1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 82 struct lpfc_cqe *); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_eqe *eqe, uint32_t qidx); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 90 struct lpfc_sli_ring *pring, 91 struct lpfc_iocbq *cmdiocb); 92 93 static IOCB_t * 94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95 { 96 return &iocbq->iocb; 97 } 98 99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 100 /** 101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 102 * @srcp: Source memory pointer. 103 * @destp: Destination memory pointer. 104 * @cnt: Number of words required to be copied. 105 * Must be a multiple of sizeof(uint64_t) 106 * 107 * This function is used for copying data between driver memory 108 * and the SLI WQ. This function also changes the endianness 109 * of each word if native endianness is different from SLI 110 * endianness. This function can be called with or without 111 * lock. 112 **/ 113 void 114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 115 { 116 uint64_t *src = srcp; 117 uint64_t *dest = destp; 118 int i; 119 120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 121 *dest++ = *src++; 122 } 123 #else 124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 125 #endif 126 127 /** 128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 129 * @q: The Work Queue to operate on. 130 * @wqe: The work Queue Entry to put on the Work queue. 131 * 132 * This routine will copy the contents of @wqe to the next available entry on 133 * the @q. This function will then ring the Work Queue Doorbell to signal the 134 * HBA to start processing the Work Queue Entry. This function returns 0 if 135 * successful. If no entries are available on @q then this function will return 136 * -ENOMEM. 137 * The caller is expected to hold the hbalock when calling this routine. 138 **/ 139 static int 140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 141 { 142 union lpfc_wqe *temp_wqe; 143 struct lpfc_register doorbell; 144 uint32_t host_index; 145 uint32_t idx; 146 uint32_t i = 0; 147 uint8_t *tmp; 148 u32 if_type; 149 150 /* sanity check on queue memory */ 151 if (unlikely(!q)) 152 return -ENOMEM; 153 temp_wqe = q->qe[q->host_index].wqe; 154 155 /* If the host has not yet processed the next entry then we are done */ 156 idx = ((q->host_index + 1) % q->entry_count); 157 if (idx == q->hba_index) { 158 q->WQ_overflow++; 159 return -EBUSY; 160 } 161 q->WQ_posted++; 162 /* set consumption flag every once in a while */ 163 if (!((q->host_index + 1) % q->entry_repost)) 164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 165 else 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 170 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 171 /* write to DPP aperture taking advatage of Combined Writes */ 172 tmp = (uint8_t *)temp_wqe; 173 #ifdef __raw_writeq 174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 175 __raw_writeq(*((uint64_t *)(tmp + i)), 176 q->dpp_regaddr + i); 177 #else 178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 179 __raw_writel(*((uint32_t *)(tmp + i)), 180 q->dpp_regaddr + i); 181 #endif 182 } 183 /* ensure WQE bcopy and DPP flushed before doorbell write */ 184 wmb(); 185 186 /* Update the host index before invoking device */ 187 host_index = q->host_index; 188 189 q->host_index = idx; 190 191 /* Ring Doorbell */ 192 doorbell.word0 = 0; 193 if (q->db_format == LPFC_DB_LIST_FORMAT) { 194 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 198 q->dpp_id); 199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 200 q->queue_id); 201 } else { 202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 204 205 /* Leave bits <23:16> clear for if_type 6 dpp */ 206 if_type = bf_get(lpfc_sli_intf_if_type, 207 &q->phba->sli4_hba.sli_intf); 208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 209 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 210 host_index); 211 } 212 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 215 } else { 216 return -EINVAL; 217 } 218 writel(doorbell.word0, q->db_regaddr); 219 220 return 0; 221 } 222 223 /** 224 * lpfc_sli4_wq_release - Updates internal hba index for WQ 225 * @q: The Work Queue to operate on. 226 * @index: The index to advance the hba index to. 227 * 228 * This routine will update the HBA index of a queue to reflect consumption of 229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 230 * an entry the host calls this function to update the queue's internal 231 * pointers. This routine returns the number of entries that were consumed by 232 * the HBA. 233 **/ 234 static uint32_t 235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 236 { 237 uint32_t released = 0; 238 239 /* sanity check on queue memory */ 240 if (unlikely(!q)) 241 return 0; 242 243 if (q->hba_index == index) 244 return 0; 245 do { 246 q->hba_index = ((q->hba_index + 1) % q->entry_count); 247 released++; 248 } while (q->hba_index != index); 249 return released; 250 } 251 252 /** 253 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 254 * @q: The Mailbox Queue to operate on. 255 * @wqe: The Mailbox Queue Entry to put on the Work queue. 256 * 257 * This routine will copy the contents of @mqe to the next available entry on 258 * the @q. This function will then ring the Work Queue Doorbell to signal the 259 * HBA to start processing the Work Queue Entry. This function returns 0 if 260 * successful. If no entries are available on @q then this function will return 261 * -ENOMEM. 262 * The caller is expected to hold the hbalock when calling this routine. 263 **/ 264 static uint32_t 265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 266 { 267 struct lpfc_mqe *temp_mqe; 268 struct lpfc_register doorbell; 269 270 /* sanity check on queue memory */ 271 if (unlikely(!q)) 272 return -ENOMEM; 273 temp_mqe = q->qe[q->host_index].mqe; 274 275 /* If the host has not yet processed the next entry then we are done */ 276 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 277 return -ENOMEM; 278 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 279 /* Save off the mailbox pointer for completion */ 280 q->phba->mbox = (MAILBOX_t *)temp_mqe; 281 282 /* Update the host index before invoking device */ 283 q->host_index = ((q->host_index + 1) % q->entry_count); 284 285 /* Ring Doorbell */ 286 doorbell.word0 = 0; 287 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 288 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 289 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 290 return 0; 291 } 292 293 /** 294 * lpfc_sli4_mq_release - Updates internal hba index for MQ 295 * @q: The Mailbox Queue to operate on. 296 * 297 * This routine will update the HBA index of a queue to reflect consumption of 298 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 299 * an entry the host calls this function to update the queue's internal 300 * pointers. This routine returns the number of entries that were consumed by 301 * the HBA. 302 **/ 303 static uint32_t 304 lpfc_sli4_mq_release(struct lpfc_queue *q) 305 { 306 /* sanity check on queue memory */ 307 if (unlikely(!q)) 308 return 0; 309 310 /* Clear the mailbox pointer for completion */ 311 q->phba->mbox = NULL; 312 q->hba_index = ((q->hba_index + 1) % q->entry_count); 313 return 1; 314 } 315 316 /** 317 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 318 * @q: The Event Queue to get the first valid EQE from 319 * 320 * This routine will get the first valid Event Queue Entry from @q, update 321 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 322 * the Queue (no more work to do), or the Queue is full of EQEs that have been 323 * processed, but not popped back to the HBA then this routine will return NULL. 324 **/ 325 static struct lpfc_eqe * 326 lpfc_sli4_eq_get(struct lpfc_queue *q) 327 { 328 struct lpfc_hba *phba; 329 struct lpfc_eqe *eqe; 330 uint32_t idx; 331 332 /* sanity check on queue memory */ 333 if (unlikely(!q)) 334 return NULL; 335 phba = q->phba; 336 eqe = q->qe[q->hba_index].eqe; 337 338 /* If the next EQE is not valid then we are done */ 339 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 340 return NULL; 341 /* If the host has not yet processed the next entry then we are done */ 342 idx = ((q->hba_index + 1) % q->entry_count); 343 if (idx == q->host_index) 344 return NULL; 345 346 q->hba_index = idx; 347 /* if the index wrapped around, toggle the valid bit */ 348 if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index) 349 q->qe_valid = (q->qe_valid) ? 0 : 1; 350 351 352 /* 353 * insert barrier for instruction interlock : data from the hardware 354 * must have the valid bit checked before it can be copied and acted 355 * upon. Speculative instructions were allowing a bcopy at the start 356 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 357 * after our return, to copy data before the valid bit check above 358 * was done. As such, some of the copied data was stale. The barrier 359 * ensures the check is before any data is copied. 360 */ 361 mb(); 362 return eqe; 363 } 364 365 /** 366 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 367 * @q: The Event Queue to disable interrupts 368 * 369 **/ 370 inline void 371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 372 { 373 struct lpfc_register doorbell; 374 375 doorbell.word0 = 0; 376 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 377 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 378 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 379 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 380 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 381 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 382 } 383 384 /** 385 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 386 * @q: The Event Queue to disable interrupts 387 * 388 **/ 389 inline void 390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 391 { 392 struct lpfc_register doorbell; 393 394 doorbell.word0 = 0; 395 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 396 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 397 } 398 399 /** 400 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 401 * @q: The Event Queue that the host has completed processing for. 402 * @arm: Indicates whether the host wants to arms this CQ. 403 * 404 * This routine will mark all Event Queue Entries on @q, from the last 405 * known completed entry to the last entry that was processed, as completed 406 * by clearing the valid bit for each completion queue entry. Then it will 407 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 408 * The internal host index in the @q will be updated by this routine to indicate 409 * that the host has finished processing the entries. The @arm parameter 410 * indicates that the queue should be rearmed when ringing the doorbell. 411 * 412 * This function will return the number of EQEs that were popped. 413 **/ 414 uint32_t 415 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 416 { 417 uint32_t released = 0; 418 struct lpfc_hba *phba; 419 struct lpfc_eqe *temp_eqe; 420 struct lpfc_register doorbell; 421 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 phba = q->phba; 426 427 /* while there are valid entries */ 428 while (q->hba_index != q->host_index) { 429 if (!phba->sli4_hba.pc_sli4_params.eqav) { 430 temp_eqe = q->qe[q->host_index].eqe; 431 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 432 } 433 released++; 434 q->host_index = ((q->host_index + 1) % q->entry_count); 435 } 436 if (unlikely(released == 0 && !arm)) 437 return 0; 438 439 /* ring doorbell for number popped */ 440 doorbell.word0 = 0; 441 if (arm) { 442 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 443 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 444 } 445 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 446 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 447 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 448 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 449 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 450 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 451 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 452 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 453 readl(q->phba->sli4_hba.EQDBregaddr); 454 return released; 455 } 456 457 /** 458 * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ 459 * @q: The Event Queue that the host has completed processing for. 460 * @arm: Indicates whether the host wants to arms this CQ. 461 * 462 * This routine will mark all Event Queue Entries on @q, from the last 463 * known completed entry to the last entry that was processed, as completed 464 * by clearing the valid bit for each completion queue entry. Then it will 465 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 466 * The internal host index in the @q will be updated by this routine to indicate 467 * that the host has finished processing the entries. The @arm parameter 468 * indicates that the queue should be rearmed when ringing the doorbell. 469 * 470 * This function will return the number of EQEs that were popped. 471 **/ 472 uint32_t 473 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm) 474 { 475 uint32_t released = 0; 476 struct lpfc_hba *phba; 477 struct lpfc_eqe *temp_eqe; 478 struct lpfc_register doorbell; 479 480 /* sanity check on queue memory */ 481 if (unlikely(!q)) 482 return 0; 483 phba = q->phba; 484 485 /* while there are valid entries */ 486 while (q->hba_index != q->host_index) { 487 if (!phba->sli4_hba.pc_sli4_params.eqav) { 488 temp_eqe = q->qe[q->host_index].eqe; 489 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 490 } 491 released++; 492 q->host_index = ((q->host_index + 1) % q->entry_count); 493 } 494 if (unlikely(released == 0 && !arm)) 495 return 0; 496 497 /* ring doorbell for number popped */ 498 doorbell.word0 = 0; 499 if (arm) 500 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 501 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released); 502 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 503 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 504 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 505 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 506 readl(q->phba->sli4_hba.EQDBregaddr); 507 return released; 508 } 509 510 /** 511 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 512 * @q: The Completion Queue to get the first valid CQE from 513 * 514 * This routine will get the first valid Completion Queue Entry from @q, update 515 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 516 * the Queue (no more work to do), or the Queue is full of CQEs that have been 517 * processed, but not popped back to the HBA then this routine will return NULL. 518 **/ 519 static struct lpfc_cqe * 520 lpfc_sli4_cq_get(struct lpfc_queue *q) 521 { 522 struct lpfc_hba *phba; 523 struct lpfc_cqe *cqe; 524 uint32_t idx; 525 526 /* sanity check on queue memory */ 527 if (unlikely(!q)) 528 return NULL; 529 phba = q->phba; 530 cqe = q->qe[q->hba_index].cqe; 531 532 /* If the next CQE is not valid then we are done */ 533 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 534 return NULL; 535 /* If the host has not yet processed the next entry then we are done */ 536 idx = ((q->hba_index + 1) % q->entry_count); 537 if (idx == q->host_index) 538 return NULL; 539 540 q->hba_index = idx; 541 /* if the index wrapped around, toggle the valid bit */ 542 if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index) 543 q->qe_valid = (q->qe_valid) ? 0 : 1; 544 545 /* 546 * insert barrier for instruction interlock : data from the hardware 547 * must have the valid bit checked before it can be copied and acted 548 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 549 * instructions allowing action on content before valid bit checked, 550 * add barrier here as well. May not be needed as "content" is a 551 * single 32-bit entity here (vs multi word structure for cq's). 552 */ 553 mb(); 554 return cqe; 555 } 556 557 /** 558 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 559 * @q: The Completion Queue that the host has completed processing for. 560 * @arm: Indicates whether the host wants to arms this CQ. 561 * 562 * This routine will mark all Completion queue entries on @q, from the last 563 * known completed entry to the last entry that was processed, as completed 564 * by clearing the valid bit for each completion queue entry. Then it will 565 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 566 * The internal host index in the @q will be updated by this routine to indicate 567 * that the host has finished processing the entries. The @arm parameter 568 * indicates that the queue should be rearmed when ringing the doorbell. 569 * 570 * This function will return the number of CQEs that were released. 571 **/ 572 uint32_t 573 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 574 { 575 uint32_t released = 0; 576 struct lpfc_hba *phba; 577 struct lpfc_cqe *temp_qe; 578 struct lpfc_register doorbell; 579 580 /* sanity check on queue memory */ 581 if (unlikely(!q)) 582 return 0; 583 phba = q->phba; 584 585 /* while there are valid entries */ 586 while (q->hba_index != q->host_index) { 587 if (!phba->sli4_hba.pc_sli4_params.cqav) { 588 temp_qe = q->qe[q->host_index].cqe; 589 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 590 } 591 released++; 592 q->host_index = ((q->host_index + 1) % q->entry_count); 593 } 594 if (unlikely(released == 0 && !arm)) 595 return 0; 596 597 /* ring doorbell for number popped */ 598 doorbell.word0 = 0; 599 if (arm) 600 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 601 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 602 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 603 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 604 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 605 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 606 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 607 return released; 608 } 609 610 /** 611 * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ 612 * @q: The Completion Queue that the host has completed processing for. 613 * @arm: Indicates whether the host wants to arms this CQ. 614 * 615 * This routine will mark all Completion queue entries on @q, from the last 616 * known completed entry to the last entry that was processed, as completed 617 * by clearing the valid bit for each completion queue entry. Then it will 618 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 619 * The internal host index in the @q will be updated by this routine to indicate 620 * that the host has finished processing the entries. The @arm parameter 621 * indicates that the queue should be rearmed when ringing the doorbell. 622 * 623 * This function will return the number of CQEs that were released. 624 **/ 625 uint32_t 626 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm) 627 { 628 uint32_t released = 0; 629 struct lpfc_hba *phba; 630 struct lpfc_cqe *temp_qe; 631 struct lpfc_register doorbell; 632 633 /* sanity check on queue memory */ 634 if (unlikely(!q)) 635 return 0; 636 phba = q->phba; 637 638 /* while there are valid entries */ 639 while (q->hba_index != q->host_index) { 640 if (!phba->sli4_hba.pc_sli4_params.cqav) { 641 temp_qe = q->qe[q->host_index].cqe; 642 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 643 } 644 released++; 645 q->host_index = ((q->host_index + 1) % q->entry_count); 646 } 647 if (unlikely(released == 0 && !arm)) 648 return 0; 649 650 /* ring doorbell for number popped */ 651 doorbell.word0 = 0; 652 if (arm) 653 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 654 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released); 655 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 656 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 657 return released; 658 } 659 660 /** 661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 662 * @q: The Header Receive Queue to operate on. 663 * @wqe: The Receive Queue Entry to put on the Receive queue. 664 * 665 * This routine will copy the contents of @wqe to the next available entry on 666 * the @q. This function will then ring the Receive Queue Doorbell to signal the 667 * HBA to start processing the Receive Queue Entry. This function returns the 668 * index that the rqe was copied to if successful. If no entries are available 669 * on @q then this function will return -ENOMEM. 670 * The caller is expected to hold the hbalock when calling this routine. 671 **/ 672 int 673 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 674 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 675 { 676 struct lpfc_rqe *temp_hrqe; 677 struct lpfc_rqe *temp_drqe; 678 struct lpfc_register doorbell; 679 int hq_put_index; 680 int dq_put_index; 681 682 /* sanity check on queue memory */ 683 if (unlikely(!hq) || unlikely(!dq)) 684 return -ENOMEM; 685 hq_put_index = hq->host_index; 686 dq_put_index = dq->host_index; 687 temp_hrqe = hq->qe[hq_put_index].rqe; 688 temp_drqe = dq->qe[dq_put_index].rqe; 689 690 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 691 return -EINVAL; 692 if (hq_put_index != dq_put_index) 693 return -EINVAL; 694 /* If the host has not yet processed the next entry then we are done */ 695 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 696 return -EBUSY; 697 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 698 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 699 700 /* Update the host index to point to the next slot */ 701 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 702 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 703 hq->RQ_buf_posted++; 704 705 /* Ring The Header Receive Queue Doorbell */ 706 if (!(hq->host_index % hq->entry_repost)) { 707 doorbell.word0 = 0; 708 if (hq->db_format == LPFC_DB_RING_FORMAT) { 709 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 710 hq->entry_repost); 711 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 712 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 713 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 714 hq->entry_repost); 715 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 716 hq->host_index); 717 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 718 } else { 719 return -EINVAL; 720 } 721 writel(doorbell.word0, hq->db_regaddr); 722 } 723 return hq_put_index; 724 } 725 726 /** 727 * lpfc_sli4_rq_release - Updates internal hba index for RQ 728 * @q: The Header Receive Queue to operate on. 729 * 730 * This routine will update the HBA index of a queue to reflect consumption of 731 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 732 * consumed an entry the host calls this function to update the queue's 733 * internal pointers. This routine returns the number of entries that were 734 * consumed by the HBA. 735 **/ 736 static uint32_t 737 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 738 { 739 /* sanity check on queue memory */ 740 if (unlikely(!hq) || unlikely(!dq)) 741 return 0; 742 743 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 744 return 0; 745 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 746 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 747 return 1; 748 } 749 750 /** 751 * lpfc_cmd_iocb - Get next command iocb entry in the ring 752 * @phba: Pointer to HBA context object. 753 * @pring: Pointer to driver SLI ring object. 754 * 755 * This function returns pointer to next command iocb entry 756 * in the command ring. The caller must hold hbalock to prevent 757 * other threads consume the next command iocb. 758 * SLI-2/SLI-3 provide different sized iocbs. 759 **/ 760 static inline IOCB_t * 761 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 762 { 763 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 764 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 765 } 766 767 /** 768 * lpfc_resp_iocb - Get next response iocb entry in the ring 769 * @phba: Pointer to HBA context object. 770 * @pring: Pointer to driver SLI ring object. 771 * 772 * This function returns pointer to next response iocb entry 773 * in the response ring. The caller must hold hbalock to make sure 774 * that no other thread consume the next response iocb. 775 * SLI-2/SLI-3 provide different sized iocbs. 776 **/ 777 static inline IOCB_t * 778 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 779 { 780 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 781 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 782 } 783 784 /** 785 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 786 * @phba: Pointer to HBA context object. 787 * 788 * This function is called with hbalock held. This function 789 * allocates a new driver iocb object from the iocb pool. If the 790 * allocation is successful, it returns pointer to the newly 791 * allocated iocb object else it returns NULL. 792 **/ 793 struct lpfc_iocbq * 794 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 795 { 796 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 797 struct lpfc_iocbq * iocbq = NULL; 798 799 lockdep_assert_held(&phba->hbalock); 800 801 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 802 if (iocbq) 803 phba->iocb_cnt++; 804 if (phba->iocb_cnt > phba->iocb_max) 805 phba->iocb_max = phba->iocb_cnt; 806 return iocbq; 807 } 808 809 /** 810 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 811 * @phba: Pointer to HBA context object. 812 * @xritag: XRI value. 813 * 814 * This function clears the sglq pointer from the array of acive 815 * sglq's. The xritag that is passed in is used to index into the 816 * array. Before the xritag can be used it needs to be adjusted 817 * by subtracting the xribase. 818 * 819 * Returns sglq ponter = success, NULL = Failure. 820 **/ 821 struct lpfc_sglq * 822 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 823 { 824 struct lpfc_sglq *sglq; 825 826 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 827 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 828 return sglq; 829 } 830 831 /** 832 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 833 * @phba: Pointer to HBA context object. 834 * @xritag: XRI value. 835 * 836 * This function returns the sglq pointer from the array of acive 837 * sglq's. The xritag that is passed in is used to index into the 838 * array. Before the xritag can be used it needs to be adjusted 839 * by subtracting the xribase. 840 * 841 * Returns sglq ponter = success, NULL = Failure. 842 **/ 843 struct lpfc_sglq * 844 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 845 { 846 struct lpfc_sglq *sglq; 847 848 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 849 return sglq; 850 } 851 852 /** 853 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 854 * @phba: Pointer to HBA context object. 855 * @xritag: xri used in this exchange. 856 * @rrq: The RRQ to be cleared. 857 * 858 **/ 859 void 860 lpfc_clr_rrq_active(struct lpfc_hba *phba, 861 uint16_t xritag, 862 struct lpfc_node_rrq *rrq) 863 { 864 struct lpfc_nodelist *ndlp = NULL; 865 866 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 867 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 868 869 /* The target DID could have been swapped (cable swap) 870 * we should use the ndlp from the findnode if it is 871 * available. 872 */ 873 if ((!ndlp) && rrq->ndlp) 874 ndlp = rrq->ndlp; 875 876 if (!ndlp) 877 goto out; 878 879 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 880 rrq->send_rrq = 0; 881 rrq->xritag = 0; 882 rrq->rrq_stop_time = 0; 883 } 884 out: 885 mempool_free(rrq, phba->rrq_pool); 886 } 887 888 /** 889 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 890 * @phba: Pointer to HBA context object. 891 * 892 * This function is called with hbalock held. This function 893 * Checks if stop_time (ratov from setting rrq active) has 894 * been reached, if it has and the send_rrq flag is set then 895 * it will call lpfc_send_rrq. If the send_rrq flag is not set 896 * then it will just call the routine to clear the rrq and 897 * free the rrq resource. 898 * The timer is set to the next rrq that is going to expire before 899 * leaving the routine. 900 * 901 **/ 902 void 903 lpfc_handle_rrq_active(struct lpfc_hba *phba) 904 { 905 struct lpfc_node_rrq *rrq; 906 struct lpfc_node_rrq *nextrrq; 907 unsigned long next_time; 908 unsigned long iflags; 909 LIST_HEAD(send_rrq); 910 911 spin_lock_irqsave(&phba->hbalock, iflags); 912 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 913 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 914 list_for_each_entry_safe(rrq, nextrrq, 915 &phba->active_rrq_list, list) { 916 if (time_after(jiffies, rrq->rrq_stop_time)) 917 list_move(&rrq->list, &send_rrq); 918 else if (time_before(rrq->rrq_stop_time, next_time)) 919 next_time = rrq->rrq_stop_time; 920 } 921 spin_unlock_irqrestore(&phba->hbalock, iflags); 922 if ((!list_empty(&phba->active_rrq_list)) && 923 (!(phba->pport->load_flag & FC_UNLOADING))) 924 mod_timer(&phba->rrq_tmr, next_time); 925 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 926 list_del(&rrq->list); 927 if (!rrq->send_rrq) 928 /* this call will free the rrq */ 929 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 930 else if (lpfc_send_rrq(phba, rrq)) { 931 /* if we send the rrq then the completion handler 932 * will clear the bit in the xribitmap. 933 */ 934 lpfc_clr_rrq_active(phba, rrq->xritag, 935 rrq); 936 } 937 } 938 } 939 940 /** 941 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 942 * @vport: Pointer to vport context object. 943 * @xri: The xri used in the exchange. 944 * @did: The targets DID for this exchange. 945 * 946 * returns NULL = rrq not found in the phba->active_rrq_list. 947 * rrq = rrq for this xri and target. 948 **/ 949 struct lpfc_node_rrq * 950 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 951 { 952 struct lpfc_hba *phba = vport->phba; 953 struct lpfc_node_rrq *rrq; 954 struct lpfc_node_rrq *nextrrq; 955 unsigned long iflags; 956 957 if (phba->sli_rev != LPFC_SLI_REV4) 958 return NULL; 959 spin_lock_irqsave(&phba->hbalock, iflags); 960 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 961 if (rrq->vport == vport && rrq->xritag == xri && 962 rrq->nlp_DID == did){ 963 list_del(&rrq->list); 964 spin_unlock_irqrestore(&phba->hbalock, iflags); 965 return rrq; 966 } 967 } 968 spin_unlock_irqrestore(&phba->hbalock, iflags); 969 return NULL; 970 } 971 972 /** 973 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 974 * @vport: Pointer to vport context object. 975 * @ndlp: Pointer to the lpfc_node_list structure. 976 * If ndlp is NULL Remove all active RRQs for this vport from the 977 * phba->active_rrq_list and clear the rrq. 978 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 979 **/ 980 void 981 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 982 983 { 984 struct lpfc_hba *phba = vport->phba; 985 struct lpfc_node_rrq *rrq; 986 struct lpfc_node_rrq *nextrrq; 987 unsigned long iflags; 988 LIST_HEAD(rrq_list); 989 990 if (phba->sli_rev != LPFC_SLI_REV4) 991 return; 992 if (!ndlp) { 993 lpfc_sli4_vport_delete_els_xri_aborted(vport); 994 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 995 } 996 spin_lock_irqsave(&phba->hbalock, iflags); 997 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 998 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 999 list_move(&rrq->list, &rrq_list); 1000 spin_unlock_irqrestore(&phba->hbalock, iflags); 1001 1002 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1003 list_del(&rrq->list); 1004 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1005 } 1006 } 1007 1008 /** 1009 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1010 * @phba: Pointer to HBA context object. 1011 * @ndlp: Targets nodelist pointer for this exchange. 1012 * @xritag the xri in the bitmap to test. 1013 * 1014 * This function is called with hbalock held. This function 1015 * returns 0 = rrq not active for this xri 1016 * 1 = rrq is valid for this xri. 1017 **/ 1018 int 1019 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1020 uint16_t xritag) 1021 { 1022 lockdep_assert_held(&phba->hbalock); 1023 if (!ndlp) 1024 return 0; 1025 if (!ndlp->active_rrqs_xri_bitmap) 1026 return 0; 1027 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1028 return 1; 1029 else 1030 return 0; 1031 } 1032 1033 /** 1034 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1035 * @phba: Pointer to HBA context object. 1036 * @ndlp: nodelist pointer for this target. 1037 * @xritag: xri used in this exchange. 1038 * @rxid: Remote Exchange ID. 1039 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1040 * 1041 * This function takes the hbalock. 1042 * The active bit is always set in the active rrq xri_bitmap even 1043 * if there is no slot avaiable for the other rrq information. 1044 * 1045 * returns 0 rrq actived for this xri 1046 * < 0 No memory or invalid ndlp. 1047 **/ 1048 int 1049 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1050 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1051 { 1052 unsigned long iflags; 1053 struct lpfc_node_rrq *rrq; 1054 int empty; 1055 1056 if (!ndlp) 1057 return -EINVAL; 1058 1059 if (!phba->cfg_enable_rrq) 1060 return -EINVAL; 1061 1062 spin_lock_irqsave(&phba->hbalock, iflags); 1063 if (phba->pport->load_flag & FC_UNLOADING) { 1064 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1065 goto out; 1066 } 1067 1068 /* 1069 * set the active bit even if there is no mem available. 1070 */ 1071 if (NLP_CHK_FREE_REQ(ndlp)) 1072 goto out; 1073 1074 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1075 goto out; 1076 1077 if (!ndlp->active_rrqs_xri_bitmap) 1078 goto out; 1079 1080 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1081 goto out; 1082 1083 spin_unlock_irqrestore(&phba->hbalock, iflags); 1084 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1085 if (!rrq) { 1086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1087 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1088 " DID:0x%x Send:%d\n", 1089 xritag, rxid, ndlp->nlp_DID, send_rrq); 1090 return -EINVAL; 1091 } 1092 if (phba->cfg_enable_rrq == 1) 1093 rrq->send_rrq = send_rrq; 1094 else 1095 rrq->send_rrq = 0; 1096 rrq->xritag = xritag; 1097 rrq->rrq_stop_time = jiffies + 1098 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1099 rrq->ndlp = ndlp; 1100 rrq->nlp_DID = ndlp->nlp_DID; 1101 rrq->vport = ndlp->vport; 1102 rrq->rxid = rxid; 1103 spin_lock_irqsave(&phba->hbalock, iflags); 1104 empty = list_empty(&phba->active_rrq_list); 1105 list_add_tail(&rrq->list, &phba->active_rrq_list); 1106 phba->hba_flag |= HBA_RRQ_ACTIVE; 1107 if (empty) 1108 lpfc_worker_wake_up(phba); 1109 spin_unlock_irqrestore(&phba->hbalock, iflags); 1110 return 0; 1111 out: 1112 spin_unlock_irqrestore(&phba->hbalock, iflags); 1113 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1114 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1115 " DID:0x%x Send:%d\n", 1116 xritag, rxid, ndlp->nlp_DID, send_rrq); 1117 return -EINVAL; 1118 } 1119 1120 /** 1121 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1122 * @phba: Pointer to HBA context object. 1123 * @piocb: Pointer to the iocbq. 1124 * 1125 * This function is called with the ring lock held. This function 1126 * gets a new driver sglq object from the sglq list. If the 1127 * list is not empty then it is successful, it returns pointer to the newly 1128 * allocated sglq object else it returns NULL. 1129 **/ 1130 static struct lpfc_sglq * 1131 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1132 { 1133 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1134 struct lpfc_sglq *sglq = NULL; 1135 struct lpfc_sglq *start_sglq = NULL; 1136 struct lpfc_scsi_buf *lpfc_cmd; 1137 struct lpfc_nodelist *ndlp; 1138 int found = 0; 1139 1140 lockdep_assert_held(&phba->hbalock); 1141 1142 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1143 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 1144 ndlp = lpfc_cmd->rdata->pnode; 1145 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1146 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1147 ndlp = piocbq->context_un.ndlp; 1148 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1149 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1150 ndlp = NULL; 1151 else 1152 ndlp = piocbq->context_un.ndlp; 1153 } else { 1154 ndlp = piocbq->context1; 1155 } 1156 1157 spin_lock(&phba->sli4_hba.sgl_list_lock); 1158 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1159 start_sglq = sglq; 1160 while (!found) { 1161 if (!sglq) 1162 break; 1163 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1164 test_bit(sglq->sli4_lxritag, 1165 ndlp->active_rrqs_xri_bitmap)) { 1166 /* This xri has an rrq outstanding for this DID. 1167 * put it back in the list and get another xri. 1168 */ 1169 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1170 sglq = NULL; 1171 list_remove_head(lpfc_els_sgl_list, sglq, 1172 struct lpfc_sglq, list); 1173 if (sglq == start_sglq) { 1174 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1175 sglq = NULL; 1176 break; 1177 } else 1178 continue; 1179 } 1180 sglq->ndlp = ndlp; 1181 found = 1; 1182 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1183 sglq->state = SGL_ALLOCATED; 1184 } 1185 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1186 return sglq; 1187 } 1188 1189 /** 1190 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1191 * @phba: Pointer to HBA context object. 1192 * @piocb: Pointer to the iocbq. 1193 * 1194 * This function is called with the sgl_list lock held. This function 1195 * gets a new driver sglq object from the sglq list. If the 1196 * list is not empty then it is successful, it returns pointer to the newly 1197 * allocated sglq object else it returns NULL. 1198 **/ 1199 struct lpfc_sglq * 1200 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1201 { 1202 struct list_head *lpfc_nvmet_sgl_list; 1203 struct lpfc_sglq *sglq = NULL; 1204 1205 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1206 1207 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1208 1209 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1210 if (!sglq) 1211 return NULL; 1212 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1213 sglq->state = SGL_ALLOCATED; 1214 return sglq; 1215 } 1216 1217 /** 1218 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1219 * @phba: Pointer to HBA context object. 1220 * 1221 * This function is called with no lock held. This function 1222 * allocates a new driver iocb object from the iocb pool. If the 1223 * allocation is successful, it returns pointer to the newly 1224 * allocated iocb object else it returns NULL. 1225 **/ 1226 struct lpfc_iocbq * 1227 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1228 { 1229 struct lpfc_iocbq * iocbq = NULL; 1230 unsigned long iflags; 1231 1232 spin_lock_irqsave(&phba->hbalock, iflags); 1233 iocbq = __lpfc_sli_get_iocbq(phba); 1234 spin_unlock_irqrestore(&phba->hbalock, iflags); 1235 return iocbq; 1236 } 1237 1238 /** 1239 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1240 * @phba: Pointer to HBA context object. 1241 * @iocbq: Pointer to driver iocb object. 1242 * 1243 * This function is called with hbalock held to release driver 1244 * iocb object to the iocb pool. The iotag in the iocb object 1245 * does not change for each use of the iocb object. This function 1246 * clears all other fields of the iocb object when it is freed. 1247 * The sqlq structure that holds the xritag and phys and virtual 1248 * mappings for the scatter gather list is retrieved from the 1249 * active array of sglq. The get of the sglq pointer also clears 1250 * the entry in the array. If the status of the IO indiactes that 1251 * this IO was aborted then the sglq entry it put on the 1252 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1253 * IO has good status or fails for any other reason then the sglq 1254 * entry is added to the free list (lpfc_els_sgl_list). 1255 **/ 1256 static void 1257 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1258 { 1259 struct lpfc_sglq *sglq; 1260 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1261 unsigned long iflag = 0; 1262 struct lpfc_sli_ring *pring; 1263 1264 lockdep_assert_held(&phba->hbalock); 1265 1266 if (iocbq->sli4_xritag == NO_XRI) 1267 sglq = NULL; 1268 else 1269 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1270 1271 1272 if (sglq) { 1273 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1274 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1275 iflag); 1276 sglq->state = SGL_FREED; 1277 sglq->ndlp = NULL; 1278 list_add_tail(&sglq->list, 1279 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1280 spin_unlock_irqrestore( 1281 &phba->sli4_hba.sgl_list_lock, iflag); 1282 goto out; 1283 } 1284 1285 pring = phba->sli4_hba.els_wq->pring; 1286 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1287 (sglq->state != SGL_XRI_ABORTED)) { 1288 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1289 iflag); 1290 list_add(&sglq->list, 1291 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1292 spin_unlock_irqrestore( 1293 &phba->sli4_hba.sgl_list_lock, iflag); 1294 } else { 1295 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1296 iflag); 1297 sglq->state = SGL_FREED; 1298 sglq->ndlp = NULL; 1299 list_add_tail(&sglq->list, 1300 &phba->sli4_hba.lpfc_els_sgl_list); 1301 spin_unlock_irqrestore( 1302 &phba->sli4_hba.sgl_list_lock, iflag); 1303 1304 /* Check if TXQ queue needs to be serviced */ 1305 if (!list_empty(&pring->txq)) 1306 lpfc_worker_wake_up(phba); 1307 } 1308 } 1309 1310 out: 1311 /* 1312 * Clean all volatile data fields, preserve iotag and node struct. 1313 */ 1314 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1315 iocbq->sli4_lxritag = NO_XRI; 1316 iocbq->sli4_xritag = NO_XRI; 1317 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1318 LPFC_IO_NVME_LS); 1319 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1320 } 1321 1322 1323 /** 1324 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1325 * @phba: Pointer to HBA context object. 1326 * @iocbq: Pointer to driver iocb object. 1327 * 1328 * This function is called with hbalock held to release driver 1329 * iocb object to the iocb pool. The iotag in the iocb object 1330 * does not change for each use of the iocb object. This function 1331 * clears all other fields of the iocb object when it is freed. 1332 **/ 1333 static void 1334 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1335 { 1336 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1337 1338 lockdep_assert_held(&phba->hbalock); 1339 1340 /* 1341 * Clean all volatile data fields, preserve iotag and node struct. 1342 */ 1343 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1344 iocbq->sli4_xritag = NO_XRI; 1345 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1346 } 1347 1348 /** 1349 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1350 * @phba: Pointer to HBA context object. 1351 * @iocbq: Pointer to driver iocb object. 1352 * 1353 * This function is called with hbalock held to release driver 1354 * iocb object to the iocb pool. The iotag in the iocb object 1355 * does not change for each use of the iocb object. This function 1356 * clears all other fields of the iocb object when it is freed. 1357 **/ 1358 static void 1359 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1360 { 1361 lockdep_assert_held(&phba->hbalock); 1362 1363 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1364 phba->iocb_cnt--; 1365 } 1366 1367 /** 1368 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1369 * @phba: Pointer to HBA context object. 1370 * @iocbq: Pointer to driver iocb object. 1371 * 1372 * This function is called with no lock held to release the iocb to 1373 * iocb pool. 1374 **/ 1375 void 1376 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1377 { 1378 unsigned long iflags; 1379 1380 /* 1381 * Clean all volatile data fields, preserve iotag and node struct. 1382 */ 1383 spin_lock_irqsave(&phba->hbalock, iflags); 1384 __lpfc_sli_release_iocbq(phba, iocbq); 1385 spin_unlock_irqrestore(&phba->hbalock, iflags); 1386 } 1387 1388 /** 1389 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1390 * @phba: Pointer to HBA context object. 1391 * @iocblist: List of IOCBs. 1392 * @ulpstatus: ULP status in IOCB command field. 1393 * @ulpWord4: ULP word-4 in IOCB command field. 1394 * 1395 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1396 * on the list by invoking the complete callback function associated with the 1397 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1398 * fields. 1399 **/ 1400 void 1401 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1402 uint32_t ulpstatus, uint32_t ulpWord4) 1403 { 1404 struct lpfc_iocbq *piocb; 1405 1406 while (!list_empty(iocblist)) { 1407 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1408 if (!piocb->iocb_cmpl) 1409 lpfc_sli_release_iocbq(phba, piocb); 1410 else { 1411 piocb->iocb.ulpStatus = ulpstatus; 1412 piocb->iocb.un.ulpWord[4] = ulpWord4; 1413 (piocb->iocb_cmpl) (phba, piocb, piocb); 1414 } 1415 } 1416 return; 1417 } 1418 1419 /** 1420 * lpfc_sli_iocb_cmd_type - Get the iocb type 1421 * @iocb_cmnd: iocb command code. 1422 * 1423 * This function is called by ring event handler function to get the iocb type. 1424 * This function translates the iocb command to an iocb command type used to 1425 * decide the final disposition of each completed IOCB. 1426 * The function returns 1427 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1428 * LPFC_SOL_IOCB if it is a solicited iocb completion 1429 * LPFC_ABORT_IOCB if it is an abort iocb 1430 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1431 * 1432 * The caller is not required to hold any lock. 1433 **/ 1434 static lpfc_iocb_type 1435 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1436 { 1437 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1438 1439 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1440 return 0; 1441 1442 switch (iocb_cmnd) { 1443 case CMD_XMIT_SEQUENCE_CR: 1444 case CMD_XMIT_SEQUENCE_CX: 1445 case CMD_XMIT_BCAST_CN: 1446 case CMD_XMIT_BCAST_CX: 1447 case CMD_ELS_REQUEST_CR: 1448 case CMD_ELS_REQUEST_CX: 1449 case CMD_CREATE_XRI_CR: 1450 case CMD_CREATE_XRI_CX: 1451 case CMD_GET_RPI_CN: 1452 case CMD_XMIT_ELS_RSP_CX: 1453 case CMD_GET_RPI_CR: 1454 case CMD_FCP_IWRITE_CR: 1455 case CMD_FCP_IWRITE_CX: 1456 case CMD_FCP_IREAD_CR: 1457 case CMD_FCP_IREAD_CX: 1458 case CMD_FCP_ICMND_CR: 1459 case CMD_FCP_ICMND_CX: 1460 case CMD_FCP_TSEND_CX: 1461 case CMD_FCP_TRSP_CX: 1462 case CMD_FCP_TRECEIVE_CX: 1463 case CMD_FCP_AUTO_TRSP_CX: 1464 case CMD_ADAPTER_MSG: 1465 case CMD_ADAPTER_DUMP: 1466 case CMD_XMIT_SEQUENCE64_CR: 1467 case CMD_XMIT_SEQUENCE64_CX: 1468 case CMD_XMIT_BCAST64_CN: 1469 case CMD_XMIT_BCAST64_CX: 1470 case CMD_ELS_REQUEST64_CR: 1471 case CMD_ELS_REQUEST64_CX: 1472 case CMD_FCP_IWRITE64_CR: 1473 case CMD_FCP_IWRITE64_CX: 1474 case CMD_FCP_IREAD64_CR: 1475 case CMD_FCP_IREAD64_CX: 1476 case CMD_FCP_ICMND64_CR: 1477 case CMD_FCP_ICMND64_CX: 1478 case CMD_FCP_TSEND64_CX: 1479 case CMD_FCP_TRSP64_CX: 1480 case CMD_FCP_TRECEIVE64_CX: 1481 case CMD_GEN_REQUEST64_CR: 1482 case CMD_GEN_REQUEST64_CX: 1483 case CMD_XMIT_ELS_RSP64_CX: 1484 case DSSCMD_IWRITE64_CR: 1485 case DSSCMD_IWRITE64_CX: 1486 case DSSCMD_IREAD64_CR: 1487 case DSSCMD_IREAD64_CX: 1488 type = LPFC_SOL_IOCB; 1489 break; 1490 case CMD_ABORT_XRI_CN: 1491 case CMD_ABORT_XRI_CX: 1492 case CMD_CLOSE_XRI_CN: 1493 case CMD_CLOSE_XRI_CX: 1494 case CMD_XRI_ABORTED_CX: 1495 case CMD_ABORT_MXRI64_CN: 1496 case CMD_XMIT_BLS_RSP64_CX: 1497 type = LPFC_ABORT_IOCB; 1498 break; 1499 case CMD_RCV_SEQUENCE_CX: 1500 case CMD_RCV_ELS_REQ_CX: 1501 case CMD_RCV_SEQUENCE64_CX: 1502 case CMD_RCV_ELS_REQ64_CX: 1503 case CMD_ASYNC_STATUS: 1504 case CMD_IOCB_RCV_SEQ64_CX: 1505 case CMD_IOCB_RCV_ELS64_CX: 1506 case CMD_IOCB_RCV_CONT64_CX: 1507 case CMD_IOCB_RET_XRI64_CX: 1508 type = LPFC_UNSOL_IOCB; 1509 break; 1510 case CMD_IOCB_XMIT_MSEQ64_CR: 1511 case CMD_IOCB_XMIT_MSEQ64_CX: 1512 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1513 case CMD_IOCB_RCV_ELS_LIST64_CX: 1514 case CMD_IOCB_CLOSE_EXTENDED_CN: 1515 case CMD_IOCB_ABORT_EXTENDED_CN: 1516 case CMD_IOCB_RET_HBQE64_CN: 1517 case CMD_IOCB_FCP_IBIDIR64_CR: 1518 case CMD_IOCB_FCP_IBIDIR64_CX: 1519 case CMD_IOCB_FCP_ITASKMGT64_CX: 1520 case CMD_IOCB_LOGENTRY_CN: 1521 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1522 printk("%s - Unhandled SLI-3 Command x%x\n", 1523 __func__, iocb_cmnd); 1524 type = LPFC_UNKNOWN_IOCB; 1525 break; 1526 default: 1527 type = LPFC_UNKNOWN_IOCB; 1528 break; 1529 } 1530 1531 return type; 1532 } 1533 1534 /** 1535 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1536 * @phba: Pointer to HBA context object. 1537 * 1538 * This function is called from SLI initialization code 1539 * to configure every ring of the HBA's SLI interface. The 1540 * caller is not required to hold any lock. This function issues 1541 * a config_ring mailbox command for each ring. 1542 * This function returns zero if successful else returns a negative 1543 * error code. 1544 **/ 1545 static int 1546 lpfc_sli_ring_map(struct lpfc_hba *phba) 1547 { 1548 struct lpfc_sli *psli = &phba->sli; 1549 LPFC_MBOXQ_t *pmb; 1550 MAILBOX_t *pmbox; 1551 int i, rc, ret = 0; 1552 1553 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1554 if (!pmb) 1555 return -ENOMEM; 1556 pmbox = &pmb->u.mb; 1557 phba->link_state = LPFC_INIT_MBX_CMDS; 1558 for (i = 0; i < psli->num_rings; i++) { 1559 lpfc_config_ring(phba, i, pmb); 1560 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1561 if (rc != MBX_SUCCESS) { 1562 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1563 "0446 Adapter failed to init (%d), " 1564 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1565 "ring %d\n", 1566 rc, pmbox->mbxCommand, 1567 pmbox->mbxStatus, i); 1568 phba->link_state = LPFC_HBA_ERROR; 1569 ret = -ENXIO; 1570 break; 1571 } 1572 } 1573 mempool_free(pmb, phba->mbox_mem_pool); 1574 return ret; 1575 } 1576 1577 /** 1578 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1579 * @phba: Pointer to HBA context object. 1580 * @pring: Pointer to driver SLI ring object. 1581 * @piocb: Pointer to the driver iocb object. 1582 * 1583 * This function is called with hbalock held. The function adds the 1584 * new iocb to txcmplq of the given ring. This function always returns 1585 * 0. If this function is called for ELS ring, this function checks if 1586 * there is a vport associated with the ELS command. This function also 1587 * starts els_tmofunc timer if this is an ELS command. 1588 **/ 1589 static int 1590 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1591 struct lpfc_iocbq *piocb) 1592 { 1593 lockdep_assert_held(&phba->hbalock); 1594 1595 BUG_ON(!piocb); 1596 1597 list_add_tail(&piocb->list, &pring->txcmplq); 1598 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1599 1600 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1601 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1602 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1603 BUG_ON(!piocb->vport); 1604 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1605 mod_timer(&piocb->vport->els_tmofunc, 1606 jiffies + 1607 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1608 } 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * lpfc_sli_ringtx_get - Get first element of the txq 1615 * @phba: Pointer to HBA context object. 1616 * @pring: Pointer to driver SLI ring object. 1617 * 1618 * This function is called with hbalock held to get next 1619 * iocb in txq of the given ring. If there is any iocb in 1620 * the txq, the function returns first iocb in the list after 1621 * removing the iocb from the list, else it returns NULL. 1622 **/ 1623 struct lpfc_iocbq * 1624 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1625 { 1626 struct lpfc_iocbq *cmd_iocb; 1627 1628 lockdep_assert_held(&phba->hbalock); 1629 1630 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1631 return cmd_iocb; 1632 } 1633 1634 /** 1635 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1636 * @phba: Pointer to HBA context object. 1637 * @pring: Pointer to driver SLI ring object. 1638 * 1639 * This function is called with hbalock held and the caller must post the 1640 * iocb without releasing the lock. If the caller releases the lock, 1641 * iocb slot returned by the function is not guaranteed to be available. 1642 * The function returns pointer to the next available iocb slot if there 1643 * is available slot in the ring, else it returns NULL. 1644 * If the get index of the ring is ahead of the put index, the function 1645 * will post an error attention event to the worker thread to take the 1646 * HBA to offline state. 1647 **/ 1648 static IOCB_t * 1649 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1650 { 1651 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1652 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1653 1654 lockdep_assert_held(&phba->hbalock); 1655 1656 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1657 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1658 pring->sli.sli3.next_cmdidx = 0; 1659 1660 if (unlikely(pring->sli.sli3.local_getidx == 1661 pring->sli.sli3.next_cmdidx)) { 1662 1663 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1664 1665 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1666 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1667 "0315 Ring %d issue: portCmdGet %d " 1668 "is bigger than cmd ring %d\n", 1669 pring->ringno, 1670 pring->sli.sli3.local_getidx, 1671 max_cmd_idx); 1672 1673 phba->link_state = LPFC_HBA_ERROR; 1674 /* 1675 * All error attention handlers are posted to 1676 * worker thread 1677 */ 1678 phba->work_ha |= HA_ERATT; 1679 phba->work_hs = HS_FFER3; 1680 1681 lpfc_worker_wake_up(phba); 1682 1683 return NULL; 1684 } 1685 1686 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1687 return NULL; 1688 } 1689 1690 return lpfc_cmd_iocb(phba, pring); 1691 } 1692 1693 /** 1694 * lpfc_sli_next_iotag - Get an iotag for the iocb 1695 * @phba: Pointer to HBA context object. 1696 * @iocbq: Pointer to driver iocb object. 1697 * 1698 * This function gets an iotag for the iocb. If there is no unused iotag and 1699 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1700 * array and assigns a new iotag. 1701 * The function returns the allocated iotag if successful, else returns zero. 1702 * Zero is not a valid iotag. 1703 * The caller is not required to hold any lock. 1704 **/ 1705 uint16_t 1706 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1707 { 1708 struct lpfc_iocbq **new_arr; 1709 struct lpfc_iocbq **old_arr; 1710 size_t new_len; 1711 struct lpfc_sli *psli = &phba->sli; 1712 uint16_t iotag; 1713 1714 spin_lock_irq(&phba->hbalock); 1715 iotag = psli->last_iotag; 1716 if(++iotag < psli->iocbq_lookup_len) { 1717 psli->last_iotag = iotag; 1718 psli->iocbq_lookup[iotag] = iocbq; 1719 spin_unlock_irq(&phba->hbalock); 1720 iocbq->iotag = iotag; 1721 return iotag; 1722 } else if (psli->iocbq_lookup_len < (0xffff 1723 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1724 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1725 spin_unlock_irq(&phba->hbalock); 1726 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1727 GFP_KERNEL); 1728 if (new_arr) { 1729 spin_lock_irq(&phba->hbalock); 1730 old_arr = psli->iocbq_lookup; 1731 if (new_len <= psli->iocbq_lookup_len) { 1732 /* highly unprobable case */ 1733 kfree(new_arr); 1734 iotag = psli->last_iotag; 1735 if(++iotag < psli->iocbq_lookup_len) { 1736 psli->last_iotag = iotag; 1737 psli->iocbq_lookup[iotag] = iocbq; 1738 spin_unlock_irq(&phba->hbalock); 1739 iocbq->iotag = iotag; 1740 return iotag; 1741 } 1742 spin_unlock_irq(&phba->hbalock); 1743 return 0; 1744 } 1745 if (psli->iocbq_lookup) 1746 memcpy(new_arr, old_arr, 1747 ((psli->last_iotag + 1) * 1748 sizeof (struct lpfc_iocbq *))); 1749 psli->iocbq_lookup = new_arr; 1750 psli->iocbq_lookup_len = new_len; 1751 psli->last_iotag = iotag; 1752 psli->iocbq_lookup[iotag] = iocbq; 1753 spin_unlock_irq(&phba->hbalock); 1754 iocbq->iotag = iotag; 1755 kfree(old_arr); 1756 return iotag; 1757 } 1758 } else 1759 spin_unlock_irq(&phba->hbalock); 1760 1761 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1762 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1763 psli->last_iotag); 1764 1765 return 0; 1766 } 1767 1768 /** 1769 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1770 * @phba: Pointer to HBA context object. 1771 * @pring: Pointer to driver SLI ring object. 1772 * @iocb: Pointer to iocb slot in the ring. 1773 * @nextiocb: Pointer to driver iocb object which need to be 1774 * posted to firmware. 1775 * 1776 * This function is called with hbalock held to post a new iocb to 1777 * the firmware. This function copies the new iocb to ring iocb slot and 1778 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1779 * a completion call back for this iocb else the function will free the 1780 * iocb object. 1781 **/ 1782 static void 1783 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1784 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1785 { 1786 lockdep_assert_held(&phba->hbalock); 1787 /* 1788 * Set up an iotag 1789 */ 1790 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1791 1792 1793 if (pring->ringno == LPFC_ELS_RING) { 1794 lpfc_debugfs_slow_ring_trc(phba, 1795 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1796 *(((uint32_t *) &nextiocb->iocb) + 4), 1797 *(((uint32_t *) &nextiocb->iocb) + 6), 1798 *(((uint32_t *) &nextiocb->iocb) + 7)); 1799 } 1800 1801 /* 1802 * Issue iocb command to adapter 1803 */ 1804 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1805 wmb(); 1806 pring->stats.iocb_cmd++; 1807 1808 /* 1809 * If there is no completion routine to call, we can release the 1810 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1811 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1812 */ 1813 if (nextiocb->iocb_cmpl) 1814 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1815 else 1816 __lpfc_sli_release_iocbq(phba, nextiocb); 1817 1818 /* 1819 * Let the HBA know what IOCB slot will be the next one the 1820 * driver will put a command into. 1821 */ 1822 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1823 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1824 } 1825 1826 /** 1827 * lpfc_sli_update_full_ring - Update the chip attention register 1828 * @phba: Pointer to HBA context object. 1829 * @pring: Pointer to driver SLI ring object. 1830 * 1831 * The caller is not required to hold any lock for calling this function. 1832 * This function updates the chip attention bits for the ring to inform firmware 1833 * that there are pending work to be done for this ring and requests an 1834 * interrupt when there is space available in the ring. This function is 1835 * called when the driver is unable to post more iocbs to the ring due 1836 * to unavailability of space in the ring. 1837 **/ 1838 static void 1839 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1840 { 1841 int ringno = pring->ringno; 1842 1843 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1844 1845 wmb(); 1846 1847 /* 1848 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1849 * The HBA will tell us when an IOCB entry is available. 1850 */ 1851 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1852 readl(phba->CAregaddr); /* flush */ 1853 1854 pring->stats.iocb_cmd_full++; 1855 } 1856 1857 /** 1858 * lpfc_sli_update_ring - Update chip attention register 1859 * @phba: Pointer to HBA context object. 1860 * @pring: Pointer to driver SLI ring object. 1861 * 1862 * This function updates the chip attention register bit for the 1863 * given ring to inform HBA that there is more work to be done 1864 * in this ring. The caller is not required to hold any lock. 1865 **/ 1866 static void 1867 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1868 { 1869 int ringno = pring->ringno; 1870 1871 /* 1872 * Tell the HBA that there is work to do in this ring. 1873 */ 1874 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1875 wmb(); 1876 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1877 readl(phba->CAregaddr); /* flush */ 1878 } 1879 } 1880 1881 /** 1882 * lpfc_sli_resume_iocb - Process iocbs in the txq 1883 * @phba: Pointer to HBA context object. 1884 * @pring: Pointer to driver SLI ring object. 1885 * 1886 * This function is called with hbalock held to post pending iocbs 1887 * in the txq to the firmware. This function is called when driver 1888 * detects space available in the ring. 1889 **/ 1890 static void 1891 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1892 { 1893 IOCB_t *iocb; 1894 struct lpfc_iocbq *nextiocb; 1895 1896 lockdep_assert_held(&phba->hbalock); 1897 1898 /* 1899 * Check to see if: 1900 * (a) there is anything on the txq to send 1901 * (b) link is up 1902 * (c) link attention events can be processed (fcp ring only) 1903 * (d) IOCB processing is not blocked by the outstanding mbox command. 1904 */ 1905 1906 if (lpfc_is_link_up(phba) && 1907 (!list_empty(&pring->txq)) && 1908 (pring->ringno != LPFC_FCP_RING || 1909 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1910 1911 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1912 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1913 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1914 1915 if (iocb) 1916 lpfc_sli_update_ring(phba, pring); 1917 else 1918 lpfc_sli_update_full_ring(phba, pring); 1919 } 1920 1921 return; 1922 } 1923 1924 /** 1925 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1926 * @phba: Pointer to HBA context object. 1927 * @hbqno: HBQ number. 1928 * 1929 * This function is called with hbalock held to get the next 1930 * available slot for the given HBQ. If there is free slot 1931 * available for the HBQ it will return pointer to the next available 1932 * HBQ entry else it will return NULL. 1933 **/ 1934 static struct lpfc_hbq_entry * 1935 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1936 { 1937 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1938 1939 lockdep_assert_held(&phba->hbalock); 1940 1941 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1942 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1943 hbqp->next_hbqPutIdx = 0; 1944 1945 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1946 uint32_t raw_index = phba->hbq_get[hbqno]; 1947 uint32_t getidx = le32_to_cpu(raw_index); 1948 1949 hbqp->local_hbqGetIdx = getidx; 1950 1951 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1952 lpfc_printf_log(phba, KERN_ERR, 1953 LOG_SLI | LOG_VPORT, 1954 "1802 HBQ %d: local_hbqGetIdx " 1955 "%u is > than hbqp->entry_count %u\n", 1956 hbqno, hbqp->local_hbqGetIdx, 1957 hbqp->entry_count); 1958 1959 phba->link_state = LPFC_HBA_ERROR; 1960 return NULL; 1961 } 1962 1963 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1964 return NULL; 1965 } 1966 1967 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1968 hbqp->hbqPutIdx; 1969 } 1970 1971 /** 1972 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1973 * @phba: Pointer to HBA context object. 1974 * 1975 * This function is called with no lock held to free all the 1976 * hbq buffers while uninitializing the SLI interface. It also 1977 * frees the HBQ buffers returned by the firmware but not yet 1978 * processed by the upper layers. 1979 **/ 1980 void 1981 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1982 { 1983 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1984 struct hbq_dmabuf *hbq_buf; 1985 unsigned long flags; 1986 int i, hbq_count; 1987 1988 hbq_count = lpfc_sli_hbq_count(); 1989 /* Return all memory used by all HBQs */ 1990 spin_lock_irqsave(&phba->hbalock, flags); 1991 for (i = 0; i < hbq_count; ++i) { 1992 list_for_each_entry_safe(dmabuf, next_dmabuf, 1993 &phba->hbqs[i].hbq_buffer_list, list) { 1994 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1995 list_del(&hbq_buf->dbuf.list); 1996 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1997 } 1998 phba->hbqs[i].buffer_count = 0; 1999 } 2000 2001 /* Mark the HBQs not in use */ 2002 phba->hbq_in_use = 0; 2003 spin_unlock_irqrestore(&phba->hbalock, flags); 2004 } 2005 2006 /** 2007 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2008 * @phba: Pointer to HBA context object. 2009 * @hbqno: HBQ number. 2010 * @hbq_buf: Pointer to HBQ buffer. 2011 * 2012 * This function is called with the hbalock held to post a 2013 * hbq buffer to the firmware. If the function finds an empty 2014 * slot in the HBQ, it will post the buffer. The function will return 2015 * pointer to the hbq entry if it successfully post the buffer 2016 * else it will return NULL. 2017 **/ 2018 static int 2019 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2020 struct hbq_dmabuf *hbq_buf) 2021 { 2022 lockdep_assert_held(&phba->hbalock); 2023 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2024 } 2025 2026 /** 2027 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2028 * @phba: Pointer to HBA context object. 2029 * @hbqno: HBQ number. 2030 * @hbq_buf: Pointer to HBQ buffer. 2031 * 2032 * This function is called with the hbalock held to post a hbq buffer to the 2033 * firmware. If the function finds an empty slot in the HBQ, it will post the 2034 * buffer and place it on the hbq_buffer_list. The function will return zero if 2035 * it successfully post the buffer else it will return an error. 2036 **/ 2037 static int 2038 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2039 struct hbq_dmabuf *hbq_buf) 2040 { 2041 struct lpfc_hbq_entry *hbqe; 2042 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2043 2044 lockdep_assert_held(&phba->hbalock); 2045 /* Get next HBQ entry slot to use */ 2046 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2047 if (hbqe) { 2048 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2049 2050 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2051 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2052 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2053 hbqe->bde.tus.f.bdeFlags = 0; 2054 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2055 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2056 /* Sync SLIM */ 2057 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2058 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2059 /* flush */ 2060 readl(phba->hbq_put + hbqno); 2061 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2062 return 0; 2063 } else 2064 return -ENOMEM; 2065 } 2066 2067 /** 2068 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2069 * @phba: Pointer to HBA context object. 2070 * @hbqno: HBQ number. 2071 * @hbq_buf: Pointer to HBQ buffer. 2072 * 2073 * This function is called with the hbalock held to post an RQE to the SLI4 2074 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2075 * the hbq_buffer_list and return zero, otherwise it will return an error. 2076 **/ 2077 static int 2078 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2079 struct hbq_dmabuf *hbq_buf) 2080 { 2081 int rc; 2082 struct lpfc_rqe hrqe; 2083 struct lpfc_rqe drqe; 2084 struct lpfc_queue *hrq; 2085 struct lpfc_queue *drq; 2086 2087 if (hbqno != LPFC_ELS_HBQ) 2088 return 1; 2089 hrq = phba->sli4_hba.hdr_rq; 2090 drq = phba->sli4_hba.dat_rq; 2091 2092 lockdep_assert_held(&phba->hbalock); 2093 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2094 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2095 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2096 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2097 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2098 if (rc < 0) 2099 return rc; 2100 hbq_buf->tag = (rc | (hbqno << 16)); 2101 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2102 return 0; 2103 } 2104 2105 /* HBQ for ELS and CT traffic. */ 2106 static struct lpfc_hbq_init lpfc_els_hbq = { 2107 .rn = 1, 2108 .entry_count = 256, 2109 .mask_count = 0, 2110 .profile = 0, 2111 .ring_mask = (1 << LPFC_ELS_RING), 2112 .buffer_count = 0, 2113 .init_count = 40, 2114 .add_count = 40, 2115 }; 2116 2117 /* Array of HBQs */ 2118 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2119 &lpfc_els_hbq, 2120 }; 2121 2122 /** 2123 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2124 * @phba: Pointer to HBA context object. 2125 * @hbqno: HBQ number. 2126 * @count: Number of HBQ buffers to be posted. 2127 * 2128 * This function is called with no lock held to post more hbq buffers to the 2129 * given HBQ. The function returns the number of HBQ buffers successfully 2130 * posted. 2131 **/ 2132 static int 2133 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2134 { 2135 uint32_t i, posted = 0; 2136 unsigned long flags; 2137 struct hbq_dmabuf *hbq_buffer; 2138 LIST_HEAD(hbq_buf_list); 2139 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2140 return 0; 2141 2142 if ((phba->hbqs[hbqno].buffer_count + count) > 2143 lpfc_hbq_defs[hbqno]->entry_count) 2144 count = lpfc_hbq_defs[hbqno]->entry_count - 2145 phba->hbqs[hbqno].buffer_count; 2146 if (!count) 2147 return 0; 2148 /* Allocate HBQ entries */ 2149 for (i = 0; i < count; i++) { 2150 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2151 if (!hbq_buffer) 2152 break; 2153 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2154 } 2155 /* Check whether HBQ is still in use */ 2156 spin_lock_irqsave(&phba->hbalock, flags); 2157 if (!phba->hbq_in_use) 2158 goto err; 2159 while (!list_empty(&hbq_buf_list)) { 2160 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2161 dbuf.list); 2162 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2163 (hbqno << 16)); 2164 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2165 phba->hbqs[hbqno].buffer_count++; 2166 posted++; 2167 } else 2168 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2169 } 2170 spin_unlock_irqrestore(&phba->hbalock, flags); 2171 return posted; 2172 err: 2173 spin_unlock_irqrestore(&phba->hbalock, flags); 2174 while (!list_empty(&hbq_buf_list)) { 2175 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2176 dbuf.list); 2177 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2178 } 2179 return 0; 2180 } 2181 2182 /** 2183 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2184 * @phba: Pointer to HBA context object. 2185 * @qno: HBQ number. 2186 * 2187 * This function posts more buffers to the HBQ. This function 2188 * is called with no lock held. The function returns the number of HBQ entries 2189 * successfully allocated. 2190 **/ 2191 int 2192 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2193 { 2194 if (phba->sli_rev == LPFC_SLI_REV4) 2195 return 0; 2196 else 2197 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2198 lpfc_hbq_defs[qno]->add_count); 2199 } 2200 2201 /** 2202 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2203 * @phba: Pointer to HBA context object. 2204 * @qno: HBQ queue number. 2205 * 2206 * This function is called from SLI initialization code path with 2207 * no lock held to post initial HBQ buffers to firmware. The 2208 * function returns the number of HBQ entries successfully allocated. 2209 **/ 2210 static int 2211 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2212 { 2213 if (phba->sli_rev == LPFC_SLI_REV4) 2214 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2215 lpfc_hbq_defs[qno]->entry_count); 2216 else 2217 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2218 lpfc_hbq_defs[qno]->init_count); 2219 } 2220 2221 /** 2222 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2223 * @phba: Pointer to HBA context object. 2224 * @hbqno: HBQ number. 2225 * 2226 * This function removes the first hbq buffer on an hbq list and returns a 2227 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2228 **/ 2229 static struct hbq_dmabuf * 2230 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2231 { 2232 struct lpfc_dmabuf *d_buf; 2233 2234 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2235 if (!d_buf) 2236 return NULL; 2237 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2238 } 2239 2240 /** 2241 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2242 * @phba: Pointer to HBA context object. 2243 * @hbqno: HBQ number. 2244 * 2245 * This function removes the first RQ buffer on an RQ buffer list and returns a 2246 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2247 **/ 2248 static struct rqb_dmabuf * 2249 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2250 { 2251 struct lpfc_dmabuf *h_buf; 2252 struct lpfc_rqb *rqbp; 2253 2254 rqbp = hrq->rqbp; 2255 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2256 struct lpfc_dmabuf, list); 2257 if (!h_buf) 2258 return NULL; 2259 rqbp->buffer_count--; 2260 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2261 } 2262 2263 /** 2264 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2265 * @phba: Pointer to HBA context object. 2266 * @tag: Tag of the hbq buffer. 2267 * 2268 * This function searches for the hbq buffer associated with the given tag in 2269 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2270 * otherwise it returns NULL. 2271 **/ 2272 static struct hbq_dmabuf * 2273 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2274 { 2275 struct lpfc_dmabuf *d_buf; 2276 struct hbq_dmabuf *hbq_buf; 2277 uint32_t hbqno; 2278 2279 hbqno = tag >> 16; 2280 if (hbqno >= LPFC_MAX_HBQS) 2281 return NULL; 2282 2283 spin_lock_irq(&phba->hbalock); 2284 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2285 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2286 if (hbq_buf->tag == tag) { 2287 spin_unlock_irq(&phba->hbalock); 2288 return hbq_buf; 2289 } 2290 } 2291 spin_unlock_irq(&phba->hbalock); 2292 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2293 "1803 Bad hbq tag. Data: x%x x%x\n", 2294 tag, phba->hbqs[tag >> 16].buffer_count); 2295 return NULL; 2296 } 2297 2298 /** 2299 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2300 * @phba: Pointer to HBA context object. 2301 * @hbq_buffer: Pointer to HBQ buffer. 2302 * 2303 * This function is called with hbalock. This function gives back 2304 * the hbq buffer to firmware. If the HBQ does not have space to 2305 * post the buffer, it will free the buffer. 2306 **/ 2307 void 2308 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2309 { 2310 uint32_t hbqno; 2311 2312 if (hbq_buffer) { 2313 hbqno = hbq_buffer->tag >> 16; 2314 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2315 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2316 } 2317 } 2318 2319 /** 2320 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2321 * @mbxCommand: mailbox command code. 2322 * 2323 * This function is called by the mailbox event handler function to verify 2324 * that the completed mailbox command is a legitimate mailbox command. If the 2325 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2326 * and the mailbox event handler will take the HBA offline. 2327 **/ 2328 static int 2329 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2330 { 2331 uint8_t ret; 2332 2333 switch (mbxCommand) { 2334 case MBX_LOAD_SM: 2335 case MBX_READ_NV: 2336 case MBX_WRITE_NV: 2337 case MBX_WRITE_VPARMS: 2338 case MBX_RUN_BIU_DIAG: 2339 case MBX_INIT_LINK: 2340 case MBX_DOWN_LINK: 2341 case MBX_CONFIG_LINK: 2342 case MBX_CONFIG_RING: 2343 case MBX_RESET_RING: 2344 case MBX_READ_CONFIG: 2345 case MBX_READ_RCONFIG: 2346 case MBX_READ_SPARM: 2347 case MBX_READ_STATUS: 2348 case MBX_READ_RPI: 2349 case MBX_READ_XRI: 2350 case MBX_READ_REV: 2351 case MBX_READ_LNK_STAT: 2352 case MBX_REG_LOGIN: 2353 case MBX_UNREG_LOGIN: 2354 case MBX_CLEAR_LA: 2355 case MBX_DUMP_MEMORY: 2356 case MBX_DUMP_CONTEXT: 2357 case MBX_RUN_DIAGS: 2358 case MBX_RESTART: 2359 case MBX_UPDATE_CFG: 2360 case MBX_DOWN_LOAD: 2361 case MBX_DEL_LD_ENTRY: 2362 case MBX_RUN_PROGRAM: 2363 case MBX_SET_MASK: 2364 case MBX_SET_VARIABLE: 2365 case MBX_UNREG_D_ID: 2366 case MBX_KILL_BOARD: 2367 case MBX_CONFIG_FARP: 2368 case MBX_BEACON: 2369 case MBX_LOAD_AREA: 2370 case MBX_RUN_BIU_DIAG64: 2371 case MBX_CONFIG_PORT: 2372 case MBX_READ_SPARM64: 2373 case MBX_READ_RPI64: 2374 case MBX_REG_LOGIN64: 2375 case MBX_READ_TOPOLOGY: 2376 case MBX_WRITE_WWN: 2377 case MBX_SET_DEBUG: 2378 case MBX_LOAD_EXP_ROM: 2379 case MBX_ASYNCEVT_ENABLE: 2380 case MBX_REG_VPI: 2381 case MBX_UNREG_VPI: 2382 case MBX_HEARTBEAT: 2383 case MBX_PORT_CAPABILITIES: 2384 case MBX_PORT_IOV_CONTROL: 2385 case MBX_SLI4_CONFIG: 2386 case MBX_SLI4_REQ_FTRS: 2387 case MBX_REG_FCFI: 2388 case MBX_UNREG_FCFI: 2389 case MBX_REG_VFI: 2390 case MBX_UNREG_VFI: 2391 case MBX_INIT_VPI: 2392 case MBX_INIT_VFI: 2393 case MBX_RESUME_RPI: 2394 case MBX_READ_EVENT_LOG_STATUS: 2395 case MBX_READ_EVENT_LOG: 2396 case MBX_SECURITY_MGMT: 2397 case MBX_AUTH_PORT: 2398 case MBX_ACCESS_VDATA: 2399 ret = mbxCommand; 2400 break; 2401 default: 2402 ret = MBX_SHUTDOWN; 2403 break; 2404 } 2405 return ret; 2406 } 2407 2408 /** 2409 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2410 * @phba: Pointer to HBA context object. 2411 * @pmboxq: Pointer to mailbox command. 2412 * 2413 * This is completion handler function for mailbox commands issued from 2414 * lpfc_sli_issue_mbox_wait function. This function is called by the 2415 * mailbox event handler function with no lock held. This function 2416 * will wake up thread waiting on the wait queue pointed by context1 2417 * of the mailbox. 2418 **/ 2419 void 2420 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2421 { 2422 unsigned long drvr_flag; 2423 struct completion *pmbox_done; 2424 2425 /* 2426 * If pmbox_done is empty, the driver thread gave up waiting and 2427 * continued running. 2428 */ 2429 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2430 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2431 pmbox_done = (struct completion *)pmboxq->context3; 2432 if (pmbox_done) 2433 complete(pmbox_done); 2434 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2435 return; 2436 } 2437 2438 2439 /** 2440 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2441 * @phba: Pointer to HBA context object. 2442 * @pmb: Pointer to mailbox object. 2443 * 2444 * This function is the default mailbox completion handler. It 2445 * frees the memory resources associated with the completed mailbox 2446 * command. If the completed command is a REG_LOGIN mailbox command, 2447 * this function will issue a UREG_LOGIN to re-claim the RPI. 2448 **/ 2449 void 2450 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2451 { 2452 struct lpfc_vport *vport = pmb->vport; 2453 struct lpfc_dmabuf *mp; 2454 struct lpfc_nodelist *ndlp; 2455 struct Scsi_Host *shost; 2456 uint16_t rpi, vpi; 2457 int rc; 2458 2459 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2460 2461 if (mp) { 2462 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2463 kfree(mp); 2464 } 2465 2466 /* 2467 * If a REG_LOGIN succeeded after node is destroyed or node 2468 * is in re-discovery driver need to cleanup the RPI. 2469 */ 2470 if (!(phba->pport->load_flag & FC_UNLOADING) && 2471 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2472 !pmb->u.mb.mbxStatus) { 2473 rpi = pmb->u.mb.un.varWords[0]; 2474 vpi = pmb->u.mb.un.varRegLogin.vpi; 2475 lpfc_unreg_login(phba, vpi, rpi, pmb); 2476 pmb->vport = vport; 2477 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2478 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2479 if (rc != MBX_NOT_FINISHED) 2480 return; 2481 } 2482 2483 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2484 !(phba->pport->load_flag & FC_UNLOADING) && 2485 !pmb->u.mb.mbxStatus) { 2486 shost = lpfc_shost_from_vport(vport); 2487 spin_lock_irq(shost->host_lock); 2488 vport->vpi_state |= LPFC_VPI_REGISTERED; 2489 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2490 spin_unlock_irq(shost->host_lock); 2491 } 2492 2493 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2494 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2495 lpfc_nlp_put(ndlp); 2496 pmb->ctx_buf = NULL; 2497 pmb->ctx_ndlp = NULL; 2498 } 2499 2500 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2501 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2502 2503 /* Check to see if there are any deferred events to process */ 2504 if (ndlp) { 2505 lpfc_printf_vlog( 2506 vport, 2507 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2508 "1438 UNREG cmpl deferred mbox x%x " 2509 "on NPort x%x Data: x%x x%x %p\n", 2510 ndlp->nlp_rpi, ndlp->nlp_DID, 2511 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2512 2513 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2514 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2515 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2516 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2517 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2518 } else { 2519 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2520 } 2521 } 2522 pmb->ctx_ndlp = NULL; 2523 } 2524 2525 /* Check security permission status on INIT_LINK mailbox command */ 2526 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2527 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2528 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2529 "2860 SLI authentication is required " 2530 "for INIT_LINK but has not done yet\n"); 2531 2532 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2533 lpfc_sli4_mbox_cmd_free(phba, pmb); 2534 else 2535 mempool_free(pmb, phba->mbox_mem_pool); 2536 } 2537 /** 2538 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2539 * @phba: Pointer to HBA context object. 2540 * @pmb: Pointer to mailbox object. 2541 * 2542 * This function is the unreg rpi mailbox completion handler. It 2543 * frees the memory resources associated with the completed mailbox 2544 * command. An additional refrenece is put on the ndlp to prevent 2545 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2546 * the unreg mailbox command completes, this routine puts the 2547 * reference back. 2548 * 2549 **/ 2550 void 2551 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2552 { 2553 struct lpfc_vport *vport = pmb->vport; 2554 struct lpfc_nodelist *ndlp; 2555 2556 ndlp = pmb->ctx_ndlp; 2557 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2558 if (phba->sli_rev == LPFC_SLI_REV4 && 2559 (bf_get(lpfc_sli_intf_if_type, 2560 &phba->sli4_hba.sli_intf) >= 2561 LPFC_SLI_INTF_IF_TYPE_2)) { 2562 if (ndlp) { 2563 lpfc_printf_vlog( 2564 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2565 "0010 UNREG_LOGIN vpi:%x " 2566 "rpi:%x DID:%x defer x%x flg x%x " 2567 "map:%x %p\n", 2568 vport->vpi, ndlp->nlp_rpi, 2569 ndlp->nlp_DID, ndlp->nlp_defer_did, 2570 ndlp->nlp_flag, 2571 ndlp->nlp_usg_map, ndlp); 2572 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2573 lpfc_nlp_put(ndlp); 2574 2575 /* Check to see if there are any deferred 2576 * events to process 2577 */ 2578 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2579 (ndlp->nlp_defer_did != 2580 NLP_EVT_NOTHING_PENDING)) { 2581 lpfc_printf_vlog( 2582 vport, KERN_INFO, LOG_DISCOVERY, 2583 "4111 UNREG cmpl deferred " 2584 "clr x%x on " 2585 "NPort x%x Data: x%x %p\n", 2586 ndlp->nlp_rpi, ndlp->nlp_DID, 2587 ndlp->nlp_defer_did, ndlp); 2588 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2589 ndlp->nlp_defer_did = 2590 NLP_EVT_NOTHING_PENDING; 2591 lpfc_issue_els_plogi( 2592 vport, ndlp->nlp_DID, 0); 2593 } else { 2594 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2595 } 2596 } 2597 } 2598 } 2599 2600 mempool_free(pmb, phba->mbox_mem_pool); 2601 } 2602 2603 /** 2604 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2605 * @phba: Pointer to HBA context object. 2606 * 2607 * This function is called with no lock held. This function processes all 2608 * the completed mailbox commands and gives it to upper layers. The interrupt 2609 * service routine processes mailbox completion interrupt and adds completed 2610 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2611 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2612 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2613 * function returns the mailbox commands to the upper layer by calling the 2614 * completion handler function of each mailbox. 2615 **/ 2616 int 2617 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2618 { 2619 MAILBOX_t *pmbox; 2620 LPFC_MBOXQ_t *pmb; 2621 int rc; 2622 LIST_HEAD(cmplq); 2623 2624 phba->sli.slistat.mbox_event++; 2625 2626 /* Get all completed mailboxe buffers into the cmplq */ 2627 spin_lock_irq(&phba->hbalock); 2628 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2629 spin_unlock_irq(&phba->hbalock); 2630 2631 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2632 do { 2633 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2634 if (pmb == NULL) 2635 break; 2636 2637 pmbox = &pmb->u.mb; 2638 2639 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2640 if (pmb->vport) { 2641 lpfc_debugfs_disc_trc(pmb->vport, 2642 LPFC_DISC_TRC_MBOX_VPORT, 2643 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2644 (uint32_t)pmbox->mbxCommand, 2645 pmbox->un.varWords[0], 2646 pmbox->un.varWords[1]); 2647 } 2648 else { 2649 lpfc_debugfs_disc_trc(phba->pport, 2650 LPFC_DISC_TRC_MBOX, 2651 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2652 (uint32_t)pmbox->mbxCommand, 2653 pmbox->un.varWords[0], 2654 pmbox->un.varWords[1]); 2655 } 2656 } 2657 2658 /* 2659 * It is a fatal error if unknown mbox command completion. 2660 */ 2661 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2662 MBX_SHUTDOWN) { 2663 /* Unknown mailbox command compl */ 2664 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2665 "(%d):0323 Unknown Mailbox command " 2666 "x%x (x%x/x%x) Cmpl\n", 2667 pmb->vport ? pmb->vport->vpi : 0, 2668 pmbox->mbxCommand, 2669 lpfc_sli_config_mbox_subsys_get(phba, 2670 pmb), 2671 lpfc_sli_config_mbox_opcode_get(phba, 2672 pmb)); 2673 phba->link_state = LPFC_HBA_ERROR; 2674 phba->work_hs = HS_FFER3; 2675 lpfc_handle_eratt(phba); 2676 continue; 2677 } 2678 2679 if (pmbox->mbxStatus) { 2680 phba->sli.slistat.mbox_stat_err++; 2681 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2682 /* Mbox cmd cmpl error - RETRYing */ 2683 lpfc_printf_log(phba, KERN_INFO, 2684 LOG_MBOX | LOG_SLI, 2685 "(%d):0305 Mbox cmd cmpl " 2686 "error - RETRYing Data: x%x " 2687 "(x%x/x%x) x%x x%x x%x\n", 2688 pmb->vport ? pmb->vport->vpi : 0, 2689 pmbox->mbxCommand, 2690 lpfc_sli_config_mbox_subsys_get(phba, 2691 pmb), 2692 lpfc_sli_config_mbox_opcode_get(phba, 2693 pmb), 2694 pmbox->mbxStatus, 2695 pmbox->un.varWords[0], 2696 pmb->vport->port_state); 2697 pmbox->mbxStatus = 0; 2698 pmbox->mbxOwner = OWN_HOST; 2699 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2700 if (rc != MBX_NOT_FINISHED) 2701 continue; 2702 } 2703 } 2704 2705 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2706 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2707 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2708 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2709 "x%x x%x x%x\n", 2710 pmb->vport ? pmb->vport->vpi : 0, 2711 pmbox->mbxCommand, 2712 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2713 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2714 pmb->mbox_cmpl, 2715 *((uint32_t *) pmbox), 2716 pmbox->un.varWords[0], 2717 pmbox->un.varWords[1], 2718 pmbox->un.varWords[2], 2719 pmbox->un.varWords[3], 2720 pmbox->un.varWords[4], 2721 pmbox->un.varWords[5], 2722 pmbox->un.varWords[6], 2723 pmbox->un.varWords[7], 2724 pmbox->un.varWords[8], 2725 pmbox->un.varWords[9], 2726 pmbox->un.varWords[10]); 2727 2728 if (pmb->mbox_cmpl) 2729 pmb->mbox_cmpl(phba,pmb); 2730 } while (1); 2731 return 0; 2732 } 2733 2734 /** 2735 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2736 * @phba: Pointer to HBA context object. 2737 * @pring: Pointer to driver SLI ring object. 2738 * @tag: buffer tag. 2739 * 2740 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2741 * is set in the tag the buffer is posted for a particular exchange, 2742 * the function will return the buffer without replacing the buffer. 2743 * If the buffer is for unsolicited ELS or CT traffic, this function 2744 * returns the buffer and also posts another buffer to the firmware. 2745 **/ 2746 static struct lpfc_dmabuf * 2747 lpfc_sli_get_buff(struct lpfc_hba *phba, 2748 struct lpfc_sli_ring *pring, 2749 uint32_t tag) 2750 { 2751 struct hbq_dmabuf *hbq_entry; 2752 2753 if (tag & QUE_BUFTAG_BIT) 2754 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2755 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2756 if (!hbq_entry) 2757 return NULL; 2758 return &hbq_entry->dbuf; 2759 } 2760 2761 /** 2762 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2763 * @phba: Pointer to HBA context object. 2764 * @pring: Pointer to driver SLI ring object. 2765 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2766 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2767 * @fch_type: the type for the first frame of the sequence. 2768 * 2769 * This function is called with no lock held. This function uses the r_ctl and 2770 * type of the received sequence to find the correct callback function to call 2771 * to process the sequence. 2772 **/ 2773 static int 2774 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2775 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2776 uint32_t fch_type) 2777 { 2778 int i; 2779 2780 switch (fch_type) { 2781 case FC_TYPE_NVME: 2782 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2783 return 1; 2784 default: 2785 break; 2786 } 2787 2788 /* unSolicited Responses */ 2789 if (pring->prt[0].profile) { 2790 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2791 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2792 saveq); 2793 return 1; 2794 } 2795 /* We must search, based on rctl / type 2796 for the right routine */ 2797 for (i = 0; i < pring->num_mask; i++) { 2798 if ((pring->prt[i].rctl == fch_r_ctl) && 2799 (pring->prt[i].type == fch_type)) { 2800 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2801 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2802 (phba, pring, saveq); 2803 return 1; 2804 } 2805 } 2806 return 0; 2807 } 2808 2809 /** 2810 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2811 * @phba: Pointer to HBA context object. 2812 * @pring: Pointer to driver SLI ring object. 2813 * @saveq: Pointer to the unsolicited iocb. 2814 * 2815 * This function is called with no lock held by the ring event handler 2816 * when there is an unsolicited iocb posted to the response ring by the 2817 * firmware. This function gets the buffer associated with the iocbs 2818 * and calls the event handler for the ring. This function handles both 2819 * qring buffers and hbq buffers. 2820 * When the function returns 1 the caller can free the iocb object otherwise 2821 * upper layer functions will free the iocb objects. 2822 **/ 2823 static int 2824 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2825 struct lpfc_iocbq *saveq) 2826 { 2827 IOCB_t * irsp; 2828 WORD5 * w5p; 2829 uint32_t Rctl, Type; 2830 struct lpfc_iocbq *iocbq; 2831 struct lpfc_dmabuf *dmzbuf; 2832 2833 irsp = &(saveq->iocb); 2834 2835 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2836 if (pring->lpfc_sli_rcv_async_status) 2837 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2838 else 2839 lpfc_printf_log(phba, 2840 KERN_WARNING, 2841 LOG_SLI, 2842 "0316 Ring %d handler: unexpected " 2843 "ASYNC_STATUS iocb received evt_code " 2844 "0x%x\n", 2845 pring->ringno, 2846 irsp->un.asyncstat.evt_code); 2847 return 1; 2848 } 2849 2850 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2851 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2852 if (irsp->ulpBdeCount > 0) { 2853 dmzbuf = lpfc_sli_get_buff(phba, pring, 2854 irsp->un.ulpWord[3]); 2855 lpfc_in_buf_free(phba, dmzbuf); 2856 } 2857 2858 if (irsp->ulpBdeCount > 1) { 2859 dmzbuf = lpfc_sli_get_buff(phba, pring, 2860 irsp->unsli3.sli3Words[3]); 2861 lpfc_in_buf_free(phba, dmzbuf); 2862 } 2863 2864 if (irsp->ulpBdeCount > 2) { 2865 dmzbuf = lpfc_sli_get_buff(phba, pring, 2866 irsp->unsli3.sli3Words[7]); 2867 lpfc_in_buf_free(phba, dmzbuf); 2868 } 2869 2870 return 1; 2871 } 2872 2873 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2874 if (irsp->ulpBdeCount != 0) { 2875 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2876 irsp->un.ulpWord[3]); 2877 if (!saveq->context2) 2878 lpfc_printf_log(phba, 2879 KERN_ERR, 2880 LOG_SLI, 2881 "0341 Ring %d Cannot find buffer for " 2882 "an unsolicited iocb. tag 0x%x\n", 2883 pring->ringno, 2884 irsp->un.ulpWord[3]); 2885 } 2886 if (irsp->ulpBdeCount == 2) { 2887 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2888 irsp->unsli3.sli3Words[7]); 2889 if (!saveq->context3) 2890 lpfc_printf_log(phba, 2891 KERN_ERR, 2892 LOG_SLI, 2893 "0342 Ring %d Cannot find buffer for an" 2894 " unsolicited iocb. tag 0x%x\n", 2895 pring->ringno, 2896 irsp->unsli3.sli3Words[7]); 2897 } 2898 list_for_each_entry(iocbq, &saveq->list, list) { 2899 irsp = &(iocbq->iocb); 2900 if (irsp->ulpBdeCount != 0) { 2901 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2902 irsp->un.ulpWord[3]); 2903 if (!iocbq->context2) 2904 lpfc_printf_log(phba, 2905 KERN_ERR, 2906 LOG_SLI, 2907 "0343 Ring %d Cannot find " 2908 "buffer for an unsolicited iocb" 2909 ". tag 0x%x\n", pring->ringno, 2910 irsp->un.ulpWord[3]); 2911 } 2912 if (irsp->ulpBdeCount == 2) { 2913 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2914 irsp->unsli3.sli3Words[7]); 2915 if (!iocbq->context3) 2916 lpfc_printf_log(phba, 2917 KERN_ERR, 2918 LOG_SLI, 2919 "0344 Ring %d Cannot find " 2920 "buffer for an unsolicited " 2921 "iocb. tag 0x%x\n", 2922 pring->ringno, 2923 irsp->unsli3.sli3Words[7]); 2924 } 2925 } 2926 } 2927 if (irsp->ulpBdeCount != 0 && 2928 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2929 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2930 int found = 0; 2931 2932 /* search continue save q for same XRI */ 2933 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2934 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2935 saveq->iocb.unsli3.rcvsli3.ox_id) { 2936 list_add_tail(&saveq->list, &iocbq->list); 2937 found = 1; 2938 break; 2939 } 2940 } 2941 if (!found) 2942 list_add_tail(&saveq->clist, 2943 &pring->iocb_continue_saveq); 2944 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2945 list_del_init(&iocbq->clist); 2946 saveq = iocbq; 2947 irsp = &(saveq->iocb); 2948 } else 2949 return 0; 2950 } 2951 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2952 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2953 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2954 Rctl = FC_RCTL_ELS_REQ; 2955 Type = FC_TYPE_ELS; 2956 } else { 2957 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2958 Rctl = w5p->hcsw.Rctl; 2959 Type = w5p->hcsw.Type; 2960 2961 /* Firmware Workaround */ 2962 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2963 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2964 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2965 Rctl = FC_RCTL_ELS_REQ; 2966 Type = FC_TYPE_ELS; 2967 w5p->hcsw.Rctl = Rctl; 2968 w5p->hcsw.Type = Type; 2969 } 2970 } 2971 2972 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2973 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2974 "0313 Ring %d handler: unexpected Rctl x%x " 2975 "Type x%x received\n", 2976 pring->ringno, Rctl, Type); 2977 2978 return 1; 2979 } 2980 2981 /** 2982 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2983 * @phba: Pointer to HBA context object. 2984 * @pring: Pointer to driver SLI ring object. 2985 * @prspiocb: Pointer to response iocb object. 2986 * 2987 * This function looks up the iocb_lookup table to get the command iocb 2988 * corresponding to the given response iocb using the iotag of the 2989 * response iocb. This function is called with the hbalock held 2990 * for sli3 devices or the ring_lock for sli4 devices. 2991 * This function returns the command iocb object if it finds the command 2992 * iocb else returns NULL. 2993 **/ 2994 static struct lpfc_iocbq * 2995 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2996 struct lpfc_sli_ring *pring, 2997 struct lpfc_iocbq *prspiocb) 2998 { 2999 struct lpfc_iocbq *cmd_iocb = NULL; 3000 uint16_t iotag; 3001 lockdep_assert_held(&phba->hbalock); 3002 3003 iotag = prspiocb->iocb.ulpIoTag; 3004 3005 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3006 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3007 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3008 /* remove from txcmpl queue list */ 3009 list_del_init(&cmd_iocb->list); 3010 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3011 return cmd_iocb; 3012 } 3013 } 3014 3015 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3016 "0317 iotag x%x is out of " 3017 "range: max iotag x%x wd0 x%x\n", 3018 iotag, phba->sli.last_iotag, 3019 *(((uint32_t *) &prspiocb->iocb) + 7)); 3020 return NULL; 3021 } 3022 3023 /** 3024 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3025 * @phba: Pointer to HBA context object. 3026 * @pring: Pointer to driver SLI ring object. 3027 * @iotag: IOCB tag. 3028 * 3029 * This function looks up the iocb_lookup table to get the command iocb 3030 * corresponding to the given iotag. This function is called with the 3031 * hbalock held. 3032 * This function returns the command iocb object if it finds the command 3033 * iocb else returns NULL. 3034 **/ 3035 static struct lpfc_iocbq * 3036 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3037 struct lpfc_sli_ring *pring, uint16_t iotag) 3038 { 3039 struct lpfc_iocbq *cmd_iocb = NULL; 3040 3041 lockdep_assert_held(&phba->hbalock); 3042 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3043 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3044 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3045 /* remove from txcmpl queue list */ 3046 list_del_init(&cmd_iocb->list); 3047 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3048 return cmd_iocb; 3049 } 3050 } 3051 3052 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3053 "0372 iotag x%x lookup error: max iotag (x%x) " 3054 "iocb_flag x%x\n", 3055 iotag, phba->sli.last_iotag, 3056 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3057 return NULL; 3058 } 3059 3060 /** 3061 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3062 * @phba: Pointer to HBA context object. 3063 * @pring: Pointer to driver SLI ring object. 3064 * @saveq: Pointer to the response iocb to be processed. 3065 * 3066 * This function is called by the ring event handler for non-fcp 3067 * rings when there is a new response iocb in the response ring. 3068 * The caller is not required to hold any locks. This function 3069 * gets the command iocb associated with the response iocb and 3070 * calls the completion handler for the command iocb. If there 3071 * is no completion handler, the function will free the resources 3072 * associated with command iocb. If the response iocb is for 3073 * an already aborted command iocb, the status of the completion 3074 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3075 * This function always returns 1. 3076 **/ 3077 static int 3078 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3079 struct lpfc_iocbq *saveq) 3080 { 3081 struct lpfc_iocbq *cmdiocbp; 3082 int rc = 1; 3083 unsigned long iflag; 3084 3085 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 3086 if (phba->sli_rev == LPFC_SLI_REV4) 3087 spin_lock_irqsave(&pring->ring_lock, iflag); 3088 else 3089 spin_lock_irqsave(&phba->hbalock, iflag); 3090 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3091 if (phba->sli_rev == LPFC_SLI_REV4) 3092 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3093 else 3094 spin_unlock_irqrestore(&phba->hbalock, iflag); 3095 3096 if (cmdiocbp) { 3097 if (cmdiocbp->iocb_cmpl) { 3098 /* 3099 * If an ELS command failed send an event to mgmt 3100 * application. 3101 */ 3102 if (saveq->iocb.ulpStatus && 3103 (pring->ringno == LPFC_ELS_RING) && 3104 (cmdiocbp->iocb.ulpCommand == 3105 CMD_ELS_REQUEST64_CR)) 3106 lpfc_send_els_failure_event(phba, 3107 cmdiocbp, saveq); 3108 3109 /* 3110 * Post all ELS completions to the worker thread. 3111 * All other are passed to the completion callback. 3112 */ 3113 if (pring->ringno == LPFC_ELS_RING) { 3114 if ((phba->sli_rev < LPFC_SLI_REV4) && 3115 (cmdiocbp->iocb_flag & 3116 LPFC_DRIVER_ABORTED)) { 3117 spin_lock_irqsave(&phba->hbalock, 3118 iflag); 3119 cmdiocbp->iocb_flag &= 3120 ~LPFC_DRIVER_ABORTED; 3121 spin_unlock_irqrestore(&phba->hbalock, 3122 iflag); 3123 saveq->iocb.ulpStatus = 3124 IOSTAT_LOCAL_REJECT; 3125 saveq->iocb.un.ulpWord[4] = 3126 IOERR_SLI_ABORTED; 3127 3128 /* Firmware could still be in progress 3129 * of DMAing payload, so don't free data 3130 * buffer till after a hbeat. 3131 */ 3132 spin_lock_irqsave(&phba->hbalock, 3133 iflag); 3134 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3135 spin_unlock_irqrestore(&phba->hbalock, 3136 iflag); 3137 } 3138 if (phba->sli_rev == LPFC_SLI_REV4) { 3139 if (saveq->iocb_flag & 3140 LPFC_EXCHANGE_BUSY) { 3141 /* Set cmdiocb flag for the 3142 * exchange busy so sgl (xri) 3143 * will not be released until 3144 * the abort xri is received 3145 * from hba. 3146 */ 3147 spin_lock_irqsave( 3148 &phba->hbalock, iflag); 3149 cmdiocbp->iocb_flag |= 3150 LPFC_EXCHANGE_BUSY; 3151 spin_unlock_irqrestore( 3152 &phba->hbalock, iflag); 3153 } 3154 if (cmdiocbp->iocb_flag & 3155 LPFC_DRIVER_ABORTED) { 3156 /* 3157 * Clear LPFC_DRIVER_ABORTED 3158 * bit in case it was driver 3159 * initiated abort. 3160 */ 3161 spin_lock_irqsave( 3162 &phba->hbalock, iflag); 3163 cmdiocbp->iocb_flag &= 3164 ~LPFC_DRIVER_ABORTED; 3165 spin_unlock_irqrestore( 3166 &phba->hbalock, iflag); 3167 cmdiocbp->iocb.ulpStatus = 3168 IOSTAT_LOCAL_REJECT; 3169 cmdiocbp->iocb.un.ulpWord[4] = 3170 IOERR_ABORT_REQUESTED; 3171 /* 3172 * For SLI4, irsiocb contains 3173 * NO_XRI in sli_xritag, it 3174 * shall not affect releasing 3175 * sgl (xri) process. 3176 */ 3177 saveq->iocb.ulpStatus = 3178 IOSTAT_LOCAL_REJECT; 3179 saveq->iocb.un.ulpWord[4] = 3180 IOERR_SLI_ABORTED; 3181 spin_lock_irqsave( 3182 &phba->hbalock, iflag); 3183 saveq->iocb_flag |= 3184 LPFC_DELAY_MEM_FREE; 3185 spin_unlock_irqrestore( 3186 &phba->hbalock, iflag); 3187 } 3188 } 3189 } 3190 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3191 } else 3192 lpfc_sli_release_iocbq(phba, cmdiocbp); 3193 } else { 3194 /* 3195 * Unknown initiating command based on the response iotag. 3196 * This could be the case on the ELS ring because of 3197 * lpfc_els_abort(). 3198 */ 3199 if (pring->ringno != LPFC_ELS_RING) { 3200 /* 3201 * Ring <ringno> handler: unexpected completion IoTag 3202 * <IoTag> 3203 */ 3204 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3205 "0322 Ring %d handler: " 3206 "unexpected completion IoTag x%x " 3207 "Data: x%x x%x x%x x%x\n", 3208 pring->ringno, 3209 saveq->iocb.ulpIoTag, 3210 saveq->iocb.ulpStatus, 3211 saveq->iocb.un.ulpWord[4], 3212 saveq->iocb.ulpCommand, 3213 saveq->iocb.ulpContext); 3214 } 3215 } 3216 3217 return rc; 3218 } 3219 3220 /** 3221 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3222 * @phba: Pointer to HBA context object. 3223 * @pring: Pointer to driver SLI ring object. 3224 * 3225 * This function is called from the iocb ring event handlers when 3226 * put pointer is ahead of the get pointer for a ring. This function signal 3227 * an error attention condition to the worker thread and the worker 3228 * thread will transition the HBA to offline state. 3229 **/ 3230 static void 3231 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3232 { 3233 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3234 /* 3235 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3236 * rsp ring <portRspMax> 3237 */ 3238 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3239 "0312 Ring %d handler: portRspPut %d " 3240 "is bigger than rsp ring %d\n", 3241 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3242 pring->sli.sli3.numRiocb); 3243 3244 phba->link_state = LPFC_HBA_ERROR; 3245 3246 /* 3247 * All error attention handlers are posted to 3248 * worker thread 3249 */ 3250 phba->work_ha |= HA_ERATT; 3251 phba->work_hs = HS_FFER3; 3252 3253 lpfc_worker_wake_up(phba); 3254 3255 return; 3256 } 3257 3258 /** 3259 * lpfc_poll_eratt - Error attention polling timer timeout handler 3260 * @ptr: Pointer to address of HBA context object. 3261 * 3262 * This function is invoked by the Error Attention polling timer when the 3263 * timer times out. It will check the SLI Error Attention register for 3264 * possible attention events. If so, it will post an Error Attention event 3265 * and wake up worker thread to process it. Otherwise, it will set up the 3266 * Error Attention polling timer for the next poll. 3267 **/ 3268 void lpfc_poll_eratt(struct timer_list *t) 3269 { 3270 struct lpfc_hba *phba; 3271 uint32_t eratt = 0; 3272 uint64_t sli_intr, cnt; 3273 3274 phba = from_timer(phba, t, eratt_poll); 3275 3276 /* Here we will also keep track of interrupts per sec of the hba */ 3277 sli_intr = phba->sli.slistat.sli_intr; 3278 3279 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3280 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3281 sli_intr); 3282 else 3283 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3284 3285 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3286 do_div(cnt, phba->eratt_poll_interval); 3287 phba->sli.slistat.sli_ips = cnt; 3288 3289 phba->sli.slistat.sli_prev_intr = sli_intr; 3290 3291 /* Check chip HA register for error event */ 3292 eratt = lpfc_sli_check_eratt(phba); 3293 3294 if (eratt) 3295 /* Tell the worker thread there is work to do */ 3296 lpfc_worker_wake_up(phba); 3297 else 3298 /* Restart the timer for next eratt poll */ 3299 mod_timer(&phba->eratt_poll, 3300 jiffies + 3301 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3302 return; 3303 } 3304 3305 3306 /** 3307 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3308 * @phba: Pointer to HBA context object. 3309 * @pring: Pointer to driver SLI ring object. 3310 * @mask: Host attention register mask for this ring. 3311 * 3312 * This function is called from the interrupt context when there is a ring 3313 * event for the fcp ring. The caller does not hold any lock. 3314 * The function processes each response iocb in the response ring until it 3315 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3316 * LE bit set. The function will call the completion handler of the command iocb 3317 * if the response iocb indicates a completion for a command iocb or it is 3318 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3319 * function if this is an unsolicited iocb. 3320 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3321 * to check it explicitly. 3322 */ 3323 int 3324 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3325 struct lpfc_sli_ring *pring, uint32_t mask) 3326 { 3327 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3328 IOCB_t *irsp = NULL; 3329 IOCB_t *entry = NULL; 3330 struct lpfc_iocbq *cmdiocbq = NULL; 3331 struct lpfc_iocbq rspiocbq; 3332 uint32_t status; 3333 uint32_t portRspPut, portRspMax; 3334 int rc = 1; 3335 lpfc_iocb_type type; 3336 unsigned long iflag; 3337 uint32_t rsp_cmpl = 0; 3338 3339 spin_lock_irqsave(&phba->hbalock, iflag); 3340 pring->stats.iocb_event++; 3341 3342 /* 3343 * The next available response entry should never exceed the maximum 3344 * entries. If it does, treat it as an adapter hardware error. 3345 */ 3346 portRspMax = pring->sli.sli3.numRiocb; 3347 portRspPut = le32_to_cpu(pgp->rspPutInx); 3348 if (unlikely(portRspPut >= portRspMax)) { 3349 lpfc_sli_rsp_pointers_error(phba, pring); 3350 spin_unlock_irqrestore(&phba->hbalock, iflag); 3351 return 1; 3352 } 3353 if (phba->fcp_ring_in_use) { 3354 spin_unlock_irqrestore(&phba->hbalock, iflag); 3355 return 1; 3356 } else 3357 phba->fcp_ring_in_use = 1; 3358 3359 rmb(); 3360 while (pring->sli.sli3.rspidx != portRspPut) { 3361 /* 3362 * Fetch an entry off the ring and copy it into a local data 3363 * structure. The copy involves a byte-swap since the 3364 * network byte order and pci byte orders are different. 3365 */ 3366 entry = lpfc_resp_iocb(phba, pring); 3367 phba->last_completion_time = jiffies; 3368 3369 if (++pring->sli.sli3.rspidx >= portRspMax) 3370 pring->sli.sli3.rspidx = 0; 3371 3372 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3373 (uint32_t *) &rspiocbq.iocb, 3374 phba->iocb_rsp_size); 3375 INIT_LIST_HEAD(&(rspiocbq.list)); 3376 irsp = &rspiocbq.iocb; 3377 3378 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3379 pring->stats.iocb_rsp++; 3380 rsp_cmpl++; 3381 3382 if (unlikely(irsp->ulpStatus)) { 3383 /* 3384 * If resource errors reported from HBA, reduce 3385 * queuedepths of the SCSI device. 3386 */ 3387 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3388 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3389 IOERR_NO_RESOURCES)) { 3390 spin_unlock_irqrestore(&phba->hbalock, iflag); 3391 phba->lpfc_rampdown_queue_depth(phba); 3392 spin_lock_irqsave(&phba->hbalock, iflag); 3393 } 3394 3395 /* Rsp ring <ringno> error: IOCB */ 3396 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3397 "0336 Rsp Ring %d error: IOCB Data: " 3398 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3399 pring->ringno, 3400 irsp->un.ulpWord[0], 3401 irsp->un.ulpWord[1], 3402 irsp->un.ulpWord[2], 3403 irsp->un.ulpWord[3], 3404 irsp->un.ulpWord[4], 3405 irsp->un.ulpWord[5], 3406 *(uint32_t *)&irsp->un1, 3407 *((uint32_t *)&irsp->un1 + 1)); 3408 } 3409 3410 switch (type) { 3411 case LPFC_ABORT_IOCB: 3412 case LPFC_SOL_IOCB: 3413 /* 3414 * Idle exchange closed via ABTS from port. No iocb 3415 * resources need to be recovered. 3416 */ 3417 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3418 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3419 "0333 IOCB cmd 0x%x" 3420 " processed. Skipping" 3421 " completion\n", 3422 irsp->ulpCommand); 3423 break; 3424 } 3425 3426 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3427 &rspiocbq); 3428 if (unlikely(!cmdiocbq)) 3429 break; 3430 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3431 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3432 if (cmdiocbq->iocb_cmpl) { 3433 spin_unlock_irqrestore(&phba->hbalock, iflag); 3434 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3435 &rspiocbq); 3436 spin_lock_irqsave(&phba->hbalock, iflag); 3437 } 3438 break; 3439 case LPFC_UNSOL_IOCB: 3440 spin_unlock_irqrestore(&phba->hbalock, iflag); 3441 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3442 spin_lock_irqsave(&phba->hbalock, iflag); 3443 break; 3444 default: 3445 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3446 char adaptermsg[LPFC_MAX_ADPTMSG]; 3447 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3448 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3449 MAX_MSG_DATA); 3450 dev_warn(&((phba->pcidev)->dev), 3451 "lpfc%d: %s\n", 3452 phba->brd_no, adaptermsg); 3453 } else { 3454 /* Unknown IOCB command */ 3455 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3456 "0334 Unknown IOCB command " 3457 "Data: x%x, x%x x%x x%x x%x\n", 3458 type, irsp->ulpCommand, 3459 irsp->ulpStatus, 3460 irsp->ulpIoTag, 3461 irsp->ulpContext); 3462 } 3463 break; 3464 } 3465 3466 /* 3467 * The response IOCB has been processed. Update the ring 3468 * pointer in SLIM. If the port response put pointer has not 3469 * been updated, sync the pgp->rspPutInx and fetch the new port 3470 * response put pointer. 3471 */ 3472 writel(pring->sli.sli3.rspidx, 3473 &phba->host_gp[pring->ringno].rspGetInx); 3474 3475 if (pring->sli.sli3.rspidx == portRspPut) 3476 portRspPut = le32_to_cpu(pgp->rspPutInx); 3477 } 3478 3479 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3480 pring->stats.iocb_rsp_full++; 3481 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3482 writel(status, phba->CAregaddr); 3483 readl(phba->CAregaddr); 3484 } 3485 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3486 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3487 pring->stats.iocb_cmd_empty++; 3488 3489 /* Force update of the local copy of cmdGetInx */ 3490 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3491 lpfc_sli_resume_iocb(phba, pring); 3492 3493 if ((pring->lpfc_sli_cmd_available)) 3494 (pring->lpfc_sli_cmd_available) (phba, pring); 3495 3496 } 3497 3498 phba->fcp_ring_in_use = 0; 3499 spin_unlock_irqrestore(&phba->hbalock, iflag); 3500 return rc; 3501 } 3502 3503 /** 3504 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3505 * @phba: Pointer to HBA context object. 3506 * @pring: Pointer to driver SLI ring object. 3507 * @rspiocbp: Pointer to driver response IOCB object. 3508 * 3509 * This function is called from the worker thread when there is a slow-path 3510 * response IOCB to process. This function chains all the response iocbs until 3511 * seeing the iocb with the LE bit set. The function will call 3512 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3513 * completion of a command iocb. The function will call the 3514 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3515 * The function frees the resources or calls the completion handler if this 3516 * iocb is an abort completion. The function returns NULL when the response 3517 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3518 * this function shall chain the iocb on to the iocb_continueq and return the 3519 * response iocb passed in. 3520 **/ 3521 static struct lpfc_iocbq * 3522 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3523 struct lpfc_iocbq *rspiocbp) 3524 { 3525 struct lpfc_iocbq *saveq; 3526 struct lpfc_iocbq *cmdiocbp; 3527 struct lpfc_iocbq *next_iocb; 3528 IOCB_t *irsp = NULL; 3529 uint32_t free_saveq; 3530 uint8_t iocb_cmd_type; 3531 lpfc_iocb_type type; 3532 unsigned long iflag; 3533 int rc; 3534 3535 spin_lock_irqsave(&phba->hbalock, iflag); 3536 /* First add the response iocb to the countinueq list */ 3537 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3538 pring->iocb_continueq_cnt++; 3539 3540 /* Now, determine whether the list is completed for processing */ 3541 irsp = &rspiocbp->iocb; 3542 if (irsp->ulpLe) { 3543 /* 3544 * By default, the driver expects to free all resources 3545 * associated with this iocb completion. 3546 */ 3547 free_saveq = 1; 3548 saveq = list_get_first(&pring->iocb_continueq, 3549 struct lpfc_iocbq, list); 3550 irsp = &(saveq->iocb); 3551 list_del_init(&pring->iocb_continueq); 3552 pring->iocb_continueq_cnt = 0; 3553 3554 pring->stats.iocb_rsp++; 3555 3556 /* 3557 * If resource errors reported from HBA, reduce 3558 * queuedepths of the SCSI device. 3559 */ 3560 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3561 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3562 IOERR_NO_RESOURCES)) { 3563 spin_unlock_irqrestore(&phba->hbalock, iflag); 3564 phba->lpfc_rampdown_queue_depth(phba); 3565 spin_lock_irqsave(&phba->hbalock, iflag); 3566 } 3567 3568 if (irsp->ulpStatus) { 3569 /* Rsp ring <ringno> error: IOCB */ 3570 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3571 "0328 Rsp Ring %d error: " 3572 "IOCB Data: " 3573 "x%x x%x x%x x%x " 3574 "x%x x%x x%x x%x " 3575 "x%x x%x x%x x%x " 3576 "x%x x%x x%x x%x\n", 3577 pring->ringno, 3578 irsp->un.ulpWord[0], 3579 irsp->un.ulpWord[1], 3580 irsp->un.ulpWord[2], 3581 irsp->un.ulpWord[3], 3582 irsp->un.ulpWord[4], 3583 irsp->un.ulpWord[5], 3584 *(((uint32_t *) irsp) + 6), 3585 *(((uint32_t *) irsp) + 7), 3586 *(((uint32_t *) irsp) + 8), 3587 *(((uint32_t *) irsp) + 9), 3588 *(((uint32_t *) irsp) + 10), 3589 *(((uint32_t *) irsp) + 11), 3590 *(((uint32_t *) irsp) + 12), 3591 *(((uint32_t *) irsp) + 13), 3592 *(((uint32_t *) irsp) + 14), 3593 *(((uint32_t *) irsp) + 15)); 3594 } 3595 3596 /* 3597 * Fetch the IOCB command type and call the correct completion 3598 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3599 * get freed back to the lpfc_iocb_list by the discovery 3600 * kernel thread. 3601 */ 3602 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3603 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3604 switch (type) { 3605 case LPFC_SOL_IOCB: 3606 spin_unlock_irqrestore(&phba->hbalock, iflag); 3607 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3608 spin_lock_irqsave(&phba->hbalock, iflag); 3609 break; 3610 3611 case LPFC_UNSOL_IOCB: 3612 spin_unlock_irqrestore(&phba->hbalock, iflag); 3613 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3614 spin_lock_irqsave(&phba->hbalock, iflag); 3615 if (!rc) 3616 free_saveq = 0; 3617 break; 3618 3619 case LPFC_ABORT_IOCB: 3620 cmdiocbp = NULL; 3621 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3622 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3623 saveq); 3624 if (cmdiocbp) { 3625 /* Call the specified completion routine */ 3626 if (cmdiocbp->iocb_cmpl) { 3627 spin_unlock_irqrestore(&phba->hbalock, 3628 iflag); 3629 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3630 saveq); 3631 spin_lock_irqsave(&phba->hbalock, 3632 iflag); 3633 } else 3634 __lpfc_sli_release_iocbq(phba, 3635 cmdiocbp); 3636 } 3637 break; 3638 3639 case LPFC_UNKNOWN_IOCB: 3640 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3641 char adaptermsg[LPFC_MAX_ADPTMSG]; 3642 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3643 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3644 MAX_MSG_DATA); 3645 dev_warn(&((phba->pcidev)->dev), 3646 "lpfc%d: %s\n", 3647 phba->brd_no, adaptermsg); 3648 } else { 3649 /* Unknown IOCB command */ 3650 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3651 "0335 Unknown IOCB " 3652 "command Data: x%x " 3653 "x%x x%x x%x\n", 3654 irsp->ulpCommand, 3655 irsp->ulpStatus, 3656 irsp->ulpIoTag, 3657 irsp->ulpContext); 3658 } 3659 break; 3660 } 3661 3662 if (free_saveq) { 3663 list_for_each_entry_safe(rspiocbp, next_iocb, 3664 &saveq->list, list) { 3665 list_del_init(&rspiocbp->list); 3666 __lpfc_sli_release_iocbq(phba, rspiocbp); 3667 } 3668 __lpfc_sli_release_iocbq(phba, saveq); 3669 } 3670 rspiocbp = NULL; 3671 } 3672 spin_unlock_irqrestore(&phba->hbalock, iflag); 3673 return rspiocbp; 3674 } 3675 3676 /** 3677 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3678 * @phba: Pointer to HBA context object. 3679 * @pring: Pointer to driver SLI ring object. 3680 * @mask: Host attention register mask for this ring. 3681 * 3682 * This routine wraps the actual slow_ring event process routine from the 3683 * API jump table function pointer from the lpfc_hba struct. 3684 **/ 3685 void 3686 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3687 struct lpfc_sli_ring *pring, uint32_t mask) 3688 { 3689 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3690 } 3691 3692 /** 3693 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3694 * @phba: Pointer to HBA context object. 3695 * @pring: Pointer to driver SLI ring object. 3696 * @mask: Host attention register mask for this ring. 3697 * 3698 * This function is called from the worker thread when there is a ring event 3699 * for non-fcp rings. The caller does not hold any lock. The function will 3700 * remove each response iocb in the response ring and calls the handle 3701 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3702 **/ 3703 static void 3704 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3705 struct lpfc_sli_ring *pring, uint32_t mask) 3706 { 3707 struct lpfc_pgp *pgp; 3708 IOCB_t *entry; 3709 IOCB_t *irsp = NULL; 3710 struct lpfc_iocbq *rspiocbp = NULL; 3711 uint32_t portRspPut, portRspMax; 3712 unsigned long iflag; 3713 uint32_t status; 3714 3715 pgp = &phba->port_gp[pring->ringno]; 3716 spin_lock_irqsave(&phba->hbalock, iflag); 3717 pring->stats.iocb_event++; 3718 3719 /* 3720 * The next available response entry should never exceed the maximum 3721 * entries. If it does, treat it as an adapter hardware error. 3722 */ 3723 portRspMax = pring->sli.sli3.numRiocb; 3724 portRspPut = le32_to_cpu(pgp->rspPutInx); 3725 if (portRspPut >= portRspMax) { 3726 /* 3727 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3728 * rsp ring <portRspMax> 3729 */ 3730 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3731 "0303 Ring %d handler: portRspPut %d " 3732 "is bigger than rsp ring %d\n", 3733 pring->ringno, portRspPut, portRspMax); 3734 3735 phba->link_state = LPFC_HBA_ERROR; 3736 spin_unlock_irqrestore(&phba->hbalock, iflag); 3737 3738 phba->work_hs = HS_FFER3; 3739 lpfc_handle_eratt(phba); 3740 3741 return; 3742 } 3743 3744 rmb(); 3745 while (pring->sli.sli3.rspidx != portRspPut) { 3746 /* 3747 * Build a completion list and call the appropriate handler. 3748 * The process is to get the next available response iocb, get 3749 * a free iocb from the list, copy the response data into the 3750 * free iocb, insert to the continuation list, and update the 3751 * next response index to slim. This process makes response 3752 * iocb's in the ring available to DMA as fast as possible but 3753 * pays a penalty for a copy operation. Since the iocb is 3754 * only 32 bytes, this penalty is considered small relative to 3755 * the PCI reads for register values and a slim write. When 3756 * the ulpLe field is set, the entire Command has been 3757 * received. 3758 */ 3759 entry = lpfc_resp_iocb(phba, pring); 3760 3761 phba->last_completion_time = jiffies; 3762 rspiocbp = __lpfc_sli_get_iocbq(phba); 3763 if (rspiocbp == NULL) { 3764 printk(KERN_ERR "%s: out of buffers! Failing " 3765 "completion.\n", __func__); 3766 break; 3767 } 3768 3769 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3770 phba->iocb_rsp_size); 3771 irsp = &rspiocbp->iocb; 3772 3773 if (++pring->sli.sli3.rspidx >= portRspMax) 3774 pring->sli.sli3.rspidx = 0; 3775 3776 if (pring->ringno == LPFC_ELS_RING) { 3777 lpfc_debugfs_slow_ring_trc(phba, 3778 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3779 *(((uint32_t *) irsp) + 4), 3780 *(((uint32_t *) irsp) + 6), 3781 *(((uint32_t *) irsp) + 7)); 3782 } 3783 3784 writel(pring->sli.sli3.rspidx, 3785 &phba->host_gp[pring->ringno].rspGetInx); 3786 3787 spin_unlock_irqrestore(&phba->hbalock, iflag); 3788 /* Handle the response IOCB */ 3789 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3790 spin_lock_irqsave(&phba->hbalock, iflag); 3791 3792 /* 3793 * If the port response put pointer has not been updated, sync 3794 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3795 * response put pointer. 3796 */ 3797 if (pring->sli.sli3.rspidx == portRspPut) { 3798 portRspPut = le32_to_cpu(pgp->rspPutInx); 3799 } 3800 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3801 3802 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3803 /* At least one response entry has been freed */ 3804 pring->stats.iocb_rsp_full++; 3805 /* SET RxRE_RSP in Chip Att register */ 3806 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3807 writel(status, phba->CAregaddr); 3808 readl(phba->CAregaddr); /* flush */ 3809 } 3810 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3811 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3812 pring->stats.iocb_cmd_empty++; 3813 3814 /* Force update of the local copy of cmdGetInx */ 3815 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3816 lpfc_sli_resume_iocb(phba, pring); 3817 3818 if ((pring->lpfc_sli_cmd_available)) 3819 (pring->lpfc_sli_cmd_available) (phba, pring); 3820 3821 } 3822 3823 spin_unlock_irqrestore(&phba->hbalock, iflag); 3824 return; 3825 } 3826 3827 /** 3828 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3829 * @phba: Pointer to HBA context object. 3830 * @pring: Pointer to driver SLI ring object. 3831 * @mask: Host attention register mask for this ring. 3832 * 3833 * This function is called from the worker thread when there is a pending 3834 * ELS response iocb on the driver internal slow-path response iocb worker 3835 * queue. The caller does not hold any lock. The function will remove each 3836 * response iocb from the response worker queue and calls the handle 3837 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3838 **/ 3839 static void 3840 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3841 struct lpfc_sli_ring *pring, uint32_t mask) 3842 { 3843 struct lpfc_iocbq *irspiocbq; 3844 struct hbq_dmabuf *dmabuf; 3845 struct lpfc_cq_event *cq_event; 3846 unsigned long iflag; 3847 int count = 0; 3848 3849 spin_lock_irqsave(&phba->hbalock, iflag); 3850 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3851 spin_unlock_irqrestore(&phba->hbalock, iflag); 3852 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3853 /* Get the response iocb from the head of work queue */ 3854 spin_lock_irqsave(&phba->hbalock, iflag); 3855 list_remove_head(&phba->sli4_hba.sp_queue_event, 3856 cq_event, struct lpfc_cq_event, list); 3857 spin_unlock_irqrestore(&phba->hbalock, iflag); 3858 3859 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3860 case CQE_CODE_COMPL_WQE: 3861 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3862 cq_event); 3863 /* Translate ELS WCQE to response IOCBQ */ 3864 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3865 irspiocbq); 3866 if (irspiocbq) 3867 lpfc_sli_sp_handle_rspiocb(phba, pring, 3868 irspiocbq); 3869 count++; 3870 break; 3871 case CQE_CODE_RECEIVE: 3872 case CQE_CODE_RECEIVE_V1: 3873 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3874 cq_event); 3875 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3876 count++; 3877 break; 3878 default: 3879 break; 3880 } 3881 3882 /* Limit the number of events to 64 to avoid soft lockups */ 3883 if (count == 64) 3884 break; 3885 } 3886 } 3887 3888 /** 3889 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3890 * @phba: Pointer to HBA context object. 3891 * @pring: Pointer to driver SLI ring object. 3892 * 3893 * This function aborts all iocbs in the given ring and frees all the iocb 3894 * objects in txq. This function issues an abort iocb for all the iocb commands 3895 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3896 * the return of this function. The caller is not required to hold any locks. 3897 **/ 3898 void 3899 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3900 { 3901 LIST_HEAD(completions); 3902 struct lpfc_iocbq *iocb, *next_iocb; 3903 3904 if (pring->ringno == LPFC_ELS_RING) { 3905 lpfc_fabric_abort_hba(phba); 3906 } 3907 3908 /* Error everything on txq and txcmplq 3909 * First do the txq. 3910 */ 3911 if (phba->sli_rev >= LPFC_SLI_REV4) { 3912 spin_lock_irq(&pring->ring_lock); 3913 list_splice_init(&pring->txq, &completions); 3914 pring->txq_cnt = 0; 3915 spin_unlock_irq(&pring->ring_lock); 3916 3917 spin_lock_irq(&phba->hbalock); 3918 /* Next issue ABTS for everything on the txcmplq */ 3919 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3920 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3921 spin_unlock_irq(&phba->hbalock); 3922 } else { 3923 spin_lock_irq(&phba->hbalock); 3924 list_splice_init(&pring->txq, &completions); 3925 pring->txq_cnt = 0; 3926 3927 /* Next issue ABTS for everything on the txcmplq */ 3928 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3929 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3930 spin_unlock_irq(&phba->hbalock); 3931 } 3932 3933 /* Cancel all the IOCBs from the completions list */ 3934 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3935 IOERR_SLI_ABORTED); 3936 } 3937 3938 /** 3939 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3940 * @phba: Pointer to HBA context object. 3941 * @pring: Pointer to driver SLI ring object. 3942 * 3943 * This function aborts all iocbs in the given ring and frees all the iocb 3944 * objects in txq. This function issues an abort iocb for all the iocb commands 3945 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3946 * the return of this function. The caller is not required to hold any locks. 3947 **/ 3948 void 3949 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3950 { 3951 LIST_HEAD(completions); 3952 struct lpfc_iocbq *iocb, *next_iocb; 3953 3954 if (pring->ringno == LPFC_ELS_RING) 3955 lpfc_fabric_abort_hba(phba); 3956 3957 spin_lock_irq(&phba->hbalock); 3958 /* Next issue ABTS for everything on the txcmplq */ 3959 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3960 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3961 spin_unlock_irq(&phba->hbalock); 3962 } 3963 3964 3965 /** 3966 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3967 * @phba: Pointer to HBA context object. 3968 * @pring: Pointer to driver SLI ring object. 3969 * 3970 * This function aborts all iocbs in FCP rings and frees all the iocb 3971 * objects in txq. This function issues an abort iocb for all the iocb commands 3972 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3973 * the return of this function. The caller is not required to hold any locks. 3974 **/ 3975 void 3976 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3977 { 3978 struct lpfc_sli *psli = &phba->sli; 3979 struct lpfc_sli_ring *pring; 3980 uint32_t i; 3981 3982 /* Look on all the FCP Rings for the iotag */ 3983 if (phba->sli_rev >= LPFC_SLI_REV4) { 3984 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3985 pring = phba->sli4_hba.fcp_wq[i]->pring; 3986 lpfc_sli_abort_iocb_ring(phba, pring); 3987 } 3988 } else { 3989 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3990 lpfc_sli_abort_iocb_ring(phba, pring); 3991 } 3992 } 3993 3994 /** 3995 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3996 * @phba: Pointer to HBA context object. 3997 * 3998 * This function aborts all wqes in NVME rings. This function issues an 3999 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 4000 * the txcmplq is not guaranteed to complete before the return of this 4001 * function. The caller is not required to hold any locks. 4002 **/ 4003 void 4004 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 4005 { 4006 struct lpfc_sli_ring *pring; 4007 uint32_t i; 4008 4009 if (phba->sli_rev < LPFC_SLI_REV4) 4010 return; 4011 4012 /* Abort all IO on each NVME ring. */ 4013 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4014 pring = phba->sli4_hba.nvme_wq[i]->pring; 4015 lpfc_sli_abort_wqe_ring(phba, pring); 4016 } 4017 } 4018 4019 4020 /** 4021 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 4022 * @phba: Pointer to HBA context object. 4023 * 4024 * This function flushes all iocbs in the fcp ring and frees all the iocb 4025 * objects in txq and txcmplq. This function will not issue abort iocbs 4026 * for all the iocb commands in txcmplq, they will just be returned with 4027 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4028 * slot has been permanently disabled. 4029 **/ 4030 void 4031 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 4032 { 4033 LIST_HEAD(txq); 4034 LIST_HEAD(txcmplq); 4035 struct lpfc_sli *psli = &phba->sli; 4036 struct lpfc_sli_ring *pring; 4037 uint32_t i; 4038 struct lpfc_iocbq *piocb, *next_iocb; 4039 4040 spin_lock_irq(&phba->hbalock); 4041 /* Indicate the I/O queues are flushed */ 4042 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 4043 spin_unlock_irq(&phba->hbalock); 4044 4045 /* Look on all the FCP Rings for the iotag */ 4046 if (phba->sli_rev >= LPFC_SLI_REV4) { 4047 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 4048 pring = phba->sli4_hba.fcp_wq[i]->pring; 4049 4050 spin_lock_irq(&pring->ring_lock); 4051 /* Retrieve everything on txq */ 4052 list_splice_init(&pring->txq, &txq); 4053 list_for_each_entry_safe(piocb, next_iocb, 4054 &pring->txcmplq, list) 4055 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4056 /* Retrieve everything on the txcmplq */ 4057 list_splice_init(&pring->txcmplq, &txcmplq); 4058 pring->txq_cnt = 0; 4059 pring->txcmplq_cnt = 0; 4060 spin_unlock_irq(&pring->ring_lock); 4061 4062 /* Flush the txq */ 4063 lpfc_sli_cancel_iocbs(phba, &txq, 4064 IOSTAT_LOCAL_REJECT, 4065 IOERR_SLI_DOWN); 4066 /* Flush the txcmpq */ 4067 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4068 IOSTAT_LOCAL_REJECT, 4069 IOERR_SLI_DOWN); 4070 } 4071 } else { 4072 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4073 4074 spin_lock_irq(&phba->hbalock); 4075 /* Retrieve everything on txq */ 4076 list_splice_init(&pring->txq, &txq); 4077 list_for_each_entry_safe(piocb, next_iocb, 4078 &pring->txcmplq, list) 4079 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4080 /* Retrieve everything on the txcmplq */ 4081 list_splice_init(&pring->txcmplq, &txcmplq); 4082 pring->txq_cnt = 0; 4083 pring->txcmplq_cnt = 0; 4084 spin_unlock_irq(&phba->hbalock); 4085 4086 /* Flush the txq */ 4087 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4088 IOERR_SLI_DOWN); 4089 /* Flush the txcmpq */ 4090 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4091 IOERR_SLI_DOWN); 4092 } 4093 } 4094 4095 /** 4096 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 4097 * @phba: Pointer to HBA context object. 4098 * 4099 * This function flushes all wqes in the nvme rings and frees all resources 4100 * in the txcmplq. This function does not issue abort wqes for the IO 4101 * commands in txcmplq, they will just be returned with 4102 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4103 * slot has been permanently disabled. 4104 **/ 4105 void 4106 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 4107 { 4108 LIST_HEAD(txcmplq); 4109 struct lpfc_sli_ring *pring; 4110 uint32_t i; 4111 struct lpfc_iocbq *piocb, *next_iocb; 4112 4113 if (phba->sli_rev < LPFC_SLI_REV4) 4114 return; 4115 4116 /* Hint to other driver operations that a flush is in progress. */ 4117 spin_lock_irq(&phba->hbalock); 4118 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 4119 spin_unlock_irq(&phba->hbalock); 4120 4121 /* Cycle through all NVME rings and complete each IO with 4122 * a local driver reason code. This is a flush so no 4123 * abort exchange to FW. 4124 */ 4125 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4126 pring = phba->sli4_hba.nvme_wq[i]->pring; 4127 4128 spin_lock_irq(&pring->ring_lock); 4129 list_for_each_entry_safe(piocb, next_iocb, 4130 &pring->txcmplq, list) 4131 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4132 /* Retrieve everything on the txcmplq */ 4133 list_splice_init(&pring->txcmplq, &txcmplq); 4134 pring->txcmplq_cnt = 0; 4135 spin_unlock_irq(&pring->ring_lock); 4136 4137 /* Flush the txcmpq &&&PAE */ 4138 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4139 IOSTAT_LOCAL_REJECT, 4140 IOERR_SLI_DOWN); 4141 } 4142 } 4143 4144 /** 4145 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4146 * @phba: Pointer to HBA context object. 4147 * @mask: Bit mask to be checked. 4148 * 4149 * This function reads the host status register and compares 4150 * with the provided bit mask to check if HBA completed 4151 * the restart. This function will wait in a loop for the 4152 * HBA to complete restart. If the HBA does not restart within 4153 * 15 iterations, the function will reset the HBA again. The 4154 * function returns 1 when HBA fail to restart otherwise returns 4155 * zero. 4156 **/ 4157 static int 4158 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4159 { 4160 uint32_t status; 4161 int i = 0; 4162 int retval = 0; 4163 4164 /* Read the HBA Host Status Register */ 4165 if (lpfc_readl(phba->HSregaddr, &status)) 4166 return 1; 4167 4168 /* 4169 * Check status register every 100ms for 5 retries, then every 4170 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4171 * every 2.5 sec for 4. 4172 * Break our of the loop if errors occurred during init. 4173 */ 4174 while (((status & mask) != mask) && 4175 !(status & HS_FFERM) && 4176 i++ < 20) { 4177 4178 if (i <= 5) 4179 msleep(10); 4180 else if (i <= 10) 4181 msleep(500); 4182 else 4183 msleep(2500); 4184 4185 if (i == 15) { 4186 /* Do post */ 4187 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4188 lpfc_sli_brdrestart(phba); 4189 } 4190 /* Read the HBA Host Status Register */ 4191 if (lpfc_readl(phba->HSregaddr, &status)) { 4192 retval = 1; 4193 break; 4194 } 4195 } 4196 4197 /* Check to see if any errors occurred during init */ 4198 if ((status & HS_FFERM) || (i >= 20)) { 4199 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4200 "2751 Adapter failed to restart, " 4201 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4202 status, 4203 readl(phba->MBslimaddr + 0xa8), 4204 readl(phba->MBslimaddr + 0xac)); 4205 phba->link_state = LPFC_HBA_ERROR; 4206 retval = 1; 4207 } 4208 4209 return retval; 4210 } 4211 4212 /** 4213 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4214 * @phba: Pointer to HBA context object. 4215 * @mask: Bit mask to be checked. 4216 * 4217 * This function checks the host status register to check if HBA is 4218 * ready. This function will wait in a loop for the HBA to be ready 4219 * If the HBA is not ready , the function will will reset the HBA PCI 4220 * function again. The function returns 1 when HBA fail to be ready 4221 * otherwise returns zero. 4222 **/ 4223 static int 4224 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4225 { 4226 uint32_t status; 4227 int retval = 0; 4228 4229 /* Read the HBA Host Status Register */ 4230 status = lpfc_sli4_post_status_check(phba); 4231 4232 if (status) { 4233 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4234 lpfc_sli_brdrestart(phba); 4235 status = lpfc_sli4_post_status_check(phba); 4236 } 4237 4238 /* Check to see if any errors occurred during init */ 4239 if (status) { 4240 phba->link_state = LPFC_HBA_ERROR; 4241 retval = 1; 4242 } else 4243 phba->sli4_hba.intr_enable = 0; 4244 4245 return retval; 4246 } 4247 4248 /** 4249 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4250 * @phba: Pointer to HBA context object. 4251 * @mask: Bit mask to be checked. 4252 * 4253 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4254 * from the API jump table function pointer from the lpfc_hba struct. 4255 **/ 4256 int 4257 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4258 { 4259 return phba->lpfc_sli_brdready(phba, mask); 4260 } 4261 4262 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4263 4264 /** 4265 * lpfc_reset_barrier - Make HBA ready for HBA reset 4266 * @phba: Pointer to HBA context object. 4267 * 4268 * This function is called before resetting an HBA. This function is called 4269 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4270 **/ 4271 void lpfc_reset_barrier(struct lpfc_hba *phba) 4272 { 4273 uint32_t __iomem *resp_buf; 4274 uint32_t __iomem *mbox_buf; 4275 volatile uint32_t mbox; 4276 uint32_t hc_copy, ha_copy, resp_data; 4277 int i; 4278 uint8_t hdrtype; 4279 4280 lockdep_assert_held(&phba->hbalock); 4281 4282 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4283 if (hdrtype != 0x80 || 4284 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4285 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4286 return; 4287 4288 /* 4289 * Tell the other part of the chip to suspend temporarily all 4290 * its DMA activity. 4291 */ 4292 resp_buf = phba->MBslimaddr; 4293 4294 /* Disable the error attention */ 4295 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4296 return; 4297 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4298 readl(phba->HCregaddr); /* flush */ 4299 phba->link_flag |= LS_IGNORE_ERATT; 4300 4301 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4302 return; 4303 if (ha_copy & HA_ERATT) { 4304 /* Clear Chip error bit */ 4305 writel(HA_ERATT, phba->HAregaddr); 4306 phba->pport->stopped = 1; 4307 } 4308 4309 mbox = 0; 4310 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4311 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4312 4313 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4314 mbox_buf = phba->MBslimaddr; 4315 writel(mbox, mbox_buf); 4316 4317 for (i = 0; i < 50; i++) { 4318 if (lpfc_readl((resp_buf + 1), &resp_data)) 4319 return; 4320 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4321 mdelay(1); 4322 else 4323 break; 4324 } 4325 resp_data = 0; 4326 if (lpfc_readl((resp_buf + 1), &resp_data)) 4327 return; 4328 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4329 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4330 phba->pport->stopped) 4331 goto restore_hc; 4332 else 4333 goto clear_errat; 4334 } 4335 4336 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4337 resp_data = 0; 4338 for (i = 0; i < 500; i++) { 4339 if (lpfc_readl(resp_buf, &resp_data)) 4340 return; 4341 if (resp_data != mbox) 4342 mdelay(1); 4343 else 4344 break; 4345 } 4346 4347 clear_errat: 4348 4349 while (++i < 500) { 4350 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4351 return; 4352 if (!(ha_copy & HA_ERATT)) 4353 mdelay(1); 4354 else 4355 break; 4356 } 4357 4358 if (readl(phba->HAregaddr) & HA_ERATT) { 4359 writel(HA_ERATT, phba->HAregaddr); 4360 phba->pport->stopped = 1; 4361 } 4362 4363 restore_hc: 4364 phba->link_flag &= ~LS_IGNORE_ERATT; 4365 writel(hc_copy, phba->HCregaddr); 4366 readl(phba->HCregaddr); /* flush */ 4367 } 4368 4369 /** 4370 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4371 * @phba: Pointer to HBA context object. 4372 * 4373 * This function issues a kill_board mailbox command and waits for 4374 * the error attention interrupt. This function is called for stopping 4375 * the firmware processing. The caller is not required to hold any 4376 * locks. This function calls lpfc_hba_down_post function to free 4377 * any pending commands after the kill. The function will return 1 when it 4378 * fails to kill the board else will return 0. 4379 **/ 4380 int 4381 lpfc_sli_brdkill(struct lpfc_hba *phba) 4382 { 4383 struct lpfc_sli *psli; 4384 LPFC_MBOXQ_t *pmb; 4385 uint32_t status; 4386 uint32_t ha_copy; 4387 int retval; 4388 int i = 0; 4389 4390 psli = &phba->sli; 4391 4392 /* Kill HBA */ 4393 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4394 "0329 Kill HBA Data: x%x x%x\n", 4395 phba->pport->port_state, psli->sli_flag); 4396 4397 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4398 if (!pmb) 4399 return 1; 4400 4401 /* Disable the error attention */ 4402 spin_lock_irq(&phba->hbalock); 4403 if (lpfc_readl(phba->HCregaddr, &status)) { 4404 spin_unlock_irq(&phba->hbalock); 4405 mempool_free(pmb, phba->mbox_mem_pool); 4406 return 1; 4407 } 4408 status &= ~HC_ERINT_ENA; 4409 writel(status, phba->HCregaddr); 4410 readl(phba->HCregaddr); /* flush */ 4411 phba->link_flag |= LS_IGNORE_ERATT; 4412 spin_unlock_irq(&phba->hbalock); 4413 4414 lpfc_kill_board(phba, pmb); 4415 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4416 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4417 4418 if (retval != MBX_SUCCESS) { 4419 if (retval != MBX_BUSY) 4420 mempool_free(pmb, phba->mbox_mem_pool); 4421 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4422 "2752 KILL_BOARD command failed retval %d\n", 4423 retval); 4424 spin_lock_irq(&phba->hbalock); 4425 phba->link_flag &= ~LS_IGNORE_ERATT; 4426 spin_unlock_irq(&phba->hbalock); 4427 return 1; 4428 } 4429 4430 spin_lock_irq(&phba->hbalock); 4431 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4432 spin_unlock_irq(&phba->hbalock); 4433 4434 mempool_free(pmb, phba->mbox_mem_pool); 4435 4436 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4437 * attention every 100ms for 3 seconds. If we don't get ERATT after 4438 * 3 seconds we still set HBA_ERROR state because the status of the 4439 * board is now undefined. 4440 */ 4441 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4442 return 1; 4443 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4444 mdelay(100); 4445 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4446 return 1; 4447 } 4448 4449 del_timer_sync(&psli->mbox_tmo); 4450 if (ha_copy & HA_ERATT) { 4451 writel(HA_ERATT, phba->HAregaddr); 4452 phba->pport->stopped = 1; 4453 } 4454 spin_lock_irq(&phba->hbalock); 4455 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4456 psli->mbox_active = NULL; 4457 phba->link_flag &= ~LS_IGNORE_ERATT; 4458 spin_unlock_irq(&phba->hbalock); 4459 4460 lpfc_hba_down_post(phba); 4461 phba->link_state = LPFC_HBA_ERROR; 4462 4463 return ha_copy & HA_ERATT ? 0 : 1; 4464 } 4465 4466 /** 4467 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4468 * @phba: Pointer to HBA context object. 4469 * 4470 * This function resets the HBA by writing HC_INITFF to the control 4471 * register. After the HBA resets, this function resets all the iocb ring 4472 * indices. This function disables PCI layer parity checking during 4473 * the reset. 4474 * This function returns 0 always. 4475 * The caller is not required to hold any locks. 4476 **/ 4477 int 4478 lpfc_sli_brdreset(struct lpfc_hba *phba) 4479 { 4480 struct lpfc_sli *psli; 4481 struct lpfc_sli_ring *pring; 4482 uint16_t cfg_value; 4483 int i; 4484 4485 psli = &phba->sli; 4486 4487 /* Reset HBA */ 4488 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4489 "0325 Reset HBA Data: x%x x%x\n", 4490 (phba->pport) ? phba->pport->port_state : 0, 4491 psli->sli_flag); 4492 4493 /* perform board reset */ 4494 phba->fc_eventTag = 0; 4495 phba->link_events = 0; 4496 if (phba->pport) { 4497 phba->pport->fc_myDID = 0; 4498 phba->pport->fc_prevDID = 0; 4499 } 4500 4501 /* Turn off parity checking and serr during the physical reset */ 4502 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4503 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4504 (cfg_value & 4505 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4506 4507 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4508 4509 /* Now toggle INITFF bit in the Host Control Register */ 4510 writel(HC_INITFF, phba->HCregaddr); 4511 mdelay(1); 4512 readl(phba->HCregaddr); /* flush */ 4513 writel(0, phba->HCregaddr); 4514 readl(phba->HCregaddr); /* flush */ 4515 4516 /* Restore PCI cmd register */ 4517 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4518 4519 /* Initialize relevant SLI info */ 4520 for (i = 0; i < psli->num_rings; i++) { 4521 pring = &psli->sli3_ring[i]; 4522 pring->flag = 0; 4523 pring->sli.sli3.rspidx = 0; 4524 pring->sli.sli3.next_cmdidx = 0; 4525 pring->sli.sli3.local_getidx = 0; 4526 pring->sli.sli3.cmdidx = 0; 4527 pring->missbufcnt = 0; 4528 } 4529 4530 phba->link_state = LPFC_WARM_START; 4531 return 0; 4532 } 4533 4534 /** 4535 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4536 * @phba: Pointer to HBA context object. 4537 * 4538 * This function resets a SLI4 HBA. This function disables PCI layer parity 4539 * checking during resets the device. The caller is not required to hold 4540 * any locks. 4541 * 4542 * This function returns 0 always. 4543 **/ 4544 int 4545 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4546 { 4547 struct lpfc_sli *psli = &phba->sli; 4548 uint16_t cfg_value; 4549 int rc = 0; 4550 4551 /* Reset HBA */ 4552 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4553 "0295 Reset HBA Data: x%x x%x x%x\n", 4554 phba->pport->port_state, psli->sli_flag, 4555 phba->hba_flag); 4556 4557 /* perform board reset */ 4558 phba->fc_eventTag = 0; 4559 phba->link_events = 0; 4560 phba->pport->fc_myDID = 0; 4561 phba->pport->fc_prevDID = 0; 4562 4563 spin_lock_irq(&phba->hbalock); 4564 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4565 phba->fcf.fcf_flag = 0; 4566 spin_unlock_irq(&phba->hbalock); 4567 4568 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4569 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4570 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4571 return rc; 4572 } 4573 4574 /* Now physically reset the device */ 4575 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4576 "0389 Performing PCI function reset!\n"); 4577 4578 /* Turn off parity checking and serr during the physical reset */ 4579 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4580 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4581 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4582 4583 /* Perform FCoE PCI function reset before freeing queue memory */ 4584 rc = lpfc_pci_function_reset(phba); 4585 4586 /* Restore PCI cmd register */ 4587 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4588 4589 return rc; 4590 } 4591 4592 /** 4593 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4594 * @phba: Pointer to HBA context object. 4595 * 4596 * This function is called in the SLI initialization code path to 4597 * restart the HBA. The caller is not required to hold any lock. 4598 * This function writes MBX_RESTART mailbox command to the SLIM and 4599 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4600 * function to free any pending commands. The function enables 4601 * POST only during the first initialization. The function returns zero. 4602 * The function does not guarantee completion of MBX_RESTART mailbox 4603 * command before the return of this function. 4604 **/ 4605 static int 4606 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4607 { 4608 MAILBOX_t *mb; 4609 struct lpfc_sli *psli; 4610 volatile uint32_t word0; 4611 void __iomem *to_slim; 4612 uint32_t hba_aer_enabled; 4613 4614 spin_lock_irq(&phba->hbalock); 4615 4616 /* Take PCIe device Advanced Error Reporting (AER) state */ 4617 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4618 4619 psli = &phba->sli; 4620 4621 /* Restart HBA */ 4622 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4623 "0337 Restart HBA Data: x%x x%x\n", 4624 (phba->pport) ? phba->pport->port_state : 0, 4625 psli->sli_flag); 4626 4627 word0 = 0; 4628 mb = (MAILBOX_t *) &word0; 4629 mb->mbxCommand = MBX_RESTART; 4630 mb->mbxHc = 1; 4631 4632 lpfc_reset_barrier(phba); 4633 4634 to_slim = phba->MBslimaddr; 4635 writel(*(uint32_t *) mb, to_slim); 4636 readl(to_slim); /* flush */ 4637 4638 /* Only skip post after fc_ffinit is completed */ 4639 if (phba->pport && phba->pport->port_state) 4640 word0 = 1; /* This is really setting up word1 */ 4641 else 4642 word0 = 0; /* This is really setting up word1 */ 4643 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4644 writel(*(uint32_t *) mb, to_slim); 4645 readl(to_slim); /* flush */ 4646 4647 lpfc_sli_brdreset(phba); 4648 if (phba->pport) 4649 phba->pport->stopped = 0; 4650 phba->link_state = LPFC_INIT_START; 4651 phba->hba_flag = 0; 4652 spin_unlock_irq(&phba->hbalock); 4653 4654 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4655 psli->stats_start = ktime_get_seconds(); 4656 4657 /* Give the INITFF and Post time to settle. */ 4658 mdelay(100); 4659 4660 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4661 if (hba_aer_enabled) 4662 pci_disable_pcie_error_reporting(phba->pcidev); 4663 4664 lpfc_hba_down_post(phba); 4665 4666 return 0; 4667 } 4668 4669 /** 4670 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4671 * @phba: Pointer to HBA context object. 4672 * 4673 * This function is called in the SLI initialization code path to restart 4674 * a SLI4 HBA. The caller is not required to hold any lock. 4675 * At the end of the function, it calls lpfc_hba_down_post function to 4676 * free any pending commands. 4677 **/ 4678 static int 4679 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4680 { 4681 struct lpfc_sli *psli = &phba->sli; 4682 uint32_t hba_aer_enabled; 4683 int rc; 4684 4685 /* Restart HBA */ 4686 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4687 "0296 Restart HBA Data: x%x x%x\n", 4688 phba->pport->port_state, psli->sli_flag); 4689 4690 /* Take PCIe device Advanced Error Reporting (AER) state */ 4691 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4692 4693 rc = lpfc_sli4_brdreset(phba); 4694 if (rc) 4695 return rc; 4696 4697 spin_lock_irq(&phba->hbalock); 4698 phba->pport->stopped = 0; 4699 phba->link_state = LPFC_INIT_START; 4700 phba->hba_flag = 0; 4701 spin_unlock_irq(&phba->hbalock); 4702 4703 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4704 psli->stats_start = ktime_get_seconds(); 4705 4706 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4707 if (hba_aer_enabled) 4708 pci_disable_pcie_error_reporting(phba->pcidev); 4709 4710 lpfc_hba_down_post(phba); 4711 lpfc_sli4_queue_destroy(phba); 4712 4713 return rc; 4714 } 4715 4716 /** 4717 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4718 * @phba: Pointer to HBA context object. 4719 * 4720 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4721 * API jump table function pointer from the lpfc_hba struct. 4722 **/ 4723 int 4724 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4725 { 4726 return phba->lpfc_sli_brdrestart(phba); 4727 } 4728 4729 /** 4730 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4731 * @phba: Pointer to HBA context object. 4732 * 4733 * This function is called after a HBA restart to wait for successful 4734 * restart of the HBA. Successful restart of the HBA is indicated by 4735 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4736 * iteration, the function will restart the HBA again. The function returns 4737 * zero if HBA successfully restarted else returns negative error code. 4738 **/ 4739 int 4740 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4741 { 4742 uint32_t status, i = 0; 4743 4744 /* Read the HBA Host Status Register */ 4745 if (lpfc_readl(phba->HSregaddr, &status)) 4746 return -EIO; 4747 4748 /* Check status register to see what current state is */ 4749 i = 0; 4750 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4751 4752 /* Check every 10ms for 10 retries, then every 100ms for 90 4753 * retries, then every 1 sec for 50 retires for a total of 4754 * ~60 seconds before reset the board again and check every 4755 * 1 sec for 50 retries. The up to 60 seconds before the 4756 * board ready is required by the Falcon FIPS zeroization 4757 * complete, and any reset the board in between shall cause 4758 * restart of zeroization, further delay the board ready. 4759 */ 4760 if (i++ >= 200) { 4761 /* Adapter failed to init, timeout, status reg 4762 <status> */ 4763 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4764 "0436 Adapter failed to init, " 4765 "timeout, status reg x%x, " 4766 "FW Data: A8 x%x AC x%x\n", status, 4767 readl(phba->MBslimaddr + 0xa8), 4768 readl(phba->MBslimaddr + 0xac)); 4769 phba->link_state = LPFC_HBA_ERROR; 4770 return -ETIMEDOUT; 4771 } 4772 4773 /* Check to see if any errors occurred during init */ 4774 if (status & HS_FFERM) { 4775 /* ERROR: During chipset initialization */ 4776 /* Adapter failed to init, chipset, status reg 4777 <status> */ 4778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4779 "0437 Adapter failed to init, " 4780 "chipset, status reg x%x, " 4781 "FW Data: A8 x%x AC x%x\n", status, 4782 readl(phba->MBslimaddr + 0xa8), 4783 readl(phba->MBslimaddr + 0xac)); 4784 phba->link_state = LPFC_HBA_ERROR; 4785 return -EIO; 4786 } 4787 4788 if (i <= 10) 4789 msleep(10); 4790 else if (i <= 100) 4791 msleep(100); 4792 else 4793 msleep(1000); 4794 4795 if (i == 150) { 4796 /* Do post */ 4797 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4798 lpfc_sli_brdrestart(phba); 4799 } 4800 /* Read the HBA Host Status Register */ 4801 if (lpfc_readl(phba->HSregaddr, &status)) 4802 return -EIO; 4803 } 4804 4805 /* Check to see if any errors occurred during init */ 4806 if (status & HS_FFERM) { 4807 /* ERROR: During chipset initialization */ 4808 /* Adapter failed to init, chipset, status reg <status> */ 4809 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4810 "0438 Adapter failed to init, chipset, " 4811 "status reg x%x, " 4812 "FW Data: A8 x%x AC x%x\n", status, 4813 readl(phba->MBslimaddr + 0xa8), 4814 readl(phba->MBslimaddr + 0xac)); 4815 phba->link_state = LPFC_HBA_ERROR; 4816 return -EIO; 4817 } 4818 4819 /* Clear all interrupt enable conditions */ 4820 writel(0, phba->HCregaddr); 4821 readl(phba->HCregaddr); /* flush */ 4822 4823 /* setup host attn register */ 4824 writel(0xffffffff, phba->HAregaddr); 4825 readl(phba->HAregaddr); /* flush */ 4826 return 0; 4827 } 4828 4829 /** 4830 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4831 * 4832 * This function calculates and returns the number of HBQs required to be 4833 * configured. 4834 **/ 4835 int 4836 lpfc_sli_hbq_count(void) 4837 { 4838 return ARRAY_SIZE(lpfc_hbq_defs); 4839 } 4840 4841 /** 4842 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4843 * 4844 * This function adds the number of hbq entries in every HBQ to get 4845 * the total number of hbq entries required for the HBA and returns 4846 * the total count. 4847 **/ 4848 static int 4849 lpfc_sli_hbq_entry_count(void) 4850 { 4851 int hbq_count = lpfc_sli_hbq_count(); 4852 int count = 0; 4853 int i; 4854 4855 for (i = 0; i < hbq_count; ++i) 4856 count += lpfc_hbq_defs[i]->entry_count; 4857 return count; 4858 } 4859 4860 /** 4861 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4862 * 4863 * This function calculates amount of memory required for all hbq entries 4864 * to be configured and returns the total memory required. 4865 **/ 4866 int 4867 lpfc_sli_hbq_size(void) 4868 { 4869 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4870 } 4871 4872 /** 4873 * lpfc_sli_hbq_setup - configure and initialize HBQs 4874 * @phba: Pointer to HBA context object. 4875 * 4876 * This function is called during the SLI initialization to configure 4877 * all the HBQs and post buffers to the HBQ. The caller is not 4878 * required to hold any locks. This function will return zero if successful 4879 * else it will return negative error code. 4880 **/ 4881 static int 4882 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4883 { 4884 int hbq_count = lpfc_sli_hbq_count(); 4885 LPFC_MBOXQ_t *pmb; 4886 MAILBOX_t *pmbox; 4887 uint32_t hbqno; 4888 uint32_t hbq_entry_index; 4889 4890 /* Get a Mailbox buffer to setup mailbox 4891 * commands for HBA initialization 4892 */ 4893 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4894 4895 if (!pmb) 4896 return -ENOMEM; 4897 4898 pmbox = &pmb->u.mb; 4899 4900 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4901 phba->link_state = LPFC_INIT_MBX_CMDS; 4902 phba->hbq_in_use = 1; 4903 4904 hbq_entry_index = 0; 4905 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4906 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4907 phba->hbqs[hbqno].hbqPutIdx = 0; 4908 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4909 phba->hbqs[hbqno].entry_count = 4910 lpfc_hbq_defs[hbqno]->entry_count; 4911 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4912 hbq_entry_index, pmb); 4913 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4914 4915 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4916 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4917 mbxStatus <status>, ring <num> */ 4918 4919 lpfc_printf_log(phba, KERN_ERR, 4920 LOG_SLI | LOG_VPORT, 4921 "1805 Adapter failed to init. " 4922 "Data: x%x x%x x%x\n", 4923 pmbox->mbxCommand, 4924 pmbox->mbxStatus, hbqno); 4925 4926 phba->link_state = LPFC_HBA_ERROR; 4927 mempool_free(pmb, phba->mbox_mem_pool); 4928 return -ENXIO; 4929 } 4930 } 4931 phba->hbq_count = hbq_count; 4932 4933 mempool_free(pmb, phba->mbox_mem_pool); 4934 4935 /* Initially populate or replenish the HBQs */ 4936 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4937 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4938 return 0; 4939 } 4940 4941 /** 4942 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4943 * @phba: Pointer to HBA context object. 4944 * 4945 * This function is called during the SLI initialization to configure 4946 * all the HBQs and post buffers to the HBQ. The caller is not 4947 * required to hold any locks. This function will return zero if successful 4948 * else it will return negative error code. 4949 **/ 4950 static int 4951 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4952 { 4953 phba->hbq_in_use = 1; 4954 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4955 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4956 phba->hbq_count = 1; 4957 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4958 /* Initially populate or replenish the HBQs */ 4959 return 0; 4960 } 4961 4962 /** 4963 * lpfc_sli_config_port - Issue config port mailbox command 4964 * @phba: Pointer to HBA context object. 4965 * @sli_mode: sli mode - 2/3 4966 * 4967 * This function is called by the sli initialization code path 4968 * to issue config_port mailbox command. This function restarts the 4969 * HBA firmware and issues a config_port mailbox command to configure 4970 * the SLI interface in the sli mode specified by sli_mode 4971 * variable. The caller is not required to hold any locks. 4972 * The function returns 0 if successful, else returns negative error 4973 * code. 4974 **/ 4975 int 4976 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4977 { 4978 LPFC_MBOXQ_t *pmb; 4979 uint32_t resetcount = 0, rc = 0, done = 0; 4980 4981 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4982 if (!pmb) { 4983 phba->link_state = LPFC_HBA_ERROR; 4984 return -ENOMEM; 4985 } 4986 4987 phba->sli_rev = sli_mode; 4988 while (resetcount < 2 && !done) { 4989 spin_lock_irq(&phba->hbalock); 4990 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4991 spin_unlock_irq(&phba->hbalock); 4992 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4993 lpfc_sli_brdrestart(phba); 4994 rc = lpfc_sli_chipset_init(phba); 4995 if (rc) 4996 break; 4997 4998 spin_lock_irq(&phba->hbalock); 4999 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5000 spin_unlock_irq(&phba->hbalock); 5001 resetcount++; 5002 5003 /* Call pre CONFIG_PORT mailbox command initialization. A 5004 * value of 0 means the call was successful. Any other 5005 * nonzero value is a failure, but if ERESTART is returned, 5006 * the driver may reset the HBA and try again. 5007 */ 5008 rc = lpfc_config_port_prep(phba); 5009 if (rc == -ERESTART) { 5010 phba->link_state = LPFC_LINK_UNKNOWN; 5011 continue; 5012 } else if (rc) 5013 break; 5014 5015 phba->link_state = LPFC_INIT_MBX_CMDS; 5016 lpfc_config_port(phba, pmb); 5017 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5018 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5019 LPFC_SLI3_HBQ_ENABLED | 5020 LPFC_SLI3_CRP_ENABLED | 5021 LPFC_SLI3_DSS_ENABLED); 5022 if (rc != MBX_SUCCESS) { 5023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5024 "0442 Adapter failed to init, mbxCmd x%x " 5025 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5026 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5027 spin_lock_irq(&phba->hbalock); 5028 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5029 spin_unlock_irq(&phba->hbalock); 5030 rc = -ENXIO; 5031 } else { 5032 /* Allow asynchronous mailbox command to go through */ 5033 spin_lock_irq(&phba->hbalock); 5034 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5035 spin_unlock_irq(&phba->hbalock); 5036 done = 1; 5037 5038 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5039 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5040 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5041 "3110 Port did not grant ASABT\n"); 5042 } 5043 } 5044 if (!done) { 5045 rc = -EINVAL; 5046 goto do_prep_failed; 5047 } 5048 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5049 if (!pmb->u.mb.un.varCfgPort.cMA) { 5050 rc = -ENXIO; 5051 goto do_prep_failed; 5052 } 5053 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5054 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5055 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5056 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5057 phba->max_vpi : phba->max_vports; 5058 5059 } else 5060 phba->max_vpi = 0; 5061 phba->fips_level = 0; 5062 phba->fips_spec_rev = 0; 5063 if (pmb->u.mb.un.varCfgPort.gdss) { 5064 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 5065 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 5066 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 5067 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5068 "2850 Security Crypto Active. FIPS x%d " 5069 "(Spec Rev: x%d)", 5070 phba->fips_level, phba->fips_spec_rev); 5071 } 5072 if (pmb->u.mb.un.varCfgPort.sec_err) { 5073 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5074 "2856 Config Port Security Crypto " 5075 "Error: x%x ", 5076 pmb->u.mb.un.varCfgPort.sec_err); 5077 } 5078 if (pmb->u.mb.un.varCfgPort.gerbm) 5079 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5080 if (pmb->u.mb.un.varCfgPort.gcrp) 5081 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5082 5083 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5084 phba->port_gp = phba->mbox->us.s3_pgp.port; 5085 5086 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5087 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5088 phba->cfg_enable_bg = 0; 5089 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5090 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5091 "0443 Adapter did not grant " 5092 "BlockGuard\n"); 5093 } 5094 } 5095 } else { 5096 phba->hbq_get = NULL; 5097 phba->port_gp = phba->mbox->us.s2.port; 5098 phba->max_vpi = 0; 5099 } 5100 do_prep_failed: 5101 mempool_free(pmb, phba->mbox_mem_pool); 5102 return rc; 5103 } 5104 5105 5106 /** 5107 * lpfc_sli_hba_setup - SLI initialization function 5108 * @phba: Pointer to HBA context object. 5109 * 5110 * This function is the main SLI initialization function. This function 5111 * is called by the HBA initialization code, HBA reset code and HBA 5112 * error attention handler code. Caller is not required to hold any 5113 * locks. This function issues config_port mailbox command to configure 5114 * the SLI, setup iocb rings and HBQ rings. In the end the function 5115 * calls the config_port_post function to issue init_link mailbox 5116 * command and to start the discovery. The function will return zero 5117 * if successful, else it will return negative error code. 5118 **/ 5119 int 5120 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5121 { 5122 uint32_t rc; 5123 int mode = 3, i; 5124 int longs; 5125 5126 switch (phba->cfg_sli_mode) { 5127 case 2: 5128 if (phba->cfg_enable_npiv) { 5129 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5130 "1824 NPIV enabled: Override sli_mode " 5131 "parameter (%d) to auto (0).\n", 5132 phba->cfg_sli_mode); 5133 break; 5134 } 5135 mode = 2; 5136 break; 5137 case 0: 5138 case 3: 5139 break; 5140 default: 5141 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5142 "1819 Unrecognized sli_mode parameter: %d.\n", 5143 phba->cfg_sli_mode); 5144 5145 break; 5146 } 5147 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5148 5149 rc = lpfc_sli_config_port(phba, mode); 5150 5151 if (rc && phba->cfg_sli_mode == 3) 5152 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5153 "1820 Unable to select SLI-3. " 5154 "Not supported by adapter.\n"); 5155 if (rc && mode != 2) 5156 rc = lpfc_sli_config_port(phba, 2); 5157 else if (rc && mode == 2) 5158 rc = lpfc_sli_config_port(phba, 3); 5159 if (rc) 5160 goto lpfc_sli_hba_setup_error; 5161 5162 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5163 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5164 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5165 if (!rc) { 5166 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5167 "2709 This device supports " 5168 "Advanced Error Reporting (AER)\n"); 5169 spin_lock_irq(&phba->hbalock); 5170 phba->hba_flag |= HBA_AER_ENABLED; 5171 spin_unlock_irq(&phba->hbalock); 5172 } else { 5173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5174 "2708 This device does not support " 5175 "Advanced Error Reporting (AER): %d\n", 5176 rc); 5177 phba->cfg_aer_support = 0; 5178 } 5179 } 5180 5181 if (phba->sli_rev == 3) { 5182 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5183 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5184 } else { 5185 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5186 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5187 phba->sli3_options = 0; 5188 } 5189 5190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5191 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5192 phba->sli_rev, phba->max_vpi); 5193 rc = lpfc_sli_ring_map(phba); 5194 5195 if (rc) 5196 goto lpfc_sli_hba_setup_error; 5197 5198 /* Initialize VPIs. */ 5199 if (phba->sli_rev == LPFC_SLI_REV3) { 5200 /* 5201 * The VPI bitmask and physical ID array are allocated 5202 * and initialized once only - at driver load. A port 5203 * reset doesn't need to reinitialize this memory. 5204 */ 5205 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5206 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5207 phba->vpi_bmask = kcalloc(longs, 5208 sizeof(unsigned long), 5209 GFP_KERNEL); 5210 if (!phba->vpi_bmask) { 5211 rc = -ENOMEM; 5212 goto lpfc_sli_hba_setup_error; 5213 } 5214 5215 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5216 sizeof(uint16_t), 5217 GFP_KERNEL); 5218 if (!phba->vpi_ids) { 5219 kfree(phba->vpi_bmask); 5220 rc = -ENOMEM; 5221 goto lpfc_sli_hba_setup_error; 5222 } 5223 for (i = 0; i < phba->max_vpi; i++) 5224 phba->vpi_ids[i] = i; 5225 } 5226 } 5227 5228 /* Init HBQs */ 5229 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5230 rc = lpfc_sli_hbq_setup(phba); 5231 if (rc) 5232 goto lpfc_sli_hba_setup_error; 5233 } 5234 spin_lock_irq(&phba->hbalock); 5235 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5236 spin_unlock_irq(&phba->hbalock); 5237 5238 rc = lpfc_config_port_post(phba); 5239 if (rc) 5240 goto lpfc_sli_hba_setup_error; 5241 5242 return rc; 5243 5244 lpfc_sli_hba_setup_error: 5245 phba->link_state = LPFC_HBA_ERROR; 5246 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5247 "0445 Firmware initialization failed\n"); 5248 return rc; 5249 } 5250 5251 /** 5252 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5253 * @phba: Pointer to HBA context object. 5254 * @mboxq: mailbox pointer. 5255 * This function issue a dump mailbox command to read config region 5256 * 23 and parse the records in the region and populate driver 5257 * data structure. 5258 **/ 5259 static int 5260 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5261 { 5262 LPFC_MBOXQ_t *mboxq; 5263 struct lpfc_dmabuf *mp; 5264 struct lpfc_mqe *mqe; 5265 uint32_t data_length; 5266 int rc; 5267 5268 /* Program the default value of vlan_id and fc_map */ 5269 phba->valid_vlan = 0; 5270 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5271 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5272 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5273 5274 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5275 if (!mboxq) 5276 return -ENOMEM; 5277 5278 mqe = &mboxq->u.mqe; 5279 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5280 rc = -ENOMEM; 5281 goto out_free_mboxq; 5282 } 5283 5284 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5285 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5286 5287 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5288 "(%d):2571 Mailbox cmd x%x Status x%x " 5289 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5290 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5291 "CQ: x%x x%x x%x x%x\n", 5292 mboxq->vport ? mboxq->vport->vpi : 0, 5293 bf_get(lpfc_mqe_command, mqe), 5294 bf_get(lpfc_mqe_status, mqe), 5295 mqe->un.mb_words[0], mqe->un.mb_words[1], 5296 mqe->un.mb_words[2], mqe->un.mb_words[3], 5297 mqe->un.mb_words[4], mqe->un.mb_words[5], 5298 mqe->un.mb_words[6], mqe->un.mb_words[7], 5299 mqe->un.mb_words[8], mqe->un.mb_words[9], 5300 mqe->un.mb_words[10], mqe->un.mb_words[11], 5301 mqe->un.mb_words[12], mqe->un.mb_words[13], 5302 mqe->un.mb_words[14], mqe->un.mb_words[15], 5303 mqe->un.mb_words[16], mqe->un.mb_words[50], 5304 mboxq->mcqe.word0, 5305 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5306 mboxq->mcqe.trailer); 5307 5308 if (rc) { 5309 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5310 kfree(mp); 5311 rc = -EIO; 5312 goto out_free_mboxq; 5313 } 5314 data_length = mqe->un.mb_words[5]; 5315 if (data_length > DMP_RGN23_SIZE) { 5316 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5317 kfree(mp); 5318 rc = -EIO; 5319 goto out_free_mboxq; 5320 } 5321 5322 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5323 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5324 kfree(mp); 5325 rc = 0; 5326 5327 out_free_mboxq: 5328 mempool_free(mboxq, phba->mbox_mem_pool); 5329 return rc; 5330 } 5331 5332 /** 5333 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5334 * @phba: pointer to lpfc hba data structure. 5335 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5336 * @vpd: pointer to the memory to hold resulting port vpd data. 5337 * @vpd_size: On input, the number of bytes allocated to @vpd. 5338 * On output, the number of data bytes in @vpd. 5339 * 5340 * This routine executes a READ_REV SLI4 mailbox command. In 5341 * addition, this routine gets the port vpd data. 5342 * 5343 * Return codes 5344 * 0 - successful 5345 * -ENOMEM - could not allocated memory. 5346 **/ 5347 static int 5348 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5349 uint8_t *vpd, uint32_t *vpd_size) 5350 { 5351 int rc = 0; 5352 uint32_t dma_size; 5353 struct lpfc_dmabuf *dmabuf; 5354 struct lpfc_mqe *mqe; 5355 5356 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5357 if (!dmabuf) 5358 return -ENOMEM; 5359 5360 /* 5361 * Get a DMA buffer for the vpd data resulting from the READ_REV 5362 * mailbox command. 5363 */ 5364 dma_size = *vpd_size; 5365 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5366 &dmabuf->phys, GFP_KERNEL); 5367 if (!dmabuf->virt) { 5368 kfree(dmabuf); 5369 return -ENOMEM; 5370 } 5371 5372 /* 5373 * The SLI4 implementation of READ_REV conflicts at word1, 5374 * bits 31:16 and SLI4 adds vpd functionality not present 5375 * in SLI3. This code corrects the conflicts. 5376 */ 5377 lpfc_read_rev(phba, mboxq); 5378 mqe = &mboxq->u.mqe; 5379 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5380 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5381 mqe->un.read_rev.word1 &= 0x0000FFFF; 5382 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5383 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5384 5385 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5386 if (rc) { 5387 dma_free_coherent(&phba->pcidev->dev, dma_size, 5388 dmabuf->virt, dmabuf->phys); 5389 kfree(dmabuf); 5390 return -EIO; 5391 } 5392 5393 /* 5394 * The available vpd length cannot be bigger than the 5395 * DMA buffer passed to the port. Catch the less than 5396 * case and update the caller's size. 5397 */ 5398 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5399 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5400 5401 memcpy(vpd, dmabuf->virt, *vpd_size); 5402 5403 dma_free_coherent(&phba->pcidev->dev, dma_size, 5404 dmabuf->virt, dmabuf->phys); 5405 kfree(dmabuf); 5406 return 0; 5407 } 5408 5409 /** 5410 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5411 * @phba: pointer to lpfc hba data structure. 5412 * 5413 * This routine retrieves SLI4 device physical port name this PCI function 5414 * is attached to. 5415 * 5416 * Return codes 5417 * 0 - successful 5418 * otherwise - failed to retrieve physical port name 5419 **/ 5420 static int 5421 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5422 { 5423 LPFC_MBOXQ_t *mboxq; 5424 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5425 struct lpfc_controller_attribute *cntl_attr; 5426 struct lpfc_mbx_get_port_name *get_port_name; 5427 void *virtaddr = NULL; 5428 uint32_t alloclen, reqlen; 5429 uint32_t shdr_status, shdr_add_status; 5430 union lpfc_sli4_cfg_shdr *shdr; 5431 char cport_name = 0; 5432 int rc; 5433 5434 /* We assume nothing at this point */ 5435 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5436 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5437 5438 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5439 if (!mboxq) 5440 return -ENOMEM; 5441 /* obtain link type and link number via READ_CONFIG */ 5442 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5443 lpfc_sli4_read_config(phba); 5444 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5445 goto retrieve_ppname; 5446 5447 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5448 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5449 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5450 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5451 LPFC_SLI4_MBX_NEMBED); 5452 if (alloclen < reqlen) { 5453 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5454 "3084 Allocated DMA memory size (%d) is " 5455 "less than the requested DMA memory size " 5456 "(%d)\n", alloclen, reqlen); 5457 rc = -ENOMEM; 5458 goto out_free_mboxq; 5459 } 5460 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5461 virtaddr = mboxq->sge_array->addr[0]; 5462 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5463 shdr = &mbx_cntl_attr->cfg_shdr; 5464 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5465 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5466 if (shdr_status || shdr_add_status || rc) { 5467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5468 "3085 Mailbox x%x (x%x/x%x) failed, " 5469 "rc:x%x, status:x%x, add_status:x%x\n", 5470 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5471 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5472 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5473 rc, shdr_status, shdr_add_status); 5474 rc = -ENXIO; 5475 goto out_free_mboxq; 5476 } 5477 cntl_attr = &mbx_cntl_attr->cntl_attr; 5478 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5479 phba->sli4_hba.lnk_info.lnk_tp = 5480 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5481 phba->sli4_hba.lnk_info.lnk_no = 5482 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5483 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5484 "3086 lnk_type:%d, lnk_numb:%d\n", 5485 phba->sli4_hba.lnk_info.lnk_tp, 5486 phba->sli4_hba.lnk_info.lnk_no); 5487 5488 retrieve_ppname: 5489 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5490 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5491 sizeof(struct lpfc_mbx_get_port_name) - 5492 sizeof(struct lpfc_sli4_cfg_mhdr), 5493 LPFC_SLI4_MBX_EMBED); 5494 get_port_name = &mboxq->u.mqe.un.get_port_name; 5495 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5496 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5497 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5498 phba->sli4_hba.lnk_info.lnk_tp); 5499 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5500 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5501 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5502 if (shdr_status || shdr_add_status || rc) { 5503 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5504 "3087 Mailbox x%x (x%x/x%x) failed: " 5505 "rc:x%x, status:x%x, add_status:x%x\n", 5506 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5507 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5508 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5509 rc, shdr_status, shdr_add_status); 5510 rc = -ENXIO; 5511 goto out_free_mboxq; 5512 } 5513 switch (phba->sli4_hba.lnk_info.lnk_no) { 5514 case LPFC_LINK_NUMBER_0: 5515 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5516 &get_port_name->u.response); 5517 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5518 break; 5519 case LPFC_LINK_NUMBER_1: 5520 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5521 &get_port_name->u.response); 5522 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5523 break; 5524 case LPFC_LINK_NUMBER_2: 5525 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5526 &get_port_name->u.response); 5527 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5528 break; 5529 case LPFC_LINK_NUMBER_3: 5530 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5531 &get_port_name->u.response); 5532 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5533 break; 5534 default: 5535 break; 5536 } 5537 5538 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5539 phba->Port[0] = cport_name; 5540 phba->Port[1] = '\0'; 5541 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5542 "3091 SLI get port name: %s\n", phba->Port); 5543 } 5544 5545 out_free_mboxq: 5546 if (rc != MBX_TIMEOUT) { 5547 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5548 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5549 else 5550 mempool_free(mboxq, phba->mbox_mem_pool); 5551 } 5552 return rc; 5553 } 5554 5555 /** 5556 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5557 * @phba: pointer to lpfc hba data structure. 5558 * 5559 * This routine is called to explicitly arm the SLI4 device's completion and 5560 * event queues 5561 **/ 5562 static void 5563 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5564 { 5565 int qidx; 5566 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5567 5568 sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM); 5569 sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM); 5570 if (sli4_hba->nvmels_cq) 5571 sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq, 5572 LPFC_QUEUE_REARM); 5573 5574 if (sli4_hba->fcp_cq) 5575 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5576 sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx], 5577 LPFC_QUEUE_REARM); 5578 5579 if (sli4_hba->nvme_cq) 5580 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5581 sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx], 5582 LPFC_QUEUE_REARM); 5583 5584 if (phba->cfg_fof) 5585 sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM); 5586 5587 if (sli4_hba->hba_eq) 5588 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5589 sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx], 5590 LPFC_QUEUE_REARM); 5591 5592 if (phba->nvmet_support) { 5593 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5594 sli4_hba->sli4_cq_release( 5595 sli4_hba->nvmet_cqset[qidx], 5596 LPFC_QUEUE_REARM); 5597 } 5598 } 5599 5600 if (phba->cfg_fof) 5601 sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM); 5602 } 5603 5604 /** 5605 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5606 * @phba: Pointer to HBA context object. 5607 * @type: The resource extent type. 5608 * @extnt_count: buffer to hold port available extent count. 5609 * @extnt_size: buffer to hold element count per extent. 5610 * 5611 * This function calls the port and retrievs the number of available 5612 * extents and their size for a particular extent type. 5613 * 5614 * Returns: 0 if successful. Nonzero otherwise. 5615 **/ 5616 int 5617 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5618 uint16_t *extnt_count, uint16_t *extnt_size) 5619 { 5620 int rc = 0; 5621 uint32_t length; 5622 uint32_t mbox_tmo; 5623 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5624 LPFC_MBOXQ_t *mbox; 5625 5626 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5627 if (!mbox) 5628 return -ENOMEM; 5629 5630 /* Find out how many extents are available for this resource type */ 5631 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5632 sizeof(struct lpfc_sli4_cfg_mhdr)); 5633 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5634 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5635 length, LPFC_SLI4_MBX_EMBED); 5636 5637 /* Send an extents count of 0 - the GET doesn't use it. */ 5638 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5639 LPFC_SLI4_MBX_EMBED); 5640 if (unlikely(rc)) { 5641 rc = -EIO; 5642 goto err_exit; 5643 } 5644 5645 if (!phba->sli4_hba.intr_enable) 5646 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5647 else { 5648 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5649 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5650 } 5651 if (unlikely(rc)) { 5652 rc = -EIO; 5653 goto err_exit; 5654 } 5655 5656 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5657 if (bf_get(lpfc_mbox_hdr_status, 5658 &rsrc_info->header.cfg_shdr.response)) { 5659 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5660 "2930 Failed to get resource extents " 5661 "Status 0x%x Add'l Status 0x%x\n", 5662 bf_get(lpfc_mbox_hdr_status, 5663 &rsrc_info->header.cfg_shdr.response), 5664 bf_get(lpfc_mbox_hdr_add_status, 5665 &rsrc_info->header.cfg_shdr.response)); 5666 rc = -EIO; 5667 goto err_exit; 5668 } 5669 5670 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5671 &rsrc_info->u.rsp); 5672 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5673 &rsrc_info->u.rsp); 5674 5675 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5676 "3162 Retrieved extents type-%d from port: count:%d, " 5677 "size:%d\n", type, *extnt_count, *extnt_size); 5678 5679 err_exit: 5680 mempool_free(mbox, phba->mbox_mem_pool); 5681 return rc; 5682 } 5683 5684 /** 5685 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5686 * @phba: Pointer to HBA context object. 5687 * @type: The extent type to check. 5688 * 5689 * This function reads the current available extents from the port and checks 5690 * if the extent count or extent size has changed since the last access. 5691 * Callers use this routine post port reset to understand if there is a 5692 * extent reprovisioning requirement. 5693 * 5694 * Returns: 5695 * -Error: error indicates problem. 5696 * 1: Extent count or size has changed. 5697 * 0: No changes. 5698 **/ 5699 static int 5700 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5701 { 5702 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5703 uint16_t size_diff, rsrc_ext_size; 5704 int rc = 0; 5705 struct lpfc_rsrc_blks *rsrc_entry; 5706 struct list_head *rsrc_blk_list = NULL; 5707 5708 size_diff = 0; 5709 curr_ext_cnt = 0; 5710 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5711 &rsrc_ext_cnt, 5712 &rsrc_ext_size); 5713 if (unlikely(rc)) 5714 return -EIO; 5715 5716 switch (type) { 5717 case LPFC_RSC_TYPE_FCOE_RPI: 5718 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5719 break; 5720 case LPFC_RSC_TYPE_FCOE_VPI: 5721 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5722 break; 5723 case LPFC_RSC_TYPE_FCOE_XRI: 5724 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5725 break; 5726 case LPFC_RSC_TYPE_FCOE_VFI: 5727 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5728 break; 5729 default: 5730 break; 5731 } 5732 5733 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5734 curr_ext_cnt++; 5735 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5736 size_diff++; 5737 } 5738 5739 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5740 rc = 1; 5741 5742 return rc; 5743 } 5744 5745 /** 5746 * lpfc_sli4_cfg_post_extnts - 5747 * @phba: Pointer to HBA context object. 5748 * @extnt_cnt - number of available extents. 5749 * @type - the extent type (rpi, xri, vfi, vpi). 5750 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5751 * @mbox - pointer to the caller's allocated mailbox structure. 5752 * 5753 * This function executes the extents allocation request. It also 5754 * takes care of the amount of memory needed to allocate or get the 5755 * allocated extents. It is the caller's responsibility to evaluate 5756 * the response. 5757 * 5758 * Returns: 5759 * -Error: Error value describes the condition found. 5760 * 0: if successful 5761 **/ 5762 static int 5763 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5764 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5765 { 5766 int rc = 0; 5767 uint32_t req_len; 5768 uint32_t emb_len; 5769 uint32_t alloc_len, mbox_tmo; 5770 5771 /* Calculate the total requested length of the dma memory */ 5772 req_len = extnt_cnt * sizeof(uint16_t); 5773 5774 /* 5775 * Calculate the size of an embedded mailbox. The uint32_t 5776 * accounts for extents-specific word. 5777 */ 5778 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5779 sizeof(uint32_t); 5780 5781 /* 5782 * Presume the allocation and response will fit into an embedded 5783 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5784 */ 5785 *emb = LPFC_SLI4_MBX_EMBED; 5786 if (req_len > emb_len) { 5787 req_len = extnt_cnt * sizeof(uint16_t) + 5788 sizeof(union lpfc_sli4_cfg_shdr) + 5789 sizeof(uint32_t); 5790 *emb = LPFC_SLI4_MBX_NEMBED; 5791 } 5792 5793 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5794 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5795 req_len, *emb); 5796 if (alloc_len < req_len) { 5797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5798 "2982 Allocated DMA memory size (x%x) is " 5799 "less than the requested DMA memory " 5800 "size (x%x)\n", alloc_len, req_len); 5801 return -ENOMEM; 5802 } 5803 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5804 if (unlikely(rc)) 5805 return -EIO; 5806 5807 if (!phba->sli4_hba.intr_enable) 5808 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5809 else { 5810 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5811 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5812 } 5813 5814 if (unlikely(rc)) 5815 rc = -EIO; 5816 return rc; 5817 } 5818 5819 /** 5820 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5821 * @phba: Pointer to HBA context object. 5822 * @type: The resource extent type to allocate. 5823 * 5824 * This function allocates the number of elements for the specified 5825 * resource type. 5826 **/ 5827 static int 5828 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5829 { 5830 bool emb = false; 5831 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5832 uint16_t rsrc_id, rsrc_start, j, k; 5833 uint16_t *ids; 5834 int i, rc; 5835 unsigned long longs; 5836 unsigned long *bmask; 5837 struct lpfc_rsrc_blks *rsrc_blks; 5838 LPFC_MBOXQ_t *mbox; 5839 uint32_t length; 5840 struct lpfc_id_range *id_array = NULL; 5841 void *virtaddr = NULL; 5842 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5843 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5844 struct list_head *ext_blk_list; 5845 5846 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5847 &rsrc_cnt, 5848 &rsrc_size); 5849 if (unlikely(rc)) 5850 return -EIO; 5851 5852 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5853 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5854 "3009 No available Resource Extents " 5855 "for resource type 0x%x: Count: 0x%x, " 5856 "Size 0x%x\n", type, rsrc_cnt, 5857 rsrc_size); 5858 return -ENOMEM; 5859 } 5860 5861 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5862 "2903 Post resource extents type-0x%x: " 5863 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5864 5865 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5866 if (!mbox) 5867 return -ENOMEM; 5868 5869 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5870 if (unlikely(rc)) { 5871 rc = -EIO; 5872 goto err_exit; 5873 } 5874 5875 /* 5876 * Figure out where the response is located. Then get local pointers 5877 * to the response data. The port does not guarantee to respond to 5878 * all extents counts request so update the local variable with the 5879 * allocated count from the port. 5880 */ 5881 if (emb == LPFC_SLI4_MBX_EMBED) { 5882 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5883 id_array = &rsrc_ext->u.rsp.id[0]; 5884 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5885 } else { 5886 virtaddr = mbox->sge_array->addr[0]; 5887 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5888 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5889 id_array = &n_rsrc->id; 5890 } 5891 5892 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5893 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5894 5895 /* 5896 * Based on the resource size and count, correct the base and max 5897 * resource values. 5898 */ 5899 length = sizeof(struct lpfc_rsrc_blks); 5900 switch (type) { 5901 case LPFC_RSC_TYPE_FCOE_RPI: 5902 phba->sli4_hba.rpi_bmask = kcalloc(longs, 5903 sizeof(unsigned long), 5904 GFP_KERNEL); 5905 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5906 rc = -ENOMEM; 5907 goto err_exit; 5908 } 5909 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 5910 sizeof(uint16_t), 5911 GFP_KERNEL); 5912 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5913 kfree(phba->sli4_hba.rpi_bmask); 5914 rc = -ENOMEM; 5915 goto err_exit; 5916 } 5917 5918 /* 5919 * The next_rpi was initialized with the maximum available 5920 * count but the port may allocate a smaller number. Catch 5921 * that case and update the next_rpi. 5922 */ 5923 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5924 5925 /* Initialize local ptrs for common extent processing later. */ 5926 bmask = phba->sli4_hba.rpi_bmask; 5927 ids = phba->sli4_hba.rpi_ids; 5928 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5929 break; 5930 case LPFC_RSC_TYPE_FCOE_VPI: 5931 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 5932 GFP_KERNEL); 5933 if (unlikely(!phba->vpi_bmask)) { 5934 rc = -ENOMEM; 5935 goto err_exit; 5936 } 5937 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 5938 GFP_KERNEL); 5939 if (unlikely(!phba->vpi_ids)) { 5940 kfree(phba->vpi_bmask); 5941 rc = -ENOMEM; 5942 goto err_exit; 5943 } 5944 5945 /* Initialize local ptrs for common extent processing later. */ 5946 bmask = phba->vpi_bmask; 5947 ids = phba->vpi_ids; 5948 ext_blk_list = &phba->lpfc_vpi_blk_list; 5949 break; 5950 case LPFC_RSC_TYPE_FCOE_XRI: 5951 phba->sli4_hba.xri_bmask = kcalloc(longs, 5952 sizeof(unsigned long), 5953 GFP_KERNEL); 5954 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5955 rc = -ENOMEM; 5956 goto err_exit; 5957 } 5958 phba->sli4_hba.max_cfg_param.xri_used = 0; 5959 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 5960 sizeof(uint16_t), 5961 GFP_KERNEL); 5962 if (unlikely(!phba->sli4_hba.xri_ids)) { 5963 kfree(phba->sli4_hba.xri_bmask); 5964 rc = -ENOMEM; 5965 goto err_exit; 5966 } 5967 5968 /* Initialize local ptrs for common extent processing later. */ 5969 bmask = phba->sli4_hba.xri_bmask; 5970 ids = phba->sli4_hba.xri_ids; 5971 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5972 break; 5973 case LPFC_RSC_TYPE_FCOE_VFI: 5974 phba->sli4_hba.vfi_bmask = kcalloc(longs, 5975 sizeof(unsigned long), 5976 GFP_KERNEL); 5977 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5978 rc = -ENOMEM; 5979 goto err_exit; 5980 } 5981 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 5982 sizeof(uint16_t), 5983 GFP_KERNEL); 5984 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5985 kfree(phba->sli4_hba.vfi_bmask); 5986 rc = -ENOMEM; 5987 goto err_exit; 5988 } 5989 5990 /* Initialize local ptrs for common extent processing later. */ 5991 bmask = phba->sli4_hba.vfi_bmask; 5992 ids = phba->sli4_hba.vfi_ids; 5993 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5994 break; 5995 default: 5996 /* Unsupported Opcode. Fail call. */ 5997 id_array = NULL; 5998 bmask = NULL; 5999 ids = NULL; 6000 ext_blk_list = NULL; 6001 goto err_exit; 6002 } 6003 6004 /* 6005 * Complete initializing the extent configuration with the 6006 * allocated ids assigned to this function. The bitmask serves 6007 * as an index into the array and manages the available ids. The 6008 * array just stores the ids communicated to the port via the wqes. 6009 */ 6010 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6011 if ((i % 2) == 0) 6012 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6013 &id_array[k]); 6014 else 6015 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6016 &id_array[k]); 6017 6018 rsrc_blks = kzalloc(length, GFP_KERNEL); 6019 if (unlikely(!rsrc_blks)) { 6020 rc = -ENOMEM; 6021 kfree(bmask); 6022 kfree(ids); 6023 goto err_exit; 6024 } 6025 rsrc_blks->rsrc_start = rsrc_id; 6026 rsrc_blks->rsrc_size = rsrc_size; 6027 list_add_tail(&rsrc_blks->list, ext_blk_list); 6028 rsrc_start = rsrc_id; 6029 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6030 phba->sli4_hba.scsi_xri_start = rsrc_start + 6031 lpfc_sli4_get_iocb_cnt(phba); 6032 phba->sli4_hba.nvme_xri_start = 6033 phba->sli4_hba.scsi_xri_start + 6034 phba->sli4_hba.scsi_xri_max; 6035 } 6036 6037 while (rsrc_id < (rsrc_start + rsrc_size)) { 6038 ids[j] = rsrc_id; 6039 rsrc_id++; 6040 j++; 6041 } 6042 /* Entire word processed. Get next word.*/ 6043 if ((i % 2) == 1) 6044 k++; 6045 } 6046 err_exit: 6047 lpfc_sli4_mbox_cmd_free(phba, mbox); 6048 return rc; 6049 } 6050 6051 6052 6053 /** 6054 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6055 * @phba: Pointer to HBA context object. 6056 * @type: the extent's type. 6057 * 6058 * This function deallocates all extents of a particular resource type. 6059 * SLI4 does not allow for deallocating a particular extent range. It 6060 * is the caller's responsibility to release all kernel memory resources. 6061 **/ 6062 static int 6063 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6064 { 6065 int rc; 6066 uint32_t length, mbox_tmo = 0; 6067 LPFC_MBOXQ_t *mbox; 6068 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6069 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6070 6071 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6072 if (!mbox) 6073 return -ENOMEM; 6074 6075 /* 6076 * This function sends an embedded mailbox because it only sends the 6077 * the resource type. All extents of this type are released by the 6078 * port. 6079 */ 6080 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6081 sizeof(struct lpfc_sli4_cfg_mhdr)); 6082 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6083 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6084 length, LPFC_SLI4_MBX_EMBED); 6085 6086 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6087 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6088 LPFC_SLI4_MBX_EMBED); 6089 if (unlikely(rc)) { 6090 rc = -EIO; 6091 goto out_free_mbox; 6092 } 6093 if (!phba->sli4_hba.intr_enable) 6094 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6095 else { 6096 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6097 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6098 } 6099 if (unlikely(rc)) { 6100 rc = -EIO; 6101 goto out_free_mbox; 6102 } 6103 6104 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6105 if (bf_get(lpfc_mbox_hdr_status, 6106 &dealloc_rsrc->header.cfg_shdr.response)) { 6107 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6108 "2919 Failed to release resource extents " 6109 "for type %d - Status 0x%x Add'l Status 0x%x. " 6110 "Resource memory not released.\n", 6111 type, 6112 bf_get(lpfc_mbox_hdr_status, 6113 &dealloc_rsrc->header.cfg_shdr.response), 6114 bf_get(lpfc_mbox_hdr_add_status, 6115 &dealloc_rsrc->header.cfg_shdr.response)); 6116 rc = -EIO; 6117 goto out_free_mbox; 6118 } 6119 6120 /* Release kernel memory resources for the specific type. */ 6121 switch (type) { 6122 case LPFC_RSC_TYPE_FCOE_VPI: 6123 kfree(phba->vpi_bmask); 6124 kfree(phba->vpi_ids); 6125 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6126 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6127 &phba->lpfc_vpi_blk_list, list) { 6128 list_del_init(&rsrc_blk->list); 6129 kfree(rsrc_blk); 6130 } 6131 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6132 break; 6133 case LPFC_RSC_TYPE_FCOE_XRI: 6134 kfree(phba->sli4_hba.xri_bmask); 6135 kfree(phba->sli4_hba.xri_ids); 6136 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6137 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6138 list_del_init(&rsrc_blk->list); 6139 kfree(rsrc_blk); 6140 } 6141 break; 6142 case LPFC_RSC_TYPE_FCOE_VFI: 6143 kfree(phba->sli4_hba.vfi_bmask); 6144 kfree(phba->sli4_hba.vfi_ids); 6145 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6146 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6147 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6148 list_del_init(&rsrc_blk->list); 6149 kfree(rsrc_blk); 6150 } 6151 break; 6152 case LPFC_RSC_TYPE_FCOE_RPI: 6153 /* RPI bitmask and physical id array are cleaned up earlier. */ 6154 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6155 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6156 list_del_init(&rsrc_blk->list); 6157 kfree(rsrc_blk); 6158 } 6159 break; 6160 default: 6161 break; 6162 } 6163 6164 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6165 6166 out_free_mbox: 6167 mempool_free(mbox, phba->mbox_mem_pool); 6168 return rc; 6169 } 6170 6171 static void 6172 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6173 uint32_t feature) 6174 { 6175 uint32_t len; 6176 6177 len = sizeof(struct lpfc_mbx_set_feature) - 6178 sizeof(struct lpfc_sli4_cfg_mhdr); 6179 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6180 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6181 LPFC_SLI4_MBX_EMBED); 6182 6183 switch (feature) { 6184 case LPFC_SET_UE_RECOVERY: 6185 bf_set(lpfc_mbx_set_feature_UER, 6186 &mbox->u.mqe.un.set_feature, 1); 6187 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6188 mbox->u.mqe.un.set_feature.param_len = 8; 6189 break; 6190 case LPFC_SET_MDS_DIAGS: 6191 bf_set(lpfc_mbx_set_feature_mds, 6192 &mbox->u.mqe.un.set_feature, 1); 6193 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6194 &mbox->u.mqe.un.set_feature, 1); 6195 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6196 mbox->u.mqe.un.set_feature.param_len = 8; 6197 break; 6198 } 6199 6200 return; 6201 } 6202 6203 /** 6204 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6205 * @phba: Pointer to HBA context object. 6206 * 6207 * Disable FW logging into host memory on the adapter. To 6208 * be done before reading logs from the host memory. 6209 **/ 6210 void 6211 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6212 { 6213 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6214 6215 ras_fwlog->ras_active = false; 6216 6217 /* Disable FW logging to host memory */ 6218 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6219 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6220 } 6221 6222 /** 6223 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6224 * @phba: Pointer to HBA context object. 6225 * 6226 * This function is called to free memory allocated for RAS FW logging 6227 * support in the driver. 6228 **/ 6229 void 6230 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6231 { 6232 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6233 struct lpfc_dmabuf *dmabuf, *next; 6234 6235 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6236 list_for_each_entry_safe(dmabuf, next, 6237 &ras_fwlog->fwlog_buff_list, 6238 list) { 6239 list_del(&dmabuf->list); 6240 dma_free_coherent(&phba->pcidev->dev, 6241 LPFC_RAS_MAX_ENTRY_SIZE, 6242 dmabuf->virt, dmabuf->phys); 6243 kfree(dmabuf); 6244 } 6245 } 6246 6247 if (ras_fwlog->lwpd.virt) { 6248 dma_free_coherent(&phba->pcidev->dev, 6249 sizeof(uint32_t) * 2, 6250 ras_fwlog->lwpd.virt, 6251 ras_fwlog->lwpd.phys); 6252 ras_fwlog->lwpd.virt = NULL; 6253 } 6254 6255 ras_fwlog->ras_active = false; 6256 } 6257 6258 /** 6259 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6260 * @phba: Pointer to HBA context object. 6261 * @fwlog_buff_count: Count of buffers to be created. 6262 * 6263 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6264 * to update FW log is posted to the adapter. 6265 * Buffer count is calculated based on module param ras_fwlog_buffsize 6266 * Size of each buffer posted to FW is 64K. 6267 **/ 6268 6269 static int 6270 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6271 uint32_t fwlog_buff_count) 6272 { 6273 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6274 struct lpfc_dmabuf *dmabuf; 6275 int rc = 0, i = 0; 6276 6277 /* Initialize List */ 6278 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6279 6280 /* Allocate memory for the LWPD */ 6281 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6282 sizeof(uint32_t) * 2, 6283 &ras_fwlog->lwpd.phys, 6284 GFP_KERNEL); 6285 if (!ras_fwlog->lwpd.virt) { 6286 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6287 "6185 LWPD Memory Alloc Failed\n"); 6288 6289 return -ENOMEM; 6290 } 6291 6292 ras_fwlog->fw_buffcount = fwlog_buff_count; 6293 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6294 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6295 GFP_KERNEL); 6296 if (!dmabuf) { 6297 rc = -ENOMEM; 6298 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6299 "6186 Memory Alloc failed FW logging"); 6300 goto free_mem; 6301 } 6302 6303 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 6304 LPFC_RAS_MAX_ENTRY_SIZE, 6305 &dmabuf->phys, 6306 GFP_KERNEL); 6307 if (!dmabuf->virt) { 6308 kfree(dmabuf); 6309 rc = -ENOMEM; 6310 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6311 "6187 DMA Alloc Failed FW logging"); 6312 goto free_mem; 6313 } 6314 dmabuf->buffer_tag = i; 6315 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6316 } 6317 6318 free_mem: 6319 if (rc) 6320 lpfc_sli4_ras_dma_free(phba); 6321 6322 return rc; 6323 } 6324 6325 /** 6326 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6327 * @phba: pointer to lpfc hba data structure. 6328 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6329 * 6330 * Completion handler for driver's RAS MBX command to the device. 6331 **/ 6332 static void 6333 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6334 { 6335 MAILBOX_t *mb; 6336 union lpfc_sli4_cfg_shdr *shdr; 6337 uint32_t shdr_status, shdr_add_status; 6338 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6339 6340 mb = &pmb->u.mb; 6341 6342 shdr = (union lpfc_sli4_cfg_shdr *) 6343 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6344 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6345 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6346 6347 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 6349 "6188 FW LOG mailbox " 6350 "completed with status x%x add_status x%x," 6351 " mbx status x%x\n", 6352 shdr_status, shdr_add_status, mb->mbxStatus); 6353 6354 ras_fwlog->ras_hwsupport = false; 6355 goto disable_ras; 6356 } 6357 6358 ras_fwlog->ras_active = true; 6359 mempool_free(pmb, phba->mbox_mem_pool); 6360 6361 return; 6362 6363 disable_ras: 6364 /* Free RAS DMA memory */ 6365 lpfc_sli4_ras_dma_free(phba); 6366 mempool_free(pmb, phba->mbox_mem_pool); 6367 } 6368 6369 /** 6370 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6371 * @phba: pointer to lpfc hba data structure. 6372 * @fwlog_level: Logging verbosity level. 6373 * @fwlog_enable: Enable/Disable logging. 6374 * 6375 * Initialize memory and post mailbox command to enable FW logging in host 6376 * memory. 6377 **/ 6378 int 6379 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6380 uint32_t fwlog_level, 6381 uint32_t fwlog_enable) 6382 { 6383 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6384 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6385 struct lpfc_dmabuf *dmabuf; 6386 LPFC_MBOXQ_t *mbox; 6387 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6388 int rc = 0; 6389 6390 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6391 phba->cfg_ras_fwlog_buffsize); 6392 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6393 6394 /* 6395 * If re-enabling FW logging support use earlier allocated 6396 * DMA buffers while posting MBX command. 6397 **/ 6398 if (!ras_fwlog->lwpd.virt) { 6399 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6400 if (rc) { 6401 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6402 "6189 FW Log Memory Allocation Failed"); 6403 return rc; 6404 } 6405 } 6406 6407 /* Setup Mailbox command */ 6408 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6409 if (!mbox) { 6410 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6411 "6190 RAS MBX Alloc Failed"); 6412 rc = -ENOMEM; 6413 goto mem_free; 6414 } 6415 6416 ras_fwlog->fw_loglevel = fwlog_level; 6417 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6418 sizeof(struct lpfc_sli4_cfg_mhdr)); 6419 6420 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6421 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6422 len, LPFC_SLI4_MBX_EMBED); 6423 6424 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6425 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6426 fwlog_enable); 6427 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6428 ras_fwlog->fw_loglevel); 6429 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6430 ras_fwlog->fw_buffcount); 6431 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6432 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6433 6434 /* Update DMA buffer address */ 6435 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6436 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6437 6438 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6439 putPaddrLow(dmabuf->phys); 6440 6441 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6442 putPaddrHigh(dmabuf->phys); 6443 } 6444 6445 /* Update LPWD address */ 6446 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6447 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6448 6449 mbox->vport = phba->pport; 6450 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6451 6452 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6453 6454 if (rc == MBX_NOT_FINISHED) { 6455 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6456 "6191 FW-Log Mailbox failed. " 6457 "status %d mbxStatus : x%x", rc, 6458 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6459 mempool_free(mbox, phba->mbox_mem_pool); 6460 rc = -EIO; 6461 goto mem_free; 6462 } else 6463 rc = 0; 6464 mem_free: 6465 if (rc) 6466 lpfc_sli4_ras_dma_free(phba); 6467 6468 return rc; 6469 } 6470 6471 /** 6472 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6473 * @phba: Pointer to HBA context object. 6474 * 6475 * Check if RAS is supported on the adapter and initialize it. 6476 **/ 6477 void 6478 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6479 { 6480 /* Check RAS FW Log needs to be enabled or not */ 6481 if (lpfc_check_fwlog_support(phba)) 6482 return; 6483 6484 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6485 LPFC_RAS_ENABLE_LOGGING); 6486 } 6487 6488 /** 6489 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6490 * @phba: Pointer to HBA context object. 6491 * 6492 * This function allocates all SLI4 resource identifiers. 6493 **/ 6494 int 6495 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6496 { 6497 int i, rc, error = 0; 6498 uint16_t count, base; 6499 unsigned long longs; 6500 6501 if (!phba->sli4_hba.rpi_hdrs_in_use) 6502 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6503 if (phba->sli4_hba.extents_in_use) { 6504 /* 6505 * The port supports resource extents. The XRI, VPI, VFI, RPI 6506 * resource extent count must be read and allocated before 6507 * provisioning the resource id arrays. 6508 */ 6509 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6510 LPFC_IDX_RSRC_RDY) { 6511 /* 6512 * Extent-based resources are set - the driver could 6513 * be in a port reset. Figure out if any corrective 6514 * actions need to be taken. 6515 */ 6516 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6517 LPFC_RSC_TYPE_FCOE_VFI); 6518 if (rc != 0) 6519 error++; 6520 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6521 LPFC_RSC_TYPE_FCOE_VPI); 6522 if (rc != 0) 6523 error++; 6524 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6525 LPFC_RSC_TYPE_FCOE_XRI); 6526 if (rc != 0) 6527 error++; 6528 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6529 LPFC_RSC_TYPE_FCOE_RPI); 6530 if (rc != 0) 6531 error++; 6532 6533 /* 6534 * It's possible that the number of resources 6535 * provided to this port instance changed between 6536 * resets. Detect this condition and reallocate 6537 * resources. Otherwise, there is no action. 6538 */ 6539 if (error) { 6540 lpfc_printf_log(phba, KERN_INFO, 6541 LOG_MBOX | LOG_INIT, 6542 "2931 Detected extent resource " 6543 "change. Reallocating all " 6544 "extents.\n"); 6545 rc = lpfc_sli4_dealloc_extent(phba, 6546 LPFC_RSC_TYPE_FCOE_VFI); 6547 rc = lpfc_sli4_dealloc_extent(phba, 6548 LPFC_RSC_TYPE_FCOE_VPI); 6549 rc = lpfc_sli4_dealloc_extent(phba, 6550 LPFC_RSC_TYPE_FCOE_XRI); 6551 rc = lpfc_sli4_dealloc_extent(phba, 6552 LPFC_RSC_TYPE_FCOE_RPI); 6553 } else 6554 return 0; 6555 } 6556 6557 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6558 if (unlikely(rc)) 6559 goto err_exit; 6560 6561 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6562 if (unlikely(rc)) 6563 goto err_exit; 6564 6565 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6566 if (unlikely(rc)) 6567 goto err_exit; 6568 6569 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6570 if (unlikely(rc)) 6571 goto err_exit; 6572 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6573 LPFC_IDX_RSRC_RDY); 6574 return rc; 6575 } else { 6576 /* 6577 * The port does not support resource extents. The XRI, VPI, 6578 * VFI, RPI resource ids were determined from READ_CONFIG. 6579 * Just allocate the bitmasks and provision the resource id 6580 * arrays. If a port reset is active, the resources don't 6581 * need any action - just exit. 6582 */ 6583 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6584 LPFC_IDX_RSRC_RDY) { 6585 lpfc_sli4_dealloc_resource_identifiers(phba); 6586 lpfc_sli4_remove_rpis(phba); 6587 } 6588 /* RPIs. */ 6589 count = phba->sli4_hba.max_cfg_param.max_rpi; 6590 if (count <= 0) { 6591 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6592 "3279 Invalid provisioning of " 6593 "rpi:%d\n", count); 6594 rc = -EINVAL; 6595 goto err_exit; 6596 } 6597 base = phba->sli4_hba.max_cfg_param.rpi_base; 6598 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6599 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6600 sizeof(unsigned long), 6601 GFP_KERNEL); 6602 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6603 rc = -ENOMEM; 6604 goto err_exit; 6605 } 6606 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6607 GFP_KERNEL); 6608 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6609 rc = -ENOMEM; 6610 goto free_rpi_bmask; 6611 } 6612 6613 for (i = 0; i < count; i++) 6614 phba->sli4_hba.rpi_ids[i] = base + i; 6615 6616 /* VPIs. */ 6617 count = phba->sli4_hba.max_cfg_param.max_vpi; 6618 if (count <= 0) { 6619 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6620 "3280 Invalid provisioning of " 6621 "vpi:%d\n", count); 6622 rc = -EINVAL; 6623 goto free_rpi_ids; 6624 } 6625 base = phba->sli4_hba.max_cfg_param.vpi_base; 6626 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6627 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6628 GFP_KERNEL); 6629 if (unlikely(!phba->vpi_bmask)) { 6630 rc = -ENOMEM; 6631 goto free_rpi_ids; 6632 } 6633 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6634 GFP_KERNEL); 6635 if (unlikely(!phba->vpi_ids)) { 6636 rc = -ENOMEM; 6637 goto free_vpi_bmask; 6638 } 6639 6640 for (i = 0; i < count; i++) 6641 phba->vpi_ids[i] = base + i; 6642 6643 /* XRIs. */ 6644 count = phba->sli4_hba.max_cfg_param.max_xri; 6645 if (count <= 0) { 6646 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6647 "3281 Invalid provisioning of " 6648 "xri:%d\n", count); 6649 rc = -EINVAL; 6650 goto free_vpi_ids; 6651 } 6652 base = phba->sli4_hba.max_cfg_param.xri_base; 6653 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6654 phba->sli4_hba.xri_bmask = kcalloc(longs, 6655 sizeof(unsigned long), 6656 GFP_KERNEL); 6657 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6658 rc = -ENOMEM; 6659 goto free_vpi_ids; 6660 } 6661 phba->sli4_hba.max_cfg_param.xri_used = 0; 6662 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6663 GFP_KERNEL); 6664 if (unlikely(!phba->sli4_hba.xri_ids)) { 6665 rc = -ENOMEM; 6666 goto free_xri_bmask; 6667 } 6668 6669 for (i = 0; i < count; i++) 6670 phba->sli4_hba.xri_ids[i] = base + i; 6671 6672 /* VFIs. */ 6673 count = phba->sli4_hba.max_cfg_param.max_vfi; 6674 if (count <= 0) { 6675 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6676 "3282 Invalid provisioning of " 6677 "vfi:%d\n", count); 6678 rc = -EINVAL; 6679 goto free_xri_ids; 6680 } 6681 base = phba->sli4_hba.max_cfg_param.vfi_base; 6682 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6683 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6684 sizeof(unsigned long), 6685 GFP_KERNEL); 6686 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6687 rc = -ENOMEM; 6688 goto free_xri_ids; 6689 } 6690 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6691 GFP_KERNEL); 6692 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6693 rc = -ENOMEM; 6694 goto free_vfi_bmask; 6695 } 6696 6697 for (i = 0; i < count; i++) 6698 phba->sli4_hba.vfi_ids[i] = base + i; 6699 6700 /* 6701 * Mark all resources ready. An HBA reset doesn't need 6702 * to reset the initialization. 6703 */ 6704 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6705 LPFC_IDX_RSRC_RDY); 6706 return 0; 6707 } 6708 6709 free_vfi_bmask: 6710 kfree(phba->sli4_hba.vfi_bmask); 6711 phba->sli4_hba.vfi_bmask = NULL; 6712 free_xri_ids: 6713 kfree(phba->sli4_hba.xri_ids); 6714 phba->sli4_hba.xri_ids = NULL; 6715 free_xri_bmask: 6716 kfree(phba->sli4_hba.xri_bmask); 6717 phba->sli4_hba.xri_bmask = NULL; 6718 free_vpi_ids: 6719 kfree(phba->vpi_ids); 6720 phba->vpi_ids = NULL; 6721 free_vpi_bmask: 6722 kfree(phba->vpi_bmask); 6723 phba->vpi_bmask = NULL; 6724 free_rpi_ids: 6725 kfree(phba->sli4_hba.rpi_ids); 6726 phba->sli4_hba.rpi_ids = NULL; 6727 free_rpi_bmask: 6728 kfree(phba->sli4_hba.rpi_bmask); 6729 phba->sli4_hba.rpi_bmask = NULL; 6730 err_exit: 6731 return rc; 6732 } 6733 6734 /** 6735 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6736 * @phba: Pointer to HBA context object. 6737 * 6738 * This function allocates the number of elements for the specified 6739 * resource type. 6740 **/ 6741 int 6742 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6743 { 6744 if (phba->sli4_hba.extents_in_use) { 6745 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6746 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6747 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6748 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6749 } else { 6750 kfree(phba->vpi_bmask); 6751 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6752 kfree(phba->vpi_ids); 6753 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6754 kfree(phba->sli4_hba.xri_bmask); 6755 kfree(phba->sli4_hba.xri_ids); 6756 kfree(phba->sli4_hba.vfi_bmask); 6757 kfree(phba->sli4_hba.vfi_ids); 6758 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6759 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6760 } 6761 6762 return 0; 6763 } 6764 6765 /** 6766 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6767 * @phba: Pointer to HBA context object. 6768 * @type: The resource extent type. 6769 * @extnt_count: buffer to hold port extent count response 6770 * @extnt_size: buffer to hold port extent size response. 6771 * 6772 * This function calls the port to read the host allocated extents 6773 * for a particular type. 6774 **/ 6775 int 6776 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6777 uint16_t *extnt_cnt, uint16_t *extnt_size) 6778 { 6779 bool emb; 6780 int rc = 0; 6781 uint16_t curr_blks = 0; 6782 uint32_t req_len, emb_len; 6783 uint32_t alloc_len, mbox_tmo; 6784 struct list_head *blk_list_head; 6785 struct lpfc_rsrc_blks *rsrc_blk; 6786 LPFC_MBOXQ_t *mbox; 6787 void *virtaddr = NULL; 6788 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6789 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6790 union lpfc_sli4_cfg_shdr *shdr; 6791 6792 switch (type) { 6793 case LPFC_RSC_TYPE_FCOE_VPI: 6794 blk_list_head = &phba->lpfc_vpi_blk_list; 6795 break; 6796 case LPFC_RSC_TYPE_FCOE_XRI: 6797 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6798 break; 6799 case LPFC_RSC_TYPE_FCOE_VFI: 6800 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6801 break; 6802 case LPFC_RSC_TYPE_FCOE_RPI: 6803 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6804 break; 6805 default: 6806 return -EIO; 6807 } 6808 6809 /* Count the number of extents currently allocatd for this type. */ 6810 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6811 if (curr_blks == 0) { 6812 /* 6813 * The GET_ALLOCATED mailbox does not return the size, 6814 * just the count. The size should be just the size 6815 * stored in the current allocated block and all sizes 6816 * for an extent type are the same so set the return 6817 * value now. 6818 */ 6819 *extnt_size = rsrc_blk->rsrc_size; 6820 } 6821 curr_blks++; 6822 } 6823 6824 /* 6825 * Calculate the size of an embedded mailbox. The uint32_t 6826 * accounts for extents-specific word. 6827 */ 6828 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6829 sizeof(uint32_t); 6830 6831 /* 6832 * Presume the allocation and response will fit into an embedded 6833 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6834 */ 6835 emb = LPFC_SLI4_MBX_EMBED; 6836 req_len = emb_len; 6837 if (req_len > emb_len) { 6838 req_len = curr_blks * sizeof(uint16_t) + 6839 sizeof(union lpfc_sli4_cfg_shdr) + 6840 sizeof(uint32_t); 6841 emb = LPFC_SLI4_MBX_NEMBED; 6842 } 6843 6844 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6845 if (!mbox) 6846 return -ENOMEM; 6847 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6848 6849 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6850 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6851 req_len, emb); 6852 if (alloc_len < req_len) { 6853 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6854 "2983 Allocated DMA memory size (x%x) is " 6855 "less than the requested DMA memory " 6856 "size (x%x)\n", alloc_len, req_len); 6857 rc = -ENOMEM; 6858 goto err_exit; 6859 } 6860 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6861 if (unlikely(rc)) { 6862 rc = -EIO; 6863 goto err_exit; 6864 } 6865 6866 if (!phba->sli4_hba.intr_enable) 6867 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6868 else { 6869 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6870 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6871 } 6872 6873 if (unlikely(rc)) { 6874 rc = -EIO; 6875 goto err_exit; 6876 } 6877 6878 /* 6879 * Figure out where the response is located. Then get local pointers 6880 * to the response data. The port does not guarantee to respond to 6881 * all extents counts request so update the local variable with the 6882 * allocated count from the port. 6883 */ 6884 if (emb == LPFC_SLI4_MBX_EMBED) { 6885 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6886 shdr = &rsrc_ext->header.cfg_shdr; 6887 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6888 } else { 6889 virtaddr = mbox->sge_array->addr[0]; 6890 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6891 shdr = &n_rsrc->cfg_shdr; 6892 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6893 } 6894 6895 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6896 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6897 "2984 Failed to read allocated resources " 6898 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6899 type, 6900 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6901 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6902 rc = -EIO; 6903 goto err_exit; 6904 } 6905 err_exit: 6906 lpfc_sli4_mbox_cmd_free(phba, mbox); 6907 return rc; 6908 } 6909 6910 /** 6911 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6912 * @phba: pointer to lpfc hba data structure. 6913 * @pring: Pointer to driver SLI ring object. 6914 * @sgl_list: linked link of sgl buffers to post 6915 * @cnt: number of linked list buffers 6916 * 6917 * This routine walks the list of buffers that have been allocated and 6918 * repost them to the port by using SGL block post. This is needed after a 6919 * pci_function_reset/warm_start or start. It attempts to construct blocks 6920 * of buffer sgls which contains contiguous xris and uses the non-embedded 6921 * SGL block post mailbox commands to post them to the port. For single 6922 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6923 * mailbox command for posting. 6924 * 6925 * Returns: 0 = success, non-zero failure. 6926 **/ 6927 static int 6928 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6929 struct list_head *sgl_list, int cnt) 6930 { 6931 struct lpfc_sglq *sglq_entry = NULL; 6932 struct lpfc_sglq *sglq_entry_next = NULL; 6933 struct lpfc_sglq *sglq_entry_first = NULL; 6934 int status, total_cnt; 6935 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6936 int last_xritag = NO_XRI; 6937 LIST_HEAD(prep_sgl_list); 6938 LIST_HEAD(blck_sgl_list); 6939 LIST_HEAD(allc_sgl_list); 6940 LIST_HEAD(post_sgl_list); 6941 LIST_HEAD(free_sgl_list); 6942 6943 spin_lock_irq(&phba->hbalock); 6944 spin_lock(&phba->sli4_hba.sgl_list_lock); 6945 list_splice_init(sgl_list, &allc_sgl_list); 6946 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6947 spin_unlock_irq(&phba->hbalock); 6948 6949 total_cnt = cnt; 6950 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6951 &allc_sgl_list, list) { 6952 list_del_init(&sglq_entry->list); 6953 block_cnt++; 6954 if ((last_xritag != NO_XRI) && 6955 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6956 /* a hole in xri block, form a sgl posting block */ 6957 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6958 post_cnt = block_cnt - 1; 6959 /* prepare list for next posting block */ 6960 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6961 block_cnt = 1; 6962 } else { 6963 /* prepare list for next posting block */ 6964 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6965 /* enough sgls for non-embed sgl mbox command */ 6966 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6967 list_splice_init(&prep_sgl_list, 6968 &blck_sgl_list); 6969 post_cnt = block_cnt; 6970 block_cnt = 0; 6971 } 6972 } 6973 num_posted++; 6974 6975 /* keep track of last sgl's xritag */ 6976 last_xritag = sglq_entry->sli4_xritag; 6977 6978 /* end of repost sgl list condition for buffers */ 6979 if (num_posted == total_cnt) { 6980 if (post_cnt == 0) { 6981 list_splice_init(&prep_sgl_list, 6982 &blck_sgl_list); 6983 post_cnt = block_cnt; 6984 } else if (block_cnt == 1) { 6985 status = lpfc_sli4_post_sgl(phba, 6986 sglq_entry->phys, 0, 6987 sglq_entry->sli4_xritag); 6988 if (!status) { 6989 /* successful, put sgl to posted list */ 6990 list_add_tail(&sglq_entry->list, 6991 &post_sgl_list); 6992 } else { 6993 /* Failure, put sgl to free list */ 6994 lpfc_printf_log(phba, KERN_WARNING, 6995 LOG_SLI, 6996 "3159 Failed to post " 6997 "sgl, xritag:x%x\n", 6998 sglq_entry->sli4_xritag); 6999 list_add_tail(&sglq_entry->list, 7000 &free_sgl_list); 7001 total_cnt--; 7002 } 7003 } 7004 } 7005 7006 /* continue until a nembed page worth of sgls */ 7007 if (post_cnt == 0) 7008 continue; 7009 7010 /* post the buffer list sgls as a block */ 7011 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7012 post_cnt); 7013 7014 if (!status) { 7015 /* success, put sgl list to posted sgl list */ 7016 list_splice_init(&blck_sgl_list, &post_sgl_list); 7017 } else { 7018 /* Failure, put sgl list to free sgl list */ 7019 sglq_entry_first = list_first_entry(&blck_sgl_list, 7020 struct lpfc_sglq, 7021 list); 7022 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7023 "3160 Failed to post sgl-list, " 7024 "xritag:x%x-x%x\n", 7025 sglq_entry_first->sli4_xritag, 7026 (sglq_entry_first->sli4_xritag + 7027 post_cnt - 1)); 7028 list_splice_init(&blck_sgl_list, &free_sgl_list); 7029 total_cnt -= post_cnt; 7030 } 7031 7032 /* don't reset xirtag due to hole in xri block */ 7033 if (block_cnt == 0) 7034 last_xritag = NO_XRI; 7035 7036 /* reset sgl post count for next round of posting */ 7037 post_cnt = 0; 7038 } 7039 7040 /* free the sgls failed to post */ 7041 lpfc_free_sgl_list(phba, &free_sgl_list); 7042 7043 /* push sgls posted to the available list */ 7044 if (!list_empty(&post_sgl_list)) { 7045 spin_lock_irq(&phba->hbalock); 7046 spin_lock(&phba->sli4_hba.sgl_list_lock); 7047 list_splice_init(&post_sgl_list, sgl_list); 7048 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7049 spin_unlock_irq(&phba->hbalock); 7050 } else { 7051 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7052 "3161 Failure to post sgl to port.\n"); 7053 return -EIO; 7054 } 7055 7056 /* return the number of XRIs actually posted */ 7057 return total_cnt; 7058 } 7059 7060 void 7061 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7062 { 7063 uint32_t len; 7064 7065 len = sizeof(struct lpfc_mbx_set_host_data) - 7066 sizeof(struct lpfc_sli4_cfg_mhdr); 7067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7068 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7069 LPFC_SLI4_MBX_EMBED); 7070 7071 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7072 mbox->u.mqe.un.set_host_data.param_len = 7073 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7074 snprintf(mbox->u.mqe.un.set_host_data.data, 7075 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7076 "Linux %s v"LPFC_DRIVER_VERSION, 7077 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7078 } 7079 7080 int 7081 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7082 struct lpfc_queue *drq, int count, int idx) 7083 { 7084 int rc, i; 7085 struct lpfc_rqe hrqe; 7086 struct lpfc_rqe drqe; 7087 struct lpfc_rqb *rqbp; 7088 unsigned long flags; 7089 struct rqb_dmabuf *rqb_buffer; 7090 LIST_HEAD(rqb_buf_list); 7091 7092 spin_lock_irqsave(&phba->hbalock, flags); 7093 rqbp = hrq->rqbp; 7094 for (i = 0; i < count; i++) { 7095 /* IF RQ is already full, don't bother */ 7096 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7097 break; 7098 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7099 if (!rqb_buffer) 7100 break; 7101 rqb_buffer->hrq = hrq; 7102 rqb_buffer->drq = drq; 7103 rqb_buffer->idx = idx; 7104 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7105 } 7106 while (!list_empty(&rqb_buf_list)) { 7107 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7108 hbuf.list); 7109 7110 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7111 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7112 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7113 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7114 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7115 if (rc < 0) { 7116 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7117 "6421 Cannot post to HRQ %d: %x %x %x " 7118 "DRQ %x %x\n", 7119 hrq->queue_id, 7120 hrq->host_index, 7121 hrq->hba_index, 7122 hrq->entry_count, 7123 drq->host_index, 7124 drq->hba_index); 7125 rqbp->rqb_free_buffer(phba, rqb_buffer); 7126 } else { 7127 list_add_tail(&rqb_buffer->hbuf.list, 7128 &rqbp->rqb_buffer_list); 7129 rqbp->buffer_count++; 7130 } 7131 } 7132 spin_unlock_irqrestore(&phba->hbalock, flags); 7133 return 1; 7134 } 7135 7136 /** 7137 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7138 * @phba: Pointer to HBA context object. 7139 * 7140 * This function is the main SLI4 device initialization PCI function. This 7141 * function is called by the HBA initialization code, HBA reset code and 7142 * HBA error attention handler code. Caller is not required to hold any 7143 * locks. 7144 **/ 7145 int 7146 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7147 { 7148 int rc, i, cnt; 7149 LPFC_MBOXQ_t *mboxq; 7150 struct lpfc_mqe *mqe; 7151 uint8_t *vpd; 7152 uint32_t vpd_size; 7153 uint32_t ftr_rsp = 0; 7154 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7155 struct lpfc_vport *vport = phba->pport; 7156 struct lpfc_dmabuf *mp; 7157 struct lpfc_rqb *rqbp; 7158 7159 /* Perform a PCI function reset to start from clean */ 7160 rc = lpfc_pci_function_reset(phba); 7161 if (unlikely(rc)) 7162 return -ENODEV; 7163 7164 /* Check the HBA Host Status Register for readyness */ 7165 rc = lpfc_sli4_post_status_check(phba); 7166 if (unlikely(rc)) 7167 return -ENODEV; 7168 else { 7169 spin_lock_irq(&phba->hbalock); 7170 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7171 spin_unlock_irq(&phba->hbalock); 7172 } 7173 7174 /* 7175 * Allocate a single mailbox container for initializing the 7176 * port. 7177 */ 7178 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7179 if (!mboxq) 7180 return -ENOMEM; 7181 7182 /* Issue READ_REV to collect vpd and FW information. */ 7183 vpd_size = SLI4_PAGE_SIZE; 7184 vpd = kzalloc(vpd_size, GFP_KERNEL); 7185 if (!vpd) { 7186 rc = -ENOMEM; 7187 goto out_free_mbox; 7188 } 7189 7190 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7191 if (unlikely(rc)) { 7192 kfree(vpd); 7193 goto out_free_mbox; 7194 } 7195 7196 mqe = &mboxq->u.mqe; 7197 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7198 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7199 phba->hba_flag |= HBA_FCOE_MODE; 7200 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7201 } else { 7202 phba->hba_flag &= ~HBA_FCOE_MODE; 7203 } 7204 7205 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7206 LPFC_DCBX_CEE_MODE) 7207 phba->hba_flag |= HBA_FIP_SUPPORT; 7208 else 7209 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7210 7211 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 7212 7213 if (phba->sli_rev != LPFC_SLI_REV4) { 7214 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7215 "0376 READ_REV Error. SLI Level %d " 7216 "FCoE enabled %d\n", 7217 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7218 rc = -EIO; 7219 kfree(vpd); 7220 goto out_free_mbox; 7221 } 7222 7223 /* 7224 * Continue initialization with default values even if driver failed 7225 * to read FCoE param config regions, only read parameters if the 7226 * board is FCoE 7227 */ 7228 if (phba->hba_flag & HBA_FCOE_MODE && 7229 lpfc_sli4_read_fcoe_params(phba)) 7230 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7231 "2570 Failed to read FCoE parameters\n"); 7232 7233 /* 7234 * Retrieve sli4 device physical port name, failure of doing it 7235 * is considered as non-fatal. 7236 */ 7237 rc = lpfc_sli4_retrieve_pport_name(phba); 7238 if (!rc) 7239 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7240 "3080 Successful retrieving SLI4 device " 7241 "physical port name: %s.\n", phba->Port); 7242 7243 /* 7244 * Evaluate the read rev and vpd data. Populate the driver 7245 * state with the results. If this routine fails, the failure 7246 * is not fatal as the driver will use generic values. 7247 */ 7248 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7249 if (unlikely(!rc)) { 7250 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7251 "0377 Error %d parsing vpd. " 7252 "Using defaults.\n", rc); 7253 rc = 0; 7254 } 7255 kfree(vpd); 7256 7257 /* Save information as VPD data */ 7258 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7259 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7260 7261 /* 7262 * This is because first G7 ASIC doesn't support the standard 7263 * 0x5a NVME cmd descriptor type/subtype 7264 */ 7265 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7266 LPFC_SLI_INTF_IF_TYPE_6) && 7267 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7268 (phba->vpd.rev.smRev == 0) && 7269 (phba->cfg_nvme_embed_cmd == 1)) 7270 phba->cfg_nvme_embed_cmd = 0; 7271 7272 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7273 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7274 &mqe->un.read_rev); 7275 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7276 &mqe->un.read_rev); 7277 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7278 &mqe->un.read_rev); 7279 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7280 &mqe->un.read_rev); 7281 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7282 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7283 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7284 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7285 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7286 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7287 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7288 "(%d):0380 READ_REV Status x%x " 7289 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7290 mboxq->vport ? mboxq->vport->vpi : 0, 7291 bf_get(lpfc_mqe_status, mqe), 7292 phba->vpd.rev.opFwName, 7293 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7294 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7295 7296 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 7297 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 7298 if (phba->pport->cfg_lun_queue_depth > rc) { 7299 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7300 "3362 LUN queue depth changed from %d to %d\n", 7301 phba->pport->cfg_lun_queue_depth, rc); 7302 phba->pport->cfg_lun_queue_depth = rc; 7303 } 7304 7305 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7306 LPFC_SLI_INTF_IF_TYPE_0) { 7307 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7308 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7309 if (rc == MBX_SUCCESS) { 7310 phba->hba_flag |= HBA_RECOVERABLE_UE; 7311 /* Set 1Sec interval to detect UE */ 7312 phba->eratt_poll_interval = 1; 7313 phba->sli4_hba.ue_to_sr = bf_get( 7314 lpfc_mbx_set_feature_UESR, 7315 &mboxq->u.mqe.un.set_feature); 7316 phba->sli4_hba.ue_to_rp = bf_get( 7317 lpfc_mbx_set_feature_UERP, 7318 &mboxq->u.mqe.un.set_feature); 7319 } 7320 } 7321 7322 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7323 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7324 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7325 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7326 if (rc != MBX_SUCCESS) 7327 phba->mds_diags_support = 0; 7328 } 7329 7330 /* 7331 * Discover the port's supported feature set and match it against the 7332 * hosts requests. 7333 */ 7334 lpfc_request_features(phba, mboxq); 7335 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7336 if (unlikely(rc)) { 7337 rc = -EIO; 7338 goto out_free_mbox; 7339 } 7340 7341 /* 7342 * The port must support FCP initiator mode as this is the 7343 * only mode running in the host. 7344 */ 7345 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7346 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7347 "0378 No support for fcpi mode.\n"); 7348 ftr_rsp++; 7349 } 7350 7351 /* Performance Hints are ONLY for FCoE */ 7352 if (phba->hba_flag & HBA_FCOE_MODE) { 7353 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7354 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7355 else 7356 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7357 } 7358 7359 /* 7360 * If the port cannot support the host's requested features 7361 * then turn off the global config parameters to disable the 7362 * feature in the driver. This is not a fatal error. 7363 */ 7364 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7365 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7366 phba->cfg_enable_bg = 0; 7367 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7368 ftr_rsp++; 7369 } 7370 } 7371 7372 if (phba->max_vpi && phba->cfg_enable_npiv && 7373 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7374 ftr_rsp++; 7375 7376 if (ftr_rsp) { 7377 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7378 "0379 Feature Mismatch Data: x%08x %08x " 7379 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7380 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7381 phba->cfg_enable_npiv, phba->max_vpi); 7382 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7383 phba->cfg_enable_bg = 0; 7384 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7385 phba->cfg_enable_npiv = 0; 7386 } 7387 7388 /* These SLI3 features are assumed in SLI4 */ 7389 spin_lock_irq(&phba->hbalock); 7390 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7391 spin_unlock_irq(&phba->hbalock); 7392 7393 /* 7394 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7395 * calls depends on these resources to complete port setup. 7396 */ 7397 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7398 if (rc) { 7399 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7400 "2920 Failed to alloc Resource IDs " 7401 "rc = x%x\n", rc); 7402 goto out_free_mbox; 7403 } 7404 7405 lpfc_set_host_data(phba, mboxq); 7406 7407 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7408 if (rc) { 7409 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7410 "2134 Failed to set host os driver version %x", 7411 rc); 7412 } 7413 7414 /* Read the port's service parameters. */ 7415 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7416 if (rc) { 7417 phba->link_state = LPFC_HBA_ERROR; 7418 rc = -ENOMEM; 7419 goto out_free_mbox; 7420 } 7421 7422 mboxq->vport = vport; 7423 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7424 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7425 if (rc == MBX_SUCCESS) { 7426 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7427 rc = 0; 7428 } 7429 7430 /* 7431 * This memory was allocated by the lpfc_read_sparam routine. Release 7432 * it to the mbuf pool. 7433 */ 7434 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7435 kfree(mp); 7436 mboxq->ctx_buf = NULL; 7437 if (unlikely(rc)) { 7438 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7439 "0382 READ_SPARAM command failed " 7440 "status %d, mbxStatus x%x\n", 7441 rc, bf_get(lpfc_mqe_status, mqe)); 7442 phba->link_state = LPFC_HBA_ERROR; 7443 rc = -EIO; 7444 goto out_free_mbox; 7445 } 7446 7447 lpfc_update_vport_wwn(vport); 7448 7449 /* Update the fc_host data structures with new wwn. */ 7450 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7451 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7452 7453 /* Create all the SLI4 queues */ 7454 rc = lpfc_sli4_queue_create(phba); 7455 if (rc) { 7456 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7457 "3089 Failed to allocate queues\n"); 7458 rc = -ENODEV; 7459 goto out_free_mbox; 7460 } 7461 /* Set up all the queues to the device */ 7462 rc = lpfc_sli4_queue_setup(phba); 7463 if (unlikely(rc)) { 7464 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7465 "0381 Error %d during queue setup.\n ", rc); 7466 goto out_stop_timers; 7467 } 7468 /* Initialize the driver internal SLI layer lists. */ 7469 lpfc_sli4_setup(phba); 7470 lpfc_sli4_queue_init(phba); 7471 7472 /* update host els xri-sgl sizes and mappings */ 7473 rc = lpfc_sli4_els_sgl_update(phba); 7474 if (unlikely(rc)) { 7475 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7476 "1400 Failed to update xri-sgl size and " 7477 "mapping: %d\n", rc); 7478 goto out_destroy_queue; 7479 } 7480 7481 /* register the els sgl pool to the port */ 7482 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7483 phba->sli4_hba.els_xri_cnt); 7484 if (unlikely(rc < 0)) { 7485 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7486 "0582 Error %d during els sgl post " 7487 "operation\n", rc); 7488 rc = -ENODEV; 7489 goto out_destroy_queue; 7490 } 7491 phba->sli4_hba.els_xri_cnt = rc; 7492 7493 if (phba->nvmet_support) { 7494 /* update host nvmet xri-sgl sizes and mappings */ 7495 rc = lpfc_sli4_nvmet_sgl_update(phba); 7496 if (unlikely(rc)) { 7497 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7498 "6308 Failed to update nvmet-sgl size " 7499 "and mapping: %d\n", rc); 7500 goto out_destroy_queue; 7501 } 7502 7503 /* register the nvmet sgl pool to the port */ 7504 rc = lpfc_sli4_repost_sgl_list( 7505 phba, 7506 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7507 phba->sli4_hba.nvmet_xri_cnt); 7508 if (unlikely(rc < 0)) { 7509 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7510 "3117 Error %d during nvmet " 7511 "sgl post\n", rc); 7512 rc = -ENODEV; 7513 goto out_destroy_queue; 7514 } 7515 phba->sli4_hba.nvmet_xri_cnt = rc; 7516 7517 cnt = phba->cfg_iocb_cnt * 1024; 7518 /* We need 1 iocbq for every SGL, for IO processing */ 7519 cnt += phba->sli4_hba.nvmet_xri_cnt; 7520 } else { 7521 /* update host scsi xri-sgl sizes and mappings */ 7522 rc = lpfc_sli4_scsi_sgl_update(phba); 7523 if (unlikely(rc)) { 7524 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7525 "6309 Failed to update scsi-sgl size " 7526 "and mapping: %d\n", rc); 7527 goto out_destroy_queue; 7528 } 7529 7530 /* update host nvme xri-sgl sizes and mappings */ 7531 rc = lpfc_sli4_nvme_sgl_update(phba); 7532 if (unlikely(rc)) { 7533 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7534 "6082 Failed to update nvme-sgl size " 7535 "and mapping: %d\n", rc); 7536 goto out_destroy_queue; 7537 } 7538 7539 cnt = phba->cfg_iocb_cnt * 1024; 7540 } 7541 7542 if (!phba->sli.iocbq_lookup) { 7543 /* Initialize and populate the iocb list per host */ 7544 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7545 "2821 initialize iocb list %d total %d\n", 7546 phba->cfg_iocb_cnt, cnt); 7547 rc = lpfc_init_iocb_list(phba, cnt); 7548 if (rc) { 7549 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7550 "1413 Failed to init iocb list.\n"); 7551 goto out_destroy_queue; 7552 } 7553 } 7554 7555 if (phba->nvmet_support) 7556 lpfc_nvmet_create_targetport(phba); 7557 7558 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7559 /* Post initial buffers to all RQs created */ 7560 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7561 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7562 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7563 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7564 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7565 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7566 rqbp->buffer_count = 0; 7567 7568 lpfc_post_rq_buffer( 7569 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7570 phba->sli4_hba.nvmet_mrq_data[i], 7571 phba->cfg_nvmet_mrq_post, i); 7572 } 7573 } 7574 7575 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 7576 /* register the allocated scsi sgl pool to the port */ 7577 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 7578 if (unlikely(rc)) { 7579 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7580 "0383 Error %d during scsi sgl post " 7581 "operation\n", rc); 7582 /* Some Scsi buffers were moved to abort scsi list */ 7583 /* A pci function reset will repost them */ 7584 rc = -ENODEV; 7585 goto out_destroy_queue; 7586 } 7587 } 7588 7589 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7590 (phba->nvmet_support == 0)) { 7591 7592 /* register the allocated nvme sgl pool to the port */ 7593 rc = lpfc_repost_nvme_sgl_list(phba); 7594 if (unlikely(rc)) { 7595 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7596 "6116 Error %d during nvme sgl post " 7597 "operation\n", rc); 7598 /* Some NVME buffers were moved to abort nvme list */ 7599 /* A pci function reset will repost them */ 7600 rc = -ENODEV; 7601 goto out_destroy_queue; 7602 } 7603 } 7604 7605 /* Post the rpi header region to the device. */ 7606 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7607 if (unlikely(rc)) { 7608 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7609 "0393 Error %d during rpi post operation\n", 7610 rc); 7611 rc = -ENODEV; 7612 goto out_destroy_queue; 7613 } 7614 lpfc_sli4_node_prep(phba); 7615 7616 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7617 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7618 /* 7619 * The FC Port needs to register FCFI (index 0) 7620 */ 7621 lpfc_reg_fcfi(phba, mboxq); 7622 mboxq->vport = phba->pport; 7623 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7624 if (rc != MBX_SUCCESS) 7625 goto out_unset_queue; 7626 rc = 0; 7627 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7628 &mboxq->u.mqe.un.reg_fcfi); 7629 } else { 7630 /* We are a NVME Target mode with MRQ > 1 */ 7631 7632 /* First register the FCFI */ 7633 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7634 mboxq->vport = phba->pport; 7635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7636 if (rc != MBX_SUCCESS) 7637 goto out_unset_queue; 7638 rc = 0; 7639 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7640 &mboxq->u.mqe.un.reg_fcfi_mrq); 7641 7642 /* Next register the MRQs */ 7643 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7644 mboxq->vport = phba->pport; 7645 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7646 if (rc != MBX_SUCCESS) 7647 goto out_unset_queue; 7648 rc = 0; 7649 } 7650 /* Check if the port is configured to be disabled */ 7651 lpfc_sli_read_link_ste(phba); 7652 } 7653 7654 /* Arm the CQs and then EQs on device */ 7655 lpfc_sli4_arm_cqeq_intr(phba); 7656 7657 /* Indicate device interrupt mode */ 7658 phba->sli4_hba.intr_enable = 1; 7659 7660 /* Allow asynchronous mailbox command to go through */ 7661 spin_lock_irq(&phba->hbalock); 7662 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7663 spin_unlock_irq(&phba->hbalock); 7664 7665 /* Post receive buffers to the device */ 7666 lpfc_sli4_rb_setup(phba); 7667 7668 /* Reset HBA FCF states after HBA reset */ 7669 phba->fcf.fcf_flag = 0; 7670 phba->fcf.current_rec.flag = 0; 7671 7672 /* Start the ELS watchdog timer */ 7673 mod_timer(&vport->els_tmofunc, 7674 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7675 7676 /* Start heart beat timer */ 7677 mod_timer(&phba->hb_tmofunc, 7678 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7679 phba->hb_outstanding = 0; 7680 phba->last_completion_time = jiffies; 7681 7682 /* Start error attention (ERATT) polling timer */ 7683 mod_timer(&phba->eratt_poll, 7684 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7685 7686 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7687 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7688 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7689 if (!rc) { 7690 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7691 "2829 This device supports " 7692 "Advanced Error Reporting (AER)\n"); 7693 spin_lock_irq(&phba->hbalock); 7694 phba->hba_flag |= HBA_AER_ENABLED; 7695 spin_unlock_irq(&phba->hbalock); 7696 } else { 7697 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7698 "2830 This device does not support " 7699 "Advanced Error Reporting (AER)\n"); 7700 phba->cfg_aer_support = 0; 7701 } 7702 rc = 0; 7703 } 7704 7705 /* 7706 * The port is ready, set the host's link state to LINK_DOWN 7707 * in preparation for link interrupts. 7708 */ 7709 spin_lock_irq(&phba->hbalock); 7710 phba->link_state = LPFC_LINK_DOWN; 7711 7712 /* Check if physical ports are trunked */ 7713 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7714 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7715 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7716 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7717 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7718 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7719 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7720 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7721 spin_unlock_irq(&phba->hbalock); 7722 7723 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7724 (phba->hba_flag & LINK_DISABLED)) { 7725 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7726 "3103 Adapter Link is disabled.\n"); 7727 lpfc_down_link(phba, mboxq); 7728 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7729 if (rc != MBX_SUCCESS) { 7730 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7731 "3104 Adapter failed to issue " 7732 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7733 goto out_unset_queue; 7734 } 7735 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7736 /* don't perform init_link on SLI4 FC port loopback test */ 7737 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7738 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7739 if (rc) 7740 goto out_unset_queue; 7741 } 7742 } 7743 mempool_free(mboxq, phba->mbox_mem_pool); 7744 return rc; 7745 out_unset_queue: 7746 /* Unset all the queues set up in this routine when error out */ 7747 lpfc_sli4_queue_unset(phba); 7748 out_destroy_queue: 7749 lpfc_free_iocb_list(phba); 7750 lpfc_sli4_queue_destroy(phba); 7751 out_stop_timers: 7752 lpfc_stop_hba_timers(phba); 7753 out_free_mbox: 7754 mempool_free(mboxq, phba->mbox_mem_pool); 7755 return rc; 7756 } 7757 7758 /** 7759 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7760 * @ptr: context object - pointer to hba structure. 7761 * 7762 * This is the callback function for mailbox timer. The mailbox 7763 * timer is armed when a new mailbox command is issued and the timer 7764 * is deleted when the mailbox complete. The function is called by 7765 * the kernel timer code when a mailbox does not complete within 7766 * expected time. This function wakes up the worker thread to 7767 * process the mailbox timeout and returns. All the processing is 7768 * done by the worker thread function lpfc_mbox_timeout_handler. 7769 **/ 7770 void 7771 lpfc_mbox_timeout(struct timer_list *t) 7772 { 7773 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7774 unsigned long iflag; 7775 uint32_t tmo_posted; 7776 7777 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7778 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7779 if (!tmo_posted) 7780 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7781 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7782 7783 if (!tmo_posted) 7784 lpfc_worker_wake_up(phba); 7785 return; 7786 } 7787 7788 /** 7789 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7790 * are pending 7791 * @phba: Pointer to HBA context object. 7792 * 7793 * This function checks if any mailbox completions are present on the mailbox 7794 * completion queue. 7795 **/ 7796 static bool 7797 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7798 { 7799 7800 uint32_t idx; 7801 struct lpfc_queue *mcq; 7802 struct lpfc_mcqe *mcqe; 7803 bool pending_completions = false; 7804 uint8_t qe_valid; 7805 7806 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7807 return false; 7808 7809 /* Check for completions on mailbox completion queue */ 7810 7811 mcq = phba->sli4_hba.mbx_cq; 7812 idx = mcq->hba_index; 7813 qe_valid = mcq->qe_valid; 7814 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) { 7815 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7816 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7817 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7818 pending_completions = true; 7819 break; 7820 } 7821 idx = (idx + 1) % mcq->entry_count; 7822 if (mcq->hba_index == idx) 7823 break; 7824 7825 /* if the index wrapped around, toggle the valid bit */ 7826 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7827 qe_valid = (qe_valid) ? 0 : 1; 7828 } 7829 return pending_completions; 7830 7831 } 7832 7833 /** 7834 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7835 * that were missed. 7836 * @phba: Pointer to HBA context object. 7837 * 7838 * For sli4, it is possible to miss an interrupt. As such mbox completions 7839 * maybe missed causing erroneous mailbox timeouts to occur. This function 7840 * checks to see if mbox completions are on the mailbox completion queue 7841 * and will process all the completions associated with the eq for the 7842 * mailbox completion queue. 7843 **/ 7844 bool 7845 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7846 { 7847 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7848 uint32_t eqidx; 7849 struct lpfc_queue *fpeq = NULL; 7850 struct lpfc_eqe *eqe; 7851 bool mbox_pending; 7852 7853 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7854 return false; 7855 7856 /* Find the eq associated with the mcq */ 7857 7858 if (sli4_hba->hba_eq) 7859 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7860 if (sli4_hba->hba_eq[eqidx]->queue_id == 7861 sli4_hba->mbx_cq->assoc_qid) { 7862 fpeq = sli4_hba->hba_eq[eqidx]; 7863 break; 7864 } 7865 if (!fpeq) 7866 return false; 7867 7868 /* Turn off interrupts from this EQ */ 7869 7870 sli4_hba->sli4_eq_clr_intr(fpeq); 7871 7872 /* Check to see if a mbox completion is pending */ 7873 7874 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7875 7876 /* 7877 * If a mbox completion is pending, process all the events on EQ 7878 * associated with the mbox completion queue (this could include 7879 * mailbox commands, async events, els commands, receive queue data 7880 * and fcp commands) 7881 */ 7882 7883 if (mbox_pending) 7884 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7885 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7886 fpeq->EQ_processed++; 7887 } 7888 7889 /* Always clear and re-arm the EQ */ 7890 7891 sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7892 7893 return mbox_pending; 7894 7895 } 7896 7897 /** 7898 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7899 * @phba: Pointer to HBA context object. 7900 * 7901 * This function is called from worker thread when a mailbox command times out. 7902 * The caller is not required to hold any locks. This function will reset the 7903 * HBA and recover all the pending commands. 7904 **/ 7905 void 7906 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7907 { 7908 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7909 MAILBOX_t *mb = NULL; 7910 7911 struct lpfc_sli *psli = &phba->sli; 7912 7913 /* If the mailbox completed, process the completion and return */ 7914 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7915 return; 7916 7917 if (pmbox != NULL) 7918 mb = &pmbox->u.mb; 7919 /* Check the pmbox pointer first. There is a race condition 7920 * between the mbox timeout handler getting executed in the 7921 * worklist and the mailbox actually completing. When this 7922 * race condition occurs, the mbox_active will be NULL. 7923 */ 7924 spin_lock_irq(&phba->hbalock); 7925 if (pmbox == NULL) { 7926 lpfc_printf_log(phba, KERN_WARNING, 7927 LOG_MBOX | LOG_SLI, 7928 "0353 Active Mailbox cleared - mailbox timeout " 7929 "exiting\n"); 7930 spin_unlock_irq(&phba->hbalock); 7931 return; 7932 } 7933 7934 /* Mbox cmd <mbxCommand> timeout */ 7935 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7936 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7937 mb->mbxCommand, 7938 phba->pport->port_state, 7939 phba->sli.sli_flag, 7940 phba->sli.mbox_active); 7941 spin_unlock_irq(&phba->hbalock); 7942 7943 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7944 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7945 * it to fail all outstanding SCSI IO. 7946 */ 7947 spin_lock_irq(&phba->pport->work_port_lock); 7948 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7949 spin_unlock_irq(&phba->pport->work_port_lock); 7950 spin_lock_irq(&phba->hbalock); 7951 phba->link_state = LPFC_LINK_UNKNOWN; 7952 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7953 spin_unlock_irq(&phba->hbalock); 7954 7955 lpfc_sli_abort_fcp_rings(phba); 7956 7957 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7958 "0345 Resetting board due to mailbox timeout\n"); 7959 7960 /* Reset the HBA device */ 7961 lpfc_reset_hba(phba); 7962 } 7963 7964 /** 7965 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7966 * @phba: Pointer to HBA context object. 7967 * @pmbox: Pointer to mailbox object. 7968 * @flag: Flag indicating how the mailbox need to be processed. 7969 * 7970 * This function is called by discovery code and HBA management code 7971 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7972 * function gets the hbalock to protect the data structures. 7973 * The mailbox command can be submitted in polling mode, in which case 7974 * this function will wait in a polling loop for the completion of the 7975 * mailbox. 7976 * If the mailbox is submitted in no_wait mode (not polling) the 7977 * function will submit the command and returns immediately without waiting 7978 * for the mailbox completion. The no_wait is supported only when HBA 7979 * is in SLI2/SLI3 mode - interrupts are enabled. 7980 * The SLI interface allows only one mailbox pending at a time. If the 7981 * mailbox is issued in polling mode and there is already a mailbox 7982 * pending, then the function will return an error. If the mailbox is issued 7983 * in NO_WAIT mode and there is a mailbox pending already, the function 7984 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7985 * The sli layer owns the mailbox object until the completion of mailbox 7986 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7987 * return codes the caller owns the mailbox command after the return of 7988 * the function. 7989 **/ 7990 static int 7991 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7992 uint32_t flag) 7993 { 7994 MAILBOX_t *mbx; 7995 struct lpfc_sli *psli = &phba->sli; 7996 uint32_t status, evtctr; 7997 uint32_t ha_copy, hc_copy; 7998 int i; 7999 unsigned long timeout; 8000 unsigned long drvr_flag = 0; 8001 uint32_t word0, ldata; 8002 void __iomem *to_slim; 8003 int processing_queue = 0; 8004 8005 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8006 if (!pmbox) { 8007 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8008 /* processing mbox queue from intr_handler */ 8009 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8010 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8011 return MBX_SUCCESS; 8012 } 8013 processing_queue = 1; 8014 pmbox = lpfc_mbox_get(phba); 8015 if (!pmbox) { 8016 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8017 return MBX_SUCCESS; 8018 } 8019 } 8020 8021 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8022 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8023 if(!pmbox->vport) { 8024 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8025 lpfc_printf_log(phba, KERN_ERR, 8026 LOG_MBOX | LOG_VPORT, 8027 "1806 Mbox x%x failed. No vport\n", 8028 pmbox->u.mb.mbxCommand); 8029 dump_stack(); 8030 goto out_not_finished; 8031 } 8032 } 8033 8034 /* If the PCI channel is in offline state, do not post mbox. */ 8035 if (unlikely(pci_channel_offline(phba->pcidev))) { 8036 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8037 goto out_not_finished; 8038 } 8039 8040 /* If HBA has a deferred error attention, fail the iocb. */ 8041 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8042 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8043 goto out_not_finished; 8044 } 8045 8046 psli = &phba->sli; 8047 8048 mbx = &pmbox->u.mb; 8049 status = MBX_SUCCESS; 8050 8051 if (phba->link_state == LPFC_HBA_ERROR) { 8052 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8053 8054 /* Mbox command <mbxCommand> cannot issue */ 8055 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8056 "(%d):0311 Mailbox command x%x cannot " 8057 "issue Data: x%x x%x\n", 8058 pmbox->vport ? pmbox->vport->vpi : 0, 8059 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8060 goto out_not_finished; 8061 } 8062 8063 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8064 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8065 !(hc_copy & HC_MBINT_ENA)) { 8066 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8067 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8068 "(%d):2528 Mailbox command x%x cannot " 8069 "issue Data: x%x x%x\n", 8070 pmbox->vport ? pmbox->vport->vpi : 0, 8071 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8072 goto out_not_finished; 8073 } 8074 } 8075 8076 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8077 /* Polling for a mbox command when another one is already active 8078 * is not allowed in SLI. Also, the driver must have established 8079 * SLI2 mode to queue and process multiple mbox commands. 8080 */ 8081 8082 if (flag & MBX_POLL) { 8083 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8084 8085 /* Mbox command <mbxCommand> cannot issue */ 8086 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8087 "(%d):2529 Mailbox command x%x " 8088 "cannot issue Data: x%x x%x\n", 8089 pmbox->vport ? pmbox->vport->vpi : 0, 8090 pmbox->u.mb.mbxCommand, 8091 psli->sli_flag, flag); 8092 goto out_not_finished; 8093 } 8094 8095 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8096 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8097 /* Mbox command <mbxCommand> cannot issue */ 8098 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8099 "(%d):2530 Mailbox command x%x " 8100 "cannot issue Data: x%x x%x\n", 8101 pmbox->vport ? pmbox->vport->vpi : 0, 8102 pmbox->u.mb.mbxCommand, 8103 psli->sli_flag, flag); 8104 goto out_not_finished; 8105 } 8106 8107 /* Another mailbox command is still being processed, queue this 8108 * command to be processed later. 8109 */ 8110 lpfc_mbox_put(phba, pmbox); 8111 8112 /* Mbox cmd issue - BUSY */ 8113 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8114 "(%d):0308 Mbox cmd issue - BUSY Data: " 8115 "x%x x%x x%x x%x\n", 8116 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8117 mbx->mbxCommand, 8118 phba->pport ? phba->pport->port_state : 0xff, 8119 psli->sli_flag, flag); 8120 8121 psli->slistat.mbox_busy++; 8122 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8123 8124 if (pmbox->vport) { 8125 lpfc_debugfs_disc_trc(pmbox->vport, 8126 LPFC_DISC_TRC_MBOX_VPORT, 8127 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8128 (uint32_t)mbx->mbxCommand, 8129 mbx->un.varWords[0], mbx->un.varWords[1]); 8130 } 8131 else { 8132 lpfc_debugfs_disc_trc(phba->pport, 8133 LPFC_DISC_TRC_MBOX, 8134 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8135 (uint32_t)mbx->mbxCommand, 8136 mbx->un.varWords[0], mbx->un.varWords[1]); 8137 } 8138 8139 return MBX_BUSY; 8140 } 8141 8142 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8143 8144 /* If we are not polling, we MUST be in SLI2 mode */ 8145 if (flag != MBX_POLL) { 8146 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8147 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8148 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8149 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8150 /* Mbox command <mbxCommand> cannot issue */ 8151 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8152 "(%d):2531 Mailbox command x%x " 8153 "cannot issue Data: x%x x%x\n", 8154 pmbox->vport ? pmbox->vport->vpi : 0, 8155 pmbox->u.mb.mbxCommand, 8156 psli->sli_flag, flag); 8157 goto out_not_finished; 8158 } 8159 /* timeout active mbox command */ 8160 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8161 1000); 8162 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8163 } 8164 8165 /* Mailbox cmd <cmd> issue */ 8166 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8167 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8168 "x%x\n", 8169 pmbox->vport ? pmbox->vport->vpi : 0, 8170 mbx->mbxCommand, 8171 phba->pport ? phba->pport->port_state : 0xff, 8172 psli->sli_flag, flag); 8173 8174 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8175 if (pmbox->vport) { 8176 lpfc_debugfs_disc_trc(pmbox->vport, 8177 LPFC_DISC_TRC_MBOX_VPORT, 8178 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8179 (uint32_t)mbx->mbxCommand, 8180 mbx->un.varWords[0], mbx->un.varWords[1]); 8181 } 8182 else { 8183 lpfc_debugfs_disc_trc(phba->pport, 8184 LPFC_DISC_TRC_MBOX, 8185 "MBOX Send: cmd:x%x mb:x%x x%x", 8186 (uint32_t)mbx->mbxCommand, 8187 mbx->un.varWords[0], mbx->un.varWords[1]); 8188 } 8189 } 8190 8191 psli->slistat.mbox_cmd++; 8192 evtctr = psli->slistat.mbox_event; 8193 8194 /* next set own bit for the adapter and copy over command word */ 8195 mbx->mbxOwner = OWN_CHIP; 8196 8197 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8198 /* Populate mbox extension offset word. */ 8199 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8200 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8201 = (uint8_t *)phba->mbox_ext 8202 - (uint8_t *)phba->mbox; 8203 } 8204 8205 /* Copy the mailbox extension data */ 8206 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8207 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8208 (uint8_t *)phba->mbox_ext, 8209 pmbox->in_ext_byte_len); 8210 } 8211 /* Copy command data to host SLIM area */ 8212 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8213 } else { 8214 /* Populate mbox extension offset word. */ 8215 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8216 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8217 = MAILBOX_HBA_EXT_OFFSET; 8218 8219 /* Copy the mailbox extension data */ 8220 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8221 lpfc_memcpy_to_slim(phba->MBslimaddr + 8222 MAILBOX_HBA_EXT_OFFSET, 8223 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8224 8225 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8226 /* copy command data into host mbox for cmpl */ 8227 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8228 MAILBOX_CMD_SIZE); 8229 8230 /* First copy mbox command data to HBA SLIM, skip past first 8231 word */ 8232 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8233 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8234 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8235 8236 /* Next copy over first word, with mbxOwner set */ 8237 ldata = *((uint32_t *)mbx); 8238 to_slim = phba->MBslimaddr; 8239 writel(ldata, to_slim); 8240 readl(to_slim); /* flush */ 8241 8242 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8243 /* switch over to host mailbox */ 8244 psli->sli_flag |= LPFC_SLI_ACTIVE; 8245 } 8246 8247 wmb(); 8248 8249 switch (flag) { 8250 case MBX_NOWAIT: 8251 /* Set up reference to mailbox command */ 8252 psli->mbox_active = pmbox; 8253 /* Interrupt board to do it */ 8254 writel(CA_MBATT, phba->CAregaddr); 8255 readl(phba->CAregaddr); /* flush */ 8256 /* Don't wait for it to finish, just return */ 8257 break; 8258 8259 case MBX_POLL: 8260 /* Set up null reference to mailbox command */ 8261 psli->mbox_active = NULL; 8262 /* Interrupt board to do it */ 8263 writel(CA_MBATT, phba->CAregaddr); 8264 readl(phba->CAregaddr); /* flush */ 8265 8266 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8267 /* First read mbox status word */ 8268 word0 = *((uint32_t *)phba->mbox); 8269 word0 = le32_to_cpu(word0); 8270 } else { 8271 /* First read mbox status word */ 8272 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8273 spin_unlock_irqrestore(&phba->hbalock, 8274 drvr_flag); 8275 goto out_not_finished; 8276 } 8277 } 8278 8279 /* Read the HBA Host Attention Register */ 8280 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8281 spin_unlock_irqrestore(&phba->hbalock, 8282 drvr_flag); 8283 goto out_not_finished; 8284 } 8285 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8286 1000) + jiffies; 8287 i = 0; 8288 /* Wait for command to complete */ 8289 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8290 (!(ha_copy & HA_MBATT) && 8291 (phba->link_state > LPFC_WARM_START))) { 8292 if (time_after(jiffies, timeout)) { 8293 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8294 spin_unlock_irqrestore(&phba->hbalock, 8295 drvr_flag); 8296 goto out_not_finished; 8297 } 8298 8299 /* Check if we took a mbox interrupt while we were 8300 polling */ 8301 if (((word0 & OWN_CHIP) != OWN_CHIP) 8302 && (evtctr != psli->slistat.mbox_event)) 8303 break; 8304 8305 if (i++ > 10) { 8306 spin_unlock_irqrestore(&phba->hbalock, 8307 drvr_flag); 8308 msleep(1); 8309 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8310 } 8311 8312 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8313 /* First copy command data */ 8314 word0 = *((uint32_t *)phba->mbox); 8315 word0 = le32_to_cpu(word0); 8316 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8317 MAILBOX_t *slimmb; 8318 uint32_t slimword0; 8319 /* Check real SLIM for any errors */ 8320 slimword0 = readl(phba->MBslimaddr); 8321 slimmb = (MAILBOX_t *) & slimword0; 8322 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8323 && slimmb->mbxStatus) { 8324 psli->sli_flag &= 8325 ~LPFC_SLI_ACTIVE; 8326 word0 = slimword0; 8327 } 8328 } 8329 } else { 8330 /* First copy command data */ 8331 word0 = readl(phba->MBslimaddr); 8332 } 8333 /* Read the HBA Host Attention Register */ 8334 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8335 spin_unlock_irqrestore(&phba->hbalock, 8336 drvr_flag); 8337 goto out_not_finished; 8338 } 8339 } 8340 8341 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8342 /* copy results back to user */ 8343 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8344 MAILBOX_CMD_SIZE); 8345 /* Copy the mailbox extension data */ 8346 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8347 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8348 pmbox->ctx_buf, 8349 pmbox->out_ext_byte_len); 8350 } 8351 } else { 8352 /* First copy command data */ 8353 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8354 MAILBOX_CMD_SIZE); 8355 /* Copy the mailbox extension data */ 8356 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8357 lpfc_memcpy_from_slim( 8358 pmbox->ctx_buf, 8359 phba->MBslimaddr + 8360 MAILBOX_HBA_EXT_OFFSET, 8361 pmbox->out_ext_byte_len); 8362 } 8363 } 8364 8365 writel(HA_MBATT, phba->HAregaddr); 8366 readl(phba->HAregaddr); /* flush */ 8367 8368 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8369 status = mbx->mbxStatus; 8370 } 8371 8372 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8373 return status; 8374 8375 out_not_finished: 8376 if (processing_queue) { 8377 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8378 lpfc_mbox_cmpl_put(phba, pmbox); 8379 } 8380 return MBX_NOT_FINISHED; 8381 } 8382 8383 /** 8384 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8385 * @phba: Pointer to HBA context object. 8386 * 8387 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8388 * the driver internal pending mailbox queue. It will then try to wait out the 8389 * possible outstanding mailbox command before return. 8390 * 8391 * Returns: 8392 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8393 * the outstanding mailbox command timed out. 8394 **/ 8395 static int 8396 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8397 { 8398 struct lpfc_sli *psli = &phba->sli; 8399 int rc = 0; 8400 unsigned long timeout = 0; 8401 8402 /* Mark the asynchronous mailbox command posting as blocked */ 8403 spin_lock_irq(&phba->hbalock); 8404 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8405 /* Determine how long we might wait for the active mailbox 8406 * command to be gracefully completed by firmware. 8407 */ 8408 if (phba->sli.mbox_active) 8409 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8410 phba->sli.mbox_active) * 8411 1000) + jiffies; 8412 spin_unlock_irq(&phba->hbalock); 8413 8414 /* Make sure the mailbox is really active */ 8415 if (timeout) 8416 lpfc_sli4_process_missed_mbox_completions(phba); 8417 8418 /* Wait for the outstnading mailbox command to complete */ 8419 while (phba->sli.mbox_active) { 8420 /* Check active mailbox complete status every 2ms */ 8421 msleep(2); 8422 if (time_after(jiffies, timeout)) { 8423 /* Timeout, marked the outstanding cmd not complete */ 8424 rc = 1; 8425 break; 8426 } 8427 } 8428 8429 /* Can not cleanly block async mailbox command, fails it */ 8430 if (rc) { 8431 spin_lock_irq(&phba->hbalock); 8432 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8433 spin_unlock_irq(&phba->hbalock); 8434 } 8435 return rc; 8436 } 8437 8438 /** 8439 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8440 * @phba: Pointer to HBA context object. 8441 * 8442 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8443 * commands from the driver internal pending mailbox queue. It makes sure 8444 * that there is no outstanding mailbox command before resuming posting 8445 * asynchronous mailbox commands. If, for any reason, there is outstanding 8446 * mailbox command, it will try to wait it out before resuming asynchronous 8447 * mailbox command posting. 8448 **/ 8449 static void 8450 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8451 { 8452 struct lpfc_sli *psli = &phba->sli; 8453 8454 spin_lock_irq(&phba->hbalock); 8455 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8456 /* Asynchronous mailbox posting is not blocked, do nothing */ 8457 spin_unlock_irq(&phba->hbalock); 8458 return; 8459 } 8460 8461 /* Outstanding synchronous mailbox command is guaranteed to be done, 8462 * successful or timeout, after timing-out the outstanding mailbox 8463 * command shall always be removed, so just unblock posting async 8464 * mailbox command and resume 8465 */ 8466 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8467 spin_unlock_irq(&phba->hbalock); 8468 8469 /* wake up worker thread to post asynchronlous mailbox command */ 8470 lpfc_worker_wake_up(phba); 8471 } 8472 8473 /** 8474 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8475 * @phba: Pointer to HBA context object. 8476 * @mboxq: Pointer to mailbox object. 8477 * 8478 * The function waits for the bootstrap mailbox register ready bit from 8479 * port for twice the regular mailbox command timeout value. 8480 * 8481 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8482 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8483 **/ 8484 static int 8485 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8486 { 8487 uint32_t db_ready; 8488 unsigned long timeout; 8489 struct lpfc_register bmbx_reg; 8490 8491 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8492 * 1000) + jiffies; 8493 8494 do { 8495 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8496 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8497 if (!db_ready) 8498 msleep(2); 8499 8500 if (time_after(jiffies, timeout)) 8501 return MBXERR_ERROR; 8502 } while (!db_ready); 8503 8504 return 0; 8505 } 8506 8507 /** 8508 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8509 * @phba: Pointer to HBA context object. 8510 * @mboxq: Pointer to mailbox object. 8511 * 8512 * The function posts a mailbox to the port. The mailbox is expected 8513 * to be comletely filled in and ready for the port to operate on it. 8514 * This routine executes a synchronous completion operation on the 8515 * mailbox by polling for its completion. 8516 * 8517 * The caller must not be holding any locks when calling this routine. 8518 * 8519 * Returns: 8520 * MBX_SUCCESS - mailbox posted successfully 8521 * Any of the MBX error values. 8522 **/ 8523 static int 8524 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8525 { 8526 int rc = MBX_SUCCESS; 8527 unsigned long iflag; 8528 uint32_t mcqe_status; 8529 uint32_t mbx_cmnd; 8530 struct lpfc_sli *psli = &phba->sli; 8531 struct lpfc_mqe *mb = &mboxq->u.mqe; 8532 struct lpfc_bmbx_create *mbox_rgn; 8533 struct dma_address *dma_address; 8534 8535 /* 8536 * Only one mailbox can be active to the bootstrap mailbox region 8537 * at a time and there is no queueing provided. 8538 */ 8539 spin_lock_irqsave(&phba->hbalock, iflag); 8540 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8541 spin_unlock_irqrestore(&phba->hbalock, iflag); 8542 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8543 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8544 "cannot issue Data: x%x x%x\n", 8545 mboxq->vport ? mboxq->vport->vpi : 0, 8546 mboxq->u.mb.mbxCommand, 8547 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8548 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8549 psli->sli_flag, MBX_POLL); 8550 return MBXERR_ERROR; 8551 } 8552 /* The server grabs the token and owns it until release */ 8553 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8554 phba->sli.mbox_active = mboxq; 8555 spin_unlock_irqrestore(&phba->hbalock, iflag); 8556 8557 /* wait for bootstrap mbox register for readyness */ 8558 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8559 if (rc) 8560 goto exit; 8561 8562 /* 8563 * Initialize the bootstrap memory region to avoid stale data areas 8564 * in the mailbox post. Then copy the caller's mailbox contents to 8565 * the bmbx mailbox region. 8566 */ 8567 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8568 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8569 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8570 sizeof(struct lpfc_mqe)); 8571 8572 /* Post the high mailbox dma address to the port and wait for ready. */ 8573 dma_address = &phba->sli4_hba.bmbx.dma_address; 8574 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8575 8576 /* wait for bootstrap mbox register for hi-address write done */ 8577 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8578 if (rc) 8579 goto exit; 8580 8581 /* Post the low mailbox dma address to the port. */ 8582 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8583 8584 /* wait for bootstrap mbox register for low address write done */ 8585 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8586 if (rc) 8587 goto exit; 8588 8589 /* 8590 * Read the CQ to ensure the mailbox has completed. 8591 * If so, update the mailbox status so that the upper layers 8592 * can complete the request normally. 8593 */ 8594 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8595 sizeof(struct lpfc_mqe)); 8596 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8597 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8598 sizeof(struct lpfc_mcqe)); 8599 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8600 /* 8601 * When the CQE status indicates a failure and the mailbox status 8602 * indicates success then copy the CQE status into the mailbox status 8603 * (and prefix it with x4000). 8604 */ 8605 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8606 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8607 bf_set(lpfc_mqe_status, mb, 8608 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8609 rc = MBXERR_ERROR; 8610 } else 8611 lpfc_sli4_swap_str(phba, mboxq); 8612 8613 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8614 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8615 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8616 " x%x x%x CQ: x%x x%x x%x x%x\n", 8617 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8618 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8619 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8620 bf_get(lpfc_mqe_status, mb), 8621 mb->un.mb_words[0], mb->un.mb_words[1], 8622 mb->un.mb_words[2], mb->un.mb_words[3], 8623 mb->un.mb_words[4], mb->un.mb_words[5], 8624 mb->un.mb_words[6], mb->un.mb_words[7], 8625 mb->un.mb_words[8], mb->un.mb_words[9], 8626 mb->un.mb_words[10], mb->un.mb_words[11], 8627 mb->un.mb_words[12], mboxq->mcqe.word0, 8628 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8629 mboxq->mcqe.trailer); 8630 exit: 8631 /* We are holding the token, no needed for lock when release */ 8632 spin_lock_irqsave(&phba->hbalock, iflag); 8633 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8634 phba->sli.mbox_active = NULL; 8635 spin_unlock_irqrestore(&phba->hbalock, iflag); 8636 return rc; 8637 } 8638 8639 /** 8640 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8641 * @phba: Pointer to HBA context object. 8642 * @pmbox: Pointer to mailbox object. 8643 * @flag: Flag indicating how the mailbox need to be processed. 8644 * 8645 * This function is called by discovery code and HBA management code to submit 8646 * a mailbox command to firmware with SLI-4 interface spec. 8647 * 8648 * Return codes the caller owns the mailbox command after the return of the 8649 * function. 8650 **/ 8651 static int 8652 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8653 uint32_t flag) 8654 { 8655 struct lpfc_sli *psli = &phba->sli; 8656 unsigned long iflags; 8657 int rc; 8658 8659 /* dump from issue mailbox command if setup */ 8660 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8661 8662 rc = lpfc_mbox_dev_check(phba); 8663 if (unlikely(rc)) { 8664 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8665 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8666 "cannot issue Data: x%x x%x\n", 8667 mboxq->vport ? mboxq->vport->vpi : 0, 8668 mboxq->u.mb.mbxCommand, 8669 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8670 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8671 psli->sli_flag, flag); 8672 goto out_not_finished; 8673 } 8674 8675 /* Detect polling mode and jump to a handler */ 8676 if (!phba->sli4_hba.intr_enable) { 8677 if (flag == MBX_POLL) 8678 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8679 else 8680 rc = -EIO; 8681 if (rc != MBX_SUCCESS) 8682 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8683 "(%d):2541 Mailbox command x%x " 8684 "(x%x/x%x) failure: " 8685 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8686 "Data: x%x x%x\n,", 8687 mboxq->vport ? mboxq->vport->vpi : 0, 8688 mboxq->u.mb.mbxCommand, 8689 lpfc_sli_config_mbox_subsys_get(phba, 8690 mboxq), 8691 lpfc_sli_config_mbox_opcode_get(phba, 8692 mboxq), 8693 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8694 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8695 bf_get(lpfc_mcqe_ext_status, 8696 &mboxq->mcqe), 8697 psli->sli_flag, flag); 8698 return rc; 8699 } else if (flag == MBX_POLL) { 8700 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8701 "(%d):2542 Try to issue mailbox command " 8702 "x%x (x%x/x%x) synchronously ahead of async " 8703 "mailbox command queue: x%x x%x\n", 8704 mboxq->vport ? mboxq->vport->vpi : 0, 8705 mboxq->u.mb.mbxCommand, 8706 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8707 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8708 psli->sli_flag, flag); 8709 /* Try to block the asynchronous mailbox posting */ 8710 rc = lpfc_sli4_async_mbox_block(phba); 8711 if (!rc) { 8712 /* Successfully blocked, now issue sync mbox cmd */ 8713 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8714 if (rc != MBX_SUCCESS) 8715 lpfc_printf_log(phba, KERN_WARNING, 8716 LOG_MBOX | LOG_SLI, 8717 "(%d):2597 Sync Mailbox command " 8718 "x%x (x%x/x%x) failure: " 8719 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8720 "Data: x%x x%x\n,", 8721 mboxq->vport ? mboxq->vport->vpi : 0, 8722 mboxq->u.mb.mbxCommand, 8723 lpfc_sli_config_mbox_subsys_get(phba, 8724 mboxq), 8725 lpfc_sli_config_mbox_opcode_get(phba, 8726 mboxq), 8727 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8728 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8729 bf_get(lpfc_mcqe_ext_status, 8730 &mboxq->mcqe), 8731 psli->sli_flag, flag); 8732 /* Unblock the async mailbox posting afterward */ 8733 lpfc_sli4_async_mbox_unblock(phba); 8734 } 8735 return rc; 8736 } 8737 8738 /* Now, interrupt mode asynchrous mailbox command */ 8739 rc = lpfc_mbox_cmd_check(phba, mboxq); 8740 if (rc) { 8741 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8742 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8743 "cannot issue Data: x%x x%x\n", 8744 mboxq->vport ? mboxq->vport->vpi : 0, 8745 mboxq->u.mb.mbxCommand, 8746 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8747 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8748 psli->sli_flag, flag); 8749 goto out_not_finished; 8750 } 8751 8752 /* Put the mailbox command to the driver internal FIFO */ 8753 psli->slistat.mbox_busy++; 8754 spin_lock_irqsave(&phba->hbalock, iflags); 8755 lpfc_mbox_put(phba, mboxq); 8756 spin_unlock_irqrestore(&phba->hbalock, iflags); 8757 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8758 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8759 "x%x (x%x/x%x) x%x x%x x%x\n", 8760 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8761 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8762 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8763 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8764 phba->pport->port_state, 8765 psli->sli_flag, MBX_NOWAIT); 8766 /* Wake up worker thread to transport mailbox command from head */ 8767 lpfc_worker_wake_up(phba); 8768 8769 return MBX_BUSY; 8770 8771 out_not_finished: 8772 return MBX_NOT_FINISHED; 8773 } 8774 8775 /** 8776 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8777 * @phba: Pointer to HBA context object. 8778 * 8779 * This function is called by worker thread to send a mailbox command to 8780 * SLI4 HBA firmware. 8781 * 8782 **/ 8783 int 8784 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8785 { 8786 struct lpfc_sli *psli = &phba->sli; 8787 LPFC_MBOXQ_t *mboxq; 8788 int rc = MBX_SUCCESS; 8789 unsigned long iflags; 8790 struct lpfc_mqe *mqe; 8791 uint32_t mbx_cmnd; 8792 8793 /* Check interrupt mode before post async mailbox command */ 8794 if (unlikely(!phba->sli4_hba.intr_enable)) 8795 return MBX_NOT_FINISHED; 8796 8797 /* Check for mailbox command service token */ 8798 spin_lock_irqsave(&phba->hbalock, iflags); 8799 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8800 spin_unlock_irqrestore(&phba->hbalock, iflags); 8801 return MBX_NOT_FINISHED; 8802 } 8803 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8804 spin_unlock_irqrestore(&phba->hbalock, iflags); 8805 return MBX_NOT_FINISHED; 8806 } 8807 if (unlikely(phba->sli.mbox_active)) { 8808 spin_unlock_irqrestore(&phba->hbalock, iflags); 8809 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8810 "0384 There is pending active mailbox cmd\n"); 8811 return MBX_NOT_FINISHED; 8812 } 8813 /* Take the mailbox command service token */ 8814 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8815 8816 /* Get the next mailbox command from head of queue */ 8817 mboxq = lpfc_mbox_get(phba); 8818 8819 /* If no more mailbox command waiting for post, we're done */ 8820 if (!mboxq) { 8821 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8822 spin_unlock_irqrestore(&phba->hbalock, iflags); 8823 return MBX_SUCCESS; 8824 } 8825 phba->sli.mbox_active = mboxq; 8826 spin_unlock_irqrestore(&phba->hbalock, iflags); 8827 8828 /* Check device readiness for posting mailbox command */ 8829 rc = lpfc_mbox_dev_check(phba); 8830 if (unlikely(rc)) 8831 /* Driver clean routine will clean up pending mailbox */ 8832 goto out_not_finished; 8833 8834 /* Prepare the mbox command to be posted */ 8835 mqe = &mboxq->u.mqe; 8836 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8837 8838 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8839 mod_timer(&psli->mbox_tmo, (jiffies + 8840 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8841 8842 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8843 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8844 "x%x x%x\n", 8845 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8846 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8847 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8848 phba->pport->port_state, psli->sli_flag); 8849 8850 if (mbx_cmnd != MBX_HEARTBEAT) { 8851 if (mboxq->vport) { 8852 lpfc_debugfs_disc_trc(mboxq->vport, 8853 LPFC_DISC_TRC_MBOX_VPORT, 8854 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8855 mbx_cmnd, mqe->un.mb_words[0], 8856 mqe->un.mb_words[1]); 8857 } else { 8858 lpfc_debugfs_disc_trc(phba->pport, 8859 LPFC_DISC_TRC_MBOX, 8860 "MBOX Send: cmd:x%x mb:x%x x%x", 8861 mbx_cmnd, mqe->un.mb_words[0], 8862 mqe->un.mb_words[1]); 8863 } 8864 } 8865 psli->slistat.mbox_cmd++; 8866 8867 /* Post the mailbox command to the port */ 8868 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8869 if (rc != MBX_SUCCESS) { 8870 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8871 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8872 "cannot issue Data: x%x x%x\n", 8873 mboxq->vport ? mboxq->vport->vpi : 0, 8874 mboxq->u.mb.mbxCommand, 8875 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8876 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8877 psli->sli_flag, MBX_NOWAIT); 8878 goto out_not_finished; 8879 } 8880 8881 return rc; 8882 8883 out_not_finished: 8884 spin_lock_irqsave(&phba->hbalock, iflags); 8885 if (phba->sli.mbox_active) { 8886 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8887 __lpfc_mbox_cmpl_put(phba, mboxq); 8888 /* Release the token */ 8889 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8890 phba->sli.mbox_active = NULL; 8891 } 8892 spin_unlock_irqrestore(&phba->hbalock, iflags); 8893 8894 return MBX_NOT_FINISHED; 8895 } 8896 8897 /** 8898 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8899 * @phba: Pointer to HBA context object. 8900 * @pmbox: Pointer to mailbox object. 8901 * @flag: Flag indicating how the mailbox need to be processed. 8902 * 8903 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8904 * the API jump table function pointer from the lpfc_hba struct. 8905 * 8906 * Return codes the caller owns the mailbox command after the return of the 8907 * function. 8908 **/ 8909 int 8910 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8911 { 8912 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8913 } 8914 8915 /** 8916 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8917 * @phba: The hba struct for which this call is being executed. 8918 * @dev_grp: The HBA PCI-Device group number. 8919 * 8920 * This routine sets up the mbox interface API function jump table in @phba 8921 * struct. 8922 * Returns: 0 - success, -ENODEV - failure. 8923 **/ 8924 int 8925 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8926 { 8927 8928 switch (dev_grp) { 8929 case LPFC_PCI_DEV_LP: 8930 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8931 phba->lpfc_sli_handle_slow_ring_event = 8932 lpfc_sli_handle_slow_ring_event_s3; 8933 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8934 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8935 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8936 break; 8937 case LPFC_PCI_DEV_OC: 8938 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8939 phba->lpfc_sli_handle_slow_ring_event = 8940 lpfc_sli_handle_slow_ring_event_s4; 8941 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8942 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8943 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8944 break; 8945 default: 8946 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8947 "1420 Invalid HBA PCI-device group: 0x%x\n", 8948 dev_grp); 8949 return -ENODEV; 8950 break; 8951 } 8952 return 0; 8953 } 8954 8955 /** 8956 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8957 * @phba: Pointer to HBA context object. 8958 * @pring: Pointer to driver SLI ring object. 8959 * @piocb: Pointer to address of newly added command iocb. 8960 * 8961 * This function is called with hbalock held to add a command 8962 * iocb to the txq when SLI layer cannot submit the command iocb 8963 * to the ring. 8964 **/ 8965 void 8966 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8967 struct lpfc_iocbq *piocb) 8968 { 8969 lockdep_assert_held(&phba->hbalock); 8970 /* Insert the caller's iocb in the txq tail for later processing. */ 8971 list_add_tail(&piocb->list, &pring->txq); 8972 } 8973 8974 /** 8975 * lpfc_sli_next_iocb - Get the next iocb in the txq 8976 * @phba: Pointer to HBA context object. 8977 * @pring: Pointer to driver SLI ring object. 8978 * @piocb: Pointer to address of newly added command iocb. 8979 * 8980 * This function is called with hbalock held before a new 8981 * iocb is submitted to the firmware. This function checks 8982 * txq to flush the iocbs in txq to Firmware before 8983 * submitting new iocbs to the Firmware. 8984 * If there are iocbs in the txq which need to be submitted 8985 * to firmware, lpfc_sli_next_iocb returns the first element 8986 * of the txq after dequeuing it from txq. 8987 * If there is no iocb in the txq then the function will return 8988 * *piocb and *piocb is set to NULL. Caller needs to check 8989 * *piocb to find if there are more commands in the txq. 8990 **/ 8991 static struct lpfc_iocbq * 8992 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8993 struct lpfc_iocbq **piocb) 8994 { 8995 struct lpfc_iocbq * nextiocb; 8996 8997 lockdep_assert_held(&phba->hbalock); 8998 8999 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9000 if (!nextiocb) { 9001 nextiocb = *piocb; 9002 *piocb = NULL; 9003 } 9004 9005 return nextiocb; 9006 } 9007 9008 /** 9009 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9010 * @phba: Pointer to HBA context object. 9011 * @ring_number: SLI ring number to issue iocb on. 9012 * @piocb: Pointer to command iocb. 9013 * @flag: Flag indicating if this command can be put into txq. 9014 * 9015 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9016 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9017 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9018 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9019 * this function allows only iocbs for posting buffers. This function finds 9020 * next available slot in the command ring and posts the command to the 9021 * available slot and writes the port attention register to request HBA start 9022 * processing new iocb. If there is no slot available in the ring and 9023 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9024 * the function returns IOCB_BUSY. 9025 * 9026 * This function is called with hbalock held. The function will return success 9027 * after it successfully submit the iocb to firmware or after adding to the 9028 * txq. 9029 **/ 9030 static int 9031 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9032 struct lpfc_iocbq *piocb, uint32_t flag) 9033 { 9034 struct lpfc_iocbq *nextiocb; 9035 IOCB_t *iocb; 9036 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9037 9038 lockdep_assert_held(&phba->hbalock); 9039 9040 if (piocb->iocb_cmpl && (!piocb->vport) && 9041 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9042 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9043 lpfc_printf_log(phba, KERN_ERR, 9044 LOG_SLI | LOG_VPORT, 9045 "1807 IOCB x%x failed. No vport\n", 9046 piocb->iocb.ulpCommand); 9047 dump_stack(); 9048 return IOCB_ERROR; 9049 } 9050 9051 9052 /* If the PCI channel is in offline state, do not post iocbs. */ 9053 if (unlikely(pci_channel_offline(phba->pcidev))) 9054 return IOCB_ERROR; 9055 9056 /* If HBA has a deferred error attention, fail the iocb. */ 9057 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9058 return IOCB_ERROR; 9059 9060 /* 9061 * We should never get an IOCB if we are in a < LINK_DOWN state 9062 */ 9063 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9064 return IOCB_ERROR; 9065 9066 /* 9067 * Check to see if we are blocking IOCB processing because of a 9068 * outstanding event. 9069 */ 9070 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9071 goto iocb_busy; 9072 9073 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9074 /* 9075 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9076 * can be issued if the link is not up. 9077 */ 9078 switch (piocb->iocb.ulpCommand) { 9079 case CMD_GEN_REQUEST64_CR: 9080 case CMD_GEN_REQUEST64_CX: 9081 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9082 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9083 FC_RCTL_DD_UNSOL_CMD) || 9084 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9085 MENLO_TRANSPORT_TYPE)) 9086 9087 goto iocb_busy; 9088 break; 9089 case CMD_QUE_RING_BUF_CN: 9090 case CMD_QUE_RING_BUF64_CN: 9091 /* 9092 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9093 * completion, iocb_cmpl MUST be 0. 9094 */ 9095 if (piocb->iocb_cmpl) 9096 piocb->iocb_cmpl = NULL; 9097 /*FALLTHROUGH*/ 9098 case CMD_CREATE_XRI_CR: 9099 case CMD_CLOSE_XRI_CN: 9100 case CMD_CLOSE_XRI_CX: 9101 break; 9102 default: 9103 goto iocb_busy; 9104 } 9105 9106 /* 9107 * For FCP commands, we must be in a state where we can process link 9108 * attention events. 9109 */ 9110 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9111 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9112 goto iocb_busy; 9113 } 9114 9115 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9116 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9117 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9118 9119 if (iocb) 9120 lpfc_sli_update_ring(phba, pring); 9121 else 9122 lpfc_sli_update_full_ring(phba, pring); 9123 9124 if (!piocb) 9125 return IOCB_SUCCESS; 9126 9127 goto out_busy; 9128 9129 iocb_busy: 9130 pring->stats.iocb_cmd_delay++; 9131 9132 out_busy: 9133 9134 if (!(flag & SLI_IOCB_RET_IOCB)) { 9135 __lpfc_sli_ringtx_put(phba, pring, piocb); 9136 return IOCB_SUCCESS; 9137 } 9138 9139 return IOCB_BUSY; 9140 } 9141 9142 /** 9143 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9144 * @phba: Pointer to HBA context object. 9145 * @piocb: Pointer to command iocb. 9146 * @sglq: Pointer to the scatter gather queue object. 9147 * 9148 * This routine converts the bpl or bde that is in the IOCB 9149 * to a sgl list for the sli4 hardware. The physical address 9150 * of the bpl/bde is converted back to a virtual address. 9151 * If the IOCB contains a BPL then the list of BDE's is 9152 * converted to sli4_sge's. If the IOCB contains a single 9153 * BDE then it is converted to a single sli_sge. 9154 * The IOCB is still in cpu endianess so the contents of 9155 * the bpl can be used without byte swapping. 9156 * 9157 * Returns valid XRI = Success, NO_XRI = Failure. 9158 **/ 9159 static uint16_t 9160 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9161 struct lpfc_sglq *sglq) 9162 { 9163 uint16_t xritag = NO_XRI; 9164 struct ulp_bde64 *bpl = NULL; 9165 struct ulp_bde64 bde; 9166 struct sli4_sge *sgl = NULL; 9167 struct lpfc_dmabuf *dmabuf; 9168 IOCB_t *icmd; 9169 int numBdes = 0; 9170 int i = 0; 9171 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9172 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9173 9174 if (!piocbq || !sglq) 9175 return xritag; 9176 9177 sgl = (struct sli4_sge *)sglq->sgl; 9178 icmd = &piocbq->iocb; 9179 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9180 return sglq->sli4_xritag; 9181 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9182 numBdes = icmd->un.genreq64.bdl.bdeSize / 9183 sizeof(struct ulp_bde64); 9184 /* The addrHigh and addrLow fields within the IOCB 9185 * have not been byteswapped yet so there is no 9186 * need to swap them back. 9187 */ 9188 if (piocbq->context3) 9189 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9190 else 9191 return xritag; 9192 9193 bpl = (struct ulp_bde64 *)dmabuf->virt; 9194 if (!bpl) 9195 return xritag; 9196 9197 for (i = 0; i < numBdes; i++) { 9198 /* Should already be byte swapped. */ 9199 sgl->addr_hi = bpl->addrHigh; 9200 sgl->addr_lo = bpl->addrLow; 9201 9202 sgl->word2 = le32_to_cpu(sgl->word2); 9203 if ((i+1) == numBdes) 9204 bf_set(lpfc_sli4_sge_last, sgl, 1); 9205 else 9206 bf_set(lpfc_sli4_sge_last, sgl, 0); 9207 /* swap the size field back to the cpu so we 9208 * can assign it to the sgl. 9209 */ 9210 bde.tus.w = le32_to_cpu(bpl->tus.w); 9211 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9212 /* The offsets in the sgl need to be accumulated 9213 * separately for the request and reply lists. 9214 * The request is always first, the reply follows. 9215 */ 9216 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9217 /* add up the reply sg entries */ 9218 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9219 inbound++; 9220 /* first inbound? reset the offset */ 9221 if (inbound == 1) 9222 offset = 0; 9223 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9224 bf_set(lpfc_sli4_sge_type, sgl, 9225 LPFC_SGE_TYPE_DATA); 9226 offset += bde.tus.f.bdeSize; 9227 } 9228 sgl->word2 = cpu_to_le32(sgl->word2); 9229 bpl++; 9230 sgl++; 9231 } 9232 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9233 /* The addrHigh and addrLow fields of the BDE have not 9234 * been byteswapped yet so they need to be swapped 9235 * before putting them in the sgl. 9236 */ 9237 sgl->addr_hi = 9238 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9239 sgl->addr_lo = 9240 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9241 sgl->word2 = le32_to_cpu(sgl->word2); 9242 bf_set(lpfc_sli4_sge_last, sgl, 1); 9243 sgl->word2 = cpu_to_le32(sgl->word2); 9244 sgl->sge_len = 9245 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9246 } 9247 return sglq->sli4_xritag; 9248 } 9249 9250 /** 9251 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9252 * @phba: Pointer to HBA context object. 9253 * @piocb: Pointer to command iocb. 9254 * @wqe: Pointer to the work queue entry. 9255 * 9256 * This routine converts the iocb command to its Work Queue Entry 9257 * equivalent. The wqe pointer should not have any fields set when 9258 * this routine is called because it will memcpy over them. 9259 * This routine does not set the CQ_ID or the WQEC bits in the 9260 * wqe. 9261 * 9262 * Returns: 0 = Success, IOCB_ERROR = Failure. 9263 **/ 9264 static int 9265 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9266 union lpfc_wqe128 *wqe) 9267 { 9268 uint32_t xmit_len = 0, total_len = 0; 9269 uint8_t ct = 0; 9270 uint32_t fip; 9271 uint32_t abort_tag; 9272 uint8_t command_type = ELS_COMMAND_NON_FIP; 9273 uint8_t cmnd; 9274 uint16_t xritag; 9275 uint16_t abrt_iotag; 9276 struct lpfc_iocbq *abrtiocbq; 9277 struct ulp_bde64 *bpl = NULL; 9278 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9279 int numBdes, i; 9280 struct ulp_bde64 bde; 9281 struct lpfc_nodelist *ndlp; 9282 uint32_t *pcmd; 9283 uint32_t if_type; 9284 9285 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9286 /* The fcp commands will set command type */ 9287 if (iocbq->iocb_flag & LPFC_IO_FCP) 9288 command_type = FCP_COMMAND; 9289 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9290 command_type = ELS_COMMAND_FIP; 9291 else 9292 command_type = ELS_COMMAND_NON_FIP; 9293 9294 if (phba->fcp_embed_io) 9295 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9296 /* Some of the fields are in the right position already */ 9297 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9298 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 9299 /* The ct field has moved so reset */ 9300 wqe->generic.wqe_com.word7 = 0; 9301 wqe->generic.wqe_com.word10 = 0; 9302 } 9303 9304 abort_tag = (uint32_t) iocbq->iotag; 9305 xritag = iocbq->sli4_xritag; 9306 /* words0-2 bpl convert bde */ 9307 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9308 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9309 sizeof(struct ulp_bde64); 9310 bpl = (struct ulp_bde64 *) 9311 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9312 if (!bpl) 9313 return IOCB_ERROR; 9314 9315 /* Should already be byte swapped. */ 9316 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9317 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9318 /* swap the size field back to the cpu so we 9319 * can assign it to the sgl. 9320 */ 9321 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9322 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9323 total_len = 0; 9324 for (i = 0; i < numBdes; i++) { 9325 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9326 total_len += bde.tus.f.bdeSize; 9327 } 9328 } else 9329 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9330 9331 iocbq->iocb.ulpIoTag = iocbq->iotag; 9332 cmnd = iocbq->iocb.ulpCommand; 9333 9334 switch (iocbq->iocb.ulpCommand) { 9335 case CMD_ELS_REQUEST64_CR: 9336 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9337 ndlp = iocbq->context_un.ndlp; 9338 else 9339 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9340 if (!iocbq->iocb.ulpLe) { 9341 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9342 "2007 Only Limited Edition cmd Format" 9343 " supported 0x%x\n", 9344 iocbq->iocb.ulpCommand); 9345 return IOCB_ERROR; 9346 } 9347 9348 wqe->els_req.payload_len = xmit_len; 9349 /* Els_reguest64 has a TMO */ 9350 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9351 iocbq->iocb.ulpTimeout); 9352 /* Need a VF for word 4 set the vf bit*/ 9353 bf_set(els_req64_vf, &wqe->els_req, 0); 9354 /* And a VFID for word 12 */ 9355 bf_set(els_req64_vfid, &wqe->els_req, 0); 9356 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9357 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9358 iocbq->iocb.ulpContext); 9359 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9360 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9361 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9362 if (command_type == ELS_COMMAND_FIP) 9363 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9364 >> LPFC_FIP_ELS_ID_SHIFT); 9365 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9366 iocbq->context2)->virt); 9367 if_type = bf_get(lpfc_sli_intf_if_type, 9368 &phba->sli4_hba.sli_intf); 9369 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9370 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9371 *pcmd == ELS_CMD_SCR || 9372 *pcmd == ELS_CMD_FDISC || 9373 *pcmd == ELS_CMD_LOGO || 9374 *pcmd == ELS_CMD_PLOGI)) { 9375 bf_set(els_req64_sp, &wqe->els_req, 1); 9376 bf_set(els_req64_sid, &wqe->els_req, 9377 iocbq->vport->fc_myDID); 9378 if ((*pcmd == ELS_CMD_FLOGI) && 9379 !(phba->fc_topology == 9380 LPFC_TOPOLOGY_LOOP)) 9381 bf_set(els_req64_sid, &wqe->els_req, 0); 9382 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9383 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9384 phba->vpi_ids[iocbq->vport->vpi]); 9385 } else if (pcmd && iocbq->context1) { 9386 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9387 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9388 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9389 } 9390 } 9391 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9392 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9393 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9394 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9395 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9396 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9397 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9398 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9399 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9400 break; 9401 case CMD_XMIT_SEQUENCE64_CX: 9402 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9403 iocbq->iocb.un.ulpWord[3]); 9404 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9405 iocbq->iocb.unsli3.rcvsli3.ox_id); 9406 /* The entire sequence is transmitted for this IOCB */ 9407 xmit_len = total_len; 9408 cmnd = CMD_XMIT_SEQUENCE64_CR; 9409 if (phba->link_flag & LS_LOOPBACK_MODE) 9410 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9411 case CMD_XMIT_SEQUENCE64_CR: 9412 /* word3 iocb=io_tag32 wqe=reserved */ 9413 wqe->xmit_sequence.rsvd3 = 0; 9414 /* word4 relative_offset memcpy */ 9415 /* word5 r_ctl/df_ctl memcpy */ 9416 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9417 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9418 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9419 LPFC_WQE_IOD_WRITE); 9420 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9421 LPFC_WQE_LENLOC_WORD12); 9422 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9423 wqe->xmit_sequence.xmit_len = xmit_len; 9424 command_type = OTHER_COMMAND; 9425 break; 9426 case CMD_XMIT_BCAST64_CN: 9427 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9428 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9429 /* word4 iocb=rsvd wqe=rsvd */ 9430 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9431 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9432 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9433 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9434 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9435 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9436 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9437 LPFC_WQE_LENLOC_WORD3); 9438 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9439 break; 9440 case CMD_FCP_IWRITE64_CR: 9441 command_type = FCP_COMMAND_DATA_OUT; 9442 /* word3 iocb=iotag wqe=payload_offset_len */ 9443 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9444 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9445 xmit_len + sizeof(struct fcp_rsp)); 9446 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9447 0); 9448 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9449 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9450 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9451 iocbq->iocb.ulpFCP2Rcvy); 9452 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9453 /* Always open the exchange */ 9454 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9455 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9456 LPFC_WQE_LENLOC_WORD4); 9457 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9458 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9459 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9460 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9461 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9462 if (iocbq->priority) { 9463 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9464 (iocbq->priority << 1)); 9465 } else { 9466 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9467 (phba->cfg_XLanePriority << 1)); 9468 } 9469 } 9470 /* Note, word 10 is already initialized to 0 */ 9471 9472 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9473 if (phba->cfg_enable_pbde) 9474 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9475 else 9476 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9477 9478 if (phba->fcp_embed_io) { 9479 struct lpfc_scsi_buf *lpfc_cmd; 9480 struct sli4_sge *sgl; 9481 struct fcp_cmnd *fcp_cmnd; 9482 uint32_t *ptr; 9483 9484 /* 128 byte wqe support here */ 9485 9486 lpfc_cmd = iocbq->context1; 9487 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9488 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9489 9490 /* Word 0-2 - FCP_CMND */ 9491 wqe->generic.bde.tus.f.bdeFlags = 9492 BUFF_TYPE_BDE_IMMED; 9493 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9494 wqe->generic.bde.addrHigh = 0; 9495 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9496 9497 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9498 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9499 9500 /* Word 22-29 FCP CMND Payload */ 9501 ptr = &wqe->words[22]; 9502 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9503 } 9504 break; 9505 case CMD_FCP_IREAD64_CR: 9506 /* word3 iocb=iotag wqe=payload_offset_len */ 9507 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9508 bf_set(payload_offset_len, &wqe->fcp_iread, 9509 xmit_len + sizeof(struct fcp_rsp)); 9510 bf_set(cmd_buff_len, &wqe->fcp_iread, 9511 0); 9512 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9513 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9514 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9515 iocbq->iocb.ulpFCP2Rcvy); 9516 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9517 /* Always open the exchange */ 9518 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9519 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9520 LPFC_WQE_LENLOC_WORD4); 9521 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9522 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9523 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9524 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9525 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9526 if (iocbq->priority) { 9527 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9528 (iocbq->priority << 1)); 9529 } else { 9530 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9531 (phba->cfg_XLanePriority << 1)); 9532 } 9533 } 9534 /* Note, word 10 is already initialized to 0 */ 9535 9536 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9537 if (phba->cfg_enable_pbde) 9538 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9539 else 9540 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9541 9542 if (phba->fcp_embed_io) { 9543 struct lpfc_scsi_buf *lpfc_cmd; 9544 struct sli4_sge *sgl; 9545 struct fcp_cmnd *fcp_cmnd; 9546 uint32_t *ptr; 9547 9548 /* 128 byte wqe support here */ 9549 9550 lpfc_cmd = iocbq->context1; 9551 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9552 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9553 9554 /* Word 0-2 - FCP_CMND */ 9555 wqe->generic.bde.tus.f.bdeFlags = 9556 BUFF_TYPE_BDE_IMMED; 9557 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9558 wqe->generic.bde.addrHigh = 0; 9559 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9560 9561 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9562 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9563 9564 /* Word 22-29 FCP CMND Payload */ 9565 ptr = &wqe->words[22]; 9566 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9567 } 9568 break; 9569 case CMD_FCP_ICMND64_CR: 9570 /* word3 iocb=iotag wqe=payload_offset_len */ 9571 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9572 bf_set(payload_offset_len, &wqe->fcp_icmd, 9573 xmit_len + sizeof(struct fcp_rsp)); 9574 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9575 0); 9576 /* word3 iocb=IO_TAG wqe=reserved */ 9577 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9578 /* Always open the exchange */ 9579 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9580 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9581 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9582 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9583 LPFC_WQE_LENLOC_NONE); 9584 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9585 iocbq->iocb.ulpFCP2Rcvy); 9586 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9587 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9588 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9589 if (iocbq->priority) { 9590 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9591 (iocbq->priority << 1)); 9592 } else { 9593 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9594 (phba->cfg_XLanePriority << 1)); 9595 } 9596 } 9597 /* Note, word 10 is already initialized to 0 */ 9598 9599 if (phba->fcp_embed_io) { 9600 struct lpfc_scsi_buf *lpfc_cmd; 9601 struct sli4_sge *sgl; 9602 struct fcp_cmnd *fcp_cmnd; 9603 uint32_t *ptr; 9604 9605 /* 128 byte wqe support here */ 9606 9607 lpfc_cmd = iocbq->context1; 9608 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9609 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9610 9611 /* Word 0-2 - FCP_CMND */ 9612 wqe->generic.bde.tus.f.bdeFlags = 9613 BUFF_TYPE_BDE_IMMED; 9614 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9615 wqe->generic.bde.addrHigh = 0; 9616 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9617 9618 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9619 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9620 9621 /* Word 22-29 FCP CMND Payload */ 9622 ptr = &wqe->words[22]; 9623 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9624 } 9625 break; 9626 case CMD_GEN_REQUEST64_CR: 9627 /* For this command calculate the xmit length of the 9628 * request bde. 9629 */ 9630 xmit_len = 0; 9631 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9632 sizeof(struct ulp_bde64); 9633 for (i = 0; i < numBdes; i++) { 9634 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9635 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9636 break; 9637 xmit_len += bde.tus.f.bdeSize; 9638 } 9639 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9640 wqe->gen_req.request_payload_len = xmit_len; 9641 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9642 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9643 /* word6 context tag copied in memcpy */ 9644 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9645 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9646 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9647 "2015 Invalid CT %x command 0x%x\n", 9648 ct, iocbq->iocb.ulpCommand); 9649 return IOCB_ERROR; 9650 } 9651 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9652 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9653 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9654 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9655 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9656 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9657 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9658 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9659 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9660 command_type = OTHER_COMMAND; 9661 break; 9662 case CMD_XMIT_ELS_RSP64_CX: 9663 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9664 /* words0-2 BDE memcpy */ 9665 /* word3 iocb=iotag32 wqe=response_payload_len */ 9666 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9667 /* word4 */ 9668 wqe->xmit_els_rsp.word4 = 0; 9669 /* word5 iocb=rsvd wge=did */ 9670 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9671 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9672 9673 if_type = bf_get(lpfc_sli_intf_if_type, 9674 &phba->sli4_hba.sli_intf); 9675 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9676 if (iocbq->vport->fc_flag & FC_PT2PT) { 9677 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9678 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9679 iocbq->vport->fc_myDID); 9680 if (iocbq->vport->fc_myDID == Fabric_DID) { 9681 bf_set(wqe_els_did, 9682 &wqe->xmit_els_rsp.wqe_dest, 0); 9683 } 9684 } 9685 } 9686 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9687 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9688 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9689 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9690 iocbq->iocb.unsli3.rcvsli3.ox_id); 9691 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9692 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9693 phba->vpi_ids[iocbq->vport->vpi]); 9694 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9695 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9696 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9697 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9698 LPFC_WQE_LENLOC_WORD3); 9699 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9700 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9701 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9702 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9703 iocbq->context2)->virt); 9704 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9705 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9706 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9707 iocbq->vport->fc_myDID); 9708 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9709 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9710 phba->vpi_ids[phba->pport->vpi]); 9711 } 9712 command_type = OTHER_COMMAND; 9713 break; 9714 case CMD_CLOSE_XRI_CN: 9715 case CMD_ABORT_XRI_CN: 9716 case CMD_ABORT_XRI_CX: 9717 /* words 0-2 memcpy should be 0 rserved */ 9718 /* port will send abts */ 9719 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9720 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9721 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9722 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9723 } else 9724 fip = 0; 9725 9726 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9727 /* 9728 * The link is down, or the command was ELS_FIP 9729 * so the fw does not need to send abts 9730 * on the wire. 9731 */ 9732 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9733 else 9734 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9735 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9736 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9737 wqe->abort_cmd.rsrvd5 = 0; 9738 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9739 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9740 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9741 /* 9742 * The abort handler will send us CMD_ABORT_XRI_CN or 9743 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9744 */ 9745 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9746 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9747 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9748 LPFC_WQE_LENLOC_NONE); 9749 cmnd = CMD_ABORT_XRI_CX; 9750 command_type = OTHER_COMMAND; 9751 xritag = 0; 9752 break; 9753 case CMD_XMIT_BLS_RSP64_CX: 9754 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9755 /* As BLS ABTS RSP WQE is very different from other WQEs, 9756 * we re-construct this WQE here based on information in 9757 * iocbq from scratch. 9758 */ 9759 memset(wqe, 0, sizeof(union lpfc_wqe)); 9760 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9761 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9762 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9763 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9764 LPFC_ABTS_UNSOL_INT) { 9765 /* ABTS sent by initiator to CT exchange, the 9766 * RX_ID field will be filled with the newly 9767 * allocated responder XRI. 9768 */ 9769 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9770 iocbq->sli4_xritag); 9771 } else { 9772 /* ABTS sent by responder to CT exchange, the 9773 * RX_ID field will be filled with the responder 9774 * RX_ID from ABTS. 9775 */ 9776 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9777 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9778 } 9779 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9780 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9781 9782 /* Use CT=VPI */ 9783 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9784 ndlp->nlp_DID); 9785 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9786 iocbq->iocb.ulpContext); 9787 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9788 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9789 phba->vpi_ids[phba->pport->vpi]); 9790 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9791 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9792 LPFC_WQE_LENLOC_NONE); 9793 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9794 command_type = OTHER_COMMAND; 9795 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9796 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9797 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9798 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9799 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9800 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9801 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9802 } 9803 9804 break; 9805 case CMD_SEND_FRAME: 9806 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9807 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9808 return 0; 9809 case CMD_XRI_ABORTED_CX: 9810 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9811 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9812 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9813 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9814 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9815 default: 9816 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9817 "2014 Invalid command 0x%x\n", 9818 iocbq->iocb.ulpCommand); 9819 return IOCB_ERROR; 9820 break; 9821 } 9822 9823 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9824 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9825 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9826 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9827 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9828 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9829 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9830 LPFC_IO_DIF_INSERT); 9831 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9832 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9833 wqe->generic.wqe_com.abort_tag = abort_tag; 9834 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9835 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9836 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9837 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9838 return 0; 9839 } 9840 9841 /** 9842 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9843 * @phba: Pointer to HBA context object. 9844 * @ring_number: SLI ring number to issue iocb on. 9845 * @piocb: Pointer to command iocb. 9846 * @flag: Flag indicating if this command can be put into txq. 9847 * 9848 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9849 * an iocb command to an HBA with SLI-4 interface spec. 9850 * 9851 * This function is called with hbalock held. The function will return success 9852 * after it successfully submit the iocb to firmware or after adding to the 9853 * txq. 9854 **/ 9855 static int 9856 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9857 struct lpfc_iocbq *piocb, uint32_t flag) 9858 { 9859 struct lpfc_sglq *sglq; 9860 union lpfc_wqe128 wqe; 9861 struct lpfc_queue *wq; 9862 struct lpfc_sli_ring *pring; 9863 9864 /* Get the WQ */ 9865 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9866 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9867 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9868 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9869 else 9870 wq = phba->sli4_hba.oas_wq; 9871 } else { 9872 wq = phba->sli4_hba.els_wq; 9873 } 9874 9875 /* Get corresponding ring */ 9876 pring = wq->pring; 9877 9878 /* 9879 * The WQE can be either 64 or 128 bytes, 9880 */ 9881 9882 lockdep_assert_held(&phba->hbalock); 9883 9884 if (piocb->sli4_xritag == NO_XRI) { 9885 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9886 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9887 sglq = NULL; 9888 else { 9889 if (!list_empty(&pring->txq)) { 9890 if (!(flag & SLI_IOCB_RET_IOCB)) { 9891 __lpfc_sli_ringtx_put(phba, 9892 pring, piocb); 9893 return IOCB_SUCCESS; 9894 } else { 9895 return IOCB_BUSY; 9896 } 9897 } else { 9898 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9899 if (!sglq) { 9900 if (!(flag & SLI_IOCB_RET_IOCB)) { 9901 __lpfc_sli_ringtx_put(phba, 9902 pring, 9903 piocb); 9904 return IOCB_SUCCESS; 9905 } else 9906 return IOCB_BUSY; 9907 } 9908 } 9909 } 9910 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9911 /* These IO's already have an XRI and a mapped sgl. */ 9912 sglq = NULL; 9913 else { 9914 /* 9915 * This is a continuation of a commandi,(CX) so this 9916 * sglq is on the active list 9917 */ 9918 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9919 if (!sglq) 9920 return IOCB_ERROR; 9921 } 9922 9923 if (sglq) { 9924 piocb->sli4_lxritag = sglq->sli4_lxritag; 9925 piocb->sli4_xritag = sglq->sli4_xritag; 9926 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9927 return IOCB_ERROR; 9928 } 9929 9930 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 9931 return IOCB_ERROR; 9932 9933 if (lpfc_sli4_wq_put(wq, &wqe)) 9934 return IOCB_ERROR; 9935 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9936 9937 return 0; 9938 } 9939 9940 /** 9941 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9942 * 9943 * This routine wraps the actual lockless version for issusing IOCB function 9944 * pointer from the lpfc_hba struct. 9945 * 9946 * Return codes: 9947 * IOCB_ERROR - Error 9948 * IOCB_SUCCESS - Success 9949 * IOCB_BUSY - Busy 9950 **/ 9951 int 9952 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9953 struct lpfc_iocbq *piocb, uint32_t flag) 9954 { 9955 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9956 } 9957 9958 /** 9959 * lpfc_sli_api_table_setup - Set up sli api function jump table 9960 * @phba: The hba struct for which this call is being executed. 9961 * @dev_grp: The HBA PCI-Device group number. 9962 * 9963 * This routine sets up the SLI interface API function jump table in @phba 9964 * struct. 9965 * Returns: 0 - success, -ENODEV - failure. 9966 **/ 9967 int 9968 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9969 { 9970 9971 switch (dev_grp) { 9972 case LPFC_PCI_DEV_LP: 9973 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9974 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9975 break; 9976 case LPFC_PCI_DEV_OC: 9977 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9978 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9979 break; 9980 default: 9981 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9982 "1419 Invalid HBA PCI-device group: 0x%x\n", 9983 dev_grp); 9984 return -ENODEV; 9985 break; 9986 } 9987 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9988 return 0; 9989 } 9990 9991 /** 9992 * lpfc_sli4_calc_ring - Calculates which ring to use 9993 * @phba: Pointer to HBA context object. 9994 * @piocb: Pointer to command iocb. 9995 * 9996 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9997 * hba_wqidx, thus we need to calculate the corresponding ring. 9998 * Since ABORTS must go on the same WQ of the command they are 9999 * aborting, we use command's hba_wqidx. 10000 */ 10001 struct lpfc_sli_ring * 10002 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10003 { 10004 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10005 if (!(phba->cfg_fof) || 10006 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 10007 if (unlikely(!phba->sli4_hba.fcp_wq)) 10008 return NULL; 10009 /* 10010 * for abort iocb hba_wqidx should already 10011 * be setup based on what work queue we used. 10012 */ 10013 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10014 piocb->hba_wqidx = 10015 lpfc_sli4_scmd_to_wqidx_distr(phba, 10016 piocb->context1); 10017 piocb->hba_wqidx = piocb->hba_wqidx % 10018 phba->cfg_fcp_io_channel; 10019 } 10020 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 10021 } else { 10022 if (unlikely(!phba->sli4_hba.oas_wq)) 10023 return NULL; 10024 piocb->hba_wqidx = 0; 10025 return phba->sli4_hba.oas_wq->pring; 10026 } 10027 } else { 10028 if (unlikely(!phba->sli4_hba.els_wq)) 10029 return NULL; 10030 piocb->hba_wqidx = 0; 10031 return phba->sli4_hba.els_wq->pring; 10032 } 10033 } 10034 10035 /** 10036 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10037 * @phba: Pointer to HBA context object. 10038 * @pring: Pointer to driver SLI ring object. 10039 * @piocb: Pointer to command iocb. 10040 * @flag: Flag indicating if this command can be put into txq. 10041 * 10042 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10043 * function. This function gets the hbalock and calls 10044 * __lpfc_sli_issue_iocb function and will return the error returned 10045 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10046 * functions which do not hold hbalock. 10047 **/ 10048 int 10049 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10050 struct lpfc_iocbq *piocb, uint32_t flag) 10051 { 10052 struct lpfc_hba_eq_hdl *hba_eq_hdl; 10053 struct lpfc_sli_ring *pring; 10054 struct lpfc_queue *fpeq; 10055 struct lpfc_eqe *eqe; 10056 unsigned long iflags; 10057 int rc, idx; 10058 10059 if (phba->sli_rev == LPFC_SLI_REV4) { 10060 pring = lpfc_sli4_calc_ring(phba, piocb); 10061 if (unlikely(pring == NULL)) 10062 return IOCB_ERROR; 10063 10064 spin_lock_irqsave(&pring->ring_lock, iflags); 10065 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10066 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10067 10068 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 10069 idx = piocb->hba_wqidx; 10070 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 10071 10072 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 10073 10074 /* Get associated EQ with this index */ 10075 fpeq = phba->sli4_hba.hba_eq[idx]; 10076 10077 /* Turn off interrupts from this EQ */ 10078 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 10079 10080 /* 10081 * Process all the events on FCP EQ 10082 */ 10083 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 10084 lpfc_sli4_hba_handle_eqe(phba, 10085 eqe, idx); 10086 fpeq->EQ_processed++; 10087 } 10088 10089 /* Always clear and re-arm the EQ */ 10090 phba->sli4_hba.sli4_eq_release(fpeq, 10091 LPFC_QUEUE_REARM); 10092 } 10093 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 10094 } 10095 } else { 10096 /* For now, SLI2/3 will still use hbalock */ 10097 spin_lock_irqsave(&phba->hbalock, iflags); 10098 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10099 spin_unlock_irqrestore(&phba->hbalock, iflags); 10100 } 10101 return rc; 10102 } 10103 10104 /** 10105 * lpfc_extra_ring_setup - Extra ring setup function 10106 * @phba: Pointer to HBA context object. 10107 * 10108 * This function is called while driver attaches with the 10109 * HBA to setup the extra ring. The extra ring is used 10110 * only when driver needs to support target mode functionality 10111 * or IP over FC functionalities. 10112 * 10113 * This function is called with no lock held. SLI3 only. 10114 **/ 10115 static int 10116 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10117 { 10118 struct lpfc_sli *psli; 10119 struct lpfc_sli_ring *pring; 10120 10121 psli = &phba->sli; 10122 10123 /* Adjust cmd/rsp ring iocb entries more evenly */ 10124 10125 /* Take some away from the FCP ring */ 10126 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10127 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10128 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10129 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10130 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10131 10132 /* and give them to the extra ring */ 10133 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10134 10135 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10136 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10137 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10138 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10139 10140 /* Setup default profile for this ring */ 10141 pring->iotag_max = 4096; 10142 pring->num_mask = 1; 10143 pring->prt[0].profile = 0; /* Mask 0 */ 10144 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10145 pring->prt[0].type = phba->cfg_multi_ring_type; 10146 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10147 return 0; 10148 } 10149 10150 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10151 * @phba: Pointer to HBA context object. 10152 * @iocbq: Pointer to iocb object. 10153 * 10154 * The async_event handler calls this routine when it receives 10155 * an ASYNC_STATUS_CN event from the port. The port generates 10156 * this event when an Abort Sequence request to an rport fails 10157 * twice in succession. The abort could be originated by the 10158 * driver or by the port. The ABTS could have been for an ELS 10159 * or FCP IO. The port only generates this event when an ABTS 10160 * fails to complete after one retry. 10161 */ 10162 static void 10163 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10164 struct lpfc_iocbq *iocbq) 10165 { 10166 struct lpfc_nodelist *ndlp = NULL; 10167 uint16_t rpi = 0, vpi = 0; 10168 struct lpfc_vport *vport = NULL; 10169 10170 /* The rpi in the ulpContext is vport-sensitive. */ 10171 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10172 rpi = iocbq->iocb.ulpContext; 10173 10174 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10175 "3092 Port generated ABTS async event " 10176 "on vpi %d rpi %d status 0x%x\n", 10177 vpi, rpi, iocbq->iocb.ulpStatus); 10178 10179 vport = lpfc_find_vport_by_vpid(phba, vpi); 10180 if (!vport) 10181 goto err_exit; 10182 ndlp = lpfc_findnode_rpi(vport, rpi); 10183 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10184 goto err_exit; 10185 10186 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10187 lpfc_sli_abts_recover_port(vport, ndlp); 10188 return; 10189 10190 err_exit: 10191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10192 "3095 Event Context not found, no " 10193 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10194 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10195 vpi, rpi); 10196 } 10197 10198 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10199 * @phba: pointer to HBA context object. 10200 * @ndlp: nodelist pointer for the impacted rport. 10201 * @axri: pointer to the wcqe containing the failed exchange. 10202 * 10203 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10204 * port. The port generates this event when an abort exchange request to an 10205 * rport fails twice in succession with no reply. The abort could be originated 10206 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10207 */ 10208 void 10209 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10210 struct lpfc_nodelist *ndlp, 10211 struct sli4_wcqe_xri_aborted *axri) 10212 { 10213 struct lpfc_vport *vport; 10214 uint32_t ext_status = 0; 10215 10216 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10217 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10218 "3115 Node Context not found, driver " 10219 "ignoring abts err event\n"); 10220 return; 10221 } 10222 10223 vport = ndlp->vport; 10224 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10225 "3116 Port generated FCP XRI ABORT event on " 10226 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10227 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10228 bf_get(lpfc_wcqe_xa_xri, axri), 10229 bf_get(lpfc_wcqe_xa_status, axri), 10230 axri->parameter); 10231 10232 /* 10233 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10234 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10235 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10236 */ 10237 ext_status = axri->parameter & IOERR_PARAM_MASK; 10238 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10239 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10240 lpfc_sli_abts_recover_port(vport, ndlp); 10241 } 10242 10243 /** 10244 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10245 * @phba: Pointer to HBA context object. 10246 * @pring: Pointer to driver SLI ring object. 10247 * @iocbq: Pointer to iocb object. 10248 * 10249 * This function is called by the slow ring event handler 10250 * function when there is an ASYNC event iocb in the ring. 10251 * This function is called with no lock held. 10252 * Currently this function handles only temperature related 10253 * ASYNC events. The function decodes the temperature sensor 10254 * event message and posts events for the management applications. 10255 **/ 10256 static void 10257 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10258 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10259 { 10260 IOCB_t *icmd; 10261 uint16_t evt_code; 10262 struct temp_event temp_event_data; 10263 struct Scsi_Host *shost; 10264 uint32_t *iocb_w; 10265 10266 icmd = &iocbq->iocb; 10267 evt_code = icmd->un.asyncstat.evt_code; 10268 10269 switch (evt_code) { 10270 case ASYNC_TEMP_WARN: 10271 case ASYNC_TEMP_SAFE: 10272 temp_event_data.data = (uint32_t) icmd->ulpContext; 10273 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10274 if (evt_code == ASYNC_TEMP_WARN) { 10275 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10276 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10277 "0347 Adapter is very hot, please take " 10278 "corrective action. temperature : %d Celsius\n", 10279 (uint32_t) icmd->ulpContext); 10280 } else { 10281 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10282 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10283 "0340 Adapter temperature is OK now. " 10284 "temperature : %d Celsius\n", 10285 (uint32_t) icmd->ulpContext); 10286 } 10287 10288 /* Send temperature change event to applications */ 10289 shost = lpfc_shost_from_vport(phba->pport); 10290 fc_host_post_vendor_event(shost, fc_get_event_number(), 10291 sizeof(temp_event_data), (char *) &temp_event_data, 10292 LPFC_NL_VENDOR_ID); 10293 break; 10294 case ASYNC_STATUS_CN: 10295 lpfc_sli_abts_err_handler(phba, iocbq); 10296 break; 10297 default: 10298 iocb_w = (uint32_t *) icmd; 10299 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10300 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10301 " evt_code 0x%x\n" 10302 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10303 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10304 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10305 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10306 pring->ringno, icmd->un.asyncstat.evt_code, 10307 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10308 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10309 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10310 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10311 10312 break; 10313 } 10314 } 10315 10316 10317 /** 10318 * lpfc_sli4_setup - SLI ring setup function 10319 * @phba: Pointer to HBA context object. 10320 * 10321 * lpfc_sli_setup sets up rings of the SLI interface with 10322 * number of iocbs per ring and iotags. This function is 10323 * called while driver attach to the HBA and before the 10324 * interrupts are enabled. So there is no need for locking. 10325 * 10326 * This function always returns 0. 10327 **/ 10328 int 10329 lpfc_sli4_setup(struct lpfc_hba *phba) 10330 { 10331 struct lpfc_sli_ring *pring; 10332 10333 pring = phba->sli4_hba.els_wq->pring; 10334 pring->num_mask = LPFC_MAX_RING_MASK; 10335 pring->prt[0].profile = 0; /* Mask 0 */ 10336 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10337 pring->prt[0].type = FC_TYPE_ELS; 10338 pring->prt[0].lpfc_sli_rcv_unsol_event = 10339 lpfc_els_unsol_event; 10340 pring->prt[1].profile = 0; /* Mask 1 */ 10341 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10342 pring->prt[1].type = FC_TYPE_ELS; 10343 pring->prt[1].lpfc_sli_rcv_unsol_event = 10344 lpfc_els_unsol_event; 10345 pring->prt[2].profile = 0; /* Mask 2 */ 10346 /* NameServer Inquiry */ 10347 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10348 /* NameServer */ 10349 pring->prt[2].type = FC_TYPE_CT; 10350 pring->prt[2].lpfc_sli_rcv_unsol_event = 10351 lpfc_ct_unsol_event; 10352 pring->prt[3].profile = 0; /* Mask 3 */ 10353 /* NameServer response */ 10354 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10355 /* NameServer */ 10356 pring->prt[3].type = FC_TYPE_CT; 10357 pring->prt[3].lpfc_sli_rcv_unsol_event = 10358 lpfc_ct_unsol_event; 10359 return 0; 10360 } 10361 10362 /** 10363 * lpfc_sli_setup - SLI ring setup function 10364 * @phba: Pointer to HBA context object. 10365 * 10366 * lpfc_sli_setup sets up rings of the SLI interface with 10367 * number of iocbs per ring and iotags. This function is 10368 * called while driver attach to the HBA and before the 10369 * interrupts are enabled. So there is no need for locking. 10370 * 10371 * This function always returns 0. SLI3 only. 10372 **/ 10373 int 10374 lpfc_sli_setup(struct lpfc_hba *phba) 10375 { 10376 int i, totiocbsize = 0; 10377 struct lpfc_sli *psli = &phba->sli; 10378 struct lpfc_sli_ring *pring; 10379 10380 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10381 psli->sli_flag = 0; 10382 10383 psli->iocbq_lookup = NULL; 10384 psli->iocbq_lookup_len = 0; 10385 psli->last_iotag = 0; 10386 10387 for (i = 0; i < psli->num_rings; i++) { 10388 pring = &psli->sli3_ring[i]; 10389 switch (i) { 10390 case LPFC_FCP_RING: /* ring 0 - FCP */ 10391 /* numCiocb and numRiocb are used in config_port */ 10392 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10393 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10394 pring->sli.sli3.numCiocb += 10395 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10396 pring->sli.sli3.numRiocb += 10397 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10398 pring->sli.sli3.numCiocb += 10399 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10400 pring->sli.sli3.numRiocb += 10401 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10402 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10403 SLI3_IOCB_CMD_SIZE : 10404 SLI2_IOCB_CMD_SIZE; 10405 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10406 SLI3_IOCB_RSP_SIZE : 10407 SLI2_IOCB_RSP_SIZE; 10408 pring->iotag_ctr = 0; 10409 pring->iotag_max = 10410 (phba->cfg_hba_queue_depth * 2); 10411 pring->fast_iotag = pring->iotag_max; 10412 pring->num_mask = 0; 10413 break; 10414 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10415 /* numCiocb and numRiocb are used in config_port */ 10416 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10417 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10418 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10419 SLI3_IOCB_CMD_SIZE : 10420 SLI2_IOCB_CMD_SIZE; 10421 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10422 SLI3_IOCB_RSP_SIZE : 10423 SLI2_IOCB_RSP_SIZE; 10424 pring->iotag_max = phba->cfg_hba_queue_depth; 10425 pring->num_mask = 0; 10426 break; 10427 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10428 /* numCiocb and numRiocb are used in config_port */ 10429 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10430 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10431 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10432 SLI3_IOCB_CMD_SIZE : 10433 SLI2_IOCB_CMD_SIZE; 10434 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10435 SLI3_IOCB_RSP_SIZE : 10436 SLI2_IOCB_RSP_SIZE; 10437 pring->fast_iotag = 0; 10438 pring->iotag_ctr = 0; 10439 pring->iotag_max = 4096; 10440 pring->lpfc_sli_rcv_async_status = 10441 lpfc_sli_async_event_handler; 10442 pring->num_mask = LPFC_MAX_RING_MASK; 10443 pring->prt[0].profile = 0; /* Mask 0 */ 10444 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10445 pring->prt[0].type = FC_TYPE_ELS; 10446 pring->prt[0].lpfc_sli_rcv_unsol_event = 10447 lpfc_els_unsol_event; 10448 pring->prt[1].profile = 0; /* Mask 1 */ 10449 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10450 pring->prt[1].type = FC_TYPE_ELS; 10451 pring->prt[1].lpfc_sli_rcv_unsol_event = 10452 lpfc_els_unsol_event; 10453 pring->prt[2].profile = 0; /* Mask 2 */ 10454 /* NameServer Inquiry */ 10455 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10456 /* NameServer */ 10457 pring->prt[2].type = FC_TYPE_CT; 10458 pring->prt[2].lpfc_sli_rcv_unsol_event = 10459 lpfc_ct_unsol_event; 10460 pring->prt[3].profile = 0; /* Mask 3 */ 10461 /* NameServer response */ 10462 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10463 /* NameServer */ 10464 pring->prt[3].type = FC_TYPE_CT; 10465 pring->prt[3].lpfc_sli_rcv_unsol_event = 10466 lpfc_ct_unsol_event; 10467 break; 10468 } 10469 totiocbsize += (pring->sli.sli3.numCiocb * 10470 pring->sli.sli3.sizeCiocb) + 10471 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10472 } 10473 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10474 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10475 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10476 "SLI2 SLIM Data: x%x x%lx\n", 10477 phba->brd_no, totiocbsize, 10478 (unsigned long) MAX_SLIM_IOCB_SIZE); 10479 } 10480 if (phba->cfg_multi_ring_support == 2) 10481 lpfc_extra_ring_setup(phba); 10482 10483 return 0; 10484 } 10485 10486 /** 10487 * lpfc_sli4_queue_init - Queue initialization function 10488 * @phba: Pointer to HBA context object. 10489 * 10490 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10491 * ring. This function also initializes ring indices of each ring. 10492 * This function is called during the initialization of the SLI 10493 * interface of an HBA. 10494 * This function is called with no lock held and always returns 10495 * 1. 10496 **/ 10497 void 10498 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10499 { 10500 struct lpfc_sli *psli; 10501 struct lpfc_sli_ring *pring; 10502 int i; 10503 10504 psli = &phba->sli; 10505 spin_lock_irq(&phba->hbalock); 10506 INIT_LIST_HEAD(&psli->mboxq); 10507 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10508 /* Initialize list headers for txq and txcmplq as double linked lists */ 10509 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 10510 pring = phba->sli4_hba.fcp_wq[i]->pring; 10511 pring->flag = 0; 10512 pring->ringno = LPFC_FCP_RING; 10513 INIT_LIST_HEAD(&pring->txq); 10514 INIT_LIST_HEAD(&pring->txcmplq); 10515 INIT_LIST_HEAD(&pring->iocb_continueq); 10516 spin_lock_init(&pring->ring_lock); 10517 } 10518 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 10519 pring = phba->sli4_hba.nvme_wq[i]->pring; 10520 pring->flag = 0; 10521 pring->ringno = LPFC_FCP_RING; 10522 INIT_LIST_HEAD(&pring->txq); 10523 INIT_LIST_HEAD(&pring->txcmplq); 10524 INIT_LIST_HEAD(&pring->iocb_continueq); 10525 spin_lock_init(&pring->ring_lock); 10526 } 10527 pring = phba->sli4_hba.els_wq->pring; 10528 pring->flag = 0; 10529 pring->ringno = LPFC_ELS_RING; 10530 INIT_LIST_HEAD(&pring->txq); 10531 INIT_LIST_HEAD(&pring->txcmplq); 10532 INIT_LIST_HEAD(&pring->iocb_continueq); 10533 spin_lock_init(&pring->ring_lock); 10534 10535 if (phba->cfg_nvme_io_channel) { 10536 pring = phba->sli4_hba.nvmels_wq->pring; 10537 pring->flag = 0; 10538 pring->ringno = LPFC_ELS_RING; 10539 INIT_LIST_HEAD(&pring->txq); 10540 INIT_LIST_HEAD(&pring->txcmplq); 10541 INIT_LIST_HEAD(&pring->iocb_continueq); 10542 spin_lock_init(&pring->ring_lock); 10543 } 10544 10545 if (phba->cfg_fof) { 10546 pring = phba->sli4_hba.oas_wq->pring; 10547 pring->flag = 0; 10548 pring->ringno = LPFC_FCP_RING; 10549 INIT_LIST_HEAD(&pring->txq); 10550 INIT_LIST_HEAD(&pring->txcmplq); 10551 INIT_LIST_HEAD(&pring->iocb_continueq); 10552 spin_lock_init(&pring->ring_lock); 10553 } 10554 10555 spin_unlock_irq(&phba->hbalock); 10556 } 10557 10558 /** 10559 * lpfc_sli_queue_init - Queue initialization function 10560 * @phba: Pointer to HBA context object. 10561 * 10562 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10563 * ring. This function also initializes ring indices of each ring. 10564 * This function is called during the initialization of the SLI 10565 * interface of an HBA. 10566 * This function is called with no lock held and always returns 10567 * 1. 10568 **/ 10569 void 10570 lpfc_sli_queue_init(struct lpfc_hba *phba) 10571 { 10572 struct lpfc_sli *psli; 10573 struct lpfc_sli_ring *pring; 10574 int i; 10575 10576 psli = &phba->sli; 10577 spin_lock_irq(&phba->hbalock); 10578 INIT_LIST_HEAD(&psli->mboxq); 10579 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10580 /* Initialize list headers for txq and txcmplq as double linked lists */ 10581 for (i = 0; i < psli->num_rings; i++) { 10582 pring = &psli->sli3_ring[i]; 10583 pring->ringno = i; 10584 pring->sli.sli3.next_cmdidx = 0; 10585 pring->sli.sli3.local_getidx = 0; 10586 pring->sli.sli3.cmdidx = 0; 10587 INIT_LIST_HEAD(&pring->iocb_continueq); 10588 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10589 INIT_LIST_HEAD(&pring->postbufq); 10590 pring->flag = 0; 10591 INIT_LIST_HEAD(&pring->txq); 10592 INIT_LIST_HEAD(&pring->txcmplq); 10593 spin_lock_init(&pring->ring_lock); 10594 } 10595 spin_unlock_irq(&phba->hbalock); 10596 } 10597 10598 /** 10599 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10600 * @phba: Pointer to HBA context object. 10601 * 10602 * This routine flushes the mailbox command subsystem. It will unconditionally 10603 * flush all the mailbox commands in the three possible stages in the mailbox 10604 * command sub-system: pending mailbox command queue; the outstanding mailbox 10605 * command; and completed mailbox command queue. It is caller's responsibility 10606 * to make sure that the driver is in the proper state to flush the mailbox 10607 * command sub-system. Namely, the posting of mailbox commands into the 10608 * pending mailbox command queue from the various clients must be stopped; 10609 * either the HBA is in a state that it will never works on the outstanding 10610 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10611 * mailbox command has been completed. 10612 **/ 10613 static void 10614 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10615 { 10616 LIST_HEAD(completions); 10617 struct lpfc_sli *psli = &phba->sli; 10618 LPFC_MBOXQ_t *pmb; 10619 unsigned long iflag; 10620 10621 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10622 local_bh_disable(); 10623 10624 /* Flush all the mailbox commands in the mbox system */ 10625 spin_lock_irqsave(&phba->hbalock, iflag); 10626 10627 /* The pending mailbox command queue */ 10628 list_splice_init(&phba->sli.mboxq, &completions); 10629 /* The outstanding active mailbox command */ 10630 if (psli->mbox_active) { 10631 list_add_tail(&psli->mbox_active->list, &completions); 10632 psli->mbox_active = NULL; 10633 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10634 } 10635 /* The completed mailbox command queue */ 10636 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10637 spin_unlock_irqrestore(&phba->hbalock, iflag); 10638 10639 /* Enable softirqs again, done with phba->hbalock */ 10640 local_bh_enable(); 10641 10642 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10643 while (!list_empty(&completions)) { 10644 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10645 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10646 if (pmb->mbox_cmpl) 10647 pmb->mbox_cmpl(phba, pmb); 10648 } 10649 } 10650 10651 /** 10652 * lpfc_sli_host_down - Vport cleanup function 10653 * @vport: Pointer to virtual port object. 10654 * 10655 * lpfc_sli_host_down is called to clean up the resources 10656 * associated with a vport before destroying virtual 10657 * port data structures. 10658 * This function does following operations: 10659 * - Free discovery resources associated with this virtual 10660 * port. 10661 * - Free iocbs associated with this virtual port in 10662 * the txq. 10663 * - Send abort for all iocb commands associated with this 10664 * vport in txcmplq. 10665 * 10666 * This function is called with no lock held and always returns 1. 10667 **/ 10668 int 10669 lpfc_sli_host_down(struct lpfc_vport *vport) 10670 { 10671 LIST_HEAD(completions); 10672 struct lpfc_hba *phba = vport->phba; 10673 struct lpfc_sli *psli = &phba->sli; 10674 struct lpfc_queue *qp = NULL; 10675 struct lpfc_sli_ring *pring; 10676 struct lpfc_iocbq *iocb, *next_iocb; 10677 int i; 10678 unsigned long flags = 0; 10679 uint16_t prev_pring_flag; 10680 10681 lpfc_cleanup_discovery_resources(vport); 10682 10683 spin_lock_irqsave(&phba->hbalock, flags); 10684 10685 /* 10686 * Error everything on the txq since these iocbs 10687 * have not been given to the FW yet. 10688 * Also issue ABTS for everything on the txcmplq 10689 */ 10690 if (phba->sli_rev != LPFC_SLI_REV4) { 10691 for (i = 0; i < psli->num_rings; i++) { 10692 pring = &psli->sli3_ring[i]; 10693 prev_pring_flag = pring->flag; 10694 /* Only slow rings */ 10695 if (pring->ringno == LPFC_ELS_RING) { 10696 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10697 /* Set the lpfc data pending flag */ 10698 set_bit(LPFC_DATA_READY, &phba->data_flags); 10699 } 10700 list_for_each_entry_safe(iocb, next_iocb, 10701 &pring->txq, list) { 10702 if (iocb->vport != vport) 10703 continue; 10704 list_move_tail(&iocb->list, &completions); 10705 } 10706 list_for_each_entry_safe(iocb, next_iocb, 10707 &pring->txcmplq, list) { 10708 if (iocb->vport != vport) 10709 continue; 10710 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10711 } 10712 pring->flag = prev_pring_flag; 10713 } 10714 } else { 10715 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10716 pring = qp->pring; 10717 if (!pring) 10718 continue; 10719 if (pring == phba->sli4_hba.els_wq->pring) { 10720 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10721 /* Set the lpfc data pending flag */ 10722 set_bit(LPFC_DATA_READY, &phba->data_flags); 10723 } 10724 prev_pring_flag = pring->flag; 10725 spin_lock_irq(&pring->ring_lock); 10726 list_for_each_entry_safe(iocb, next_iocb, 10727 &pring->txq, list) { 10728 if (iocb->vport != vport) 10729 continue; 10730 list_move_tail(&iocb->list, &completions); 10731 } 10732 spin_unlock_irq(&pring->ring_lock); 10733 list_for_each_entry_safe(iocb, next_iocb, 10734 &pring->txcmplq, list) { 10735 if (iocb->vport != vport) 10736 continue; 10737 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10738 } 10739 pring->flag = prev_pring_flag; 10740 } 10741 } 10742 spin_unlock_irqrestore(&phba->hbalock, flags); 10743 10744 /* Cancel all the IOCBs from the completions list */ 10745 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10746 IOERR_SLI_DOWN); 10747 return 1; 10748 } 10749 10750 /** 10751 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10752 * @phba: Pointer to HBA context object. 10753 * 10754 * This function cleans up all iocb, buffers, mailbox commands 10755 * while shutting down the HBA. This function is called with no 10756 * lock held and always returns 1. 10757 * This function does the following to cleanup driver resources: 10758 * - Free discovery resources for each virtual port 10759 * - Cleanup any pending fabric iocbs 10760 * - Iterate through the iocb txq and free each entry 10761 * in the list. 10762 * - Free up any buffer posted to the HBA 10763 * - Free mailbox commands in the mailbox queue. 10764 **/ 10765 int 10766 lpfc_sli_hba_down(struct lpfc_hba *phba) 10767 { 10768 LIST_HEAD(completions); 10769 struct lpfc_sli *psli = &phba->sli; 10770 struct lpfc_queue *qp = NULL; 10771 struct lpfc_sli_ring *pring; 10772 struct lpfc_dmabuf *buf_ptr; 10773 unsigned long flags = 0; 10774 int i; 10775 10776 /* Shutdown the mailbox command sub-system */ 10777 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10778 10779 lpfc_hba_down_prep(phba); 10780 10781 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10782 local_bh_disable(); 10783 10784 lpfc_fabric_abort_hba(phba); 10785 10786 spin_lock_irqsave(&phba->hbalock, flags); 10787 10788 /* 10789 * Error everything on the txq since these iocbs 10790 * have not been given to the FW yet. 10791 */ 10792 if (phba->sli_rev != LPFC_SLI_REV4) { 10793 for (i = 0; i < psli->num_rings; i++) { 10794 pring = &psli->sli3_ring[i]; 10795 /* Only slow rings */ 10796 if (pring->ringno == LPFC_ELS_RING) { 10797 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10798 /* Set the lpfc data pending flag */ 10799 set_bit(LPFC_DATA_READY, &phba->data_flags); 10800 } 10801 list_splice_init(&pring->txq, &completions); 10802 } 10803 } else { 10804 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10805 pring = qp->pring; 10806 if (!pring) 10807 continue; 10808 spin_lock_irq(&pring->ring_lock); 10809 list_splice_init(&pring->txq, &completions); 10810 spin_unlock_irq(&pring->ring_lock); 10811 if (pring == phba->sli4_hba.els_wq->pring) { 10812 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10813 /* Set the lpfc data pending flag */ 10814 set_bit(LPFC_DATA_READY, &phba->data_flags); 10815 } 10816 } 10817 } 10818 spin_unlock_irqrestore(&phba->hbalock, flags); 10819 10820 /* Cancel all the IOCBs from the completions list */ 10821 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10822 IOERR_SLI_DOWN); 10823 10824 spin_lock_irqsave(&phba->hbalock, flags); 10825 list_splice_init(&phba->elsbuf, &completions); 10826 phba->elsbuf_cnt = 0; 10827 phba->elsbuf_prev_cnt = 0; 10828 spin_unlock_irqrestore(&phba->hbalock, flags); 10829 10830 while (!list_empty(&completions)) { 10831 list_remove_head(&completions, buf_ptr, 10832 struct lpfc_dmabuf, list); 10833 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10834 kfree(buf_ptr); 10835 } 10836 10837 /* Enable softirqs again, done with phba->hbalock */ 10838 local_bh_enable(); 10839 10840 /* Return any active mbox cmds */ 10841 del_timer_sync(&psli->mbox_tmo); 10842 10843 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10844 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10845 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10846 10847 return 1; 10848 } 10849 10850 /** 10851 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10852 * @srcp: Source memory pointer. 10853 * @destp: Destination memory pointer. 10854 * @cnt: Number of words required to be copied. 10855 * 10856 * This function is used for copying data between driver memory 10857 * and the SLI memory. This function also changes the endianness 10858 * of each word if native endianness is different from SLI 10859 * endianness. This function can be called with or without 10860 * lock. 10861 **/ 10862 void 10863 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10864 { 10865 uint32_t *src = srcp; 10866 uint32_t *dest = destp; 10867 uint32_t ldata; 10868 int i; 10869 10870 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10871 ldata = *src; 10872 ldata = le32_to_cpu(ldata); 10873 *dest = ldata; 10874 src++; 10875 dest++; 10876 } 10877 } 10878 10879 10880 /** 10881 * lpfc_sli_bemem_bcopy - SLI memory copy function 10882 * @srcp: Source memory pointer. 10883 * @destp: Destination memory pointer. 10884 * @cnt: Number of words required to be copied. 10885 * 10886 * This function is used for copying data between a data structure 10887 * with big endian representation to local endianness. 10888 * This function can be called with or without lock. 10889 **/ 10890 void 10891 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10892 { 10893 uint32_t *src = srcp; 10894 uint32_t *dest = destp; 10895 uint32_t ldata; 10896 int i; 10897 10898 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10899 ldata = *src; 10900 ldata = be32_to_cpu(ldata); 10901 *dest = ldata; 10902 src++; 10903 dest++; 10904 } 10905 } 10906 10907 /** 10908 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10909 * @phba: Pointer to HBA context object. 10910 * @pring: Pointer to driver SLI ring object. 10911 * @mp: Pointer to driver buffer object. 10912 * 10913 * This function is called with no lock held. 10914 * It always return zero after adding the buffer to the postbufq 10915 * buffer list. 10916 **/ 10917 int 10918 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10919 struct lpfc_dmabuf *mp) 10920 { 10921 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10922 later */ 10923 spin_lock_irq(&phba->hbalock); 10924 list_add_tail(&mp->list, &pring->postbufq); 10925 pring->postbufq_cnt++; 10926 spin_unlock_irq(&phba->hbalock); 10927 return 0; 10928 } 10929 10930 /** 10931 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10932 * @phba: Pointer to HBA context object. 10933 * 10934 * When HBQ is enabled, buffers are searched based on tags. This function 10935 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10936 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10937 * does not conflict with tags of buffer posted for unsolicited events. 10938 * The function returns the allocated tag. The function is called with 10939 * no locks held. 10940 **/ 10941 uint32_t 10942 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10943 { 10944 spin_lock_irq(&phba->hbalock); 10945 phba->buffer_tag_count++; 10946 /* 10947 * Always set the QUE_BUFTAG_BIT to distiguish between 10948 * a tag assigned by HBQ. 10949 */ 10950 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10951 spin_unlock_irq(&phba->hbalock); 10952 return phba->buffer_tag_count; 10953 } 10954 10955 /** 10956 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10957 * @phba: Pointer to HBA context object. 10958 * @pring: Pointer to driver SLI ring object. 10959 * @tag: Buffer tag. 10960 * 10961 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10962 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10963 * iocb is posted to the response ring with the tag of the buffer. 10964 * This function searches the pring->postbufq list using the tag 10965 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10966 * iocb. If the buffer is found then lpfc_dmabuf object of the 10967 * buffer is returned to the caller else NULL is returned. 10968 * This function is called with no lock held. 10969 **/ 10970 struct lpfc_dmabuf * 10971 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10972 uint32_t tag) 10973 { 10974 struct lpfc_dmabuf *mp, *next_mp; 10975 struct list_head *slp = &pring->postbufq; 10976 10977 /* Search postbufq, from the beginning, looking for a match on tag */ 10978 spin_lock_irq(&phba->hbalock); 10979 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10980 if (mp->buffer_tag == tag) { 10981 list_del_init(&mp->list); 10982 pring->postbufq_cnt--; 10983 spin_unlock_irq(&phba->hbalock); 10984 return mp; 10985 } 10986 } 10987 10988 spin_unlock_irq(&phba->hbalock); 10989 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10990 "0402 Cannot find virtual addr for buffer tag on " 10991 "ring %d Data x%lx x%p x%p x%x\n", 10992 pring->ringno, (unsigned long) tag, 10993 slp->next, slp->prev, pring->postbufq_cnt); 10994 10995 return NULL; 10996 } 10997 10998 /** 10999 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11000 * @phba: Pointer to HBA context object. 11001 * @pring: Pointer to driver SLI ring object. 11002 * @phys: DMA address of the buffer. 11003 * 11004 * This function searches the buffer list using the dma_address 11005 * of unsolicited event to find the driver's lpfc_dmabuf object 11006 * corresponding to the dma_address. The function returns the 11007 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11008 * This function is called by the ct and els unsolicited event 11009 * handlers to get the buffer associated with the unsolicited 11010 * event. 11011 * 11012 * This function is called with no lock held. 11013 **/ 11014 struct lpfc_dmabuf * 11015 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11016 dma_addr_t phys) 11017 { 11018 struct lpfc_dmabuf *mp, *next_mp; 11019 struct list_head *slp = &pring->postbufq; 11020 11021 /* Search postbufq, from the beginning, looking for a match on phys */ 11022 spin_lock_irq(&phba->hbalock); 11023 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11024 if (mp->phys == phys) { 11025 list_del_init(&mp->list); 11026 pring->postbufq_cnt--; 11027 spin_unlock_irq(&phba->hbalock); 11028 return mp; 11029 } 11030 } 11031 11032 spin_unlock_irq(&phba->hbalock); 11033 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11034 "0410 Cannot find virtual addr for mapped buf on " 11035 "ring %d Data x%llx x%p x%p x%x\n", 11036 pring->ringno, (unsigned long long)phys, 11037 slp->next, slp->prev, pring->postbufq_cnt); 11038 return NULL; 11039 } 11040 11041 /** 11042 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11043 * @phba: Pointer to HBA context object. 11044 * @cmdiocb: Pointer to driver command iocb object. 11045 * @rspiocb: Pointer to driver response iocb object. 11046 * 11047 * This function is the completion handler for the abort iocbs for 11048 * ELS commands. This function is called from the ELS ring event 11049 * handler with no lock held. This function frees memory resources 11050 * associated with the abort iocb. 11051 **/ 11052 static void 11053 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11054 struct lpfc_iocbq *rspiocb) 11055 { 11056 IOCB_t *irsp = &rspiocb->iocb; 11057 uint16_t abort_iotag, abort_context; 11058 struct lpfc_iocbq *abort_iocb = NULL; 11059 11060 if (irsp->ulpStatus) { 11061 11062 /* 11063 * Assume that the port already completed and returned, or 11064 * will return the iocb. Just Log the message. 11065 */ 11066 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11067 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11068 11069 spin_lock_irq(&phba->hbalock); 11070 if (phba->sli_rev < LPFC_SLI_REV4) { 11071 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11072 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11073 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11074 spin_unlock_irq(&phba->hbalock); 11075 goto release_iocb; 11076 } 11077 if (abort_iotag != 0 && 11078 abort_iotag <= phba->sli.last_iotag) 11079 abort_iocb = 11080 phba->sli.iocbq_lookup[abort_iotag]; 11081 } else 11082 /* For sli4 the abort_tag is the XRI, 11083 * so the abort routine puts the iotag of the iocb 11084 * being aborted in the context field of the abort 11085 * IOCB. 11086 */ 11087 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11088 11089 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11090 "0327 Cannot abort els iocb %p " 11091 "with tag %x context %x, abort status %x, " 11092 "abort code %x\n", 11093 abort_iocb, abort_iotag, abort_context, 11094 irsp->ulpStatus, irsp->un.ulpWord[4]); 11095 11096 spin_unlock_irq(&phba->hbalock); 11097 } 11098 release_iocb: 11099 lpfc_sli_release_iocbq(phba, cmdiocb); 11100 return; 11101 } 11102 11103 /** 11104 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11105 * @phba: Pointer to HBA context object. 11106 * @cmdiocb: Pointer to driver command iocb object. 11107 * @rspiocb: Pointer to driver response iocb object. 11108 * 11109 * The function is called from SLI ring event handler with no 11110 * lock held. This function is the completion handler for ELS commands 11111 * which are aborted. The function frees memory resources used for 11112 * the aborted ELS commands. 11113 **/ 11114 static void 11115 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11116 struct lpfc_iocbq *rspiocb) 11117 { 11118 IOCB_t *irsp = &rspiocb->iocb; 11119 11120 /* ELS cmd tag <ulpIoTag> completes */ 11121 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11122 "0139 Ignoring ELS cmd tag x%x completion Data: " 11123 "x%x x%x x%x\n", 11124 irsp->ulpIoTag, irsp->ulpStatus, 11125 irsp->un.ulpWord[4], irsp->ulpTimeout); 11126 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11127 lpfc_ct_free_iocb(phba, cmdiocb); 11128 else 11129 lpfc_els_free_iocb(phba, cmdiocb); 11130 return; 11131 } 11132 11133 /** 11134 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11135 * @phba: Pointer to HBA context object. 11136 * @pring: Pointer to driver SLI ring object. 11137 * @cmdiocb: Pointer to driver command iocb object. 11138 * 11139 * This function issues an abort iocb for the provided command iocb down to 11140 * the port. Other than the case the outstanding command iocb is an abort 11141 * request, this function issues abort out unconditionally. This function is 11142 * called with hbalock held. The function returns 0 when it fails due to 11143 * memory allocation failure or when the command iocb is an abort request. 11144 **/ 11145 static int 11146 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11147 struct lpfc_iocbq *cmdiocb) 11148 { 11149 struct lpfc_vport *vport = cmdiocb->vport; 11150 struct lpfc_iocbq *abtsiocbp; 11151 IOCB_t *icmd = NULL; 11152 IOCB_t *iabt = NULL; 11153 int retval; 11154 unsigned long iflags; 11155 struct lpfc_nodelist *ndlp; 11156 11157 lockdep_assert_held(&phba->hbalock); 11158 11159 /* 11160 * There are certain command types we don't want to abort. And we 11161 * don't want to abort commands that are already in the process of 11162 * being aborted. 11163 */ 11164 icmd = &cmdiocb->iocb; 11165 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11166 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11167 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11168 return 0; 11169 11170 /* issue ABTS for this IOCB based on iotag */ 11171 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11172 if (abtsiocbp == NULL) 11173 return 0; 11174 11175 /* This signals the response to set the correct status 11176 * before calling the completion handler 11177 */ 11178 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11179 11180 iabt = &abtsiocbp->iocb; 11181 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11182 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11183 if (phba->sli_rev == LPFC_SLI_REV4) { 11184 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11185 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11186 } else { 11187 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11188 if (pring->ringno == LPFC_ELS_RING) { 11189 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11190 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11191 } 11192 } 11193 iabt->ulpLe = 1; 11194 iabt->ulpClass = icmd->ulpClass; 11195 11196 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11197 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11198 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11199 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11200 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11201 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11202 11203 if (phba->link_state >= LPFC_LINK_UP) 11204 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11205 else 11206 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11207 11208 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11209 abtsiocbp->vport = vport; 11210 11211 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11212 "0339 Abort xri x%x, original iotag x%x, " 11213 "abort cmd iotag x%x\n", 11214 iabt->un.acxri.abortIoTag, 11215 iabt->un.acxri.abortContextTag, 11216 abtsiocbp->iotag); 11217 11218 if (phba->sli_rev == LPFC_SLI_REV4) { 11219 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11220 if (unlikely(pring == NULL)) 11221 return 0; 11222 /* Note: both hbalock and ring_lock need to be set here */ 11223 spin_lock_irqsave(&pring->ring_lock, iflags); 11224 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11225 abtsiocbp, 0); 11226 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11227 } else { 11228 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11229 abtsiocbp, 0); 11230 } 11231 11232 if (retval) 11233 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11234 11235 /* 11236 * Caller to this routine should check for IOCB_ERROR 11237 * and handle it properly. This routine no longer removes 11238 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11239 */ 11240 return retval; 11241 } 11242 11243 /** 11244 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11245 * @phba: Pointer to HBA context object. 11246 * @pring: Pointer to driver SLI ring object. 11247 * @cmdiocb: Pointer to driver command iocb object. 11248 * 11249 * This function issues an abort iocb for the provided command iocb. In case 11250 * of unloading, the abort iocb will not be issued to commands on the ELS 11251 * ring. Instead, the callback function shall be changed to those commands 11252 * so that nothing happens when them finishes. This function is called with 11253 * hbalock held. The function returns 0 when the command iocb is an abort 11254 * request. 11255 **/ 11256 int 11257 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11258 struct lpfc_iocbq *cmdiocb) 11259 { 11260 struct lpfc_vport *vport = cmdiocb->vport; 11261 int retval = IOCB_ERROR; 11262 IOCB_t *icmd = NULL; 11263 11264 lockdep_assert_held(&phba->hbalock); 11265 11266 /* 11267 * There are certain command types we don't want to abort. And we 11268 * don't want to abort commands that are already in the process of 11269 * being aborted. 11270 */ 11271 icmd = &cmdiocb->iocb; 11272 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11273 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11274 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11275 return 0; 11276 11277 if (!pring) { 11278 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11279 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11280 else 11281 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11282 goto abort_iotag_exit; 11283 } 11284 11285 /* 11286 * If we're unloading, don't abort iocb on the ELS ring, but change 11287 * the callback so that nothing happens when it finishes. 11288 */ 11289 if ((vport->load_flag & FC_UNLOADING) && 11290 (pring->ringno == LPFC_ELS_RING)) { 11291 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11292 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11293 else 11294 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11295 goto abort_iotag_exit; 11296 } 11297 11298 /* Now, we try to issue the abort to the cmdiocb out */ 11299 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11300 11301 abort_iotag_exit: 11302 /* 11303 * Caller to this routine should check for IOCB_ERROR 11304 * and handle it properly. This routine no longer removes 11305 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11306 */ 11307 return retval; 11308 } 11309 11310 /** 11311 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 11312 * @phba: Pointer to HBA context object. 11313 * @pring: Pointer to driver SLI ring object. 11314 * @cmdiocb: Pointer to driver command iocb object. 11315 * 11316 * This function issues an abort iocb for the provided command iocb down to 11317 * the port. Other than the case the outstanding command iocb is an abort 11318 * request, this function issues abort out unconditionally. This function is 11319 * called with hbalock held. The function returns 0 when it fails due to 11320 * memory allocation failure or when the command iocb is an abort request. 11321 **/ 11322 static int 11323 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11324 struct lpfc_iocbq *cmdiocb) 11325 { 11326 struct lpfc_vport *vport = cmdiocb->vport; 11327 struct lpfc_iocbq *abtsiocbp; 11328 union lpfc_wqe128 *abts_wqe; 11329 int retval; 11330 11331 /* 11332 * There are certain command types we don't want to abort. And we 11333 * don't want to abort commands that are already in the process of 11334 * being aborted. 11335 */ 11336 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11337 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 11338 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11339 return 0; 11340 11341 /* issue ABTS for this io based on iotag */ 11342 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11343 if (abtsiocbp == NULL) 11344 return 0; 11345 11346 /* This signals the response to set the correct status 11347 * before calling the completion handler 11348 */ 11349 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11350 11351 /* Complete prepping the abort wqe and issue to the FW. */ 11352 abts_wqe = &abtsiocbp->wqe; 11353 11354 /* Clear any stale WQE contents */ 11355 memset(abts_wqe, 0, sizeof(union lpfc_wqe)); 11356 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 11357 11358 /* word 7 */ 11359 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 11360 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 11361 cmdiocb->iocb.ulpClass); 11362 11363 /* word 8 - tell the FW to abort the IO associated with this 11364 * outstanding exchange ID. 11365 */ 11366 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 11367 11368 /* word 9 - this is the iotag for the abts_wqe completion. */ 11369 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 11370 abtsiocbp->iotag); 11371 11372 /* word 10 */ 11373 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 11374 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 11375 11376 /* word 11 */ 11377 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11378 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 11379 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 11380 11381 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11382 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 11383 abtsiocbp->vport = vport; 11384 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 11385 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 11386 if (retval) { 11387 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11388 "6147 Failed abts issue_wqe with status x%x " 11389 "for oxid x%x\n", 11390 retval, cmdiocb->sli4_xritag); 11391 lpfc_sli_release_iocbq(phba, abtsiocbp); 11392 return retval; 11393 } 11394 11395 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11396 "6148 Drv Abort NVME Request Issued for " 11397 "ox_id x%x on reqtag x%x\n", 11398 cmdiocb->sli4_xritag, 11399 abtsiocbp->iotag); 11400 11401 return retval; 11402 } 11403 11404 /** 11405 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11406 * @phba: pointer to lpfc HBA data structure. 11407 * 11408 * This routine will abort all pending and outstanding iocbs to an HBA. 11409 **/ 11410 void 11411 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11412 { 11413 struct lpfc_sli *psli = &phba->sli; 11414 struct lpfc_sli_ring *pring; 11415 struct lpfc_queue *qp = NULL; 11416 int i; 11417 11418 if (phba->sli_rev != LPFC_SLI_REV4) { 11419 for (i = 0; i < psli->num_rings; i++) { 11420 pring = &psli->sli3_ring[i]; 11421 lpfc_sli_abort_iocb_ring(phba, pring); 11422 } 11423 return; 11424 } 11425 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11426 pring = qp->pring; 11427 if (!pring) 11428 continue; 11429 lpfc_sli_abort_iocb_ring(phba, pring); 11430 } 11431 } 11432 11433 /** 11434 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11435 * @iocbq: Pointer to driver iocb object. 11436 * @vport: Pointer to driver virtual port object. 11437 * @tgt_id: SCSI ID of the target. 11438 * @lun_id: LUN ID of the scsi device. 11439 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11440 * 11441 * This function acts as an iocb filter for functions which abort or count 11442 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11443 * 0 if the filtering criteria is met for the given iocb and will return 11444 * 1 if the filtering criteria is not met. 11445 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11446 * given iocb is for the SCSI device specified by vport, tgt_id and 11447 * lun_id parameter. 11448 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11449 * given iocb is for the SCSI target specified by vport and tgt_id 11450 * parameters. 11451 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11452 * given iocb is for the SCSI host associated with the given vport. 11453 * This function is called with no locks held. 11454 **/ 11455 static int 11456 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11457 uint16_t tgt_id, uint64_t lun_id, 11458 lpfc_ctx_cmd ctx_cmd) 11459 { 11460 struct lpfc_scsi_buf *lpfc_cmd; 11461 int rc = 1; 11462 11463 if (iocbq->vport != vport) 11464 return rc; 11465 11466 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11467 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11468 return rc; 11469 11470 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11471 11472 if (lpfc_cmd->pCmd == NULL) 11473 return rc; 11474 11475 switch (ctx_cmd) { 11476 case LPFC_CTX_LUN: 11477 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11478 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11479 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11480 rc = 0; 11481 break; 11482 case LPFC_CTX_TGT: 11483 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11484 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11485 rc = 0; 11486 break; 11487 case LPFC_CTX_HOST: 11488 rc = 0; 11489 break; 11490 default: 11491 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11492 __func__, ctx_cmd); 11493 break; 11494 } 11495 11496 return rc; 11497 } 11498 11499 /** 11500 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11501 * @vport: Pointer to virtual port. 11502 * @tgt_id: SCSI ID of the target. 11503 * @lun_id: LUN ID of the scsi device. 11504 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11505 * 11506 * This function returns number of FCP commands pending for the vport. 11507 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11508 * commands pending on the vport associated with SCSI device specified 11509 * by tgt_id and lun_id parameters. 11510 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11511 * commands pending on the vport associated with SCSI target specified 11512 * by tgt_id parameter. 11513 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11514 * commands pending on the vport. 11515 * This function returns the number of iocbs which satisfy the filter. 11516 * This function is called without any lock held. 11517 **/ 11518 int 11519 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11520 lpfc_ctx_cmd ctx_cmd) 11521 { 11522 struct lpfc_hba *phba = vport->phba; 11523 struct lpfc_iocbq *iocbq; 11524 int sum, i; 11525 11526 spin_lock_irq(&phba->hbalock); 11527 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11528 iocbq = phba->sli.iocbq_lookup[i]; 11529 11530 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11531 ctx_cmd) == 0) 11532 sum++; 11533 } 11534 spin_unlock_irq(&phba->hbalock); 11535 11536 return sum; 11537 } 11538 11539 /** 11540 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11541 * @phba: Pointer to HBA context object 11542 * @cmdiocb: Pointer to command iocb object. 11543 * @rspiocb: Pointer to response iocb object. 11544 * 11545 * This function is called when an aborted FCP iocb completes. This 11546 * function is called by the ring event handler with no lock held. 11547 * This function frees the iocb. 11548 **/ 11549 void 11550 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11551 struct lpfc_iocbq *rspiocb) 11552 { 11553 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11554 "3096 ABORT_XRI_CN completing on rpi x%x " 11555 "original iotag x%x, abort cmd iotag x%x " 11556 "status 0x%x, reason 0x%x\n", 11557 cmdiocb->iocb.un.acxri.abortContextTag, 11558 cmdiocb->iocb.un.acxri.abortIoTag, 11559 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11560 rspiocb->iocb.un.ulpWord[4]); 11561 lpfc_sli_release_iocbq(phba, cmdiocb); 11562 return; 11563 } 11564 11565 /** 11566 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11567 * @vport: Pointer to virtual port. 11568 * @pring: Pointer to driver SLI ring object. 11569 * @tgt_id: SCSI ID of the target. 11570 * @lun_id: LUN ID of the scsi device. 11571 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11572 * 11573 * This function sends an abort command for every SCSI command 11574 * associated with the given virtual port pending on the ring 11575 * filtered by lpfc_sli_validate_fcp_iocb function. 11576 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11577 * FCP iocbs associated with lun specified by tgt_id and lun_id 11578 * parameters 11579 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11580 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11581 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11582 * FCP iocbs associated with virtual port. 11583 * This function returns number of iocbs it failed to abort. 11584 * This function is called with no locks held. 11585 **/ 11586 int 11587 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11588 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11589 { 11590 struct lpfc_hba *phba = vport->phba; 11591 struct lpfc_iocbq *iocbq; 11592 struct lpfc_iocbq *abtsiocb; 11593 struct lpfc_sli_ring *pring_s4; 11594 IOCB_t *cmd = NULL; 11595 int errcnt = 0, ret_val = 0; 11596 int i; 11597 11598 /* all I/Os are in process of being flushed */ 11599 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) 11600 return errcnt; 11601 11602 for (i = 1; i <= phba->sli.last_iotag; i++) { 11603 iocbq = phba->sli.iocbq_lookup[i]; 11604 11605 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11606 abort_cmd) != 0) 11607 continue; 11608 11609 /* 11610 * If the iocbq is already being aborted, don't take a second 11611 * action, but do count it. 11612 */ 11613 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11614 continue; 11615 11616 /* issue ABTS for this IOCB based on iotag */ 11617 abtsiocb = lpfc_sli_get_iocbq(phba); 11618 if (abtsiocb == NULL) { 11619 errcnt++; 11620 continue; 11621 } 11622 11623 /* indicate the IO is being aborted by the driver. */ 11624 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11625 11626 cmd = &iocbq->iocb; 11627 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11628 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11629 if (phba->sli_rev == LPFC_SLI_REV4) 11630 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11631 else 11632 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11633 abtsiocb->iocb.ulpLe = 1; 11634 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11635 abtsiocb->vport = vport; 11636 11637 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11638 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11639 if (iocbq->iocb_flag & LPFC_IO_FCP) 11640 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11641 if (iocbq->iocb_flag & LPFC_IO_FOF) 11642 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11643 11644 if (lpfc_is_link_up(phba)) 11645 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11646 else 11647 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11648 11649 /* Setup callback routine and issue the command. */ 11650 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11651 if (phba->sli_rev == LPFC_SLI_REV4) { 11652 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11653 if (!pring_s4) 11654 continue; 11655 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11656 abtsiocb, 0); 11657 } else 11658 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11659 abtsiocb, 0); 11660 if (ret_val == IOCB_ERROR) { 11661 lpfc_sli_release_iocbq(phba, abtsiocb); 11662 errcnt++; 11663 continue; 11664 } 11665 } 11666 11667 return errcnt; 11668 } 11669 11670 /** 11671 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11672 * @vport: Pointer to virtual port. 11673 * @pring: Pointer to driver SLI ring object. 11674 * @tgt_id: SCSI ID of the target. 11675 * @lun_id: LUN ID of the scsi device. 11676 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11677 * 11678 * This function sends an abort command for every SCSI command 11679 * associated with the given virtual port pending on the ring 11680 * filtered by lpfc_sli_validate_fcp_iocb function. 11681 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11682 * FCP iocbs associated with lun specified by tgt_id and lun_id 11683 * parameters 11684 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11685 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11686 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11687 * FCP iocbs associated with virtual port. 11688 * This function returns number of iocbs it aborted . 11689 * This function is called with no locks held right after a taskmgmt 11690 * command is sent. 11691 **/ 11692 int 11693 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11694 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11695 { 11696 struct lpfc_hba *phba = vport->phba; 11697 struct lpfc_scsi_buf *lpfc_cmd; 11698 struct lpfc_iocbq *abtsiocbq; 11699 struct lpfc_nodelist *ndlp; 11700 struct lpfc_iocbq *iocbq; 11701 IOCB_t *icmd; 11702 int sum, i, ret_val; 11703 unsigned long iflags; 11704 struct lpfc_sli_ring *pring_s4; 11705 11706 spin_lock_irqsave(&phba->hbalock, iflags); 11707 11708 /* all I/Os are in process of being flushed */ 11709 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11710 spin_unlock_irqrestore(&phba->hbalock, iflags); 11711 return 0; 11712 } 11713 sum = 0; 11714 11715 for (i = 1; i <= phba->sli.last_iotag; i++) { 11716 iocbq = phba->sli.iocbq_lookup[i]; 11717 11718 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11719 cmd) != 0) 11720 continue; 11721 11722 /* 11723 * If the iocbq is already being aborted, don't take a second 11724 * action, but do count it. 11725 */ 11726 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11727 continue; 11728 11729 /* issue ABTS for this IOCB based on iotag */ 11730 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11731 if (abtsiocbq == NULL) 11732 continue; 11733 11734 icmd = &iocbq->iocb; 11735 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11736 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11737 if (phba->sli_rev == LPFC_SLI_REV4) 11738 abtsiocbq->iocb.un.acxri.abortIoTag = 11739 iocbq->sli4_xritag; 11740 else 11741 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11742 abtsiocbq->iocb.ulpLe = 1; 11743 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11744 abtsiocbq->vport = vport; 11745 11746 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11747 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11748 if (iocbq->iocb_flag & LPFC_IO_FCP) 11749 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11750 if (iocbq->iocb_flag & LPFC_IO_FOF) 11751 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11752 11753 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11754 ndlp = lpfc_cmd->rdata->pnode; 11755 11756 if (lpfc_is_link_up(phba) && 11757 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11758 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11759 else 11760 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11761 11762 /* Setup callback routine and issue the command. */ 11763 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11764 11765 /* 11766 * Indicate the IO is being aborted by the driver and set 11767 * the caller's flag into the aborted IO. 11768 */ 11769 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11770 11771 if (phba->sli_rev == LPFC_SLI_REV4) { 11772 pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq); 11773 if (!pring_s4) 11774 continue; 11775 /* Note: both hbalock and ring_lock must be set here */ 11776 spin_lock(&pring_s4->ring_lock); 11777 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11778 abtsiocbq, 0); 11779 spin_unlock(&pring_s4->ring_lock); 11780 } else { 11781 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11782 abtsiocbq, 0); 11783 } 11784 11785 11786 if (ret_val == IOCB_ERROR) 11787 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11788 else 11789 sum++; 11790 } 11791 spin_unlock_irqrestore(&phba->hbalock, iflags); 11792 return sum; 11793 } 11794 11795 /** 11796 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11797 * @phba: Pointer to HBA context object. 11798 * @cmdiocbq: Pointer to command iocb. 11799 * @rspiocbq: Pointer to response iocb. 11800 * 11801 * This function is the completion handler for iocbs issued using 11802 * lpfc_sli_issue_iocb_wait function. This function is called by the 11803 * ring event handler function without any lock held. This function 11804 * can be called from both worker thread context and interrupt 11805 * context. This function also can be called from other thread which 11806 * cleans up the SLI layer objects. 11807 * This function copy the contents of the response iocb to the 11808 * response iocb memory object provided by the caller of 11809 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11810 * sleeps for the iocb completion. 11811 **/ 11812 static void 11813 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11814 struct lpfc_iocbq *cmdiocbq, 11815 struct lpfc_iocbq *rspiocbq) 11816 { 11817 wait_queue_head_t *pdone_q; 11818 unsigned long iflags; 11819 struct lpfc_scsi_buf *lpfc_cmd; 11820 11821 spin_lock_irqsave(&phba->hbalock, iflags); 11822 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11823 11824 /* 11825 * A time out has occurred for the iocb. If a time out 11826 * completion handler has been supplied, call it. Otherwise, 11827 * just free the iocbq. 11828 */ 11829 11830 spin_unlock_irqrestore(&phba->hbalock, iflags); 11831 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11832 cmdiocbq->wait_iocb_cmpl = NULL; 11833 if (cmdiocbq->iocb_cmpl) 11834 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11835 else 11836 lpfc_sli_release_iocbq(phba, cmdiocbq); 11837 return; 11838 } 11839 11840 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11841 if (cmdiocbq->context2 && rspiocbq) 11842 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11843 &rspiocbq->iocb, sizeof(IOCB_t)); 11844 11845 /* Set the exchange busy flag for task management commands */ 11846 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11847 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11848 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11849 cur_iocbq); 11850 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11851 } 11852 11853 pdone_q = cmdiocbq->context_un.wait_queue; 11854 if (pdone_q) 11855 wake_up(pdone_q); 11856 spin_unlock_irqrestore(&phba->hbalock, iflags); 11857 return; 11858 } 11859 11860 /** 11861 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11862 * @phba: Pointer to HBA context object.. 11863 * @piocbq: Pointer to command iocb. 11864 * @flag: Flag to test. 11865 * 11866 * This routine grabs the hbalock and then test the iocb_flag to 11867 * see if the passed in flag is set. 11868 * Returns: 11869 * 1 if flag is set. 11870 * 0 if flag is not set. 11871 **/ 11872 static int 11873 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11874 struct lpfc_iocbq *piocbq, uint32_t flag) 11875 { 11876 unsigned long iflags; 11877 int ret; 11878 11879 spin_lock_irqsave(&phba->hbalock, iflags); 11880 ret = piocbq->iocb_flag & flag; 11881 spin_unlock_irqrestore(&phba->hbalock, iflags); 11882 return ret; 11883 11884 } 11885 11886 /** 11887 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11888 * @phba: Pointer to HBA context object.. 11889 * @pring: Pointer to sli ring. 11890 * @piocb: Pointer to command iocb. 11891 * @prspiocbq: Pointer to response iocb. 11892 * @timeout: Timeout in number of seconds. 11893 * 11894 * This function issues the iocb to firmware and waits for the 11895 * iocb to complete. The iocb_cmpl field of the shall be used 11896 * to handle iocbs which time out. If the field is NULL, the 11897 * function shall free the iocbq structure. If more clean up is 11898 * needed, the caller is expected to provide a completion function 11899 * that will provide the needed clean up. If the iocb command is 11900 * not completed within timeout seconds, the function will either 11901 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11902 * completion function set in the iocb_cmpl field and then return 11903 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11904 * resources if this function returns IOCB_TIMEDOUT. 11905 * The function waits for the iocb completion using an 11906 * non-interruptible wait. 11907 * This function will sleep while waiting for iocb completion. 11908 * So, this function should not be called from any context which 11909 * does not allow sleeping. Due to the same reason, this function 11910 * cannot be called with interrupt disabled. 11911 * This function assumes that the iocb completions occur while 11912 * this function sleep. So, this function cannot be called from 11913 * the thread which process iocb completion for this ring. 11914 * This function clears the iocb_flag of the iocb object before 11915 * issuing the iocb and the iocb completion handler sets this 11916 * flag and wakes this thread when the iocb completes. 11917 * The contents of the response iocb will be copied to prspiocbq 11918 * by the completion handler when the command completes. 11919 * This function returns IOCB_SUCCESS when success. 11920 * This function is called with no lock held. 11921 **/ 11922 int 11923 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11924 uint32_t ring_number, 11925 struct lpfc_iocbq *piocb, 11926 struct lpfc_iocbq *prspiocbq, 11927 uint32_t timeout) 11928 { 11929 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11930 long timeleft, timeout_req = 0; 11931 int retval = IOCB_SUCCESS; 11932 uint32_t creg_val; 11933 struct lpfc_iocbq *iocb; 11934 int txq_cnt = 0; 11935 int txcmplq_cnt = 0; 11936 struct lpfc_sli_ring *pring; 11937 unsigned long iflags; 11938 bool iocb_completed = true; 11939 11940 if (phba->sli_rev >= LPFC_SLI_REV4) 11941 pring = lpfc_sli4_calc_ring(phba, piocb); 11942 else 11943 pring = &phba->sli.sli3_ring[ring_number]; 11944 /* 11945 * If the caller has provided a response iocbq buffer, then context2 11946 * is NULL or its an error. 11947 */ 11948 if (prspiocbq) { 11949 if (piocb->context2) 11950 return IOCB_ERROR; 11951 piocb->context2 = prspiocbq; 11952 } 11953 11954 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11955 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11956 piocb->context_un.wait_queue = &done_q; 11957 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11958 11959 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11960 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11961 return IOCB_ERROR; 11962 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11963 writel(creg_val, phba->HCregaddr); 11964 readl(phba->HCregaddr); /* flush */ 11965 } 11966 11967 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11968 SLI_IOCB_RET_IOCB); 11969 if (retval == IOCB_SUCCESS) { 11970 timeout_req = msecs_to_jiffies(timeout * 1000); 11971 timeleft = wait_event_timeout(done_q, 11972 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11973 timeout_req); 11974 spin_lock_irqsave(&phba->hbalock, iflags); 11975 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11976 11977 /* 11978 * IOCB timed out. Inform the wake iocb wait 11979 * completion function and set local status 11980 */ 11981 11982 iocb_completed = false; 11983 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11984 } 11985 spin_unlock_irqrestore(&phba->hbalock, iflags); 11986 if (iocb_completed) { 11987 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11988 "0331 IOCB wake signaled\n"); 11989 /* Note: we are not indicating if the IOCB has a success 11990 * status or not - that's for the caller to check. 11991 * IOCB_SUCCESS means just that the command was sent and 11992 * completed. Not that it completed successfully. 11993 * */ 11994 } else if (timeleft == 0) { 11995 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11996 "0338 IOCB wait timeout error - no " 11997 "wake response Data x%x\n", timeout); 11998 retval = IOCB_TIMEDOUT; 11999 } else { 12000 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12001 "0330 IOCB wake NOT set, " 12002 "Data x%x x%lx\n", 12003 timeout, (timeleft / jiffies)); 12004 retval = IOCB_TIMEDOUT; 12005 } 12006 } else if (retval == IOCB_BUSY) { 12007 if (phba->cfg_log_verbose & LOG_SLI) { 12008 list_for_each_entry(iocb, &pring->txq, list) { 12009 txq_cnt++; 12010 } 12011 list_for_each_entry(iocb, &pring->txcmplq, list) { 12012 txcmplq_cnt++; 12013 } 12014 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12015 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12016 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12017 } 12018 return retval; 12019 } else { 12020 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12021 "0332 IOCB wait issue failed, Data x%x\n", 12022 retval); 12023 retval = IOCB_ERROR; 12024 } 12025 12026 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12027 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12028 return IOCB_ERROR; 12029 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12030 writel(creg_val, phba->HCregaddr); 12031 readl(phba->HCregaddr); /* flush */ 12032 } 12033 12034 if (prspiocbq) 12035 piocb->context2 = NULL; 12036 12037 piocb->context_un.wait_queue = NULL; 12038 piocb->iocb_cmpl = NULL; 12039 return retval; 12040 } 12041 12042 /** 12043 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12044 * @phba: Pointer to HBA context object. 12045 * @pmboxq: Pointer to driver mailbox object. 12046 * @timeout: Timeout in number of seconds. 12047 * 12048 * This function issues the mailbox to firmware and waits for the 12049 * mailbox command to complete. If the mailbox command is not 12050 * completed within timeout seconds, it returns MBX_TIMEOUT. 12051 * The function waits for the mailbox completion using an 12052 * interruptible wait. If the thread is woken up due to a 12053 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12054 * should not free the mailbox resources, if this function returns 12055 * MBX_TIMEOUT. 12056 * This function will sleep while waiting for mailbox completion. 12057 * So, this function should not be called from any context which 12058 * does not allow sleeping. Due to the same reason, this function 12059 * cannot be called with interrupt disabled. 12060 * This function assumes that the mailbox completion occurs while 12061 * this function sleep. So, this function cannot be called from 12062 * the worker thread which processes mailbox completion. 12063 * This function is called in the context of HBA management 12064 * applications. 12065 * This function returns MBX_SUCCESS when successful. 12066 * This function is called with no lock held. 12067 **/ 12068 int 12069 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12070 uint32_t timeout) 12071 { 12072 struct completion mbox_done; 12073 int retval; 12074 unsigned long flag; 12075 12076 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12077 /* setup wake call as IOCB callback */ 12078 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12079 12080 /* setup context3 field to pass wait_queue pointer to wake function */ 12081 init_completion(&mbox_done); 12082 pmboxq->context3 = &mbox_done; 12083 /* now issue the command */ 12084 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12085 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12086 wait_for_completion_timeout(&mbox_done, 12087 msecs_to_jiffies(timeout * 1000)); 12088 12089 spin_lock_irqsave(&phba->hbalock, flag); 12090 pmboxq->context3 = NULL; 12091 /* 12092 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12093 * else do not free the resources. 12094 */ 12095 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12096 retval = MBX_SUCCESS; 12097 } else { 12098 retval = MBX_TIMEOUT; 12099 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12100 } 12101 spin_unlock_irqrestore(&phba->hbalock, flag); 12102 } 12103 return retval; 12104 } 12105 12106 /** 12107 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12108 * @phba: Pointer to HBA context. 12109 * 12110 * This function is called to shutdown the driver's mailbox sub-system. 12111 * It first marks the mailbox sub-system is in a block state to prevent 12112 * the asynchronous mailbox command from issued off the pending mailbox 12113 * command queue. If the mailbox command sub-system shutdown is due to 12114 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12115 * the mailbox sub-system flush routine to forcefully bring down the 12116 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12117 * as with offline or HBA function reset), this routine will wait for the 12118 * outstanding mailbox command to complete before invoking the mailbox 12119 * sub-system flush routine to gracefully bring down mailbox sub-system. 12120 **/ 12121 void 12122 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12123 { 12124 struct lpfc_sli *psli = &phba->sli; 12125 unsigned long timeout; 12126 12127 if (mbx_action == LPFC_MBX_NO_WAIT) { 12128 /* delay 100ms for port state */ 12129 msleep(100); 12130 lpfc_sli_mbox_sys_flush(phba); 12131 return; 12132 } 12133 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12134 12135 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12136 local_bh_disable(); 12137 12138 spin_lock_irq(&phba->hbalock); 12139 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12140 12141 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12142 /* Determine how long we might wait for the active mailbox 12143 * command to be gracefully completed by firmware. 12144 */ 12145 if (phba->sli.mbox_active) 12146 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12147 phba->sli.mbox_active) * 12148 1000) + jiffies; 12149 spin_unlock_irq(&phba->hbalock); 12150 12151 /* Enable softirqs again, done with phba->hbalock */ 12152 local_bh_enable(); 12153 12154 while (phba->sli.mbox_active) { 12155 /* Check active mailbox complete status every 2ms */ 12156 msleep(2); 12157 if (time_after(jiffies, timeout)) 12158 /* Timeout, let the mailbox flush routine to 12159 * forcefully release active mailbox command 12160 */ 12161 break; 12162 } 12163 } else { 12164 spin_unlock_irq(&phba->hbalock); 12165 12166 /* Enable softirqs again, done with phba->hbalock */ 12167 local_bh_enable(); 12168 } 12169 12170 lpfc_sli_mbox_sys_flush(phba); 12171 } 12172 12173 /** 12174 * lpfc_sli_eratt_read - read sli-3 error attention events 12175 * @phba: Pointer to HBA context. 12176 * 12177 * This function is called to read the SLI3 device error attention registers 12178 * for possible error attention events. The caller must hold the hostlock 12179 * with spin_lock_irq(). 12180 * 12181 * This function returns 1 when there is Error Attention in the Host Attention 12182 * Register and returns 0 otherwise. 12183 **/ 12184 static int 12185 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12186 { 12187 uint32_t ha_copy; 12188 12189 /* Read chip Host Attention (HA) register */ 12190 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12191 goto unplug_err; 12192 12193 if (ha_copy & HA_ERATT) { 12194 /* Read host status register to retrieve error event */ 12195 if (lpfc_sli_read_hs(phba)) 12196 goto unplug_err; 12197 12198 /* Check if there is a deferred error condition is active */ 12199 if ((HS_FFER1 & phba->work_hs) && 12200 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12201 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12202 phba->hba_flag |= DEFER_ERATT; 12203 /* Clear all interrupt enable conditions */ 12204 writel(0, phba->HCregaddr); 12205 readl(phba->HCregaddr); 12206 } 12207 12208 /* Set the driver HA work bitmap */ 12209 phba->work_ha |= HA_ERATT; 12210 /* Indicate polling handles this ERATT */ 12211 phba->hba_flag |= HBA_ERATT_HANDLED; 12212 return 1; 12213 } 12214 return 0; 12215 12216 unplug_err: 12217 /* Set the driver HS work bitmap */ 12218 phba->work_hs |= UNPLUG_ERR; 12219 /* Set the driver HA work bitmap */ 12220 phba->work_ha |= HA_ERATT; 12221 /* Indicate polling handles this ERATT */ 12222 phba->hba_flag |= HBA_ERATT_HANDLED; 12223 return 1; 12224 } 12225 12226 /** 12227 * lpfc_sli4_eratt_read - read sli-4 error attention events 12228 * @phba: Pointer to HBA context. 12229 * 12230 * This function is called to read the SLI4 device error attention registers 12231 * for possible error attention events. The caller must hold the hostlock 12232 * with spin_lock_irq(). 12233 * 12234 * This function returns 1 when there is Error Attention in the Host Attention 12235 * Register and returns 0 otherwise. 12236 **/ 12237 static int 12238 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12239 { 12240 uint32_t uerr_sta_hi, uerr_sta_lo; 12241 uint32_t if_type, portsmphr; 12242 struct lpfc_register portstat_reg; 12243 12244 /* 12245 * For now, use the SLI4 device internal unrecoverable error 12246 * registers for error attention. This can be changed later. 12247 */ 12248 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12249 switch (if_type) { 12250 case LPFC_SLI_INTF_IF_TYPE_0: 12251 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12252 &uerr_sta_lo) || 12253 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12254 &uerr_sta_hi)) { 12255 phba->work_hs |= UNPLUG_ERR; 12256 phba->work_ha |= HA_ERATT; 12257 phba->hba_flag |= HBA_ERATT_HANDLED; 12258 return 1; 12259 } 12260 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12261 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12262 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12263 "1423 HBA Unrecoverable error: " 12264 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12265 "ue_mask_lo_reg=0x%x, " 12266 "ue_mask_hi_reg=0x%x\n", 12267 uerr_sta_lo, uerr_sta_hi, 12268 phba->sli4_hba.ue_mask_lo, 12269 phba->sli4_hba.ue_mask_hi); 12270 phba->work_status[0] = uerr_sta_lo; 12271 phba->work_status[1] = uerr_sta_hi; 12272 phba->work_ha |= HA_ERATT; 12273 phba->hba_flag |= HBA_ERATT_HANDLED; 12274 return 1; 12275 } 12276 break; 12277 case LPFC_SLI_INTF_IF_TYPE_2: 12278 case LPFC_SLI_INTF_IF_TYPE_6: 12279 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12280 &portstat_reg.word0) || 12281 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12282 &portsmphr)){ 12283 phba->work_hs |= UNPLUG_ERR; 12284 phba->work_ha |= HA_ERATT; 12285 phba->hba_flag |= HBA_ERATT_HANDLED; 12286 return 1; 12287 } 12288 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12289 phba->work_status[0] = 12290 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12291 phba->work_status[1] = 12292 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12293 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12294 "2885 Port Status Event: " 12295 "port status reg 0x%x, " 12296 "port smphr reg 0x%x, " 12297 "error 1=0x%x, error 2=0x%x\n", 12298 portstat_reg.word0, 12299 portsmphr, 12300 phba->work_status[0], 12301 phba->work_status[1]); 12302 phba->work_ha |= HA_ERATT; 12303 phba->hba_flag |= HBA_ERATT_HANDLED; 12304 return 1; 12305 } 12306 break; 12307 case LPFC_SLI_INTF_IF_TYPE_1: 12308 default: 12309 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12310 "2886 HBA Error Attention on unsupported " 12311 "if type %d.", if_type); 12312 return 1; 12313 } 12314 12315 return 0; 12316 } 12317 12318 /** 12319 * lpfc_sli_check_eratt - check error attention events 12320 * @phba: Pointer to HBA context. 12321 * 12322 * This function is called from timer soft interrupt context to check HBA's 12323 * error attention register bit for error attention events. 12324 * 12325 * This function returns 1 when there is Error Attention in the Host Attention 12326 * Register and returns 0 otherwise. 12327 **/ 12328 int 12329 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12330 { 12331 uint32_t ha_copy; 12332 12333 /* If somebody is waiting to handle an eratt, don't process it 12334 * here. The brdkill function will do this. 12335 */ 12336 if (phba->link_flag & LS_IGNORE_ERATT) 12337 return 0; 12338 12339 /* Check if interrupt handler handles this ERATT */ 12340 spin_lock_irq(&phba->hbalock); 12341 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12342 /* Interrupt handler has handled ERATT */ 12343 spin_unlock_irq(&phba->hbalock); 12344 return 0; 12345 } 12346 12347 /* 12348 * If there is deferred error attention, do not check for error 12349 * attention 12350 */ 12351 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12352 spin_unlock_irq(&phba->hbalock); 12353 return 0; 12354 } 12355 12356 /* If PCI channel is offline, don't process it */ 12357 if (unlikely(pci_channel_offline(phba->pcidev))) { 12358 spin_unlock_irq(&phba->hbalock); 12359 return 0; 12360 } 12361 12362 switch (phba->sli_rev) { 12363 case LPFC_SLI_REV2: 12364 case LPFC_SLI_REV3: 12365 /* Read chip Host Attention (HA) register */ 12366 ha_copy = lpfc_sli_eratt_read(phba); 12367 break; 12368 case LPFC_SLI_REV4: 12369 /* Read device Uncoverable Error (UERR) registers */ 12370 ha_copy = lpfc_sli4_eratt_read(phba); 12371 break; 12372 default: 12373 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12374 "0299 Invalid SLI revision (%d)\n", 12375 phba->sli_rev); 12376 ha_copy = 0; 12377 break; 12378 } 12379 spin_unlock_irq(&phba->hbalock); 12380 12381 return ha_copy; 12382 } 12383 12384 /** 12385 * lpfc_intr_state_check - Check device state for interrupt handling 12386 * @phba: Pointer to HBA context. 12387 * 12388 * This inline routine checks whether a device or its PCI slot is in a state 12389 * that the interrupt should be handled. 12390 * 12391 * This function returns 0 if the device or the PCI slot is in a state that 12392 * interrupt should be handled, otherwise -EIO. 12393 */ 12394 static inline int 12395 lpfc_intr_state_check(struct lpfc_hba *phba) 12396 { 12397 /* If the pci channel is offline, ignore all the interrupts */ 12398 if (unlikely(pci_channel_offline(phba->pcidev))) 12399 return -EIO; 12400 12401 /* Update device level interrupt statistics */ 12402 phba->sli.slistat.sli_intr++; 12403 12404 /* Ignore all interrupts during initialization. */ 12405 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12406 return -EIO; 12407 12408 return 0; 12409 } 12410 12411 /** 12412 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12413 * @irq: Interrupt number. 12414 * @dev_id: The device context pointer. 12415 * 12416 * This function is directly called from the PCI layer as an interrupt 12417 * service routine when device with SLI-3 interface spec is enabled with 12418 * MSI-X multi-message interrupt mode and there are slow-path events in 12419 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12420 * interrupt mode, this function is called as part of the device-level 12421 * interrupt handler. When the PCI slot is in error recovery or the HBA 12422 * is undergoing initialization, the interrupt handler will not process 12423 * the interrupt. The link attention and ELS ring attention events are 12424 * handled by the worker thread. The interrupt handler signals the worker 12425 * thread and returns for these events. This function is called without 12426 * any lock held. It gets the hbalock to access and update SLI data 12427 * structures. 12428 * 12429 * This function returns IRQ_HANDLED when interrupt is handled else it 12430 * returns IRQ_NONE. 12431 **/ 12432 irqreturn_t 12433 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12434 { 12435 struct lpfc_hba *phba; 12436 uint32_t ha_copy, hc_copy; 12437 uint32_t work_ha_copy; 12438 unsigned long status; 12439 unsigned long iflag; 12440 uint32_t control; 12441 12442 MAILBOX_t *mbox, *pmbox; 12443 struct lpfc_vport *vport; 12444 struct lpfc_nodelist *ndlp; 12445 struct lpfc_dmabuf *mp; 12446 LPFC_MBOXQ_t *pmb; 12447 int rc; 12448 12449 /* 12450 * Get the driver's phba structure from the dev_id and 12451 * assume the HBA is not interrupting. 12452 */ 12453 phba = (struct lpfc_hba *)dev_id; 12454 12455 if (unlikely(!phba)) 12456 return IRQ_NONE; 12457 12458 /* 12459 * Stuff needs to be attented to when this function is invoked as an 12460 * individual interrupt handler in MSI-X multi-message interrupt mode 12461 */ 12462 if (phba->intr_type == MSIX) { 12463 /* Check device state for handling interrupt */ 12464 if (lpfc_intr_state_check(phba)) 12465 return IRQ_NONE; 12466 /* Need to read HA REG for slow-path events */ 12467 spin_lock_irqsave(&phba->hbalock, iflag); 12468 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12469 goto unplug_error; 12470 /* If somebody is waiting to handle an eratt don't process it 12471 * here. The brdkill function will do this. 12472 */ 12473 if (phba->link_flag & LS_IGNORE_ERATT) 12474 ha_copy &= ~HA_ERATT; 12475 /* Check the need for handling ERATT in interrupt handler */ 12476 if (ha_copy & HA_ERATT) { 12477 if (phba->hba_flag & HBA_ERATT_HANDLED) 12478 /* ERATT polling has handled ERATT */ 12479 ha_copy &= ~HA_ERATT; 12480 else 12481 /* Indicate interrupt handler handles ERATT */ 12482 phba->hba_flag |= HBA_ERATT_HANDLED; 12483 } 12484 12485 /* 12486 * If there is deferred error attention, do not check for any 12487 * interrupt. 12488 */ 12489 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12490 spin_unlock_irqrestore(&phba->hbalock, iflag); 12491 return IRQ_NONE; 12492 } 12493 12494 /* Clear up only attention source related to slow-path */ 12495 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12496 goto unplug_error; 12497 12498 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12499 HC_LAINT_ENA | HC_ERINT_ENA), 12500 phba->HCregaddr); 12501 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12502 phba->HAregaddr); 12503 writel(hc_copy, phba->HCregaddr); 12504 readl(phba->HAregaddr); /* flush */ 12505 spin_unlock_irqrestore(&phba->hbalock, iflag); 12506 } else 12507 ha_copy = phba->ha_copy; 12508 12509 work_ha_copy = ha_copy & phba->work_ha_mask; 12510 12511 if (work_ha_copy) { 12512 if (work_ha_copy & HA_LATT) { 12513 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12514 /* 12515 * Turn off Link Attention interrupts 12516 * until CLEAR_LA done 12517 */ 12518 spin_lock_irqsave(&phba->hbalock, iflag); 12519 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12520 if (lpfc_readl(phba->HCregaddr, &control)) 12521 goto unplug_error; 12522 control &= ~HC_LAINT_ENA; 12523 writel(control, phba->HCregaddr); 12524 readl(phba->HCregaddr); /* flush */ 12525 spin_unlock_irqrestore(&phba->hbalock, iflag); 12526 } 12527 else 12528 work_ha_copy &= ~HA_LATT; 12529 } 12530 12531 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12532 /* 12533 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12534 * the only slow ring. 12535 */ 12536 status = (work_ha_copy & 12537 (HA_RXMASK << (4*LPFC_ELS_RING))); 12538 status >>= (4*LPFC_ELS_RING); 12539 if (status & HA_RXMASK) { 12540 spin_lock_irqsave(&phba->hbalock, iflag); 12541 if (lpfc_readl(phba->HCregaddr, &control)) 12542 goto unplug_error; 12543 12544 lpfc_debugfs_slow_ring_trc(phba, 12545 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12546 control, status, 12547 (uint32_t)phba->sli.slistat.sli_intr); 12548 12549 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12550 lpfc_debugfs_slow_ring_trc(phba, 12551 "ISR Disable ring:" 12552 "pwork:x%x hawork:x%x wait:x%x", 12553 phba->work_ha, work_ha_copy, 12554 (uint32_t)((unsigned long) 12555 &phba->work_waitq)); 12556 12557 control &= 12558 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12559 writel(control, phba->HCregaddr); 12560 readl(phba->HCregaddr); /* flush */ 12561 } 12562 else { 12563 lpfc_debugfs_slow_ring_trc(phba, 12564 "ISR slow ring: pwork:" 12565 "x%x hawork:x%x wait:x%x", 12566 phba->work_ha, work_ha_copy, 12567 (uint32_t)((unsigned long) 12568 &phba->work_waitq)); 12569 } 12570 spin_unlock_irqrestore(&phba->hbalock, iflag); 12571 } 12572 } 12573 spin_lock_irqsave(&phba->hbalock, iflag); 12574 if (work_ha_copy & HA_ERATT) { 12575 if (lpfc_sli_read_hs(phba)) 12576 goto unplug_error; 12577 /* 12578 * Check if there is a deferred error condition 12579 * is active 12580 */ 12581 if ((HS_FFER1 & phba->work_hs) && 12582 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12583 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12584 phba->work_hs)) { 12585 phba->hba_flag |= DEFER_ERATT; 12586 /* Clear all interrupt enable conditions */ 12587 writel(0, phba->HCregaddr); 12588 readl(phba->HCregaddr); 12589 } 12590 } 12591 12592 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12593 pmb = phba->sli.mbox_active; 12594 pmbox = &pmb->u.mb; 12595 mbox = phba->mbox; 12596 vport = pmb->vport; 12597 12598 /* First check out the status word */ 12599 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12600 if (pmbox->mbxOwner != OWN_HOST) { 12601 spin_unlock_irqrestore(&phba->hbalock, iflag); 12602 /* 12603 * Stray Mailbox Interrupt, mbxCommand <cmd> 12604 * mbxStatus <status> 12605 */ 12606 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12607 LOG_SLI, 12608 "(%d):0304 Stray Mailbox " 12609 "Interrupt mbxCommand x%x " 12610 "mbxStatus x%x\n", 12611 (vport ? vport->vpi : 0), 12612 pmbox->mbxCommand, 12613 pmbox->mbxStatus); 12614 /* clear mailbox attention bit */ 12615 work_ha_copy &= ~HA_MBATT; 12616 } else { 12617 phba->sli.mbox_active = NULL; 12618 spin_unlock_irqrestore(&phba->hbalock, iflag); 12619 phba->last_completion_time = jiffies; 12620 del_timer(&phba->sli.mbox_tmo); 12621 if (pmb->mbox_cmpl) { 12622 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12623 MAILBOX_CMD_SIZE); 12624 if (pmb->out_ext_byte_len && 12625 pmb->ctx_buf) 12626 lpfc_sli_pcimem_bcopy( 12627 phba->mbox_ext, 12628 pmb->ctx_buf, 12629 pmb->out_ext_byte_len); 12630 } 12631 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12632 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12633 12634 lpfc_debugfs_disc_trc(vport, 12635 LPFC_DISC_TRC_MBOX_VPORT, 12636 "MBOX dflt rpi: : " 12637 "status:x%x rpi:x%x", 12638 (uint32_t)pmbox->mbxStatus, 12639 pmbox->un.varWords[0], 0); 12640 12641 if (!pmbox->mbxStatus) { 12642 mp = (struct lpfc_dmabuf *) 12643 (pmb->ctx_buf); 12644 ndlp = (struct lpfc_nodelist *) 12645 pmb->ctx_ndlp; 12646 12647 /* Reg_LOGIN of dflt RPI was 12648 * successful. new lets get 12649 * rid of the RPI using the 12650 * same mbox buffer. 12651 */ 12652 lpfc_unreg_login(phba, 12653 vport->vpi, 12654 pmbox->un.varWords[0], 12655 pmb); 12656 pmb->mbox_cmpl = 12657 lpfc_mbx_cmpl_dflt_rpi; 12658 pmb->ctx_buf = mp; 12659 pmb->ctx_ndlp = ndlp; 12660 pmb->vport = vport; 12661 rc = lpfc_sli_issue_mbox(phba, 12662 pmb, 12663 MBX_NOWAIT); 12664 if (rc != MBX_BUSY) 12665 lpfc_printf_log(phba, 12666 KERN_ERR, 12667 LOG_MBOX | LOG_SLI, 12668 "0350 rc should have" 12669 "been MBX_BUSY\n"); 12670 if (rc != MBX_NOT_FINISHED) 12671 goto send_current_mbox; 12672 } 12673 } 12674 spin_lock_irqsave( 12675 &phba->pport->work_port_lock, 12676 iflag); 12677 phba->pport->work_port_events &= 12678 ~WORKER_MBOX_TMO; 12679 spin_unlock_irqrestore( 12680 &phba->pport->work_port_lock, 12681 iflag); 12682 lpfc_mbox_cmpl_put(phba, pmb); 12683 } 12684 } else 12685 spin_unlock_irqrestore(&phba->hbalock, iflag); 12686 12687 if ((work_ha_copy & HA_MBATT) && 12688 (phba->sli.mbox_active == NULL)) { 12689 send_current_mbox: 12690 /* Process next mailbox command if there is one */ 12691 do { 12692 rc = lpfc_sli_issue_mbox(phba, NULL, 12693 MBX_NOWAIT); 12694 } while (rc == MBX_NOT_FINISHED); 12695 if (rc != MBX_SUCCESS) 12696 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12697 LOG_SLI, "0349 rc should be " 12698 "MBX_SUCCESS\n"); 12699 } 12700 12701 spin_lock_irqsave(&phba->hbalock, iflag); 12702 phba->work_ha |= work_ha_copy; 12703 spin_unlock_irqrestore(&phba->hbalock, iflag); 12704 lpfc_worker_wake_up(phba); 12705 } 12706 return IRQ_HANDLED; 12707 unplug_error: 12708 spin_unlock_irqrestore(&phba->hbalock, iflag); 12709 return IRQ_HANDLED; 12710 12711 } /* lpfc_sli_sp_intr_handler */ 12712 12713 /** 12714 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12715 * @irq: Interrupt number. 12716 * @dev_id: The device context pointer. 12717 * 12718 * This function is directly called from the PCI layer as an interrupt 12719 * service routine when device with SLI-3 interface spec is enabled with 12720 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12721 * ring event in the HBA. However, when the device is enabled with either 12722 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12723 * device-level interrupt handler. When the PCI slot is in error recovery 12724 * or the HBA is undergoing initialization, the interrupt handler will not 12725 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12726 * the intrrupt context. This function is called without any lock held. 12727 * It gets the hbalock to access and update SLI data structures. 12728 * 12729 * This function returns IRQ_HANDLED when interrupt is handled else it 12730 * returns IRQ_NONE. 12731 **/ 12732 irqreturn_t 12733 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12734 { 12735 struct lpfc_hba *phba; 12736 uint32_t ha_copy; 12737 unsigned long status; 12738 unsigned long iflag; 12739 struct lpfc_sli_ring *pring; 12740 12741 /* Get the driver's phba structure from the dev_id and 12742 * assume the HBA is not interrupting. 12743 */ 12744 phba = (struct lpfc_hba *) dev_id; 12745 12746 if (unlikely(!phba)) 12747 return IRQ_NONE; 12748 12749 /* 12750 * Stuff needs to be attented to when this function is invoked as an 12751 * individual interrupt handler in MSI-X multi-message interrupt mode 12752 */ 12753 if (phba->intr_type == MSIX) { 12754 /* Check device state for handling interrupt */ 12755 if (lpfc_intr_state_check(phba)) 12756 return IRQ_NONE; 12757 /* Need to read HA REG for FCP ring and other ring events */ 12758 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12759 return IRQ_HANDLED; 12760 /* Clear up only attention source related to fast-path */ 12761 spin_lock_irqsave(&phba->hbalock, iflag); 12762 /* 12763 * If there is deferred error attention, do not check for 12764 * any interrupt. 12765 */ 12766 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12767 spin_unlock_irqrestore(&phba->hbalock, iflag); 12768 return IRQ_NONE; 12769 } 12770 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12771 phba->HAregaddr); 12772 readl(phba->HAregaddr); /* flush */ 12773 spin_unlock_irqrestore(&phba->hbalock, iflag); 12774 } else 12775 ha_copy = phba->ha_copy; 12776 12777 /* 12778 * Process all events on FCP ring. Take the optimized path for FCP IO. 12779 */ 12780 ha_copy &= ~(phba->work_ha_mask); 12781 12782 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12783 status >>= (4*LPFC_FCP_RING); 12784 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12785 if (status & HA_RXMASK) 12786 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12787 12788 if (phba->cfg_multi_ring_support == 2) { 12789 /* 12790 * Process all events on extra ring. Take the optimized path 12791 * for extra ring IO. 12792 */ 12793 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12794 status >>= (4*LPFC_EXTRA_RING); 12795 if (status & HA_RXMASK) { 12796 lpfc_sli_handle_fast_ring_event(phba, 12797 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12798 status); 12799 } 12800 } 12801 return IRQ_HANDLED; 12802 } /* lpfc_sli_fp_intr_handler */ 12803 12804 /** 12805 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12806 * @irq: Interrupt number. 12807 * @dev_id: The device context pointer. 12808 * 12809 * This function is the HBA device-level interrupt handler to device with 12810 * SLI-3 interface spec, called from the PCI layer when either MSI or 12811 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12812 * requires driver attention. This function invokes the slow-path interrupt 12813 * attention handling function and fast-path interrupt attention handling 12814 * function in turn to process the relevant HBA attention events. This 12815 * function is called without any lock held. It gets the hbalock to access 12816 * and update SLI data structures. 12817 * 12818 * This function returns IRQ_HANDLED when interrupt is handled, else it 12819 * returns IRQ_NONE. 12820 **/ 12821 irqreturn_t 12822 lpfc_sli_intr_handler(int irq, void *dev_id) 12823 { 12824 struct lpfc_hba *phba; 12825 irqreturn_t sp_irq_rc, fp_irq_rc; 12826 unsigned long status1, status2; 12827 uint32_t hc_copy; 12828 12829 /* 12830 * Get the driver's phba structure from the dev_id and 12831 * assume the HBA is not interrupting. 12832 */ 12833 phba = (struct lpfc_hba *) dev_id; 12834 12835 if (unlikely(!phba)) 12836 return IRQ_NONE; 12837 12838 /* Check device state for handling interrupt */ 12839 if (lpfc_intr_state_check(phba)) 12840 return IRQ_NONE; 12841 12842 spin_lock(&phba->hbalock); 12843 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12844 spin_unlock(&phba->hbalock); 12845 return IRQ_HANDLED; 12846 } 12847 12848 if (unlikely(!phba->ha_copy)) { 12849 spin_unlock(&phba->hbalock); 12850 return IRQ_NONE; 12851 } else if (phba->ha_copy & HA_ERATT) { 12852 if (phba->hba_flag & HBA_ERATT_HANDLED) 12853 /* ERATT polling has handled ERATT */ 12854 phba->ha_copy &= ~HA_ERATT; 12855 else 12856 /* Indicate interrupt handler handles ERATT */ 12857 phba->hba_flag |= HBA_ERATT_HANDLED; 12858 } 12859 12860 /* 12861 * If there is deferred error attention, do not check for any interrupt. 12862 */ 12863 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12864 spin_unlock(&phba->hbalock); 12865 return IRQ_NONE; 12866 } 12867 12868 /* Clear attention sources except link and error attentions */ 12869 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12870 spin_unlock(&phba->hbalock); 12871 return IRQ_HANDLED; 12872 } 12873 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12874 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12875 phba->HCregaddr); 12876 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12877 writel(hc_copy, phba->HCregaddr); 12878 readl(phba->HAregaddr); /* flush */ 12879 spin_unlock(&phba->hbalock); 12880 12881 /* 12882 * Invokes slow-path host attention interrupt handling as appropriate. 12883 */ 12884 12885 /* status of events with mailbox and link attention */ 12886 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12887 12888 /* status of events with ELS ring */ 12889 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12890 status2 >>= (4*LPFC_ELS_RING); 12891 12892 if (status1 || (status2 & HA_RXMASK)) 12893 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12894 else 12895 sp_irq_rc = IRQ_NONE; 12896 12897 /* 12898 * Invoke fast-path host attention interrupt handling as appropriate. 12899 */ 12900 12901 /* status of events with FCP ring */ 12902 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12903 status1 >>= (4*LPFC_FCP_RING); 12904 12905 /* status of events with extra ring */ 12906 if (phba->cfg_multi_ring_support == 2) { 12907 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12908 status2 >>= (4*LPFC_EXTRA_RING); 12909 } else 12910 status2 = 0; 12911 12912 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12913 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12914 else 12915 fp_irq_rc = IRQ_NONE; 12916 12917 /* Return device-level interrupt handling status */ 12918 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12919 } /* lpfc_sli_intr_handler */ 12920 12921 /** 12922 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12923 * @phba: pointer to lpfc hba data structure. 12924 * 12925 * This routine is invoked by the worker thread to process all the pending 12926 * SLI4 FCP abort XRI events. 12927 **/ 12928 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12929 { 12930 struct lpfc_cq_event *cq_event; 12931 12932 /* First, declare the fcp xri abort event has been handled */ 12933 spin_lock_irq(&phba->hbalock); 12934 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12935 spin_unlock_irq(&phba->hbalock); 12936 /* Now, handle all the fcp xri abort events */ 12937 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12938 /* Get the first event from the head of the event queue */ 12939 spin_lock_irq(&phba->hbalock); 12940 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12941 cq_event, struct lpfc_cq_event, list); 12942 spin_unlock_irq(&phba->hbalock); 12943 /* Notify aborted XRI for FCP work queue */ 12944 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12945 /* Free the event processed back to the free pool */ 12946 lpfc_sli4_cq_event_release(phba, cq_event); 12947 } 12948 } 12949 12950 /** 12951 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12952 * @phba: pointer to lpfc hba data structure. 12953 * 12954 * This routine is invoked by the worker thread to process all the pending 12955 * SLI4 els abort xri events. 12956 **/ 12957 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12958 { 12959 struct lpfc_cq_event *cq_event; 12960 12961 /* First, declare the els xri abort event has been handled */ 12962 spin_lock_irq(&phba->hbalock); 12963 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12964 spin_unlock_irq(&phba->hbalock); 12965 /* Now, handle all the els xri abort events */ 12966 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12967 /* Get the first event from the head of the event queue */ 12968 spin_lock_irq(&phba->hbalock); 12969 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12970 cq_event, struct lpfc_cq_event, list); 12971 spin_unlock_irq(&phba->hbalock); 12972 /* Notify aborted XRI for ELS work queue */ 12973 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12974 /* Free the event processed back to the free pool */ 12975 lpfc_sli4_cq_event_release(phba, cq_event); 12976 } 12977 } 12978 12979 /** 12980 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12981 * @phba: pointer to lpfc hba data structure 12982 * @pIocbIn: pointer to the rspiocbq 12983 * @pIocbOut: pointer to the cmdiocbq 12984 * @wcqe: pointer to the complete wcqe 12985 * 12986 * This routine transfers the fields of a command iocbq to a response iocbq 12987 * by copying all the IOCB fields from command iocbq and transferring the 12988 * completion status information from the complete wcqe. 12989 **/ 12990 static void 12991 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12992 struct lpfc_iocbq *pIocbIn, 12993 struct lpfc_iocbq *pIocbOut, 12994 struct lpfc_wcqe_complete *wcqe) 12995 { 12996 int numBdes, i; 12997 unsigned long iflags; 12998 uint32_t status, max_response; 12999 struct lpfc_dmabuf *dmabuf; 13000 struct ulp_bde64 *bpl, bde; 13001 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13002 13003 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13004 sizeof(struct lpfc_iocbq) - offset); 13005 /* Map WCQE parameters into irspiocb parameters */ 13006 status = bf_get(lpfc_wcqe_c_status, wcqe); 13007 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13008 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13009 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13010 pIocbIn->iocb.un.fcpi.fcpi_parm = 13011 pIocbOut->iocb.un.fcpi.fcpi_parm - 13012 wcqe->total_data_placed; 13013 else 13014 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13015 else { 13016 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13017 switch (pIocbOut->iocb.ulpCommand) { 13018 case CMD_ELS_REQUEST64_CR: 13019 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13020 bpl = (struct ulp_bde64 *)dmabuf->virt; 13021 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13022 max_response = bde.tus.f.bdeSize; 13023 break; 13024 case CMD_GEN_REQUEST64_CR: 13025 max_response = 0; 13026 if (!pIocbOut->context3) 13027 break; 13028 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13029 sizeof(struct ulp_bde64); 13030 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13031 bpl = (struct ulp_bde64 *)dmabuf->virt; 13032 for (i = 0; i < numBdes; i++) { 13033 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13034 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13035 max_response += bde.tus.f.bdeSize; 13036 } 13037 break; 13038 default: 13039 max_response = wcqe->total_data_placed; 13040 break; 13041 } 13042 if (max_response < wcqe->total_data_placed) 13043 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13044 else 13045 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13046 wcqe->total_data_placed; 13047 } 13048 13049 /* Convert BG errors for completion status */ 13050 if (status == CQE_STATUS_DI_ERROR) { 13051 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13052 13053 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13054 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13055 else 13056 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13057 13058 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13059 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13060 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13061 BGS_GUARD_ERR_MASK; 13062 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13063 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13064 BGS_APPTAG_ERR_MASK; 13065 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13066 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13067 BGS_REFTAG_ERR_MASK; 13068 13069 /* Check to see if there was any good data before the error */ 13070 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13071 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13072 BGS_HI_WATER_MARK_PRESENT_MASK; 13073 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13074 wcqe->total_data_placed; 13075 } 13076 13077 /* 13078 * Set ALL the error bits to indicate we don't know what 13079 * type of error it is. 13080 */ 13081 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13082 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13083 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13084 BGS_GUARD_ERR_MASK); 13085 } 13086 13087 /* Pick up HBA exchange busy condition */ 13088 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13089 spin_lock_irqsave(&phba->hbalock, iflags); 13090 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13091 spin_unlock_irqrestore(&phba->hbalock, iflags); 13092 } 13093 } 13094 13095 /** 13096 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13097 * @phba: Pointer to HBA context object. 13098 * @wcqe: Pointer to work-queue completion queue entry. 13099 * 13100 * This routine handles an ELS work-queue completion event and construct 13101 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13102 * discovery engine to handle. 13103 * 13104 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13105 **/ 13106 static struct lpfc_iocbq * 13107 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13108 struct lpfc_iocbq *irspiocbq) 13109 { 13110 struct lpfc_sli_ring *pring; 13111 struct lpfc_iocbq *cmdiocbq; 13112 struct lpfc_wcqe_complete *wcqe; 13113 unsigned long iflags; 13114 13115 pring = lpfc_phba_elsring(phba); 13116 if (unlikely(!pring)) 13117 return NULL; 13118 13119 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13120 spin_lock_irqsave(&pring->ring_lock, iflags); 13121 pring->stats.iocb_event++; 13122 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13123 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13124 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13125 if (unlikely(!cmdiocbq)) { 13126 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13127 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13128 "0386 ELS complete with no corresponding " 13129 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13130 wcqe->word0, wcqe->total_data_placed, 13131 wcqe->parameter, wcqe->word3); 13132 lpfc_sli_release_iocbq(phba, irspiocbq); 13133 return NULL; 13134 } 13135 13136 /* Put the iocb back on the txcmplq */ 13137 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13138 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13139 13140 /* Fake the irspiocbq and copy necessary response information */ 13141 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13142 13143 return irspiocbq; 13144 } 13145 13146 inline struct lpfc_cq_event * 13147 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13148 { 13149 struct lpfc_cq_event *cq_event; 13150 13151 /* Allocate a new internal CQ_EVENT entry */ 13152 cq_event = lpfc_sli4_cq_event_alloc(phba); 13153 if (!cq_event) { 13154 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13155 "0602 Failed to alloc CQ_EVENT entry\n"); 13156 return NULL; 13157 } 13158 13159 /* Move the CQE into the event */ 13160 memcpy(&cq_event->cqe, entry, size); 13161 return cq_event; 13162 } 13163 13164 /** 13165 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 13166 * @phba: Pointer to HBA context object. 13167 * @cqe: Pointer to mailbox completion queue entry. 13168 * 13169 * This routine process a mailbox completion queue entry with asynchrous 13170 * event. 13171 * 13172 * Return: true if work posted to worker thread, otherwise false. 13173 **/ 13174 static bool 13175 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13176 { 13177 struct lpfc_cq_event *cq_event; 13178 unsigned long iflags; 13179 13180 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13181 "0392 Async Event: word0:x%x, word1:x%x, " 13182 "word2:x%x, word3:x%x\n", mcqe->word0, 13183 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13184 13185 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13186 if (!cq_event) 13187 return false; 13188 spin_lock_irqsave(&phba->hbalock, iflags); 13189 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13190 /* Set the async event flag */ 13191 phba->hba_flag |= ASYNC_EVENT; 13192 spin_unlock_irqrestore(&phba->hbalock, iflags); 13193 13194 return true; 13195 } 13196 13197 /** 13198 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13199 * @phba: Pointer to HBA context object. 13200 * @cqe: Pointer to mailbox completion queue entry. 13201 * 13202 * This routine process a mailbox completion queue entry with mailbox 13203 * completion event. 13204 * 13205 * Return: true if work posted to worker thread, otherwise false. 13206 **/ 13207 static bool 13208 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13209 { 13210 uint32_t mcqe_status; 13211 MAILBOX_t *mbox, *pmbox; 13212 struct lpfc_mqe *mqe; 13213 struct lpfc_vport *vport; 13214 struct lpfc_nodelist *ndlp; 13215 struct lpfc_dmabuf *mp; 13216 unsigned long iflags; 13217 LPFC_MBOXQ_t *pmb; 13218 bool workposted = false; 13219 int rc; 13220 13221 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13222 if (!bf_get(lpfc_trailer_completed, mcqe)) 13223 goto out_no_mqe_complete; 13224 13225 /* Get the reference to the active mbox command */ 13226 spin_lock_irqsave(&phba->hbalock, iflags); 13227 pmb = phba->sli.mbox_active; 13228 if (unlikely(!pmb)) { 13229 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13230 "1832 No pending MBOX command to handle\n"); 13231 spin_unlock_irqrestore(&phba->hbalock, iflags); 13232 goto out_no_mqe_complete; 13233 } 13234 spin_unlock_irqrestore(&phba->hbalock, iflags); 13235 mqe = &pmb->u.mqe; 13236 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13237 mbox = phba->mbox; 13238 vport = pmb->vport; 13239 13240 /* Reset heartbeat timer */ 13241 phba->last_completion_time = jiffies; 13242 del_timer(&phba->sli.mbox_tmo); 13243 13244 /* Move mbox data to caller's mailbox region, do endian swapping */ 13245 if (pmb->mbox_cmpl && mbox) 13246 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13247 13248 /* 13249 * For mcqe errors, conditionally move a modified error code to 13250 * the mbox so that the error will not be missed. 13251 */ 13252 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13253 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13254 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13255 bf_set(lpfc_mqe_status, mqe, 13256 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13257 } 13258 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13259 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13260 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13261 "MBOX dflt rpi: status:x%x rpi:x%x", 13262 mcqe_status, 13263 pmbox->un.varWords[0], 0); 13264 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13265 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13266 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13267 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13268 * RID of the PPI using the same mbox buffer. 13269 */ 13270 lpfc_unreg_login(phba, vport->vpi, 13271 pmbox->un.varWords[0], pmb); 13272 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13273 pmb->ctx_buf = mp; 13274 pmb->ctx_ndlp = ndlp; 13275 pmb->vport = vport; 13276 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13277 if (rc != MBX_BUSY) 13278 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13279 LOG_SLI, "0385 rc should " 13280 "have been MBX_BUSY\n"); 13281 if (rc != MBX_NOT_FINISHED) 13282 goto send_current_mbox; 13283 } 13284 } 13285 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13286 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13287 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13288 13289 /* There is mailbox completion work to do */ 13290 spin_lock_irqsave(&phba->hbalock, iflags); 13291 __lpfc_mbox_cmpl_put(phba, pmb); 13292 phba->work_ha |= HA_MBATT; 13293 spin_unlock_irqrestore(&phba->hbalock, iflags); 13294 workposted = true; 13295 13296 send_current_mbox: 13297 spin_lock_irqsave(&phba->hbalock, iflags); 13298 /* Release the mailbox command posting token */ 13299 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13300 /* Setting active mailbox pointer need to be in sync to flag clear */ 13301 phba->sli.mbox_active = NULL; 13302 spin_unlock_irqrestore(&phba->hbalock, iflags); 13303 /* Wake up worker thread to post the next pending mailbox command */ 13304 lpfc_worker_wake_up(phba); 13305 out_no_mqe_complete: 13306 if (bf_get(lpfc_trailer_consumed, mcqe)) 13307 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13308 return workposted; 13309 } 13310 13311 /** 13312 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13313 * @phba: Pointer to HBA context object. 13314 * @cqe: Pointer to mailbox completion queue entry. 13315 * 13316 * This routine process a mailbox completion queue entry, it invokes the 13317 * proper mailbox complete handling or asynchrous event handling routine 13318 * according to the MCQE's async bit. 13319 * 13320 * Return: true if work posted to worker thread, otherwise false. 13321 **/ 13322 static bool 13323 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 13324 { 13325 struct lpfc_mcqe mcqe; 13326 bool workposted; 13327 13328 /* Copy the mailbox MCQE and convert endian order as needed */ 13329 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13330 13331 /* Invoke the proper event handling routine */ 13332 if (!bf_get(lpfc_trailer_async, &mcqe)) 13333 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13334 else 13335 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13336 return workposted; 13337 } 13338 13339 /** 13340 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13341 * @phba: Pointer to HBA context object. 13342 * @cq: Pointer to associated CQ 13343 * @wcqe: Pointer to work-queue completion queue entry. 13344 * 13345 * This routine handles an ELS work-queue completion event. 13346 * 13347 * Return: true if work posted to worker thread, otherwise false. 13348 **/ 13349 static bool 13350 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13351 struct lpfc_wcqe_complete *wcqe) 13352 { 13353 struct lpfc_iocbq *irspiocbq; 13354 unsigned long iflags; 13355 struct lpfc_sli_ring *pring = cq->pring; 13356 int txq_cnt = 0; 13357 int txcmplq_cnt = 0; 13358 int fcp_txcmplq_cnt = 0; 13359 13360 /* Check for response status */ 13361 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13362 /* Log the error status */ 13363 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13364 "0357 ELS CQE error: status=x%x: " 13365 "CQE: %08x %08x %08x %08x\n", 13366 bf_get(lpfc_wcqe_c_status, wcqe), 13367 wcqe->word0, wcqe->total_data_placed, 13368 wcqe->parameter, wcqe->word3); 13369 } 13370 13371 /* Get an irspiocbq for later ELS response processing use */ 13372 irspiocbq = lpfc_sli_get_iocbq(phba); 13373 if (!irspiocbq) { 13374 if (!list_empty(&pring->txq)) 13375 txq_cnt++; 13376 if (!list_empty(&pring->txcmplq)) 13377 txcmplq_cnt++; 13378 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13379 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13380 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 13381 txq_cnt, phba->iocb_cnt, 13382 fcp_txcmplq_cnt, 13383 txcmplq_cnt); 13384 return false; 13385 } 13386 13387 /* Save off the slow-path queue event for work thread to process */ 13388 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13389 spin_lock_irqsave(&phba->hbalock, iflags); 13390 list_add_tail(&irspiocbq->cq_event.list, 13391 &phba->sli4_hba.sp_queue_event); 13392 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13393 spin_unlock_irqrestore(&phba->hbalock, iflags); 13394 13395 return true; 13396 } 13397 13398 /** 13399 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13400 * @phba: Pointer to HBA context object. 13401 * @wcqe: Pointer to work-queue completion queue entry. 13402 * 13403 * This routine handles slow-path WQ entry consumed event by invoking the 13404 * proper WQ release routine to the slow-path WQ. 13405 **/ 13406 static void 13407 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13408 struct lpfc_wcqe_release *wcqe) 13409 { 13410 /* sanity check on queue memory */ 13411 if (unlikely(!phba->sli4_hba.els_wq)) 13412 return; 13413 /* Check for the slow-path ELS work queue */ 13414 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13415 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13416 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13417 else 13418 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13419 "2579 Slow-path wqe consume event carries " 13420 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13421 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13422 phba->sli4_hba.els_wq->queue_id); 13423 } 13424 13425 /** 13426 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13427 * @phba: Pointer to HBA context object. 13428 * @cq: Pointer to a WQ completion queue. 13429 * @wcqe: Pointer to work-queue completion queue entry. 13430 * 13431 * This routine handles an XRI abort event. 13432 * 13433 * Return: true if work posted to worker thread, otherwise false. 13434 **/ 13435 static bool 13436 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13437 struct lpfc_queue *cq, 13438 struct sli4_wcqe_xri_aborted *wcqe) 13439 { 13440 bool workposted = false; 13441 struct lpfc_cq_event *cq_event; 13442 unsigned long iflags; 13443 13444 switch (cq->subtype) { 13445 case LPFC_FCP: 13446 cq_event = lpfc_cq_event_setup( 13447 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13448 if (!cq_event) 13449 return false; 13450 spin_lock_irqsave(&phba->hbalock, iflags); 13451 list_add_tail(&cq_event->list, 13452 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 13453 /* Set the fcp xri abort event flag */ 13454 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 13455 spin_unlock_irqrestore(&phba->hbalock, iflags); 13456 workposted = true; 13457 break; 13458 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13459 case LPFC_ELS: 13460 cq_event = lpfc_cq_event_setup( 13461 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13462 if (!cq_event) 13463 return false; 13464 spin_lock_irqsave(&phba->hbalock, iflags); 13465 list_add_tail(&cq_event->list, 13466 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13467 /* Set the els xri abort event flag */ 13468 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13469 spin_unlock_irqrestore(&phba->hbalock, iflags); 13470 workposted = true; 13471 break; 13472 case LPFC_NVME: 13473 /* Notify aborted XRI for NVME work queue */ 13474 if (phba->nvmet_support) 13475 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13476 else 13477 lpfc_sli4_nvme_xri_aborted(phba, wcqe); 13478 13479 workposted = false; 13480 break; 13481 default: 13482 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13483 "0603 Invalid CQ subtype %d: " 13484 "%08x %08x %08x %08x\n", 13485 cq->subtype, wcqe->word0, wcqe->parameter, 13486 wcqe->word2, wcqe->word3); 13487 workposted = false; 13488 break; 13489 } 13490 return workposted; 13491 } 13492 13493 #define FC_RCTL_MDS_DIAGS 0xF4 13494 13495 /** 13496 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13497 * @phba: Pointer to HBA context object. 13498 * @rcqe: Pointer to receive-queue completion queue entry. 13499 * 13500 * This routine process a receive-queue completion queue entry. 13501 * 13502 * Return: true if work posted to worker thread, otherwise false. 13503 **/ 13504 static bool 13505 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13506 { 13507 bool workposted = false; 13508 struct fc_frame_header *fc_hdr; 13509 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13510 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13511 struct lpfc_nvmet_tgtport *tgtp; 13512 struct hbq_dmabuf *dma_buf; 13513 uint32_t status, rq_id; 13514 unsigned long iflags; 13515 13516 /* sanity check on queue memory */ 13517 if (unlikely(!hrq) || unlikely(!drq)) 13518 return workposted; 13519 13520 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13521 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13522 else 13523 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13524 if (rq_id != hrq->queue_id) 13525 goto out; 13526 13527 status = bf_get(lpfc_rcqe_status, rcqe); 13528 switch (status) { 13529 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13530 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13531 "2537 Receive Frame Truncated!!\n"); 13532 case FC_STATUS_RQ_SUCCESS: 13533 spin_lock_irqsave(&phba->hbalock, iflags); 13534 lpfc_sli4_rq_release(hrq, drq); 13535 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13536 if (!dma_buf) { 13537 hrq->RQ_no_buf_found++; 13538 spin_unlock_irqrestore(&phba->hbalock, iflags); 13539 goto out; 13540 } 13541 hrq->RQ_rcv_buf++; 13542 hrq->RQ_buf_posted--; 13543 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13544 13545 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13546 13547 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13548 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13549 spin_unlock_irqrestore(&phba->hbalock, iflags); 13550 /* Handle MDS Loopback frames */ 13551 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13552 break; 13553 } 13554 13555 /* save off the frame for the work thread to process */ 13556 list_add_tail(&dma_buf->cq_event.list, 13557 &phba->sli4_hba.sp_queue_event); 13558 /* Frame received */ 13559 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13560 spin_unlock_irqrestore(&phba->hbalock, iflags); 13561 workposted = true; 13562 break; 13563 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13564 if (phba->nvmet_support) { 13565 tgtp = phba->targetport->private; 13566 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13567 "6402 RQE Error x%x, posted %d err_cnt " 13568 "%d: %x %x %x\n", 13569 status, hrq->RQ_buf_posted, 13570 hrq->RQ_no_posted_buf, 13571 atomic_read(&tgtp->rcv_fcp_cmd_in), 13572 atomic_read(&tgtp->rcv_fcp_cmd_out), 13573 atomic_read(&tgtp->xmt_fcp_release)); 13574 } 13575 /* fallthrough */ 13576 13577 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13578 hrq->RQ_no_posted_buf++; 13579 /* Post more buffers if possible */ 13580 spin_lock_irqsave(&phba->hbalock, iflags); 13581 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13582 spin_unlock_irqrestore(&phba->hbalock, iflags); 13583 workposted = true; 13584 break; 13585 } 13586 out: 13587 return workposted; 13588 } 13589 13590 /** 13591 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13592 * @phba: Pointer to HBA context object. 13593 * @cq: Pointer to the completion queue. 13594 * @wcqe: Pointer to a completion queue entry. 13595 * 13596 * This routine process a slow-path work-queue or receive queue completion queue 13597 * entry. 13598 * 13599 * Return: true if work posted to worker thread, otherwise false. 13600 **/ 13601 static bool 13602 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13603 struct lpfc_cqe *cqe) 13604 { 13605 struct lpfc_cqe cqevt; 13606 bool workposted = false; 13607 13608 /* Copy the work queue CQE and convert endian order if needed */ 13609 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13610 13611 /* Check and process for different type of WCQE and dispatch */ 13612 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13613 case CQE_CODE_COMPL_WQE: 13614 /* Process the WQ/RQ complete event */ 13615 phba->last_completion_time = jiffies; 13616 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13617 (struct lpfc_wcqe_complete *)&cqevt); 13618 break; 13619 case CQE_CODE_RELEASE_WQE: 13620 /* Process the WQ release event */ 13621 lpfc_sli4_sp_handle_rel_wcqe(phba, 13622 (struct lpfc_wcqe_release *)&cqevt); 13623 break; 13624 case CQE_CODE_XRI_ABORTED: 13625 /* Process the WQ XRI abort event */ 13626 phba->last_completion_time = jiffies; 13627 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13628 (struct sli4_wcqe_xri_aborted *)&cqevt); 13629 break; 13630 case CQE_CODE_RECEIVE: 13631 case CQE_CODE_RECEIVE_V1: 13632 /* Process the RQ event */ 13633 phba->last_completion_time = jiffies; 13634 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13635 (struct lpfc_rcqe *)&cqevt); 13636 break; 13637 default: 13638 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13639 "0388 Not a valid WCQE code: x%x\n", 13640 bf_get(lpfc_cqe_code, &cqevt)); 13641 break; 13642 } 13643 return workposted; 13644 } 13645 13646 /** 13647 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13648 * @phba: Pointer to HBA context object. 13649 * @eqe: Pointer to fast-path event queue entry. 13650 * 13651 * This routine process a event queue entry from the slow-path event queue. 13652 * It will check the MajorCode and MinorCode to determine this is for a 13653 * completion event on a completion queue, if not, an error shall be logged 13654 * and just return. Otherwise, it will get to the corresponding completion 13655 * queue and process all the entries on that completion queue, rearm the 13656 * completion queue, and then return. 13657 * 13658 **/ 13659 static void 13660 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13661 struct lpfc_queue *speq) 13662 { 13663 struct lpfc_queue *cq = NULL, *childq; 13664 uint16_t cqid; 13665 13666 /* Get the reference to the corresponding CQ */ 13667 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13668 13669 list_for_each_entry(childq, &speq->child_list, list) { 13670 if (childq->queue_id == cqid) { 13671 cq = childq; 13672 break; 13673 } 13674 } 13675 if (unlikely(!cq)) { 13676 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13678 "0365 Slow-path CQ identifier " 13679 "(%d) does not exist\n", cqid); 13680 return; 13681 } 13682 13683 /* Save EQ associated with this CQ */ 13684 cq->assoc_qp = speq; 13685 13686 if (!queue_work(phba->wq, &cq->spwork)) 13687 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13688 "0390 Cannot schedule soft IRQ " 13689 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13690 cqid, cq->queue_id, smp_processor_id()); 13691 } 13692 13693 /** 13694 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13695 * @phba: Pointer to HBA context object. 13696 * 13697 * This routine process a event queue entry from the slow-path event queue. 13698 * It will check the MajorCode and MinorCode to determine this is for a 13699 * completion event on a completion queue, if not, an error shall be logged 13700 * and just return. Otherwise, it will get to the corresponding completion 13701 * queue and process all the entries on that completion queue, rearm the 13702 * completion queue, and then return. 13703 * 13704 **/ 13705 static void 13706 lpfc_sli4_sp_process_cq(struct work_struct *work) 13707 { 13708 struct lpfc_queue *cq = 13709 container_of(work, struct lpfc_queue, spwork); 13710 struct lpfc_hba *phba = cq->phba; 13711 struct lpfc_cqe *cqe; 13712 bool workposted = false; 13713 int ccount = 0; 13714 13715 /* Process all the entries to the CQ */ 13716 switch (cq->type) { 13717 case LPFC_MCQ: 13718 while ((cqe = lpfc_sli4_cq_get(cq))) { 13719 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13720 if (!(++ccount % cq->entry_repost)) 13721 break; 13722 cq->CQ_mbox++; 13723 } 13724 break; 13725 case LPFC_WCQ: 13726 while ((cqe = lpfc_sli4_cq_get(cq))) { 13727 if (cq->subtype == LPFC_FCP || 13728 cq->subtype == LPFC_NVME) { 13729 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13730 if (phba->ktime_on) 13731 cq->isr_timestamp = ktime_get_ns(); 13732 else 13733 cq->isr_timestamp = 0; 13734 #endif 13735 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13736 cqe); 13737 } else { 13738 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13739 cqe); 13740 } 13741 if (!(++ccount % cq->entry_repost)) 13742 break; 13743 } 13744 13745 /* Track the max number of CQEs processed in 1 EQ */ 13746 if (ccount > cq->CQ_max_cqe) 13747 cq->CQ_max_cqe = ccount; 13748 break; 13749 default: 13750 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13751 "0370 Invalid completion queue type (%d)\n", 13752 cq->type); 13753 return; 13754 } 13755 13756 /* Catch the no cq entry condition, log an error */ 13757 if (unlikely(ccount == 0)) 13758 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13759 "0371 No entry from the CQ: identifier " 13760 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13761 13762 /* In any case, flash and re-arm the RCQ */ 13763 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13764 13765 /* wake up worker thread if there are works to be done */ 13766 if (workposted) 13767 lpfc_worker_wake_up(phba); 13768 } 13769 13770 /** 13771 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13772 * @phba: Pointer to HBA context object. 13773 * @cq: Pointer to associated CQ 13774 * @wcqe: Pointer to work-queue completion queue entry. 13775 * 13776 * This routine process a fast-path work queue completion entry from fast-path 13777 * event queue for FCP command response completion. 13778 **/ 13779 static void 13780 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13781 struct lpfc_wcqe_complete *wcqe) 13782 { 13783 struct lpfc_sli_ring *pring = cq->pring; 13784 struct lpfc_iocbq *cmdiocbq; 13785 struct lpfc_iocbq irspiocbq; 13786 unsigned long iflags; 13787 13788 /* Check for response status */ 13789 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13790 /* If resource errors reported from HBA, reduce queue 13791 * depth of the SCSI device. 13792 */ 13793 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13794 IOSTAT_LOCAL_REJECT)) && 13795 ((wcqe->parameter & IOERR_PARAM_MASK) == 13796 IOERR_NO_RESOURCES)) 13797 phba->lpfc_rampdown_queue_depth(phba); 13798 13799 /* Log the error status */ 13800 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13801 "0373 FCP CQE error: status=x%x: " 13802 "CQE: %08x %08x %08x %08x\n", 13803 bf_get(lpfc_wcqe_c_status, wcqe), 13804 wcqe->word0, wcqe->total_data_placed, 13805 wcqe->parameter, wcqe->word3); 13806 } 13807 13808 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13809 spin_lock_irqsave(&pring->ring_lock, iflags); 13810 pring->stats.iocb_event++; 13811 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13812 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13813 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13814 if (unlikely(!cmdiocbq)) { 13815 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13816 "0374 FCP complete with no corresponding " 13817 "cmdiocb: iotag (%d)\n", 13818 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13819 return; 13820 } 13821 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13822 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13823 #endif 13824 if (cmdiocbq->iocb_cmpl == NULL) { 13825 if (cmdiocbq->wqe_cmpl) { 13826 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13827 spin_lock_irqsave(&phba->hbalock, iflags); 13828 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13829 spin_unlock_irqrestore(&phba->hbalock, iflags); 13830 } 13831 13832 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13833 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13834 return; 13835 } 13836 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13837 "0375 FCP cmdiocb not callback function " 13838 "iotag: (%d)\n", 13839 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13840 return; 13841 } 13842 13843 /* Fake the irspiocb and copy necessary response information */ 13844 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13845 13846 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13847 spin_lock_irqsave(&phba->hbalock, iflags); 13848 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13849 spin_unlock_irqrestore(&phba->hbalock, iflags); 13850 } 13851 13852 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13853 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13854 } 13855 13856 /** 13857 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13858 * @phba: Pointer to HBA context object. 13859 * @cq: Pointer to completion queue. 13860 * @wcqe: Pointer to work-queue completion queue entry. 13861 * 13862 * This routine handles an fast-path WQ entry consumed event by invoking the 13863 * proper WQ release routine to the slow-path WQ. 13864 **/ 13865 static void 13866 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13867 struct lpfc_wcqe_release *wcqe) 13868 { 13869 struct lpfc_queue *childwq; 13870 bool wqid_matched = false; 13871 uint16_t hba_wqid; 13872 13873 /* Check for fast-path FCP work queue release */ 13874 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13875 list_for_each_entry(childwq, &cq->child_list, list) { 13876 if (childwq->queue_id == hba_wqid) { 13877 lpfc_sli4_wq_release(childwq, 13878 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13879 if (childwq->q_flag & HBA_NVMET_WQFULL) 13880 lpfc_nvmet_wqfull_process(phba, childwq); 13881 wqid_matched = true; 13882 break; 13883 } 13884 } 13885 /* Report warning log message if no match found */ 13886 if (wqid_matched != true) 13887 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13888 "2580 Fast-path wqe consume event carries " 13889 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13890 } 13891 13892 /** 13893 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13894 * @phba: Pointer to HBA context object. 13895 * @rcqe: Pointer to receive-queue completion queue entry. 13896 * 13897 * This routine process a receive-queue completion queue entry. 13898 * 13899 * Return: true if work posted to worker thread, otherwise false. 13900 **/ 13901 static bool 13902 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13903 struct lpfc_rcqe *rcqe) 13904 { 13905 bool workposted = false; 13906 struct lpfc_queue *hrq; 13907 struct lpfc_queue *drq; 13908 struct rqb_dmabuf *dma_buf; 13909 struct fc_frame_header *fc_hdr; 13910 struct lpfc_nvmet_tgtport *tgtp; 13911 uint32_t status, rq_id; 13912 unsigned long iflags; 13913 uint32_t fctl, idx; 13914 13915 if ((phba->nvmet_support == 0) || 13916 (phba->sli4_hba.nvmet_cqset == NULL)) 13917 return workposted; 13918 13919 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13920 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13921 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13922 13923 /* sanity check on queue memory */ 13924 if (unlikely(!hrq) || unlikely(!drq)) 13925 return workposted; 13926 13927 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13928 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13929 else 13930 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13931 13932 if ((phba->nvmet_support == 0) || 13933 (rq_id != hrq->queue_id)) 13934 return workposted; 13935 13936 status = bf_get(lpfc_rcqe_status, rcqe); 13937 switch (status) { 13938 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13939 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13940 "6126 Receive Frame Truncated!!\n"); 13941 /* Drop thru */ 13942 case FC_STATUS_RQ_SUCCESS: 13943 spin_lock_irqsave(&phba->hbalock, iflags); 13944 lpfc_sli4_rq_release(hrq, drq); 13945 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13946 if (!dma_buf) { 13947 hrq->RQ_no_buf_found++; 13948 spin_unlock_irqrestore(&phba->hbalock, iflags); 13949 goto out; 13950 } 13951 spin_unlock_irqrestore(&phba->hbalock, iflags); 13952 hrq->RQ_rcv_buf++; 13953 hrq->RQ_buf_posted--; 13954 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13955 13956 /* Just some basic sanity checks on FCP Command frame */ 13957 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13958 fc_hdr->fh_f_ctl[1] << 8 | 13959 fc_hdr->fh_f_ctl[2]); 13960 if (((fctl & 13961 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13962 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13963 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13964 goto drop; 13965 13966 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13967 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13968 lpfc_nvmet_unsol_fcp_event( 13969 phba, idx, dma_buf, 13970 cq->isr_timestamp); 13971 return false; 13972 } 13973 drop: 13974 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13975 break; 13976 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13977 if (phba->nvmet_support) { 13978 tgtp = phba->targetport->private; 13979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13980 "6401 RQE Error x%x, posted %d err_cnt " 13981 "%d: %x %x %x\n", 13982 status, hrq->RQ_buf_posted, 13983 hrq->RQ_no_posted_buf, 13984 atomic_read(&tgtp->rcv_fcp_cmd_in), 13985 atomic_read(&tgtp->rcv_fcp_cmd_out), 13986 atomic_read(&tgtp->xmt_fcp_release)); 13987 } 13988 /* fallthrough */ 13989 13990 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13991 hrq->RQ_no_posted_buf++; 13992 /* Post more buffers if possible */ 13993 break; 13994 } 13995 out: 13996 return workposted; 13997 } 13998 13999 /** 14000 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14001 * @cq: Pointer to the completion queue. 14002 * @eqe: Pointer to fast-path completion queue entry. 14003 * 14004 * This routine process a fast-path work queue completion entry from fast-path 14005 * event queue for FCP command response completion. 14006 **/ 14007 static int 14008 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14009 struct lpfc_cqe *cqe) 14010 { 14011 struct lpfc_wcqe_release wcqe; 14012 bool workposted = false; 14013 14014 /* Copy the work queue CQE and convert endian order if needed */ 14015 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14016 14017 /* Check and process for different type of WCQE and dispatch */ 14018 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14019 case CQE_CODE_COMPL_WQE: 14020 case CQE_CODE_NVME_ERSP: 14021 cq->CQ_wq++; 14022 /* Process the WQ complete event */ 14023 phba->last_completion_time = jiffies; 14024 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 14025 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14026 (struct lpfc_wcqe_complete *)&wcqe); 14027 if (cq->subtype == LPFC_NVME_LS) 14028 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14029 (struct lpfc_wcqe_complete *)&wcqe); 14030 break; 14031 case CQE_CODE_RELEASE_WQE: 14032 cq->CQ_release_wqe++; 14033 /* Process the WQ release event */ 14034 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14035 (struct lpfc_wcqe_release *)&wcqe); 14036 break; 14037 case CQE_CODE_XRI_ABORTED: 14038 cq->CQ_xri_aborted++; 14039 /* Process the WQ XRI abort event */ 14040 phba->last_completion_time = jiffies; 14041 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14042 (struct sli4_wcqe_xri_aborted *)&wcqe); 14043 break; 14044 case CQE_CODE_RECEIVE_V1: 14045 case CQE_CODE_RECEIVE: 14046 phba->last_completion_time = jiffies; 14047 if (cq->subtype == LPFC_NVMET) { 14048 workposted = lpfc_sli4_nvmet_handle_rcqe( 14049 phba, cq, (struct lpfc_rcqe *)&wcqe); 14050 } 14051 break; 14052 default: 14053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14054 "0144 Not a valid CQE code: x%x\n", 14055 bf_get(lpfc_wcqe_c_code, &wcqe)); 14056 break; 14057 } 14058 return workposted; 14059 } 14060 14061 /** 14062 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14063 * @phba: Pointer to HBA context object. 14064 * @eqe: Pointer to fast-path event queue entry. 14065 * 14066 * This routine process a event queue entry from the fast-path event queue. 14067 * It will check the MajorCode and MinorCode to determine this is for a 14068 * completion event on a completion queue, if not, an error shall be logged 14069 * and just return. Otherwise, it will get to the corresponding completion 14070 * queue and process all the entries on the completion queue, rearm the 14071 * completion queue, and then return. 14072 **/ 14073 static void 14074 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14075 uint32_t qidx) 14076 { 14077 struct lpfc_queue *cq = NULL; 14078 uint16_t cqid, id; 14079 14080 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14081 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14082 "0366 Not a valid completion " 14083 "event: majorcode=x%x, minorcode=x%x\n", 14084 bf_get_le32(lpfc_eqe_major_code, eqe), 14085 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14086 return; 14087 } 14088 14089 /* Get the reference to the corresponding CQ */ 14090 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14091 14092 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14093 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14094 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14095 /* Process NVMET unsol rcv */ 14096 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14097 goto process_cq; 14098 } 14099 } 14100 14101 if (phba->sli4_hba.nvme_cq_map && 14102 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 14103 /* Process NVME / NVMET command completion */ 14104 cq = phba->sli4_hba.nvme_cq[qidx]; 14105 goto process_cq; 14106 } 14107 14108 if (phba->sli4_hba.fcp_cq_map && 14109 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 14110 /* Process FCP command completion */ 14111 cq = phba->sli4_hba.fcp_cq[qidx]; 14112 goto process_cq; 14113 } 14114 14115 if (phba->sli4_hba.nvmels_cq && 14116 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14117 /* Process NVME unsol rcv */ 14118 cq = phba->sli4_hba.nvmels_cq; 14119 } 14120 14121 /* Otherwise this is a Slow path event */ 14122 if (cq == NULL) { 14123 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 14124 return; 14125 } 14126 14127 process_cq: 14128 if (unlikely(cqid != cq->queue_id)) { 14129 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14130 "0368 Miss-matched fast-path completion " 14131 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14132 cqid, cq->queue_id); 14133 return; 14134 } 14135 14136 /* Save EQ associated with this CQ */ 14137 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 14138 14139 if (!queue_work(phba->wq, &cq->irqwork)) 14140 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14141 "0363 Cannot schedule soft IRQ " 14142 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14143 cqid, cq->queue_id, smp_processor_id()); 14144 } 14145 14146 /** 14147 * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14148 * @phba: Pointer to HBA context object. 14149 * @eqe: Pointer to fast-path event queue entry. 14150 * 14151 * This routine process a event queue entry from the fast-path event queue. 14152 * It will check the MajorCode and MinorCode to determine this is for a 14153 * completion event on a completion queue, if not, an error shall be logged 14154 * and just return. Otherwise, it will get to the corresponding completion 14155 * queue and process all the entries on the completion queue, rearm the 14156 * completion queue, and then return. 14157 **/ 14158 static void 14159 lpfc_sli4_hba_process_cq(struct work_struct *work) 14160 { 14161 struct lpfc_queue *cq = 14162 container_of(work, struct lpfc_queue, irqwork); 14163 struct lpfc_hba *phba = cq->phba; 14164 struct lpfc_cqe *cqe; 14165 bool workposted = false; 14166 int ccount = 0; 14167 14168 /* Process all the entries to the CQ */ 14169 while ((cqe = lpfc_sli4_cq_get(cq))) { 14170 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14171 if (phba->ktime_on) 14172 cq->isr_timestamp = ktime_get_ns(); 14173 else 14174 cq->isr_timestamp = 0; 14175 #endif 14176 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 14177 if (!(++ccount % cq->entry_repost)) 14178 break; 14179 } 14180 14181 /* Track the max number of CQEs processed in 1 EQ */ 14182 if (ccount > cq->CQ_max_cqe) 14183 cq->CQ_max_cqe = ccount; 14184 cq->assoc_qp->EQ_cqe_cnt += ccount; 14185 14186 /* Catch the no cq entry condition */ 14187 if (unlikely(ccount == 0)) 14188 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14189 "0369 No entry from fast-path completion " 14190 "queue fcpcqid=%d\n", cq->queue_id); 14191 14192 /* In any case, flash and re-arm the CQ */ 14193 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 14194 14195 /* wake up worker thread if there are works to be done */ 14196 if (workposted) 14197 lpfc_worker_wake_up(phba); 14198 } 14199 14200 static void 14201 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 14202 { 14203 struct lpfc_eqe *eqe; 14204 14205 /* walk all the EQ entries and drop on the floor */ 14206 while ((eqe = lpfc_sli4_eq_get(eq))) 14207 ; 14208 14209 /* Clear and re-arm the EQ */ 14210 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 14211 } 14212 14213 14214 /** 14215 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 14216 * entry 14217 * @phba: Pointer to HBA context object. 14218 * @eqe: Pointer to fast-path event queue entry. 14219 * 14220 * This routine process a event queue entry from the Flash Optimized Fabric 14221 * event queue. It will check the MajorCode and MinorCode to determine this 14222 * is for a completion event on a completion queue, if not, an error shall be 14223 * logged and just return. Otherwise, it will get to the corresponding 14224 * completion queue and process all the entries on the completion queue, rearm 14225 * the completion queue, and then return. 14226 **/ 14227 static void 14228 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 14229 { 14230 struct lpfc_queue *cq; 14231 uint16_t cqid; 14232 14233 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14234 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14235 "9147 Not a valid completion " 14236 "event: majorcode=x%x, minorcode=x%x\n", 14237 bf_get_le32(lpfc_eqe_major_code, eqe), 14238 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14239 return; 14240 } 14241 14242 /* Get the reference to the corresponding CQ */ 14243 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14244 14245 /* Next check for OAS */ 14246 cq = phba->sli4_hba.oas_cq; 14247 if (unlikely(!cq)) { 14248 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14249 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14250 "9148 OAS completion queue " 14251 "does not exist\n"); 14252 return; 14253 } 14254 14255 if (unlikely(cqid != cq->queue_id)) { 14256 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14257 "9149 Miss-matched fast-path compl " 14258 "queue id: eqcqid=%d, fcpcqid=%d\n", 14259 cqid, cq->queue_id); 14260 return; 14261 } 14262 14263 /* Save EQ associated with this CQ */ 14264 cq->assoc_qp = phba->sli4_hba.fof_eq; 14265 14266 /* CQ work will be processed on CPU affinitized to this IRQ */ 14267 if (!queue_work(phba->wq, &cq->irqwork)) 14268 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14269 "0367 Cannot schedule soft IRQ " 14270 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14271 cqid, cq->queue_id, smp_processor_id()); 14272 } 14273 14274 /** 14275 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 14276 * @irq: Interrupt number. 14277 * @dev_id: The device context pointer. 14278 * 14279 * This function is directly called from the PCI layer as an interrupt 14280 * service routine when device with SLI-4 interface spec is enabled with 14281 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 14282 * IOCB ring event in the HBA. However, when the device is enabled with either 14283 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14284 * device-level interrupt handler. When the PCI slot is in error recovery 14285 * or the HBA is undergoing initialization, the interrupt handler will not 14286 * process the interrupt. The Flash Optimized Fabric ring event are handled in 14287 * the intrrupt context. This function is called without any lock held. 14288 * It gets the hbalock to access and update SLI data structures. Note that, 14289 * the EQ to CQ are one-to-one map such that the EQ index is 14290 * equal to that of CQ index. 14291 * 14292 * This function returns IRQ_HANDLED when interrupt is handled else it 14293 * returns IRQ_NONE. 14294 **/ 14295 irqreturn_t 14296 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 14297 { 14298 struct lpfc_hba *phba; 14299 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14300 struct lpfc_queue *eq; 14301 struct lpfc_eqe *eqe; 14302 unsigned long iflag; 14303 int ecount = 0; 14304 14305 /* Get the driver's phba structure from the dev_id */ 14306 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14307 phba = hba_eq_hdl->phba; 14308 14309 if (unlikely(!phba)) 14310 return IRQ_NONE; 14311 14312 /* Get to the EQ struct associated with this vector */ 14313 eq = phba->sli4_hba.fof_eq; 14314 if (unlikely(!eq)) 14315 return IRQ_NONE; 14316 14317 /* Check device state for handling interrupt */ 14318 if (unlikely(lpfc_intr_state_check(phba))) { 14319 /* Check again for link_state with lock held */ 14320 spin_lock_irqsave(&phba->hbalock, iflag); 14321 if (phba->link_state < LPFC_LINK_DOWN) 14322 /* Flush, clear interrupt, and rearm the EQ */ 14323 lpfc_sli4_eq_flush(phba, eq); 14324 spin_unlock_irqrestore(&phba->hbalock, iflag); 14325 return IRQ_NONE; 14326 } 14327 14328 /* 14329 * Process all the event on FCP fast-path EQ 14330 */ 14331 while ((eqe = lpfc_sli4_eq_get(eq))) { 14332 lpfc_sli4_fof_handle_eqe(phba, eqe); 14333 if (!(++ecount % eq->entry_repost)) 14334 break; 14335 eq->EQ_processed++; 14336 } 14337 14338 /* Track the max number of EQEs processed in 1 intr */ 14339 if (ecount > eq->EQ_max_eqe) 14340 eq->EQ_max_eqe = ecount; 14341 14342 14343 if (unlikely(ecount == 0)) { 14344 eq->EQ_no_entry++; 14345 14346 if (phba->intr_type == MSIX) 14347 /* MSI-X treated interrupt served as no EQ share INT */ 14348 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14349 "9145 MSI-X interrupt with no EQE\n"); 14350 else { 14351 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14352 "9146 ISR interrupt with no EQE\n"); 14353 /* Non MSI-X treated on interrupt as EQ share INT */ 14354 return IRQ_NONE; 14355 } 14356 } 14357 /* Always clear and re-arm the fast-path EQ */ 14358 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 14359 return IRQ_HANDLED; 14360 } 14361 14362 /** 14363 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14364 * @irq: Interrupt number. 14365 * @dev_id: The device context pointer. 14366 * 14367 * This function is directly called from the PCI layer as an interrupt 14368 * service routine when device with SLI-4 interface spec is enabled with 14369 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14370 * ring event in the HBA. However, when the device is enabled with either 14371 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14372 * device-level interrupt handler. When the PCI slot is in error recovery 14373 * or the HBA is undergoing initialization, the interrupt handler will not 14374 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14375 * the intrrupt context. This function is called without any lock held. 14376 * It gets the hbalock to access and update SLI data structures. Note that, 14377 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14378 * equal to that of FCP CQ index. 14379 * 14380 * The link attention and ELS ring attention events are handled 14381 * by the worker thread. The interrupt handler signals the worker thread 14382 * and returns for these events. This function is called without any lock 14383 * held. It gets the hbalock to access and update SLI data structures. 14384 * 14385 * This function returns IRQ_HANDLED when interrupt is handled else it 14386 * returns IRQ_NONE. 14387 **/ 14388 irqreturn_t 14389 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14390 { 14391 struct lpfc_hba *phba; 14392 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14393 struct lpfc_queue *fpeq; 14394 struct lpfc_eqe *eqe; 14395 unsigned long iflag; 14396 int ecount = 0; 14397 int hba_eqidx; 14398 14399 /* Get the driver's phba structure from the dev_id */ 14400 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14401 phba = hba_eq_hdl->phba; 14402 hba_eqidx = hba_eq_hdl->idx; 14403 14404 if (unlikely(!phba)) 14405 return IRQ_NONE; 14406 if (unlikely(!phba->sli4_hba.hba_eq)) 14407 return IRQ_NONE; 14408 14409 /* Get to the EQ struct associated with this vector */ 14410 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 14411 if (unlikely(!fpeq)) 14412 return IRQ_NONE; 14413 14414 if (lpfc_fcp_look_ahead) { 14415 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 14416 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 14417 else { 14418 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14419 return IRQ_NONE; 14420 } 14421 } 14422 14423 /* Check device state for handling interrupt */ 14424 if (unlikely(lpfc_intr_state_check(phba))) { 14425 /* Check again for link_state with lock held */ 14426 spin_lock_irqsave(&phba->hbalock, iflag); 14427 if (phba->link_state < LPFC_LINK_DOWN) 14428 /* Flush, clear interrupt, and rearm the EQ */ 14429 lpfc_sli4_eq_flush(phba, fpeq); 14430 spin_unlock_irqrestore(&phba->hbalock, iflag); 14431 if (lpfc_fcp_look_ahead) 14432 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14433 return IRQ_NONE; 14434 } 14435 14436 /* 14437 * Process all the event on FCP fast-path EQ 14438 */ 14439 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 14440 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 14441 if (!(++ecount % fpeq->entry_repost)) 14442 break; 14443 fpeq->EQ_processed++; 14444 } 14445 14446 /* Track the max number of EQEs processed in 1 intr */ 14447 if (ecount > fpeq->EQ_max_eqe) 14448 fpeq->EQ_max_eqe = ecount; 14449 14450 /* Always clear and re-arm the fast-path EQ */ 14451 phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 14452 14453 if (unlikely(ecount == 0)) { 14454 fpeq->EQ_no_entry++; 14455 14456 if (lpfc_fcp_look_ahead) { 14457 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14458 return IRQ_NONE; 14459 } 14460 14461 if (phba->intr_type == MSIX) 14462 /* MSI-X treated interrupt served as no EQ share INT */ 14463 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14464 "0358 MSI-X interrupt with no EQE\n"); 14465 else 14466 /* Non MSI-X treated on interrupt as EQ share INT */ 14467 return IRQ_NONE; 14468 } 14469 14470 if (lpfc_fcp_look_ahead) 14471 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14472 14473 return IRQ_HANDLED; 14474 } /* lpfc_sli4_fp_intr_handler */ 14475 14476 /** 14477 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14478 * @irq: Interrupt number. 14479 * @dev_id: The device context pointer. 14480 * 14481 * This function is the device-level interrupt handler to device with SLI-4 14482 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14483 * interrupt mode is enabled and there is an event in the HBA which requires 14484 * driver attention. This function invokes the slow-path interrupt attention 14485 * handling function and fast-path interrupt attention handling function in 14486 * turn to process the relevant HBA attention events. This function is called 14487 * without any lock held. It gets the hbalock to access and update SLI data 14488 * structures. 14489 * 14490 * This function returns IRQ_HANDLED when interrupt is handled, else it 14491 * returns IRQ_NONE. 14492 **/ 14493 irqreturn_t 14494 lpfc_sli4_intr_handler(int irq, void *dev_id) 14495 { 14496 struct lpfc_hba *phba; 14497 irqreturn_t hba_irq_rc; 14498 bool hba_handled = false; 14499 int qidx; 14500 14501 /* Get the driver's phba structure from the dev_id */ 14502 phba = (struct lpfc_hba *)dev_id; 14503 14504 if (unlikely(!phba)) 14505 return IRQ_NONE; 14506 14507 /* 14508 * Invoke fast-path host attention interrupt handling as appropriate. 14509 */ 14510 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 14511 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14512 &phba->sli4_hba.hba_eq_hdl[qidx]); 14513 if (hba_irq_rc == IRQ_HANDLED) 14514 hba_handled |= true; 14515 } 14516 14517 if (phba->cfg_fof) { 14518 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 14519 &phba->sli4_hba.hba_eq_hdl[qidx]); 14520 if (hba_irq_rc == IRQ_HANDLED) 14521 hba_handled |= true; 14522 } 14523 14524 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14525 } /* lpfc_sli4_intr_handler */ 14526 14527 /** 14528 * lpfc_sli4_queue_free - free a queue structure and associated memory 14529 * @queue: The queue structure to free. 14530 * 14531 * This function frees a queue structure and the DMAable memory used for 14532 * the host resident queue. This function must be called after destroying the 14533 * queue on the HBA. 14534 **/ 14535 void 14536 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14537 { 14538 struct lpfc_dmabuf *dmabuf; 14539 14540 if (!queue) 14541 return; 14542 14543 while (!list_empty(&queue->page_list)) { 14544 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14545 list); 14546 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14547 dmabuf->virt, dmabuf->phys); 14548 kfree(dmabuf); 14549 } 14550 if (queue->rqbp) { 14551 lpfc_free_rq_buffer(queue->phba, queue); 14552 kfree(queue->rqbp); 14553 } 14554 14555 if (!list_empty(&queue->wq_list)) 14556 list_del(&queue->wq_list); 14557 14558 kfree(queue); 14559 return; 14560 } 14561 14562 /** 14563 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14564 * @phba: The HBA that this queue is being created on. 14565 * @page_size: The size of a queue page 14566 * @entry_size: The size of each queue entry for this queue. 14567 * @entry count: The number of entries that this queue will handle. 14568 * 14569 * This function allocates a queue structure and the DMAable memory used for 14570 * the host resident queue. This function must be called before creating the 14571 * queue on the HBA. 14572 **/ 14573 struct lpfc_queue * 14574 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14575 uint32_t entry_size, uint32_t entry_count) 14576 { 14577 struct lpfc_queue *queue; 14578 struct lpfc_dmabuf *dmabuf; 14579 int x, total_qe_count; 14580 void *dma_pointer; 14581 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14582 14583 if (!phba->sli4_hba.pc_sli4_params.supported) 14584 hw_page_size = page_size; 14585 14586 queue = kzalloc(sizeof(struct lpfc_queue) + 14587 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 14588 if (!queue) 14589 return NULL; 14590 queue->page_count = (ALIGN(entry_size * entry_count, 14591 hw_page_size))/hw_page_size; 14592 14593 /* If needed, Adjust page count to match the max the adapter supports */ 14594 if (phba->sli4_hba.pc_sli4_params.wqpcnt && 14595 (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt)) 14596 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 14597 14598 INIT_LIST_HEAD(&queue->list); 14599 INIT_LIST_HEAD(&queue->wq_list); 14600 INIT_LIST_HEAD(&queue->wqfull_list); 14601 INIT_LIST_HEAD(&queue->page_list); 14602 INIT_LIST_HEAD(&queue->child_list); 14603 14604 /* Set queue parameters now. If the system cannot provide memory 14605 * resources, the free routine needs to know what was allocated. 14606 */ 14607 queue->entry_size = entry_size; 14608 queue->entry_count = entry_count; 14609 queue->page_size = hw_page_size; 14610 queue->phba = phba; 14611 14612 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 14613 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 14614 if (!dmabuf) 14615 goto out_fail; 14616 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 14617 hw_page_size, &dmabuf->phys, 14618 GFP_KERNEL); 14619 if (!dmabuf->virt) { 14620 kfree(dmabuf); 14621 goto out_fail; 14622 } 14623 dmabuf->buffer_tag = x; 14624 list_add_tail(&dmabuf->list, &queue->page_list); 14625 /* initialize queue's entry array */ 14626 dma_pointer = dmabuf->virt; 14627 for (; total_qe_count < entry_count && 14628 dma_pointer < (hw_page_size + dmabuf->virt); 14629 total_qe_count++, dma_pointer += entry_size) { 14630 queue->qe[total_qe_count].address = dma_pointer; 14631 } 14632 } 14633 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14634 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14635 14636 /* entry_repost will be set during q creation */ 14637 14638 return queue; 14639 out_fail: 14640 lpfc_sli4_queue_free(queue); 14641 return NULL; 14642 } 14643 14644 /** 14645 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14646 * @phba: HBA structure that indicates port to create a queue on. 14647 * @pci_barset: PCI BAR set flag. 14648 * 14649 * This function shall perform iomap of the specified PCI BAR address to host 14650 * memory address if not already done so and return it. The returned host 14651 * memory address can be NULL. 14652 */ 14653 static void __iomem * 14654 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14655 { 14656 if (!phba->pcidev) 14657 return NULL; 14658 14659 switch (pci_barset) { 14660 case WQ_PCI_BAR_0_AND_1: 14661 return phba->pci_bar0_memmap_p; 14662 case WQ_PCI_BAR_2_AND_3: 14663 return phba->pci_bar2_memmap_p; 14664 case WQ_PCI_BAR_4_AND_5: 14665 return phba->pci_bar4_memmap_p; 14666 default: 14667 break; 14668 } 14669 return NULL; 14670 } 14671 14672 /** 14673 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 14674 * @phba: HBA structure that indicates port to create a queue on. 14675 * @startq: The starting FCP EQ to modify 14676 * 14677 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 14678 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 14679 * updated in one mailbox command. 14680 * 14681 * The @phba struct is used to send mailbox command to HBA. The @startq 14682 * is used to get the starting FCP EQ to change. 14683 * This function is asynchronous and will wait for the mailbox 14684 * command to finish before continuing. 14685 * 14686 * On success this function will return a zero. If unable to allocate enough 14687 * memory this function will return -ENOMEM. If the queue create mailbox command 14688 * fails this function will return -ENXIO. 14689 **/ 14690 int 14691 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14692 uint32_t numq, uint32_t imax) 14693 { 14694 struct lpfc_mbx_modify_eq_delay *eq_delay; 14695 LPFC_MBOXQ_t *mbox; 14696 struct lpfc_queue *eq; 14697 int cnt, rc, length, status = 0; 14698 uint32_t shdr_status, shdr_add_status; 14699 uint32_t result, val; 14700 int qidx; 14701 union lpfc_sli4_cfg_shdr *shdr; 14702 uint16_t dmult; 14703 14704 if (startq >= phba->io_channel_irqs) 14705 return 0; 14706 14707 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14708 if (!mbox) 14709 return -ENOMEM; 14710 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14711 sizeof(struct lpfc_sli4_cfg_mhdr)); 14712 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14713 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14714 length, LPFC_SLI4_MBX_EMBED); 14715 eq_delay = &mbox->u.mqe.un.eq_delay; 14716 14717 /* Calculate delay multiper from maximum interrupt per second */ 14718 result = imax / phba->io_channel_irqs; 14719 if (result > LPFC_DMULT_CONST || result == 0) 14720 dmult = 0; 14721 else 14722 dmult = LPFC_DMULT_CONST/result - 1; 14723 if (dmult > LPFC_DMULT_MAX) 14724 dmult = LPFC_DMULT_MAX; 14725 14726 cnt = 0; 14727 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14728 eq = phba->sli4_hba.hba_eq[qidx]; 14729 if (!eq) 14730 continue; 14731 eq->q_mode = imax; 14732 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14733 eq_delay->u.request.eq[cnt].phase = 0; 14734 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14735 cnt++; 14736 14737 /* q_mode is only used for auto_imax */ 14738 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14739 /* Use EQ Delay Register method for q_mode */ 14740 14741 /* Convert for EQ Delay register */ 14742 val = phba->cfg_fcp_imax; 14743 if (val) { 14744 /* First, interrupts per sec per EQ */ 14745 val = phba->cfg_fcp_imax / 14746 phba->io_channel_irqs; 14747 14748 /* us delay between each interrupt */ 14749 val = LPFC_SEC_TO_USEC / val; 14750 } 14751 eq->q_mode = val; 14752 } else { 14753 eq->q_mode = imax; 14754 } 14755 14756 if (cnt >= numq) 14757 break; 14758 } 14759 eq_delay->u.request.num_eq = cnt; 14760 14761 mbox->vport = phba->pport; 14762 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14763 mbox->ctx_buf = NULL; 14764 mbox->ctx_ndlp = NULL; 14765 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14766 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14767 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14768 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14769 if (shdr_status || shdr_add_status || rc) { 14770 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14771 "2512 MODIFY_EQ_DELAY mailbox failed with " 14772 "status x%x add_status x%x, mbx status x%x\n", 14773 shdr_status, shdr_add_status, rc); 14774 status = -ENXIO; 14775 } 14776 mempool_free(mbox, phba->mbox_mem_pool); 14777 return status; 14778 } 14779 14780 /** 14781 * lpfc_eq_create - Create an Event Queue on the HBA 14782 * @phba: HBA structure that indicates port to create a queue on. 14783 * @eq: The queue structure to use to create the event queue. 14784 * @imax: The maximum interrupt per second limit. 14785 * 14786 * This function creates an event queue, as detailed in @eq, on a port, 14787 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14788 * 14789 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14790 * is used to get the entry count and entry size that are necessary to 14791 * determine the number of pages to allocate and use for this queue. This 14792 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14793 * event queue. This function is asynchronous and will wait for the mailbox 14794 * command to finish before continuing. 14795 * 14796 * On success this function will return a zero. If unable to allocate enough 14797 * memory this function will return -ENOMEM. If the queue create mailbox command 14798 * fails this function will return -ENXIO. 14799 **/ 14800 int 14801 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14802 { 14803 struct lpfc_mbx_eq_create *eq_create; 14804 LPFC_MBOXQ_t *mbox; 14805 int rc, length, status = 0; 14806 struct lpfc_dmabuf *dmabuf; 14807 uint32_t shdr_status, shdr_add_status; 14808 union lpfc_sli4_cfg_shdr *shdr; 14809 uint16_t dmult; 14810 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14811 14812 /* sanity check on queue memory */ 14813 if (!eq) 14814 return -ENODEV; 14815 if (!phba->sli4_hba.pc_sli4_params.supported) 14816 hw_page_size = SLI4_PAGE_SIZE; 14817 14818 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14819 if (!mbox) 14820 return -ENOMEM; 14821 length = (sizeof(struct lpfc_mbx_eq_create) - 14822 sizeof(struct lpfc_sli4_cfg_mhdr)); 14823 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14824 LPFC_MBOX_OPCODE_EQ_CREATE, 14825 length, LPFC_SLI4_MBX_EMBED); 14826 eq_create = &mbox->u.mqe.un.eq_create; 14827 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14828 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14829 eq->page_count); 14830 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14831 LPFC_EQE_SIZE); 14832 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14833 14834 /* Use version 2 of CREATE_EQ if eqav is set */ 14835 if (phba->sli4_hba.pc_sli4_params.eqav) { 14836 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14837 LPFC_Q_CREATE_VERSION_2); 14838 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14839 phba->sli4_hba.pc_sli4_params.eqav); 14840 } 14841 14842 /* don't setup delay multiplier using EQ_CREATE */ 14843 dmult = 0; 14844 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14845 dmult); 14846 switch (eq->entry_count) { 14847 default: 14848 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14849 "0360 Unsupported EQ count. (%d)\n", 14850 eq->entry_count); 14851 if (eq->entry_count < 256) 14852 return -EINVAL; 14853 /* otherwise default to smallest count (drop through) */ 14854 case 256: 14855 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14856 LPFC_EQ_CNT_256); 14857 break; 14858 case 512: 14859 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14860 LPFC_EQ_CNT_512); 14861 break; 14862 case 1024: 14863 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14864 LPFC_EQ_CNT_1024); 14865 break; 14866 case 2048: 14867 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14868 LPFC_EQ_CNT_2048); 14869 break; 14870 case 4096: 14871 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14872 LPFC_EQ_CNT_4096); 14873 break; 14874 } 14875 list_for_each_entry(dmabuf, &eq->page_list, list) { 14876 memset(dmabuf->virt, 0, hw_page_size); 14877 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14878 putPaddrLow(dmabuf->phys); 14879 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14880 putPaddrHigh(dmabuf->phys); 14881 } 14882 mbox->vport = phba->pport; 14883 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14884 mbox->ctx_buf = NULL; 14885 mbox->ctx_ndlp = NULL; 14886 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14887 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14888 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14889 if (shdr_status || shdr_add_status || rc) { 14890 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14891 "2500 EQ_CREATE mailbox failed with " 14892 "status x%x add_status x%x, mbx status x%x\n", 14893 shdr_status, shdr_add_status, rc); 14894 status = -ENXIO; 14895 } 14896 eq->type = LPFC_EQ; 14897 eq->subtype = LPFC_NONE; 14898 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14899 if (eq->queue_id == 0xFFFF) 14900 status = -ENXIO; 14901 eq->host_index = 0; 14902 eq->hba_index = 0; 14903 eq->entry_repost = LPFC_EQ_REPOST; 14904 14905 mempool_free(mbox, phba->mbox_mem_pool); 14906 return status; 14907 } 14908 14909 /** 14910 * lpfc_cq_create - Create a Completion Queue on the HBA 14911 * @phba: HBA structure that indicates port to create a queue on. 14912 * @cq: The queue structure to use to create the completion queue. 14913 * @eq: The event queue to bind this completion queue to. 14914 * 14915 * This function creates a completion queue, as detailed in @wq, on a port, 14916 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14917 * 14918 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14919 * is used to get the entry count and entry size that are necessary to 14920 * determine the number of pages to allocate and use for this queue. The @eq 14921 * is used to indicate which event queue to bind this completion queue to. This 14922 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14923 * completion queue. This function is asynchronous and will wait for the mailbox 14924 * command to finish before continuing. 14925 * 14926 * On success this function will return a zero. If unable to allocate enough 14927 * memory this function will return -ENOMEM. If the queue create mailbox command 14928 * fails this function will return -ENXIO. 14929 **/ 14930 int 14931 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14932 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14933 { 14934 struct lpfc_mbx_cq_create *cq_create; 14935 struct lpfc_dmabuf *dmabuf; 14936 LPFC_MBOXQ_t *mbox; 14937 int rc, length, status = 0; 14938 uint32_t shdr_status, shdr_add_status; 14939 union lpfc_sli4_cfg_shdr *shdr; 14940 14941 /* sanity check on queue memory */ 14942 if (!cq || !eq) 14943 return -ENODEV; 14944 14945 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14946 if (!mbox) 14947 return -ENOMEM; 14948 length = (sizeof(struct lpfc_mbx_cq_create) - 14949 sizeof(struct lpfc_sli4_cfg_mhdr)); 14950 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14951 LPFC_MBOX_OPCODE_CQ_CREATE, 14952 length, LPFC_SLI4_MBX_EMBED); 14953 cq_create = &mbox->u.mqe.un.cq_create; 14954 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14955 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14956 cq->page_count); 14957 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14958 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14959 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14960 phba->sli4_hba.pc_sli4_params.cqv); 14961 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14962 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14963 (cq->page_size / SLI4_PAGE_SIZE)); 14964 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14965 eq->queue_id); 14966 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14967 phba->sli4_hba.pc_sli4_params.cqav); 14968 } else { 14969 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14970 eq->queue_id); 14971 } 14972 switch (cq->entry_count) { 14973 case 2048: 14974 case 4096: 14975 if (phba->sli4_hba.pc_sli4_params.cqv == 14976 LPFC_Q_CREATE_VERSION_2) { 14977 cq_create->u.request.context.lpfc_cq_context_count = 14978 cq->entry_count; 14979 bf_set(lpfc_cq_context_count, 14980 &cq_create->u.request.context, 14981 LPFC_CQ_CNT_WORD7); 14982 break; 14983 } 14984 /* Fall Thru */ 14985 default: 14986 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14987 "0361 Unsupported CQ count: " 14988 "entry cnt %d sz %d pg cnt %d\n", 14989 cq->entry_count, cq->entry_size, 14990 cq->page_count); 14991 if (cq->entry_count < 256) { 14992 status = -EINVAL; 14993 goto out; 14994 } 14995 /* otherwise default to smallest count (drop through) */ 14996 case 256: 14997 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14998 LPFC_CQ_CNT_256); 14999 break; 15000 case 512: 15001 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15002 LPFC_CQ_CNT_512); 15003 break; 15004 case 1024: 15005 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15006 LPFC_CQ_CNT_1024); 15007 break; 15008 } 15009 list_for_each_entry(dmabuf, &cq->page_list, list) { 15010 memset(dmabuf->virt, 0, cq->page_size); 15011 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15012 putPaddrLow(dmabuf->phys); 15013 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15014 putPaddrHigh(dmabuf->phys); 15015 } 15016 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15017 15018 /* The IOCTL status is embedded in the mailbox subheader. */ 15019 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15020 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15021 if (shdr_status || shdr_add_status || rc) { 15022 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15023 "2501 CQ_CREATE mailbox failed with " 15024 "status x%x add_status x%x, mbx status x%x\n", 15025 shdr_status, shdr_add_status, rc); 15026 status = -ENXIO; 15027 goto out; 15028 } 15029 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15030 if (cq->queue_id == 0xFFFF) { 15031 status = -ENXIO; 15032 goto out; 15033 } 15034 /* link the cq onto the parent eq child list */ 15035 list_add_tail(&cq->list, &eq->child_list); 15036 /* Set up completion queue's type and subtype */ 15037 cq->type = type; 15038 cq->subtype = subtype; 15039 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15040 cq->assoc_qid = eq->queue_id; 15041 cq->host_index = 0; 15042 cq->hba_index = 0; 15043 cq->entry_repost = LPFC_CQ_REPOST; 15044 15045 out: 15046 mempool_free(mbox, phba->mbox_mem_pool); 15047 return status; 15048 } 15049 15050 /** 15051 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15052 * @phba: HBA structure that indicates port to create a queue on. 15053 * @cqp: The queue structure array to use to create the completion queues. 15054 * @eqp: The event queue array to bind these completion queues to. 15055 * 15056 * This function creates a set of completion queue, s to support MRQ 15057 * as detailed in @cqp, on a port, 15058 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15059 * 15060 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15061 * is used to get the entry count and entry size that are necessary to 15062 * determine the number of pages to allocate and use for this queue. The @eq 15063 * is used to indicate which event queue to bind this completion queue to. This 15064 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15065 * completion queue. This function is asynchronous and will wait for the mailbox 15066 * command to finish before continuing. 15067 * 15068 * On success this function will return a zero. If unable to allocate enough 15069 * memory this function will return -ENOMEM. If the queue create mailbox command 15070 * fails this function will return -ENXIO. 15071 **/ 15072 int 15073 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15074 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 15075 { 15076 struct lpfc_queue *cq; 15077 struct lpfc_queue *eq; 15078 struct lpfc_mbx_cq_create_set *cq_set; 15079 struct lpfc_dmabuf *dmabuf; 15080 LPFC_MBOXQ_t *mbox; 15081 int rc, length, alloclen, status = 0; 15082 int cnt, idx, numcq, page_idx = 0; 15083 uint32_t shdr_status, shdr_add_status; 15084 union lpfc_sli4_cfg_shdr *shdr; 15085 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15086 15087 /* sanity check on queue memory */ 15088 numcq = phba->cfg_nvmet_mrq; 15089 if (!cqp || !eqp || !numcq) 15090 return -ENODEV; 15091 15092 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15093 if (!mbox) 15094 return -ENOMEM; 15095 15096 length = sizeof(struct lpfc_mbx_cq_create_set); 15097 length += ((numcq * cqp[0]->page_count) * 15098 sizeof(struct dma_address)); 15099 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15100 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15101 LPFC_SLI4_MBX_NEMBED); 15102 if (alloclen < length) { 15103 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15104 "3098 Allocated DMA memory size (%d) is " 15105 "less than the requested DMA memory size " 15106 "(%d)\n", alloclen, length); 15107 status = -ENOMEM; 15108 goto out; 15109 } 15110 cq_set = mbox->sge_array->addr[0]; 15111 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15112 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15113 15114 for (idx = 0; idx < numcq; idx++) { 15115 cq = cqp[idx]; 15116 eq = eqp[idx]; 15117 if (!cq || !eq) { 15118 status = -ENOMEM; 15119 goto out; 15120 } 15121 if (!phba->sli4_hba.pc_sli4_params.supported) 15122 hw_page_size = cq->page_size; 15123 15124 switch (idx) { 15125 case 0: 15126 bf_set(lpfc_mbx_cq_create_set_page_size, 15127 &cq_set->u.request, 15128 (hw_page_size / SLI4_PAGE_SIZE)); 15129 bf_set(lpfc_mbx_cq_create_set_num_pages, 15130 &cq_set->u.request, cq->page_count); 15131 bf_set(lpfc_mbx_cq_create_set_evt, 15132 &cq_set->u.request, 1); 15133 bf_set(lpfc_mbx_cq_create_set_valid, 15134 &cq_set->u.request, 1); 15135 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15136 &cq_set->u.request, 0); 15137 bf_set(lpfc_mbx_cq_create_set_num_cq, 15138 &cq_set->u.request, numcq); 15139 bf_set(lpfc_mbx_cq_create_set_autovalid, 15140 &cq_set->u.request, 15141 phba->sli4_hba.pc_sli4_params.cqav); 15142 switch (cq->entry_count) { 15143 case 2048: 15144 case 4096: 15145 if (phba->sli4_hba.pc_sli4_params.cqv == 15146 LPFC_Q_CREATE_VERSION_2) { 15147 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15148 &cq_set->u.request, 15149 cq->entry_count); 15150 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15151 &cq_set->u.request, 15152 LPFC_CQ_CNT_WORD7); 15153 break; 15154 } 15155 /* Fall Thru */ 15156 default: 15157 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15158 "3118 Bad CQ count. (%d)\n", 15159 cq->entry_count); 15160 if (cq->entry_count < 256) { 15161 status = -EINVAL; 15162 goto out; 15163 } 15164 /* otherwise default to smallest (drop thru) */ 15165 case 256: 15166 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15167 &cq_set->u.request, LPFC_CQ_CNT_256); 15168 break; 15169 case 512: 15170 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15171 &cq_set->u.request, LPFC_CQ_CNT_512); 15172 break; 15173 case 1024: 15174 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15175 &cq_set->u.request, LPFC_CQ_CNT_1024); 15176 break; 15177 } 15178 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15179 &cq_set->u.request, eq->queue_id); 15180 break; 15181 case 1: 15182 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15183 &cq_set->u.request, eq->queue_id); 15184 break; 15185 case 2: 15186 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15187 &cq_set->u.request, eq->queue_id); 15188 break; 15189 case 3: 15190 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15191 &cq_set->u.request, eq->queue_id); 15192 break; 15193 case 4: 15194 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15195 &cq_set->u.request, eq->queue_id); 15196 break; 15197 case 5: 15198 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15199 &cq_set->u.request, eq->queue_id); 15200 break; 15201 case 6: 15202 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15203 &cq_set->u.request, eq->queue_id); 15204 break; 15205 case 7: 15206 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15207 &cq_set->u.request, eq->queue_id); 15208 break; 15209 case 8: 15210 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15211 &cq_set->u.request, eq->queue_id); 15212 break; 15213 case 9: 15214 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15215 &cq_set->u.request, eq->queue_id); 15216 break; 15217 case 10: 15218 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15219 &cq_set->u.request, eq->queue_id); 15220 break; 15221 case 11: 15222 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15223 &cq_set->u.request, eq->queue_id); 15224 break; 15225 case 12: 15226 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15227 &cq_set->u.request, eq->queue_id); 15228 break; 15229 case 13: 15230 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15231 &cq_set->u.request, eq->queue_id); 15232 break; 15233 case 14: 15234 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15235 &cq_set->u.request, eq->queue_id); 15236 break; 15237 case 15: 15238 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15239 &cq_set->u.request, eq->queue_id); 15240 break; 15241 } 15242 15243 /* link the cq onto the parent eq child list */ 15244 list_add_tail(&cq->list, &eq->child_list); 15245 /* Set up completion queue's type and subtype */ 15246 cq->type = type; 15247 cq->subtype = subtype; 15248 cq->assoc_qid = eq->queue_id; 15249 cq->host_index = 0; 15250 cq->hba_index = 0; 15251 cq->entry_repost = LPFC_CQ_REPOST; 15252 cq->chann = idx; 15253 15254 rc = 0; 15255 list_for_each_entry(dmabuf, &cq->page_list, list) { 15256 memset(dmabuf->virt, 0, hw_page_size); 15257 cnt = page_idx + dmabuf->buffer_tag; 15258 cq_set->u.request.page[cnt].addr_lo = 15259 putPaddrLow(dmabuf->phys); 15260 cq_set->u.request.page[cnt].addr_hi = 15261 putPaddrHigh(dmabuf->phys); 15262 rc++; 15263 } 15264 page_idx += rc; 15265 } 15266 15267 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15268 15269 /* The IOCTL status is embedded in the mailbox subheader. */ 15270 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15271 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15272 if (shdr_status || shdr_add_status || rc) { 15273 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15274 "3119 CQ_CREATE_SET mailbox failed with " 15275 "status x%x add_status x%x, mbx status x%x\n", 15276 shdr_status, shdr_add_status, rc); 15277 status = -ENXIO; 15278 goto out; 15279 } 15280 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15281 if (rc == 0xFFFF) { 15282 status = -ENXIO; 15283 goto out; 15284 } 15285 15286 for (idx = 0; idx < numcq; idx++) { 15287 cq = cqp[idx]; 15288 cq->queue_id = rc + idx; 15289 } 15290 15291 out: 15292 lpfc_sli4_mbox_cmd_free(phba, mbox); 15293 return status; 15294 } 15295 15296 /** 15297 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15298 * @phba: HBA structure that indicates port to create a queue on. 15299 * @mq: The queue structure to use to create the mailbox queue. 15300 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15301 * @cq: The completion queue to associate with this cq. 15302 * 15303 * This function provides failback (fb) functionality when the 15304 * mq_create_ext fails on older FW generations. It's purpose is identical 15305 * to mq_create_ext otherwise. 15306 * 15307 * This routine cannot fail as all attributes were previously accessed and 15308 * initialized in mq_create_ext. 15309 **/ 15310 static void 15311 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15312 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15313 { 15314 struct lpfc_mbx_mq_create *mq_create; 15315 struct lpfc_dmabuf *dmabuf; 15316 int length; 15317 15318 length = (sizeof(struct lpfc_mbx_mq_create) - 15319 sizeof(struct lpfc_sli4_cfg_mhdr)); 15320 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15321 LPFC_MBOX_OPCODE_MQ_CREATE, 15322 length, LPFC_SLI4_MBX_EMBED); 15323 mq_create = &mbox->u.mqe.un.mq_create; 15324 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15325 mq->page_count); 15326 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15327 cq->queue_id); 15328 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15329 switch (mq->entry_count) { 15330 case 16: 15331 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15332 LPFC_MQ_RING_SIZE_16); 15333 break; 15334 case 32: 15335 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15336 LPFC_MQ_RING_SIZE_32); 15337 break; 15338 case 64: 15339 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15340 LPFC_MQ_RING_SIZE_64); 15341 break; 15342 case 128: 15343 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15344 LPFC_MQ_RING_SIZE_128); 15345 break; 15346 } 15347 list_for_each_entry(dmabuf, &mq->page_list, list) { 15348 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15349 putPaddrLow(dmabuf->phys); 15350 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15351 putPaddrHigh(dmabuf->phys); 15352 } 15353 } 15354 15355 /** 15356 * lpfc_mq_create - Create a mailbox Queue on the HBA 15357 * @phba: HBA structure that indicates port to create a queue on. 15358 * @mq: The queue structure to use to create the mailbox queue. 15359 * @cq: The completion queue to associate with this cq. 15360 * @subtype: The queue's subtype. 15361 * 15362 * This function creates a mailbox queue, as detailed in @mq, on a port, 15363 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15364 * 15365 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15366 * is used to get the entry count and entry size that are necessary to 15367 * determine the number of pages to allocate and use for this queue. This 15368 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15369 * mailbox queue. This function is asynchronous and will wait for the mailbox 15370 * command to finish before continuing. 15371 * 15372 * On success this function will return a zero. If unable to allocate enough 15373 * memory this function will return -ENOMEM. If the queue create mailbox command 15374 * fails this function will return -ENXIO. 15375 **/ 15376 int32_t 15377 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15378 struct lpfc_queue *cq, uint32_t subtype) 15379 { 15380 struct lpfc_mbx_mq_create *mq_create; 15381 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15382 struct lpfc_dmabuf *dmabuf; 15383 LPFC_MBOXQ_t *mbox; 15384 int rc, length, status = 0; 15385 uint32_t shdr_status, shdr_add_status; 15386 union lpfc_sli4_cfg_shdr *shdr; 15387 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15388 15389 /* sanity check on queue memory */ 15390 if (!mq || !cq) 15391 return -ENODEV; 15392 if (!phba->sli4_hba.pc_sli4_params.supported) 15393 hw_page_size = SLI4_PAGE_SIZE; 15394 15395 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15396 if (!mbox) 15397 return -ENOMEM; 15398 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15399 sizeof(struct lpfc_sli4_cfg_mhdr)); 15400 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15401 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15402 length, LPFC_SLI4_MBX_EMBED); 15403 15404 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15405 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15406 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15407 &mq_create_ext->u.request, mq->page_count); 15408 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15409 &mq_create_ext->u.request, 1); 15410 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15411 &mq_create_ext->u.request, 1); 15412 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15413 &mq_create_ext->u.request, 1); 15414 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15415 &mq_create_ext->u.request, 1); 15416 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15417 &mq_create_ext->u.request, 1); 15418 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15419 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15420 phba->sli4_hba.pc_sli4_params.mqv); 15421 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15422 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15423 cq->queue_id); 15424 else 15425 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15426 cq->queue_id); 15427 switch (mq->entry_count) { 15428 default: 15429 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15430 "0362 Unsupported MQ count. (%d)\n", 15431 mq->entry_count); 15432 if (mq->entry_count < 16) { 15433 status = -EINVAL; 15434 goto out; 15435 } 15436 /* otherwise default to smallest count (drop through) */ 15437 case 16: 15438 bf_set(lpfc_mq_context_ring_size, 15439 &mq_create_ext->u.request.context, 15440 LPFC_MQ_RING_SIZE_16); 15441 break; 15442 case 32: 15443 bf_set(lpfc_mq_context_ring_size, 15444 &mq_create_ext->u.request.context, 15445 LPFC_MQ_RING_SIZE_32); 15446 break; 15447 case 64: 15448 bf_set(lpfc_mq_context_ring_size, 15449 &mq_create_ext->u.request.context, 15450 LPFC_MQ_RING_SIZE_64); 15451 break; 15452 case 128: 15453 bf_set(lpfc_mq_context_ring_size, 15454 &mq_create_ext->u.request.context, 15455 LPFC_MQ_RING_SIZE_128); 15456 break; 15457 } 15458 list_for_each_entry(dmabuf, &mq->page_list, list) { 15459 memset(dmabuf->virt, 0, hw_page_size); 15460 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15461 putPaddrLow(dmabuf->phys); 15462 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15463 putPaddrHigh(dmabuf->phys); 15464 } 15465 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15466 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15467 &mq_create_ext->u.response); 15468 if (rc != MBX_SUCCESS) { 15469 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15470 "2795 MQ_CREATE_EXT failed with " 15471 "status x%x. Failback to MQ_CREATE.\n", 15472 rc); 15473 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15474 mq_create = &mbox->u.mqe.un.mq_create; 15475 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15476 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15477 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15478 &mq_create->u.response); 15479 } 15480 15481 /* The IOCTL status is embedded in the mailbox subheader. */ 15482 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15483 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15484 if (shdr_status || shdr_add_status || rc) { 15485 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15486 "2502 MQ_CREATE mailbox failed with " 15487 "status x%x add_status x%x, mbx status x%x\n", 15488 shdr_status, shdr_add_status, rc); 15489 status = -ENXIO; 15490 goto out; 15491 } 15492 if (mq->queue_id == 0xFFFF) { 15493 status = -ENXIO; 15494 goto out; 15495 } 15496 mq->type = LPFC_MQ; 15497 mq->assoc_qid = cq->queue_id; 15498 mq->subtype = subtype; 15499 mq->host_index = 0; 15500 mq->hba_index = 0; 15501 mq->entry_repost = LPFC_MQ_REPOST; 15502 15503 /* link the mq onto the parent cq child list */ 15504 list_add_tail(&mq->list, &cq->child_list); 15505 out: 15506 mempool_free(mbox, phba->mbox_mem_pool); 15507 return status; 15508 } 15509 15510 /** 15511 * lpfc_wq_create - Create a Work Queue on the HBA 15512 * @phba: HBA structure that indicates port to create a queue on. 15513 * @wq: The queue structure to use to create the work queue. 15514 * @cq: The completion queue to bind this work queue to. 15515 * @subtype: The subtype of the work queue indicating its functionality. 15516 * 15517 * This function creates a work queue, as detailed in @wq, on a port, described 15518 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15519 * 15520 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15521 * is used to get the entry count and entry size that are necessary to 15522 * determine the number of pages to allocate and use for this queue. The @cq 15523 * is used to indicate which completion queue to bind this work queue to. This 15524 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15525 * work queue. This function is asynchronous and will wait for the mailbox 15526 * command to finish before continuing. 15527 * 15528 * On success this function will return a zero. If unable to allocate enough 15529 * memory this function will return -ENOMEM. If the queue create mailbox command 15530 * fails this function will return -ENXIO. 15531 **/ 15532 int 15533 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15534 struct lpfc_queue *cq, uint32_t subtype) 15535 { 15536 struct lpfc_mbx_wq_create *wq_create; 15537 struct lpfc_dmabuf *dmabuf; 15538 LPFC_MBOXQ_t *mbox; 15539 int rc, length, status = 0; 15540 uint32_t shdr_status, shdr_add_status; 15541 union lpfc_sli4_cfg_shdr *shdr; 15542 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15543 struct dma_address *page; 15544 void __iomem *bar_memmap_p; 15545 uint32_t db_offset; 15546 uint16_t pci_barset; 15547 uint8_t dpp_barset; 15548 uint32_t dpp_offset; 15549 unsigned long pg_addr; 15550 uint8_t wq_create_version; 15551 15552 /* sanity check on queue memory */ 15553 if (!wq || !cq) 15554 return -ENODEV; 15555 if (!phba->sli4_hba.pc_sli4_params.supported) 15556 hw_page_size = wq->page_size; 15557 15558 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15559 if (!mbox) 15560 return -ENOMEM; 15561 length = (sizeof(struct lpfc_mbx_wq_create) - 15562 sizeof(struct lpfc_sli4_cfg_mhdr)); 15563 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15564 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15565 length, LPFC_SLI4_MBX_EMBED); 15566 wq_create = &mbox->u.mqe.un.wq_create; 15567 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15568 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15569 wq->page_count); 15570 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15571 cq->queue_id); 15572 15573 /* wqv is the earliest version supported, NOT the latest */ 15574 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15575 phba->sli4_hba.pc_sli4_params.wqv); 15576 15577 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15578 (wq->page_size > SLI4_PAGE_SIZE)) 15579 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15580 else 15581 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15582 15583 15584 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15585 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15586 else 15587 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15588 15589 switch (wq_create_version) { 15590 case LPFC_Q_CREATE_VERSION_1: 15591 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15592 wq->entry_count); 15593 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15594 LPFC_Q_CREATE_VERSION_1); 15595 15596 switch (wq->entry_size) { 15597 default: 15598 case 64: 15599 bf_set(lpfc_mbx_wq_create_wqe_size, 15600 &wq_create->u.request_1, 15601 LPFC_WQ_WQE_SIZE_64); 15602 break; 15603 case 128: 15604 bf_set(lpfc_mbx_wq_create_wqe_size, 15605 &wq_create->u.request_1, 15606 LPFC_WQ_WQE_SIZE_128); 15607 break; 15608 } 15609 /* Request DPP by default */ 15610 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15611 bf_set(lpfc_mbx_wq_create_page_size, 15612 &wq_create->u.request_1, 15613 (wq->page_size / SLI4_PAGE_SIZE)); 15614 page = wq_create->u.request_1.page; 15615 break; 15616 default: 15617 page = wq_create->u.request.page; 15618 break; 15619 } 15620 15621 list_for_each_entry(dmabuf, &wq->page_list, list) { 15622 memset(dmabuf->virt, 0, hw_page_size); 15623 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15624 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15625 } 15626 15627 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15628 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15629 15630 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15631 /* The IOCTL status is embedded in the mailbox subheader. */ 15632 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15633 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15634 if (shdr_status || shdr_add_status || rc) { 15635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15636 "2503 WQ_CREATE mailbox failed with " 15637 "status x%x add_status x%x, mbx status x%x\n", 15638 shdr_status, shdr_add_status, rc); 15639 status = -ENXIO; 15640 goto out; 15641 } 15642 15643 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15644 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15645 &wq_create->u.response); 15646 else 15647 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15648 &wq_create->u.response_1); 15649 15650 if (wq->queue_id == 0xFFFF) { 15651 status = -ENXIO; 15652 goto out; 15653 } 15654 15655 wq->db_format = LPFC_DB_LIST_FORMAT; 15656 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15657 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15658 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15659 &wq_create->u.response); 15660 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15661 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15662 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15663 "3265 WQ[%d] doorbell format " 15664 "not supported: x%x\n", 15665 wq->queue_id, wq->db_format); 15666 status = -EINVAL; 15667 goto out; 15668 } 15669 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15670 &wq_create->u.response); 15671 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15672 pci_barset); 15673 if (!bar_memmap_p) { 15674 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15675 "3263 WQ[%d] failed to memmap " 15676 "pci barset:x%x\n", 15677 wq->queue_id, pci_barset); 15678 status = -ENOMEM; 15679 goto out; 15680 } 15681 db_offset = wq_create->u.response.doorbell_offset; 15682 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15683 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15684 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15685 "3252 WQ[%d] doorbell offset " 15686 "not supported: x%x\n", 15687 wq->queue_id, db_offset); 15688 status = -EINVAL; 15689 goto out; 15690 } 15691 wq->db_regaddr = bar_memmap_p + db_offset; 15692 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15693 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15694 "format:x%x\n", wq->queue_id, 15695 pci_barset, db_offset, wq->db_format); 15696 } else 15697 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15698 } else { 15699 /* Check if DPP was honored by the firmware */ 15700 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15701 &wq_create->u.response_1); 15702 if (wq->dpp_enable) { 15703 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15704 &wq_create->u.response_1); 15705 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15706 pci_barset); 15707 if (!bar_memmap_p) { 15708 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15709 "3267 WQ[%d] failed to memmap " 15710 "pci barset:x%x\n", 15711 wq->queue_id, pci_barset); 15712 status = -ENOMEM; 15713 goto out; 15714 } 15715 db_offset = wq_create->u.response_1.doorbell_offset; 15716 wq->db_regaddr = bar_memmap_p + db_offset; 15717 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15718 &wq_create->u.response_1); 15719 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15720 &wq_create->u.response_1); 15721 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15722 dpp_barset); 15723 if (!bar_memmap_p) { 15724 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15725 "3268 WQ[%d] failed to memmap " 15726 "pci barset:x%x\n", 15727 wq->queue_id, dpp_barset); 15728 status = -ENOMEM; 15729 goto out; 15730 } 15731 dpp_offset = wq_create->u.response_1.dpp_offset; 15732 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15733 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15734 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15735 "dpp_id:x%x dpp_barset:x%x " 15736 "dpp_offset:x%x\n", 15737 wq->queue_id, pci_barset, db_offset, 15738 wq->dpp_id, dpp_barset, dpp_offset); 15739 15740 /* Enable combined writes for DPP aperture */ 15741 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15742 #ifdef CONFIG_X86 15743 rc = set_memory_wc(pg_addr, 1); 15744 if (rc) { 15745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15746 "3272 Cannot setup Combined " 15747 "Write on WQ[%d] - disable DPP\n", 15748 wq->queue_id); 15749 phba->cfg_enable_dpp = 0; 15750 } 15751 #else 15752 phba->cfg_enable_dpp = 0; 15753 #endif 15754 } else 15755 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15756 } 15757 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15758 if (wq->pring == NULL) { 15759 status = -ENOMEM; 15760 goto out; 15761 } 15762 wq->type = LPFC_WQ; 15763 wq->assoc_qid = cq->queue_id; 15764 wq->subtype = subtype; 15765 wq->host_index = 0; 15766 wq->hba_index = 0; 15767 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 15768 15769 /* link the wq onto the parent cq child list */ 15770 list_add_tail(&wq->list, &cq->child_list); 15771 out: 15772 mempool_free(mbox, phba->mbox_mem_pool); 15773 return status; 15774 } 15775 15776 /** 15777 * lpfc_rq_create - Create a Receive Queue on the HBA 15778 * @phba: HBA structure that indicates port to create a queue on. 15779 * @hrq: The queue structure to use to create the header receive queue. 15780 * @drq: The queue structure to use to create the data receive queue. 15781 * @cq: The completion queue to bind this work queue to. 15782 * 15783 * This function creates a receive buffer queue pair , as detailed in @hrq and 15784 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15785 * to the HBA. 15786 * 15787 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15788 * struct is used to get the entry count that is necessary to determine the 15789 * number of pages to use for this queue. The @cq is used to indicate which 15790 * completion queue to bind received buffers that are posted to these queues to. 15791 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15792 * receive queue pair. This function is asynchronous and will wait for the 15793 * mailbox command to finish before continuing. 15794 * 15795 * On success this function will return a zero. If unable to allocate enough 15796 * memory this function will return -ENOMEM. If the queue create mailbox command 15797 * fails this function will return -ENXIO. 15798 **/ 15799 int 15800 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15801 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15802 { 15803 struct lpfc_mbx_rq_create *rq_create; 15804 struct lpfc_dmabuf *dmabuf; 15805 LPFC_MBOXQ_t *mbox; 15806 int rc, length, status = 0; 15807 uint32_t shdr_status, shdr_add_status; 15808 union lpfc_sli4_cfg_shdr *shdr; 15809 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15810 void __iomem *bar_memmap_p; 15811 uint32_t db_offset; 15812 uint16_t pci_barset; 15813 15814 /* sanity check on queue memory */ 15815 if (!hrq || !drq || !cq) 15816 return -ENODEV; 15817 if (!phba->sli4_hba.pc_sli4_params.supported) 15818 hw_page_size = SLI4_PAGE_SIZE; 15819 15820 if (hrq->entry_count != drq->entry_count) 15821 return -EINVAL; 15822 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15823 if (!mbox) 15824 return -ENOMEM; 15825 length = (sizeof(struct lpfc_mbx_rq_create) - 15826 sizeof(struct lpfc_sli4_cfg_mhdr)); 15827 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15828 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15829 length, LPFC_SLI4_MBX_EMBED); 15830 rq_create = &mbox->u.mqe.un.rq_create; 15831 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15832 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15833 phba->sli4_hba.pc_sli4_params.rqv); 15834 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15835 bf_set(lpfc_rq_context_rqe_count_1, 15836 &rq_create->u.request.context, 15837 hrq->entry_count); 15838 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15839 bf_set(lpfc_rq_context_rqe_size, 15840 &rq_create->u.request.context, 15841 LPFC_RQE_SIZE_8); 15842 bf_set(lpfc_rq_context_page_size, 15843 &rq_create->u.request.context, 15844 LPFC_RQ_PAGE_SIZE_4096); 15845 } else { 15846 switch (hrq->entry_count) { 15847 default: 15848 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15849 "2535 Unsupported RQ count. (%d)\n", 15850 hrq->entry_count); 15851 if (hrq->entry_count < 512) { 15852 status = -EINVAL; 15853 goto out; 15854 } 15855 /* otherwise default to smallest count (drop through) */ 15856 case 512: 15857 bf_set(lpfc_rq_context_rqe_count, 15858 &rq_create->u.request.context, 15859 LPFC_RQ_RING_SIZE_512); 15860 break; 15861 case 1024: 15862 bf_set(lpfc_rq_context_rqe_count, 15863 &rq_create->u.request.context, 15864 LPFC_RQ_RING_SIZE_1024); 15865 break; 15866 case 2048: 15867 bf_set(lpfc_rq_context_rqe_count, 15868 &rq_create->u.request.context, 15869 LPFC_RQ_RING_SIZE_2048); 15870 break; 15871 case 4096: 15872 bf_set(lpfc_rq_context_rqe_count, 15873 &rq_create->u.request.context, 15874 LPFC_RQ_RING_SIZE_4096); 15875 break; 15876 } 15877 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15878 LPFC_HDR_BUF_SIZE); 15879 } 15880 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15881 cq->queue_id); 15882 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15883 hrq->page_count); 15884 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15885 memset(dmabuf->virt, 0, hw_page_size); 15886 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15887 putPaddrLow(dmabuf->phys); 15888 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15889 putPaddrHigh(dmabuf->phys); 15890 } 15891 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15892 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15893 15894 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15895 /* The IOCTL status is embedded in the mailbox subheader. */ 15896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15898 if (shdr_status || shdr_add_status || rc) { 15899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15900 "2504 RQ_CREATE mailbox failed with " 15901 "status x%x add_status x%x, mbx status x%x\n", 15902 shdr_status, shdr_add_status, rc); 15903 status = -ENXIO; 15904 goto out; 15905 } 15906 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15907 if (hrq->queue_id == 0xFFFF) { 15908 status = -ENXIO; 15909 goto out; 15910 } 15911 15912 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15913 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15914 &rq_create->u.response); 15915 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15916 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15917 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15918 "3262 RQ [%d] doorbell format not " 15919 "supported: x%x\n", hrq->queue_id, 15920 hrq->db_format); 15921 status = -EINVAL; 15922 goto out; 15923 } 15924 15925 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15926 &rq_create->u.response); 15927 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15928 if (!bar_memmap_p) { 15929 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15930 "3269 RQ[%d] failed to memmap pci " 15931 "barset:x%x\n", hrq->queue_id, 15932 pci_barset); 15933 status = -ENOMEM; 15934 goto out; 15935 } 15936 15937 db_offset = rq_create->u.response.doorbell_offset; 15938 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15939 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15940 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15941 "3270 RQ[%d] doorbell offset not " 15942 "supported: x%x\n", hrq->queue_id, 15943 db_offset); 15944 status = -EINVAL; 15945 goto out; 15946 } 15947 hrq->db_regaddr = bar_memmap_p + db_offset; 15948 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15949 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15950 "format:x%x\n", hrq->queue_id, pci_barset, 15951 db_offset, hrq->db_format); 15952 } else { 15953 hrq->db_format = LPFC_DB_RING_FORMAT; 15954 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15955 } 15956 hrq->type = LPFC_HRQ; 15957 hrq->assoc_qid = cq->queue_id; 15958 hrq->subtype = subtype; 15959 hrq->host_index = 0; 15960 hrq->hba_index = 0; 15961 hrq->entry_repost = LPFC_RQ_REPOST; 15962 15963 /* now create the data queue */ 15964 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15965 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15966 length, LPFC_SLI4_MBX_EMBED); 15967 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15968 phba->sli4_hba.pc_sli4_params.rqv); 15969 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15970 bf_set(lpfc_rq_context_rqe_count_1, 15971 &rq_create->u.request.context, hrq->entry_count); 15972 if (subtype == LPFC_NVMET) 15973 rq_create->u.request.context.buffer_size = 15974 LPFC_NVMET_DATA_BUF_SIZE; 15975 else 15976 rq_create->u.request.context.buffer_size = 15977 LPFC_DATA_BUF_SIZE; 15978 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15979 LPFC_RQE_SIZE_8); 15980 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15981 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15982 } else { 15983 switch (drq->entry_count) { 15984 default: 15985 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15986 "2536 Unsupported RQ count. (%d)\n", 15987 drq->entry_count); 15988 if (drq->entry_count < 512) { 15989 status = -EINVAL; 15990 goto out; 15991 } 15992 /* otherwise default to smallest count (drop through) */ 15993 case 512: 15994 bf_set(lpfc_rq_context_rqe_count, 15995 &rq_create->u.request.context, 15996 LPFC_RQ_RING_SIZE_512); 15997 break; 15998 case 1024: 15999 bf_set(lpfc_rq_context_rqe_count, 16000 &rq_create->u.request.context, 16001 LPFC_RQ_RING_SIZE_1024); 16002 break; 16003 case 2048: 16004 bf_set(lpfc_rq_context_rqe_count, 16005 &rq_create->u.request.context, 16006 LPFC_RQ_RING_SIZE_2048); 16007 break; 16008 case 4096: 16009 bf_set(lpfc_rq_context_rqe_count, 16010 &rq_create->u.request.context, 16011 LPFC_RQ_RING_SIZE_4096); 16012 break; 16013 } 16014 if (subtype == LPFC_NVMET) 16015 bf_set(lpfc_rq_context_buf_size, 16016 &rq_create->u.request.context, 16017 LPFC_NVMET_DATA_BUF_SIZE); 16018 else 16019 bf_set(lpfc_rq_context_buf_size, 16020 &rq_create->u.request.context, 16021 LPFC_DATA_BUF_SIZE); 16022 } 16023 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16024 cq->queue_id); 16025 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16026 drq->page_count); 16027 list_for_each_entry(dmabuf, &drq->page_list, list) { 16028 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16029 putPaddrLow(dmabuf->phys); 16030 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16031 putPaddrHigh(dmabuf->phys); 16032 } 16033 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16034 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16035 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16036 /* The IOCTL status is embedded in the mailbox subheader. */ 16037 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16038 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16039 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16040 if (shdr_status || shdr_add_status || rc) { 16041 status = -ENXIO; 16042 goto out; 16043 } 16044 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16045 if (drq->queue_id == 0xFFFF) { 16046 status = -ENXIO; 16047 goto out; 16048 } 16049 drq->type = LPFC_DRQ; 16050 drq->assoc_qid = cq->queue_id; 16051 drq->subtype = subtype; 16052 drq->host_index = 0; 16053 drq->hba_index = 0; 16054 drq->entry_repost = LPFC_RQ_REPOST; 16055 16056 /* link the header and data RQs onto the parent cq child list */ 16057 list_add_tail(&hrq->list, &cq->child_list); 16058 list_add_tail(&drq->list, &cq->child_list); 16059 16060 out: 16061 mempool_free(mbox, phba->mbox_mem_pool); 16062 return status; 16063 } 16064 16065 /** 16066 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16067 * @phba: HBA structure that indicates port to create a queue on. 16068 * @hrqp: The queue structure array to use to create the header receive queues. 16069 * @drqp: The queue structure array to use to create the data receive queues. 16070 * @cqp: The completion queue array to bind these receive queues to. 16071 * 16072 * This function creates a receive buffer queue pair , as detailed in @hrq and 16073 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16074 * to the HBA. 16075 * 16076 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16077 * struct is used to get the entry count that is necessary to determine the 16078 * number of pages to use for this queue. The @cq is used to indicate which 16079 * completion queue to bind received buffers that are posted to these queues to. 16080 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16081 * receive queue pair. This function is asynchronous and will wait for the 16082 * mailbox command to finish before continuing. 16083 * 16084 * On success this function will return a zero. If unable to allocate enough 16085 * memory this function will return -ENOMEM. If the queue create mailbox command 16086 * fails this function will return -ENXIO. 16087 **/ 16088 int 16089 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16090 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16091 uint32_t subtype) 16092 { 16093 struct lpfc_queue *hrq, *drq, *cq; 16094 struct lpfc_mbx_rq_create_v2 *rq_create; 16095 struct lpfc_dmabuf *dmabuf; 16096 LPFC_MBOXQ_t *mbox; 16097 int rc, length, alloclen, status = 0; 16098 int cnt, idx, numrq, page_idx = 0; 16099 uint32_t shdr_status, shdr_add_status; 16100 union lpfc_sli4_cfg_shdr *shdr; 16101 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16102 16103 numrq = phba->cfg_nvmet_mrq; 16104 /* sanity check on array memory */ 16105 if (!hrqp || !drqp || !cqp || !numrq) 16106 return -ENODEV; 16107 if (!phba->sli4_hba.pc_sli4_params.supported) 16108 hw_page_size = SLI4_PAGE_SIZE; 16109 16110 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16111 if (!mbox) 16112 return -ENOMEM; 16113 16114 length = sizeof(struct lpfc_mbx_rq_create_v2); 16115 length += ((2 * numrq * hrqp[0]->page_count) * 16116 sizeof(struct dma_address)); 16117 16118 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16119 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16120 LPFC_SLI4_MBX_NEMBED); 16121 if (alloclen < length) { 16122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16123 "3099 Allocated DMA memory size (%d) is " 16124 "less than the requested DMA memory size " 16125 "(%d)\n", alloclen, length); 16126 status = -ENOMEM; 16127 goto out; 16128 } 16129 16130 16131 16132 rq_create = mbox->sge_array->addr[0]; 16133 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16134 16135 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16136 cnt = 0; 16137 16138 for (idx = 0; idx < numrq; idx++) { 16139 hrq = hrqp[idx]; 16140 drq = drqp[idx]; 16141 cq = cqp[idx]; 16142 16143 /* sanity check on queue memory */ 16144 if (!hrq || !drq || !cq) { 16145 status = -ENODEV; 16146 goto out; 16147 } 16148 16149 if (hrq->entry_count != drq->entry_count) { 16150 status = -EINVAL; 16151 goto out; 16152 } 16153 16154 if (idx == 0) { 16155 bf_set(lpfc_mbx_rq_create_num_pages, 16156 &rq_create->u.request, 16157 hrq->page_count); 16158 bf_set(lpfc_mbx_rq_create_rq_cnt, 16159 &rq_create->u.request, (numrq * 2)); 16160 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16161 1); 16162 bf_set(lpfc_rq_context_base_cq, 16163 &rq_create->u.request.context, 16164 cq->queue_id); 16165 bf_set(lpfc_rq_context_data_size, 16166 &rq_create->u.request.context, 16167 LPFC_NVMET_DATA_BUF_SIZE); 16168 bf_set(lpfc_rq_context_hdr_size, 16169 &rq_create->u.request.context, 16170 LPFC_HDR_BUF_SIZE); 16171 bf_set(lpfc_rq_context_rqe_count_1, 16172 &rq_create->u.request.context, 16173 hrq->entry_count); 16174 bf_set(lpfc_rq_context_rqe_size, 16175 &rq_create->u.request.context, 16176 LPFC_RQE_SIZE_8); 16177 bf_set(lpfc_rq_context_page_size, 16178 &rq_create->u.request.context, 16179 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16180 } 16181 rc = 0; 16182 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16183 memset(dmabuf->virt, 0, hw_page_size); 16184 cnt = page_idx + dmabuf->buffer_tag; 16185 rq_create->u.request.page[cnt].addr_lo = 16186 putPaddrLow(dmabuf->phys); 16187 rq_create->u.request.page[cnt].addr_hi = 16188 putPaddrHigh(dmabuf->phys); 16189 rc++; 16190 } 16191 page_idx += rc; 16192 16193 rc = 0; 16194 list_for_each_entry(dmabuf, &drq->page_list, list) { 16195 memset(dmabuf->virt, 0, hw_page_size); 16196 cnt = page_idx + dmabuf->buffer_tag; 16197 rq_create->u.request.page[cnt].addr_lo = 16198 putPaddrLow(dmabuf->phys); 16199 rq_create->u.request.page[cnt].addr_hi = 16200 putPaddrHigh(dmabuf->phys); 16201 rc++; 16202 } 16203 page_idx += rc; 16204 16205 hrq->db_format = LPFC_DB_RING_FORMAT; 16206 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16207 hrq->type = LPFC_HRQ; 16208 hrq->assoc_qid = cq->queue_id; 16209 hrq->subtype = subtype; 16210 hrq->host_index = 0; 16211 hrq->hba_index = 0; 16212 hrq->entry_repost = LPFC_RQ_REPOST; 16213 16214 drq->db_format = LPFC_DB_RING_FORMAT; 16215 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16216 drq->type = LPFC_DRQ; 16217 drq->assoc_qid = cq->queue_id; 16218 drq->subtype = subtype; 16219 drq->host_index = 0; 16220 drq->hba_index = 0; 16221 drq->entry_repost = LPFC_RQ_REPOST; 16222 16223 list_add_tail(&hrq->list, &cq->child_list); 16224 list_add_tail(&drq->list, &cq->child_list); 16225 } 16226 16227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16228 /* The IOCTL status is embedded in the mailbox subheader. */ 16229 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16230 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16231 if (shdr_status || shdr_add_status || rc) { 16232 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16233 "3120 RQ_CREATE mailbox failed with " 16234 "status x%x add_status x%x, mbx status x%x\n", 16235 shdr_status, shdr_add_status, rc); 16236 status = -ENXIO; 16237 goto out; 16238 } 16239 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16240 if (rc == 0xFFFF) { 16241 status = -ENXIO; 16242 goto out; 16243 } 16244 16245 /* Initialize all RQs with associated queue id */ 16246 for (idx = 0; idx < numrq; idx++) { 16247 hrq = hrqp[idx]; 16248 hrq->queue_id = rc + (2 * idx); 16249 drq = drqp[idx]; 16250 drq->queue_id = rc + (2 * idx) + 1; 16251 } 16252 16253 out: 16254 lpfc_sli4_mbox_cmd_free(phba, mbox); 16255 return status; 16256 } 16257 16258 /** 16259 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16260 * @eq: The queue structure associated with the queue to destroy. 16261 * 16262 * This function destroys a queue, as detailed in @eq by sending an mailbox 16263 * command, specific to the type of queue, to the HBA. 16264 * 16265 * The @eq struct is used to get the queue ID of the queue to destroy. 16266 * 16267 * On success this function will return a zero. If the queue destroy mailbox 16268 * command fails this function will return -ENXIO. 16269 **/ 16270 int 16271 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16272 { 16273 LPFC_MBOXQ_t *mbox; 16274 int rc, length, status = 0; 16275 uint32_t shdr_status, shdr_add_status; 16276 union lpfc_sli4_cfg_shdr *shdr; 16277 16278 /* sanity check on queue memory */ 16279 if (!eq) 16280 return -ENODEV; 16281 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16282 if (!mbox) 16283 return -ENOMEM; 16284 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16285 sizeof(struct lpfc_sli4_cfg_mhdr)); 16286 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16287 LPFC_MBOX_OPCODE_EQ_DESTROY, 16288 length, LPFC_SLI4_MBX_EMBED); 16289 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16290 eq->queue_id); 16291 mbox->vport = eq->phba->pport; 16292 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16293 16294 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16295 /* The IOCTL status is embedded in the mailbox subheader. */ 16296 shdr = (union lpfc_sli4_cfg_shdr *) 16297 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16298 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16299 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16300 if (shdr_status || shdr_add_status || rc) { 16301 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16302 "2505 EQ_DESTROY mailbox failed with " 16303 "status x%x add_status x%x, mbx status x%x\n", 16304 shdr_status, shdr_add_status, rc); 16305 status = -ENXIO; 16306 } 16307 16308 /* Remove eq from any list */ 16309 list_del_init(&eq->list); 16310 mempool_free(mbox, eq->phba->mbox_mem_pool); 16311 return status; 16312 } 16313 16314 /** 16315 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16316 * @cq: The queue structure associated with the queue to destroy. 16317 * 16318 * This function destroys a queue, as detailed in @cq by sending an mailbox 16319 * command, specific to the type of queue, to the HBA. 16320 * 16321 * The @cq struct is used to get the queue ID of the queue to destroy. 16322 * 16323 * On success this function will return a zero. If the queue destroy mailbox 16324 * command fails this function will return -ENXIO. 16325 **/ 16326 int 16327 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16328 { 16329 LPFC_MBOXQ_t *mbox; 16330 int rc, length, status = 0; 16331 uint32_t shdr_status, shdr_add_status; 16332 union lpfc_sli4_cfg_shdr *shdr; 16333 16334 /* sanity check on queue memory */ 16335 if (!cq) 16336 return -ENODEV; 16337 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16338 if (!mbox) 16339 return -ENOMEM; 16340 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16341 sizeof(struct lpfc_sli4_cfg_mhdr)); 16342 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16343 LPFC_MBOX_OPCODE_CQ_DESTROY, 16344 length, LPFC_SLI4_MBX_EMBED); 16345 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16346 cq->queue_id); 16347 mbox->vport = cq->phba->pport; 16348 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16349 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16350 /* The IOCTL status is embedded in the mailbox subheader. */ 16351 shdr = (union lpfc_sli4_cfg_shdr *) 16352 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16353 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16354 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16355 if (shdr_status || shdr_add_status || rc) { 16356 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16357 "2506 CQ_DESTROY mailbox failed with " 16358 "status x%x add_status x%x, mbx status x%x\n", 16359 shdr_status, shdr_add_status, rc); 16360 status = -ENXIO; 16361 } 16362 /* Remove cq from any list */ 16363 list_del_init(&cq->list); 16364 mempool_free(mbox, cq->phba->mbox_mem_pool); 16365 return status; 16366 } 16367 16368 /** 16369 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16370 * @qm: The queue structure associated with the queue to destroy. 16371 * 16372 * This function destroys a queue, as detailed in @mq by sending an mailbox 16373 * command, specific to the type of queue, to the HBA. 16374 * 16375 * The @mq struct is used to get the queue ID of the queue to destroy. 16376 * 16377 * On success this function will return a zero. If the queue destroy mailbox 16378 * command fails this function will return -ENXIO. 16379 **/ 16380 int 16381 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16382 { 16383 LPFC_MBOXQ_t *mbox; 16384 int rc, length, status = 0; 16385 uint32_t shdr_status, shdr_add_status; 16386 union lpfc_sli4_cfg_shdr *shdr; 16387 16388 /* sanity check on queue memory */ 16389 if (!mq) 16390 return -ENODEV; 16391 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16392 if (!mbox) 16393 return -ENOMEM; 16394 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16395 sizeof(struct lpfc_sli4_cfg_mhdr)); 16396 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16397 LPFC_MBOX_OPCODE_MQ_DESTROY, 16398 length, LPFC_SLI4_MBX_EMBED); 16399 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16400 mq->queue_id); 16401 mbox->vport = mq->phba->pport; 16402 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16403 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16404 /* The IOCTL status is embedded in the mailbox subheader. */ 16405 shdr = (union lpfc_sli4_cfg_shdr *) 16406 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16407 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16408 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16409 if (shdr_status || shdr_add_status || rc) { 16410 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16411 "2507 MQ_DESTROY mailbox failed with " 16412 "status x%x add_status x%x, mbx status x%x\n", 16413 shdr_status, shdr_add_status, rc); 16414 status = -ENXIO; 16415 } 16416 /* Remove mq from any list */ 16417 list_del_init(&mq->list); 16418 mempool_free(mbox, mq->phba->mbox_mem_pool); 16419 return status; 16420 } 16421 16422 /** 16423 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16424 * @wq: The queue structure associated with the queue to destroy. 16425 * 16426 * This function destroys a queue, as detailed in @wq by sending an mailbox 16427 * command, specific to the type of queue, to the HBA. 16428 * 16429 * The @wq struct is used to get the queue ID of the queue to destroy. 16430 * 16431 * On success this function will return a zero. If the queue destroy mailbox 16432 * command fails this function will return -ENXIO. 16433 **/ 16434 int 16435 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16436 { 16437 LPFC_MBOXQ_t *mbox; 16438 int rc, length, status = 0; 16439 uint32_t shdr_status, shdr_add_status; 16440 union lpfc_sli4_cfg_shdr *shdr; 16441 16442 /* sanity check on queue memory */ 16443 if (!wq) 16444 return -ENODEV; 16445 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16446 if (!mbox) 16447 return -ENOMEM; 16448 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16449 sizeof(struct lpfc_sli4_cfg_mhdr)); 16450 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16451 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16452 length, LPFC_SLI4_MBX_EMBED); 16453 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16454 wq->queue_id); 16455 mbox->vport = wq->phba->pport; 16456 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16457 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16458 shdr = (union lpfc_sli4_cfg_shdr *) 16459 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16460 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16461 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16462 if (shdr_status || shdr_add_status || rc) { 16463 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16464 "2508 WQ_DESTROY mailbox failed with " 16465 "status x%x add_status x%x, mbx status x%x\n", 16466 shdr_status, shdr_add_status, rc); 16467 status = -ENXIO; 16468 } 16469 /* Remove wq from any list */ 16470 list_del_init(&wq->list); 16471 kfree(wq->pring); 16472 wq->pring = NULL; 16473 mempool_free(mbox, wq->phba->mbox_mem_pool); 16474 return status; 16475 } 16476 16477 /** 16478 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16479 * @rq: The queue structure associated with the queue to destroy. 16480 * 16481 * This function destroys a queue, as detailed in @rq by sending an mailbox 16482 * command, specific to the type of queue, to the HBA. 16483 * 16484 * The @rq struct is used to get the queue ID of the queue to destroy. 16485 * 16486 * On success this function will return a zero. If the queue destroy mailbox 16487 * command fails this function will return -ENXIO. 16488 **/ 16489 int 16490 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16491 struct lpfc_queue *drq) 16492 { 16493 LPFC_MBOXQ_t *mbox; 16494 int rc, length, status = 0; 16495 uint32_t shdr_status, shdr_add_status; 16496 union lpfc_sli4_cfg_shdr *shdr; 16497 16498 /* sanity check on queue memory */ 16499 if (!hrq || !drq) 16500 return -ENODEV; 16501 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16502 if (!mbox) 16503 return -ENOMEM; 16504 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16505 sizeof(struct lpfc_sli4_cfg_mhdr)); 16506 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16507 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16508 length, LPFC_SLI4_MBX_EMBED); 16509 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16510 hrq->queue_id); 16511 mbox->vport = hrq->phba->pport; 16512 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16513 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16514 /* The IOCTL status is embedded in the mailbox subheader. */ 16515 shdr = (union lpfc_sli4_cfg_shdr *) 16516 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16517 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16518 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16519 if (shdr_status || shdr_add_status || rc) { 16520 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16521 "2509 RQ_DESTROY mailbox failed with " 16522 "status x%x add_status x%x, mbx status x%x\n", 16523 shdr_status, shdr_add_status, rc); 16524 if (rc != MBX_TIMEOUT) 16525 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16526 return -ENXIO; 16527 } 16528 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16529 drq->queue_id); 16530 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16531 shdr = (union lpfc_sli4_cfg_shdr *) 16532 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16533 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16534 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16535 if (shdr_status || shdr_add_status || rc) { 16536 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16537 "2510 RQ_DESTROY mailbox failed with " 16538 "status x%x add_status x%x, mbx status x%x\n", 16539 shdr_status, shdr_add_status, rc); 16540 status = -ENXIO; 16541 } 16542 list_del_init(&hrq->list); 16543 list_del_init(&drq->list); 16544 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16545 return status; 16546 } 16547 16548 /** 16549 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16550 * @phba: The virtual port for which this call being executed. 16551 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16552 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16553 * @xritag: the xritag that ties this io to the SGL pages. 16554 * 16555 * This routine will post the sgl pages for the IO that has the xritag 16556 * that is in the iocbq structure. The xritag is assigned during iocbq 16557 * creation and persists for as long as the driver is loaded. 16558 * if the caller has fewer than 256 scatter gather segments to map then 16559 * pdma_phys_addr1 should be 0. 16560 * If the caller needs to map more than 256 scatter gather segment then 16561 * pdma_phys_addr1 should be a valid physical address. 16562 * physical address for SGLs must be 64 byte aligned. 16563 * If you are going to map 2 SGL's then the first one must have 256 entries 16564 * the second sgl can have between 1 and 256 entries. 16565 * 16566 * Return codes: 16567 * 0 - Success 16568 * -ENXIO, -ENOMEM - Failure 16569 **/ 16570 int 16571 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16572 dma_addr_t pdma_phys_addr0, 16573 dma_addr_t pdma_phys_addr1, 16574 uint16_t xritag) 16575 { 16576 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16577 LPFC_MBOXQ_t *mbox; 16578 int rc; 16579 uint32_t shdr_status, shdr_add_status; 16580 uint32_t mbox_tmo; 16581 union lpfc_sli4_cfg_shdr *shdr; 16582 16583 if (xritag == NO_XRI) { 16584 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16585 "0364 Invalid param:\n"); 16586 return -EINVAL; 16587 } 16588 16589 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16590 if (!mbox) 16591 return -ENOMEM; 16592 16593 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16594 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16595 sizeof(struct lpfc_mbx_post_sgl_pages) - 16596 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16597 16598 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16599 &mbox->u.mqe.un.post_sgl_pages; 16600 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16601 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16602 16603 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16604 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16605 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16606 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16607 16608 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16609 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16610 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16611 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16612 if (!phba->sli4_hba.intr_enable) 16613 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16614 else { 16615 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16616 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16617 } 16618 /* The IOCTL status is embedded in the mailbox subheader. */ 16619 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16620 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16621 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16622 if (rc != MBX_TIMEOUT) 16623 mempool_free(mbox, phba->mbox_mem_pool); 16624 if (shdr_status || shdr_add_status || rc) { 16625 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16626 "2511 POST_SGL mailbox failed with " 16627 "status x%x add_status x%x, mbx status x%x\n", 16628 shdr_status, shdr_add_status, rc); 16629 } 16630 return 0; 16631 } 16632 16633 /** 16634 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16635 * @phba: pointer to lpfc hba data structure. 16636 * 16637 * This routine is invoked to post rpi header templates to the 16638 * HBA consistent with the SLI-4 interface spec. This routine 16639 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16640 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16641 * 16642 * Returns 16643 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16644 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16645 **/ 16646 static uint16_t 16647 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16648 { 16649 unsigned long xri; 16650 16651 /* 16652 * Fetch the next logical xri. Because this index is logical, 16653 * the driver starts at 0 each time. 16654 */ 16655 spin_lock_irq(&phba->hbalock); 16656 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16657 phba->sli4_hba.max_cfg_param.max_xri, 0); 16658 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16659 spin_unlock_irq(&phba->hbalock); 16660 return NO_XRI; 16661 } else { 16662 set_bit(xri, phba->sli4_hba.xri_bmask); 16663 phba->sli4_hba.max_cfg_param.xri_used++; 16664 } 16665 spin_unlock_irq(&phba->hbalock); 16666 return xri; 16667 } 16668 16669 /** 16670 * lpfc_sli4_free_xri - Release an xri for reuse. 16671 * @phba: pointer to lpfc hba data structure. 16672 * 16673 * This routine is invoked to release an xri to the pool of 16674 * available rpis maintained by the driver. 16675 **/ 16676 static void 16677 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16678 { 16679 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16680 phba->sli4_hba.max_cfg_param.xri_used--; 16681 } 16682 } 16683 16684 /** 16685 * lpfc_sli4_free_xri - Release an xri for reuse. 16686 * @phba: pointer to lpfc hba data structure. 16687 * 16688 * This routine is invoked to release an xri to the pool of 16689 * available rpis maintained by the driver. 16690 **/ 16691 void 16692 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16693 { 16694 spin_lock_irq(&phba->hbalock); 16695 __lpfc_sli4_free_xri(phba, xri); 16696 spin_unlock_irq(&phba->hbalock); 16697 } 16698 16699 /** 16700 * lpfc_sli4_next_xritag - Get an xritag for the io 16701 * @phba: Pointer to HBA context object. 16702 * 16703 * This function gets an xritag for the iocb. If there is no unused xritag 16704 * it will return 0xffff. 16705 * The function returns the allocated xritag if successful, else returns zero. 16706 * Zero is not a valid xritag. 16707 * The caller is not required to hold any lock. 16708 **/ 16709 uint16_t 16710 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16711 { 16712 uint16_t xri_index; 16713 16714 xri_index = lpfc_sli4_alloc_xri(phba); 16715 if (xri_index == NO_XRI) 16716 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16717 "2004 Failed to allocate XRI.last XRITAG is %d" 16718 " Max XRI is %d, Used XRI is %d\n", 16719 xri_index, 16720 phba->sli4_hba.max_cfg_param.max_xri, 16721 phba->sli4_hba.max_cfg_param.xri_used); 16722 return xri_index; 16723 } 16724 16725 /** 16726 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16727 * @phba: pointer to lpfc hba data structure. 16728 * @post_sgl_list: pointer to els sgl entry list. 16729 * @count: number of els sgl entries on the list. 16730 * 16731 * This routine is invoked to post a block of driver's sgl pages to the 16732 * HBA using non-embedded mailbox command. No Lock is held. This routine 16733 * is only called when the driver is loading and after all IO has been 16734 * stopped. 16735 **/ 16736 static int 16737 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16738 struct list_head *post_sgl_list, 16739 int post_cnt) 16740 { 16741 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16742 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16743 struct sgl_page_pairs *sgl_pg_pairs; 16744 void *viraddr; 16745 LPFC_MBOXQ_t *mbox; 16746 uint32_t reqlen, alloclen, pg_pairs; 16747 uint32_t mbox_tmo; 16748 uint16_t xritag_start = 0; 16749 int rc = 0; 16750 uint32_t shdr_status, shdr_add_status; 16751 union lpfc_sli4_cfg_shdr *shdr; 16752 16753 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16754 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16755 if (reqlen > SLI4_PAGE_SIZE) { 16756 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16757 "2559 Block sgl registration required DMA " 16758 "size (%d) great than a page\n", reqlen); 16759 return -ENOMEM; 16760 } 16761 16762 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16763 if (!mbox) 16764 return -ENOMEM; 16765 16766 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16767 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16768 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16769 LPFC_SLI4_MBX_NEMBED); 16770 16771 if (alloclen < reqlen) { 16772 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16773 "0285 Allocated DMA memory size (%d) is " 16774 "less than the requested DMA memory " 16775 "size (%d)\n", alloclen, reqlen); 16776 lpfc_sli4_mbox_cmd_free(phba, mbox); 16777 return -ENOMEM; 16778 } 16779 /* Set up the SGL pages in the non-embedded DMA pages */ 16780 viraddr = mbox->sge_array->addr[0]; 16781 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16782 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16783 16784 pg_pairs = 0; 16785 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16786 /* Set up the sge entry */ 16787 sgl_pg_pairs->sgl_pg0_addr_lo = 16788 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16789 sgl_pg_pairs->sgl_pg0_addr_hi = 16790 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16791 sgl_pg_pairs->sgl_pg1_addr_lo = 16792 cpu_to_le32(putPaddrLow(0)); 16793 sgl_pg_pairs->sgl_pg1_addr_hi = 16794 cpu_to_le32(putPaddrHigh(0)); 16795 16796 /* Keep the first xritag on the list */ 16797 if (pg_pairs == 0) 16798 xritag_start = sglq_entry->sli4_xritag; 16799 sgl_pg_pairs++; 16800 pg_pairs++; 16801 } 16802 16803 /* Complete initialization and perform endian conversion. */ 16804 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16805 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16806 sgl->word0 = cpu_to_le32(sgl->word0); 16807 16808 if (!phba->sli4_hba.intr_enable) 16809 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16810 else { 16811 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16812 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16813 } 16814 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16815 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16816 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16817 if (rc != MBX_TIMEOUT) 16818 lpfc_sli4_mbox_cmd_free(phba, mbox); 16819 if (shdr_status || shdr_add_status || rc) { 16820 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16821 "2513 POST_SGL_BLOCK mailbox command failed " 16822 "status x%x add_status x%x mbx status x%x\n", 16823 shdr_status, shdr_add_status, rc); 16824 rc = -ENXIO; 16825 } 16826 return rc; 16827 } 16828 16829 /** 16830 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16831 * @phba: pointer to lpfc hba data structure. 16832 * @sblist: pointer to scsi buffer list. 16833 * @count: number of scsi buffers on the list. 16834 * 16835 * This routine is invoked to post a block of @count scsi sgl pages from a 16836 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16837 * No Lock is held. 16838 * 16839 **/ 16840 int 16841 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16842 struct list_head *sblist, 16843 int count) 16844 { 16845 struct lpfc_scsi_buf *psb; 16846 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16847 struct sgl_page_pairs *sgl_pg_pairs; 16848 void *viraddr; 16849 LPFC_MBOXQ_t *mbox; 16850 uint32_t reqlen, alloclen, pg_pairs; 16851 uint32_t mbox_tmo; 16852 uint16_t xritag_start = 0; 16853 int rc = 0; 16854 uint32_t shdr_status, shdr_add_status; 16855 dma_addr_t pdma_phys_bpl1; 16856 union lpfc_sli4_cfg_shdr *shdr; 16857 16858 /* Calculate the requested length of the dma memory */ 16859 reqlen = count * sizeof(struct sgl_page_pairs) + 16860 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16861 if (reqlen > SLI4_PAGE_SIZE) { 16862 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16863 "0217 Block sgl registration required DMA " 16864 "size (%d) great than a page\n", reqlen); 16865 return -ENOMEM; 16866 } 16867 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16868 if (!mbox) { 16869 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16870 "0283 Failed to allocate mbox cmd memory\n"); 16871 return -ENOMEM; 16872 } 16873 16874 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16875 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16876 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16877 LPFC_SLI4_MBX_NEMBED); 16878 16879 if (alloclen < reqlen) { 16880 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16881 "2561 Allocated DMA memory size (%d) is " 16882 "less than the requested DMA memory " 16883 "size (%d)\n", alloclen, reqlen); 16884 lpfc_sli4_mbox_cmd_free(phba, mbox); 16885 return -ENOMEM; 16886 } 16887 16888 /* Get the first SGE entry from the non-embedded DMA memory */ 16889 viraddr = mbox->sge_array->addr[0]; 16890 16891 /* Set up the SGL pages in the non-embedded DMA pages */ 16892 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16893 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16894 16895 pg_pairs = 0; 16896 list_for_each_entry(psb, sblist, list) { 16897 /* Set up the sge entry */ 16898 sgl_pg_pairs->sgl_pg0_addr_lo = 16899 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16900 sgl_pg_pairs->sgl_pg0_addr_hi = 16901 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16902 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16903 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16904 else 16905 pdma_phys_bpl1 = 0; 16906 sgl_pg_pairs->sgl_pg1_addr_lo = 16907 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16908 sgl_pg_pairs->sgl_pg1_addr_hi = 16909 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16910 /* Keep the first xritag on the list */ 16911 if (pg_pairs == 0) 16912 xritag_start = psb->cur_iocbq.sli4_xritag; 16913 sgl_pg_pairs++; 16914 pg_pairs++; 16915 } 16916 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16917 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16918 /* Perform endian conversion if necessary */ 16919 sgl->word0 = cpu_to_le32(sgl->word0); 16920 16921 if (!phba->sli4_hba.intr_enable) 16922 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16923 else { 16924 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16925 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16926 } 16927 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16928 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16929 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16930 if (rc != MBX_TIMEOUT) 16931 lpfc_sli4_mbox_cmd_free(phba, mbox); 16932 if (shdr_status || shdr_add_status || rc) { 16933 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16934 "2564 POST_SGL_BLOCK mailbox command failed " 16935 "status x%x add_status x%x mbx status x%x\n", 16936 shdr_status, shdr_add_status, rc); 16937 rc = -ENXIO; 16938 } 16939 return rc; 16940 } 16941 16942 /** 16943 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16944 * @phba: pointer to lpfc_hba struct that the frame was received on 16945 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16946 * 16947 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16948 * valid type of frame that the LPFC driver will handle. This function will 16949 * return a zero if the frame is a valid frame or a non zero value when the 16950 * frame does not pass the check. 16951 **/ 16952 static int 16953 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16954 { 16955 /* make rctl_names static to save stack space */ 16956 struct fc_vft_header *fc_vft_hdr; 16957 uint32_t *header = (uint32_t *) fc_hdr; 16958 16959 switch (fc_hdr->fh_r_ctl) { 16960 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16961 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16962 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16963 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16964 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16965 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16966 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16967 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16968 case FC_RCTL_ELS_REQ: /* extended link services request */ 16969 case FC_RCTL_ELS_REP: /* extended link services reply */ 16970 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16971 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16972 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16973 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16974 case FC_RCTL_BA_RMC: /* remove connection */ 16975 case FC_RCTL_BA_ACC: /* basic accept */ 16976 case FC_RCTL_BA_RJT: /* basic reject */ 16977 case FC_RCTL_BA_PRMT: 16978 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16979 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16980 case FC_RCTL_P_RJT: /* port reject */ 16981 case FC_RCTL_F_RJT: /* fabric reject */ 16982 case FC_RCTL_P_BSY: /* port busy */ 16983 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16984 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16985 case FC_RCTL_LCR: /* link credit reset */ 16986 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16987 case FC_RCTL_END: /* end */ 16988 break; 16989 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16990 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16991 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16992 return lpfc_fc_frame_check(phba, fc_hdr); 16993 default: 16994 goto drop; 16995 } 16996 16997 switch (fc_hdr->fh_type) { 16998 case FC_TYPE_BLS: 16999 case FC_TYPE_ELS: 17000 case FC_TYPE_FCP: 17001 case FC_TYPE_CT: 17002 case FC_TYPE_NVME: 17003 break; 17004 case FC_TYPE_IP: 17005 case FC_TYPE_ILS: 17006 default: 17007 goto drop; 17008 } 17009 17010 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17011 "2538 Received frame rctl:x%x, type:x%x, " 17012 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17013 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17014 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17015 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17016 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17017 be32_to_cpu(header[6])); 17018 return 0; 17019 drop: 17020 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17021 "2539 Dropped frame rctl:x%x type:x%x\n", 17022 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17023 return 1; 17024 } 17025 17026 /** 17027 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17028 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17029 * 17030 * This function processes the FC header to retrieve the VFI from the VF 17031 * header, if one exists. This function will return the VFI if one exists 17032 * or 0 if no VSAN Header exists. 17033 **/ 17034 static uint32_t 17035 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17036 { 17037 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17038 17039 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17040 return 0; 17041 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17042 } 17043 17044 /** 17045 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17046 * @phba: Pointer to the HBA structure to search for the vport on 17047 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17048 * @fcfi: The FC Fabric ID that the frame came from 17049 * 17050 * This function searches the @phba for a vport that matches the content of the 17051 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17052 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17053 * returns the matching vport pointer or NULL if unable to match frame to a 17054 * vport. 17055 **/ 17056 static struct lpfc_vport * 17057 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17058 uint16_t fcfi, uint32_t did) 17059 { 17060 struct lpfc_vport **vports; 17061 struct lpfc_vport *vport = NULL; 17062 int i; 17063 17064 if (did == Fabric_DID) 17065 return phba->pport; 17066 if ((phba->pport->fc_flag & FC_PT2PT) && 17067 !(phba->link_state == LPFC_HBA_READY)) 17068 return phba->pport; 17069 17070 vports = lpfc_create_vport_work_array(phba); 17071 if (vports != NULL) { 17072 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17073 if (phba->fcf.fcfi == fcfi && 17074 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17075 vports[i]->fc_myDID == did) { 17076 vport = vports[i]; 17077 break; 17078 } 17079 } 17080 } 17081 lpfc_destroy_vport_work_array(phba, vports); 17082 return vport; 17083 } 17084 17085 /** 17086 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17087 * @vport: The vport to work on. 17088 * 17089 * This function updates the receive sequence time stamp for this vport. The 17090 * receive sequence time stamp indicates the time that the last frame of the 17091 * the sequence that has been idle for the longest amount of time was received. 17092 * the driver uses this time stamp to indicate if any received sequences have 17093 * timed out. 17094 **/ 17095 static void 17096 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17097 { 17098 struct lpfc_dmabuf *h_buf; 17099 struct hbq_dmabuf *dmabuf = NULL; 17100 17101 /* get the oldest sequence on the rcv list */ 17102 h_buf = list_get_first(&vport->rcv_buffer_list, 17103 struct lpfc_dmabuf, list); 17104 if (!h_buf) 17105 return; 17106 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17107 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17108 } 17109 17110 /** 17111 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17112 * @vport: The vport that the received sequences were sent to. 17113 * 17114 * This function cleans up all outstanding received sequences. This is called 17115 * by the driver when a link event or user action invalidates all the received 17116 * sequences. 17117 **/ 17118 void 17119 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17120 { 17121 struct lpfc_dmabuf *h_buf, *hnext; 17122 struct lpfc_dmabuf *d_buf, *dnext; 17123 struct hbq_dmabuf *dmabuf = NULL; 17124 17125 /* start with the oldest sequence on the rcv list */ 17126 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17127 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17128 list_del_init(&dmabuf->hbuf.list); 17129 list_for_each_entry_safe(d_buf, dnext, 17130 &dmabuf->dbuf.list, list) { 17131 list_del_init(&d_buf->list); 17132 lpfc_in_buf_free(vport->phba, d_buf); 17133 } 17134 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17135 } 17136 } 17137 17138 /** 17139 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17140 * @vport: The vport that the received sequences were sent to. 17141 * 17142 * This function determines whether any received sequences have timed out by 17143 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17144 * indicates that there is at least one timed out sequence this routine will 17145 * go through the received sequences one at a time from most inactive to most 17146 * active to determine which ones need to be cleaned up. Once it has determined 17147 * that a sequence needs to be cleaned up it will simply free up the resources 17148 * without sending an abort. 17149 **/ 17150 void 17151 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17152 { 17153 struct lpfc_dmabuf *h_buf, *hnext; 17154 struct lpfc_dmabuf *d_buf, *dnext; 17155 struct hbq_dmabuf *dmabuf = NULL; 17156 unsigned long timeout; 17157 int abort_count = 0; 17158 17159 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17160 vport->rcv_buffer_time_stamp); 17161 if (list_empty(&vport->rcv_buffer_list) || 17162 time_before(jiffies, timeout)) 17163 return; 17164 /* start with the oldest sequence on the rcv list */ 17165 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17166 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17167 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17168 dmabuf->time_stamp); 17169 if (time_before(jiffies, timeout)) 17170 break; 17171 abort_count++; 17172 list_del_init(&dmabuf->hbuf.list); 17173 list_for_each_entry_safe(d_buf, dnext, 17174 &dmabuf->dbuf.list, list) { 17175 list_del_init(&d_buf->list); 17176 lpfc_in_buf_free(vport->phba, d_buf); 17177 } 17178 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17179 } 17180 if (abort_count) 17181 lpfc_update_rcv_time_stamp(vport); 17182 } 17183 17184 /** 17185 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17186 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17187 * 17188 * This function searches through the existing incomplete sequences that have 17189 * been sent to this @vport. If the frame matches one of the incomplete 17190 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17191 * make up that sequence. If no sequence is found that matches this frame then 17192 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17193 * This function returns a pointer to the first dmabuf in the sequence list that 17194 * the frame was linked to. 17195 **/ 17196 static struct hbq_dmabuf * 17197 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17198 { 17199 struct fc_frame_header *new_hdr; 17200 struct fc_frame_header *temp_hdr; 17201 struct lpfc_dmabuf *d_buf; 17202 struct lpfc_dmabuf *h_buf; 17203 struct hbq_dmabuf *seq_dmabuf = NULL; 17204 struct hbq_dmabuf *temp_dmabuf = NULL; 17205 uint8_t found = 0; 17206 17207 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17208 dmabuf->time_stamp = jiffies; 17209 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17210 17211 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17212 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17213 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17214 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17215 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17216 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17217 continue; 17218 /* found a pending sequence that matches this frame */ 17219 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17220 break; 17221 } 17222 if (!seq_dmabuf) { 17223 /* 17224 * This indicates first frame received for this sequence. 17225 * Queue the buffer on the vport's rcv_buffer_list. 17226 */ 17227 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17228 lpfc_update_rcv_time_stamp(vport); 17229 return dmabuf; 17230 } 17231 temp_hdr = seq_dmabuf->hbuf.virt; 17232 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17233 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17234 list_del_init(&seq_dmabuf->hbuf.list); 17235 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17236 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17237 lpfc_update_rcv_time_stamp(vport); 17238 return dmabuf; 17239 } 17240 /* move this sequence to the tail to indicate a young sequence */ 17241 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17242 seq_dmabuf->time_stamp = jiffies; 17243 lpfc_update_rcv_time_stamp(vport); 17244 if (list_empty(&seq_dmabuf->dbuf.list)) { 17245 temp_hdr = dmabuf->hbuf.virt; 17246 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17247 return seq_dmabuf; 17248 } 17249 /* find the correct place in the sequence to insert this frame */ 17250 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17251 while (!found) { 17252 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17253 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17254 /* 17255 * If the frame's sequence count is greater than the frame on 17256 * the list then insert the frame right after this frame 17257 */ 17258 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17259 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17260 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17261 found = 1; 17262 break; 17263 } 17264 17265 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17266 break; 17267 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17268 } 17269 17270 if (found) 17271 return seq_dmabuf; 17272 return NULL; 17273 } 17274 17275 /** 17276 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17277 * @vport: pointer to a vitural port 17278 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17279 * 17280 * This function tries to abort from the partially assembed sequence, described 17281 * by the information from basic abbort @dmabuf. It checks to see whether such 17282 * partially assembled sequence held by the driver. If so, it shall free up all 17283 * the frames from the partially assembled sequence. 17284 * 17285 * Return 17286 * true -- if there is matching partially assembled sequence present and all 17287 * the frames freed with the sequence; 17288 * false -- if there is no matching partially assembled sequence present so 17289 * nothing got aborted in the lower layer driver 17290 **/ 17291 static bool 17292 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17293 struct hbq_dmabuf *dmabuf) 17294 { 17295 struct fc_frame_header *new_hdr; 17296 struct fc_frame_header *temp_hdr; 17297 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17298 struct hbq_dmabuf *seq_dmabuf = NULL; 17299 17300 /* Use the hdr_buf to find the sequence that matches this frame */ 17301 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17302 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17303 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17304 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17305 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17306 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17307 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17308 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17309 continue; 17310 /* found a pending sequence that matches this frame */ 17311 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17312 break; 17313 } 17314 17315 /* Free up all the frames from the partially assembled sequence */ 17316 if (seq_dmabuf) { 17317 list_for_each_entry_safe(d_buf, n_buf, 17318 &seq_dmabuf->dbuf.list, list) { 17319 list_del_init(&d_buf->list); 17320 lpfc_in_buf_free(vport->phba, d_buf); 17321 } 17322 return true; 17323 } 17324 return false; 17325 } 17326 17327 /** 17328 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17329 * @vport: pointer to a vitural port 17330 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17331 * 17332 * This function tries to abort from the assembed sequence from upper level 17333 * protocol, described by the information from basic abbort @dmabuf. It 17334 * checks to see whether such pending context exists at upper level protocol. 17335 * If so, it shall clean up the pending context. 17336 * 17337 * Return 17338 * true -- if there is matching pending context of the sequence cleaned 17339 * at ulp; 17340 * false -- if there is no matching pending context of the sequence present 17341 * at ulp. 17342 **/ 17343 static bool 17344 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17345 { 17346 struct lpfc_hba *phba = vport->phba; 17347 int handled; 17348 17349 /* Accepting abort at ulp with SLI4 only */ 17350 if (phba->sli_rev < LPFC_SLI_REV4) 17351 return false; 17352 17353 /* Register all caring upper level protocols to attend abort */ 17354 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17355 if (handled) 17356 return true; 17357 17358 return false; 17359 } 17360 17361 /** 17362 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17363 * @phba: Pointer to HBA context object. 17364 * @cmd_iocbq: pointer to the command iocbq structure. 17365 * @rsp_iocbq: pointer to the response iocbq structure. 17366 * 17367 * This function handles the sequence abort response iocb command complete 17368 * event. It properly releases the memory allocated to the sequence abort 17369 * accept iocb. 17370 **/ 17371 static void 17372 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17373 struct lpfc_iocbq *cmd_iocbq, 17374 struct lpfc_iocbq *rsp_iocbq) 17375 { 17376 struct lpfc_nodelist *ndlp; 17377 17378 if (cmd_iocbq) { 17379 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17380 lpfc_nlp_put(ndlp); 17381 lpfc_nlp_not_used(ndlp); 17382 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17383 } 17384 17385 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17386 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17387 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17388 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17389 rsp_iocbq->iocb.ulpStatus, 17390 rsp_iocbq->iocb.un.ulpWord[4]); 17391 } 17392 17393 /** 17394 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17395 * @phba: Pointer to HBA context object. 17396 * @xri: xri id in transaction. 17397 * 17398 * This function validates the xri maps to the known range of XRIs allocated an 17399 * used by the driver. 17400 **/ 17401 uint16_t 17402 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17403 uint16_t xri) 17404 { 17405 uint16_t i; 17406 17407 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17408 if (xri == phba->sli4_hba.xri_ids[i]) 17409 return i; 17410 } 17411 return NO_XRI; 17412 } 17413 17414 /** 17415 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17416 * @phba: Pointer to HBA context object. 17417 * @fc_hdr: pointer to a FC frame header. 17418 * 17419 * This function sends a basic response to a previous unsol sequence abort 17420 * event after aborting the sequence handling. 17421 **/ 17422 void 17423 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17424 struct fc_frame_header *fc_hdr, bool aborted) 17425 { 17426 struct lpfc_hba *phba = vport->phba; 17427 struct lpfc_iocbq *ctiocb = NULL; 17428 struct lpfc_nodelist *ndlp; 17429 uint16_t oxid, rxid, xri, lxri; 17430 uint32_t sid, fctl; 17431 IOCB_t *icmd; 17432 int rc; 17433 17434 if (!lpfc_is_link_up(phba)) 17435 return; 17436 17437 sid = sli4_sid_from_fc_hdr(fc_hdr); 17438 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17439 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17440 17441 ndlp = lpfc_findnode_did(vport, sid); 17442 if (!ndlp) { 17443 ndlp = lpfc_nlp_init(vport, sid); 17444 if (!ndlp) { 17445 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17446 "1268 Failed to allocate ndlp for " 17447 "oxid:x%x SID:x%x\n", oxid, sid); 17448 return; 17449 } 17450 /* Put ndlp onto pport node list */ 17451 lpfc_enqueue_node(vport, ndlp); 17452 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17453 /* re-setup ndlp without removing from node list */ 17454 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17455 if (!ndlp) { 17456 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17457 "3275 Failed to active ndlp found " 17458 "for oxid:x%x SID:x%x\n", oxid, sid); 17459 return; 17460 } 17461 } 17462 17463 /* Allocate buffer for rsp iocb */ 17464 ctiocb = lpfc_sli_get_iocbq(phba); 17465 if (!ctiocb) 17466 return; 17467 17468 /* Extract the F_CTL field from FC_HDR */ 17469 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17470 17471 icmd = &ctiocb->iocb; 17472 icmd->un.xseq64.bdl.bdeSize = 0; 17473 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17474 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17475 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17476 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17477 17478 /* Fill in the rest of iocb fields */ 17479 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17480 icmd->ulpBdeCount = 0; 17481 icmd->ulpLe = 1; 17482 icmd->ulpClass = CLASS3; 17483 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17484 ctiocb->context1 = lpfc_nlp_get(ndlp); 17485 17486 ctiocb->iocb_cmpl = NULL; 17487 ctiocb->vport = phba->pport; 17488 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17489 ctiocb->sli4_lxritag = NO_XRI; 17490 ctiocb->sli4_xritag = NO_XRI; 17491 17492 if (fctl & FC_FC_EX_CTX) 17493 /* Exchange responder sent the abort so we 17494 * own the oxid. 17495 */ 17496 xri = oxid; 17497 else 17498 xri = rxid; 17499 lxri = lpfc_sli4_xri_inrange(phba, xri); 17500 if (lxri != NO_XRI) 17501 lpfc_set_rrq_active(phba, ndlp, lxri, 17502 (xri == oxid) ? rxid : oxid, 0); 17503 /* For BA_ABTS from exchange responder, if the logical xri with 17504 * the oxid maps to the FCP XRI range, the port no longer has 17505 * that exchange context, send a BLS_RJT. Override the IOCB for 17506 * a BA_RJT. 17507 */ 17508 if ((fctl & FC_FC_EX_CTX) && 17509 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17510 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17511 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17512 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17513 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17514 } 17515 17516 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17517 * the driver no longer has that exchange, send a BLS_RJT. Override 17518 * the IOCB for a BA_RJT. 17519 */ 17520 if (aborted == false) { 17521 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17522 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17523 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17524 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17525 } 17526 17527 if (fctl & FC_FC_EX_CTX) { 17528 /* ABTS sent by responder to CT exchange, construction 17529 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17530 * field and RX_ID from ABTS for RX_ID field. 17531 */ 17532 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17533 } else { 17534 /* ABTS sent by initiator to CT exchange, construction 17535 * of BA_ACC will need to allocate a new XRI as for the 17536 * XRI_TAG field. 17537 */ 17538 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17539 } 17540 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17541 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17542 17543 /* Xmit CT abts response on exchange <xid> */ 17544 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17545 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17546 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17547 17548 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17549 if (rc == IOCB_ERROR) { 17550 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17551 "2925 Failed to issue CT ABTS RSP x%x on " 17552 "xri x%x, Data x%x\n", 17553 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17554 phba->link_state); 17555 lpfc_nlp_put(ndlp); 17556 ctiocb->context1 = NULL; 17557 lpfc_sli_release_iocbq(phba, ctiocb); 17558 } 17559 } 17560 17561 /** 17562 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17563 * @vport: Pointer to the vport on which this sequence was received 17564 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17565 * 17566 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17567 * receive sequence is only partially assembed by the driver, it shall abort 17568 * the partially assembled frames for the sequence. Otherwise, if the 17569 * unsolicited receive sequence has been completely assembled and passed to 17570 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17571 * unsolicited sequence has been aborted. After that, it will issue a basic 17572 * accept to accept the abort. 17573 **/ 17574 static void 17575 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17576 struct hbq_dmabuf *dmabuf) 17577 { 17578 struct lpfc_hba *phba = vport->phba; 17579 struct fc_frame_header fc_hdr; 17580 uint32_t fctl; 17581 bool aborted; 17582 17583 /* Make a copy of fc_hdr before the dmabuf being released */ 17584 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17585 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17586 17587 if (fctl & FC_FC_EX_CTX) { 17588 /* ABTS by responder to exchange, no cleanup needed */ 17589 aborted = true; 17590 } else { 17591 /* ABTS by initiator to exchange, need to do cleanup */ 17592 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17593 if (aborted == false) 17594 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17595 } 17596 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17597 17598 if (phba->nvmet_support) { 17599 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17600 return; 17601 } 17602 17603 /* Respond with BA_ACC or BA_RJT accordingly */ 17604 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17605 } 17606 17607 /** 17608 * lpfc_seq_complete - Indicates if a sequence is complete 17609 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17610 * 17611 * This function checks the sequence, starting with the frame described by 17612 * @dmabuf, to see if all the frames associated with this sequence are present. 17613 * the frames associated with this sequence are linked to the @dmabuf using the 17614 * dbuf list. This function looks for two major things. 1) That the first frame 17615 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17616 * set. 3) That there are no holes in the sequence count. The function will 17617 * return 1 when the sequence is complete, otherwise it will return 0. 17618 **/ 17619 static int 17620 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17621 { 17622 struct fc_frame_header *hdr; 17623 struct lpfc_dmabuf *d_buf; 17624 struct hbq_dmabuf *seq_dmabuf; 17625 uint32_t fctl; 17626 int seq_count = 0; 17627 17628 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17629 /* make sure first fame of sequence has a sequence count of zero */ 17630 if (hdr->fh_seq_cnt != seq_count) 17631 return 0; 17632 fctl = (hdr->fh_f_ctl[0] << 16 | 17633 hdr->fh_f_ctl[1] << 8 | 17634 hdr->fh_f_ctl[2]); 17635 /* If last frame of sequence we can return success. */ 17636 if (fctl & FC_FC_END_SEQ) 17637 return 1; 17638 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17639 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17640 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17641 /* If there is a hole in the sequence count then fail. */ 17642 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17643 return 0; 17644 fctl = (hdr->fh_f_ctl[0] << 16 | 17645 hdr->fh_f_ctl[1] << 8 | 17646 hdr->fh_f_ctl[2]); 17647 /* If last frame of sequence we can return success. */ 17648 if (fctl & FC_FC_END_SEQ) 17649 return 1; 17650 } 17651 return 0; 17652 } 17653 17654 /** 17655 * lpfc_prep_seq - Prep sequence for ULP processing 17656 * @vport: Pointer to the vport on which this sequence was received 17657 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17658 * 17659 * This function takes a sequence, described by a list of frames, and creates 17660 * a list of iocbq structures to describe the sequence. This iocbq list will be 17661 * used to issue to the generic unsolicited sequence handler. This routine 17662 * returns a pointer to the first iocbq in the list. If the function is unable 17663 * to allocate an iocbq then it throw out the received frames that were not 17664 * able to be described and return a pointer to the first iocbq. If unable to 17665 * allocate any iocbqs (including the first) this function will return NULL. 17666 **/ 17667 static struct lpfc_iocbq * 17668 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17669 { 17670 struct hbq_dmabuf *hbq_buf; 17671 struct lpfc_dmabuf *d_buf, *n_buf; 17672 struct lpfc_iocbq *first_iocbq, *iocbq; 17673 struct fc_frame_header *fc_hdr; 17674 uint32_t sid; 17675 uint32_t len, tot_len; 17676 struct ulp_bde64 *pbde; 17677 17678 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17679 /* remove from receive buffer list */ 17680 list_del_init(&seq_dmabuf->hbuf.list); 17681 lpfc_update_rcv_time_stamp(vport); 17682 /* get the Remote Port's SID */ 17683 sid = sli4_sid_from_fc_hdr(fc_hdr); 17684 tot_len = 0; 17685 /* Get an iocbq struct to fill in. */ 17686 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17687 if (first_iocbq) { 17688 /* Initialize the first IOCB. */ 17689 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17690 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17691 first_iocbq->vport = vport; 17692 17693 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17694 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17695 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17696 first_iocbq->iocb.un.rcvels.parmRo = 17697 sli4_did_from_fc_hdr(fc_hdr); 17698 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17699 } else 17700 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17701 first_iocbq->iocb.ulpContext = NO_XRI; 17702 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17703 be16_to_cpu(fc_hdr->fh_ox_id); 17704 /* iocbq is prepped for internal consumption. Physical vpi. */ 17705 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17706 vport->phba->vpi_ids[vport->vpi]; 17707 /* put the first buffer into the first IOCBq */ 17708 tot_len = bf_get(lpfc_rcqe_length, 17709 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17710 17711 first_iocbq->context2 = &seq_dmabuf->dbuf; 17712 first_iocbq->context3 = NULL; 17713 first_iocbq->iocb.ulpBdeCount = 1; 17714 if (tot_len > LPFC_DATA_BUF_SIZE) 17715 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17716 LPFC_DATA_BUF_SIZE; 17717 else 17718 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17719 17720 first_iocbq->iocb.un.rcvels.remoteID = sid; 17721 17722 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17723 } 17724 iocbq = first_iocbq; 17725 /* 17726 * Each IOCBq can have two Buffers assigned, so go through the list 17727 * of buffers for this sequence and save two buffers in each IOCBq 17728 */ 17729 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17730 if (!iocbq) { 17731 lpfc_in_buf_free(vport->phba, d_buf); 17732 continue; 17733 } 17734 if (!iocbq->context3) { 17735 iocbq->context3 = d_buf; 17736 iocbq->iocb.ulpBdeCount++; 17737 /* We need to get the size out of the right CQE */ 17738 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17739 len = bf_get(lpfc_rcqe_length, 17740 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17741 pbde = (struct ulp_bde64 *) 17742 &iocbq->iocb.unsli3.sli3Words[4]; 17743 if (len > LPFC_DATA_BUF_SIZE) 17744 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17745 else 17746 pbde->tus.f.bdeSize = len; 17747 17748 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17749 tot_len += len; 17750 } else { 17751 iocbq = lpfc_sli_get_iocbq(vport->phba); 17752 if (!iocbq) { 17753 if (first_iocbq) { 17754 first_iocbq->iocb.ulpStatus = 17755 IOSTAT_FCP_RSP_ERROR; 17756 first_iocbq->iocb.un.ulpWord[4] = 17757 IOERR_NO_RESOURCES; 17758 } 17759 lpfc_in_buf_free(vport->phba, d_buf); 17760 continue; 17761 } 17762 /* We need to get the size out of the right CQE */ 17763 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17764 len = bf_get(lpfc_rcqe_length, 17765 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17766 iocbq->context2 = d_buf; 17767 iocbq->context3 = NULL; 17768 iocbq->iocb.ulpBdeCount = 1; 17769 if (len > LPFC_DATA_BUF_SIZE) 17770 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17771 LPFC_DATA_BUF_SIZE; 17772 else 17773 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17774 17775 tot_len += len; 17776 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17777 17778 iocbq->iocb.un.rcvels.remoteID = sid; 17779 list_add_tail(&iocbq->list, &first_iocbq->list); 17780 } 17781 } 17782 return first_iocbq; 17783 } 17784 17785 static void 17786 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17787 struct hbq_dmabuf *seq_dmabuf) 17788 { 17789 struct fc_frame_header *fc_hdr; 17790 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17791 struct lpfc_hba *phba = vport->phba; 17792 17793 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17794 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17795 if (!iocbq) { 17796 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17797 "2707 Ring %d handler: Failed to allocate " 17798 "iocb Rctl x%x Type x%x received\n", 17799 LPFC_ELS_RING, 17800 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17801 return; 17802 } 17803 if (!lpfc_complete_unsol_iocb(phba, 17804 phba->sli4_hba.els_wq->pring, 17805 iocbq, fc_hdr->fh_r_ctl, 17806 fc_hdr->fh_type)) 17807 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17808 "2540 Ring %d handler: unexpected Rctl " 17809 "x%x Type x%x received\n", 17810 LPFC_ELS_RING, 17811 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17812 17813 /* Free iocb created in lpfc_prep_seq */ 17814 list_for_each_entry_safe(curr_iocb, next_iocb, 17815 &iocbq->list, list) { 17816 list_del_init(&curr_iocb->list); 17817 lpfc_sli_release_iocbq(phba, curr_iocb); 17818 } 17819 lpfc_sli_release_iocbq(phba, iocbq); 17820 } 17821 17822 static void 17823 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17824 struct lpfc_iocbq *rspiocb) 17825 { 17826 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17827 17828 if (pcmd && pcmd->virt) 17829 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17830 kfree(pcmd); 17831 lpfc_sli_release_iocbq(phba, cmdiocb); 17832 lpfc_drain_txq(phba); 17833 } 17834 17835 static void 17836 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17837 struct hbq_dmabuf *dmabuf) 17838 { 17839 struct fc_frame_header *fc_hdr; 17840 struct lpfc_hba *phba = vport->phba; 17841 struct lpfc_iocbq *iocbq = NULL; 17842 union lpfc_wqe *wqe; 17843 struct lpfc_dmabuf *pcmd = NULL; 17844 uint32_t frame_len; 17845 int rc; 17846 unsigned long iflags; 17847 17848 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17849 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17850 17851 /* Send the received frame back */ 17852 iocbq = lpfc_sli_get_iocbq(phba); 17853 if (!iocbq) { 17854 /* Queue cq event and wakeup worker thread to process it */ 17855 spin_lock_irqsave(&phba->hbalock, iflags); 17856 list_add_tail(&dmabuf->cq_event.list, 17857 &phba->sli4_hba.sp_queue_event); 17858 phba->hba_flag |= HBA_SP_QUEUE_EVT; 17859 spin_unlock_irqrestore(&phba->hbalock, iflags); 17860 lpfc_worker_wake_up(phba); 17861 return; 17862 } 17863 17864 /* Allocate buffer for command payload */ 17865 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17866 if (pcmd) 17867 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17868 &pcmd->phys); 17869 if (!pcmd || !pcmd->virt) 17870 goto exit; 17871 17872 INIT_LIST_HEAD(&pcmd->list); 17873 17874 /* copyin the payload */ 17875 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17876 17877 /* fill in BDE's for command */ 17878 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17879 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17880 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17881 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17882 17883 iocbq->context2 = pcmd; 17884 iocbq->vport = vport; 17885 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17886 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17887 17888 /* 17889 * Setup rest of the iocb as though it were a WQE 17890 * Build the SEND_FRAME WQE 17891 */ 17892 wqe = (union lpfc_wqe *)&iocbq->iocb; 17893 17894 wqe->send_frame.frame_len = frame_len; 17895 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17896 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17897 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17898 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17899 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17900 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17901 17902 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17903 iocbq->iocb.ulpLe = 1; 17904 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17905 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17906 if (rc == IOCB_ERROR) 17907 goto exit; 17908 17909 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17910 return; 17911 17912 exit: 17913 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17914 "2023 Unable to process MDS loopback frame\n"); 17915 if (pcmd && pcmd->virt) 17916 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17917 kfree(pcmd); 17918 if (iocbq) 17919 lpfc_sli_release_iocbq(phba, iocbq); 17920 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17921 } 17922 17923 /** 17924 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17925 * @phba: Pointer to HBA context object. 17926 * 17927 * This function is called with no lock held. This function processes all 17928 * the received buffers and gives it to upper layers when a received buffer 17929 * indicates that it is the final frame in the sequence. The interrupt 17930 * service routine processes received buffers at interrupt contexts. 17931 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17932 * appropriate receive function when the final frame in a sequence is received. 17933 **/ 17934 void 17935 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17936 struct hbq_dmabuf *dmabuf) 17937 { 17938 struct hbq_dmabuf *seq_dmabuf; 17939 struct fc_frame_header *fc_hdr; 17940 struct lpfc_vport *vport; 17941 uint32_t fcfi; 17942 uint32_t did; 17943 17944 /* Process each received buffer */ 17945 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17946 17947 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 17948 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 17949 vport = phba->pport; 17950 /* Handle MDS Loopback frames */ 17951 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17952 return; 17953 } 17954 17955 /* check to see if this a valid type of frame */ 17956 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17957 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17958 return; 17959 } 17960 17961 if ((bf_get(lpfc_cqe_code, 17962 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17963 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17964 &dmabuf->cq_event.cqe.rcqe_cmpl); 17965 else 17966 fcfi = bf_get(lpfc_rcqe_fcf_id, 17967 &dmabuf->cq_event.cqe.rcqe_cmpl); 17968 17969 /* d_id this frame is directed to */ 17970 did = sli4_did_from_fc_hdr(fc_hdr); 17971 17972 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17973 if (!vport) { 17974 /* throw out the frame */ 17975 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17976 return; 17977 } 17978 17979 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17980 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17981 (did != Fabric_DID)) { 17982 /* 17983 * Throw out the frame if we are not pt2pt. 17984 * The pt2pt protocol allows for discovery frames 17985 * to be received without a registered VPI. 17986 */ 17987 if (!(vport->fc_flag & FC_PT2PT) || 17988 (phba->link_state == LPFC_HBA_READY)) { 17989 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17990 return; 17991 } 17992 } 17993 17994 /* Handle the basic abort sequence (BA_ABTS) event */ 17995 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17996 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17997 return; 17998 } 17999 18000 /* Link this frame */ 18001 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18002 if (!seq_dmabuf) { 18003 /* unable to add frame to vport - throw it out */ 18004 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18005 return; 18006 } 18007 /* If not last frame in sequence continue processing frames. */ 18008 if (!lpfc_seq_complete(seq_dmabuf)) 18009 return; 18010 18011 /* Send the complete sequence to the upper layer protocol */ 18012 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18013 } 18014 18015 /** 18016 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18017 * @phba: pointer to lpfc hba data structure. 18018 * 18019 * This routine is invoked to post rpi header templates to the 18020 * HBA consistent with the SLI-4 interface spec. This routine 18021 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18022 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18023 * 18024 * This routine does not require any locks. It's usage is expected 18025 * to be driver load or reset recovery when the driver is 18026 * sequential. 18027 * 18028 * Return codes 18029 * 0 - successful 18030 * -EIO - The mailbox failed to complete successfully. 18031 * When this error occurs, the driver is not guaranteed 18032 * to have any rpi regions posted to the device and 18033 * must either attempt to repost the regions or take a 18034 * fatal error. 18035 **/ 18036 int 18037 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18038 { 18039 struct lpfc_rpi_hdr *rpi_page; 18040 uint32_t rc = 0; 18041 uint16_t lrpi = 0; 18042 18043 /* SLI4 ports that support extents do not require RPI headers. */ 18044 if (!phba->sli4_hba.rpi_hdrs_in_use) 18045 goto exit; 18046 if (phba->sli4_hba.extents_in_use) 18047 return -EIO; 18048 18049 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18050 /* 18051 * Assign the rpi headers a physical rpi only if the driver 18052 * has not initialized those resources. A port reset only 18053 * needs the headers posted. 18054 */ 18055 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18056 LPFC_RPI_RSRC_RDY) 18057 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18058 18059 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18060 if (rc != MBX_SUCCESS) { 18061 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18062 "2008 Error %d posting all rpi " 18063 "headers\n", rc); 18064 rc = -EIO; 18065 break; 18066 } 18067 } 18068 18069 exit: 18070 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18071 LPFC_RPI_RSRC_RDY); 18072 return rc; 18073 } 18074 18075 /** 18076 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18077 * @phba: pointer to lpfc hba data structure. 18078 * @rpi_page: pointer to the rpi memory region. 18079 * 18080 * This routine is invoked to post a single rpi header to the 18081 * HBA consistent with the SLI-4 interface spec. This memory region 18082 * maps up to 64 rpi context regions. 18083 * 18084 * Return codes 18085 * 0 - successful 18086 * -ENOMEM - No available memory 18087 * -EIO - The mailbox failed to complete successfully. 18088 **/ 18089 int 18090 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18091 { 18092 LPFC_MBOXQ_t *mboxq; 18093 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18094 uint32_t rc = 0; 18095 uint32_t shdr_status, shdr_add_status; 18096 union lpfc_sli4_cfg_shdr *shdr; 18097 18098 /* SLI4 ports that support extents do not require RPI headers. */ 18099 if (!phba->sli4_hba.rpi_hdrs_in_use) 18100 return rc; 18101 if (phba->sli4_hba.extents_in_use) 18102 return -EIO; 18103 18104 /* The port is notified of the header region via a mailbox command. */ 18105 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18106 if (!mboxq) { 18107 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18108 "2001 Unable to allocate memory for issuing " 18109 "SLI_CONFIG_SPECIAL mailbox command\n"); 18110 return -ENOMEM; 18111 } 18112 18113 /* Post all rpi memory regions to the port. */ 18114 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18115 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18116 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18117 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18118 sizeof(struct lpfc_sli4_cfg_mhdr), 18119 LPFC_SLI4_MBX_EMBED); 18120 18121 18122 /* Post the physical rpi to the port for this rpi header. */ 18123 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18124 rpi_page->start_rpi); 18125 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18126 hdr_tmpl, rpi_page->page_count); 18127 18128 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18129 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18130 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18131 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18132 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18133 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18134 if (rc != MBX_TIMEOUT) 18135 mempool_free(mboxq, phba->mbox_mem_pool); 18136 if (shdr_status || shdr_add_status || rc) { 18137 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18138 "2514 POST_RPI_HDR mailbox failed with " 18139 "status x%x add_status x%x, mbx status x%x\n", 18140 shdr_status, shdr_add_status, rc); 18141 rc = -ENXIO; 18142 } else { 18143 /* 18144 * The next_rpi stores the next logical module-64 rpi value used 18145 * to post physical rpis in subsequent rpi postings. 18146 */ 18147 spin_lock_irq(&phba->hbalock); 18148 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18149 spin_unlock_irq(&phba->hbalock); 18150 } 18151 return rc; 18152 } 18153 18154 /** 18155 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18156 * @phba: pointer to lpfc hba data structure. 18157 * 18158 * This routine is invoked to post rpi header templates to the 18159 * HBA consistent with the SLI-4 interface spec. This routine 18160 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18161 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18162 * 18163 * Returns 18164 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18165 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18166 **/ 18167 int 18168 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18169 { 18170 unsigned long rpi; 18171 uint16_t max_rpi, rpi_limit; 18172 uint16_t rpi_remaining, lrpi = 0; 18173 struct lpfc_rpi_hdr *rpi_hdr; 18174 unsigned long iflag; 18175 18176 /* 18177 * Fetch the next logical rpi. Because this index is logical, 18178 * the driver starts at 0 each time. 18179 */ 18180 spin_lock_irqsave(&phba->hbalock, iflag); 18181 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18182 rpi_limit = phba->sli4_hba.next_rpi; 18183 18184 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18185 if (rpi >= rpi_limit) 18186 rpi = LPFC_RPI_ALLOC_ERROR; 18187 else { 18188 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18189 phba->sli4_hba.max_cfg_param.rpi_used++; 18190 phba->sli4_hba.rpi_count++; 18191 } 18192 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18193 "0001 rpi:%x max:%x lim:%x\n", 18194 (int) rpi, max_rpi, rpi_limit); 18195 18196 /* 18197 * Don't try to allocate more rpi header regions if the device limit 18198 * has been exhausted. 18199 */ 18200 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18201 (phba->sli4_hba.rpi_count >= max_rpi)) { 18202 spin_unlock_irqrestore(&phba->hbalock, iflag); 18203 return rpi; 18204 } 18205 18206 /* 18207 * RPI header postings are not required for SLI4 ports capable of 18208 * extents. 18209 */ 18210 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18211 spin_unlock_irqrestore(&phba->hbalock, iflag); 18212 return rpi; 18213 } 18214 18215 /* 18216 * If the driver is running low on rpi resources, allocate another 18217 * page now. Note that the next_rpi value is used because 18218 * it represents how many are actually in use whereas max_rpi notes 18219 * how many are supported max by the device. 18220 */ 18221 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18222 spin_unlock_irqrestore(&phba->hbalock, iflag); 18223 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18224 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18225 if (!rpi_hdr) { 18226 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18227 "2002 Error Could not grow rpi " 18228 "count\n"); 18229 } else { 18230 lrpi = rpi_hdr->start_rpi; 18231 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18232 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18233 } 18234 } 18235 18236 return rpi; 18237 } 18238 18239 /** 18240 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18241 * @phba: pointer to lpfc hba data structure. 18242 * 18243 * This routine is invoked to release an rpi to the pool of 18244 * available rpis maintained by the driver. 18245 **/ 18246 static void 18247 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18248 { 18249 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18250 phba->sli4_hba.rpi_count--; 18251 phba->sli4_hba.max_cfg_param.rpi_used--; 18252 } 18253 } 18254 18255 /** 18256 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18257 * @phba: pointer to lpfc hba data structure. 18258 * 18259 * This routine is invoked to release an rpi to the pool of 18260 * available rpis maintained by the driver. 18261 **/ 18262 void 18263 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18264 { 18265 spin_lock_irq(&phba->hbalock); 18266 __lpfc_sli4_free_rpi(phba, rpi); 18267 spin_unlock_irq(&phba->hbalock); 18268 } 18269 18270 /** 18271 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18272 * @phba: pointer to lpfc hba data structure. 18273 * 18274 * This routine is invoked to remove the memory region that 18275 * provided rpi via a bitmask. 18276 **/ 18277 void 18278 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18279 { 18280 kfree(phba->sli4_hba.rpi_bmask); 18281 kfree(phba->sli4_hba.rpi_ids); 18282 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18283 } 18284 18285 /** 18286 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18287 * @phba: pointer to lpfc hba data structure. 18288 * 18289 * This routine is invoked to remove the memory region that 18290 * provided rpi via a bitmask. 18291 **/ 18292 int 18293 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18294 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18295 { 18296 LPFC_MBOXQ_t *mboxq; 18297 struct lpfc_hba *phba = ndlp->phba; 18298 int rc; 18299 18300 /* The port is notified of the header region via a mailbox command. */ 18301 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18302 if (!mboxq) 18303 return -ENOMEM; 18304 18305 /* Post all rpi memory regions to the port. */ 18306 lpfc_resume_rpi(mboxq, ndlp); 18307 if (cmpl) { 18308 mboxq->mbox_cmpl = cmpl; 18309 mboxq->ctx_buf = arg; 18310 mboxq->ctx_ndlp = ndlp; 18311 } else 18312 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18313 mboxq->vport = ndlp->vport; 18314 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18315 if (rc == MBX_NOT_FINISHED) { 18316 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18317 "2010 Resume RPI Mailbox failed " 18318 "status %d, mbxStatus x%x\n", rc, 18319 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18320 mempool_free(mboxq, phba->mbox_mem_pool); 18321 return -EIO; 18322 } 18323 return 0; 18324 } 18325 18326 /** 18327 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18328 * @vport: Pointer to the vport for which the vpi is being initialized 18329 * 18330 * This routine is invoked to activate a vpi with the port. 18331 * 18332 * Returns: 18333 * 0 success 18334 * -Evalue otherwise 18335 **/ 18336 int 18337 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18338 { 18339 LPFC_MBOXQ_t *mboxq; 18340 int rc = 0; 18341 int retval = MBX_SUCCESS; 18342 uint32_t mbox_tmo; 18343 struct lpfc_hba *phba = vport->phba; 18344 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18345 if (!mboxq) 18346 return -ENOMEM; 18347 lpfc_init_vpi(phba, mboxq, vport->vpi); 18348 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18349 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18350 if (rc != MBX_SUCCESS) { 18351 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18352 "2022 INIT VPI Mailbox failed " 18353 "status %d, mbxStatus x%x\n", rc, 18354 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18355 retval = -EIO; 18356 } 18357 if (rc != MBX_TIMEOUT) 18358 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18359 18360 return retval; 18361 } 18362 18363 /** 18364 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18365 * @phba: pointer to lpfc hba data structure. 18366 * @mboxq: Pointer to mailbox object. 18367 * 18368 * This routine is invoked to manually add a single FCF record. The caller 18369 * must pass a completely initialized FCF_Record. This routine takes 18370 * care of the nonembedded mailbox operations. 18371 **/ 18372 static void 18373 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18374 { 18375 void *virt_addr; 18376 union lpfc_sli4_cfg_shdr *shdr; 18377 uint32_t shdr_status, shdr_add_status; 18378 18379 virt_addr = mboxq->sge_array->addr[0]; 18380 /* The IOCTL status is embedded in the mailbox subheader. */ 18381 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18382 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18383 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18384 18385 if ((shdr_status || shdr_add_status) && 18386 (shdr_status != STATUS_FCF_IN_USE)) 18387 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18388 "2558 ADD_FCF_RECORD mailbox failed with " 18389 "status x%x add_status x%x\n", 18390 shdr_status, shdr_add_status); 18391 18392 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18393 } 18394 18395 /** 18396 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18397 * @phba: pointer to lpfc hba data structure. 18398 * @fcf_record: pointer to the initialized fcf record to add. 18399 * 18400 * This routine is invoked to manually add a single FCF record. The caller 18401 * must pass a completely initialized FCF_Record. This routine takes 18402 * care of the nonembedded mailbox operations. 18403 **/ 18404 int 18405 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18406 { 18407 int rc = 0; 18408 LPFC_MBOXQ_t *mboxq; 18409 uint8_t *bytep; 18410 void *virt_addr; 18411 struct lpfc_mbx_sge sge; 18412 uint32_t alloc_len, req_len; 18413 uint32_t fcfindex; 18414 18415 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18416 if (!mboxq) { 18417 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18418 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18419 return -ENOMEM; 18420 } 18421 18422 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18423 sizeof(uint32_t); 18424 18425 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18426 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18427 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18428 req_len, LPFC_SLI4_MBX_NEMBED); 18429 if (alloc_len < req_len) { 18430 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18431 "2523 Allocated DMA memory size (x%x) is " 18432 "less than the requested DMA memory " 18433 "size (x%x)\n", alloc_len, req_len); 18434 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18435 return -ENOMEM; 18436 } 18437 18438 /* 18439 * Get the first SGE entry from the non-embedded DMA memory. This 18440 * routine only uses a single SGE. 18441 */ 18442 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18443 virt_addr = mboxq->sge_array->addr[0]; 18444 /* 18445 * Configure the FCF record for FCFI 0. This is the driver's 18446 * hardcoded default and gets used in nonFIP mode. 18447 */ 18448 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18449 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18450 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18451 18452 /* 18453 * Copy the fcf_index and the FCF Record Data. The data starts after 18454 * the FCoE header plus word10. The data copy needs to be endian 18455 * correct. 18456 */ 18457 bytep += sizeof(uint32_t); 18458 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18459 mboxq->vport = phba->pport; 18460 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18461 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18462 if (rc == MBX_NOT_FINISHED) { 18463 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18464 "2515 ADD_FCF_RECORD mailbox failed with " 18465 "status 0x%x\n", rc); 18466 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18467 rc = -EIO; 18468 } else 18469 rc = 0; 18470 18471 return rc; 18472 } 18473 18474 /** 18475 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18476 * @phba: pointer to lpfc hba data structure. 18477 * @fcf_record: pointer to the fcf record to write the default data. 18478 * @fcf_index: FCF table entry index. 18479 * 18480 * This routine is invoked to build the driver's default FCF record. The 18481 * values used are hardcoded. This routine handles memory initialization. 18482 * 18483 **/ 18484 void 18485 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18486 struct fcf_record *fcf_record, 18487 uint16_t fcf_index) 18488 { 18489 memset(fcf_record, 0, sizeof(struct fcf_record)); 18490 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18491 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18492 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18493 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18494 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18495 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18496 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18497 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18498 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18499 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18500 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18501 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18502 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18503 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18504 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18505 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18506 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18507 /* Set the VLAN bit map */ 18508 if (phba->valid_vlan) { 18509 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18510 = 1 << (phba->vlan_id % 8); 18511 } 18512 } 18513 18514 /** 18515 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18516 * @phba: pointer to lpfc hba data structure. 18517 * @fcf_index: FCF table entry offset. 18518 * 18519 * This routine is invoked to scan the entire FCF table by reading FCF 18520 * record and processing it one at a time starting from the @fcf_index 18521 * for initial FCF discovery or fast FCF failover rediscovery. 18522 * 18523 * Return 0 if the mailbox command is submitted successfully, none 0 18524 * otherwise. 18525 **/ 18526 int 18527 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18528 { 18529 int rc = 0, error; 18530 LPFC_MBOXQ_t *mboxq; 18531 18532 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18533 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18534 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18535 if (!mboxq) { 18536 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18537 "2000 Failed to allocate mbox for " 18538 "READ_FCF cmd\n"); 18539 error = -ENOMEM; 18540 goto fail_fcf_scan; 18541 } 18542 /* Construct the read FCF record mailbox command */ 18543 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18544 if (rc) { 18545 error = -EINVAL; 18546 goto fail_fcf_scan; 18547 } 18548 /* Issue the mailbox command asynchronously */ 18549 mboxq->vport = phba->pport; 18550 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18551 18552 spin_lock_irq(&phba->hbalock); 18553 phba->hba_flag |= FCF_TS_INPROG; 18554 spin_unlock_irq(&phba->hbalock); 18555 18556 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18557 if (rc == MBX_NOT_FINISHED) 18558 error = -EIO; 18559 else { 18560 /* Reset eligible FCF count for new scan */ 18561 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18562 phba->fcf.eligible_fcf_cnt = 0; 18563 error = 0; 18564 } 18565 fail_fcf_scan: 18566 if (error) { 18567 if (mboxq) 18568 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18569 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18570 spin_lock_irq(&phba->hbalock); 18571 phba->hba_flag &= ~FCF_TS_INPROG; 18572 spin_unlock_irq(&phba->hbalock); 18573 } 18574 return error; 18575 } 18576 18577 /** 18578 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18579 * @phba: pointer to lpfc hba data structure. 18580 * @fcf_index: FCF table entry offset. 18581 * 18582 * This routine is invoked to read an FCF record indicated by @fcf_index 18583 * and to use it for FLOGI roundrobin FCF failover. 18584 * 18585 * Return 0 if the mailbox command is submitted successfully, none 0 18586 * otherwise. 18587 **/ 18588 int 18589 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18590 { 18591 int rc = 0, error; 18592 LPFC_MBOXQ_t *mboxq; 18593 18594 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18595 if (!mboxq) { 18596 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18597 "2763 Failed to allocate mbox for " 18598 "READ_FCF cmd\n"); 18599 error = -ENOMEM; 18600 goto fail_fcf_read; 18601 } 18602 /* Construct the read FCF record mailbox command */ 18603 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18604 if (rc) { 18605 error = -EINVAL; 18606 goto fail_fcf_read; 18607 } 18608 /* Issue the mailbox command asynchronously */ 18609 mboxq->vport = phba->pport; 18610 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18611 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18612 if (rc == MBX_NOT_FINISHED) 18613 error = -EIO; 18614 else 18615 error = 0; 18616 18617 fail_fcf_read: 18618 if (error && mboxq) 18619 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18620 return error; 18621 } 18622 18623 /** 18624 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18625 * @phba: pointer to lpfc hba data structure. 18626 * @fcf_index: FCF table entry offset. 18627 * 18628 * This routine is invoked to read an FCF record indicated by @fcf_index to 18629 * determine whether it's eligible for FLOGI roundrobin failover list. 18630 * 18631 * Return 0 if the mailbox command is submitted successfully, none 0 18632 * otherwise. 18633 **/ 18634 int 18635 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18636 { 18637 int rc = 0, error; 18638 LPFC_MBOXQ_t *mboxq; 18639 18640 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18641 if (!mboxq) { 18642 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18643 "2758 Failed to allocate mbox for " 18644 "READ_FCF cmd\n"); 18645 error = -ENOMEM; 18646 goto fail_fcf_read; 18647 } 18648 /* Construct the read FCF record mailbox command */ 18649 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18650 if (rc) { 18651 error = -EINVAL; 18652 goto fail_fcf_read; 18653 } 18654 /* Issue the mailbox command asynchronously */ 18655 mboxq->vport = phba->pport; 18656 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18657 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18658 if (rc == MBX_NOT_FINISHED) 18659 error = -EIO; 18660 else 18661 error = 0; 18662 18663 fail_fcf_read: 18664 if (error && mboxq) 18665 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18666 return error; 18667 } 18668 18669 /** 18670 * lpfc_check_next_fcf_pri_level 18671 * phba pointer to the lpfc_hba struct for this port. 18672 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18673 * routine when the rr_bmask is empty. The FCF indecies are put into the 18674 * rr_bmask based on their priority level. Starting from the highest priority 18675 * to the lowest. The most likely FCF candidate will be in the highest 18676 * priority group. When this routine is called it searches the fcf_pri list for 18677 * next lowest priority group and repopulates the rr_bmask with only those 18678 * fcf_indexes. 18679 * returns: 18680 * 1=success 0=failure 18681 **/ 18682 static int 18683 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18684 { 18685 uint16_t next_fcf_pri; 18686 uint16_t last_index; 18687 struct lpfc_fcf_pri *fcf_pri; 18688 int rc; 18689 int ret = 0; 18690 18691 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18692 LPFC_SLI4_FCF_TBL_INDX_MAX); 18693 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18694 "3060 Last IDX %d\n", last_index); 18695 18696 /* Verify the priority list has 2 or more entries */ 18697 spin_lock_irq(&phba->hbalock); 18698 if (list_empty(&phba->fcf.fcf_pri_list) || 18699 list_is_singular(&phba->fcf.fcf_pri_list)) { 18700 spin_unlock_irq(&phba->hbalock); 18701 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18702 "3061 Last IDX %d\n", last_index); 18703 return 0; /* Empty rr list */ 18704 } 18705 spin_unlock_irq(&phba->hbalock); 18706 18707 next_fcf_pri = 0; 18708 /* 18709 * Clear the rr_bmask and set all of the bits that are at this 18710 * priority. 18711 */ 18712 memset(phba->fcf.fcf_rr_bmask, 0, 18713 sizeof(*phba->fcf.fcf_rr_bmask)); 18714 spin_lock_irq(&phba->hbalock); 18715 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18716 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18717 continue; 18718 /* 18719 * the 1st priority that has not FLOGI failed 18720 * will be the highest. 18721 */ 18722 if (!next_fcf_pri) 18723 next_fcf_pri = fcf_pri->fcf_rec.priority; 18724 spin_unlock_irq(&phba->hbalock); 18725 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18726 rc = lpfc_sli4_fcf_rr_index_set(phba, 18727 fcf_pri->fcf_rec.fcf_index); 18728 if (rc) 18729 return 0; 18730 } 18731 spin_lock_irq(&phba->hbalock); 18732 } 18733 /* 18734 * if next_fcf_pri was not set above and the list is not empty then 18735 * we have failed flogis on all of them. So reset flogi failed 18736 * and start at the beginning. 18737 */ 18738 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18739 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18740 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18741 /* 18742 * the 1st priority that has not FLOGI failed 18743 * will be the highest. 18744 */ 18745 if (!next_fcf_pri) 18746 next_fcf_pri = fcf_pri->fcf_rec.priority; 18747 spin_unlock_irq(&phba->hbalock); 18748 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18749 rc = lpfc_sli4_fcf_rr_index_set(phba, 18750 fcf_pri->fcf_rec.fcf_index); 18751 if (rc) 18752 return 0; 18753 } 18754 spin_lock_irq(&phba->hbalock); 18755 } 18756 } else 18757 ret = 1; 18758 spin_unlock_irq(&phba->hbalock); 18759 18760 return ret; 18761 } 18762 /** 18763 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18764 * @phba: pointer to lpfc hba data structure. 18765 * 18766 * This routine is to get the next eligible FCF record index in a round 18767 * robin fashion. If the next eligible FCF record index equals to the 18768 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18769 * shall be returned, otherwise, the next eligible FCF record's index 18770 * shall be returned. 18771 **/ 18772 uint16_t 18773 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18774 { 18775 uint16_t next_fcf_index; 18776 18777 initial_priority: 18778 /* Search start from next bit of currently registered FCF index */ 18779 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18780 18781 next_priority: 18782 /* Determine the next fcf index to check */ 18783 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18784 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18785 LPFC_SLI4_FCF_TBL_INDX_MAX, 18786 next_fcf_index); 18787 18788 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18789 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18790 /* 18791 * If we have wrapped then we need to clear the bits that 18792 * have been tested so that we can detect when we should 18793 * change the priority level. 18794 */ 18795 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18796 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18797 } 18798 18799 18800 /* Check roundrobin failover list empty condition */ 18801 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18802 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18803 /* 18804 * If next fcf index is not found check if there are lower 18805 * Priority level fcf's in the fcf_priority list. 18806 * Set up the rr_bmask with all of the avaiable fcf bits 18807 * at that level and continue the selection process. 18808 */ 18809 if (lpfc_check_next_fcf_pri_level(phba)) 18810 goto initial_priority; 18811 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18812 "2844 No roundrobin failover FCF available\n"); 18813 18814 return LPFC_FCOE_FCF_NEXT_NONE; 18815 } 18816 18817 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18818 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18819 LPFC_FCF_FLOGI_FAILED) { 18820 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18821 return LPFC_FCOE_FCF_NEXT_NONE; 18822 18823 goto next_priority; 18824 } 18825 18826 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18827 "2845 Get next roundrobin failover FCF (x%x)\n", 18828 next_fcf_index); 18829 18830 return next_fcf_index; 18831 } 18832 18833 /** 18834 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18835 * @phba: pointer to lpfc hba data structure. 18836 * 18837 * This routine sets the FCF record index in to the eligible bmask for 18838 * roundrobin failover search. It checks to make sure that the index 18839 * does not go beyond the range of the driver allocated bmask dimension 18840 * before setting the bit. 18841 * 18842 * Returns 0 if the index bit successfully set, otherwise, it returns 18843 * -EINVAL. 18844 **/ 18845 int 18846 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18847 { 18848 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18849 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18850 "2610 FCF (x%x) reached driver's book " 18851 "keeping dimension:x%x\n", 18852 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18853 return -EINVAL; 18854 } 18855 /* Set the eligible FCF record index bmask */ 18856 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18857 18858 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18859 "2790 Set FCF (x%x) to roundrobin FCF failover " 18860 "bmask\n", fcf_index); 18861 18862 return 0; 18863 } 18864 18865 /** 18866 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18867 * @phba: pointer to lpfc hba data structure. 18868 * 18869 * This routine clears the FCF record index from the eligible bmask for 18870 * roundrobin failover search. It checks to make sure that the index 18871 * does not go beyond the range of the driver allocated bmask dimension 18872 * before clearing the bit. 18873 **/ 18874 void 18875 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18876 { 18877 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18878 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18879 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18880 "2762 FCF (x%x) reached driver's book " 18881 "keeping dimension:x%x\n", 18882 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18883 return; 18884 } 18885 /* Clear the eligible FCF record index bmask */ 18886 spin_lock_irq(&phba->hbalock); 18887 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18888 list) { 18889 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18890 list_del_init(&fcf_pri->list); 18891 break; 18892 } 18893 } 18894 spin_unlock_irq(&phba->hbalock); 18895 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18896 18897 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18898 "2791 Clear FCF (x%x) from roundrobin failover " 18899 "bmask\n", fcf_index); 18900 } 18901 18902 /** 18903 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18904 * @phba: pointer to lpfc hba data structure. 18905 * 18906 * This routine is the completion routine for the rediscover FCF table mailbox 18907 * command. If the mailbox command returned failure, it will try to stop the 18908 * FCF rediscover wait timer. 18909 **/ 18910 static void 18911 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18912 { 18913 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18914 uint32_t shdr_status, shdr_add_status; 18915 18916 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18917 18918 shdr_status = bf_get(lpfc_mbox_hdr_status, 18919 &redisc_fcf->header.cfg_shdr.response); 18920 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18921 &redisc_fcf->header.cfg_shdr.response); 18922 if (shdr_status || shdr_add_status) { 18923 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18924 "2746 Requesting for FCF rediscovery failed " 18925 "status x%x add_status x%x\n", 18926 shdr_status, shdr_add_status); 18927 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18928 spin_lock_irq(&phba->hbalock); 18929 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18930 spin_unlock_irq(&phba->hbalock); 18931 /* 18932 * CVL event triggered FCF rediscover request failed, 18933 * last resort to re-try current registered FCF entry. 18934 */ 18935 lpfc_retry_pport_discovery(phba); 18936 } else { 18937 spin_lock_irq(&phba->hbalock); 18938 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18939 spin_unlock_irq(&phba->hbalock); 18940 /* 18941 * DEAD FCF event triggered FCF rediscover request 18942 * failed, last resort to fail over as a link down 18943 * to FCF registration. 18944 */ 18945 lpfc_sli4_fcf_dead_failthrough(phba); 18946 } 18947 } else { 18948 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18949 "2775 Start FCF rediscover quiescent timer\n"); 18950 /* 18951 * Start FCF rediscovery wait timer for pending FCF 18952 * before rescan FCF record table. 18953 */ 18954 lpfc_fcf_redisc_wait_start_timer(phba); 18955 } 18956 18957 mempool_free(mbox, phba->mbox_mem_pool); 18958 } 18959 18960 /** 18961 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18962 * @phba: pointer to lpfc hba data structure. 18963 * 18964 * This routine is invoked to request for rediscovery of the entire FCF table 18965 * by the port. 18966 **/ 18967 int 18968 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18969 { 18970 LPFC_MBOXQ_t *mbox; 18971 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18972 int rc, length; 18973 18974 /* Cancel retry delay timers to all vports before FCF rediscover */ 18975 lpfc_cancel_all_vport_retry_delay_timer(phba); 18976 18977 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18978 if (!mbox) { 18979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18980 "2745 Failed to allocate mbox for " 18981 "requesting FCF rediscover.\n"); 18982 return -ENOMEM; 18983 } 18984 18985 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18986 sizeof(struct lpfc_sli4_cfg_mhdr)); 18987 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18988 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18989 length, LPFC_SLI4_MBX_EMBED); 18990 18991 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18992 /* Set count to 0 for invalidating the entire FCF database */ 18993 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18994 18995 /* Issue the mailbox command asynchronously */ 18996 mbox->vport = phba->pport; 18997 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18998 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18999 19000 if (rc == MBX_NOT_FINISHED) { 19001 mempool_free(mbox, phba->mbox_mem_pool); 19002 return -EIO; 19003 } 19004 return 0; 19005 } 19006 19007 /** 19008 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19009 * @phba: pointer to lpfc hba data structure. 19010 * 19011 * This function is the failover routine as a last resort to the FCF DEAD 19012 * event when driver failed to perform fast FCF failover. 19013 **/ 19014 void 19015 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19016 { 19017 uint32_t link_state; 19018 19019 /* 19020 * Last resort as FCF DEAD event failover will treat this as 19021 * a link down, but save the link state because we don't want 19022 * it to be changed to Link Down unless it is already down. 19023 */ 19024 link_state = phba->link_state; 19025 lpfc_linkdown(phba); 19026 phba->link_state = link_state; 19027 19028 /* Unregister FCF if no devices connected to it */ 19029 lpfc_unregister_unused_fcf(phba); 19030 } 19031 19032 /** 19033 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19034 * @phba: pointer to lpfc hba data structure. 19035 * @rgn23_data: pointer to configure region 23 data. 19036 * 19037 * This function gets SLI3 port configure region 23 data through memory dump 19038 * mailbox command. When it successfully retrieves data, the size of the data 19039 * will be returned, otherwise, 0 will be returned. 19040 **/ 19041 static uint32_t 19042 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19043 { 19044 LPFC_MBOXQ_t *pmb = NULL; 19045 MAILBOX_t *mb; 19046 uint32_t offset = 0; 19047 int rc; 19048 19049 if (!rgn23_data) 19050 return 0; 19051 19052 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19053 if (!pmb) { 19054 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19055 "2600 failed to allocate mailbox memory\n"); 19056 return 0; 19057 } 19058 mb = &pmb->u.mb; 19059 19060 do { 19061 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19062 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19063 19064 if (rc != MBX_SUCCESS) { 19065 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19066 "2601 failed to read config " 19067 "region 23, rc 0x%x Status 0x%x\n", 19068 rc, mb->mbxStatus); 19069 mb->un.varDmp.word_cnt = 0; 19070 } 19071 /* 19072 * dump mem may return a zero when finished or we got a 19073 * mailbox error, either way we are done. 19074 */ 19075 if (mb->un.varDmp.word_cnt == 0) 19076 break; 19077 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19078 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19079 19080 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19081 rgn23_data + offset, 19082 mb->un.varDmp.word_cnt); 19083 offset += mb->un.varDmp.word_cnt; 19084 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19085 19086 mempool_free(pmb, phba->mbox_mem_pool); 19087 return offset; 19088 } 19089 19090 /** 19091 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19092 * @phba: pointer to lpfc hba data structure. 19093 * @rgn23_data: pointer to configure region 23 data. 19094 * 19095 * This function gets SLI4 port configure region 23 data through memory dump 19096 * mailbox command. When it successfully retrieves data, the size of the data 19097 * will be returned, otherwise, 0 will be returned. 19098 **/ 19099 static uint32_t 19100 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19101 { 19102 LPFC_MBOXQ_t *mboxq = NULL; 19103 struct lpfc_dmabuf *mp = NULL; 19104 struct lpfc_mqe *mqe; 19105 uint32_t data_length = 0; 19106 int rc; 19107 19108 if (!rgn23_data) 19109 return 0; 19110 19111 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19112 if (!mboxq) { 19113 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19114 "3105 failed to allocate mailbox memory\n"); 19115 return 0; 19116 } 19117 19118 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19119 goto out; 19120 mqe = &mboxq->u.mqe; 19121 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19122 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19123 if (rc) 19124 goto out; 19125 data_length = mqe->un.mb_words[5]; 19126 if (data_length == 0) 19127 goto out; 19128 if (data_length > DMP_RGN23_SIZE) { 19129 data_length = 0; 19130 goto out; 19131 } 19132 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19133 out: 19134 mempool_free(mboxq, phba->mbox_mem_pool); 19135 if (mp) { 19136 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19137 kfree(mp); 19138 } 19139 return data_length; 19140 } 19141 19142 /** 19143 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19144 * @phba: pointer to lpfc hba data structure. 19145 * 19146 * This function read region 23 and parse TLV for port status to 19147 * decide if the user disaled the port. If the TLV indicates the 19148 * port is disabled, the hba_flag is set accordingly. 19149 **/ 19150 void 19151 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19152 { 19153 uint8_t *rgn23_data = NULL; 19154 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19155 uint32_t offset = 0; 19156 19157 /* Get adapter Region 23 data */ 19158 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19159 if (!rgn23_data) 19160 goto out; 19161 19162 if (phba->sli_rev < LPFC_SLI_REV4) 19163 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19164 else { 19165 if_type = bf_get(lpfc_sli_intf_if_type, 19166 &phba->sli4_hba.sli_intf); 19167 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19168 goto out; 19169 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19170 } 19171 19172 if (!data_size) 19173 goto out; 19174 19175 /* Check the region signature first */ 19176 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19177 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19178 "2619 Config region 23 has bad signature\n"); 19179 goto out; 19180 } 19181 offset += 4; 19182 19183 /* Check the data structure version */ 19184 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19185 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19186 "2620 Config region 23 has bad version\n"); 19187 goto out; 19188 } 19189 offset += 4; 19190 19191 /* Parse TLV entries in the region */ 19192 while (offset < data_size) { 19193 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19194 break; 19195 /* 19196 * If the TLV is not driver specific TLV or driver id is 19197 * not linux driver id, skip the record. 19198 */ 19199 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19200 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19201 (rgn23_data[offset + 3] != 0)) { 19202 offset += rgn23_data[offset + 1] * 4 + 4; 19203 continue; 19204 } 19205 19206 /* Driver found a driver specific TLV in the config region */ 19207 sub_tlv_len = rgn23_data[offset + 1] * 4; 19208 offset += 4; 19209 tlv_offset = 0; 19210 19211 /* 19212 * Search for configured port state sub-TLV. 19213 */ 19214 while ((offset < data_size) && 19215 (tlv_offset < sub_tlv_len)) { 19216 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19217 offset += 4; 19218 tlv_offset += 4; 19219 break; 19220 } 19221 if (rgn23_data[offset] != PORT_STE_TYPE) { 19222 offset += rgn23_data[offset + 1] * 4 + 4; 19223 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19224 continue; 19225 } 19226 19227 /* This HBA contains PORT_STE configured */ 19228 if (!rgn23_data[offset + 2]) 19229 phba->hba_flag |= LINK_DISABLED; 19230 19231 goto out; 19232 } 19233 } 19234 19235 out: 19236 kfree(rgn23_data); 19237 return; 19238 } 19239 19240 /** 19241 * lpfc_wr_object - write an object to the firmware 19242 * @phba: HBA structure that indicates port to create a queue on. 19243 * @dmabuf_list: list of dmabufs to write to the port. 19244 * @size: the total byte value of the objects to write to the port. 19245 * @offset: the current offset to be used to start the transfer. 19246 * 19247 * This routine will create a wr_object mailbox command to send to the port. 19248 * the mailbox command will be constructed using the dma buffers described in 19249 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19250 * BDEs that the imbedded mailbox can support. The @offset variable will be 19251 * used to indicate the starting offset of the transfer and will also return 19252 * the offset after the write object mailbox has completed. @size is used to 19253 * determine the end of the object and whether the eof bit should be set. 19254 * 19255 * Return 0 is successful and offset will contain the the new offset to use 19256 * for the next write. 19257 * Return negative value for error cases. 19258 **/ 19259 int 19260 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19261 uint32_t size, uint32_t *offset) 19262 { 19263 struct lpfc_mbx_wr_object *wr_object; 19264 LPFC_MBOXQ_t *mbox; 19265 int rc = 0, i = 0; 19266 uint32_t shdr_status, shdr_add_status, shdr_change_status; 19267 uint32_t mbox_tmo; 19268 struct lpfc_dmabuf *dmabuf; 19269 uint32_t written = 0; 19270 bool check_change_status = false; 19271 19272 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19273 if (!mbox) 19274 return -ENOMEM; 19275 19276 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19277 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19278 sizeof(struct lpfc_mbx_wr_object) - 19279 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19280 19281 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19282 wr_object->u.request.write_offset = *offset; 19283 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19284 wr_object->u.request.object_name[0] = 19285 cpu_to_le32(wr_object->u.request.object_name[0]); 19286 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19287 list_for_each_entry(dmabuf, dmabuf_list, list) { 19288 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19289 break; 19290 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19291 wr_object->u.request.bde[i].addrHigh = 19292 putPaddrHigh(dmabuf->phys); 19293 if (written + SLI4_PAGE_SIZE >= size) { 19294 wr_object->u.request.bde[i].tus.f.bdeSize = 19295 (size - written); 19296 written += (size - written); 19297 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19298 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19299 check_change_status = true; 19300 } else { 19301 wr_object->u.request.bde[i].tus.f.bdeSize = 19302 SLI4_PAGE_SIZE; 19303 written += SLI4_PAGE_SIZE; 19304 } 19305 i++; 19306 } 19307 wr_object->u.request.bde_count = i; 19308 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19309 if (!phba->sli4_hba.intr_enable) 19310 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19311 else { 19312 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19313 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19314 } 19315 /* The IOCTL status is embedded in the mailbox subheader. */ 19316 shdr_status = bf_get(lpfc_mbox_hdr_status, 19317 &wr_object->header.cfg_shdr.response); 19318 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19319 &wr_object->header.cfg_shdr.response); 19320 if (check_change_status) { 19321 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19322 &wr_object->u.response); 19323 switch (shdr_change_status) { 19324 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19325 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19326 "3198 Firmware write complete: System " 19327 "reboot required to instantiate\n"); 19328 break; 19329 case (LPFC_CHANGE_STATUS_FW_RESET): 19330 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19331 "3199 Firmware write complete: Firmware" 19332 " reset required to instantiate\n"); 19333 break; 19334 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19335 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19336 "3200 Firmware write complete: Port " 19337 "Migration or PCI Reset required to " 19338 "instantiate\n"); 19339 break; 19340 case (LPFC_CHANGE_STATUS_PCI_RESET): 19341 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19342 "3201 Firmware write complete: PCI " 19343 "Reset required to instantiate\n"); 19344 break; 19345 default: 19346 break; 19347 } 19348 } 19349 if (rc != MBX_TIMEOUT) 19350 mempool_free(mbox, phba->mbox_mem_pool); 19351 if (shdr_status || shdr_add_status || rc) { 19352 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19353 "3025 Write Object mailbox failed with " 19354 "status x%x add_status x%x, mbx status x%x\n", 19355 shdr_status, shdr_add_status, rc); 19356 rc = -ENXIO; 19357 *offset = shdr_add_status; 19358 } else 19359 *offset += wr_object->u.response.actual_write_length; 19360 return rc; 19361 } 19362 19363 /** 19364 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19365 * @vport: pointer to vport data structure. 19366 * 19367 * This function iterate through the mailboxq and clean up all REG_LOGIN 19368 * and REG_VPI mailbox commands associated with the vport. This function 19369 * is called when driver want to restart discovery of the vport due to 19370 * a Clear Virtual Link event. 19371 **/ 19372 void 19373 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19374 { 19375 struct lpfc_hba *phba = vport->phba; 19376 LPFC_MBOXQ_t *mb, *nextmb; 19377 struct lpfc_dmabuf *mp; 19378 struct lpfc_nodelist *ndlp; 19379 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19380 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19381 LIST_HEAD(mbox_cmd_list); 19382 uint8_t restart_loop; 19383 19384 /* Clean up internally queued mailbox commands with the vport */ 19385 spin_lock_irq(&phba->hbalock); 19386 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19387 if (mb->vport != vport) 19388 continue; 19389 19390 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19391 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19392 continue; 19393 19394 list_del(&mb->list); 19395 list_add_tail(&mb->list, &mbox_cmd_list); 19396 } 19397 /* Clean up active mailbox command with the vport */ 19398 mb = phba->sli.mbox_active; 19399 if (mb && (mb->vport == vport)) { 19400 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19401 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19402 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19403 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19404 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19405 /* Put reference count for delayed processing */ 19406 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19407 /* Unregister the RPI when mailbox complete */ 19408 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19409 } 19410 } 19411 /* Cleanup any mailbox completions which are not yet processed */ 19412 do { 19413 restart_loop = 0; 19414 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19415 /* 19416 * If this mailox is already processed or it is 19417 * for another vport ignore it. 19418 */ 19419 if ((mb->vport != vport) || 19420 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19421 continue; 19422 19423 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19424 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19425 continue; 19426 19427 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19428 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19429 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19430 /* Unregister the RPI when mailbox complete */ 19431 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19432 restart_loop = 1; 19433 spin_unlock_irq(&phba->hbalock); 19434 spin_lock(shost->host_lock); 19435 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19436 spin_unlock(shost->host_lock); 19437 spin_lock_irq(&phba->hbalock); 19438 break; 19439 } 19440 } 19441 } while (restart_loop); 19442 19443 spin_unlock_irq(&phba->hbalock); 19444 19445 /* Release the cleaned-up mailbox commands */ 19446 while (!list_empty(&mbox_cmd_list)) { 19447 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19448 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19449 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19450 if (mp) { 19451 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19452 kfree(mp); 19453 } 19454 mb->ctx_buf = NULL; 19455 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19456 mb->ctx_ndlp = NULL; 19457 if (ndlp) { 19458 spin_lock(shost->host_lock); 19459 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19460 spin_unlock(shost->host_lock); 19461 lpfc_nlp_put(ndlp); 19462 } 19463 } 19464 mempool_free(mb, phba->mbox_mem_pool); 19465 } 19466 19467 /* Release the ndlp with the cleaned-up active mailbox command */ 19468 if (act_mbx_ndlp) { 19469 spin_lock(shost->host_lock); 19470 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19471 spin_unlock(shost->host_lock); 19472 lpfc_nlp_put(act_mbx_ndlp); 19473 } 19474 } 19475 19476 /** 19477 * lpfc_drain_txq - Drain the txq 19478 * @phba: Pointer to HBA context object. 19479 * 19480 * This function attempt to submit IOCBs on the txq 19481 * to the adapter. For SLI4 adapters, the txq contains 19482 * ELS IOCBs that have been deferred because the there 19483 * are no SGLs. This congestion can occur with large 19484 * vport counts during node discovery. 19485 **/ 19486 19487 uint32_t 19488 lpfc_drain_txq(struct lpfc_hba *phba) 19489 { 19490 LIST_HEAD(completions); 19491 struct lpfc_sli_ring *pring; 19492 struct lpfc_iocbq *piocbq = NULL; 19493 unsigned long iflags = 0; 19494 char *fail_msg = NULL; 19495 struct lpfc_sglq *sglq; 19496 union lpfc_wqe128 wqe; 19497 uint32_t txq_cnt = 0; 19498 struct lpfc_queue *wq; 19499 19500 if (phba->link_flag & LS_MDS_LOOPBACK) { 19501 /* MDS WQE are posted only to first WQ*/ 19502 wq = phba->sli4_hba.fcp_wq[0]; 19503 if (unlikely(!wq)) 19504 return 0; 19505 pring = wq->pring; 19506 } else { 19507 wq = phba->sli4_hba.els_wq; 19508 if (unlikely(!wq)) 19509 return 0; 19510 pring = lpfc_phba_elsring(phba); 19511 } 19512 19513 if (unlikely(!pring) || list_empty(&pring->txq)) 19514 return 0; 19515 19516 spin_lock_irqsave(&pring->ring_lock, iflags); 19517 list_for_each_entry(piocbq, &pring->txq, list) { 19518 txq_cnt++; 19519 } 19520 19521 if (txq_cnt > pring->txq_max) 19522 pring->txq_max = txq_cnt; 19523 19524 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19525 19526 while (!list_empty(&pring->txq)) { 19527 spin_lock_irqsave(&pring->ring_lock, iflags); 19528 19529 piocbq = lpfc_sli_ringtx_get(phba, pring); 19530 if (!piocbq) { 19531 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19532 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19533 "2823 txq empty and txq_cnt is %d\n ", 19534 txq_cnt); 19535 break; 19536 } 19537 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19538 if (!sglq) { 19539 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19540 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19541 break; 19542 } 19543 txq_cnt--; 19544 19545 /* The xri and iocb resources secured, 19546 * attempt to issue request 19547 */ 19548 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19549 piocbq->sli4_xritag = sglq->sli4_xritag; 19550 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19551 fail_msg = "to convert bpl to sgl"; 19552 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19553 fail_msg = "to convert iocb to wqe"; 19554 else if (lpfc_sli4_wq_put(wq, &wqe)) 19555 fail_msg = " - Wq is full"; 19556 else 19557 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19558 19559 if (fail_msg) { 19560 /* Failed means we can't issue and need to cancel */ 19561 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19562 "2822 IOCB failed %s iotag 0x%x " 19563 "xri 0x%x\n", 19564 fail_msg, 19565 piocbq->iotag, piocbq->sli4_xritag); 19566 list_add_tail(&piocbq->list, &completions); 19567 } 19568 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19569 } 19570 19571 /* Cancel all the IOCBs that cannot be issued */ 19572 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19573 IOERR_SLI_ABORTED); 19574 19575 return txq_cnt; 19576 } 19577 19578 /** 19579 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19580 * @phba: Pointer to HBA context object. 19581 * @pwqe: Pointer to command WQE. 19582 * @sglq: Pointer to the scatter gather queue object. 19583 * 19584 * This routine converts the bpl or bde that is in the WQE 19585 * to a sgl list for the sli4 hardware. The physical address 19586 * of the bpl/bde is converted back to a virtual address. 19587 * If the WQE contains a BPL then the list of BDE's is 19588 * converted to sli4_sge's. If the WQE contains a single 19589 * BDE then it is converted to a single sli_sge. 19590 * The WQE is still in cpu endianness so the contents of 19591 * the bpl can be used without byte swapping. 19592 * 19593 * Returns valid XRI = Success, NO_XRI = Failure. 19594 */ 19595 static uint16_t 19596 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19597 struct lpfc_sglq *sglq) 19598 { 19599 uint16_t xritag = NO_XRI; 19600 struct ulp_bde64 *bpl = NULL; 19601 struct ulp_bde64 bde; 19602 struct sli4_sge *sgl = NULL; 19603 struct lpfc_dmabuf *dmabuf; 19604 union lpfc_wqe128 *wqe; 19605 int numBdes = 0; 19606 int i = 0; 19607 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19608 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19609 uint32_t cmd; 19610 19611 if (!pwqeq || !sglq) 19612 return xritag; 19613 19614 sgl = (struct sli4_sge *)sglq->sgl; 19615 wqe = &pwqeq->wqe; 19616 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19617 19618 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19619 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19620 return sglq->sli4_xritag; 19621 numBdes = pwqeq->rsvd2; 19622 if (numBdes) { 19623 /* The addrHigh and addrLow fields within the WQE 19624 * have not been byteswapped yet so there is no 19625 * need to swap them back. 19626 */ 19627 if (pwqeq->context3) 19628 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19629 else 19630 return xritag; 19631 19632 bpl = (struct ulp_bde64 *)dmabuf->virt; 19633 if (!bpl) 19634 return xritag; 19635 19636 for (i = 0; i < numBdes; i++) { 19637 /* Should already be byte swapped. */ 19638 sgl->addr_hi = bpl->addrHigh; 19639 sgl->addr_lo = bpl->addrLow; 19640 19641 sgl->word2 = le32_to_cpu(sgl->word2); 19642 if ((i+1) == numBdes) 19643 bf_set(lpfc_sli4_sge_last, sgl, 1); 19644 else 19645 bf_set(lpfc_sli4_sge_last, sgl, 0); 19646 /* swap the size field back to the cpu so we 19647 * can assign it to the sgl. 19648 */ 19649 bde.tus.w = le32_to_cpu(bpl->tus.w); 19650 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19651 /* The offsets in the sgl need to be accumulated 19652 * separately for the request and reply lists. 19653 * The request is always first, the reply follows. 19654 */ 19655 switch (cmd) { 19656 case CMD_GEN_REQUEST64_WQE: 19657 /* add up the reply sg entries */ 19658 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19659 inbound++; 19660 /* first inbound? reset the offset */ 19661 if (inbound == 1) 19662 offset = 0; 19663 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19664 bf_set(lpfc_sli4_sge_type, sgl, 19665 LPFC_SGE_TYPE_DATA); 19666 offset += bde.tus.f.bdeSize; 19667 break; 19668 case CMD_FCP_TRSP64_WQE: 19669 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19670 bf_set(lpfc_sli4_sge_type, sgl, 19671 LPFC_SGE_TYPE_DATA); 19672 break; 19673 case CMD_FCP_TSEND64_WQE: 19674 case CMD_FCP_TRECEIVE64_WQE: 19675 bf_set(lpfc_sli4_sge_type, sgl, 19676 bpl->tus.f.bdeFlags); 19677 if (i < 3) 19678 offset = 0; 19679 else 19680 offset += bde.tus.f.bdeSize; 19681 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19682 break; 19683 } 19684 sgl->word2 = cpu_to_le32(sgl->word2); 19685 bpl++; 19686 sgl++; 19687 } 19688 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19689 /* The addrHigh and addrLow fields of the BDE have not 19690 * been byteswapped yet so they need to be swapped 19691 * before putting them in the sgl. 19692 */ 19693 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19694 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19695 sgl->word2 = le32_to_cpu(sgl->word2); 19696 bf_set(lpfc_sli4_sge_last, sgl, 1); 19697 sgl->word2 = cpu_to_le32(sgl->word2); 19698 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19699 } 19700 return sglq->sli4_xritag; 19701 } 19702 19703 /** 19704 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19705 * @phba: Pointer to HBA context object. 19706 * @ring_number: Base sli ring number 19707 * @pwqe: Pointer to command WQE. 19708 **/ 19709 int 19710 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 19711 struct lpfc_iocbq *pwqe) 19712 { 19713 union lpfc_wqe128 *wqe = &pwqe->wqe; 19714 struct lpfc_nvmet_rcv_ctx *ctxp; 19715 struct lpfc_queue *wq; 19716 struct lpfc_sglq *sglq; 19717 struct lpfc_sli_ring *pring; 19718 unsigned long iflags; 19719 uint32_t ret = 0; 19720 19721 /* NVME_LS and NVME_LS ABTS requests. */ 19722 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19723 pring = phba->sli4_hba.nvmels_wq->pring; 19724 spin_lock_irqsave(&pring->ring_lock, iflags); 19725 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19726 if (!sglq) { 19727 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19728 return WQE_BUSY; 19729 } 19730 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19731 pwqe->sli4_xritag = sglq->sli4_xritag; 19732 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19733 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19734 return WQE_ERROR; 19735 } 19736 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19737 pwqe->sli4_xritag); 19738 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19739 if (ret) { 19740 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19741 return ret; 19742 } 19743 19744 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19745 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19746 return 0; 19747 } 19748 19749 /* NVME_FCREQ and NVME_ABTS requests */ 19750 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19751 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19752 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19753 19754 spin_lock_irqsave(&pring->ring_lock, iflags); 19755 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19756 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19757 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19758 ret = lpfc_sli4_wq_put(wq, wqe); 19759 if (ret) { 19760 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19761 return ret; 19762 } 19763 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19764 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19765 return 0; 19766 } 19767 19768 /* NVMET requests */ 19769 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19770 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19771 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19772 19773 spin_lock_irqsave(&pring->ring_lock, iflags); 19774 ctxp = pwqe->context2; 19775 sglq = ctxp->ctxbuf->sglq; 19776 if (pwqe->sli4_xritag == NO_XRI) { 19777 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19778 pwqe->sli4_xritag = sglq->sli4_xritag; 19779 } 19780 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19781 pwqe->sli4_xritag); 19782 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19783 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19784 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19785 ret = lpfc_sli4_wq_put(wq, wqe); 19786 if (ret) { 19787 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19788 return ret; 19789 } 19790 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19791 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19792 return 0; 19793 } 19794 return WQE_ERROR; 19795 } 19796