buf; 2805 struct hbq_dmabuf *nvmebuf; 2806 struct fc_frame_header *fc_hdr; 2807 struct lpfc_async_xchg_ctx *axchg = NULL; 2808 char *failwhy = NULL; 2809 uint32_t oxid, sid, did, fctl, size; 2810 int ret = 1; 2811 2812 d_buf = piocb->context2; 2813 2814 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2815 fc_hdr = nvmebuf->hbuf.virt; 2816 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2817 sid = sli4_sid_from_fc_hdr(fc_hdr); 2818 did = sli4_did_from_fc_hdr(fc_hdr); 2819 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2820 fc_hdr->fh_f_ctl[1] << 8 | 2821 fc_hdr->fh_f_ctl[2]); 2822 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2823 2824 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2825 oxid, size, sid); 2826 2827 if (phba->pport->load_flag & FC_UNLOADING) { 2828 failwhy = "Driver Unloading"; 2829 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2830 failwhy = "NVME FC4 Disabled"; 2831 } else if (!phba->nvmet_support && !phba->pport->localport) { 2832 failwhy = "No Localport"; 2833 } else if (phba->nvmet_support && !phba->targetport) { 2834 failwhy = "No Targetport"; 2835 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2836 failwhy = "Bad NVME LS R_CTL"; 2837 } else if (unlikely((fctl & 0x00FF0000) != 2838 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2839 failwhy = "Bad NVME LS F_CTL"; 2840 } else { 2841 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2842 if (!axchg) 2843 failwhy = "No CTX memory"; 2844 } 2845 2846 if (unlikely(failwhy)) { 2847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2848 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2849 sid, oxid, failwhy); 2850 goto out_fail; 2851 } 2852 2853 /* validate the source of the LS is logged in */ 2854 ndlp = lpfc_findnode_did(phba->pport, sid); 2855 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2856 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2857 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2858 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2859 "6216 NVME Unsol rcv: No ndlp: " 2860 "NPort_ID x%x oxid x%x\n", 2861 sid, oxid); 2862 goto out_fail; 2863 } 2864 2865 axchg->phba = phba; 2866 axchg->ndlp = ndlp; 2867 axchg->size = size; 2868 axchg->oxid = oxid; 2869 axchg->sid = sid; 2870 axchg->wqeq = NULL; 2871 axchg->state = LPFC_NVME_STE_LS_RCV; 2872 axchg->entry_cnt = 1; 2873 axchg->rqb_buffer = (void *)nvmebuf; 2874 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 2875 axchg->payload = nvmebuf->dbuf.virt; 2876 INIT_LIST_HEAD(&axchg->list); 2877 2878 if (phba->nvmet_support) 2879 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 2880 else 2881 ret = lpfc_nvme_handle_lsreq(phba, axchg); 2882 2883 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 2884 if (!ret) 2885 return; 2886 2887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2888 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 2889 "NVMe%s handler failed %d\n", 2890 did, sid, oxid, 2891 (phba->nvmet_support) ? "T" : "I", ret); 2892 2893 out_fail: 2894 2895 /* recycle receive buffer */ 2896 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2897 2898 /* If start of new exchange, abort it */ 2899 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 2900 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 2901 2902 if (ret) 2903 kfree(axchg); 2904 } 2905 2906 /** 2907 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2908 * @phba: Pointer to HBA context object. 2909 * @pring: Pointer to driver SLI ring object. 2910 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2911 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2912 * @fch_type: the type for the first frame of the sequence. 2913 * 2914 * This function is called with no lock held. This function uses the r_ctl and 2915 * type of the received sequence to find the correct callback function to call 2916 * to process the sequence. 2917 **/ 2918 static int 2919 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2920 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2921 uint32_t fch_type) 2922 { 2923 int i; 2924 2925 switch (fch_type) { 2926 case FC_TYPE_NVME: 2927 lpfc_nvme_unsol_ls_handler(phba, saveq); 2928 return 1; 2929 default: 2930 break; 2931 } 2932 2933 /* unSolicited Responses */ 2934 if (pring->prt[0].profile) { 2935 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2936 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2937 saveq); 2938 return 1; 2939 } 2940 /* We must search, based on rctl / type 2941 for the right routine */ 2942 for (i = 0; i < pring->num_mask; i++) { 2943 if ((pring->prt[i].rctl == fch_r_ctl) && 2944 (pring->prt[i].type == fch_type)) { 2945 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2946 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2947 (phba, pring, saveq); 2948 return 1; 2949 } 2950 } 2951 return 0; 2952 } 2953 2954 /** 2955 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2956 * @phba: Pointer to HBA context object. 2957 * @pring: Pointer to driver SLI ring object. 2958 * @saveq: Pointer to the unsolicited iocb. 2959 * 2960 * This function is called with no lock held by the ring event handler 2961 * when there is an unsolicited iocb posted to the response ring by the 2962 * firmware. This function gets the buffer associated with the iocbs 2963 * and calls the event handler for the ring. This function handles both 2964 * qring buffers and hbq buffers. 2965 * When the function returns 1 the caller can free the iocb object otherwise 2966 * upper layer functions will free the iocb objects. 2967 **/ 2968 static int 2969 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2970 struct lpfc_iocbq *saveq) 2971 { 2972 IOCB_t * irsp; 2973 WORD5 * w5p; 2974 uint32_t Rctl, Type; 2975 struct lpfc_iocbq *iocbq; 2976 struct lpfc_dmabuf *dmzbuf; 2977 2978 irsp = &(saveq->iocb); 2979 2980 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2981 if (pring->lpfc_sli_rcv_async_status) 2982 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2983 else 2984 lpfc_printf_log(phba, 2985 KERN_WARNING, 2986 LOG_SLI, 2987 "0316 Ring %d handler: unexpected " 2988 "ASYNC_STATUS iocb received evt_code " 2989 "0x%x\n", 2990 pring->ringno, 2991 irsp->un.asyncstat.evt_code); 2992 return 1; 2993 } 2994 2995 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2996 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2997 if (irsp->ulpBdeCount > 0) { 2998 dmzbuf = lpfc_sli_get_buff(phba, pring, 2999 irsp->un.ulpWord[3]); 3000 lpfc_in_buf_free(phba, dmzbuf); 3001 } 3002 3003 if (irsp->ulpBdeCount > 1) { 3004 dmzbuf = lpfc_sli_get_buff(phba, pring, 3005 irsp->unsli3.sli3Words[3]); 3006 lpfc_in_buf_free(phba, dmzbuf); 3007 } 3008 3009 if (irsp->ulpBdeCount > 2) { 3010 dmzbuf = lpfc_sli_get_buff(phba, pring, 3011 irsp->unsli3.sli3Words[7]); 3012 lpfc_in_buf_free(phba, dmzbuf); 3013 } 3014 3015 return 1; 3016 } 3017 3018 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3019 if (irsp->ulpBdeCount != 0) { 3020 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3021 irsp->un.ulpWord[3]); 3022 if (!saveq->context2) 3023 lpfc_printf_log(phba, 3024 KERN_ERR, 3025 LOG_SLI, 3026 "0341 Ring %d Cannot find buffer for " 3027 "an unsolicited iocb. tag 0x%x\n", 3028 pring->ringno, 3029 irsp->un.ulpWord[3]); 3030 } 3031 if (irsp->ulpBdeCount == 2) { 3032 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3033 irsp->unsli3.sli3Words[7]); 3034 if (!saveq->context3) 3035 lpfc_printf_log(phba, 3036 KERN_ERR, 3037 LOG_SLI, 3038 "0342 Ring %d Cannot find buffer for an" 3039 " unsolicited iocb. tag 0x%x\n", 3040 pring->ringno, 3041 irsp->unsli3.sli3Words[7]); 3042 } 3043 list_for_each_entry(iocbq, &saveq->list, list) { 3044 irsp = &(iocbq->iocb); 3045 if (irsp->ulpBdeCount != 0) { 3046 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3047 irsp->un.ulpWord[3]); 3048 if (!iocbq->context2) 3049 lpfc_printf_log(phba, 3050 KERN_ERR, 3051 LOG_SLI, 3052 "0343 Ring %d Cannot find " 3053 "buffer for an unsolicited iocb" 3054 ". tag 0x%x\n", pring->ringno, 3055 irsp->un.ulpWord[3]); 3056 } 3057 if (irsp->ulpBdeCount == 2) { 3058 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3059 irsp->unsli3.sli3Words[7]); 3060 if (!iocbq->context3) 3061 lpfc_printf_log(phba, 3062 KERN_ERR, 3063 LOG_SLI, 3064 "0344 Ring %d Cannot find " 3065 "buffer for an unsolicited " 3066 "iocb. tag 0x%x\n", 3067 pring->ringno, 3068 irsp->unsli3.sli3Words[7]); 3069 } 3070 } 3071 } 3072 if (irsp->ulpBdeCount != 0 && 3073 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3074 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3075 int found = 0; 3076 3077 /* search continue save q for same XRI */ 3078 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3079 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3080 saveq->iocb.unsli3.rcvsli3.ox_id) { 3081 list_add_tail(&saveq->list, &iocbq->list); 3082 found = 1; 3083 break; 3084 } 3085 } 3086 if (!found) 3087 list_add_tail(&saveq->clist, 3088 &pring->iocb_continue_saveq); 3089 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3090 list_del_init(&iocbq->clist); 3091 saveq = iocbq; 3092 irsp = &(saveq->iocb); 3093 } else 3094 return 0; 3095 } 3096 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3097 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3098 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3099 Rctl = FC_RCTL_ELS_REQ; 3100 Type = FC_TYPE_ELS; 3101 } else { 3102 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3103 Rctl = w5p->hcsw.Rctl; 3104 Type = w5p->hcsw.Type; 3105 3106 /* Firmware Workaround */ 3107 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3108 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3109 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3110 Rctl = FC_RCTL_ELS_REQ; 3111 Type = FC_TYPE_ELS; 3112 w5p->hcsw.Rctl = Rctl; 3113 w5p->hcsw.Type = Type; 3114 } 3115 } 3116 3117 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3118 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3119 "0313 Ring %d handler: unexpected Rctl x%x " 3120 "Type x%x received\n", 3121 pring->ringno, Rctl, Type); 3122 3123 return 1; 3124 } 3125 3126 /** 3127 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3128 * @phba: Pointer to HBA context object. 3129 * @pring: Pointer to driver SLI ring object. 3130 * @prspiocb: Pointer to response iocb object. 3131 * 3132 * This function looks up the iocb_lookup table to get the command iocb 3133 * corresponding to the given response iocb using the iotag of the 3134 * response iocb. The driver calls this function with the hbalock held 3135 * for SLI3 ports or the ring lock held for SLI4 ports. 3136 * This function returns the command iocb object if it finds the command 3137 * iocb else returns NULL. 3138 **/ 3139 static struct lpfc_iocbq * 3140 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3141 struct lpfc_sli_ring *pring, 3142 struct lpfc_iocbq *prspiocb) 3143 { 3144 struct lpfc_iocbq *cmd_iocb = NULL; 3145 uint16_t iotag; 3146 spinlock_t *temp_lock = NULL; 3147 unsigned long iflag = 0; 3148 3149 if (phba->sli_rev == LPFC_SLI_REV4) 3150 temp_lock = &pring->ring_lock; 3151 else 3152 temp_lock = &phba->hbalock; 3153 3154 spin_lock_irqsave(temp_lock, iflag); 3155 iotag = prspiocb->iocb.ulpIoTag; 3156 3157 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3158 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3159 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3160 /* remove from txcmpl queue list */ 3161 list_del_init(&cmd_iocb->list); 3162 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3163 pring->txcmplq_cnt--; 3164 spin_unlock_irqrestore(temp_lock, iflag); 3165 return cmd_iocb; 3166 } 3167 } 3168 3169 spin_unlock_irqrestore(temp_lock, iflag); 3170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3171 "0317 iotag x%x is out of " 3172 "range: max iotag x%x wd0 x%x\n", 3173 iotag, phba->sli.last_iotag, 3174 *(((uint32_t *) &prspiocb->iocb) + 7)); 3175 return NULL; 3176 } 3177 3178 /** 3179 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3180 * @phba: Pointer to HBA context object. 3181 * @pring: Pointer to driver SLI ring object. 3182 * @iotag: IOCB tag. 3183 * 3184 * This function looks up the iocb_lookup table to get the command iocb 3185 * corresponding to the given iotag. The driver calls this function with 3186 * the ring lock held because this function is an SLI4 port only helper. 3187 * This function returns the command iocb object if it finds the command 3188 * iocb else returns NULL. 3189 **/ 3190 static struct lpfc_iocbq * 3191 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3192 struct lpfc_sli_ring *pring, uint16_t iotag) 3193 { 3194 struct lpfc_iocbq *cmd_iocb = NULL; 3195 spinlock_t *temp_lock = NULL; 3196 unsigned long iflag = 0; 3197 3198 if (phba->sli_rev == LPFC_SLI_REV4) 3199 temp_lock = &pring->ring_lock; 3200 else 3201 temp_lock = &phba->hbalock; 3202 3203 spin_lock_irqsave(temp_lock, iflag); 3204 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3205 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3206 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3207 /* remove from txcmpl queue list */ 3208 list_del_init(&cmd_iocb->list); 3209 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3210 pring->txcmplq_cnt--; 3211 spin_unlock_irqrestore(temp_lock, iflag); 3212 return cmd_iocb; 3213 } 3214 } 3215 3216 spin_unlock_irqrestore(temp_lock, iflag); 3217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3218 "0372 iotag x%x lookup error: max iotag (x%x) " 3219 "iocb_flag x%x\n", 3220 iotag, phba->sli.last_iotag, 3221 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3222 return NULL; 3223 } 3224 3225 /** 3226 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3227 * @phba: Pointer to HBA context object. 3228 * @pring: Pointer to driver SLI ring object. 3229 * @saveq: Pointer to the response iocb to be processed. 3230 * 3231 * This function is called by the ring event handler for non-fcp 3232 * rings when there is a new response iocb in the response ring. 3233 * The caller is not required to hold any locks. This function 3234 * gets the command iocb associated with the response iocb and 3235 * calls the completion handler for the command iocb. If there 3236 * is no completion handler, the function will free the resources 3237 * associated with command iocb. If the response iocb is for 3238 * an already aborted command iocb, the status of the completion 3239 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3240 * This function always returns 1. 3241 **/ 3242 static int 3243 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3244 struct lpfc_iocbq *saveq) 3245 { 3246 struct lpfc_iocbq *cmdiocbp; 3247 int rc = 1; 3248 unsigned long iflag; 3249 3250 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3251 if (cmdiocbp) { 3252 if (cmdiocbp->iocb_cmpl) { 3253 /* 3254 * If an ELS command failed send an event to mgmt 3255 * application. 3256 */ 3257 if (saveq->iocb.ulpStatus && 3258 (pring->ringno == LPFC_ELS_RING) && 3259 (cmdiocbp->iocb.ulpCommand == 3260 CMD_ELS_REQUEST64_CR)) 3261 lpfc_send_els_failure_event(phba, 3262 cmdiocbp, saveq); 3263 3264 /* 3265 * Post all ELS completions to the worker thread. 3266 * All other are passed to the completion callback. 3267 */ 3268 if (pring->ringno == LPFC_ELS_RING) { 3269 if ((phba->sli_rev < LPFC_SLI_REV4) && 3270 (cmdiocbp->iocb_flag & 3271 LPFC_DRIVER_ABORTED)) { 3272 spin_lock_irqsave(&phba->hbalock, 3273 iflag); 3274 cmdiocbp->iocb_flag &= 3275 ~LPFC_DRIVER_ABORTED; 3276 spin_unlock_irqrestore(&phba->hbalock, 3277 iflag); 3278 saveq->iocb.ulpStatus = 3279 IOSTAT_LOCAL_REJECT; 3280 saveq->iocb.un.ulpWord[4] = 3281 IOERR_SLI_ABORTED; 3282 3283 /* Firmware could still be in progress 3284 * of DMAing payload, so don't free data 3285 * buffer till after a hbeat. 3286 */ 3287 spin_lock_irqsave(&phba->hbalock, 3288 iflag); 3289 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3290 spin_unlock_irqrestore(&phba->hbalock, 3291 iflag); 3292 } 3293 if (phba->sli_rev == LPFC_SLI_REV4) { 3294 if (saveq->iocb_flag & 3295 LPFC_EXCHANGE_BUSY) { 3296 /* Set cmdiocb flag for the 3297 * exchange busy so sgl (xri) 3298 * will not be released until 3299 * the abort xri is received 3300 * from hba. 3301 */ 3302 spin_lock_irqsave( 3303 &phba->hbalock, iflag); 3304 cmdiocbp->iocb_flag |= 3305 LPFC_EXCHANGE_BUSY; 3306 spin_unlock_irqrestore( 3307 &phba->hbalock, iflag); 3308 } 3309 if (cmdiocbp->iocb_flag & 3310 LPFC_DRIVER_ABORTED) { 3311 /* 3312 * Clear LPFC_DRIVER_ABORTED 3313 * bit in case it was driver 3314 * initiated abort. 3315 */ 3316 spin_lock_irqsave( 3317 &phba->hbalock, iflag); 3318 cmdiocbp->iocb_flag &= 3319 ~LPFC_DRIVER_ABORTED; 3320 spin_unlock_irqrestore( 3321 &phba->hbalock, iflag); 3322 cmdiocbp->iocb.ulpStatus = 3323 IOSTAT_LOCAL_REJECT; 3324 cmdiocbp->iocb.un.ulpWord[4] = 3325 IOERR_ABORT_REQUESTED; 3326 /* 3327 * For SLI4, irsiocb contains 3328 * NO_XRI in sli_xritag, it 3329 * shall not affect releasing 3330 * sgl (xri) process. 3331 */ 3332 saveq->iocb.ulpStatus = 3333 IOSTAT_LOCAL_REJECT; 3334 saveq->iocb.un.ulpWord[4] = 3335 IOERR_SLI_ABORTED; 3336 spin_lock_irqsave( 3337 &phba->hbalock, iflag); 3338 saveq->iocb_flag |= 3339 LPFC_DELAY_MEM_FREE; 3340 spin_unlock_irqrestore( 3341 &phba->hbalock, iflag); 3342 } 3343 } 3344 } 3345 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3346 } else 3347 lpfc_sli_release_iocbq(phba, cmdiocbp); 3348 } else { 3349 /* 3350 * Unknown initiating command based on the response iotag. 3351 * This could be the case on the ELS ring because of 3352 * lpfc_els_abort(). 3353 */ 3354 if (pring->ringno != LPFC_ELS_RING) { 3355 /* 3356 * Ring <ringno> handler: unexpected completion IoTag 3357 * <IoTag> 3358 */ 3359 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3360 "0322 Ring %d handler: " 3361 "unexpected completion IoTag x%x " 3362 "Data: x%x x%x x%x x%x\n", 3363 pring->ringno, 3364 saveq->iocb.ulpIoTag, 3365 saveq->iocb.ulpStatus, 3366 saveq->iocb.un.ulpWord[4], 3367 saveq->iocb.ulpCommand, 3368 saveq->iocb.ulpContext); 3369 } 3370 } 3371 3372 return rc; 3373 } 3374 3375 /** 3376 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3377 * @phba: Pointer to HBA context object. 3378 * @pring: Pointer to driver SLI ring object. 3379 * 3380 * This function is called from the iocb ring event handlers when 3381 * put pointer is ahead of the get pointer for a ring. This function signal 3382 * an error attention condition to the worker thread and the worker 3383 * thread will transition the HBA to offline state. 3384 **/ 3385 static void 3386 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3387 { 3388 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3389 /* 3390 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3391 * rsp ring <portRspMax> 3392 */ 3393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3394 "0312 Ring %d handler: portRspPut %d " 3395 "is bigger than rsp ring %d\n", 3396 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3397 pring->sli.sli3.numRiocb); 3398 3399 phba->link_state = LPFC_HBA_ERROR; 3400 3401 /* 3402 * All error attention handlers are posted to 3403 * worker thread 3404 */ 3405 phba->work_ha |= HA_ERATT; 3406 phba->work_hs = HS_FFER3; 3407 3408 lpfc_worker_wake_up(phba); 3409 3410 return; 3411 } 3412 3413 /** 3414 * lpfc_poll_eratt - Error attention polling timer timeout handler 3415 * @t: Context to fetch pointer to address of HBA context object from. 3416 * 3417 * This function is invoked by the Error Attention polling timer when the 3418 * timer times out. It will check the SLI Error Attention register for 3419 * possible attention events. If so, it will post an Error Attention event 3420 * and wake up worker thread to process it. Otherwise, it will set up the 3421 * Error Attention polling timer for the next poll. 3422 **/ 3423 void lpfc_poll_eratt(struct timer_list *t) 3424 { 3425 struct lpfc_hba *phba; 3426 uint32_t eratt = 0; 3427 uint64_t sli_intr, cnt; 3428 3429 phba = from_timer(phba, t, eratt_poll); 3430 3431 /* Here we will also keep track of interrupts per sec of the hba */ 3432 sli_intr = phba->sli.slistat.sli_intr; 3433 3434 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3435 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3436 sli_intr); 3437 else 3438 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3439 3440 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3441 do_div(cnt, phba->eratt_poll_interval); 3442 phba->sli.slistat.sli_ips = cnt; 3443 3444 phba->sli.slistat.sli_prev_intr = sli_intr; 3445 3446 /* Check chip HA register for error event */ 3447 eratt = lpfc_sli_check_eratt(phba); 3448 3449 if (eratt) 3450 /* Tell the worker thread there is work to do */ 3451 lpfc_worker_wake_up(phba); 3452 else 3453 /* Restart the timer for next eratt poll */ 3454 mod_timer(&phba->eratt_poll, 3455 jiffies + 3456 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3457 return; 3458 } 3459 3460 3461 /** 3462 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3463 * @phba: Pointer to HBA context object. 3464 * @pring: Pointer to driver SLI ring object. 3465 * @mask: Host attention register mask for this ring. 3466 * 3467 * This function is called from the interrupt context when there is a ring 3468 * event for the fcp ring. The caller does not hold any lock. 3469 * The function processes each response iocb in the response ring until it 3470 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3471 * LE bit set. The function will call the completion handler of the command iocb 3472 * if the response iocb indicates a completion for a command iocb or it is 3473 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3474 * function if this is an unsolicited iocb. 3475 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3476 * to check it explicitly. 3477 */ 3478 int 3479 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3480 struct lpfc_sli_ring *pring, uint32_t mask) 3481 { 3482 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3483 IOCB_t *irsp = NULL; 3484 IOCB_t *entry = NULL; 3485 struct lpfc_iocbq *cmdiocbq = NULL; 3486 struct lpfc_iocbq rspiocbq; 3487 uint32_t status; 3488 uint32_t portRspPut, portRspMax; 3489 int rc = 1; 3490 lpfc_iocb_type type; 3491 unsigned long iflag; 3492 uint32_t rsp_cmpl = 0; 3493 3494 spin_lock_irqsave(&phba->hbalock, iflag); 3495 pring->stats.iocb_event++; 3496 3497 /* 3498 * The next available response entry should never exceed the maximum 3499 * entries. If it does, treat it as an adapter hardware error. 3500 */ 3501 portRspMax = pring->sli.sli3.numRiocb; 3502 portRspPut = le32_to_cpu(pgp->rspPutInx); 3503 if (unlikely(portRspPut >= portRspMax)) { 3504 lpfc_sli_rsp_pointers_error(phba, pring); 3505 spin_unlock_irqrestore(&phba->hbalock, iflag); 3506 return 1; 3507 } 3508 if (phba->fcp_ring_in_use) { 3509 spin_unlock_irqrestore(&phba->hbalock, iflag); 3510 return 1; 3511 } else 3512 phba->fcp_ring_in_use = 1; 3513 3514 rmb(); 3515 while (pring->sli.sli3.rspidx != portRspPut) { 3516 /* 3517 * Fetch an entry off the ring and copy it into a local data 3518 * structure. The copy involves a byte-swap since the 3519 * network byte order and pci byte orders are different. 3520 */ 3521 entry = lpfc_resp_iocb(phba, pring); 3522 phba->last_completion_time = jiffies; 3523 3524 if (++pring->sli.sli3.rspidx >= portRspMax) 3525 pring->sli.sli3.rspidx = 0; 3526 3527 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3528 (uint32_t *) &rspiocbq.iocb, 3529 phba->iocb_rsp_size); 3530 INIT_LIST_HEAD(&(rspiocbq.list)); 3531 irsp = &rspiocbq.iocb; 3532 3533 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3534 pring->stats.iocb_rsp++; 3535 rsp_cmpl++; 3536 3537 if (unlikely(irsp->ulpStatus)) { 3538 /* 3539 * If resource errors reported from HBA, reduce 3540 * queuedepths of the SCSI device. 3541 */ 3542 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3543 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3544 IOERR_NO_RESOURCES)) { 3545 spin_unlock_irqrestore(&phba->hbalock, iflag); 3546 phba->lpfc_rampdown_queue_depth(phba); 3547 spin_lock_irqsave(&phba->hbalock, iflag); 3548 } 3549 3550 /* Rsp ring <ringno> error: IOCB */ 3551 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3552 "0336 Rsp Ring %d error: IOCB Data: " 3553 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3554 pring->ringno, 3555 irsp->un.ulpWord[0], 3556 irsp->un.ulpWord[1], 3557 irsp->un.ulpWord[2], 3558 irsp->un.ulpWord[3], 3559 irsp->un.ulpWord[4], 3560 irsp->un.ulpWord[5], 3561 *(uint32_t *)&irsp->un1, 3562 *((uint32_t *)&irsp->un1 + 1)); 3563 } 3564 3565 switch (type) { 3566 case LPFC_ABORT_IOCB: 3567 case LPFC_SOL_IOCB: 3568 /* 3569 * Idle exchange closed via ABTS from port. No iocb 3570 * resources need to be recovered. 3571 */ 3572 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3573 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3574 "0333 IOCB cmd 0x%x" 3575 " processed. Skipping" 3576 " completion\n", 3577 irsp->ulpCommand); 3578 break; 3579 } 3580 3581 spin_unlock_irqrestore(&phba->hbalock, iflag); 3582 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3583 &rspiocbq); 3584 spin_lock_irqsave(&phba->hbalock, iflag); 3585 if (unlikely(!cmdiocbq)) 3586 break; 3587 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3588 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3589 if (cmdiocbq->iocb_cmpl) { 3590 spin_unlock_irqrestore(&phba->hbalock, iflag); 3591 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3592 &rspiocbq); 3593 spin_lock_irqsave(&phba->hbalock, iflag); 3594 } 3595 break; 3596 case LPFC_UNSOL_IOCB: 3597 spin_unlock_irqrestore(&phba->hbalock, iflag); 3598 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3599 spin_lock_irqsave(&phba->hbalock, iflag); 3600 break; 3601 default: 3602 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3603 char adaptermsg[LPFC_MAX_ADPTMSG]; 3604 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3605 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3606 MAX_MSG_DATA); 3607 dev_warn(&((phba->pcidev)->dev), 3608 "lpfc%d: %s\n", 3609 phba->brd_no, adaptermsg); 3610 } else { 3611 /* Unknown IOCB command */ 3612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3613 "0334 Unknown IOCB command " 3614 "Data: x%x, x%x x%x x%x x%x\n", 3615 type, irsp->ulpCommand, 3616 irsp->ulpStatus, 3617 irsp->ulpIoTag, 3618 irsp->ulpContext); 3619 } 3620 break; 3621 } 3622 3623 /* 3624 * The response IOCB has been processed. Update the ring 3625 * pointer in SLIM. If the port response put pointer has not 3626 * been updated, sync the pgp->rspPutInx and fetch the new port 3627 * response put pointer. 3628 */ 3629 writel(pring->sli.sli3.rspidx, 3630 &phba->host_gp[pring->ringno].rspGetInx); 3631 3632 if (pring->sli.sli3.rspidx == portRspPut) 3633 portRspPut = le32_to_cpu(pgp->rspPutInx); 3634 } 3635 3636 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3637 pring->stats.iocb_rsp_full++; 3638 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3639 writel(status, phba->CAregaddr); 3640 readl(phba->CAregaddr); 3641 } 3642 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3643 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3644 pring->stats.iocb_cmd_empty++; 3645 3646 /* Force update of the local copy of cmdGetInx */ 3647 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3648 lpfc_sli_resume_iocb(phba, pring); 3649 3650 if ((pring->lpfc_sli_cmd_available)) 3651 (pring->lpfc_sli_cmd_available) (phba, pring); 3652 3653 } 3654 3655 phba->fcp_ring_in_use = 0; 3656 spin_unlock_irqrestore(&phba->hbalock, iflag); 3657 return rc; 3658 } 3659 3660 /** 3661 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3662 * @phba: Pointer to HBA context object. 3663 * @pring: Pointer to driver SLI ring object. 3664 * @rspiocbp: Pointer to driver response IOCB object. 3665 * 3666 * This function is called from the worker thread when there is a slow-path 3667 * response IOCB to process. This function chains all the response iocbs until 3668 * seeing the iocb with the LE bit set. The function will call 3669 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3670 * completion of a command iocb. The function will call the 3671 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3672 * The function frees the resources or calls the completion handler if this 3673 * iocb is an abort completion. The function returns NULL when the response 3674 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3675 * this function shall chain the iocb on to the iocb_continueq and return the 3676 * response iocb passed in. 3677 **/ 3678 static struct lpfc_iocbq * 3679 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3680 struct lpfc_iocbq *rspiocbp) 3681 { 3682 struct lpfc_iocbq *saveq; 3683 struct lpfc_iocbq *cmdiocbp; 3684 struct lpfc_iocbq *next_iocb; 3685 IOCB_t *irsp = NULL; 3686 uint32_t free_saveq; 3687 uint8_t iocb_cmd_type; 3688 lpfc_iocb_type type; 3689 unsigned long iflag; 3690 int rc; 3691 3692 spin_lock_irqsave(&phba->hbalock, iflag); 3693 /* First add the response iocb to the countinueq list */ 3694 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3695 pring->iocb_continueq_cnt++; 3696 3697 /* Now, determine whether the list is completed for processing */ 3698 irsp = &rspiocbp->iocb; 3699 if (irsp->ulpLe) { 3700 /* 3701 * By default, the driver expects to free all resources 3702 * associated with this iocb completion. 3703 */ 3704 free_saveq = 1; 3705 saveq = list_get_first(&pring->iocb_continueq, 3706 struct lpfc_iocbq, list); 3707 irsp = &(saveq->iocb); 3708 list_del_init(&pring->iocb_continueq); 3709 pring->iocb_continueq_cnt = 0; 3710 3711 pring->stats.iocb_rsp++; 3712 3713 /* 3714 * If resource errors reported from HBA, reduce 3715 * queuedepths of the SCSI device. 3716 */ 3717 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3718 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3719 IOERR_NO_RESOURCES)) { 3720 spin_unlock_irqrestore(&phba->hbalock, iflag); 3721 phba->lpfc_rampdown_queue_depth(phba); 3722 spin_lock_irqsave(&phba->hbalock, iflag); 3723 } 3724 3725 if (irsp->ulpStatus) { 3726 /* Rsp ring <ringno> error: IOCB */ 3727 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3728 "0328 Rsp Ring %d error: " 3729 "IOCB Data: " 3730 "x%x x%x x%x x%x " 3731 "x%x x%x x%x x%x " 3732 "x%x x%x x%x x%x " 3733 "x%x x%x x%x x%x\n", 3734 pring->ringno, 3735 irsp->un.ulpWord[0], 3736 irsp->un.ulpWord[1], 3737 irsp->un.ulpWord[2], 3738 irsp->un.ulpWord[3], 3739 irsp->un.ulpWord[4], 3740 irsp->un.ulpWord[5], 3741 *(((uint32_t *) irsp) + 6), 3742 *(((uint32_t *) irsp) + 7), 3743 *(((uint32_t *) irsp) + 8), 3744 *(((uint32_t *) irsp) + 9), 3745 *(((uint32_t *) irsp) + 10), 3746 *(((uint32_t *) irsp) + 11), 3747 *(((uint32_t *) irsp) + 12), 3748 *(((uint32_t *) irsp) + 13), 3749 *(((uint32_t *) irsp) + 14), 3750 *(((uint32_t *) irsp) + 15)); 3751 } 3752 3753 /* 3754 * Fetch the IOCB command type and call the correct completion 3755 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3756 * get freed back to the lpfc_iocb_list by the discovery 3757 * kernel thread. 3758 */ 3759 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3760 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3761 switch (type) { 3762 case LPFC_SOL_IOCB: 3763 spin_unlock_irqrestore(&phba->hbalock, iflag); 3764 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3765 spin_lock_irqsave(&phba->hbalock, iflag); 3766 break; 3767 3768 case LPFC_UNSOL_IOCB: 3769 spin_unlock_irqrestore(&phba->hbalock, iflag); 3770 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3771 spin_lock_irqsave(&phba->hbalock, iflag); 3772 if (!rc) 3773 free_saveq = 0; 3774 break; 3775 3776 case LPFC_ABORT_IOCB: 3777 cmdiocbp = NULL; 3778 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3779 spin_unlock_irqrestore(&phba->hbalock, iflag); 3780 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3781 saveq); 3782 spin_lock_irqsave(&phba->hbalock, iflag); 3783 } 3784 if (cmdiocbp) { 3785 /* Call the specified completion routine */ 3786 if (cmdiocbp->iocb_cmpl) { 3787 spin_unlock_irqrestore(&phba->hbalock, 3788 iflag); 3789 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3790 saveq); 3791 spin_lock_irqsave(&phba->hbalock, 3792 iflag); 3793 } else 3794 __lpfc_sli_release_iocbq(phba, 3795 cmdiocbp); 3796 } 3797 break; 3798 3799 case LPFC_UNKNOWN_IOCB: 3800 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3801 char adaptermsg[LPFC_MAX_ADPTMSG]; 3802 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3803 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3804 MAX_MSG_DATA); 3805 dev_warn(&((phba->pcidev)->dev), 3806 "lpfc%d: %s\n", 3807 phba->brd_no, adaptermsg); 3808 } else { 3809 /* Unknown IOCB command */ 3810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3811 "0335 Unknown IOCB " 3812 "command Data: x%x " 3813 "x%x x%x x%x\n", 3814 irsp->ulpCommand, 3815 irsp->ulpStatus, 3816 irsp->ulpIoTag, 3817 irsp->ulpContext); 3818 } 3819 break; 3820 } 3821 3822 if (free_saveq) { 3823 list_for_each_entry_safe(rspiocbp, next_iocb, 3824 &saveq->list, list) { 3825 list_del_init(&rspiocbp->list); 3826 __lpfc_sli_release_iocbq(phba, rspiocbp); 3827 } 3828 __lpfc_sli_release_iocbq(phba, saveq); 3829 } 3830 rspiocbp = NULL; 3831 } 3832 spin_unlock_irqrestore(&phba->hbalock, iflag); 3833 return rspiocbp; 3834 } 3835 3836 /** 3837 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3838 * @phba: Pointer to HBA context object. 3839 * @pring: Pointer to driver SLI ring object. 3840 * @mask: Host attention register mask for this ring. 3841 * 3842 * This routine wraps the actual slow_ring event process routine from the 3843 * API jump table function pointer from the lpfc_hba struct. 3844 **/ 3845 void 3846 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3847 struct lpfc_sli_ring *pring, uint32_t mask) 3848 { 3849 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3850 } 3851 3852 /** 3853 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3854 * @phba: Pointer to HBA context object. 3855 * @pring: Pointer to driver SLI ring object. 3856 * @mask: Host attention register mask for this ring. 3857 * 3858 * This function is called from the worker thread when there is a ring event 3859 * for non-fcp rings. The caller does not hold any lock. The function will 3860 * remove each response iocb in the response ring and calls the handle 3861 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3862 **/ 3863 static void 3864 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3865 struct lpfc_sli_ring *pring, uint32_t mask) 3866 { 3867 struct lpfc_pgp *pgp; 3868 IOCB_t *entry; 3869 IOCB_t *irsp = NULL; 3870 struct lpfc_iocbq *rspiocbp = NULL; 3871 uint32_t portRspPut, portRspMax; 3872 unsigned long iflag; 3873 uint32_t status; 3874 3875 pgp = &phba->port_gp[pring->ringno]; 3876 spin_lock_irqsave(&phba->hbalock, iflag); 3877 pring->stats.iocb_event++; 3878 3879 /* 3880 * The next available response entry should never exceed the maximum 3881 * entries. If it does, treat it as an adapter hardware error. 3882 */ 3883 portRspMax = pring->sli.sli3.numRiocb; 3884 portRspPut = le32_to_cpu(pgp->rspPutInx); 3885 if (portRspPut >= portRspMax) { 3886 /* 3887 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3888 * rsp ring <portRspMax> 3889 */ 3890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3891 "0303 Ring %d handler: portRspPut %d " 3892 "is bigger than rsp ring %d\n", 3893 pring->ringno, portRspPut, portRspMax); 3894 3895 phba->link_state = LPFC_HBA_ERROR; 3896 spin_unlock_irqrestore(&phba->hbalock, iflag); 3897 3898 phba->work_hs = HS_FFER3; 3899 lpfc_handle_eratt(phba); 3900 3901 return; 3902 } 3903 3904 rmb(); 3905 while (pring->sli.sli3.rspidx != portRspPut) { 3906 /* 3907 * Build a completion list and call the appropriate handler. 3908 * The process is to get the next available response iocb, get 3909 * a free iocb from the list, copy the response data into the 3910 * free iocb, insert to the continuation list, and update the 3911 * next response index to slim. This process makes response 3912 * iocb's in the ring available to DMA as fast as possible but 3913 * pays a penalty for a copy operation. Since the iocb is 3914 * only 32 bytes, this penalty is considered small relative to 3915 * the PCI reads for register values and a slim write. When 3916 * the ulpLe field is set, the entire Command has been 3917 * received. 3918 */ 3919 entry = lpfc_resp_iocb(phba, pring); 3920 3921 phba->last_completion_time = jiffies; 3922 rspiocbp = __lpfc_sli_get_iocbq(phba); 3923 if (rspiocbp == NULL) { 3924 printk(KERN_ERR "%s: out of buffers! Failing " 3925 "completion.\n", __func__); 3926 break; 3927 } 3928 3929 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3930 phba->iocb_rsp_size); 3931 irsp = &rspiocbp->iocb; 3932 3933 if (++pring->sli.sli3.rspidx >= portRspMax) 3934 pring->sli.sli3.rspidx = 0; 3935 3936 if (pring->ringno == LPFC_ELS_RING) { 3937 lpfc_debugfs_slow_ring_trc(phba, 3938 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3939 *(((uint32_t *) irsp) + 4), 3940 *(((uint32_t *) irsp) + 6), 3941 *(((uint32_t *) irsp) + 7)); 3942 } 3943 3944 writel(pring->sli.sli3.rspidx, 3945 &phba->host_gp[pring->ringno].rspGetInx); 3946 3947 spin_unlock_irqrestore(&phba->hbalock, iflag); 3948 /* Handle the response IOCB */ 3949 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3950 spin_lock_irqsave(&phba->hbalock, iflag); 3951 3952 /* 3953 * If the port response put pointer has not been updated, sync 3954 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3955 * response put pointer. 3956 */ 3957 if (pring->sli.sli3.rspidx == portRspPut) { 3958 portRspPut = le32_to_cpu(pgp->rspPutInx); 3959 } 3960 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3961 3962 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3963 /* At least one response entry has been freed */ 3964 pring->stats.iocb_rsp_full++; 3965 /* SET RxRE_RSP in Chip Att register */ 3966 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3967 writel(status, phba->CAregaddr); 3968 readl(phba->CAregaddr); /* flush */ 3969 } 3970 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3971 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3972 pring->stats.iocb_cmd_empty++; 3973 3974 /* Force update of the local copy of cmdGetInx */ 3975 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3976 lpfc_sli_resume_iocb(phba, pring); 3977 3978 if ((pring->lpfc_sli_cmd_available)) 3979 (pring->lpfc_sli_cmd_available) (phba, pring); 3980 3981 } 3982 3983 spin_unlock_irqrestore(&phba->hbalock, iflag); 3984 return; 3985 } 3986 3987 /** 3988 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3989 * @phba: Pointer to HBA context object. 3990 * @pring: Pointer to driver SLI ring object. 3991 * @mask: Host attention register mask for this ring. 3992 * 3993 * This function is called from the worker thread when there is a pending 3994 * ELS response iocb on the driver internal slow-path response iocb worker 3995 * queue. The caller does not hold any lock. The function will remove each 3996 * response iocb from the response worker queue and calls the handle 3997 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3998 **/ 3999 static void 4000 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4001 struct lpfc_sli_ring *pring, uint32_t mask) 4002 { 4003 struct lpfc_iocbq *irspiocbq; 4004 struct hbq_dmabuf *dmabuf; 4005 struct lpfc_cq_event *cq_event; 4006 unsigned long iflag; 4007 int count = 0; 4008 4009 spin_lock_irqsave(&phba->hbalock, iflag); 4010 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4011 spin_unlock_irqrestore(&phba->hbalock, iflag); 4012 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4013 /* Get the response iocb from the head of work queue */ 4014 spin_lock_irqsave(&phba->hbalock, iflag); 4015 list_remove_head(&phba->sli4_hba.sp_queue_event, 4016 cq_event, struct lpfc_cq_event, list); 4017 spin_unlock_irqrestore(&phba->hbalock, iflag); 4018 4019 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4020 case CQE_CODE_COMPL_WQE: 4021 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4022 cq_event); 4023 /* Translate ELS WCQE to response IOCBQ */ 4024 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4025 irspiocbq); 4026 if (irspiocbq) 4027 lpfc_sli_sp_handle_rspiocb(phba, pring, 4028 irspiocbq); 4029 count++; 4030 break; 4031 case CQE_CODE_RECEIVE: 4032 case CQE_CODE_RECEIVE_V1: 4033 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4034 cq_event); 4035 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4036 count++; 4037 break; 4038 default: 4039 break; 4040 } 4041 4042 /* Limit the number of events to 64 to avoid soft lockups */ 4043 if (count == 64) 4044 break; 4045 } 4046 } 4047 4048 /** 4049 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4050 * @phba: Pointer to HBA context object. 4051 * @pring: Pointer to driver SLI ring object. 4052 * 4053 * This function aborts all iocbs in the given ring and frees all the iocb 4054 * objects in txq. This function issues an abort iocb for all the iocb commands 4055 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4056 * the return of this function. The caller is not required to hold any locks. 4057 **/ 4058 void 4059 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4060 { 4061 LIST_HEAD(completions); 4062 struct lpfc_iocbq *iocb, *next_iocb; 4063 4064 if (pring->ringno == LPFC_ELS_RING) { 4065 lpfc_fabric_abort_hba(phba); 4066 } 4067 4068 /* Error everything on txq and txcmplq 4069 * First do the txq. 4070 */ 4071 if (phba->sli_rev >= LPFC_SLI_REV4) { 4072 spin_lock_irq(&pring->ring_lock); 4073 list_splice_init(&pring->txq, &completions); 4074 pring->txq_cnt = 0; 4075 spin_unlock_irq(&pring->ring_lock); 4076 4077 spin_lock_irq(&phba->hbalock); 4078 /* Next issue ABTS for everything on the txcmplq */ 4079 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4080 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4081 spin_unlock_irq(&phba->hbalock); 4082 } else { 4083 spin_lock_irq(&phba->hbalock); 4084 list_splice_init(&pring->txq, &completions); 4085 pring->txq_cnt = 0; 4086 4087 /* Next issue ABTS for everything on the txcmplq */ 4088 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4089 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4090 spin_unlock_irq(&phba->hbalock); 4091 } 4092 4093 /* Cancel all the IOCBs from the completions list */ 4094 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4095 IOERR_SLI_ABORTED); 4096 } 4097 4098 /** 4099 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4100 * @phba: Pointer to HBA context object. 4101 * 4102 * This function aborts all iocbs in FCP rings and frees all the iocb 4103 * objects in txq. This function issues an abort iocb for all the iocb commands 4104 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4105 * the return of this function. The caller is not required to hold any locks. 4106 **/ 4107 void 4108 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4109 { 4110 struct lpfc_sli *psli = &phba->sli; 4111 struct lpfc_sli_ring *pring; 4112 uint32_t i; 4113 4114 /* Look on all the FCP Rings for the iotag */ 4115 if (phba->sli_rev >= LPFC_SLI_REV4) { 4116 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4117 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4118 lpfc_sli_abort_iocb_ring(phba, pring); 4119 } 4120 } else { 4121 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4122 lpfc_sli_abort_iocb_ring(phba, pring); 4123 } 4124 } 4125 4126 /** 4127 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4128 * @phba: Pointer to HBA context object. 4129 * 4130 * This function flushes all iocbs in the IO ring and frees all the iocb 4131 * objects in txq and txcmplq. This function will not issue abort iocbs 4132 * for all the iocb commands in txcmplq, they will just be returned with 4133 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4134 * slot has been permanently disabled. 4135 **/ 4136 void 4137 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4138 { 4139 LIST_HEAD(txq); 4140 LIST_HEAD(txcmplq); 4141 struct lpfc_sli *psli = &phba->sli; 4142 struct lpfc_sli_ring *pring; 4143 uint32_t i; 4144 struct lpfc_iocbq *piocb, *next_iocb; 4145 4146 spin_lock_irq(&phba->hbalock); 4147 if (phba->hba_flag & HBA_IOQ_FLUSH || 4148 !phba->sli4_hba.hdwq) { 4149 spin_unlock_irq(&phba->hbalock); 4150 return; 4151 } 4152 /* Indicate the I/O queues are flushed */ 4153 phba->hba_flag |= HBA_IOQ_FLUSH; 4154 spin_unlock_irq(&phba->hbalock); 4155 4156 /* Look on all the FCP Rings for the iotag */ 4157 if (phba->sli_rev >= LPFC_SLI_REV4) { 4158 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4159 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4160 4161 spin_lock_irq(&pring->ring_lock); 4162 /* Retrieve everything on txq */ 4163 list_splice_init(&pring->txq, &txq); 4164 list_for_each_entry_safe(piocb, next_iocb, 4165 &pring->txcmplq, list) 4166 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4167 /* Retrieve everything on the txcmplq */ 4168 list_splice_init(&pring->txcmplq, &txcmplq); 4169 pring->txq_cnt = 0; 4170 pring->txcmplq_cnt = 0; 4171 spin_unlock_irq(&pring->ring_lock); 4172 4173 /* Flush the txq */ 4174 lpfc_sli_cancel_iocbs(phba, &txq, 4175 IOSTAT_LOCAL_REJECT, 4176 IOERR_SLI_DOWN); 4177 /* Flush the txcmpq */ 4178 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4179 IOSTAT_LOCAL_REJECT, 4180 IOERR_SLI_DOWN); 4181 } 4182 } else { 4183 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4184 4185 spin_lock_irq(&phba->hbalock); 4186 /* Retrieve everything on txq */ 4187 list_splice_init(&pring->txq, &txq); 4188 list_for_each_entry_safe(piocb, next_iocb, 4189 &pring->txcmplq, list) 4190 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4191 /* Retrieve everything on the txcmplq */ 4192 list_splice_init(&pring->txcmplq, &txcmplq); 4193 pring->txq_cnt = 0; 4194 pring->txcmplq_cnt = 0; 4195 spin_unlock_irq(&phba->hbalock); 4196 4197 /* Flush the txq */ 4198 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4199 IOERR_SLI_DOWN); 4200 /* Flush the txcmpq */ 4201 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4202 IOERR_SLI_DOWN); 4203 } 4204 } 4205 4206 /** 4207 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4208 * @phba: Pointer to HBA context object. 4209 * @mask: Bit mask to be checked. 4210 * 4211 * This function reads the host status register and compares 4212 * with the provided bit mask to check if HBA completed 4213 * the restart. This function will wait in a loop for the 4214 * HBA to complete restart. If the HBA does not restart within 4215 * 15 iterations, the function will reset the HBA again. The 4216 * function returns 1 when HBA fail to restart otherwise returns 4217 * zero. 4218 **/ 4219 static int 4220 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4221 { 4222 uint32_t status; 4223 int i = 0; 4224 int retval = 0; 4225 4226 /* Read the HBA Host Status Register */ 4227 if (lpfc_readl(phba->HSregaddr, &status)) 4228 return 1; 4229 4230 /* 4231 * Check status register every 100ms for 5 retries, then every 4232 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4233 * every 2.5 sec for 4. 4234 * Break our of the loop if errors occurred during init. 4235 */ 4236 while (((status & mask) != mask) && 4237 !(status & HS_FFERM) && 4238 i++ < 20) { 4239 4240 if (i <= 5) 4241 msleep(10); 4242 else if (i <= 10) 4243 msleep(500); 4244 else 4245 msleep(2500); 4246 4247 if (i == 15) { 4248 /* Do post */ 4249 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4250 lpfc_sli_brdrestart(phba); 4251 } 4252 /* Read the HBA Host Status Register */ 4253 if (lpfc_readl(phba->HSregaddr, &status)) { 4254 retval = 1; 4255 break; 4256 } 4257 } 4258 4259 /* Check to see if any errors occurred during init */ 4260 if ((status & HS_FFERM) || (i >= 20)) { 4261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4262 "2751 Adapter failed to restart, " 4263 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4264 status, 4265 readl(phba->MBslimaddr + 0xa8), 4266 readl(phba->MBslimaddr + 0xac)); 4267 phba->link_state = LPFC_HBA_ERROR; 4268 retval = 1; 4269 } 4270 4271 return retval; 4272 } 4273 4274 /** 4275 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4276 * @phba: Pointer to HBA context object. 4277 * @mask: Bit mask to be checked. 4278 * 4279 * This function checks the host status register to check if HBA is 4280 * ready. This function will wait in a loop for the HBA to be ready 4281 * If the HBA is not ready , the function will will reset the HBA PCI 4282 * function again. The function returns 1 when HBA fail to be ready 4283 * otherwise returns zero. 4284 **/ 4285 static int 4286 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4287 { 4288 uint32_t status; 4289 int retval = 0; 4290 4291 /* Read the HBA Host Status Register */ 4292 status = lpfc_sli4_post_status_check(phba); 4293 4294 if (status) { 4295 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4296 lpfc_sli_brdrestart(phba); 4297 status = lpfc_sli4_post_status_check(phba); 4298 } 4299 4300 /* Check to see if any errors occurred during init */ 4301 if (status) { 4302 phba->link_state = LPFC_HBA_ERROR; 4303 retval = 1; 4304 } else 4305 phba->sli4_hba.intr_enable = 0; 4306 4307 return retval; 4308 } 4309 4310 /** 4311 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4312 * @phba: Pointer to HBA context object. 4313 * @mask: Bit mask to be checked. 4314 * 4315 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4316 * from the API jump table function pointer from the lpfc_hba struct. 4317 **/ 4318 int 4319 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4320 { 4321 return phba->lpfc_sli_brdready(phba, mask); 4322 } 4323 4324 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4325 4326 /** 4327 * lpfc_reset_barrier - Make HBA ready for HBA reset 4328 * @phba: Pointer to HBA context object. 4329 * 4330 * This function is called before resetting an HBA. This function is called 4331 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4332 **/ 4333 void lpfc_reset_barrier(struct lpfc_hba *phba) 4334 { 4335 uint32_t __iomem *resp_buf; 4336 uint32_t __iomem *mbox_buf; 4337 volatile uint32_t mbox; 4338 uint32_t hc_copy, ha_copy, resp_data; 4339 int i; 4340 uint8_t hdrtype; 4341 4342 lockdep_assert_held(&phba->hbalock); 4343 4344 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4345 if (hdrtype != 0x80 || 4346 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4347 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4348 return; 4349 4350 /* 4351 * Tell the other part of the chip to suspend temporarily all 4352 * its DMA activity. 4353 */ 4354 resp_buf = phba->MBslimaddr; 4355 4356 /* Disable the error attention */ 4357 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4358 return; 4359 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4360 readl(phba->HCregaddr); /* flush */ 4361 phba->link_flag |= LS_IGNORE_ERATT; 4362 4363 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4364 return; 4365 if (ha_copy & HA_ERATT) { 4366 /* Clear Chip error bit */ 4367 writel(HA_ERATT, phba->HAregaddr); 4368 phba->pport->stopped = 1; 4369 } 4370 4371 mbox = 0; 4372 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4373 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4374 4375 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4376 mbox_buf = phba->MBslimaddr; 4377 writel(mbox, mbox_buf); 4378 4379 for (i = 0; i < 50; i++) { 4380 if (lpfc_readl((resp_buf + 1), &resp_data)) 4381 return; 4382 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4383 mdelay(1); 4384 else 4385 break; 4386 } 4387 resp_data = 0; 4388 if (lpfc_readl((resp_buf + 1), &resp_data)) 4389 return; 4390 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4391 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4392 phba->pport->stopped) 4393 goto restore_hc; 4394 else 4395 goto clear_errat; 4396 } 4397 4398 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4399 resp_data = 0; 4400 for (i = 0; i < 500; i++) { 4401 if (lpfc_readl(resp_buf, &resp_data)) 4402 return; 4403 if (resp_data != mbox) 4404 mdelay(1); 4405 else 4406 break; 4407 } 4408 4409 clear_errat: 4410 4411 while (++i < 500) { 4412 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4413 return; 4414 if (!(ha_copy & HA_ERATT)) 4415 mdelay(1); 4416 else 4417 break; 4418 } 4419 4420 if (readl(phba->HAregaddr) & HA_ERATT) { 4421 writel(HA_ERATT, phba->HAregaddr); 4422 phba->pport->stopped = 1; 4423 } 4424 4425 restore_hc: 4426 phba->link_flag &= ~LS_IGNORE_ERATT; 4427 writel(hc_copy, phba->HCregaddr); 4428 readl(phba->HCregaddr); /* flush */ 4429 } 4430 4431 /** 4432 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4433 * @phba: Pointer to HBA context object. 4434 * 4435 * This function issues a kill_board mailbox command and waits for 4436 * the error attention interrupt. This function is called for stopping 4437 * the firmware processing. The caller is not required to hold any 4438 * locks. This function calls lpfc_hba_down_post function to free 4439 * any pending commands after the kill. The function will return 1 when it 4440 * fails to kill the board else will return 0. 4441 **/ 4442 int 4443 lpfc_sli_brdkill(struct lpfc_hba *phba) 4444 { 4445 struct lpfc_sli *psli; 4446 LPFC_MBOXQ_t *pmb; 4447 uint32_t status; 4448 uint32_t ha_copy; 4449 int retval; 4450 int i = 0; 4451 4452 psli = &phba->sli; 4453 4454 /* Kill HBA */ 4455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4456 "0329 Kill HBA Data: x%x x%x\n", 4457 phba->pport->port_state, psli->sli_flag); 4458 4459 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4460 if (!pmb) 4461 return 1; 4462 4463 /* Disable the error attention */ 4464 spin_lock_irq(&phba->hbalock); 4465 if (lpfc_readl(phba->HCregaddr, &status)) { 4466 spin_unlock_irq(&phba->hbalock); 4467 mempool_free(pmb, phba->mbox_mem_pool); 4468 return 1; 4469 } 4470 status &= ~HC_ERINT_ENA; 4471 writel(status, phba->HCregaddr); 4472 readl(phba->HCregaddr); /* flush */ 4473 phba->link_flag |= LS_IGNORE_ERATT; 4474 spin_unlock_irq(&phba->hbalock); 4475 4476 lpfc_kill_board(phba, pmb); 4477 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4478 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4479 4480 if (retval != MBX_SUCCESS) { 4481 if (retval != MBX_BUSY) 4482 mempool_free(pmb, phba->mbox_mem_pool); 4483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4484 "2752 KILL_BOARD command failed retval %d\n", 4485 retval); 4486 spin_lock_irq(&phba->hbalock); 4487 phba->link_flag &= ~LS_IGNORE_ERATT; 4488 spin_unlock_irq(&phba->hbalock); 4489 return 1; 4490 } 4491 4492 spin_lock_irq(&phba->hbalock); 4493 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4494 spin_unlock_irq(&phba->hbalock); 4495 4496 mempool_free(pmb, phba->mbox_mem_pool); 4497 4498 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4499 * attention every 100ms for 3 seconds. If we don't get ERATT after 4500 * 3 seconds we still set HBA_ERROR state because the status of the 4501 * board is now undefined. 4502 */ 4503 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4504 return 1; 4505 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4506 mdelay(100); 4507 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4508 return 1; 4509 } 4510 4511 del_timer_sync(&psli->mbox_tmo); 4512 if (ha_copy & HA_ERATT) { 4513 writel(HA_ERATT, phba->HAregaddr); 4514 phba->pport->stopped = 1; 4515 } 4516 spin_lock_irq(&phba->hbalock); 4517 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4518 psli->mbox_active = NULL; 4519 phba->link_flag &= ~LS_IGNORE_ERATT; 4520 spin_unlock_irq(&phba->hbalock); 4521 4522 lpfc_hba_down_post(phba); 4523 phba->link_state = LPFC_HBA_ERROR; 4524 4525 return ha_copy & HA_ERATT ? 0 : 1; 4526 } 4527 4528 /** 4529 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4530 * @phba: Pointer to HBA context object. 4531 * 4532 * This function resets the HBA by writing HC_INITFF to the control 4533 * register. After the HBA resets, this function resets all the iocb ring 4534 * indices. This function disables PCI layer parity checking during 4535 * the reset. 4536 * This function returns 0 always. 4537 * The caller is not required to hold any locks. 4538 **/ 4539 int 4540 lpfc_sli_brdreset(struct lpfc_hba *phba) 4541 { 4542 struct lpfc_sli *psli; 4543 struct lpfc_sli_ring *pring; 4544 uint16_t cfg_value; 4545 int i; 4546 4547 psli = &phba->sli; 4548 4549 /* Reset HBA */ 4550 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4551 "0325 Reset HBA Data: x%x x%x\n", 4552 (phba->pport) ? phba->pport->port_state : 0, 4553 psli->sli_flag); 4554 4555 /* perform board reset */ 4556 phba->fc_eventTag = 0; 4557 phba->link_events = 0; 4558 if (phba->pport) { 4559 phba->pport->fc_myDID = 0; 4560 phba->pport->fc_prevDID = 0; 4561 } 4562 4563 /* Turn off parity checking and serr during the physical reset */ 4564 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4565 return -EIO; 4566 4567 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4568 (cfg_value & 4569 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4570 4571 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4572 4573 /* Now toggle INITFF bit in the Host Control Register */ 4574 writel(HC_INITFF, phba->HCregaddr); 4575 mdelay(1); 4576 readl(phba->HCregaddr); /* flush */ 4577 writel(0, phba->HCregaddr); 4578 readl(phba->HCregaddr); /* flush */ 4579 4580 /* Restore PCI cmd register */ 4581 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4582 4583 /* Initialize relevant SLI info */ 4584 for (i = 0; i < psli->num_rings; i++) { 4585 pring = &psli->sli3_ring[i]; 4586 pring->flag = 0; 4587 pring->sli.sli3.rspidx = 0; 4588 pring->sli.sli3.next_cmdidx = 0; 4589 pring->sli.sli3.local_getidx = 0; 4590 pring->sli.sli3.cmdidx = 0; 4591 pring->missbufcnt = 0; 4592 } 4593 4594 phba->link_state = LPFC_WARM_START; 4595 return 0; 4596 } 4597 4598 /** 4599 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4600 * @phba: Pointer to HBA context object. 4601 * 4602 * This function resets a SLI4 HBA. This function disables PCI layer parity 4603 * checking during resets the device. The caller is not required to hold 4604 * any locks. 4605 * 4606 * This function returns 0 on success else returns negative error code. 4607 **/ 4608 int 4609 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4610 { 4611 struct lpfc_sli *psli = &phba->sli; 4612 uint16_t cfg_value; 4613 int rc = 0; 4614 4615 /* Reset HBA */ 4616 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4617 "0295 Reset HBA Data: x%x x%x x%x\n", 4618 phba->pport->port_state, psli->sli_flag, 4619 phba->hba_flag); 4620 4621 /* perform board reset */ 4622 phba->fc_eventTag = 0; 4623 phba->link_events = 0; 4624 phba->pport->fc_myDID = 0; 4625 phba->pport->fc_prevDID = 0; 4626 4627 spin_lock_irq(&phba->hbalock); 4628 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4629 phba->fcf.fcf_flag = 0; 4630 spin_unlock_irq(&phba->hbalock); 4631 4632 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4633 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4634 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4635 return rc; 4636 } 4637 4638 /* Now physically reset the device */ 4639 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4640 "0389 Performing PCI function reset!\n"); 4641 4642 /* Turn off parity checking and serr during the physical reset */ 4643 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4644 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4645 "3205 PCI read Config failed\n"); 4646 return -EIO; 4647 } 4648 4649 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4650 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4651 4652 /* Perform FCoE PCI function reset before freeing queue memory */ 4653 rc = lpfc_pci_function_reset(phba); 4654 4655 /* Restore PCI cmd register */ 4656 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4657 4658 return rc; 4659 } 4660 4661 /** 4662 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4663 * @phba: Pointer to HBA context object. 4664 * 4665 * This function is called in the SLI initialization code path to 4666 * restart the HBA. The caller is not required to hold any lock. 4667 * This function writes MBX_RESTART mailbox command to the SLIM and 4668 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4669 * function to free any pending commands. The function enables 4670 * POST only during the first initialization. The function returns zero. 4671 * The function does not guarantee completion of MBX_RESTART mailbox 4672 * command before the return of this function. 4673 **/ 4674 static int 4675 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4676 { 4677 MAILBOX_t *mb; 4678 struct lpfc_sli *psli; 4679 volatile uint32_t word0; 4680 void __iomem *to_slim; 4681 uint32_t hba_aer_enabled; 4682 4683 spin_lock_irq(&phba->hbalock); 4684 4685 /* Take PCIe device Advanced Error Reporting (AER) state */ 4686 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4687 4688 psli = &phba->sli; 4689 4690 /* Restart HBA */ 4691 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4692 "0337 Restart HBA Data: x%x x%x\n", 4693 (phba->pport) ? phba->pport->port_state : 0, 4694 psli->sli_flag); 4695 4696 word0 = 0; 4697 mb = (MAILBOX_t *) &word0; 4698 mb->mbxCommand = MBX_RESTART; 4699 mb->mbxHc = 1; 4700 4701 lpfc_reset_barrier(phba); 4702 4703 to_slim = phba->MBslimaddr; 4704 writel(*(uint32_t *) mb, to_slim); 4705 readl(to_slim); /* flush */ 4706 4707 /* Only skip post after fc_ffinit is completed */ 4708 if (phba->pport && phba->pport->port_state) 4709 word0 = 1; /* This is really setting up word1 */ 4710 else 4711 word0 = 0; /* This is really setting up word1 */ 4712 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4713 writel(*(uint32_t *) mb, to_slim); 4714 readl(to_slim); /* flush */ 4715 4716 lpfc_sli_brdreset(phba); 4717 if (phba->pport) 4718 phba->pport->stopped = 0; 4719 phba->link_state = LPFC_INIT_START; 4720 phba->hba_flag = 0; 4721 spin_unlock_irq(&phba->hbalock); 4722 4723 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4724 psli->stats_start = ktime_get_seconds(); 4725 4726 /* Give the INITFF and Post time to settle. */ 4727 mdelay(100); 4728 4729 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4730 if (hba_aer_enabled) 4731 pci_disable_pcie_error_reporting(phba->pcidev); 4732 4733 lpfc_hba_down_post(phba); 4734 4735 return 0; 4736 } 4737 4738 /** 4739 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4740 * @phba: Pointer to HBA context object. 4741 * 4742 * This function is called in the SLI initialization code path to restart 4743 * a SLI4 HBA. The caller is not required to hold any lock. 4744 * At the end of the function, it calls lpfc_hba_down_post function to 4745 * free any pending commands. 4746 **/ 4747 static int 4748 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4749 { 4750 struct lpfc_sli *psli = &phba->sli; 4751 uint32_t hba_aer_enabled; 4752 int rc; 4753 4754 /* Restart HBA */ 4755 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4756 "0296 Restart HBA Data: x%x x%x\n", 4757 phba->pport->port_state, psli->sli_flag); 4758 4759 /* Take PCIe device Advanced Error Reporting (AER) state */ 4760 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4761 4762 rc = lpfc_sli4_brdreset(phba); 4763 if (rc) { 4764 phba->link_state = LPFC_HBA_ERROR; 4765 goto hba_down_queue; 4766 } 4767 4768 spin_lock_irq(&phba->hbalock); 4769 phba->pport->stopped = 0; 4770 phba->link_state = LPFC_INIT_START; 4771 phba->hba_flag = 0; 4772 spin_unlock_irq(&phba->hbalock); 4773 4774 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4775 psli->stats_start = ktime_get_seconds(); 4776 4777 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4778 if (hba_aer_enabled) 4779 pci_disable_pcie_error_reporting(phba->pcidev); 4780 4781 hba_down_queue: 4782 lpfc_hba_down_post(phba); 4783 lpfc_sli4_queue_destroy(phba); 4784 4785 return rc; 4786 } 4787 4788 /** 4789 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4790 * @phba: Pointer to HBA context object. 4791 * 4792 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4793 * API jump table function pointer from the lpfc_hba struct. 4794 **/ 4795 int 4796 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4797 { 4798 return phba->lpfc_sli_brdrestart(phba); 4799 } 4800 4801 /** 4802 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4803 * @phba: Pointer to HBA context object. 4804 * 4805 * This function is called after a HBA restart to wait for successful 4806 * restart of the HBA. Successful restart of the HBA is indicated by 4807 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4808 * iteration, the function will restart the HBA again. The function returns 4809 * zero if HBA successfully restarted else returns negative error code. 4810 **/ 4811 int 4812 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4813 { 4814 uint32_t status, i = 0; 4815 4816 /* Read the HBA Host Status Register */ 4817 if (lpfc_readl(phba->HSregaddr, &status)) 4818 return -EIO; 4819 4820 /* Check status register to see what current state is */ 4821 i = 0; 4822 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4823 4824 /* Check every 10ms for 10 retries, then every 100ms for 90 4825 * retries, then every 1 sec for 50 retires for a total of 4826 * ~60 seconds before reset the board again and check every 4827 * 1 sec for 50 retries. The up to 60 seconds before the 4828 * board ready is required by the Falcon FIPS zeroization 4829 * complete, and any reset the board in between shall cause 4830 * restart of zeroization, further delay the board ready. 4831 */ 4832 if (i++ >= 200) { 4833 /* Adapter failed to init, timeout, status reg 4834 <status> */ 4835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4836 "0436 Adapter failed to init, " 4837 "timeout, status reg x%x, " 4838 "FW Data: A8 x%x AC x%x\n", status, 4839 readl(phba->MBslimaddr + 0xa8), 4840 readl(phba->MBslimaddr + 0xac)); 4841 phba->link_state = LPFC_HBA_ERROR; 4842 return -ETIMEDOUT; 4843 } 4844 4845 /* Check to see if any errors occurred during init */ 4846 if (status & HS_FFERM) { 4847 /* ERROR: During chipset initialization */ 4848 /* Adapter failed to init, chipset, status reg 4849 <status> */ 4850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4851 "0437 Adapter failed to init, " 4852 "chipset, status reg x%x, " 4853 "FW Data: A8 x%x AC x%x\n", status, 4854 readl(phba->MBslimaddr + 0xa8), 4855 readl(phba->MBslimaddr + 0xac)); 4856 phba->link_state = LPFC_HBA_ERROR; 4857 return -EIO; 4858 } 4859 4860 if (i <= 10) 4861 msleep(10); 4862 else if (i <= 100) 4863 msleep(100); 4864 else 4865 msleep(1000); 4866 4867 if (i == 150) { 4868 /* Do post */ 4869 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4870 lpfc_sli_brdrestart(phba); 4871 } 4872 /* Read the HBA Host Status Register */ 4873 if (lpfc_readl(phba->HSregaddr, &status)) 4874 return -EIO; 4875 } 4876 4877 /* Check to see if any errors occurred during init */ 4878 if (status & HS_FFERM) { 4879 /* ERROR: During chipset initialization */ 4880 /* Adapter failed to init, chipset, status reg <status> */ 4881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4882 "0438 Adapter failed to init, chipset, " 4883 "status reg x%x, " 4884 "FW Data: A8 x%x AC x%x\n", status, 4885 readl(phba->MBslimaddr + 0xa8), 4886 readl(phba->MBslimaddr + 0xac)); 4887 phba->link_state = LPFC_HBA_ERROR; 4888 return -EIO; 4889 } 4890 4891 /* Clear all interrupt enable conditions */ 4892 writel(0, phba->HCregaddr); 4893 readl(phba->HCregaddr); /* flush */ 4894 4895 /* setup host attn register */ 4896 writel(0xffffffff, phba->HAregaddr); 4897 readl(phba->HAregaddr); /* flush */ 4898 return 0; 4899 } 4900 4901 /** 4902 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4903 * 4904 * This function calculates and returns the number of HBQs required to be 4905 * configured. 4906 **/ 4907 int 4908 lpfc_sli_hbq_count(void) 4909 { 4910 return ARRAY_SIZE(lpfc_hbq_defs); 4911 } 4912 4913 /** 4914 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4915 * 4916 * This function adds the number of hbq entries in every HBQ to get 4917 * the total number of hbq entries required for the HBA and returns 4918 * the total count. 4919 **/ 4920 static int 4921 lpfc_sli_hbq_entry_count(void) 4922 { 4923 int hbq_count = lpfc_sli_hbq_count(); 4924 int count = 0; 4925 int i; 4926 4927 for (i = 0; i < hbq_count; ++i) 4928 count += lpfc_hbq_defs[i]->entry_count; 4929 return count; 4930 } 4931 4932 /** 4933 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4934 * 4935 * This function calculates amount of memory required for all hbq entries 4936 * to be configured and returns the total memory required. 4937 **/ 4938 int 4939 lpfc_sli_hbq_size(void) 4940 { 4941 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4942 } 4943 4944 /** 4945 * lpfc_sli_hbq_setup - configure and initialize HBQs 4946 * @phba: Pointer to HBA context object. 4947 * 4948 * This function is called during the SLI initialization to configure 4949 * all the HBQs and post buffers to the HBQ. The caller is not 4950 * required to hold any locks. This function will return zero if successful 4951 * else it will return negative error code. 4952 **/ 4953 static int 4954 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4955 { 4956 int hbq_count = lpfc_sli_hbq_count(); 4957 LPFC_MBOXQ_t *pmb; 4958 MAILBOX_t *pmbox; 4959 uint32_t hbqno; 4960 uint32_t hbq_entry_index; 4961 4962 /* Get a Mailbox buffer to setup mailbox 4963 * commands for HBA initialization 4964 */ 4965 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4966 4967 if (!pmb) 4968 return -ENOMEM; 4969 4970 pmbox = &pmb->u.mb; 4971 4972 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4973 phba->link_state = LPFC_INIT_MBX_CMDS; 4974 phba->hbq_in_use = 1; 4975 4976 hbq_entry_index = 0; 4977 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4978 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4979 phba->hbqs[hbqno].hbqPutIdx = 0; 4980 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4981 phba->hbqs[hbqno].entry_count = 4982 lpfc_hbq_defs[hbqno]->entry_count; 4983 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4984 hbq_entry_index, pmb); 4985 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4986 4987 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4988 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4989 mbxStatus <status>, ring <num> */ 4990 4991 lpfc_printf_log(phba, KERN_ERR, 4992 LOG_SLI | LOG_VPORT, 4993 "1805 Adapter failed to init. " 4994 "Data: x%x x%x x%x\n", 4995 pmbox->mbxCommand, 4996 pmbox->mbxStatus, hbqno); 4997 4998 phba->link_state = LPFC_HBA_ERROR; 4999 mempool_free(pmb, phba->mbox_mem_pool); 5000 return -ENXIO; 5001 } 5002 } 5003 phba->hbq_count = hbq_count; 5004 5005 mempool_free(pmb, phba->mbox_mem_pool); 5006 5007 /* Initially populate or replenish the HBQs */ 5008 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5009 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5010 return 0; 5011 } 5012 5013 /** 5014 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5015 * @phba: Pointer to HBA context object. 5016 * 5017 * This function is called during the SLI initialization to configure 5018 * all the HBQs and post buffers to the HBQ. The caller is not 5019 * required to hold any locks. This function will return zero if successful 5020 * else it will return negative error code. 5021 **/ 5022 static int 5023 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5024 { 5025 phba->hbq_in_use = 1; 5026 /** 5027 * Specific case when the MDS diagnostics is enabled and supported. 5028 * The receive buffer count is truncated to manage the incoming 5029 * traffic. 5030 **/ 5031 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5032 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5033 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5034 else 5035 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5036 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5037 phba->hbq_count = 1; 5038 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5039 /* Initially populate or replenish the HBQs */ 5040 return 0; 5041 } 5042 5043 /** 5044 * lpfc_sli_config_port - Issue config port mailbox command 5045 * @phba: Pointer to HBA context object. 5046 * @sli_mode: sli mode - 2/3 5047 * 5048 * This function is called by the sli initialization code path 5049 * to issue config_port mailbox command. This function restarts the 5050 * HBA firmware and issues a config_port mailbox command to configure 5051 * the SLI interface in the sli mode specified by sli_mode 5052 * variable. The caller is not required to hold any locks. 5053 * The function returns 0 if successful, else returns negative error 5054 * code. 5055 **/ 5056 int 5057 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5058 { 5059 LPFC_MBOXQ_t *pmb; 5060 uint32_t resetcount = 0, rc = 0, done = 0; 5061 5062 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5063 if (!pmb) { 5064 phba->link_state = LPFC_HBA_ERROR; 5065 return -ENOMEM; 5066 } 5067 5068 phba->sli_rev = sli_mode; 5069 while (resetcount < 2 && !done) { 5070 spin_lock_irq(&phba->hbalock); 5071 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5072 spin_unlock_irq(&phba->hbalock); 5073 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5074 lpfc_sli_brdrestart(phba); 5075 rc = lpfc_sli_chipset_init(phba); 5076 if (rc) 5077 break; 5078 5079 spin_lock_irq(&phba->hbalock); 5080 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5081 spin_unlock_irq(&phba->hbalock); 5082 resetcount++; 5083 5084 /* Call pre CONFIG_PORT mailbox command initialization. A 5085 * value of 0 means the call was successful. Any other 5086 * nonzero value is a failure, but if ERESTART is returned, 5087 * the driver may reset the HBA and try again. 5088 */ 5089 rc = lpfc_config_port_prep(phba); 5090 if (rc == -ERESTART) { 5091 phba->link_state = LPFC_LINK_UNKNOWN; 5092 continue; 5093 } else if (rc) 5094 break; 5095 5096 phba->link_state = LPFC_INIT_MBX_CMDS; 5097 lpfc_config_port(phba, pmb); 5098 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5099 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5100 LPFC_SLI3_HBQ_ENABLED | 5101 LPFC_SLI3_CRP_ENABLED | 5102 LPFC_SLI3_DSS_ENABLED); 5103 if (rc != MBX_SUCCESS) { 5104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5105 "0442 Adapter failed to init, mbxCmd x%x " 5106 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5107 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5108 spin_lock_irq(&phba->hbalock); 5109 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5110 spin_unlock_irq(&phba->hbalock); 5111 rc = -ENXIO; 5112 } else { 5113 /* Allow asynchronous mailbox command to go through */ 5114 spin_lock_irq(&phba->hbalock); 5115 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5116 spin_unlock_irq(&phba->hbalock); 5117 done = 1; 5118 5119 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5120 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5121 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5122 "3110 Port did not grant ASABT\n"); 5123 } 5124 } 5125 if (!done) { 5126 rc = -EINVAL; 5127 goto do_prep_failed; 5128 } 5129 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5130 if (!pmb->u.mb.un.varCfgPort.cMA) { 5131 rc = -ENXIO; 5132 goto do_prep_failed; 5133 } 5134 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5135 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5136 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5137 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5138 phba->max_vpi : phba->max_vports; 5139 5140 } else 5141 phba->max_vpi = 0; 5142 if (pmb->u.mb.un.varCfgPort.gerbm) 5143 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5144 if (pmb->u.mb.un.varCfgPort.gcrp) 5145 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5146 5147 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5148 phba->port_gp = phba->mbox->us.s3_pgp.port; 5149 5150 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5151 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5152 phba->cfg_enable_bg = 0; 5153 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5155 "0443 Adapter did not grant " 5156 "BlockGuard\n"); 5157 } 5158 } 5159 } else { 5160 phba->hbq_get = NULL; 5161 phba->port_gp = phba->mbox->us.s2.port; 5162 phba->max_vpi = 0; 5163 } 5164 do_prep_failed: 5165 mempool_free(pmb, phba->mbox_mem_pool); 5166 return rc; 5167 } 5168 5169 5170 /** 5171 * lpfc_sli_hba_setup - SLI initialization function 5172 * @phba: Pointer to HBA context object. 5173 * 5174 * This function is the main SLI initialization function. This function 5175 * is called by the HBA initialization code, HBA reset code and HBA 5176 * error attention handler code. Caller is not required to hold any 5177 * locks. This function issues config_port mailbox command to configure 5178 * the SLI, setup iocb rings and HBQ rings. In the end the function 5179 * calls the config_port_post function to issue init_link mailbox 5180 * command and to start the discovery. The function will return zero 5181 * if successful, else it will return negative error code. 5182 **/ 5183 int 5184 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5185 { 5186 uint32_t rc; 5187 int mode = 3, i; 5188 int longs; 5189 5190 switch (phba->cfg_sli_mode) { 5191 case 2: 5192 if (phba->cfg_enable_npiv) { 5193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5194 "1824 NPIV enabled: Override sli_mode " 5195 "parameter (%d) to auto (0).\n", 5196 phba->cfg_sli_mode); 5197 break; 5198 } 5199 mode = 2; 5200 break; 5201 case 0: 5202 case 3: 5203 break; 5204 default: 5205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5206 "1819 Unrecognized sli_mode parameter: %d.\n", 5207 phba->cfg_sli_mode); 5208 5209 break; 5210 } 5211 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5212 5213 rc = lpfc_sli_config_port(phba, mode); 5214 5215 if (rc && phba->cfg_sli_mode == 3) 5216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5217 "1820 Unable to select SLI-3. " 5218 "Not supported by adapter.\n"); 5219 if (rc && mode != 2) 5220 rc = lpfc_sli_config_port(phba, 2); 5221 else if (rc && mode == 2) 5222 rc = lpfc_sli_config_port(phba, 3); 5223 if (rc) 5224 goto lpfc_sli_hba_setup_error; 5225 5226 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5227 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5228 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5229 if (!rc) { 5230 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5231 "2709 This device supports " 5232 "Advanced Error Reporting (AER)\n"); 5233 spin_lock_irq(&phba->hbalock); 5234 phba->hba_flag |= HBA_AER_ENABLED; 5235 spin_unlock_irq(&phba->hbalock); 5236 } else { 5237 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5238 "2708 This device does not support " 5239 "Advanced Error Reporting (AER): %d\n", 5240 rc); 5241 phba->cfg_aer_support = 0; 5242 } 5243 } 5244 5245 if (phba->sli_rev == 3) { 5246 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5247 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5248 } else { 5249 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5250 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5251 phba->sli3_options = 0; 5252 } 5253 5254 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5255 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5256 phba->sli_rev, phba->max_vpi); 5257 rc = lpfc_sli_ring_map(phba); 5258 5259 if (rc) 5260 goto lpfc_sli_hba_setup_error; 5261 5262 /* Initialize VPIs. */ 5263 if (phba->sli_rev == LPFC_SLI_REV3) { 5264 /* 5265 * The VPI bitmask and physical ID array are allocated 5266 * and initialized once only - at driver load. A port 5267 * reset doesn't need to reinitialize this memory. 5268 */ 5269 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5270 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5271 phba->vpi_bmask = kcalloc(longs, 5272 sizeof(unsigned long), 5273 GFP_KERNEL); 5274 if (!phba->vpi_bmask) { 5275 rc = -ENOMEM; 5276 goto lpfc_sli_hba_setup_error; 5277 } 5278 5279 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5280 sizeof(uint16_t), 5281 GFP_KERNEL); 5282 if (!phba->vpi_ids) { 5283 kfree(phba->vpi_bmask); 5284 rc = -ENOMEM; 5285 goto lpfc_sli_hba_setup_error; 5286 } 5287 for (i = 0; i < phba->max_vpi; i++) 5288 phba->vpi_ids[i] = i; 5289 } 5290 } 5291 5292 /* Init HBQs */ 5293 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5294 rc = lpfc_sli_hbq_setup(phba); 5295 if (rc) 5296 goto lpfc_sli_hba_setup_error; 5297 } 5298 spin_lock_irq(&phba->hbalock); 5299 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5300 spin_unlock_irq(&phba->hbalock); 5301 5302 rc = lpfc_config_port_post(phba); 5303 if (rc) 5304 goto lpfc_sli_hba_setup_error; 5305 5306 return rc; 5307 5308 lpfc_sli_hba_setup_error: 5309 phba->link_state = LPFC_HBA_ERROR; 5310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5311 "0445 Firmware initialization failed\n"); 5312 return rc; 5313 } 5314 5315 /** 5316 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5317 * @phba: Pointer to HBA context object. 5318 * 5319 * This function issue a dump mailbox command to read config region 5320 * 23 and parse the records in the region and populate driver 5321 * data structure. 5322 **/ 5323 static int 5324 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5325 { 5326 LPFC_MBOXQ_t *mboxq; 5327 struct lpfc_dmabuf *mp; 5328 struct lpfc_mqe *mqe; 5329 uint32_t data_length; 5330 int rc; 5331 5332 /* Program the default value of vlan_id and fc_map */ 5333 phba->valid_vlan = 0; 5334 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5335 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5336 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5337 5338 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5339 if (!mboxq) 5340 return -ENOMEM; 5341 5342 mqe = &mboxq->u.mqe; 5343 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5344 rc = -ENOMEM; 5345 goto out_free_mboxq; 5346 } 5347 5348 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5349 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5350 5351 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5352 "(%d):2571 Mailbox cmd x%x Status x%x " 5353 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5354 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5355 "CQ: x%x x%x x%x x%x\n", 5356 mboxq->vport ? mboxq->vport->vpi : 0, 5357 bf_get(lpfc_mqe_command, mqe), 5358 bf_get(lpfc_mqe_status, mqe), 5359 mqe->un.mb_words[0], mqe->un.mb_words[1], 5360 mqe->un.mb_words[2], mqe->un.mb_words[3], 5361 mqe->un.mb_words[4], mqe->un.mb_words[5], 5362 mqe->un.mb_words[6], mqe->un.mb_words[7], 5363 mqe->un.mb_words[8], mqe->un.mb_words[9], 5364 mqe->un.mb_words[10], mqe->un.mb_words[11], 5365 mqe->un.mb_words[12], mqe->un.mb_words[13], 5366 mqe->un.mb_words[14], mqe->un.mb_words[15], 5367 mqe->un.mb_words[16], mqe->un.mb_words[50], 5368 mboxq->mcqe.word0, 5369 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5370 mboxq->mcqe.trailer); 5371 5372 if (rc) { 5373 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5374 kfree(mp); 5375 rc = -EIO; 5376 goto out_free_mboxq; 5377 } 5378 data_length = mqe->un.mb_words[5]; 5379 if (data_length > DMP_RGN23_SIZE) { 5380 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5381 kfree(mp); 5382 rc = -EIO; 5383 goto out_free_mboxq; 5384 } 5385 5386 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5387 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5388 kfree(mp); 5389 rc = 0; 5390 5391 out_free_mboxq: 5392 mempool_free(mboxq, phba->mbox_mem_pool); 5393 return rc; 5394 } 5395 5396 /** 5397 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5398 * @phba: pointer to lpfc hba data structure. 5399 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5400 * @vpd: pointer to the memory to hold resulting port vpd data. 5401 * @vpd_size: On input, the number of bytes allocated to @vpd. 5402 * On output, the number of data bytes in @vpd. 5403 * 5404 * This routine executes a READ_REV SLI4 mailbox command. In 5405 * addition, this routine gets the port vpd data. 5406 * 5407 * Return codes 5408 * 0 - successful 5409 * -ENOMEM - could not allocated memory. 5410 **/ 5411 static int 5412 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5413 uint8_t *vpd, uint32_t *vpd_size) 5414 { 5415 int rc = 0; 5416 uint32_t dma_size; 5417 struct lpfc_dmabuf *dmabuf; 5418 struct lpfc_mqe *mqe; 5419 5420 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5421 if (!dmabuf) 5422 return -ENOMEM; 5423 5424 /* 5425 * Get a DMA buffer for the vpd data resulting from the READ_REV 5426 * mailbox command. 5427 */ 5428 dma_size = *vpd_size; 5429 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5430 &dmabuf->phys, GFP_KERNEL); 5431 if (!dmabuf->virt) { 5432 kfree(dmabuf); 5433 return -ENOMEM; 5434 } 5435 5436 /* 5437 * The SLI4 implementation of READ_REV conflicts at word1, 5438 * bits 31:16 and SLI4 adds vpd functionality not present 5439 * in SLI3. This code corrects the conflicts. 5440 */ 5441 lpfc_read_rev(phba, mboxq); 5442 mqe = &mboxq->u.mqe; 5443 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5444 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5445 mqe->un.read_rev.word1 &= 0x0000FFFF; 5446 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5447 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5448 5449 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5450 if (rc) { 5451 dma_free_coherent(&phba->pcidev->dev, dma_size, 5452 dmabuf->virt, dmabuf->phys); 5453 kfree(dmabuf); 5454 return -EIO; 5455 } 5456 5457 /* 5458 * The available vpd length cannot be bigger than the 5459 * DMA buffer passed to the port. Catch the less than 5460 * case and update the caller's size. 5461 */ 5462 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5463 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5464 5465 memcpy(vpd, dmabuf->virt, *vpd_size); 5466 5467 dma_free_coherent(&phba->pcidev->dev, dma_size, 5468 dmabuf->virt, dmabuf->phys); 5469 kfree(dmabuf); 5470 return 0; 5471 } 5472 5473 /** 5474 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5475 * @phba: pointer to lpfc hba data structure. 5476 * 5477 * This routine retrieves SLI4 device physical port name this PCI function 5478 * is attached to. 5479 * 5480 * Return codes 5481 * 0 - successful 5482 * otherwise - failed to retrieve controller attributes 5483 **/ 5484 static int 5485 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5486 { 5487 LPFC_MBOXQ_t *mboxq; 5488 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5489 struct lpfc_controller_attribute *cntl_attr; 5490 void *virtaddr = NULL; 5491 uint32_t alloclen, reqlen; 5492 uint32_t shdr_status, shdr_add_status; 5493 union lpfc_sli4_cfg_shdr *shdr; 5494 int rc; 5495 5496 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5497 if (!mboxq) 5498 return -ENOMEM; 5499 5500 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5501 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5502 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5503 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5504 LPFC_SLI4_MBX_NEMBED); 5505 5506 if (alloclen < reqlen) { 5507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5508 "3084 Allocated DMA memory size (%d) is " 5509 "less than the requested DMA memory size " 5510 "(%d)\n", alloclen, reqlen); 5511 rc = -ENOMEM; 5512 goto out_free_mboxq; 5513 } 5514 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5515 virtaddr = mboxq->sge_array->addr[0]; 5516 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5517 shdr = &mbx_cntl_attr->cfg_shdr; 5518 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5519 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5520 if (shdr_status || shdr_add_status || rc) { 5521 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5522 "3085 Mailbox x%x (x%x/x%x) failed, " 5523 "rc:x%x, status:x%x, add_status:x%x\n", 5524 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5525 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5526 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5527 rc, shdr_status, shdr_add_status); 5528 rc = -ENXIO; 5529 goto out_free_mboxq; 5530 } 5531 5532 cntl_attr = &mbx_cntl_attr->cntl_attr; 5533 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5534 phba->sli4_hba.lnk_info.lnk_tp = 5535 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5536 phba->sli4_hba.lnk_info.lnk_no = 5537 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5538 5539 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5540 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5541 sizeof(phba->BIOSVersion)); 5542 5543 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5544 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5545 phba->sli4_hba.lnk_info.lnk_tp, 5546 phba->sli4_hba.lnk_info.lnk_no, 5547 phba->BIOSVersion); 5548 out_free_mboxq: 5549 if (rc != MBX_TIMEOUT) { 5550 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5551 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5552 else 5553 mempool_free(mboxq, phba->mbox_mem_pool); 5554 } 5555 return rc; 5556 } 5557 5558 /** 5559 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5560 * @phba: pointer to lpfc hba data structure. 5561 * 5562 * This routine retrieves SLI4 device physical port name this PCI function 5563 * is attached to. 5564 * 5565 * Return codes 5566 * 0 - successful 5567 * otherwise - failed to retrieve physical port name 5568 **/ 5569 static int 5570 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5571 { 5572 LPFC_MBOXQ_t *mboxq; 5573 struct lpfc_mbx_get_port_name *get_port_name; 5574 uint32_t shdr_status, shdr_add_status; 5575 union lpfc_sli4_cfg_shdr *shdr; 5576 char cport_name = 0; 5577 int rc; 5578 5579 /* We assume nothing at this point */ 5580 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5581 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5582 5583 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5584 if (!mboxq) 5585 return -ENOMEM; 5586 /* obtain link type and link number via READ_CONFIG */ 5587 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5588 lpfc_sli4_read_config(phba); 5589 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5590 goto retrieve_ppname; 5591 5592 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5593 rc = lpfc_sli4_get_ctl_attr(phba); 5594 if (rc) 5595 goto out_free_mboxq; 5596 5597 retrieve_ppname: 5598 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5599 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5600 sizeof(struct lpfc_mbx_get_port_name) - 5601 sizeof(struct lpfc_sli4_cfg_mhdr), 5602 LPFC_SLI4_MBX_EMBED); 5603 get_port_name = &mboxq->u.mqe.un.get_port_name; 5604 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5605 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5606 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5607 phba->sli4_hba.lnk_info.lnk_tp); 5608 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5609 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5610 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5611 if (shdr_status || shdr_add_status || rc) { 5612 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5613 "3087 Mailbox x%x (x%x/x%x) failed: " 5614 "rc:x%x, status:x%x, add_status:x%x\n", 5615 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5616 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5617 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5618 rc, shdr_status, shdr_add_status); 5619 rc = -ENXIO; 5620 goto out_free_mboxq; 5621 } 5622 switch (phba->sli4_hba.lnk_info.lnk_no) { 5623 case LPFC_LINK_NUMBER_0: 5624 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5625 &get_port_name->u.response); 5626 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5627 break; 5628 case LPFC_LINK_NUMBER_1: 5629 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5630 &get_port_name->u.response); 5631 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5632 break; 5633 case LPFC_LINK_NUMBER_2: 5634 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5635 &get_port_name->u.response); 5636 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5637 break; 5638 case LPFC_LINK_NUMBER_3: 5639 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5640 &get_port_name->u.response); 5641 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5642 break; 5643 default: 5644 break; 5645 } 5646 5647 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5648 phba->Port[0] = cport_name; 5649 phba->Port[1] = '\0'; 5650 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5651 "3091 SLI get port name: %s\n", phba->Port); 5652 } 5653 5654 out_free_mboxq: 5655 if (rc != MBX_TIMEOUT) { 5656 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5657 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5658 else 5659 mempool_free(mboxq, phba->mbox_mem_pool); 5660 } 5661 return rc; 5662 } 5663 5664 /** 5665 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5666 * @phba: pointer to lpfc hba data structure. 5667 * 5668 * This routine is called to explicitly arm the SLI4 device's completion and 5669 * event queues 5670 **/ 5671 static void 5672 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5673 { 5674 int qidx; 5675 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5676 struct lpfc_sli4_hdw_queue *qp; 5677 struct lpfc_queue *eq; 5678 5679 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5680 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5681 if (sli4_hba->nvmels_cq) 5682 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5683 LPFC_QUEUE_REARM); 5684 5685 if (sli4_hba->hdwq) { 5686 /* Loop thru all Hardware Queues */ 5687 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5688 qp = &sli4_hba->hdwq[qidx]; 5689 /* ARM the corresponding CQ */ 5690 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5691 LPFC_QUEUE_REARM); 5692 } 5693 5694 /* Loop thru all IRQ vectors */ 5695 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5696 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5697 /* ARM the corresponding EQ */ 5698 sli4_hba->sli4_write_eq_db(phba, eq, 5699 0, LPFC_QUEUE_REARM); 5700 } 5701 } 5702 5703 if (phba->nvmet_support) { 5704 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5705 sli4_hba->sli4_write_cq_db(phba, 5706 sli4_hba->nvmet_cqset[qidx], 0, 5707 LPFC_QUEUE_REARM); 5708 } 5709 } 5710 } 5711 5712 /** 5713 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5714 * @phba: Pointer to HBA context object. 5715 * @type: The resource extent type. 5716 * @extnt_count: buffer to hold port available extent count. 5717 * @extnt_size: buffer to hold element count per extent. 5718 * 5719 * This function calls the port and retrievs the number of available 5720 * extents and their size for a particular extent type. 5721 * 5722 * Returns: 0 if successful. Nonzero otherwise. 5723 **/ 5724 int 5725 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5726 uint16_t *extnt_count, uint16_t *extnt_size) 5727 { 5728 int rc = 0; 5729 uint32_t length; 5730 uint32_t mbox_tmo; 5731 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5732 LPFC_MBOXQ_t *mbox; 5733 5734 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5735 if (!mbox) 5736 return -ENOMEM; 5737 5738 /* Find out how many extents are available for this resource type */ 5739 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5740 sizeof(struct lpfc_sli4_cfg_mhdr)); 5741 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5742 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5743 length, LPFC_SLI4_MBX_EMBED); 5744 5745 /* Send an extents count of 0 - the GET doesn't use it. */ 5746 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5747 LPFC_SLI4_MBX_EMBED); 5748 if (unlikely(rc)) { 5749 rc = -EIO; 5750 goto err_exit; 5751 } 5752 5753 if (!phba->sli4_hba.intr_enable) 5754 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5755 else { 5756 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5757 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5758 } 5759 if (unlikely(rc)) { 5760 rc = -EIO; 5761 goto err_exit; 5762 } 5763 5764 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5765 if (bf_get(lpfc_mbox_hdr_status, 5766 &rsrc_info->header.cfg_shdr.response)) { 5767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5768 "2930 Failed to get resource extents " 5769 "Status 0x%x Add'l Status 0x%x\n", 5770 bf_get(lpfc_mbox_hdr_status, 5771 &rsrc_info->header.cfg_shdr.response), 5772 bf_get(lpfc_mbox_hdr_add_status, 5773 &rsrc_info->header.cfg_shdr.response)); 5774 rc = -EIO; 5775 goto err_exit; 5776 } 5777 5778 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5779 &rsrc_info->u.rsp); 5780 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5781 &rsrc_info->u.rsp); 5782 5783 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5784 "3162 Retrieved extents type-%d from port: count:%d, " 5785 "size:%d\n", type, *extnt_count, *extnt_size); 5786 5787 err_exit: 5788 mempool_free(mbox, phba->mbox_mem_pool); 5789 return rc; 5790 } 5791 5792 /** 5793 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5794 * @phba: Pointer to HBA context object. 5795 * @type: The extent type to check. 5796 * 5797 * This function reads the current available extents from the port and checks 5798 * if the extent count or extent size has changed since the last access. 5799 * Callers use this routine post port reset to understand if there is a 5800 * extent reprovisioning requirement. 5801 * 5802 * Returns: 5803 * -Error: error indicates problem. 5804 * 1: Extent count or size has changed. 5805 * 0: No changes. 5806 **/ 5807 static int 5808 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5809 { 5810 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5811 uint16_t size_diff, rsrc_ext_size; 5812 int rc = 0; 5813 struct lpfc_rsrc_blks *rsrc_entry; 5814 struct list_head *rsrc_blk_list = NULL; 5815 5816 size_diff = 0; 5817 curr_ext_cnt = 0; 5818 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5819 &rsrc_ext_cnt, 5820 &rsrc_ext_size); 5821 if (unlikely(rc)) 5822 return -EIO; 5823 5824 switch (type) { 5825 case LPFC_RSC_TYPE_FCOE_RPI: 5826 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5827 break; 5828 case LPFC_RSC_TYPE_FCOE_VPI: 5829 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5830 break; 5831 case LPFC_RSC_TYPE_FCOE_XRI: 5832 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5833 break; 5834 case LPFC_RSC_TYPE_FCOE_VFI: 5835 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5836 break; 5837 default: 5838 break; 5839 } 5840 5841 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5842 curr_ext_cnt++; 5843 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5844 size_diff++; 5845 } 5846 5847 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5848 rc = 1; 5849 5850 return rc; 5851 } 5852 5853 /** 5854 * lpfc_sli4_cfg_post_extnts - 5855 * @phba: Pointer to HBA context object. 5856 * @extnt_cnt: number of available extents. 5857 * @type: the extent type (rpi, xri, vfi, vpi). 5858 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5859 * @mbox: pointer to the caller's allocated mailbox structure. 5860 * 5861 * This function executes the extents allocation request. It also 5862 * takes care of the amount of memory needed to allocate or get the 5863 * allocated extents. It is the caller's responsibility to evaluate 5864 * the response. 5865 * 5866 * Returns: 5867 * -Error: Error value describes the condition found. 5868 * 0: if successful 5869 **/ 5870 static int 5871 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5872 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5873 { 5874 int rc = 0; 5875 uint32_t req_len; 5876 uint32_t emb_len; 5877 uint32_t alloc_len, mbox_tmo; 5878 5879 /* Calculate the total requested length of the dma memory */ 5880 req_len = extnt_cnt * sizeof(uint16_t); 5881 5882 /* 5883 * Calculate the size of an embedded mailbox. The uint32_t 5884 * accounts for extents-specific word. 5885 */ 5886 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5887 sizeof(uint32_t); 5888 5889 /* 5890 * Presume the allocation and response will fit into an embedded 5891 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5892 */ 5893 *emb = LPFC_SLI4_MBX_EMBED; 5894 if (req_len > emb_len) { 5895 req_len = extnt_cnt * sizeof(uint16_t) + 5896 sizeof(union lpfc_sli4_cfg_shdr) + 5897 sizeof(uint32_t); 5898 *emb = LPFC_SLI4_MBX_NEMBED; 5899 } 5900 5901 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5902 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5903 req_len, *emb); 5904 if (alloc_len < req_len) { 5905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5906 "2982 Allocated DMA memory size (x%x) is " 5907 "less than the requested DMA memory " 5908 "size (x%x)\n", alloc_len, req_len); 5909 return -ENOMEM; 5910 } 5911 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5912 if (unlikely(rc)) 5913 return -EIO; 5914 5915 if (!phba->sli4_hba.intr_enable) 5916 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5917 else { 5918 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5919 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5920 } 5921 5922 if (unlikely(rc)) 5923 rc = -EIO; 5924 return rc; 5925 } 5926 5927 /** 5928 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5929 * @phba: Pointer to HBA context object. 5930 * @type: The resource extent type to allocate. 5931 * 5932 * This function allocates the number of elements for the specified 5933 * resource type. 5934 **/ 5935 static int 5936 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5937 { 5938 bool emb = false; 5939 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5940 uint16_t rsrc_id, rsrc_start, j, k; 5941 uint16_t *ids; 5942 int i, rc; 5943 unsigned long longs; 5944 unsigned long *bmask; 5945 struct lpfc_rsrc_blks *rsrc_blks; 5946 LPFC_MBOXQ_t *mbox; 5947 uint32_t length; 5948 struct lpfc_id_range *id_array = NULL; 5949 void *virtaddr = NULL; 5950 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5951 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5952 struct list_head *ext_blk_list; 5953 5954 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5955 &rsrc_cnt, 5956 &rsrc_size); 5957 if (unlikely(rc)) 5958 return -EIO; 5959 5960 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5962 "3009 No available Resource Extents " 5963 "for resource type 0x%x: Count: 0x%x, " 5964 "Size 0x%x\n", type, rsrc_cnt, 5965 rsrc_size); 5966 return -ENOMEM; 5967 } 5968 5969 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5970 "2903 Post resource extents type-0x%x: " 5971 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5972 5973 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5974 if (!mbox) 5975 return -ENOMEM; 5976 5977 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5978 if (unlikely(rc)) { 5979 rc = -EIO; 5980 goto err_exit; 5981 } 5982 5983 /* 5984 * Figure out where the response is located. Then get local pointers 5985 * to the response data. The port does not guarantee to respond to 5986 * all extents counts request so update the local variable with the 5987 * allocated count from the port. 5988 */ 5989 if (emb == LPFC_SLI4_MBX_EMBED) { 5990 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5991 id_array = &rsrc_ext->u.rsp.id[0]; 5992 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5993 } else { 5994 virtaddr = mbox->sge_array->addr[0]; 5995 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5996 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5997 id_array = &n_rsrc->id; 5998 } 5999 6000 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6001 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6002 6003 /* 6004 * Based on the resource size and count, correct the base and max 6005 * resource values. 6006 */ 6007 length = sizeof(struct lpfc_rsrc_blks); 6008 switch (type) { 6009 case LPFC_RSC_TYPE_FCOE_RPI: 6010 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6011 sizeof(unsigned long), 6012 GFP_KERNEL); 6013 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6014 rc = -ENOMEM; 6015 goto err_exit; 6016 } 6017 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6018 sizeof(uint16_t), 6019 GFP_KERNEL); 6020 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6021 kfree(phba->sli4_hba.rpi_bmask); 6022 rc = -ENOMEM; 6023 goto err_exit; 6024 } 6025 6026 /* 6027 * The next_rpi was initialized with the maximum available 6028 * count but the port may allocate a smaller number. Catch 6029 * that case and update the next_rpi. 6030 */ 6031 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6032 6033 /* Initialize local ptrs for common extent processing later. */ 6034 bmask = phba->sli4_hba.rpi_bmask; 6035 ids = phba->sli4_hba.rpi_ids; 6036 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6037 break; 6038 case LPFC_RSC_TYPE_FCOE_VPI: 6039 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6040 GFP_KERNEL); 6041 if (unlikely(!phba->vpi_bmask)) { 6042 rc = -ENOMEM; 6043 goto err_exit; 6044 } 6045 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6046 GFP_KERNEL); 6047 if (unlikely(!phba->vpi_ids)) { 6048 kfree(phba->vpi_bmask); 6049 rc = -ENOMEM; 6050 goto err_exit; 6051 } 6052 6053 /* Initialize local ptrs for common extent processing later. */ 6054 bmask = phba->vpi_bmask; 6055 ids = phba->vpi_ids; 6056 ext_blk_list = &phba->lpfc_vpi_blk_list; 6057 break; 6058 case LPFC_RSC_TYPE_FCOE_XRI: 6059 phba->sli4_hba.xri_bmask = kcalloc(longs, 6060 sizeof(unsigned long), 6061 GFP_KERNEL); 6062 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6063 rc = -ENOMEM; 6064 goto err_exit; 6065 } 6066 phba->sli4_hba.max_cfg_param.xri_used = 0; 6067 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6068 sizeof(uint16_t), 6069 GFP_KERNEL); 6070 if (unlikely(!phba->sli4_hba.xri_ids)) { 6071 kfree(phba->sli4_hba.xri_bmask); 6072 rc = -ENOMEM; 6073 goto err_exit; 6074 } 6075 6076 /* Initialize local ptrs for common extent processing later. */ 6077 bmask = phba->sli4_hba.xri_bmask; 6078 ids = phba->sli4_hba.xri_ids; 6079 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6080 break; 6081 case LPFC_RSC_TYPE_FCOE_VFI: 6082 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6083 sizeof(unsigned long), 6084 GFP_KERNEL); 6085 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6086 rc = -ENOMEM; 6087 goto err_exit; 6088 } 6089 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6090 sizeof(uint16_t), 6091 GFP_KERNEL); 6092 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6093 kfree(phba->sli4_hba.vfi_bmask); 6094 rc = -ENOMEM; 6095 goto err_exit; 6096 } 6097 6098 /* Initialize local ptrs for common extent processing later. */ 6099 bmask = phba->sli4_hba.vfi_bmask; 6100 ids = phba->sli4_hba.vfi_ids; 6101 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6102 break; 6103 default: 6104 /* Unsupported Opcode. Fail call. */ 6105 id_array = NULL; 6106 bmask = NULL; 6107 ids = NULL; 6108 ext_blk_list = NULL; 6109 goto err_exit; 6110 } 6111 6112 /* 6113 * Complete initializing the extent configuration with the 6114 * allocated ids assigned to this function. The bitmask serves 6115 * as an index into the array and manages the available ids. The 6116 * array just stores the ids communicated to the port via the wqes. 6117 */ 6118 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6119 if ((i % 2) == 0) 6120 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6121 &id_array[k]); 6122 else 6123 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6124 &id_array[k]); 6125 6126 rsrc_blks = kzalloc(length, GFP_KERNEL); 6127 if (unlikely(!rsrc_blks)) { 6128 rc = -ENOMEM; 6129 kfree(bmask); 6130 kfree(ids); 6131 goto err_exit; 6132 } 6133 rsrc_blks->rsrc_start = rsrc_id; 6134 rsrc_blks->rsrc_size = rsrc_size; 6135 list_add_tail(&rsrc_blks->list, ext_blk_list); 6136 rsrc_start = rsrc_id; 6137 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6138 phba->sli4_hba.io_xri_start = rsrc_start + 6139 lpfc_sli4_get_iocb_cnt(phba); 6140 } 6141 6142 while (rsrc_id < (rsrc_start + rsrc_size)) { 6143 ids[j] = rsrc_id; 6144 rsrc_id++; 6145 j++; 6146 } 6147 /* Entire word processed. Get next word.*/ 6148 if ((i % 2) == 1) 6149 k++; 6150 } 6151 err_exit: 6152 lpfc_sli4_mbox_cmd_free(phba, mbox); 6153 return rc; 6154 } 6155 6156 6157 6158 /** 6159 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6160 * @phba: Pointer to HBA context object. 6161 * @type: the extent's type. 6162 * 6163 * This function deallocates all extents of a particular resource type. 6164 * SLI4 does not allow for deallocating a particular extent range. It 6165 * is the caller's responsibility to release all kernel memory resources. 6166 **/ 6167 static int 6168 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6169 { 6170 int rc; 6171 uint32_t length, mbox_tmo = 0; 6172 LPFC_MBOXQ_t *mbox; 6173 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6174 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6175 6176 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6177 if (!mbox) 6178 return -ENOMEM; 6179 6180 /* 6181 * This function sends an embedded mailbox because it only sends the 6182 * the resource type. All extents of this type are released by the 6183 * port. 6184 */ 6185 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6186 sizeof(struct lpfc_sli4_cfg_mhdr)); 6187 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6188 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6189 length, LPFC_SLI4_MBX_EMBED); 6190 6191 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6192 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6193 LPFC_SLI4_MBX_EMBED); 6194 if (unlikely(rc)) { 6195 rc = -EIO; 6196 goto out_free_mbox; 6197 } 6198 if (!phba->sli4_hba.intr_enable) 6199 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6200 else { 6201 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6202 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6203 } 6204 if (unlikely(rc)) { 6205 rc = -EIO; 6206 goto out_free_mbox; 6207 } 6208 6209 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6210 if (bf_get(lpfc_mbox_hdr_status, 6211 &dealloc_rsrc->header.cfg_shdr.response)) { 6212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6213 "2919 Failed to release resource extents " 6214 "for type %d - Status 0x%x Add'l Status 0x%x. " 6215 "Resource memory not released.\n", 6216 type, 6217 bf_get(lpfc_mbox_hdr_status, 6218 &dealloc_rsrc->header.cfg_shdr.response), 6219 bf_get(lpfc_mbox_hdr_add_status, 6220 &dealloc_rsrc->header.cfg_shdr.response)); 6221 rc = -EIO; 6222 goto out_free_mbox; 6223 } 6224 6225 /* Release kernel memory resources for the specific type. */ 6226 switch (type) { 6227 case LPFC_RSC_TYPE_FCOE_VPI: 6228 kfree(phba->vpi_bmask); 6229 kfree(phba->vpi_ids); 6230 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6231 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6232 &phba->lpfc_vpi_blk_list, list) { 6233 list_del_init(&rsrc_blk->list); 6234 kfree(rsrc_blk); 6235 } 6236 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6237 break; 6238 case LPFC_RSC_TYPE_FCOE_XRI: 6239 kfree(phba->sli4_hba.xri_bmask); 6240 kfree(phba->sli4_hba.xri_ids); 6241 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6242 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6243 list_del_init(&rsrc_blk->list); 6244 kfree(rsrc_blk); 6245 } 6246 break; 6247 case LPFC_RSC_TYPE_FCOE_VFI: 6248 kfree(phba->sli4_hba.vfi_bmask); 6249 kfree(phba->sli4_hba.vfi_ids); 6250 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6251 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6252 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6253 list_del_init(&rsrc_blk->list); 6254 kfree(rsrc_blk); 6255 } 6256 break; 6257 case LPFC_RSC_TYPE_FCOE_RPI: 6258 /* RPI bitmask and physical id array are cleaned up earlier. */ 6259 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6260 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6261 list_del_init(&rsrc_blk->list); 6262 kfree(rsrc_blk); 6263 } 6264 break; 6265 default: 6266 break; 6267 } 6268 6269 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6270 6271 out_free_mbox: 6272 mempool_free(mbox, phba->mbox_mem_pool); 6273 return rc; 6274 } 6275 6276 static void 6277 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6278 uint32_t feature) 6279 { 6280 uint32_t len; 6281 6282 len = sizeof(struct lpfc_mbx_set_feature) - 6283 sizeof(struct lpfc_sli4_cfg_mhdr); 6284 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6285 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6286 LPFC_SLI4_MBX_EMBED); 6287 6288 switch (feature) { 6289 case LPFC_SET_UE_RECOVERY: 6290 bf_set(lpfc_mbx_set_feature_UER, 6291 &mbox->u.mqe.un.set_feature, 1); 6292 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6293 mbox->u.mqe.un.set_feature.param_len = 8; 6294 break; 6295 case LPFC_SET_MDS_DIAGS: 6296 bf_set(lpfc_mbx_set_feature_mds, 6297 &mbox->u.mqe.un.set_feature, 1); 6298 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6299 &mbox->u.mqe.un.set_feature, 1); 6300 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6301 mbox->u.mqe.un.set_feature.param_len = 8; 6302 break; 6303 case LPFC_SET_DUAL_DUMP: 6304 bf_set(lpfc_mbx_set_feature_dd, 6305 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6306 bf_set(lpfc_mbx_set_feature_ddquery, 6307 &mbox->u.mqe.un.set_feature, 0); 6308 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6309 mbox->u.mqe.un.set_feature.param_len = 4; 6310 break; 6311 } 6312 6313 return; 6314 } 6315 6316 /** 6317 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6318 * @phba: Pointer to HBA context object. 6319 * 6320 * Disable FW logging into host memory on the adapter. To 6321 * be done before reading logs from the host memory. 6322 **/ 6323 void 6324 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6325 { 6326 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6327 6328 spin_lock_irq(&phba->hbalock); 6329 ras_fwlog->state = INACTIVE; 6330 spin_unlock_irq(&phba->hbalock); 6331 6332 /* Disable FW logging to host memory */ 6333 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6334 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6335 6336 /* Wait 10ms for firmware to stop using DMA buffer */ 6337 usleep_range(10 * 1000, 20 * 1000); 6338 } 6339 6340 /** 6341 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6342 * @phba: Pointer to HBA context object. 6343 * 6344 * This function is called to free memory allocated for RAS FW logging 6345 * support in the driver. 6346 **/ 6347 void 6348 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6349 { 6350 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6351 struct lpfc_dmabuf *dmabuf, *next; 6352 6353 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6354 list_for_each_entry_safe(dmabuf, next, 6355 &ras_fwlog->fwlog_buff_list, 6356 list) { 6357 list_del(&dmabuf->list); 6358 dma_free_coherent(&phba->pcidev->dev, 6359 LPFC_RAS_MAX_ENTRY_SIZE, 6360 dmabuf->virt, dmabuf->phys); 6361 kfree(dmabuf); 6362 } 6363 } 6364 6365 if (ras_fwlog->lwpd.virt) { 6366 dma_free_coherent(&phba->pcidev->dev, 6367 sizeof(uint32_t) * 2, 6368 ras_fwlog->lwpd.virt, 6369 ras_fwlog->lwpd.phys); 6370 ras_fwlog->lwpd.virt = NULL; 6371 } 6372 6373 spin_lock_irq(&phba->hbalock); 6374 ras_fwlog->state = INACTIVE; 6375 spin_unlock_irq(&phba->hbalock); 6376 } 6377 6378 /** 6379 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6380 * @phba: Pointer to HBA context object. 6381 * @fwlog_buff_count: Count of buffers to be created. 6382 * 6383 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6384 * to update FW log is posted to the adapter. 6385 * Buffer count is calculated based on module param ras_fwlog_buffsize 6386 * Size of each buffer posted to FW is 64K. 6387 **/ 6388 6389 static int 6390 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6391 uint32_t fwlog_buff_count) 6392 { 6393 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6394 struct lpfc_dmabuf *dmabuf; 6395 int rc = 0, i = 0; 6396 6397 /* Initialize List */ 6398 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6399 6400 /* Allocate memory for the LWPD */ 6401 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6402 sizeof(uint32_t) * 2, 6403 &ras_fwlog->lwpd.phys, 6404 GFP_KERNEL); 6405 if (!ras_fwlog->lwpd.virt) { 6406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6407 "6185 LWPD Memory Alloc Failed\n"); 6408 6409 return -ENOMEM; 6410 } 6411 6412 ras_fwlog->fw_buffcount = fwlog_buff_count; 6413 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6414 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6415 GFP_KERNEL); 6416 if (!dmabuf) { 6417 rc = -ENOMEM; 6418 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6419 "6186 Memory Alloc failed FW logging"); 6420 goto free_mem; 6421 } 6422 6423 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6424 LPFC_RAS_MAX_ENTRY_SIZE, 6425 &dmabuf->phys, GFP_KERNEL); 6426 if (!dmabuf->virt) { 6427 kfree(dmabuf); 6428 rc = -ENOMEM; 6429 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6430 "6187 DMA Alloc Failed FW logging"); 6431 goto free_mem; 6432 } 6433 dmabuf->buffer_tag = i; 6434 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6435 } 6436 6437 free_mem: 6438 if (rc) 6439 lpfc_sli4_ras_dma_free(phba); 6440 6441 return rc; 6442 } 6443 6444 /** 6445 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6446 * @phba: pointer to lpfc hba data structure. 6447 * @pmb: pointer to the driver internal queue element for mailbox command. 6448 * 6449 * Completion handler for driver's RAS MBX command to the device. 6450 **/ 6451 static void 6452 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6453 { 6454 MAILBOX_t *mb; 6455 union lpfc_sli4_cfg_shdr *shdr; 6456 uint32_t shdr_status, shdr_add_status; 6457 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6458 6459 mb = &pmb->u.mb; 6460 6461 shdr = (union lpfc_sli4_cfg_shdr *) 6462 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6463 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6464 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6465 6466 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6468 "6188 FW LOG mailbox " 6469 "completed with status x%x add_status x%x," 6470 " mbx status x%x\n", 6471 shdr_status, shdr_add_status, mb->mbxStatus); 6472 6473 ras_fwlog->ras_hwsupport = false; 6474 goto disable_ras; 6475 } 6476 6477 spin_lock_irq(&phba->hbalock); 6478 ras_fwlog->state = ACTIVE; 6479 spin_unlock_irq(&phba->hbalock); 6480 mempool_free(pmb, phba->mbox_mem_pool); 6481 6482 return; 6483 6484 disable_ras: 6485 /* Free RAS DMA memory */ 6486 lpfc_sli4_ras_dma_free(phba); 6487 mempool_free(pmb, phba->mbox_mem_pool); 6488 } 6489 6490 /** 6491 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6492 * @phba: pointer to lpfc hba data structure. 6493 * @fwlog_level: Logging verbosity level. 6494 * @fwlog_enable: Enable/Disable logging. 6495 * 6496 * Initialize memory and post mailbox command to enable FW logging in host 6497 * memory. 6498 **/ 6499 int 6500 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6501 uint32_t fwlog_level, 6502 uint32_t fwlog_enable) 6503 { 6504 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6505 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6506 struct lpfc_dmabuf *dmabuf; 6507 LPFC_MBOXQ_t *mbox; 6508 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6509 int rc = 0; 6510 6511 spin_lock_irq(&phba->hbalock); 6512 ras_fwlog->state = INACTIVE; 6513 spin_unlock_irq(&phba->hbalock); 6514 6515 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6516 phba->cfg_ras_fwlog_buffsize); 6517 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6518 6519 /* 6520 * If re-enabling FW logging support use earlier allocated 6521 * DMA buffers while posting MBX command. 6522 **/ 6523 if (!ras_fwlog->lwpd.virt) { 6524 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6525 if (rc) { 6526 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6527 "6189 FW Log Memory Allocation Failed"); 6528 return rc; 6529 } 6530 } 6531 6532 /* Setup Mailbox command */ 6533 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6534 if (!mbox) { 6535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6536 "6190 RAS MBX Alloc Failed"); 6537 rc = -ENOMEM; 6538 goto mem_free; 6539 } 6540 6541 ras_fwlog->fw_loglevel = fwlog_level; 6542 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6543 sizeof(struct lpfc_sli4_cfg_mhdr)); 6544 6545 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6546 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6547 len, LPFC_SLI4_MBX_EMBED); 6548 6549 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6550 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6551 fwlog_enable); 6552 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6553 ras_fwlog->fw_loglevel); 6554 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6555 ras_fwlog->fw_buffcount); 6556 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6557 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6558 6559 /* Update DMA buffer address */ 6560 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6561 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6562 6563 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6564 putPaddrLow(dmabuf->phys); 6565 6566 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6567 putPaddrHigh(dmabuf->phys); 6568 } 6569 6570 /* Update LPWD address */ 6571 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6572 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6573 6574 spin_lock_irq(&phba->hbalock); 6575 ras_fwlog->state = REG_INPROGRESS; 6576 spin_unlock_irq(&phba->hbalock); 6577 mbox->vport = phba->pport; 6578 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6579 6580 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6581 6582 if (rc == MBX_NOT_FINISHED) { 6583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6584 "6191 FW-Log Mailbox failed. " 6585 "status %d mbxStatus : x%x", rc, 6586 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6587 mempool_free(mbox, phba->mbox_mem_pool); 6588 rc = -EIO; 6589 goto mem_free; 6590 } else 6591 rc = 0; 6592 mem_free: 6593 if (rc) 6594 lpfc_sli4_ras_dma_free(phba); 6595 6596 return rc; 6597 } 6598 6599 /** 6600 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6601 * @phba: Pointer to HBA context object. 6602 * 6603 * Check if RAS is supported on the adapter and initialize it. 6604 **/ 6605 void 6606 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6607 { 6608 /* Check RAS FW Log needs to be enabled or not */ 6609 if (lpfc_check_fwlog_support(phba)) 6610 return; 6611 6612 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6613 LPFC_RAS_ENABLE_LOGGING); 6614 } 6615 6616 /** 6617 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6618 * @phba: Pointer to HBA context object. 6619 * 6620 * This function allocates all SLI4 resource identifiers. 6621 **/ 6622 int 6623 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6624 { 6625 int i, rc, error = 0; 6626 uint16_t count, base; 6627 unsigned long longs; 6628 6629 if (!phba->sli4_hba.rpi_hdrs_in_use) 6630 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6631 if (phba->sli4_hba.extents_in_use) { 6632 /* 6633 * The port supports resource extents. The XRI, VPI, VFI, RPI 6634 * resource extent count must be read and allocated before 6635 * provisioning the resource id arrays. 6636 */ 6637 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6638 LPFC_IDX_RSRC_RDY) { 6639 /* 6640 * Extent-based resources are set - the driver could 6641 * be in a port reset. Figure out if any corrective 6642 * actions need to be taken. 6643 */ 6644 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6645 LPFC_RSC_TYPE_FCOE_VFI); 6646 if (rc != 0) 6647 error++; 6648 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6649 LPFC_RSC_TYPE_FCOE_VPI); 6650 if (rc != 0) 6651 error++; 6652 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6653 LPFC_RSC_TYPE_FCOE_XRI); 6654 if (rc != 0) 6655 error++; 6656 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6657 LPFC_RSC_TYPE_FCOE_RPI); 6658 if (rc != 0) 6659 error++; 6660 6661 /* 6662 * It's possible that the number of resources 6663 * provided to this port instance changed between 6664 * resets. Detect this condition and reallocate 6665 * resources. Otherwise, there is no action. 6666 */ 6667 if (error) { 6668 lpfc_printf_log(phba, KERN_INFO, 6669 LOG_MBOX | LOG_INIT, 6670 "2931 Detected extent resource " 6671 "change. Reallocating all " 6672 "extents.\n"); 6673 rc = lpfc_sli4_dealloc_extent(phba, 6674 LPFC_RSC_TYPE_FCOE_VFI); 6675 rc = lpfc_sli4_dealloc_extent(phba, 6676 LPFC_RSC_TYPE_FCOE_VPI); 6677 rc = lpfc_sli4_dealloc_extent(phba, 6678 LPFC_RSC_TYPE_FCOE_XRI); 6679 rc = lpfc_sli4_dealloc_extent(phba, 6680 LPFC_RSC_TYPE_FCOE_RPI); 6681 } else 6682 return 0; 6683 } 6684 6685 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6686 if (unlikely(rc)) 6687 goto err_exit; 6688 6689 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6690 if (unlikely(rc)) 6691 goto err_exit; 6692 6693 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6694 if (unlikely(rc)) 6695 goto err_exit; 6696 6697 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6698 if (unlikely(rc)) 6699 goto err_exit; 6700 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6701 LPFC_IDX_RSRC_RDY); 6702 return rc; 6703 } else { 6704 /* 6705 * The port does not support resource extents. The XRI, VPI, 6706 * VFI, RPI resource ids were determined from READ_CONFIG. 6707 * Just allocate the bitmasks and provision the resource id 6708 * arrays. If a port reset is active, the resources don't 6709 * need any action - just exit. 6710 */ 6711 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6712 LPFC_IDX_RSRC_RDY) { 6713 lpfc_sli4_dealloc_resource_identifiers(phba); 6714 lpfc_sli4_remove_rpis(phba); 6715 } 6716 /* RPIs. */ 6717 count = phba->sli4_hba.max_cfg_param.max_rpi; 6718 if (count <= 0) { 6719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6720 "3279 Invalid provisioning of " 6721 "rpi:%d\n", count); 6722 rc = -EINVAL; 6723 goto err_exit; 6724 } 6725 base = phba->sli4_hba.max_cfg_param.rpi_base; 6726 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6727 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6728 sizeof(unsigned long), 6729 GFP_KERNEL); 6730 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6731 rc = -ENOMEM; 6732 goto err_exit; 6733 } 6734 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6735 GFP_KERNEL); 6736 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6737 rc = -ENOMEM; 6738 goto free_rpi_bmask; 6739 } 6740 6741 for (i = 0; i < count; i++) 6742 phba->sli4_hba.rpi_ids[i] = base + i; 6743 6744 /* VPIs. */ 6745 count = phba->sli4_hba.max_cfg_param.max_vpi; 6746 if (count <= 0) { 6747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6748 "3280 Invalid provisioning of " 6749 "vpi:%d\n", count); 6750 rc = -EINVAL; 6751 goto free_rpi_ids; 6752 } 6753 base = phba->sli4_hba.max_cfg_param.vpi_base; 6754 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6755 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6756 GFP_KERNEL); 6757 if (unlikely(!phba->vpi_bmask)) { 6758 rc = -ENOMEM; 6759 goto free_rpi_ids; 6760 } 6761 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6762 GFP_KERNEL); 6763 if (unlikely(!phba->vpi_ids)) { 6764 rc = -ENOMEM; 6765 goto free_vpi_bmask; 6766 } 6767 6768 for (i = 0; i < count; i++) 6769 phba->vpi_ids[i] = base + i; 6770 6771 /* XRIs. */ 6772 count = phba->sli4_hba.max_cfg_param.max_xri; 6773 if (count <= 0) { 6774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6775 "3281 Invalid provisioning of " 6776 "xri:%d\n", count); 6777 rc = -EINVAL; 6778 goto free_vpi_ids; 6779 } 6780 base = phba->sli4_hba.max_cfg_param.xri_base; 6781 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6782 phba->sli4_hba.xri_bmask = kcalloc(longs, 6783 sizeof(unsigned long), 6784 GFP_KERNEL); 6785 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6786 rc = -ENOMEM; 6787 goto free_vpi_ids; 6788 } 6789 phba->sli4_hba.max_cfg_param.xri_used = 0; 6790 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6791 GFP_KERNEL); 6792 if (unlikely(!phba->sli4_hba.xri_ids)) { 6793 rc = -ENOMEM; 6794 goto free_xri_bmask; 6795 } 6796 6797 for (i = 0; i < count; i++) 6798 phba->sli4_hba.xri_ids[i] = base + i; 6799 6800 /* VFIs. */ 6801 count = phba->sli4_hba.max_cfg_param.max_vfi; 6802 if (count <= 0) { 6803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6804 "3282 Invalid provisioning of " 6805 "vfi:%d\n", count); 6806 rc = -EINVAL; 6807 goto free_xri_ids; 6808 } 6809 base = phba->sli4_hba.max_cfg_param.vfi_base; 6810 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6811 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6812 sizeof(unsigned long), 6813 GFP_KERNEL); 6814 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6815 rc = -ENOMEM; 6816 goto free_xri_ids; 6817 } 6818 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6819 GFP_KERNEL); 6820 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6821 rc = -ENOMEM; 6822 goto free_vfi_bmask; 6823 } 6824 6825 for (i = 0; i < count; i++) 6826 phba->sli4_hba.vfi_ids[i] = base + i; 6827 6828 /* 6829 * Mark all resources ready. An HBA reset doesn't need 6830 * to reset the initialization. 6831 */ 6832 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6833 LPFC_IDX_RSRC_RDY); 6834 return 0; 6835 } 6836 6837 free_vfi_bmask: 6838 kfree(phba->sli4_hba.vfi_bmask); 6839 phba->sli4_hba.vfi_bmask = NULL; 6840 free_xri_ids: 6841 kfree(phba->sli4_hba.xri_ids); 6842 phba->sli4_hba.xri_ids = NULL; 6843 free_xri_bmask: 6844 kfree(phba->sli4_hba.xri_bmask); 6845 phba->sli4_hba.xri_bmask = NULL; 6846 free_vpi_ids: 6847 kfree(phba->vpi_ids); 6848 phba->vpi_ids = NULL; 6849 free_vpi_bmask: 6850 kfree(phba->vpi_bmask); 6851 phba->vpi_bmask = NULL; 6852 free_rpi_ids: 6853 kfree(phba->sli4_hba.rpi_ids); 6854 phba->sli4_hba.rpi_ids = NULL; 6855 free_rpi_bmask: 6856 kfree(phba->sli4_hba.rpi_bmask); 6857 phba->sli4_hba.rpi_bmask = NULL; 6858 err_exit: 6859 return rc; 6860 } 6861 6862 /** 6863 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6864 * @phba: Pointer to HBA context object. 6865 * 6866 * This function allocates the number of elements for the specified 6867 * resource type. 6868 **/ 6869 int 6870 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6871 { 6872 if (phba->sli4_hba.extents_in_use) { 6873 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6874 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6875 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6876 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6877 } else { 6878 kfree(phba->vpi_bmask); 6879 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6880 kfree(phba->vpi_ids); 6881 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6882 kfree(phba->sli4_hba.xri_bmask); 6883 kfree(phba->sli4_hba.xri_ids); 6884 kfree(phba->sli4_hba.vfi_bmask); 6885 kfree(phba->sli4_hba.vfi_ids); 6886 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6887 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6888 } 6889 6890 return 0; 6891 } 6892 6893 /** 6894 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6895 * @phba: Pointer to HBA context object. 6896 * @type: The resource extent type. 6897 * @extnt_cnt: buffer to hold port extent count response 6898 * @extnt_size: buffer to hold port extent size response. 6899 * 6900 * This function calls the port to read the host allocated extents 6901 * for a particular type. 6902 **/ 6903 int 6904 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6905 uint16_t *extnt_cnt, uint16_t *extnt_size) 6906 { 6907 bool emb; 6908 int rc = 0; 6909 uint16_t curr_blks = 0; 6910 uint32_t req_len, emb_len; 6911 uint32_t alloc_len, mbox_tmo; 6912 struct list_head *blk_list_head; 6913 struct lpfc_rsrc_blks *rsrc_blk; 6914 LPFC_MBOXQ_t *mbox; 6915 void *virtaddr = NULL; 6916 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6917 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6918 union lpfc_sli4_cfg_shdr *shdr; 6919 6920 switch (type) { 6921 case LPFC_RSC_TYPE_FCOE_VPI: 6922 blk_list_head = &phba->lpfc_vpi_blk_list; 6923 break; 6924 case LPFC_RSC_TYPE_FCOE_XRI: 6925 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6926 break; 6927 case LPFC_RSC_TYPE_FCOE_VFI: 6928 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6929 break; 6930 case LPFC_RSC_TYPE_FCOE_RPI: 6931 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6932 break; 6933 default: 6934 return -EIO; 6935 } 6936 6937 /* Count the number of extents currently allocatd for this type. */ 6938 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6939 if (curr_blks == 0) { 6940 /* 6941 * The GET_ALLOCATED mailbox does not return the size, 6942 * just the count. The size should be just the size 6943 * stored in the current allocated block and all sizes 6944 * for an extent type are the same so set the return 6945 * value now. 6946 */ 6947 *extnt_size = rsrc_blk->rsrc_size; 6948 } 6949 curr_blks++; 6950 } 6951 6952 /* 6953 * Calculate the size of an embedded mailbox. The uint32_t 6954 * accounts for extents-specific word. 6955 */ 6956 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6957 sizeof(uint32_t); 6958 6959 /* 6960 * Presume the allocation and response will fit into an embedded 6961 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6962 */ 6963 emb = LPFC_SLI4_MBX_EMBED; 6964 req_len = emb_len; 6965 if (req_len > emb_len) { 6966 req_len = curr_blks * sizeof(uint16_t) + 6967 sizeof(union lpfc_sli4_cfg_shdr) + 6968 sizeof(uint32_t); 6969 emb = LPFC_SLI4_MBX_NEMBED; 6970 } 6971 6972 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6973 if (!mbox) 6974 return -ENOMEM; 6975 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6976 6977 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6978 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6979 req_len, emb); 6980 if (alloc_len < req_len) { 6981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6982 "2983 Allocated DMA memory size (x%x) is " 6983 "less than the requested DMA memory " 6984 "size (x%x)\n", alloc_len, req_len); 6985 rc = -ENOMEM; 6986 goto err_exit; 6987 } 6988 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6989 if (unlikely(rc)) { 6990 rc = -EIO; 6991 goto err_exit; 6992 } 6993 6994 if (!phba->sli4_hba.intr_enable) 6995 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6996 else { 6997 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6998 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6999 } 7000 7001 if (unlikely(rc)) { 7002 rc = -EIO; 7003 goto err_exit; 7004 } 7005 7006 /* 7007 * Figure out where the response is located. Then get local pointers 7008 * to the response data. The port does not guarantee to respond to 7009 * all extents counts request so update the local variable with the 7010 * allocated count from the port. 7011 */ 7012 if (emb == LPFC_SLI4_MBX_EMBED) { 7013 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7014 shdr = &rsrc_ext->header.cfg_shdr; 7015 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7016 } else { 7017 virtaddr = mbox->sge_array->addr[0]; 7018 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7019 shdr = &n_rsrc->cfg_shdr; 7020 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7021 } 7022 7023 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7025 "2984 Failed to read allocated resources " 7026 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7027 type, 7028 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7029 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7030 rc = -EIO; 7031 goto err_exit; 7032 } 7033 err_exit: 7034 lpfc_sli4_mbox_cmd_free(phba, mbox); 7035 return rc; 7036 } 7037 7038 /** 7039 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7040 * @phba: pointer to lpfc hba data structure. 7041 * @sgl_list: linked link of sgl buffers to post 7042 * @cnt: number of linked list buffers 7043 * 7044 * This routine walks the list of buffers that have been allocated and 7045 * repost them to the port by using SGL block post. This is needed after a 7046 * pci_function_reset/warm_start or start. It attempts to construct blocks 7047 * of buffer sgls which contains contiguous xris and uses the non-embedded 7048 * SGL block post mailbox commands to post them to the port. For single 7049 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7050 * mailbox command for posting. 7051 * 7052 * Returns: 0 = success, non-zero failure. 7053 **/ 7054 static int 7055 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7056 struct list_head *sgl_list, int cnt) 7057 { 7058 struct lpfc_sglq *sglq_entry = NULL; 7059 struct lpfc_sglq *sglq_entry_next = NULL; 7060 struct lpfc_sglq *sglq_entry_first = NULL; 7061 int status, total_cnt; 7062 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7063 int last_xritag = NO_XRI; 7064 LIST_HEAD(prep_sgl_list); 7065 LIST_HEAD(blck_sgl_list); 7066 LIST_HEAD(allc_sgl_list); 7067 LIST_HEAD(post_sgl_list); 7068 LIST_HEAD(free_sgl_list); 7069 7070 spin_lock_irq(&phba->hbalock); 7071 spin_lock(&phba->sli4_hba.sgl_list_lock); 7072 list_splice_init(sgl_list, &allc_sgl_list); 7073 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7074 spin_unlock_irq(&phba->hbalock); 7075 7076 total_cnt = cnt; 7077 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7078 &allc_sgl_list, list) { 7079 list_del_init(&sglq_entry->list); 7080 block_cnt++; 7081 if ((last_xritag != NO_XRI) && 7082 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7083 /* a hole in xri block, form a sgl posting block */ 7084 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7085 post_cnt = block_cnt - 1; 7086 /* prepare list for next posting block */ 7087 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7088 block_cnt = 1; 7089 } else { 7090 /* prepare list for next posting block */ 7091 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7092 /* enough sgls for non-embed sgl mbox command */ 7093 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7094 list_splice_init(&prep_sgl_list, 7095 &blck_sgl_list); 7096 post_cnt = block_cnt; 7097 block_cnt = 0; 7098 } 7099 } 7100 num_posted++; 7101 7102 /* keep track of last sgl's xritag */ 7103 last_xritag = sglq_entry->sli4_xritag; 7104 7105 /* end of repost sgl list condition for buffers */ 7106 if (num_posted == total_cnt) { 7107 if (post_cnt == 0) { 7108 list_splice_init(&prep_sgl_list, 7109 &blck_sgl_list); 7110 post_cnt = block_cnt; 7111 } else if (block_cnt == 1) { 7112 status = lpfc_sli4_post_sgl(phba, 7113 sglq_entry->phys, 0, 7114 sglq_entry->sli4_xritag); 7115 if (!status) { 7116 /* successful, put sgl to posted list */ 7117 list_add_tail(&sglq_entry->list, 7118 &post_sgl_list); 7119 } else { 7120 /* Failure, put sgl to free list */ 7121 lpfc_printf_log(phba, KERN_WARNING, 7122 LOG_SLI, 7123 "3159 Failed to post " 7124 "sgl, xritag:x%x\n", 7125 sglq_entry->sli4_xritag); 7126 list_add_tail(&sglq_entry->list, 7127 &free_sgl_list); 7128 total_cnt--; 7129 } 7130 } 7131 } 7132 7133 /* continue until a nembed page worth of sgls */ 7134 if (post_cnt == 0) 7135 continue; 7136 7137 /* post the buffer list sgls as a block */ 7138 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7139 post_cnt); 7140 7141 if (!status) { 7142 /* success, put sgl list to posted sgl list */ 7143 list_splice_init(&blck_sgl_list, &post_sgl_list); 7144 } else { 7145 /* Failure, put sgl list to free sgl list */ 7146 sglq_entry_first = list_first_entry(&blck_sgl_list, 7147 struct lpfc_sglq, 7148 list); 7149 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7150 "3160 Failed to post sgl-list, " 7151 "xritag:x%x-x%x\n", 7152 sglq_entry_first->sli4_xritag, 7153 (sglq_entry_first->sli4_xritag + 7154 post_cnt - 1)); 7155 list_splice_init(&blck_sgl_list, &free_sgl_list); 7156 total_cnt -= post_cnt; 7157 } 7158 7159 /* don't reset xirtag due to hole in xri block */ 7160 if (block_cnt == 0) 7161 last_xritag = NO_XRI; 7162 7163 /* reset sgl post count for next round of posting */ 7164 post_cnt = 0; 7165 } 7166 7167 /* free the sgls failed to post */ 7168 lpfc_free_sgl_list(phba, &free_sgl_list); 7169 7170 /* push sgls posted to the available list */ 7171 if (!list_empty(&post_sgl_list)) { 7172 spin_lock_irq(&phba->hbalock); 7173 spin_lock(&phba->sli4_hba.sgl_list_lock); 7174 list_splice_init(&post_sgl_list, sgl_list); 7175 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7176 spin_unlock_irq(&phba->hbalock); 7177 } else { 7178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7179 "3161 Failure to post sgl to port.\n"); 7180 return -EIO; 7181 } 7182 7183 /* return the number of XRIs actually posted */ 7184 return total_cnt; 7185 } 7186 7187 /** 7188 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7189 * @phba: pointer to lpfc hba data structure. 7190 * 7191 * This routine walks the list of nvme buffers that have been allocated and 7192 * repost them to the port by using SGL block post. This is needed after a 7193 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7194 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7195 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7196 * 7197 * Returns: 0 = success, non-zero failure. 7198 **/ 7199 static int 7200 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7201 { 7202 LIST_HEAD(post_nblist); 7203 int num_posted, rc = 0; 7204 7205 /* get all NVME buffers need to repost to a local list */ 7206 lpfc_io_buf_flush(phba, &post_nblist); 7207 7208 /* post the list of nvme buffer sgls to port if available */ 7209 if (!list_empty(&post_nblist)) { 7210 num_posted = lpfc_sli4_post_io_sgl_list( 7211 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7212 /* failed to post any nvme buffer, return error */ 7213 if (num_posted == 0) 7214 rc = -EIO; 7215 } 7216 return rc; 7217 } 7218 7219 static void 7220 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7221 { 7222 uint32_t len; 7223 7224 len = sizeof(struct lpfc_mbx_set_host_data) - 7225 sizeof(struct lpfc_sli4_cfg_mhdr); 7226 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7227 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7228 LPFC_SLI4_MBX_EMBED); 7229 7230 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7231 mbox->u.mqe.un.set_host_data.param_len = 7232 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7233 snprintf(mbox->u.mqe.un.set_host_data.data, 7234 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7235 "Linux %s v"LPFC_DRIVER_VERSION, 7236 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7237 } 7238 7239 int 7240 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7241 struct lpfc_queue *drq, int count, int idx) 7242 { 7243 int rc, i; 7244 struct lpfc_rqe hrqe; 7245 struct lpfc_rqe drqe; 7246 struct lpfc_rqb *rqbp; 7247 unsigned long flags; 7248 struct rqb_dmabuf *rqb_buffer; 7249 LIST_HEAD(rqb_buf_list); 7250 7251 spin_lock_irqsave(&phba->hbalock, flags); 7252 rqbp = hrq->rqbp; 7253 for (i = 0; i < count; i++) { 7254 /* IF RQ is already full, don't bother */ 7255 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7256 break; 7257 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7258 if (!rqb_buffer) 7259 break; 7260 rqb_buffer->hrq = hrq; 7261 rqb_buffer->drq = drq; 7262 rqb_buffer->idx = idx; 7263 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7264 } 7265 while (!list_empty(&rqb_buf_list)) { 7266 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7267 hbuf.list); 7268 7269 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7270 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7271 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7272 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7273 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7274 if (rc < 0) { 7275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7276 "6421 Cannot post to HRQ %d: %x %x %x " 7277 "DRQ %x %x\n", 7278 hrq->queue_id, 7279 hrq->host_index, 7280 hrq->hba_index, 7281 hrq->entry_count, 7282 drq->host_index, 7283 drq->hba_index); 7284 rqbp->rqb_free_buffer(phba, rqb_buffer); 7285 } else { 7286 list_add_tail(&rqb_buffer->hbuf.list, 7287 &rqbp->rqb_buffer_list); 7288 rqbp->buffer_count++; 7289 } 7290 } 7291 spin_unlock_irqrestore(&phba->hbalock, flags); 7292 return 1; 7293 } 7294 7295 /** 7296 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7297 * @phba: pointer to lpfc hba data structure. 7298 * 7299 * This routine initializes the per-cq idle_stat to dynamically dictate 7300 * polling decisions. 7301 * 7302 * Return codes: 7303 * None 7304 **/ 7305 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7306 { 7307 int i; 7308 struct lpfc_sli4_hdw_queue *hdwq; 7309 struct lpfc_queue *cq; 7310 struct lpfc_idle_stat *idle_stat; 7311 u64 wall; 7312 7313 for_each_present_cpu(i) { 7314 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7315 cq = hdwq->io_cq; 7316 7317 /* Skip if we've already handled this cq's primary CPU */ 7318 if (cq->chann != i) 7319 continue; 7320 7321 idle_stat = &phba->sli4_hba.idle_stat[i]; 7322 7323 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7324 idle_stat->prev_wall = wall; 7325 7326 if (phba->nvmet_support) 7327 cq->poll_mode = LPFC_QUEUE_WORK; 7328 else 7329 cq->poll_mode = LPFC_IRQ_POLL; 7330 } 7331 7332 if (!phba->nvmet_support) 7333 schedule_delayed_work(&phba->idle_stat_delay_work, 7334 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7335 } 7336 7337 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7338 { 7339 uint32_t if_type; 7340 7341 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7342 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7343 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7344 struct lpfc_register reg_data; 7345 7346 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7347 ®_data.word0)) 7348 return; 7349 7350 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7352 "2904 Firmware Dump Image Present" 7353 " on Adapter"); 7354 } 7355 } 7356 7357 /** 7358 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7359 * @phba: Pointer to HBA context object. 7360 * 7361 * This function is the main SLI4 device initialization PCI function. This 7362 * function is called by the HBA initialization code, HBA reset code and 7363 * HBA error attention handler code. Caller is not required to hold any 7364 * locks. 7365 **/ 7366 int 7367 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7368 { 7369 int rc, i, cnt, len, dd; 7370 LPFC_MBOXQ_t *mboxq; 7371 struct lpfc_mqe *mqe; 7372 uint8_t *vpd; 7373 uint32_t vpd_size; 7374 uint32_t ftr_rsp = 0; 7375 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7376 struct lpfc_vport *vport = phba->pport; 7377 struct lpfc_dmabuf *mp; 7378 struct lpfc_rqb *rqbp; 7379 7380 /* Perform a PCI function reset to start from clean */ 7381 rc = lpfc_pci_function_reset(phba); 7382 if (unlikely(rc)) 7383 return -ENODEV; 7384 7385 /* Check the HBA Host Status Register for readyness */ 7386 rc = lpfc_sli4_post_status_check(phba); 7387 if (unlikely(rc)) 7388 return -ENODEV; 7389 else { 7390 spin_lock_irq(&phba->hbalock); 7391 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7392 spin_unlock_irq(&phba->hbalock); 7393 } 7394 7395 lpfc_sli4_dip(phba); 7396 7397 /* 7398 * Allocate a single mailbox container for initializing the 7399 * port. 7400 */ 7401 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7402 if (!mboxq) 7403 return -ENOMEM; 7404 7405 /* Issue READ_REV to collect vpd and FW information. */ 7406 vpd_size = SLI4_PAGE_SIZE; 7407 vpd = kzalloc(vpd_size, GFP_KERNEL); 7408 if (!vpd) { 7409 rc = -ENOMEM; 7410 goto out_free_mbox; 7411 } 7412 7413 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7414 if (unlikely(rc)) { 7415 kfree(vpd); 7416 goto out_free_mbox; 7417 } 7418 7419 mqe = &mboxq->u.mqe; 7420 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7421 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7422 phba->hba_flag |= HBA_FCOE_MODE; 7423 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7424 } else { 7425 phba->hba_flag &= ~HBA_FCOE_MODE; 7426 } 7427 7428 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7429 LPFC_DCBX_CEE_MODE) 7430 phba->hba_flag |= HBA_FIP_SUPPORT; 7431 else 7432 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7433 7434 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7435 7436 if (phba->sli_rev != LPFC_SLI_REV4) { 7437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7438 "0376 READ_REV Error. SLI Level %d " 7439 "FCoE enabled %d\n", 7440 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7441 rc = -EIO; 7442 kfree(vpd); 7443 goto out_free_mbox; 7444 } 7445 7446 /* 7447 * Continue initialization with default values even if driver failed 7448 * to read FCoE param config regions, only read parameters if the 7449 * board is FCoE 7450 */ 7451 if (phba->hba_flag & HBA_FCOE_MODE && 7452 lpfc_sli4_read_fcoe_params(phba)) 7453 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7454 "2570 Failed to read FCoE parameters\n"); 7455 7456 /* 7457 * Retrieve sli4 device physical port name, failure of doing it 7458 * is considered as non-fatal. 7459 */ 7460 rc = lpfc_sli4_retrieve_pport_name(phba); 7461 if (!rc) 7462 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7463 "3080 Successful retrieving SLI4 device " 7464 "physical port name: %s.\n", phba->Port); 7465 7466 rc = lpfc_sli4_get_ctl_attr(phba); 7467 if (!rc) 7468 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7469 "8351 Successful retrieving SLI4 device " 7470 "CTL ATTR\n"); 7471 7472 /* 7473 * Evaluate the read rev and vpd data. Populate the driver 7474 * state with the results. If this routine fails, the failure 7475 * is not fatal as the driver will use generic values. 7476 */ 7477 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7478 if (unlikely(!rc)) { 7479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7480 "0377 Error %d parsing vpd. " 7481 "Using defaults.\n", rc); 7482 rc = 0; 7483 } 7484 kfree(vpd); 7485 7486 /* Save information as VPD data */ 7487 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7488 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7489 7490 /* 7491 * This is because first G7 ASIC doesn't support the standard 7492 * 0x5a NVME cmd descriptor type/subtype 7493 */ 7494 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7495 LPFC_SLI_INTF_IF_TYPE_6) && 7496 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7497 (phba->vpd.rev.smRev == 0) && 7498 (phba->cfg_nvme_embed_cmd == 1)) 7499 phba->cfg_nvme_embed_cmd = 0; 7500 7501 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7502 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7503 &mqe->un.read_rev); 7504 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7505 &mqe->un.read_rev); 7506 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7507 &mqe->un.read_rev); 7508 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7509 &mqe->un.read_rev); 7510 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7511 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7512 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7513 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7514 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7515 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7516 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7517 "(%d):0380 READ_REV Status x%x " 7518 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7519 mboxq->vport ? mboxq->vport->vpi : 0, 7520 bf_get(lpfc_mqe_status, mqe), 7521 phba->vpd.rev.opFwName, 7522 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7523 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7524 7525 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7526 LPFC_SLI_INTF_IF_TYPE_0) { 7527 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7528 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7529 if (rc == MBX_SUCCESS) { 7530 phba->hba_flag |= HBA_RECOVERABLE_UE; 7531 /* Set 1Sec interval to detect UE */ 7532 phba->eratt_poll_interval = 1; 7533 phba->sli4_hba.ue_to_sr = bf_get( 7534 lpfc_mbx_set_feature_UESR, 7535 &mboxq->u.mqe.un.set_feature); 7536 phba->sli4_hba.ue_to_rp = bf_get( 7537 lpfc_mbx_set_feature_UERP, 7538 &mboxq->u.mqe.un.set_feature); 7539 } 7540 } 7541 7542 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7543 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7544 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7545 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7546 if (rc != MBX_SUCCESS) 7547 phba->mds_diags_support = 0; 7548 } 7549 7550 /* 7551 * Discover the port's supported feature set and match it against the 7552 * hosts requests. 7553 */ 7554 lpfc_request_features(phba, mboxq); 7555 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7556 if (unlikely(rc)) { 7557 rc = -EIO; 7558 goto out_free_mbox; 7559 } 7560 7561 /* 7562 * The port must support FCP initiator mode as this is the 7563 * only mode running in the host. 7564 */ 7565 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7566 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7567 "0378 No support for fcpi mode.\n"); 7568 ftr_rsp++; 7569 } 7570 7571 /* Performance Hints are ONLY for FCoE */ 7572 if (phba->hba_flag & HBA_FCOE_MODE) { 7573 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7574 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7575 else 7576 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7577 } 7578 7579 /* 7580 * If the port cannot support the host's requested features 7581 * then turn off the global config parameters to disable the 7582 * feature in the driver. This is not a fatal error. 7583 */ 7584 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7585 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7586 phba->cfg_enable_bg = 0; 7587 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7588 ftr_rsp++; 7589 } 7590 } 7591 7592 if (phba->max_vpi && phba->cfg_enable_npiv && 7593 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7594 ftr_rsp++; 7595 7596 if (ftr_rsp) { 7597 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7598 "0379 Feature Mismatch Data: x%08x %08x " 7599 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7600 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7601 phba->cfg_enable_npiv, phba->max_vpi); 7602 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7603 phba->cfg_enable_bg = 0; 7604 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7605 phba->cfg_enable_npiv = 0; 7606 } 7607 7608 /* These SLI3 features are assumed in SLI4 */ 7609 spin_lock_irq(&phba->hbalock); 7610 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7611 spin_unlock_irq(&phba->hbalock); 7612 7613 /* Always try to enable dual dump feature if we can */ 7614 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7615 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7616 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7617 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7618 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7619 "6448 Dual Dump is enabled\n"); 7620 else 7621 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7622 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7623 "rc:x%x dd:x%x\n", 7624 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7625 lpfc_sli_config_mbox_subsys_get( 7626 phba, mboxq), 7627 lpfc_sli_config_mbox_opcode_get( 7628 phba, mboxq), 7629 rc, dd); 7630 /* 7631 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7632 * calls depends on these resources to complete port setup. 7633 */ 7634 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7635 if (rc) { 7636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7637 "2920 Failed to alloc Resource IDs " 7638 "rc = x%x\n", rc); 7639 goto out_free_mbox; 7640 } 7641 7642 lpfc_set_host_data(phba, mboxq); 7643 7644 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7645 if (rc) { 7646 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7647 "2134 Failed to set host os driver version %x", 7648 rc); 7649 } 7650 7651 /* Read the port's service parameters. */ 7652 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7653 if (rc) { 7654 phba->link_state = LPFC_HBA_ERROR; 7655 rc = -ENOMEM; 7656 goto out_free_mbox; 7657 } 7658 7659 mboxq->vport = vport; 7660 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7661 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7662 if (rc == MBX_SUCCESS) { 7663 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7664 rc = 0; 7665 } 7666 7667 /* 7668 * This memory was allocated by the lpfc_read_sparam routine. Release 7669 * it to the mbuf pool. 7670 */ 7671 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7672 kfree(mp); 7673 mboxq->ctx_buf = NULL; 7674 if (unlikely(rc)) { 7675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7676 "0382 READ_SPARAM command failed " 7677 "status %d, mbxStatus x%x\n", 7678 rc, bf_get(lpfc_mqe_status, mqe)); 7679 phba->link_state = LPFC_HBA_ERROR; 7680 rc = -EIO; 7681 goto out_free_mbox; 7682 } 7683 7684 lpfc_update_vport_wwn(vport); 7685 7686 /* Update the fc_host data structures with new wwn. */ 7687 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7688 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7689 7690 /* Create all the SLI4 queues */ 7691 rc = lpfc_sli4_queue_create(phba); 7692 if (rc) { 7693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7694 "3089 Failed to allocate queues\n"); 7695 rc = -ENODEV; 7696 goto out_free_mbox; 7697 } 7698 /* Set up all the queues to the device */ 7699 rc = lpfc_sli4_queue_setup(phba); 7700 if (unlikely(rc)) { 7701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7702 "0381 Error %d during queue setup.\n ", rc); 7703 goto out_stop_timers; 7704 } 7705 /* Initialize the driver internal SLI layer lists. */ 7706 lpfc_sli4_setup(phba); 7707 lpfc_sli4_queue_init(phba); 7708 7709 /* update host els xri-sgl sizes and mappings */ 7710 rc = lpfc_sli4_els_sgl_update(phba); 7711 if (unlikely(rc)) { 7712 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7713 "1400 Failed to update xri-sgl size and " 7714 "mapping: %d\n", rc); 7715 goto out_destroy_queue; 7716 } 7717 7718 /* register the els sgl pool to the port */ 7719 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7720 phba->sli4_hba.els_xri_cnt); 7721 if (unlikely(rc < 0)) { 7722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7723 "0582 Error %d during els sgl post " 7724 "operation\n", rc); 7725 rc = -ENODEV; 7726 goto out_destroy_queue; 7727 } 7728 phba->sli4_hba.els_xri_cnt = rc; 7729 7730 if (phba->nvmet_support) { 7731 /* update host nvmet xri-sgl sizes and mappings */ 7732 rc = lpfc_sli4_nvmet_sgl_update(phba); 7733 if (unlikely(rc)) { 7734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7735 "6308 Failed to update nvmet-sgl size " 7736 "and mapping: %d\n", rc); 7737 goto out_destroy_queue; 7738 } 7739 7740 /* register the nvmet sgl pool to the port */ 7741 rc = lpfc_sli4_repost_sgl_list( 7742 phba, 7743 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7744 phba->sli4_hba.nvmet_xri_cnt); 7745 if (unlikely(rc < 0)) { 7746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7747 "3117 Error %d during nvmet " 7748 "sgl post\n", rc); 7749 rc = -ENODEV; 7750 goto out_destroy_queue; 7751 } 7752 phba->sli4_hba.nvmet_xri_cnt = rc; 7753 7754 /* We allocate an iocbq for every receive context SGL. 7755 * The additional allocation is for abort and ls handling. 7756 */ 7757 cnt = phba->sli4_hba.nvmet_xri_cnt + 7758 phba->sli4_hba.max_cfg_param.max_xri; 7759 } else { 7760 /* update host common xri-sgl sizes and mappings */ 7761 rc = lpfc_sli4_io_sgl_update(phba); 7762 if (unlikely(rc)) { 7763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7764 "6082 Failed to update nvme-sgl size " 7765 "and mapping: %d\n", rc); 7766 goto out_destroy_queue; 7767 } 7768 7769 /* register the allocated common sgl pool to the port */ 7770 rc = lpfc_sli4_repost_io_sgl_list(phba); 7771 if (unlikely(rc)) { 7772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7773 "6116 Error %d during nvme sgl post " 7774 "operation\n", rc); 7775 /* Some NVME buffers were moved to abort nvme list */ 7776 /* A pci function reset will repost them */ 7777 rc = -ENODEV; 7778 goto out_destroy_queue; 7779 } 7780 /* Each lpfc_io_buf job structure has an iocbq element. 7781 * This cnt provides for abort, els, ct and ls requests. 7782 */ 7783 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7784 } 7785 7786 if (!phba->sli.iocbq_lookup) { 7787 /* Initialize and populate the iocb list per host */ 7788 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7789 "2821 initialize iocb list with %d entries\n", 7790 cnt); 7791 rc = lpfc_init_iocb_list(phba, cnt); 7792 if (rc) { 7793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7794 "1413 Failed to init iocb list.\n"); 7795 goto out_destroy_queue; 7796 } 7797 } 7798 7799 if (phba->nvmet_support) 7800 lpfc_nvmet_create_targetport(phba); 7801 7802 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7803 /* Post initial buffers to all RQs created */ 7804 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7805 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7806 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7807 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7808 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7809 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7810 rqbp->buffer_count = 0; 7811 7812 lpfc_post_rq_buffer( 7813 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7814 phba->sli4_hba.nvmet_mrq_data[i], 7815 phba->cfg_nvmet_mrq_post, i); 7816 } 7817 } 7818 7819 /* Post the rpi header region to the device. */ 7820 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7821 if (unlikely(rc)) { 7822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7823 "0393 Error %d during rpi post operation\n", 7824 rc); 7825 rc = -ENODEV; 7826 goto out_destroy_queue; 7827 } 7828 lpfc_sli4_node_prep(phba); 7829 7830 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7831 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7832 /* 7833 * The FC Port needs to register FCFI (index 0) 7834 */ 7835 lpfc_reg_fcfi(phba, mboxq); 7836 mboxq->vport = phba->pport; 7837 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7838 if (rc != MBX_SUCCESS) 7839 goto out_unset_queue; 7840 rc = 0; 7841 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7842 &mboxq->u.mqe.un.reg_fcfi); 7843 } else { 7844 /* We are a NVME Target mode with MRQ > 1 */ 7845 7846 /* First register the FCFI */ 7847 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7848 mboxq->vport = phba->pport; 7849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7850 if (rc != MBX_SUCCESS) 7851 goto out_unset_queue; 7852 rc = 0; 7853 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7854 &mboxq->u.mqe.un.reg_fcfi_mrq); 7855 7856 /* Next register the MRQs */ 7857 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7858 mboxq->vport = phba->pport; 7859 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7860 if (rc != MBX_SUCCESS) 7861 goto out_unset_queue; 7862 rc = 0; 7863 } 7864 /* Check if the port is configured to be disabled */ 7865 lpfc_sli_read_link_ste(phba); 7866 } 7867 7868 /* Don't post more new bufs if repost already recovered 7869 * the nvme sgls. 7870 */ 7871 if (phba->nvmet_support == 0) { 7872 if (phba->sli4_hba.io_xri_cnt == 0) { 7873 len = lpfc_new_io_buf( 7874 phba, phba->sli4_hba.io_xri_max); 7875 if (len == 0) { 7876 rc = -ENOMEM; 7877 goto out_unset_queue; 7878 } 7879 7880 if (phba->cfg_xri_rebalancing) 7881 lpfc_create_multixri_pools(phba); 7882 } 7883 } else { 7884 phba->cfg_xri_rebalancing = 0; 7885 } 7886 7887 /* Allow asynchronous mailbox command to go through */ 7888 spin_lock_irq(&phba->hbalock); 7889 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7890 spin_unlock_irq(&phba->hbalock); 7891 7892 /* Post receive buffers to the device */ 7893 lpfc_sli4_rb_setup(phba); 7894 7895 /* Reset HBA FCF states after HBA reset */ 7896 phba->fcf.fcf_flag = 0; 7897 phba->fcf.current_rec.flag = 0; 7898 7899 /* Start the ELS watchdog timer */ 7900 mod_timer(&vport->els_tmofunc, 7901 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7902 7903 /* Start heart beat timer */ 7904 mod_timer(&phba->hb_tmofunc, 7905 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7906 phba->hb_outstanding = 0; 7907 phba->last_completion_time = jiffies; 7908 7909 /* start eq_delay heartbeat */ 7910 if (phba->cfg_auto_imax) 7911 queue_delayed_work(phba->wq, &phba->eq_delay_work, 7912 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 7913 7914 /* start per phba idle_stat_delay heartbeat */ 7915 lpfc_init_idle_stat_hb(phba); 7916 7917 /* Start error attention (ERATT) polling timer */ 7918 mod_timer(&phba->eratt_poll, 7919 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7920 7921 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7922 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7923 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7924 if (!rc) { 7925 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7926 "2829 This device supports " 7927 "Advanced Error Reporting (AER)\n"); 7928 spin_lock_irq(&phba->hbalock); 7929 phba->hba_flag |= HBA_AER_ENABLED; 7930 spin_unlock_irq(&phba->hbalock); 7931 } else { 7932 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7933 "2830 This device does not support " 7934 "Advanced Error Reporting (AER)\n"); 7935 phba->cfg_aer_support = 0; 7936 } 7937 rc = 0; 7938 } 7939 7940 /* 7941 * The port is ready, set the host's link state to LINK_DOWN 7942 * in preparation for link interrupts. 7943 */ 7944 spin_lock_irq(&phba->hbalock); 7945 phba->link_state = LPFC_LINK_DOWN; 7946 7947 /* Check if physical ports are trunked */ 7948 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7949 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7950 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7951 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7952 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7953 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7954 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7955 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7956 spin_unlock_irq(&phba->hbalock); 7957 7958 /* Arm the CQs and then EQs on device */ 7959 lpfc_sli4_arm_cqeq_intr(phba); 7960 7961 /* Indicate device interrupt mode */ 7962 phba->sli4_hba.intr_enable = 1; 7963 7964 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7965 (phba->hba_flag & LINK_DISABLED)) { 7966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7967 "3103 Adapter Link is disabled.\n"); 7968 lpfc_down_link(phba, mboxq); 7969 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7970 if (rc != MBX_SUCCESS) { 7971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7972 "3104 Adapter failed to issue " 7973 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7974 goto out_io_buff_free; 7975 } 7976 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7977 /* don't perform init_link on SLI4 FC port loopback test */ 7978 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7979 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7980 if (rc) 7981 goto out_io_buff_free; 7982 } 7983 } 7984 mempool_free(mboxq, phba->mbox_mem_pool); 7985 return rc; 7986 out_io_buff_free: 7987 /* Free allocated IO Buffers */ 7988 lpfc_io_free(phba); 7989 out_unset_queue: 7990 /* Unset all the queues set up in this routine when error out */ 7991 lpfc_sli4_queue_unset(phba); 7992 out_destroy_queue: 7993 lpfc_free_iocb_list(phba); 7994 lpfc_sli4_queue_destroy(phba); 7995 out_stop_timers: 7996 lpfc_stop_hba_timers(phba); 7997 out_free_mbox: 7998 mempool_free(mboxq, phba->mbox_mem_pool); 7999 return rc; 8000 } 8001 8002 /** 8003 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8004 * @t: Context to fetch pointer to hba structure from. 8005 * 8006 * This is the callback function for mailbox timer. The mailbox 8007 * timer is armed when a new mailbox command is issued and the timer 8008 * is deleted when the mailbox complete. The function is called by 8009 * the kernel timer code when a mailbox does not complete within 8010 * expected time. This function wakes up the worker thread to 8011 * process the mailbox timeout and returns. All the processing is 8012 * done by the worker thread function lpfc_mbox_timeout_handler. 8013 **/ 8014 void 8015 lpfc_mbox_timeout(struct timer_list *t) 8016 { 8017 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8018 unsigned long iflag; 8019 uint32_t tmo_posted; 8020 8021 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8022 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8023 if (!tmo_posted) 8024 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8025 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8026 8027 if (!tmo_posted) 8028 lpfc_worker_wake_up(phba); 8029 return; 8030 } 8031 8032 /** 8033 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8034 * are pending 8035 * @phba: Pointer to HBA context object. 8036 * 8037 * This function checks if any mailbox completions are present on the mailbox 8038 * completion queue. 8039 **/ 8040 static bool 8041 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8042 { 8043 8044 uint32_t idx; 8045 struct lpfc_queue *mcq; 8046 struct lpfc_mcqe *mcqe; 8047 bool pending_completions = false; 8048 uint8_t qe_valid; 8049 8050 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8051 return false; 8052 8053 /* Check for completions on mailbox completion queue */ 8054 8055 mcq = phba->sli4_hba.mbx_cq; 8056 idx = mcq->hba_index; 8057 qe_valid = mcq->qe_valid; 8058 while (bf_get_le32(lpfc_cqe_valid, 8059 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8060 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8061 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8062 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8063 pending_completions = true; 8064 break; 8065 } 8066 idx = (idx + 1) % mcq->entry_count; 8067 if (mcq->hba_index == idx) 8068 break; 8069 8070 /* if the index wrapped around, toggle the valid bit */ 8071 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8072 qe_valid = (qe_valid) ? 0 : 1; 8073 } 8074 return pending_completions; 8075 8076 } 8077 8078 /** 8079 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8080 * that were missed. 8081 * @phba: Pointer to HBA context object. 8082 * 8083 * For sli4, it is possible to miss an interrupt. As such mbox completions 8084 * maybe missed causing erroneous mailbox timeouts to occur. This function 8085 * checks to see if mbox completions are on the mailbox completion queue 8086 * and will process all the completions associated with the eq for the 8087 * mailbox completion queue. 8088 **/ 8089 static bool 8090 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8091 { 8092 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8093 uint32_t eqidx; 8094 struct lpfc_queue *fpeq = NULL; 8095 struct lpfc_queue *eq; 8096 bool mbox_pending; 8097 8098 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8099 return false; 8100 8101 /* Find the EQ associated with the mbox CQ */ 8102 if (sli4_hba->hdwq) { 8103 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8104 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8105 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8106 fpeq = eq; 8107 break; 8108 } 8109 } 8110 } 8111 if (!fpeq) 8112 return false; 8113 8114 /* Turn off interrupts from this EQ */ 8115 8116 sli4_hba->sli4_eq_clr_intr(fpeq); 8117 8118 /* Check to see if a mbox completion is pending */ 8119 8120 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8121 8122 /* 8123 * If a mbox completion is pending, process all the events on EQ 8124 * associated with the mbox completion queue (this could include 8125 * mailbox commands, async events, els commands, receive queue data 8126 * and fcp commands) 8127 */ 8128 8129 if (mbox_pending) 8130 /* process and rearm the EQ */ 8131 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8132 else 8133 /* Always clear and re-arm the EQ */ 8134 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8135 8136 return mbox_pending; 8137 8138 } 8139 8140 /** 8141 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8142 * @phba: Pointer to HBA context object. 8143 * 8144 * This function is called from worker thread when a mailbox command times out. 8145 * The caller is not required to hold any locks. This function will reset the 8146 * HBA and recover all the pending commands. 8147 **/ 8148 void 8149 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8150 { 8151 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8152 MAILBOX_t *mb = NULL; 8153 8154 struct lpfc_sli *psli = &phba->sli; 8155 8156 /* If the mailbox completed, process the completion and return */ 8157 if (lpfc_sli4_process_missed_mbox_completions(phba)) 8158 return; 8159 8160 if (pmbox != NULL) 8161 mb = &pmbox->u.mb; 8162 /* Check the pmbox pointer first. There is a race condition 8163 * between the mbox timeout handler getting executed in the 8164 * worklist and the mailbox actually completing. When this 8165 * race condition occurs, the mbox_active will be NULL. 8166 */ 8167 spin_lock_irq(&phba->hbalock); 8168 if (pmbox == NULL) { 8169 lpfc_printf_log(phba, KERN_WARNING, 8170 LOG_MBOX | LOG_SLI, 8171 "0353 Active Mailbox cleared - mailbox timeout " 8172 "exiting\n"); 8173 spin_unlock_irq(&phba->hbalock); 8174 return; 8175 } 8176 8177 /* Mbox cmd <mbxCommand> timeout */ 8178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8179 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8180 mb->mbxCommand, 8181 phba->pport->port_state, 8182 phba->sli.sli_flag, 8183 phba->sli.mbox_active); 8184 spin_unlock_irq(&phba->hbalock); 8185 8186 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8187 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8188 * it to fail all outstanding SCSI IO. 8189 */ 8190 spin_lock_irq(&phba->pport->work_port_lock); 8191 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8192 spin_unlock_irq(&phba->pport->work_port_lock); 8193 spin_lock_irq(&phba->hbalock); 8194 phba->link_state = LPFC_LINK_UNKNOWN; 8195 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8196 spin_unlock_irq(&phba->hbalock); 8197 8198 lpfc_sli_abort_fcp_rings(phba); 8199 8200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8201 "0345 Resetting board due to mailbox timeout\n"); 8202 8203 /* Reset the HBA device */ 8204 lpfc_reset_hba(phba); 8205 } 8206 8207 /** 8208 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8209 * @phba: Pointer to HBA context object. 8210 * @pmbox: Pointer to mailbox object. 8211 * @flag: Flag indicating how the mailbox need to be processed. 8212 * 8213 * This function is called by discovery code and HBA management code 8214 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8215 * function gets the hbalock to protect the data structures. 8216 * The mailbox command can be submitted in polling mode, in which case 8217 * this function will wait in a polling loop for the completion of the 8218 * mailbox. 8219 * If the mailbox is submitted in no_wait mode (not polling) the 8220 * function will submit the command and returns immediately without waiting 8221 * for the mailbox completion. The no_wait is supported only when HBA 8222 * is in SLI2/SLI3 mode - interrupts are enabled. 8223 * The SLI interface allows only one mailbox pending at a time. If the 8224 * mailbox is issued in polling mode and there is already a mailbox 8225 * pending, then the function will return an error. If the mailbox is issued 8226 * in NO_WAIT mode and there is a mailbox pending already, the function 8227 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8228 * The sli layer owns the mailbox object until the completion of mailbox 8229 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8230 * return codes the caller owns the mailbox command after the return of 8231 * the function. 8232 **/ 8233 static int 8234 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8235 uint32_t flag) 8236 { 8237 MAILBOX_t *mbx; 8238 struct lpfc_sli *psli = &phba->sli; 8239 uint32_t status, evtctr; 8240 uint32_t ha_copy, hc_copy; 8241 int i; 8242 unsigned long timeout; 8243 unsigned long drvr_flag = 0; 8244 uint32_t word0, ldata; 8245 void __iomem *to_slim; 8246 int processing_queue = 0; 8247 8248 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8249 if (!pmbox) { 8250 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8251 /* processing mbox queue from intr_handler */ 8252 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8253 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8254 return MBX_SUCCESS; 8255 } 8256 processing_queue = 1; 8257 pmbox = lpfc_mbox_get(phba); 8258 if (!pmbox) { 8259 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8260 return MBX_SUCCESS; 8261 } 8262 } 8263 8264 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8265 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8266 if(!pmbox->vport) { 8267 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8268 lpfc_printf_log(phba, KERN_ERR, 8269 LOG_MBOX | LOG_VPORT, 8270 "1806 Mbox x%x failed. No vport\n", 8271 pmbox->u.mb.mbxCommand); 8272 dump_stack(); 8273 goto out_not_finished; 8274 } 8275 } 8276 8277 /* If the PCI channel is in offline state, do not post mbox. */ 8278 if (unlikely(pci_channel_offline(phba->pcidev))) { 8279 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8280 goto out_not_finished; 8281 } 8282 8283 /* If HBA has a deferred error attention, fail the iocb. */ 8284 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8285 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8286 goto out_not_finished; 8287 } 8288 8289 psli = &phba->sli; 8290 8291 mbx = &pmbox->u.mb; 8292 status = MBX_SUCCESS; 8293 8294 if (phba->link_state == LPFC_HBA_ERROR) { 8295 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8296 8297 /* Mbox command <mbxCommand> cannot issue */ 8298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8299 "(%d):0311 Mailbox command x%x cannot " 8300 "issue Data: x%x x%x\n", 8301 pmbox->vport ? pmbox->vport->vpi : 0, 8302 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8303 goto out_not_finished; 8304 } 8305 8306 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8307 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8308 !(hc_copy & HC_MBINT_ENA)) { 8309 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8311 "(%d):2528 Mailbox command x%x cannot " 8312 "issue Data: x%x x%x\n", 8313 pmbox->vport ? pmbox->vport->vpi : 0, 8314 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8315 goto out_not_finished; 8316 } 8317 } 8318 8319 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8320 /* Polling for a mbox command when another one is already active 8321 * is not allowed in SLI. Also, the driver must have established 8322 * SLI2 mode to queue and process multiple mbox commands. 8323 */ 8324 8325 if (flag & MBX_POLL) { 8326 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8327 8328 /* Mbox command <mbxCommand> cannot issue */ 8329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8330 "(%d):2529 Mailbox command x%x " 8331 "cannot issue Data: x%x x%x\n", 8332 pmbox->vport ? pmbox->vport->vpi : 0, 8333 pmbox->u.mb.mbxCommand, 8334 psli->sli_flag, flag); 8335 goto out_not_finished; 8336 } 8337 8338 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8339 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8340 /* Mbox command <mbxCommand> cannot issue */ 8341 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8342 "(%d):2530 Mailbox command x%x " 8343 "cannot issue Data: x%x x%x\n", 8344 pmbox->vport ? pmbox->vport->vpi : 0, 8345 pmbox->u.mb.mbxCommand, 8346 psli->sli_flag, flag); 8347 goto out_not_finished; 8348 } 8349 8350 /* Another mailbox command is still being processed, queue this 8351 * command to be processed later. 8352 */ 8353 lpfc_mbox_put(phba, pmbox); 8354 8355 /* Mbox cmd issue - BUSY */ 8356 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8357 "(%d):0308 Mbox cmd issue - BUSY Data: " 8358 "x%x x%x x%x x%x\n", 8359 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8360 mbx->mbxCommand, 8361 phba->pport ? phba->pport->port_state : 0xff, 8362 psli->sli_flag, flag); 8363 8364 psli->slistat.mbox_busy++; 8365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8366 8367 if (pmbox->vport) { 8368 lpfc_debugfs_disc_trc(pmbox->vport, 8369 LPFC_DISC_TRC_MBOX_VPORT, 8370 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8371 (uint32_t)mbx->mbxCommand, 8372 mbx->un.varWords[0], mbx->un.varWords[1]); 8373 } 8374 else { 8375 lpfc_debugfs_disc_trc(phba->pport, 8376 LPFC_DISC_TRC_MBOX, 8377 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8378 (uint32_t)mbx->mbxCommand, 8379 mbx->un.varWords[0], mbx->un.varWords[1]); 8380 } 8381 8382 return MBX_BUSY; 8383 } 8384 8385 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8386 8387 /* If we are not polling, we MUST be in SLI2 mode */ 8388 if (flag != MBX_POLL) { 8389 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8390 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8391 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8392 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8393 /* Mbox command <mbxCommand> cannot issue */ 8394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8395 "(%d):2531 Mailbox command x%x " 8396 "cannot issue Data: x%x x%x\n", 8397 pmbox->vport ? pmbox->vport->vpi : 0, 8398 pmbox->u.mb.mbxCommand, 8399 psli->sli_flag, flag); 8400 goto out_not_finished; 8401 } 8402 /* timeout active mbox command */ 8403 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8404 1000); 8405 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8406 } 8407 8408 /* Mailbox cmd <cmd> issue */ 8409 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8410 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8411 "x%x\n", 8412 pmbox->vport ? pmbox->vport->vpi : 0, 8413 mbx->mbxCommand, 8414 phba->pport ? phba->pport->port_state : 0xff, 8415 psli->sli_flag, flag); 8416 8417 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8418 if (pmbox->vport) { 8419 lpfc_debugfs_disc_trc(pmbox->vport, 8420 LPFC_DISC_TRC_MBOX_VPORT, 8421 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8422 (uint32_t)mbx->mbxCommand, 8423 mbx->un.varWords[0], mbx->un.varWords[1]); 8424 } 8425 else { 8426 lpfc_debugfs_disc_trc(phba->pport, 8427 LPFC_DISC_TRC_MBOX, 8428 "MBOX Send: cmd:x%x mb:x%x x%x", 8429 (uint32_t)mbx->mbxCommand, 8430 mbx->un.varWords[0], mbx->un.varWords[1]); 8431 } 8432 } 8433 8434 psli->slistat.mbox_cmd++; 8435 evtctr = psli->slistat.mbox_event; 8436 8437 /* next set own bit for the adapter and copy over command word */ 8438 mbx->mbxOwner = OWN_CHIP; 8439 8440 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8441 /* Populate mbox extension offset word. */ 8442 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8443 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8444 = (uint8_t *)phba->mbox_ext 8445 - (uint8_t *)phba->mbox; 8446 } 8447 8448 /* Copy the mailbox extension data */ 8449 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8450 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8451 (uint8_t *)phba->mbox_ext, 8452 pmbox->in_ext_byte_len); 8453 } 8454 /* Copy command data to host SLIM area */ 8455 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8456 } else { 8457 /* Populate mbox extension offset word. */ 8458 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8459 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8460 = MAILBOX_HBA_EXT_OFFSET; 8461 8462 /* Copy the mailbox extension data */ 8463 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8464 lpfc_memcpy_to_slim(phba->MBslimaddr + 8465 MAILBOX_HBA_EXT_OFFSET, 8466 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8467 8468 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8469 /* copy command data into host mbox for cmpl */ 8470 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8471 MAILBOX_CMD_SIZE); 8472 8473 /* First copy mbox command data to HBA SLIM, skip past first 8474 word */ 8475 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8476 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8477 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8478 8479 /* Next copy over first word, with mbxOwner set */ 8480 ldata = *((uint32_t *)mbx); 8481 to_slim = phba->MBslimaddr; 8482 writel(ldata, to_slim); 8483 readl(to_slim); /* flush */ 8484 8485 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8486 /* switch over to host mailbox */ 8487 psli->sli_flag |= LPFC_SLI_ACTIVE; 8488 } 8489 8490 wmb(); 8491 8492 switch (flag) { 8493 case MBX_NOWAIT: 8494 /* Set up reference to mailbox command */ 8495 psli->mbox_active = pmbox; 8496 /* Interrupt board to do it */ 8497 writel(CA_MBATT, phba->CAregaddr); 8498 readl(phba->CAregaddr); /* flush */ 8499 /* Don't wait for it to finish, just return */ 8500 break; 8501 8502 case MBX_POLL: 8503 /* Set up null reference to mailbox command */ 8504 psli->mbox_active = NULL; 8505 /* Interrupt board to do it */ 8506 writel(CA_MBATT, phba->CAregaddr); 8507 readl(phba->CAregaddr); /* flush */ 8508 8509 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8510 /* First read mbox status word */ 8511 word0 = *((uint32_t *)phba->mbox); 8512 word0 = le32_to_cpu(word0); 8513 } else { 8514 /* First read mbox status word */ 8515 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8516 spin_unlock_irqrestore(&phba->hbalock, 8517 drvr_flag); 8518 goto out_not_finished; 8519 } 8520 } 8521 8522 /* Read the HBA Host Attention Register */ 8523 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8524 spin_unlock_irqrestore(&phba->hbalock, 8525 drvr_flag); 8526 goto out_not_finished; 8527 } 8528 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8529 1000) + jiffies; 8530 i = 0; 8531 /* Wait for command to complete */ 8532 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8533 (!(ha_copy & HA_MBATT) && 8534 (phba->link_state > LPFC_WARM_START))) { 8535 if (time_after(jiffies, timeout)) { 8536 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8537 spin_unlock_irqrestore(&phba->hbalock, 8538 drvr_flag); 8539 goto out_not_finished; 8540 } 8541 8542 /* Check if we took a mbox interrupt while we were 8543 polling */ 8544 if (((word0 & OWN_CHIP) != OWN_CHIP) 8545 && (evtctr != psli->slistat.mbox_event)) 8546 break; 8547 8548 if (i++ > 10) { 8549 spin_unlock_irqrestore(&phba->hbalock, 8550 drvr_flag); 8551 msleep(1); 8552 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8553 } 8554 8555 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8556 /* First copy command data */ 8557 word0 = *((uint32_t *)phba->mbox); 8558 word0 = le32_to_cpu(word0); 8559 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8560 MAILBOX_t *slimmb; 8561 uint32_t slimword0; 8562 /* Check real SLIM for any errors */ 8563 slimword0 = readl(phba->MBslimaddr); 8564 slimmb = (MAILBOX_t *) & slimword0; 8565 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8566 && slimmb->mbxStatus) { 8567 psli->sli_flag &= 8568 ~LPFC_SLI_ACTIVE; 8569 word0 = slimword0; 8570 } 8571 } 8572 } else { 8573 /* First copy command data */ 8574 word0 = readl(phba->MBslimaddr); 8575 } 8576 /* Read the HBA Host Attention Register */ 8577 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8578 spin_unlock_irqrestore(&phba->hbalock, 8579 drvr_flag); 8580 goto out_not_finished; 8581 } 8582 } 8583 8584 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8585 /* copy results back to user */ 8586 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8587 MAILBOX_CMD_SIZE); 8588 /* Copy the mailbox extension data */ 8589 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8590 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8591 pmbox->ctx_buf, 8592 pmbox->out_ext_byte_len); 8593 } 8594 } else { 8595 /* First copy command data */ 8596 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8597 MAILBOX_CMD_SIZE); 8598 /* Copy the mailbox extension data */ 8599 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8600 lpfc_memcpy_from_slim( 8601 pmbox->ctx_buf, 8602 phba->MBslimaddr + 8603 MAILBOX_HBA_EXT_OFFSET, 8604 pmbox->out_ext_byte_len); 8605 } 8606 } 8607 8608 writel(HA_MBATT, phba->HAregaddr); 8609 readl(phba->HAregaddr); /* flush */ 8610 8611 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8612 status = mbx->mbxStatus; 8613 } 8614 8615 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8616 return status; 8617 8618 out_not_finished: 8619 if (processing_queue) { 8620 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8621 lpfc_mbox_cmpl_put(phba, pmbox); 8622 } 8623 return MBX_NOT_FINISHED; 8624 } 8625 8626 /** 8627 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8628 * @phba: Pointer to HBA context object. 8629 * 8630 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8631 * the driver internal pending mailbox queue. It will then try to wait out the 8632 * possible outstanding mailbox command before return. 8633 * 8634 * Returns: 8635 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8636 * the outstanding mailbox command timed out. 8637 **/ 8638 static int 8639 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8640 { 8641 struct lpfc_sli *psli = &phba->sli; 8642 int rc = 0; 8643 unsigned long timeout = 0; 8644 8645 /* Mark the asynchronous mailbox command posting as blocked */ 8646 spin_lock_irq(&phba->hbalock); 8647 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8648 /* Determine how long we might wait for the active mailbox 8649 * command to be gracefully completed by firmware. 8650 */ 8651 if (phba->sli.mbox_active) 8652 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8653 phba->sli.mbox_active) * 8654 1000) + jiffies; 8655 spin_unlock_irq(&phba->hbalock); 8656 8657 /* Make sure the mailbox is really active */ 8658 if (timeout) 8659 lpfc_sli4_process_missed_mbox_completions(phba); 8660 8661 /* Wait for the outstnading mailbox command to complete */ 8662 while (phba->sli.mbox_active) { 8663 /* Check active mailbox complete status every 2ms */ 8664 msleep(2); 8665 if (time_after(jiffies, timeout)) { 8666 /* Timeout, marked the outstanding cmd not complete */ 8667 rc = 1; 8668 break; 8669 } 8670 } 8671 8672 /* Can not cleanly block async mailbox command, fails it */ 8673 if (rc) { 8674 spin_lock_irq(&phba->hbalock); 8675 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8676 spin_unlock_irq(&phba->hbalock); 8677 } 8678 return rc; 8679 } 8680 8681 /** 8682 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8683 * @phba: Pointer to HBA context object. 8684 * 8685 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8686 * commands from the driver internal pending mailbox queue. It makes sure 8687 * that there is no outstanding mailbox command before resuming posting 8688 * asynchronous mailbox commands. If, for any reason, there is outstanding 8689 * mailbox command, it will try to wait it out before resuming asynchronous 8690 * mailbox command posting. 8691 **/ 8692 static void 8693 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8694 { 8695 struct lpfc_sli *psli = &phba->sli; 8696 8697 spin_lock_irq(&phba->hbalock); 8698 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8699 /* Asynchronous mailbox posting is not blocked, do nothing */ 8700 spin_unlock_irq(&phba->hbalock); 8701 return; 8702 } 8703 8704 /* Outstanding synchronous mailbox command is guaranteed to be done, 8705 * successful or timeout, after timing-out the outstanding mailbox 8706 * command shall always be removed, so just unblock posting async 8707 * mailbox command and resume 8708 */ 8709 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8710 spin_unlock_irq(&phba->hbalock); 8711 8712 /* wake up worker thread to post asynchronous mailbox command */ 8713 lpfc_worker_wake_up(phba); 8714 } 8715 8716 /** 8717 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8718 * @phba: Pointer to HBA context object. 8719 * @mboxq: Pointer to mailbox object. 8720 * 8721 * The function waits for the bootstrap mailbox register ready bit from 8722 * port for twice the regular mailbox command timeout value. 8723 * 8724 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8725 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8726 **/ 8727 static int 8728 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8729 { 8730 uint32_t db_ready; 8731 unsigned long timeout; 8732 struct lpfc_register bmbx_reg; 8733 8734 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8735 * 1000) + jiffies; 8736 8737 do { 8738 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8739 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8740 if (!db_ready) 8741 mdelay(2); 8742 8743 if (time_after(jiffies, timeout)) 8744 return MBXERR_ERROR; 8745 } while (!db_ready); 8746 8747 return 0; 8748 } 8749 8750 /** 8751 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8752 * @phba: Pointer to HBA context object. 8753 * @mboxq: Pointer to mailbox object. 8754 * 8755 * The function posts a mailbox to the port. The mailbox is expected 8756 * to be comletely filled in and ready for the port to operate on it. 8757 * This routine executes a synchronous completion operation on the 8758 * mailbox by polling for its completion. 8759 * 8760 * The caller must not be holding any locks when calling this routine. 8761 * 8762 * Returns: 8763 * MBX_SUCCESS - mailbox posted successfully 8764 * Any of the MBX error values. 8765 **/ 8766 static int 8767 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8768 { 8769 int rc = MBX_SUCCESS; 8770 unsigned long iflag; 8771 uint32_t mcqe_status; 8772 uint32_t mbx_cmnd; 8773 struct lpfc_sli *psli = &phba->sli; 8774 struct lpfc_mqe *mb = &mboxq->u.mqe; 8775 struct lpfc_bmbx_create *mbox_rgn; 8776 struct dma_address *dma_address; 8777 8778 /* 8779 * Only one mailbox can be active to the bootstrap mailbox region 8780 * at a time and there is no queueing provided. 8781 */ 8782 spin_lock_irqsave(&phba->hbalock, iflag); 8783 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8784 spin_unlock_irqrestore(&phba->hbalock, iflag); 8785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8786 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8787 "cannot issue Data: x%x x%x\n", 8788 mboxq->vport ? mboxq->vport->vpi : 0, 8789 mboxq->u.mb.mbxCommand, 8790 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8791 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8792 psli->sli_flag, MBX_POLL); 8793 return MBXERR_ERROR; 8794 } 8795 /* The server grabs the token and owns it until release */ 8796 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8797 phba->sli.mbox_active = mboxq; 8798 spin_unlock_irqrestore(&phba->hbalock, iflag); 8799 8800 /* wait for bootstrap mbox register for readyness */ 8801 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8802 if (rc) 8803 goto exit; 8804 /* 8805 * Initialize the bootstrap memory region to avoid stale data areas 8806 * in the mailbox post. Then copy the caller's mailbox contents to 8807 * the bmbx mailbox region. 8808 */ 8809 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8810 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8811 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8812 sizeof(struct lpfc_mqe)); 8813 8814 /* Post the high mailbox dma address to the port and wait for ready. */ 8815 dma_address = &phba->sli4_hba.bmbx.dma_address; 8816 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8817 8818 /* wait for bootstrap mbox register for hi-address write done */ 8819 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8820 if (rc) 8821 goto exit; 8822 8823 /* Post the low mailbox dma address to the port. */ 8824 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8825 8826 /* wait for bootstrap mbox register for low address write done */ 8827 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8828 if (rc) 8829 goto exit; 8830 8831 /* 8832 * Read the CQ to ensure the mailbox has completed. 8833 * If so, update the mailbox status so that the upper layers 8834 * can complete the request normally. 8835 */ 8836 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8837 sizeof(struct lpfc_mqe)); 8838 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8839 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8840 sizeof(struct lpfc_mcqe)); 8841 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8842 /* 8843 * When the CQE status indicates a failure and the mailbox status 8844 * indicates success then copy the CQE status into the mailbox status 8845 * (and prefix it with x4000). 8846 */ 8847 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8848 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8849 bf_set(lpfc_mqe_status, mb, 8850 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8851 rc = MBXERR_ERROR; 8852 } else 8853 lpfc_sli4_swap_str(phba, mboxq); 8854 8855 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8856 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8857 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8858 " x%x x%x CQ: x%x x%x x%x x%x\n", 8859 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8860 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8861 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8862 bf_get(lpfc_mqe_status, mb), 8863 mb->un.mb_words[0], mb->un.mb_words[1], 8864 mb->un.mb_words[2], mb->un.mb_words[3], 8865 mb->un.mb_words[4], mb->un.mb_words[5], 8866 mb->un.mb_words[6], mb->un.mb_words[7], 8867 mb->un.mb_words[8], mb->un.mb_words[9], 8868 mb->un.mb_words[10], mb->un.mb_words[11], 8869 mb->un.mb_words[12], mboxq->mcqe.word0, 8870 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8871 mboxq->mcqe.trailer); 8872 exit: 8873 /* We are holding the token, no needed for lock when release */ 8874 spin_lock_irqsave(&phba->hbalock, iflag); 8875 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8876 phba->sli.mbox_active = NULL; 8877 spin_unlock_irqrestore(&phba->hbalock, iflag); 8878 return rc; 8879 } 8880 8881 /** 8882 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8883 * @phba: Pointer to HBA context object. 8884 * @mboxq: Pointer to mailbox object. 8885 * @flag: Flag indicating how the mailbox need to be processed. 8886 * 8887 * This function is called by discovery code and HBA management code to submit 8888 * a mailbox command to firmware with SLI-4 interface spec. 8889 * 8890 * Return codes the caller owns the mailbox command after the return of the 8891 * function. 8892 **/ 8893 static int 8894 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8895 uint32_t flag) 8896 { 8897 struct lpfc_sli *psli = &phba->sli; 8898 unsigned long iflags; 8899 int rc; 8900 8901 /* dump from issue mailbox command if setup */ 8902 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8903 8904 rc = lpfc_mbox_dev_check(phba); 8905 if (unlikely(rc)) { 8906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8907 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8908 "cannot issue Data: x%x x%x\n", 8909 mboxq->vport ? mboxq->vport->vpi : 0, 8910 mboxq->u.mb.mbxCommand, 8911 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8912 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8913 psli->sli_flag, flag); 8914 goto out_not_finished; 8915 } 8916 8917 /* Detect polling mode and jump to a handler */ 8918 if (!phba->sli4_hba.intr_enable) { 8919 if (flag == MBX_POLL) 8920 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8921 else 8922 rc = -EIO; 8923 if (rc != MBX_SUCCESS) 8924 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8925 "(%d):2541 Mailbox command x%x " 8926 "(x%x/x%x) failure: " 8927 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8928 "Data: x%x x%x\n,", 8929 mboxq->vport ? mboxq->vport->vpi : 0, 8930 mboxq->u.mb.mbxCommand, 8931 lpfc_sli_config_mbox_subsys_get(phba, 8932 mboxq), 8933 lpfc_sli_config_mbox_opcode_get(phba, 8934 mboxq), 8935 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8936 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8937 bf_get(lpfc_mcqe_ext_status, 8938 &mboxq->mcqe), 8939 psli->sli_flag, flag); 8940 return rc; 8941 } else if (flag == MBX_POLL) { 8942 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8943 "(%d):2542 Try to issue mailbox command " 8944 "x%x (x%x/x%x) synchronously ahead of async " 8945 "mailbox command queue: x%x x%x\n", 8946 mboxq->vport ? mboxq->vport->vpi : 0, 8947 mboxq->u.mb.mbxCommand, 8948 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8949 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8950 psli->sli_flag, flag); 8951 /* Try to block the asynchronous mailbox posting */ 8952 rc = lpfc_sli4_async_mbox_block(phba); 8953 if (!rc) { 8954 /* Successfully blocked, now issue sync mbox cmd */ 8955 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8956 if (rc != MBX_SUCCESS) 8957 lpfc_printf_log(phba, KERN_WARNING, 8958 LOG_MBOX | LOG_SLI, 8959 "(%d):2597 Sync Mailbox command " 8960 "x%x (x%x/x%x) failure: " 8961 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8962 "Data: x%x x%x\n,", 8963 mboxq->vport ? mboxq->vport->vpi : 0, 8964 mboxq->u.mb.mbxCommand, 8965 lpfc_sli_config_mbox_subsys_get(phba, 8966 mboxq), 8967 lpfc_sli_config_mbox_opcode_get(phba, 8968 mboxq), 8969 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8970 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8971 bf_get(lpfc_mcqe_ext_status, 8972 &mboxq->mcqe), 8973 psli->sli_flag, flag); 8974 /* Unblock the async mailbox posting afterward */ 8975 lpfc_sli4_async_mbox_unblock(phba); 8976 } 8977 return rc; 8978 } 8979 8980 /* Now, interrupt mode asynchronous mailbox command */ 8981 rc = lpfc_mbox_cmd_check(phba, mboxq); 8982 if (rc) { 8983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8984 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8985 "cannot issue Data: x%x x%x\n", 8986 mboxq->vport ? mboxq->vport->vpi : 0, 8987 mboxq->u.mb.mbxCommand, 8988 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8989 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8990 psli->sli_flag, flag); 8991 goto out_not_finished; 8992 } 8993 8994 /* Put the mailbox command to the driver internal FIFO */ 8995 psli->slistat.mbox_busy++; 8996 spin_lock_irqsave(&phba->hbalock, iflags); 8997 lpfc_mbox_put(phba, mboxq); 8998 spin_unlock_irqrestore(&phba->hbalock, iflags); 8999 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9000 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9001 "x%x (x%x/x%x) x%x x%x x%x\n", 9002 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9003 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9004 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9005 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9006 phba->pport->port_state, 9007 psli->sli_flag, MBX_NOWAIT); 9008 /* Wake up worker thread to transport mailbox command from head */ 9009 lpfc_worker_wake_up(phba); 9010 9011 return MBX_BUSY; 9012 9013 out_not_finished: 9014 return MBX_NOT_FINISHED; 9015 } 9016 9017 /** 9018 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9019 * @phba: Pointer to HBA context object. 9020 * 9021 * This function is called by worker thread to send a mailbox command to 9022 * SLI4 HBA firmware. 9023 * 9024 **/ 9025 int 9026 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9027 { 9028 struct lpfc_sli *psli = &phba->sli; 9029 LPFC_MBOXQ_t *mboxq; 9030 int rc = MBX_SUCCESS; 9031 unsigned long iflags; 9032 struct lpfc_mqe *mqe; 9033 uint32_t mbx_cmnd; 9034 9035 /* Check interrupt mode before post async mailbox command */ 9036 if (unlikely(!phba->sli4_hba.intr_enable)) 9037 return MBX_NOT_FINISHED; 9038 9039 /* Check for mailbox command service token */ 9040 spin_lock_irqsave(&phba->hbalock, iflags); 9041 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9042 spin_unlock_irqrestore(&phba->hbalock, iflags); 9043 return MBX_NOT_FINISHED; 9044 } 9045 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9046 spin_unlock_irqrestore(&phba->hbalock, iflags); 9047 return MBX_NOT_FINISHED; 9048 } 9049 if (unlikely(phba->sli.mbox_active)) { 9050 spin_unlock_irqrestore(&phba->hbalock, iflags); 9051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9052 "0384 There is pending active mailbox cmd\n"); 9053 return MBX_NOT_FINISHED; 9054 } 9055 /* Take the mailbox command service token */ 9056 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9057 9058 /* Get the next mailbox command from head of queue */ 9059 mboxq = lpfc_mbox_get(phba); 9060 9061 /* If no more mailbox command waiting for post, we're done */ 9062 if (!mboxq) { 9063 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9064 spin_unlock_irqrestore(&phba->hbalock, iflags); 9065 return MBX_SUCCESS; 9066 } 9067 phba->sli.mbox_active = mboxq; 9068 spin_unlock_irqrestore(&phba->hbalock, iflags); 9069 9070 /* Check device readiness for posting mailbox command */ 9071 rc = lpfc_mbox_dev_check(phba); 9072 if (unlikely(rc)) 9073 /* Driver clean routine will clean up pending mailbox */ 9074 goto out_not_finished; 9075 9076 /* Prepare the mbox command to be posted */ 9077 mqe = &mboxq->u.mqe; 9078 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9079 9080 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9081 mod_timer(&psli->mbox_tmo, (jiffies + 9082 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9083 9084 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9085 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9086 "x%x x%x\n", 9087 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9088 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9089 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9090 phba->pport->port_state, psli->sli_flag); 9091 9092 if (mbx_cmnd != MBX_HEARTBEAT) { 9093 if (mboxq->vport) { 9094 lpfc_debugfs_disc_trc(mboxq->vport, 9095 LPFC_DISC_TRC_MBOX_VPORT, 9096 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9097 mbx_cmnd, mqe->un.mb_words[0], 9098 mqe->un.mb_words[1]); 9099 } else { 9100 lpfc_debugfs_disc_trc(phba->pport, 9101 LPFC_DISC_TRC_MBOX, 9102 "MBOX Send: cmd:x%x mb:x%x x%x", 9103 mbx_cmnd, mqe->un.mb_words[0], 9104 mqe->un.mb_words[1]); 9105 } 9106 } 9107 psli->slistat.mbox_cmd++; 9108 9109 /* Post the mailbox command to the port */ 9110 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9111 if (rc != MBX_SUCCESS) { 9112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9113 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9114 "cannot issue Data: x%x x%x\n", 9115 mboxq->vport ? mboxq->vport->vpi : 0, 9116 mboxq->u.mb.mbxCommand, 9117 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9118 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9119 psli->sli_flag, MBX_NOWAIT); 9120 goto out_not_finished; 9121 } 9122 9123 return rc; 9124 9125 out_not_finished: 9126 spin_lock_irqsave(&phba->hbalock, iflags); 9127 if (phba->sli.mbox_active) { 9128 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9129 __lpfc_mbox_cmpl_put(phba, mboxq); 9130 /* Release the token */ 9131 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9132 phba->sli.mbox_active = NULL; 9133 } 9134 spin_unlock_irqrestore(&phba->hbalock, iflags); 9135 9136 return MBX_NOT_FINISHED; 9137 } 9138 9139 /** 9140 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9141 * @phba: Pointer to HBA context object. 9142 * @pmbox: Pointer to mailbox object. 9143 * @flag: Flag indicating how the mailbox need to be processed. 9144 * 9145 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9146 * the API jump table function pointer from the lpfc_hba struct. 9147 * 9148 * Return codes the caller owns the mailbox command after the return of the 9149 * function. 9150 **/ 9151 int 9152 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9153 { 9154 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9155 } 9156 9157 /** 9158 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9159 * @phba: The hba struct for which this call is being executed. 9160 * @dev_grp: The HBA PCI-Device group number. 9161 * 9162 * This routine sets up the mbox interface API function jump table in @phba 9163 * struct. 9164 * Returns: 0 - success, -ENODEV - failure. 9165 **/ 9166 int 9167 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9168 { 9169 9170 switch (dev_grp) { 9171 case LPFC_PCI_DEV_LP: 9172 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9173 phba->lpfc_sli_handle_slow_ring_event = 9174 lpfc_sli_handle_slow_ring_event_s3; 9175 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9176 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9177 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9178 break; 9179 case LPFC_PCI_DEV_OC: 9180 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9181 phba->lpfc_sli_handle_slow_ring_event = 9182 lpfc_sli_handle_slow_ring_event_s4; 9183 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9184 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9185 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9186 break; 9187 default: 9188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9189 "1420 Invalid HBA PCI-device group: 0x%x\n", 9190 dev_grp); 9191 return -ENODEV; 9192 break; 9193 } 9194 return 0; 9195 } 9196 9197 /** 9198 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9199 * @phba: Pointer to HBA context object. 9200 * @pring: Pointer to driver SLI ring object. 9201 * @piocb: Pointer to address of newly added command iocb. 9202 * 9203 * This function is called with hbalock held for SLI3 ports or 9204 * the ring lock held for SLI4 ports to add a command 9205 * iocb to the txq when SLI layer cannot submit the command iocb 9206 * to the ring. 9207 **/ 9208 void 9209 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9210 struct lpfc_iocbq *piocb) 9211 { 9212 if (phba->sli_rev == LPFC_SLI_REV4) 9213 lockdep_assert_held(&pring->ring_lock); 9214 else 9215 lockdep_assert_held(&phba->hbalock); 9216 /* Insert the caller's iocb in the txq tail for later processing. */ 9217 list_add_tail(&piocb->list, &pring->txq); 9218 } 9219 9220 /** 9221 * lpfc_sli_next_iocb - Get the next iocb in the txq 9222 * @phba: Pointer to HBA context object. 9223 * @pring: Pointer to driver SLI ring object. 9224 * @piocb: Pointer to address of newly added command iocb. 9225 * 9226 * This function is called with hbalock held before a new 9227 * iocb is submitted to the firmware. This function checks 9228 * txq to flush the iocbs in txq to Firmware before 9229 * submitting new iocbs to the Firmware. 9230 * If there are iocbs in the txq which need to be submitted 9231 * to firmware, lpfc_sli_next_iocb returns the first element 9232 * of the txq after dequeuing it from txq. 9233 * If there is no iocb in the txq then the function will return 9234 * *piocb and *piocb is set to NULL. Caller needs to check 9235 * *piocb to find if there are more commands in the txq. 9236 **/ 9237 static struct lpfc_iocbq * 9238 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9239 struct lpfc_iocbq **piocb) 9240 { 9241 struct lpfc_iocbq * nextiocb; 9242 9243 lockdep_assert_held(&phba->hbalock); 9244 9245 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9246 if (!nextiocb) { 9247 nextiocb = *piocb; 9248 *piocb = NULL; 9249 } 9250 9251 return nextiocb; 9252 } 9253 9254 /** 9255 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9256 * @phba: Pointer to HBA context object. 9257 * @ring_number: SLI ring number to issue iocb on. 9258 * @piocb: Pointer to command iocb. 9259 * @flag: Flag indicating if this command can be put into txq. 9260 * 9261 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9262 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9263 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9264 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9265 * this function allows only iocbs for posting buffers. This function finds 9266 * next available slot in the command ring and posts the command to the 9267 * available slot and writes the port attention register to request HBA start 9268 * processing new iocb. If there is no slot available in the ring and 9269 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9270 * the function returns IOCB_BUSY. 9271 * 9272 * This function is called with hbalock held. The function will return success 9273 * after it successfully submit the iocb to firmware or after adding to the 9274 * txq. 9275 **/ 9276 static int 9277 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9278 struct lpfc_iocbq *piocb, uint32_t flag) 9279 { 9280 struct lpfc_iocbq *nextiocb; 9281 IOCB_t *iocb; 9282 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9283 9284 lockdep_assert_held(&phba->hbalock); 9285 9286 if (piocb->iocb_cmpl && (!piocb->vport) && 9287 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9288 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9290 "1807 IOCB x%x failed. No vport\n", 9291 piocb->iocb.ulpCommand); 9292 dump_stack(); 9293 return IOCB_ERROR; 9294 } 9295 9296 9297 /* If the PCI channel is in offline state, do not post iocbs. */ 9298 if (unlikely(pci_channel_offline(phba->pcidev))) 9299 return IOCB_ERROR; 9300 9301 /* If HBA has a deferred error attention, fail the iocb. */ 9302 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9303 return IOCB_ERROR; 9304 9305 /* 9306 * We should never get an IOCB if we are in a < LINK_DOWN state 9307 */ 9308 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9309 return IOCB_ERROR; 9310 9311 /* 9312 * Check to see if we are blocking IOCB processing because of a 9313 * outstanding event. 9314 */ 9315 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9316 goto iocb_busy; 9317 9318 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9319 /* 9320 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9321 * can be issued if the link is not up. 9322 */ 9323 switch (piocb->iocb.ulpCommand) { 9324 case CMD_GEN_REQUEST64_CR: 9325 case CMD_GEN_REQUEST64_CX: 9326 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9327 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9328 FC_RCTL_DD_UNSOL_CMD) || 9329 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9330 MENLO_TRANSPORT_TYPE)) 9331 9332 goto iocb_busy; 9333 break; 9334 case CMD_QUE_RING_BUF_CN: 9335 case CMD_QUE_RING_BUF64_CN: 9336 /* 9337 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9338 * completion, iocb_cmpl MUST be 0. 9339 */ 9340 if (piocb->iocb_cmpl) 9341 piocb->iocb_cmpl = NULL; 9342 /*FALLTHROUGH*/ 9343 case CMD_CREATE_XRI_CR: 9344 case CMD_CLOSE_XRI_CN: 9345 case CMD_CLOSE_XRI_CX: 9346 break; 9347 default: 9348 goto iocb_busy; 9349 } 9350 9351 /* 9352 * For FCP commands, we must be in a state where we can process link 9353 * attention events. 9354 */ 9355 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9356 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9357 goto iocb_busy; 9358 } 9359 9360 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9361 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9362 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9363 9364 if (iocb) 9365 lpfc_sli_update_ring(phba, pring); 9366 else 9367 lpfc_sli_update_full_ring(phba, pring); 9368 9369 if (!piocb) 9370 return IOCB_SUCCESS; 9371 9372 goto out_busy; 9373 9374 iocb_busy: 9375 pring->stats.iocb_cmd_delay++; 9376 9377 out_busy: 9378 9379 if (!(flag & SLI_IOCB_RET_IOCB)) { 9380 __lpfc_sli_ringtx_put(phba, pring, piocb); 9381 return IOCB_SUCCESS; 9382 } 9383 9384 return IOCB_BUSY; 9385 } 9386 9387 /** 9388 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9389 * @phba: Pointer to HBA context object. 9390 * @piocbq: Pointer to command iocb. 9391 * @sglq: Pointer to the scatter gather queue object. 9392 * 9393 * This routine converts the bpl or bde that is in the IOCB 9394 * to a sgl list for the sli4 hardware. The physical address 9395 * of the bpl/bde is converted back to a virtual address. 9396 * If the IOCB contains a BPL then the list of BDE's is 9397 * converted to sli4_sge's. If the IOCB contains a single 9398 * BDE then it is converted to a single sli_sge. 9399 * The IOCB is still in cpu endianess so the contents of 9400 * the bpl can be used without byte swapping. 9401 * 9402 * Returns valid XRI = Success, NO_XRI = Failure. 9403 **/ 9404 static uint16_t 9405 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9406 struct lpfc_sglq *sglq) 9407 { 9408 uint16_t xritag = NO_XRI; 9409 struct ulp_bde64 *bpl = NULL; 9410 struct ulp_bde64 bde; 9411 struct sli4_sge *sgl = NULL; 9412 struct lpfc_dmabuf *dmabuf; 9413 IOCB_t *icmd; 9414 int numBdes = 0; 9415 int i = 0; 9416 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9417 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9418 9419 if (!piocbq || !sglq) 9420 return xritag; 9421 9422 sgl = (struct sli4_sge *)sglq->sgl; 9423 icmd = &piocbq->iocb; 9424 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9425 return sglq->sli4_xritag; 9426 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9427 numBdes = icmd->un.genreq64.bdl.bdeSize / 9428 sizeof(struct ulp_bde64); 9429 /* The addrHigh and addrLow fields within the IOCB 9430 * have not been byteswapped yet so there is no 9431 * need to swap them back. 9432 */ 9433 if (piocbq->context3) 9434 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9435 else 9436 return xritag; 9437 9438 bpl = (struct ulp_bde64 *)dmabuf->virt; 9439 if (!bpl) 9440 return xritag; 9441 9442 for (i = 0; i < numBdes; i++) { 9443 /* Should already be byte swapped. */ 9444 sgl->addr_hi = bpl->addrHigh; 9445 sgl->addr_lo = bpl->addrLow; 9446 9447 sgl->word2 = le32_to_cpu(sgl->word2); 9448 if ((i+1) == numBdes) 9449 bf_set(lpfc_sli4_sge_last, sgl, 1); 9450 else 9451 bf_set(lpfc_sli4_sge_last, sgl, 0); 9452 /* swap the size field back to the cpu so we 9453 * can assign it to the sgl. 9454 */ 9455 bde.tus.w = le32_to_cpu(bpl->tus.w); 9456 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9457 /* The offsets in the sgl need to be accumulated 9458 * separately for the request and reply lists. 9459 * The request is always first, the reply follows. 9460 */ 9461 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9462 /* add up the reply sg entries */ 9463 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9464 inbound++; 9465 /* first inbound? reset the offset */ 9466 if (inbound == 1) 9467 offset = 0; 9468 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9469 bf_set(lpfc_sli4_sge_type, sgl, 9470 LPFC_SGE_TYPE_DATA); 9471 offset += bde.tus.f.bdeSize; 9472 } 9473 sgl->word2 = cpu_to_le32(sgl->word2); 9474 bpl++; 9475 sgl++; 9476 } 9477 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9478 /* The addrHigh and addrLow fields of the BDE have not 9479 * been byteswapped yet so they need to be swapped 9480 * before putting them in the sgl. 9481 */ 9482 sgl->addr_hi = 9483 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9484 sgl->addr_lo = 9485 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9486 sgl->word2 = le32_to_cpu(sgl->word2); 9487 bf_set(lpfc_sli4_sge_last, sgl, 1); 9488 sgl->word2 = cpu_to_le32(sgl->word2); 9489 sgl->sge_len = 9490 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9491 } 9492 return sglq->sli4_xritag; 9493 } 9494 9495 /** 9496 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9497 * @phba: Pointer to HBA context object. 9498 * @iocbq: Pointer to command iocb. 9499 * @wqe: Pointer to the work queue entry. 9500 * 9501 * This routine converts the iocb command to its Work Queue Entry 9502 * equivalent. The wqe pointer should not have any fields set when 9503 * this routine is called because it will memcpy over them. 9504 * This routine does not set the CQ_ID or the WQEC bits in the 9505 * wqe. 9506 * 9507 * Returns: 0 = Success, IOCB_ERROR = Failure. 9508 **/ 9509 static int 9510 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9511 union lpfc_wqe128 *wqe) 9512 { 9513 uint32_t xmit_len = 0, total_len = 0; 9514 uint8_t ct = 0; 9515 uint32_t fip; 9516 uint32_t abort_tag; 9517 uint8_t command_type = ELS_COMMAND_NON_FIP; 9518 uint8_t cmnd; 9519 uint16_t xritag; 9520 uint16_t abrt_iotag; 9521 struct lpfc_iocbq *abrtiocbq; 9522 struct ulp_bde64 *bpl = NULL; 9523 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9524 int numBdes, i; 9525 struct ulp_bde64 bde; 9526 struct lpfc_nodelist *ndlp; 9527 uint32_t *pcmd; 9528 uint32_t if_type; 9529 9530 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9531 /* The fcp commands will set command type */ 9532 if (iocbq->iocb_flag & LPFC_IO_FCP) 9533 command_type = FCP_COMMAND; 9534 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9535 command_type = ELS_COMMAND_FIP; 9536 else 9537 command_type = ELS_COMMAND_NON_FIP; 9538 9539 if (phba->fcp_embed_io) 9540 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9541 /* Some of the fields are in the right position already */ 9542 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9543 /* The ct field has moved so reset */ 9544 wqe->generic.wqe_com.word7 = 0; 9545 wqe->generic.wqe_com.word10 = 0; 9546 9547 abort_tag = (uint32_t) iocbq->iotag; 9548 xritag = iocbq->sli4_xritag; 9549 /* words0-2 bpl convert bde */ 9550 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9551 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9552 sizeof(struct ulp_bde64); 9553 bpl = (struct ulp_bde64 *) 9554 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9555 if (!bpl) 9556 return IOCB_ERROR; 9557 9558 /* Should already be byte swapped. */ 9559 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9560 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9561 /* swap the size field back to the cpu so we 9562 * can assign it to the sgl. 9563 */ 9564 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9565 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9566 total_len = 0; 9567 for (i = 0; i < numBdes; i++) { 9568 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9569 total_len += bde.tus.f.bdeSize; 9570 } 9571 } else 9572 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9573 9574 iocbq->iocb.ulpIoTag = iocbq->iotag; 9575 cmnd = iocbq->iocb.ulpCommand; 9576 9577 switch (iocbq->iocb.ulpCommand) { 9578 case CMD_ELS_REQUEST64_CR: 9579 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9580 ndlp = iocbq->context_un.ndlp; 9581 else 9582 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9583 if (!iocbq->iocb.ulpLe) { 9584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9585 "2007 Only Limited Edition cmd Format" 9586 " supported 0x%x\n", 9587 iocbq->iocb.ulpCommand); 9588 return IOCB_ERROR; 9589 } 9590 9591 wqe->els_req.payload_len = xmit_len; 9592 /* Els_reguest64 has a TMO */ 9593 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9594 iocbq->iocb.ulpTimeout); 9595 /* Need a VF for word 4 set the vf bit*/ 9596 bf_set(els_req64_vf, &wqe->els_req, 0); 9597 /* And a VFID for word 12 */ 9598 bf_set(els_req64_vfid, &wqe->els_req, 0); 9599 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9600 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9601 iocbq->iocb.ulpContext); 9602 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9603 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9604 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9605 if (command_type == ELS_COMMAND_FIP) 9606 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9607 >> LPFC_FIP_ELS_ID_SHIFT); 9608 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9609 iocbq->context2)->virt); 9610 if_type = bf_get(lpfc_sli_intf_if_type, 9611 &phba->sli4_hba.sli_intf); 9612 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9613 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9614 *pcmd == ELS_CMD_SCR || 9615 *pcmd == ELS_CMD_RDF || 9616 *pcmd == ELS_CMD_RSCN_XMT || 9617 *pcmd == ELS_CMD_FDISC || 9618 *pcmd == ELS_CMD_LOGO || 9619 *pcmd == ELS_CMD_PLOGI)) { 9620 bf_set(els_req64_sp, &wqe->els_req, 1); 9621 bf_set(els_req64_sid, &wqe->els_req, 9622 iocbq->vport->fc_myDID); 9623 if ((*pcmd == ELS_CMD_FLOGI) && 9624 !(phba->fc_topology == 9625 LPFC_TOPOLOGY_LOOP)) 9626 bf_set(els_req64_sid, &wqe->els_req, 0); 9627 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9628 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9629 phba->vpi_ids[iocbq->vport->vpi]); 9630 } else if (pcmd && iocbq->context1) { 9631 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9632 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9633 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9634 } 9635 } 9636 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9637 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9638 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9639 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9640 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9641 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9642 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9643 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9644 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9645 break; 9646 case CMD_XMIT_SEQUENCE64_CX: 9647 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9648 iocbq->iocb.un.ulpWord[3]); 9649 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9650 iocbq->iocb.unsli3.rcvsli3.ox_id); 9651 /* The entire sequence is transmitted for this IOCB */ 9652 xmit_len = total_len; 9653 cmnd = CMD_XMIT_SEQUENCE64_CR; 9654 if (phba->link_flag & LS_LOOPBACK_MODE) 9655 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9656 /* fall through */ 9657 case CMD_XMIT_SEQUENCE64_CR: 9658 /* word3 iocb=io_tag32 wqe=reserved */ 9659 wqe->xmit_sequence.rsvd3 = 0; 9660 /* word4 relative_offset memcpy */ 9661 /* word5 r_ctl/df_ctl memcpy */ 9662 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9663 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9664 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9665 LPFC_WQE_IOD_WRITE); 9666 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9667 LPFC_WQE_LENLOC_WORD12); 9668 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9669 wqe->xmit_sequence.xmit_len = xmit_len; 9670 command_type = OTHER_COMMAND; 9671 break; 9672 case CMD_XMIT_BCAST64_CN: 9673 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9674 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9675 /* word4 iocb=rsvd wqe=rsvd */ 9676 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9677 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9678 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9679 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9680 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9681 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9682 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9683 LPFC_WQE_LENLOC_WORD3); 9684 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9685 break; 9686 case CMD_FCP_IWRITE64_CR: 9687 command_type = FCP_COMMAND_DATA_OUT; 9688 /* word3 iocb=iotag wqe=payload_offset_len */ 9689 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9690 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9691 xmit_len + sizeof(struct fcp_rsp)); 9692 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9693 0); 9694 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9695 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9696 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9697 iocbq->iocb.ulpFCP2Rcvy); 9698 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9699 /* Always open the exchange */ 9700 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9701 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9702 LPFC_WQE_LENLOC_WORD4); 9703 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9704 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9705 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9706 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9707 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9708 if (iocbq->priority) { 9709 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9710 (iocbq->priority << 1)); 9711 } else { 9712 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9713 (phba->cfg_XLanePriority << 1)); 9714 } 9715 } 9716 /* Note, word 10 is already initialized to 0 */ 9717 9718 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9719 if (phba->cfg_enable_pbde) 9720 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9721 else 9722 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9723 9724 if (phba->fcp_embed_io) { 9725 struct lpfc_io_buf *lpfc_cmd; 9726 struct sli4_sge *sgl; 9727 struct fcp_cmnd *fcp_cmnd; 9728 uint32_t *ptr; 9729 9730 /* 128 byte wqe support here */ 9731 9732 lpfc_cmd = iocbq->context1; 9733 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9734 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9735 9736 /* Word 0-2 - FCP_CMND */ 9737 wqe->generic.bde.tus.f.bdeFlags = 9738 BUFF_TYPE_BDE_IMMED; 9739 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9740 wqe->generic.bde.addrHigh = 0; 9741 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9742 9743 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9744 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9745 9746 /* Word 22-29 FCP CMND Payload */ 9747 ptr = &wqe->words[22]; 9748 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9749 } 9750 break; 9751 case CMD_FCP_IREAD64_CR: 9752 /* word3 iocb=iotag wqe=payload_offset_len */ 9753 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9754 bf_set(payload_offset_len, &wqe->fcp_iread, 9755 xmit_len + sizeof(struct fcp_rsp)); 9756 bf_set(cmd_buff_len, &wqe->fcp_iread, 9757 0); 9758 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9759 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9760 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9761 iocbq->iocb.ulpFCP2Rcvy); 9762 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9763 /* Always open the exchange */ 9764 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9765 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9766 LPFC_WQE_LENLOC_WORD4); 9767 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9768 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9769 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9770 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9771 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9772 if (iocbq->priority) { 9773 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9774 (iocbq->priority << 1)); 9775 } else { 9776 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9777 (phba->cfg_XLanePriority << 1)); 9778 } 9779 } 9780 /* Note, word 10 is already initialized to 0 */ 9781 9782 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9783 if (phba->cfg_enable_pbde) 9784 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9785 else 9786 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9787 9788 if (phba->fcp_embed_io) { 9789 struct lpfc_io_buf *lpfc_cmd; 9790 struct sli4_sge *sgl; 9791 struct fcp_cmnd *fcp_cmnd; 9792 uint32_t *ptr; 9793 9794 /* 128 byte wqe support here */ 9795 9796 lpfc_cmd = iocbq->context1; 9797 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9798 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9799 9800 /* Word 0-2 - FCP_CMND */ 9801 wqe->generic.bde.tus.f.bdeFlags = 9802 BUFF_TYPE_BDE_IMMED; 9803 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9804 wqe->generic.bde.addrHigh = 0; 9805 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9806 9807 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9808 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9809 9810 /* Word 22-29 FCP CMND Payload */ 9811 ptr = &wqe->words[22]; 9812 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9813 } 9814 break; 9815 case CMD_FCP_ICMND64_CR: 9816 /* word3 iocb=iotag wqe=payload_offset_len */ 9817 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9818 bf_set(payload_offset_len, &wqe->fcp_icmd, 9819 xmit_len + sizeof(struct fcp_rsp)); 9820 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9821 0); 9822 /* word3 iocb=IO_TAG wqe=reserved */ 9823 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9824 /* Always open the exchange */ 9825 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9826 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9827 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9828 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9829 LPFC_WQE_LENLOC_NONE); 9830 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9831 iocbq->iocb.ulpFCP2Rcvy); 9832 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9833 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9834 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9835 if (iocbq->priority) { 9836 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9837 (iocbq->priority << 1)); 9838 } else { 9839 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9840 (phba->cfg_XLanePriority << 1)); 9841 } 9842 } 9843 /* Note, word 10 is already initialized to 0 */ 9844 9845 if (phba->fcp_embed_io) { 9846 struct lpfc_io_buf *lpfc_cmd; 9847 struct sli4_sge *sgl; 9848 struct fcp_cmnd *fcp_cmnd; 9849 uint32_t *ptr; 9850 9851 /* 128 byte wqe support here */ 9852 9853 lpfc_cmd = iocbq->context1; 9854 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9855 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9856 9857 /* Word 0-2 - FCP_CMND */ 9858 wqe->generic.bde.tus.f.bdeFlags = 9859 BUFF_TYPE_BDE_IMMED; 9860 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9861 wqe->generic.bde.addrHigh = 0; 9862 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9863 9864 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9865 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9866 9867 /* Word 22-29 FCP CMND Payload */ 9868 ptr = &wqe->words[22]; 9869 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9870 } 9871 break; 9872 case CMD_GEN_REQUEST64_CR: 9873 /* For this command calculate the xmit length of the 9874 * request bde. 9875 */ 9876 xmit_len = 0; 9877 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9878 sizeof(struct ulp_bde64); 9879 for (i = 0; i < numBdes; i++) { 9880 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9881 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9882 break; 9883 xmit_len += bde.tus.f.bdeSize; 9884 } 9885 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9886 wqe->gen_req.request_payload_len = xmit_len; 9887 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9888 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9889 /* word6 context tag copied in memcpy */ 9890 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9891 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9893 "2015 Invalid CT %x command 0x%x\n", 9894 ct, iocbq->iocb.ulpCommand); 9895 return IOCB_ERROR; 9896 } 9897 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9898 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9899 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9900 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9901 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9902 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9903 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9904 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9905 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9906 command_type = OTHER_COMMAND; 9907 break; 9908 case CMD_XMIT_ELS_RSP64_CX: 9909 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9910 /* words0-2 BDE memcpy */ 9911 /* word3 iocb=iotag32 wqe=response_payload_len */ 9912 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9913 /* word4 */ 9914 wqe->xmit_els_rsp.word4 = 0; 9915 /* word5 iocb=rsvd wge=did */ 9916 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9917 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9918 9919 if_type = bf_get(lpfc_sli_intf_if_type, 9920 &phba->sli4_hba.sli_intf); 9921 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9922 if (iocbq->vport->fc_flag & FC_PT2PT) { 9923 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9924 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9925 iocbq->vport->fc_myDID); 9926 if (iocbq->vport->fc_myDID == Fabric_DID) { 9927 bf_set(wqe_els_did, 9928 &wqe->xmit_els_rsp.wqe_dest, 0); 9929 } 9930 } 9931 } 9932 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9933 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9934 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9935 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9936 iocbq->iocb.unsli3.rcvsli3.ox_id); 9937 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9938 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9939 phba->vpi_ids[iocbq->vport->vpi]); 9940 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9941 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9942 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9943 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9944 LPFC_WQE_LENLOC_WORD3); 9945 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9946 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9947 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9948 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9949 iocbq->context2)->virt); 9950 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9951 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9952 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9953 iocbq->vport->fc_myDID); 9954 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9955 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9956 phba->vpi_ids[phba->pport->vpi]); 9957 } 9958 command_type = OTHER_COMMAND; 9959 break; 9960 case CMD_CLOSE_XRI_CN: 9961 case CMD_ABORT_XRI_CN: 9962 case CMD_ABORT_XRI_CX: 9963 /* words 0-2 memcpy should be 0 rserved */ 9964 /* port will send abts */ 9965 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9966 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9967 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9968 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9969 } else 9970 fip = 0; 9971 9972 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9973 /* 9974 * The link is down, or the command was ELS_FIP 9975 * so the fw does not need to send abts 9976 * on the wire. 9977 */ 9978 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9979 else 9980 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9981 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9982 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9983 wqe->abort_cmd.rsrvd5 = 0; 9984 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9985 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9986 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9987 /* 9988 * The abort handler will send us CMD_ABORT_XRI_CN or 9989 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9990 */ 9991 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9992 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9993 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9994 LPFC_WQE_LENLOC_NONE); 9995 cmnd = CMD_ABORT_XRI_CX; 9996 command_type = OTHER_COMMAND; 9997 xritag = 0; 9998 break; 9999 case CMD_XMIT_BLS_RSP64_CX: 10000 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10001 /* As BLS ABTS RSP WQE is very different from other WQEs, 10002 * we re-construct this WQE here based on information in 10003 * iocbq from scratch. 10004 */ 10005 memset(wqe, 0, sizeof(*wqe)); 10006 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10007 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10008 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10009 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10010 LPFC_ABTS_UNSOL_INT) { 10011 /* ABTS sent by initiator to CT exchange, the 10012 * RX_ID field will be filled with the newly 10013 * allocated responder XRI. 10014 */ 10015 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10016 iocbq->sli4_xritag); 10017 } else { 10018 /* ABTS sent by responder to CT exchange, the 10019 * RX_ID field will be filled with the responder 10020 * RX_ID from ABTS. 10021 */ 10022 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10023 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10024 } 10025 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10026 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10027 10028 /* Use CT=VPI */ 10029 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10030 ndlp->nlp_DID); 10031 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10032 iocbq->iocb.ulpContext); 10033 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10034 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10035 phba->vpi_ids[phba->pport->vpi]); 10036 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10037 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10038 LPFC_WQE_LENLOC_NONE); 10039 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10040 command_type = OTHER_COMMAND; 10041 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10042 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10043 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10044 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10045 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10046 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10047 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10048 } 10049 10050 break; 10051 case CMD_SEND_FRAME: 10052 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10053 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10054 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10055 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10056 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10057 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10058 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10059 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10060 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10061 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10062 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10063 return 0; 10064 case CMD_XRI_ABORTED_CX: 10065 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10066 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10067 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10068 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10069 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10070 default: 10071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10072 "2014 Invalid command 0x%x\n", 10073 iocbq->iocb.ulpCommand); 10074 return IOCB_ERROR; 10075 break; 10076 } 10077 10078 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10079 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10080 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10081 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10082 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10083 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10084 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10085 LPFC_IO_DIF_INSERT); 10086 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10087 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10088 wqe->generic.wqe_com.abort_tag = abort_tag; 10089 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10090 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10091 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10092 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10093 return 0; 10094 } 10095 10096 /** 10097 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10098 * @phba: Pointer to HBA context object. 10099 * @ring_number: SLI ring number to issue iocb on. 10100 * @piocb: Pointer to command iocb. 10101 * @flag: Flag indicating if this command can be put into txq. 10102 * 10103 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10104 * an iocb command to an HBA with SLI-4 interface spec. 10105 * 10106 * This function is called with ringlock held. The function will return success 10107 * after it successfully submit the iocb to firmware or after adding to the 10108 * txq. 10109 **/ 10110 static int 10111 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10112 struct lpfc_iocbq *piocb, uint32_t flag) 10113 { 10114 struct lpfc_sglq *sglq; 10115 union lpfc_wqe128 wqe; 10116 struct lpfc_queue *wq; 10117 struct lpfc_sli_ring *pring; 10118 10119 /* Get the WQ */ 10120 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10121 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10122 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10123 } else { 10124 wq = phba->sli4_hba.els_wq; 10125 } 10126 10127 /* Get corresponding ring */ 10128 pring = wq->pring; 10129 10130 /* 10131 * The WQE can be either 64 or 128 bytes, 10132 */ 10133 10134 lockdep_assert_held(&pring->ring_lock); 10135 10136 if (piocb->sli4_xritag == NO_XRI) { 10137 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10138 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10139 sglq = NULL; 10140 else { 10141 if (!list_empty(&pring->txq)) { 10142 if (!(flag & SLI_IOCB_RET_IOCB)) { 10143 __lpfc_sli_ringtx_put(phba, 10144 pring, piocb); 10145 return IOCB_SUCCESS; 10146 } else { 10147 return IOCB_BUSY; 10148 } 10149 } else { 10150 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10151 if (!sglq) { 10152 if (!(flag & SLI_IOCB_RET_IOCB)) { 10153 __lpfc_sli_ringtx_put(phba, 10154 pring, 10155 piocb); 10156 return IOCB_SUCCESS; 10157 } else 10158 return IOCB_BUSY; 10159 } 10160 } 10161 } 10162 } else if (piocb->iocb_flag & LPFC_IO_FCP) 10163 /* These IO's already have an XRI and a mapped sgl. */ 10164 sglq = NULL; 10165 else { 10166 /* 10167 * This is a continuation of a commandi,(CX) so this 10168 * sglq is on the active list 10169 */ 10170 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10171 if (!sglq) 10172 return IOCB_ERROR; 10173 } 10174 10175 if (sglq) { 10176 piocb->sli4_lxritag = sglq->sli4_lxritag; 10177 piocb->sli4_xritag = sglq->sli4_xritag; 10178 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10179 return IOCB_ERROR; 10180 } 10181 10182 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10183 return IOCB_ERROR; 10184 10185 if (lpfc_sli4_wq_put(wq, &wqe)) 10186 return IOCB_ERROR; 10187 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10188 10189 return 0; 10190 } 10191 10192 /* 10193 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10194 * 10195 * This routine wraps the actual lockless version for issusing IOCB function 10196 * pointer from the lpfc_hba struct. 10197 * 10198 * Return codes: 10199 * IOCB_ERROR - Error 10200 * IOCB_SUCCESS - Success 10201 * IOCB_BUSY - Busy 10202 **/ 10203 int 10204 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10205 struct lpfc_iocbq *piocb, uint32_t flag) 10206 { 10207 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10208 } 10209 10210 /** 10211 * lpfc_sli_api_table_setup - Set up sli api function jump table 10212 * @phba: The hba struct for which this call is being executed. 10213 * @dev_grp: The HBA PCI-Device group number. 10214 * 10215 * This routine sets up the SLI interface API function jump table in @phba 10216 * struct. 10217 * Returns: 0 - success, -ENODEV - failure. 10218 **/ 10219 int 10220 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10221 { 10222 10223 switch (dev_grp) { 10224 case LPFC_PCI_DEV_LP: 10225 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10226 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10227 break; 10228 case LPFC_PCI_DEV_OC: 10229 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10230 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10231 break; 10232 default: 10233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10234 "1419 Invalid HBA PCI-device group: 0x%x\n", 10235 dev_grp); 10236 return -ENODEV; 10237 break; 10238 } 10239 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10240 return 0; 10241 } 10242 10243 /** 10244 * lpfc_sli4_calc_ring - Calculates which ring to use 10245 * @phba: Pointer to HBA context object. 10246 * @piocb: Pointer to command iocb. 10247 * 10248 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10249 * hba_wqidx, thus we need to calculate the corresponding ring. 10250 * Since ABORTS must go on the same WQ of the command they are 10251 * aborting, we use command's hba_wqidx. 10252 */ 10253 struct lpfc_sli_ring * 10254 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10255 { 10256 struct lpfc_io_buf *lpfc_cmd; 10257 10258 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10259 if (unlikely(!phba->sli4_hba.hdwq)) 10260 return NULL; 10261 /* 10262 * for abort iocb hba_wqidx should already 10263 * be setup based on what work queue we used. 10264 */ 10265 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10266 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10267 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10268 } 10269 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10270 } else { 10271 if (unlikely(!phba->sli4_hba.els_wq)) 10272 return NULL; 10273 piocb->hba_wqidx = 0; 10274 return phba->sli4_hba.els_wq->pring; 10275 } 10276 } 10277 10278 /** 10279 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10280 * @phba: Pointer to HBA context object. 10281 * @ring_number: Ring number 10282 * @piocb: Pointer to command iocb. 10283 * @flag: Flag indicating if this command can be put into txq. 10284 * 10285 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10286 * function. This function gets the hbalock and calls 10287 * __lpfc_sli_issue_iocb function and will return the error returned 10288 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10289 * functions which do not hold hbalock. 10290 **/ 10291 int 10292 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10293 struct lpfc_iocbq *piocb, uint32_t flag) 10294 { 10295 struct lpfc_sli_ring *pring; 10296 struct lpfc_queue *eq; 10297 unsigned long iflags; 10298 int rc; 10299 10300 if (phba->sli_rev == LPFC_SLI_REV4) { 10301 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10302 10303 pring = lpfc_sli4_calc_ring(phba, piocb); 10304 if (unlikely(pring == NULL)) 10305 return IOCB_ERROR; 10306 10307 spin_lock_irqsave(&pring->ring_lock, iflags); 10308 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10309 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10310 10311 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10312 } else { 10313 /* For now, SLI2/3 will still use hbalock */ 10314 spin_lock_irqsave(&phba->hbalock, iflags); 10315 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10316 spin_unlock_irqrestore(&phba->hbalock, iflags); 10317 } 10318 return rc; 10319 } 10320 10321 /** 10322 * lpfc_extra_ring_setup - Extra ring setup function 10323 * @phba: Pointer to HBA context object. 10324 * 10325 * This function is called while driver attaches with the 10326 * HBA to setup the extra ring. The extra ring is used 10327 * only when driver needs to support target mode functionality 10328 * or IP over FC functionalities. 10329 * 10330 * This function is called with no lock held. SLI3 only. 10331 **/ 10332 static int 10333 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10334 { 10335 struct lpfc_sli *psli; 10336 struct lpfc_sli_ring *pring; 10337 10338 psli = &phba->sli; 10339 10340 /* Adjust cmd/rsp ring iocb entries more evenly */ 10341 10342 /* Take some away from the FCP ring */ 10343 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10344 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10345 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10346 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10347 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10348 10349 /* and give them to the extra ring */ 10350 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10351 10352 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10353 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10354 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10355 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10356 10357 /* Setup default profile for this ring */ 10358 pring->iotag_max = 4096; 10359 pring->num_mask = 1; 10360 pring->prt[0].profile = 0; /* Mask 0 */ 10361 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10362 pring->prt[0].type = phba->cfg_multi_ring_type; 10363 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10364 return 0; 10365 } 10366 10367 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10368 * @phba: Pointer to HBA context object. 10369 * @iocbq: Pointer to iocb object. 10370 * 10371 * The async_event handler calls this routine when it receives 10372 * an ASYNC_STATUS_CN event from the port. The port generates 10373 * this event when an Abort Sequence request to an rport fails 10374 * twice in succession. The abort could be originated by the 10375 * driver or by the port. The ABTS could have been for an ELS 10376 * or FCP IO. The port only generates this event when an ABTS 10377 * fails to complete after one retry. 10378 */ 10379 static void 10380 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10381 struct lpfc_iocbq *iocbq) 10382 { 10383 struct lpfc_nodelist *ndlp = NULL; 10384 uint16_t rpi = 0, vpi = 0; 10385 struct lpfc_vport *vport = NULL; 10386 10387 /* The rpi in the ulpContext is vport-sensitive. */ 10388 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10389 rpi = iocbq->iocb.ulpContext; 10390 10391 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10392 "3092 Port generated ABTS async event " 10393 "on vpi %d rpi %d status 0x%x\n", 10394 vpi, rpi, iocbq->iocb.ulpStatus); 10395 10396 vport = lpfc_find_vport_by_vpid(phba, vpi); 10397 if (!vport) 10398 goto err_exit; 10399 ndlp = lpfc_findnode_rpi(vport, rpi); 10400 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10401 goto err_exit; 10402 10403 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10404 lpfc_sli_abts_recover_port(vport, ndlp); 10405 return; 10406 10407 err_exit: 10408 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10409 "3095 Event Context not found, no " 10410 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10411 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10412 vpi, rpi); 10413 } 10414 10415 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10416 * @phba: pointer to HBA context object. 10417 * @ndlp: nodelist pointer for the impacted rport. 10418 * @axri: pointer to the wcqe containing the failed exchange. 10419 * 10420 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10421 * port. The port generates this event when an abort exchange request to an 10422 * rport fails twice in succession with no reply. The abort could be originated 10423 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10424 */ 10425 void 10426 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10427 struct lpfc_nodelist *ndlp, 10428 struct sli4_wcqe_xri_aborted *axri) 10429 { 10430 struct lpfc_vport *vport; 10431 uint32_t ext_status = 0; 10432 10433 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10434 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10435 "3115 Node Context not found, driver " 10436 "ignoring abts err event\n"); 10437 return; 10438 } 10439 10440 vport = ndlp->vport; 10441 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10442 "3116 Port generated FCP XRI ABORT event on " 10443 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10444 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10445 bf_get(lpfc_wcqe_xa_xri, axri), 10446 bf_get(lpfc_wcqe_xa_status, axri), 10447 axri->parameter); 10448 10449 /* 10450 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10451 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10452 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10453 */ 10454 ext_status = axri->parameter & IOERR_PARAM_MASK; 10455 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10456 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10457 lpfc_sli_abts_recover_port(vport, ndlp); 10458 } 10459 10460 /** 10461 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10462 * @phba: Pointer to HBA context object. 10463 * @pring: Pointer to driver SLI ring object. 10464 * @iocbq: Pointer to iocb object. 10465 * 10466 * This function is called by the slow ring event handler 10467 * function when there is an ASYNC event iocb in the ring. 10468 * This function is called with no lock held. 10469 * Currently this function handles only temperature related 10470 * ASYNC events. The function decodes the temperature sensor 10471 * event message and posts events for the management applications. 10472 **/ 10473 static void 10474 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10475 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10476 { 10477 IOCB_t *icmd; 10478 uint16_t evt_code; 10479 struct temp_event temp_event_data; 10480 struct Scsi_Host *shost; 10481 uint32_t *iocb_w; 10482 10483 icmd = &iocbq->iocb; 10484 evt_code = icmd->un.asyncstat.evt_code; 10485 10486 switch (evt_code) { 10487 case ASYNC_TEMP_WARN: 10488 case ASYNC_TEMP_SAFE: 10489 temp_event_data.data = (uint32_t) icmd->ulpContext; 10490 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10491 if (evt_code == ASYNC_TEMP_WARN) { 10492 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10494 "0347 Adapter is very hot, please take " 10495 "corrective action. temperature : %d Celsius\n", 10496 (uint32_t) icmd->ulpContext); 10497 } else { 10498 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10500 "0340 Adapter temperature is OK now. " 10501 "temperature : %d Celsius\n", 10502 (uint32_t) icmd->ulpContext); 10503 } 10504 10505 /* Send temperature change event to applications */ 10506 shost = lpfc_shost_from_vport(phba->pport); 10507 fc_host_post_vendor_event(shost, fc_get_event_number(), 10508 sizeof(temp_event_data), (char *) &temp_event_data, 10509 LPFC_NL_VENDOR_ID); 10510 break; 10511 case ASYNC_STATUS_CN: 10512 lpfc_sli_abts_err_handler(phba, iocbq); 10513 break; 10514 default: 10515 iocb_w = (uint32_t *) icmd; 10516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10517 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10518 " evt_code 0x%x\n" 10519 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10520 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10521 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10522 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10523 pring->ringno, icmd->un.asyncstat.evt_code, 10524 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10525 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10526 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10527 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10528 10529 break; 10530 } 10531 } 10532 10533 10534 /** 10535 * lpfc_sli4_setup - SLI ring setup function 10536 * @phba: Pointer to HBA context object. 10537 * 10538 * lpfc_sli_setup sets up rings of the SLI interface with 10539 * number of iocbs per ring and iotags. This function is 10540 * called while driver attach to the HBA and before the 10541 * interrupts are enabled. So there is no need for locking. 10542 * 10543 * This function always returns 0. 10544 **/ 10545 int 10546 lpfc_sli4_setup(struct lpfc_hba *phba) 10547 { 10548 struct lpfc_sli_ring *pring; 10549 10550 pring = phba->sli4_hba.els_wq->pring; 10551 pring->num_mask = LPFC_MAX_RING_MASK; 10552 pring->prt[0].profile = 0; /* Mask 0 */ 10553 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10554 pring->prt[0].type = FC_TYPE_ELS; 10555 pring->prt[0].lpfc_sli_rcv_unsol_event = 10556 lpfc_els_unsol_event; 10557 pring->prt[1].profile = 0; /* Mask 1 */ 10558 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10559 pring->prt[1].type = FC_TYPE_ELS; 10560 pring->prt[1].lpfc_sli_rcv_unsol_event = 10561 lpfc_els_unsol_event; 10562 pring->prt[2].profile = 0; /* Mask 2 */ 10563 /* NameServer Inquiry */ 10564 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10565 /* NameServer */ 10566 pring->prt[2].type = FC_TYPE_CT; 10567 pring->prt[2].lpfc_sli_rcv_unsol_event = 10568 lpfc_ct_unsol_event; 10569 pring->prt[3].profile = 0; /* Mask 3 */ 10570 /* NameServer response */ 10571 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10572 /* NameServer */ 10573 pring->prt[3].type = FC_TYPE_CT; 10574 pring->prt[3].lpfc_sli_rcv_unsol_event = 10575 lpfc_ct_unsol_event; 10576 return 0; 10577 } 10578 10579 /** 10580 * lpfc_sli_setup - SLI ring setup function 10581 * @phba: Pointer to HBA context object. 10582 * 10583 * lpfc_sli_setup sets up rings of the SLI interface with 10584 * number of iocbs per ring and iotags. This function is 10585 * called while driver attach to the HBA and before the 10586 * interrupts are enabled. So there is no need for locking. 10587 * 10588 * This function always returns 0. SLI3 only. 10589 **/ 10590 int 10591 lpfc_sli_setup(struct lpfc_hba *phba) 10592 { 10593 int i, totiocbsize = 0; 10594 struct lpfc_sli *psli = &phba->sli; 10595 struct lpfc_sli_ring *pring; 10596 10597 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10598 psli->sli_flag = 0; 10599 10600 psli->iocbq_lookup = NULL; 10601 psli->iocbq_lookup_len = 0; 10602 psli->last_iotag = 0; 10603 10604 for (i = 0; i < psli->num_rings; i++) { 10605 pring = &psli->sli3_ring[i]; 10606 switch (i) { 10607 case LPFC_FCP_RING: /* ring 0 - FCP */ 10608 /* numCiocb and numRiocb are used in config_port */ 10609 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10610 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10611 pring->sli.sli3.numCiocb += 10612 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10613 pring->sli.sli3.numRiocb += 10614 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10615 pring->sli.sli3.numCiocb += 10616 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10617 pring->sli.sli3.numRiocb += 10618 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10619 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10620 SLI3_IOCB_CMD_SIZE : 10621 SLI2_IOCB_CMD_SIZE; 10622 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10623 SLI3_IOCB_RSP_SIZE : 10624 SLI2_IOCB_RSP_SIZE; 10625 pring->iotag_ctr = 0; 10626 pring->iotag_max = 10627 (phba->cfg_hba_queue_depth * 2); 10628 pring->fast_iotag = pring->iotag_max; 10629 pring->num_mask = 0; 10630 break; 10631 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10632 /* numCiocb and numRiocb are used in config_port */ 10633 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10634 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10635 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10636 SLI3_IOCB_CMD_SIZE : 10637 SLI2_IOCB_CMD_SIZE; 10638 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10639 SLI3_IOCB_RSP_SIZE : 10640 SLI2_IOCB_RSP_SIZE; 10641 pring->iotag_max = phba->cfg_hba_queue_depth; 10642 pring->num_mask = 0; 10643 break; 10644 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10645 /* numCiocb and numRiocb are used in config_port */ 10646 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10647 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10648 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10649 SLI3_IOCB_CMD_SIZE : 10650 SLI2_IOCB_CMD_SIZE; 10651 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10652 SLI3_IOCB_RSP_SIZE : 10653 SLI2_IOCB_RSP_SIZE; 10654 pring->fast_iotag = 0; 10655 pring->iotag_ctr = 0; 10656 pring->iotag_max = 4096; 10657 pring->lpfc_sli_rcv_async_status = 10658 lpfc_sli_async_event_handler; 10659 pring->num_mask = LPFC_MAX_RING_MASK; 10660 pring->prt[0].profile = 0; /* Mask 0 */ 10661 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10662 pring->prt[0].type = FC_TYPE_ELS; 10663 pring->prt[0].lpfc_sli_rcv_unsol_event = 10664 lpfc_els_unsol_event; 10665 pring->prt[1].profile = 0; /* Mask 1 */ 10666 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10667 pring->prt[1].type = FC_TYPE_ELS; 10668 pring->prt[1].lpfc_sli_rcv_unsol_event = 10669 lpfc_els_unsol_event; 10670 pring->prt[2].profile = 0; /* Mask 2 */ 10671 /* NameServer Inquiry */ 10672 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10673 /* NameServer */ 10674 pring->prt[2].type = FC_TYPE_CT; 10675 pring->prt[2].lpfc_sli_rcv_unsol_event = 10676 lpfc_ct_unsol_event; 10677 pring->prt[3].profile = 0; /* Mask 3 */ 10678 /* NameServer response */ 10679 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10680 /* NameServer */ 10681 pring->prt[3].type = FC_TYPE_CT; 10682 pring->prt[3].lpfc_sli_rcv_unsol_event = 10683 lpfc_ct_unsol_event; 10684 break; 10685 } 10686 totiocbsize += (pring->sli.sli3.numCiocb * 10687 pring->sli.sli3.sizeCiocb) + 10688 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10689 } 10690 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10691 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10692 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10693 "SLI2 SLIM Data: x%x x%lx\n", 10694 phba->brd_no, totiocbsize, 10695 (unsigned long) MAX_SLIM_IOCB_SIZE); 10696 } 10697 if (phba->cfg_multi_ring_support == 2) 10698 lpfc_extra_ring_setup(phba); 10699 10700 return 0; 10701 } 10702 10703 /** 10704 * lpfc_sli4_queue_init - Queue initialization function 10705 * @phba: Pointer to HBA context object. 10706 * 10707 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10708 * ring. This function also initializes ring indices of each ring. 10709 * This function is called during the initialization of the SLI 10710 * interface of an HBA. 10711 * This function is called with no lock held and always returns 10712 * 1. 10713 **/ 10714 void 10715 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10716 { 10717 struct lpfc_sli *psli; 10718 struct lpfc_sli_ring *pring; 10719 int i; 10720 10721 psli = &phba->sli; 10722 spin_lock_irq(&phba->hbalock); 10723 INIT_LIST_HEAD(&psli->mboxq); 10724 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10725 /* Initialize list headers for txq and txcmplq as double linked lists */ 10726 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10727 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10728 pring->flag = 0; 10729 pring->ringno = LPFC_FCP_RING; 10730 pring->txcmplq_cnt = 0; 10731 INIT_LIST_HEAD(&pring->txq); 10732 INIT_LIST_HEAD(&pring->txcmplq); 10733 INIT_LIST_HEAD(&pring->iocb_continueq); 10734 spin_lock_init(&pring->ring_lock); 10735 } 10736 pring = phba->sli4_hba.els_wq->pring; 10737 pring->flag = 0; 10738 pring->ringno = LPFC_ELS_RING; 10739 pring->txcmplq_cnt = 0; 10740 INIT_LIST_HEAD(&pring->txq); 10741 INIT_LIST_HEAD(&pring->txcmplq); 10742 INIT_LIST_HEAD(&pring->iocb_continueq); 10743 spin_lock_init(&pring->ring_lock); 10744 10745 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10746 pring = phba->sli4_hba.nvmels_wq->pring; 10747 pring->flag = 0; 10748 pring->ringno = LPFC_ELS_RING; 10749 pring->txcmplq_cnt = 0; 10750 INIT_LIST_HEAD(&pring->txq); 10751 INIT_LIST_HEAD(&pring->txcmplq); 10752 INIT_LIST_HEAD(&pring->iocb_continueq); 10753 spin_lock_init(&pring->ring_lock); 10754 } 10755 10756 spin_unlock_irq(&phba->hbalock); 10757 } 10758 10759 /** 10760 * lpfc_sli_queue_init - Queue initialization function 10761 * @phba: Pointer to HBA context object. 10762 * 10763 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10764 * ring. This function also initializes ring indices of each ring. 10765 * This function is called during the initialization of the SLI 10766 * interface of an HBA. 10767 * This function is called with no lock held and always returns 10768 * 1. 10769 **/ 10770 void 10771 lpfc_sli_queue_init(struct lpfc_hba *phba) 10772 { 10773 struct lpfc_sli *psli; 10774 struct lpfc_sli_ring *pring; 10775 int i; 10776 10777 psli = &phba->sli; 10778 spin_lock_irq(&phba->hbalock); 10779 INIT_LIST_HEAD(&psli->mboxq); 10780 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10781 /* Initialize list headers for txq and txcmplq as double linked lists */ 10782 for (i = 0; i < psli->num_rings; i++) { 10783 pring = &psli->sli3_ring[i]; 10784 pring->ringno = i; 10785 pring->sli.sli3.next_cmdidx = 0; 10786 pring->sli.sli3.local_getidx = 0; 10787 pring->sli.sli3.cmdidx = 0; 10788 INIT_LIST_HEAD(&pring->iocb_continueq); 10789 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10790 INIT_LIST_HEAD(&pring->postbufq); 10791 pring->flag = 0; 10792 INIT_LIST_HEAD(&pring->txq); 10793 INIT_LIST_HEAD(&pring->txcmplq); 10794 spin_lock_init(&pring->ring_lock); 10795 } 10796 spin_unlock_irq(&phba->hbalock); 10797 } 10798 10799 /** 10800 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10801 * @phba: Pointer to HBA context object. 10802 * 10803 * This routine flushes the mailbox command subsystem. It will unconditionally 10804 * flush all the mailbox commands in the three possible stages in the mailbox 10805 * command sub-system: pending mailbox command queue; the outstanding mailbox 10806 * command; and completed mailbox command queue. It is caller's responsibility 10807 * to make sure that the driver is in the proper state to flush the mailbox 10808 * command sub-system. Namely, the posting of mailbox commands into the 10809 * pending mailbox command queue from the various clients must be stopped; 10810 * either the HBA is in a state that it will never works on the outstanding 10811 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10812 * mailbox command has been completed. 10813 **/ 10814 static void 10815 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10816 { 10817 LIST_HEAD(completions); 10818 struct lpfc_sli *psli = &phba->sli; 10819 LPFC_MBOXQ_t *pmb; 10820 unsigned long iflag; 10821 10822 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10823 local_bh_disable(); 10824 10825 /* Flush all the mailbox commands in the mbox system */ 10826 spin_lock_irqsave(&phba->hbalock, iflag); 10827 10828 /* The pending mailbox command queue */ 10829 list_splice_init(&phba->sli.mboxq, &completions); 10830 /* The outstanding active mailbox command */ 10831 if (psli->mbox_active) { 10832 list_add_tail(&psli->mbox_active->list, &completions); 10833 psli->mbox_active = NULL; 10834 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10835 } 10836 /* The completed mailbox command queue */ 10837 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10838 spin_unlock_irqrestore(&phba->hbalock, iflag); 10839 10840 /* Enable softirqs again, done with phba->hbalock */ 10841 local_bh_enable(); 10842 10843 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10844 while (!list_empty(&completions)) { 10845 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10846 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10847 if (pmb->mbox_cmpl) 10848 pmb->mbox_cmpl(phba, pmb); 10849 } 10850 } 10851 10852 /** 10853 * lpfc_sli_host_down - Vport cleanup function 10854 * @vport: Pointer to virtual port object. 10855 * 10856 * lpfc_sli_host_down is called to clean up the resources 10857 * associated with a vport before destroying virtual 10858 * port data structures. 10859 * This function does following operations: 10860 * - Free discovery resources associated with this virtual 10861 * port. 10862 * - Free iocbs associated with this virtual port in 10863 * the txq. 10864 * - Send abort for all iocb commands associated with this 10865 * vport in txcmplq. 10866 * 10867 * This function is called with no lock held and always returns 1. 10868 **/ 10869 int 10870 lpfc_sli_host_down(struct lpfc_vport *vport) 10871 { 10872 LIST_HEAD(completions); 10873 struct lpfc_hba *phba = vport->phba; 10874 struct lpfc_sli *psli = &phba->sli; 10875 struct lpfc_queue *qp = NULL; 10876 struct lpfc_sli_ring *pring; 10877 struct lpfc_iocbq *iocb, *next_iocb; 10878 int i; 10879 unsigned long flags = 0; 10880 uint16_t prev_pring_flag; 10881 10882 lpfc_cleanup_discovery_resources(vport); 10883 10884 spin_lock_irqsave(&phba->hbalock, flags); 10885 10886 /* 10887 * Error everything on the txq since these iocbs 10888 * have not been given to the FW yet. 10889 * Also issue ABTS for everything on the txcmplq 10890 */ 10891 if (phba->sli_rev != LPFC_SLI_REV4) { 10892 for (i = 0; i < psli->num_rings; i++) { 10893 pring = &psli->sli3_ring[i]; 10894 prev_pring_flag = pring->flag; 10895 /* Only slow rings */ 10896 if (pring->ringno == LPFC_ELS_RING) { 10897 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10898 /* Set the lpfc data pending flag */ 10899 set_bit(LPFC_DATA_READY, &phba->data_flags); 10900 } 10901 list_for_each_entry_safe(iocb, next_iocb, 10902 &pring->txq, list) { 10903 if (iocb->vport != vport) 10904 continue; 10905 list_move_tail(&iocb->list, &completions); 10906 } 10907 list_for_each_entry_safe(iocb, next_iocb, 10908 &pring->txcmplq, list) { 10909 if (iocb->vport != vport) 10910 continue; 10911 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10912 } 10913 pring->flag = prev_pring_flag; 10914 } 10915 } else { 10916 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10917 pring = qp->pring; 10918 if (!pring) 10919 continue; 10920 if (pring == phba->sli4_hba.els_wq->pring) { 10921 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10922 /* Set the lpfc data pending flag */ 10923 set_bit(LPFC_DATA_READY, &phba->data_flags); 10924 } 10925 prev_pring_flag = pring->flag; 10926 spin_lock(&pring->ring_lock); 10927 list_for_each_entry_safe(iocb, next_iocb, 10928 &pring->txq, list) { 10929 if (iocb->vport != vport) 10930 continue; 10931 list_move_tail(&iocb->list, &completions); 10932 } 10933 spin_unlock(&pring->ring_lock); 10934 list_for_each_entry_safe(iocb, next_iocb, 10935 &pring->txcmplq, list) { 10936 if (iocb->vport != vport) 10937 continue; 10938 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10939 } 10940 pring->flag = prev_pring_flag; 10941 } 10942 } 10943 spin_unlock_irqrestore(&phba->hbalock, flags); 10944 10945 /* Cancel all the IOCBs from the completions list */ 10946 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10947 IOERR_SLI_DOWN); 10948 return 1; 10949 } 10950 10951 /** 10952 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10953 * @phba: Pointer to HBA context object. 10954 * 10955 * This function cleans up all iocb, buffers, mailbox commands 10956 * while shutting down the HBA. This function is called with no 10957 * lock held and always returns 1. 10958 * This function does the following to cleanup driver resources: 10959 * - Free discovery resources for each virtual port 10960 * - Cleanup any pending fabric iocbs 10961 * - Iterate through the iocb txq and free each entry 10962 * in the list. 10963 * - Free up any buffer posted to the HBA 10964 * - Free mailbox commands in the mailbox queue. 10965 **/ 10966 int 10967 lpfc_sli_hba_down(struct lpfc_hba *phba) 10968 { 10969 LIST_HEAD(completions); 10970 struct lpfc_sli *psli = &phba->sli; 10971 struct lpfc_queue *qp = NULL; 10972 struct lpfc_sli_ring *pring; 10973 struct lpfc_dmabuf *buf_ptr; 10974 unsigned long flags = 0; 10975 int i; 10976 10977 /* Shutdown the mailbox command sub-system */ 10978 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10979 10980 lpfc_hba_down_prep(phba); 10981 10982 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10983 local_bh_disable(); 10984 10985 lpfc_fabric_abort_hba(phba); 10986 10987 spin_lock_irqsave(&phba->hbalock, flags); 10988 10989 /* 10990 * Error everything on the txq since these iocbs 10991 * have not been given to the FW yet. 10992 */ 10993 if (phba->sli_rev != LPFC_SLI_REV4) { 10994 for (i = 0; i < psli->num_rings; i++) { 10995 pring = &psli->sli3_ring[i]; 10996 /* Only slow rings */ 10997 if (pring->ringno == LPFC_ELS_RING) { 10998 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10999 /* Set the lpfc data pending flag */ 11000 set_bit(LPFC_DATA_READY, &phba->data_flags); 11001 } 11002 list_splice_init(&pring->txq, &completions); 11003 } 11004 } else { 11005 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11006 pring = qp->pring; 11007 if (!pring) 11008 continue; 11009 spin_lock(&pring->ring_lock); 11010 list_splice_init(&pring->txq, &completions); 11011 spin_unlock(&pring->ring_lock); 11012 if (pring == phba->sli4_hba.els_wq->pring) { 11013 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11014 /* Set the lpfc data pending flag */ 11015 set_bit(LPFC_DATA_READY, &phba->data_flags); 11016 } 11017 } 11018 } 11019 spin_unlock_irqrestore(&phba->hbalock, flags); 11020 11021 /* Cancel all the IOCBs from the completions list */ 11022 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11023 IOERR_SLI_DOWN); 11024 11025 spin_lock_irqsave(&phba->hbalock, flags); 11026 list_splice_init(&phba->elsbuf, &completions); 11027 phba->elsbuf_cnt = 0; 11028 phba->elsbuf_prev_cnt = 0; 11029 spin_unlock_irqrestore(&phba->hbalock, flags); 11030 11031 while (!list_empty(&completions)) { 11032 list_remove_head(&completions, buf_ptr, 11033 struct lpfc_dmabuf, list); 11034 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11035 kfree(buf_ptr); 11036 } 11037 11038 /* Enable softirqs again, done with phba->hbalock */ 11039 local_bh_enable(); 11040 11041 /* Return any active mbox cmds */ 11042 del_timer_sync(&psli->mbox_tmo); 11043 11044 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11045 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11046 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11047 11048 return 1; 11049 } 11050 11051 /** 11052 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11053 * @srcp: Source memory pointer. 11054 * @destp: Destination memory pointer. 11055 * @cnt: Number of words required to be copied. 11056 * 11057 * This function is used for copying data between driver memory 11058 * and the SLI memory. This function also changes the endianness 11059 * of each word if native endianness is different from SLI 11060 * endianness. This function can be called with or without 11061 * lock. 11062 **/ 11063 void 11064 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11065 { 11066 uint32_t *src = srcp; 11067 uint32_t *dest = destp; 11068 uint32_t ldata; 11069 int i; 11070 11071 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11072 ldata = *src; 11073 ldata = le32_to_cpu(ldata); 11074 *dest = ldata; 11075 src++; 11076 dest++; 11077 } 11078 } 11079 11080 11081 /** 11082 * lpfc_sli_bemem_bcopy - SLI memory copy function 11083 * @srcp: Source memory pointer. 11084 * @destp: Destination memory pointer. 11085 * @cnt: Number of words required to be copied. 11086 * 11087 * This function is used for copying data between a data structure 11088 * with big endian representation to local endianness. 11089 * This function can be called with or without lock. 11090 **/ 11091 void 11092 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11093 { 11094 uint32_t *src = srcp; 11095 uint32_t *dest = destp; 11096 uint32_t ldata; 11097 int i; 11098 11099 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11100 ldata = *src; 11101 ldata = be32_to_cpu(ldata); 11102 *dest = ldata; 11103 src++; 11104 dest++; 11105 } 11106 } 11107 11108 /** 11109 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11110 * @phba: Pointer to HBA context object. 11111 * @pring: Pointer to driver SLI ring object. 11112 * @mp: Pointer to driver buffer object. 11113 * 11114 * This function is called with no lock held. 11115 * It always return zero after adding the buffer to the postbufq 11116 * buffer list. 11117 **/ 11118 int 11119 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11120 struct lpfc_dmabuf *mp) 11121 { 11122 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11123 later */ 11124 spin_lock_irq(&phba->hbalock); 11125 list_add_tail(&mp->list, &pring->postbufq); 11126 pring->postbufq_cnt++; 11127 spin_unlock_irq(&phba->hbalock); 11128 return 0; 11129 } 11130 11131 /** 11132 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11133 * @phba: Pointer to HBA context object. 11134 * 11135 * When HBQ is enabled, buffers are searched based on tags. This function 11136 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11137 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11138 * does not conflict with tags of buffer posted for unsolicited events. 11139 * The function returns the allocated tag. The function is called with 11140 * no locks held. 11141 **/ 11142 uint32_t 11143 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11144 { 11145 spin_lock_irq(&phba->hbalock); 11146 phba->buffer_tag_count++; 11147 /* 11148 * Always set the QUE_BUFTAG_BIT to distiguish between 11149 * a tag assigned by HBQ. 11150 */ 11151 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11152 spin_unlock_irq(&phba->hbalock); 11153 return phba->buffer_tag_count; 11154 } 11155 11156 /** 11157 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11158 * @phba: Pointer to HBA context object. 11159 * @pring: Pointer to driver SLI ring object. 11160 * @tag: Buffer tag. 11161 * 11162 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11163 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11164 * iocb is posted to the response ring with the tag of the buffer. 11165 * This function searches the pring->postbufq list using the tag 11166 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11167 * iocb. If the buffer is found then lpfc_dmabuf object of the 11168 * buffer is returned to the caller else NULL is returned. 11169 * This function is called with no lock held. 11170 **/ 11171 struct lpfc_dmabuf * 11172 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11173 uint32_t tag) 11174 { 11175 struct lpfc_dmabuf *mp, *next_mp; 11176 struct list_head *slp = &pring->postbufq; 11177 11178 /* Search postbufq, from the beginning, looking for a match on tag */ 11179 spin_lock_irq(&phba->hbalock); 11180 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11181 if (mp->buffer_tag == tag) { 11182 list_del_init(&mp->list); 11183 pring->postbufq_cnt--; 11184 spin_unlock_irq(&phba->hbalock); 11185 return mp; 11186 } 11187 } 11188 11189 spin_unlock_irq(&phba->hbalock); 11190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11191 "0402 Cannot find virtual addr for buffer tag on " 11192 "ring %d Data x%lx x%px x%px x%x\n", 11193 pring->ringno, (unsigned long) tag, 11194 slp->next, slp->prev, pring->postbufq_cnt); 11195 11196 return NULL; 11197 } 11198 11199 /** 11200 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11201 * @phba: Pointer to HBA context object. 11202 * @pring: Pointer to driver SLI ring object. 11203 * @phys: DMA address of the buffer. 11204 * 11205 * This function searches the buffer list using the dma_address 11206 * of unsolicited event to find the driver's lpfc_dmabuf object 11207 * corresponding to the dma_address. The function returns the 11208 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11209 * This function is called by the ct and els unsolicited event 11210 * handlers to get the buffer associated with the unsolicited 11211 * event. 11212 * 11213 * This function is called with no lock held. 11214 **/ 11215 struct lpfc_dmabuf * 11216 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11217 dma_addr_t phys) 11218 { 11219 struct lpfc_dmabuf *mp, *next_mp; 11220 struct list_head *slp = &pring->postbufq; 11221 11222 /* Search postbufq, from the beginning, looking for a match on phys */ 11223 spin_lock_irq(&phba->hbalock); 11224 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11225 if (mp->phys == phys) { 11226 list_del_init(&mp->list); 11227 pring->postbufq_cnt--; 11228 spin_unlock_irq(&phba->hbalock); 11229 return mp; 11230 } 11231 } 11232 11233 spin_unlock_irq(&phba->hbalock); 11234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11235 "0410 Cannot find virtual addr for mapped buf on " 11236 "ring %d Data x%llx x%px x%px x%x\n", 11237 pring->ringno, (unsigned long long)phys, 11238 slp->next, slp->prev, pring->postbufq_cnt); 11239 return NULL; 11240 } 11241 11242 /** 11243 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11244 * @phba: Pointer to HBA context object. 11245 * @cmdiocb: Pointer to driver command iocb object. 11246 * @rspiocb: Pointer to driver response iocb object. 11247 * 11248 * This function is the completion handler for the abort iocbs for 11249 * ELS commands. This function is called from the ELS ring event 11250 * handler with no lock held. This function frees memory resources 11251 * associated with the abort iocb. 11252 **/ 11253 static void 11254 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11255 struct lpfc_iocbq *rspiocb) 11256 { 11257 IOCB_t *irsp = &rspiocb->iocb; 11258 uint16_t abort_iotag, abort_context; 11259 struct lpfc_iocbq *abort_iocb = NULL; 11260 11261 if (irsp->ulpStatus) { 11262 11263 /* 11264 * Assume that the port already completed and returned, or 11265 * will return the iocb. Just Log the message. 11266 */ 11267 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11268 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11269 11270 spin_lock_irq(&phba->hbalock); 11271 if (phba->sli_rev < LPFC_SLI_REV4) { 11272 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11273 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11274 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11275 spin_unlock_irq(&phba->hbalock); 11276 goto release_iocb; 11277 } 11278 if (abort_iotag != 0 && 11279 abort_iotag <= phba->sli.last_iotag) 11280 abort_iocb = 11281 phba->sli.iocbq_lookup[abort_iotag]; 11282 } else 11283 /* For sli4 the abort_tag is the XRI, 11284 * so the abort routine puts the iotag of the iocb 11285 * being aborted in the context field of the abort 11286 * IOCB. 11287 */ 11288 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11289 11290 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11291 "0327 Cannot abort els iocb x%px " 11292 "with tag %x context %x, abort status %x, " 11293 "abort code %x\n", 11294 abort_iocb, abort_iotag, abort_context, 11295 irsp->ulpStatus, irsp->un.ulpWord[4]); 11296 11297 spin_unlock_irq(&phba->hbalock); 11298 } 11299 release_iocb: 11300 lpfc_sli_release_iocbq(phba, cmdiocb); 11301 return; 11302 } 11303 11304 /** 11305 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11306 * @phba: Pointer to HBA context object. 11307 * @cmdiocb: Pointer to driver command iocb object. 11308 * @rspiocb: Pointer to driver response iocb object. 11309 * 11310 * The function is called from SLI ring event handler with no 11311 * lock held. This function is the completion handler for ELS commands 11312 * which are aborted. The function frees memory resources used for 11313 * the aborted ELS commands. 11314 **/ 11315 static void 11316 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11317 struct lpfc_iocbq *rspiocb) 11318 { 11319 IOCB_t *irsp = &rspiocb->iocb; 11320 11321 /* ELS cmd tag <ulpIoTag> completes */ 11322 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11323 "0139 Ignoring ELS cmd tag x%x completion Data: " 11324 "x%x x%x x%x\n", 11325 irsp->ulpIoTag, irsp->ulpStatus, 11326 irsp->un.ulpWord[4], irsp->ulpTimeout); 11327 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11328 lpfc_ct_free_iocb(phba, cmdiocb); 11329 else 11330 lpfc_els_free_iocb(phba, cmdiocb); 11331 return; 11332 } 11333 11334 /** 11335 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11336 * @phba: Pointer to HBA context object. 11337 * @pring: Pointer to driver SLI ring object. 11338 * @cmdiocb: Pointer to driver command iocb object. 11339 * 11340 * This function issues an abort iocb for the provided command iocb down to 11341 * the port. Other than the case the outstanding command iocb is an abort 11342 * request, this function issues abort out unconditionally. This function is 11343 * called with hbalock held. The function returns 0 when it fails due to 11344 * memory allocation failure or when the command iocb is an abort request. 11345 * The hbalock is asserted held in the code path calling this routine. 11346 **/ 11347 static int 11348 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11349 struct lpfc_iocbq *cmdiocb) 11350 { 11351 struct lpfc_vport *vport = cmdiocb->vport; 11352 struct lpfc_iocbq *abtsiocbp; 11353 IOCB_t *icmd = NULL; 11354 IOCB_t *iabt = NULL; 11355 int retval; 11356 unsigned long iflags; 11357 struct lpfc_nodelist *ndlp; 11358 11359 /* 11360 * There are certain command types we don't want to abort. And we 11361 * don't want to abort commands that are already in the process of 11362 * being aborted. 11363 */ 11364 icmd = &cmdiocb->iocb; 11365 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11366 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11367 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11368 return 0; 11369 11370 /* issue ABTS for this IOCB based on iotag */ 11371 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11372 if (abtsiocbp == NULL) 11373 return 0; 11374 11375 /* This signals the response to set the correct status 11376 * before calling the completion handler 11377 */ 11378 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11379 11380 iabt = &abtsiocbp->iocb; 11381 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11382 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11383 if (phba->sli_rev == LPFC_SLI_REV4) { 11384 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11385 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11386 } else { 11387 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11388 if (pring->ringno == LPFC_ELS_RING) { 11389 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11390 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11391 } 11392 } 11393 iabt->ulpLe = 1; 11394 iabt->ulpClass = icmd->ulpClass; 11395 11396 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11397 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11398 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11399 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11400 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11401 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11402 11403 if (phba->link_state >= LPFC_LINK_UP) 11404 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11405 else 11406 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11407 11408 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11409 abtsiocbp->vport = vport; 11410 11411 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11412 "0339 Abort xri x%x, original iotag x%x, " 11413 "abort cmd iotag x%x\n", 11414 iabt->un.acxri.abortIoTag, 11415 iabt->un.acxri.abortContextTag, 11416 abtsiocbp->iotag); 11417 11418 if (phba->sli_rev == LPFC_SLI_REV4) { 11419 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11420 if (unlikely(pring == NULL)) 11421 return 0; 11422 /* Note: both hbalock and ring_lock need to be set here */ 11423 spin_lock_irqsave(&pring->ring_lock, iflags); 11424 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11425 abtsiocbp, 0); 11426 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11427 } else { 11428 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11429 abtsiocbp, 0); 11430 } 11431 11432 if (retval) 11433 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11434 11435 /* 11436 * Caller to this routine should check for IOCB_ERROR 11437 * and handle it properly. This routine no longer removes 11438 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11439 */ 11440 return retval; 11441 } 11442 11443 /** 11444 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11445 * @phba: Pointer to HBA context object. 11446 * @pring: Pointer to driver SLI ring object. 11447 * @cmdiocb: Pointer to driver command iocb object. 11448 * 11449 * This function issues an abort iocb for the provided command iocb. In case 11450 * of unloading, the abort iocb will not be issued to commands on the ELS 11451 * ring. Instead, the callback function shall be changed to those commands 11452 * so that nothing happens when them finishes. This function is called with 11453 * hbalock held. The function returns 0 when the command iocb is an abort 11454 * request. 11455 **/ 11456 int 11457 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11458 struct lpfc_iocbq *cmdiocb) 11459 { 11460 struct lpfc_vport *vport = cmdiocb->vport; 11461 int retval = IOCB_ERROR; 11462 IOCB_t *icmd = NULL; 11463 11464 lockdep_assert_held(&phba->hbalock); 11465 11466 /* 11467 * There are certain command types we don't want to abort. And we 11468 * don't want to abort commands that are already in the process of 11469 * being aborted. 11470 */ 11471 icmd = &cmdiocb->iocb; 11472 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11473 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11474 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11475 return 0; 11476 11477 if (!pring) { 11478 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11479 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11480 else 11481 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11482 goto abort_iotag_exit; 11483 } 11484 11485 /* 11486 * If we're unloading, don't abort iocb on the ELS ring, but change 11487 * the callback so that nothing happens when it finishes. 11488 */ 11489 if ((vport->load_flag & FC_UNLOADING) && 11490 (pring->ringno == LPFC_ELS_RING)) { 11491 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11492 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11493 else 11494 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11495 goto abort_iotag_exit; 11496 } 11497 11498 /* Now, we try to issue the abort to the cmdiocb out */ 11499 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11500 11501 abort_iotag_exit: 11502 /* 11503 * Caller to this routine should check for IOCB_ERROR 11504 * and handle it properly. This routine no longer removes 11505 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11506 */ 11507 return retval; 11508 } 11509 11510 /** 11511 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11512 * @phba: pointer to lpfc HBA data structure. 11513 * 11514 * This routine will abort all pending and outstanding iocbs to an HBA. 11515 **/ 11516 void 11517 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11518 { 11519 struct lpfc_sli *psli = &phba->sli; 11520 struct lpfc_sli_ring *pring; 11521 struct lpfc_queue *qp = NULL; 11522 int i; 11523 11524 if (phba->sli_rev != LPFC_SLI_REV4) { 11525 for (i = 0; i < psli->num_rings; i++) { 11526 pring = &psli->sli3_ring[i]; 11527 lpfc_sli_abort_iocb_ring(phba, pring); 11528 } 11529 return; 11530 } 11531 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11532 pring = qp->pring; 11533 if (!pring) 11534 continue; 11535 lpfc_sli_abort_iocb_ring(phba, pring); 11536 } 11537 } 11538 11539 /** 11540 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11541 * @iocbq: Pointer to driver iocb object. 11542 * @vport: Pointer to driver virtual port object. 11543 * @tgt_id: SCSI ID of the target. 11544 * @lun_id: LUN ID of the scsi device. 11545 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11546 * 11547 * This function acts as an iocb filter for functions which abort or count 11548 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11549 * 0 if the filtering criteria is met for the given iocb and will return 11550 * 1 if the filtering criteria is not met. 11551 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11552 * given iocb is for the SCSI device specified by vport, tgt_id and 11553 * lun_id parameter. 11554 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11555 * given iocb is for the SCSI target specified by vport and tgt_id 11556 * parameters. 11557 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11558 * given iocb is for the SCSI host associated with the given vport. 11559 * This function is called with no locks held. 11560 **/ 11561 static int 11562 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11563 uint16_t tgt_id, uint64_t lun_id, 11564 lpfc_ctx_cmd ctx_cmd) 11565 { 11566 struct lpfc_io_buf *lpfc_cmd; 11567 int rc = 1; 11568 11569 if (iocbq->vport != vport) 11570 return rc; 11571 11572 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11573 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11574 return rc; 11575 11576 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11577 11578 if (lpfc_cmd->pCmd == NULL) 11579 return rc; 11580 11581 switch (ctx_cmd) { 11582 case LPFC_CTX_LUN: 11583 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11584 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11585 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11586 rc = 0; 11587 break; 11588 case LPFC_CTX_TGT: 11589 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11590 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11591 rc = 0; 11592 break; 11593 case LPFC_CTX_HOST: 11594 rc = 0; 11595 break; 11596 default: 11597 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11598 __func__, ctx_cmd); 11599 break; 11600 } 11601 11602 return rc; 11603 } 11604 11605 /** 11606 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11607 * @vport: Pointer to virtual port. 11608 * @tgt_id: SCSI ID of the target. 11609 * @lun_id: LUN ID of the scsi device. 11610 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11611 * 11612 * This function returns number of FCP commands pending for the vport. 11613 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11614 * commands pending on the vport associated with SCSI device specified 11615 * by tgt_id and lun_id parameters. 11616 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11617 * commands pending on the vport associated with SCSI target specified 11618 * by tgt_id parameter. 11619 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11620 * commands pending on the vport. 11621 * This function returns the number of iocbs which satisfy the filter. 11622 * This function is called without any lock held. 11623 **/ 11624 int 11625 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11626 lpfc_ctx_cmd ctx_cmd) 11627 { 11628 struct lpfc_hba *phba = vport->phba; 11629 struct lpfc_iocbq *iocbq; 11630 int sum, i; 11631 11632 spin_lock_irq(&phba->hbalock); 11633 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11634 iocbq = phba->sli.iocbq_lookup[i]; 11635 11636 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11637 ctx_cmd) == 0) 11638 sum++; 11639 } 11640 spin_unlock_irq(&phba->hbalock); 11641 11642 return sum; 11643 } 11644 11645 /** 11646 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11647 * @phba: Pointer to HBA context object 11648 * @cmdiocb: Pointer to command iocb object. 11649 * @rspiocb: Pointer to response iocb object. 11650 * 11651 * This function is called when an aborted FCP iocb completes. This 11652 * function is called by the ring event handler with no lock held. 11653 * This function frees the iocb. 11654 **/ 11655 void 11656 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11657 struct lpfc_iocbq *rspiocb) 11658 { 11659 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11660 "3096 ABORT_XRI_CN completing on rpi x%x " 11661 "original iotag x%x, abort cmd iotag x%x " 11662 "status 0x%x, reason 0x%x\n", 11663 cmdiocb->iocb.un.acxri.abortContextTag, 11664 cmdiocb->iocb.un.acxri.abortIoTag, 11665 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11666 rspiocb->iocb.un.ulpWord[4]); 11667 lpfc_sli_release_iocbq(phba, cmdiocb); 11668 return; 11669 } 11670 11671 /** 11672 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11673 * @vport: Pointer to virtual port. 11674 * @pring: Pointer to driver SLI ring object. 11675 * @tgt_id: SCSI ID of the target. 11676 * @lun_id: LUN ID of the scsi device. 11677 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11678 * 11679 * This function sends an abort command for every SCSI command 11680 * associated with the given virtual port pending on the ring 11681 * filtered by lpfc_sli_validate_fcp_iocb function. 11682 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11683 * FCP iocbs associated with lun specified by tgt_id and lun_id 11684 * parameters 11685 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11686 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11687 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11688 * FCP iocbs associated with virtual port. 11689 * This function returns number of iocbs it failed to abort. 11690 * This function is called with no locks held. 11691 **/ 11692 int 11693 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11694 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11695 { 11696 struct lpfc_hba *phba = vport->phba; 11697 struct lpfc_iocbq *iocbq; 11698 struct lpfc_iocbq *abtsiocb; 11699 struct lpfc_sli_ring *pring_s4; 11700 IOCB_t *cmd = NULL; 11701 int errcnt = 0, ret_val = 0; 11702 int i; 11703 11704 /* all I/Os are in process of being flushed */ 11705 if (phba->hba_flag & HBA_IOQ_FLUSH) 11706 return errcnt; 11707 11708 for (i = 1; i <= phba->sli.last_iotag; i++) { 11709 iocbq = phba->sli.iocbq_lookup[i]; 11710 11711 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11712 abort_cmd) != 0) 11713 continue; 11714 11715 /* 11716 * If the iocbq is already being aborted, don't take a second 11717 * action, but do count it. 11718 */ 11719 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11720 continue; 11721 11722 /* issue ABTS for this IOCB based on iotag */ 11723 abtsiocb = lpfc_sli_get_iocbq(phba); 11724 if (abtsiocb == NULL) { 11725 errcnt++; 11726 continue; 11727 } 11728 11729 /* indicate the IO is being aborted by the driver. */ 11730 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11731 11732 cmd = &iocbq->iocb; 11733 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11734 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11735 if (phba->sli_rev == LPFC_SLI_REV4) 11736 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11737 else 11738 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11739 abtsiocb->iocb.ulpLe = 1; 11740 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11741 abtsiocb->vport = vport; 11742 11743 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11744 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11745 if (iocbq->iocb_flag & LPFC_IO_FCP) 11746 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11747 if (iocbq->iocb_flag & LPFC_IO_FOF) 11748 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11749 11750 if (lpfc_is_link_up(phba)) 11751 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11752 else 11753 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11754 11755 /* Setup callback routine and issue the command. */ 11756 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11757 if (phba->sli_rev == LPFC_SLI_REV4) { 11758 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11759 if (!pring_s4) 11760 continue; 11761 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11762 abtsiocb, 0); 11763 } else 11764 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11765 abtsiocb, 0); 11766 if (ret_val == IOCB_ERROR) { 11767 lpfc_sli_release_iocbq(phba, abtsiocb); 11768 errcnt++; 11769 continue; 11770 } 11771 } 11772 11773 return errcnt; 11774 } 11775 11776 /** 11777 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11778 * @vport: Pointer to virtual port. 11779 * @pring: Pointer to driver SLI ring object. 11780 * @tgt_id: SCSI ID of the target. 11781 * @lun_id: LUN ID of the scsi device. 11782 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11783 * 11784 * This function sends an abort command for every SCSI command 11785 * associated with the given virtual port pending on the ring 11786 * filtered by lpfc_sli_validate_fcp_iocb function. 11787 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11788 * FCP iocbs associated with lun specified by tgt_id and lun_id 11789 * parameters 11790 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11791 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11792 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11793 * FCP iocbs associated with virtual port. 11794 * This function returns number of iocbs it aborted . 11795 * This function is called with no locks held right after a taskmgmt 11796 * command is sent. 11797 **/ 11798 int 11799 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11800 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11801 { 11802 struct lpfc_hba *phba = vport->phba; 11803 struct lpfc_io_buf *lpfc_cmd; 11804 struct lpfc_iocbq *abtsiocbq; 11805 struct lpfc_nodelist *ndlp; 11806 struct lpfc_iocbq *iocbq; 11807 IOCB_t *icmd; 11808 int sum, i, ret_val; 11809 unsigned long iflags; 11810 struct lpfc_sli_ring *pring_s4 = NULL; 11811 11812 spin_lock_irqsave(&phba->hbalock, iflags); 11813 11814 /* all I/Os are in process of being flushed */ 11815 if (phba->hba_flag & HBA_IOQ_FLUSH) { 11816 spin_unlock_irqrestore(&phba->hbalock, iflags); 11817 return 0; 11818 } 11819 sum = 0; 11820 11821 for (i = 1; i <= phba->sli.last_iotag; i++) { 11822 iocbq = phba->sli.iocbq_lookup[i]; 11823 11824 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11825 cmd) != 0) 11826 continue; 11827 11828 /* Guard against IO completion being called at same time */ 11829 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11830 spin_lock(&lpfc_cmd->buf_lock); 11831 11832 if (!lpfc_cmd->pCmd) { 11833 spin_unlock(&lpfc_cmd->buf_lock); 11834 continue; 11835 } 11836 11837 if (phba->sli_rev == LPFC_SLI_REV4) { 11838 pring_s4 = 11839 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 11840 if (!pring_s4) { 11841 spin_unlock(&lpfc_cmd->buf_lock); 11842 continue; 11843 } 11844 /* Note: both hbalock and ring_lock must be set here */ 11845 spin_lock(&pring_s4->ring_lock); 11846 } 11847 11848 /* 11849 * If the iocbq is already being aborted, don't take a second 11850 * action, but do count it. 11851 */ 11852 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 11853 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 11854 if (phba->sli_rev == LPFC_SLI_REV4) 11855 spin_unlock(&pring_s4->ring_lock); 11856 spin_unlock(&lpfc_cmd->buf_lock); 11857 continue; 11858 } 11859 11860 /* issue ABTS for this IOCB based on iotag */ 11861 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11862 if (!abtsiocbq) { 11863 if (phba->sli_rev == LPFC_SLI_REV4) 11864 spin_unlock(&pring_s4->ring_lock); 11865 spin_unlock(&lpfc_cmd->buf_lock); 11866 continue; 11867 } 11868 11869 icmd = &iocbq->iocb; 11870 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11871 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11872 if (phba->sli_rev == LPFC_SLI_REV4) 11873 abtsiocbq->iocb.un.acxri.abortIoTag = 11874 iocbq->sli4_xritag; 11875 else 11876 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11877 abtsiocbq->iocb.ulpLe = 1; 11878 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11879 abtsiocbq->vport = vport; 11880 11881 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11882 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11883 if (iocbq->iocb_flag & LPFC_IO_FCP) 11884 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11885 if (iocbq->iocb_flag & LPFC_IO_FOF) 11886 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11887 11888 ndlp = lpfc_cmd->rdata->pnode; 11889 11890 if (lpfc_is_link_up(phba) && 11891 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11892 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11893 else 11894 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11895 11896 /* Setup callback routine and issue the command. */ 11897 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11898 11899 /* 11900 * Indicate the IO is being aborted by the driver and set 11901 * the caller's flag into the aborted IO. 11902 */ 11903 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11904 11905 if (phba->sli_rev == LPFC_SLI_REV4) { 11906 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11907 abtsiocbq, 0); 11908 spin_unlock(&pring_s4->ring_lock); 11909 } else { 11910 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11911 abtsiocbq, 0); 11912 } 11913 11914 spin_unlock(&lpfc_cmd->buf_lock); 11915 11916 if (ret_val == IOCB_ERROR) 11917 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11918 else 11919 sum++; 11920 } 11921 spin_unlock_irqrestore(&phba->hbalock, iflags); 11922 return sum; 11923 } 11924 11925 /** 11926 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11927 * @phba: Pointer to HBA context object. 11928 * @cmdiocbq: Pointer to command iocb. 11929 * @rspiocbq: Pointer to response iocb. 11930 * 11931 * This function is the completion handler for iocbs issued using 11932 * lpfc_sli_issue_iocb_wait function. This function is called by the 11933 * ring event handler function without any lock held. This function 11934 * can be called from both worker thread context and interrupt 11935 * context. This function also can be called from other thread which 11936 * cleans up the SLI layer objects. 11937 * This function copy the contents of the response iocb to the 11938 * response iocb memory object provided by the caller of 11939 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11940 * sleeps for the iocb completion. 11941 **/ 11942 static void 11943 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11944 struct lpfc_iocbq *cmdiocbq, 11945 struct lpfc_iocbq *rspiocbq) 11946 { 11947 wait_queue_head_t *pdone_q; 11948 unsigned long iflags; 11949 struct lpfc_io_buf *lpfc_cmd; 11950 11951 spin_lock_irqsave(&phba->hbalock, iflags); 11952 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11953 11954 /* 11955 * A time out has occurred for the iocb. If a time out 11956 * completion handler has been supplied, call it. Otherwise, 11957 * just free the iocbq. 11958 */ 11959 11960 spin_unlock_irqrestore(&phba->hbalock, iflags); 11961 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11962 cmdiocbq->wait_iocb_cmpl = NULL; 11963 if (cmdiocbq->iocb_cmpl) 11964 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11965 else 11966 lpfc_sli_release_iocbq(phba, cmdiocbq); 11967 return; 11968 } 11969 11970 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11971 if (cmdiocbq->context2 && rspiocbq) 11972 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11973 &rspiocbq->iocb, sizeof(IOCB_t)); 11974 11975 /* Set the exchange busy flag for task management commands */ 11976 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11977 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11978 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 11979 cur_iocbq); 11980 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 11981 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 11982 else 11983 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 11984 } 11985 11986 pdone_q = cmdiocbq->context_un.wait_queue; 11987 if (pdone_q) 11988 wake_up(pdone_q); 11989 spin_unlock_irqrestore(&phba->hbalock, iflags); 11990 return; 11991 } 11992 11993 /** 11994 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11995 * @phba: Pointer to HBA context object.. 11996 * @piocbq: Pointer to command iocb. 11997 * @flag: Flag to test. 11998 * 11999 * This routine grabs the hbalock and then test the iocb_flag to 12000 * see if the passed in flag is set. 12001 * Returns: 12002 * 1 if flag is set. 12003 * 0 if flag is not set. 12004 **/ 12005 static int 12006 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12007 struct lpfc_iocbq *piocbq, uint32_t flag) 12008 { 12009 unsigned long iflags; 12010 int ret; 12011 12012 spin_lock_irqsave(&phba->hbalock, iflags); 12013 ret = piocbq->iocb_flag & flag; 12014 spin_unlock_irqrestore(&phba->hbalock, iflags); 12015 return ret; 12016 12017 } 12018 12019 /** 12020 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12021 * @phba: Pointer to HBA context object.. 12022 * @ring_number: Ring number 12023 * @piocb: Pointer to command iocb. 12024 * @prspiocbq: Pointer to response iocb. 12025 * @timeout: Timeout in number of seconds. 12026 * 12027 * This function issues the iocb to firmware and waits for the 12028 * iocb to complete. The iocb_cmpl field of the shall be used 12029 * to handle iocbs which time out. If the field is NULL, the 12030 * function shall free the iocbq structure. If more clean up is 12031 * needed, the caller is expected to provide a completion function 12032 * that will provide the needed clean up. If the iocb command is 12033 * not completed within timeout seconds, the function will either 12034 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12035 * completion function set in the iocb_cmpl field and then return 12036 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12037 * resources if this function returns IOCB_TIMEDOUT. 12038 * The function waits for the iocb completion using an 12039 * non-interruptible wait. 12040 * This function will sleep while waiting for iocb completion. 12041 * So, this function should not be called from any context which 12042 * does not allow sleeping. Due to the same reason, this function 12043 * cannot be called with interrupt disabled. 12044 * This function assumes that the iocb completions occur while 12045 * this function sleep. So, this function cannot be called from 12046 * the thread which process iocb completion for this ring. 12047 * This function clears the iocb_flag of the iocb object before 12048 * issuing the iocb and the iocb completion handler sets this 12049 * flag and wakes this thread when the iocb completes. 12050 * The contents of the response iocb will be copied to prspiocbq 12051 * by the completion handler when the command completes. 12052 * This function returns IOCB_SUCCESS when success. 12053 * This function is called with no lock held. 12054 **/ 12055 int 12056 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12057 uint32_t ring_number, 12058 struct lpfc_iocbq *piocb, 12059 struct lpfc_iocbq *prspiocbq, 12060 uint32_t timeout) 12061 { 12062 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12063 long timeleft, timeout_req = 0; 12064 int retval = IOCB_SUCCESS; 12065 uint32_t creg_val; 12066 struct lpfc_iocbq *iocb; 12067 int txq_cnt = 0; 12068 int txcmplq_cnt = 0; 12069 struct lpfc_sli_ring *pring; 12070 unsigned long iflags; 12071 bool iocb_completed = true; 12072 12073 if (phba->sli_rev >= LPFC_SLI_REV4) 12074 pring = lpfc_sli4_calc_ring(phba, piocb); 12075 else 12076 pring = &phba->sli.sli3_ring[ring_number]; 12077 /* 12078 * If the caller has provided a response iocbq buffer, then context2 12079 * is NULL or its an error. 12080 */ 12081 if (prspiocbq) { 12082 if (piocb->context2) 12083 return IOCB_ERROR; 12084 piocb->context2 = prspiocbq; 12085 } 12086 12087 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12088 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12089 piocb->context_un.wait_queue = &done_q; 12090 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12091 12092 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12093 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12094 return IOCB_ERROR; 12095 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12096 writel(creg_val, phba->HCregaddr); 12097 readl(phba->HCregaddr); /* flush */ 12098 } 12099 12100 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12101 SLI_IOCB_RET_IOCB); 12102 if (retval == IOCB_SUCCESS) { 12103 timeout_req = msecs_to_jiffies(timeout * 1000); 12104 timeleft = wait_event_timeout(done_q, 12105 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12106 timeout_req); 12107 spin_lock_irqsave(&phba->hbalock, iflags); 12108 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12109 12110 /* 12111 * IOCB timed out. Inform the wake iocb wait 12112 * completion function and set local status 12113 */ 12114 12115 iocb_completed = false; 12116 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12117 } 12118 spin_unlock_irqrestore(&phba->hbalock, iflags); 12119 if (iocb_completed) { 12120 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12121 "0331 IOCB wake signaled\n"); 12122 /* Note: we are not indicating if the IOCB has a success 12123 * status or not - that's for the caller to check. 12124 * IOCB_SUCCESS means just that the command was sent and 12125 * completed. Not that it completed successfully. 12126 * */ 12127 } else if (timeleft == 0) { 12128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12129 "0338 IOCB wait timeout error - no " 12130 "wake response Data x%x\n", timeout); 12131 retval = IOCB_TIMEDOUT; 12132 } else { 12133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12134 "0330 IOCB wake NOT set, " 12135 "Data x%x x%lx\n", 12136 timeout, (timeleft / jiffies)); 12137 retval = IOCB_TIMEDOUT; 12138 } 12139 } else if (retval == IOCB_BUSY) { 12140 if (phba->cfg_log_verbose & LOG_SLI) { 12141 list_for_each_entry(iocb, &pring->txq, list) { 12142 txq_cnt++; 12143 } 12144 list_for_each_entry(iocb, &pring->txcmplq, list) { 12145 txcmplq_cnt++; 12146 } 12147 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12148 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12149 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12150 } 12151 return retval; 12152 } else { 12153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12154 "0332 IOCB wait issue failed, Data x%x\n", 12155 retval); 12156 retval = IOCB_ERROR; 12157 } 12158 12159 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12160 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12161 return IOCB_ERROR; 12162 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12163 writel(creg_val, phba->HCregaddr); 12164 readl(phba->HCregaddr); /* flush */ 12165 } 12166 12167 if (prspiocbq) 12168 piocb->context2 = NULL; 12169 12170 piocb->context_un.wait_queue = NULL; 12171 piocb->iocb_cmpl = NULL; 12172 return retval; 12173 } 12174 12175 /** 12176 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12177 * @phba: Pointer to HBA context object. 12178 * @pmboxq: Pointer to driver mailbox object. 12179 * @timeout: Timeout in number of seconds. 12180 * 12181 * This function issues the mailbox to firmware and waits for the 12182 * mailbox command to complete. If the mailbox command is not 12183 * completed within timeout seconds, it returns MBX_TIMEOUT. 12184 * The function waits for the mailbox completion using an 12185 * interruptible wait. If the thread is woken up due to a 12186 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12187 * should not free the mailbox resources, if this function returns 12188 * MBX_TIMEOUT. 12189 * This function will sleep while waiting for mailbox completion. 12190 * So, this function should not be called from any context which 12191 * does not allow sleeping. Due to the same reason, this function 12192 * cannot be called with interrupt disabled. 12193 * This function assumes that the mailbox completion occurs while 12194 * this function sleep. So, this function cannot be called from 12195 * the worker thread which processes mailbox completion. 12196 * This function is called in the context of HBA management 12197 * applications. 12198 * This function returns MBX_SUCCESS when successful. 12199 * This function is called with no lock held. 12200 **/ 12201 int 12202 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12203 uint32_t timeout) 12204 { 12205 struct completion mbox_done; 12206 int retval; 12207 unsigned long flag; 12208 12209 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12210 /* setup wake call as IOCB callback */ 12211 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12212 12213 /* setup context3 field to pass wait_queue pointer to wake function */ 12214 init_completion(&mbox_done); 12215 pmboxq->context3 = &mbox_done; 12216 /* now issue the command */ 12217 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12218 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12219 wait_for_completion_timeout(&mbox_done, 12220 msecs_to_jiffies(timeout * 1000)); 12221 12222 spin_lock_irqsave(&phba->hbalock, flag); 12223 pmboxq->context3 = NULL; 12224 /* 12225 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12226 * else do not free the resources. 12227 */ 12228 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12229 retval = MBX_SUCCESS; 12230 } else { 12231 retval = MBX_TIMEOUT; 12232 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12233 } 12234 spin_unlock_irqrestore(&phba->hbalock, flag); 12235 } 12236 return retval; 12237 } 12238 12239 /** 12240 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12241 * @phba: Pointer to HBA context. 12242 * @mbx_action: Mailbox shutdown options. 12243 * 12244 * This function is called to shutdown the driver's mailbox sub-system. 12245 * It first marks the mailbox sub-system is in a block state to prevent 12246 * the asynchronous mailbox command from issued off the pending mailbox 12247 * command queue. If the mailbox command sub-system shutdown is due to 12248 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12249 * the mailbox sub-system flush routine to forcefully bring down the 12250 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12251 * as with offline or HBA function reset), this routine will wait for the 12252 * outstanding mailbox command to complete before invoking the mailbox 12253 * sub-system flush routine to gracefully bring down mailbox sub-system. 12254 **/ 12255 void 12256 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12257 { 12258 struct lpfc_sli *psli = &phba->sli; 12259 unsigned long timeout; 12260 12261 if (mbx_action == LPFC_MBX_NO_WAIT) { 12262 /* delay 100ms for port state */ 12263 msleep(100); 12264 lpfc_sli_mbox_sys_flush(phba); 12265 return; 12266 } 12267 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12268 12269 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12270 local_bh_disable(); 12271 12272 spin_lock_irq(&phba->hbalock); 12273 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12274 12275 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12276 /* Determine how long we might wait for the active mailbox 12277 * command to be gracefully completed by firmware. 12278 */ 12279 if (phba->sli.mbox_active) 12280 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12281 phba->sli.mbox_active) * 12282 1000) + jiffies; 12283 spin_unlock_irq(&phba->hbalock); 12284 12285 /* Enable softirqs again, done with phba->hbalock */ 12286 local_bh_enable(); 12287 12288 while (phba->sli.mbox_active) { 12289 /* Check active mailbox complete status every 2ms */ 12290 msleep(2); 12291 if (time_after(jiffies, timeout)) 12292 /* Timeout, let the mailbox flush routine to 12293 * forcefully release active mailbox command 12294 */ 12295 break; 12296 } 12297 } else { 12298 spin_unlock_irq(&phba->hbalock); 12299 12300 /* Enable softirqs again, done with phba->hbalock */ 12301 local_bh_enable(); 12302 } 12303 12304 lpfc_sli_mbox_sys_flush(phba); 12305 } 12306 12307 /** 12308 * lpfc_sli_eratt_read - read sli-3 error attention events 12309 * @phba: Pointer to HBA context. 12310 * 12311 * This function is called to read the SLI3 device error attention registers 12312 * for possible error attention events. The caller must hold the hostlock 12313 * with spin_lock_irq(). 12314 * 12315 * This function returns 1 when there is Error Attention in the Host Attention 12316 * Register and returns 0 otherwise. 12317 **/ 12318 static int 12319 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12320 { 12321 uint32_t ha_copy; 12322 12323 /* Read chip Host Attention (HA) register */ 12324 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12325 goto unplug_err; 12326 12327 if (ha_copy & HA_ERATT) { 12328 /* Read host status register to retrieve error event */ 12329 if (lpfc_sli_read_hs(phba)) 12330 goto unplug_err; 12331 12332 /* Check if there is a deferred error condition is active */ 12333 if ((HS_FFER1 & phba->work_hs) && 12334 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12335 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12336 phba->hba_flag |= DEFER_ERATT; 12337 /* Clear all interrupt enable conditions */ 12338 writel(0, phba->HCregaddr); 12339 readl(phba->HCregaddr); 12340 } 12341 12342 /* Set the driver HA work bitmap */ 12343 phba->work_ha |= HA_ERATT; 12344 /* Indicate polling handles this ERATT */ 12345 phba->hba_flag |= HBA_ERATT_HANDLED; 12346 return 1; 12347 } 12348 return 0; 12349 12350 unplug_err: 12351 /* Set the driver HS work bitmap */ 12352 phba->work_hs |= UNPLUG_ERR; 12353 /* Set the driver HA work bitmap */ 12354 phba->work_ha |= HA_ERATT; 12355 /* Indicate polling handles this ERATT */ 12356 phba->hba_flag |= HBA_ERATT_HANDLED; 12357 return 1; 12358 } 12359 12360 /** 12361 * lpfc_sli4_eratt_read - read sli-4 error attention events 12362 * @phba: Pointer to HBA context. 12363 * 12364 * This function is called to read the SLI4 device error attention registers 12365 * for possible error attention events. The caller must hold the hostlock 12366 * with spin_lock_irq(). 12367 * 12368 * This function returns 1 when there is Error Attention in the Host Attention 12369 * Register and returns 0 otherwise. 12370 **/ 12371 static int 12372 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12373 { 12374 uint32_t uerr_sta_hi, uerr_sta_lo; 12375 uint32_t if_type, portsmphr; 12376 struct lpfc_register portstat_reg; 12377 12378 /* 12379 * For now, use the SLI4 device internal unrecoverable error 12380 * registers for error attention. This can be changed later. 12381 */ 12382 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12383 switch (if_type) { 12384 case LPFC_SLI_INTF_IF_TYPE_0: 12385 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12386 &uerr_sta_lo) || 12387 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12388 &uerr_sta_hi)) { 12389 phba->work_hs |= UNPLUG_ERR; 12390 phba->work_ha |= HA_ERATT; 12391 phba->hba_flag |= HBA_ERATT_HANDLED; 12392 return 1; 12393 } 12394 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12395 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12397 "1423 HBA Unrecoverable error: " 12398 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12399 "ue_mask_lo_reg=0x%x, " 12400 "ue_mask_hi_reg=0x%x\n", 12401 uerr_sta_lo, uerr_sta_hi, 12402 phba->sli4_hba.ue_mask_lo, 12403 phba->sli4_hba.ue_mask_hi); 12404 phba->work_status[0] = uerr_sta_lo; 12405 phba->work_status[1] = uerr_sta_hi; 12406 phba->work_ha |= HA_ERATT; 12407 phba->hba_flag |= HBA_ERATT_HANDLED; 12408 return 1; 12409 } 12410 break; 12411 case LPFC_SLI_INTF_IF_TYPE_2: 12412 case LPFC_SLI_INTF_IF_TYPE_6: 12413 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12414 &portstat_reg.word0) || 12415 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12416 &portsmphr)){ 12417 phba->work_hs |= UNPLUG_ERR; 12418 phba->work_ha |= HA_ERATT; 12419 phba->hba_flag |= HBA_ERATT_HANDLED; 12420 return 1; 12421 } 12422 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12423 phba->work_status[0] = 12424 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12425 phba->work_status[1] = 12426 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12428 "2885 Port Status Event: " 12429 "port status reg 0x%x, " 12430 "port smphr reg 0x%x, " 12431 "error 1=0x%x, error 2=0x%x\n", 12432 portstat_reg.word0, 12433 portsmphr, 12434 phba->work_status[0], 12435 phba->work_status[1]); 12436 phba->work_ha |= HA_ERATT; 12437 phba->hba_flag |= HBA_ERATT_HANDLED; 12438 return 1; 12439 } 12440 break; 12441 case LPFC_SLI_INTF_IF_TYPE_1: 12442 default: 12443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12444 "2886 HBA Error Attention on unsupported " 12445 "if type %d.", if_type); 12446 return 1; 12447 } 12448 12449 return 0; 12450 } 12451 12452 /** 12453 * lpfc_sli_check_eratt - check error attention events 12454 * @phba: Pointer to HBA context. 12455 * 12456 * This function is called from timer soft interrupt context to check HBA's 12457 * error attention register bit for error attention events. 12458 * 12459 * This function returns 1 when there is Error Attention in the Host Attention 12460 * Register and returns 0 otherwise. 12461 **/ 12462 int 12463 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12464 { 12465 uint32_t ha_copy; 12466 12467 /* If somebody is waiting to handle an eratt, don't process it 12468 * here. The brdkill function will do this. 12469 */ 12470 if (phba->link_flag & LS_IGNORE_ERATT) 12471 return 0; 12472 12473 /* Check if interrupt handler handles this ERATT */ 12474 spin_lock_irq(&phba->hbalock); 12475 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12476 /* Interrupt handler has handled ERATT */ 12477 spin_unlock_irq(&phba->hbalock); 12478 return 0; 12479 } 12480 12481 /* 12482 * If there is deferred error attention, do not check for error 12483 * attention 12484 */ 12485 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12486 spin_unlock_irq(&phba->hbalock); 12487 return 0; 12488 } 12489 12490 /* If PCI channel is offline, don't process it */ 12491 if (unlikely(pci_channel_offline(phba->pcidev))) { 12492 spin_unlock_irq(&phba->hbalock); 12493 return 0; 12494 } 12495 12496 switch (phba->sli_rev) { 12497 case LPFC_SLI_REV2: 12498 case LPFC_SLI_REV3: 12499 /* Read chip Host Attention (HA) register */ 12500 ha_copy = lpfc_sli_eratt_read(phba); 12501 break; 12502 case LPFC_SLI_REV4: 12503 /* Read device Uncoverable Error (UERR) registers */ 12504 ha_copy = lpfc_sli4_eratt_read(phba); 12505 break; 12506 default: 12507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12508 "0299 Invalid SLI revision (%d)\n", 12509 phba->sli_rev); 12510 ha_copy = 0; 12511 break; 12512 } 12513 spin_unlock_irq(&phba->hbalock); 12514 12515 return ha_copy; 12516 } 12517 12518 /** 12519 * lpfc_intr_state_check - Check device state for interrupt handling 12520 * @phba: Pointer to HBA context. 12521 * 12522 * This inline routine checks whether a device or its PCI slot is in a state 12523 * that the interrupt should be handled. 12524 * 12525 * This function returns 0 if the device or the PCI slot is in a state that 12526 * interrupt should be handled, otherwise -EIO. 12527 */ 12528 static inline int 12529 lpfc_intr_state_check(struct lpfc_hba *phba) 12530 { 12531 /* If the pci channel is offline, ignore all the interrupts */ 12532 if (unlikely(pci_channel_offline(phba->pcidev))) 12533 return -EIO; 12534 12535 /* Update device level interrupt statistics */ 12536 phba->sli.slistat.sli_intr++; 12537 12538 /* Ignore all interrupts during initialization. */ 12539 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12540 return -EIO; 12541 12542 return 0; 12543 } 12544 12545 /** 12546 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12547 * @irq: Interrupt number. 12548 * @dev_id: The device context pointer. 12549 * 12550 * This function is directly called from the PCI layer as an interrupt 12551 * service routine when device with SLI-3 interface spec is enabled with 12552 * MSI-X multi-message interrupt mode and there are slow-path events in 12553 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12554 * interrupt mode, this function is called as part of the device-level 12555 * interrupt handler. When the PCI slot is in error recovery or the HBA 12556 * is undergoing initialization, the interrupt handler will not process 12557 * the interrupt. The link attention and ELS ring attention events are 12558 * handled by the worker thread. The interrupt handler signals the worker 12559 * thread and returns for these events. This function is called without 12560 * any lock held. It gets the hbalock to access and update SLI data 12561 * structures. 12562 * 12563 * This function returns IRQ_HANDLED when interrupt is handled else it 12564 * returns IRQ_NONE. 12565 **/ 12566 irqreturn_t 12567 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12568 { 12569 struct lpfc_hba *phba; 12570 uint32_t ha_copy, hc_copy; 12571 uint32_t work_ha_copy; 12572 unsigned long status; 12573 unsigned long iflag; 12574 uint32_t control; 12575 12576 MAILBOX_t *mbox, *pmbox; 12577 struct lpfc_vport *vport; 12578 struct lpfc_nodelist *ndlp; 12579 struct lpfc_dmabuf *mp; 12580 LPFC_MBOXQ_t *pmb; 12581 int rc; 12582 12583 /* 12584 * Get the driver's phba structure from the dev_id and 12585 * assume the HBA is not interrupting. 12586 */ 12587 phba = (struct lpfc_hba *)dev_id; 12588 12589 if (unlikely(!phba)) 12590 return IRQ_NONE; 12591 12592 /* 12593 * Stuff needs to be attented to when this function is invoked as an 12594 * individual interrupt handler in MSI-X multi-message interrupt mode 12595 */ 12596 if (phba->intr_type == MSIX) { 12597 /* Check device state for handling interrupt */ 12598 if (lpfc_intr_state_check(phba)) 12599 return IRQ_NONE; 12600 /* Need to read HA REG for slow-path events */ 12601 spin_lock_irqsave(&phba->hbalock, iflag); 12602 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12603 goto unplug_error; 12604 /* If somebody is waiting to handle an eratt don't process it 12605 * here. The brdkill function will do this. 12606 */ 12607 if (phba->link_flag & LS_IGNORE_ERATT) 12608 ha_copy &= ~HA_ERATT; 12609 /* Check the need for handling ERATT in interrupt handler */ 12610 if (ha_copy & HA_ERATT) { 12611 if (phba->hba_flag & HBA_ERATT_HANDLED) 12612 /* ERATT polling has handled ERATT */ 12613 ha_copy &= ~HA_ERATT; 12614 else 12615 /* Indicate interrupt handler handles ERATT */ 12616 phba->hba_flag |= HBA_ERATT_HANDLED; 12617 } 12618 12619 /* 12620 * If there is deferred error attention, do not check for any 12621 * interrupt. 12622 */ 12623 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12624 spin_unlock_irqrestore(&phba->hbalock, iflag); 12625 return IRQ_NONE; 12626 } 12627 12628 /* Clear up only attention source related to slow-path */ 12629 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12630 goto unplug_error; 12631 12632 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12633 HC_LAINT_ENA | HC_ERINT_ENA), 12634 phba->HCregaddr); 12635 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12636 phba->HAregaddr); 12637 writel(hc_copy, phba->HCregaddr); 12638 readl(phba->HAregaddr); /* flush */ 12639 spin_unlock_irqrestore(&phba->hbalock, iflag); 12640 } else 12641 ha_copy = phba->ha_copy; 12642 12643 work_ha_copy = ha_copy & phba->work_ha_mask; 12644 12645 if (work_ha_copy) { 12646 if (work_ha_copy & HA_LATT) { 12647 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12648 /* 12649 * Turn off Link Attention interrupts 12650 * until CLEAR_LA done 12651 */ 12652 spin_lock_irqsave(&phba->hbalock, iflag); 12653 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12654 if (lpfc_readl(phba->HCregaddr, &control)) 12655 goto unplug_error; 12656 control &= ~HC_LAINT_ENA; 12657 writel(control, phba->HCregaddr); 12658 readl(phba->HCregaddr); /* flush */ 12659 spin_unlock_irqrestore(&phba->hbalock, iflag); 12660 } 12661 else 12662 work_ha_copy &= ~HA_LATT; 12663 } 12664 12665 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12666 /* 12667 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12668 * the only slow ring. 12669 */ 12670 status = (work_ha_copy & 12671 (HA_RXMASK << (4*LPFC_ELS_RING))); 12672 status >>= (4*LPFC_ELS_RING); 12673 if (status & HA_RXMASK) { 12674 spin_lock_irqsave(&phba->hbalock, iflag); 12675 if (lpfc_readl(phba->HCregaddr, &control)) 12676 goto unplug_error; 12677 12678 lpfc_debugfs_slow_ring_trc(phba, 12679 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12680 control, status, 12681 (uint32_t)phba->sli.slistat.sli_intr); 12682 12683 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12684 lpfc_debugfs_slow_ring_trc(phba, 12685 "ISR Disable ring:" 12686 "pwork:x%x hawork:x%x wait:x%x", 12687 phba->work_ha, work_ha_copy, 12688 (uint32_t)((unsigned long) 12689 &phba->work_waitq)); 12690 12691 control &= 12692 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12693 writel(control, phba->HCregaddr); 12694 readl(phba->HCregaddr); /* flush */ 12695 } 12696 else { 12697 lpfc_debugfs_slow_ring_trc(phba, 12698 "ISR slow ring: pwork:" 12699 "x%x hawork:x%x wait:x%x", 12700 phba->work_ha, work_ha_copy, 12701 (uint32_t)((unsigned long) 12702 &phba->work_waitq)); 12703 } 12704 spin_unlock_irqrestore(&phba->hbalock, iflag); 12705 } 12706 } 12707 spin_lock_irqsave(&phba->hbalock, iflag); 12708 if (work_ha_copy & HA_ERATT) { 12709 if (lpfc_sli_read_hs(phba)) 12710 goto unplug_error; 12711 /* 12712 * Check if there is a deferred error condition 12713 * is active 12714 */ 12715 if ((HS_FFER1 & phba->work_hs) && 12716 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12717 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12718 phba->work_hs)) { 12719 phba->hba_flag |= DEFER_ERATT; 12720 /* Clear all interrupt enable conditions */ 12721 writel(0, phba->HCregaddr); 12722 readl(phba->HCregaddr); 12723 } 12724 } 12725 12726 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12727 pmb = phba->sli.mbox_active; 12728 pmbox = &pmb->u.mb; 12729 mbox = phba->mbox; 12730 vport = pmb->vport; 12731 12732 /* First check out the status word */ 12733 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12734 if (pmbox->mbxOwner != OWN_HOST) { 12735 spin_unlock_irqrestore(&phba->hbalock, iflag); 12736 /* 12737 * Stray Mailbox Interrupt, mbxCommand <cmd> 12738 * mbxStatus <status> 12739 */ 12740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12741 "(%d):0304 Stray Mailbox " 12742 "Interrupt mbxCommand x%x " 12743 "mbxStatus x%x\n", 12744 (vport ? vport->vpi : 0), 12745 pmbox->mbxCommand, 12746 pmbox->mbxStatus); 12747 /* clear mailbox attention bit */ 12748 work_ha_copy &= ~HA_MBATT; 12749 } else { 12750 phba->sli.mbox_active = NULL; 12751 spin_unlock_irqrestore(&phba->hbalock, iflag); 12752 phba->last_completion_time = jiffies; 12753 del_timer(&phba->sli.mbox_tmo); 12754 if (pmb->mbox_cmpl) { 12755 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12756 MAILBOX_CMD_SIZE); 12757 if (pmb->out_ext_byte_len && 12758 pmb->ctx_buf) 12759 lpfc_sli_pcimem_bcopy( 12760 phba->mbox_ext, 12761 pmb->ctx_buf, 12762 pmb->out_ext_byte_len); 12763 } 12764 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12765 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12766 12767 lpfc_debugfs_disc_trc(vport, 12768 LPFC_DISC_TRC_MBOX_VPORT, 12769 "MBOX dflt rpi: : " 12770 "status:x%x rpi:x%x", 12771 (uint32_t)pmbox->mbxStatus, 12772 pmbox->un.varWords[0], 0); 12773 12774 if (!pmbox->mbxStatus) { 12775 mp = (struct lpfc_dmabuf *) 12776 (pmb->ctx_buf); 12777 ndlp = (struct lpfc_nodelist *) 12778 pmb->ctx_ndlp; 12779 12780 /* Reg_LOGIN of dflt RPI was 12781 * successful. new lets get 12782 * rid of the RPI using the 12783 * same mbox buffer. 12784 */ 12785 lpfc_unreg_login(phba, 12786 vport->vpi, 12787 pmbox->un.varWords[0], 12788 pmb); 12789 pmb->mbox_cmpl = 12790 lpfc_mbx_cmpl_dflt_rpi; 12791 pmb->ctx_buf = mp; 12792 pmb->ctx_ndlp = ndlp; 12793 pmb->vport = vport; 12794 rc = lpfc_sli_issue_mbox(phba, 12795 pmb, 12796 MBX_NOWAIT); 12797 if (rc != MBX_BUSY) 12798 lpfc_printf_log(phba, 12799 KERN_ERR, 12800 LOG_TRACE_EVENT, 12801 "0350 rc should have" 12802 "been MBX_BUSY\n"); 12803 if (rc != MBX_NOT_FINISHED) 12804 goto send_current_mbox; 12805 } 12806 } 12807 spin_lock_irqsave( 12808 &phba->pport->work_port_lock, 12809 iflag); 12810 phba->pport->work_port_events &= 12811 ~WORKER_MBOX_TMO; 12812 spin_unlock_irqrestore( 12813 &phba->pport->work_port_lock, 12814 iflag); 12815 lpfc_mbox_cmpl_put(phba, pmb); 12816 } 12817 } else 12818 spin_unlock_irqrestore(&phba->hbalock, iflag); 12819 12820 if ((work_ha_copy & HA_MBATT) && 12821 (phba->sli.mbox_active == NULL)) { 12822 send_current_mbox: 12823 /* Process next mailbox command if there is one */ 12824 do { 12825 rc = lpfc_sli_issue_mbox(phba, NULL, 12826 MBX_NOWAIT); 12827 } while (rc == MBX_NOT_FINISHED); 12828 if (rc != MBX_SUCCESS) 12829 lpfc_printf_log(phba, KERN_ERR, 12830 LOG_TRACE_EVENT, 12831 "0349 rc should be " 12832 "MBX_SUCCESS\n"); 12833 } 12834 12835 spin_lock_irqsave(&phba->hbalock, iflag); 12836 phba->work_ha |= work_ha_copy; 12837 spin_unlock_irqrestore(&phba->hbalock, iflag); 12838 lpfc_worker_wake_up(phba); 12839 } 12840 return IRQ_HANDLED; 12841 unplug_error: 12842 spin_unlock_irqrestore(&phba->hbalock, iflag); 12843 return IRQ_HANDLED; 12844 12845 } /* lpfc_sli_sp_intr_handler */ 12846 12847 /** 12848 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12849 * @irq: Interrupt number. 12850 * @dev_id: The device context pointer. 12851 * 12852 * This function is directly called from the PCI layer as an interrupt 12853 * service routine when device with SLI-3 interface spec is enabled with 12854 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12855 * ring event in the HBA. However, when the device is enabled with either 12856 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12857 * device-level interrupt handler. When the PCI slot is in error recovery 12858 * or the HBA is undergoing initialization, the interrupt handler will not 12859 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12860 * the intrrupt context. This function is called without any lock held. 12861 * It gets the hbalock to access and update SLI data structures. 12862 * 12863 * This function returns IRQ_HANDLED when interrupt is handled else it 12864 * returns IRQ_NONE. 12865 **/ 12866 irqreturn_t 12867 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12868 { 12869 struct lpfc_hba *phba; 12870 uint32_t ha_copy; 12871 unsigned long status; 12872 unsigned long iflag; 12873 struct lpfc_sli_ring *pring; 12874 12875 /* Get the driver's phba structure from the dev_id and 12876 * assume the HBA is not interrupting. 12877 */ 12878 phba = (struct lpfc_hba *) dev_id; 12879 12880 if (unlikely(!phba)) 12881 return IRQ_NONE; 12882 12883 /* 12884 * Stuff needs to be attented to when this function is invoked as an 12885 * individual interrupt handler in MSI-X multi-message interrupt mode 12886 */ 12887 if (phba->intr_type == MSIX) { 12888 /* Check device state for handling interrupt */ 12889 if (lpfc_intr_state_check(phba)) 12890 return IRQ_NONE; 12891 /* Need to read HA REG for FCP ring and other ring events */ 12892 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12893 return IRQ_HANDLED; 12894 /* Clear up only attention source related to fast-path */ 12895 spin_lock_irqsave(&phba->hbalock, iflag); 12896 /* 12897 * If there is deferred error attention, do not check for 12898 * any interrupt. 12899 */ 12900 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12901 spin_unlock_irqrestore(&phba->hbalock, iflag); 12902 return IRQ_NONE; 12903 } 12904 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12905 phba->HAregaddr); 12906 readl(phba->HAregaddr); /* flush */ 12907 spin_unlock_irqrestore(&phba->hbalock, iflag); 12908 } else 12909 ha_copy = phba->ha_copy; 12910 12911 /* 12912 * Process all events on FCP ring. Take the optimized path for FCP IO. 12913 */ 12914 ha_copy &= ~(phba->work_ha_mask); 12915 12916 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12917 status >>= (4*LPFC_FCP_RING); 12918 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12919 if (status & HA_RXMASK) 12920 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12921 12922 if (phba->cfg_multi_ring_support == 2) { 12923 /* 12924 * Process all events on extra ring. Take the optimized path 12925 * for extra ring IO. 12926 */ 12927 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12928 status >>= (4*LPFC_EXTRA_RING); 12929 if (status & HA_RXMASK) { 12930 lpfc_sli_handle_fast_ring_event(phba, 12931 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12932 status); 12933 } 12934 } 12935 return IRQ_HANDLED; 12936 } /* lpfc_sli_fp_intr_handler */ 12937 12938 /** 12939 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12940 * @irq: Interrupt number. 12941 * @dev_id: The device context pointer. 12942 * 12943 * This function is the HBA device-level interrupt handler to device with 12944 * SLI-3 interface spec, called from the PCI layer when either MSI or 12945 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12946 * requires driver attention. This function invokes the slow-path interrupt 12947 * attention handling function and fast-path interrupt attention handling 12948 * function in turn to process the relevant HBA attention events. This 12949 * function is called without any lock held. It gets the hbalock to access 12950 * and update SLI data structures. 12951 * 12952 * This function returns IRQ_HANDLED when interrupt is handled, else it 12953 * returns IRQ_NONE. 12954 **/ 12955 irqreturn_t 12956 lpfc_sli_intr_handler(int irq, void *dev_id) 12957 { 12958 struct lpfc_hba *phba; 12959 irqreturn_t sp_irq_rc, fp_irq_rc; 12960 unsigned long status1, status2; 12961 uint32_t hc_copy; 12962 12963 /* 12964 * Get the driver's phba structure from the dev_id and 12965 * assume the HBA is not interrupting. 12966 */ 12967 phba = (struct lpfc_hba *) dev_id; 12968 12969 if (unlikely(!phba)) 12970 return IRQ_NONE; 12971 12972 /* Check device state for handling interrupt */ 12973 if (lpfc_intr_state_check(phba)) 12974 return IRQ_NONE; 12975 12976 spin_lock(&phba->hbalock); 12977 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12978 spin_unlock(&phba->hbalock); 12979 return IRQ_HANDLED; 12980 } 12981 12982 if (unlikely(!phba->ha_copy)) { 12983 spin_unlock(&phba->hbalock); 12984 return IRQ_NONE; 12985 } else if (phba->ha_copy & HA_ERATT) { 12986 if (phba->hba_flag & HBA_ERATT_HANDLED) 12987 /* ERATT polling has handled ERATT */ 12988 phba->ha_copy &= ~HA_ERATT; 12989 else 12990 /* Indicate interrupt handler handles ERATT */ 12991 phba->hba_flag |= HBA_ERATT_HANDLED; 12992 } 12993 12994 /* 12995 * If there is deferred error attention, do not check for any interrupt. 12996 */ 12997 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12998 spin_unlock(&phba->hbalock); 12999 return IRQ_NONE; 13000 } 13001 13002 /* Clear attention sources except link and error attentions */ 13003 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13004 spin_unlock(&phba->hbalock); 13005 return IRQ_HANDLED; 13006 } 13007 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13008 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13009 phba->HCregaddr); 13010 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13011 writel(hc_copy, phba->HCregaddr); 13012 readl(phba->HAregaddr); /* flush */ 13013 spin_unlock(&phba->hbalock); 13014 13015 /* 13016 * Invokes slow-path host attention interrupt handling as appropriate. 13017 */ 13018 13019 /* status of events with mailbox and link attention */ 13020 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13021 13022 /* status of events with ELS ring */ 13023 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13024 status2 >>= (4*LPFC_ELS_RING); 13025 13026 if (status1 || (status2 & HA_RXMASK)) 13027 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13028 else 13029 sp_irq_rc = IRQ_NONE; 13030 13031 /* 13032 * Invoke fast-path host attention interrupt handling as appropriate. 13033 */ 13034 13035 /* status of events with FCP ring */ 13036 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13037 status1 >>= (4*LPFC_FCP_RING); 13038 13039 /* status of events with extra ring */ 13040 if (phba->cfg_multi_ring_support == 2) { 13041 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13042 status2 >>= (4*LPFC_EXTRA_RING); 13043 } else 13044 status2 = 0; 13045 13046 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13047 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13048 else 13049 fp_irq_rc = IRQ_NONE; 13050 13051 /* Return device-level interrupt handling status */ 13052 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13053 } /* lpfc_sli_intr_handler */ 13054 13055 /** 13056 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13057 * @phba: pointer to lpfc hba data structure. 13058 * 13059 * This routine is invoked by the worker thread to process all the pending 13060 * SLI4 els abort xri events. 13061 **/ 13062 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13063 { 13064 struct lpfc_cq_event *cq_event; 13065 13066 /* First, declare the els xri abort event has been handled */ 13067 spin_lock_irq(&phba->hbalock); 13068 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13069 spin_unlock_irq(&phba->hbalock); 13070 /* Now, handle all the els xri abort events */ 13071 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13072 /* Get the first event from the head of the event queue */ 13073 spin_lock_irq(&phba->hbalock); 13074 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13075 cq_event, struct lpfc_cq_event, list); 13076 spin_unlock_irq(&phba->hbalock); 13077 /* Notify aborted XRI for ELS work queue */ 13078 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13079 /* Free the event processed back to the free pool */ 13080 lpfc_sli4_cq_event_release(phba, cq_event); 13081 } 13082 } 13083 13084 /** 13085 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13086 * @phba: pointer to lpfc hba data structure 13087 * @pIocbIn: pointer to the rspiocbq 13088 * @pIocbOut: pointer to the cmdiocbq 13089 * @wcqe: pointer to the complete wcqe 13090 * 13091 * This routine transfers the fields of a command iocbq to a response iocbq 13092 * by copying all the IOCB fields from command iocbq and transferring the 13093 * completion status information from the complete wcqe. 13094 **/ 13095 static void 13096 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13097 struct lpfc_iocbq *pIocbIn, 13098 struct lpfc_iocbq *pIocbOut, 13099 struct lpfc_wcqe_complete *wcqe) 13100 { 13101 int numBdes, i; 13102 unsigned long iflags; 13103 uint32_t status, max_response; 13104 struct lpfc_dmabuf *dmabuf; 13105 struct ulp_bde64 *bpl, bde; 13106 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13107 13108 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13109 sizeof(struct lpfc_iocbq) - offset); 13110 /* Map WCQE parameters into irspiocb parameters */ 13111 status = bf_get(lpfc_wcqe_c_status, wcqe); 13112 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13113 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13114 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13115 pIocbIn->iocb.un.fcpi.fcpi_parm = 13116 pIocbOut->iocb.un.fcpi.fcpi_parm - 13117 wcqe->total_data_placed; 13118 else 13119 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13120 else { 13121 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13122 switch (pIocbOut->iocb.ulpCommand) { 13123 case CMD_ELS_REQUEST64_CR: 13124 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13125 bpl = (struct ulp_bde64 *)dmabuf->virt; 13126 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13127 max_response = bde.tus.f.bdeSize; 13128 break; 13129 case CMD_GEN_REQUEST64_CR: 13130 max_response = 0; 13131 if (!pIocbOut->context3) 13132 break; 13133 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13134 sizeof(struct ulp_bde64); 13135 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13136 bpl = (struct ulp_bde64 *)dmabuf->virt; 13137 for (i = 0; i < numBdes; i++) { 13138 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13139 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13140 max_response += bde.tus.f.bdeSize; 13141 } 13142 break; 13143 default: 13144 max_response = wcqe->total_data_placed; 13145 break; 13146 } 13147 if (max_response < wcqe->total_data_placed) 13148 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13149 else 13150 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13151 wcqe->total_data_placed; 13152 } 13153 13154 /* Convert BG errors for completion status */ 13155 if (status == CQE_STATUS_DI_ERROR) { 13156 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13157 13158 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13159 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13160 else 13161 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13162 13163 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13164 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13165 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13166 BGS_GUARD_ERR_MASK; 13167 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13168 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13169 BGS_APPTAG_ERR_MASK; 13170 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13171 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13172 BGS_REFTAG_ERR_MASK; 13173 13174 /* Check to see if there was any good data before the error */ 13175 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13176 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13177 BGS_HI_WATER_MARK_PRESENT_MASK; 13178 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13179 wcqe->total_data_placed; 13180 } 13181 13182 /* 13183 * Set ALL the error bits to indicate we don't know what 13184 * type of error it is. 13185 */ 13186 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13187 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13188 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13189 BGS_GUARD_ERR_MASK); 13190 } 13191 13192 /* Pick up HBA exchange busy condition */ 13193 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13194 spin_lock_irqsave(&phba->hbalock, iflags); 13195 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13196 spin_unlock_irqrestore(&phba->hbalock, iflags); 13197 } 13198 } 13199 13200 /** 13201 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13202 * @phba: Pointer to HBA context object. 13203 * @irspiocbq: Pointer to work-queue completion queue entry. 13204 * 13205 * This routine handles an ELS work-queue completion event and construct 13206 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13207 * discovery engine to handle. 13208 * 13209 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13210 **/ 13211 static struct lpfc_iocbq * 13212 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13213 struct lpfc_iocbq *irspiocbq) 13214 { 13215 struct lpfc_sli_ring *pring; 13216 struct lpfc_iocbq *cmdiocbq; 13217 struct lpfc_wcqe_complete *wcqe; 13218 unsigned long iflags; 13219 13220 pring = lpfc_phba_elsring(phba); 13221 if (unlikely(!pring)) 13222 return NULL; 13223 13224 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13225 pring->stats.iocb_event++; 13226 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13227 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13228 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13229 if (unlikely(!cmdiocbq)) { 13230 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13231 "0386 ELS complete with no corresponding " 13232 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13233 wcqe->word0, wcqe->total_data_placed, 13234 wcqe->parameter, wcqe->word3); 13235 lpfc_sli_release_iocbq(phba, irspiocbq); 13236 return NULL; 13237 } 13238 13239 spin_lock_irqsave(&pring->ring_lock, iflags); 13240 /* Put the iocb back on the txcmplq */ 13241 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13242 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13243 13244 /* Fake the irspiocbq and copy necessary response information */ 13245 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13246 13247 return irspiocbq; 13248 } 13249 13250 inline struct lpfc_cq_event * 13251 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13252 { 13253 struct lpfc_cq_event *cq_event; 13254 13255 /* Allocate a new internal CQ_EVENT entry */ 13256 cq_event = lpfc_sli4_cq_event_alloc(phba); 13257 if (!cq_event) { 13258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13259 "0602 Failed to alloc CQ_EVENT entry\n"); 13260 return NULL; 13261 } 13262 13263 /* Move the CQE into the event */ 13264 memcpy(&cq_event->cqe, entry, size); 13265 return cq_event; 13266 } 13267 13268 /** 13269 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13270 * @phba: Pointer to HBA context object. 13271 * @mcqe: Pointer to mailbox completion queue entry. 13272 * 13273 * This routine process a mailbox completion queue entry with asynchronous 13274 * event. 13275 * 13276 * Return: true if work posted to worker thread, otherwise false. 13277 **/ 13278 static bool 13279 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13280 { 13281 struct lpfc_cq_event *cq_event; 13282 unsigned long iflags; 13283 13284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13285 "0392 Async Event: word0:x%x, word1:x%x, " 13286 "word2:x%x, word3:x%x\n", mcqe->word0, 13287 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13288 13289 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13290 if (!cq_event) 13291 return false; 13292 spin_lock_irqsave(&phba->hbalock, iflags); 13293 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13294 /* Set the async event flag */ 13295 phba->hba_flag |= ASYNC_EVENT; 13296 spin_unlock_irqrestore(&phba->hbalock, iflags); 13297 13298 return true; 13299 } 13300 13301 /** 13302 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13303 * @phba: Pointer to HBA context object. 13304 * @mcqe: Pointer to mailbox completion queue entry. 13305 * 13306 * This routine process a mailbox completion queue entry with mailbox 13307 * completion event. 13308 * 13309 * Return: true if work posted to worker thread, otherwise false. 13310 **/ 13311 static bool 13312 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13313 { 13314 uint32_t mcqe_status; 13315 MAILBOX_t *mbox, *pmbox; 13316 struct lpfc_mqe *mqe; 13317 struct lpfc_vport *vport; 13318 struct lpfc_nodelist *ndlp; 13319 struct lpfc_dmabuf *mp; 13320 unsigned long iflags; 13321 LPFC_MBOXQ_t *pmb; 13322 bool workposted = false; 13323 int rc; 13324 13325 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13326 if (!bf_get(lpfc_trailer_completed, mcqe)) 13327 goto out_no_mqe_complete; 13328 13329 /* Get the reference to the active mbox command */ 13330 spin_lock_irqsave(&phba->hbalock, iflags); 13331 pmb = phba->sli.mbox_active; 13332 if (unlikely(!pmb)) { 13333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13334 "1832 No pending MBOX command to handle\n"); 13335 spin_unlock_irqrestore(&phba->hbalock, iflags); 13336 goto out_no_mqe_complete; 13337 } 13338 spin_unlock_irqrestore(&phba->hbalock, iflags); 13339 mqe = &pmb->u.mqe; 13340 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13341 mbox = phba->mbox; 13342 vport = pmb->vport; 13343 13344 /* Reset heartbeat timer */ 13345 phba->last_completion_time = jiffies; 13346 del_timer(&phba->sli.mbox_tmo); 13347 13348 /* Move mbox data to caller's mailbox region, do endian swapping */ 13349 if (pmb->mbox_cmpl && mbox) 13350 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13351 13352 /* 13353 * For mcqe errors, conditionally move a modified error code to 13354 * the mbox so that the error will not be missed. 13355 */ 13356 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13357 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13358 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13359 bf_set(lpfc_mqe_status, mqe, 13360 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13361 } 13362 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13363 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13364 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13365 "MBOX dflt rpi: status:x%x rpi:x%x", 13366 mcqe_status, 13367 pmbox->un.varWords[0], 0); 13368 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13369 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13370 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13371 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13372 * RID of the PPI using the same mbox buffer. 13373 */ 13374 lpfc_unreg_login(phba, vport->vpi, 13375 pmbox->un.varWords[0], pmb); 13376 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13377 pmb->ctx_buf = mp; 13378 pmb->ctx_ndlp = ndlp; 13379 pmb->vport = vport; 13380 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13381 if (rc != MBX_BUSY) 13382 lpfc_printf_log(phba, KERN_ERR, 13383 LOG_TRACE_EVENT, 13384 "0385 rc should " 13385 "have been MBX_BUSY\n"); 13386 if (rc != MBX_NOT_FINISHED) 13387 goto send_current_mbox; 13388 } 13389 } 13390 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13391 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13392 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13393 13394 /* There is mailbox completion work to do */ 13395 spin_lock_irqsave(&phba->hbalock, iflags); 13396 __lpfc_mbox_cmpl_put(phba, pmb); 13397 phba->work_ha |= HA_MBATT; 13398 spin_unlock_irqrestore(&phba->hbalock, iflags); 13399 workposted = true; 13400 13401 send_current_mbox: 13402 spin_lock_irqsave(&phba->hbalock, iflags); 13403 /* Release the mailbox command posting token */ 13404 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13405 /* Setting active mailbox pointer need to be in sync to flag clear */ 13406 phba->sli.mbox_active = NULL; 13407 if (bf_get(lpfc_trailer_consumed, mcqe)) 13408 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13409 spin_unlock_irqrestore(&phba->hbalock, iflags); 13410 /* Wake up worker thread to post the next pending mailbox command */ 13411 lpfc_worker_wake_up(phba); 13412 return workposted; 13413 13414 out_no_mqe_complete: 13415 spin_lock_irqsave(&phba->hbalock, iflags); 13416 if (bf_get(lpfc_trailer_consumed, mcqe)) 13417 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13418 spin_unlock_irqrestore(&phba->hbalock, iflags); 13419 return false; 13420 } 13421 13422 /** 13423 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13424 * @phba: Pointer to HBA context object. 13425 * @cq: Pointer to associated CQ 13426 * @cqe: Pointer to mailbox completion queue entry. 13427 * 13428 * This routine process a mailbox completion queue entry, it invokes the 13429 * proper mailbox complete handling or asynchronous event handling routine 13430 * according to the MCQE's async bit. 13431 * 13432 * Return: true if work posted to worker thread, otherwise false. 13433 **/ 13434 static bool 13435 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13436 struct lpfc_cqe *cqe) 13437 { 13438 struct lpfc_mcqe mcqe; 13439 bool workposted; 13440 13441 cq->CQ_mbox++; 13442 13443 /* Copy the mailbox MCQE and convert endian order as needed */ 13444 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13445 13446 /* Invoke the proper event handling routine */ 13447 if (!bf_get(lpfc_trailer_async, &mcqe)) 13448 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13449 else 13450 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13451 return workposted; 13452 } 13453 13454 /** 13455 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13456 * @phba: Pointer to HBA context object. 13457 * @cq: Pointer to associated CQ 13458 * @wcqe: Pointer to work-queue completion queue entry. 13459 * 13460 * This routine handles an ELS work-queue completion event. 13461 * 13462 * Return: true if work posted to worker thread, otherwise false. 13463 **/ 13464 static bool 13465 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13466 struct lpfc_wcqe_complete *wcqe) 13467 { 13468 struct lpfc_iocbq *irspiocbq; 13469 unsigned long iflags; 13470 struct lpfc_sli_ring *pring = cq->pring; 13471 int txq_cnt = 0; 13472 int txcmplq_cnt = 0; 13473 13474 /* Check for response status */ 13475 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13476 /* Log the error status */ 13477 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13478 "0357 ELS CQE error: status=x%x: " 13479 "CQE: %08x %08x %08x %08x\n", 13480 bf_get(lpfc_wcqe_c_status, wcqe), 13481 wcqe->word0, wcqe->total_data_placed, 13482 wcqe->parameter, wcqe->word3); 13483 } 13484 13485 /* Get an irspiocbq for later ELS response processing use */ 13486 irspiocbq = lpfc_sli_get_iocbq(phba); 13487 if (!irspiocbq) { 13488 if (!list_empty(&pring->txq)) 13489 txq_cnt++; 13490 if (!list_empty(&pring->txcmplq)) 13491 txcmplq_cnt++; 13492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13493 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13494 "els_txcmplq_cnt=%d\n", 13495 txq_cnt, phba->iocb_cnt, 13496 txcmplq_cnt); 13497 return false; 13498 } 13499 13500 /* Save off the slow-path queue event for work thread to process */ 13501 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13502 spin_lock_irqsave(&phba->hbalock, iflags); 13503 list_add_tail(&irspiocbq->cq_event.list, 13504 &phba->sli4_hba.sp_queue_event); 13505 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13506 spin_unlock_irqrestore(&phba->hbalock, iflags); 13507 13508 return true; 13509 } 13510 13511 /** 13512 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13513 * @phba: Pointer to HBA context object. 13514 * @wcqe: Pointer to work-queue completion queue entry. 13515 * 13516 * This routine handles slow-path WQ entry consumed event by invoking the 13517 * proper WQ release routine to the slow-path WQ. 13518 **/ 13519 static void 13520 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13521 struct lpfc_wcqe_release *wcqe) 13522 { 13523 /* sanity check on queue memory */ 13524 if (unlikely(!phba->sli4_hba.els_wq)) 13525 return; 13526 /* Check for the slow-path ELS work queue */ 13527 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13528 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13529 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13530 else 13531 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13532 "2579 Slow-path wqe consume event carries " 13533 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13534 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13535 phba->sli4_hba.els_wq->queue_id); 13536 } 13537 13538 /** 13539 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13540 * @phba: Pointer to HBA context object. 13541 * @cq: Pointer to a WQ completion queue. 13542 * @wcqe: Pointer to work-queue completion queue entry. 13543 * 13544 * This routine handles an XRI abort event. 13545 * 13546 * Return: true if work posted to worker thread, otherwise false. 13547 **/ 13548 static bool 13549 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13550 struct lpfc_queue *cq, 13551 struct sli4_wcqe_xri_aborted *wcqe) 13552 { 13553 bool workposted = false; 13554 struct lpfc_cq_event *cq_event; 13555 unsigned long iflags; 13556 13557 switch (cq->subtype) { 13558 case LPFC_IO: 13559 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13560 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13561 /* Notify aborted XRI for NVME work queue */ 13562 if (phba->nvmet_support) 13563 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13564 } 13565 workposted = false; 13566 break; 13567 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13568 case LPFC_ELS: 13569 cq_event = lpfc_cq_event_setup( 13570 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13571 if (!cq_event) 13572 return false; 13573 cq_event->hdwq = cq->hdwq; 13574 spin_lock_irqsave(&phba->hbalock, iflags); 13575 list_add_tail(&cq_event->list, 13576 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13577 /* Set the els xri abort event flag */ 13578 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13579 spin_unlock_irqrestore(&phba->hbalock, iflags); 13580 workposted = true; 13581 break; 13582 default: 13583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13584 "0603 Invalid CQ subtype %d: " 13585 "%08x %08x %08x %08x\n", 13586 cq->subtype, wcqe->word0, wcqe->parameter, 13587 wcqe->word2, wcqe->word3); 13588 workposted = false; 13589 break; 13590 } 13591 return workposted; 13592 } 13593 13594 #define FC_RCTL_MDS_DIAGS 0xF4 13595 13596 /** 13597 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13598 * @phba: Pointer to HBA context object. 13599 * @rcqe: Pointer to receive-queue completion queue entry. 13600 * 13601 * This routine process a receive-queue completion queue entry. 13602 * 13603 * Return: true if work posted to worker thread, otherwise false. 13604 **/ 13605 static bool 13606 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13607 { 13608 bool workposted = false; 13609 struct fc_frame_header *fc_hdr; 13610 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13611 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13612 struct lpfc_nvmet_tgtport *tgtp; 13613 struct hbq_dmabuf *dma_buf; 13614 uint32_t status, rq_id; 13615 unsigned long iflags; 13616 13617 /* sanity check on queue memory */ 13618 if (unlikely(!hrq) || unlikely(!drq)) 13619 return workposted; 13620 13621 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13622 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13623 else 13624 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13625 if (rq_id != hrq->queue_id) 13626 goto out; 13627 13628 status = bf_get(lpfc_rcqe_status, rcqe); 13629 switch (status) { 13630 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13632 "2537 Receive Frame Truncated!!\n"); 13633 /* fall through */ 13634 case FC_STATUS_RQ_SUCCESS: 13635 spin_lock_irqsave(&phba->hbalock, iflags); 13636 lpfc_sli4_rq_release(hrq, drq); 13637 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13638 if (!dma_buf) { 13639 hrq->RQ_no_buf_found++; 13640 spin_unlock_irqrestore(&phba->hbalock, iflags); 13641 goto out; 13642 } 13643 hrq->RQ_rcv_buf++; 13644 hrq->RQ_buf_posted--; 13645 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13646 13647 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13648 13649 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13650 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13651 spin_unlock_irqrestore(&phba->hbalock, iflags); 13652 /* Handle MDS Loopback frames */ 13653 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13654 break; 13655 } 13656 13657 /* save off the frame for the work thread to process */ 13658 list_add_tail(&dma_buf->cq_event.list, 13659 &phba->sli4_hba.sp_queue_event); 13660 /* Frame received */ 13661 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13662 spin_unlock_irqrestore(&phba->hbalock, iflags); 13663 workposted = true; 13664 break; 13665 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13666 if (phba->nvmet_support) { 13667 tgtp = phba->targetport->private; 13668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13669 "6402 RQE Error x%x, posted %d err_cnt " 13670 "%d: %x %x %x\n", 13671 status, hrq->RQ_buf_posted, 13672 hrq->RQ_no_posted_buf, 13673 atomic_read(&tgtp->rcv_fcp_cmd_in), 13674 atomic_read(&tgtp->rcv_fcp_cmd_out), 13675 atomic_read(&tgtp->xmt_fcp_release)); 13676 } 13677 /* fallthrough */ 13678 13679 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13680 hrq->RQ_no_posted_buf++; 13681 /* Post more buffers if possible */ 13682 spin_lock_irqsave(&phba->hbalock, iflags); 13683 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13684 spin_unlock_irqrestore(&phba->hbalock, iflags); 13685 workposted = true; 13686 break; 13687 } 13688 out: 13689 return workposted; 13690 } 13691 13692 /** 13693 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13694 * @phba: Pointer to HBA context object. 13695 * @cq: Pointer to the completion queue. 13696 * @cqe: Pointer to a completion queue entry. 13697 * 13698 * This routine process a slow-path work-queue or receive queue completion queue 13699 * entry. 13700 * 13701 * Return: true if work posted to worker thread, otherwise false. 13702 **/ 13703 static bool 13704 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13705 struct lpfc_cqe *cqe) 13706 { 13707 struct lpfc_cqe cqevt; 13708 bool workposted = false; 13709 13710 /* Copy the work queue CQE and convert endian order if needed */ 13711 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13712 13713 /* Check and process for different type of WCQE and dispatch */ 13714 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13715 case CQE_CODE_COMPL_WQE: 13716 /* Process the WQ/RQ complete event */ 13717 phba->last_completion_time = jiffies; 13718 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13719 (struct lpfc_wcqe_complete *)&cqevt); 13720 break; 13721 case CQE_CODE_RELEASE_WQE: 13722 /* Process the WQ release event */ 13723 lpfc_sli4_sp_handle_rel_wcqe(phba, 13724 (struct lpfc_wcqe_release *)&cqevt); 13725 break; 13726 case CQE_CODE_XRI_ABORTED: 13727 /* Process the WQ XRI abort event */ 13728 phba->last_completion_time = jiffies; 13729 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13730 (struct sli4_wcqe_xri_aborted *)&cqevt); 13731 break; 13732 case CQE_CODE_RECEIVE: 13733 case CQE_CODE_RECEIVE_V1: 13734 /* Process the RQ event */ 13735 phba->last_completion_time = jiffies; 13736 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13737 (struct lpfc_rcqe *)&cqevt); 13738 break; 13739 default: 13740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13741 "0388 Not a valid WCQE code: x%x\n", 13742 bf_get(lpfc_cqe_code, &cqevt)); 13743 break; 13744 } 13745 return workposted; 13746 } 13747 13748 /** 13749 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13750 * @phba: Pointer to HBA context object. 13751 * @eqe: Pointer to fast-path event queue entry. 13752 * @speq: Pointer to slow-path event queue. 13753 * 13754 * This routine process a event queue entry from the slow-path event queue. 13755 * It will check the MajorCode and MinorCode to determine this is for a 13756 * completion event on a completion queue, if not, an error shall be logged 13757 * and just return. Otherwise, it will get to the corresponding completion 13758 * queue and process all the entries on that completion queue, rearm the 13759 * completion queue, and then return. 13760 * 13761 **/ 13762 static void 13763 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13764 struct lpfc_queue *speq) 13765 { 13766 struct lpfc_queue *cq = NULL, *childq; 13767 uint16_t cqid; 13768 int ret = 0; 13769 13770 /* Get the reference to the corresponding CQ */ 13771 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13772 13773 list_for_each_entry(childq, &speq->child_list, list) { 13774 if (childq->queue_id == cqid) { 13775 cq = childq; 13776 break; 13777 } 13778 } 13779 if (unlikely(!cq)) { 13780 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13782 "0365 Slow-path CQ identifier " 13783 "(%d) does not exist\n", cqid); 13784 return; 13785 } 13786 13787 /* Save EQ associated with this CQ */ 13788 cq->assoc_qp = speq; 13789 13790 if (is_kdump_kernel()) 13791 ret = queue_work(phba->wq, &cq->spwork); 13792 else 13793 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 13794 13795 if (!ret) 13796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13797 "0390 Cannot schedule queue work " 13798 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13799 cqid, cq->queue_id, raw_smp_processor_id()); 13800 } 13801 13802 /** 13803 * __lpfc_sli4_process_cq - Process elements of a CQ 13804 * @phba: Pointer to HBA context object. 13805 * @cq: Pointer to CQ to be processed 13806 * @handler: Routine to process each cqe 13807 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 13808 * @poll_mode: Polling mode we were called from 13809 * 13810 * This routine processes completion queue entries in a CQ. While a valid 13811 * queue element is found, the handler is called. During processing checks 13812 * are made for periodic doorbell writes to let the hardware know of 13813 * element consumption. 13814 * 13815 * If the max limit on cqes to process is hit, or there are no more valid 13816 * entries, the loop stops. If we processed a sufficient number of elements, 13817 * meaning there is sufficient load, rather than rearming and generating 13818 * another interrupt, a cq rescheduling delay will be set. A delay of 0 13819 * indicates no rescheduling. 13820 * 13821 * Returns True if work scheduled, False otherwise. 13822 **/ 13823 static bool 13824 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 13825 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 13826 struct lpfc_cqe *), unsigned long *delay, 13827 enum lpfc_poll_mode poll_mode) 13828 { 13829 struct lpfc_cqe *cqe; 13830 bool workposted = false; 13831 int count = 0, consumed = 0; 13832 bool arm = true; 13833 13834 /* default - no reschedule */ 13835 *delay = 0; 13836 13837 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 13838 goto rearm_and_exit; 13839 13840 /* Process all the entries to the CQ */ 13841 cq->q_flag = 0; 13842 cqe = lpfc_sli4_cq_get(cq); 13843 while (cqe) { 13844 workposted |= handler(phba, cq, cqe); 13845 __lpfc_sli4_consume_cqe(phba, cq, cqe); 13846 13847 consumed++; 13848 if (!(++count % cq->max_proc_limit)) 13849 break; 13850 13851 if (!(count % cq->notify_interval)) { 13852 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13853 LPFC_QUEUE_NOARM); 13854 consumed = 0; 13855 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 13856 } 13857 13858 if (count == LPFC_NVMET_CQ_NOTIFY) 13859 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 13860 13861 cqe = lpfc_sli4_cq_get(cq); 13862 } 13863 if (count >= phba->cfg_cq_poll_threshold) { 13864 *delay = 1; 13865 arm = false; 13866 } 13867 13868 /* Note: complete the irq_poll softirq before rearming CQ */ 13869 if (poll_mode == LPFC_IRQ_POLL) 13870 irq_poll_complete(&cq->iop); 13871 13872 /* Track the max number of CQEs processed in 1 EQ */ 13873 if (count > cq->CQ_max_cqe) 13874 cq->CQ_max_cqe = count; 13875 13876 cq->assoc_qp->EQ_cqe_cnt += count; 13877 13878 /* Catch the no cq entry condition */ 13879 if (unlikely(count == 0)) 13880 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13881 "0369 No entry from completion queue " 13882 "qid=%d\n", cq->queue_id); 13883 13884 xchg(&cq->queue_claimed, 0); 13885 13886 rearm_and_exit: 13887 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13888 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 13889 13890 return workposted; 13891 } 13892 13893 /** 13894 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13895 * @cq: pointer to CQ to process 13896 * 13897 * This routine calls the cq processing routine with a handler specific 13898 * to the type of queue bound to it. 13899 * 13900 * The CQ routine returns two values: the first is the calling status, 13901 * which indicates whether work was queued to the background discovery 13902 * thread. If true, the routine should wakeup the discovery thread; 13903 * the second is the delay parameter. If non-zero, rather than rearming 13904 * the CQ and yet another interrupt, the CQ handler should be queued so 13905 * that it is processed in a subsequent polling action. The value of 13906 * the delay indicates when to reschedule it. 13907 **/ 13908 static void 13909 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 13910 { 13911 struct lpfc_hba *phba = cq->phba; 13912 unsigned long delay; 13913 bool workposted = false; 13914 int ret = 0; 13915 13916 /* Process and rearm the CQ */ 13917 switch (cq->type) { 13918 case LPFC_MCQ: 13919 workposted |= __lpfc_sli4_process_cq(phba, cq, 13920 lpfc_sli4_sp_handle_mcqe, 13921 &delay, LPFC_QUEUE_WORK); 13922 break; 13923 case LPFC_WCQ: 13924 if (cq->subtype == LPFC_IO) 13925 workposted |= __lpfc_sli4_process_cq(phba, cq, 13926 lpfc_sli4_fp_handle_cqe, 13927 &delay, LPFC_QUEUE_WORK); 13928 else 13929 workposted |= __lpfc_sli4_process_cq(phba, cq, 13930 lpfc_sli4_sp_handle_cqe, 13931 &delay, LPFC_QUEUE_WORK); 13932 break; 13933 default: 13934 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13935 "0370 Invalid completion queue type (%d)\n", 13936 cq->type); 13937 return; 13938 } 13939 13940 if (delay) { 13941 if (is_kdump_kernel()) 13942 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 13943 delay); 13944 else 13945 ret = queue_delayed_work_on(cq->chann, phba->wq, 13946 &cq->sched_spwork, delay); 13947 if (!ret) 13948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13949 "0394 Cannot schedule queue work " 13950 "for cqid=%d on CPU %d\n", 13951 cq->queue_id, cq->chann); 13952 } 13953 13954 /* wake up worker thread if there are works to be done */ 13955 if (workposted) 13956 lpfc_worker_wake_up(phba); 13957 } 13958 13959 /** 13960 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 13961 * interrupt 13962 * @work: pointer to work element 13963 * 13964 * translates from the work handler and calls the slow-path handler. 13965 **/ 13966 static void 13967 lpfc_sli4_sp_process_cq(struct work_struct *work) 13968 { 13969 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 13970 13971 __lpfc_sli4_sp_process_cq(cq); 13972 } 13973 13974 /** 13975 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 13976 * @work: pointer to work element 13977 * 13978 * translates from the work handler and calls the slow-path handler. 13979 **/ 13980 static void 13981 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 13982 { 13983 struct lpfc_queue *cq = container_of(to_delayed_work(work), 13984 struct lpfc_queue, sched_spwork); 13985 13986 __lpfc_sli4_sp_process_cq(cq); 13987 } 13988 13989 /** 13990 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13991 * @phba: Pointer to HBA context object. 13992 * @cq: Pointer to associated CQ 13993 * @wcqe: Pointer to work-queue completion queue entry. 13994 * 13995 * This routine process a fast-path work queue completion entry from fast-path 13996 * event queue for FCP command response completion. 13997 **/ 13998 static void 13999 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14000 struct lpfc_wcqe_complete *wcqe) 14001 { 14002 struct lpfc_sli_ring *pring = cq->pring; 14003 struct lpfc_iocbq *cmdiocbq; 14004 struct lpfc_iocbq irspiocbq; 14005 unsigned long iflags; 14006 14007 /* Check for response status */ 14008 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14009 /* If resource errors reported from HBA, reduce queue 14010 * depth of the SCSI device. 14011 */ 14012 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14013 IOSTAT_LOCAL_REJECT)) && 14014 ((wcqe->parameter & IOERR_PARAM_MASK) == 14015 IOERR_NO_RESOURCES)) 14016 phba->lpfc_rampdown_queue_depth(phba); 14017 14018 /* Log the cmpl status */ 14019 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14020 "0373 FCP CQE cmpl: status=x%x: " 14021 "CQE: %08x %08x %08x %08x\n", 14022 bf_get(lpfc_wcqe_c_status, wcqe), 14023 wcqe->word0, wcqe->total_data_placed, 14024 wcqe->parameter, wcqe->word3); 14025 } 14026 14027 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14028 spin_lock_irqsave(&pring->ring_lock, iflags); 14029 pring->stats.iocb_event++; 14030 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14031 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14032 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14033 if (unlikely(!cmdiocbq)) { 14034 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14035 "0374 FCP complete with no corresponding " 14036 "cmdiocb: iotag (%d)\n", 14037 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14038 return; 14039 } 14040 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14041 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14042 #endif 14043 if (cmdiocbq->iocb_cmpl == NULL) { 14044 if (cmdiocbq->wqe_cmpl) { 14045 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14046 spin_lock_irqsave(&phba->hbalock, iflags); 14047 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14048 spin_unlock_irqrestore(&phba->hbalock, iflags); 14049 } 14050 14051 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14052 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14053 return; 14054 } 14055 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14056 "0375 FCP cmdiocb not callback function " 14057 "iotag: (%d)\n", 14058 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14059 return; 14060 } 14061 14062 /* Fake the irspiocb and copy necessary response information */ 14063 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14064 14065 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14066 spin_lock_irqsave(&phba->hbalock, iflags); 14067 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14068 spin_unlock_irqrestore(&phba->hbalock, iflags); 14069 } 14070 14071 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14072 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14073 } 14074 14075 /** 14076 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14077 * @phba: Pointer to HBA context object. 14078 * @cq: Pointer to completion queue. 14079 * @wcqe: Pointer to work-queue completion queue entry. 14080 * 14081 * This routine handles an fast-path WQ entry consumed event by invoking the 14082 * proper WQ release routine to the slow-path WQ. 14083 **/ 14084 static void 14085 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14086 struct lpfc_wcqe_release *wcqe) 14087 { 14088 struct lpfc_queue *childwq; 14089 bool wqid_matched = false; 14090 uint16_t hba_wqid; 14091 14092 /* Check for fast-path FCP work queue release */ 14093 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14094 list_for_each_entry(childwq, &cq->child_list, list) { 14095 if (childwq->queue_id == hba_wqid) { 14096 lpfc_sli4_wq_release(childwq, 14097 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14098 if (childwq->q_flag & HBA_NVMET_WQFULL) 14099 lpfc_nvmet_wqfull_process(phba, childwq); 14100 wqid_matched = true; 14101 break; 14102 } 14103 } 14104 /* Report warning log message if no match found */ 14105 if (wqid_matched != true) 14106 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14107 "2580 Fast-path wqe consume event carries " 14108 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14109 } 14110 14111 /** 14112 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14113 * @phba: Pointer to HBA context object. 14114 * @cq: Pointer to completion queue. 14115 * @rcqe: Pointer to receive-queue completion queue entry. 14116 * 14117 * This routine process a receive-queue completion queue entry. 14118 * 14119 * Return: true if work posted to worker thread, otherwise false. 14120 **/ 14121 static bool 14122 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14123 struct lpfc_rcqe *rcqe) 14124 { 14125 bool workposted = false; 14126 struct lpfc_queue *hrq; 14127 struct lpfc_queue *drq; 14128 struct rqb_dmabuf *dma_buf; 14129 struct fc_frame_header *fc_hdr; 14130 struct lpfc_nvmet_tgtport *tgtp; 14131 uint32_t status, rq_id; 14132 unsigned long iflags; 14133 uint32_t fctl, idx; 14134 14135 if ((phba->nvmet_support == 0) || 14136 (phba->sli4_hba.nvmet_cqset == NULL)) 14137 return workposted; 14138 14139 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14140 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14141 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14142 14143 /* sanity check on queue memory */ 14144 if (unlikely(!hrq) || unlikely(!drq)) 14145 return workposted; 14146 14147 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14148 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14149 else 14150 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14151 14152 if ((phba->nvmet_support == 0) || 14153 (rq_id != hrq->queue_id)) 14154 return workposted; 14155 14156 status = bf_get(lpfc_rcqe_status, rcqe); 14157 switch (status) { 14158 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14160 "6126 Receive Frame Truncated!!\n"); 14161 /* fall through */ 14162 case FC_STATUS_RQ_SUCCESS: 14163 spin_lock_irqsave(&phba->hbalock, iflags); 14164 lpfc_sli4_rq_release(hrq, drq); 14165 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14166 if (!dma_buf) { 14167 hrq->RQ_no_buf_found++; 14168 spin_unlock_irqrestore(&phba->hbalock, iflags); 14169 goto out; 14170 } 14171 spin_unlock_irqrestore(&phba->hbalock, iflags); 14172 hrq->RQ_rcv_buf++; 14173 hrq->RQ_buf_posted--; 14174 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14175 14176 /* Just some basic sanity checks on FCP Command frame */ 14177 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14178 fc_hdr->fh_f_ctl[1] << 8 | 14179 fc_hdr->fh_f_ctl[2]); 14180 if (((fctl & 14181 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14182 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14183 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14184 goto drop; 14185 14186 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14187 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14188 lpfc_nvmet_unsol_fcp_event( 14189 phba, idx, dma_buf, cq->isr_timestamp, 14190 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14191 return false; 14192 } 14193 drop: 14194 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14195 break; 14196 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14197 if (phba->nvmet_support) { 14198 tgtp = phba->targetport->private; 14199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14200 "6401 RQE Error x%x, posted %d err_cnt " 14201 "%d: %x %x %x\n", 14202 status, hrq->RQ_buf_posted, 14203 hrq->RQ_no_posted_buf, 14204 atomic_read(&tgtp->rcv_fcp_cmd_in), 14205 atomic_read(&tgtp->rcv_fcp_cmd_out), 14206 atomic_read(&tgtp->xmt_fcp_release)); 14207 } 14208 /* fallthrough */ 14209 14210 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14211 hrq->RQ_no_posted_buf++; 14212 /* Post more buffers if possible */ 14213 break; 14214 } 14215 out: 14216 return workposted; 14217 } 14218 14219 /** 14220 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14221 * @phba: adapter with cq 14222 * @cq: Pointer to the completion queue. 14223 * @cqe: Pointer to fast-path completion queue entry. 14224 * 14225 * This routine process a fast-path work queue completion entry from fast-path 14226 * event queue for FCP command response completion. 14227 * 14228 * Return: true if work posted to worker thread, otherwise false. 14229 **/ 14230 static bool 14231 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14232 struct lpfc_cqe *cqe) 14233 { 14234 struct lpfc_wcqe_release wcqe; 14235 bool workposted = false; 14236 14237 /* Copy the work queue CQE and convert endian order if needed */ 14238 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14239 14240 /* Check and process for different type of WCQE and dispatch */ 14241 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14242 case CQE_CODE_COMPL_WQE: 14243 case CQE_CODE_NVME_ERSP: 14244 cq->CQ_wq++; 14245 /* Process the WQ complete event */ 14246 phba->last_completion_time = jiffies; 14247 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14248 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14249 (struct lpfc_wcqe_complete *)&wcqe); 14250 break; 14251 case CQE_CODE_RELEASE_WQE: 14252 cq->CQ_release_wqe++; 14253 /* Process the WQ release event */ 14254 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14255 (struct lpfc_wcqe_release *)&wcqe); 14256 break; 14257 case CQE_CODE_XRI_ABORTED: 14258 cq->CQ_xri_aborted++; 14259 /* Process the WQ XRI abort event */ 14260 phba->last_completion_time = jiffies; 14261 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14262 (struct sli4_wcqe_xri_aborted *)&wcqe); 14263 break; 14264 case CQE_CODE_RECEIVE_V1: 14265 case CQE_CODE_RECEIVE: 14266 phba->last_completion_time = jiffies; 14267 if (cq->subtype == LPFC_NVMET) { 14268 workposted = lpfc_sli4_nvmet_handle_rcqe( 14269 phba, cq, (struct lpfc_rcqe *)&wcqe); 14270 } 14271 break; 14272 default: 14273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14274 "0144 Not a valid CQE code: x%x\n", 14275 bf_get(lpfc_wcqe_c_code, &wcqe)); 14276 break; 14277 } 14278 return workposted; 14279 } 14280 14281 /** 14282 * lpfc_sli4_sched_cq_work - Schedules cq work 14283 * @phba: Pointer to HBA context object. 14284 * @cq: Pointer to CQ 14285 * @cqid: CQ ID 14286 * 14287 * This routine checks the poll mode of the CQ corresponding to 14288 * cq->chann, then either schedules a softirq or queue_work to complete 14289 * cq work. 14290 * 14291 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14292 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14293 * 14294 **/ 14295 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14296 struct lpfc_queue *cq, uint16_t cqid) 14297 { 14298 int ret = 0; 14299 14300 switch (cq->poll_mode) { 14301 case LPFC_IRQ_POLL: 14302 irq_poll_sched(&cq->iop); 14303 break; 14304 case LPFC_QUEUE_WORK: 14305 default: 14306 if (is_kdump_kernel()) 14307 ret = queue_work(phba->wq, &cq->irqwork); 14308 else 14309 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14310 if (!ret) 14311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14312 "0383 Cannot schedule queue work " 14313 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14314 cqid, cq->queue_id, 14315 raw_smp_processor_id()); 14316 } 14317 } 14318 14319 /** 14320 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14321 * @phba: Pointer to HBA context object. 14322 * @eq: Pointer to the queue structure. 14323 * @eqe: Pointer to fast-path event queue entry. 14324 * 14325 * This routine process a event queue entry from the fast-path event queue. 14326 * It will check the MajorCode and MinorCode to determine this is for a 14327 * completion event on a completion queue, if not, an error shall be logged 14328 * and just return. Otherwise, it will get to the corresponding completion 14329 * queue and process all the entries on the completion queue, rearm the 14330 * completion queue, and then return. 14331 **/ 14332 static void 14333 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14334 struct lpfc_eqe *eqe) 14335 { 14336 struct lpfc_queue *cq = NULL; 14337 uint32_t qidx = eq->hdwq; 14338 uint16_t cqid, id; 14339 14340 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14341 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14342 "0366 Not a valid completion " 14343 "event: majorcode=x%x, minorcode=x%x\n", 14344 bf_get_le32(lpfc_eqe_major_code, eqe), 14345 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14346 return; 14347 } 14348 14349 /* Get the reference to the corresponding CQ */ 14350 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14351 14352 /* Use the fast lookup method first */ 14353 if (cqid <= phba->sli4_hba.cq_max) { 14354 cq = phba->sli4_hba.cq_lookup[cqid]; 14355 if (cq) 14356 goto work_cq; 14357 } 14358 14359 /* Next check for NVMET completion */ 14360 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14361 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14362 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14363 /* Process NVMET unsol rcv */ 14364 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14365 goto process_cq; 14366 } 14367 } 14368 14369 if (phba->sli4_hba.nvmels_cq && 14370 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14371 /* Process NVME unsol rcv */ 14372 cq = phba->sli4_hba.nvmels_cq; 14373 } 14374 14375 /* Otherwise this is a Slow path event */ 14376 if (cq == NULL) { 14377 lpfc_sli4_sp_handle_eqe(phba, eqe, 14378 phba->sli4_hba.hdwq[qidx].hba_eq); 14379 return; 14380 } 14381 14382 process_cq: 14383 if (unlikely(cqid != cq->queue_id)) { 14384 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14385 "0368 Miss-matched fast-path completion " 14386 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14387 cqid, cq->queue_id); 14388 return; 14389 } 14390 14391 work_cq: 14392 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14393 if (phba->ktime_on) 14394 cq->isr_timestamp = ktime_get_ns(); 14395 else 14396 cq->isr_timestamp = 0; 14397 #endif 14398 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14399 } 14400 14401 /** 14402 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14403 * @cq: Pointer to CQ to be processed 14404 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14405 * 14406 * This routine calls the cq processing routine with the handler for 14407 * fast path CQEs. 14408 * 14409 * The CQ routine returns two values: the first is the calling status, 14410 * which indicates whether work was queued to the background discovery 14411 * thread. If true, the routine should wakeup the discovery thread; 14412 * the second is the delay parameter. If non-zero, rather than rearming 14413 * the CQ and yet another interrupt, the CQ handler should be queued so 14414 * that it is processed in a subsequent polling action. The value of 14415 * the delay indicates when to reschedule it. 14416 **/ 14417 static void 14418 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14419 enum lpfc_poll_mode poll_mode) 14420 { 14421 struct lpfc_hba *phba = cq->phba; 14422 unsigned long delay; 14423 bool workposted = false; 14424 int ret = 0; 14425 14426 /* process and rearm the CQ */ 14427 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14428 &delay, poll_mode); 14429 14430 if (delay) { 14431 if (is_kdump_kernel()) 14432 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14433 delay); 14434 else 14435 ret = queue_delayed_work_on(cq->chann, phba->wq, 14436 &cq->sched_irqwork, delay); 14437 if (!ret) 14438 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14439 "0367 Cannot schedule queue work " 14440 "for cqid=%d on CPU %d\n", 14441 cq->queue_id, cq->chann); 14442 } 14443 14444 /* wake up worker thread if there are works to be done */ 14445 if (workposted) 14446 lpfc_worker_wake_up(phba); 14447 } 14448 14449 /** 14450 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14451 * interrupt 14452 * @work: pointer to work element 14453 * 14454 * translates from the work handler and calls the fast-path handler. 14455 **/ 14456 static void 14457 lpfc_sli4_hba_process_cq(struct work_struct *work) 14458 { 14459 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14460 14461 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14462 } 14463 14464 /** 14465 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14466 * @work: pointer to work element 14467 * 14468 * translates from the work handler and calls the fast-path handler. 14469 **/ 14470 static void 14471 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14472 { 14473 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14474 struct lpfc_queue, sched_irqwork); 14475 14476 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14477 } 14478 14479 /** 14480 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14481 * @irq: Interrupt number. 14482 * @dev_id: The device context pointer. 14483 * 14484 * This function is directly called from the PCI layer as an interrupt 14485 * service routine when device with SLI-4 interface spec is enabled with 14486 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14487 * ring event in the HBA. However, when the device is enabled with either 14488 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14489 * device-level interrupt handler. When the PCI slot is in error recovery 14490 * or the HBA is undergoing initialization, the interrupt handler will not 14491 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14492 * the intrrupt context. This function is called without any lock held. 14493 * It gets the hbalock to access and update SLI data structures. Note that, 14494 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14495 * equal to that of FCP CQ index. 14496 * 14497 * The link attention and ELS ring attention events are handled 14498 * by the worker thread. The interrupt handler signals the worker thread 14499 * and returns for these events. This function is called without any lock 14500 * held. It gets the hbalock to access and update SLI data structures. 14501 * 14502 * This function returns IRQ_HANDLED when interrupt is handled else it 14503 * returns IRQ_NONE. 14504 **/ 14505 irqreturn_t 14506 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14507 { 14508 struct lpfc_hba *phba; 14509 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14510 struct lpfc_queue *fpeq; 14511 unsigned long iflag; 14512 int ecount = 0; 14513 int hba_eqidx; 14514 struct lpfc_eq_intr_info *eqi; 14515 14516 /* Get the driver's phba structure from the dev_id */ 14517 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14518 phba = hba_eq_hdl->phba; 14519 hba_eqidx = hba_eq_hdl->idx; 14520 14521 if (unlikely(!phba)) 14522 return IRQ_NONE; 14523 if (unlikely(!phba->sli4_hba.hdwq)) 14524 return IRQ_NONE; 14525 14526 /* Get to the EQ struct associated with this vector */ 14527 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14528 if (unlikely(!fpeq)) 14529 return IRQ_NONE; 14530 14531 /* Check device state for handling interrupt */ 14532 if (unlikely(lpfc_intr_state_check(phba))) { 14533 /* Check again for link_state with lock held */ 14534 spin_lock_irqsave(&phba->hbalock, iflag); 14535 if (phba->link_state < LPFC_LINK_DOWN) 14536 /* Flush, clear interrupt, and rearm the EQ */ 14537 lpfc_sli4_eqcq_flush(phba, fpeq); 14538 spin_unlock_irqrestore(&phba->hbalock, iflag); 14539 return IRQ_NONE; 14540 } 14541 14542 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14543 eqi->icnt++; 14544 14545 fpeq->last_cpu = raw_smp_processor_id(); 14546 14547 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14548 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14549 phba->cfg_auto_imax && 14550 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14551 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14552 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14553 14554 /* process and rearm the EQ */ 14555 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14556 14557 if (unlikely(ecount == 0)) { 14558 fpeq->EQ_no_entry++; 14559 if (phba->intr_type == MSIX) 14560 /* MSI-X treated interrupt served as no EQ share INT */ 14561 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14562 "0358 MSI-X interrupt with no EQE\n"); 14563 else 14564 /* Non MSI-X treated on interrupt as EQ share INT */ 14565 return IRQ_NONE; 14566 } 14567 14568 return IRQ_HANDLED; 14569 } /* lpfc_sli4_fp_intr_handler */ 14570 14571 /** 14572 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14573 * @irq: Interrupt number. 14574 * @dev_id: The device context pointer. 14575 * 14576 * This function is the device-level interrupt handler to device with SLI-4 14577 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14578 * interrupt mode is enabled and there is an event in the HBA which requires 14579 * driver attention. This function invokes the slow-path interrupt attention 14580 * handling function and fast-path interrupt attention handling function in 14581 * turn to process the relevant HBA attention events. This function is called 14582 * without any lock held. It gets the hbalock to access and update SLI data 14583 * structures. 14584 * 14585 * This function returns IRQ_HANDLED when interrupt is handled, else it 14586 * returns IRQ_NONE. 14587 **/ 14588 irqreturn_t 14589 lpfc_sli4_intr_handler(int irq, void *dev_id) 14590 { 14591 struct lpfc_hba *phba; 14592 irqreturn_t hba_irq_rc; 14593 bool hba_handled = false; 14594 int qidx; 14595 14596 /* Get the driver's phba structure from the dev_id */ 14597 phba = (struct lpfc_hba *)dev_id; 14598 14599 if (unlikely(!phba)) 14600 return IRQ_NONE; 14601 14602 /* 14603 * Invoke fast-path host attention interrupt handling as appropriate. 14604 */ 14605 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14606 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14607 &phba->sli4_hba.hba_eq_hdl[qidx]); 14608 if (hba_irq_rc == IRQ_HANDLED) 14609 hba_handled |= true; 14610 } 14611 14612 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14613 } /* lpfc_sli4_intr_handler */ 14614 14615 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14616 { 14617 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14618 struct lpfc_queue *eq; 14619 int i = 0; 14620 14621 rcu_read_lock(); 14622 14623 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14624 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14625 if (!list_empty(&phba->poll_list)) 14626 mod_timer(&phba->cpuhp_poll_timer, 14627 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14628 14629 rcu_read_unlock(); 14630 } 14631 14632 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14633 { 14634 struct lpfc_hba *phba = eq->phba; 14635 int i = 0; 14636 14637 /* 14638 * Unlocking an irq is one of the entry point to check 14639 * for re-schedule, but we are good for io submission 14640 * path as midlayer does a get_cpu to glue us in. Flush 14641 * out the invalidate queue so we can see the updated 14642 * value for flag. 14643 */ 14644 smp_rmb(); 14645 14646 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14647 /* We will not likely get the completion for the caller 14648 * during this iteration but i guess that's fine. 14649 * Future io's coming on this eq should be able to 14650 * pick it up. As for the case of single io's, they 14651 * will be handled through a sched from polling timer 14652 * function which is currently triggered every 1msec. 14653 */ 14654 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14655 14656 return i; 14657 } 14658 14659 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14660 { 14661 struct lpfc_hba *phba = eq->phba; 14662 14663 /* kickstart slowpath processing if needed */ 14664 if (list_empty(&phba->poll_list)) 14665 mod_timer(&phba->cpuhp_poll_timer, 14666 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14667 14668 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14669 synchronize_rcu(); 14670 } 14671 14672 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14673 { 14674 struct lpfc_hba *phba = eq->phba; 14675 14676 /* Disable slowpath processing for this eq. Kick start the eq 14677 * by RE-ARMING the eq's ASAP 14678 */ 14679 list_del_rcu(&eq->_poll_list); 14680 synchronize_rcu(); 14681 14682 if (list_empty(&phba->poll_list)) 14683 del_timer_sync(&phba->cpuhp_poll_timer); 14684 } 14685 14686 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14687 { 14688 struct lpfc_queue *eq, *next; 14689 14690 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14691 list_del(&eq->_poll_list); 14692 14693 INIT_LIST_HEAD(&phba->poll_list); 14694 synchronize_rcu(); 14695 } 14696 14697 static inline void 14698 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14699 { 14700 if (mode == eq->mode) 14701 return; 14702 /* 14703 * currently this function is only called during a hotplug 14704 * event and the cpu on which this function is executing 14705 * is going offline. By now the hotplug has instructed 14706 * the scheduler to remove this cpu from cpu active mask. 14707 * So we don't need to work about being put aside by the 14708 * scheduler for a high priority process. Yes, the inte- 14709 * rrupts could come but they are known to retire ASAP. 14710 */ 14711 14712 /* Disable polling in the fastpath */ 14713 WRITE_ONCE(eq->mode, mode); 14714 /* flush out the store buffer */ 14715 smp_wmb(); 14716 14717 /* 14718 * Add this eq to the polling list and start polling. For 14719 * a grace period both interrupt handler and poller will 14720 * try to process the eq _but_ that's fine. We have a 14721 * synchronization mechanism in place (queue_claimed) to 14722 * deal with it. This is just a draining phase for int- 14723 * errupt handler (not eq's) as we have guranteed through 14724 * barrier that all the CPUs have seen the new CQ_POLLED 14725 * state. which will effectively disable the REARMING of 14726 * the EQ. The whole idea is eq's die off eventually as 14727 * we are not rearming EQ's anymore. 14728 */ 14729 mode ? lpfc_sli4_add_to_poll_list(eq) : 14730 lpfc_sli4_remove_from_poll_list(eq); 14731 } 14732 14733 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14734 { 14735 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14736 } 14737 14738 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14739 { 14740 struct lpfc_hba *phba = eq->phba; 14741 14742 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14743 14744 /* Kick start for the pending io's in h/w. 14745 * Once we switch back to interrupt processing on a eq 14746 * the io path completion will only arm eq's when it 14747 * receives a completion. But since eq's are in disa- 14748 * rmed state it doesn't receive a completion. This 14749 * creates a deadlock scenaro. 14750 */ 14751 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14752 } 14753 14754 /** 14755 * lpfc_sli4_queue_free - free a queue structure and associated memory 14756 * @queue: The queue structure to free. 14757 * 14758 * This function frees a queue structure and the DMAable memory used for 14759 * the host resident queue. This function must be called after destroying the 14760 * queue on the HBA. 14761 **/ 14762 void 14763 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14764 { 14765 struct lpfc_dmabuf *dmabuf; 14766 14767 if (!queue) 14768 return; 14769 14770 if (!list_empty(&queue->wq_list)) 14771 list_del(&queue->wq_list); 14772 14773 while (!list_empty(&queue->page_list)) { 14774 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14775 list); 14776 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14777 dmabuf->virt, dmabuf->phys); 14778 kfree(dmabuf); 14779 } 14780 if (queue->rqbp) { 14781 lpfc_free_rq_buffer(queue->phba, queue); 14782 kfree(queue->rqbp); 14783 } 14784 14785 if (!list_empty(&queue->cpu_list)) 14786 list_del(&queue->cpu_list); 14787 14788 kfree(queue); 14789 return; 14790 } 14791 14792 /** 14793 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14794 * @phba: The HBA that this queue is being created on. 14795 * @page_size: The size of a queue page 14796 * @entry_size: The size of each queue entry for this queue. 14797 * @entry_count: The number of entries that this queue will handle. 14798 * @cpu: The cpu that will primarily utilize this queue. 14799 * 14800 * This function allocates a queue structure and the DMAable memory used for 14801 * the host resident queue. This function must be called before creating the 14802 * queue on the HBA. 14803 **/ 14804 struct lpfc_queue * 14805 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14806 uint32_t entry_size, uint32_t entry_count, int cpu) 14807 { 14808 struct lpfc_queue *queue; 14809 struct lpfc_dmabuf *dmabuf; 14810 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14811 uint16_t x, pgcnt; 14812 14813 if (!phba->sli4_hba.pc_sli4_params.supported) 14814 hw_page_size = page_size; 14815 14816 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 14817 14818 /* If needed, Adjust page count to match the max the adapter supports */ 14819 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 14820 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 14821 14822 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 14823 GFP_KERNEL, cpu_to_node(cpu)); 14824 if (!queue) 14825 return NULL; 14826 14827 INIT_LIST_HEAD(&queue->list); 14828 INIT_LIST_HEAD(&queue->_poll_list); 14829 INIT_LIST_HEAD(&queue->wq_list); 14830 INIT_LIST_HEAD(&queue->wqfull_list); 14831 INIT_LIST_HEAD(&queue->page_list); 14832 INIT_LIST_HEAD(&queue->child_list); 14833 INIT_LIST_HEAD(&queue->cpu_list); 14834 14835 /* Set queue parameters now. If the system cannot provide memory 14836 * resources, the free routine needs to know what was allocated. 14837 */ 14838 queue->page_count = pgcnt; 14839 queue->q_pgs = (void **)&queue[1]; 14840 queue->entry_cnt_per_pg = hw_page_size / entry_size; 14841 queue->entry_size = entry_size; 14842 queue->entry_count = entry_count; 14843 queue->page_size = hw_page_size; 14844 queue->phba = phba; 14845 14846 for (x = 0; x < queue->page_count; x++) { 14847 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 14848 dev_to_node(&phba->pcidev->dev)); 14849 if (!dmabuf) 14850 goto out_fail; 14851 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14852 hw_page_size, &dmabuf->phys, 14853 GFP_KERNEL); 14854 if (!dmabuf->virt) { 14855 kfree(dmabuf); 14856 goto out_fail; 14857 } 14858 dmabuf->buffer_tag = x; 14859 list_add_tail(&dmabuf->list, &queue->page_list); 14860 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 14861 queue->q_pgs[x] = dmabuf->virt; 14862 } 14863 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14864 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14865 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 14866 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 14867 14868 /* notify_interval will be set during q creation */ 14869 14870 return queue; 14871 out_fail: 14872 lpfc_sli4_queue_free(queue); 14873 return NULL; 14874 } 14875 14876 /** 14877 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14878 * @phba: HBA structure that indicates port to create a queue on. 14879 * @pci_barset: PCI BAR set flag. 14880 * 14881 * This function shall perform iomap of the specified PCI BAR address to host 14882 * memory address if not already done so and return it. The returned host 14883 * memory address can be NULL. 14884 */ 14885 static void __iomem * 14886 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14887 { 14888 if (!phba->pcidev) 14889 return NULL; 14890 14891 switch (pci_barset) { 14892 case WQ_PCI_BAR_0_AND_1: 14893 return phba->pci_bar0_memmap_p; 14894 case WQ_PCI_BAR_2_AND_3: 14895 return phba->pci_bar2_memmap_p; 14896 case WQ_PCI_BAR_4_AND_5: 14897 return phba->pci_bar4_memmap_p; 14898 default: 14899 break; 14900 } 14901 return NULL; 14902 } 14903 14904 /** 14905 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 14906 * @phba: HBA structure that EQs are on. 14907 * @startq: The starting EQ index to modify 14908 * @numq: The number of EQs (consecutive indexes) to modify 14909 * @usdelay: amount of delay 14910 * 14911 * This function revises the EQ delay on 1 or more EQs. The EQ delay 14912 * is set either by writing to a register (if supported by the SLI Port) 14913 * or by mailbox command. The mailbox command allows several EQs to be 14914 * updated at once. 14915 * 14916 * The @phba struct is used to send a mailbox command to HBA. The @startq 14917 * is used to get the starting EQ index to change. The @numq value is 14918 * used to specify how many consecutive EQ indexes, starting at EQ index, 14919 * are to be changed. This function is asynchronous and will wait for any 14920 * mailbox commands to finish before returning. 14921 * 14922 * On success this function will return a zero. If unable to allocate 14923 * enough memory this function will return -ENOMEM. If a mailbox command 14924 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 14925 * have had their delay multipler changed. 14926 **/ 14927 void 14928 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14929 uint32_t numq, uint32_t usdelay) 14930 { 14931 struct lpfc_mbx_modify_eq_delay *eq_delay; 14932 LPFC_MBOXQ_t *mbox; 14933 struct lpfc_queue *eq; 14934 int cnt = 0, rc, length; 14935 uint32_t shdr_status, shdr_add_status; 14936 uint32_t dmult; 14937 int qidx; 14938 union lpfc_sli4_cfg_shdr *shdr; 14939 14940 if (startq >= phba->cfg_irq_chann) 14941 return; 14942 14943 if (usdelay > 0xFFFF) { 14944 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 14945 "6429 usdelay %d too large. Scaled down to " 14946 "0xFFFF.\n", usdelay); 14947 usdelay = 0xFFFF; 14948 } 14949 14950 /* set values by EQ_DELAY register if supported */ 14951 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14952 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14953 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14954 if (!eq) 14955 continue; 14956 14957 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 14958 14959 if (++cnt >= numq) 14960 break; 14961 } 14962 return; 14963 } 14964 14965 /* Otherwise, set values by mailbox cmd */ 14966 14967 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14968 if (!mbox) { 14969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14970 "6428 Failed allocating mailbox cmd buffer." 14971 " EQ delay was not set.\n"); 14972 return; 14973 } 14974 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14975 sizeof(struct lpfc_sli4_cfg_mhdr)); 14976 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14977 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14978 length, LPFC_SLI4_MBX_EMBED); 14979 eq_delay = &mbox->u.mqe.un.eq_delay; 14980 14981 /* Calculate delay multiper from maximum interrupt per second */ 14982 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 14983 if (dmult) 14984 dmult--; 14985 if (dmult > LPFC_DMULT_MAX) 14986 dmult = LPFC_DMULT_MAX; 14987 14988 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14989 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14990 if (!eq) 14991 continue; 14992 eq->q_mode = usdelay; 14993 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14994 eq_delay->u.request.eq[cnt].phase = 0; 14995 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14996 14997 if (++cnt >= numq) 14998 break; 14999 } 15000 eq_delay->u.request.num_eq = cnt; 15001 15002 mbox->vport = phba->pport; 15003 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15004 mbox->ctx_buf = NULL; 15005 mbox->ctx_ndlp = NULL; 15006 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15007 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15008 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15009 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15010 if (shdr_status || shdr_add_status || rc) { 15011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15012 "2512 MODIFY_EQ_DELAY mailbox failed with " 15013 "status x%x add_status x%x, mbx status x%x\n", 15014 shdr_status, shdr_add_status, rc); 15015 } 15016 mempool_free(mbox, phba->mbox_mem_pool); 15017 return; 15018 } 15019 15020 /** 15021 * lpfc_eq_create - Create an Event Queue on the HBA 15022 * @phba: HBA structure that indicates port to create a queue on. 15023 * @eq: The queue structure to use to create the event queue. 15024 * @imax: The maximum interrupt per second limit. 15025 * 15026 * This function creates an event queue, as detailed in @eq, on a port, 15027 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15028 * 15029 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15030 * is used to get the entry count and entry size that are necessary to 15031 * determine the number of pages to allocate and use for this queue. This 15032 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15033 * event queue. This function is asynchronous and will wait for the mailbox 15034 * command to finish before continuing. 15035 * 15036 * On success this function will return a zero. If unable to allocate enough 15037 * memory this function will return -ENOMEM. If the queue create mailbox command 15038 * fails this function will return -ENXIO. 15039 **/ 15040 int 15041 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15042 { 15043 struct lpfc_mbx_eq_create *eq_create; 15044 LPFC_MBOXQ_t *mbox; 15045 int rc, length, status = 0; 15046 struct lpfc_dmabuf *dmabuf; 15047 uint32_t shdr_status, shdr_add_status; 15048 union lpfc_sli4_cfg_shdr *shdr; 15049 uint16_t dmult; 15050 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15051 15052 /* sanity check on queue memory */ 15053 if (!eq) 15054 return -ENODEV; 15055 if (!phba->sli4_hba.pc_sli4_params.supported) 15056 hw_page_size = SLI4_PAGE_SIZE; 15057 15058 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15059 if (!mbox) 15060 return -ENOMEM; 15061 length = (sizeof(struct lpfc_mbx_eq_create) - 15062 sizeof(struct lpfc_sli4_cfg_mhdr)); 15063 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15064 LPFC_MBOX_OPCODE_EQ_CREATE, 15065 length, LPFC_SLI4_MBX_EMBED); 15066 eq_create = &mbox->u.mqe.un.eq_create; 15067 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15068 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15069 eq->page_count); 15070 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15071 LPFC_EQE_SIZE); 15072 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15073 15074 /* Use version 2 of CREATE_EQ if eqav is set */ 15075 if (phba->sli4_hba.pc_sli4_params.eqav) { 15076 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15077 LPFC_Q_CREATE_VERSION_2); 15078 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15079 phba->sli4_hba.pc_sli4_params.eqav); 15080 } 15081 15082 /* don't setup delay multiplier using EQ_CREATE */ 15083 dmult = 0; 15084 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15085 dmult); 15086 switch (eq->entry_count) { 15087 default: 15088 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15089 "0360 Unsupported EQ count. (%d)\n", 15090 eq->entry_count); 15091 if (eq->entry_count < 256) { 15092 status = -EINVAL; 15093 goto out; 15094 } 15095 /* fall through - otherwise default to smallest count */ 15096 case 256: 15097 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15098 LPFC_EQ_CNT_256); 15099 break; 15100 case 512: 15101 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15102 LPFC_EQ_CNT_512); 15103 break; 15104 case 1024: 15105 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15106 LPFC_EQ_CNT_1024); 15107 break; 15108 case 2048: 15109 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15110 LPFC_EQ_CNT_2048); 15111 break; 15112 case 4096: 15113 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15114 LPFC_EQ_CNT_4096); 15115 break; 15116 } 15117 list_for_each_entry(dmabuf, &eq->page_list, list) { 15118 memset(dmabuf->virt, 0, hw_page_size); 15119 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15120 putPaddrLow(dmabuf->phys); 15121 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15122 putPaddrHigh(dmabuf->phys); 15123 } 15124 mbox->vport = phba->pport; 15125 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15126 mbox->ctx_buf = NULL; 15127 mbox->ctx_ndlp = NULL; 15128 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15129 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15130 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15131 if (shdr_status || shdr_add_status || rc) { 15132 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15133 "2500 EQ_CREATE mailbox failed with " 15134 "status x%x add_status x%x, mbx status x%x\n", 15135 shdr_status, shdr_add_status, rc); 15136 status = -ENXIO; 15137 } 15138 eq->type = LPFC_EQ; 15139 eq->subtype = LPFC_NONE; 15140 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15141 if (eq->queue_id == 0xFFFF) 15142 status = -ENXIO; 15143 eq->host_index = 0; 15144 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15145 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15146 out: 15147 mempool_free(mbox, phba->mbox_mem_pool); 15148 return status; 15149 } 15150 15151 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15152 { 15153 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15154 15155 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15156 15157 return 1; 15158 } 15159 15160 /** 15161 * lpfc_cq_create - Create a Completion Queue on the HBA 15162 * @phba: HBA structure that indicates port to create a queue on. 15163 * @cq: The queue structure to use to create the completion queue. 15164 * @eq: The event queue to bind this completion queue to. 15165 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15166 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15167 * 15168 * This function creates a completion queue, as detailed in @wq, on a port, 15169 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15170 * 15171 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15172 * is used to get the entry count and entry size that are necessary to 15173 * determine the number of pages to allocate and use for this queue. The @eq 15174 * is used to indicate which event queue to bind this completion queue to. This 15175 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15176 * completion queue. This function is asynchronous and will wait for the mailbox 15177 * command to finish before continuing. 15178 * 15179 * On success this function will return a zero. If unable to allocate enough 15180 * memory this function will return -ENOMEM. If the queue create mailbox command 15181 * fails this function will return -ENXIO. 15182 **/ 15183 int 15184 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15185 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15186 { 15187 struct lpfc_mbx_cq_create *cq_create; 15188 struct lpfc_dmabuf *dmabuf; 15189 LPFC_MBOXQ_t *mbox; 15190 int rc, length, status = 0; 15191 uint32_t shdr_status, shdr_add_status; 15192 union lpfc_sli4_cfg_shdr *shdr; 15193 15194 /* sanity check on queue memory */ 15195 if (!cq || !eq) 15196 return -ENODEV; 15197 15198 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15199 if (!mbox) 15200 return -ENOMEM; 15201 length = (sizeof(struct lpfc_mbx_cq_create) - 15202 sizeof(struct lpfc_sli4_cfg_mhdr)); 15203 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15204 LPFC_MBOX_OPCODE_CQ_CREATE, 15205 length, LPFC_SLI4_MBX_EMBED); 15206 cq_create = &mbox->u.mqe.un.cq_create; 15207 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15208 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15209 cq->page_count); 15210 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15211 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15212 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15213 phba->sli4_hba.pc_sli4_params.cqv); 15214 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15215 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15216 (cq->page_size / SLI4_PAGE_SIZE)); 15217 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15218 eq->queue_id); 15219 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15220 phba->sli4_hba.pc_sli4_params.cqav); 15221 } else { 15222 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15223 eq->queue_id); 15224 } 15225 switch (cq->entry_count) { 15226 case 2048: 15227 case 4096: 15228 if (phba->sli4_hba.pc_sli4_params.cqv == 15229 LPFC_Q_CREATE_VERSION_2) { 15230 cq_create->u.request.context.lpfc_cq_context_count = 15231 cq->entry_count; 15232 bf_set(lpfc_cq_context_count, 15233 &cq_create->u.request.context, 15234 LPFC_CQ_CNT_WORD7); 15235 break; 15236 } 15237 /* fall through */ 15238 default: 15239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15240 "0361 Unsupported CQ count: " 15241 "entry cnt %d sz %d pg cnt %d\n", 15242 cq->entry_count, cq->entry_size, 15243 cq->page_count); 15244 if (cq->entry_count < 256) { 15245 status = -EINVAL; 15246 goto out; 15247 } 15248 /* fall through - otherwise default to smallest count */ 15249 case 256: 15250 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15251 LPFC_CQ_CNT_256); 15252 break; 15253 case 512: 15254 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15255 LPFC_CQ_CNT_512); 15256 break; 15257 case 1024: 15258 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15259 LPFC_CQ_CNT_1024); 15260 break; 15261 } 15262 list_for_each_entry(dmabuf, &cq->page_list, list) { 15263 memset(dmabuf->virt, 0, cq->page_size); 15264 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15265 putPaddrLow(dmabuf->phys); 15266 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15267 putPaddrHigh(dmabuf->phys); 15268 } 15269 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15270 15271 /* The IOCTL status is embedded in the mailbox subheader. */ 15272 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15273 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15274 if (shdr_status || shdr_add_status || rc) { 15275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15276 "2501 CQ_CREATE mailbox failed with " 15277 "status x%x add_status x%x, mbx status x%x\n", 15278 shdr_status, shdr_add_status, rc); 15279 status = -ENXIO; 15280 goto out; 15281 } 15282 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15283 if (cq->queue_id == 0xFFFF) { 15284 status = -ENXIO; 15285 goto out; 15286 } 15287 /* link the cq onto the parent eq child list */ 15288 list_add_tail(&cq->list, &eq->child_list); 15289 /* Set up completion queue's type and subtype */ 15290 cq->type = type; 15291 cq->subtype = subtype; 15292 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15293 cq->assoc_qid = eq->queue_id; 15294 cq->assoc_qp = eq; 15295 cq->host_index = 0; 15296 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15297 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15298 15299 if (cq->queue_id > phba->sli4_hba.cq_max) 15300 phba->sli4_hba.cq_max = cq->queue_id; 15301 15302 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15303 out: 15304 mempool_free(mbox, phba->mbox_mem_pool); 15305 return status; 15306 } 15307 15308 /** 15309 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15310 * @phba: HBA structure that indicates port to create a queue on. 15311 * @cqp: The queue structure array to use to create the completion queues. 15312 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15313 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15314 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15315 * 15316 * This function creates a set of completion queue, s to support MRQ 15317 * as detailed in @cqp, on a port, 15318 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15319 * 15320 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15321 * is used to get the entry count and entry size that are necessary to 15322 * determine the number of pages to allocate and use for this queue. The @eq 15323 * is used to indicate which event queue to bind this completion queue to. This 15324 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15325 * completion queue. This function is asynchronous and will wait for the mailbox 15326 * command to finish before continuing. 15327 * 15328 * On success this function will return a zero. If unable to allocate enough 15329 * memory this function will return -ENOMEM. If the queue create mailbox command 15330 * fails this function will return -ENXIO. 15331 **/ 15332 int 15333 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15334 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15335 uint32_t subtype) 15336 { 15337 struct lpfc_queue *cq; 15338 struct lpfc_queue *eq; 15339 struct lpfc_mbx_cq_create_set *cq_set; 15340 struct lpfc_dmabuf *dmabuf; 15341 LPFC_MBOXQ_t *mbox; 15342 int rc, length, alloclen, status = 0; 15343 int cnt, idx, numcq, page_idx = 0; 15344 uint32_t shdr_status, shdr_add_status; 15345 union lpfc_sli4_cfg_shdr *shdr; 15346 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15347 15348 /* sanity check on queue memory */ 15349 numcq = phba->cfg_nvmet_mrq; 15350 if (!cqp || !hdwq || !numcq) 15351 return -ENODEV; 15352 15353 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15354 if (!mbox) 15355 return -ENOMEM; 15356 15357 length = sizeof(struct lpfc_mbx_cq_create_set); 15358 length += ((numcq * cqp[0]->page_count) * 15359 sizeof(struct dma_address)); 15360 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15361 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15362 LPFC_SLI4_MBX_NEMBED); 15363 if (alloclen < length) { 15364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15365 "3098 Allocated DMA memory size (%d) is " 15366 "less than the requested DMA memory size " 15367 "(%d)\n", alloclen, length); 15368 status = -ENOMEM; 15369 goto out; 15370 } 15371 cq_set = mbox->sge_array->addr[0]; 15372 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15373 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15374 15375 for (idx = 0; idx < numcq; idx++) { 15376 cq = cqp[idx]; 15377 eq = hdwq[idx].hba_eq; 15378 if (!cq || !eq) { 15379 status = -ENOMEM; 15380 goto out; 15381 } 15382 if (!phba->sli4_hba.pc_sli4_params.supported) 15383 hw_page_size = cq->page_size; 15384 15385 switch (idx) { 15386 case 0: 15387 bf_set(lpfc_mbx_cq_create_set_page_size, 15388 &cq_set->u.request, 15389 (hw_page_size / SLI4_PAGE_SIZE)); 15390 bf_set(lpfc_mbx_cq_create_set_num_pages, 15391 &cq_set->u.request, cq->page_count); 15392 bf_set(lpfc_mbx_cq_create_set_evt, 15393 &cq_set->u.request, 1); 15394 bf_set(lpfc_mbx_cq_create_set_valid, 15395 &cq_set->u.request, 1); 15396 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15397 &cq_set->u.request, 0); 15398 bf_set(lpfc_mbx_cq_create_set_num_cq, 15399 &cq_set->u.request, numcq); 15400 bf_set(lpfc_mbx_cq_create_set_autovalid, 15401 &cq_set->u.request, 15402 phba->sli4_hba.pc_sli4_params.cqav); 15403 switch (cq->entry_count) { 15404 case 2048: 15405 case 4096: 15406 if (phba->sli4_hba.pc_sli4_params.cqv == 15407 LPFC_Q_CREATE_VERSION_2) { 15408 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15409 &cq_set->u.request, 15410 cq->entry_count); 15411 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15412 &cq_set->u.request, 15413 LPFC_CQ_CNT_WORD7); 15414 break; 15415 } 15416 /* fall through */ 15417 default: 15418 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15419 "3118 Bad CQ count. (%d)\n", 15420 cq->entry_count); 15421 if (cq->entry_count < 256) { 15422 status = -EINVAL; 15423 goto out; 15424 } 15425 /* fall through - otherwise default to smallest */ 15426 case 256: 15427 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15428 &cq_set->u.request, LPFC_CQ_CNT_256); 15429 break; 15430 case 512: 15431 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15432 &cq_set->u.request, LPFC_CQ_CNT_512); 15433 break; 15434 case 1024: 15435 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15436 &cq_set->u.request, LPFC_CQ_CNT_1024); 15437 break; 15438 } 15439 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15440 &cq_set->u.request, eq->queue_id); 15441 break; 15442 case 1: 15443 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15444 &cq_set->u.request, eq->queue_id); 15445 break; 15446 case 2: 15447 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15448 &cq_set->u.request, eq->queue_id); 15449 break; 15450 case 3: 15451 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15452 &cq_set->u.request, eq->queue_id); 15453 break; 15454 case 4: 15455 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15456 &cq_set->u.request, eq->queue_id); 15457 break; 15458 case 5: 15459 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15460 &cq_set->u.request, eq->queue_id); 15461 break; 15462 case 6: 15463 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15464 &cq_set->u.request, eq->queue_id); 15465 break; 15466 case 7: 15467 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15468 &cq_set->u.request, eq->queue_id); 15469 break; 15470 case 8: 15471 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15472 &cq_set->u.request, eq->queue_id); 15473 break; 15474 case 9: 15475 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15476 &cq_set->u.request, eq->queue_id); 15477 break; 15478 case 10: 15479 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15480 &cq_set->u.request, eq->queue_id); 15481 break; 15482 case 11: 15483 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15484 &cq_set->u.request, eq->queue_id); 15485 break; 15486 case 12: 15487 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15488 &cq_set->u.request, eq->queue_id); 15489 break; 15490 case 13: 15491 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15492 &cq_set->u.request, eq->queue_id); 15493 break; 15494 case 14: 15495 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15496 &cq_set->u.request, eq->queue_id); 15497 break; 15498 case 15: 15499 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15500 &cq_set->u.request, eq->queue_id); 15501 break; 15502 } 15503 15504 /* link the cq onto the parent eq child list */ 15505 list_add_tail(&cq->list, &eq->child_list); 15506 /* Set up completion queue's type and subtype */ 15507 cq->type = type; 15508 cq->subtype = subtype; 15509 cq->assoc_qid = eq->queue_id; 15510 cq->assoc_qp = eq; 15511 cq->host_index = 0; 15512 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15513 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15514 cq->entry_count); 15515 cq->chann = idx; 15516 15517 rc = 0; 15518 list_for_each_entry(dmabuf, &cq->page_list, list) { 15519 memset(dmabuf->virt, 0, hw_page_size); 15520 cnt = page_idx + dmabuf->buffer_tag; 15521 cq_set->u.request.page[cnt].addr_lo = 15522 putPaddrLow(dmabuf->phys); 15523 cq_set->u.request.page[cnt].addr_hi = 15524 putPaddrHigh(dmabuf->phys); 15525 rc++; 15526 } 15527 page_idx += rc; 15528 } 15529 15530 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15531 15532 /* The IOCTL status is embedded in the mailbox subheader. */ 15533 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15534 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15535 if (shdr_status || shdr_add_status || rc) { 15536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15537 "3119 CQ_CREATE_SET mailbox failed with " 15538 "status x%x add_status x%x, mbx status x%x\n", 15539 shdr_status, shdr_add_status, rc); 15540 status = -ENXIO; 15541 goto out; 15542 } 15543 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15544 if (rc == 0xFFFF) { 15545 status = -ENXIO; 15546 goto out; 15547 } 15548 15549 for (idx = 0; idx < numcq; idx++) { 15550 cq = cqp[idx]; 15551 cq->queue_id = rc + idx; 15552 if (cq->queue_id > phba->sli4_hba.cq_max) 15553 phba->sli4_hba.cq_max = cq->queue_id; 15554 } 15555 15556 out: 15557 lpfc_sli4_mbox_cmd_free(phba, mbox); 15558 return status; 15559 } 15560 15561 /** 15562 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15563 * @phba: HBA structure that indicates port to create a queue on. 15564 * @mq: The queue structure to use to create the mailbox queue. 15565 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15566 * @cq: The completion queue to associate with this cq. 15567 * 15568 * This function provides failback (fb) functionality when the 15569 * mq_create_ext fails on older FW generations. It's purpose is identical 15570 * to mq_create_ext otherwise. 15571 * 15572 * This routine cannot fail as all attributes were previously accessed and 15573 * initialized in mq_create_ext. 15574 **/ 15575 static void 15576 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15577 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15578 { 15579 struct lpfc_mbx_mq_create *mq_create; 15580 struct lpfc_dmabuf *dmabuf; 15581 int length; 15582 15583 length = (sizeof(struct lpfc_mbx_mq_create) - 15584 sizeof(struct lpfc_sli4_cfg_mhdr)); 15585 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15586 LPFC_MBOX_OPCODE_MQ_CREATE, 15587 length, LPFC_SLI4_MBX_EMBED); 15588 mq_create = &mbox->u.mqe.un.mq_create; 15589 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15590 mq->page_count); 15591 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15592 cq->queue_id); 15593 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15594 switch (mq->entry_count) { 15595 case 16: 15596 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15597 LPFC_MQ_RING_SIZE_16); 15598 break; 15599 case 32: 15600 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15601 LPFC_MQ_RING_SIZE_32); 15602 break; 15603 case 64: 15604 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15605 LPFC_MQ_RING_SIZE_64); 15606 break; 15607 case 128: 15608 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15609 LPFC_MQ_RING_SIZE_128); 15610 break; 15611 } 15612 list_for_each_entry(dmabuf, &mq->page_list, list) { 15613 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15614 putPaddrLow(dmabuf->phys); 15615 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15616 putPaddrHigh(dmabuf->phys); 15617 } 15618 } 15619 15620 /** 15621 * lpfc_mq_create - Create a mailbox Queue on the HBA 15622 * @phba: HBA structure that indicates port to create a queue on. 15623 * @mq: The queue structure to use to create the mailbox queue. 15624 * @cq: The completion queue to associate with this cq. 15625 * @subtype: The queue's subtype. 15626 * 15627 * This function creates a mailbox queue, as detailed in @mq, on a port, 15628 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15629 * 15630 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15631 * is used to get the entry count and entry size that are necessary to 15632 * determine the number of pages to allocate and use for this queue. This 15633 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15634 * mailbox queue. This function is asynchronous and will wait for the mailbox 15635 * command to finish before continuing. 15636 * 15637 * On success this function will return a zero. If unable to allocate enough 15638 * memory this function will return -ENOMEM. If the queue create mailbox command 15639 * fails this function will return -ENXIO. 15640 **/ 15641 int32_t 15642 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15643 struct lpfc_queue *cq, uint32_t subtype) 15644 { 15645 struct lpfc_mbx_mq_create *mq_create; 15646 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15647 struct lpfc_dmabuf *dmabuf; 15648 LPFC_MBOXQ_t *mbox; 15649 int rc, length, status = 0; 15650 uint32_t shdr_status, shdr_add_status; 15651 union lpfc_sli4_cfg_shdr *shdr; 15652 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15653 15654 /* sanity check on queue memory */ 15655 if (!mq || !cq) 15656 return -ENODEV; 15657 if (!phba->sli4_hba.pc_sli4_params.supported) 15658 hw_page_size = SLI4_PAGE_SIZE; 15659 15660 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15661 if (!mbox) 15662 return -ENOMEM; 15663 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15664 sizeof(struct lpfc_sli4_cfg_mhdr)); 15665 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15666 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15667 length, LPFC_SLI4_MBX_EMBED); 15668 15669 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15670 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15671 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15672 &mq_create_ext->u.request, mq->page_count); 15673 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15674 &mq_create_ext->u.request, 1); 15675 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15676 &mq_create_ext->u.request, 1); 15677 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15678 &mq_create_ext->u.request, 1); 15679 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15680 &mq_create_ext->u.request, 1); 15681 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15682 &mq_create_ext->u.request, 1); 15683 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15684 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15685 phba->sli4_hba.pc_sli4_params.mqv); 15686 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15687 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15688 cq->queue_id); 15689 else 15690 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15691 cq->queue_id); 15692 switch (mq->entry_count) { 15693 default: 15694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15695 "0362 Unsupported MQ count. (%d)\n", 15696 mq->entry_count); 15697 if (mq->entry_count < 16) { 15698 status = -EINVAL; 15699 goto out; 15700 } 15701 /* fall through - otherwise default to smallest count */ 15702 case 16: 15703 bf_set(lpfc_mq_context_ring_size, 15704 &mq_create_ext->u.request.context, 15705 LPFC_MQ_RING_SIZE_16); 15706 break; 15707 case 32: 15708 bf_set(lpfc_mq_context_ring_size, 15709 &mq_create_ext->u.request.context, 15710 LPFC_MQ_RING_SIZE_32); 15711 break; 15712 case 64: 15713 bf_set(lpfc_mq_context_ring_size, 15714 &mq_create_ext->u.request.context, 15715 LPFC_MQ_RING_SIZE_64); 15716 break; 15717 case 128: 15718 bf_set(lpfc_mq_context_ring_size, 15719 &mq_create_ext->u.request.context, 15720 LPFC_MQ_RING_SIZE_128); 15721 break; 15722 } 15723 list_for_each_entry(dmabuf, &mq->page_list, list) { 15724 memset(dmabuf->virt, 0, hw_page_size); 15725 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15726 putPaddrLow(dmabuf->phys); 15727 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15728 putPaddrHigh(dmabuf->phys); 15729 } 15730 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15731 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15732 &mq_create_ext->u.response); 15733 if (rc != MBX_SUCCESS) { 15734 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15735 "2795 MQ_CREATE_EXT failed with " 15736 "status x%x. Failback to MQ_CREATE.\n", 15737 rc); 15738 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15739 mq_create = &mbox->u.mqe.un.mq_create; 15740 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15741 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15742 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15743 &mq_create->u.response); 15744 } 15745 15746 /* The IOCTL status is embedded in the mailbox subheader. */ 15747 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15748 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15749 if (shdr_status || shdr_add_status || rc) { 15750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15751 "2502 MQ_CREATE mailbox failed with " 15752 "status x%x add_status x%x, mbx status x%x\n", 15753 shdr_status, shdr_add_status, rc); 15754 status = -ENXIO; 15755 goto out; 15756 } 15757 if (mq->queue_id == 0xFFFF) { 15758 status = -ENXIO; 15759 goto out; 15760 } 15761 mq->type = LPFC_MQ; 15762 mq->assoc_qid = cq->queue_id; 15763 mq->subtype = subtype; 15764 mq->host_index = 0; 15765 mq->hba_index = 0; 15766 15767 /* link the mq onto the parent cq child list */ 15768 list_add_tail(&mq->list, &cq->child_list); 15769 out: 15770 mempool_free(mbox, phba->mbox_mem_pool); 15771 return status; 15772 } 15773 15774 /** 15775 * lpfc_wq_create - Create a Work Queue on the HBA 15776 * @phba: HBA structure that indicates port to create a queue on. 15777 * @wq: The queue structure to use to create the work queue. 15778 * @cq: The completion queue to bind this work queue to. 15779 * @subtype: The subtype of the work queue indicating its functionality. 15780 * 15781 * This function creates a work queue, as detailed in @wq, on a port, described 15782 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15783 * 15784 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15785 * is used to get the entry count and entry size that are necessary to 15786 * determine the number of pages to allocate and use for this queue. The @cq 15787 * is used to indicate which completion queue to bind this work queue to. This 15788 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15789 * work queue. This function is asynchronous and will wait for the mailbox 15790 * command to finish before continuing. 15791 * 15792 * On success this function will return a zero. If unable to allocate enough 15793 * memory this function will return -ENOMEM. If the queue create mailbox command 15794 * fails this function will return -ENXIO. 15795 **/ 15796 int 15797 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15798 struct lpfc_queue *cq, uint32_t subtype) 15799 { 15800 struct lpfc_mbx_wq_create *wq_create; 15801 struct lpfc_dmabuf *dmabuf; 15802 LPFC_MBOXQ_t *mbox; 15803 int rc, length, status = 0; 15804 uint32_t shdr_status, shdr_add_status; 15805 union lpfc_sli4_cfg_shdr *shdr; 15806 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15807 struct dma_address *page; 15808 void __iomem *bar_memmap_p; 15809 uint32_t db_offset; 15810 uint16_t pci_barset; 15811 uint8_t dpp_barset; 15812 uint32_t dpp_offset; 15813 uint8_t wq_create_version; 15814 #ifdef CONFIG_X86 15815 unsigned long pg_addr; 15816 #endif 15817 15818 /* sanity check on queue memory */ 15819 if (!wq || !cq) 15820 return -ENODEV; 15821 if (!phba->sli4_hba.pc_sli4_params.supported) 15822 hw_page_size = wq->page_size; 15823 15824 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15825 if (!mbox) 15826 return -ENOMEM; 15827 length = (sizeof(struct lpfc_mbx_wq_create) - 15828 sizeof(struct lpfc_sli4_cfg_mhdr)); 15829 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15830 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15831 length, LPFC_SLI4_MBX_EMBED); 15832 wq_create = &mbox->u.mqe.un.wq_create; 15833 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15834 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15835 wq->page_count); 15836 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15837 cq->queue_id); 15838 15839 /* wqv is the earliest version supported, NOT the latest */ 15840 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15841 phba->sli4_hba.pc_sli4_params.wqv); 15842 15843 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15844 (wq->page_size > SLI4_PAGE_SIZE)) 15845 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15846 else 15847 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15848 15849 15850 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15851 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15852 else 15853 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15854 15855 switch (wq_create_version) { 15856 case LPFC_Q_CREATE_VERSION_1: 15857 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15858 wq->entry_count); 15859 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15860 LPFC_Q_CREATE_VERSION_1); 15861 15862 switch (wq->entry_size) { 15863 default: 15864 case 64: 15865 bf_set(lpfc_mbx_wq_create_wqe_size, 15866 &wq_create->u.request_1, 15867 LPFC_WQ_WQE_SIZE_64); 15868 break; 15869 case 128: 15870 bf_set(lpfc_mbx_wq_create_wqe_size, 15871 &wq_create->u.request_1, 15872 LPFC_WQ_WQE_SIZE_128); 15873 break; 15874 } 15875 /* Request DPP by default */ 15876 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15877 bf_set(lpfc_mbx_wq_create_page_size, 15878 &wq_create->u.request_1, 15879 (wq->page_size / SLI4_PAGE_SIZE)); 15880 page = wq_create->u.request_1.page; 15881 break; 15882 default: 15883 page = wq_create->u.request.page; 15884 break; 15885 } 15886 15887 list_for_each_entry(dmabuf, &wq->page_list, list) { 15888 memset(dmabuf->virt, 0, hw_page_size); 15889 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15890 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15891 } 15892 15893 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15894 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15895 15896 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15897 /* The IOCTL status is embedded in the mailbox subheader. */ 15898 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15899 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15900 if (shdr_status || shdr_add_status || rc) { 15901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15902 "2503 WQ_CREATE mailbox failed with " 15903 "status x%x add_status x%x, mbx status x%x\n", 15904 shdr_status, shdr_add_status, rc); 15905 status = -ENXIO; 15906 goto out; 15907 } 15908 15909 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15910 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15911 &wq_create->u.response); 15912 else 15913 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15914 &wq_create->u.response_1); 15915 15916 if (wq->queue_id == 0xFFFF) { 15917 status = -ENXIO; 15918 goto out; 15919 } 15920 15921 wq->db_format = LPFC_DB_LIST_FORMAT; 15922 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15923 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15924 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15925 &wq_create->u.response); 15926 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15927 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15929 "3265 WQ[%d] doorbell format " 15930 "not supported: x%x\n", 15931 wq->queue_id, wq->db_format); 15932 status = -EINVAL; 15933 goto out; 15934 } 15935 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15936 &wq_create->u.response); 15937 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15938 pci_barset); 15939 if (!bar_memmap_p) { 15940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15941 "3263 WQ[%d] failed to memmap " 15942 "pci barset:x%x\n", 15943 wq->queue_id, pci_barset); 15944 status = -ENOMEM; 15945 goto out; 15946 } 15947 db_offset = wq_create->u.response.doorbell_offset; 15948 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15949 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15950 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15951 "3252 WQ[%d] doorbell offset " 15952 "not supported: x%x\n", 15953 wq->queue_id, db_offset); 15954 status = -EINVAL; 15955 goto out; 15956 } 15957 wq->db_regaddr = bar_memmap_p + db_offset; 15958 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15959 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15960 "format:x%x\n", wq->queue_id, 15961 pci_barset, db_offset, wq->db_format); 15962 } else 15963 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15964 } else { 15965 /* Check if DPP was honored by the firmware */ 15966 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15967 &wq_create->u.response_1); 15968 if (wq->dpp_enable) { 15969 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15970 &wq_create->u.response_1); 15971 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15972 pci_barset); 15973 if (!bar_memmap_p) { 15974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15975 "3267 WQ[%d] failed to memmap " 15976 "pci barset:x%x\n", 15977 wq->queue_id, pci_barset); 15978 status = -ENOMEM; 15979 goto out; 15980 } 15981 db_offset = wq_create->u.response_1.doorbell_offset; 15982 wq->db_regaddr = bar_memmap_p + db_offset; 15983 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15984 &wq_create->u.response_1); 15985 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15986 &wq_create->u.response_1); 15987 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15988 dpp_barset); 15989 if (!bar_memmap_p) { 15990 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15991 "3268 WQ[%d] failed to memmap " 15992 "pci barset:x%x\n", 15993 wq->queue_id, dpp_barset); 15994 status = -ENOMEM; 15995 goto out; 15996 } 15997 dpp_offset = wq_create->u.response_1.dpp_offset; 15998 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15999 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16000 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16001 "dpp_id:x%x dpp_barset:x%x " 16002 "dpp_offset:x%x\n", 16003 wq->queue_id, pci_barset, db_offset, 16004 wq->dpp_id, dpp_barset, dpp_offset); 16005 16006 #ifdef CONFIG_X86 16007 /* Enable combined writes for DPP aperture */ 16008 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16009 rc = set_memory_wc(pg_addr, 1); 16010 if (rc) { 16011 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16012 "3272 Cannot setup Combined " 16013 "Write on WQ[%d] - disable DPP\n", 16014 wq->queue_id); 16015 phba->cfg_enable_dpp = 0; 16016 } 16017 #else 16018 phba->cfg_enable_dpp = 0; 16019 #endif 16020 } else 16021 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16022 } 16023 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16024 if (wq->pring == NULL) { 16025 status = -ENOMEM; 16026 goto out; 16027 } 16028 wq->type = LPFC_WQ; 16029 wq->assoc_qid = cq->queue_id; 16030 wq->subtype = subtype; 16031 wq->host_index = 0; 16032 wq->hba_index = 0; 16033 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16034 16035 /* link the wq onto the parent cq child list */ 16036 list_add_tail(&wq->list, &cq->child_list); 16037 out: 16038 mempool_free(mbox, phba->mbox_mem_pool); 16039 return status; 16040 } 16041 16042 /** 16043 * lpfc_rq_create - Create a Receive Queue on the HBA 16044 * @phba: HBA structure that indicates port to create a queue on. 16045 * @hrq: The queue structure to use to create the header receive queue. 16046 * @drq: The queue structure to use to create the data receive queue. 16047 * @cq: The completion queue to bind this work queue to. 16048 * @subtype: The subtype of the work queue indicating its functionality. 16049 * 16050 * This function creates a receive buffer queue pair , as detailed in @hrq and 16051 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16052 * to the HBA. 16053 * 16054 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16055 * struct is used to get the entry count that is necessary to determine the 16056 * number of pages to use for this queue. The @cq is used to indicate which 16057 * completion queue to bind received buffers that are posted to these queues to. 16058 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16059 * receive queue pair. This function is asynchronous and will wait for the 16060 * mailbox command to finish before continuing. 16061 * 16062 * On success this function will return a zero. If unable to allocate enough 16063 * memory this function will return -ENOMEM. If the queue create mailbox command 16064 * fails this function will return -ENXIO. 16065 **/ 16066 int 16067 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16068 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16069 { 16070 struct lpfc_mbx_rq_create *rq_create; 16071 struct lpfc_dmabuf *dmabuf; 16072 LPFC_MBOXQ_t *mbox; 16073 int rc, length, status = 0; 16074 uint32_t shdr_status, shdr_add_status; 16075 union lpfc_sli4_cfg_shdr *shdr; 16076 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16077 void __iomem *bar_memmap_p; 16078 uint32_t db_offset; 16079 uint16_t pci_barset; 16080 16081 /* sanity check on queue memory */ 16082 if (!hrq || !drq || !cq) 16083 return -ENODEV; 16084 if (!phba->sli4_hba.pc_sli4_params.supported) 16085 hw_page_size = SLI4_PAGE_SIZE; 16086 16087 if (hrq->entry_count != drq->entry_count) 16088 return -EINVAL; 16089 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16090 if (!mbox) 16091 return -ENOMEM; 16092 length = (sizeof(struct lpfc_mbx_rq_create) - 16093 sizeof(struct lpfc_sli4_cfg_mhdr)); 16094 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16095 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16096 length, LPFC_SLI4_MBX_EMBED); 16097 rq_create = &mbox->u.mqe.un.rq_create; 16098 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16099 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16100 phba->sli4_hba.pc_sli4_params.rqv); 16101 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16102 bf_set(lpfc_rq_context_rqe_count_1, 16103 &rq_create->u.request.context, 16104 hrq->entry_count); 16105 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16106 bf_set(lpfc_rq_context_rqe_size, 16107 &rq_create->u.request.context, 16108 LPFC_RQE_SIZE_8); 16109 bf_set(lpfc_rq_context_page_size, 16110 &rq_create->u.request.context, 16111 LPFC_RQ_PAGE_SIZE_4096); 16112 } else { 16113 switch (hrq->entry_count) { 16114 default: 16115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16116 "2535 Unsupported RQ count. (%d)\n", 16117 hrq->entry_count); 16118 if (hrq->entry_count < 512) { 16119 status = -EINVAL; 16120 goto out; 16121 } 16122 /* fall through - otherwise default to smallest count */ 16123 case 512: 16124 bf_set(lpfc_rq_context_rqe_count, 16125 &rq_create->u.request.context, 16126 LPFC_RQ_RING_SIZE_512); 16127 break; 16128 case 1024: 16129 bf_set(lpfc_rq_context_rqe_count, 16130 &rq_create->u.request.context, 16131 LPFC_RQ_RING_SIZE_1024); 16132 break; 16133 case 2048: 16134 bf_set(lpfc_rq_context_rqe_count, 16135 &rq_create->u.request.context, 16136 LPFC_RQ_RING_SIZE_2048); 16137 break; 16138 case 4096: 16139 bf_set(lpfc_rq_context_rqe_count, 16140 &rq_create->u.request.context, 16141 LPFC_RQ_RING_SIZE_4096); 16142 break; 16143 } 16144 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16145 LPFC_HDR_BUF_SIZE); 16146 } 16147 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16148 cq->queue_id); 16149 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16150 hrq->page_count); 16151 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16152 memset(dmabuf->virt, 0, hw_page_size); 16153 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16154 putPaddrLow(dmabuf->phys); 16155 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16156 putPaddrHigh(dmabuf->phys); 16157 } 16158 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16159 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16160 16161 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16162 /* The IOCTL status is embedded in the mailbox subheader. */ 16163 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16164 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16165 if (shdr_status || shdr_add_status || rc) { 16166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16167 "2504 RQ_CREATE mailbox failed with " 16168 "status x%x add_status x%x, mbx status x%x\n", 16169 shdr_status, shdr_add_status, rc); 16170 status = -ENXIO; 16171 goto out; 16172 } 16173 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16174 if (hrq->queue_id == 0xFFFF) { 16175 status = -ENXIO; 16176 goto out; 16177 } 16178 16179 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16180 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16181 &rq_create->u.response); 16182 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16183 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16185 "3262 RQ [%d] doorbell format not " 16186 "supported: x%x\n", hrq->queue_id, 16187 hrq->db_format); 16188 status = -EINVAL; 16189 goto out; 16190 } 16191 16192 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16193 &rq_create->u.response); 16194 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16195 if (!bar_memmap_p) { 16196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16197 "3269 RQ[%d] failed to memmap pci " 16198 "barset:x%x\n", hrq->queue_id, 16199 pci_barset); 16200 status = -ENOMEM; 16201 goto out; 16202 } 16203 16204 db_offset = rq_create->u.response.doorbell_offset; 16205 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16206 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16208 "3270 RQ[%d] doorbell offset not " 16209 "supported: x%x\n", hrq->queue_id, 16210 db_offset); 16211 status = -EINVAL; 16212 goto out; 16213 } 16214 hrq->db_regaddr = bar_memmap_p + db_offset; 16215 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16216 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16217 "format:x%x\n", hrq->queue_id, pci_barset, 16218 db_offset, hrq->db_format); 16219 } else { 16220 hrq->db_format = LPFC_DB_RING_FORMAT; 16221 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16222 } 16223 hrq->type = LPFC_HRQ; 16224 hrq->assoc_qid = cq->queue_id; 16225 hrq->subtype = subtype; 16226 hrq->host_index = 0; 16227 hrq->hba_index = 0; 16228 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16229 16230 /* now create the data queue */ 16231 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16232 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16233 length, LPFC_SLI4_MBX_EMBED); 16234 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16235 phba->sli4_hba.pc_sli4_params.rqv); 16236 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16237 bf_set(lpfc_rq_context_rqe_count_1, 16238 &rq_create->u.request.context, hrq->entry_count); 16239 if (subtype == LPFC_NVMET) 16240 rq_create->u.request.context.buffer_size = 16241 LPFC_NVMET_DATA_BUF_SIZE; 16242 else 16243 rq_create->u.request.context.buffer_size = 16244 LPFC_DATA_BUF_SIZE; 16245 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16246 LPFC_RQE_SIZE_8); 16247 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16248 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16249 } else { 16250 switch (drq->entry_count) { 16251 default: 16252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16253 "2536 Unsupported RQ count. (%d)\n", 16254 drq->entry_count); 16255 if (drq->entry_count < 512) { 16256 status = -EINVAL; 16257 goto out; 16258 } 16259 /* fall through - otherwise default to smallest count */ 16260 case 512: 16261 bf_set(lpfc_rq_context_rqe_count, 16262 &rq_create->u.request.context, 16263 LPFC_RQ_RING_SIZE_512); 16264 break; 16265 case 1024: 16266 bf_set(lpfc_rq_context_rqe_count, 16267 &rq_create->u.request.context, 16268 LPFC_RQ_RING_SIZE_1024); 16269 break; 16270 case 2048: 16271 bf_set(lpfc_rq_context_rqe_count, 16272 &rq_create->u.request.context, 16273 LPFC_RQ_RING_SIZE_2048); 16274 break; 16275 case 4096: 16276 bf_set(lpfc_rq_context_rqe_count, 16277 &rq_create->u.request.context, 16278 LPFC_RQ_RING_SIZE_4096); 16279 break; 16280 } 16281 if (subtype == LPFC_NVMET) 16282 bf_set(lpfc_rq_context_buf_size, 16283 &rq_create->u.request.context, 16284 LPFC_NVMET_DATA_BUF_SIZE); 16285 else 16286 bf_set(lpfc_rq_context_buf_size, 16287 &rq_create->u.request.context, 16288 LPFC_DATA_BUF_SIZE); 16289 } 16290 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16291 cq->queue_id); 16292 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16293 drq->page_count); 16294 list_for_each_entry(dmabuf, &drq->page_list, list) { 16295 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16296 putPaddrLow(dmabuf->phys); 16297 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16298 putPaddrHigh(dmabuf->phys); 16299 } 16300 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16301 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16302 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16303 /* The IOCTL status is embedded in the mailbox subheader. */ 16304 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16305 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16306 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16307 if (shdr_status || shdr_add_status || rc) { 16308 status = -ENXIO; 16309 goto out; 16310 } 16311 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16312 if (drq->queue_id == 0xFFFF) { 16313 status = -ENXIO; 16314 goto out; 16315 } 16316 drq->type = LPFC_DRQ; 16317 drq->assoc_qid = cq->queue_id; 16318 drq->subtype = subtype; 16319 drq->host_index = 0; 16320 drq->hba_index = 0; 16321 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16322 16323 /* link the header and data RQs onto the parent cq child list */ 16324 list_add_tail(&hrq->list, &cq->child_list); 16325 list_add_tail(&drq->list, &cq->child_list); 16326 16327 out: 16328 mempool_free(mbox, phba->mbox_mem_pool); 16329 return status; 16330 } 16331 16332 /** 16333 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16334 * @phba: HBA structure that indicates port to create a queue on. 16335 * @hrqp: The queue structure array to use to create the header receive queues. 16336 * @drqp: The queue structure array to use to create the data receive queues. 16337 * @cqp: The completion queue array to bind these receive queues to. 16338 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16339 * 16340 * This function creates a receive buffer queue pair , as detailed in @hrq and 16341 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16342 * to the HBA. 16343 * 16344 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16345 * struct is used to get the entry count that is necessary to determine the 16346 * number of pages to use for this queue. The @cq is used to indicate which 16347 * completion queue to bind received buffers that are posted to these queues to. 16348 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16349 * receive queue pair. This function is asynchronous and will wait for the 16350 * mailbox command to finish before continuing. 16351 * 16352 * On success this function will return a zero. If unable to allocate enough 16353 * memory this function will return -ENOMEM. If the queue create mailbox command 16354 * fails this function will return -ENXIO. 16355 **/ 16356 int 16357 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16358 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16359 uint32_t subtype) 16360 { 16361 struct lpfc_queue *hrq, *drq, *cq; 16362 struct lpfc_mbx_rq_create_v2 *rq_create; 16363 struct lpfc_dmabuf *dmabuf; 16364 LPFC_MBOXQ_t *mbox; 16365 int rc, length, alloclen, status = 0; 16366 int cnt, idx, numrq, page_idx = 0; 16367 uint32_t shdr_status, shdr_add_status; 16368 union lpfc_sli4_cfg_shdr *shdr; 16369 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16370 16371 numrq = phba->cfg_nvmet_mrq; 16372 /* sanity check on array memory */ 16373 if (!hrqp || !drqp || !cqp || !numrq) 16374 return -ENODEV; 16375 if (!phba->sli4_hba.pc_sli4_params.supported) 16376 hw_page_size = SLI4_PAGE_SIZE; 16377 16378 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16379 if (!mbox) 16380 return -ENOMEM; 16381 16382 length = sizeof(struct lpfc_mbx_rq_create_v2); 16383 length += ((2 * numrq * hrqp[0]->page_count) * 16384 sizeof(struct dma_address)); 16385 16386 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16387 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16388 LPFC_SLI4_MBX_NEMBED); 16389 if (alloclen < length) { 16390 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16391 "3099 Allocated DMA memory size (%d) is " 16392 "less than the requested DMA memory size " 16393 "(%d)\n", alloclen, length); 16394 status = -ENOMEM; 16395 goto out; 16396 } 16397 16398 16399 16400 rq_create = mbox->sge_array->addr[0]; 16401 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16402 16403 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16404 cnt = 0; 16405 16406 for (idx = 0; idx < numrq; idx++) { 16407 hrq = hrqp[idx]; 16408 drq = drqp[idx]; 16409 cq = cqp[idx]; 16410 16411 /* sanity check on queue memory */ 16412 if (!hrq || !drq || !cq) { 16413 status = -ENODEV; 16414 goto out; 16415 } 16416 16417 if (hrq->entry_count != drq->entry_count) { 16418 status = -EINVAL; 16419 goto out; 16420 } 16421 16422 if (idx == 0) { 16423 bf_set(lpfc_mbx_rq_create_num_pages, 16424 &rq_create->u.request, 16425 hrq->page_count); 16426 bf_set(lpfc_mbx_rq_create_rq_cnt, 16427 &rq_create->u.request, (numrq * 2)); 16428 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16429 1); 16430 bf_set(lpfc_rq_context_base_cq, 16431 &rq_create->u.request.context, 16432 cq->queue_id); 16433 bf_set(lpfc_rq_context_data_size, 16434 &rq_create->u.request.context, 16435 LPFC_NVMET_DATA_BUF_SIZE); 16436 bf_set(lpfc_rq_context_hdr_size, 16437 &rq_create->u.request.context, 16438 LPFC_HDR_BUF_SIZE); 16439 bf_set(lpfc_rq_context_rqe_count_1, 16440 &rq_create->u.request.context, 16441 hrq->entry_count); 16442 bf_set(lpfc_rq_context_rqe_size, 16443 &rq_create->u.request.context, 16444 LPFC_RQE_SIZE_8); 16445 bf_set(lpfc_rq_context_page_size, 16446 &rq_create->u.request.context, 16447 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16448 } 16449 rc = 0; 16450 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16451 memset(dmabuf->virt, 0, hw_page_size); 16452 cnt = page_idx + dmabuf->buffer_tag; 16453 rq_create->u.request.page[cnt].addr_lo = 16454 putPaddrLow(dmabuf->phys); 16455 rq_create->u.request.page[cnt].addr_hi = 16456 putPaddrHigh(dmabuf->phys); 16457 rc++; 16458 } 16459 page_idx += rc; 16460 16461 rc = 0; 16462 list_for_each_entry(dmabuf, &drq->page_list, list) { 16463 memset(dmabuf->virt, 0, hw_page_size); 16464 cnt = page_idx + dmabuf->buffer_tag; 16465 rq_create->u.request.page[cnt].addr_lo = 16466 putPaddrLow(dmabuf->phys); 16467 rq_create->u.request.page[cnt].addr_hi = 16468 putPaddrHigh(dmabuf->phys); 16469 rc++; 16470 } 16471 page_idx += rc; 16472 16473 hrq->db_format = LPFC_DB_RING_FORMAT; 16474 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16475 hrq->type = LPFC_HRQ; 16476 hrq->assoc_qid = cq->queue_id; 16477 hrq->subtype = subtype; 16478 hrq->host_index = 0; 16479 hrq->hba_index = 0; 16480 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16481 16482 drq->db_format = LPFC_DB_RING_FORMAT; 16483 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16484 drq->type = LPFC_DRQ; 16485 drq->assoc_qid = cq->queue_id; 16486 drq->subtype = subtype; 16487 drq->host_index = 0; 16488 drq->hba_index = 0; 16489 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16490 16491 list_add_tail(&hrq->list, &cq->child_list); 16492 list_add_tail(&drq->list, &cq->child_list); 16493 } 16494 16495 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16496 /* The IOCTL status is embedded in the mailbox subheader. */ 16497 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16498 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16499 if (shdr_status || shdr_add_status || rc) { 16500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16501 "3120 RQ_CREATE mailbox failed with " 16502 "status x%x add_status x%x, mbx status x%x\n", 16503 shdr_status, shdr_add_status, rc); 16504 status = -ENXIO; 16505 goto out; 16506 } 16507 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16508 if (rc == 0xFFFF) { 16509 status = -ENXIO; 16510 goto out; 16511 } 16512 16513 /* Initialize all RQs with associated queue id */ 16514 for (idx = 0; idx < numrq; idx++) { 16515 hrq = hrqp[idx]; 16516 hrq->queue_id = rc + (2 * idx); 16517 drq = drqp[idx]; 16518 drq->queue_id = rc + (2 * idx) + 1; 16519 } 16520 16521 out: 16522 lpfc_sli4_mbox_cmd_free(phba, mbox); 16523 return status; 16524 } 16525 16526 /** 16527 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16528 * @phba: HBA structure that indicates port to destroy a queue on. 16529 * @eq: The queue structure associated with the queue to destroy. 16530 * 16531 * This function destroys a queue, as detailed in @eq by sending an mailbox 16532 * command, specific to the type of queue, to the HBA. 16533 * 16534 * The @eq struct is used to get the queue ID of the queue to destroy. 16535 * 16536 * On success this function will return a zero. If the queue destroy mailbox 16537 * command fails this function will return -ENXIO. 16538 **/ 16539 int 16540 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16541 { 16542 LPFC_MBOXQ_t *mbox; 16543 int rc, length, status = 0; 16544 uint32_t shdr_status, shdr_add_status; 16545 union lpfc_sli4_cfg_shdr *shdr; 16546 16547 /* sanity check on queue memory */ 16548 if (!eq) 16549 return -ENODEV; 16550 16551 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16552 if (!mbox) 16553 return -ENOMEM; 16554 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16555 sizeof(struct lpfc_sli4_cfg_mhdr)); 16556 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16557 LPFC_MBOX_OPCODE_EQ_DESTROY, 16558 length, LPFC_SLI4_MBX_EMBED); 16559 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16560 eq->queue_id); 16561 mbox->vport = eq->phba->pport; 16562 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16563 16564 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16565 /* The IOCTL status is embedded in the mailbox subheader. */ 16566 shdr = (union lpfc_sli4_cfg_shdr *) 16567 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16568 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16569 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16570 if (shdr_status || shdr_add_status || rc) { 16571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16572 "2505 EQ_DESTROY mailbox failed with " 16573 "status x%x add_status x%x, mbx status x%x\n", 16574 shdr_status, shdr_add_status, rc); 16575 status = -ENXIO; 16576 } 16577 16578 /* Remove eq from any list */ 16579 list_del_init(&eq->list); 16580 mempool_free(mbox, eq->phba->mbox_mem_pool); 16581 return status; 16582 } 16583 16584 /** 16585 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16586 * @phba: HBA structure that indicates port to destroy a queue on. 16587 * @cq: The queue structure associated with the queue to destroy. 16588 * 16589 * This function destroys a queue, as detailed in @cq by sending an mailbox 16590 * command, specific to the type of queue, to the HBA. 16591 * 16592 * The @cq struct is used to get the queue ID of the queue to destroy. 16593 * 16594 * On success this function will return a zero. If the queue destroy mailbox 16595 * command fails this function will return -ENXIO. 16596 **/ 16597 int 16598 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16599 { 16600 LPFC_MBOXQ_t *mbox; 16601 int rc, length, status = 0; 16602 uint32_t shdr_status, shdr_add_status; 16603 union lpfc_sli4_cfg_shdr *shdr; 16604 16605 /* sanity check on queue memory */ 16606 if (!cq) 16607 return -ENODEV; 16608 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16609 if (!mbox) 16610 return -ENOMEM; 16611 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16612 sizeof(struct lpfc_sli4_cfg_mhdr)); 16613 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16614 LPFC_MBOX_OPCODE_CQ_DESTROY, 16615 length, LPFC_SLI4_MBX_EMBED); 16616 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16617 cq->queue_id); 16618 mbox->vport = cq->phba->pport; 16619 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16620 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16621 /* The IOCTL status is embedded in the mailbox subheader. */ 16622 shdr = (union lpfc_sli4_cfg_shdr *) 16623 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16624 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16625 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16626 if (shdr_status || shdr_add_status || rc) { 16627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16628 "2506 CQ_DESTROY mailbox failed with " 16629 "status x%x add_status x%x, mbx status x%x\n", 16630 shdr_status, shdr_add_status, rc); 16631 status = -ENXIO; 16632 } 16633 /* Remove cq from any list */ 16634 list_del_init(&cq->list); 16635 mempool_free(mbox, cq->phba->mbox_mem_pool); 16636 return status; 16637 } 16638 16639 /** 16640 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16641 * @phba: HBA structure that indicates port to destroy a queue on. 16642 * @mq: The queue structure associated with the queue to destroy. 16643 * 16644 * This function destroys a queue, as detailed in @mq by sending an mailbox 16645 * command, specific to the type of queue, to the HBA. 16646 * 16647 * The @mq struct is used to get the queue ID of the queue to destroy. 16648 * 16649 * On success this function will return a zero. If the queue destroy mailbox 16650 * command fails this function will return -ENXIO. 16651 **/ 16652 int 16653 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16654 { 16655 LPFC_MBOXQ_t *mbox; 16656 int rc, length, status = 0; 16657 uint32_t shdr_status, shdr_add_status; 16658 union lpfc_sli4_cfg_shdr *shdr; 16659 16660 /* sanity check on queue memory */ 16661 if (!mq) 16662 return -ENODEV; 16663 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16664 if (!mbox) 16665 return -ENOMEM; 16666 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16667 sizeof(struct lpfc_sli4_cfg_mhdr)); 16668 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16669 LPFC_MBOX_OPCODE_MQ_DESTROY, 16670 length, LPFC_SLI4_MBX_EMBED); 16671 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16672 mq->queue_id); 16673 mbox->vport = mq->phba->pport; 16674 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16675 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16676 /* The IOCTL status is embedded in the mailbox subheader. */ 16677 shdr = (union lpfc_sli4_cfg_shdr *) 16678 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16679 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16680 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16681 if (shdr_status || shdr_add_status || rc) { 16682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16683 "2507 MQ_DESTROY mailbox failed with " 16684 "status x%x add_status x%x, mbx status x%x\n", 16685 shdr_status, shdr_add_status, rc); 16686 status = -ENXIO; 16687 } 16688 /* Remove mq from any list */ 16689 list_del_init(&mq->list); 16690 mempool_free(mbox, mq->phba->mbox_mem_pool); 16691 return status; 16692 } 16693 16694 /** 16695 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16696 * @phba: HBA structure that indicates port to destroy a queue on. 16697 * @wq: The queue structure associated with the queue to destroy. 16698 * 16699 * This function destroys a queue, as detailed in @wq by sending an mailbox 16700 * command, specific to the type of queue, to the HBA. 16701 * 16702 * The @wq struct is used to get the queue ID of the queue to destroy. 16703 * 16704 * On success this function will return a zero. If the queue destroy mailbox 16705 * command fails this function will return -ENXIO. 16706 **/ 16707 int 16708 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16709 { 16710 LPFC_MBOXQ_t *mbox; 16711 int rc, length, status = 0; 16712 uint32_t shdr_status, shdr_add_status; 16713 union lpfc_sli4_cfg_shdr *shdr; 16714 16715 /* sanity check on queue memory */ 16716 if (!wq) 16717 return -ENODEV; 16718 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16719 if (!mbox) 16720 return -ENOMEM; 16721 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16722 sizeof(struct lpfc_sli4_cfg_mhdr)); 16723 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16724 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16725 length, LPFC_SLI4_MBX_EMBED); 16726 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16727 wq->queue_id); 16728 mbox->vport = wq->phba->pport; 16729 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16730 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16731 shdr = (union lpfc_sli4_cfg_shdr *) 16732 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16733 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16734 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16735 if (shdr_status || shdr_add_status || rc) { 16736 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16737 "2508 WQ_DESTROY mailbox failed with " 16738 "status x%x add_status x%x, mbx status x%x\n", 16739 shdr_status, shdr_add_status, rc); 16740 status = -ENXIO; 16741 } 16742 /* Remove wq from any list */ 16743 list_del_init(&wq->list); 16744 kfree(wq->pring); 16745 wq->pring = NULL; 16746 mempool_free(mbox, wq->phba->mbox_mem_pool); 16747 return status; 16748 } 16749 16750 /** 16751 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16752 * @phba: HBA structure that indicates port to destroy a queue on. 16753 * @hrq: The queue structure associated with the queue to destroy. 16754 * @drq: The queue structure associated with the queue to destroy. 16755 * 16756 * This function destroys a queue, as detailed in @rq by sending an mailbox 16757 * command, specific to the type of queue, to the HBA. 16758 * 16759 * The @rq struct is used to get the queue ID of the queue to destroy. 16760 * 16761 * On success this function will return a zero. If the queue destroy mailbox 16762 * command fails this function will return -ENXIO. 16763 **/ 16764 int 16765 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16766 struct lpfc_queue *drq) 16767 { 16768 LPFC_MBOXQ_t *mbox; 16769 int rc, length, status = 0; 16770 uint32_t shdr_status, shdr_add_status; 16771 union lpfc_sli4_cfg_shdr *shdr; 16772 16773 /* sanity check on queue memory */ 16774 if (!hrq || !drq) 16775 return -ENODEV; 16776 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16777 if (!mbox) 16778 return -ENOMEM; 16779 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16780 sizeof(struct lpfc_sli4_cfg_mhdr)); 16781 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16782 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16783 length, LPFC_SLI4_MBX_EMBED); 16784 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16785 hrq->queue_id); 16786 mbox->vport = hrq->phba->pport; 16787 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16788 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16789 /* The IOCTL status is embedded in the mailbox subheader. */ 16790 shdr = (union lpfc_sli4_cfg_shdr *) 16791 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16792 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16793 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16794 if (shdr_status || shdr_add_status || rc) { 16795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16796 "2509 RQ_DESTROY mailbox failed with " 16797 "status x%x add_status x%x, mbx status x%x\n", 16798 shdr_status, shdr_add_status, rc); 16799 if (rc != MBX_TIMEOUT) 16800 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16801 return -ENXIO; 16802 } 16803 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16804 drq->queue_id); 16805 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16806 shdr = (union lpfc_sli4_cfg_shdr *) 16807 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16808 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16809 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16810 if (shdr_status || shdr_add_status || rc) { 16811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16812 "2510 RQ_DESTROY mailbox failed with " 16813 "status x%x add_status x%x, mbx status x%x\n", 16814 shdr_status, shdr_add_status, rc); 16815 status = -ENXIO; 16816 } 16817 list_del_init(&hrq->list); 16818 list_del_init(&drq->list); 16819 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16820 return status; 16821 } 16822 16823 /** 16824 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16825 * @phba: The virtual port for which this call being executed. 16826 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16827 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16828 * @xritag: the xritag that ties this io to the SGL pages. 16829 * 16830 * This routine will post the sgl pages for the IO that has the xritag 16831 * that is in the iocbq structure. The xritag is assigned during iocbq 16832 * creation and persists for as long as the driver is loaded. 16833 * if the caller has fewer than 256 scatter gather segments to map then 16834 * pdma_phys_addr1 should be 0. 16835 * If the caller needs to map more than 256 scatter gather segment then 16836 * pdma_phys_addr1 should be a valid physical address. 16837 * physical address for SGLs must be 64 byte aligned. 16838 * If you are going to map 2 SGL's then the first one must have 256 entries 16839 * the second sgl can have between 1 and 256 entries. 16840 * 16841 * Return codes: 16842 * 0 - Success 16843 * -ENXIO, -ENOMEM - Failure 16844 **/ 16845 int 16846 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16847 dma_addr_t pdma_phys_addr0, 16848 dma_addr_t pdma_phys_addr1, 16849 uint16_t xritag) 16850 { 16851 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16852 LPFC_MBOXQ_t *mbox; 16853 int rc; 16854 uint32_t shdr_status, shdr_add_status; 16855 uint32_t mbox_tmo; 16856 union lpfc_sli4_cfg_shdr *shdr; 16857 16858 if (xritag == NO_XRI) { 16859 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16860 "0364 Invalid param:\n"); 16861 return -EINVAL; 16862 } 16863 16864 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16865 if (!mbox) 16866 return -ENOMEM; 16867 16868 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16869 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16870 sizeof(struct lpfc_mbx_post_sgl_pages) - 16871 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16872 16873 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16874 &mbox->u.mqe.un.post_sgl_pages; 16875 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16876 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16877 16878 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16879 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16880 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16881 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16882 16883 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16884 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16885 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16886 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16887 if (!phba->sli4_hba.intr_enable) 16888 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16889 else { 16890 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16891 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16892 } 16893 /* The IOCTL status is embedded in the mailbox subheader. */ 16894 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16895 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16896 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16897 if (rc != MBX_TIMEOUT) 16898 mempool_free(mbox, phba->mbox_mem_pool); 16899 if (shdr_status || shdr_add_status || rc) { 16900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16901 "2511 POST_SGL mailbox failed with " 16902 "status x%x add_status x%x, mbx status x%x\n", 16903 shdr_status, shdr_add_status, rc); 16904 } 16905 return 0; 16906 } 16907 16908 /** 16909 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16910 * @phba: pointer to lpfc hba data structure. 16911 * 16912 * This routine is invoked to post rpi header templates to the 16913 * HBA consistent with the SLI-4 interface spec. This routine 16914 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16915 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16916 * 16917 * Returns 16918 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16919 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16920 **/ 16921 static uint16_t 16922 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16923 { 16924 unsigned long xri; 16925 16926 /* 16927 * Fetch the next logical xri. Because this index is logical, 16928 * the driver starts at 0 each time. 16929 */ 16930 spin_lock_irq(&phba->hbalock); 16931 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16932 phba->sli4_hba.max_cfg_param.max_xri, 0); 16933 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16934 spin_unlock_irq(&phba->hbalock); 16935 return NO_XRI; 16936 } else { 16937 set_bit(xri, phba->sli4_hba.xri_bmask); 16938 phba->sli4_hba.max_cfg_param.xri_used++; 16939 } 16940 spin_unlock_irq(&phba->hbalock); 16941 return xri; 16942 } 16943 16944 /** 16945 * lpfc_sli4_free_xri - Release an xri for reuse. 16946 * @phba: pointer to lpfc hba data structure. 16947 * @xri: xri to release. 16948 * 16949 * This routine is invoked to release an xri to the pool of 16950 * available rpis maintained by the driver. 16951 **/ 16952 static void 16953 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16954 { 16955 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16956 phba->sli4_hba.max_cfg_param.xri_used--; 16957 } 16958 } 16959 16960 /** 16961 * lpfc_sli4_free_xri - Release an xri for reuse. 16962 * @phba: pointer to lpfc hba data structure. 16963 * @xri: xri to release. 16964 * 16965 * This routine is invoked to release an xri to the pool of 16966 * available rpis maintained by the driver. 16967 **/ 16968 void 16969 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16970 { 16971 spin_lock_irq(&phba->hbalock); 16972 __lpfc_sli4_free_xri(phba, xri); 16973 spin_unlock_irq(&phba->hbalock); 16974 } 16975 16976 /** 16977 * lpfc_sli4_next_xritag - Get an xritag for the io 16978 * @phba: Pointer to HBA context object. 16979 * 16980 * This function gets an xritag for the iocb. If there is no unused xritag 16981 * it will return 0xffff. 16982 * The function returns the allocated xritag if successful, else returns zero. 16983 * Zero is not a valid xritag. 16984 * The caller is not required to hold any lock. 16985 **/ 16986 uint16_t 16987 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16988 { 16989 uint16_t xri_index; 16990 16991 xri_index = lpfc_sli4_alloc_xri(phba); 16992 if (xri_index == NO_XRI) 16993 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16994 "2004 Failed to allocate XRI.last XRITAG is %d" 16995 " Max XRI is %d, Used XRI is %d\n", 16996 xri_index, 16997 phba->sli4_hba.max_cfg_param.max_xri, 16998 phba->sli4_hba.max_cfg_param.xri_used); 16999 return xri_index; 17000 } 17001 17002 /** 17003 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17004 * @phba: pointer to lpfc hba data structure. 17005 * @post_sgl_list: pointer to els sgl entry list. 17006 * @post_cnt: number of els sgl entries on the list. 17007 * 17008 * This routine is invoked to post a block of driver's sgl pages to the 17009 * HBA using non-embedded mailbox command. No Lock is held. This routine 17010 * is only called when the driver is loading and after all IO has been 17011 * stopped. 17012 **/ 17013 static int 17014 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17015 struct list_head *post_sgl_list, 17016 int post_cnt) 17017 { 17018 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17019 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17020 struct sgl_page_pairs *sgl_pg_pairs; 17021 void *viraddr; 17022 LPFC_MBOXQ_t *mbox; 17023 uint32_t reqlen, alloclen, pg_pairs; 17024 uint32_t mbox_tmo; 17025 uint16_t xritag_start = 0; 17026 int rc = 0; 17027 uint32_t shdr_status, shdr_add_status; 17028 union lpfc_sli4_cfg_shdr *shdr; 17029 17030 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17031 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17032 if (reqlen > SLI4_PAGE_SIZE) { 17033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17034 "2559 Block sgl registration required DMA " 17035 "size (%d) great than a page\n", reqlen); 17036 return -ENOMEM; 17037 } 17038 17039 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17040 if (!mbox) 17041 return -ENOMEM; 17042 17043 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17044 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17045 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17046 LPFC_SLI4_MBX_NEMBED); 17047 17048 if (alloclen < reqlen) { 17049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17050 "0285 Allocated DMA memory size (%d) is " 17051 "less than the requested DMA memory " 17052 "size (%d)\n", alloclen, reqlen); 17053 lpfc_sli4_mbox_cmd_free(phba, mbox); 17054 return -ENOMEM; 17055 } 17056 /* Set up the SGL pages in the non-embedded DMA pages */ 17057 viraddr = mbox->sge_array->addr[0]; 17058 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17059 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17060 17061 pg_pairs = 0; 17062 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17063 /* Set up the sge entry */ 17064 sgl_pg_pairs->sgl_pg0_addr_lo = 17065 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17066 sgl_pg_pairs->sgl_pg0_addr_hi = 17067 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17068 sgl_pg_pairs->sgl_pg1_addr_lo = 17069 cpu_to_le32(putPaddrLow(0)); 17070 sgl_pg_pairs->sgl_pg1_addr_hi = 17071 cpu_to_le32(putPaddrHigh(0)); 17072 17073 /* Keep the first xritag on the list */ 17074 if (pg_pairs == 0) 17075 xritag_start = sglq_entry->sli4_xritag; 17076 sgl_pg_pairs++; 17077 pg_pairs++; 17078 } 17079 17080 /* Complete initialization and perform endian conversion. */ 17081 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17082 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17083 sgl->word0 = cpu_to_le32(sgl->word0); 17084 17085 if (!phba->sli4_hba.intr_enable) 17086 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17087 else { 17088 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17089 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17090 } 17091 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17092 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17093 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17094 if (rc != MBX_TIMEOUT) 17095 lpfc_sli4_mbox_cmd_free(phba, mbox); 17096 if (shdr_status || shdr_add_status || rc) { 17097 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17098 "2513 POST_SGL_BLOCK mailbox command failed " 17099 "status x%x add_status x%x mbx status x%x\n", 17100 shdr_status, shdr_add_status, rc); 17101 rc = -ENXIO; 17102 } 17103 return rc; 17104 } 17105 17106 /** 17107 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17108 * @phba: pointer to lpfc hba data structure. 17109 * @nblist: pointer to nvme buffer list. 17110 * @count: number of scsi buffers on the list. 17111 * 17112 * This routine is invoked to post a block of @count scsi sgl pages from a 17113 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17114 * No Lock is held. 17115 * 17116 **/ 17117 static int 17118 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17119 int count) 17120 { 17121 struct lpfc_io_buf *lpfc_ncmd; 17122 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17123 struct sgl_page_pairs *sgl_pg_pairs; 17124 void *viraddr; 17125 LPFC_MBOXQ_t *mbox; 17126 uint32_t reqlen, alloclen, pg_pairs; 17127 uint32_t mbox_tmo; 17128 uint16_t xritag_start = 0; 17129 int rc = 0; 17130 uint32_t shdr_status, shdr_add_status; 17131 dma_addr_t pdma_phys_bpl1; 17132 union lpfc_sli4_cfg_shdr *shdr; 17133 17134 /* Calculate the requested length of the dma memory */ 17135 reqlen = count * sizeof(struct sgl_page_pairs) + 17136 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17137 if (reqlen > SLI4_PAGE_SIZE) { 17138 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17139 "6118 Block sgl registration required DMA " 17140 "size (%d) great than a page\n", reqlen); 17141 return -ENOMEM; 17142 } 17143 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17144 if (!mbox) { 17145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17146 "6119 Failed to allocate mbox cmd memory\n"); 17147 return -ENOMEM; 17148 } 17149 17150 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17151 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17152 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17153 reqlen, LPFC_SLI4_MBX_NEMBED); 17154 17155 if (alloclen < reqlen) { 17156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17157 "6120 Allocated DMA memory size (%d) is " 17158 "less than the requested DMA memory " 17159 "size (%d)\n", alloclen, reqlen); 17160 lpfc_sli4_mbox_cmd_free(phba, mbox); 17161 return -ENOMEM; 17162 } 17163 17164 /* Get the first SGE entry from the non-embedded DMA memory */ 17165 viraddr = mbox->sge_array->addr[0]; 17166 17167 /* Set up the SGL pages in the non-embedded DMA pages */ 17168 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17169 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17170 17171 pg_pairs = 0; 17172 list_for_each_entry(lpfc_ncmd, nblist, list) { 17173 /* Set up the sge entry */ 17174 sgl_pg_pairs->sgl_pg0_addr_lo = 17175 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17176 sgl_pg_pairs->sgl_pg0_addr_hi = 17177 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17178 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17179 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17180 SGL_PAGE_SIZE; 17181 else 17182 pdma_phys_bpl1 = 0; 17183 sgl_pg_pairs->sgl_pg1_addr_lo = 17184 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17185 sgl_pg_pairs->sgl_pg1_addr_hi = 17186 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17187 /* Keep the first xritag on the list */ 17188 if (pg_pairs == 0) 17189 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17190 sgl_pg_pairs++; 17191 pg_pairs++; 17192 } 17193 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17194 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17195 /* Perform endian conversion if necessary */ 17196 sgl->word0 = cpu_to_le32(sgl->word0); 17197 17198 if (!phba->sli4_hba.intr_enable) { 17199 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17200 } else { 17201 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17202 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17203 } 17204 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17205 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17206 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17207 if (rc != MBX_TIMEOUT) 17208 lpfc_sli4_mbox_cmd_free(phba, mbox); 17209 if (shdr_status || shdr_add_status || rc) { 17210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17211 "6125 POST_SGL_BLOCK mailbox command failed " 17212 "status x%x add_status x%x mbx status x%x\n", 17213 shdr_status, shdr_add_status, rc); 17214 rc = -ENXIO; 17215 } 17216 return rc; 17217 } 17218 17219 /** 17220 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17221 * @phba: pointer to lpfc hba data structure. 17222 * @post_nblist: pointer to the nvme buffer list. 17223 * @sb_count: number of nvme buffers. 17224 * 17225 * This routine walks a list of nvme buffers that was passed in. It attempts 17226 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17227 * uses the non-embedded SGL block post mailbox commands to post to the port. 17228 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17229 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17230 * must be local list, thus no lock is needed when manipulate the list. 17231 * 17232 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17233 **/ 17234 int 17235 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17236 struct list_head *post_nblist, int sb_count) 17237 { 17238 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17239 int status, sgl_size; 17240 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17241 dma_addr_t pdma_phys_sgl1; 17242 int last_xritag = NO_XRI; 17243 int cur_xritag; 17244 LIST_HEAD(prep_nblist); 17245 LIST_HEAD(blck_nblist); 17246 LIST_HEAD(nvme_nblist); 17247 17248 /* sanity check */ 17249 if (sb_count <= 0) 17250 return -EINVAL; 17251 17252 sgl_size = phba->cfg_sg_dma_buf_size; 17253 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17254 list_del_init(&lpfc_ncmd->list); 17255 block_cnt++; 17256 if ((last_xritag != NO_XRI) && 17257 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17258 /* a hole in xri block, form a sgl posting block */ 17259 list_splice_init(&prep_nblist, &blck_nblist); 17260 post_cnt = block_cnt - 1; 17261 /* prepare list for next posting block */ 17262 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17263 block_cnt = 1; 17264 } else { 17265 /* prepare list for next posting block */ 17266 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17267 /* enough sgls for non-embed sgl mbox command */ 17268 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17269 list_splice_init(&prep_nblist, &blck_nblist); 17270 post_cnt = block_cnt; 17271 block_cnt = 0; 17272 } 17273 } 17274 num_posting++; 17275 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17276 17277 /* end of repost sgl list condition for NVME buffers */ 17278 if (num_posting == sb_count) { 17279 if (post_cnt == 0) { 17280 /* last sgl posting block */ 17281 list_splice_init(&prep_nblist, &blck_nblist); 17282 post_cnt = block_cnt; 17283 } else if (block_cnt == 1) { 17284 /* last single sgl with non-contiguous xri */ 17285 if (sgl_size > SGL_PAGE_SIZE) 17286 pdma_phys_sgl1 = 17287 lpfc_ncmd->dma_phys_sgl + 17288 SGL_PAGE_SIZE; 17289 else 17290 pdma_phys_sgl1 = 0; 17291 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17292 status = lpfc_sli4_post_sgl( 17293 phba, lpfc_ncmd->dma_phys_sgl, 17294 pdma_phys_sgl1, cur_xritag); 17295 if (status) { 17296 /* Post error. Buffer unavailable. */ 17297 lpfc_ncmd->flags |= 17298 LPFC_SBUF_NOT_POSTED; 17299 } else { 17300 /* Post success. Bffer available. */ 17301 lpfc_ncmd->flags &= 17302 ~LPFC_SBUF_NOT_POSTED; 17303 lpfc_ncmd->status = IOSTAT_SUCCESS; 17304 num_posted++; 17305 } 17306 /* success, put on NVME buffer sgl list */ 17307 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17308 } 17309 } 17310 17311 /* continue until a nembed page worth of sgls */ 17312 if (post_cnt == 0) 17313 continue; 17314 17315 /* post block of NVME buffer list sgls */ 17316 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17317 post_cnt); 17318 17319 /* don't reset xirtag due to hole in xri block */ 17320 if (block_cnt == 0) 17321 last_xritag = NO_XRI; 17322 17323 /* reset NVME buffer post count for next round of posting */ 17324 post_cnt = 0; 17325 17326 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17327 while (!list_empty(&blck_nblist)) { 17328 list_remove_head(&blck_nblist, lpfc_ncmd, 17329 struct lpfc_io_buf, list); 17330 if (status) { 17331 /* Post error. Mark buffer unavailable. */ 17332 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17333 } else { 17334 /* Post success, Mark buffer available. */ 17335 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17336 lpfc_ncmd->status = IOSTAT_SUCCESS; 17337 num_posted++; 17338 } 17339 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17340 } 17341 } 17342 /* Push NVME buffers with sgl posted to the available list */ 17343 lpfc_io_buf_replenish(phba, &nvme_nblist); 17344 17345 return num_posted; 17346 } 17347 17348 /** 17349 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17350 * @phba: pointer to lpfc_hba struct that the frame was received on 17351 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17352 * 17353 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17354 * valid type of frame that the LPFC driver will handle. This function will 17355 * return a zero if the frame is a valid frame or a non zero value when the 17356 * frame does not pass the check. 17357 **/ 17358 static int 17359 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17360 { 17361 /* make rctl_names static to save stack space */ 17362 struct fc_vft_header *fc_vft_hdr; 17363 uint32_t *header = (uint32_t *) fc_hdr; 17364 17365 #define FC_RCTL_MDS_DIAGS 0xF4 17366 17367 switch (fc_hdr->fh_r_ctl) { 17368 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17369 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17370 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17371 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17372 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17373 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17374 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17375 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17376 case FC_RCTL_ELS_REQ: /* extended link services request */ 17377 case FC_RCTL_ELS_REP: /* extended link services reply */ 17378 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17379 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17380 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17381 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17382 case FC_RCTL_BA_RMC: /* remove connection */ 17383 case FC_RCTL_BA_ACC: /* basic accept */ 17384 case FC_RCTL_BA_RJT: /* basic reject */ 17385 case FC_RCTL_BA_PRMT: 17386 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17387 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17388 case FC_RCTL_P_RJT: /* port reject */ 17389 case FC_RCTL_F_RJT: /* fabric reject */ 17390 case FC_RCTL_P_BSY: /* port busy */ 17391 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17392 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17393 case FC_RCTL_LCR: /* link credit reset */ 17394 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17395 case FC_RCTL_END: /* end */ 17396 break; 17397 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17398 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17399 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17400 return lpfc_fc_frame_check(phba, fc_hdr); 17401 default: 17402 goto drop; 17403 } 17404 17405 switch (fc_hdr->fh_type) { 17406 case FC_TYPE_BLS: 17407 case FC_TYPE_ELS: 17408 case FC_TYPE_FCP: 17409 case FC_TYPE_CT: 17410 case FC_TYPE_NVME: 17411 break; 17412 case FC_TYPE_IP: 17413 case FC_TYPE_ILS: 17414 default: 17415 goto drop; 17416 } 17417 17418 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17419 "2538 Received frame rctl:x%x, type:x%x, " 17420 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17421 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17422 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17423 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17424 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17425 be32_to_cpu(header[6])); 17426 return 0; 17427 drop: 17428 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17429 "2539 Dropped frame rctl:x%x type:x%x\n", 17430 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17431 return 1; 17432 } 17433 17434 /** 17435 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17436 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17437 * 17438 * This function processes the FC header to retrieve the VFI from the VF 17439 * header, if one exists. This function will return the VFI if one exists 17440 * or 0 if no VSAN Header exists. 17441 **/ 17442 static uint32_t 17443 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17444 { 17445 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17446 17447 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17448 return 0; 17449 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17450 } 17451 17452 /** 17453 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17454 * @phba: Pointer to the HBA structure to search for the vport on 17455 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17456 * @fcfi: The FC Fabric ID that the frame came from 17457 * @did: Destination ID to match against 17458 * 17459 * This function searches the @phba for a vport that matches the content of the 17460 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17461 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17462 * returns the matching vport pointer or NULL if unable to match frame to a 17463 * vport. 17464 **/ 17465 static struct lpfc_vport * 17466 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17467 uint16_t fcfi, uint32_t did) 17468 { 17469 struct lpfc_vport **vports; 17470 struct lpfc_vport *vport = NULL; 17471 int i; 17472 17473 if (did == Fabric_DID) 17474 return phba->pport; 17475 if ((phba->pport->fc_flag & FC_PT2PT) && 17476 !(phba->link_state == LPFC_HBA_READY)) 17477 return phba->pport; 17478 17479 vports = lpfc_create_vport_work_array(phba); 17480 if (vports != NULL) { 17481 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17482 if (phba->fcf.fcfi == fcfi && 17483 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17484 vports[i]->fc_myDID == did) { 17485 vport = vports[i]; 17486 break; 17487 } 17488 } 17489 } 17490 lpfc_destroy_vport_work_array(phba, vports); 17491 return vport; 17492 } 17493 17494 /** 17495 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17496 * @vport: The vport to work on. 17497 * 17498 * This function updates the receive sequence time stamp for this vport. The 17499 * receive sequence time stamp indicates the time that the last frame of the 17500 * the sequence that has been idle for the longest amount of time was received. 17501 * the driver uses this time stamp to indicate if any received sequences have 17502 * timed out. 17503 **/ 17504 static void 17505 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17506 { 17507 struct lpfc_dmabuf *h_buf; 17508 struct hbq_dmabuf *dmabuf = NULL; 17509 17510 /* get the oldest sequence on the rcv list */ 17511 h_buf = list_get_first(&vport->rcv_buffer_list, 17512 struct lpfc_dmabuf, list); 17513 if (!h_buf) 17514 return; 17515 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17516 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17517 } 17518 17519 /** 17520 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17521 * @vport: The vport that the received sequences were sent to. 17522 * 17523 * This function cleans up all outstanding received sequences. This is called 17524 * by the driver when a link event or user action invalidates all the received 17525 * sequences. 17526 **/ 17527 void 17528 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17529 { 17530 struct lpfc_dmabuf *h_buf, *hnext; 17531 struct lpfc_dmabuf *d_buf, *dnext; 17532 struct hbq_dmabuf *dmabuf = NULL; 17533 17534 /* start with the oldest sequence on the rcv list */ 17535 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17536 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17537 list_del_init(&dmabuf->hbuf.list); 17538 list_for_each_entry_safe(d_buf, dnext, 17539 &dmabuf->dbuf.list, list) { 17540 list_del_init(&d_buf->list); 17541 lpfc_in_buf_free(vport->phba, d_buf); 17542 } 17543 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17544 } 17545 } 17546 17547 /** 17548 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17549 * @vport: The vport that the received sequences were sent to. 17550 * 17551 * This function determines whether any received sequences have timed out by 17552 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17553 * indicates that there is at least one timed out sequence this routine will 17554 * go through the received sequences one at a time from most inactive to most 17555 * active to determine which ones need to be cleaned up. Once it has determined 17556 * that a sequence needs to be cleaned up it will simply free up the resources 17557 * without sending an abort. 17558 **/ 17559 void 17560 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17561 { 17562 struct lpfc_dmabuf *h_buf, *hnext; 17563 struct lpfc_dmabuf *d_buf, *dnext; 17564 struct hbq_dmabuf *dmabuf = NULL; 17565 unsigned long timeout; 17566 int abort_count = 0; 17567 17568 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17569 vport->rcv_buffer_time_stamp); 17570 if (list_empty(&vport->rcv_buffer_list) || 17571 time_before(jiffies, timeout)) 17572 return; 17573 /* start with the oldest sequence on the rcv list */ 17574 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17575 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17576 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17577 dmabuf->time_stamp); 17578 if (time_before(jiffies, timeout)) 17579 break; 17580 abort_count++; 17581 list_del_init(&dmabuf->hbuf.list); 17582 list_for_each_entry_safe(d_buf, dnext, 17583 &dmabuf->dbuf.list, list) { 17584 list_del_init(&d_buf->list); 17585 lpfc_in_buf_free(vport->phba, d_buf); 17586 } 17587 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17588 } 17589 if (abort_count) 17590 lpfc_update_rcv_time_stamp(vport); 17591 } 17592 17593 /** 17594 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17595 * @vport: pointer to a vitural port 17596 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17597 * 17598 * This function searches through the existing incomplete sequences that have 17599 * been sent to this @vport. If the frame matches one of the incomplete 17600 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17601 * make up that sequence. If no sequence is found that matches this frame then 17602 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17603 * This function returns a pointer to the first dmabuf in the sequence list that 17604 * the frame was linked to. 17605 **/ 17606 static struct hbq_dmabuf * 17607 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17608 { 17609 struct fc_frame_header *new_hdr; 17610 struct fc_frame_header *temp_hdr; 17611 struct lpfc_dmabuf *d_buf; 17612 struct lpfc_dmabuf *h_buf; 17613 struct hbq_dmabuf *seq_dmabuf = NULL; 17614 struct hbq_dmabuf *temp_dmabuf = NULL; 17615 uint8_t found = 0; 17616 17617 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17618 dmabuf->time_stamp = jiffies; 17619 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17620 17621 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17622 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17623 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17624 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17625 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17626 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17627 continue; 17628 /* found a pending sequence that matches this frame */ 17629 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17630 break; 17631 } 17632 if (!seq_dmabuf) { 17633 /* 17634 * This indicates first frame received for this sequence. 17635 * Queue the buffer on the vport's rcv_buffer_list. 17636 */ 17637 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17638 lpfc_update_rcv_time_stamp(vport); 17639 return dmabuf; 17640 } 17641 temp_hdr = seq_dmabuf->hbuf.virt; 17642 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17643 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17644 list_del_init(&seq_dmabuf->hbuf.list); 17645 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17646 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17647 lpfc_update_rcv_time_stamp(vport); 17648 return dmabuf; 17649 } 17650 /* move this sequence to the tail to indicate a young sequence */ 17651 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17652 seq_dmabuf->time_stamp = jiffies; 17653 lpfc_update_rcv_time_stamp(vport); 17654 if (list_empty(&seq_dmabuf->dbuf.list)) { 17655 temp_hdr = dmabuf->hbuf.virt; 17656 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17657 return seq_dmabuf; 17658 } 17659 /* find the correct place in the sequence to insert this frame */ 17660 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17661 while (!found) { 17662 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17663 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17664 /* 17665 * If the frame's sequence count is greater than the frame on 17666 * the list then insert the frame right after this frame 17667 */ 17668 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17669 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17670 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17671 found = 1; 17672 break; 17673 } 17674 17675 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17676 break; 17677 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17678 } 17679 17680 if (found) 17681 return seq_dmabuf; 17682 return NULL; 17683 } 17684 17685 /** 17686 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17687 * @vport: pointer to a vitural port 17688 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17689 * 17690 * This function tries to abort from the partially assembed sequence, described 17691 * by the information from basic abbort @dmabuf. It checks to see whether such 17692 * partially assembled sequence held by the driver. If so, it shall free up all 17693 * the frames from the partially assembled sequence. 17694 * 17695 * Return 17696 * true -- if there is matching partially assembled sequence present and all 17697 * the frames freed with the sequence; 17698 * false -- if there is no matching partially assembled sequence present so 17699 * nothing got aborted in the lower layer driver 17700 **/ 17701 static bool 17702 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17703 struct hbq_dmabuf *dmabuf) 17704 { 17705 struct fc_frame_header *new_hdr; 17706 struct fc_frame_header *temp_hdr; 17707 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17708 struct hbq_dmabuf *seq_dmabuf = NULL; 17709 17710 /* Use the hdr_buf to find the sequence that matches this frame */ 17711 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17712 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17713 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17714 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17715 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17716 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17717 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17718 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17719 continue; 17720 /* found a pending sequence that matches this frame */ 17721 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17722 break; 17723 } 17724 17725 /* Free up all the frames from the partially assembled sequence */ 17726 if (seq_dmabuf) { 17727 list_for_each_entry_safe(d_buf, n_buf, 17728 &seq_dmabuf->dbuf.list, list) { 17729 list_del_init(&d_buf->list); 17730 lpfc_in_buf_free(vport->phba, d_buf); 17731 } 17732 return true; 17733 } 17734 return false; 17735 } 17736 17737 /** 17738 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17739 * @vport: pointer to a vitural port 17740 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17741 * 17742 * This function tries to abort from the assembed sequence from upper level 17743 * protocol, described by the information from basic abbort @dmabuf. It 17744 * checks to see whether such pending context exists at upper level protocol. 17745 * If so, it shall clean up the pending context. 17746 * 17747 * Return 17748 * true -- if there is matching pending context of the sequence cleaned 17749 * at ulp; 17750 * false -- if there is no matching pending context of the sequence present 17751 * at ulp. 17752 **/ 17753 static bool 17754 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17755 { 17756 struct lpfc_hba *phba = vport->phba; 17757 int handled; 17758 17759 /* Accepting abort at ulp with SLI4 only */ 17760 if (phba->sli_rev < LPFC_SLI_REV4) 17761 return false; 17762 17763 /* Register all caring upper level protocols to attend abort */ 17764 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17765 if (handled) 17766 return true; 17767 17768 return false; 17769 } 17770 17771 /** 17772 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17773 * @phba: Pointer to HBA context object. 17774 * @cmd_iocbq: pointer to the command iocbq structure. 17775 * @rsp_iocbq: pointer to the response iocbq structure. 17776 * 17777 * This function handles the sequence abort response iocb command complete 17778 * event. It properly releases the memory allocated to the sequence abort 17779 * accept iocb. 17780 **/ 17781 static void 17782 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17783 struct lpfc_iocbq *cmd_iocbq, 17784 struct lpfc_iocbq *rsp_iocbq) 17785 { 17786 struct lpfc_nodelist *ndlp; 17787 17788 if (cmd_iocbq) { 17789 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17790 lpfc_nlp_put(ndlp); 17791 lpfc_nlp_not_used(ndlp); 17792 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17793 } 17794 17795 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17796 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17798 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17799 rsp_iocbq->iocb.ulpStatus, 17800 rsp_iocbq->iocb.un.ulpWord[4]); 17801 } 17802 17803 /** 17804 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17805 * @phba: Pointer to HBA context object. 17806 * @xri: xri id in transaction. 17807 * 17808 * This function validates the xri maps to the known range of XRIs allocated an 17809 * used by the driver. 17810 **/ 17811 uint16_t 17812 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17813 uint16_t xri) 17814 { 17815 uint16_t i; 17816 17817 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17818 if (xri == phba->sli4_hba.xri_ids[i]) 17819 return i; 17820 } 17821 return NO_XRI; 17822 } 17823 17824 /** 17825 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17826 * @vport: pointer to a vitural port. 17827 * @fc_hdr: pointer to a FC frame header. 17828 * @aborted: was the partially assembled receive sequence successfully aborted 17829 * 17830 * This function sends a basic response to a previous unsol sequence abort 17831 * event after aborting the sequence handling. 17832 **/ 17833 void 17834 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17835 struct fc_frame_header *fc_hdr, bool aborted) 17836 { 17837 struct lpfc_hba *phba = vport->phba; 17838 struct lpfc_iocbq *ctiocb = NULL; 17839 struct lpfc_nodelist *ndlp; 17840 uint16_t oxid, rxid, xri, lxri; 17841 uint32_t sid, fctl; 17842 IOCB_t *icmd; 17843 int rc; 17844 17845 if (!lpfc_is_link_up(phba)) 17846 return; 17847 17848 sid = sli4_sid_from_fc_hdr(fc_hdr); 17849 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17850 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17851 17852 ndlp = lpfc_findnode_did(vport, sid); 17853 if (!ndlp) { 17854 ndlp = lpfc_nlp_init(vport, sid); 17855 if (!ndlp) { 17856 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17857 "1268 Failed to allocate ndlp for " 17858 "oxid:x%x SID:x%x\n", oxid, sid); 17859 return; 17860 } 17861 /* Put ndlp onto pport node list */ 17862 lpfc_enqueue_node(vport, ndlp); 17863 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17864 /* re-setup ndlp without removing from node list */ 17865 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17866 if (!ndlp) { 17867 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17868 "3275 Failed to active ndlp found " 17869 "for oxid:x%x SID:x%x\n", oxid, sid); 17870 return; 17871 } 17872 } 17873 17874 /* Allocate buffer for rsp iocb */ 17875 ctiocb = lpfc_sli_get_iocbq(phba); 17876 if (!ctiocb) 17877 return; 17878 17879 /* Extract the F_CTL field from FC_HDR */ 17880 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17881 17882 icmd = &ctiocb->iocb; 17883 icmd->un.xseq64.bdl.bdeSize = 0; 17884 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17885 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17886 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17887 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17888 17889 /* Fill in the rest of iocb fields */ 17890 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17891 icmd->ulpBdeCount = 0; 17892 icmd->ulpLe = 1; 17893 icmd->ulpClass = CLASS3; 17894 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17895 ctiocb->context1 = lpfc_nlp_get(ndlp); 17896 17897 ctiocb->vport = phba->pport; 17898 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17899 ctiocb->sli4_lxritag = NO_XRI; 17900 ctiocb->sli4_xritag = NO_XRI; 17901 17902 if (fctl & FC_FC_EX_CTX) 17903 /* Exchange responder sent the abort so we 17904 * own the oxid. 17905 */ 17906 xri = oxid; 17907 else 17908 xri = rxid; 17909 lxri = lpfc_sli4_xri_inrange(phba, xri); 17910 if (lxri != NO_XRI) 17911 lpfc_set_rrq_active(phba, ndlp, lxri, 17912 (xri == oxid) ? rxid : oxid, 0); 17913 /* For BA_ABTS from exchange responder, if the logical xri with 17914 * the oxid maps to the FCP XRI range, the port no longer has 17915 * that exchange context, send a BLS_RJT. Override the IOCB for 17916 * a BA_RJT. 17917 */ 17918 if ((fctl & FC_FC_EX_CTX) && 17919 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17920 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17921 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17922 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17923 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17924 } 17925 17926 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17927 * the driver no longer has that exchange, send a BLS_RJT. Override 17928 * the IOCB for a BA_RJT. 17929 */ 17930 if (aborted == false) { 17931 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17932 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17933 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17934 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17935 } 17936 17937 if (fctl & FC_FC_EX_CTX) { 17938 /* ABTS sent by responder to CT exchange, construction 17939 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17940 * field and RX_ID from ABTS for RX_ID field. 17941 */ 17942 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17943 } else { 17944 /* ABTS sent by initiator to CT exchange, construction 17945 * of BA_ACC will need to allocate a new XRI as for the 17946 * XRI_TAG field. 17947 */ 17948 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17949 } 17950 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17951 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17952 17953 /* Xmit CT abts response on exchange <xid> */ 17954 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17955 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17956 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17957 17958 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17959 if (rc == IOCB_ERROR) { 17960 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 17961 "2925 Failed to issue CT ABTS RSP x%x on " 17962 "xri x%x, Data x%x\n", 17963 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17964 phba->link_state); 17965 lpfc_nlp_put(ndlp); 17966 ctiocb->context1 = NULL; 17967 lpfc_sli_release_iocbq(phba, ctiocb); 17968 } 17969 } 17970 17971 /** 17972 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17973 * @vport: Pointer to the vport on which this sequence was received 17974 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17975 * 17976 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17977 * receive sequence is only partially assembed by the driver, it shall abort 17978 * the partially assembled frames for the sequence. Otherwise, if the 17979 * unsolicited receive sequence has been completely assembled and passed to 17980 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 17981 * unsolicited sequence has been aborted. After that, it will issue a basic 17982 * accept to accept the abort. 17983 **/ 17984 static void 17985 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17986 struct hbq_dmabuf *dmabuf) 17987 { 17988 struct lpfc_hba *phba = vport->phba; 17989 struct fc_frame_header fc_hdr; 17990 uint32_t fctl; 17991 bool aborted; 17992 17993 /* Make a copy of fc_hdr before the dmabuf being released */ 17994 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17995 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17996 17997 if (fctl & FC_FC_EX_CTX) { 17998 /* ABTS by responder to exchange, no cleanup needed */ 17999 aborted = true; 18000 } else { 18001 /* ABTS by initiator to exchange, need to do cleanup */ 18002 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18003 if (aborted == false) 18004 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18005 } 18006 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18007 18008 if (phba->nvmet_support) { 18009 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18010 return; 18011 } 18012 18013 /* Respond with BA_ACC or BA_RJT accordingly */ 18014 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18015 } 18016 18017 /** 18018 * lpfc_seq_complete - Indicates if a sequence is complete 18019 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18020 * 18021 * This function checks the sequence, starting with the frame described by 18022 * @dmabuf, to see if all the frames associated with this sequence are present. 18023 * the frames associated with this sequence are linked to the @dmabuf using the 18024 * dbuf list. This function looks for two major things. 1) That the first frame 18025 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18026 * set. 3) That there are no holes in the sequence count. The function will 18027 * return 1 when the sequence is complete, otherwise it will return 0. 18028 **/ 18029 static int 18030 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18031 { 18032 struct fc_frame_header *hdr; 18033 struct lpfc_dmabuf *d_buf; 18034 struct hbq_dmabuf *seq_dmabuf; 18035 uint32_t fctl; 18036 int seq_count = 0; 18037 18038 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18039 /* make sure first fame of sequence has a sequence count of zero */ 18040 if (hdr->fh_seq_cnt != seq_count) 18041 return 0; 18042 fctl = (hdr->fh_f_ctl[0] << 16 | 18043 hdr->fh_f_ctl[1] << 8 | 18044 hdr->fh_f_ctl[2]); 18045 /* If last frame of sequence we can return success. */ 18046 if (fctl & FC_FC_END_SEQ) 18047 return 1; 18048 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18049 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18050 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18051 /* If there is a hole in the sequence count then fail. */ 18052 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18053 return 0; 18054 fctl = (hdr->fh_f_ctl[0] << 16 | 18055 hdr->fh_f_ctl[1] << 8 | 18056 hdr->fh_f_ctl[2]); 18057 /* If last frame of sequence we can return success. */ 18058 if (fctl & FC_FC_END_SEQ) 18059 return 1; 18060 } 18061 return 0; 18062 } 18063 18064 /** 18065 * lpfc_prep_seq - Prep sequence for ULP processing 18066 * @vport: Pointer to the vport on which this sequence was received 18067 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18068 * 18069 * This function takes a sequence, described by a list of frames, and creates 18070 * a list of iocbq structures to describe the sequence. This iocbq list will be 18071 * used to issue to the generic unsolicited sequence handler. This routine 18072 * returns a pointer to the first iocbq in the list. If the function is unable 18073 * to allocate an iocbq then it throw out the received frames that were not 18074 * able to be described and return a pointer to the first iocbq. If unable to 18075 * allocate any iocbqs (including the first) this function will return NULL. 18076 **/ 18077 static struct lpfc_iocbq * 18078 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18079 { 18080 struct hbq_dmabuf *hbq_buf; 18081 struct lpfc_dmabuf *d_buf, *n_buf; 18082 struct lpfc_iocbq *first_iocbq, *iocbq; 18083 struct fc_frame_header *fc_hdr; 18084 uint32_t sid; 18085 uint32_t len, tot_len; 18086 struct ulp_bde64 *pbde; 18087 18088 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18089 /* remove from receive buffer list */ 18090 list_del_init(&seq_dmabuf->hbuf.list); 18091 lpfc_update_rcv_time_stamp(vport); 18092 /* get the Remote Port's SID */ 18093 sid = sli4_sid_from_fc_hdr(fc_hdr); 18094 tot_len = 0; 18095 /* Get an iocbq struct to fill in. */ 18096 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18097 if (first_iocbq) { 18098 /* Initialize the first IOCB. */ 18099 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18100 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18101 first_iocbq->vport = vport; 18102 18103 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18104 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18105 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18106 first_iocbq->iocb.un.rcvels.parmRo = 18107 sli4_did_from_fc_hdr(fc_hdr); 18108 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18109 } else 18110 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18111 first_iocbq->iocb.ulpContext = NO_XRI; 18112 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18113 be16_to_cpu(fc_hdr->fh_ox_id); 18114 /* iocbq is prepped for internal consumption. Physical vpi. */ 18115 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18116 vport->phba->vpi_ids[vport->vpi]; 18117 /* put the first buffer into the first IOCBq */ 18118 tot_len = bf_get(lpfc_rcqe_length, 18119 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18120 18121 first_iocbq->context2 = &seq_dmabuf->dbuf; 18122 first_iocbq->context3 = NULL; 18123 first_iocbq->iocb.ulpBdeCount = 1; 18124 if (tot_len > LPFC_DATA_BUF_SIZE) 18125 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18126 LPFC_DATA_BUF_SIZE; 18127 else 18128 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18129 18130 first_iocbq->iocb.un.rcvels.remoteID = sid; 18131 18132 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18133 } 18134 iocbq = first_iocbq; 18135 /* 18136 * Each IOCBq can have two Buffers assigned, so go through the list 18137 * of buffers for this sequence and save two buffers in each IOCBq 18138 */ 18139 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18140 if (!iocbq) { 18141 lpfc_in_buf_free(vport->phba, d_buf); 18142 continue; 18143 } 18144 if (!iocbq->context3) { 18145 iocbq->context3 = d_buf; 18146 iocbq->iocb.ulpBdeCount++; 18147 /* We need to get the size out of the right CQE */ 18148 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18149 len = bf_get(lpfc_rcqe_length, 18150 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18151 pbde = (struct ulp_bde64 *) 18152 &iocbq->iocb.unsli3.sli3Words[4]; 18153 if (len > LPFC_DATA_BUF_SIZE) 18154 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18155 else 18156 pbde->tus.f.bdeSize = len; 18157 18158 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18159 tot_len += len; 18160 } else { 18161 iocbq = lpfc_sli_get_iocbq(vport->phba); 18162 if (!iocbq) { 18163 if (first_iocbq) { 18164 first_iocbq->iocb.ulpStatus = 18165 IOSTAT_FCP_RSP_ERROR; 18166 first_iocbq->iocb.un.ulpWord[4] = 18167 IOERR_NO_RESOURCES; 18168 } 18169 lpfc_in_buf_free(vport->phba, d_buf); 18170 continue; 18171 } 18172 /* We need to get the size out of the right CQE */ 18173 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18174 len = bf_get(lpfc_rcqe_length, 18175 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18176 iocbq->context2 = d_buf; 18177 iocbq->context3 = NULL; 18178 iocbq->iocb.ulpBdeCount = 1; 18179 if (len > LPFC_DATA_BUF_SIZE) 18180 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18181 LPFC_DATA_BUF_SIZE; 18182 else 18183 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18184 18185 tot_len += len; 18186 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18187 18188 iocbq->iocb.un.rcvels.remoteID = sid; 18189 list_add_tail(&iocbq->list, &first_iocbq->list); 18190 } 18191 } 18192 /* Free the sequence's header buffer */ 18193 if (!first_iocbq) 18194 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18195 18196 return first_iocbq; 18197 } 18198 18199 static void 18200 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18201 struct hbq_dmabuf *seq_dmabuf) 18202 { 18203 struct fc_frame_header *fc_hdr; 18204 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18205 struct lpfc_hba *phba = vport->phba; 18206 18207 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18208 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18209 if (!iocbq) { 18210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18211 "2707 Ring %d handler: Failed to allocate " 18212 "iocb Rctl x%x Type x%x received\n", 18213 LPFC_ELS_RING, 18214 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18215 return; 18216 } 18217 if (!lpfc_complete_unsol_iocb(phba, 18218 phba->sli4_hba.els_wq->pring, 18219 iocbq, fc_hdr->fh_r_ctl, 18220 fc_hdr->fh_type)) 18221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18222 "2540 Ring %d handler: unexpected Rctl " 18223 "x%x Type x%x received\n", 18224 LPFC_ELS_RING, 18225 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18226 18227 /* Free iocb created in lpfc_prep_seq */ 18228 list_for_each_entry_safe(curr_iocb, next_iocb, 18229 &iocbq->list, list) { 18230 list_del_init(&curr_iocb->list); 18231 lpfc_sli_release_iocbq(phba, curr_iocb); 18232 } 18233 lpfc_sli_release_iocbq(phba, iocbq); 18234 } 18235 18236 static void 18237 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18238 struct lpfc_iocbq *rspiocb) 18239 { 18240 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18241 18242 if (pcmd && pcmd->virt) 18243 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18244 kfree(pcmd); 18245 lpfc_sli_release_iocbq(phba, cmdiocb); 18246 lpfc_drain_txq(phba); 18247 } 18248 18249 static void 18250 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18251 struct hbq_dmabuf *dmabuf) 18252 { 18253 struct fc_frame_header *fc_hdr; 18254 struct lpfc_hba *phba = vport->phba; 18255 struct lpfc_iocbq *iocbq = NULL; 18256 union lpfc_wqe *wqe; 18257 struct lpfc_dmabuf *pcmd = NULL; 18258 uint32_t frame_len; 18259 int rc; 18260 unsigned long iflags; 18261 18262 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18263 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18264 18265 /* Send the received frame back */ 18266 iocbq = lpfc_sli_get_iocbq(phba); 18267 if (!iocbq) { 18268 /* Queue cq event and wakeup worker thread to process it */ 18269 spin_lock_irqsave(&phba->hbalock, iflags); 18270 list_add_tail(&dmabuf->cq_event.list, 18271 &phba->sli4_hba.sp_queue_event); 18272 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18273 spin_unlock_irqrestore(&phba->hbalock, iflags); 18274 lpfc_worker_wake_up(phba); 18275 return; 18276 } 18277 18278 /* Allocate buffer for command payload */ 18279 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18280 if (pcmd) 18281 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18282 &pcmd->phys); 18283 if (!pcmd || !pcmd->virt) 18284 goto exit; 18285 18286 INIT_LIST_HEAD(&pcmd->list); 18287 18288 /* copyin the payload */ 18289 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18290 18291 /* fill in BDE's for command */ 18292 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18293 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18294 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18295 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18296 18297 iocbq->context2 = pcmd; 18298 iocbq->vport = vport; 18299 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18300 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18301 18302 /* 18303 * Setup rest of the iocb as though it were a WQE 18304 * Build the SEND_FRAME WQE 18305 */ 18306 wqe = (union lpfc_wqe *)&iocbq->iocb; 18307 18308 wqe->send_frame.frame_len = frame_len; 18309 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18310 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18311 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18312 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18313 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18314 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18315 18316 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18317 iocbq->iocb.ulpLe = 1; 18318 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18319 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18320 if (rc == IOCB_ERROR) 18321 goto exit; 18322 18323 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18324 return; 18325 18326 exit: 18327 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18328 "2023 Unable to process MDS loopback frame\n"); 18329 if (pcmd && pcmd->virt) 18330 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18331 kfree(pcmd); 18332 if (iocbq) 18333 lpfc_sli_release_iocbq(phba, iocbq); 18334 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18335 } 18336 18337 /** 18338 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18339 * @phba: Pointer to HBA context object. 18340 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18341 * 18342 * This function is called with no lock held. This function processes all 18343 * the received buffers and gives it to upper layers when a received buffer 18344 * indicates that it is the final frame in the sequence. The interrupt 18345 * service routine processes received buffers at interrupt contexts. 18346 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18347 * appropriate receive function when the final frame in a sequence is received. 18348 **/ 18349 void 18350 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18351 struct hbq_dmabuf *dmabuf) 18352 { 18353 struct hbq_dmabuf *seq_dmabuf; 18354 struct fc_frame_header *fc_hdr; 18355 struct lpfc_vport *vport; 18356 uint32_t fcfi; 18357 uint32_t did; 18358 18359 /* Process each received buffer */ 18360 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18361 18362 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18363 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18364 vport = phba->pport; 18365 /* Handle MDS Loopback frames */ 18366 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18367 return; 18368 } 18369 18370 /* check to see if this a valid type of frame */ 18371 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18372 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18373 return; 18374 } 18375 18376 if ((bf_get(lpfc_cqe_code, 18377 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18378 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18379 &dmabuf->cq_event.cqe.rcqe_cmpl); 18380 else 18381 fcfi = bf_get(lpfc_rcqe_fcf_id, 18382 &dmabuf->cq_event.cqe.rcqe_cmpl); 18383 18384 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18385 vport = phba->pport; 18386 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18387 "2023 MDS Loopback %d bytes\n", 18388 bf_get(lpfc_rcqe_length, 18389 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18390 /* Handle MDS Loopback frames */ 18391 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18392 return; 18393 } 18394 18395 /* d_id this frame is directed to */ 18396 did = sli4_did_from_fc_hdr(fc_hdr); 18397 18398 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18399 if (!vport) { 18400 /* throw out the frame */ 18401 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18402 return; 18403 } 18404 18405 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18406 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18407 (did != Fabric_DID)) { 18408 /* 18409 * Throw out the frame if we are not pt2pt. 18410 * The pt2pt protocol allows for discovery frames 18411 * to be received without a registered VPI. 18412 */ 18413 if (!(vport->fc_flag & FC_PT2PT) || 18414 (phba->link_state == LPFC_HBA_READY)) { 18415 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18416 return; 18417 } 18418 } 18419 18420 /* Handle the basic abort sequence (BA_ABTS) event */ 18421 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18422 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18423 return; 18424 } 18425 18426 /* Link this frame */ 18427 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18428 if (!seq_dmabuf) { 18429 /* unable to add frame to vport - throw it out */ 18430 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18431 return; 18432 } 18433 /* If not last frame in sequence continue processing frames. */ 18434 if (!lpfc_seq_complete(seq_dmabuf)) 18435 return; 18436 18437 /* Send the complete sequence to the upper layer protocol */ 18438 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18439 } 18440 18441 /** 18442 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18443 * @phba: pointer to lpfc hba data structure. 18444 * 18445 * This routine is invoked to post rpi header templates to the 18446 * HBA consistent with the SLI-4 interface spec. This routine 18447 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18448 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18449 * 18450 * This routine does not require any locks. It's usage is expected 18451 * to be driver load or reset recovery when the driver is 18452 * sequential. 18453 * 18454 * Return codes 18455 * 0 - successful 18456 * -EIO - The mailbox failed to complete successfully. 18457 * When this error occurs, the driver is not guaranteed 18458 * to have any rpi regions posted to the device and 18459 * must either attempt to repost the regions or take a 18460 * fatal error. 18461 **/ 18462 int 18463 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18464 { 18465 struct lpfc_rpi_hdr *rpi_page; 18466 uint32_t rc = 0; 18467 uint16_t lrpi = 0; 18468 18469 /* SLI4 ports that support extents do not require RPI headers. */ 18470 if (!phba->sli4_hba.rpi_hdrs_in_use) 18471 goto exit; 18472 if (phba->sli4_hba.extents_in_use) 18473 return -EIO; 18474 18475 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18476 /* 18477 * Assign the rpi headers a physical rpi only if the driver 18478 * has not initialized those resources. A port reset only 18479 * needs the headers posted. 18480 */ 18481 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18482 LPFC_RPI_RSRC_RDY) 18483 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18484 18485 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18486 if (rc != MBX_SUCCESS) { 18487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18488 "2008 Error %d posting all rpi " 18489 "headers\n", rc); 18490 rc = -EIO; 18491 break; 18492 } 18493 } 18494 18495 exit: 18496 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18497 LPFC_RPI_RSRC_RDY); 18498 return rc; 18499 } 18500 18501 /** 18502 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18503 * @phba: pointer to lpfc hba data structure. 18504 * @rpi_page: pointer to the rpi memory region. 18505 * 18506 * This routine is invoked to post a single rpi header to the 18507 * HBA consistent with the SLI-4 interface spec. This memory region 18508 * maps up to 64 rpi context regions. 18509 * 18510 * Return codes 18511 * 0 - successful 18512 * -ENOMEM - No available memory 18513 * -EIO - The mailbox failed to complete successfully. 18514 **/ 18515 int 18516 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18517 { 18518 LPFC_MBOXQ_t *mboxq; 18519 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18520 uint32_t rc = 0; 18521 uint32_t shdr_status, shdr_add_status; 18522 union lpfc_sli4_cfg_shdr *shdr; 18523 18524 /* SLI4 ports that support extents do not require RPI headers. */ 18525 if (!phba->sli4_hba.rpi_hdrs_in_use) 18526 return rc; 18527 if (phba->sli4_hba.extents_in_use) 18528 return -EIO; 18529 18530 /* The port is notified of the header region via a mailbox command. */ 18531 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18532 if (!mboxq) { 18533 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18534 "2001 Unable to allocate memory for issuing " 18535 "SLI_CONFIG_SPECIAL mailbox command\n"); 18536 return -ENOMEM; 18537 } 18538 18539 /* Post all rpi memory regions to the port. */ 18540 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18541 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18542 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18543 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18544 sizeof(struct lpfc_sli4_cfg_mhdr), 18545 LPFC_SLI4_MBX_EMBED); 18546 18547 18548 /* Post the physical rpi to the port for this rpi header. */ 18549 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18550 rpi_page->start_rpi); 18551 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18552 hdr_tmpl, rpi_page->page_count); 18553 18554 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18555 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18556 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18557 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18558 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18559 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18560 if (rc != MBX_TIMEOUT) 18561 mempool_free(mboxq, phba->mbox_mem_pool); 18562 if (shdr_status || shdr_add_status || rc) { 18563 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18564 "2514 POST_RPI_HDR mailbox failed with " 18565 "status x%x add_status x%x, mbx status x%x\n", 18566 shdr_status, shdr_add_status, rc); 18567 rc = -ENXIO; 18568 } else { 18569 /* 18570 * The next_rpi stores the next logical module-64 rpi value used 18571 * to post physical rpis in subsequent rpi postings. 18572 */ 18573 spin_lock_irq(&phba->hbalock); 18574 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18575 spin_unlock_irq(&phba->hbalock); 18576 } 18577 return rc; 18578 } 18579 18580 /** 18581 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18582 * @phba: pointer to lpfc hba data structure. 18583 * 18584 * This routine is invoked to post rpi header templates to the 18585 * HBA consistent with the SLI-4 interface spec. This routine 18586 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18587 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18588 * 18589 * Returns 18590 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18591 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18592 **/ 18593 int 18594 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18595 { 18596 unsigned long rpi; 18597 uint16_t max_rpi, rpi_limit; 18598 uint16_t rpi_remaining, lrpi = 0; 18599 struct lpfc_rpi_hdr *rpi_hdr; 18600 unsigned long iflag; 18601 18602 /* 18603 * Fetch the next logical rpi. Because this index is logical, 18604 * the driver starts at 0 each time. 18605 */ 18606 spin_lock_irqsave(&phba->hbalock, iflag); 18607 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18608 rpi_limit = phba->sli4_hba.next_rpi; 18609 18610 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18611 if (rpi >= rpi_limit) 18612 rpi = LPFC_RPI_ALLOC_ERROR; 18613 else { 18614 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18615 phba->sli4_hba.max_cfg_param.rpi_used++; 18616 phba->sli4_hba.rpi_count++; 18617 } 18618 lpfc_printf_log(phba, KERN_INFO, 18619 LOG_NODE | LOG_DISCOVERY, 18620 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18621 (int) rpi, max_rpi, rpi_limit); 18622 18623 /* 18624 * Don't try to allocate more rpi header regions if the device limit 18625 * has been exhausted. 18626 */ 18627 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18628 (phba->sli4_hba.rpi_count >= max_rpi)) { 18629 spin_unlock_irqrestore(&phba->hbalock, iflag); 18630 return rpi; 18631 } 18632 18633 /* 18634 * RPI header postings are not required for SLI4 ports capable of 18635 * extents. 18636 */ 18637 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18638 spin_unlock_irqrestore(&phba->hbalock, iflag); 18639 return rpi; 18640 } 18641 18642 /* 18643 * If the driver is running low on rpi resources, allocate another 18644 * page now. Note that the next_rpi value is used because 18645 * it represents how many are actually in use whereas max_rpi notes 18646 * how many are supported max by the device. 18647 */ 18648 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18649 spin_unlock_irqrestore(&phba->hbalock, iflag); 18650 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18651 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18652 if (!rpi_hdr) { 18653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18654 "2002 Error Could not grow rpi " 18655 "count\n"); 18656 } else { 18657 lrpi = rpi_hdr->start_rpi; 18658 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18659 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18660 } 18661 } 18662 18663 return rpi; 18664 } 18665 18666 /** 18667 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18668 * @phba: pointer to lpfc hba data structure. 18669 * @rpi: rpi to free 18670 * 18671 * This routine is invoked to release an rpi to the pool of 18672 * available rpis maintained by the driver. 18673 **/ 18674 static void 18675 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18676 { 18677 /* 18678 * if the rpi value indicates a prior unreg has already 18679 * been done, skip the unreg. 18680 */ 18681 if (rpi == LPFC_RPI_ALLOC_ERROR) 18682 return; 18683 18684 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18685 phba->sli4_hba.rpi_count--; 18686 phba->sli4_hba.max_cfg_param.rpi_used--; 18687 } else { 18688 lpfc_printf_log(phba, KERN_INFO, 18689 LOG_NODE | LOG_DISCOVERY, 18690 "2016 rpi %x not inuse\n", 18691 rpi); 18692 } 18693 } 18694 18695 /** 18696 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18697 * @phba: pointer to lpfc hba data structure. 18698 * @rpi: rpi to free 18699 * 18700 * This routine is invoked to release an rpi to the pool of 18701 * available rpis maintained by the driver. 18702 **/ 18703 void 18704 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18705 { 18706 spin_lock_irq(&phba->hbalock); 18707 __lpfc_sli4_free_rpi(phba, rpi); 18708 spin_unlock_irq(&phba->hbalock); 18709 } 18710 18711 /** 18712 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18713 * @phba: pointer to lpfc hba data structure. 18714 * 18715 * This routine is invoked to remove the memory region that 18716 * provided rpi via a bitmask. 18717 **/ 18718 void 18719 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18720 { 18721 kfree(phba->sli4_hba.rpi_bmask); 18722 kfree(phba->sli4_hba.rpi_ids); 18723 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18724 } 18725 18726 /** 18727 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18728 * @ndlp: pointer to lpfc nodelist data structure. 18729 * @cmpl: completion call-back. 18730 * @arg: data to load as MBox 'caller buffer information' 18731 * 18732 * This routine is invoked to remove the memory region that 18733 * provided rpi via a bitmask. 18734 **/ 18735 int 18736 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18737 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18738 { 18739 LPFC_MBOXQ_t *mboxq; 18740 struct lpfc_hba *phba = ndlp->phba; 18741 int rc; 18742 18743 /* The port is notified of the header region via a mailbox command. */ 18744 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18745 if (!mboxq) 18746 return -ENOMEM; 18747 18748 /* Post all rpi memory regions to the port. */ 18749 lpfc_resume_rpi(mboxq, ndlp); 18750 if (cmpl) { 18751 mboxq->mbox_cmpl = cmpl; 18752 mboxq->ctx_buf = arg; 18753 mboxq->ctx_ndlp = ndlp; 18754 } else 18755 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18756 mboxq->vport = ndlp->vport; 18757 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18758 if (rc == MBX_NOT_FINISHED) { 18759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18760 "2010 Resume RPI Mailbox failed " 18761 "status %d, mbxStatus x%x\n", rc, 18762 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18763 mempool_free(mboxq, phba->mbox_mem_pool); 18764 return -EIO; 18765 } 18766 return 0; 18767 } 18768 18769 /** 18770 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18771 * @vport: Pointer to the vport for which the vpi is being initialized 18772 * 18773 * This routine is invoked to activate a vpi with the port. 18774 * 18775 * Returns: 18776 * 0 success 18777 * -Evalue otherwise 18778 **/ 18779 int 18780 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18781 { 18782 LPFC_MBOXQ_t *mboxq; 18783 int rc = 0; 18784 int retval = MBX_SUCCESS; 18785 uint32_t mbox_tmo; 18786 struct lpfc_hba *phba = vport->phba; 18787 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18788 if (!mboxq) 18789 return -ENOMEM; 18790 lpfc_init_vpi(phba, mboxq, vport->vpi); 18791 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18792 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18793 if (rc != MBX_SUCCESS) { 18794 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18795 "2022 INIT VPI Mailbox failed " 18796 "status %d, mbxStatus x%x\n", rc, 18797 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18798 retval = -EIO; 18799 } 18800 if (rc != MBX_TIMEOUT) 18801 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18802 18803 return retval; 18804 } 18805 18806 /** 18807 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18808 * @phba: pointer to lpfc hba data structure. 18809 * @mboxq: Pointer to mailbox object. 18810 * 18811 * This routine is invoked to manually add a single FCF record. The caller 18812 * must pass a completely initialized FCF_Record. This routine takes 18813 * care of the nonembedded mailbox operations. 18814 **/ 18815 static void 18816 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18817 { 18818 void *virt_addr; 18819 union lpfc_sli4_cfg_shdr *shdr; 18820 uint32_t shdr_status, shdr_add_status; 18821 18822 virt_addr = mboxq->sge_array->addr[0]; 18823 /* The IOCTL status is embedded in the mailbox subheader. */ 18824 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18825 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18826 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18827 18828 if ((shdr_status || shdr_add_status) && 18829 (shdr_status != STATUS_FCF_IN_USE)) 18830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18831 "2558 ADD_FCF_RECORD mailbox failed with " 18832 "status x%x add_status x%x\n", 18833 shdr_status, shdr_add_status); 18834 18835 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18836 } 18837 18838 /** 18839 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18840 * @phba: pointer to lpfc hba data structure. 18841 * @fcf_record: pointer to the initialized fcf record to add. 18842 * 18843 * This routine is invoked to manually add a single FCF record. The caller 18844 * must pass a completely initialized FCF_Record. This routine takes 18845 * care of the nonembedded mailbox operations. 18846 **/ 18847 int 18848 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18849 { 18850 int rc = 0; 18851 LPFC_MBOXQ_t *mboxq; 18852 uint8_t *bytep; 18853 void *virt_addr; 18854 struct lpfc_mbx_sge sge; 18855 uint32_t alloc_len, req_len; 18856 uint32_t fcfindex; 18857 18858 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18859 if (!mboxq) { 18860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18861 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18862 return -ENOMEM; 18863 } 18864 18865 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18866 sizeof(uint32_t); 18867 18868 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18869 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18870 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18871 req_len, LPFC_SLI4_MBX_NEMBED); 18872 if (alloc_len < req_len) { 18873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18874 "2523 Allocated DMA memory size (x%x) is " 18875 "less than the requested DMA memory " 18876 "size (x%x)\n", alloc_len, req_len); 18877 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18878 return -ENOMEM; 18879 } 18880 18881 /* 18882 * Get the first SGE entry from the non-embedded DMA memory. This 18883 * routine only uses a single SGE. 18884 */ 18885 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18886 virt_addr = mboxq->sge_array->addr[0]; 18887 /* 18888 * Configure the FCF record for FCFI 0. This is the driver's 18889 * hardcoded default and gets used in nonFIP mode. 18890 */ 18891 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18892 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18893 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18894 18895 /* 18896 * Copy the fcf_index and the FCF Record Data. The data starts after 18897 * the FCoE header plus word10. The data copy needs to be endian 18898 * correct. 18899 */ 18900 bytep += sizeof(uint32_t); 18901 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18902 mboxq->vport = phba->pport; 18903 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18904 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18905 if (rc == MBX_NOT_FINISHED) { 18906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18907 "2515 ADD_FCF_RECORD mailbox failed with " 18908 "status 0x%x\n", rc); 18909 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18910 rc = -EIO; 18911 } else 18912 rc = 0; 18913 18914 return rc; 18915 } 18916 18917 /** 18918 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18919 * @phba: pointer to lpfc hba data structure. 18920 * @fcf_record: pointer to the fcf record to write the default data. 18921 * @fcf_index: FCF table entry index. 18922 * 18923 * This routine is invoked to build the driver's default FCF record. The 18924 * values used are hardcoded. This routine handles memory initialization. 18925 * 18926 **/ 18927 void 18928 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18929 struct fcf_record *fcf_record, 18930 uint16_t fcf_index) 18931 { 18932 memset(fcf_record, 0, sizeof(struct fcf_record)); 18933 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18934 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18935 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18936 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18937 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18938 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18939 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18940 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18941 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18942 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18943 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18944 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18945 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18946 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18947 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18948 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18949 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18950 /* Set the VLAN bit map */ 18951 if (phba->valid_vlan) { 18952 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18953 = 1 << (phba->vlan_id % 8); 18954 } 18955 } 18956 18957 /** 18958 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18959 * @phba: pointer to lpfc hba data structure. 18960 * @fcf_index: FCF table entry offset. 18961 * 18962 * This routine is invoked to scan the entire FCF table by reading FCF 18963 * record and processing it one at a time starting from the @fcf_index 18964 * for initial FCF discovery or fast FCF failover rediscovery. 18965 * 18966 * Return 0 if the mailbox command is submitted successfully, none 0 18967 * otherwise. 18968 **/ 18969 int 18970 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18971 { 18972 int rc = 0, error; 18973 LPFC_MBOXQ_t *mboxq; 18974 18975 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18976 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18977 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18978 if (!mboxq) { 18979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18980 "2000 Failed to allocate mbox for " 18981 "READ_FCF cmd\n"); 18982 error = -ENOMEM; 18983 goto fail_fcf_scan; 18984 } 18985 /* Construct the read FCF record mailbox command */ 18986 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18987 if (rc) { 18988 error = -EINVAL; 18989 goto fail_fcf_scan; 18990 } 18991 /* Issue the mailbox command asynchronously */ 18992 mboxq->vport = phba->pport; 18993 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18994 18995 spin_lock_irq(&phba->hbalock); 18996 phba->hba_flag |= FCF_TS_INPROG; 18997 spin_unlock_irq(&phba->hbalock); 18998 18999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19000 if (rc == MBX_NOT_FINISHED) 19001 error = -EIO; 19002 else { 19003 /* Reset eligible FCF count for new scan */ 19004 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19005 phba->fcf.eligible_fcf_cnt = 0; 19006 error = 0; 19007 } 19008 fail_fcf_scan: 19009 if (error) { 19010 if (mboxq) 19011 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19012 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19013 spin_lock_irq(&phba->hbalock); 19014 phba->hba_flag &= ~FCF_TS_INPROG; 19015 spin_unlock_irq(&phba->hbalock); 19016 } 19017 return error; 19018 } 19019 19020 /** 19021 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19022 * @phba: pointer to lpfc hba data structure. 19023 * @fcf_index: FCF table entry offset. 19024 * 19025 * This routine is invoked to read an FCF record indicated by @fcf_index 19026 * and to use it for FLOGI roundrobin FCF failover. 19027 * 19028 * Return 0 if the mailbox command is submitted successfully, none 0 19029 * otherwise. 19030 **/ 19031 int 19032 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19033 { 19034 int rc = 0, error; 19035 LPFC_MBOXQ_t *mboxq; 19036 19037 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19038 if (!mboxq) { 19039 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19040 "2763 Failed to allocate mbox for " 19041 "READ_FCF cmd\n"); 19042 error = -ENOMEM; 19043 goto fail_fcf_read; 19044 } 19045 /* Construct the read FCF record mailbox command */ 19046 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19047 if (rc) { 19048 error = -EINVAL; 19049 goto fail_fcf_read; 19050 } 19051 /* Issue the mailbox command asynchronously */ 19052 mboxq->vport = phba->pport; 19053 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19054 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19055 if (rc == MBX_NOT_FINISHED) 19056 error = -EIO; 19057 else 19058 error = 0; 19059 19060 fail_fcf_read: 19061 if (error && mboxq) 19062 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19063 return error; 19064 } 19065 19066 /** 19067 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19068 * @phba: pointer to lpfc hba data structure. 19069 * @fcf_index: FCF table entry offset. 19070 * 19071 * This routine is invoked to read an FCF record indicated by @fcf_index to 19072 * determine whether it's eligible for FLOGI roundrobin failover list. 19073 * 19074 * Return 0 if the mailbox command is submitted successfully, none 0 19075 * otherwise. 19076 **/ 19077 int 19078 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19079 { 19080 int rc = 0, error; 19081 LPFC_MBOXQ_t *mboxq; 19082 19083 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19084 if (!mboxq) { 19085 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19086 "2758 Failed to allocate mbox for " 19087 "READ_FCF cmd\n"); 19088 error = -ENOMEM; 19089 goto fail_fcf_read; 19090 } 19091 /* Construct the read FCF record mailbox command */ 19092 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19093 if (rc) { 19094 error = -EINVAL; 19095 goto fail_fcf_read; 19096 } 19097 /* Issue the mailbox command asynchronously */ 19098 mboxq->vport = phba->pport; 19099 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19100 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19101 if (rc == MBX_NOT_FINISHED) 19102 error = -EIO; 19103 else 19104 error = 0; 19105 19106 fail_fcf_read: 19107 if (error && mboxq) 19108 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19109 return error; 19110 } 19111 19112 /** 19113 * lpfc_check_next_fcf_pri_level 19114 * @phba: pointer to the lpfc_hba struct for this port. 19115 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19116 * routine when the rr_bmask is empty. The FCF indecies are put into the 19117 * rr_bmask based on their priority level. Starting from the highest priority 19118 * to the lowest. The most likely FCF candidate will be in the highest 19119 * priority group. When this routine is called it searches the fcf_pri list for 19120 * next lowest priority group and repopulates the rr_bmask with only those 19121 * fcf_indexes. 19122 * returns: 19123 * 1=success 0=failure 19124 **/ 19125 static int 19126 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19127 { 19128 uint16_t next_fcf_pri; 19129 uint16_t last_index; 19130 struct lpfc_fcf_pri *fcf_pri; 19131 int rc; 19132 int ret = 0; 19133 19134 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19135 LPFC_SLI4_FCF_TBL_INDX_MAX); 19136 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19137 "3060 Last IDX %d\n", last_index); 19138 19139 /* Verify the priority list has 2 or more entries */ 19140 spin_lock_irq(&phba->hbalock); 19141 if (list_empty(&phba->fcf.fcf_pri_list) || 19142 list_is_singular(&phba->fcf.fcf_pri_list)) { 19143 spin_unlock_irq(&phba->hbalock); 19144 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19145 "3061 Last IDX %d\n", last_index); 19146 return 0; /* Empty rr list */ 19147 } 19148 spin_unlock_irq(&phba->hbalock); 19149 19150 next_fcf_pri = 0; 19151 /* 19152 * Clear the rr_bmask and set all of the bits that are at this 19153 * priority. 19154 */ 19155 memset(phba->fcf.fcf_rr_bmask, 0, 19156 sizeof(*phba->fcf.fcf_rr_bmask)); 19157 spin_lock_irq(&phba->hbalock); 19158 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19159 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19160 continue; 19161 /* 19162 * the 1st priority that has not FLOGI failed 19163 * will be the highest. 19164 */ 19165 if (!next_fcf_pri) 19166 next_fcf_pri = fcf_pri->fcf_rec.priority; 19167 spin_unlock_irq(&phba->hbalock); 19168 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19169 rc = lpfc_sli4_fcf_rr_index_set(phba, 19170 fcf_pri->fcf_rec.fcf_index); 19171 if (rc) 19172 return 0; 19173 } 19174 spin_lock_irq(&phba->hbalock); 19175 } 19176 /* 19177 * if next_fcf_pri was not set above and the list is not empty then 19178 * we have failed flogis on all of them. So reset flogi failed 19179 * and start at the beginning. 19180 */ 19181 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19182 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19183 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19184 /* 19185 * the 1st priority that has not FLOGI failed 19186 * will be the highest. 19187 */ 19188 if (!next_fcf_pri) 19189 next_fcf_pri = fcf_pri->fcf_rec.priority; 19190 spin_unlock_irq(&phba->hbalock); 19191 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19192 rc = lpfc_sli4_fcf_rr_index_set(phba, 19193 fcf_pri->fcf_rec.fcf_index); 19194 if (rc) 19195 return 0; 19196 } 19197 spin_lock_irq(&phba->hbalock); 19198 } 19199 } else 19200 ret = 1; 19201 spin_unlock_irq(&phba->hbalock); 19202 19203 return ret; 19204 } 19205 /** 19206 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19207 * @phba: pointer to lpfc hba data structure. 19208 * 19209 * This routine is to get the next eligible FCF record index in a round 19210 * robin fashion. If the next eligible FCF record index equals to the 19211 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19212 * shall be returned, otherwise, the next eligible FCF record's index 19213 * shall be returned. 19214 **/ 19215 uint16_t 19216 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19217 { 19218 uint16_t next_fcf_index; 19219 19220 initial_priority: 19221 /* Search start from next bit of currently registered FCF index */ 19222 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19223 19224 next_priority: 19225 /* Determine the next fcf index to check */ 19226 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19227 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19228 LPFC_SLI4_FCF_TBL_INDX_MAX, 19229 next_fcf_index); 19230 19231 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19232 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19233 /* 19234 * If we have wrapped then we need to clear the bits that 19235 * have been tested so that we can detect when we should 19236 * change the priority level. 19237 */ 19238 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19239 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19240 } 19241 19242 19243 /* Check roundrobin failover list empty condition */ 19244 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19245 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19246 /* 19247 * If next fcf index is not found check if there are lower 19248 * Priority level fcf's in the fcf_priority list. 19249 * Set up the rr_bmask with all of the avaiable fcf bits 19250 * at that level and continue the selection process. 19251 */ 19252 if (lpfc_check_next_fcf_pri_level(phba)) 19253 goto initial_priority; 19254 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19255 "2844 No roundrobin failover FCF available\n"); 19256 19257 return LPFC_FCOE_FCF_NEXT_NONE; 19258 } 19259 19260 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19261 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19262 LPFC_FCF_FLOGI_FAILED) { 19263 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19264 return LPFC_FCOE_FCF_NEXT_NONE; 19265 19266 goto next_priority; 19267 } 19268 19269 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19270 "2845 Get next roundrobin failover FCF (x%x)\n", 19271 next_fcf_index); 19272 19273 return next_fcf_index; 19274 } 19275 19276 /** 19277 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19278 * @phba: pointer to lpfc hba data structure. 19279 * @fcf_index: index into the FCF table to 'set' 19280 * 19281 * This routine sets the FCF record index in to the eligible bmask for 19282 * roundrobin failover search. It checks to make sure that the index 19283 * does not go beyond the range of the driver allocated bmask dimension 19284 * before setting the bit. 19285 * 19286 * Returns 0 if the index bit successfully set, otherwise, it returns 19287 * -EINVAL. 19288 **/ 19289 int 19290 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19291 { 19292 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19293 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19294 "2610 FCF (x%x) reached driver's book " 19295 "keeping dimension:x%x\n", 19296 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19297 return -EINVAL; 19298 } 19299 /* Set the eligible FCF record index bmask */ 19300 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19301 19302 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19303 "2790 Set FCF (x%x) to roundrobin FCF failover " 19304 "bmask\n", fcf_index); 19305 19306 return 0; 19307 } 19308 19309 /** 19310 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19311 * @phba: pointer to lpfc hba data structure. 19312 * @fcf_index: index into the FCF table to 'clear' 19313 * 19314 * This routine clears the FCF record index from the eligible bmask for 19315 * roundrobin failover search. It checks to make sure that the index 19316 * does not go beyond the range of the driver allocated bmask dimension 19317 * before clearing the bit. 19318 **/ 19319 void 19320 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19321 { 19322 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19323 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19324 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19325 "2762 FCF (x%x) reached driver's book " 19326 "keeping dimension:x%x\n", 19327 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19328 return; 19329 } 19330 /* Clear the eligible FCF record index bmask */ 19331 spin_lock_irq(&phba->hbalock); 19332 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19333 list) { 19334 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19335 list_del_init(&fcf_pri->list); 19336 break; 19337 } 19338 } 19339 spin_unlock_irq(&phba->hbalock); 19340 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19341 19342 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19343 "2791 Clear FCF (x%x) from roundrobin failover " 19344 "bmask\n", fcf_index); 19345 } 19346 19347 /** 19348 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19349 * @phba: pointer to lpfc hba data structure. 19350 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19351 * 19352 * This routine is the completion routine for the rediscover FCF table mailbox 19353 * command. If the mailbox command returned failure, it will try to stop the 19354 * FCF rediscover wait timer. 19355 **/ 19356 static void 19357 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19358 { 19359 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19360 uint32_t shdr_status, shdr_add_status; 19361 19362 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19363 19364 shdr_status = bf_get(lpfc_mbox_hdr_status, 19365 &redisc_fcf->header.cfg_shdr.response); 19366 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19367 &redisc_fcf->header.cfg_shdr.response); 19368 if (shdr_status || shdr_add_status) { 19369 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19370 "2746 Requesting for FCF rediscovery failed " 19371 "status x%x add_status x%x\n", 19372 shdr_status, shdr_add_status); 19373 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19374 spin_lock_irq(&phba->hbalock); 19375 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19376 spin_unlock_irq(&phba->hbalock); 19377 /* 19378 * CVL event triggered FCF rediscover request failed, 19379 * last resort to re-try current registered FCF entry. 19380 */ 19381 lpfc_retry_pport_discovery(phba); 19382 } else { 19383 spin_lock_irq(&phba->hbalock); 19384 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19385 spin_unlock_irq(&phba->hbalock); 19386 /* 19387 * DEAD FCF event triggered FCF rediscover request 19388 * failed, last resort to fail over as a link down 19389 * to FCF registration. 19390 */ 19391 lpfc_sli4_fcf_dead_failthrough(phba); 19392 } 19393 } else { 19394 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19395 "2775 Start FCF rediscover quiescent timer\n"); 19396 /* 19397 * Start FCF rediscovery wait timer for pending FCF 19398 * before rescan FCF record table. 19399 */ 19400 lpfc_fcf_redisc_wait_start_timer(phba); 19401 } 19402 19403 mempool_free(mbox, phba->mbox_mem_pool); 19404 } 19405 19406 /** 19407 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19408 * @phba: pointer to lpfc hba data structure. 19409 * 19410 * This routine is invoked to request for rediscovery of the entire FCF table 19411 * by the port. 19412 **/ 19413 int 19414 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19415 { 19416 LPFC_MBOXQ_t *mbox; 19417 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19418 int rc, length; 19419 19420 /* Cancel retry delay timers to all vports before FCF rediscover */ 19421 lpfc_cancel_all_vport_retry_delay_timer(phba); 19422 19423 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19424 if (!mbox) { 19425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19426 "2745 Failed to allocate mbox for " 19427 "requesting FCF rediscover.\n"); 19428 return -ENOMEM; 19429 } 19430 19431 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19432 sizeof(struct lpfc_sli4_cfg_mhdr)); 19433 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19434 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19435 length, LPFC_SLI4_MBX_EMBED); 19436 19437 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19438 /* Set count to 0 for invalidating the entire FCF database */ 19439 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19440 19441 /* Issue the mailbox command asynchronously */ 19442 mbox->vport = phba->pport; 19443 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19444 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19445 19446 if (rc == MBX_NOT_FINISHED) { 19447 mempool_free(mbox, phba->mbox_mem_pool); 19448 return -EIO; 19449 } 19450 return 0; 19451 } 19452 19453 /** 19454 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19455 * @phba: pointer to lpfc hba data structure. 19456 * 19457 * This function is the failover routine as a last resort to the FCF DEAD 19458 * event when driver failed to perform fast FCF failover. 19459 **/ 19460 void 19461 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19462 { 19463 uint32_t link_state; 19464 19465 /* 19466 * Last resort as FCF DEAD event failover will treat this as 19467 * a link down, but save the link state because we don't want 19468 * it to be changed to Link Down unless it is already down. 19469 */ 19470 link_state = phba->link_state; 19471 lpfc_linkdown(phba); 19472 phba->link_state = link_state; 19473 19474 /* Unregister FCF if no devices connected to it */ 19475 lpfc_unregister_unused_fcf(phba); 19476 } 19477 19478 /** 19479 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19480 * @phba: pointer to lpfc hba data structure. 19481 * @rgn23_data: pointer to configure region 23 data. 19482 * 19483 * This function gets SLI3 port configure region 23 data through memory dump 19484 * mailbox command. When it successfully retrieves data, the size of the data 19485 * will be returned, otherwise, 0 will be returned. 19486 **/ 19487 static uint32_t 19488 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19489 { 19490 LPFC_MBOXQ_t *pmb = NULL; 19491 MAILBOX_t *mb; 19492 uint32_t offset = 0; 19493 int i, rc; 19494 19495 if (!rgn23_data) 19496 return 0; 19497 19498 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19499 if (!pmb) { 19500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19501 "2600 failed to allocate mailbox memory\n"); 19502 return 0; 19503 } 19504 mb = &pmb->u.mb; 19505 19506 do { 19507 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19508 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19509 19510 if (rc != MBX_SUCCESS) { 19511 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19512 "2601 failed to read config " 19513 "region 23, rc 0x%x Status 0x%x\n", 19514 rc, mb->mbxStatus); 19515 mb->un.varDmp.word_cnt = 0; 19516 } 19517 /* 19518 * dump mem may return a zero when finished or we got a 19519 * mailbox error, either way we are done. 19520 */ 19521 if (mb->un.varDmp.word_cnt == 0) 19522 break; 19523 19524 i = mb->un.varDmp.word_cnt * sizeof(uint32_t); 19525 if (offset + i > DMP_RGN23_SIZE) 19526 i = DMP_RGN23_SIZE - offset; 19527 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19528 rgn23_data + offset, i); 19529 offset += i; 19530 } while (offset < DMP_RGN23_SIZE); 19531 19532 mempool_free(pmb, phba->mbox_mem_pool); 19533 return offset; 19534 } 19535 19536 /** 19537 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19538 * @phba: pointer to lpfc hba data structure. 19539 * @rgn23_data: pointer to configure region 23 data. 19540 * 19541 * This function gets SLI4 port configure region 23 data through memory dump 19542 * mailbox command. When it successfully retrieves data, the size of the data 19543 * will be returned, otherwise, 0 will be returned. 19544 **/ 19545 static uint32_t 19546 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19547 { 19548 LPFC_MBOXQ_t *mboxq = NULL; 19549 struct lpfc_dmabuf *mp = NULL; 19550 struct lpfc_mqe *mqe; 19551 uint32_t data_length = 0; 19552 int rc; 19553 19554 if (!rgn23_data) 19555 return 0; 19556 19557 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19558 if (!mboxq) { 19559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19560 "3105 failed to allocate mailbox memory\n"); 19561 return 0; 19562 } 19563 19564 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19565 goto out; 19566 mqe = &mboxq->u.mqe; 19567 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19568 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19569 if (rc) 19570 goto out; 19571 data_length = mqe->un.mb_words[5]; 19572 if (data_length == 0) 19573 goto out; 19574 if (data_length > DMP_RGN23_SIZE) { 19575 data_length = 0; 19576 goto out; 19577 } 19578 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19579 out: 19580 mempool_free(mboxq, phba->mbox_mem_pool); 19581 if (mp) { 19582 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19583 kfree(mp); 19584 } 19585 return data_length; 19586 } 19587 19588 /** 19589 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19590 * @phba: pointer to lpfc hba data structure. 19591 * 19592 * This function read region 23 and parse TLV for port status to 19593 * decide if the user disaled the port. If the TLV indicates the 19594 * port is disabled, the hba_flag is set accordingly. 19595 **/ 19596 void 19597 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19598 { 19599 uint8_t *rgn23_data = NULL; 19600 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19601 uint32_t offset = 0; 19602 19603 /* Get adapter Region 23 data */ 19604 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19605 if (!rgn23_data) 19606 goto out; 19607 19608 if (phba->sli_rev < LPFC_SLI_REV4) 19609 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19610 else { 19611 if_type = bf_get(lpfc_sli_intf_if_type, 19612 &phba->sli4_hba.sli_intf); 19613 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19614 goto out; 19615 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19616 } 19617 19618 if (!data_size) 19619 goto out; 19620 19621 /* Check the region signature first */ 19622 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19624 "2619 Config region 23 has bad signature\n"); 19625 goto out; 19626 } 19627 offset += 4; 19628 19629 /* Check the data structure version */ 19630 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19632 "2620 Config region 23 has bad version\n"); 19633 goto out; 19634 } 19635 offset += 4; 19636 19637 /* Parse TLV entries in the region */ 19638 while (offset < data_size) { 19639 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19640 break; 19641 /* 19642 * If the TLV is not driver specific TLV or driver id is 19643 * not linux driver id, skip the record. 19644 */ 19645 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19646 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19647 (rgn23_data[offset + 3] != 0)) { 19648 offset += rgn23_data[offset + 1] * 4 + 4; 19649 continue; 19650 } 19651 19652 /* Driver found a driver specific TLV in the config region */ 19653 sub_tlv_len = rgn23_data[offset + 1] * 4; 19654 offset += 4; 19655 tlv_offset = 0; 19656 19657 /* 19658 * Search for configured port state sub-TLV. 19659 */ 19660 while ((offset < data_size) && 19661 (tlv_offset < sub_tlv_len)) { 19662 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19663 offset += 4; 19664 tlv_offset += 4; 19665 break; 19666 } 19667 if (rgn23_data[offset] != PORT_STE_TYPE) { 19668 offset += rgn23_data[offset + 1] * 4 + 4; 19669 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19670 continue; 19671 } 19672 19673 /* This HBA contains PORT_STE configured */ 19674 if (!rgn23_data[offset + 2]) 19675 phba->hba_flag |= LINK_DISABLED; 19676 19677 goto out; 19678 } 19679 } 19680 19681 out: 19682 kfree(rgn23_data); 19683 return; 19684 } 19685 19686 /** 19687 * lpfc_wr_object - write an object to the firmware 19688 * @phba: HBA structure that indicates port to create a queue on. 19689 * @dmabuf_list: list of dmabufs to write to the port. 19690 * @size: the total byte value of the objects to write to the port. 19691 * @offset: the current offset to be used to start the transfer. 19692 * 19693 * This routine will create a wr_object mailbox command to send to the port. 19694 * the mailbox command will be constructed using the dma buffers described in 19695 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19696 * BDEs that the imbedded mailbox can support. The @offset variable will be 19697 * used to indicate the starting offset of the transfer and will also return 19698 * the offset after the write object mailbox has completed. @size is used to 19699 * determine the end of the object and whether the eof bit should be set. 19700 * 19701 * Return 0 is successful and offset will contain the the new offset to use 19702 * for the next write. 19703 * Return negative value for error cases. 19704 **/ 19705 int 19706 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19707 uint32_t size, uint32_t *offset) 19708 { 19709 struct lpfc_mbx_wr_object *wr_object; 19710 LPFC_MBOXQ_t *mbox; 19711 int rc = 0, i = 0; 19712 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19713 uint32_t mbox_tmo; 19714 struct lpfc_dmabuf *dmabuf; 19715 uint32_t written = 0; 19716 bool check_change_status = false; 19717 19718 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19719 if (!mbox) 19720 return -ENOMEM; 19721 19722 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19723 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19724 sizeof(struct lpfc_mbx_wr_object) - 19725 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19726 19727 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19728 wr_object->u.request.write_offset = *offset; 19729 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19730 wr_object->u.request.object_name[0] = 19731 cpu_to_le32(wr_object->u.request.object_name[0]); 19732 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19733 list_for_each_entry(dmabuf, dmabuf_list, list) { 19734 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19735 break; 19736 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19737 wr_object->u.request.bde[i].addrHigh = 19738 putPaddrHigh(dmabuf->phys); 19739 if (written + SLI4_PAGE_SIZE >= size) { 19740 wr_object->u.request.bde[i].tus.f.bdeSize = 19741 (size - written); 19742 written += (size - written); 19743 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19744 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19745 check_change_status = true; 19746 } else { 19747 wr_object->u.request.bde[i].tus.f.bdeSize = 19748 SLI4_PAGE_SIZE; 19749 written += SLI4_PAGE_SIZE; 19750 } 19751 i++; 19752 } 19753 wr_object->u.request.bde_count = i; 19754 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19755 if (!phba->sli4_hba.intr_enable) 19756 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19757 else { 19758 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19759 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19760 } 19761 /* The IOCTL status is embedded in the mailbox subheader. */ 19762 shdr_status = bf_get(lpfc_mbox_hdr_status, 19763 &wr_object->header.cfg_shdr.response); 19764 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19765 &wr_object->header.cfg_shdr.response); 19766 if (check_change_status) { 19767 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19768 &wr_object->u.response); 19769 19770 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 19771 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 19772 shdr_csf = bf_get(lpfc_wr_object_csf, 19773 &wr_object->u.response); 19774 if (shdr_csf) 19775 shdr_change_status = 19776 LPFC_CHANGE_STATUS_PCI_RESET; 19777 } 19778 19779 switch (shdr_change_status) { 19780 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19781 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19782 "3198 Firmware write complete: System " 19783 "reboot required to instantiate\n"); 19784 break; 19785 case (LPFC_CHANGE_STATUS_FW_RESET): 19786 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19787 "3199 Firmware write complete: Firmware" 19788 " reset required to instantiate\n"); 19789 break; 19790 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19791 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19792 "3200 Firmware write complete: Port " 19793 "Migration or PCI Reset required to " 19794 "instantiate\n"); 19795 break; 19796 case (LPFC_CHANGE_STATUS_PCI_RESET): 19797 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19798 "3201 Firmware write complete: PCI " 19799 "Reset required to instantiate\n"); 19800 break; 19801 default: 19802 break; 19803 } 19804 } 19805 if (rc != MBX_TIMEOUT) 19806 mempool_free(mbox, phba->mbox_mem_pool); 19807 if (shdr_status || shdr_add_status || rc) { 19808 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19809 "3025 Write Object mailbox failed with " 19810 "status x%x add_status x%x, mbx status x%x\n", 19811 shdr_status, shdr_add_status, rc); 19812 rc = -ENXIO; 19813 *offset = shdr_add_status; 19814 } else 19815 *offset += wr_object->u.response.actual_write_length; 19816 return rc; 19817 } 19818 19819 /** 19820 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19821 * @vport: pointer to vport data structure. 19822 * 19823 * This function iterate through the mailboxq and clean up all REG_LOGIN 19824 * and REG_VPI mailbox commands associated with the vport. This function 19825 * is called when driver want to restart discovery of the vport due to 19826 * a Clear Virtual Link event. 19827 **/ 19828 void 19829 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19830 { 19831 struct lpfc_hba *phba = vport->phba; 19832 LPFC_MBOXQ_t *mb, *nextmb; 19833 struct lpfc_dmabuf *mp; 19834 struct lpfc_nodelist *ndlp; 19835 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19836 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19837 LIST_HEAD(mbox_cmd_list); 19838 uint8_t restart_loop; 19839 19840 /* Clean up internally queued mailbox commands with the vport */ 19841 spin_lock_irq(&phba->hbalock); 19842 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19843 if (mb->vport != vport) 19844 continue; 19845 19846 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19847 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19848 continue; 19849 19850 list_del(&mb->list); 19851 list_add_tail(&mb->list, &mbox_cmd_list); 19852 } 19853 /* Clean up active mailbox command with the vport */ 19854 mb = phba->sli.mbox_active; 19855 if (mb && (mb->vport == vport)) { 19856 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19857 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19858 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19859 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19860 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19861 /* Put reference count for delayed processing */ 19862 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19863 /* Unregister the RPI when mailbox complete */ 19864 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19865 } 19866 } 19867 /* Cleanup any mailbox completions which are not yet processed */ 19868 do { 19869 restart_loop = 0; 19870 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19871 /* 19872 * If this mailox is already processed or it is 19873 * for another vport ignore it. 19874 */ 19875 if ((mb->vport != vport) || 19876 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19877 continue; 19878 19879 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19880 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19881 continue; 19882 19883 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19884 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19885 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19886 /* Unregister the RPI when mailbox complete */ 19887 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19888 restart_loop = 1; 19889 spin_unlock_irq(&phba->hbalock); 19890 spin_lock(shost->host_lock); 19891 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19892 spin_unlock(shost->host_lock); 19893 spin_lock_irq(&phba->hbalock); 19894 break; 19895 } 19896 } 19897 } while (restart_loop); 19898 19899 spin_unlock_irq(&phba->hbalock); 19900 19901 /* Release the cleaned-up mailbox commands */ 19902 while (!list_empty(&mbox_cmd_list)) { 19903 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19904 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19905 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19906 if (mp) { 19907 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19908 kfree(mp); 19909 } 19910 mb->ctx_buf = NULL; 19911 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19912 mb->ctx_ndlp = NULL; 19913 if (ndlp) { 19914 spin_lock(shost->host_lock); 19915 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19916 spin_unlock(shost->host_lock); 19917 lpfc_nlp_put(ndlp); 19918 } 19919 } 19920 mempool_free(mb, phba->mbox_mem_pool); 19921 } 19922 19923 /* Release the ndlp with the cleaned-up active mailbox command */ 19924 if (act_mbx_ndlp) { 19925 spin_lock(shost->host_lock); 19926 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19927 spin_unlock(shost->host_lock); 19928 lpfc_nlp_put(act_mbx_ndlp); 19929 } 19930 } 19931 19932 /** 19933 * lpfc_drain_txq - Drain the txq 19934 * @phba: Pointer to HBA context object. 19935 * 19936 * This function attempt to submit IOCBs on the txq 19937 * to the adapter. For SLI4 adapters, the txq contains 19938 * ELS IOCBs that have been deferred because the there 19939 * are no SGLs. This congestion can occur with large 19940 * vport counts during node discovery. 19941 **/ 19942 19943 uint32_t 19944 lpfc_drain_txq(struct lpfc_hba *phba) 19945 { 19946 LIST_HEAD(completions); 19947 struct lpfc_sli_ring *pring; 19948 struct lpfc_iocbq *piocbq = NULL; 19949 unsigned long iflags = 0; 19950 char *fail_msg = NULL; 19951 struct lpfc_sglq *sglq; 19952 union lpfc_wqe128 wqe; 19953 uint32_t txq_cnt = 0; 19954 struct lpfc_queue *wq; 19955 19956 if (phba->link_flag & LS_MDS_LOOPBACK) { 19957 /* MDS WQE are posted only to first WQ*/ 19958 wq = phba->sli4_hba.hdwq[0].io_wq; 19959 if (unlikely(!wq)) 19960 return 0; 19961 pring = wq->pring; 19962 } else { 19963 wq = phba->sli4_hba.els_wq; 19964 if (unlikely(!wq)) 19965 return 0; 19966 pring = lpfc_phba_elsring(phba); 19967 } 19968 19969 if (unlikely(!pring) || list_empty(&pring->txq)) 19970 return 0; 19971 19972 spin_lock_irqsave(&pring->ring_lock, iflags); 19973 list_for_each_entry(piocbq, &pring->txq, list) { 19974 txq_cnt++; 19975 } 19976 19977 if (txq_cnt > pring->txq_max) 19978 pring->txq_max = txq_cnt; 19979 19980 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19981 19982 while (!list_empty(&pring->txq)) { 19983 spin_lock_irqsave(&pring->ring_lock, iflags); 19984 19985 piocbq = lpfc_sli_ringtx_get(phba, pring); 19986 if (!piocbq) { 19987 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19989 "2823 txq empty and txq_cnt is %d\n ", 19990 txq_cnt); 19991 break; 19992 } 19993 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19994 if (!sglq) { 19995 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19996 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19997 break; 19998 } 19999 txq_cnt--; 20000 20001 /* The xri and iocb resources secured, 20002 * attempt to issue request 20003 */ 20004 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20005 piocbq->sli4_xritag = sglq->sli4_xritag; 20006 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20007 fail_msg = "to convert bpl to sgl"; 20008 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20009 fail_msg = "to convert iocb to wqe"; 20010 else if (lpfc_sli4_wq_put(wq, &wqe)) 20011 fail_msg = " - Wq is full"; 20012 else 20013 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20014 20015 if (fail_msg) { 20016 /* Failed means we can't issue and need to cancel */ 20017 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20018 "2822 IOCB failed %s iotag 0x%x " 20019 "xri 0x%x\n", 20020 fail_msg, 20021 piocbq->iotag, piocbq->sli4_xritag); 20022 list_add_tail(&piocbq->list, &completions); 20023 } 20024 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20025 } 20026 20027 /* Cancel all the IOCBs that cannot be issued */ 20028 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20029 IOERR_SLI_ABORTED); 20030 20031 return txq_cnt; 20032 } 20033 20034 /** 20035 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20036 * @phba: Pointer to HBA context object. 20037 * @pwqeq: Pointer to command WQE. 20038 * @sglq: Pointer to the scatter gather queue object. 20039 * 20040 * This routine converts the bpl or bde that is in the WQE 20041 * to a sgl list for the sli4 hardware. The physical address 20042 * of the bpl/bde is converted back to a virtual address. 20043 * If the WQE contains a BPL then the list of BDE's is 20044 * converted to sli4_sge's. If the WQE contains a single 20045 * BDE then it is converted to a single sli_sge. 20046 * The WQE is still in cpu endianness so the contents of 20047 * the bpl can be used without byte swapping. 20048 * 20049 * Returns valid XRI = Success, NO_XRI = Failure. 20050 */ 20051 static uint16_t 20052 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20053 struct lpfc_sglq *sglq) 20054 { 20055 uint16_t xritag = NO_XRI; 20056 struct ulp_bde64 *bpl = NULL; 20057 struct ulp_bde64 bde; 20058 struct sli4_sge *sgl = NULL; 20059 struct lpfc_dmabuf *dmabuf; 20060 union lpfc_wqe128 *wqe; 20061 int numBdes = 0; 20062 int i = 0; 20063 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20064 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20065 uint32_t cmd; 20066 20067 if (!pwqeq || !sglq) 20068 return xritag; 20069 20070 sgl = (struct sli4_sge *)sglq->sgl; 20071 wqe = &pwqeq->wqe; 20072 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20073 20074 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20075 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20076 return sglq->sli4_xritag; 20077 numBdes = pwqeq->rsvd2; 20078 if (numBdes) { 20079 /* The addrHigh and addrLow fields within the WQE 20080 * have not been byteswapped yet so there is no 20081 * need to swap them back. 20082 */ 20083 if (pwqeq->context3) 20084 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20085 else 20086 return xritag; 20087 20088 bpl = (struct ulp_bde64 *)dmabuf->virt; 20089 if (!bpl) 20090 return xritag; 20091 20092 for (i = 0; i < numBdes; i++) { 20093 /* Should already be byte swapped. */ 20094 sgl->addr_hi = bpl->addrHigh; 20095 sgl->addr_lo = bpl->addrLow; 20096 20097 sgl->word2 = le32_to_cpu(sgl->word2); 20098 if ((i+1) == numBdes) 20099 bf_set(lpfc_sli4_sge_last, sgl, 1); 20100 else 20101 bf_set(lpfc_sli4_sge_last, sgl, 0); 20102 /* swap the size field back to the cpu so we 20103 * can assign it to the sgl. 20104 */ 20105 bde.tus.w = le32_to_cpu(bpl->tus.w); 20106 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20107 /* The offsets in the sgl need to be accumulated 20108 * separately for the request and reply lists. 20109 * The request is always first, the reply follows. 20110 */ 20111 switch (cmd) { 20112 case CMD_GEN_REQUEST64_WQE: 20113 /* add up the reply sg entries */ 20114 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20115 inbound++; 20116 /* first inbound? reset the offset */ 20117 if (inbound == 1) 20118 offset = 0; 20119 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20120 bf_set(lpfc_sli4_sge_type, sgl, 20121 LPFC_SGE_TYPE_DATA); 20122 offset += bde.tus.f.bdeSize; 20123 break; 20124 case CMD_FCP_TRSP64_WQE: 20125 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20126 bf_set(lpfc_sli4_sge_type, sgl, 20127 LPFC_SGE_TYPE_DATA); 20128 break; 20129 case CMD_FCP_TSEND64_WQE: 20130 case CMD_FCP_TRECEIVE64_WQE: 20131 bf_set(lpfc_sli4_sge_type, sgl, 20132 bpl->tus.f.bdeFlags); 20133 if (i < 3) 20134 offset = 0; 20135 else 20136 offset += bde.tus.f.bdeSize; 20137 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20138 break; 20139 } 20140 sgl->word2 = cpu_to_le32(sgl->word2); 20141 bpl++; 20142 sgl++; 20143 } 20144 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20145 /* The addrHigh and addrLow fields of the BDE have not 20146 * been byteswapped yet so they need to be swapped 20147 * before putting them in the sgl. 20148 */ 20149 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20150 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20151 sgl->word2 = le32_to_cpu(sgl->word2); 20152 bf_set(lpfc_sli4_sge_last, sgl, 1); 20153 sgl->word2 = cpu_to_le32(sgl->word2); 20154 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20155 } 20156 return sglq->sli4_xritag; 20157 } 20158 20159 /** 20160 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20161 * @phba: Pointer to HBA context object. 20162 * @qp: Pointer to HDW queue. 20163 * @pwqe: Pointer to command WQE. 20164 **/ 20165 int 20166 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20167 struct lpfc_iocbq *pwqe) 20168 { 20169 union lpfc_wqe128 *wqe = &pwqe->wqe; 20170 struct lpfc_async_xchg_ctx *ctxp; 20171 struct lpfc_queue *wq; 20172 struct lpfc_sglq *sglq; 20173 struct lpfc_sli_ring *pring; 20174 unsigned long iflags; 20175 uint32_t ret = 0; 20176 20177 /* NVME_LS and NVME_LS ABTS requests. */ 20178 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20179 pring = phba->sli4_hba.nvmels_wq->pring; 20180 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20181 qp, wq_access); 20182 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20183 if (!sglq) { 20184 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20185 return WQE_BUSY; 20186 } 20187 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20188 pwqe->sli4_xritag = sglq->sli4_xritag; 20189 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20190 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20191 return WQE_ERROR; 20192 } 20193 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20194 pwqe->sli4_xritag); 20195 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20196 if (ret) { 20197 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20198 return ret; 20199 } 20200 20201 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20202 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20203 20204 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20205 return 0; 20206 } 20207 20208 /* NVME_FCREQ and NVME_ABTS requests */ 20209 if (pwqe->iocb_flag & LPFC_IO_NVME) { 20210 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20211 wq = qp->io_wq; 20212 pring = wq->pring; 20213 20214 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20215 20216 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20217 qp, wq_access); 20218 ret = lpfc_sli4_wq_put(wq, wqe); 20219 if (ret) { 20220 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20221 return ret; 20222 } 20223 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20224 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20225 20226 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20227 return 0; 20228 } 20229 20230 /* NVMET requests */ 20231 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20232 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20233 wq = qp->io_wq; 20234 pring = wq->pring; 20235 20236 ctxp = pwqe->context2; 20237 sglq = ctxp->ctxbuf->sglq; 20238 if (pwqe->sli4_xritag == NO_XRI) { 20239 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20240 pwqe->sli4_xritag = sglq->sli4_xritag; 20241 } 20242 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20243 pwqe->sli4_xritag); 20244 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20245 20246 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20247 qp, wq_access); 20248 ret = lpfc_sli4_wq_put(wq, wqe); 20249 if (ret) { 20250 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20251 return ret; 20252 } 20253 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20254 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20255 20256 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20257 return 0; 20258 } 20259 return WQE_ERROR; 20260 } 20261 20262 #ifdef LPFC_MXP_STAT 20263 /** 20264 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20265 * @phba: pointer to lpfc hba data structure. 20266 * @hwqid: belong to which HWQ. 20267 * 20268 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20269 * 15 seconds after a test case is running. 20270 * 20271 * The user should call lpfc_debugfs_multixripools_write before running a test 20272 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20273 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20274 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20275 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20276 **/ 20277 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20278 { 20279 struct lpfc_sli4_hdw_queue *qp; 20280 struct lpfc_multixri_pool *multixri_pool; 20281 struct lpfc_pvt_pool *pvt_pool; 20282 struct lpfc_pbl_pool *pbl_pool; 20283 u32 txcmplq_cnt; 20284 20285 qp = &phba->sli4_hba.hdwq[hwqid]; 20286 multixri_pool = qp->p_multixri_pool; 20287 if (!multixri_pool) 20288 return; 20289 20290 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20291 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20292 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20293 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20294 20295 multixri_pool->stat_pbl_count = pbl_pool->count; 20296 multixri_pool->stat_pvt_count = pvt_pool->count; 20297 multixri_pool->stat_busy_count = txcmplq_cnt; 20298 } 20299 20300 multixri_pool->stat_snapshot_taken++; 20301 } 20302 #endif 20303 20304 /** 20305 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20306 * @phba: pointer to lpfc hba data structure. 20307 * @hwqid: belong to which HWQ. 20308 * 20309 * This routine moves some XRIs from private to public pool when private pool 20310 * is not busy. 20311 **/ 20312 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20313 { 20314 struct lpfc_multixri_pool *multixri_pool; 20315 u32 io_req_count; 20316 u32 prev_io_req_count; 20317 20318 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20319 if (!multixri_pool) 20320 return; 20321 io_req_count = multixri_pool->io_req_count; 20322 prev_io_req_count = multixri_pool->prev_io_req_count; 20323 20324 if (prev_io_req_count != io_req_count) { 20325 /* Private pool is busy */ 20326 multixri_pool->prev_io_req_count = io_req_count; 20327 } else { 20328 /* Private pool is not busy. 20329 * Move XRIs from private to public pool. 20330 */ 20331 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20332 } 20333 } 20334 20335 /** 20336 * lpfc_adjust_high_watermark - Adjust high watermark 20337 * @phba: pointer to lpfc hba data structure. 20338 * @hwqid: belong to which HWQ. 20339 * 20340 * This routine sets high watermark as number of outstanding XRIs, 20341 * but make sure the new value is between xri_limit/2 and xri_limit. 20342 **/ 20343 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20344 { 20345 u32 new_watermark; 20346 u32 watermark_max; 20347 u32 watermark_min; 20348 u32 xri_limit; 20349 u32 txcmplq_cnt; 20350 u32 abts_io_bufs; 20351 struct lpfc_multixri_pool *multixri_pool; 20352 struct lpfc_sli4_hdw_queue *qp; 20353 20354 qp = &phba->sli4_hba.hdwq[hwqid]; 20355 multixri_pool = qp->p_multixri_pool; 20356 if (!multixri_pool) 20357 return; 20358 xri_limit = multixri_pool->xri_limit; 20359 20360 watermark_max = xri_limit; 20361 watermark_min = xri_limit / 2; 20362 20363 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20364 abts_io_bufs = qp->abts_scsi_io_bufs; 20365 abts_io_bufs += qp->abts_nvme_io_bufs; 20366 20367 new_watermark = txcmplq_cnt + abts_io_bufs; 20368 new_watermark = min(watermark_max, new_watermark); 20369 new_watermark = max(watermark_min, new_watermark); 20370 multixri_pool->pvt_pool.high_watermark = new_watermark; 20371 20372 #ifdef LPFC_MXP_STAT 20373 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20374 new_watermark); 20375 #endif 20376 } 20377 20378 /** 20379 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20380 * @phba: pointer to lpfc hba data structure. 20381 * @hwqid: belong to which HWQ. 20382 * 20383 * This routine is called from hearbeat timer when pvt_pool is idle. 20384 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20385 * The first step moves (all - low_watermark) amount of XRIs. 20386 * The second step moves the rest of XRIs. 20387 **/ 20388 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20389 { 20390 struct lpfc_pbl_pool *pbl_pool; 20391 struct lpfc_pvt_pool *pvt_pool; 20392 struct lpfc_sli4_hdw_queue *qp; 20393 struct lpfc_io_buf *lpfc_ncmd; 20394 struct lpfc_io_buf *lpfc_ncmd_next; 20395 unsigned long iflag; 20396 struct list_head tmp_list; 20397 u32 tmp_count; 20398 20399 qp = &phba->sli4_hba.hdwq[hwqid]; 20400 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20401 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20402 tmp_count = 0; 20403 20404 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20405 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20406 20407 if (pvt_pool->count > pvt_pool->low_watermark) { 20408 /* Step 1: move (all - low_watermark) from pvt_pool 20409 * to pbl_pool 20410 */ 20411 20412 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20413 INIT_LIST_HEAD(&tmp_list); 20414 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20415 &pvt_pool->list, list) { 20416 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20417 tmp_count++; 20418 if (tmp_count >= pvt_pool->low_watermark) 20419 break; 20420 } 20421 20422 /* Move all bufs from pvt_pool to pbl_pool */ 20423 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20424 20425 /* Move all bufs from tmp_list to pvt_pool */ 20426 list_splice(&tmp_list, &pvt_pool->list); 20427 20428 pbl_pool->count += (pvt_pool->count - tmp_count); 20429 pvt_pool->count = tmp_count; 20430 } else { 20431 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20432 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20433 pbl_pool->count += pvt_pool->count; 20434 pvt_pool->count = 0; 20435 } 20436 20437 spin_unlock(&pvt_pool->lock); 20438 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20439 } 20440 20441 /** 20442 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20443 * @phba: pointer to lpfc hba data structure 20444 * @qp: pointer to HDW queue 20445 * @pbl_pool: specified public free XRI pool 20446 * @pvt_pool: specified private free XRI pool 20447 * @count: number of XRIs to move 20448 * 20449 * This routine tries to move some free common bufs from the specified pbl_pool 20450 * to the specified pvt_pool. It might move less than count XRIs if there's not 20451 * enough in public pool. 20452 * 20453 * Return: 20454 * true - if XRIs are successfully moved from the specified pbl_pool to the 20455 * specified pvt_pool 20456 * false - if the specified pbl_pool is empty or locked by someone else 20457 **/ 20458 static bool 20459 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20460 struct lpfc_pbl_pool *pbl_pool, 20461 struct lpfc_pvt_pool *pvt_pool, u32 count) 20462 { 20463 struct lpfc_io_buf *lpfc_ncmd; 20464 struct lpfc_io_buf *lpfc_ncmd_next; 20465 unsigned long iflag; 20466 int ret; 20467 20468 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20469 if (ret) { 20470 if (pbl_pool->count) { 20471 /* Move a batch of XRIs from public to private pool */ 20472 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20473 list_for_each_entry_safe(lpfc_ncmd, 20474 lpfc_ncmd_next, 20475 &pbl_pool->list, 20476 list) { 20477 list_move_tail(&lpfc_ncmd->list, 20478 &pvt_pool->list); 20479 pvt_pool->count++; 20480 pbl_pool->count--; 20481 count--; 20482 if (count == 0) 20483 break; 20484 } 20485 20486 spin_unlock(&pvt_pool->lock); 20487 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20488 return true; 20489 } 20490 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20491 } 20492 20493 return false; 20494 } 20495 20496 /** 20497 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20498 * @phba: pointer to lpfc hba data structure. 20499 * @hwqid: belong to which HWQ. 20500 * @count: number of XRIs to move 20501 * 20502 * This routine tries to find some free common bufs in one of public pools with 20503 * Round Robin method. The search always starts from local hwqid, then the next 20504 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20505 * a batch of free common bufs are moved to private pool on hwqid. 20506 * It might move less than count XRIs if there's not enough in public pool. 20507 **/ 20508 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20509 { 20510 struct lpfc_multixri_pool *multixri_pool; 20511 struct lpfc_multixri_pool *next_multixri_pool; 20512 struct lpfc_pvt_pool *pvt_pool; 20513 struct lpfc_pbl_pool *pbl_pool; 20514 struct lpfc_sli4_hdw_queue *qp; 20515 u32 next_hwqid; 20516 u32 hwq_count; 20517 int ret; 20518 20519 qp = &phba->sli4_hba.hdwq[hwqid]; 20520 multixri_pool = qp->p_multixri_pool; 20521 pvt_pool = &multixri_pool->pvt_pool; 20522 pbl_pool = &multixri_pool->pbl_pool; 20523 20524 /* Check if local pbl_pool is available */ 20525 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20526 if (ret) { 20527 #ifdef LPFC_MXP_STAT 20528 multixri_pool->local_pbl_hit_count++; 20529 #endif 20530 return; 20531 } 20532 20533 hwq_count = phba->cfg_hdw_queue; 20534 20535 /* Get the next hwqid which was found last time */ 20536 next_hwqid = multixri_pool->rrb_next_hwqid; 20537 20538 do { 20539 /* Go to next hwq */ 20540 next_hwqid = (next_hwqid + 1) % hwq_count; 20541 20542 next_multixri_pool = 20543 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20544 pbl_pool = &next_multixri_pool->pbl_pool; 20545 20546 /* Check if the public free xri pool is available */ 20547 ret = _lpfc_move_xri_pbl_to_pvt( 20548 phba, qp, pbl_pool, pvt_pool, count); 20549 20550 /* Exit while-loop if success or all hwqid are checked */ 20551 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20552 20553 /* Starting point for the next time */ 20554 multixri_pool->rrb_next_hwqid = next_hwqid; 20555 20556 if (!ret) { 20557 /* stats: all public pools are empty*/ 20558 multixri_pool->pbl_empty_count++; 20559 } 20560 20561 #ifdef LPFC_MXP_STAT 20562 if (ret) { 20563 if (next_hwqid == hwqid) 20564 multixri_pool->local_pbl_hit_count++; 20565 else 20566 multixri_pool->other_pbl_hit_count++; 20567 } 20568 #endif 20569 } 20570 20571 /** 20572 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20573 * @phba: pointer to lpfc hba data structure. 20574 * @hwqid: belong to which HWQ. 20575 * 20576 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20577 * low watermark. 20578 **/ 20579 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20580 { 20581 struct lpfc_multixri_pool *multixri_pool; 20582 struct lpfc_pvt_pool *pvt_pool; 20583 20584 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20585 pvt_pool = &multixri_pool->pvt_pool; 20586 20587 if (pvt_pool->count < pvt_pool->low_watermark) 20588 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20589 } 20590 20591 /** 20592 * lpfc_release_io_buf - Return one IO buf back to free pool 20593 * @phba: pointer to lpfc hba data structure. 20594 * @lpfc_ncmd: IO buf to be returned. 20595 * @qp: belong to which HWQ. 20596 * 20597 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20598 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20599 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20600 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20601 * lpfc_io_buf_list_put. 20602 **/ 20603 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20604 struct lpfc_sli4_hdw_queue *qp) 20605 { 20606 unsigned long iflag; 20607 struct lpfc_pbl_pool *pbl_pool; 20608 struct lpfc_pvt_pool *pvt_pool; 20609 struct lpfc_epd_pool *epd_pool; 20610 u32 txcmplq_cnt; 20611 u32 xri_owned; 20612 u32 xri_limit; 20613 u32 abts_io_bufs; 20614 20615 /* MUST zero fields if buffer is reused by another protocol */ 20616 lpfc_ncmd->nvmeCmd = NULL; 20617 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20618 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20619 20620 if (phba->cfg_xpsgl && !phba->nvmet_support && 20621 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20622 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20623 20624 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20625 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20626 20627 if (phba->cfg_xri_rebalancing) { 20628 if (lpfc_ncmd->expedite) { 20629 /* Return to expedite pool */ 20630 epd_pool = &phba->epd_pool; 20631 spin_lock_irqsave(&epd_pool->lock, iflag); 20632 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20633 epd_pool->count++; 20634 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20635 return; 20636 } 20637 20638 /* Avoid invalid access if an IO sneaks in and is being rejected 20639 * just _after_ xri pools are destroyed in lpfc_offline. 20640 * Nothing much can be done at this point. 20641 */ 20642 if (!qp->p_multixri_pool) 20643 return; 20644 20645 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20646 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20647 20648 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20649 abts_io_bufs = qp->abts_scsi_io_bufs; 20650 abts_io_bufs += qp->abts_nvme_io_bufs; 20651 20652 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20653 xri_limit = qp->p_multixri_pool->xri_limit; 20654 20655 #ifdef LPFC_MXP_STAT 20656 if (xri_owned <= xri_limit) 20657 qp->p_multixri_pool->below_limit_count++; 20658 else 20659 qp->p_multixri_pool->above_limit_count++; 20660 #endif 20661 20662 /* XRI goes to either public or private free xri pool 20663 * based on watermark and xri_limit 20664 */ 20665 if ((pvt_pool->count < pvt_pool->low_watermark) || 20666 (xri_owned < xri_limit && 20667 pvt_pool->count < pvt_pool->high_watermark)) { 20668 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20669 qp, free_pvt_pool); 20670 list_add_tail(&lpfc_ncmd->list, 20671 &pvt_pool->list); 20672 pvt_pool->count++; 20673 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20674 } else { 20675 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20676 qp, free_pub_pool); 20677 list_add_tail(&lpfc_ncmd->list, 20678 &pbl_pool->list); 20679 pbl_pool->count++; 20680 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20681 } 20682 } else { 20683 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20684 qp, free_xri); 20685 list_add_tail(&lpfc_ncmd->list, 20686 &qp->lpfc_io_buf_list_put); 20687 qp->put_io_bufs++; 20688 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 20689 iflag); 20690 } 20691 } 20692 20693 /** 20694 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 20695 * @phba: pointer to lpfc hba data structure. 20696 * @qp: pointer to HDW queue 20697 * @pvt_pool: pointer to private pool data structure. 20698 * @ndlp: pointer to lpfc nodelist data structure. 20699 * 20700 * This routine tries to get one free IO buf from private pool. 20701 * 20702 * Return: 20703 * pointer to one free IO buf - if private pool is not empty 20704 * NULL - if private pool is empty 20705 **/ 20706 static struct lpfc_io_buf * 20707 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 20708 struct lpfc_sli4_hdw_queue *qp, 20709 struct lpfc_pvt_pool *pvt_pool, 20710 struct lpfc_nodelist *ndlp) 20711 { 20712 struct lpfc_io_buf *lpfc_ncmd; 20713 struct lpfc_io_buf *lpfc_ncmd_next; 20714 unsigned long iflag; 20715 20716 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 20717 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20718 &pvt_pool->list, list) { 20719 if (lpfc_test_rrq_active( 20720 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 20721 continue; 20722 list_del(&lpfc_ncmd->list); 20723 pvt_pool->count--; 20724 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20725 return lpfc_ncmd; 20726 } 20727 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20728 20729 return NULL; 20730 } 20731 20732 /** 20733 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 20734 * @phba: pointer to lpfc hba data structure. 20735 * 20736 * This routine tries to get one free IO buf from expedite pool. 20737 * 20738 * Return: 20739 * pointer to one free IO buf - if expedite pool is not empty 20740 * NULL - if expedite pool is empty 20741 **/ 20742 static struct lpfc_io_buf * 20743 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 20744 { 20745 struct lpfc_io_buf *lpfc_ncmd; 20746 struct lpfc_io_buf *lpfc_ncmd_next; 20747 unsigned long iflag; 20748 struct lpfc_epd_pool *epd_pool; 20749 20750 epd_pool = &phba->epd_pool; 20751 lpfc_ncmd = NULL; 20752 20753 spin_lock_irqsave(&epd_pool->lock, iflag); 20754 if (epd_pool->count > 0) { 20755 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20756 &epd_pool->list, list) { 20757 list_del(&lpfc_ncmd->list); 20758 epd_pool->count--; 20759 break; 20760 } 20761 } 20762 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20763 20764 return lpfc_ncmd; 20765 } 20766 20767 /** 20768 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 20769 * @phba: pointer to lpfc hba data structure. 20770 * @ndlp: pointer to lpfc nodelist data structure. 20771 * @hwqid: belong to which HWQ 20772 * @expedite: 1 means this request is urgent. 20773 * 20774 * This routine will do the following actions and then return a pointer to 20775 * one free IO buf. 20776 * 20777 * 1. If private free xri count is empty, move some XRIs from public to 20778 * private pool. 20779 * 2. Get one XRI from private free xri pool. 20780 * 3. If we fail to get one from pvt_pool and this is an expedite request, 20781 * get one free xri from expedite pool. 20782 * 20783 * Note: ndlp is only used on SCSI side for RRQ testing. 20784 * The caller should pass NULL for ndlp on NVME side. 20785 * 20786 * Return: 20787 * pointer to one free IO buf - if private pool is not empty 20788 * NULL - if private pool is empty 20789 **/ 20790 static struct lpfc_io_buf * 20791 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 20792 struct lpfc_nodelist *ndlp, 20793 int hwqid, int expedite) 20794 { 20795 struct lpfc_sli4_hdw_queue *qp; 20796 struct lpfc_multixri_pool *multixri_pool; 20797 struct lpfc_pvt_pool *pvt_pool; 20798 struct lpfc_io_buf *lpfc_ncmd; 20799 20800 qp = &phba->sli4_hba.hdwq[hwqid]; 20801 lpfc_ncmd = NULL; 20802 multixri_pool = qp->p_multixri_pool; 20803 pvt_pool = &multixri_pool->pvt_pool; 20804 multixri_pool->io_req_count++; 20805 20806 /* If pvt_pool is empty, move some XRIs from public to private pool */ 20807 if (pvt_pool->count == 0) 20808 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20809 20810 /* Get one XRI from private free xri pool */ 20811 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 20812 20813 if (lpfc_ncmd) { 20814 lpfc_ncmd->hdwq = qp; 20815 lpfc_ncmd->hdwq_no = hwqid; 20816 } else if (expedite) { 20817 /* If we fail to get one from pvt_pool and this is an expedite 20818 * request, get one free xri from expedite pool. 20819 */ 20820 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 20821 } 20822 20823 return lpfc_ncmd; 20824 } 20825 20826 static inline struct lpfc_io_buf * 20827 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 20828 { 20829 struct lpfc_sli4_hdw_queue *qp; 20830 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 20831 20832 qp = &phba->sli4_hba.hdwq[idx]; 20833 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 20834 &qp->lpfc_io_buf_list_get, list) { 20835 if (lpfc_test_rrq_active(phba, ndlp, 20836 lpfc_cmd->cur_iocbq.sli4_lxritag)) 20837 continue; 20838 20839 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 20840 continue; 20841 20842 list_del_init(&lpfc_cmd->list); 20843 qp->get_io_bufs--; 20844 lpfc_cmd->hdwq = qp; 20845 lpfc_cmd->hdwq_no = idx; 20846 return lpfc_cmd; 20847 } 20848 return NULL; 20849 } 20850 20851 /** 20852 * lpfc_get_io_buf - Get one IO buffer from free pool 20853 * @phba: The HBA for which this call is being executed. 20854 * @ndlp: pointer to lpfc nodelist data structure. 20855 * @hwqid: belong to which HWQ 20856 * @expedite: 1 means this request is urgent. 20857 * 20858 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 20859 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 20860 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 20861 * 20862 * Note: ndlp is only used on SCSI side for RRQ testing. 20863 * The caller should pass NULL for ndlp on NVME side. 20864 * 20865 * Return codes: 20866 * NULL - Error 20867 * Pointer to lpfc_io_buf - Success 20868 **/ 20869 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 20870 struct lpfc_nodelist *ndlp, 20871 u32 hwqid, int expedite) 20872 { 20873 struct lpfc_sli4_hdw_queue *qp; 20874 unsigned long iflag; 20875 struct lpfc_io_buf *lpfc_cmd; 20876 20877 qp = &phba->sli4_hba.hdwq[hwqid]; 20878 lpfc_cmd = NULL; 20879 20880 if (phba->cfg_xri_rebalancing) 20881 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 20882 phba, ndlp, hwqid, expedite); 20883 else { 20884 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 20885 qp, alloc_xri_get); 20886 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 20887 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20888 if (!lpfc_cmd) { 20889 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 20890 qp, alloc_xri_put); 20891 list_splice(&qp->lpfc_io_buf_list_put, 20892 &qp->lpfc_io_buf_list_get); 20893 qp->get_io_bufs += qp->put_io_bufs; 20894 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 20895 qp->put_io_bufs = 0; 20896 spin_unlock(&qp->io_buf_list_put_lock); 20897 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 20898 expedite) 20899 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20900 } 20901 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 20902 } 20903 20904 return lpfc_cmd; 20905 } 20906 20907 /** 20908 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 20909 * @phba: The HBA for which this call is being executed. 20910 * @lpfc_buf: IO buf structure to append the SGL chunk 20911 * 20912 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 20913 * and will allocate an SGL chunk if the pool is empty. 20914 * 20915 * Return codes: 20916 * NULL - Error 20917 * Pointer to sli4_hybrid_sgl - Success 20918 **/ 20919 struct sli4_hybrid_sgl * 20920 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20921 { 20922 struct sli4_hybrid_sgl *list_entry = NULL; 20923 struct sli4_hybrid_sgl *tmp = NULL; 20924 struct sli4_hybrid_sgl *allocated_sgl = NULL; 20925 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20926 struct list_head *buf_list = &hdwq->sgl_list; 20927 unsigned long iflags; 20928 20929 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20930 20931 if (likely(!list_empty(buf_list))) { 20932 /* break off 1 chunk from the sgl_list */ 20933 list_for_each_entry_safe(list_entry, tmp, 20934 buf_list, list_node) { 20935 list_move_tail(&list_entry->list_node, 20936 &lpfc_buf->dma_sgl_xtra_list); 20937 break; 20938 } 20939 } else { 20940 /* allocate more */ 20941 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20942 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20943 cpu_to_node(hdwq->io_wq->chann)); 20944 if (!tmp) { 20945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20946 "8353 error kmalloc memory for HDWQ " 20947 "%d %s\n", 20948 lpfc_buf->hdwq_no, __func__); 20949 return NULL; 20950 } 20951 20952 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 20953 GFP_ATOMIC, &tmp->dma_phys_sgl); 20954 if (!tmp->dma_sgl) { 20955 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20956 "8354 error pool_alloc memory for HDWQ " 20957 "%d %s\n", 20958 lpfc_buf->hdwq_no, __func__); 20959 kfree(tmp); 20960 return NULL; 20961 } 20962 20963 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20964 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 20965 } 20966 20967 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 20968 struct sli4_hybrid_sgl, 20969 list_node); 20970 20971 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20972 20973 return allocated_sgl; 20974 } 20975 20976 /** 20977 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 20978 * @phba: The HBA for which this call is being executed. 20979 * @lpfc_buf: IO buf structure with the SGL chunk 20980 * 20981 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 20982 * 20983 * Return codes: 20984 * 0 - Success 20985 * -EINVAL - Error 20986 **/ 20987 int 20988 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20989 { 20990 int rc = 0; 20991 struct sli4_hybrid_sgl *list_entry = NULL; 20992 struct sli4_hybrid_sgl *tmp = NULL; 20993 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20994 struct list_head *buf_list = &hdwq->sgl_list; 20995 unsigned long iflags; 20996 20997 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20998 20999 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21000 list_for_each_entry_safe(list_entry, tmp, 21001 &lpfc_buf->dma_sgl_xtra_list, 21002 list_node) { 21003 list_move_tail(&list_entry->list_node, 21004 buf_list); 21005 } 21006 } else { 21007 rc = -EINVAL; 21008 } 21009 21010 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21011 return rc; 21012 } 21013 21014 /** 21015 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21016 * @phba: phba object 21017 * @hdwq: hdwq to cleanup sgl buff resources on 21018 * 21019 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21020 * 21021 * Return codes: 21022 * None 21023 **/ 21024 void 21025 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21026 struct lpfc_sli4_hdw_queue *hdwq) 21027 { 21028 struct list_head *buf_list = &hdwq->sgl_list; 21029 struct sli4_hybrid_sgl *list_entry = NULL; 21030 struct sli4_hybrid_sgl *tmp = NULL; 21031 unsigned long iflags; 21032 21033 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21034 21035 /* Free sgl pool */ 21036 list_for_each_entry_safe(list_entry, tmp, 21037 buf_list, list_node) { 21038 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21039 list_entry->dma_sgl, 21040 list_entry->dma_phys_sgl); 21041 list_del(&list_entry->list_node); 21042 kfree(list_entry); 21043 } 21044 21045 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21046 } 21047 21048 /** 21049 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21050 * @phba: The HBA for which this call is being executed. 21051 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21052 * 21053 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21054 * and will allocate an CMD/RSP buffer if the pool is empty. 21055 * 21056 * Return codes: 21057 * NULL - Error 21058 * Pointer to fcp_cmd_rsp_buf - Success 21059 **/ 21060 struct fcp_cmd_rsp_buf * 21061 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21062 struct lpfc_io_buf *lpfc_buf) 21063 { 21064 struct fcp_cmd_rsp_buf *list_entry = NULL; 21065 struct fcp_cmd_rsp_buf *tmp = NULL; 21066 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21067 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21068 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21069 unsigned long iflags; 21070 21071 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21072 21073 if (likely(!list_empty(buf_list))) { 21074 /* break off 1 chunk from the list */ 21075 list_for_each_entry_safe(list_entry, tmp, 21076 buf_list, 21077 list_node) { 21078 list_move_tail(&list_entry->list_node, 21079 &lpfc_buf->dma_cmd_rsp_list); 21080 break; 21081 } 21082 } else { 21083 /* allocate more */ 21084 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21085 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21086 cpu_to_node(hdwq->io_wq->chann)); 21087 if (!tmp) { 21088 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21089 "8355 error kmalloc memory for HDWQ " 21090 "%d %s\n", 21091 lpfc_buf->hdwq_no, __func__); 21092 return NULL; 21093 } 21094 21095 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21096 GFP_ATOMIC, 21097 &tmp->fcp_cmd_rsp_dma_handle); 21098 21099 if (!tmp->fcp_cmnd) { 21100 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21101 "8356 error pool_alloc memory for HDWQ " 21102 "%d %s\n", 21103 lpfc_buf->hdwq_no, __func__); 21104 kfree(tmp); 21105 return NULL; 21106 } 21107 21108 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21109 sizeof(struct fcp_cmnd)); 21110 21111 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21112 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21113 } 21114 21115 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21116 struct fcp_cmd_rsp_buf, 21117 list_node); 21118 21119 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21120 21121 return allocated_buf; 21122 } 21123 21124 /** 21125 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21126 * @phba: The HBA for which this call is being executed. 21127 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21128 * 21129 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21130 * 21131 * Return codes: 21132 * 0 - Success 21133 * -EINVAL - Error 21134 **/ 21135 int 21136 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21137 struct lpfc_io_buf *lpfc_buf) 21138 { 21139 int rc = 0; 21140 struct fcp_cmd_rsp_buf *list_entry = NULL; 21141 struct fcp_cmd_rsp_buf *tmp = NULL; 21142 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21143 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21144 unsigned long iflags; 21145 21146 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21147 21148 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21149 list_for_each_entry_safe(list_entry, tmp, 21150 &lpfc_buf->dma_cmd_rsp_list, 21151 list_node) { 21152 list_move_tail(&list_entry->list_node, 21153 buf_list); 21154 } 21155 } else { 21156 rc = -EINVAL; 21157 } 21158 21159 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21160 return rc; 21161 } 21162 21163 /** 21164 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21165 * @phba: phba object 21166 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21167 * 21168 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21169 * 21170 * Return codes: 21171 * None 21172 **/ 21173 void 21174 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21175 struct lpfc_sli4_hdw_queue *hdwq) 21176 { 21177 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21178 struct fcp_cmd_rsp_buf *list_entry = NULL; 21179 struct fcp_cmd_rsp_buf *tmp = NULL; 21180 unsigned long iflags; 21181 21182 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21183 21184 /* Free cmd_rsp buf pool */ 21185 list_for_each_entry_safe(list_entry, tmp, 21186 buf_list, 21187 list_node) { 21188 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21189 list_entry->fcp_cmnd, 21190 list_entry->fcp_cmd_rsp_dma_handle); 21191 list_del(&list_entry->list_node); 21192 kfree(list_entry); 21193 } 21194 21195 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21196 } 21197