xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_queue *eq,
87 				     struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
91 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
92 				    struct lpfc_queue *cq,
93 				    struct lpfc_cqe *cqe);
94 
95 static IOCB_t *
96 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
97 {
98 	return &iocbq->iocb;
99 }
100 
101 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
102 /**
103  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
104  * @srcp: Source memory pointer.
105  * @destp: Destination memory pointer.
106  * @cnt: Number of words required to be copied.
107  *       Must be a multiple of sizeof(uint64_t)
108  *
109  * This function is used for copying data between driver memory
110  * and the SLI WQ. This function also changes the endianness
111  * of each word if native endianness is different from SLI
112  * endianness. This function can be called with or without
113  * lock.
114  **/
115 static void
116 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
117 {
118 	uint64_t *src = srcp;
119 	uint64_t *dest = destp;
120 	int i;
121 
122 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
123 		*dest++ = *src++;
124 }
125 #else
126 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
127 #endif
128 
129 /**
130  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
131  * @q: The Work Queue to operate on.
132  * @wqe: The work Queue Entry to put on the Work queue.
133  *
134  * This routine will copy the contents of @wqe to the next available entry on
135  * the @q. This function will then ring the Work Queue Doorbell to signal the
136  * HBA to start processing the Work Queue Entry. This function returns 0 if
137  * successful. If no entries are available on @q then this function will return
138  * -ENOMEM.
139  * The caller is expected to hold the hbalock when calling this routine.
140  **/
141 static int
142 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
143 {
144 	union lpfc_wqe *temp_wqe;
145 	struct lpfc_register doorbell;
146 	uint32_t host_index;
147 	uint32_t idx;
148 	uint32_t i = 0;
149 	uint8_t *tmp;
150 	u32 if_type;
151 
152 	/* sanity check on queue memory */
153 	if (unlikely(!q))
154 		return -ENOMEM;
155 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
156 
157 	/* If the host has not yet processed the next entry then we are done */
158 	idx = ((q->host_index + 1) % q->entry_count);
159 	if (idx == q->hba_index) {
160 		q->WQ_overflow++;
161 		return -EBUSY;
162 	}
163 	q->WQ_posted++;
164 	/* set consumption flag every once in a while */
165 	if (!((q->host_index + 1) % q->notify_interval))
166 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
167 	else
168 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
169 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
170 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
171 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
172 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
173 		/* write to DPP aperture taking advatage of Combined Writes */
174 		tmp = (uint8_t *)temp_wqe;
175 #ifdef __raw_writeq
176 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
177 			__raw_writeq(*((uint64_t *)(tmp + i)),
178 					q->dpp_regaddr + i);
179 #else
180 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
181 			__raw_writel(*((uint32_t *)(tmp + i)),
182 					q->dpp_regaddr + i);
183 #endif
184 	}
185 	/* ensure WQE bcopy and DPP flushed before doorbell write */
186 	wmb();
187 
188 	/* Update the host index before invoking device */
189 	host_index = q->host_index;
190 
191 	q->host_index = idx;
192 
193 	/* Ring Doorbell */
194 	doorbell.word0 = 0;
195 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
196 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
197 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
198 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
199 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
200 			    q->dpp_id);
201 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
202 			    q->queue_id);
203 		} else {
204 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
205 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
206 
207 			/* Leave bits <23:16> clear for if_type 6 dpp */
208 			if_type = bf_get(lpfc_sli_intf_if_type,
209 					 &q->phba->sli4_hba.sli_intf);
210 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
211 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
212 				       host_index);
213 		}
214 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
215 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
216 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
217 	} else {
218 		return -EINVAL;
219 	}
220 	writel(doorbell.word0, q->db_regaddr);
221 
222 	return 0;
223 }
224 
225 /**
226  * lpfc_sli4_wq_release - Updates internal hba index for WQ
227  * @q: The Work Queue to operate on.
228  * @index: The index to advance the hba index to.
229  *
230  * This routine will update the HBA index of a queue to reflect consumption of
231  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
232  * an entry the host calls this function to update the queue's internal
233  * pointers. This routine returns the number of entries that were consumed by
234  * the HBA.
235  **/
236 static uint32_t
237 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
238 {
239 	uint32_t released = 0;
240 
241 	/* sanity check on queue memory */
242 	if (unlikely(!q))
243 		return 0;
244 
245 	if (q->hba_index == index)
246 		return 0;
247 	do {
248 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
249 		released++;
250 	} while (q->hba_index != index);
251 	return released;
252 }
253 
254 /**
255  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
256  * @q: The Mailbox Queue to operate on.
257  * @wqe: The Mailbox Queue Entry to put on the Work queue.
258  *
259  * This routine will copy the contents of @mqe to the next available entry on
260  * the @q. This function will then ring the Work Queue Doorbell to signal the
261  * HBA to start processing the Work Queue Entry. This function returns 0 if
262  * successful. If no entries are available on @q then this function will return
263  * -ENOMEM.
264  * The caller is expected to hold the hbalock when calling this routine.
265  **/
266 static uint32_t
267 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
268 {
269 	struct lpfc_mqe *temp_mqe;
270 	struct lpfc_register doorbell;
271 
272 	/* sanity check on queue memory */
273 	if (unlikely(!q))
274 		return -ENOMEM;
275 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
276 
277 	/* If the host has not yet processed the next entry then we are done */
278 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
279 		return -ENOMEM;
280 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
281 	/* Save off the mailbox pointer for completion */
282 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
283 
284 	/* Update the host index before invoking device */
285 	q->host_index = ((q->host_index + 1) % q->entry_count);
286 
287 	/* Ring Doorbell */
288 	doorbell.word0 = 0;
289 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
290 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
291 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
292 	return 0;
293 }
294 
295 /**
296  * lpfc_sli4_mq_release - Updates internal hba index for MQ
297  * @q: The Mailbox Queue to operate on.
298  *
299  * This routine will update the HBA index of a queue to reflect consumption of
300  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
301  * an entry the host calls this function to update the queue's internal
302  * pointers. This routine returns the number of entries that were consumed by
303  * the HBA.
304  **/
305 static uint32_t
306 lpfc_sli4_mq_release(struct lpfc_queue *q)
307 {
308 	/* sanity check on queue memory */
309 	if (unlikely(!q))
310 		return 0;
311 
312 	/* Clear the mailbox pointer for completion */
313 	q->phba->mbox = NULL;
314 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
315 	return 1;
316 }
317 
318 /**
319  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
320  * @q: The Event Queue to get the first valid EQE from
321  *
322  * This routine will get the first valid Event Queue Entry from @q, update
323  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
324  * the Queue (no more work to do), or the Queue is full of EQEs that have been
325  * processed, but not popped back to the HBA then this routine will return NULL.
326  **/
327 static struct lpfc_eqe *
328 lpfc_sli4_eq_get(struct lpfc_queue *q)
329 {
330 	struct lpfc_eqe *eqe;
331 
332 	/* sanity check on queue memory */
333 	if (unlikely(!q))
334 		return NULL;
335 	eqe = lpfc_sli4_qe(q, q->host_index);
336 
337 	/* If the next EQE is not valid then we are done */
338 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
339 		return NULL;
340 
341 	/*
342 	 * insert barrier for instruction interlock : data from the hardware
343 	 * must have the valid bit checked before it can be copied and acted
344 	 * upon. Speculative instructions were allowing a bcopy at the start
345 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
346 	 * after our return, to copy data before the valid bit check above
347 	 * was done. As such, some of the copied data was stale. The barrier
348 	 * ensures the check is before any data is copied.
349 	 */
350 	mb();
351 	return eqe;
352 }
353 
354 /**
355  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
356  * @q: The Event Queue to disable interrupts
357  *
358  **/
359 void
360 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
361 {
362 	struct lpfc_register doorbell;
363 
364 	doorbell.word0 = 0;
365 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
366 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
367 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
368 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
369 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
370 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
371 }
372 
373 /**
374  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
375  * @q: The Event Queue to disable interrupts
376  *
377  **/
378 void
379 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
380 {
381 	struct lpfc_register doorbell;
382 
383 	doorbell.word0 = 0;
384 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
385 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
386 }
387 
388 /**
389  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
390  * @phba: adapter with EQ
391  * @q: The Event Queue that the host has completed processing for.
392  * @count: Number of elements that have been consumed
393  * @arm: Indicates whether the host wants to arms this CQ.
394  *
395  * This routine will notify the HBA, by ringing the doorbell, that count
396  * number of EQEs have been processed. The @arm parameter indicates whether
397  * the queue should be rearmed when ringing the doorbell.
398  **/
399 void
400 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
401 		     uint32_t count, bool arm)
402 {
403 	struct lpfc_register doorbell;
404 
405 	/* sanity check on queue memory */
406 	if (unlikely(!q || (count == 0 && !arm)))
407 		return;
408 
409 	/* ring doorbell for number popped */
410 	doorbell.word0 = 0;
411 	if (arm) {
412 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
413 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
414 	}
415 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
416 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
417 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
418 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
419 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
420 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
421 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
422 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
423 		readl(q->phba->sli4_hba.EQDBregaddr);
424 }
425 
426 /**
427  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
428  * @phba: adapter with EQ
429  * @q: The Event Queue that the host has completed processing for.
430  * @count: Number of elements that have been consumed
431  * @arm: Indicates whether the host wants to arms this CQ.
432  *
433  * This routine will notify the HBA, by ringing the doorbell, that count
434  * number of EQEs have been processed. The @arm parameter indicates whether
435  * the queue should be rearmed when ringing the doorbell.
436  **/
437 void
438 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
439 			  uint32_t count, bool arm)
440 {
441 	struct lpfc_register doorbell;
442 
443 	/* sanity check on queue memory */
444 	if (unlikely(!q || (count == 0 && !arm)))
445 		return;
446 
447 	/* ring doorbell for number popped */
448 	doorbell.word0 = 0;
449 	if (arm)
450 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
451 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
452 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
453 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
454 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
455 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
456 		readl(q->phba->sli4_hba.EQDBregaddr);
457 }
458 
459 static void
460 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
461 			struct lpfc_eqe *eqe)
462 {
463 	if (!phba->sli4_hba.pc_sli4_params.eqav)
464 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
465 
466 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
467 
468 	/* if the index wrapped around, toggle the valid bit */
469 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
470 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
471 }
472 
473 static void
474 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
475 {
476 	struct lpfc_eqe *eqe = NULL;
477 	u32 eq_count = 0, cq_count = 0;
478 	struct lpfc_cqe *cqe = NULL;
479 	struct lpfc_queue *cq = NULL, *childq = NULL;
480 	int cqid = 0;
481 
482 	/* walk all the EQ entries and drop on the floor */
483 	eqe = lpfc_sli4_eq_get(eq);
484 	while (eqe) {
485 		/* Get the reference to the corresponding CQ */
486 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
487 		cq = NULL;
488 
489 		list_for_each_entry(childq, &eq->child_list, list) {
490 			if (childq->queue_id == cqid) {
491 				cq = childq;
492 				break;
493 			}
494 		}
495 		/* If CQ is valid, iterate through it and drop all the CQEs */
496 		if (cq) {
497 			cqe = lpfc_sli4_cq_get(cq);
498 			while (cqe) {
499 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
500 				cq_count++;
501 				cqe = lpfc_sli4_cq_get(cq);
502 			}
503 			/* Clear and re-arm the CQ */
504 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
505 			    LPFC_QUEUE_REARM);
506 			cq_count = 0;
507 		}
508 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
509 		eq_count++;
510 		eqe = lpfc_sli4_eq_get(eq);
511 	}
512 
513 	/* Clear and re-arm the EQ */
514 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
515 }
516 
517 static int
518 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
519 		     uint8_t rearm)
520 {
521 	struct lpfc_eqe *eqe;
522 	int count = 0, consumed = 0;
523 
524 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
525 		goto rearm_and_exit;
526 
527 	eqe = lpfc_sli4_eq_get(eq);
528 	while (eqe) {
529 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
530 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
531 
532 		consumed++;
533 		if (!(++count % eq->max_proc_limit))
534 			break;
535 
536 		if (!(count % eq->notify_interval)) {
537 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
538 							LPFC_QUEUE_NOARM);
539 			consumed = 0;
540 		}
541 
542 		eqe = lpfc_sli4_eq_get(eq);
543 	}
544 	eq->EQ_processed += count;
545 
546 	/* Track the max number of EQEs processed in 1 intr */
547 	if (count > eq->EQ_max_eqe)
548 		eq->EQ_max_eqe = count;
549 
550 	eq->queue_claimed = 0;
551 
552 rearm_and_exit:
553 	/* Always clear the EQ. */
554 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
555 
556 	return count;
557 }
558 
559 /**
560  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
561  * @q: The Completion Queue to get the first valid CQE from
562  *
563  * This routine will get the first valid Completion Queue Entry from @q, update
564  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
565  * the Queue (no more work to do), or the Queue is full of CQEs that have been
566  * processed, but not popped back to the HBA then this routine will return NULL.
567  **/
568 static struct lpfc_cqe *
569 lpfc_sli4_cq_get(struct lpfc_queue *q)
570 {
571 	struct lpfc_cqe *cqe;
572 
573 	/* sanity check on queue memory */
574 	if (unlikely(!q))
575 		return NULL;
576 	cqe = lpfc_sli4_qe(q, q->host_index);
577 
578 	/* If the next CQE is not valid then we are done */
579 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
580 		return NULL;
581 
582 	/*
583 	 * insert barrier for instruction interlock : data from the hardware
584 	 * must have the valid bit checked before it can be copied and acted
585 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
586 	 * instructions allowing action on content before valid bit checked,
587 	 * add barrier here as well. May not be needed as "content" is a
588 	 * single 32-bit entity here (vs multi word structure for cq's).
589 	 */
590 	mb();
591 	return cqe;
592 }
593 
594 static void
595 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
596 			struct lpfc_cqe *cqe)
597 {
598 	if (!phba->sli4_hba.pc_sli4_params.cqav)
599 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
600 
601 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
602 
603 	/* if the index wrapped around, toggle the valid bit */
604 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
605 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
606 }
607 
608 /**
609  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
610  * @phba: the adapter with the CQ
611  * @q: The Completion Queue that the host has completed processing for.
612  * @count: the number of elements that were consumed
613  * @arm: Indicates whether the host wants to arms this CQ.
614  *
615  * This routine will notify the HBA, by ringing the doorbell, that the
616  * CQEs have been processed. The @arm parameter specifies whether the
617  * queue should be rearmed when ringing the doorbell.
618  **/
619 void
620 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
621 		     uint32_t count, bool arm)
622 {
623 	struct lpfc_register doorbell;
624 
625 	/* sanity check on queue memory */
626 	if (unlikely(!q || (count == 0 && !arm)))
627 		return;
628 
629 	/* ring doorbell for number popped */
630 	doorbell.word0 = 0;
631 	if (arm)
632 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
633 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
634 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
635 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
636 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
637 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
638 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
639 }
640 
641 /**
642  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
643  * @phba: the adapter with the CQ
644  * @q: The Completion Queue that the host has completed processing for.
645  * @count: the number of elements that were consumed
646  * @arm: Indicates whether the host wants to arms this CQ.
647  *
648  * This routine will notify the HBA, by ringing the doorbell, that the
649  * CQEs have been processed. The @arm parameter specifies whether the
650  * queue should be rearmed when ringing the doorbell.
651  **/
652 void
653 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
654 			 uint32_t count, bool arm)
655 {
656 	struct lpfc_register doorbell;
657 
658 	/* sanity check on queue memory */
659 	if (unlikely(!q || (count == 0 && !arm)))
660 		return;
661 
662 	/* ring doorbell for number popped */
663 	doorbell.word0 = 0;
664 	if (arm)
665 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
666 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
667 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
668 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
669 }
670 
671 /**
672  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
673  * @q: The Header Receive Queue to operate on.
674  * @wqe: The Receive Queue Entry to put on the Receive queue.
675  *
676  * This routine will copy the contents of @wqe to the next available entry on
677  * the @q. This function will then ring the Receive Queue Doorbell to signal the
678  * HBA to start processing the Receive Queue Entry. This function returns the
679  * index that the rqe was copied to if successful. If no entries are available
680  * on @q then this function will return -ENOMEM.
681  * The caller is expected to hold the hbalock when calling this routine.
682  **/
683 int
684 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
685 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
686 {
687 	struct lpfc_rqe *temp_hrqe;
688 	struct lpfc_rqe *temp_drqe;
689 	struct lpfc_register doorbell;
690 	int hq_put_index;
691 	int dq_put_index;
692 
693 	/* sanity check on queue memory */
694 	if (unlikely(!hq) || unlikely(!dq))
695 		return -ENOMEM;
696 	hq_put_index = hq->host_index;
697 	dq_put_index = dq->host_index;
698 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
699 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
700 
701 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
702 		return -EINVAL;
703 	if (hq_put_index != dq_put_index)
704 		return -EINVAL;
705 	/* If the host has not yet processed the next entry then we are done */
706 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
707 		return -EBUSY;
708 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
709 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
710 
711 	/* Update the host index to point to the next slot */
712 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
713 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
714 	hq->RQ_buf_posted++;
715 
716 	/* Ring The Header Receive Queue Doorbell */
717 	if (!(hq->host_index % hq->notify_interval)) {
718 		doorbell.word0 = 0;
719 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
720 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
721 			       hq->notify_interval);
722 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
723 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
724 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
725 			       hq->notify_interval);
726 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
727 			       hq->host_index);
728 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
729 		} else {
730 			return -EINVAL;
731 		}
732 		writel(doorbell.word0, hq->db_regaddr);
733 	}
734 	return hq_put_index;
735 }
736 
737 /**
738  * lpfc_sli4_rq_release - Updates internal hba index for RQ
739  * @q: The Header Receive Queue to operate on.
740  *
741  * This routine will update the HBA index of a queue to reflect consumption of
742  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
743  * consumed an entry the host calls this function to update the queue's
744  * internal pointers. This routine returns the number of entries that were
745  * consumed by the HBA.
746  **/
747 static uint32_t
748 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
749 {
750 	/* sanity check on queue memory */
751 	if (unlikely(!hq) || unlikely(!dq))
752 		return 0;
753 
754 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
755 		return 0;
756 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
757 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
758 	return 1;
759 }
760 
761 /**
762  * lpfc_cmd_iocb - Get next command iocb entry in the ring
763  * @phba: Pointer to HBA context object.
764  * @pring: Pointer to driver SLI ring object.
765  *
766  * This function returns pointer to next command iocb entry
767  * in the command ring. The caller must hold hbalock to prevent
768  * other threads consume the next command iocb.
769  * SLI-2/SLI-3 provide different sized iocbs.
770  **/
771 static inline IOCB_t *
772 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
773 {
774 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
775 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
776 }
777 
778 /**
779  * lpfc_resp_iocb - Get next response iocb entry in the ring
780  * @phba: Pointer to HBA context object.
781  * @pring: Pointer to driver SLI ring object.
782  *
783  * This function returns pointer to next response iocb entry
784  * in the response ring. The caller must hold hbalock to make sure
785  * that no other thread consume the next response iocb.
786  * SLI-2/SLI-3 provide different sized iocbs.
787  **/
788 static inline IOCB_t *
789 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
790 {
791 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
792 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
793 }
794 
795 /**
796  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
797  * @phba: Pointer to HBA context object.
798  *
799  * This function is called with hbalock held. This function
800  * allocates a new driver iocb object from the iocb pool. If the
801  * allocation is successful, it returns pointer to the newly
802  * allocated iocb object else it returns NULL.
803  **/
804 struct lpfc_iocbq *
805 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
806 {
807 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
808 	struct lpfc_iocbq * iocbq = NULL;
809 
810 	lockdep_assert_held(&phba->hbalock);
811 
812 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
813 	if (iocbq)
814 		phba->iocb_cnt++;
815 	if (phba->iocb_cnt > phba->iocb_max)
816 		phba->iocb_max = phba->iocb_cnt;
817 	return iocbq;
818 }
819 
820 /**
821  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
822  * @phba: Pointer to HBA context object.
823  * @xritag: XRI value.
824  *
825  * This function clears the sglq pointer from the array of acive
826  * sglq's. The xritag that is passed in is used to index into the
827  * array. Before the xritag can be used it needs to be adjusted
828  * by subtracting the xribase.
829  *
830  * Returns sglq ponter = success, NULL = Failure.
831  **/
832 struct lpfc_sglq *
833 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
834 {
835 	struct lpfc_sglq *sglq;
836 
837 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
838 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
839 	return sglq;
840 }
841 
842 /**
843  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
844  * @phba: Pointer to HBA context object.
845  * @xritag: XRI value.
846  *
847  * This function returns the sglq pointer from the array of acive
848  * sglq's. The xritag that is passed in is used to index into the
849  * array. Before the xritag can be used it needs to be adjusted
850  * by subtracting the xribase.
851  *
852  * Returns sglq ponter = success, NULL = Failure.
853  **/
854 struct lpfc_sglq *
855 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
856 {
857 	struct lpfc_sglq *sglq;
858 
859 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
860 	return sglq;
861 }
862 
863 /**
864  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
865  * @phba: Pointer to HBA context object.
866  * @xritag: xri used in this exchange.
867  * @rrq: The RRQ to be cleared.
868  *
869  **/
870 void
871 lpfc_clr_rrq_active(struct lpfc_hba *phba,
872 		    uint16_t xritag,
873 		    struct lpfc_node_rrq *rrq)
874 {
875 	struct lpfc_nodelist *ndlp = NULL;
876 
877 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
878 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
879 
880 	/* The target DID could have been swapped (cable swap)
881 	 * we should use the ndlp from the findnode if it is
882 	 * available.
883 	 */
884 	if ((!ndlp) && rrq->ndlp)
885 		ndlp = rrq->ndlp;
886 
887 	if (!ndlp)
888 		goto out;
889 
890 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
891 		rrq->send_rrq = 0;
892 		rrq->xritag = 0;
893 		rrq->rrq_stop_time = 0;
894 	}
895 out:
896 	mempool_free(rrq, phba->rrq_pool);
897 }
898 
899 /**
900  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
901  * @phba: Pointer to HBA context object.
902  *
903  * This function is called with hbalock held. This function
904  * Checks if stop_time (ratov from setting rrq active) has
905  * been reached, if it has and the send_rrq flag is set then
906  * it will call lpfc_send_rrq. If the send_rrq flag is not set
907  * then it will just call the routine to clear the rrq and
908  * free the rrq resource.
909  * The timer is set to the next rrq that is going to expire before
910  * leaving the routine.
911  *
912  **/
913 void
914 lpfc_handle_rrq_active(struct lpfc_hba *phba)
915 {
916 	struct lpfc_node_rrq *rrq;
917 	struct lpfc_node_rrq *nextrrq;
918 	unsigned long next_time;
919 	unsigned long iflags;
920 	LIST_HEAD(send_rrq);
921 
922 	spin_lock_irqsave(&phba->hbalock, iflags);
923 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
924 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
925 	list_for_each_entry_safe(rrq, nextrrq,
926 				 &phba->active_rrq_list, list) {
927 		if (time_after(jiffies, rrq->rrq_stop_time))
928 			list_move(&rrq->list, &send_rrq);
929 		else if (time_before(rrq->rrq_stop_time, next_time))
930 			next_time = rrq->rrq_stop_time;
931 	}
932 	spin_unlock_irqrestore(&phba->hbalock, iflags);
933 	if ((!list_empty(&phba->active_rrq_list)) &&
934 	    (!(phba->pport->load_flag & FC_UNLOADING)))
935 		mod_timer(&phba->rrq_tmr, next_time);
936 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
937 		list_del(&rrq->list);
938 		if (!rrq->send_rrq) {
939 			/* this call will free the rrq */
940 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
941 		} else if (lpfc_send_rrq(phba, rrq)) {
942 			/* if we send the rrq then the completion handler
943 			*  will clear the bit in the xribitmap.
944 			*/
945 			lpfc_clr_rrq_active(phba, rrq->xritag,
946 					    rrq);
947 		}
948 	}
949 }
950 
951 /**
952  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
953  * @vport: Pointer to vport context object.
954  * @xri: The xri used in the exchange.
955  * @did: The targets DID for this exchange.
956  *
957  * returns NULL = rrq not found in the phba->active_rrq_list.
958  *         rrq = rrq for this xri and target.
959  **/
960 struct lpfc_node_rrq *
961 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
962 {
963 	struct lpfc_hba *phba = vport->phba;
964 	struct lpfc_node_rrq *rrq;
965 	struct lpfc_node_rrq *nextrrq;
966 	unsigned long iflags;
967 
968 	if (phba->sli_rev != LPFC_SLI_REV4)
969 		return NULL;
970 	spin_lock_irqsave(&phba->hbalock, iflags);
971 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
972 		if (rrq->vport == vport && rrq->xritag == xri &&
973 				rrq->nlp_DID == did){
974 			list_del(&rrq->list);
975 			spin_unlock_irqrestore(&phba->hbalock, iflags);
976 			return rrq;
977 		}
978 	}
979 	spin_unlock_irqrestore(&phba->hbalock, iflags);
980 	return NULL;
981 }
982 
983 /**
984  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
985  * @vport: Pointer to vport context object.
986  * @ndlp: Pointer to the lpfc_node_list structure.
987  * If ndlp is NULL Remove all active RRQs for this vport from the
988  * phba->active_rrq_list and clear the rrq.
989  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
990  **/
991 void
992 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
993 
994 {
995 	struct lpfc_hba *phba = vport->phba;
996 	struct lpfc_node_rrq *rrq;
997 	struct lpfc_node_rrq *nextrrq;
998 	unsigned long iflags;
999 	LIST_HEAD(rrq_list);
1000 
1001 	if (phba->sli_rev != LPFC_SLI_REV4)
1002 		return;
1003 	if (!ndlp) {
1004 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1005 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1006 	}
1007 	spin_lock_irqsave(&phba->hbalock, iflags);
1008 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
1009 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
1010 			list_move(&rrq->list, &rrq_list);
1011 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1012 
1013 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1014 		list_del(&rrq->list);
1015 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1016 	}
1017 }
1018 
1019 /**
1020  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1021  * @phba: Pointer to HBA context object.
1022  * @ndlp: Targets nodelist pointer for this exchange.
1023  * @xritag the xri in the bitmap to test.
1024  *
1025  * This function returns:
1026  * 0 = rrq not active for this xri
1027  * 1 = rrq is valid for this xri.
1028  **/
1029 int
1030 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1031 			uint16_t  xritag)
1032 {
1033 	if (!ndlp)
1034 		return 0;
1035 	if (!ndlp->active_rrqs_xri_bitmap)
1036 		return 0;
1037 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1038 		return 1;
1039 	else
1040 		return 0;
1041 }
1042 
1043 /**
1044  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1045  * @phba: Pointer to HBA context object.
1046  * @ndlp: nodelist pointer for this target.
1047  * @xritag: xri used in this exchange.
1048  * @rxid: Remote Exchange ID.
1049  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1050  *
1051  * This function takes the hbalock.
1052  * The active bit is always set in the active rrq xri_bitmap even
1053  * if there is no slot avaiable for the other rrq information.
1054  *
1055  * returns 0 rrq actived for this xri
1056  *         < 0 No memory or invalid ndlp.
1057  **/
1058 int
1059 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1060 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1061 {
1062 	unsigned long iflags;
1063 	struct lpfc_node_rrq *rrq;
1064 	int empty;
1065 
1066 	if (!ndlp)
1067 		return -EINVAL;
1068 
1069 	if (!phba->cfg_enable_rrq)
1070 		return -EINVAL;
1071 
1072 	spin_lock_irqsave(&phba->hbalock, iflags);
1073 	if (phba->pport->load_flag & FC_UNLOADING) {
1074 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1075 		goto out;
1076 	}
1077 
1078 	/*
1079 	 * set the active bit even if there is no mem available.
1080 	 */
1081 	if (NLP_CHK_FREE_REQ(ndlp))
1082 		goto out;
1083 
1084 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1085 		goto out;
1086 
1087 	if (!ndlp->active_rrqs_xri_bitmap)
1088 		goto out;
1089 
1090 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1091 		goto out;
1092 
1093 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1094 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1095 	if (!rrq) {
1096 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1097 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1098 				" DID:0x%x Send:%d\n",
1099 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1100 		return -EINVAL;
1101 	}
1102 	if (phba->cfg_enable_rrq == 1)
1103 		rrq->send_rrq = send_rrq;
1104 	else
1105 		rrq->send_rrq = 0;
1106 	rrq->xritag = xritag;
1107 	rrq->rrq_stop_time = jiffies +
1108 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1109 	rrq->ndlp = ndlp;
1110 	rrq->nlp_DID = ndlp->nlp_DID;
1111 	rrq->vport = ndlp->vport;
1112 	rrq->rxid = rxid;
1113 	spin_lock_irqsave(&phba->hbalock, iflags);
1114 	empty = list_empty(&phba->active_rrq_list);
1115 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1116 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1117 	if (empty)
1118 		lpfc_worker_wake_up(phba);
1119 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1120 	return 0;
1121 out:
1122 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1123 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1124 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1125 			" DID:0x%x Send:%d\n",
1126 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1127 	return -EINVAL;
1128 }
1129 
1130 /**
1131  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1132  * @phba: Pointer to HBA context object.
1133  * @piocb: Pointer to the iocbq.
1134  *
1135  * The driver calls this function with either the nvme ls ring lock
1136  * or the fc els ring lock held depending on the iocb usage.  This function
1137  * gets a new driver sglq object from the sglq list. If the list is not empty
1138  * then it is successful, it returns pointer to the newly allocated sglq
1139  * object else it returns NULL.
1140  **/
1141 static struct lpfc_sglq *
1142 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1143 {
1144 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1145 	struct lpfc_sglq *sglq = NULL;
1146 	struct lpfc_sglq *start_sglq = NULL;
1147 	struct lpfc_io_buf *lpfc_cmd;
1148 	struct lpfc_nodelist *ndlp;
1149 	struct lpfc_sli_ring *pring = NULL;
1150 	int found = 0;
1151 
1152 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1153 		pring =  phba->sli4_hba.nvmels_wq->pring;
1154 	else
1155 		pring = lpfc_phba_elsring(phba);
1156 
1157 	lockdep_assert_held(&pring->ring_lock);
1158 
1159 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1160 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1161 		ndlp = lpfc_cmd->rdata->pnode;
1162 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1163 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1164 		ndlp = piocbq->context_un.ndlp;
1165 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1166 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1167 			ndlp = NULL;
1168 		else
1169 			ndlp = piocbq->context_un.ndlp;
1170 	} else {
1171 		ndlp = piocbq->context1;
1172 	}
1173 
1174 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1175 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1176 	start_sglq = sglq;
1177 	while (!found) {
1178 		if (!sglq)
1179 			break;
1180 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1181 		    test_bit(sglq->sli4_lxritag,
1182 		    ndlp->active_rrqs_xri_bitmap)) {
1183 			/* This xri has an rrq outstanding for this DID.
1184 			 * put it back in the list and get another xri.
1185 			 */
1186 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1187 			sglq = NULL;
1188 			list_remove_head(lpfc_els_sgl_list, sglq,
1189 						struct lpfc_sglq, list);
1190 			if (sglq == start_sglq) {
1191 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1192 				sglq = NULL;
1193 				break;
1194 			} else
1195 				continue;
1196 		}
1197 		sglq->ndlp = ndlp;
1198 		found = 1;
1199 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1200 		sglq->state = SGL_ALLOCATED;
1201 	}
1202 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1203 	return sglq;
1204 }
1205 
1206 /**
1207  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1208  * @phba: Pointer to HBA context object.
1209  * @piocb: Pointer to the iocbq.
1210  *
1211  * This function is called with the sgl_list lock held. This function
1212  * gets a new driver sglq object from the sglq list. If the
1213  * list is not empty then it is successful, it returns pointer to the newly
1214  * allocated sglq object else it returns NULL.
1215  **/
1216 struct lpfc_sglq *
1217 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1218 {
1219 	struct list_head *lpfc_nvmet_sgl_list;
1220 	struct lpfc_sglq *sglq = NULL;
1221 
1222 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1223 
1224 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1225 
1226 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1227 	if (!sglq)
1228 		return NULL;
1229 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1230 	sglq->state = SGL_ALLOCATED;
1231 	return sglq;
1232 }
1233 
1234 /**
1235  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1236  * @phba: Pointer to HBA context object.
1237  *
1238  * This function is called with no lock held. This function
1239  * allocates a new driver iocb object from the iocb pool. If the
1240  * allocation is successful, it returns pointer to the newly
1241  * allocated iocb object else it returns NULL.
1242  **/
1243 struct lpfc_iocbq *
1244 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1245 {
1246 	struct lpfc_iocbq * iocbq = NULL;
1247 	unsigned long iflags;
1248 
1249 	spin_lock_irqsave(&phba->hbalock, iflags);
1250 	iocbq = __lpfc_sli_get_iocbq(phba);
1251 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1252 	return iocbq;
1253 }
1254 
1255 /**
1256  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1257  * @phba: Pointer to HBA context object.
1258  * @iocbq: Pointer to driver iocb object.
1259  *
1260  * This function is called with hbalock held to release driver
1261  * iocb object to the iocb pool. The iotag in the iocb object
1262  * does not change for each use of the iocb object. This function
1263  * clears all other fields of the iocb object when it is freed.
1264  * The sqlq structure that holds the xritag and phys and virtual
1265  * mappings for the scatter gather list is retrieved from the
1266  * active array of sglq. The get of the sglq pointer also clears
1267  * the entry in the array. If the status of the IO indiactes that
1268  * this IO was aborted then the sglq entry it put on the
1269  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1270  * IO has good status or fails for any other reason then the sglq
1271  * entry is added to the free list (lpfc_els_sgl_list).
1272  **/
1273 static void
1274 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1275 {
1276 	struct lpfc_sglq *sglq;
1277 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1278 	unsigned long iflag = 0;
1279 	struct lpfc_sli_ring *pring;
1280 
1281 	lockdep_assert_held(&phba->hbalock);
1282 
1283 	if (iocbq->sli4_xritag == NO_XRI)
1284 		sglq = NULL;
1285 	else
1286 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1287 
1288 
1289 	if (sglq)  {
1290 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1291 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1292 					  iflag);
1293 			sglq->state = SGL_FREED;
1294 			sglq->ndlp = NULL;
1295 			list_add_tail(&sglq->list,
1296 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1297 			spin_unlock_irqrestore(
1298 				&phba->sli4_hba.sgl_list_lock, iflag);
1299 			goto out;
1300 		}
1301 
1302 		pring = phba->sli4_hba.els_wq->pring;
1303 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1304 			(sglq->state != SGL_XRI_ABORTED)) {
1305 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1306 					  iflag);
1307 			list_add(&sglq->list,
1308 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1309 			spin_unlock_irqrestore(
1310 				&phba->sli4_hba.sgl_list_lock, iflag);
1311 		} else {
1312 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1313 					  iflag);
1314 			sglq->state = SGL_FREED;
1315 			sglq->ndlp = NULL;
1316 			list_add_tail(&sglq->list,
1317 				      &phba->sli4_hba.lpfc_els_sgl_list);
1318 			spin_unlock_irqrestore(
1319 				&phba->sli4_hba.sgl_list_lock, iflag);
1320 
1321 			/* Check if TXQ queue needs to be serviced */
1322 			if (!list_empty(&pring->txq))
1323 				lpfc_worker_wake_up(phba);
1324 		}
1325 	}
1326 
1327 out:
1328 	/*
1329 	 * Clean all volatile data fields, preserve iotag and node struct.
1330 	 */
1331 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1332 	iocbq->sli4_lxritag = NO_XRI;
1333 	iocbq->sli4_xritag = NO_XRI;
1334 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1335 			      LPFC_IO_NVME_LS);
1336 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1337 }
1338 
1339 
1340 /**
1341  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1342  * @phba: Pointer to HBA context object.
1343  * @iocbq: Pointer to driver iocb object.
1344  *
1345  * This function is called with hbalock held to release driver
1346  * iocb object to the iocb pool. The iotag in the iocb object
1347  * does not change for each use of the iocb object. This function
1348  * clears all other fields of the iocb object when it is freed.
1349  **/
1350 static void
1351 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1352 {
1353 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1354 
1355 	lockdep_assert_held(&phba->hbalock);
1356 
1357 	/*
1358 	 * Clean all volatile data fields, preserve iotag and node struct.
1359 	 */
1360 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1361 	iocbq->sli4_xritag = NO_XRI;
1362 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1363 }
1364 
1365 /**
1366  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1367  * @phba: Pointer to HBA context object.
1368  * @iocbq: Pointer to driver iocb object.
1369  *
1370  * This function is called with hbalock held to release driver
1371  * iocb object to the iocb pool. The iotag in the iocb object
1372  * does not change for each use of the iocb object. This function
1373  * clears all other fields of the iocb object when it is freed.
1374  **/
1375 static void
1376 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1377 {
1378 	lockdep_assert_held(&phba->hbalock);
1379 
1380 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1381 	phba->iocb_cnt--;
1382 }
1383 
1384 /**
1385  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1386  * @phba: Pointer to HBA context object.
1387  * @iocbq: Pointer to driver iocb object.
1388  *
1389  * This function is called with no lock held to release the iocb to
1390  * iocb pool.
1391  **/
1392 void
1393 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1394 {
1395 	unsigned long iflags;
1396 
1397 	/*
1398 	 * Clean all volatile data fields, preserve iotag and node struct.
1399 	 */
1400 	spin_lock_irqsave(&phba->hbalock, iflags);
1401 	__lpfc_sli_release_iocbq(phba, iocbq);
1402 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1403 }
1404 
1405 /**
1406  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1407  * @phba: Pointer to HBA context object.
1408  * @iocblist: List of IOCBs.
1409  * @ulpstatus: ULP status in IOCB command field.
1410  * @ulpWord4: ULP word-4 in IOCB command field.
1411  *
1412  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1413  * on the list by invoking the complete callback function associated with the
1414  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1415  * fields.
1416  **/
1417 void
1418 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1419 		      uint32_t ulpstatus, uint32_t ulpWord4)
1420 {
1421 	struct lpfc_iocbq *piocb;
1422 
1423 	while (!list_empty(iocblist)) {
1424 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1425 		if (!piocb->iocb_cmpl) {
1426 			if (piocb->iocb_flag & LPFC_IO_NVME)
1427 				lpfc_nvme_cancel_iocb(phba, piocb);
1428 			else
1429 				lpfc_sli_release_iocbq(phba, piocb);
1430 		} else {
1431 			piocb->iocb.ulpStatus = ulpstatus;
1432 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1433 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1434 		}
1435 	}
1436 	return;
1437 }
1438 
1439 /**
1440  * lpfc_sli_iocb_cmd_type - Get the iocb type
1441  * @iocb_cmnd: iocb command code.
1442  *
1443  * This function is called by ring event handler function to get the iocb type.
1444  * This function translates the iocb command to an iocb command type used to
1445  * decide the final disposition of each completed IOCB.
1446  * The function returns
1447  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1448  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1449  * LPFC_ABORT_IOCB   if it is an abort iocb
1450  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1451  *
1452  * The caller is not required to hold any lock.
1453  **/
1454 static lpfc_iocb_type
1455 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1456 {
1457 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1458 
1459 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1460 		return 0;
1461 
1462 	switch (iocb_cmnd) {
1463 	case CMD_XMIT_SEQUENCE_CR:
1464 	case CMD_XMIT_SEQUENCE_CX:
1465 	case CMD_XMIT_BCAST_CN:
1466 	case CMD_XMIT_BCAST_CX:
1467 	case CMD_ELS_REQUEST_CR:
1468 	case CMD_ELS_REQUEST_CX:
1469 	case CMD_CREATE_XRI_CR:
1470 	case CMD_CREATE_XRI_CX:
1471 	case CMD_GET_RPI_CN:
1472 	case CMD_XMIT_ELS_RSP_CX:
1473 	case CMD_GET_RPI_CR:
1474 	case CMD_FCP_IWRITE_CR:
1475 	case CMD_FCP_IWRITE_CX:
1476 	case CMD_FCP_IREAD_CR:
1477 	case CMD_FCP_IREAD_CX:
1478 	case CMD_FCP_ICMND_CR:
1479 	case CMD_FCP_ICMND_CX:
1480 	case CMD_FCP_TSEND_CX:
1481 	case CMD_FCP_TRSP_CX:
1482 	case CMD_FCP_TRECEIVE_CX:
1483 	case CMD_FCP_AUTO_TRSP_CX:
1484 	case CMD_ADAPTER_MSG:
1485 	case CMD_ADAPTER_DUMP:
1486 	case CMD_XMIT_SEQUENCE64_CR:
1487 	case CMD_XMIT_SEQUENCE64_CX:
1488 	case CMD_XMIT_BCAST64_CN:
1489 	case CMD_XMIT_BCAST64_CX:
1490 	case CMD_ELS_REQUEST64_CR:
1491 	case CMD_ELS_REQUEST64_CX:
1492 	case CMD_FCP_IWRITE64_CR:
1493 	case CMD_FCP_IWRITE64_CX:
1494 	case CMD_FCP_IREAD64_CR:
1495 	case CMD_FCP_IREAD64_CX:
1496 	case CMD_FCP_ICMND64_CR:
1497 	case CMD_FCP_ICMND64_CX:
1498 	case CMD_FCP_TSEND64_CX:
1499 	case CMD_FCP_TRSP64_CX:
1500 	case CMD_FCP_TRECEIVE64_CX:
1501 	case CMD_GEN_REQUEST64_CR:
1502 	case CMD_GEN_REQUEST64_CX:
1503 	case CMD_XMIT_ELS_RSP64_CX:
1504 	case DSSCMD_IWRITE64_CR:
1505 	case DSSCMD_IWRITE64_CX:
1506 	case DSSCMD_IREAD64_CR:
1507 	case DSSCMD_IREAD64_CX:
1508 		type = LPFC_SOL_IOCB;
1509 		break;
1510 	case CMD_ABORT_XRI_CN:
1511 	case CMD_ABORT_XRI_CX:
1512 	case CMD_CLOSE_XRI_CN:
1513 	case CMD_CLOSE_XRI_CX:
1514 	case CMD_XRI_ABORTED_CX:
1515 	case CMD_ABORT_MXRI64_CN:
1516 	case CMD_XMIT_BLS_RSP64_CX:
1517 		type = LPFC_ABORT_IOCB;
1518 		break;
1519 	case CMD_RCV_SEQUENCE_CX:
1520 	case CMD_RCV_ELS_REQ_CX:
1521 	case CMD_RCV_SEQUENCE64_CX:
1522 	case CMD_RCV_ELS_REQ64_CX:
1523 	case CMD_ASYNC_STATUS:
1524 	case CMD_IOCB_RCV_SEQ64_CX:
1525 	case CMD_IOCB_RCV_ELS64_CX:
1526 	case CMD_IOCB_RCV_CONT64_CX:
1527 	case CMD_IOCB_RET_XRI64_CX:
1528 		type = LPFC_UNSOL_IOCB;
1529 		break;
1530 	case CMD_IOCB_XMIT_MSEQ64_CR:
1531 	case CMD_IOCB_XMIT_MSEQ64_CX:
1532 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1533 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1534 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1535 	case CMD_IOCB_ABORT_EXTENDED_CN:
1536 	case CMD_IOCB_RET_HBQE64_CN:
1537 	case CMD_IOCB_FCP_IBIDIR64_CR:
1538 	case CMD_IOCB_FCP_IBIDIR64_CX:
1539 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1540 	case CMD_IOCB_LOGENTRY_CN:
1541 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1542 		printk("%s - Unhandled SLI-3 Command x%x\n",
1543 				__func__, iocb_cmnd);
1544 		type = LPFC_UNKNOWN_IOCB;
1545 		break;
1546 	default:
1547 		type = LPFC_UNKNOWN_IOCB;
1548 		break;
1549 	}
1550 
1551 	return type;
1552 }
1553 
1554 /**
1555  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1556  * @phba: Pointer to HBA context object.
1557  *
1558  * This function is called from SLI initialization code
1559  * to configure every ring of the HBA's SLI interface. The
1560  * caller is not required to hold any lock. This function issues
1561  * a config_ring mailbox command for each ring.
1562  * This function returns zero if successful else returns a negative
1563  * error code.
1564  **/
1565 static int
1566 lpfc_sli_ring_map(struct lpfc_hba *phba)
1567 {
1568 	struct lpfc_sli *psli = &phba->sli;
1569 	LPFC_MBOXQ_t *pmb;
1570 	MAILBOX_t *pmbox;
1571 	int i, rc, ret = 0;
1572 
1573 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1574 	if (!pmb)
1575 		return -ENOMEM;
1576 	pmbox = &pmb->u.mb;
1577 	phba->link_state = LPFC_INIT_MBX_CMDS;
1578 	for (i = 0; i < psli->num_rings; i++) {
1579 		lpfc_config_ring(phba, i, pmb);
1580 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1581 		if (rc != MBX_SUCCESS) {
1582 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1583 					"0446 Adapter failed to init (%d), "
1584 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1585 					"ring %d\n",
1586 					rc, pmbox->mbxCommand,
1587 					pmbox->mbxStatus, i);
1588 			phba->link_state = LPFC_HBA_ERROR;
1589 			ret = -ENXIO;
1590 			break;
1591 		}
1592 	}
1593 	mempool_free(pmb, phba->mbox_mem_pool);
1594 	return ret;
1595 }
1596 
1597 /**
1598  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1599  * @phba: Pointer to HBA context object.
1600  * @pring: Pointer to driver SLI ring object.
1601  * @piocb: Pointer to the driver iocb object.
1602  *
1603  * The driver calls this function with the hbalock held for SLI3 ports or
1604  * the ring lock held for SLI4 ports. The function adds the
1605  * new iocb to txcmplq of the given ring. This function always returns
1606  * 0. If this function is called for ELS ring, this function checks if
1607  * there is a vport associated with the ELS command. This function also
1608  * starts els_tmofunc timer if this is an ELS command.
1609  **/
1610 static int
1611 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1612 			struct lpfc_iocbq *piocb)
1613 {
1614 	if (phba->sli_rev == LPFC_SLI_REV4)
1615 		lockdep_assert_held(&pring->ring_lock);
1616 	else
1617 		lockdep_assert_held(&phba->hbalock);
1618 
1619 	BUG_ON(!piocb);
1620 
1621 	list_add_tail(&piocb->list, &pring->txcmplq);
1622 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1623 	pring->txcmplq_cnt++;
1624 
1625 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1626 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1627 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1628 		BUG_ON(!piocb->vport);
1629 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1630 			mod_timer(&piocb->vport->els_tmofunc,
1631 				  jiffies +
1632 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * lpfc_sli_ringtx_get - Get first element of the txq
1640  * @phba: Pointer to HBA context object.
1641  * @pring: Pointer to driver SLI ring object.
1642  *
1643  * This function is called with hbalock held to get next
1644  * iocb in txq of the given ring. If there is any iocb in
1645  * the txq, the function returns first iocb in the list after
1646  * removing the iocb from the list, else it returns NULL.
1647  **/
1648 struct lpfc_iocbq *
1649 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1650 {
1651 	struct lpfc_iocbq *cmd_iocb;
1652 
1653 	lockdep_assert_held(&phba->hbalock);
1654 
1655 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1656 	return cmd_iocb;
1657 }
1658 
1659 /**
1660  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1661  * @phba: Pointer to HBA context object.
1662  * @pring: Pointer to driver SLI ring object.
1663  *
1664  * This function is called with hbalock held and the caller must post the
1665  * iocb without releasing the lock. If the caller releases the lock,
1666  * iocb slot returned by the function is not guaranteed to be available.
1667  * The function returns pointer to the next available iocb slot if there
1668  * is available slot in the ring, else it returns NULL.
1669  * If the get index of the ring is ahead of the put index, the function
1670  * will post an error attention event to the worker thread to take the
1671  * HBA to offline state.
1672  **/
1673 static IOCB_t *
1674 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1675 {
1676 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1677 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1678 
1679 	lockdep_assert_held(&phba->hbalock);
1680 
1681 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1682 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1683 		pring->sli.sli3.next_cmdidx = 0;
1684 
1685 	if (unlikely(pring->sli.sli3.local_getidx ==
1686 		pring->sli.sli3.next_cmdidx)) {
1687 
1688 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1689 
1690 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1691 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1692 					"0315 Ring %d issue: portCmdGet %d "
1693 					"is bigger than cmd ring %d\n",
1694 					pring->ringno,
1695 					pring->sli.sli3.local_getidx,
1696 					max_cmd_idx);
1697 
1698 			phba->link_state = LPFC_HBA_ERROR;
1699 			/*
1700 			 * All error attention handlers are posted to
1701 			 * worker thread
1702 			 */
1703 			phba->work_ha |= HA_ERATT;
1704 			phba->work_hs = HS_FFER3;
1705 
1706 			lpfc_worker_wake_up(phba);
1707 
1708 			return NULL;
1709 		}
1710 
1711 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1712 			return NULL;
1713 	}
1714 
1715 	return lpfc_cmd_iocb(phba, pring);
1716 }
1717 
1718 /**
1719  * lpfc_sli_next_iotag - Get an iotag for the iocb
1720  * @phba: Pointer to HBA context object.
1721  * @iocbq: Pointer to driver iocb object.
1722  *
1723  * This function gets an iotag for the iocb. If there is no unused iotag and
1724  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1725  * array and assigns a new iotag.
1726  * The function returns the allocated iotag if successful, else returns zero.
1727  * Zero is not a valid iotag.
1728  * The caller is not required to hold any lock.
1729  **/
1730 uint16_t
1731 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1732 {
1733 	struct lpfc_iocbq **new_arr;
1734 	struct lpfc_iocbq **old_arr;
1735 	size_t new_len;
1736 	struct lpfc_sli *psli = &phba->sli;
1737 	uint16_t iotag;
1738 
1739 	spin_lock_irq(&phba->hbalock);
1740 	iotag = psli->last_iotag;
1741 	if(++iotag < psli->iocbq_lookup_len) {
1742 		psli->last_iotag = iotag;
1743 		psli->iocbq_lookup[iotag] = iocbq;
1744 		spin_unlock_irq(&phba->hbalock);
1745 		iocbq->iotag = iotag;
1746 		return iotag;
1747 	} else if (psli->iocbq_lookup_len < (0xffff
1748 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1749 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1750 		spin_unlock_irq(&phba->hbalock);
1751 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1752 				  GFP_KERNEL);
1753 		if (new_arr) {
1754 			spin_lock_irq(&phba->hbalock);
1755 			old_arr = psli->iocbq_lookup;
1756 			if (new_len <= psli->iocbq_lookup_len) {
1757 				/* highly unprobable case */
1758 				kfree(new_arr);
1759 				iotag = psli->last_iotag;
1760 				if(++iotag < psli->iocbq_lookup_len) {
1761 					psli->last_iotag = iotag;
1762 					psli->iocbq_lookup[iotag] = iocbq;
1763 					spin_unlock_irq(&phba->hbalock);
1764 					iocbq->iotag = iotag;
1765 					return iotag;
1766 				}
1767 				spin_unlock_irq(&phba->hbalock);
1768 				return 0;
1769 			}
1770 			if (psli->iocbq_lookup)
1771 				memcpy(new_arr, old_arr,
1772 				       ((psli->last_iotag  + 1) *
1773 					sizeof (struct lpfc_iocbq *)));
1774 			psli->iocbq_lookup = new_arr;
1775 			psli->iocbq_lookup_len = new_len;
1776 			psli->last_iotag = iotag;
1777 			psli->iocbq_lookup[iotag] = iocbq;
1778 			spin_unlock_irq(&phba->hbalock);
1779 			iocbq->iotag = iotag;
1780 			kfree(old_arr);
1781 			return iotag;
1782 		}
1783 	} else
1784 		spin_unlock_irq(&phba->hbalock);
1785 
1786 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1787 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1788 			psli->last_iotag);
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1795  * @phba: Pointer to HBA context object.
1796  * @pring: Pointer to driver SLI ring object.
1797  * @iocb: Pointer to iocb slot in the ring.
1798  * @nextiocb: Pointer to driver iocb object which need to be
1799  *            posted to firmware.
1800  *
1801  * This function is called with hbalock held to post a new iocb to
1802  * the firmware. This function copies the new iocb to ring iocb slot and
1803  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1804  * a completion call back for this iocb else the function will free the
1805  * iocb object.
1806  **/
1807 static void
1808 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1809 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1810 {
1811 	lockdep_assert_held(&phba->hbalock);
1812 	/*
1813 	 * Set up an iotag
1814 	 */
1815 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1816 
1817 
1818 	if (pring->ringno == LPFC_ELS_RING) {
1819 		lpfc_debugfs_slow_ring_trc(phba,
1820 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1821 			*(((uint32_t *) &nextiocb->iocb) + 4),
1822 			*(((uint32_t *) &nextiocb->iocb) + 6),
1823 			*(((uint32_t *) &nextiocb->iocb) + 7));
1824 	}
1825 
1826 	/*
1827 	 * Issue iocb command to adapter
1828 	 */
1829 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1830 	wmb();
1831 	pring->stats.iocb_cmd++;
1832 
1833 	/*
1834 	 * If there is no completion routine to call, we can release the
1835 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1836 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1837 	 */
1838 	if (nextiocb->iocb_cmpl)
1839 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1840 	else
1841 		__lpfc_sli_release_iocbq(phba, nextiocb);
1842 
1843 	/*
1844 	 * Let the HBA know what IOCB slot will be the next one the
1845 	 * driver will put a command into.
1846 	 */
1847 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1848 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1849 }
1850 
1851 /**
1852  * lpfc_sli_update_full_ring - Update the chip attention register
1853  * @phba: Pointer to HBA context object.
1854  * @pring: Pointer to driver SLI ring object.
1855  *
1856  * The caller is not required to hold any lock for calling this function.
1857  * This function updates the chip attention bits for the ring to inform firmware
1858  * that there are pending work to be done for this ring and requests an
1859  * interrupt when there is space available in the ring. This function is
1860  * called when the driver is unable to post more iocbs to the ring due
1861  * to unavailability of space in the ring.
1862  **/
1863 static void
1864 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1865 {
1866 	int ringno = pring->ringno;
1867 
1868 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1869 
1870 	wmb();
1871 
1872 	/*
1873 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1874 	 * The HBA will tell us when an IOCB entry is available.
1875 	 */
1876 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1877 	readl(phba->CAregaddr); /* flush */
1878 
1879 	pring->stats.iocb_cmd_full++;
1880 }
1881 
1882 /**
1883  * lpfc_sli_update_ring - Update chip attention register
1884  * @phba: Pointer to HBA context object.
1885  * @pring: Pointer to driver SLI ring object.
1886  *
1887  * This function updates the chip attention register bit for the
1888  * given ring to inform HBA that there is more work to be done
1889  * in this ring. The caller is not required to hold any lock.
1890  **/
1891 static void
1892 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1893 {
1894 	int ringno = pring->ringno;
1895 
1896 	/*
1897 	 * Tell the HBA that there is work to do in this ring.
1898 	 */
1899 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1900 		wmb();
1901 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1902 		readl(phba->CAregaddr); /* flush */
1903 	}
1904 }
1905 
1906 /**
1907  * lpfc_sli_resume_iocb - Process iocbs in the txq
1908  * @phba: Pointer to HBA context object.
1909  * @pring: Pointer to driver SLI ring object.
1910  *
1911  * This function is called with hbalock held to post pending iocbs
1912  * in the txq to the firmware. This function is called when driver
1913  * detects space available in the ring.
1914  **/
1915 static void
1916 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1917 {
1918 	IOCB_t *iocb;
1919 	struct lpfc_iocbq *nextiocb;
1920 
1921 	lockdep_assert_held(&phba->hbalock);
1922 
1923 	/*
1924 	 * Check to see if:
1925 	 *  (a) there is anything on the txq to send
1926 	 *  (b) link is up
1927 	 *  (c) link attention events can be processed (fcp ring only)
1928 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1929 	 */
1930 
1931 	if (lpfc_is_link_up(phba) &&
1932 	    (!list_empty(&pring->txq)) &&
1933 	    (pring->ringno != LPFC_FCP_RING ||
1934 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1935 
1936 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1937 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1938 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1939 
1940 		if (iocb)
1941 			lpfc_sli_update_ring(phba, pring);
1942 		else
1943 			lpfc_sli_update_full_ring(phba, pring);
1944 	}
1945 
1946 	return;
1947 }
1948 
1949 /**
1950  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1951  * @phba: Pointer to HBA context object.
1952  * @hbqno: HBQ number.
1953  *
1954  * This function is called with hbalock held to get the next
1955  * available slot for the given HBQ. If there is free slot
1956  * available for the HBQ it will return pointer to the next available
1957  * HBQ entry else it will return NULL.
1958  **/
1959 static struct lpfc_hbq_entry *
1960 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1961 {
1962 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1963 
1964 	lockdep_assert_held(&phba->hbalock);
1965 
1966 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1967 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1968 		hbqp->next_hbqPutIdx = 0;
1969 
1970 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1971 		uint32_t raw_index = phba->hbq_get[hbqno];
1972 		uint32_t getidx = le32_to_cpu(raw_index);
1973 
1974 		hbqp->local_hbqGetIdx = getidx;
1975 
1976 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1977 			lpfc_printf_log(phba, KERN_ERR,
1978 					LOG_SLI | LOG_VPORT,
1979 					"1802 HBQ %d: local_hbqGetIdx "
1980 					"%u is > than hbqp->entry_count %u\n",
1981 					hbqno, hbqp->local_hbqGetIdx,
1982 					hbqp->entry_count);
1983 
1984 			phba->link_state = LPFC_HBA_ERROR;
1985 			return NULL;
1986 		}
1987 
1988 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1989 			return NULL;
1990 	}
1991 
1992 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1993 			hbqp->hbqPutIdx;
1994 }
1995 
1996 /**
1997  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1998  * @phba: Pointer to HBA context object.
1999  *
2000  * This function is called with no lock held to free all the
2001  * hbq buffers while uninitializing the SLI interface. It also
2002  * frees the HBQ buffers returned by the firmware but not yet
2003  * processed by the upper layers.
2004  **/
2005 void
2006 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2007 {
2008 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2009 	struct hbq_dmabuf *hbq_buf;
2010 	unsigned long flags;
2011 	int i, hbq_count;
2012 
2013 	hbq_count = lpfc_sli_hbq_count();
2014 	/* Return all memory used by all HBQs */
2015 	spin_lock_irqsave(&phba->hbalock, flags);
2016 	for (i = 0; i < hbq_count; ++i) {
2017 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2018 				&phba->hbqs[i].hbq_buffer_list, list) {
2019 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2020 			list_del(&hbq_buf->dbuf.list);
2021 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2022 		}
2023 		phba->hbqs[i].buffer_count = 0;
2024 	}
2025 
2026 	/* Mark the HBQs not in use */
2027 	phba->hbq_in_use = 0;
2028 	spin_unlock_irqrestore(&phba->hbalock, flags);
2029 }
2030 
2031 /**
2032  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2033  * @phba: Pointer to HBA context object.
2034  * @hbqno: HBQ number.
2035  * @hbq_buf: Pointer to HBQ buffer.
2036  *
2037  * This function is called with the hbalock held to post a
2038  * hbq buffer to the firmware. If the function finds an empty
2039  * slot in the HBQ, it will post the buffer. The function will return
2040  * pointer to the hbq entry if it successfully post the buffer
2041  * else it will return NULL.
2042  **/
2043 static int
2044 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2045 			 struct hbq_dmabuf *hbq_buf)
2046 {
2047 	lockdep_assert_held(&phba->hbalock);
2048 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2049 }
2050 
2051 /**
2052  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2053  * @phba: Pointer to HBA context object.
2054  * @hbqno: HBQ number.
2055  * @hbq_buf: Pointer to HBQ buffer.
2056  *
2057  * This function is called with the hbalock held to post a hbq buffer to the
2058  * firmware. If the function finds an empty slot in the HBQ, it will post the
2059  * buffer and place it on the hbq_buffer_list. The function will return zero if
2060  * it successfully post the buffer else it will return an error.
2061  **/
2062 static int
2063 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2064 			    struct hbq_dmabuf *hbq_buf)
2065 {
2066 	struct lpfc_hbq_entry *hbqe;
2067 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2068 
2069 	lockdep_assert_held(&phba->hbalock);
2070 	/* Get next HBQ entry slot to use */
2071 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2072 	if (hbqe) {
2073 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2074 
2075 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2076 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2077 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2078 		hbqe->bde.tus.f.bdeFlags = 0;
2079 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2080 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2081 				/* Sync SLIM */
2082 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2083 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2084 				/* flush */
2085 		readl(phba->hbq_put + hbqno);
2086 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2087 		return 0;
2088 	} else
2089 		return -ENOMEM;
2090 }
2091 
2092 /**
2093  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2094  * @phba: Pointer to HBA context object.
2095  * @hbqno: HBQ number.
2096  * @hbq_buf: Pointer to HBQ buffer.
2097  *
2098  * This function is called with the hbalock held to post an RQE to the SLI4
2099  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2100  * the hbq_buffer_list and return zero, otherwise it will return an error.
2101  **/
2102 static int
2103 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2104 			    struct hbq_dmabuf *hbq_buf)
2105 {
2106 	int rc;
2107 	struct lpfc_rqe hrqe;
2108 	struct lpfc_rqe drqe;
2109 	struct lpfc_queue *hrq;
2110 	struct lpfc_queue *drq;
2111 
2112 	if (hbqno != LPFC_ELS_HBQ)
2113 		return 1;
2114 	hrq = phba->sli4_hba.hdr_rq;
2115 	drq = phba->sli4_hba.dat_rq;
2116 
2117 	lockdep_assert_held(&phba->hbalock);
2118 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2119 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2120 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2121 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2122 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2123 	if (rc < 0)
2124 		return rc;
2125 	hbq_buf->tag = (rc | (hbqno << 16));
2126 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2127 	return 0;
2128 }
2129 
2130 /* HBQ for ELS and CT traffic. */
2131 static struct lpfc_hbq_init lpfc_els_hbq = {
2132 	.rn = 1,
2133 	.entry_count = 256,
2134 	.mask_count = 0,
2135 	.profile = 0,
2136 	.ring_mask = (1 << LPFC_ELS_RING),
2137 	.buffer_count = 0,
2138 	.init_count = 40,
2139 	.add_count = 40,
2140 };
2141 
2142 /* Array of HBQs */
2143 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2144 	&lpfc_els_hbq,
2145 };
2146 
2147 /**
2148  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2149  * @phba: Pointer to HBA context object.
2150  * @hbqno: HBQ number.
2151  * @count: Number of HBQ buffers to be posted.
2152  *
2153  * This function is called with no lock held to post more hbq buffers to the
2154  * given HBQ. The function returns the number of HBQ buffers successfully
2155  * posted.
2156  **/
2157 static int
2158 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2159 {
2160 	uint32_t i, posted = 0;
2161 	unsigned long flags;
2162 	struct hbq_dmabuf *hbq_buffer;
2163 	LIST_HEAD(hbq_buf_list);
2164 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2165 		return 0;
2166 
2167 	if ((phba->hbqs[hbqno].buffer_count + count) >
2168 	    lpfc_hbq_defs[hbqno]->entry_count)
2169 		count = lpfc_hbq_defs[hbqno]->entry_count -
2170 					phba->hbqs[hbqno].buffer_count;
2171 	if (!count)
2172 		return 0;
2173 	/* Allocate HBQ entries */
2174 	for (i = 0; i < count; i++) {
2175 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2176 		if (!hbq_buffer)
2177 			break;
2178 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2179 	}
2180 	/* Check whether HBQ is still in use */
2181 	spin_lock_irqsave(&phba->hbalock, flags);
2182 	if (!phba->hbq_in_use)
2183 		goto err;
2184 	while (!list_empty(&hbq_buf_list)) {
2185 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2186 				 dbuf.list);
2187 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2188 				      (hbqno << 16));
2189 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2190 			phba->hbqs[hbqno].buffer_count++;
2191 			posted++;
2192 		} else
2193 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2194 	}
2195 	spin_unlock_irqrestore(&phba->hbalock, flags);
2196 	return posted;
2197 err:
2198 	spin_unlock_irqrestore(&phba->hbalock, flags);
2199 	while (!list_empty(&hbq_buf_list)) {
2200 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2201 				 dbuf.list);
2202 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2203 	}
2204 	return 0;
2205 }
2206 
2207 /**
2208  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2209  * @phba: Pointer to HBA context object.
2210  * @qno: HBQ number.
2211  *
2212  * This function posts more buffers to the HBQ. This function
2213  * is called with no lock held. The function returns the number of HBQ entries
2214  * successfully allocated.
2215  **/
2216 int
2217 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2218 {
2219 	if (phba->sli_rev == LPFC_SLI_REV4)
2220 		return 0;
2221 	else
2222 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2223 					 lpfc_hbq_defs[qno]->add_count);
2224 }
2225 
2226 /**
2227  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2228  * @phba: Pointer to HBA context object.
2229  * @qno:  HBQ queue number.
2230  *
2231  * This function is called from SLI initialization code path with
2232  * no lock held to post initial HBQ buffers to firmware. The
2233  * function returns the number of HBQ entries successfully allocated.
2234  **/
2235 static int
2236 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2237 {
2238 	if (phba->sli_rev == LPFC_SLI_REV4)
2239 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2240 					lpfc_hbq_defs[qno]->entry_count);
2241 	else
2242 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2243 					 lpfc_hbq_defs[qno]->init_count);
2244 }
2245 
2246 /**
2247  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2248  * @phba: Pointer to HBA context object.
2249  * @hbqno: HBQ number.
2250  *
2251  * This function removes the first hbq buffer on an hbq list and returns a
2252  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2253  **/
2254 static struct hbq_dmabuf *
2255 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2256 {
2257 	struct lpfc_dmabuf *d_buf;
2258 
2259 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2260 	if (!d_buf)
2261 		return NULL;
2262 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2263 }
2264 
2265 /**
2266  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2267  * @phba: Pointer to HBA context object.
2268  * @hbqno: HBQ number.
2269  *
2270  * This function removes the first RQ buffer on an RQ buffer list and returns a
2271  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2272  **/
2273 static struct rqb_dmabuf *
2274 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2275 {
2276 	struct lpfc_dmabuf *h_buf;
2277 	struct lpfc_rqb *rqbp;
2278 
2279 	rqbp = hrq->rqbp;
2280 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2281 			 struct lpfc_dmabuf, list);
2282 	if (!h_buf)
2283 		return NULL;
2284 	rqbp->buffer_count--;
2285 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2286 }
2287 
2288 /**
2289  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2290  * @phba: Pointer to HBA context object.
2291  * @tag: Tag of the hbq buffer.
2292  *
2293  * This function searches for the hbq buffer associated with the given tag in
2294  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2295  * otherwise it returns NULL.
2296  **/
2297 static struct hbq_dmabuf *
2298 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2299 {
2300 	struct lpfc_dmabuf *d_buf;
2301 	struct hbq_dmabuf *hbq_buf;
2302 	uint32_t hbqno;
2303 
2304 	hbqno = tag >> 16;
2305 	if (hbqno >= LPFC_MAX_HBQS)
2306 		return NULL;
2307 
2308 	spin_lock_irq(&phba->hbalock);
2309 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2310 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2311 		if (hbq_buf->tag == tag) {
2312 			spin_unlock_irq(&phba->hbalock);
2313 			return hbq_buf;
2314 		}
2315 	}
2316 	spin_unlock_irq(&phba->hbalock);
2317 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2318 			"1803 Bad hbq tag. Data: x%x x%x\n",
2319 			tag, phba->hbqs[tag >> 16].buffer_count);
2320 	return NULL;
2321 }
2322 
2323 /**
2324  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2325  * @phba: Pointer to HBA context object.
2326  * @hbq_buffer: Pointer to HBQ buffer.
2327  *
2328  * This function is called with hbalock. This function gives back
2329  * the hbq buffer to firmware. If the HBQ does not have space to
2330  * post the buffer, it will free the buffer.
2331  **/
2332 void
2333 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2334 {
2335 	uint32_t hbqno;
2336 
2337 	if (hbq_buffer) {
2338 		hbqno = hbq_buffer->tag >> 16;
2339 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2340 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2341 	}
2342 }
2343 
2344 /**
2345  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2346  * @mbxCommand: mailbox command code.
2347  *
2348  * This function is called by the mailbox event handler function to verify
2349  * that the completed mailbox command is a legitimate mailbox command. If the
2350  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2351  * and the mailbox event handler will take the HBA offline.
2352  **/
2353 static int
2354 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2355 {
2356 	uint8_t ret;
2357 
2358 	switch (mbxCommand) {
2359 	case MBX_LOAD_SM:
2360 	case MBX_READ_NV:
2361 	case MBX_WRITE_NV:
2362 	case MBX_WRITE_VPARMS:
2363 	case MBX_RUN_BIU_DIAG:
2364 	case MBX_INIT_LINK:
2365 	case MBX_DOWN_LINK:
2366 	case MBX_CONFIG_LINK:
2367 	case MBX_CONFIG_RING:
2368 	case MBX_RESET_RING:
2369 	case MBX_READ_CONFIG:
2370 	case MBX_READ_RCONFIG:
2371 	case MBX_READ_SPARM:
2372 	case MBX_READ_STATUS:
2373 	case MBX_READ_RPI:
2374 	case MBX_READ_XRI:
2375 	case MBX_READ_REV:
2376 	case MBX_READ_LNK_STAT:
2377 	case MBX_REG_LOGIN:
2378 	case MBX_UNREG_LOGIN:
2379 	case MBX_CLEAR_LA:
2380 	case MBX_DUMP_MEMORY:
2381 	case MBX_DUMP_CONTEXT:
2382 	case MBX_RUN_DIAGS:
2383 	case MBX_RESTART:
2384 	case MBX_UPDATE_CFG:
2385 	case MBX_DOWN_LOAD:
2386 	case MBX_DEL_LD_ENTRY:
2387 	case MBX_RUN_PROGRAM:
2388 	case MBX_SET_MASK:
2389 	case MBX_SET_VARIABLE:
2390 	case MBX_UNREG_D_ID:
2391 	case MBX_KILL_BOARD:
2392 	case MBX_CONFIG_FARP:
2393 	case MBX_BEACON:
2394 	case MBX_LOAD_AREA:
2395 	case MBX_RUN_BIU_DIAG64:
2396 	case MBX_CONFIG_PORT:
2397 	case MBX_READ_SPARM64:
2398 	case MBX_READ_RPI64:
2399 	case MBX_REG_LOGIN64:
2400 	case MBX_READ_TOPOLOGY:
2401 	case MBX_WRITE_WWN:
2402 	case MBX_SET_DEBUG:
2403 	case MBX_LOAD_EXP_ROM:
2404 	case MBX_ASYNCEVT_ENABLE:
2405 	case MBX_REG_VPI:
2406 	case MBX_UNREG_VPI:
2407 	case MBX_HEARTBEAT:
2408 	case MBX_PORT_CAPABILITIES:
2409 	case MBX_PORT_IOV_CONTROL:
2410 	case MBX_SLI4_CONFIG:
2411 	case MBX_SLI4_REQ_FTRS:
2412 	case MBX_REG_FCFI:
2413 	case MBX_UNREG_FCFI:
2414 	case MBX_REG_VFI:
2415 	case MBX_UNREG_VFI:
2416 	case MBX_INIT_VPI:
2417 	case MBX_INIT_VFI:
2418 	case MBX_RESUME_RPI:
2419 	case MBX_READ_EVENT_LOG_STATUS:
2420 	case MBX_READ_EVENT_LOG:
2421 	case MBX_SECURITY_MGMT:
2422 	case MBX_AUTH_PORT:
2423 	case MBX_ACCESS_VDATA:
2424 		ret = mbxCommand;
2425 		break;
2426 	default:
2427 		ret = MBX_SHUTDOWN;
2428 		break;
2429 	}
2430 	return ret;
2431 }
2432 
2433 /**
2434  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2435  * @phba: Pointer to HBA context object.
2436  * @pmboxq: Pointer to mailbox command.
2437  *
2438  * This is completion handler function for mailbox commands issued from
2439  * lpfc_sli_issue_mbox_wait function. This function is called by the
2440  * mailbox event handler function with no lock held. This function
2441  * will wake up thread waiting on the wait queue pointed by context1
2442  * of the mailbox.
2443  **/
2444 void
2445 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2446 {
2447 	unsigned long drvr_flag;
2448 	struct completion *pmbox_done;
2449 
2450 	/*
2451 	 * If pmbox_done is empty, the driver thread gave up waiting and
2452 	 * continued running.
2453 	 */
2454 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2455 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2456 	pmbox_done = (struct completion *)pmboxq->context3;
2457 	if (pmbox_done)
2458 		complete(pmbox_done);
2459 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2460 	return;
2461 }
2462 
2463 static void
2464 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2465 {
2466 	unsigned long iflags;
2467 
2468 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2469 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2470 		spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2471 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2472 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2473 		spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2474 	}
2475 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2476 }
2477 
2478 /**
2479  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2480  * @phba: Pointer to HBA context object.
2481  * @pmb: Pointer to mailbox object.
2482  *
2483  * This function is the default mailbox completion handler. It
2484  * frees the memory resources associated with the completed mailbox
2485  * command. If the completed command is a REG_LOGIN mailbox command,
2486  * this function will issue a UREG_LOGIN to re-claim the RPI.
2487  **/
2488 void
2489 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2490 {
2491 	struct lpfc_vport  *vport = pmb->vport;
2492 	struct lpfc_dmabuf *mp;
2493 	struct lpfc_nodelist *ndlp;
2494 	struct Scsi_Host *shost;
2495 	uint16_t rpi, vpi;
2496 	int rc;
2497 
2498 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2499 
2500 	if (mp) {
2501 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2502 		kfree(mp);
2503 	}
2504 
2505 	/*
2506 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2507 	 * is in re-discovery driver need to cleanup the RPI.
2508 	 */
2509 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2510 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2511 	    !pmb->u.mb.mbxStatus) {
2512 		rpi = pmb->u.mb.un.varWords[0];
2513 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2514 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2515 		pmb->vport = vport;
2516 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2517 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2518 		if (rc != MBX_NOT_FINISHED)
2519 			return;
2520 	}
2521 
2522 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2523 		!(phba->pport->load_flag & FC_UNLOADING) &&
2524 		!pmb->u.mb.mbxStatus) {
2525 		shost = lpfc_shost_from_vport(vport);
2526 		spin_lock_irq(shost->host_lock);
2527 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2528 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2529 		spin_unlock_irq(shost->host_lock);
2530 	}
2531 
2532 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2533 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2534 		lpfc_nlp_put(ndlp);
2535 		pmb->ctx_buf = NULL;
2536 		pmb->ctx_ndlp = NULL;
2537 	}
2538 
2539 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2540 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2541 
2542 		/* Check to see if there are any deferred events to process */
2543 		if (ndlp) {
2544 			lpfc_printf_vlog(
2545 				vport,
2546 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2547 				"1438 UNREG cmpl deferred mbox x%x "
2548 				"on NPort x%x Data: x%x x%x %px\n",
2549 				ndlp->nlp_rpi, ndlp->nlp_DID,
2550 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2551 
2552 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2553 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2554 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2555 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2556 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2557 			} else {
2558 				__lpfc_sli_rpi_release(vport, ndlp);
2559 			}
2560 			if (vport->load_flag & FC_UNLOADING)
2561 				lpfc_nlp_put(ndlp);
2562 			pmb->ctx_ndlp = NULL;
2563 		}
2564 	}
2565 
2566 	/* Check security permission status on INIT_LINK mailbox command */
2567 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2568 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2569 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2570 				"2860 SLI authentication is required "
2571 				"for INIT_LINK but has not done yet\n");
2572 
2573 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2574 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2575 	else
2576 		mempool_free(pmb, phba->mbox_mem_pool);
2577 }
2578  /**
2579  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2580  * @phba: Pointer to HBA context object.
2581  * @pmb: Pointer to mailbox object.
2582  *
2583  * This function is the unreg rpi mailbox completion handler. It
2584  * frees the memory resources associated with the completed mailbox
2585  * command. An additional refrenece is put on the ndlp to prevent
2586  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2587  * the unreg mailbox command completes, this routine puts the
2588  * reference back.
2589  *
2590  **/
2591 void
2592 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2593 {
2594 	struct lpfc_vport  *vport = pmb->vport;
2595 	struct lpfc_nodelist *ndlp;
2596 
2597 	ndlp = pmb->ctx_ndlp;
2598 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2599 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2600 		    (bf_get(lpfc_sli_intf_if_type,
2601 		     &phba->sli4_hba.sli_intf) >=
2602 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2603 			if (ndlp) {
2604 				lpfc_printf_vlog(
2605 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2606 					 "0010 UNREG_LOGIN vpi:%x "
2607 					 "rpi:%x DID:%x defer x%x flg x%x "
2608 					 "map:%x %px\n",
2609 					 vport->vpi, ndlp->nlp_rpi,
2610 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2611 					 ndlp->nlp_flag,
2612 					 ndlp->nlp_usg_map, ndlp);
2613 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2614 				lpfc_nlp_put(ndlp);
2615 
2616 				/* Check to see if there are any deferred
2617 				 * events to process
2618 				 */
2619 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2620 				    (ndlp->nlp_defer_did !=
2621 				    NLP_EVT_NOTHING_PENDING)) {
2622 					lpfc_printf_vlog(
2623 						vport, KERN_INFO, LOG_DISCOVERY,
2624 						"4111 UNREG cmpl deferred "
2625 						"clr x%x on "
2626 						"NPort x%x Data: x%x x%px\n",
2627 						ndlp->nlp_rpi, ndlp->nlp_DID,
2628 						ndlp->nlp_defer_did, ndlp);
2629 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2630 					ndlp->nlp_defer_did =
2631 						NLP_EVT_NOTHING_PENDING;
2632 					lpfc_issue_els_plogi(
2633 						vport, ndlp->nlp_DID, 0);
2634 				} else {
2635 					__lpfc_sli_rpi_release(vport, ndlp);
2636 				}
2637 			}
2638 		}
2639 	}
2640 
2641 	mempool_free(pmb, phba->mbox_mem_pool);
2642 }
2643 
2644 /**
2645  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2646  * @phba: Pointer to HBA context object.
2647  *
2648  * This function is called with no lock held. This function processes all
2649  * the completed mailbox commands and gives it to upper layers. The interrupt
2650  * service routine processes mailbox completion interrupt and adds completed
2651  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2652  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2653  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2654  * function returns the mailbox commands to the upper layer by calling the
2655  * completion handler function of each mailbox.
2656  **/
2657 int
2658 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2659 {
2660 	MAILBOX_t *pmbox;
2661 	LPFC_MBOXQ_t *pmb;
2662 	int rc;
2663 	LIST_HEAD(cmplq);
2664 
2665 	phba->sli.slistat.mbox_event++;
2666 
2667 	/* Get all completed mailboxe buffers into the cmplq */
2668 	spin_lock_irq(&phba->hbalock);
2669 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2670 	spin_unlock_irq(&phba->hbalock);
2671 
2672 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2673 	do {
2674 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2675 		if (pmb == NULL)
2676 			break;
2677 
2678 		pmbox = &pmb->u.mb;
2679 
2680 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2681 			if (pmb->vport) {
2682 				lpfc_debugfs_disc_trc(pmb->vport,
2683 					LPFC_DISC_TRC_MBOX_VPORT,
2684 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2685 					(uint32_t)pmbox->mbxCommand,
2686 					pmbox->un.varWords[0],
2687 					pmbox->un.varWords[1]);
2688 			}
2689 			else {
2690 				lpfc_debugfs_disc_trc(phba->pport,
2691 					LPFC_DISC_TRC_MBOX,
2692 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2693 					(uint32_t)pmbox->mbxCommand,
2694 					pmbox->un.varWords[0],
2695 					pmbox->un.varWords[1]);
2696 			}
2697 		}
2698 
2699 		/*
2700 		 * It is a fatal error if unknown mbox command completion.
2701 		 */
2702 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2703 		    MBX_SHUTDOWN) {
2704 			/* Unknown mailbox command compl */
2705 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2706 					"(%d):0323 Unknown Mailbox command "
2707 					"x%x (x%x/x%x) Cmpl\n",
2708 					pmb->vport ? pmb->vport->vpi :
2709 					LPFC_VPORT_UNKNOWN,
2710 					pmbox->mbxCommand,
2711 					lpfc_sli_config_mbox_subsys_get(phba,
2712 									pmb),
2713 					lpfc_sli_config_mbox_opcode_get(phba,
2714 									pmb));
2715 			phba->link_state = LPFC_HBA_ERROR;
2716 			phba->work_hs = HS_FFER3;
2717 			lpfc_handle_eratt(phba);
2718 			continue;
2719 		}
2720 
2721 		if (pmbox->mbxStatus) {
2722 			phba->sli.slistat.mbox_stat_err++;
2723 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2724 				/* Mbox cmd cmpl error - RETRYing */
2725 				lpfc_printf_log(phba, KERN_INFO,
2726 					LOG_MBOX | LOG_SLI,
2727 					"(%d):0305 Mbox cmd cmpl "
2728 					"error - RETRYing Data: x%x "
2729 					"(x%x/x%x) x%x x%x x%x\n",
2730 					pmb->vport ? pmb->vport->vpi :
2731 					LPFC_VPORT_UNKNOWN,
2732 					pmbox->mbxCommand,
2733 					lpfc_sli_config_mbox_subsys_get(phba,
2734 									pmb),
2735 					lpfc_sli_config_mbox_opcode_get(phba,
2736 									pmb),
2737 					pmbox->mbxStatus,
2738 					pmbox->un.varWords[0],
2739 					pmb->vport ? pmb->vport->port_state :
2740 					LPFC_VPORT_UNKNOWN);
2741 				pmbox->mbxStatus = 0;
2742 				pmbox->mbxOwner = OWN_HOST;
2743 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2744 				if (rc != MBX_NOT_FINISHED)
2745 					continue;
2746 			}
2747 		}
2748 
2749 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2750 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2751 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2752 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2753 				"x%x x%x x%x\n",
2754 				pmb->vport ? pmb->vport->vpi : 0,
2755 				pmbox->mbxCommand,
2756 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2757 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2758 				pmb->mbox_cmpl,
2759 				*((uint32_t *) pmbox),
2760 				pmbox->un.varWords[0],
2761 				pmbox->un.varWords[1],
2762 				pmbox->un.varWords[2],
2763 				pmbox->un.varWords[3],
2764 				pmbox->un.varWords[4],
2765 				pmbox->un.varWords[5],
2766 				pmbox->un.varWords[6],
2767 				pmbox->un.varWords[7],
2768 				pmbox->un.varWords[8],
2769 				pmbox->un.varWords[9],
2770 				pmbox->un.varWords[10]);
2771 
2772 		if (pmb->mbox_cmpl)
2773 			pmb->mbox_cmpl(phba,pmb);
2774 	} while (1);
2775 	return 0;
2776 }
2777 
2778 /**
2779  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2780  * @phba: Pointer to HBA context object.
2781  * @pring: Pointer to driver SLI ring object.
2782  * @tag: buffer tag.
2783  *
2784  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2785  * is set in the tag the buffer is posted for a particular exchange,
2786  * the function will return the buffer without replacing the buffer.
2787  * If the buffer is for unsolicited ELS or CT traffic, this function
2788  * returns the buffer and also posts another buffer to the firmware.
2789  **/
2790 static struct lpfc_dmabuf *
2791 lpfc_sli_get_buff(struct lpfc_hba *phba,
2792 		  struct lpfc_sli_ring *pring,
2793 		  uint32_t tag)
2794 {
2795 	struct hbq_dmabuf *hbq_entry;
2796 
2797 	if (tag & QUE_BUFTAG_BIT)
2798 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2799 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2800 	if (!hbq_entry)
2801 		return NULL;
2802 	return &hbq_entry->dbuf;
2803 }
2804 
2805 /**
2806  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2807  * @phba: Pointer to HBA context object.
2808  * @pring: Pointer to driver SLI ring object.
2809  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2810  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2811  * @fch_type: the type for the first frame of the sequence.
2812  *
2813  * This function is called with no lock held. This function uses the r_ctl and
2814  * type of the received sequence to find the correct callback function to call
2815  * to process the sequence.
2816  **/
2817 static int
2818 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2819 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2820 			 uint32_t fch_type)
2821 {
2822 	int i;
2823 
2824 	switch (fch_type) {
2825 	case FC_TYPE_NVME:
2826 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2827 		return 1;
2828 	default:
2829 		break;
2830 	}
2831 
2832 	/* unSolicited Responses */
2833 	if (pring->prt[0].profile) {
2834 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2835 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2836 									saveq);
2837 		return 1;
2838 	}
2839 	/* We must search, based on rctl / type
2840 	   for the right routine */
2841 	for (i = 0; i < pring->num_mask; i++) {
2842 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2843 		    (pring->prt[i].type == fch_type)) {
2844 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2845 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2846 						(phba, pring, saveq);
2847 			return 1;
2848 		}
2849 	}
2850 	return 0;
2851 }
2852 
2853 /**
2854  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2855  * @phba: Pointer to HBA context object.
2856  * @pring: Pointer to driver SLI ring object.
2857  * @saveq: Pointer to the unsolicited iocb.
2858  *
2859  * This function is called with no lock held by the ring event handler
2860  * when there is an unsolicited iocb posted to the response ring by the
2861  * firmware. This function gets the buffer associated with the iocbs
2862  * and calls the event handler for the ring. This function handles both
2863  * qring buffers and hbq buffers.
2864  * When the function returns 1 the caller can free the iocb object otherwise
2865  * upper layer functions will free the iocb objects.
2866  **/
2867 static int
2868 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2869 			    struct lpfc_iocbq *saveq)
2870 {
2871 	IOCB_t           * irsp;
2872 	WORD5            * w5p;
2873 	uint32_t           Rctl, Type;
2874 	struct lpfc_iocbq *iocbq;
2875 	struct lpfc_dmabuf *dmzbuf;
2876 
2877 	irsp = &(saveq->iocb);
2878 
2879 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2880 		if (pring->lpfc_sli_rcv_async_status)
2881 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2882 		else
2883 			lpfc_printf_log(phba,
2884 					KERN_WARNING,
2885 					LOG_SLI,
2886 					"0316 Ring %d handler: unexpected "
2887 					"ASYNC_STATUS iocb received evt_code "
2888 					"0x%x\n",
2889 					pring->ringno,
2890 					irsp->un.asyncstat.evt_code);
2891 		return 1;
2892 	}
2893 
2894 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2895 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2896 		if (irsp->ulpBdeCount > 0) {
2897 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2898 					irsp->un.ulpWord[3]);
2899 			lpfc_in_buf_free(phba, dmzbuf);
2900 		}
2901 
2902 		if (irsp->ulpBdeCount > 1) {
2903 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2904 					irsp->unsli3.sli3Words[3]);
2905 			lpfc_in_buf_free(phba, dmzbuf);
2906 		}
2907 
2908 		if (irsp->ulpBdeCount > 2) {
2909 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2910 				irsp->unsli3.sli3Words[7]);
2911 			lpfc_in_buf_free(phba, dmzbuf);
2912 		}
2913 
2914 		return 1;
2915 	}
2916 
2917 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2918 		if (irsp->ulpBdeCount != 0) {
2919 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2920 						irsp->un.ulpWord[3]);
2921 			if (!saveq->context2)
2922 				lpfc_printf_log(phba,
2923 					KERN_ERR,
2924 					LOG_SLI,
2925 					"0341 Ring %d Cannot find buffer for "
2926 					"an unsolicited iocb. tag 0x%x\n",
2927 					pring->ringno,
2928 					irsp->un.ulpWord[3]);
2929 		}
2930 		if (irsp->ulpBdeCount == 2) {
2931 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2932 						irsp->unsli3.sli3Words[7]);
2933 			if (!saveq->context3)
2934 				lpfc_printf_log(phba,
2935 					KERN_ERR,
2936 					LOG_SLI,
2937 					"0342 Ring %d Cannot find buffer for an"
2938 					" unsolicited iocb. tag 0x%x\n",
2939 					pring->ringno,
2940 					irsp->unsli3.sli3Words[7]);
2941 		}
2942 		list_for_each_entry(iocbq, &saveq->list, list) {
2943 			irsp = &(iocbq->iocb);
2944 			if (irsp->ulpBdeCount != 0) {
2945 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2946 							irsp->un.ulpWord[3]);
2947 				if (!iocbq->context2)
2948 					lpfc_printf_log(phba,
2949 						KERN_ERR,
2950 						LOG_SLI,
2951 						"0343 Ring %d Cannot find "
2952 						"buffer for an unsolicited iocb"
2953 						". tag 0x%x\n", pring->ringno,
2954 						irsp->un.ulpWord[3]);
2955 			}
2956 			if (irsp->ulpBdeCount == 2) {
2957 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2958 						irsp->unsli3.sli3Words[7]);
2959 				if (!iocbq->context3)
2960 					lpfc_printf_log(phba,
2961 						KERN_ERR,
2962 						LOG_SLI,
2963 						"0344 Ring %d Cannot find "
2964 						"buffer for an unsolicited "
2965 						"iocb. tag 0x%x\n",
2966 						pring->ringno,
2967 						irsp->unsli3.sli3Words[7]);
2968 			}
2969 		}
2970 	}
2971 	if (irsp->ulpBdeCount != 0 &&
2972 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2973 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2974 		int found = 0;
2975 
2976 		/* search continue save q for same XRI */
2977 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2978 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2979 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2980 				list_add_tail(&saveq->list, &iocbq->list);
2981 				found = 1;
2982 				break;
2983 			}
2984 		}
2985 		if (!found)
2986 			list_add_tail(&saveq->clist,
2987 				      &pring->iocb_continue_saveq);
2988 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2989 			list_del_init(&iocbq->clist);
2990 			saveq = iocbq;
2991 			irsp = &(saveq->iocb);
2992 		} else
2993 			return 0;
2994 	}
2995 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2996 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2997 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2998 		Rctl = FC_RCTL_ELS_REQ;
2999 		Type = FC_TYPE_ELS;
3000 	} else {
3001 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3002 		Rctl = w5p->hcsw.Rctl;
3003 		Type = w5p->hcsw.Type;
3004 
3005 		/* Firmware Workaround */
3006 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3007 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3008 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3009 			Rctl = FC_RCTL_ELS_REQ;
3010 			Type = FC_TYPE_ELS;
3011 			w5p->hcsw.Rctl = Rctl;
3012 			w5p->hcsw.Type = Type;
3013 		}
3014 	}
3015 
3016 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3017 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3018 				"0313 Ring %d handler: unexpected Rctl x%x "
3019 				"Type x%x received\n",
3020 				pring->ringno, Rctl, Type);
3021 
3022 	return 1;
3023 }
3024 
3025 /**
3026  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3027  * @phba: Pointer to HBA context object.
3028  * @pring: Pointer to driver SLI ring object.
3029  * @prspiocb: Pointer to response iocb object.
3030  *
3031  * This function looks up the iocb_lookup table to get the command iocb
3032  * corresponding to the given response iocb using the iotag of the
3033  * response iocb. The driver calls this function with the hbalock held
3034  * for SLI3 ports or the ring lock held for SLI4 ports.
3035  * This function returns the command iocb object if it finds the command
3036  * iocb else returns NULL.
3037  **/
3038 static struct lpfc_iocbq *
3039 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3040 		      struct lpfc_sli_ring *pring,
3041 		      struct lpfc_iocbq *prspiocb)
3042 {
3043 	struct lpfc_iocbq *cmd_iocb = NULL;
3044 	uint16_t iotag;
3045 	spinlock_t *temp_lock = NULL;
3046 	unsigned long iflag = 0;
3047 
3048 	if (phba->sli_rev == LPFC_SLI_REV4)
3049 		temp_lock = &pring->ring_lock;
3050 	else
3051 		temp_lock = &phba->hbalock;
3052 
3053 	spin_lock_irqsave(temp_lock, iflag);
3054 	iotag = prspiocb->iocb.ulpIoTag;
3055 
3056 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3057 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3058 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3059 			/* remove from txcmpl queue list */
3060 			list_del_init(&cmd_iocb->list);
3061 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3062 			pring->txcmplq_cnt--;
3063 			spin_unlock_irqrestore(temp_lock, iflag);
3064 			return cmd_iocb;
3065 		}
3066 	}
3067 
3068 	spin_unlock_irqrestore(temp_lock, iflag);
3069 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3070 			"0317 iotag x%x is out of "
3071 			"range: max iotag x%x wd0 x%x\n",
3072 			iotag, phba->sli.last_iotag,
3073 			*(((uint32_t *) &prspiocb->iocb) + 7));
3074 	return NULL;
3075 }
3076 
3077 /**
3078  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3079  * @phba: Pointer to HBA context object.
3080  * @pring: Pointer to driver SLI ring object.
3081  * @iotag: IOCB tag.
3082  *
3083  * This function looks up the iocb_lookup table to get the command iocb
3084  * corresponding to the given iotag. The driver calls this function with
3085  * the ring lock held because this function is an SLI4 port only helper.
3086  * This function returns the command iocb object if it finds the command
3087  * iocb else returns NULL.
3088  **/
3089 static struct lpfc_iocbq *
3090 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3091 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3092 {
3093 	struct lpfc_iocbq *cmd_iocb = NULL;
3094 	spinlock_t *temp_lock = NULL;
3095 	unsigned long iflag = 0;
3096 
3097 	if (phba->sli_rev == LPFC_SLI_REV4)
3098 		temp_lock = &pring->ring_lock;
3099 	else
3100 		temp_lock = &phba->hbalock;
3101 
3102 	spin_lock_irqsave(temp_lock, iflag);
3103 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3104 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3105 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3106 			/* remove from txcmpl queue list */
3107 			list_del_init(&cmd_iocb->list);
3108 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3109 			pring->txcmplq_cnt--;
3110 			spin_unlock_irqrestore(temp_lock, iflag);
3111 			return cmd_iocb;
3112 		}
3113 	}
3114 
3115 	spin_unlock_irqrestore(temp_lock, iflag);
3116 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3117 			"0372 iotag x%x lookup error: max iotag (x%x) "
3118 			"iocb_flag x%x\n",
3119 			iotag, phba->sli.last_iotag,
3120 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3121 	return NULL;
3122 }
3123 
3124 /**
3125  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3126  * @phba: Pointer to HBA context object.
3127  * @pring: Pointer to driver SLI ring object.
3128  * @saveq: Pointer to the response iocb to be processed.
3129  *
3130  * This function is called by the ring event handler for non-fcp
3131  * rings when there is a new response iocb in the response ring.
3132  * The caller is not required to hold any locks. This function
3133  * gets the command iocb associated with the response iocb and
3134  * calls the completion handler for the command iocb. If there
3135  * is no completion handler, the function will free the resources
3136  * associated with command iocb. If the response iocb is for
3137  * an already aborted command iocb, the status of the completion
3138  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3139  * This function always returns 1.
3140  **/
3141 static int
3142 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3143 			  struct lpfc_iocbq *saveq)
3144 {
3145 	struct lpfc_iocbq *cmdiocbp;
3146 	int rc = 1;
3147 	unsigned long iflag;
3148 
3149 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3150 	if (cmdiocbp) {
3151 		if (cmdiocbp->iocb_cmpl) {
3152 			/*
3153 			 * If an ELS command failed send an event to mgmt
3154 			 * application.
3155 			 */
3156 			if (saveq->iocb.ulpStatus &&
3157 			     (pring->ringno == LPFC_ELS_RING) &&
3158 			     (cmdiocbp->iocb.ulpCommand ==
3159 				CMD_ELS_REQUEST64_CR))
3160 				lpfc_send_els_failure_event(phba,
3161 					cmdiocbp, saveq);
3162 
3163 			/*
3164 			 * Post all ELS completions to the worker thread.
3165 			 * All other are passed to the completion callback.
3166 			 */
3167 			if (pring->ringno == LPFC_ELS_RING) {
3168 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3169 				    (cmdiocbp->iocb_flag &
3170 							LPFC_DRIVER_ABORTED)) {
3171 					spin_lock_irqsave(&phba->hbalock,
3172 							  iflag);
3173 					cmdiocbp->iocb_flag &=
3174 						~LPFC_DRIVER_ABORTED;
3175 					spin_unlock_irqrestore(&phba->hbalock,
3176 							       iflag);
3177 					saveq->iocb.ulpStatus =
3178 						IOSTAT_LOCAL_REJECT;
3179 					saveq->iocb.un.ulpWord[4] =
3180 						IOERR_SLI_ABORTED;
3181 
3182 					/* Firmware could still be in progress
3183 					 * of DMAing payload, so don't free data
3184 					 * buffer till after a hbeat.
3185 					 */
3186 					spin_lock_irqsave(&phba->hbalock,
3187 							  iflag);
3188 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3189 					spin_unlock_irqrestore(&phba->hbalock,
3190 							       iflag);
3191 				}
3192 				if (phba->sli_rev == LPFC_SLI_REV4) {
3193 					if (saveq->iocb_flag &
3194 					    LPFC_EXCHANGE_BUSY) {
3195 						/* Set cmdiocb flag for the
3196 						 * exchange busy so sgl (xri)
3197 						 * will not be released until
3198 						 * the abort xri is received
3199 						 * from hba.
3200 						 */
3201 						spin_lock_irqsave(
3202 							&phba->hbalock, iflag);
3203 						cmdiocbp->iocb_flag |=
3204 							LPFC_EXCHANGE_BUSY;
3205 						spin_unlock_irqrestore(
3206 							&phba->hbalock, iflag);
3207 					}
3208 					if (cmdiocbp->iocb_flag &
3209 					    LPFC_DRIVER_ABORTED) {
3210 						/*
3211 						 * Clear LPFC_DRIVER_ABORTED
3212 						 * bit in case it was driver
3213 						 * initiated abort.
3214 						 */
3215 						spin_lock_irqsave(
3216 							&phba->hbalock, iflag);
3217 						cmdiocbp->iocb_flag &=
3218 							~LPFC_DRIVER_ABORTED;
3219 						spin_unlock_irqrestore(
3220 							&phba->hbalock, iflag);
3221 						cmdiocbp->iocb.ulpStatus =
3222 							IOSTAT_LOCAL_REJECT;
3223 						cmdiocbp->iocb.un.ulpWord[4] =
3224 							IOERR_ABORT_REQUESTED;
3225 						/*
3226 						 * For SLI4, irsiocb contains
3227 						 * NO_XRI in sli_xritag, it
3228 						 * shall not affect releasing
3229 						 * sgl (xri) process.
3230 						 */
3231 						saveq->iocb.ulpStatus =
3232 							IOSTAT_LOCAL_REJECT;
3233 						saveq->iocb.un.ulpWord[4] =
3234 							IOERR_SLI_ABORTED;
3235 						spin_lock_irqsave(
3236 							&phba->hbalock, iflag);
3237 						saveq->iocb_flag |=
3238 							LPFC_DELAY_MEM_FREE;
3239 						spin_unlock_irqrestore(
3240 							&phba->hbalock, iflag);
3241 					}
3242 				}
3243 			}
3244 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3245 		} else
3246 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3247 	} else {
3248 		/*
3249 		 * Unknown initiating command based on the response iotag.
3250 		 * This could be the case on the ELS ring because of
3251 		 * lpfc_els_abort().
3252 		 */
3253 		if (pring->ringno != LPFC_ELS_RING) {
3254 			/*
3255 			 * Ring <ringno> handler: unexpected completion IoTag
3256 			 * <IoTag>
3257 			 */
3258 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3259 					 "0322 Ring %d handler: "
3260 					 "unexpected completion IoTag x%x "
3261 					 "Data: x%x x%x x%x x%x\n",
3262 					 pring->ringno,
3263 					 saveq->iocb.ulpIoTag,
3264 					 saveq->iocb.ulpStatus,
3265 					 saveq->iocb.un.ulpWord[4],
3266 					 saveq->iocb.ulpCommand,
3267 					 saveq->iocb.ulpContext);
3268 		}
3269 	}
3270 
3271 	return rc;
3272 }
3273 
3274 /**
3275  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3276  * @phba: Pointer to HBA context object.
3277  * @pring: Pointer to driver SLI ring object.
3278  *
3279  * This function is called from the iocb ring event handlers when
3280  * put pointer is ahead of the get pointer for a ring. This function signal
3281  * an error attention condition to the worker thread and the worker
3282  * thread will transition the HBA to offline state.
3283  **/
3284 static void
3285 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3286 {
3287 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3288 	/*
3289 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3290 	 * rsp ring <portRspMax>
3291 	 */
3292 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3293 			"0312 Ring %d handler: portRspPut %d "
3294 			"is bigger than rsp ring %d\n",
3295 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3296 			pring->sli.sli3.numRiocb);
3297 
3298 	phba->link_state = LPFC_HBA_ERROR;
3299 
3300 	/*
3301 	 * All error attention handlers are posted to
3302 	 * worker thread
3303 	 */
3304 	phba->work_ha |= HA_ERATT;
3305 	phba->work_hs = HS_FFER3;
3306 
3307 	lpfc_worker_wake_up(phba);
3308 
3309 	return;
3310 }
3311 
3312 /**
3313  * lpfc_poll_eratt - Error attention polling timer timeout handler
3314  * @ptr: Pointer to address of HBA context object.
3315  *
3316  * This function is invoked by the Error Attention polling timer when the
3317  * timer times out. It will check the SLI Error Attention register for
3318  * possible attention events. If so, it will post an Error Attention event
3319  * and wake up worker thread to process it. Otherwise, it will set up the
3320  * Error Attention polling timer for the next poll.
3321  **/
3322 void lpfc_poll_eratt(struct timer_list *t)
3323 {
3324 	struct lpfc_hba *phba;
3325 	uint32_t eratt = 0;
3326 	uint64_t sli_intr, cnt;
3327 
3328 	phba = from_timer(phba, t, eratt_poll);
3329 
3330 	/* Here we will also keep track of interrupts per sec of the hba */
3331 	sli_intr = phba->sli.slistat.sli_intr;
3332 
3333 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3334 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3335 			sli_intr);
3336 	else
3337 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3338 
3339 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3340 	do_div(cnt, phba->eratt_poll_interval);
3341 	phba->sli.slistat.sli_ips = cnt;
3342 
3343 	phba->sli.slistat.sli_prev_intr = sli_intr;
3344 
3345 	/* Check chip HA register for error event */
3346 	eratt = lpfc_sli_check_eratt(phba);
3347 
3348 	if (eratt)
3349 		/* Tell the worker thread there is work to do */
3350 		lpfc_worker_wake_up(phba);
3351 	else
3352 		/* Restart the timer for next eratt poll */
3353 		mod_timer(&phba->eratt_poll,
3354 			  jiffies +
3355 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3356 	return;
3357 }
3358 
3359 
3360 /**
3361  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3362  * @phba: Pointer to HBA context object.
3363  * @pring: Pointer to driver SLI ring object.
3364  * @mask: Host attention register mask for this ring.
3365  *
3366  * This function is called from the interrupt context when there is a ring
3367  * event for the fcp ring. The caller does not hold any lock.
3368  * The function processes each response iocb in the response ring until it
3369  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3370  * LE bit set. The function will call the completion handler of the command iocb
3371  * if the response iocb indicates a completion for a command iocb or it is
3372  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3373  * function if this is an unsolicited iocb.
3374  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3375  * to check it explicitly.
3376  */
3377 int
3378 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3379 				struct lpfc_sli_ring *pring, uint32_t mask)
3380 {
3381 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3382 	IOCB_t *irsp = NULL;
3383 	IOCB_t *entry = NULL;
3384 	struct lpfc_iocbq *cmdiocbq = NULL;
3385 	struct lpfc_iocbq rspiocbq;
3386 	uint32_t status;
3387 	uint32_t portRspPut, portRspMax;
3388 	int rc = 1;
3389 	lpfc_iocb_type type;
3390 	unsigned long iflag;
3391 	uint32_t rsp_cmpl = 0;
3392 
3393 	spin_lock_irqsave(&phba->hbalock, iflag);
3394 	pring->stats.iocb_event++;
3395 
3396 	/*
3397 	 * The next available response entry should never exceed the maximum
3398 	 * entries.  If it does, treat it as an adapter hardware error.
3399 	 */
3400 	portRspMax = pring->sli.sli3.numRiocb;
3401 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3402 	if (unlikely(portRspPut >= portRspMax)) {
3403 		lpfc_sli_rsp_pointers_error(phba, pring);
3404 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3405 		return 1;
3406 	}
3407 	if (phba->fcp_ring_in_use) {
3408 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3409 		return 1;
3410 	} else
3411 		phba->fcp_ring_in_use = 1;
3412 
3413 	rmb();
3414 	while (pring->sli.sli3.rspidx != portRspPut) {
3415 		/*
3416 		 * Fetch an entry off the ring and copy it into a local data
3417 		 * structure.  The copy involves a byte-swap since the
3418 		 * network byte order and pci byte orders are different.
3419 		 */
3420 		entry = lpfc_resp_iocb(phba, pring);
3421 		phba->last_completion_time = jiffies;
3422 
3423 		if (++pring->sli.sli3.rspidx >= portRspMax)
3424 			pring->sli.sli3.rspidx = 0;
3425 
3426 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3427 				      (uint32_t *) &rspiocbq.iocb,
3428 				      phba->iocb_rsp_size);
3429 		INIT_LIST_HEAD(&(rspiocbq.list));
3430 		irsp = &rspiocbq.iocb;
3431 
3432 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3433 		pring->stats.iocb_rsp++;
3434 		rsp_cmpl++;
3435 
3436 		if (unlikely(irsp->ulpStatus)) {
3437 			/*
3438 			 * If resource errors reported from HBA, reduce
3439 			 * queuedepths of the SCSI device.
3440 			 */
3441 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3442 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3443 			     IOERR_NO_RESOURCES)) {
3444 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3445 				phba->lpfc_rampdown_queue_depth(phba);
3446 				spin_lock_irqsave(&phba->hbalock, iflag);
3447 			}
3448 
3449 			/* Rsp ring <ringno> error: IOCB */
3450 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3451 					"0336 Rsp Ring %d error: IOCB Data: "
3452 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3453 					pring->ringno,
3454 					irsp->un.ulpWord[0],
3455 					irsp->un.ulpWord[1],
3456 					irsp->un.ulpWord[2],
3457 					irsp->un.ulpWord[3],
3458 					irsp->un.ulpWord[4],
3459 					irsp->un.ulpWord[5],
3460 					*(uint32_t *)&irsp->un1,
3461 					*((uint32_t *)&irsp->un1 + 1));
3462 		}
3463 
3464 		switch (type) {
3465 		case LPFC_ABORT_IOCB:
3466 		case LPFC_SOL_IOCB:
3467 			/*
3468 			 * Idle exchange closed via ABTS from port.  No iocb
3469 			 * resources need to be recovered.
3470 			 */
3471 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3472 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3473 						"0333 IOCB cmd 0x%x"
3474 						" processed. Skipping"
3475 						" completion\n",
3476 						irsp->ulpCommand);
3477 				break;
3478 			}
3479 
3480 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3481 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3482 							 &rspiocbq);
3483 			spin_lock_irqsave(&phba->hbalock, iflag);
3484 			if (unlikely(!cmdiocbq))
3485 				break;
3486 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3487 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3488 			if (cmdiocbq->iocb_cmpl) {
3489 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3490 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3491 						      &rspiocbq);
3492 				spin_lock_irqsave(&phba->hbalock, iflag);
3493 			}
3494 			break;
3495 		case LPFC_UNSOL_IOCB:
3496 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3497 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3498 			spin_lock_irqsave(&phba->hbalock, iflag);
3499 			break;
3500 		default:
3501 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3502 				char adaptermsg[LPFC_MAX_ADPTMSG];
3503 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3504 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3505 				       MAX_MSG_DATA);
3506 				dev_warn(&((phba->pcidev)->dev),
3507 					 "lpfc%d: %s\n",
3508 					 phba->brd_no, adaptermsg);
3509 			} else {
3510 				/* Unknown IOCB command */
3511 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3512 						"0334 Unknown IOCB command "
3513 						"Data: x%x, x%x x%x x%x x%x\n",
3514 						type, irsp->ulpCommand,
3515 						irsp->ulpStatus,
3516 						irsp->ulpIoTag,
3517 						irsp->ulpContext);
3518 			}
3519 			break;
3520 		}
3521 
3522 		/*
3523 		 * The response IOCB has been processed.  Update the ring
3524 		 * pointer in SLIM.  If the port response put pointer has not
3525 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3526 		 * response put pointer.
3527 		 */
3528 		writel(pring->sli.sli3.rspidx,
3529 			&phba->host_gp[pring->ringno].rspGetInx);
3530 
3531 		if (pring->sli.sli3.rspidx == portRspPut)
3532 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3533 	}
3534 
3535 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3536 		pring->stats.iocb_rsp_full++;
3537 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3538 		writel(status, phba->CAregaddr);
3539 		readl(phba->CAregaddr);
3540 	}
3541 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3542 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3543 		pring->stats.iocb_cmd_empty++;
3544 
3545 		/* Force update of the local copy of cmdGetInx */
3546 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3547 		lpfc_sli_resume_iocb(phba, pring);
3548 
3549 		if ((pring->lpfc_sli_cmd_available))
3550 			(pring->lpfc_sli_cmd_available) (phba, pring);
3551 
3552 	}
3553 
3554 	phba->fcp_ring_in_use = 0;
3555 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3556 	return rc;
3557 }
3558 
3559 /**
3560  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3561  * @phba: Pointer to HBA context object.
3562  * @pring: Pointer to driver SLI ring object.
3563  * @rspiocbp: Pointer to driver response IOCB object.
3564  *
3565  * This function is called from the worker thread when there is a slow-path
3566  * response IOCB to process. This function chains all the response iocbs until
3567  * seeing the iocb with the LE bit set. The function will call
3568  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3569  * completion of a command iocb. The function will call the
3570  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3571  * The function frees the resources or calls the completion handler if this
3572  * iocb is an abort completion. The function returns NULL when the response
3573  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3574  * this function shall chain the iocb on to the iocb_continueq and return the
3575  * response iocb passed in.
3576  **/
3577 static struct lpfc_iocbq *
3578 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3579 			struct lpfc_iocbq *rspiocbp)
3580 {
3581 	struct lpfc_iocbq *saveq;
3582 	struct lpfc_iocbq *cmdiocbp;
3583 	struct lpfc_iocbq *next_iocb;
3584 	IOCB_t *irsp = NULL;
3585 	uint32_t free_saveq;
3586 	uint8_t iocb_cmd_type;
3587 	lpfc_iocb_type type;
3588 	unsigned long iflag;
3589 	int rc;
3590 
3591 	spin_lock_irqsave(&phba->hbalock, iflag);
3592 	/* First add the response iocb to the countinueq list */
3593 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3594 	pring->iocb_continueq_cnt++;
3595 
3596 	/* Now, determine whether the list is completed for processing */
3597 	irsp = &rspiocbp->iocb;
3598 	if (irsp->ulpLe) {
3599 		/*
3600 		 * By default, the driver expects to free all resources
3601 		 * associated with this iocb completion.
3602 		 */
3603 		free_saveq = 1;
3604 		saveq = list_get_first(&pring->iocb_continueq,
3605 				       struct lpfc_iocbq, list);
3606 		irsp = &(saveq->iocb);
3607 		list_del_init(&pring->iocb_continueq);
3608 		pring->iocb_continueq_cnt = 0;
3609 
3610 		pring->stats.iocb_rsp++;
3611 
3612 		/*
3613 		 * If resource errors reported from HBA, reduce
3614 		 * queuedepths of the SCSI device.
3615 		 */
3616 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3617 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3618 		     IOERR_NO_RESOURCES)) {
3619 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3620 			phba->lpfc_rampdown_queue_depth(phba);
3621 			spin_lock_irqsave(&phba->hbalock, iflag);
3622 		}
3623 
3624 		if (irsp->ulpStatus) {
3625 			/* Rsp ring <ringno> error: IOCB */
3626 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3627 					"0328 Rsp Ring %d error: "
3628 					"IOCB Data: "
3629 					"x%x x%x x%x x%x "
3630 					"x%x x%x x%x x%x "
3631 					"x%x x%x x%x x%x "
3632 					"x%x x%x x%x x%x\n",
3633 					pring->ringno,
3634 					irsp->un.ulpWord[0],
3635 					irsp->un.ulpWord[1],
3636 					irsp->un.ulpWord[2],
3637 					irsp->un.ulpWord[3],
3638 					irsp->un.ulpWord[4],
3639 					irsp->un.ulpWord[5],
3640 					*(((uint32_t *) irsp) + 6),
3641 					*(((uint32_t *) irsp) + 7),
3642 					*(((uint32_t *) irsp) + 8),
3643 					*(((uint32_t *) irsp) + 9),
3644 					*(((uint32_t *) irsp) + 10),
3645 					*(((uint32_t *) irsp) + 11),
3646 					*(((uint32_t *) irsp) + 12),
3647 					*(((uint32_t *) irsp) + 13),
3648 					*(((uint32_t *) irsp) + 14),
3649 					*(((uint32_t *) irsp) + 15));
3650 		}
3651 
3652 		/*
3653 		 * Fetch the IOCB command type and call the correct completion
3654 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3655 		 * get freed back to the lpfc_iocb_list by the discovery
3656 		 * kernel thread.
3657 		 */
3658 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3659 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3660 		switch (type) {
3661 		case LPFC_SOL_IOCB:
3662 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3663 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3664 			spin_lock_irqsave(&phba->hbalock, iflag);
3665 			break;
3666 
3667 		case LPFC_UNSOL_IOCB:
3668 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3669 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3670 			spin_lock_irqsave(&phba->hbalock, iflag);
3671 			if (!rc)
3672 				free_saveq = 0;
3673 			break;
3674 
3675 		case LPFC_ABORT_IOCB:
3676 			cmdiocbp = NULL;
3677 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3678 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3679 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3680 								 saveq);
3681 				spin_lock_irqsave(&phba->hbalock, iflag);
3682 			}
3683 			if (cmdiocbp) {
3684 				/* Call the specified completion routine */
3685 				if (cmdiocbp->iocb_cmpl) {
3686 					spin_unlock_irqrestore(&phba->hbalock,
3687 							       iflag);
3688 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3689 							      saveq);
3690 					spin_lock_irqsave(&phba->hbalock,
3691 							  iflag);
3692 				} else
3693 					__lpfc_sli_release_iocbq(phba,
3694 								 cmdiocbp);
3695 			}
3696 			break;
3697 
3698 		case LPFC_UNKNOWN_IOCB:
3699 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3700 				char adaptermsg[LPFC_MAX_ADPTMSG];
3701 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3702 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3703 				       MAX_MSG_DATA);
3704 				dev_warn(&((phba->pcidev)->dev),
3705 					 "lpfc%d: %s\n",
3706 					 phba->brd_no, adaptermsg);
3707 			} else {
3708 				/* Unknown IOCB command */
3709 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3710 						"0335 Unknown IOCB "
3711 						"command Data: x%x "
3712 						"x%x x%x x%x\n",
3713 						irsp->ulpCommand,
3714 						irsp->ulpStatus,
3715 						irsp->ulpIoTag,
3716 						irsp->ulpContext);
3717 			}
3718 			break;
3719 		}
3720 
3721 		if (free_saveq) {
3722 			list_for_each_entry_safe(rspiocbp, next_iocb,
3723 						 &saveq->list, list) {
3724 				list_del_init(&rspiocbp->list);
3725 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3726 			}
3727 			__lpfc_sli_release_iocbq(phba, saveq);
3728 		}
3729 		rspiocbp = NULL;
3730 	}
3731 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3732 	return rspiocbp;
3733 }
3734 
3735 /**
3736  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3737  * @phba: Pointer to HBA context object.
3738  * @pring: Pointer to driver SLI ring object.
3739  * @mask: Host attention register mask for this ring.
3740  *
3741  * This routine wraps the actual slow_ring event process routine from the
3742  * API jump table function pointer from the lpfc_hba struct.
3743  **/
3744 void
3745 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3746 				struct lpfc_sli_ring *pring, uint32_t mask)
3747 {
3748 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3749 }
3750 
3751 /**
3752  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3753  * @phba: Pointer to HBA context object.
3754  * @pring: Pointer to driver SLI ring object.
3755  * @mask: Host attention register mask for this ring.
3756  *
3757  * This function is called from the worker thread when there is a ring event
3758  * for non-fcp rings. The caller does not hold any lock. The function will
3759  * remove each response iocb in the response ring and calls the handle
3760  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3761  **/
3762 static void
3763 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3764 				   struct lpfc_sli_ring *pring, uint32_t mask)
3765 {
3766 	struct lpfc_pgp *pgp;
3767 	IOCB_t *entry;
3768 	IOCB_t *irsp = NULL;
3769 	struct lpfc_iocbq *rspiocbp = NULL;
3770 	uint32_t portRspPut, portRspMax;
3771 	unsigned long iflag;
3772 	uint32_t status;
3773 
3774 	pgp = &phba->port_gp[pring->ringno];
3775 	spin_lock_irqsave(&phba->hbalock, iflag);
3776 	pring->stats.iocb_event++;
3777 
3778 	/*
3779 	 * The next available response entry should never exceed the maximum
3780 	 * entries.  If it does, treat it as an adapter hardware error.
3781 	 */
3782 	portRspMax = pring->sli.sli3.numRiocb;
3783 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3784 	if (portRspPut >= portRspMax) {
3785 		/*
3786 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3787 		 * rsp ring <portRspMax>
3788 		 */
3789 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3790 				"0303 Ring %d handler: portRspPut %d "
3791 				"is bigger than rsp ring %d\n",
3792 				pring->ringno, portRspPut, portRspMax);
3793 
3794 		phba->link_state = LPFC_HBA_ERROR;
3795 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3796 
3797 		phba->work_hs = HS_FFER3;
3798 		lpfc_handle_eratt(phba);
3799 
3800 		return;
3801 	}
3802 
3803 	rmb();
3804 	while (pring->sli.sli3.rspidx != portRspPut) {
3805 		/*
3806 		 * Build a completion list and call the appropriate handler.
3807 		 * The process is to get the next available response iocb, get
3808 		 * a free iocb from the list, copy the response data into the
3809 		 * free iocb, insert to the continuation list, and update the
3810 		 * next response index to slim.  This process makes response
3811 		 * iocb's in the ring available to DMA as fast as possible but
3812 		 * pays a penalty for a copy operation.  Since the iocb is
3813 		 * only 32 bytes, this penalty is considered small relative to
3814 		 * the PCI reads for register values and a slim write.  When
3815 		 * the ulpLe field is set, the entire Command has been
3816 		 * received.
3817 		 */
3818 		entry = lpfc_resp_iocb(phba, pring);
3819 
3820 		phba->last_completion_time = jiffies;
3821 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3822 		if (rspiocbp == NULL) {
3823 			printk(KERN_ERR "%s: out of buffers! Failing "
3824 			       "completion.\n", __func__);
3825 			break;
3826 		}
3827 
3828 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3829 				      phba->iocb_rsp_size);
3830 		irsp = &rspiocbp->iocb;
3831 
3832 		if (++pring->sli.sli3.rspidx >= portRspMax)
3833 			pring->sli.sli3.rspidx = 0;
3834 
3835 		if (pring->ringno == LPFC_ELS_RING) {
3836 			lpfc_debugfs_slow_ring_trc(phba,
3837 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3838 				*(((uint32_t *) irsp) + 4),
3839 				*(((uint32_t *) irsp) + 6),
3840 				*(((uint32_t *) irsp) + 7));
3841 		}
3842 
3843 		writel(pring->sli.sli3.rspidx,
3844 			&phba->host_gp[pring->ringno].rspGetInx);
3845 
3846 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3847 		/* Handle the response IOCB */
3848 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3849 		spin_lock_irqsave(&phba->hbalock, iflag);
3850 
3851 		/*
3852 		 * If the port response put pointer has not been updated, sync
3853 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3854 		 * response put pointer.
3855 		 */
3856 		if (pring->sli.sli3.rspidx == portRspPut) {
3857 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3858 		}
3859 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3860 
3861 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3862 		/* At least one response entry has been freed */
3863 		pring->stats.iocb_rsp_full++;
3864 		/* SET RxRE_RSP in Chip Att register */
3865 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3866 		writel(status, phba->CAregaddr);
3867 		readl(phba->CAregaddr); /* flush */
3868 	}
3869 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3870 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3871 		pring->stats.iocb_cmd_empty++;
3872 
3873 		/* Force update of the local copy of cmdGetInx */
3874 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3875 		lpfc_sli_resume_iocb(phba, pring);
3876 
3877 		if ((pring->lpfc_sli_cmd_available))
3878 			(pring->lpfc_sli_cmd_available) (phba, pring);
3879 
3880 	}
3881 
3882 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3883 	return;
3884 }
3885 
3886 /**
3887  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3888  * @phba: Pointer to HBA context object.
3889  * @pring: Pointer to driver SLI ring object.
3890  * @mask: Host attention register mask for this ring.
3891  *
3892  * This function is called from the worker thread when there is a pending
3893  * ELS response iocb on the driver internal slow-path response iocb worker
3894  * queue. The caller does not hold any lock. The function will remove each
3895  * response iocb from the response worker queue and calls the handle
3896  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3897  **/
3898 static void
3899 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3900 				   struct lpfc_sli_ring *pring, uint32_t mask)
3901 {
3902 	struct lpfc_iocbq *irspiocbq;
3903 	struct hbq_dmabuf *dmabuf;
3904 	struct lpfc_cq_event *cq_event;
3905 	unsigned long iflag;
3906 	int count = 0;
3907 
3908 	spin_lock_irqsave(&phba->hbalock, iflag);
3909 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3910 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3911 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3912 		/* Get the response iocb from the head of work queue */
3913 		spin_lock_irqsave(&phba->hbalock, iflag);
3914 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3915 				 cq_event, struct lpfc_cq_event, list);
3916 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3917 
3918 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3919 		case CQE_CODE_COMPL_WQE:
3920 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3921 						 cq_event);
3922 			/* Translate ELS WCQE to response IOCBQ */
3923 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3924 								   irspiocbq);
3925 			if (irspiocbq)
3926 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3927 							   irspiocbq);
3928 			count++;
3929 			break;
3930 		case CQE_CODE_RECEIVE:
3931 		case CQE_CODE_RECEIVE_V1:
3932 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3933 					      cq_event);
3934 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3935 			count++;
3936 			break;
3937 		default:
3938 			break;
3939 		}
3940 
3941 		/* Limit the number of events to 64 to avoid soft lockups */
3942 		if (count == 64)
3943 			break;
3944 	}
3945 }
3946 
3947 /**
3948  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3949  * @phba: Pointer to HBA context object.
3950  * @pring: Pointer to driver SLI ring object.
3951  *
3952  * This function aborts all iocbs in the given ring and frees all the iocb
3953  * objects in txq. This function issues an abort iocb for all the iocb commands
3954  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3955  * the return of this function. The caller is not required to hold any locks.
3956  **/
3957 void
3958 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3959 {
3960 	LIST_HEAD(completions);
3961 	struct lpfc_iocbq *iocb, *next_iocb;
3962 
3963 	if (pring->ringno == LPFC_ELS_RING) {
3964 		lpfc_fabric_abort_hba(phba);
3965 	}
3966 
3967 	/* Error everything on txq and txcmplq
3968 	 * First do the txq.
3969 	 */
3970 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3971 		spin_lock_irq(&pring->ring_lock);
3972 		list_splice_init(&pring->txq, &completions);
3973 		pring->txq_cnt = 0;
3974 		spin_unlock_irq(&pring->ring_lock);
3975 
3976 		spin_lock_irq(&phba->hbalock);
3977 		/* Next issue ABTS for everything on the txcmplq */
3978 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3979 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3980 		spin_unlock_irq(&phba->hbalock);
3981 	} else {
3982 		spin_lock_irq(&phba->hbalock);
3983 		list_splice_init(&pring->txq, &completions);
3984 		pring->txq_cnt = 0;
3985 
3986 		/* Next issue ABTS for everything on the txcmplq */
3987 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3988 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3989 		spin_unlock_irq(&phba->hbalock);
3990 	}
3991 
3992 	/* Cancel all the IOCBs from the completions list */
3993 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3994 			      IOERR_SLI_ABORTED);
3995 }
3996 
3997 /**
3998  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3999  * @phba: Pointer to HBA context object.
4000  * @pring: Pointer to driver SLI ring object.
4001  *
4002  * This function aborts all iocbs in FCP rings and frees all the iocb
4003  * objects in txq. This function issues an abort iocb for all the iocb commands
4004  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4005  * the return of this function. The caller is not required to hold any locks.
4006  **/
4007 void
4008 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4009 {
4010 	struct lpfc_sli *psli = &phba->sli;
4011 	struct lpfc_sli_ring  *pring;
4012 	uint32_t i;
4013 
4014 	/* Look on all the FCP Rings for the iotag */
4015 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4016 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4017 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4018 			lpfc_sli_abort_iocb_ring(phba, pring);
4019 		}
4020 	} else {
4021 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4022 		lpfc_sli_abort_iocb_ring(phba, pring);
4023 	}
4024 }
4025 
4026 /**
4027  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4028  * @phba: Pointer to HBA context object.
4029  *
4030  * This function flushes all iocbs in the IO ring and frees all the iocb
4031  * objects in txq and txcmplq. This function will not issue abort iocbs
4032  * for all the iocb commands in txcmplq, they will just be returned with
4033  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4034  * slot has been permanently disabled.
4035  **/
4036 void
4037 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4038 {
4039 	LIST_HEAD(txq);
4040 	LIST_HEAD(txcmplq);
4041 	struct lpfc_sli *psli = &phba->sli;
4042 	struct lpfc_sli_ring  *pring;
4043 	uint32_t i;
4044 	struct lpfc_iocbq *piocb, *next_iocb;
4045 
4046 	spin_lock_irq(&phba->hbalock);
4047 	/* Indicate the I/O queues are flushed */
4048 	phba->hba_flag |= HBA_IOQ_FLUSH;
4049 	spin_unlock_irq(&phba->hbalock);
4050 
4051 	/* Look on all the FCP Rings for the iotag */
4052 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4053 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4054 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4055 
4056 			spin_lock_irq(&pring->ring_lock);
4057 			/* Retrieve everything on txq */
4058 			list_splice_init(&pring->txq, &txq);
4059 			list_for_each_entry_safe(piocb, next_iocb,
4060 						 &pring->txcmplq, list)
4061 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4062 			/* Retrieve everything on the txcmplq */
4063 			list_splice_init(&pring->txcmplq, &txcmplq);
4064 			pring->txq_cnt = 0;
4065 			pring->txcmplq_cnt = 0;
4066 			spin_unlock_irq(&pring->ring_lock);
4067 
4068 			/* Flush the txq */
4069 			lpfc_sli_cancel_iocbs(phba, &txq,
4070 					      IOSTAT_LOCAL_REJECT,
4071 					      IOERR_SLI_DOWN);
4072 			/* Flush the txcmpq */
4073 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4074 					      IOSTAT_LOCAL_REJECT,
4075 					      IOERR_SLI_DOWN);
4076 		}
4077 	} else {
4078 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4079 
4080 		spin_lock_irq(&phba->hbalock);
4081 		/* Retrieve everything on txq */
4082 		list_splice_init(&pring->txq, &txq);
4083 		list_for_each_entry_safe(piocb, next_iocb,
4084 					 &pring->txcmplq, list)
4085 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4086 		/* Retrieve everything on the txcmplq */
4087 		list_splice_init(&pring->txcmplq, &txcmplq);
4088 		pring->txq_cnt = 0;
4089 		pring->txcmplq_cnt = 0;
4090 		spin_unlock_irq(&phba->hbalock);
4091 
4092 		/* Flush the txq */
4093 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4094 				      IOERR_SLI_DOWN);
4095 		/* Flush the txcmpq */
4096 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4097 				      IOERR_SLI_DOWN);
4098 	}
4099 }
4100 
4101 /**
4102  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4103  * @phba: Pointer to HBA context object.
4104  * @mask: Bit mask to be checked.
4105  *
4106  * This function reads the host status register and compares
4107  * with the provided bit mask to check if HBA completed
4108  * the restart. This function will wait in a loop for the
4109  * HBA to complete restart. If the HBA does not restart within
4110  * 15 iterations, the function will reset the HBA again. The
4111  * function returns 1 when HBA fail to restart otherwise returns
4112  * zero.
4113  **/
4114 static int
4115 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4116 {
4117 	uint32_t status;
4118 	int i = 0;
4119 	int retval = 0;
4120 
4121 	/* Read the HBA Host Status Register */
4122 	if (lpfc_readl(phba->HSregaddr, &status))
4123 		return 1;
4124 
4125 	/*
4126 	 * Check status register every 100ms for 5 retries, then every
4127 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4128 	 * every 2.5 sec for 4.
4129 	 * Break our of the loop if errors occurred during init.
4130 	 */
4131 	while (((status & mask) != mask) &&
4132 	       !(status & HS_FFERM) &&
4133 	       i++ < 20) {
4134 
4135 		if (i <= 5)
4136 			msleep(10);
4137 		else if (i <= 10)
4138 			msleep(500);
4139 		else
4140 			msleep(2500);
4141 
4142 		if (i == 15) {
4143 				/* Do post */
4144 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4145 			lpfc_sli_brdrestart(phba);
4146 		}
4147 		/* Read the HBA Host Status Register */
4148 		if (lpfc_readl(phba->HSregaddr, &status)) {
4149 			retval = 1;
4150 			break;
4151 		}
4152 	}
4153 
4154 	/* Check to see if any errors occurred during init */
4155 	if ((status & HS_FFERM) || (i >= 20)) {
4156 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4157 				"2751 Adapter failed to restart, "
4158 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4159 				status,
4160 				readl(phba->MBslimaddr + 0xa8),
4161 				readl(phba->MBslimaddr + 0xac));
4162 		phba->link_state = LPFC_HBA_ERROR;
4163 		retval = 1;
4164 	}
4165 
4166 	return retval;
4167 }
4168 
4169 /**
4170  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4171  * @phba: Pointer to HBA context object.
4172  * @mask: Bit mask to be checked.
4173  *
4174  * This function checks the host status register to check if HBA is
4175  * ready. This function will wait in a loop for the HBA to be ready
4176  * If the HBA is not ready , the function will will reset the HBA PCI
4177  * function again. The function returns 1 when HBA fail to be ready
4178  * otherwise returns zero.
4179  **/
4180 static int
4181 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4182 {
4183 	uint32_t status;
4184 	int retval = 0;
4185 
4186 	/* Read the HBA Host Status Register */
4187 	status = lpfc_sli4_post_status_check(phba);
4188 
4189 	if (status) {
4190 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4191 		lpfc_sli_brdrestart(phba);
4192 		status = lpfc_sli4_post_status_check(phba);
4193 	}
4194 
4195 	/* Check to see if any errors occurred during init */
4196 	if (status) {
4197 		phba->link_state = LPFC_HBA_ERROR;
4198 		retval = 1;
4199 	} else
4200 		phba->sli4_hba.intr_enable = 0;
4201 
4202 	return retval;
4203 }
4204 
4205 /**
4206  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4207  * @phba: Pointer to HBA context object.
4208  * @mask: Bit mask to be checked.
4209  *
4210  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4211  * from the API jump table function pointer from the lpfc_hba struct.
4212  **/
4213 int
4214 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4215 {
4216 	return phba->lpfc_sli_brdready(phba, mask);
4217 }
4218 
4219 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4220 
4221 /**
4222  * lpfc_reset_barrier - Make HBA ready for HBA reset
4223  * @phba: Pointer to HBA context object.
4224  *
4225  * This function is called before resetting an HBA. This function is called
4226  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4227  **/
4228 void lpfc_reset_barrier(struct lpfc_hba *phba)
4229 {
4230 	uint32_t __iomem *resp_buf;
4231 	uint32_t __iomem *mbox_buf;
4232 	volatile uint32_t mbox;
4233 	uint32_t hc_copy, ha_copy, resp_data;
4234 	int  i;
4235 	uint8_t hdrtype;
4236 
4237 	lockdep_assert_held(&phba->hbalock);
4238 
4239 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4240 	if (hdrtype != 0x80 ||
4241 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4242 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4243 		return;
4244 
4245 	/*
4246 	 * Tell the other part of the chip to suspend temporarily all
4247 	 * its DMA activity.
4248 	 */
4249 	resp_buf = phba->MBslimaddr;
4250 
4251 	/* Disable the error attention */
4252 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4253 		return;
4254 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4255 	readl(phba->HCregaddr); /* flush */
4256 	phba->link_flag |= LS_IGNORE_ERATT;
4257 
4258 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4259 		return;
4260 	if (ha_copy & HA_ERATT) {
4261 		/* Clear Chip error bit */
4262 		writel(HA_ERATT, phba->HAregaddr);
4263 		phba->pport->stopped = 1;
4264 	}
4265 
4266 	mbox = 0;
4267 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4268 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4269 
4270 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4271 	mbox_buf = phba->MBslimaddr;
4272 	writel(mbox, mbox_buf);
4273 
4274 	for (i = 0; i < 50; i++) {
4275 		if (lpfc_readl((resp_buf + 1), &resp_data))
4276 			return;
4277 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4278 			mdelay(1);
4279 		else
4280 			break;
4281 	}
4282 	resp_data = 0;
4283 	if (lpfc_readl((resp_buf + 1), &resp_data))
4284 		return;
4285 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4286 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4287 		    phba->pport->stopped)
4288 			goto restore_hc;
4289 		else
4290 			goto clear_errat;
4291 	}
4292 
4293 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4294 	resp_data = 0;
4295 	for (i = 0; i < 500; i++) {
4296 		if (lpfc_readl(resp_buf, &resp_data))
4297 			return;
4298 		if (resp_data != mbox)
4299 			mdelay(1);
4300 		else
4301 			break;
4302 	}
4303 
4304 clear_errat:
4305 
4306 	while (++i < 500) {
4307 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4308 			return;
4309 		if (!(ha_copy & HA_ERATT))
4310 			mdelay(1);
4311 		else
4312 			break;
4313 	}
4314 
4315 	if (readl(phba->HAregaddr) & HA_ERATT) {
4316 		writel(HA_ERATT, phba->HAregaddr);
4317 		phba->pport->stopped = 1;
4318 	}
4319 
4320 restore_hc:
4321 	phba->link_flag &= ~LS_IGNORE_ERATT;
4322 	writel(hc_copy, phba->HCregaddr);
4323 	readl(phba->HCregaddr); /* flush */
4324 }
4325 
4326 /**
4327  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4328  * @phba: Pointer to HBA context object.
4329  *
4330  * This function issues a kill_board mailbox command and waits for
4331  * the error attention interrupt. This function is called for stopping
4332  * the firmware processing. The caller is not required to hold any
4333  * locks. This function calls lpfc_hba_down_post function to free
4334  * any pending commands after the kill. The function will return 1 when it
4335  * fails to kill the board else will return 0.
4336  **/
4337 int
4338 lpfc_sli_brdkill(struct lpfc_hba *phba)
4339 {
4340 	struct lpfc_sli *psli;
4341 	LPFC_MBOXQ_t *pmb;
4342 	uint32_t status;
4343 	uint32_t ha_copy;
4344 	int retval;
4345 	int i = 0;
4346 
4347 	psli = &phba->sli;
4348 
4349 	/* Kill HBA */
4350 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4351 			"0329 Kill HBA Data: x%x x%x\n",
4352 			phba->pport->port_state, psli->sli_flag);
4353 
4354 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4355 	if (!pmb)
4356 		return 1;
4357 
4358 	/* Disable the error attention */
4359 	spin_lock_irq(&phba->hbalock);
4360 	if (lpfc_readl(phba->HCregaddr, &status)) {
4361 		spin_unlock_irq(&phba->hbalock);
4362 		mempool_free(pmb, phba->mbox_mem_pool);
4363 		return 1;
4364 	}
4365 	status &= ~HC_ERINT_ENA;
4366 	writel(status, phba->HCregaddr);
4367 	readl(phba->HCregaddr); /* flush */
4368 	phba->link_flag |= LS_IGNORE_ERATT;
4369 	spin_unlock_irq(&phba->hbalock);
4370 
4371 	lpfc_kill_board(phba, pmb);
4372 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4373 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4374 
4375 	if (retval != MBX_SUCCESS) {
4376 		if (retval != MBX_BUSY)
4377 			mempool_free(pmb, phba->mbox_mem_pool);
4378 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4379 				"2752 KILL_BOARD command failed retval %d\n",
4380 				retval);
4381 		spin_lock_irq(&phba->hbalock);
4382 		phba->link_flag &= ~LS_IGNORE_ERATT;
4383 		spin_unlock_irq(&phba->hbalock);
4384 		return 1;
4385 	}
4386 
4387 	spin_lock_irq(&phba->hbalock);
4388 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4389 	spin_unlock_irq(&phba->hbalock);
4390 
4391 	mempool_free(pmb, phba->mbox_mem_pool);
4392 
4393 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4394 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4395 	 * 3 seconds we still set HBA_ERROR state because the status of the
4396 	 * board is now undefined.
4397 	 */
4398 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4399 		return 1;
4400 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4401 		mdelay(100);
4402 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4403 			return 1;
4404 	}
4405 
4406 	del_timer_sync(&psli->mbox_tmo);
4407 	if (ha_copy & HA_ERATT) {
4408 		writel(HA_ERATT, phba->HAregaddr);
4409 		phba->pport->stopped = 1;
4410 	}
4411 	spin_lock_irq(&phba->hbalock);
4412 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4413 	psli->mbox_active = NULL;
4414 	phba->link_flag &= ~LS_IGNORE_ERATT;
4415 	spin_unlock_irq(&phba->hbalock);
4416 
4417 	lpfc_hba_down_post(phba);
4418 	phba->link_state = LPFC_HBA_ERROR;
4419 
4420 	return ha_copy & HA_ERATT ? 0 : 1;
4421 }
4422 
4423 /**
4424  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4425  * @phba: Pointer to HBA context object.
4426  *
4427  * This function resets the HBA by writing HC_INITFF to the control
4428  * register. After the HBA resets, this function resets all the iocb ring
4429  * indices. This function disables PCI layer parity checking during
4430  * the reset.
4431  * This function returns 0 always.
4432  * The caller is not required to hold any locks.
4433  **/
4434 int
4435 lpfc_sli_brdreset(struct lpfc_hba *phba)
4436 {
4437 	struct lpfc_sli *psli;
4438 	struct lpfc_sli_ring *pring;
4439 	uint16_t cfg_value;
4440 	int i;
4441 
4442 	psli = &phba->sli;
4443 
4444 	/* Reset HBA */
4445 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4446 			"0325 Reset HBA Data: x%x x%x\n",
4447 			(phba->pport) ? phba->pport->port_state : 0,
4448 			psli->sli_flag);
4449 
4450 	/* perform board reset */
4451 	phba->fc_eventTag = 0;
4452 	phba->link_events = 0;
4453 	if (phba->pport) {
4454 		phba->pport->fc_myDID = 0;
4455 		phba->pport->fc_prevDID = 0;
4456 	}
4457 
4458 	/* Turn off parity checking and serr during the physical reset */
4459 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4460 		return -EIO;
4461 
4462 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4463 			      (cfg_value &
4464 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4465 
4466 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4467 
4468 	/* Now toggle INITFF bit in the Host Control Register */
4469 	writel(HC_INITFF, phba->HCregaddr);
4470 	mdelay(1);
4471 	readl(phba->HCregaddr); /* flush */
4472 	writel(0, phba->HCregaddr);
4473 	readl(phba->HCregaddr); /* flush */
4474 
4475 	/* Restore PCI cmd register */
4476 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4477 
4478 	/* Initialize relevant SLI info */
4479 	for (i = 0; i < psli->num_rings; i++) {
4480 		pring = &psli->sli3_ring[i];
4481 		pring->flag = 0;
4482 		pring->sli.sli3.rspidx = 0;
4483 		pring->sli.sli3.next_cmdidx  = 0;
4484 		pring->sli.sli3.local_getidx = 0;
4485 		pring->sli.sli3.cmdidx = 0;
4486 		pring->missbufcnt = 0;
4487 	}
4488 
4489 	phba->link_state = LPFC_WARM_START;
4490 	return 0;
4491 }
4492 
4493 /**
4494  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4495  * @phba: Pointer to HBA context object.
4496  *
4497  * This function resets a SLI4 HBA. This function disables PCI layer parity
4498  * checking during resets the device. The caller is not required to hold
4499  * any locks.
4500  *
4501  * This function returns 0 on success else returns negative error code.
4502  **/
4503 int
4504 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4505 {
4506 	struct lpfc_sli *psli = &phba->sli;
4507 	uint16_t cfg_value;
4508 	int rc = 0;
4509 
4510 	/* Reset HBA */
4511 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4512 			"0295 Reset HBA Data: x%x x%x x%x\n",
4513 			phba->pport->port_state, psli->sli_flag,
4514 			phba->hba_flag);
4515 
4516 	/* perform board reset */
4517 	phba->fc_eventTag = 0;
4518 	phba->link_events = 0;
4519 	phba->pport->fc_myDID = 0;
4520 	phba->pport->fc_prevDID = 0;
4521 
4522 	spin_lock_irq(&phba->hbalock);
4523 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4524 	phba->fcf.fcf_flag = 0;
4525 	spin_unlock_irq(&phba->hbalock);
4526 
4527 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4528 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4529 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4530 		return rc;
4531 	}
4532 
4533 	/* Now physically reset the device */
4534 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4535 			"0389 Performing PCI function reset!\n");
4536 
4537 	/* Turn off parity checking and serr during the physical reset */
4538 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4539 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4540 				"3205 PCI read Config failed\n");
4541 		return -EIO;
4542 	}
4543 
4544 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4545 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4546 
4547 	/* Perform FCoE PCI function reset before freeing queue memory */
4548 	rc = lpfc_pci_function_reset(phba);
4549 
4550 	/* Restore PCI cmd register */
4551 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4552 
4553 	return rc;
4554 }
4555 
4556 /**
4557  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4558  * @phba: Pointer to HBA context object.
4559  *
4560  * This function is called in the SLI initialization code path to
4561  * restart the HBA. The caller is not required to hold any lock.
4562  * This function writes MBX_RESTART mailbox command to the SLIM and
4563  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4564  * function to free any pending commands. The function enables
4565  * POST only during the first initialization. The function returns zero.
4566  * The function does not guarantee completion of MBX_RESTART mailbox
4567  * command before the return of this function.
4568  **/
4569 static int
4570 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4571 {
4572 	MAILBOX_t *mb;
4573 	struct lpfc_sli *psli;
4574 	volatile uint32_t word0;
4575 	void __iomem *to_slim;
4576 	uint32_t hba_aer_enabled;
4577 
4578 	spin_lock_irq(&phba->hbalock);
4579 
4580 	/* Take PCIe device Advanced Error Reporting (AER) state */
4581 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4582 
4583 	psli = &phba->sli;
4584 
4585 	/* Restart HBA */
4586 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4587 			"0337 Restart HBA Data: x%x x%x\n",
4588 			(phba->pport) ? phba->pport->port_state : 0,
4589 			psli->sli_flag);
4590 
4591 	word0 = 0;
4592 	mb = (MAILBOX_t *) &word0;
4593 	mb->mbxCommand = MBX_RESTART;
4594 	mb->mbxHc = 1;
4595 
4596 	lpfc_reset_barrier(phba);
4597 
4598 	to_slim = phba->MBslimaddr;
4599 	writel(*(uint32_t *) mb, to_slim);
4600 	readl(to_slim); /* flush */
4601 
4602 	/* Only skip post after fc_ffinit is completed */
4603 	if (phba->pport && phba->pport->port_state)
4604 		word0 = 1;	/* This is really setting up word1 */
4605 	else
4606 		word0 = 0;	/* This is really setting up word1 */
4607 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4608 	writel(*(uint32_t *) mb, to_slim);
4609 	readl(to_slim); /* flush */
4610 
4611 	lpfc_sli_brdreset(phba);
4612 	if (phba->pport)
4613 		phba->pport->stopped = 0;
4614 	phba->link_state = LPFC_INIT_START;
4615 	phba->hba_flag = 0;
4616 	spin_unlock_irq(&phba->hbalock);
4617 
4618 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4619 	psli->stats_start = ktime_get_seconds();
4620 
4621 	/* Give the INITFF and Post time to settle. */
4622 	mdelay(100);
4623 
4624 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4625 	if (hba_aer_enabled)
4626 		pci_disable_pcie_error_reporting(phba->pcidev);
4627 
4628 	lpfc_hba_down_post(phba);
4629 
4630 	return 0;
4631 }
4632 
4633 /**
4634  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4635  * @phba: Pointer to HBA context object.
4636  *
4637  * This function is called in the SLI initialization code path to restart
4638  * a SLI4 HBA. The caller is not required to hold any lock.
4639  * At the end of the function, it calls lpfc_hba_down_post function to
4640  * free any pending commands.
4641  **/
4642 static int
4643 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4644 {
4645 	struct lpfc_sli *psli = &phba->sli;
4646 	uint32_t hba_aer_enabled;
4647 	int rc;
4648 
4649 	/* Restart HBA */
4650 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4651 			"0296 Restart HBA Data: x%x x%x\n",
4652 			phba->pport->port_state, psli->sli_flag);
4653 
4654 	/* Take PCIe device Advanced Error Reporting (AER) state */
4655 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4656 
4657 	rc = lpfc_sli4_brdreset(phba);
4658 	if (rc) {
4659 		phba->link_state = LPFC_HBA_ERROR;
4660 		goto hba_down_queue;
4661 	}
4662 
4663 	spin_lock_irq(&phba->hbalock);
4664 	phba->pport->stopped = 0;
4665 	phba->link_state = LPFC_INIT_START;
4666 	phba->hba_flag = 0;
4667 	spin_unlock_irq(&phba->hbalock);
4668 
4669 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4670 	psli->stats_start = ktime_get_seconds();
4671 
4672 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4673 	if (hba_aer_enabled)
4674 		pci_disable_pcie_error_reporting(phba->pcidev);
4675 
4676 hba_down_queue:
4677 	lpfc_hba_down_post(phba);
4678 	lpfc_sli4_queue_destroy(phba);
4679 
4680 	return rc;
4681 }
4682 
4683 /**
4684  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4685  * @phba: Pointer to HBA context object.
4686  *
4687  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4688  * API jump table function pointer from the lpfc_hba struct.
4689 **/
4690 int
4691 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4692 {
4693 	return phba->lpfc_sli_brdrestart(phba);
4694 }
4695 
4696 /**
4697  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4698  * @phba: Pointer to HBA context object.
4699  *
4700  * This function is called after a HBA restart to wait for successful
4701  * restart of the HBA. Successful restart of the HBA is indicated by
4702  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4703  * iteration, the function will restart the HBA again. The function returns
4704  * zero if HBA successfully restarted else returns negative error code.
4705  **/
4706 int
4707 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4708 {
4709 	uint32_t status, i = 0;
4710 
4711 	/* Read the HBA Host Status Register */
4712 	if (lpfc_readl(phba->HSregaddr, &status))
4713 		return -EIO;
4714 
4715 	/* Check status register to see what current state is */
4716 	i = 0;
4717 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4718 
4719 		/* Check every 10ms for 10 retries, then every 100ms for 90
4720 		 * retries, then every 1 sec for 50 retires for a total of
4721 		 * ~60 seconds before reset the board again and check every
4722 		 * 1 sec for 50 retries. The up to 60 seconds before the
4723 		 * board ready is required by the Falcon FIPS zeroization
4724 		 * complete, and any reset the board in between shall cause
4725 		 * restart of zeroization, further delay the board ready.
4726 		 */
4727 		if (i++ >= 200) {
4728 			/* Adapter failed to init, timeout, status reg
4729 			   <status> */
4730 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4731 					"0436 Adapter failed to init, "
4732 					"timeout, status reg x%x, "
4733 					"FW Data: A8 x%x AC x%x\n", status,
4734 					readl(phba->MBslimaddr + 0xa8),
4735 					readl(phba->MBslimaddr + 0xac));
4736 			phba->link_state = LPFC_HBA_ERROR;
4737 			return -ETIMEDOUT;
4738 		}
4739 
4740 		/* Check to see if any errors occurred during init */
4741 		if (status & HS_FFERM) {
4742 			/* ERROR: During chipset initialization */
4743 			/* Adapter failed to init, chipset, status reg
4744 			   <status> */
4745 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4746 					"0437 Adapter failed to init, "
4747 					"chipset, status reg x%x, "
4748 					"FW Data: A8 x%x AC x%x\n", status,
4749 					readl(phba->MBslimaddr + 0xa8),
4750 					readl(phba->MBslimaddr + 0xac));
4751 			phba->link_state = LPFC_HBA_ERROR;
4752 			return -EIO;
4753 		}
4754 
4755 		if (i <= 10)
4756 			msleep(10);
4757 		else if (i <= 100)
4758 			msleep(100);
4759 		else
4760 			msleep(1000);
4761 
4762 		if (i == 150) {
4763 			/* Do post */
4764 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4765 			lpfc_sli_brdrestart(phba);
4766 		}
4767 		/* Read the HBA Host Status Register */
4768 		if (lpfc_readl(phba->HSregaddr, &status))
4769 			return -EIO;
4770 	}
4771 
4772 	/* Check to see if any errors occurred during init */
4773 	if (status & HS_FFERM) {
4774 		/* ERROR: During chipset initialization */
4775 		/* Adapter failed to init, chipset, status reg <status> */
4776 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4777 				"0438 Adapter failed to init, chipset, "
4778 				"status reg x%x, "
4779 				"FW Data: A8 x%x AC x%x\n", status,
4780 				readl(phba->MBslimaddr + 0xa8),
4781 				readl(phba->MBslimaddr + 0xac));
4782 		phba->link_state = LPFC_HBA_ERROR;
4783 		return -EIO;
4784 	}
4785 
4786 	/* Clear all interrupt enable conditions */
4787 	writel(0, phba->HCregaddr);
4788 	readl(phba->HCregaddr); /* flush */
4789 
4790 	/* setup host attn register */
4791 	writel(0xffffffff, phba->HAregaddr);
4792 	readl(phba->HAregaddr); /* flush */
4793 	return 0;
4794 }
4795 
4796 /**
4797  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4798  *
4799  * This function calculates and returns the number of HBQs required to be
4800  * configured.
4801  **/
4802 int
4803 lpfc_sli_hbq_count(void)
4804 {
4805 	return ARRAY_SIZE(lpfc_hbq_defs);
4806 }
4807 
4808 /**
4809  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4810  *
4811  * This function adds the number of hbq entries in every HBQ to get
4812  * the total number of hbq entries required for the HBA and returns
4813  * the total count.
4814  **/
4815 static int
4816 lpfc_sli_hbq_entry_count(void)
4817 {
4818 	int  hbq_count = lpfc_sli_hbq_count();
4819 	int  count = 0;
4820 	int  i;
4821 
4822 	for (i = 0; i < hbq_count; ++i)
4823 		count += lpfc_hbq_defs[i]->entry_count;
4824 	return count;
4825 }
4826 
4827 /**
4828  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4829  *
4830  * This function calculates amount of memory required for all hbq entries
4831  * to be configured and returns the total memory required.
4832  **/
4833 int
4834 lpfc_sli_hbq_size(void)
4835 {
4836 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4837 }
4838 
4839 /**
4840  * lpfc_sli_hbq_setup - configure and initialize HBQs
4841  * @phba: Pointer to HBA context object.
4842  *
4843  * This function is called during the SLI initialization to configure
4844  * all the HBQs and post buffers to the HBQ. The caller is not
4845  * required to hold any locks. This function will return zero if successful
4846  * else it will return negative error code.
4847  **/
4848 static int
4849 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4850 {
4851 	int  hbq_count = lpfc_sli_hbq_count();
4852 	LPFC_MBOXQ_t *pmb;
4853 	MAILBOX_t *pmbox;
4854 	uint32_t hbqno;
4855 	uint32_t hbq_entry_index;
4856 
4857 				/* Get a Mailbox buffer to setup mailbox
4858 				 * commands for HBA initialization
4859 				 */
4860 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4861 
4862 	if (!pmb)
4863 		return -ENOMEM;
4864 
4865 	pmbox = &pmb->u.mb;
4866 
4867 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4868 	phba->link_state = LPFC_INIT_MBX_CMDS;
4869 	phba->hbq_in_use = 1;
4870 
4871 	hbq_entry_index = 0;
4872 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4873 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4874 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4875 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4876 		phba->hbqs[hbqno].entry_count =
4877 			lpfc_hbq_defs[hbqno]->entry_count;
4878 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4879 			hbq_entry_index, pmb);
4880 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4881 
4882 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4883 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4884 			   mbxStatus <status>, ring <num> */
4885 
4886 			lpfc_printf_log(phba, KERN_ERR,
4887 					LOG_SLI | LOG_VPORT,
4888 					"1805 Adapter failed to init. "
4889 					"Data: x%x x%x x%x\n",
4890 					pmbox->mbxCommand,
4891 					pmbox->mbxStatus, hbqno);
4892 
4893 			phba->link_state = LPFC_HBA_ERROR;
4894 			mempool_free(pmb, phba->mbox_mem_pool);
4895 			return -ENXIO;
4896 		}
4897 	}
4898 	phba->hbq_count = hbq_count;
4899 
4900 	mempool_free(pmb, phba->mbox_mem_pool);
4901 
4902 	/* Initially populate or replenish the HBQs */
4903 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4904 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4905 	return 0;
4906 }
4907 
4908 /**
4909  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4910  * @phba: Pointer to HBA context object.
4911  *
4912  * This function is called during the SLI initialization to configure
4913  * all the HBQs and post buffers to the HBQ. The caller is not
4914  * required to hold any locks. This function will return zero if successful
4915  * else it will return negative error code.
4916  **/
4917 static int
4918 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4919 {
4920 	phba->hbq_in_use = 1;
4921 	/**
4922 	 * Specific case when the MDS diagnostics is enabled and supported.
4923 	 * The receive buffer count is truncated to manage the incoming
4924 	 * traffic.
4925 	 **/
4926 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
4927 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
4928 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
4929 	else
4930 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
4931 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4932 	phba->hbq_count = 1;
4933 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4934 	/* Initially populate or replenish the HBQs */
4935 	return 0;
4936 }
4937 
4938 /**
4939  * lpfc_sli_config_port - Issue config port mailbox command
4940  * @phba: Pointer to HBA context object.
4941  * @sli_mode: sli mode - 2/3
4942  *
4943  * This function is called by the sli initialization code path
4944  * to issue config_port mailbox command. This function restarts the
4945  * HBA firmware and issues a config_port mailbox command to configure
4946  * the SLI interface in the sli mode specified by sli_mode
4947  * variable. The caller is not required to hold any locks.
4948  * The function returns 0 if successful, else returns negative error
4949  * code.
4950  **/
4951 int
4952 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4953 {
4954 	LPFC_MBOXQ_t *pmb;
4955 	uint32_t resetcount = 0, rc = 0, done = 0;
4956 
4957 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4958 	if (!pmb) {
4959 		phba->link_state = LPFC_HBA_ERROR;
4960 		return -ENOMEM;
4961 	}
4962 
4963 	phba->sli_rev = sli_mode;
4964 	while (resetcount < 2 && !done) {
4965 		spin_lock_irq(&phba->hbalock);
4966 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4967 		spin_unlock_irq(&phba->hbalock);
4968 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4969 		lpfc_sli_brdrestart(phba);
4970 		rc = lpfc_sli_chipset_init(phba);
4971 		if (rc)
4972 			break;
4973 
4974 		spin_lock_irq(&phba->hbalock);
4975 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4976 		spin_unlock_irq(&phba->hbalock);
4977 		resetcount++;
4978 
4979 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4980 		 * value of 0 means the call was successful.  Any other
4981 		 * nonzero value is a failure, but if ERESTART is returned,
4982 		 * the driver may reset the HBA and try again.
4983 		 */
4984 		rc = lpfc_config_port_prep(phba);
4985 		if (rc == -ERESTART) {
4986 			phba->link_state = LPFC_LINK_UNKNOWN;
4987 			continue;
4988 		} else if (rc)
4989 			break;
4990 
4991 		phba->link_state = LPFC_INIT_MBX_CMDS;
4992 		lpfc_config_port(phba, pmb);
4993 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4994 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4995 					LPFC_SLI3_HBQ_ENABLED |
4996 					LPFC_SLI3_CRP_ENABLED |
4997 					LPFC_SLI3_DSS_ENABLED);
4998 		if (rc != MBX_SUCCESS) {
4999 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5000 				"0442 Adapter failed to init, mbxCmd x%x "
5001 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5002 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5003 			spin_lock_irq(&phba->hbalock);
5004 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5005 			spin_unlock_irq(&phba->hbalock);
5006 			rc = -ENXIO;
5007 		} else {
5008 			/* Allow asynchronous mailbox command to go through */
5009 			spin_lock_irq(&phba->hbalock);
5010 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5011 			spin_unlock_irq(&phba->hbalock);
5012 			done = 1;
5013 
5014 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5015 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5016 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5017 					"3110 Port did not grant ASABT\n");
5018 		}
5019 	}
5020 	if (!done) {
5021 		rc = -EINVAL;
5022 		goto do_prep_failed;
5023 	}
5024 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5025 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5026 			rc = -ENXIO;
5027 			goto do_prep_failed;
5028 		}
5029 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5030 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5031 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5032 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5033 				phba->max_vpi : phba->max_vports;
5034 
5035 		} else
5036 			phba->max_vpi = 0;
5037 		phba->fips_level = 0;
5038 		phba->fips_spec_rev = 0;
5039 		if (pmb->u.mb.un.varCfgPort.gdss) {
5040 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5041 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5042 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5043 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5044 					"2850 Security Crypto Active. FIPS x%d "
5045 					"(Spec Rev: x%d)",
5046 					phba->fips_level, phba->fips_spec_rev);
5047 		}
5048 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5049 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5050 					"2856 Config Port Security Crypto "
5051 					"Error: x%x ",
5052 					pmb->u.mb.un.varCfgPort.sec_err);
5053 		}
5054 		if (pmb->u.mb.un.varCfgPort.gerbm)
5055 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5056 		if (pmb->u.mb.un.varCfgPort.gcrp)
5057 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5058 
5059 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5060 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5061 
5062 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5063 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5064 				phba->cfg_enable_bg = 0;
5065 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5066 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5067 						"0443 Adapter did not grant "
5068 						"BlockGuard\n");
5069 			}
5070 		}
5071 	} else {
5072 		phba->hbq_get = NULL;
5073 		phba->port_gp = phba->mbox->us.s2.port;
5074 		phba->max_vpi = 0;
5075 	}
5076 do_prep_failed:
5077 	mempool_free(pmb, phba->mbox_mem_pool);
5078 	return rc;
5079 }
5080 
5081 
5082 /**
5083  * lpfc_sli_hba_setup - SLI initialization function
5084  * @phba: Pointer to HBA context object.
5085  *
5086  * This function is the main SLI initialization function. This function
5087  * is called by the HBA initialization code, HBA reset code and HBA
5088  * error attention handler code. Caller is not required to hold any
5089  * locks. This function issues config_port mailbox command to configure
5090  * the SLI, setup iocb rings and HBQ rings. In the end the function
5091  * calls the config_port_post function to issue init_link mailbox
5092  * command and to start the discovery. The function will return zero
5093  * if successful, else it will return negative error code.
5094  **/
5095 int
5096 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5097 {
5098 	uint32_t rc;
5099 	int  mode = 3, i;
5100 	int longs;
5101 
5102 	switch (phba->cfg_sli_mode) {
5103 	case 2:
5104 		if (phba->cfg_enable_npiv) {
5105 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5106 				"1824 NPIV enabled: Override sli_mode "
5107 				"parameter (%d) to auto (0).\n",
5108 				phba->cfg_sli_mode);
5109 			break;
5110 		}
5111 		mode = 2;
5112 		break;
5113 	case 0:
5114 	case 3:
5115 		break;
5116 	default:
5117 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5118 				"1819 Unrecognized sli_mode parameter: %d.\n",
5119 				phba->cfg_sli_mode);
5120 
5121 		break;
5122 	}
5123 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5124 
5125 	rc = lpfc_sli_config_port(phba, mode);
5126 
5127 	if (rc && phba->cfg_sli_mode == 3)
5128 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5129 				"1820 Unable to select SLI-3.  "
5130 				"Not supported by adapter.\n");
5131 	if (rc && mode != 2)
5132 		rc = lpfc_sli_config_port(phba, 2);
5133 	else if (rc && mode == 2)
5134 		rc = lpfc_sli_config_port(phba, 3);
5135 	if (rc)
5136 		goto lpfc_sli_hba_setup_error;
5137 
5138 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5139 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5140 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5141 		if (!rc) {
5142 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5143 					"2709 This device supports "
5144 					"Advanced Error Reporting (AER)\n");
5145 			spin_lock_irq(&phba->hbalock);
5146 			phba->hba_flag |= HBA_AER_ENABLED;
5147 			spin_unlock_irq(&phba->hbalock);
5148 		} else {
5149 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5150 					"2708 This device does not support "
5151 					"Advanced Error Reporting (AER): %d\n",
5152 					rc);
5153 			phba->cfg_aer_support = 0;
5154 		}
5155 	}
5156 
5157 	if (phba->sli_rev == 3) {
5158 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5159 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5160 	} else {
5161 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5162 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5163 		phba->sli3_options = 0;
5164 	}
5165 
5166 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5167 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5168 			phba->sli_rev, phba->max_vpi);
5169 	rc = lpfc_sli_ring_map(phba);
5170 
5171 	if (rc)
5172 		goto lpfc_sli_hba_setup_error;
5173 
5174 	/* Initialize VPIs. */
5175 	if (phba->sli_rev == LPFC_SLI_REV3) {
5176 		/*
5177 		 * The VPI bitmask and physical ID array are allocated
5178 		 * and initialized once only - at driver load.  A port
5179 		 * reset doesn't need to reinitialize this memory.
5180 		 */
5181 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5182 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5183 			phba->vpi_bmask = kcalloc(longs,
5184 						  sizeof(unsigned long),
5185 						  GFP_KERNEL);
5186 			if (!phba->vpi_bmask) {
5187 				rc = -ENOMEM;
5188 				goto lpfc_sli_hba_setup_error;
5189 			}
5190 
5191 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5192 						sizeof(uint16_t),
5193 						GFP_KERNEL);
5194 			if (!phba->vpi_ids) {
5195 				kfree(phba->vpi_bmask);
5196 				rc = -ENOMEM;
5197 				goto lpfc_sli_hba_setup_error;
5198 			}
5199 			for (i = 0; i < phba->max_vpi; i++)
5200 				phba->vpi_ids[i] = i;
5201 		}
5202 	}
5203 
5204 	/* Init HBQs */
5205 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5206 		rc = lpfc_sli_hbq_setup(phba);
5207 		if (rc)
5208 			goto lpfc_sli_hba_setup_error;
5209 	}
5210 	spin_lock_irq(&phba->hbalock);
5211 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5212 	spin_unlock_irq(&phba->hbalock);
5213 
5214 	rc = lpfc_config_port_post(phba);
5215 	if (rc)
5216 		goto lpfc_sli_hba_setup_error;
5217 
5218 	return rc;
5219 
5220 lpfc_sli_hba_setup_error:
5221 	phba->link_state = LPFC_HBA_ERROR;
5222 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5223 			"0445 Firmware initialization failed\n");
5224 	return rc;
5225 }
5226 
5227 /**
5228  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5229  * @phba: Pointer to HBA context object.
5230  * @mboxq: mailbox pointer.
5231  * This function issue a dump mailbox command to read config region
5232  * 23 and parse the records in the region and populate driver
5233  * data structure.
5234  **/
5235 static int
5236 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5237 {
5238 	LPFC_MBOXQ_t *mboxq;
5239 	struct lpfc_dmabuf *mp;
5240 	struct lpfc_mqe *mqe;
5241 	uint32_t data_length;
5242 	int rc;
5243 
5244 	/* Program the default value of vlan_id and fc_map */
5245 	phba->valid_vlan = 0;
5246 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5247 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5248 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5249 
5250 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5251 	if (!mboxq)
5252 		return -ENOMEM;
5253 
5254 	mqe = &mboxq->u.mqe;
5255 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5256 		rc = -ENOMEM;
5257 		goto out_free_mboxq;
5258 	}
5259 
5260 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5261 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5262 
5263 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5264 			"(%d):2571 Mailbox cmd x%x Status x%x "
5265 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5266 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5267 			"CQ: x%x x%x x%x x%x\n",
5268 			mboxq->vport ? mboxq->vport->vpi : 0,
5269 			bf_get(lpfc_mqe_command, mqe),
5270 			bf_get(lpfc_mqe_status, mqe),
5271 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5272 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5273 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5274 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5275 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5276 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5277 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5278 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5279 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5280 			mboxq->mcqe.word0,
5281 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5282 			mboxq->mcqe.trailer);
5283 
5284 	if (rc) {
5285 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5286 		kfree(mp);
5287 		rc = -EIO;
5288 		goto out_free_mboxq;
5289 	}
5290 	data_length = mqe->un.mb_words[5];
5291 	if (data_length > DMP_RGN23_SIZE) {
5292 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5293 		kfree(mp);
5294 		rc = -EIO;
5295 		goto out_free_mboxq;
5296 	}
5297 
5298 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5299 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5300 	kfree(mp);
5301 	rc = 0;
5302 
5303 out_free_mboxq:
5304 	mempool_free(mboxq, phba->mbox_mem_pool);
5305 	return rc;
5306 }
5307 
5308 /**
5309  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5310  * @phba: pointer to lpfc hba data structure.
5311  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5312  * @vpd: pointer to the memory to hold resulting port vpd data.
5313  * @vpd_size: On input, the number of bytes allocated to @vpd.
5314  *	      On output, the number of data bytes in @vpd.
5315  *
5316  * This routine executes a READ_REV SLI4 mailbox command.  In
5317  * addition, this routine gets the port vpd data.
5318  *
5319  * Return codes
5320  * 	0 - successful
5321  * 	-ENOMEM - could not allocated memory.
5322  **/
5323 static int
5324 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5325 		    uint8_t *vpd, uint32_t *vpd_size)
5326 {
5327 	int rc = 0;
5328 	uint32_t dma_size;
5329 	struct lpfc_dmabuf *dmabuf;
5330 	struct lpfc_mqe *mqe;
5331 
5332 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5333 	if (!dmabuf)
5334 		return -ENOMEM;
5335 
5336 	/*
5337 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5338 	 * mailbox command.
5339 	 */
5340 	dma_size = *vpd_size;
5341 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5342 					  &dmabuf->phys, GFP_KERNEL);
5343 	if (!dmabuf->virt) {
5344 		kfree(dmabuf);
5345 		return -ENOMEM;
5346 	}
5347 
5348 	/*
5349 	 * The SLI4 implementation of READ_REV conflicts at word1,
5350 	 * bits 31:16 and SLI4 adds vpd functionality not present
5351 	 * in SLI3.  This code corrects the conflicts.
5352 	 */
5353 	lpfc_read_rev(phba, mboxq);
5354 	mqe = &mboxq->u.mqe;
5355 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5356 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5357 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5358 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5359 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5360 
5361 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5362 	if (rc) {
5363 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5364 				  dmabuf->virt, dmabuf->phys);
5365 		kfree(dmabuf);
5366 		return -EIO;
5367 	}
5368 
5369 	/*
5370 	 * The available vpd length cannot be bigger than the
5371 	 * DMA buffer passed to the port.  Catch the less than
5372 	 * case and update the caller's size.
5373 	 */
5374 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5375 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5376 
5377 	memcpy(vpd, dmabuf->virt, *vpd_size);
5378 
5379 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5380 			  dmabuf->virt, dmabuf->phys);
5381 	kfree(dmabuf);
5382 	return 0;
5383 }
5384 
5385 /**
5386  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5387  * @phba: pointer to lpfc hba data structure.
5388  *
5389  * This routine retrieves SLI4 device physical port name this PCI function
5390  * is attached to.
5391  *
5392  * Return codes
5393  *      0 - successful
5394  *      otherwise - failed to retrieve controller attributes
5395  **/
5396 static int
5397 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5398 {
5399 	LPFC_MBOXQ_t *mboxq;
5400 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5401 	struct lpfc_controller_attribute *cntl_attr;
5402 	void *virtaddr = NULL;
5403 	uint32_t alloclen, reqlen;
5404 	uint32_t shdr_status, shdr_add_status;
5405 	union lpfc_sli4_cfg_shdr *shdr;
5406 	int rc;
5407 
5408 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5409 	if (!mboxq)
5410 		return -ENOMEM;
5411 
5412 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5413 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5414 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5415 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5416 			LPFC_SLI4_MBX_NEMBED);
5417 
5418 	if (alloclen < reqlen) {
5419 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5420 				"3084 Allocated DMA memory size (%d) is "
5421 				"less than the requested DMA memory size "
5422 				"(%d)\n", alloclen, reqlen);
5423 		rc = -ENOMEM;
5424 		goto out_free_mboxq;
5425 	}
5426 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5427 	virtaddr = mboxq->sge_array->addr[0];
5428 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5429 	shdr = &mbx_cntl_attr->cfg_shdr;
5430 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5431 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5432 	if (shdr_status || shdr_add_status || rc) {
5433 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5434 				"3085 Mailbox x%x (x%x/x%x) failed, "
5435 				"rc:x%x, status:x%x, add_status:x%x\n",
5436 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5437 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5438 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5439 				rc, shdr_status, shdr_add_status);
5440 		rc = -ENXIO;
5441 		goto out_free_mboxq;
5442 	}
5443 
5444 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5445 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5446 	phba->sli4_hba.lnk_info.lnk_tp =
5447 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5448 	phba->sli4_hba.lnk_info.lnk_no =
5449 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5450 
5451 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5452 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5453 		sizeof(phba->BIOSVersion));
5454 
5455 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5456 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5457 			phba->sli4_hba.lnk_info.lnk_tp,
5458 			phba->sli4_hba.lnk_info.lnk_no,
5459 			phba->BIOSVersion);
5460 out_free_mboxq:
5461 	if (rc != MBX_TIMEOUT) {
5462 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5463 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5464 		else
5465 			mempool_free(mboxq, phba->mbox_mem_pool);
5466 	}
5467 	return rc;
5468 }
5469 
5470 /**
5471  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5472  * @phba: pointer to lpfc hba data structure.
5473  *
5474  * This routine retrieves SLI4 device physical port name this PCI function
5475  * is attached to.
5476  *
5477  * Return codes
5478  *      0 - successful
5479  *      otherwise - failed to retrieve physical port name
5480  **/
5481 static int
5482 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5483 {
5484 	LPFC_MBOXQ_t *mboxq;
5485 	struct lpfc_mbx_get_port_name *get_port_name;
5486 	uint32_t shdr_status, shdr_add_status;
5487 	union lpfc_sli4_cfg_shdr *shdr;
5488 	char cport_name = 0;
5489 	int rc;
5490 
5491 	/* We assume nothing at this point */
5492 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5493 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5494 
5495 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5496 	if (!mboxq)
5497 		return -ENOMEM;
5498 	/* obtain link type and link number via READ_CONFIG */
5499 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5500 	lpfc_sli4_read_config(phba);
5501 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5502 		goto retrieve_ppname;
5503 
5504 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5505 	rc = lpfc_sli4_get_ctl_attr(phba);
5506 	if (rc)
5507 		goto out_free_mboxq;
5508 
5509 retrieve_ppname:
5510 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5511 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5512 		sizeof(struct lpfc_mbx_get_port_name) -
5513 		sizeof(struct lpfc_sli4_cfg_mhdr),
5514 		LPFC_SLI4_MBX_EMBED);
5515 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5516 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5517 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5518 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5519 		phba->sli4_hba.lnk_info.lnk_tp);
5520 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5521 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5522 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5523 	if (shdr_status || shdr_add_status || rc) {
5524 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5525 				"3087 Mailbox x%x (x%x/x%x) failed: "
5526 				"rc:x%x, status:x%x, add_status:x%x\n",
5527 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5528 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5529 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5530 				rc, shdr_status, shdr_add_status);
5531 		rc = -ENXIO;
5532 		goto out_free_mboxq;
5533 	}
5534 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5535 	case LPFC_LINK_NUMBER_0:
5536 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5537 				&get_port_name->u.response);
5538 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5539 		break;
5540 	case LPFC_LINK_NUMBER_1:
5541 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5542 				&get_port_name->u.response);
5543 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5544 		break;
5545 	case LPFC_LINK_NUMBER_2:
5546 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5547 				&get_port_name->u.response);
5548 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5549 		break;
5550 	case LPFC_LINK_NUMBER_3:
5551 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5552 				&get_port_name->u.response);
5553 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5554 		break;
5555 	default:
5556 		break;
5557 	}
5558 
5559 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5560 		phba->Port[0] = cport_name;
5561 		phba->Port[1] = '\0';
5562 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5563 				"3091 SLI get port name: %s\n", phba->Port);
5564 	}
5565 
5566 out_free_mboxq:
5567 	if (rc != MBX_TIMEOUT) {
5568 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5569 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5570 		else
5571 			mempool_free(mboxq, phba->mbox_mem_pool);
5572 	}
5573 	return rc;
5574 }
5575 
5576 /**
5577  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5578  * @phba: pointer to lpfc hba data structure.
5579  *
5580  * This routine is called to explicitly arm the SLI4 device's completion and
5581  * event queues
5582  **/
5583 static void
5584 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5585 {
5586 	int qidx;
5587 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5588 	struct lpfc_sli4_hdw_queue *qp;
5589 	struct lpfc_queue *eq;
5590 
5591 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5592 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5593 	if (sli4_hba->nvmels_cq)
5594 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5595 					   LPFC_QUEUE_REARM);
5596 
5597 	if (sli4_hba->hdwq) {
5598 		/* Loop thru all Hardware Queues */
5599 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5600 			qp = &sli4_hba->hdwq[qidx];
5601 			/* ARM the corresponding CQ */
5602 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5603 						LPFC_QUEUE_REARM);
5604 		}
5605 
5606 		/* Loop thru all IRQ vectors */
5607 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5608 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5609 			/* ARM the corresponding EQ */
5610 			sli4_hba->sli4_write_eq_db(phba, eq,
5611 						   0, LPFC_QUEUE_REARM);
5612 		}
5613 	}
5614 
5615 	if (phba->nvmet_support) {
5616 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5617 			sli4_hba->sli4_write_cq_db(phba,
5618 				sli4_hba->nvmet_cqset[qidx], 0,
5619 				LPFC_QUEUE_REARM);
5620 		}
5621 	}
5622 }
5623 
5624 /**
5625  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5626  * @phba: Pointer to HBA context object.
5627  * @type: The resource extent type.
5628  * @extnt_count: buffer to hold port available extent count.
5629  * @extnt_size: buffer to hold element count per extent.
5630  *
5631  * This function calls the port and retrievs the number of available
5632  * extents and their size for a particular extent type.
5633  *
5634  * Returns: 0 if successful.  Nonzero otherwise.
5635  **/
5636 int
5637 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5638 			       uint16_t *extnt_count, uint16_t *extnt_size)
5639 {
5640 	int rc = 0;
5641 	uint32_t length;
5642 	uint32_t mbox_tmo;
5643 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5644 	LPFC_MBOXQ_t *mbox;
5645 
5646 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5647 	if (!mbox)
5648 		return -ENOMEM;
5649 
5650 	/* Find out how many extents are available for this resource type */
5651 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5652 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5653 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5654 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5655 			 length, LPFC_SLI4_MBX_EMBED);
5656 
5657 	/* Send an extents count of 0 - the GET doesn't use it. */
5658 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5659 					LPFC_SLI4_MBX_EMBED);
5660 	if (unlikely(rc)) {
5661 		rc = -EIO;
5662 		goto err_exit;
5663 	}
5664 
5665 	if (!phba->sli4_hba.intr_enable)
5666 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5667 	else {
5668 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5669 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5670 	}
5671 	if (unlikely(rc)) {
5672 		rc = -EIO;
5673 		goto err_exit;
5674 	}
5675 
5676 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5677 	if (bf_get(lpfc_mbox_hdr_status,
5678 		   &rsrc_info->header.cfg_shdr.response)) {
5679 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5680 				"2930 Failed to get resource extents "
5681 				"Status 0x%x Add'l Status 0x%x\n",
5682 				bf_get(lpfc_mbox_hdr_status,
5683 				       &rsrc_info->header.cfg_shdr.response),
5684 				bf_get(lpfc_mbox_hdr_add_status,
5685 				       &rsrc_info->header.cfg_shdr.response));
5686 		rc = -EIO;
5687 		goto err_exit;
5688 	}
5689 
5690 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5691 			      &rsrc_info->u.rsp);
5692 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5693 			     &rsrc_info->u.rsp);
5694 
5695 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5696 			"3162 Retrieved extents type-%d from port: count:%d, "
5697 			"size:%d\n", type, *extnt_count, *extnt_size);
5698 
5699 err_exit:
5700 	mempool_free(mbox, phba->mbox_mem_pool);
5701 	return rc;
5702 }
5703 
5704 /**
5705  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5706  * @phba: Pointer to HBA context object.
5707  * @type: The extent type to check.
5708  *
5709  * This function reads the current available extents from the port and checks
5710  * if the extent count or extent size has changed since the last access.
5711  * Callers use this routine post port reset to understand if there is a
5712  * extent reprovisioning requirement.
5713  *
5714  * Returns:
5715  *   -Error: error indicates problem.
5716  *   1: Extent count or size has changed.
5717  *   0: No changes.
5718  **/
5719 static int
5720 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5721 {
5722 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5723 	uint16_t size_diff, rsrc_ext_size;
5724 	int rc = 0;
5725 	struct lpfc_rsrc_blks *rsrc_entry;
5726 	struct list_head *rsrc_blk_list = NULL;
5727 
5728 	size_diff = 0;
5729 	curr_ext_cnt = 0;
5730 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5731 					    &rsrc_ext_cnt,
5732 					    &rsrc_ext_size);
5733 	if (unlikely(rc))
5734 		return -EIO;
5735 
5736 	switch (type) {
5737 	case LPFC_RSC_TYPE_FCOE_RPI:
5738 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5739 		break;
5740 	case LPFC_RSC_TYPE_FCOE_VPI:
5741 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5742 		break;
5743 	case LPFC_RSC_TYPE_FCOE_XRI:
5744 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5745 		break;
5746 	case LPFC_RSC_TYPE_FCOE_VFI:
5747 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5748 		break;
5749 	default:
5750 		break;
5751 	}
5752 
5753 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5754 		curr_ext_cnt++;
5755 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5756 			size_diff++;
5757 	}
5758 
5759 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5760 		rc = 1;
5761 
5762 	return rc;
5763 }
5764 
5765 /**
5766  * lpfc_sli4_cfg_post_extnts -
5767  * @phba: Pointer to HBA context object.
5768  * @extnt_cnt - number of available extents.
5769  * @type - the extent type (rpi, xri, vfi, vpi).
5770  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5771  * @mbox - pointer to the caller's allocated mailbox structure.
5772  *
5773  * This function executes the extents allocation request.  It also
5774  * takes care of the amount of memory needed to allocate or get the
5775  * allocated extents. It is the caller's responsibility to evaluate
5776  * the response.
5777  *
5778  * Returns:
5779  *   -Error:  Error value describes the condition found.
5780  *   0: if successful
5781  **/
5782 static int
5783 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5784 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5785 {
5786 	int rc = 0;
5787 	uint32_t req_len;
5788 	uint32_t emb_len;
5789 	uint32_t alloc_len, mbox_tmo;
5790 
5791 	/* Calculate the total requested length of the dma memory */
5792 	req_len = extnt_cnt * sizeof(uint16_t);
5793 
5794 	/*
5795 	 * Calculate the size of an embedded mailbox.  The uint32_t
5796 	 * accounts for extents-specific word.
5797 	 */
5798 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5799 		sizeof(uint32_t);
5800 
5801 	/*
5802 	 * Presume the allocation and response will fit into an embedded
5803 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5804 	 */
5805 	*emb = LPFC_SLI4_MBX_EMBED;
5806 	if (req_len > emb_len) {
5807 		req_len = extnt_cnt * sizeof(uint16_t) +
5808 			sizeof(union lpfc_sli4_cfg_shdr) +
5809 			sizeof(uint32_t);
5810 		*emb = LPFC_SLI4_MBX_NEMBED;
5811 	}
5812 
5813 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5814 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5815 				     req_len, *emb);
5816 	if (alloc_len < req_len) {
5817 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5818 			"2982 Allocated DMA memory size (x%x) is "
5819 			"less than the requested DMA memory "
5820 			"size (x%x)\n", alloc_len, req_len);
5821 		return -ENOMEM;
5822 	}
5823 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5824 	if (unlikely(rc))
5825 		return -EIO;
5826 
5827 	if (!phba->sli4_hba.intr_enable)
5828 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5829 	else {
5830 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5831 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5832 	}
5833 
5834 	if (unlikely(rc))
5835 		rc = -EIO;
5836 	return rc;
5837 }
5838 
5839 /**
5840  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5841  * @phba: Pointer to HBA context object.
5842  * @type:  The resource extent type to allocate.
5843  *
5844  * This function allocates the number of elements for the specified
5845  * resource type.
5846  **/
5847 static int
5848 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5849 {
5850 	bool emb = false;
5851 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5852 	uint16_t rsrc_id, rsrc_start, j, k;
5853 	uint16_t *ids;
5854 	int i, rc;
5855 	unsigned long longs;
5856 	unsigned long *bmask;
5857 	struct lpfc_rsrc_blks *rsrc_blks;
5858 	LPFC_MBOXQ_t *mbox;
5859 	uint32_t length;
5860 	struct lpfc_id_range *id_array = NULL;
5861 	void *virtaddr = NULL;
5862 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5863 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5864 	struct list_head *ext_blk_list;
5865 
5866 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5867 					    &rsrc_cnt,
5868 					    &rsrc_size);
5869 	if (unlikely(rc))
5870 		return -EIO;
5871 
5872 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5873 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5874 			"3009 No available Resource Extents "
5875 			"for resource type 0x%x: Count: 0x%x, "
5876 			"Size 0x%x\n", type, rsrc_cnt,
5877 			rsrc_size);
5878 		return -ENOMEM;
5879 	}
5880 
5881 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5882 			"2903 Post resource extents type-0x%x: "
5883 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5884 
5885 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5886 	if (!mbox)
5887 		return -ENOMEM;
5888 
5889 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5890 	if (unlikely(rc)) {
5891 		rc = -EIO;
5892 		goto err_exit;
5893 	}
5894 
5895 	/*
5896 	 * Figure out where the response is located.  Then get local pointers
5897 	 * to the response data.  The port does not guarantee to respond to
5898 	 * all extents counts request so update the local variable with the
5899 	 * allocated count from the port.
5900 	 */
5901 	if (emb == LPFC_SLI4_MBX_EMBED) {
5902 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5903 		id_array = &rsrc_ext->u.rsp.id[0];
5904 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5905 	} else {
5906 		virtaddr = mbox->sge_array->addr[0];
5907 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5908 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5909 		id_array = &n_rsrc->id;
5910 	}
5911 
5912 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5913 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5914 
5915 	/*
5916 	 * Based on the resource size and count, correct the base and max
5917 	 * resource values.
5918 	 */
5919 	length = sizeof(struct lpfc_rsrc_blks);
5920 	switch (type) {
5921 	case LPFC_RSC_TYPE_FCOE_RPI:
5922 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5923 						   sizeof(unsigned long),
5924 						   GFP_KERNEL);
5925 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5926 			rc = -ENOMEM;
5927 			goto err_exit;
5928 		}
5929 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5930 						 sizeof(uint16_t),
5931 						 GFP_KERNEL);
5932 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5933 			kfree(phba->sli4_hba.rpi_bmask);
5934 			rc = -ENOMEM;
5935 			goto err_exit;
5936 		}
5937 
5938 		/*
5939 		 * The next_rpi was initialized with the maximum available
5940 		 * count but the port may allocate a smaller number.  Catch
5941 		 * that case and update the next_rpi.
5942 		 */
5943 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5944 
5945 		/* Initialize local ptrs for common extent processing later. */
5946 		bmask = phba->sli4_hba.rpi_bmask;
5947 		ids = phba->sli4_hba.rpi_ids;
5948 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5949 		break;
5950 	case LPFC_RSC_TYPE_FCOE_VPI:
5951 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5952 					  GFP_KERNEL);
5953 		if (unlikely(!phba->vpi_bmask)) {
5954 			rc = -ENOMEM;
5955 			goto err_exit;
5956 		}
5957 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5958 					 GFP_KERNEL);
5959 		if (unlikely(!phba->vpi_ids)) {
5960 			kfree(phba->vpi_bmask);
5961 			rc = -ENOMEM;
5962 			goto err_exit;
5963 		}
5964 
5965 		/* Initialize local ptrs for common extent processing later. */
5966 		bmask = phba->vpi_bmask;
5967 		ids = phba->vpi_ids;
5968 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5969 		break;
5970 	case LPFC_RSC_TYPE_FCOE_XRI:
5971 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5972 						   sizeof(unsigned long),
5973 						   GFP_KERNEL);
5974 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5975 			rc = -ENOMEM;
5976 			goto err_exit;
5977 		}
5978 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5979 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5980 						 sizeof(uint16_t),
5981 						 GFP_KERNEL);
5982 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5983 			kfree(phba->sli4_hba.xri_bmask);
5984 			rc = -ENOMEM;
5985 			goto err_exit;
5986 		}
5987 
5988 		/* Initialize local ptrs for common extent processing later. */
5989 		bmask = phba->sli4_hba.xri_bmask;
5990 		ids = phba->sli4_hba.xri_ids;
5991 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5992 		break;
5993 	case LPFC_RSC_TYPE_FCOE_VFI:
5994 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5995 						   sizeof(unsigned long),
5996 						   GFP_KERNEL);
5997 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5998 			rc = -ENOMEM;
5999 			goto err_exit;
6000 		}
6001 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6002 						 sizeof(uint16_t),
6003 						 GFP_KERNEL);
6004 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6005 			kfree(phba->sli4_hba.vfi_bmask);
6006 			rc = -ENOMEM;
6007 			goto err_exit;
6008 		}
6009 
6010 		/* Initialize local ptrs for common extent processing later. */
6011 		bmask = phba->sli4_hba.vfi_bmask;
6012 		ids = phba->sli4_hba.vfi_ids;
6013 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6014 		break;
6015 	default:
6016 		/* Unsupported Opcode.  Fail call. */
6017 		id_array = NULL;
6018 		bmask = NULL;
6019 		ids = NULL;
6020 		ext_blk_list = NULL;
6021 		goto err_exit;
6022 	}
6023 
6024 	/*
6025 	 * Complete initializing the extent configuration with the
6026 	 * allocated ids assigned to this function.  The bitmask serves
6027 	 * as an index into the array and manages the available ids.  The
6028 	 * array just stores the ids communicated to the port via the wqes.
6029 	 */
6030 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6031 		if ((i % 2) == 0)
6032 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6033 					 &id_array[k]);
6034 		else
6035 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6036 					 &id_array[k]);
6037 
6038 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6039 		if (unlikely(!rsrc_blks)) {
6040 			rc = -ENOMEM;
6041 			kfree(bmask);
6042 			kfree(ids);
6043 			goto err_exit;
6044 		}
6045 		rsrc_blks->rsrc_start = rsrc_id;
6046 		rsrc_blks->rsrc_size = rsrc_size;
6047 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6048 		rsrc_start = rsrc_id;
6049 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6050 			phba->sli4_hba.io_xri_start = rsrc_start +
6051 				lpfc_sli4_get_iocb_cnt(phba);
6052 		}
6053 
6054 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6055 			ids[j] = rsrc_id;
6056 			rsrc_id++;
6057 			j++;
6058 		}
6059 		/* Entire word processed.  Get next word.*/
6060 		if ((i % 2) == 1)
6061 			k++;
6062 	}
6063  err_exit:
6064 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6065 	return rc;
6066 }
6067 
6068 
6069 
6070 /**
6071  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6072  * @phba: Pointer to HBA context object.
6073  * @type: the extent's type.
6074  *
6075  * This function deallocates all extents of a particular resource type.
6076  * SLI4 does not allow for deallocating a particular extent range.  It
6077  * is the caller's responsibility to release all kernel memory resources.
6078  **/
6079 static int
6080 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6081 {
6082 	int rc;
6083 	uint32_t length, mbox_tmo = 0;
6084 	LPFC_MBOXQ_t *mbox;
6085 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6086 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6087 
6088 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6089 	if (!mbox)
6090 		return -ENOMEM;
6091 
6092 	/*
6093 	 * This function sends an embedded mailbox because it only sends the
6094 	 * the resource type.  All extents of this type are released by the
6095 	 * port.
6096 	 */
6097 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6098 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6099 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6100 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6101 			 length, LPFC_SLI4_MBX_EMBED);
6102 
6103 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6104 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6105 					LPFC_SLI4_MBX_EMBED);
6106 	if (unlikely(rc)) {
6107 		rc = -EIO;
6108 		goto out_free_mbox;
6109 	}
6110 	if (!phba->sli4_hba.intr_enable)
6111 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6112 	else {
6113 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6114 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6115 	}
6116 	if (unlikely(rc)) {
6117 		rc = -EIO;
6118 		goto out_free_mbox;
6119 	}
6120 
6121 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6122 	if (bf_get(lpfc_mbox_hdr_status,
6123 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6124 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6125 				"2919 Failed to release resource extents "
6126 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6127 				"Resource memory not released.\n",
6128 				type,
6129 				bf_get(lpfc_mbox_hdr_status,
6130 				    &dealloc_rsrc->header.cfg_shdr.response),
6131 				bf_get(lpfc_mbox_hdr_add_status,
6132 				    &dealloc_rsrc->header.cfg_shdr.response));
6133 		rc = -EIO;
6134 		goto out_free_mbox;
6135 	}
6136 
6137 	/* Release kernel memory resources for the specific type. */
6138 	switch (type) {
6139 	case LPFC_RSC_TYPE_FCOE_VPI:
6140 		kfree(phba->vpi_bmask);
6141 		kfree(phba->vpi_ids);
6142 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6143 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6144 				    &phba->lpfc_vpi_blk_list, list) {
6145 			list_del_init(&rsrc_blk->list);
6146 			kfree(rsrc_blk);
6147 		}
6148 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6149 		break;
6150 	case LPFC_RSC_TYPE_FCOE_XRI:
6151 		kfree(phba->sli4_hba.xri_bmask);
6152 		kfree(phba->sli4_hba.xri_ids);
6153 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6154 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6155 			list_del_init(&rsrc_blk->list);
6156 			kfree(rsrc_blk);
6157 		}
6158 		break;
6159 	case LPFC_RSC_TYPE_FCOE_VFI:
6160 		kfree(phba->sli4_hba.vfi_bmask);
6161 		kfree(phba->sli4_hba.vfi_ids);
6162 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6163 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6164 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6165 			list_del_init(&rsrc_blk->list);
6166 			kfree(rsrc_blk);
6167 		}
6168 		break;
6169 	case LPFC_RSC_TYPE_FCOE_RPI:
6170 		/* RPI bitmask and physical id array are cleaned up earlier. */
6171 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6172 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6173 			list_del_init(&rsrc_blk->list);
6174 			kfree(rsrc_blk);
6175 		}
6176 		break;
6177 	default:
6178 		break;
6179 	}
6180 
6181 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6182 
6183  out_free_mbox:
6184 	mempool_free(mbox, phba->mbox_mem_pool);
6185 	return rc;
6186 }
6187 
6188 static void
6189 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6190 		  uint32_t feature)
6191 {
6192 	uint32_t len;
6193 
6194 	len = sizeof(struct lpfc_mbx_set_feature) -
6195 		sizeof(struct lpfc_sli4_cfg_mhdr);
6196 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6197 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6198 			 LPFC_SLI4_MBX_EMBED);
6199 
6200 	switch (feature) {
6201 	case LPFC_SET_UE_RECOVERY:
6202 		bf_set(lpfc_mbx_set_feature_UER,
6203 		       &mbox->u.mqe.un.set_feature, 1);
6204 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6205 		mbox->u.mqe.un.set_feature.param_len = 8;
6206 		break;
6207 	case LPFC_SET_MDS_DIAGS:
6208 		bf_set(lpfc_mbx_set_feature_mds,
6209 		       &mbox->u.mqe.un.set_feature, 1);
6210 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6211 		       &mbox->u.mqe.un.set_feature, 1);
6212 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6213 		mbox->u.mqe.un.set_feature.param_len = 8;
6214 		break;
6215 	case LPFC_SET_DUAL_DUMP:
6216 		bf_set(lpfc_mbx_set_feature_dd,
6217 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6218 		bf_set(lpfc_mbx_set_feature_ddquery,
6219 		       &mbox->u.mqe.un.set_feature, 0);
6220 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6221 		mbox->u.mqe.un.set_feature.param_len = 4;
6222 		break;
6223 	}
6224 
6225 	return;
6226 }
6227 
6228 /**
6229  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6230  * @phba: Pointer to HBA context object.
6231  *
6232  * Disable FW logging into host memory on the adapter. To
6233  * be done before reading logs from the host memory.
6234  **/
6235 void
6236 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6237 {
6238 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6239 
6240 	spin_lock_irq(&phba->hbalock);
6241 	ras_fwlog->state = INACTIVE;
6242 	spin_unlock_irq(&phba->hbalock);
6243 
6244 	/* Disable FW logging to host memory */
6245 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6246 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6247 
6248 	/* Wait 10ms for firmware to stop using DMA buffer */
6249 	usleep_range(10 * 1000, 20 * 1000);
6250 }
6251 
6252 /**
6253  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6254  * @phba: Pointer to HBA context object.
6255  *
6256  * This function is called to free memory allocated for RAS FW logging
6257  * support in the driver.
6258  **/
6259 void
6260 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6261 {
6262 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6263 	struct lpfc_dmabuf *dmabuf, *next;
6264 
6265 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6266 		list_for_each_entry_safe(dmabuf, next,
6267 				    &ras_fwlog->fwlog_buff_list,
6268 				    list) {
6269 			list_del(&dmabuf->list);
6270 			dma_free_coherent(&phba->pcidev->dev,
6271 					  LPFC_RAS_MAX_ENTRY_SIZE,
6272 					  dmabuf->virt, dmabuf->phys);
6273 			kfree(dmabuf);
6274 		}
6275 	}
6276 
6277 	if (ras_fwlog->lwpd.virt) {
6278 		dma_free_coherent(&phba->pcidev->dev,
6279 				  sizeof(uint32_t) * 2,
6280 				  ras_fwlog->lwpd.virt,
6281 				  ras_fwlog->lwpd.phys);
6282 		ras_fwlog->lwpd.virt = NULL;
6283 	}
6284 
6285 	spin_lock_irq(&phba->hbalock);
6286 	ras_fwlog->state = INACTIVE;
6287 	spin_unlock_irq(&phba->hbalock);
6288 }
6289 
6290 /**
6291  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6292  * @phba: Pointer to HBA context object.
6293  * @fwlog_buff_count: Count of buffers to be created.
6294  *
6295  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6296  * to update FW log is posted to the adapter.
6297  * Buffer count is calculated based on module param ras_fwlog_buffsize
6298  * Size of each buffer posted to FW is 64K.
6299  **/
6300 
6301 static int
6302 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6303 			uint32_t fwlog_buff_count)
6304 {
6305 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6306 	struct lpfc_dmabuf *dmabuf;
6307 	int rc = 0, i = 0;
6308 
6309 	/* Initialize List */
6310 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6311 
6312 	/* Allocate memory for the LWPD */
6313 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6314 					    sizeof(uint32_t) * 2,
6315 					    &ras_fwlog->lwpd.phys,
6316 					    GFP_KERNEL);
6317 	if (!ras_fwlog->lwpd.virt) {
6318 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6319 				"6185 LWPD Memory Alloc Failed\n");
6320 
6321 		return -ENOMEM;
6322 	}
6323 
6324 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6325 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6326 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6327 				 GFP_KERNEL);
6328 		if (!dmabuf) {
6329 			rc = -ENOMEM;
6330 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6331 					"6186 Memory Alloc failed FW logging");
6332 			goto free_mem;
6333 		}
6334 
6335 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6336 						  LPFC_RAS_MAX_ENTRY_SIZE,
6337 						  &dmabuf->phys, GFP_KERNEL);
6338 		if (!dmabuf->virt) {
6339 			kfree(dmabuf);
6340 			rc = -ENOMEM;
6341 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6342 					"6187 DMA Alloc Failed FW logging");
6343 			goto free_mem;
6344 		}
6345 		dmabuf->buffer_tag = i;
6346 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6347 	}
6348 
6349 free_mem:
6350 	if (rc)
6351 		lpfc_sli4_ras_dma_free(phba);
6352 
6353 	return rc;
6354 }
6355 
6356 /**
6357  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6358  * @phba: pointer to lpfc hba data structure.
6359  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6360  *
6361  * Completion handler for driver's RAS MBX command to the device.
6362  **/
6363 static void
6364 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6365 {
6366 	MAILBOX_t *mb;
6367 	union lpfc_sli4_cfg_shdr *shdr;
6368 	uint32_t shdr_status, shdr_add_status;
6369 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6370 
6371 	mb = &pmb->u.mb;
6372 
6373 	shdr = (union lpfc_sli4_cfg_shdr *)
6374 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6375 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6376 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6377 
6378 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6379 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6380 				"6188 FW LOG mailbox "
6381 				"completed with status x%x add_status x%x,"
6382 				" mbx status x%x\n",
6383 				shdr_status, shdr_add_status, mb->mbxStatus);
6384 
6385 		ras_fwlog->ras_hwsupport = false;
6386 		goto disable_ras;
6387 	}
6388 
6389 	spin_lock_irq(&phba->hbalock);
6390 	ras_fwlog->state = ACTIVE;
6391 	spin_unlock_irq(&phba->hbalock);
6392 	mempool_free(pmb, phba->mbox_mem_pool);
6393 
6394 	return;
6395 
6396 disable_ras:
6397 	/* Free RAS DMA memory */
6398 	lpfc_sli4_ras_dma_free(phba);
6399 	mempool_free(pmb, phba->mbox_mem_pool);
6400 }
6401 
6402 /**
6403  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6404  * @phba: pointer to lpfc hba data structure.
6405  * @fwlog_level: Logging verbosity level.
6406  * @fwlog_enable: Enable/Disable logging.
6407  *
6408  * Initialize memory and post mailbox command to enable FW logging in host
6409  * memory.
6410  **/
6411 int
6412 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6413 			 uint32_t fwlog_level,
6414 			 uint32_t fwlog_enable)
6415 {
6416 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6417 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6418 	struct lpfc_dmabuf *dmabuf;
6419 	LPFC_MBOXQ_t *mbox;
6420 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6421 	int rc = 0;
6422 
6423 	spin_lock_irq(&phba->hbalock);
6424 	ras_fwlog->state = INACTIVE;
6425 	spin_unlock_irq(&phba->hbalock);
6426 
6427 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6428 			  phba->cfg_ras_fwlog_buffsize);
6429 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6430 
6431 	/*
6432 	 * If re-enabling FW logging support use earlier allocated
6433 	 * DMA buffers while posting MBX command.
6434 	 **/
6435 	if (!ras_fwlog->lwpd.virt) {
6436 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6437 		if (rc) {
6438 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6439 					"6189 FW Log Memory Allocation Failed");
6440 			return rc;
6441 		}
6442 	}
6443 
6444 	/* Setup Mailbox command */
6445 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6446 	if (!mbox) {
6447 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6448 				"6190 RAS MBX Alloc Failed");
6449 		rc = -ENOMEM;
6450 		goto mem_free;
6451 	}
6452 
6453 	ras_fwlog->fw_loglevel = fwlog_level;
6454 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6455 		sizeof(struct lpfc_sli4_cfg_mhdr));
6456 
6457 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6458 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6459 			 len, LPFC_SLI4_MBX_EMBED);
6460 
6461 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6462 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6463 	       fwlog_enable);
6464 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6465 	       ras_fwlog->fw_loglevel);
6466 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6467 	       ras_fwlog->fw_buffcount);
6468 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6469 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6470 
6471 	/* Update DMA buffer address */
6472 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6473 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6474 
6475 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6476 			putPaddrLow(dmabuf->phys);
6477 
6478 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6479 			putPaddrHigh(dmabuf->phys);
6480 	}
6481 
6482 	/* Update LPWD address */
6483 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6484 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6485 
6486 	spin_lock_irq(&phba->hbalock);
6487 	ras_fwlog->state = REG_INPROGRESS;
6488 	spin_unlock_irq(&phba->hbalock);
6489 	mbox->vport = phba->pport;
6490 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6491 
6492 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6493 
6494 	if (rc == MBX_NOT_FINISHED) {
6495 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6496 				"6191 FW-Log Mailbox failed. "
6497 				"status %d mbxStatus : x%x", rc,
6498 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6499 		mempool_free(mbox, phba->mbox_mem_pool);
6500 		rc = -EIO;
6501 		goto mem_free;
6502 	} else
6503 		rc = 0;
6504 mem_free:
6505 	if (rc)
6506 		lpfc_sli4_ras_dma_free(phba);
6507 
6508 	return rc;
6509 }
6510 
6511 /**
6512  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6513  * @phba: Pointer to HBA context object.
6514  *
6515  * Check if RAS is supported on the adapter and initialize it.
6516  **/
6517 void
6518 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6519 {
6520 	/* Check RAS FW Log needs to be enabled or not */
6521 	if (lpfc_check_fwlog_support(phba))
6522 		return;
6523 
6524 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6525 				 LPFC_RAS_ENABLE_LOGGING);
6526 }
6527 
6528 /**
6529  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6530  * @phba: Pointer to HBA context object.
6531  *
6532  * This function allocates all SLI4 resource identifiers.
6533  **/
6534 int
6535 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6536 {
6537 	int i, rc, error = 0;
6538 	uint16_t count, base;
6539 	unsigned long longs;
6540 
6541 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6542 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6543 	if (phba->sli4_hba.extents_in_use) {
6544 		/*
6545 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6546 		 * resource extent count must be read and allocated before
6547 		 * provisioning the resource id arrays.
6548 		 */
6549 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6550 		    LPFC_IDX_RSRC_RDY) {
6551 			/*
6552 			 * Extent-based resources are set - the driver could
6553 			 * be in a port reset. Figure out if any corrective
6554 			 * actions need to be taken.
6555 			 */
6556 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6557 						 LPFC_RSC_TYPE_FCOE_VFI);
6558 			if (rc != 0)
6559 				error++;
6560 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6561 						 LPFC_RSC_TYPE_FCOE_VPI);
6562 			if (rc != 0)
6563 				error++;
6564 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6565 						 LPFC_RSC_TYPE_FCOE_XRI);
6566 			if (rc != 0)
6567 				error++;
6568 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6569 						 LPFC_RSC_TYPE_FCOE_RPI);
6570 			if (rc != 0)
6571 				error++;
6572 
6573 			/*
6574 			 * It's possible that the number of resources
6575 			 * provided to this port instance changed between
6576 			 * resets.  Detect this condition and reallocate
6577 			 * resources.  Otherwise, there is no action.
6578 			 */
6579 			if (error) {
6580 				lpfc_printf_log(phba, KERN_INFO,
6581 						LOG_MBOX | LOG_INIT,
6582 						"2931 Detected extent resource "
6583 						"change.  Reallocating all "
6584 						"extents.\n");
6585 				rc = lpfc_sli4_dealloc_extent(phba,
6586 						 LPFC_RSC_TYPE_FCOE_VFI);
6587 				rc = lpfc_sli4_dealloc_extent(phba,
6588 						 LPFC_RSC_TYPE_FCOE_VPI);
6589 				rc = lpfc_sli4_dealloc_extent(phba,
6590 						 LPFC_RSC_TYPE_FCOE_XRI);
6591 				rc = lpfc_sli4_dealloc_extent(phba,
6592 						 LPFC_RSC_TYPE_FCOE_RPI);
6593 			} else
6594 				return 0;
6595 		}
6596 
6597 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6598 		if (unlikely(rc))
6599 			goto err_exit;
6600 
6601 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6602 		if (unlikely(rc))
6603 			goto err_exit;
6604 
6605 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6606 		if (unlikely(rc))
6607 			goto err_exit;
6608 
6609 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6610 		if (unlikely(rc))
6611 			goto err_exit;
6612 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6613 		       LPFC_IDX_RSRC_RDY);
6614 		return rc;
6615 	} else {
6616 		/*
6617 		 * The port does not support resource extents.  The XRI, VPI,
6618 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6619 		 * Just allocate the bitmasks and provision the resource id
6620 		 * arrays.  If a port reset is active, the resources don't
6621 		 * need any action - just exit.
6622 		 */
6623 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6624 		    LPFC_IDX_RSRC_RDY) {
6625 			lpfc_sli4_dealloc_resource_identifiers(phba);
6626 			lpfc_sli4_remove_rpis(phba);
6627 		}
6628 		/* RPIs. */
6629 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6630 		if (count <= 0) {
6631 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6632 					"3279 Invalid provisioning of "
6633 					"rpi:%d\n", count);
6634 			rc = -EINVAL;
6635 			goto err_exit;
6636 		}
6637 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6638 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6639 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6640 						   sizeof(unsigned long),
6641 						   GFP_KERNEL);
6642 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6643 			rc = -ENOMEM;
6644 			goto err_exit;
6645 		}
6646 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6647 						 GFP_KERNEL);
6648 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6649 			rc = -ENOMEM;
6650 			goto free_rpi_bmask;
6651 		}
6652 
6653 		for (i = 0; i < count; i++)
6654 			phba->sli4_hba.rpi_ids[i] = base + i;
6655 
6656 		/* VPIs. */
6657 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6658 		if (count <= 0) {
6659 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6660 					"3280 Invalid provisioning of "
6661 					"vpi:%d\n", count);
6662 			rc = -EINVAL;
6663 			goto free_rpi_ids;
6664 		}
6665 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6666 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6667 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6668 					  GFP_KERNEL);
6669 		if (unlikely(!phba->vpi_bmask)) {
6670 			rc = -ENOMEM;
6671 			goto free_rpi_ids;
6672 		}
6673 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6674 					GFP_KERNEL);
6675 		if (unlikely(!phba->vpi_ids)) {
6676 			rc = -ENOMEM;
6677 			goto free_vpi_bmask;
6678 		}
6679 
6680 		for (i = 0; i < count; i++)
6681 			phba->vpi_ids[i] = base + i;
6682 
6683 		/* XRIs. */
6684 		count = phba->sli4_hba.max_cfg_param.max_xri;
6685 		if (count <= 0) {
6686 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6687 					"3281 Invalid provisioning of "
6688 					"xri:%d\n", count);
6689 			rc = -EINVAL;
6690 			goto free_vpi_ids;
6691 		}
6692 		base = phba->sli4_hba.max_cfg_param.xri_base;
6693 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6694 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6695 						   sizeof(unsigned long),
6696 						   GFP_KERNEL);
6697 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6698 			rc = -ENOMEM;
6699 			goto free_vpi_ids;
6700 		}
6701 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6702 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6703 						 GFP_KERNEL);
6704 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6705 			rc = -ENOMEM;
6706 			goto free_xri_bmask;
6707 		}
6708 
6709 		for (i = 0; i < count; i++)
6710 			phba->sli4_hba.xri_ids[i] = base + i;
6711 
6712 		/* VFIs. */
6713 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6714 		if (count <= 0) {
6715 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6716 					"3282 Invalid provisioning of "
6717 					"vfi:%d\n", count);
6718 			rc = -EINVAL;
6719 			goto free_xri_ids;
6720 		}
6721 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6722 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6723 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6724 						   sizeof(unsigned long),
6725 						   GFP_KERNEL);
6726 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6727 			rc = -ENOMEM;
6728 			goto free_xri_ids;
6729 		}
6730 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6731 						 GFP_KERNEL);
6732 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6733 			rc = -ENOMEM;
6734 			goto free_vfi_bmask;
6735 		}
6736 
6737 		for (i = 0; i < count; i++)
6738 			phba->sli4_hba.vfi_ids[i] = base + i;
6739 
6740 		/*
6741 		 * Mark all resources ready.  An HBA reset doesn't need
6742 		 * to reset the initialization.
6743 		 */
6744 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6745 		       LPFC_IDX_RSRC_RDY);
6746 		return 0;
6747 	}
6748 
6749  free_vfi_bmask:
6750 	kfree(phba->sli4_hba.vfi_bmask);
6751 	phba->sli4_hba.vfi_bmask = NULL;
6752  free_xri_ids:
6753 	kfree(phba->sli4_hba.xri_ids);
6754 	phba->sli4_hba.xri_ids = NULL;
6755  free_xri_bmask:
6756 	kfree(phba->sli4_hba.xri_bmask);
6757 	phba->sli4_hba.xri_bmask = NULL;
6758  free_vpi_ids:
6759 	kfree(phba->vpi_ids);
6760 	phba->vpi_ids = NULL;
6761  free_vpi_bmask:
6762 	kfree(phba->vpi_bmask);
6763 	phba->vpi_bmask = NULL;
6764  free_rpi_ids:
6765 	kfree(phba->sli4_hba.rpi_ids);
6766 	phba->sli4_hba.rpi_ids = NULL;
6767  free_rpi_bmask:
6768 	kfree(phba->sli4_hba.rpi_bmask);
6769 	phba->sli4_hba.rpi_bmask = NULL;
6770  err_exit:
6771 	return rc;
6772 }
6773 
6774 /**
6775  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6776  * @phba: Pointer to HBA context object.
6777  *
6778  * This function allocates the number of elements for the specified
6779  * resource type.
6780  **/
6781 int
6782 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6783 {
6784 	if (phba->sli4_hba.extents_in_use) {
6785 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6786 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6787 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6788 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6789 	} else {
6790 		kfree(phba->vpi_bmask);
6791 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6792 		kfree(phba->vpi_ids);
6793 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6794 		kfree(phba->sli4_hba.xri_bmask);
6795 		kfree(phba->sli4_hba.xri_ids);
6796 		kfree(phba->sli4_hba.vfi_bmask);
6797 		kfree(phba->sli4_hba.vfi_ids);
6798 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6799 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6800 	}
6801 
6802 	return 0;
6803 }
6804 
6805 /**
6806  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6807  * @phba: Pointer to HBA context object.
6808  * @type: The resource extent type.
6809  * @extnt_count: buffer to hold port extent count response
6810  * @extnt_size: buffer to hold port extent size response.
6811  *
6812  * This function calls the port to read the host allocated extents
6813  * for a particular type.
6814  **/
6815 int
6816 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6817 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6818 {
6819 	bool emb;
6820 	int rc = 0;
6821 	uint16_t curr_blks = 0;
6822 	uint32_t req_len, emb_len;
6823 	uint32_t alloc_len, mbox_tmo;
6824 	struct list_head *blk_list_head;
6825 	struct lpfc_rsrc_blks *rsrc_blk;
6826 	LPFC_MBOXQ_t *mbox;
6827 	void *virtaddr = NULL;
6828 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6829 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6830 	union  lpfc_sli4_cfg_shdr *shdr;
6831 
6832 	switch (type) {
6833 	case LPFC_RSC_TYPE_FCOE_VPI:
6834 		blk_list_head = &phba->lpfc_vpi_blk_list;
6835 		break;
6836 	case LPFC_RSC_TYPE_FCOE_XRI:
6837 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6838 		break;
6839 	case LPFC_RSC_TYPE_FCOE_VFI:
6840 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6841 		break;
6842 	case LPFC_RSC_TYPE_FCOE_RPI:
6843 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6844 		break;
6845 	default:
6846 		return -EIO;
6847 	}
6848 
6849 	/* Count the number of extents currently allocatd for this type. */
6850 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6851 		if (curr_blks == 0) {
6852 			/*
6853 			 * The GET_ALLOCATED mailbox does not return the size,
6854 			 * just the count.  The size should be just the size
6855 			 * stored in the current allocated block and all sizes
6856 			 * for an extent type are the same so set the return
6857 			 * value now.
6858 			 */
6859 			*extnt_size = rsrc_blk->rsrc_size;
6860 		}
6861 		curr_blks++;
6862 	}
6863 
6864 	/*
6865 	 * Calculate the size of an embedded mailbox.  The uint32_t
6866 	 * accounts for extents-specific word.
6867 	 */
6868 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6869 		sizeof(uint32_t);
6870 
6871 	/*
6872 	 * Presume the allocation and response will fit into an embedded
6873 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6874 	 */
6875 	emb = LPFC_SLI4_MBX_EMBED;
6876 	req_len = emb_len;
6877 	if (req_len > emb_len) {
6878 		req_len = curr_blks * sizeof(uint16_t) +
6879 			sizeof(union lpfc_sli4_cfg_shdr) +
6880 			sizeof(uint32_t);
6881 		emb = LPFC_SLI4_MBX_NEMBED;
6882 	}
6883 
6884 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6885 	if (!mbox)
6886 		return -ENOMEM;
6887 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6888 
6889 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6890 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6891 				     req_len, emb);
6892 	if (alloc_len < req_len) {
6893 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6894 			"2983 Allocated DMA memory size (x%x) is "
6895 			"less than the requested DMA memory "
6896 			"size (x%x)\n", alloc_len, req_len);
6897 		rc = -ENOMEM;
6898 		goto err_exit;
6899 	}
6900 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6901 	if (unlikely(rc)) {
6902 		rc = -EIO;
6903 		goto err_exit;
6904 	}
6905 
6906 	if (!phba->sli4_hba.intr_enable)
6907 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6908 	else {
6909 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6910 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6911 	}
6912 
6913 	if (unlikely(rc)) {
6914 		rc = -EIO;
6915 		goto err_exit;
6916 	}
6917 
6918 	/*
6919 	 * Figure out where the response is located.  Then get local pointers
6920 	 * to the response data.  The port does not guarantee to respond to
6921 	 * all extents counts request so update the local variable with the
6922 	 * allocated count from the port.
6923 	 */
6924 	if (emb == LPFC_SLI4_MBX_EMBED) {
6925 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6926 		shdr = &rsrc_ext->header.cfg_shdr;
6927 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6928 	} else {
6929 		virtaddr = mbox->sge_array->addr[0];
6930 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6931 		shdr = &n_rsrc->cfg_shdr;
6932 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6933 	}
6934 
6935 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6936 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6937 			"2984 Failed to read allocated resources "
6938 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6939 			type,
6940 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6941 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6942 		rc = -EIO;
6943 		goto err_exit;
6944 	}
6945  err_exit:
6946 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6947 	return rc;
6948 }
6949 
6950 /**
6951  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6952  * @phba: pointer to lpfc hba data structure.
6953  * @pring: Pointer to driver SLI ring object.
6954  * @sgl_list: linked link of sgl buffers to post
6955  * @cnt: number of linked list buffers
6956  *
6957  * This routine walks the list of buffers that have been allocated and
6958  * repost them to the port by using SGL block post. This is needed after a
6959  * pci_function_reset/warm_start or start. It attempts to construct blocks
6960  * of buffer sgls which contains contiguous xris and uses the non-embedded
6961  * SGL block post mailbox commands to post them to the port. For single
6962  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6963  * mailbox command for posting.
6964  *
6965  * Returns: 0 = success, non-zero failure.
6966  **/
6967 static int
6968 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6969 			  struct list_head *sgl_list, int cnt)
6970 {
6971 	struct lpfc_sglq *sglq_entry = NULL;
6972 	struct lpfc_sglq *sglq_entry_next = NULL;
6973 	struct lpfc_sglq *sglq_entry_first = NULL;
6974 	int status, total_cnt;
6975 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6976 	int last_xritag = NO_XRI;
6977 	LIST_HEAD(prep_sgl_list);
6978 	LIST_HEAD(blck_sgl_list);
6979 	LIST_HEAD(allc_sgl_list);
6980 	LIST_HEAD(post_sgl_list);
6981 	LIST_HEAD(free_sgl_list);
6982 
6983 	spin_lock_irq(&phba->hbalock);
6984 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6985 	list_splice_init(sgl_list, &allc_sgl_list);
6986 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6987 	spin_unlock_irq(&phba->hbalock);
6988 
6989 	total_cnt = cnt;
6990 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6991 				 &allc_sgl_list, list) {
6992 		list_del_init(&sglq_entry->list);
6993 		block_cnt++;
6994 		if ((last_xritag != NO_XRI) &&
6995 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6996 			/* a hole in xri block, form a sgl posting block */
6997 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6998 			post_cnt = block_cnt - 1;
6999 			/* prepare list for next posting block */
7000 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7001 			block_cnt = 1;
7002 		} else {
7003 			/* prepare list for next posting block */
7004 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7005 			/* enough sgls for non-embed sgl mbox command */
7006 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7007 				list_splice_init(&prep_sgl_list,
7008 						 &blck_sgl_list);
7009 				post_cnt = block_cnt;
7010 				block_cnt = 0;
7011 			}
7012 		}
7013 		num_posted++;
7014 
7015 		/* keep track of last sgl's xritag */
7016 		last_xritag = sglq_entry->sli4_xritag;
7017 
7018 		/* end of repost sgl list condition for buffers */
7019 		if (num_posted == total_cnt) {
7020 			if (post_cnt == 0) {
7021 				list_splice_init(&prep_sgl_list,
7022 						 &blck_sgl_list);
7023 				post_cnt = block_cnt;
7024 			} else if (block_cnt == 1) {
7025 				status = lpfc_sli4_post_sgl(phba,
7026 						sglq_entry->phys, 0,
7027 						sglq_entry->sli4_xritag);
7028 				if (!status) {
7029 					/* successful, put sgl to posted list */
7030 					list_add_tail(&sglq_entry->list,
7031 						      &post_sgl_list);
7032 				} else {
7033 					/* Failure, put sgl to free list */
7034 					lpfc_printf_log(phba, KERN_WARNING,
7035 						LOG_SLI,
7036 						"3159 Failed to post "
7037 						"sgl, xritag:x%x\n",
7038 						sglq_entry->sli4_xritag);
7039 					list_add_tail(&sglq_entry->list,
7040 						      &free_sgl_list);
7041 					total_cnt--;
7042 				}
7043 			}
7044 		}
7045 
7046 		/* continue until a nembed page worth of sgls */
7047 		if (post_cnt == 0)
7048 			continue;
7049 
7050 		/* post the buffer list sgls as a block */
7051 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7052 						 post_cnt);
7053 
7054 		if (!status) {
7055 			/* success, put sgl list to posted sgl list */
7056 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7057 		} else {
7058 			/* Failure, put sgl list to free sgl list */
7059 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7060 							    struct lpfc_sglq,
7061 							    list);
7062 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7063 					"3160 Failed to post sgl-list, "
7064 					"xritag:x%x-x%x\n",
7065 					sglq_entry_first->sli4_xritag,
7066 					(sglq_entry_first->sli4_xritag +
7067 					 post_cnt - 1));
7068 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7069 			total_cnt -= post_cnt;
7070 		}
7071 
7072 		/* don't reset xirtag due to hole in xri block */
7073 		if (block_cnt == 0)
7074 			last_xritag = NO_XRI;
7075 
7076 		/* reset sgl post count for next round of posting */
7077 		post_cnt = 0;
7078 	}
7079 
7080 	/* free the sgls failed to post */
7081 	lpfc_free_sgl_list(phba, &free_sgl_list);
7082 
7083 	/* push sgls posted to the available list */
7084 	if (!list_empty(&post_sgl_list)) {
7085 		spin_lock_irq(&phba->hbalock);
7086 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7087 		list_splice_init(&post_sgl_list, sgl_list);
7088 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7089 		spin_unlock_irq(&phba->hbalock);
7090 	} else {
7091 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7092 				"3161 Failure to post sgl to port.\n");
7093 		return -EIO;
7094 	}
7095 
7096 	/* return the number of XRIs actually posted */
7097 	return total_cnt;
7098 }
7099 
7100 /**
7101  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7102  * @phba: pointer to lpfc hba data structure.
7103  *
7104  * This routine walks the list of nvme buffers that have been allocated and
7105  * repost them to the port by using SGL block post. This is needed after a
7106  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7107  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7108  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7109  *
7110  * Returns: 0 = success, non-zero failure.
7111  **/
7112 static int
7113 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7114 {
7115 	LIST_HEAD(post_nblist);
7116 	int num_posted, rc = 0;
7117 
7118 	/* get all NVME buffers need to repost to a local list */
7119 	lpfc_io_buf_flush(phba, &post_nblist);
7120 
7121 	/* post the list of nvme buffer sgls to port if available */
7122 	if (!list_empty(&post_nblist)) {
7123 		num_posted = lpfc_sli4_post_io_sgl_list(
7124 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7125 		/* failed to post any nvme buffer, return error */
7126 		if (num_posted == 0)
7127 			rc = -EIO;
7128 	}
7129 	return rc;
7130 }
7131 
7132 static void
7133 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7134 {
7135 	uint32_t len;
7136 
7137 	len = sizeof(struct lpfc_mbx_set_host_data) -
7138 		sizeof(struct lpfc_sli4_cfg_mhdr);
7139 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7140 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7141 			 LPFC_SLI4_MBX_EMBED);
7142 
7143 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7144 	mbox->u.mqe.un.set_host_data.param_len =
7145 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7146 	snprintf(mbox->u.mqe.un.set_host_data.data,
7147 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7148 		 "Linux %s v"LPFC_DRIVER_VERSION,
7149 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7150 }
7151 
7152 int
7153 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7154 		    struct lpfc_queue *drq, int count, int idx)
7155 {
7156 	int rc, i;
7157 	struct lpfc_rqe hrqe;
7158 	struct lpfc_rqe drqe;
7159 	struct lpfc_rqb *rqbp;
7160 	unsigned long flags;
7161 	struct rqb_dmabuf *rqb_buffer;
7162 	LIST_HEAD(rqb_buf_list);
7163 
7164 	spin_lock_irqsave(&phba->hbalock, flags);
7165 	rqbp = hrq->rqbp;
7166 	for (i = 0; i < count; i++) {
7167 		/* IF RQ is already full, don't bother */
7168 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7169 			break;
7170 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7171 		if (!rqb_buffer)
7172 			break;
7173 		rqb_buffer->hrq = hrq;
7174 		rqb_buffer->drq = drq;
7175 		rqb_buffer->idx = idx;
7176 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7177 	}
7178 	while (!list_empty(&rqb_buf_list)) {
7179 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7180 				 hbuf.list);
7181 
7182 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7183 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7184 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7185 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7186 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7187 		if (rc < 0) {
7188 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7189 					"6421 Cannot post to HRQ %d: %x %x %x "
7190 					"DRQ %x %x\n",
7191 					hrq->queue_id,
7192 					hrq->host_index,
7193 					hrq->hba_index,
7194 					hrq->entry_count,
7195 					drq->host_index,
7196 					drq->hba_index);
7197 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7198 		} else {
7199 			list_add_tail(&rqb_buffer->hbuf.list,
7200 				      &rqbp->rqb_buffer_list);
7201 			rqbp->buffer_count++;
7202 		}
7203 	}
7204 	spin_unlock_irqrestore(&phba->hbalock, flags);
7205 	return 1;
7206 }
7207 
7208 /**
7209  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7210  * @phba: Pointer to HBA context object.
7211  *
7212  * This function is the main SLI4 device initialization PCI function. This
7213  * function is called by the HBA initialization code, HBA reset code and
7214  * HBA error attention handler code. Caller is not required to hold any
7215  * locks.
7216  **/
7217 int
7218 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7219 {
7220 	int rc, i, cnt, len, dd;
7221 	LPFC_MBOXQ_t *mboxq;
7222 	struct lpfc_mqe *mqe;
7223 	uint8_t *vpd;
7224 	uint32_t vpd_size;
7225 	uint32_t ftr_rsp = 0;
7226 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7227 	struct lpfc_vport *vport = phba->pport;
7228 	struct lpfc_dmabuf *mp;
7229 	struct lpfc_rqb *rqbp;
7230 
7231 	/* Perform a PCI function reset to start from clean */
7232 	rc = lpfc_pci_function_reset(phba);
7233 	if (unlikely(rc))
7234 		return -ENODEV;
7235 
7236 	/* Check the HBA Host Status Register for readyness */
7237 	rc = lpfc_sli4_post_status_check(phba);
7238 	if (unlikely(rc))
7239 		return -ENODEV;
7240 	else {
7241 		spin_lock_irq(&phba->hbalock);
7242 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7243 		spin_unlock_irq(&phba->hbalock);
7244 	}
7245 
7246 	/*
7247 	 * Allocate a single mailbox container for initializing the
7248 	 * port.
7249 	 */
7250 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7251 	if (!mboxq)
7252 		return -ENOMEM;
7253 
7254 	/* Issue READ_REV to collect vpd and FW information. */
7255 	vpd_size = SLI4_PAGE_SIZE;
7256 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7257 	if (!vpd) {
7258 		rc = -ENOMEM;
7259 		goto out_free_mbox;
7260 	}
7261 
7262 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7263 	if (unlikely(rc)) {
7264 		kfree(vpd);
7265 		goto out_free_mbox;
7266 	}
7267 
7268 	mqe = &mboxq->u.mqe;
7269 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7270 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7271 		phba->hba_flag |= HBA_FCOE_MODE;
7272 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7273 	} else {
7274 		phba->hba_flag &= ~HBA_FCOE_MODE;
7275 	}
7276 
7277 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7278 		LPFC_DCBX_CEE_MODE)
7279 		phba->hba_flag |= HBA_FIP_SUPPORT;
7280 	else
7281 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7282 
7283 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7284 
7285 	if (phba->sli_rev != LPFC_SLI_REV4) {
7286 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7287 			"0376 READ_REV Error. SLI Level %d "
7288 			"FCoE enabled %d\n",
7289 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7290 		rc = -EIO;
7291 		kfree(vpd);
7292 		goto out_free_mbox;
7293 	}
7294 
7295 	/*
7296 	 * Continue initialization with default values even if driver failed
7297 	 * to read FCoE param config regions, only read parameters if the
7298 	 * board is FCoE
7299 	 */
7300 	if (phba->hba_flag & HBA_FCOE_MODE &&
7301 	    lpfc_sli4_read_fcoe_params(phba))
7302 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7303 			"2570 Failed to read FCoE parameters\n");
7304 
7305 	/*
7306 	 * Retrieve sli4 device physical port name, failure of doing it
7307 	 * is considered as non-fatal.
7308 	 */
7309 	rc = lpfc_sli4_retrieve_pport_name(phba);
7310 	if (!rc)
7311 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7312 				"3080 Successful retrieving SLI4 device "
7313 				"physical port name: %s.\n", phba->Port);
7314 
7315 	rc = lpfc_sli4_get_ctl_attr(phba);
7316 	if (!rc)
7317 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7318 				"8351 Successful retrieving SLI4 device "
7319 				"CTL ATTR\n");
7320 
7321 	/*
7322 	 * Evaluate the read rev and vpd data. Populate the driver
7323 	 * state with the results. If this routine fails, the failure
7324 	 * is not fatal as the driver will use generic values.
7325 	 */
7326 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7327 	if (unlikely(!rc)) {
7328 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7329 				"0377 Error %d parsing vpd. "
7330 				"Using defaults.\n", rc);
7331 		rc = 0;
7332 	}
7333 	kfree(vpd);
7334 
7335 	/* Save information as VPD data */
7336 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7337 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7338 
7339 	/*
7340 	 * This is because first G7 ASIC doesn't support the standard
7341 	 * 0x5a NVME cmd descriptor type/subtype
7342 	 */
7343 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7344 			LPFC_SLI_INTF_IF_TYPE_6) &&
7345 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7346 	    (phba->vpd.rev.smRev == 0) &&
7347 	    (phba->cfg_nvme_embed_cmd == 1))
7348 		phba->cfg_nvme_embed_cmd = 0;
7349 
7350 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7351 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7352 					 &mqe->un.read_rev);
7353 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7354 				       &mqe->un.read_rev);
7355 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7356 					    &mqe->un.read_rev);
7357 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7358 					   &mqe->un.read_rev);
7359 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7360 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7361 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7362 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7363 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7364 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7365 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7366 			"(%d):0380 READ_REV Status x%x "
7367 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7368 			mboxq->vport ? mboxq->vport->vpi : 0,
7369 			bf_get(lpfc_mqe_status, mqe),
7370 			phba->vpd.rev.opFwName,
7371 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7372 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7373 
7374 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7375 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7376 	if (phba->pport->cfg_lun_queue_depth > rc) {
7377 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7378 				"3362 LUN queue depth changed from %d to %d\n",
7379 				phba->pport->cfg_lun_queue_depth, rc);
7380 		phba->pport->cfg_lun_queue_depth = rc;
7381 	}
7382 
7383 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7384 	    LPFC_SLI_INTF_IF_TYPE_0) {
7385 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7386 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7387 		if (rc == MBX_SUCCESS) {
7388 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7389 			/* Set 1Sec interval to detect UE */
7390 			phba->eratt_poll_interval = 1;
7391 			phba->sli4_hba.ue_to_sr = bf_get(
7392 					lpfc_mbx_set_feature_UESR,
7393 					&mboxq->u.mqe.un.set_feature);
7394 			phba->sli4_hba.ue_to_rp = bf_get(
7395 					lpfc_mbx_set_feature_UERP,
7396 					&mboxq->u.mqe.un.set_feature);
7397 		}
7398 	}
7399 
7400 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7401 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7402 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7403 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7404 		if (rc != MBX_SUCCESS)
7405 			phba->mds_diags_support = 0;
7406 	}
7407 
7408 	/*
7409 	 * Discover the port's supported feature set and match it against the
7410 	 * hosts requests.
7411 	 */
7412 	lpfc_request_features(phba, mboxq);
7413 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7414 	if (unlikely(rc)) {
7415 		rc = -EIO;
7416 		goto out_free_mbox;
7417 	}
7418 
7419 	/*
7420 	 * The port must support FCP initiator mode as this is the
7421 	 * only mode running in the host.
7422 	 */
7423 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7424 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7425 				"0378 No support for fcpi mode.\n");
7426 		ftr_rsp++;
7427 	}
7428 
7429 	/* Performance Hints are ONLY for FCoE */
7430 	if (phba->hba_flag & HBA_FCOE_MODE) {
7431 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7432 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7433 		else
7434 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7435 	}
7436 
7437 	/*
7438 	 * If the port cannot support the host's requested features
7439 	 * then turn off the global config parameters to disable the
7440 	 * feature in the driver.  This is not a fatal error.
7441 	 */
7442 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7443 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7444 			phba->cfg_enable_bg = 0;
7445 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7446 			ftr_rsp++;
7447 		}
7448 	}
7449 
7450 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7451 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7452 		ftr_rsp++;
7453 
7454 	if (ftr_rsp) {
7455 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7456 				"0379 Feature Mismatch Data: x%08x %08x "
7457 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7458 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7459 				phba->cfg_enable_npiv, phba->max_vpi);
7460 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7461 			phba->cfg_enable_bg = 0;
7462 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7463 			phba->cfg_enable_npiv = 0;
7464 	}
7465 
7466 	/* These SLI3 features are assumed in SLI4 */
7467 	spin_lock_irq(&phba->hbalock);
7468 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7469 	spin_unlock_irq(&phba->hbalock);
7470 
7471 	/* Always try to enable dual dump feature if we can */
7472 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7473 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7474 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7475 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7476 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT,
7477 				"6448 Dual Dump is enabled\n");
7478 	else
7479 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7480 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7481 				"rc:x%x dd:x%x\n",
7482 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7483 				lpfc_sli_config_mbox_subsys_get(
7484 					phba, mboxq),
7485 				lpfc_sli_config_mbox_opcode_get(
7486 					phba, mboxq),
7487 				rc, dd);
7488 	/*
7489 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7490 	 * calls depends on these resources to complete port setup.
7491 	 */
7492 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7493 	if (rc) {
7494 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7495 				"2920 Failed to alloc Resource IDs "
7496 				"rc = x%x\n", rc);
7497 		goto out_free_mbox;
7498 	}
7499 
7500 	lpfc_set_host_data(phba, mboxq);
7501 
7502 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7503 	if (rc) {
7504 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7505 				"2134 Failed to set host os driver version %x",
7506 				rc);
7507 	}
7508 
7509 	/* Read the port's service parameters. */
7510 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7511 	if (rc) {
7512 		phba->link_state = LPFC_HBA_ERROR;
7513 		rc = -ENOMEM;
7514 		goto out_free_mbox;
7515 	}
7516 
7517 	mboxq->vport = vport;
7518 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7519 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7520 	if (rc == MBX_SUCCESS) {
7521 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7522 		rc = 0;
7523 	}
7524 
7525 	/*
7526 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7527 	 * it to the mbuf pool.
7528 	 */
7529 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7530 	kfree(mp);
7531 	mboxq->ctx_buf = NULL;
7532 	if (unlikely(rc)) {
7533 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7534 				"0382 READ_SPARAM command failed "
7535 				"status %d, mbxStatus x%x\n",
7536 				rc, bf_get(lpfc_mqe_status, mqe));
7537 		phba->link_state = LPFC_HBA_ERROR;
7538 		rc = -EIO;
7539 		goto out_free_mbox;
7540 	}
7541 
7542 	lpfc_update_vport_wwn(vport);
7543 
7544 	/* Update the fc_host data structures with new wwn. */
7545 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7546 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7547 
7548 	/* Create all the SLI4 queues */
7549 	rc = lpfc_sli4_queue_create(phba);
7550 	if (rc) {
7551 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7552 				"3089 Failed to allocate queues\n");
7553 		rc = -ENODEV;
7554 		goto out_free_mbox;
7555 	}
7556 	/* Set up all the queues to the device */
7557 	rc = lpfc_sli4_queue_setup(phba);
7558 	if (unlikely(rc)) {
7559 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7560 				"0381 Error %d during queue setup.\n ", rc);
7561 		goto out_stop_timers;
7562 	}
7563 	/* Initialize the driver internal SLI layer lists. */
7564 	lpfc_sli4_setup(phba);
7565 	lpfc_sli4_queue_init(phba);
7566 
7567 	/* update host els xri-sgl sizes and mappings */
7568 	rc = lpfc_sli4_els_sgl_update(phba);
7569 	if (unlikely(rc)) {
7570 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7571 				"1400 Failed to update xri-sgl size and "
7572 				"mapping: %d\n", rc);
7573 		goto out_destroy_queue;
7574 	}
7575 
7576 	/* register the els sgl pool to the port */
7577 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7578 				       phba->sli4_hba.els_xri_cnt);
7579 	if (unlikely(rc < 0)) {
7580 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7581 				"0582 Error %d during els sgl post "
7582 				"operation\n", rc);
7583 		rc = -ENODEV;
7584 		goto out_destroy_queue;
7585 	}
7586 	phba->sli4_hba.els_xri_cnt = rc;
7587 
7588 	if (phba->nvmet_support) {
7589 		/* update host nvmet xri-sgl sizes and mappings */
7590 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7591 		if (unlikely(rc)) {
7592 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7593 					"6308 Failed to update nvmet-sgl size "
7594 					"and mapping: %d\n", rc);
7595 			goto out_destroy_queue;
7596 		}
7597 
7598 		/* register the nvmet sgl pool to the port */
7599 		rc = lpfc_sli4_repost_sgl_list(
7600 			phba,
7601 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7602 			phba->sli4_hba.nvmet_xri_cnt);
7603 		if (unlikely(rc < 0)) {
7604 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7605 					"3117 Error %d during nvmet "
7606 					"sgl post\n", rc);
7607 			rc = -ENODEV;
7608 			goto out_destroy_queue;
7609 		}
7610 		phba->sli4_hba.nvmet_xri_cnt = rc;
7611 
7612 		/* We allocate an iocbq for every receive context SGL.
7613 		 * The additional allocation is for abort and ls handling.
7614 		 */
7615 		cnt = phba->sli4_hba.nvmet_xri_cnt +
7616 			phba->sli4_hba.max_cfg_param.max_xri;
7617 	} else {
7618 		/* update host common xri-sgl sizes and mappings */
7619 		rc = lpfc_sli4_io_sgl_update(phba);
7620 		if (unlikely(rc)) {
7621 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7622 					"6082 Failed to update nvme-sgl size "
7623 					"and mapping: %d\n", rc);
7624 			goto out_destroy_queue;
7625 		}
7626 
7627 		/* register the allocated common sgl pool to the port */
7628 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7629 		if (unlikely(rc)) {
7630 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7631 					"6116 Error %d during nvme sgl post "
7632 					"operation\n", rc);
7633 			/* Some NVME buffers were moved to abort nvme list */
7634 			/* A pci function reset will repost them */
7635 			rc = -ENODEV;
7636 			goto out_destroy_queue;
7637 		}
7638 		/* Each lpfc_io_buf job structure has an iocbq element.
7639 		 * This cnt provides for abort, els, ct and ls requests.
7640 		 */
7641 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
7642 	}
7643 
7644 	if (!phba->sli.iocbq_lookup) {
7645 		/* Initialize and populate the iocb list per host */
7646 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7647 				"2821 initialize iocb list with %d entries\n",
7648 				cnt);
7649 		rc = lpfc_init_iocb_list(phba, cnt);
7650 		if (rc) {
7651 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7652 					"1413 Failed to init iocb list.\n");
7653 			goto out_destroy_queue;
7654 		}
7655 	}
7656 
7657 	if (phba->nvmet_support)
7658 		lpfc_nvmet_create_targetport(phba);
7659 
7660 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7661 		/* Post initial buffers to all RQs created */
7662 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7663 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7664 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7665 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7666 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7667 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7668 			rqbp->buffer_count = 0;
7669 
7670 			lpfc_post_rq_buffer(
7671 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7672 				phba->sli4_hba.nvmet_mrq_data[i],
7673 				phba->cfg_nvmet_mrq_post, i);
7674 		}
7675 	}
7676 
7677 	/* Post the rpi header region to the device. */
7678 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7679 	if (unlikely(rc)) {
7680 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7681 				"0393 Error %d during rpi post operation\n",
7682 				rc);
7683 		rc = -ENODEV;
7684 		goto out_destroy_queue;
7685 	}
7686 	lpfc_sli4_node_prep(phba);
7687 
7688 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7689 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7690 			/*
7691 			 * The FC Port needs to register FCFI (index 0)
7692 			 */
7693 			lpfc_reg_fcfi(phba, mboxq);
7694 			mboxq->vport = phba->pport;
7695 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7696 			if (rc != MBX_SUCCESS)
7697 				goto out_unset_queue;
7698 			rc = 0;
7699 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7700 						&mboxq->u.mqe.un.reg_fcfi);
7701 		} else {
7702 			/* We are a NVME Target mode with MRQ > 1 */
7703 
7704 			/* First register the FCFI */
7705 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7706 			mboxq->vport = phba->pport;
7707 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7708 			if (rc != MBX_SUCCESS)
7709 				goto out_unset_queue;
7710 			rc = 0;
7711 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7712 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7713 
7714 			/* Next register the MRQs */
7715 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7716 			mboxq->vport = phba->pport;
7717 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7718 			if (rc != MBX_SUCCESS)
7719 				goto out_unset_queue;
7720 			rc = 0;
7721 		}
7722 		/* Check if the port is configured to be disabled */
7723 		lpfc_sli_read_link_ste(phba);
7724 	}
7725 
7726 	/* Don't post more new bufs if repost already recovered
7727 	 * the nvme sgls.
7728 	 */
7729 	if (phba->nvmet_support == 0) {
7730 		if (phba->sli4_hba.io_xri_cnt == 0) {
7731 			len = lpfc_new_io_buf(
7732 					      phba, phba->sli4_hba.io_xri_max);
7733 			if (len == 0) {
7734 				rc = -ENOMEM;
7735 				goto out_unset_queue;
7736 			}
7737 
7738 			if (phba->cfg_xri_rebalancing)
7739 				lpfc_create_multixri_pools(phba);
7740 		}
7741 	} else {
7742 		phba->cfg_xri_rebalancing = 0;
7743 	}
7744 
7745 	/* Allow asynchronous mailbox command to go through */
7746 	spin_lock_irq(&phba->hbalock);
7747 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7748 	spin_unlock_irq(&phba->hbalock);
7749 
7750 	/* Post receive buffers to the device */
7751 	lpfc_sli4_rb_setup(phba);
7752 
7753 	/* Reset HBA FCF states after HBA reset */
7754 	phba->fcf.fcf_flag = 0;
7755 	phba->fcf.current_rec.flag = 0;
7756 
7757 	/* Start the ELS watchdog timer */
7758 	mod_timer(&vport->els_tmofunc,
7759 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7760 
7761 	/* Start heart beat timer */
7762 	mod_timer(&phba->hb_tmofunc,
7763 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7764 	phba->hb_outstanding = 0;
7765 	phba->last_completion_time = jiffies;
7766 
7767 	/* start eq_delay heartbeat */
7768 	if (phba->cfg_auto_imax)
7769 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7770 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7771 
7772 	/* Start error attention (ERATT) polling timer */
7773 	mod_timer(&phba->eratt_poll,
7774 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7775 
7776 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7777 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7778 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7779 		if (!rc) {
7780 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7781 					"2829 This device supports "
7782 					"Advanced Error Reporting (AER)\n");
7783 			spin_lock_irq(&phba->hbalock);
7784 			phba->hba_flag |= HBA_AER_ENABLED;
7785 			spin_unlock_irq(&phba->hbalock);
7786 		} else {
7787 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7788 					"2830 This device does not support "
7789 					"Advanced Error Reporting (AER)\n");
7790 			phba->cfg_aer_support = 0;
7791 		}
7792 		rc = 0;
7793 	}
7794 
7795 	/*
7796 	 * The port is ready, set the host's link state to LINK_DOWN
7797 	 * in preparation for link interrupts.
7798 	 */
7799 	spin_lock_irq(&phba->hbalock);
7800 	phba->link_state = LPFC_LINK_DOWN;
7801 
7802 	/* Check if physical ports are trunked */
7803 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7804 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7805 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7806 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7807 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7808 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7809 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7810 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7811 	spin_unlock_irq(&phba->hbalock);
7812 
7813 	/* Arm the CQs and then EQs on device */
7814 	lpfc_sli4_arm_cqeq_intr(phba);
7815 
7816 	/* Indicate device interrupt mode */
7817 	phba->sli4_hba.intr_enable = 1;
7818 
7819 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7820 	    (phba->hba_flag & LINK_DISABLED)) {
7821 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7822 				"3103 Adapter Link is disabled.\n");
7823 		lpfc_down_link(phba, mboxq);
7824 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7825 		if (rc != MBX_SUCCESS) {
7826 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7827 					"3104 Adapter failed to issue "
7828 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7829 			goto out_io_buff_free;
7830 		}
7831 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7832 		/* don't perform init_link on SLI4 FC port loopback test */
7833 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7834 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7835 			if (rc)
7836 				goto out_io_buff_free;
7837 		}
7838 	}
7839 	mempool_free(mboxq, phba->mbox_mem_pool);
7840 	return rc;
7841 out_io_buff_free:
7842 	/* Free allocated IO Buffers */
7843 	lpfc_io_free(phba);
7844 out_unset_queue:
7845 	/* Unset all the queues set up in this routine when error out */
7846 	lpfc_sli4_queue_unset(phba);
7847 out_destroy_queue:
7848 	lpfc_free_iocb_list(phba);
7849 	lpfc_sli4_queue_destroy(phba);
7850 out_stop_timers:
7851 	lpfc_stop_hba_timers(phba);
7852 out_free_mbox:
7853 	mempool_free(mboxq, phba->mbox_mem_pool);
7854 	return rc;
7855 }
7856 
7857 /**
7858  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7859  * @ptr: context object - pointer to hba structure.
7860  *
7861  * This is the callback function for mailbox timer. The mailbox
7862  * timer is armed when a new mailbox command is issued and the timer
7863  * is deleted when the mailbox complete. The function is called by
7864  * the kernel timer code when a mailbox does not complete within
7865  * expected time. This function wakes up the worker thread to
7866  * process the mailbox timeout and returns. All the processing is
7867  * done by the worker thread function lpfc_mbox_timeout_handler.
7868  **/
7869 void
7870 lpfc_mbox_timeout(struct timer_list *t)
7871 {
7872 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7873 	unsigned long iflag;
7874 	uint32_t tmo_posted;
7875 
7876 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7877 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7878 	if (!tmo_posted)
7879 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7880 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7881 
7882 	if (!tmo_posted)
7883 		lpfc_worker_wake_up(phba);
7884 	return;
7885 }
7886 
7887 /**
7888  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7889  *                                    are pending
7890  * @phba: Pointer to HBA context object.
7891  *
7892  * This function checks if any mailbox completions are present on the mailbox
7893  * completion queue.
7894  **/
7895 static bool
7896 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7897 {
7898 
7899 	uint32_t idx;
7900 	struct lpfc_queue *mcq;
7901 	struct lpfc_mcqe *mcqe;
7902 	bool pending_completions = false;
7903 	uint8_t	qe_valid;
7904 
7905 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7906 		return false;
7907 
7908 	/* Check for completions on mailbox completion queue */
7909 
7910 	mcq = phba->sli4_hba.mbx_cq;
7911 	idx = mcq->hba_index;
7912 	qe_valid = mcq->qe_valid;
7913 	while (bf_get_le32(lpfc_cqe_valid,
7914 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7915 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7916 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7917 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7918 			pending_completions = true;
7919 			break;
7920 		}
7921 		idx = (idx + 1) % mcq->entry_count;
7922 		if (mcq->hba_index == idx)
7923 			break;
7924 
7925 		/* if the index wrapped around, toggle the valid bit */
7926 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7927 			qe_valid = (qe_valid) ? 0 : 1;
7928 	}
7929 	return pending_completions;
7930 
7931 }
7932 
7933 /**
7934  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7935  *					      that were missed.
7936  * @phba: Pointer to HBA context object.
7937  *
7938  * For sli4, it is possible to miss an interrupt. As such mbox completions
7939  * maybe missed causing erroneous mailbox timeouts to occur. This function
7940  * checks to see if mbox completions are on the mailbox completion queue
7941  * and will process all the completions associated with the eq for the
7942  * mailbox completion queue.
7943  **/
7944 static bool
7945 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7946 {
7947 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7948 	uint32_t eqidx;
7949 	struct lpfc_queue *fpeq = NULL;
7950 	struct lpfc_queue *eq;
7951 	bool mbox_pending;
7952 
7953 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7954 		return false;
7955 
7956 	/* Find the EQ associated with the mbox CQ */
7957 	if (sli4_hba->hdwq) {
7958 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
7959 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
7960 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
7961 				fpeq = eq;
7962 				break;
7963 			}
7964 		}
7965 	}
7966 	if (!fpeq)
7967 		return false;
7968 
7969 	/* Turn off interrupts from this EQ */
7970 
7971 	sli4_hba->sli4_eq_clr_intr(fpeq);
7972 
7973 	/* Check to see if a mbox completion is pending */
7974 
7975 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7976 
7977 	/*
7978 	 * If a mbox completion is pending, process all the events on EQ
7979 	 * associated with the mbox completion queue (this could include
7980 	 * mailbox commands, async events, els commands, receive queue data
7981 	 * and fcp commands)
7982 	 */
7983 
7984 	if (mbox_pending)
7985 		/* process and rearm the EQ */
7986 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
7987 	else
7988 		/* Always clear and re-arm the EQ */
7989 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7990 
7991 	return mbox_pending;
7992 
7993 }
7994 
7995 /**
7996  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7997  * @phba: Pointer to HBA context object.
7998  *
7999  * This function is called from worker thread when a mailbox command times out.
8000  * The caller is not required to hold any locks. This function will reset the
8001  * HBA and recover all the pending commands.
8002  **/
8003 void
8004 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8005 {
8006 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8007 	MAILBOX_t *mb = NULL;
8008 
8009 	struct lpfc_sli *psli = &phba->sli;
8010 
8011 	/* If the mailbox completed, process the completion and return */
8012 	if (lpfc_sli4_process_missed_mbox_completions(phba))
8013 		return;
8014 
8015 	if (pmbox != NULL)
8016 		mb = &pmbox->u.mb;
8017 	/* Check the pmbox pointer first.  There is a race condition
8018 	 * between the mbox timeout handler getting executed in the
8019 	 * worklist and the mailbox actually completing. When this
8020 	 * race condition occurs, the mbox_active will be NULL.
8021 	 */
8022 	spin_lock_irq(&phba->hbalock);
8023 	if (pmbox == NULL) {
8024 		lpfc_printf_log(phba, KERN_WARNING,
8025 				LOG_MBOX | LOG_SLI,
8026 				"0353 Active Mailbox cleared - mailbox timeout "
8027 				"exiting\n");
8028 		spin_unlock_irq(&phba->hbalock);
8029 		return;
8030 	}
8031 
8032 	/* Mbox cmd <mbxCommand> timeout */
8033 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8034 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8035 			mb->mbxCommand,
8036 			phba->pport->port_state,
8037 			phba->sli.sli_flag,
8038 			phba->sli.mbox_active);
8039 	spin_unlock_irq(&phba->hbalock);
8040 
8041 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8042 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8043 	 * it to fail all outstanding SCSI IO.
8044 	 */
8045 	spin_lock_irq(&phba->pport->work_port_lock);
8046 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8047 	spin_unlock_irq(&phba->pport->work_port_lock);
8048 	spin_lock_irq(&phba->hbalock);
8049 	phba->link_state = LPFC_LINK_UNKNOWN;
8050 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8051 	spin_unlock_irq(&phba->hbalock);
8052 
8053 	lpfc_sli_abort_fcp_rings(phba);
8054 
8055 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8056 			"0345 Resetting board due to mailbox timeout\n");
8057 
8058 	/* Reset the HBA device */
8059 	lpfc_reset_hba(phba);
8060 }
8061 
8062 /**
8063  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8064  * @phba: Pointer to HBA context object.
8065  * @pmbox: Pointer to mailbox object.
8066  * @flag: Flag indicating how the mailbox need to be processed.
8067  *
8068  * This function is called by discovery code and HBA management code
8069  * to submit a mailbox command to firmware with SLI-3 interface spec. This
8070  * function gets the hbalock to protect the data structures.
8071  * The mailbox command can be submitted in polling mode, in which case
8072  * this function will wait in a polling loop for the completion of the
8073  * mailbox.
8074  * If the mailbox is submitted in no_wait mode (not polling) the
8075  * function will submit the command and returns immediately without waiting
8076  * for the mailbox completion. The no_wait is supported only when HBA
8077  * is in SLI2/SLI3 mode - interrupts are enabled.
8078  * The SLI interface allows only one mailbox pending at a time. If the
8079  * mailbox is issued in polling mode and there is already a mailbox
8080  * pending, then the function will return an error. If the mailbox is issued
8081  * in NO_WAIT mode and there is a mailbox pending already, the function
8082  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8083  * The sli layer owns the mailbox object until the completion of mailbox
8084  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8085  * return codes the caller owns the mailbox command after the return of
8086  * the function.
8087  **/
8088 static int
8089 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8090 		       uint32_t flag)
8091 {
8092 	MAILBOX_t *mbx;
8093 	struct lpfc_sli *psli = &phba->sli;
8094 	uint32_t status, evtctr;
8095 	uint32_t ha_copy, hc_copy;
8096 	int i;
8097 	unsigned long timeout;
8098 	unsigned long drvr_flag = 0;
8099 	uint32_t word0, ldata;
8100 	void __iomem *to_slim;
8101 	int processing_queue = 0;
8102 
8103 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8104 	if (!pmbox) {
8105 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8106 		/* processing mbox queue from intr_handler */
8107 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8108 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8109 			return MBX_SUCCESS;
8110 		}
8111 		processing_queue = 1;
8112 		pmbox = lpfc_mbox_get(phba);
8113 		if (!pmbox) {
8114 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8115 			return MBX_SUCCESS;
8116 		}
8117 	}
8118 
8119 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8120 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8121 		if(!pmbox->vport) {
8122 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8123 			lpfc_printf_log(phba, KERN_ERR,
8124 					LOG_MBOX | LOG_VPORT,
8125 					"1806 Mbox x%x failed. No vport\n",
8126 					pmbox->u.mb.mbxCommand);
8127 			dump_stack();
8128 			goto out_not_finished;
8129 		}
8130 	}
8131 
8132 	/* If the PCI channel is in offline state, do not post mbox. */
8133 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8134 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8135 		goto out_not_finished;
8136 	}
8137 
8138 	/* If HBA has a deferred error attention, fail the iocb. */
8139 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8140 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8141 		goto out_not_finished;
8142 	}
8143 
8144 	psli = &phba->sli;
8145 
8146 	mbx = &pmbox->u.mb;
8147 	status = MBX_SUCCESS;
8148 
8149 	if (phba->link_state == LPFC_HBA_ERROR) {
8150 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8151 
8152 		/* Mbox command <mbxCommand> cannot issue */
8153 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8154 				"(%d):0311 Mailbox command x%x cannot "
8155 				"issue Data: x%x x%x\n",
8156 				pmbox->vport ? pmbox->vport->vpi : 0,
8157 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8158 		goto out_not_finished;
8159 	}
8160 
8161 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8162 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8163 			!(hc_copy & HC_MBINT_ENA)) {
8164 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8165 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8166 				"(%d):2528 Mailbox command x%x cannot "
8167 				"issue Data: x%x x%x\n",
8168 				pmbox->vport ? pmbox->vport->vpi : 0,
8169 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8170 			goto out_not_finished;
8171 		}
8172 	}
8173 
8174 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8175 		/* Polling for a mbox command when another one is already active
8176 		 * is not allowed in SLI. Also, the driver must have established
8177 		 * SLI2 mode to queue and process multiple mbox commands.
8178 		 */
8179 
8180 		if (flag & MBX_POLL) {
8181 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8182 
8183 			/* Mbox command <mbxCommand> cannot issue */
8184 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8185 					"(%d):2529 Mailbox command x%x "
8186 					"cannot issue Data: x%x x%x\n",
8187 					pmbox->vport ? pmbox->vport->vpi : 0,
8188 					pmbox->u.mb.mbxCommand,
8189 					psli->sli_flag, flag);
8190 			goto out_not_finished;
8191 		}
8192 
8193 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8194 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8195 			/* Mbox command <mbxCommand> cannot issue */
8196 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8197 					"(%d):2530 Mailbox command x%x "
8198 					"cannot issue Data: x%x x%x\n",
8199 					pmbox->vport ? pmbox->vport->vpi : 0,
8200 					pmbox->u.mb.mbxCommand,
8201 					psli->sli_flag, flag);
8202 			goto out_not_finished;
8203 		}
8204 
8205 		/* Another mailbox command is still being processed, queue this
8206 		 * command to be processed later.
8207 		 */
8208 		lpfc_mbox_put(phba, pmbox);
8209 
8210 		/* Mbox cmd issue - BUSY */
8211 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8212 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8213 				"x%x x%x x%x x%x\n",
8214 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8215 				mbx->mbxCommand,
8216 				phba->pport ? phba->pport->port_state : 0xff,
8217 				psli->sli_flag, flag);
8218 
8219 		psli->slistat.mbox_busy++;
8220 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8221 
8222 		if (pmbox->vport) {
8223 			lpfc_debugfs_disc_trc(pmbox->vport,
8224 				LPFC_DISC_TRC_MBOX_VPORT,
8225 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8226 				(uint32_t)mbx->mbxCommand,
8227 				mbx->un.varWords[0], mbx->un.varWords[1]);
8228 		}
8229 		else {
8230 			lpfc_debugfs_disc_trc(phba->pport,
8231 				LPFC_DISC_TRC_MBOX,
8232 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8233 				(uint32_t)mbx->mbxCommand,
8234 				mbx->un.varWords[0], mbx->un.varWords[1]);
8235 		}
8236 
8237 		return MBX_BUSY;
8238 	}
8239 
8240 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8241 
8242 	/* If we are not polling, we MUST be in SLI2 mode */
8243 	if (flag != MBX_POLL) {
8244 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8245 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8246 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8247 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8248 			/* Mbox command <mbxCommand> cannot issue */
8249 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8250 					"(%d):2531 Mailbox command x%x "
8251 					"cannot issue Data: x%x x%x\n",
8252 					pmbox->vport ? pmbox->vport->vpi : 0,
8253 					pmbox->u.mb.mbxCommand,
8254 					psli->sli_flag, flag);
8255 			goto out_not_finished;
8256 		}
8257 		/* timeout active mbox command */
8258 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8259 					   1000);
8260 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8261 	}
8262 
8263 	/* Mailbox cmd <cmd> issue */
8264 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8265 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8266 			"x%x\n",
8267 			pmbox->vport ? pmbox->vport->vpi : 0,
8268 			mbx->mbxCommand,
8269 			phba->pport ? phba->pport->port_state : 0xff,
8270 			psli->sli_flag, flag);
8271 
8272 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8273 		if (pmbox->vport) {
8274 			lpfc_debugfs_disc_trc(pmbox->vport,
8275 				LPFC_DISC_TRC_MBOX_VPORT,
8276 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8277 				(uint32_t)mbx->mbxCommand,
8278 				mbx->un.varWords[0], mbx->un.varWords[1]);
8279 		}
8280 		else {
8281 			lpfc_debugfs_disc_trc(phba->pport,
8282 				LPFC_DISC_TRC_MBOX,
8283 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8284 				(uint32_t)mbx->mbxCommand,
8285 				mbx->un.varWords[0], mbx->un.varWords[1]);
8286 		}
8287 	}
8288 
8289 	psli->slistat.mbox_cmd++;
8290 	evtctr = psli->slistat.mbox_event;
8291 
8292 	/* next set own bit for the adapter and copy over command word */
8293 	mbx->mbxOwner = OWN_CHIP;
8294 
8295 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8296 		/* Populate mbox extension offset word. */
8297 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8298 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8299 				= (uint8_t *)phba->mbox_ext
8300 				  - (uint8_t *)phba->mbox;
8301 		}
8302 
8303 		/* Copy the mailbox extension data */
8304 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8305 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8306 					      (uint8_t *)phba->mbox_ext,
8307 					      pmbox->in_ext_byte_len);
8308 		}
8309 		/* Copy command data to host SLIM area */
8310 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8311 	} else {
8312 		/* Populate mbox extension offset word. */
8313 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8314 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8315 				= MAILBOX_HBA_EXT_OFFSET;
8316 
8317 		/* Copy the mailbox extension data */
8318 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8319 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8320 				MAILBOX_HBA_EXT_OFFSET,
8321 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8322 
8323 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8324 			/* copy command data into host mbox for cmpl */
8325 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8326 					      MAILBOX_CMD_SIZE);
8327 
8328 		/* First copy mbox command data to HBA SLIM, skip past first
8329 		   word */
8330 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8331 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8332 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8333 
8334 		/* Next copy over first word, with mbxOwner set */
8335 		ldata = *((uint32_t *)mbx);
8336 		to_slim = phba->MBslimaddr;
8337 		writel(ldata, to_slim);
8338 		readl(to_slim); /* flush */
8339 
8340 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8341 			/* switch over to host mailbox */
8342 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8343 	}
8344 
8345 	wmb();
8346 
8347 	switch (flag) {
8348 	case MBX_NOWAIT:
8349 		/* Set up reference to mailbox command */
8350 		psli->mbox_active = pmbox;
8351 		/* Interrupt board to do it */
8352 		writel(CA_MBATT, phba->CAregaddr);
8353 		readl(phba->CAregaddr); /* flush */
8354 		/* Don't wait for it to finish, just return */
8355 		break;
8356 
8357 	case MBX_POLL:
8358 		/* Set up null reference to mailbox command */
8359 		psli->mbox_active = NULL;
8360 		/* Interrupt board to do it */
8361 		writel(CA_MBATT, phba->CAregaddr);
8362 		readl(phba->CAregaddr); /* flush */
8363 
8364 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8365 			/* First read mbox status word */
8366 			word0 = *((uint32_t *)phba->mbox);
8367 			word0 = le32_to_cpu(word0);
8368 		} else {
8369 			/* First read mbox status word */
8370 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8371 				spin_unlock_irqrestore(&phba->hbalock,
8372 						       drvr_flag);
8373 				goto out_not_finished;
8374 			}
8375 		}
8376 
8377 		/* Read the HBA Host Attention Register */
8378 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8379 			spin_unlock_irqrestore(&phba->hbalock,
8380 						       drvr_flag);
8381 			goto out_not_finished;
8382 		}
8383 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8384 							1000) + jiffies;
8385 		i = 0;
8386 		/* Wait for command to complete */
8387 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8388 		       (!(ha_copy & HA_MBATT) &&
8389 			(phba->link_state > LPFC_WARM_START))) {
8390 			if (time_after(jiffies, timeout)) {
8391 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8392 				spin_unlock_irqrestore(&phba->hbalock,
8393 						       drvr_flag);
8394 				goto out_not_finished;
8395 			}
8396 
8397 			/* Check if we took a mbox interrupt while we were
8398 			   polling */
8399 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8400 			    && (evtctr != psli->slistat.mbox_event))
8401 				break;
8402 
8403 			if (i++ > 10) {
8404 				spin_unlock_irqrestore(&phba->hbalock,
8405 						       drvr_flag);
8406 				msleep(1);
8407 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8408 			}
8409 
8410 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8411 				/* First copy command data */
8412 				word0 = *((uint32_t *)phba->mbox);
8413 				word0 = le32_to_cpu(word0);
8414 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8415 					MAILBOX_t *slimmb;
8416 					uint32_t slimword0;
8417 					/* Check real SLIM for any errors */
8418 					slimword0 = readl(phba->MBslimaddr);
8419 					slimmb = (MAILBOX_t *) & slimword0;
8420 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8421 					    && slimmb->mbxStatus) {
8422 						psli->sli_flag &=
8423 						    ~LPFC_SLI_ACTIVE;
8424 						word0 = slimword0;
8425 					}
8426 				}
8427 			} else {
8428 				/* First copy command data */
8429 				word0 = readl(phba->MBslimaddr);
8430 			}
8431 			/* Read the HBA Host Attention Register */
8432 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8433 				spin_unlock_irqrestore(&phba->hbalock,
8434 						       drvr_flag);
8435 				goto out_not_finished;
8436 			}
8437 		}
8438 
8439 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8440 			/* copy results back to user */
8441 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8442 						MAILBOX_CMD_SIZE);
8443 			/* Copy the mailbox extension data */
8444 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8445 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8446 						      pmbox->ctx_buf,
8447 						      pmbox->out_ext_byte_len);
8448 			}
8449 		} else {
8450 			/* First copy command data */
8451 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8452 						MAILBOX_CMD_SIZE);
8453 			/* Copy the mailbox extension data */
8454 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8455 				lpfc_memcpy_from_slim(
8456 					pmbox->ctx_buf,
8457 					phba->MBslimaddr +
8458 					MAILBOX_HBA_EXT_OFFSET,
8459 					pmbox->out_ext_byte_len);
8460 			}
8461 		}
8462 
8463 		writel(HA_MBATT, phba->HAregaddr);
8464 		readl(phba->HAregaddr); /* flush */
8465 
8466 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8467 		status = mbx->mbxStatus;
8468 	}
8469 
8470 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8471 	return status;
8472 
8473 out_not_finished:
8474 	if (processing_queue) {
8475 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8476 		lpfc_mbox_cmpl_put(phba, pmbox);
8477 	}
8478 	return MBX_NOT_FINISHED;
8479 }
8480 
8481 /**
8482  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8483  * @phba: Pointer to HBA context object.
8484  *
8485  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8486  * the driver internal pending mailbox queue. It will then try to wait out the
8487  * possible outstanding mailbox command before return.
8488  *
8489  * Returns:
8490  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8491  * 	the outstanding mailbox command timed out.
8492  **/
8493 static int
8494 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8495 {
8496 	struct lpfc_sli *psli = &phba->sli;
8497 	int rc = 0;
8498 	unsigned long timeout = 0;
8499 
8500 	/* Mark the asynchronous mailbox command posting as blocked */
8501 	spin_lock_irq(&phba->hbalock);
8502 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8503 	/* Determine how long we might wait for the active mailbox
8504 	 * command to be gracefully completed by firmware.
8505 	 */
8506 	if (phba->sli.mbox_active)
8507 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8508 						phba->sli.mbox_active) *
8509 						1000) + jiffies;
8510 	spin_unlock_irq(&phba->hbalock);
8511 
8512 	/* Make sure the mailbox is really active */
8513 	if (timeout)
8514 		lpfc_sli4_process_missed_mbox_completions(phba);
8515 
8516 	/* Wait for the outstnading mailbox command to complete */
8517 	while (phba->sli.mbox_active) {
8518 		/* Check active mailbox complete status every 2ms */
8519 		msleep(2);
8520 		if (time_after(jiffies, timeout)) {
8521 			/* Timeout, marked the outstanding cmd not complete */
8522 			rc = 1;
8523 			break;
8524 		}
8525 	}
8526 
8527 	/* Can not cleanly block async mailbox command, fails it */
8528 	if (rc) {
8529 		spin_lock_irq(&phba->hbalock);
8530 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8531 		spin_unlock_irq(&phba->hbalock);
8532 	}
8533 	return rc;
8534 }
8535 
8536 /**
8537  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8538  * @phba: Pointer to HBA context object.
8539  *
8540  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8541  * commands from the driver internal pending mailbox queue. It makes sure
8542  * that there is no outstanding mailbox command before resuming posting
8543  * asynchronous mailbox commands. If, for any reason, there is outstanding
8544  * mailbox command, it will try to wait it out before resuming asynchronous
8545  * mailbox command posting.
8546  **/
8547 static void
8548 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8549 {
8550 	struct lpfc_sli *psli = &phba->sli;
8551 
8552 	spin_lock_irq(&phba->hbalock);
8553 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8554 		/* Asynchronous mailbox posting is not blocked, do nothing */
8555 		spin_unlock_irq(&phba->hbalock);
8556 		return;
8557 	}
8558 
8559 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8560 	 * successful or timeout, after timing-out the outstanding mailbox
8561 	 * command shall always be removed, so just unblock posting async
8562 	 * mailbox command and resume
8563 	 */
8564 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8565 	spin_unlock_irq(&phba->hbalock);
8566 
8567 	/* wake up worker thread to post asynchronous mailbox command */
8568 	lpfc_worker_wake_up(phba);
8569 }
8570 
8571 /**
8572  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8573  * @phba: Pointer to HBA context object.
8574  * @mboxq: Pointer to mailbox object.
8575  *
8576  * The function waits for the bootstrap mailbox register ready bit from
8577  * port for twice the regular mailbox command timeout value.
8578  *
8579  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8580  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8581  **/
8582 static int
8583 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8584 {
8585 	uint32_t db_ready;
8586 	unsigned long timeout;
8587 	struct lpfc_register bmbx_reg;
8588 
8589 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8590 				   * 1000) + jiffies;
8591 
8592 	do {
8593 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8594 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8595 		if (!db_ready)
8596 			mdelay(2);
8597 
8598 		if (time_after(jiffies, timeout))
8599 			return MBXERR_ERROR;
8600 	} while (!db_ready);
8601 
8602 	return 0;
8603 }
8604 
8605 /**
8606  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8607  * @phba: Pointer to HBA context object.
8608  * @mboxq: Pointer to mailbox object.
8609  *
8610  * The function posts a mailbox to the port.  The mailbox is expected
8611  * to be comletely filled in and ready for the port to operate on it.
8612  * This routine executes a synchronous completion operation on the
8613  * mailbox by polling for its completion.
8614  *
8615  * The caller must not be holding any locks when calling this routine.
8616  *
8617  * Returns:
8618  *	MBX_SUCCESS - mailbox posted successfully
8619  *	Any of the MBX error values.
8620  **/
8621 static int
8622 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8623 {
8624 	int rc = MBX_SUCCESS;
8625 	unsigned long iflag;
8626 	uint32_t mcqe_status;
8627 	uint32_t mbx_cmnd;
8628 	struct lpfc_sli *psli = &phba->sli;
8629 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8630 	struct lpfc_bmbx_create *mbox_rgn;
8631 	struct dma_address *dma_address;
8632 
8633 	/*
8634 	 * Only one mailbox can be active to the bootstrap mailbox region
8635 	 * at a time and there is no queueing provided.
8636 	 */
8637 	spin_lock_irqsave(&phba->hbalock, iflag);
8638 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8639 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8640 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8641 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8642 				"cannot issue Data: x%x x%x\n",
8643 				mboxq->vport ? mboxq->vport->vpi : 0,
8644 				mboxq->u.mb.mbxCommand,
8645 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8646 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8647 				psli->sli_flag, MBX_POLL);
8648 		return MBXERR_ERROR;
8649 	}
8650 	/* The server grabs the token and owns it until release */
8651 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8652 	phba->sli.mbox_active = mboxq;
8653 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8654 
8655 	/* wait for bootstrap mbox register for readyness */
8656 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8657 	if (rc)
8658 		goto exit;
8659 	/*
8660 	 * Initialize the bootstrap memory region to avoid stale data areas
8661 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8662 	 * the bmbx mailbox region.
8663 	 */
8664 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8665 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8666 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8667 			       sizeof(struct lpfc_mqe));
8668 
8669 	/* Post the high mailbox dma address to the port and wait for ready. */
8670 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8671 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8672 
8673 	/* wait for bootstrap mbox register for hi-address write done */
8674 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8675 	if (rc)
8676 		goto exit;
8677 
8678 	/* Post the low mailbox dma address to the port. */
8679 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8680 
8681 	/* wait for bootstrap mbox register for low address write done */
8682 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8683 	if (rc)
8684 		goto exit;
8685 
8686 	/*
8687 	 * Read the CQ to ensure the mailbox has completed.
8688 	 * If so, update the mailbox status so that the upper layers
8689 	 * can complete the request normally.
8690 	 */
8691 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8692 			       sizeof(struct lpfc_mqe));
8693 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8694 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8695 			       sizeof(struct lpfc_mcqe));
8696 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8697 	/*
8698 	 * When the CQE status indicates a failure and the mailbox status
8699 	 * indicates success then copy the CQE status into the mailbox status
8700 	 * (and prefix it with x4000).
8701 	 */
8702 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8703 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8704 			bf_set(lpfc_mqe_status, mb,
8705 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8706 		rc = MBXERR_ERROR;
8707 	} else
8708 		lpfc_sli4_swap_str(phba, mboxq);
8709 
8710 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8711 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8712 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8713 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8714 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8715 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8716 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8717 			bf_get(lpfc_mqe_status, mb),
8718 			mb->un.mb_words[0], mb->un.mb_words[1],
8719 			mb->un.mb_words[2], mb->un.mb_words[3],
8720 			mb->un.mb_words[4], mb->un.mb_words[5],
8721 			mb->un.mb_words[6], mb->un.mb_words[7],
8722 			mb->un.mb_words[8], mb->un.mb_words[9],
8723 			mb->un.mb_words[10], mb->un.mb_words[11],
8724 			mb->un.mb_words[12], mboxq->mcqe.word0,
8725 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8726 			mboxq->mcqe.trailer);
8727 exit:
8728 	/* We are holding the token, no needed for lock when release */
8729 	spin_lock_irqsave(&phba->hbalock, iflag);
8730 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8731 	phba->sli.mbox_active = NULL;
8732 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8733 	return rc;
8734 }
8735 
8736 /**
8737  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8738  * @phba: Pointer to HBA context object.
8739  * @pmbox: Pointer to mailbox object.
8740  * @flag: Flag indicating how the mailbox need to be processed.
8741  *
8742  * This function is called by discovery code and HBA management code to submit
8743  * a mailbox command to firmware with SLI-4 interface spec.
8744  *
8745  * Return codes the caller owns the mailbox command after the return of the
8746  * function.
8747  **/
8748 static int
8749 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8750 		       uint32_t flag)
8751 {
8752 	struct lpfc_sli *psli = &phba->sli;
8753 	unsigned long iflags;
8754 	int rc;
8755 
8756 	/* dump from issue mailbox command if setup */
8757 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8758 
8759 	rc = lpfc_mbox_dev_check(phba);
8760 	if (unlikely(rc)) {
8761 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8762 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8763 				"cannot issue Data: x%x x%x\n",
8764 				mboxq->vport ? mboxq->vport->vpi : 0,
8765 				mboxq->u.mb.mbxCommand,
8766 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8767 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8768 				psli->sli_flag, flag);
8769 		goto out_not_finished;
8770 	}
8771 
8772 	/* Detect polling mode and jump to a handler */
8773 	if (!phba->sli4_hba.intr_enable) {
8774 		if (flag == MBX_POLL)
8775 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8776 		else
8777 			rc = -EIO;
8778 		if (rc != MBX_SUCCESS)
8779 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8780 					"(%d):2541 Mailbox command x%x "
8781 					"(x%x/x%x) failure: "
8782 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8783 					"Data: x%x x%x\n,",
8784 					mboxq->vport ? mboxq->vport->vpi : 0,
8785 					mboxq->u.mb.mbxCommand,
8786 					lpfc_sli_config_mbox_subsys_get(phba,
8787 									mboxq),
8788 					lpfc_sli_config_mbox_opcode_get(phba,
8789 									mboxq),
8790 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8791 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8792 					bf_get(lpfc_mcqe_ext_status,
8793 					       &mboxq->mcqe),
8794 					psli->sli_flag, flag);
8795 		return rc;
8796 	} else if (flag == MBX_POLL) {
8797 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8798 				"(%d):2542 Try to issue mailbox command "
8799 				"x%x (x%x/x%x) synchronously ahead of async "
8800 				"mailbox command queue: x%x x%x\n",
8801 				mboxq->vport ? mboxq->vport->vpi : 0,
8802 				mboxq->u.mb.mbxCommand,
8803 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8804 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8805 				psli->sli_flag, flag);
8806 		/* Try to block the asynchronous mailbox posting */
8807 		rc = lpfc_sli4_async_mbox_block(phba);
8808 		if (!rc) {
8809 			/* Successfully blocked, now issue sync mbox cmd */
8810 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8811 			if (rc != MBX_SUCCESS)
8812 				lpfc_printf_log(phba, KERN_WARNING,
8813 					LOG_MBOX | LOG_SLI,
8814 					"(%d):2597 Sync Mailbox command "
8815 					"x%x (x%x/x%x) failure: "
8816 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8817 					"Data: x%x x%x\n,",
8818 					mboxq->vport ? mboxq->vport->vpi : 0,
8819 					mboxq->u.mb.mbxCommand,
8820 					lpfc_sli_config_mbox_subsys_get(phba,
8821 									mboxq),
8822 					lpfc_sli_config_mbox_opcode_get(phba,
8823 									mboxq),
8824 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8825 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8826 					bf_get(lpfc_mcqe_ext_status,
8827 					       &mboxq->mcqe),
8828 					psli->sli_flag, flag);
8829 			/* Unblock the async mailbox posting afterward */
8830 			lpfc_sli4_async_mbox_unblock(phba);
8831 		}
8832 		return rc;
8833 	}
8834 
8835 	/* Now, interrupt mode asynchronous mailbox command */
8836 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8837 	if (rc) {
8838 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8839 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8840 				"cannot issue Data: x%x x%x\n",
8841 				mboxq->vport ? mboxq->vport->vpi : 0,
8842 				mboxq->u.mb.mbxCommand,
8843 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8844 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8845 				psli->sli_flag, flag);
8846 		goto out_not_finished;
8847 	}
8848 
8849 	/* Put the mailbox command to the driver internal FIFO */
8850 	psli->slistat.mbox_busy++;
8851 	spin_lock_irqsave(&phba->hbalock, iflags);
8852 	lpfc_mbox_put(phba, mboxq);
8853 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8854 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8855 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8856 			"x%x (x%x/x%x) x%x x%x x%x\n",
8857 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8858 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8859 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8860 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8861 			phba->pport->port_state,
8862 			psli->sli_flag, MBX_NOWAIT);
8863 	/* Wake up worker thread to transport mailbox command from head */
8864 	lpfc_worker_wake_up(phba);
8865 
8866 	return MBX_BUSY;
8867 
8868 out_not_finished:
8869 	return MBX_NOT_FINISHED;
8870 }
8871 
8872 /**
8873  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8874  * @phba: Pointer to HBA context object.
8875  *
8876  * This function is called by worker thread to send a mailbox command to
8877  * SLI4 HBA firmware.
8878  *
8879  **/
8880 int
8881 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8882 {
8883 	struct lpfc_sli *psli = &phba->sli;
8884 	LPFC_MBOXQ_t *mboxq;
8885 	int rc = MBX_SUCCESS;
8886 	unsigned long iflags;
8887 	struct lpfc_mqe *mqe;
8888 	uint32_t mbx_cmnd;
8889 
8890 	/* Check interrupt mode before post async mailbox command */
8891 	if (unlikely(!phba->sli4_hba.intr_enable))
8892 		return MBX_NOT_FINISHED;
8893 
8894 	/* Check for mailbox command service token */
8895 	spin_lock_irqsave(&phba->hbalock, iflags);
8896 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8897 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8898 		return MBX_NOT_FINISHED;
8899 	}
8900 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8901 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8902 		return MBX_NOT_FINISHED;
8903 	}
8904 	if (unlikely(phba->sli.mbox_active)) {
8905 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8906 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8907 				"0384 There is pending active mailbox cmd\n");
8908 		return MBX_NOT_FINISHED;
8909 	}
8910 	/* Take the mailbox command service token */
8911 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8912 
8913 	/* Get the next mailbox command from head of queue */
8914 	mboxq = lpfc_mbox_get(phba);
8915 
8916 	/* If no more mailbox command waiting for post, we're done */
8917 	if (!mboxq) {
8918 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8919 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8920 		return MBX_SUCCESS;
8921 	}
8922 	phba->sli.mbox_active = mboxq;
8923 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8924 
8925 	/* Check device readiness for posting mailbox command */
8926 	rc = lpfc_mbox_dev_check(phba);
8927 	if (unlikely(rc))
8928 		/* Driver clean routine will clean up pending mailbox */
8929 		goto out_not_finished;
8930 
8931 	/* Prepare the mbox command to be posted */
8932 	mqe = &mboxq->u.mqe;
8933 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8934 
8935 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8936 	mod_timer(&psli->mbox_tmo, (jiffies +
8937 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8938 
8939 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8940 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8941 			"x%x x%x\n",
8942 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8943 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8944 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8945 			phba->pport->port_state, psli->sli_flag);
8946 
8947 	if (mbx_cmnd != MBX_HEARTBEAT) {
8948 		if (mboxq->vport) {
8949 			lpfc_debugfs_disc_trc(mboxq->vport,
8950 				LPFC_DISC_TRC_MBOX_VPORT,
8951 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8952 				mbx_cmnd, mqe->un.mb_words[0],
8953 				mqe->un.mb_words[1]);
8954 		} else {
8955 			lpfc_debugfs_disc_trc(phba->pport,
8956 				LPFC_DISC_TRC_MBOX,
8957 				"MBOX Send: cmd:x%x mb:x%x x%x",
8958 				mbx_cmnd, mqe->un.mb_words[0],
8959 				mqe->un.mb_words[1]);
8960 		}
8961 	}
8962 	psli->slistat.mbox_cmd++;
8963 
8964 	/* Post the mailbox command to the port */
8965 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8966 	if (rc != MBX_SUCCESS) {
8967 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8968 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8969 				"cannot issue Data: x%x x%x\n",
8970 				mboxq->vport ? mboxq->vport->vpi : 0,
8971 				mboxq->u.mb.mbxCommand,
8972 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8973 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8974 				psli->sli_flag, MBX_NOWAIT);
8975 		goto out_not_finished;
8976 	}
8977 
8978 	return rc;
8979 
8980 out_not_finished:
8981 	spin_lock_irqsave(&phba->hbalock, iflags);
8982 	if (phba->sli.mbox_active) {
8983 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8984 		__lpfc_mbox_cmpl_put(phba, mboxq);
8985 		/* Release the token */
8986 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8987 		phba->sli.mbox_active = NULL;
8988 	}
8989 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8990 
8991 	return MBX_NOT_FINISHED;
8992 }
8993 
8994 /**
8995  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8996  * @phba: Pointer to HBA context object.
8997  * @pmbox: Pointer to mailbox object.
8998  * @flag: Flag indicating how the mailbox need to be processed.
8999  *
9000  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9001  * the API jump table function pointer from the lpfc_hba struct.
9002  *
9003  * Return codes the caller owns the mailbox command after the return of the
9004  * function.
9005  **/
9006 int
9007 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9008 {
9009 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9010 }
9011 
9012 /**
9013  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9014  * @phba: The hba struct for which this call is being executed.
9015  * @dev_grp: The HBA PCI-Device group number.
9016  *
9017  * This routine sets up the mbox interface API function jump table in @phba
9018  * struct.
9019  * Returns: 0 - success, -ENODEV - failure.
9020  **/
9021 int
9022 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9023 {
9024 
9025 	switch (dev_grp) {
9026 	case LPFC_PCI_DEV_LP:
9027 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9028 		phba->lpfc_sli_handle_slow_ring_event =
9029 				lpfc_sli_handle_slow_ring_event_s3;
9030 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9031 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9032 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9033 		break;
9034 	case LPFC_PCI_DEV_OC:
9035 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9036 		phba->lpfc_sli_handle_slow_ring_event =
9037 				lpfc_sli_handle_slow_ring_event_s4;
9038 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9039 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9040 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9041 		break;
9042 	default:
9043 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9044 				"1420 Invalid HBA PCI-device group: 0x%x\n",
9045 				dev_grp);
9046 		return -ENODEV;
9047 		break;
9048 	}
9049 	return 0;
9050 }
9051 
9052 /**
9053  * __lpfc_sli_ringtx_put - Add an iocb to the txq
9054  * @phba: Pointer to HBA context object.
9055  * @pring: Pointer to driver SLI ring object.
9056  * @piocb: Pointer to address of newly added command iocb.
9057  *
9058  * This function is called with hbalock held for SLI3 ports or
9059  * the ring lock held for SLI4 ports to add a command
9060  * iocb to the txq when SLI layer cannot submit the command iocb
9061  * to the ring.
9062  **/
9063 void
9064 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9065 		    struct lpfc_iocbq *piocb)
9066 {
9067 	if (phba->sli_rev == LPFC_SLI_REV4)
9068 		lockdep_assert_held(&pring->ring_lock);
9069 	else
9070 		lockdep_assert_held(&phba->hbalock);
9071 	/* Insert the caller's iocb in the txq tail for later processing. */
9072 	list_add_tail(&piocb->list, &pring->txq);
9073 }
9074 
9075 /**
9076  * lpfc_sli_next_iocb - Get the next iocb in the txq
9077  * @phba: Pointer to HBA context object.
9078  * @pring: Pointer to driver SLI ring object.
9079  * @piocb: Pointer to address of newly added command iocb.
9080  *
9081  * This function is called with hbalock held before a new
9082  * iocb is submitted to the firmware. This function checks
9083  * txq to flush the iocbs in txq to Firmware before
9084  * submitting new iocbs to the Firmware.
9085  * If there are iocbs in the txq which need to be submitted
9086  * to firmware, lpfc_sli_next_iocb returns the first element
9087  * of the txq after dequeuing it from txq.
9088  * If there is no iocb in the txq then the function will return
9089  * *piocb and *piocb is set to NULL. Caller needs to check
9090  * *piocb to find if there are more commands in the txq.
9091  **/
9092 static struct lpfc_iocbq *
9093 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9094 		   struct lpfc_iocbq **piocb)
9095 {
9096 	struct lpfc_iocbq * nextiocb;
9097 
9098 	lockdep_assert_held(&phba->hbalock);
9099 
9100 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9101 	if (!nextiocb) {
9102 		nextiocb = *piocb;
9103 		*piocb = NULL;
9104 	}
9105 
9106 	return nextiocb;
9107 }
9108 
9109 /**
9110  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9111  * @phba: Pointer to HBA context object.
9112  * @ring_number: SLI ring number to issue iocb on.
9113  * @piocb: Pointer to command iocb.
9114  * @flag: Flag indicating if this command can be put into txq.
9115  *
9116  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9117  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9118  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9119  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9120  * this function allows only iocbs for posting buffers. This function finds
9121  * next available slot in the command ring and posts the command to the
9122  * available slot and writes the port attention register to request HBA start
9123  * processing new iocb. If there is no slot available in the ring and
9124  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9125  * the function returns IOCB_BUSY.
9126  *
9127  * This function is called with hbalock held. The function will return success
9128  * after it successfully submit the iocb to firmware or after adding to the
9129  * txq.
9130  **/
9131 static int
9132 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9133 		    struct lpfc_iocbq *piocb, uint32_t flag)
9134 {
9135 	struct lpfc_iocbq *nextiocb;
9136 	IOCB_t *iocb;
9137 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9138 
9139 	lockdep_assert_held(&phba->hbalock);
9140 
9141 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9142 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9143 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9144 		lpfc_printf_log(phba, KERN_ERR,
9145 				LOG_SLI | LOG_VPORT,
9146 				"1807 IOCB x%x failed. No vport\n",
9147 				piocb->iocb.ulpCommand);
9148 		dump_stack();
9149 		return IOCB_ERROR;
9150 	}
9151 
9152 
9153 	/* If the PCI channel is in offline state, do not post iocbs. */
9154 	if (unlikely(pci_channel_offline(phba->pcidev)))
9155 		return IOCB_ERROR;
9156 
9157 	/* If HBA has a deferred error attention, fail the iocb. */
9158 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9159 		return IOCB_ERROR;
9160 
9161 	/*
9162 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9163 	 */
9164 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9165 		return IOCB_ERROR;
9166 
9167 	/*
9168 	 * Check to see if we are blocking IOCB processing because of a
9169 	 * outstanding event.
9170 	 */
9171 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9172 		goto iocb_busy;
9173 
9174 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9175 		/*
9176 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9177 		 * can be issued if the link is not up.
9178 		 */
9179 		switch (piocb->iocb.ulpCommand) {
9180 		case CMD_GEN_REQUEST64_CR:
9181 		case CMD_GEN_REQUEST64_CX:
9182 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9183 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9184 					FC_RCTL_DD_UNSOL_CMD) ||
9185 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9186 					MENLO_TRANSPORT_TYPE))
9187 
9188 				goto iocb_busy;
9189 			break;
9190 		case CMD_QUE_RING_BUF_CN:
9191 		case CMD_QUE_RING_BUF64_CN:
9192 			/*
9193 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9194 			 * completion, iocb_cmpl MUST be 0.
9195 			 */
9196 			if (piocb->iocb_cmpl)
9197 				piocb->iocb_cmpl = NULL;
9198 			/*FALLTHROUGH*/
9199 		case CMD_CREATE_XRI_CR:
9200 		case CMD_CLOSE_XRI_CN:
9201 		case CMD_CLOSE_XRI_CX:
9202 			break;
9203 		default:
9204 			goto iocb_busy;
9205 		}
9206 
9207 	/*
9208 	 * For FCP commands, we must be in a state where we can process link
9209 	 * attention events.
9210 	 */
9211 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9212 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9213 		goto iocb_busy;
9214 	}
9215 
9216 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9217 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9218 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9219 
9220 	if (iocb)
9221 		lpfc_sli_update_ring(phba, pring);
9222 	else
9223 		lpfc_sli_update_full_ring(phba, pring);
9224 
9225 	if (!piocb)
9226 		return IOCB_SUCCESS;
9227 
9228 	goto out_busy;
9229 
9230  iocb_busy:
9231 	pring->stats.iocb_cmd_delay++;
9232 
9233  out_busy:
9234 
9235 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9236 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9237 		return IOCB_SUCCESS;
9238 	}
9239 
9240 	return IOCB_BUSY;
9241 }
9242 
9243 /**
9244  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9245  * @phba: Pointer to HBA context object.
9246  * @piocb: Pointer to command iocb.
9247  * @sglq: Pointer to the scatter gather queue object.
9248  *
9249  * This routine converts the bpl or bde that is in the IOCB
9250  * to a sgl list for the sli4 hardware. The physical address
9251  * of the bpl/bde is converted back to a virtual address.
9252  * If the IOCB contains a BPL then the list of BDE's is
9253  * converted to sli4_sge's. If the IOCB contains a single
9254  * BDE then it is converted to a single sli_sge.
9255  * The IOCB is still in cpu endianess so the contents of
9256  * the bpl can be used without byte swapping.
9257  *
9258  * Returns valid XRI = Success, NO_XRI = Failure.
9259 **/
9260 static uint16_t
9261 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9262 		struct lpfc_sglq *sglq)
9263 {
9264 	uint16_t xritag = NO_XRI;
9265 	struct ulp_bde64 *bpl = NULL;
9266 	struct ulp_bde64 bde;
9267 	struct sli4_sge *sgl  = NULL;
9268 	struct lpfc_dmabuf *dmabuf;
9269 	IOCB_t *icmd;
9270 	int numBdes = 0;
9271 	int i = 0;
9272 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9273 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9274 
9275 	if (!piocbq || !sglq)
9276 		return xritag;
9277 
9278 	sgl  = (struct sli4_sge *)sglq->sgl;
9279 	icmd = &piocbq->iocb;
9280 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9281 		return sglq->sli4_xritag;
9282 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9283 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9284 				sizeof(struct ulp_bde64);
9285 		/* The addrHigh and addrLow fields within the IOCB
9286 		 * have not been byteswapped yet so there is no
9287 		 * need to swap them back.
9288 		 */
9289 		if (piocbq->context3)
9290 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9291 		else
9292 			return xritag;
9293 
9294 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9295 		if (!bpl)
9296 			return xritag;
9297 
9298 		for (i = 0; i < numBdes; i++) {
9299 			/* Should already be byte swapped. */
9300 			sgl->addr_hi = bpl->addrHigh;
9301 			sgl->addr_lo = bpl->addrLow;
9302 
9303 			sgl->word2 = le32_to_cpu(sgl->word2);
9304 			if ((i+1) == numBdes)
9305 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9306 			else
9307 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9308 			/* swap the size field back to the cpu so we
9309 			 * can assign it to the sgl.
9310 			 */
9311 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9312 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9313 			/* The offsets in the sgl need to be accumulated
9314 			 * separately for the request and reply lists.
9315 			 * The request is always first, the reply follows.
9316 			 */
9317 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9318 				/* add up the reply sg entries */
9319 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9320 					inbound++;
9321 				/* first inbound? reset the offset */
9322 				if (inbound == 1)
9323 					offset = 0;
9324 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9325 				bf_set(lpfc_sli4_sge_type, sgl,
9326 					LPFC_SGE_TYPE_DATA);
9327 				offset += bde.tus.f.bdeSize;
9328 			}
9329 			sgl->word2 = cpu_to_le32(sgl->word2);
9330 			bpl++;
9331 			sgl++;
9332 		}
9333 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9334 			/* The addrHigh and addrLow fields of the BDE have not
9335 			 * been byteswapped yet so they need to be swapped
9336 			 * before putting them in the sgl.
9337 			 */
9338 			sgl->addr_hi =
9339 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9340 			sgl->addr_lo =
9341 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9342 			sgl->word2 = le32_to_cpu(sgl->word2);
9343 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9344 			sgl->word2 = cpu_to_le32(sgl->word2);
9345 			sgl->sge_len =
9346 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9347 	}
9348 	return sglq->sli4_xritag;
9349 }
9350 
9351 /**
9352  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9353  * @phba: Pointer to HBA context object.
9354  * @piocb: Pointer to command iocb.
9355  * @wqe: Pointer to the work queue entry.
9356  *
9357  * This routine converts the iocb command to its Work Queue Entry
9358  * equivalent. The wqe pointer should not have any fields set when
9359  * this routine is called because it will memcpy over them.
9360  * This routine does not set the CQ_ID or the WQEC bits in the
9361  * wqe.
9362  *
9363  * Returns: 0 = Success, IOCB_ERROR = Failure.
9364  **/
9365 static int
9366 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9367 		union lpfc_wqe128 *wqe)
9368 {
9369 	uint32_t xmit_len = 0, total_len = 0;
9370 	uint8_t ct = 0;
9371 	uint32_t fip;
9372 	uint32_t abort_tag;
9373 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9374 	uint8_t cmnd;
9375 	uint16_t xritag;
9376 	uint16_t abrt_iotag;
9377 	struct lpfc_iocbq *abrtiocbq;
9378 	struct ulp_bde64 *bpl = NULL;
9379 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9380 	int numBdes, i;
9381 	struct ulp_bde64 bde;
9382 	struct lpfc_nodelist *ndlp;
9383 	uint32_t *pcmd;
9384 	uint32_t if_type;
9385 
9386 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9387 	/* The fcp commands will set command type */
9388 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9389 		command_type = FCP_COMMAND;
9390 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9391 		command_type = ELS_COMMAND_FIP;
9392 	else
9393 		command_type = ELS_COMMAND_NON_FIP;
9394 
9395 	if (phba->fcp_embed_io)
9396 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9397 	/* Some of the fields are in the right position already */
9398 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9399 	/* The ct field has moved so reset */
9400 	wqe->generic.wqe_com.word7 = 0;
9401 	wqe->generic.wqe_com.word10 = 0;
9402 
9403 	abort_tag = (uint32_t) iocbq->iotag;
9404 	xritag = iocbq->sli4_xritag;
9405 	/* words0-2 bpl convert bde */
9406 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9407 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9408 				sizeof(struct ulp_bde64);
9409 		bpl  = (struct ulp_bde64 *)
9410 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9411 		if (!bpl)
9412 			return IOCB_ERROR;
9413 
9414 		/* Should already be byte swapped. */
9415 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9416 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9417 		/* swap the size field back to the cpu so we
9418 		 * can assign it to the sgl.
9419 		 */
9420 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9421 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9422 		total_len = 0;
9423 		for (i = 0; i < numBdes; i++) {
9424 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9425 			total_len += bde.tus.f.bdeSize;
9426 		}
9427 	} else
9428 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9429 
9430 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9431 	cmnd = iocbq->iocb.ulpCommand;
9432 
9433 	switch (iocbq->iocb.ulpCommand) {
9434 	case CMD_ELS_REQUEST64_CR:
9435 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9436 			ndlp = iocbq->context_un.ndlp;
9437 		else
9438 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9439 		if (!iocbq->iocb.ulpLe) {
9440 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9441 				"2007 Only Limited Edition cmd Format"
9442 				" supported 0x%x\n",
9443 				iocbq->iocb.ulpCommand);
9444 			return IOCB_ERROR;
9445 		}
9446 
9447 		wqe->els_req.payload_len = xmit_len;
9448 		/* Els_reguest64 has a TMO */
9449 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9450 			iocbq->iocb.ulpTimeout);
9451 		/* Need a VF for word 4 set the vf bit*/
9452 		bf_set(els_req64_vf, &wqe->els_req, 0);
9453 		/* And a VFID for word 12 */
9454 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9455 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9456 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9457 		       iocbq->iocb.ulpContext);
9458 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9459 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9460 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9461 		if (command_type == ELS_COMMAND_FIP)
9462 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9463 					>> LPFC_FIP_ELS_ID_SHIFT);
9464 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9465 					iocbq->context2)->virt);
9466 		if_type = bf_get(lpfc_sli_intf_if_type,
9467 					&phba->sli4_hba.sli_intf);
9468 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9469 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9470 				*pcmd == ELS_CMD_SCR ||
9471 				*pcmd == ELS_CMD_RSCN_XMT ||
9472 				*pcmd == ELS_CMD_FDISC ||
9473 				*pcmd == ELS_CMD_LOGO ||
9474 				*pcmd == ELS_CMD_PLOGI)) {
9475 				bf_set(els_req64_sp, &wqe->els_req, 1);
9476 				bf_set(els_req64_sid, &wqe->els_req,
9477 					iocbq->vport->fc_myDID);
9478 				if ((*pcmd == ELS_CMD_FLOGI) &&
9479 					!(phba->fc_topology ==
9480 						LPFC_TOPOLOGY_LOOP))
9481 					bf_set(els_req64_sid, &wqe->els_req, 0);
9482 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9483 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9484 					phba->vpi_ids[iocbq->vport->vpi]);
9485 			} else if (pcmd && iocbq->context1) {
9486 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9487 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9488 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9489 			}
9490 		}
9491 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9492 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9493 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9494 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9495 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9496 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9497 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9498 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9499 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9500 		break;
9501 	case CMD_XMIT_SEQUENCE64_CX:
9502 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9503 		       iocbq->iocb.un.ulpWord[3]);
9504 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9505 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9506 		/* The entire sequence is transmitted for this IOCB */
9507 		xmit_len = total_len;
9508 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9509 		if (phba->link_flag & LS_LOOPBACK_MODE)
9510 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9511 		/* fall through */
9512 	case CMD_XMIT_SEQUENCE64_CR:
9513 		/* word3 iocb=io_tag32 wqe=reserved */
9514 		wqe->xmit_sequence.rsvd3 = 0;
9515 		/* word4 relative_offset memcpy */
9516 		/* word5 r_ctl/df_ctl memcpy */
9517 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9518 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9519 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9520 		       LPFC_WQE_IOD_WRITE);
9521 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9522 		       LPFC_WQE_LENLOC_WORD12);
9523 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9524 		wqe->xmit_sequence.xmit_len = xmit_len;
9525 		command_type = OTHER_COMMAND;
9526 		break;
9527 	case CMD_XMIT_BCAST64_CN:
9528 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9529 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9530 		/* word4 iocb=rsvd wqe=rsvd */
9531 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9532 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9533 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9534 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9535 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9536 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9537 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9538 		       LPFC_WQE_LENLOC_WORD3);
9539 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9540 		break;
9541 	case CMD_FCP_IWRITE64_CR:
9542 		command_type = FCP_COMMAND_DATA_OUT;
9543 		/* word3 iocb=iotag wqe=payload_offset_len */
9544 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9545 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9546 		       xmit_len + sizeof(struct fcp_rsp));
9547 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9548 		       0);
9549 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9550 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9551 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9552 		       iocbq->iocb.ulpFCP2Rcvy);
9553 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9554 		/* Always open the exchange */
9555 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9556 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9557 		       LPFC_WQE_LENLOC_WORD4);
9558 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9559 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9560 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9561 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9562 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9563 			if (iocbq->priority) {
9564 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9565 				       (iocbq->priority << 1));
9566 			} else {
9567 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9568 				       (phba->cfg_XLanePriority << 1));
9569 			}
9570 		}
9571 		/* Note, word 10 is already initialized to 0 */
9572 
9573 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9574 		if (phba->cfg_enable_pbde)
9575 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9576 		else
9577 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9578 
9579 		if (phba->fcp_embed_io) {
9580 			struct lpfc_io_buf *lpfc_cmd;
9581 			struct sli4_sge *sgl;
9582 			struct fcp_cmnd *fcp_cmnd;
9583 			uint32_t *ptr;
9584 
9585 			/* 128 byte wqe support here */
9586 
9587 			lpfc_cmd = iocbq->context1;
9588 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9589 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9590 
9591 			/* Word 0-2 - FCP_CMND */
9592 			wqe->generic.bde.tus.f.bdeFlags =
9593 				BUFF_TYPE_BDE_IMMED;
9594 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9595 			wqe->generic.bde.addrHigh = 0;
9596 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9597 
9598 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9599 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9600 
9601 			/* Word 22-29  FCP CMND Payload */
9602 			ptr = &wqe->words[22];
9603 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9604 		}
9605 		break;
9606 	case CMD_FCP_IREAD64_CR:
9607 		/* word3 iocb=iotag wqe=payload_offset_len */
9608 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9609 		bf_set(payload_offset_len, &wqe->fcp_iread,
9610 		       xmit_len + sizeof(struct fcp_rsp));
9611 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9612 		       0);
9613 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9614 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9615 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9616 		       iocbq->iocb.ulpFCP2Rcvy);
9617 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9618 		/* Always open the exchange */
9619 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9620 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9621 		       LPFC_WQE_LENLOC_WORD4);
9622 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9623 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9624 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9625 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9626 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9627 			if (iocbq->priority) {
9628 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9629 				       (iocbq->priority << 1));
9630 			} else {
9631 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9632 				       (phba->cfg_XLanePriority << 1));
9633 			}
9634 		}
9635 		/* Note, word 10 is already initialized to 0 */
9636 
9637 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9638 		if (phba->cfg_enable_pbde)
9639 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9640 		else
9641 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9642 
9643 		if (phba->fcp_embed_io) {
9644 			struct lpfc_io_buf *lpfc_cmd;
9645 			struct sli4_sge *sgl;
9646 			struct fcp_cmnd *fcp_cmnd;
9647 			uint32_t *ptr;
9648 
9649 			/* 128 byte wqe support here */
9650 
9651 			lpfc_cmd = iocbq->context1;
9652 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9653 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9654 
9655 			/* Word 0-2 - FCP_CMND */
9656 			wqe->generic.bde.tus.f.bdeFlags =
9657 				BUFF_TYPE_BDE_IMMED;
9658 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9659 			wqe->generic.bde.addrHigh = 0;
9660 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9661 
9662 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9663 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9664 
9665 			/* Word 22-29  FCP CMND Payload */
9666 			ptr = &wqe->words[22];
9667 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9668 		}
9669 		break;
9670 	case CMD_FCP_ICMND64_CR:
9671 		/* word3 iocb=iotag wqe=payload_offset_len */
9672 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9673 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9674 		       xmit_len + sizeof(struct fcp_rsp));
9675 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9676 		       0);
9677 		/* word3 iocb=IO_TAG wqe=reserved */
9678 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9679 		/* Always open the exchange */
9680 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9681 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9682 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9683 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9684 		       LPFC_WQE_LENLOC_NONE);
9685 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9686 		       iocbq->iocb.ulpFCP2Rcvy);
9687 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9688 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9689 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9690 			if (iocbq->priority) {
9691 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9692 				       (iocbq->priority << 1));
9693 			} else {
9694 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9695 				       (phba->cfg_XLanePriority << 1));
9696 			}
9697 		}
9698 		/* Note, word 10 is already initialized to 0 */
9699 
9700 		if (phba->fcp_embed_io) {
9701 			struct lpfc_io_buf *lpfc_cmd;
9702 			struct sli4_sge *sgl;
9703 			struct fcp_cmnd *fcp_cmnd;
9704 			uint32_t *ptr;
9705 
9706 			/* 128 byte wqe support here */
9707 
9708 			lpfc_cmd = iocbq->context1;
9709 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9710 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9711 
9712 			/* Word 0-2 - FCP_CMND */
9713 			wqe->generic.bde.tus.f.bdeFlags =
9714 				BUFF_TYPE_BDE_IMMED;
9715 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9716 			wqe->generic.bde.addrHigh = 0;
9717 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9718 
9719 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9720 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9721 
9722 			/* Word 22-29  FCP CMND Payload */
9723 			ptr = &wqe->words[22];
9724 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9725 		}
9726 		break;
9727 	case CMD_GEN_REQUEST64_CR:
9728 		/* For this command calculate the xmit length of the
9729 		 * request bde.
9730 		 */
9731 		xmit_len = 0;
9732 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9733 			sizeof(struct ulp_bde64);
9734 		for (i = 0; i < numBdes; i++) {
9735 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9736 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9737 				break;
9738 			xmit_len += bde.tus.f.bdeSize;
9739 		}
9740 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9741 		wqe->gen_req.request_payload_len = xmit_len;
9742 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9743 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9744 		/* word6 context tag copied in memcpy */
9745 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9746 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9747 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9748 				"2015 Invalid CT %x command 0x%x\n",
9749 				ct, iocbq->iocb.ulpCommand);
9750 			return IOCB_ERROR;
9751 		}
9752 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9753 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9754 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9755 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9756 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9757 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9758 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9759 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9760 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9761 		command_type = OTHER_COMMAND;
9762 		break;
9763 	case CMD_XMIT_ELS_RSP64_CX:
9764 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9765 		/* words0-2 BDE memcpy */
9766 		/* word3 iocb=iotag32 wqe=response_payload_len */
9767 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9768 		/* word4 */
9769 		wqe->xmit_els_rsp.word4 = 0;
9770 		/* word5 iocb=rsvd wge=did */
9771 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9772 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9773 
9774 		if_type = bf_get(lpfc_sli_intf_if_type,
9775 					&phba->sli4_hba.sli_intf);
9776 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9777 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9778 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9779 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9780 					iocbq->vport->fc_myDID);
9781 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9782 					bf_set(wqe_els_did,
9783 						&wqe->xmit_els_rsp.wqe_dest, 0);
9784 				}
9785 			}
9786 		}
9787 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9788 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9789 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9790 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9791 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9792 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9793 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9794 			       phba->vpi_ids[iocbq->vport->vpi]);
9795 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9796 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9797 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9798 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9799 		       LPFC_WQE_LENLOC_WORD3);
9800 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9801 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9802 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9803 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9804 					iocbq->context2)->virt);
9805 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9806 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9807 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9808 					iocbq->vport->fc_myDID);
9809 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9810 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9811 					phba->vpi_ids[phba->pport->vpi]);
9812 		}
9813 		command_type = OTHER_COMMAND;
9814 		break;
9815 	case CMD_CLOSE_XRI_CN:
9816 	case CMD_ABORT_XRI_CN:
9817 	case CMD_ABORT_XRI_CX:
9818 		/* words 0-2 memcpy should be 0 rserved */
9819 		/* port will send abts */
9820 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9821 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9822 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9823 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9824 		} else
9825 			fip = 0;
9826 
9827 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9828 			/*
9829 			 * The link is down, or the command was ELS_FIP
9830 			 * so the fw does not need to send abts
9831 			 * on the wire.
9832 			 */
9833 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9834 		else
9835 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9836 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9837 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9838 		wqe->abort_cmd.rsrvd5 = 0;
9839 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9840 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9841 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9842 		/*
9843 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9844 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9845 		 */
9846 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9847 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9848 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9849 		       LPFC_WQE_LENLOC_NONE);
9850 		cmnd = CMD_ABORT_XRI_CX;
9851 		command_type = OTHER_COMMAND;
9852 		xritag = 0;
9853 		break;
9854 	case CMD_XMIT_BLS_RSP64_CX:
9855 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9856 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9857 		 * we re-construct this WQE here based on information in
9858 		 * iocbq from scratch.
9859 		 */
9860 		memset(wqe, 0, sizeof(*wqe));
9861 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9862 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9863 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9864 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9865 		    LPFC_ABTS_UNSOL_INT) {
9866 			/* ABTS sent by initiator to CT exchange, the
9867 			 * RX_ID field will be filled with the newly
9868 			 * allocated responder XRI.
9869 			 */
9870 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9871 			       iocbq->sli4_xritag);
9872 		} else {
9873 			/* ABTS sent by responder to CT exchange, the
9874 			 * RX_ID field will be filled with the responder
9875 			 * RX_ID from ABTS.
9876 			 */
9877 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9878 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9879 		}
9880 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9881 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9882 
9883 		/* Use CT=VPI */
9884 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9885 			ndlp->nlp_DID);
9886 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9887 			iocbq->iocb.ulpContext);
9888 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9889 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9890 			phba->vpi_ids[phba->pport->vpi]);
9891 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9892 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9893 		       LPFC_WQE_LENLOC_NONE);
9894 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9895 		command_type = OTHER_COMMAND;
9896 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9897 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9898 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9899 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9900 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9901 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9902 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9903 		}
9904 
9905 		break;
9906 	case CMD_SEND_FRAME:
9907 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
9908 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
9909 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
9910 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
9911 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
9912 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
9913 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
9914 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
9915 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9916 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9917 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9918 		return 0;
9919 	case CMD_XRI_ABORTED_CX:
9920 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9921 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9922 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9923 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9924 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9925 	default:
9926 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9927 				"2014 Invalid command 0x%x\n",
9928 				iocbq->iocb.ulpCommand);
9929 		return IOCB_ERROR;
9930 		break;
9931 	}
9932 
9933 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9934 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9935 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9936 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9937 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9938 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9939 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9940 			      LPFC_IO_DIF_INSERT);
9941 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9942 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9943 	wqe->generic.wqe_com.abort_tag = abort_tag;
9944 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9945 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9946 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9947 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9948 	return 0;
9949 }
9950 
9951 /**
9952  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9953  * @phba: Pointer to HBA context object.
9954  * @ring_number: SLI ring number to issue iocb on.
9955  * @piocb: Pointer to command iocb.
9956  * @flag: Flag indicating if this command can be put into txq.
9957  *
9958  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9959  * an iocb command to an HBA with SLI-4 interface spec.
9960  *
9961  * This function is called with ringlock held. The function will return success
9962  * after it successfully submit the iocb to firmware or after adding to the
9963  * txq.
9964  **/
9965 static int
9966 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9967 			 struct lpfc_iocbq *piocb, uint32_t flag)
9968 {
9969 	struct lpfc_sglq *sglq;
9970 	union lpfc_wqe128 wqe;
9971 	struct lpfc_queue *wq;
9972 	struct lpfc_sli_ring *pring;
9973 
9974 	/* Get the WQ */
9975 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9976 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9977 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
9978 	} else {
9979 		wq = phba->sli4_hba.els_wq;
9980 	}
9981 
9982 	/* Get corresponding ring */
9983 	pring = wq->pring;
9984 
9985 	/*
9986 	 * The WQE can be either 64 or 128 bytes,
9987 	 */
9988 
9989 	lockdep_assert_held(&pring->ring_lock);
9990 
9991 	if (piocb->sli4_xritag == NO_XRI) {
9992 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9993 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9994 			sglq = NULL;
9995 		else {
9996 			if (!list_empty(&pring->txq)) {
9997 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9998 					__lpfc_sli_ringtx_put(phba,
9999 						pring, piocb);
10000 					return IOCB_SUCCESS;
10001 				} else {
10002 					return IOCB_BUSY;
10003 				}
10004 			} else {
10005 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10006 				if (!sglq) {
10007 					if (!(flag & SLI_IOCB_RET_IOCB)) {
10008 						__lpfc_sli_ringtx_put(phba,
10009 								pring,
10010 								piocb);
10011 						return IOCB_SUCCESS;
10012 					} else
10013 						return IOCB_BUSY;
10014 				}
10015 			}
10016 		}
10017 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
10018 		/* These IO's already have an XRI and a mapped sgl. */
10019 		sglq = NULL;
10020 	else {
10021 		/*
10022 		 * This is a continuation of a commandi,(CX) so this
10023 		 * sglq is on the active list
10024 		 */
10025 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10026 		if (!sglq)
10027 			return IOCB_ERROR;
10028 	}
10029 
10030 	if (sglq) {
10031 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10032 		piocb->sli4_xritag = sglq->sli4_xritag;
10033 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10034 			return IOCB_ERROR;
10035 	}
10036 
10037 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10038 		return IOCB_ERROR;
10039 
10040 	if (lpfc_sli4_wq_put(wq, &wqe))
10041 		return IOCB_ERROR;
10042 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10043 
10044 	return 0;
10045 }
10046 
10047 /**
10048  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10049  *
10050  * This routine wraps the actual lockless version for issusing IOCB function
10051  * pointer from the lpfc_hba struct.
10052  *
10053  * Return codes:
10054  * IOCB_ERROR - Error
10055  * IOCB_SUCCESS - Success
10056  * IOCB_BUSY - Busy
10057  **/
10058 int
10059 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10060 		struct lpfc_iocbq *piocb, uint32_t flag)
10061 {
10062 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10063 }
10064 
10065 /**
10066  * lpfc_sli_api_table_setup - Set up sli api function jump table
10067  * @phba: The hba struct for which this call is being executed.
10068  * @dev_grp: The HBA PCI-Device group number.
10069  *
10070  * This routine sets up the SLI interface API function jump table in @phba
10071  * struct.
10072  * Returns: 0 - success, -ENODEV - failure.
10073  **/
10074 int
10075 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10076 {
10077 
10078 	switch (dev_grp) {
10079 	case LPFC_PCI_DEV_LP:
10080 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10081 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10082 		break;
10083 	case LPFC_PCI_DEV_OC:
10084 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10085 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10086 		break;
10087 	default:
10088 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10089 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10090 				dev_grp);
10091 		return -ENODEV;
10092 		break;
10093 	}
10094 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10095 	return 0;
10096 }
10097 
10098 /**
10099  * lpfc_sli4_calc_ring - Calculates which ring to use
10100  * @phba: Pointer to HBA context object.
10101  * @piocb: Pointer to command iocb.
10102  *
10103  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10104  * hba_wqidx, thus we need to calculate the corresponding ring.
10105  * Since ABORTS must go on the same WQ of the command they are
10106  * aborting, we use command's hba_wqidx.
10107  */
10108 struct lpfc_sli_ring *
10109 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10110 {
10111 	struct lpfc_io_buf *lpfc_cmd;
10112 
10113 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10114 		if (unlikely(!phba->sli4_hba.hdwq))
10115 			return NULL;
10116 		/*
10117 		 * for abort iocb hba_wqidx should already
10118 		 * be setup based on what work queue we used.
10119 		 */
10120 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10121 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10122 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10123 		}
10124 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10125 	} else {
10126 		if (unlikely(!phba->sli4_hba.els_wq))
10127 			return NULL;
10128 		piocb->hba_wqidx = 0;
10129 		return phba->sli4_hba.els_wq->pring;
10130 	}
10131 }
10132 
10133 /**
10134  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10135  * @phba: Pointer to HBA context object.
10136  * @pring: Pointer to driver SLI ring object.
10137  * @piocb: Pointer to command iocb.
10138  * @flag: Flag indicating if this command can be put into txq.
10139  *
10140  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10141  * function. This function gets the hbalock and calls
10142  * __lpfc_sli_issue_iocb function and will return the error returned
10143  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10144  * functions which do not hold hbalock.
10145  **/
10146 int
10147 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10148 		    struct lpfc_iocbq *piocb, uint32_t flag)
10149 {
10150 	struct lpfc_sli_ring *pring;
10151 	struct lpfc_queue *eq;
10152 	unsigned long iflags;
10153 	int rc;
10154 
10155 	if (phba->sli_rev == LPFC_SLI_REV4) {
10156 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10157 
10158 		pring = lpfc_sli4_calc_ring(phba, piocb);
10159 		if (unlikely(pring == NULL))
10160 			return IOCB_ERROR;
10161 
10162 		spin_lock_irqsave(&pring->ring_lock, iflags);
10163 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10164 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10165 
10166 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10167 	} else {
10168 		/* For now, SLI2/3 will still use hbalock */
10169 		spin_lock_irqsave(&phba->hbalock, iflags);
10170 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10171 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10172 	}
10173 	return rc;
10174 }
10175 
10176 /**
10177  * lpfc_extra_ring_setup - Extra ring setup function
10178  * @phba: Pointer to HBA context object.
10179  *
10180  * This function is called while driver attaches with the
10181  * HBA to setup the extra ring. The extra ring is used
10182  * only when driver needs to support target mode functionality
10183  * or IP over FC functionalities.
10184  *
10185  * This function is called with no lock held. SLI3 only.
10186  **/
10187 static int
10188 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10189 {
10190 	struct lpfc_sli *psli;
10191 	struct lpfc_sli_ring *pring;
10192 
10193 	psli = &phba->sli;
10194 
10195 	/* Adjust cmd/rsp ring iocb entries more evenly */
10196 
10197 	/* Take some away from the FCP ring */
10198 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10199 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10200 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10201 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10202 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10203 
10204 	/* and give them to the extra ring */
10205 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10206 
10207 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10208 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10209 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10210 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10211 
10212 	/* Setup default profile for this ring */
10213 	pring->iotag_max = 4096;
10214 	pring->num_mask = 1;
10215 	pring->prt[0].profile = 0;      /* Mask 0 */
10216 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10217 	pring->prt[0].type = phba->cfg_multi_ring_type;
10218 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10219 	return 0;
10220 }
10221 
10222 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10223  * @phba: Pointer to HBA context object.
10224  * @iocbq: Pointer to iocb object.
10225  *
10226  * The async_event handler calls this routine when it receives
10227  * an ASYNC_STATUS_CN event from the port.  The port generates
10228  * this event when an Abort Sequence request to an rport fails
10229  * twice in succession.  The abort could be originated by the
10230  * driver or by the port.  The ABTS could have been for an ELS
10231  * or FCP IO.  The port only generates this event when an ABTS
10232  * fails to complete after one retry.
10233  */
10234 static void
10235 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10236 			  struct lpfc_iocbq *iocbq)
10237 {
10238 	struct lpfc_nodelist *ndlp = NULL;
10239 	uint16_t rpi = 0, vpi = 0;
10240 	struct lpfc_vport *vport = NULL;
10241 
10242 	/* The rpi in the ulpContext is vport-sensitive. */
10243 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10244 	rpi = iocbq->iocb.ulpContext;
10245 
10246 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10247 			"3092 Port generated ABTS async event "
10248 			"on vpi %d rpi %d status 0x%x\n",
10249 			vpi, rpi, iocbq->iocb.ulpStatus);
10250 
10251 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10252 	if (!vport)
10253 		goto err_exit;
10254 	ndlp = lpfc_findnode_rpi(vport, rpi);
10255 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10256 		goto err_exit;
10257 
10258 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10259 		lpfc_sli_abts_recover_port(vport, ndlp);
10260 	return;
10261 
10262  err_exit:
10263 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10264 			"3095 Event Context not found, no "
10265 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10266 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10267 			vpi, rpi);
10268 }
10269 
10270 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10271  * @phba: pointer to HBA context object.
10272  * @ndlp: nodelist pointer for the impacted rport.
10273  * @axri: pointer to the wcqe containing the failed exchange.
10274  *
10275  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10276  * port.  The port generates this event when an abort exchange request to an
10277  * rport fails twice in succession with no reply.  The abort could be originated
10278  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10279  */
10280 void
10281 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10282 			   struct lpfc_nodelist *ndlp,
10283 			   struct sli4_wcqe_xri_aborted *axri)
10284 {
10285 	struct lpfc_vport *vport;
10286 	uint32_t ext_status = 0;
10287 
10288 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10289 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10290 				"3115 Node Context not found, driver "
10291 				"ignoring abts err event\n");
10292 		return;
10293 	}
10294 
10295 	vport = ndlp->vport;
10296 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10297 			"3116 Port generated FCP XRI ABORT event on "
10298 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10299 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10300 			bf_get(lpfc_wcqe_xa_xri, axri),
10301 			bf_get(lpfc_wcqe_xa_status, axri),
10302 			axri->parameter);
10303 
10304 	/*
10305 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10306 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10307 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10308 	 */
10309 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10310 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10311 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10312 		lpfc_sli_abts_recover_port(vport, ndlp);
10313 }
10314 
10315 /**
10316  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10317  * @phba: Pointer to HBA context object.
10318  * @pring: Pointer to driver SLI ring object.
10319  * @iocbq: Pointer to iocb object.
10320  *
10321  * This function is called by the slow ring event handler
10322  * function when there is an ASYNC event iocb in the ring.
10323  * This function is called with no lock held.
10324  * Currently this function handles only temperature related
10325  * ASYNC events. The function decodes the temperature sensor
10326  * event message and posts events for the management applications.
10327  **/
10328 static void
10329 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10330 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10331 {
10332 	IOCB_t *icmd;
10333 	uint16_t evt_code;
10334 	struct temp_event temp_event_data;
10335 	struct Scsi_Host *shost;
10336 	uint32_t *iocb_w;
10337 
10338 	icmd = &iocbq->iocb;
10339 	evt_code = icmd->un.asyncstat.evt_code;
10340 
10341 	switch (evt_code) {
10342 	case ASYNC_TEMP_WARN:
10343 	case ASYNC_TEMP_SAFE:
10344 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10345 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10346 		if (evt_code == ASYNC_TEMP_WARN) {
10347 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10348 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10349 				"0347 Adapter is very hot, please take "
10350 				"corrective action. temperature : %d Celsius\n",
10351 				(uint32_t) icmd->ulpContext);
10352 		} else {
10353 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10354 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10355 				"0340 Adapter temperature is OK now. "
10356 				"temperature : %d Celsius\n",
10357 				(uint32_t) icmd->ulpContext);
10358 		}
10359 
10360 		/* Send temperature change event to applications */
10361 		shost = lpfc_shost_from_vport(phba->pport);
10362 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10363 			sizeof(temp_event_data), (char *) &temp_event_data,
10364 			LPFC_NL_VENDOR_ID);
10365 		break;
10366 	case ASYNC_STATUS_CN:
10367 		lpfc_sli_abts_err_handler(phba, iocbq);
10368 		break;
10369 	default:
10370 		iocb_w = (uint32_t *) icmd;
10371 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10372 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10373 			" evt_code 0x%x\n"
10374 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10375 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10376 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10377 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10378 			pring->ringno, icmd->un.asyncstat.evt_code,
10379 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10380 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10381 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10382 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10383 
10384 		break;
10385 	}
10386 }
10387 
10388 
10389 /**
10390  * lpfc_sli4_setup - SLI ring setup function
10391  * @phba: Pointer to HBA context object.
10392  *
10393  * lpfc_sli_setup sets up rings of the SLI interface with
10394  * number of iocbs per ring and iotags. This function is
10395  * called while driver attach to the HBA and before the
10396  * interrupts are enabled. So there is no need for locking.
10397  *
10398  * This function always returns 0.
10399  **/
10400 int
10401 lpfc_sli4_setup(struct lpfc_hba *phba)
10402 {
10403 	struct lpfc_sli_ring *pring;
10404 
10405 	pring = phba->sli4_hba.els_wq->pring;
10406 	pring->num_mask = LPFC_MAX_RING_MASK;
10407 	pring->prt[0].profile = 0;	/* Mask 0 */
10408 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10409 	pring->prt[0].type = FC_TYPE_ELS;
10410 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10411 	    lpfc_els_unsol_event;
10412 	pring->prt[1].profile = 0;	/* Mask 1 */
10413 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10414 	pring->prt[1].type = FC_TYPE_ELS;
10415 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10416 	    lpfc_els_unsol_event;
10417 	pring->prt[2].profile = 0;	/* Mask 2 */
10418 	/* NameServer Inquiry */
10419 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10420 	/* NameServer */
10421 	pring->prt[2].type = FC_TYPE_CT;
10422 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10423 	    lpfc_ct_unsol_event;
10424 	pring->prt[3].profile = 0;	/* Mask 3 */
10425 	/* NameServer response */
10426 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10427 	/* NameServer */
10428 	pring->prt[3].type = FC_TYPE_CT;
10429 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10430 	    lpfc_ct_unsol_event;
10431 	return 0;
10432 }
10433 
10434 /**
10435  * lpfc_sli_setup - SLI ring setup function
10436  * @phba: Pointer to HBA context object.
10437  *
10438  * lpfc_sli_setup sets up rings of the SLI interface with
10439  * number of iocbs per ring and iotags. This function is
10440  * called while driver attach to the HBA and before the
10441  * interrupts are enabled. So there is no need for locking.
10442  *
10443  * This function always returns 0. SLI3 only.
10444  **/
10445 int
10446 lpfc_sli_setup(struct lpfc_hba *phba)
10447 {
10448 	int i, totiocbsize = 0;
10449 	struct lpfc_sli *psli = &phba->sli;
10450 	struct lpfc_sli_ring *pring;
10451 
10452 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10453 	psli->sli_flag = 0;
10454 
10455 	psli->iocbq_lookup = NULL;
10456 	psli->iocbq_lookup_len = 0;
10457 	psli->last_iotag = 0;
10458 
10459 	for (i = 0; i < psli->num_rings; i++) {
10460 		pring = &psli->sli3_ring[i];
10461 		switch (i) {
10462 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10463 			/* numCiocb and numRiocb are used in config_port */
10464 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10465 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10466 			pring->sli.sli3.numCiocb +=
10467 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10468 			pring->sli.sli3.numRiocb +=
10469 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10470 			pring->sli.sli3.numCiocb +=
10471 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10472 			pring->sli.sli3.numRiocb +=
10473 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10474 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10475 							SLI3_IOCB_CMD_SIZE :
10476 							SLI2_IOCB_CMD_SIZE;
10477 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10478 							SLI3_IOCB_RSP_SIZE :
10479 							SLI2_IOCB_RSP_SIZE;
10480 			pring->iotag_ctr = 0;
10481 			pring->iotag_max =
10482 			    (phba->cfg_hba_queue_depth * 2);
10483 			pring->fast_iotag = pring->iotag_max;
10484 			pring->num_mask = 0;
10485 			break;
10486 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10487 			/* numCiocb and numRiocb are used in config_port */
10488 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10489 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10490 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10491 							SLI3_IOCB_CMD_SIZE :
10492 							SLI2_IOCB_CMD_SIZE;
10493 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10494 							SLI3_IOCB_RSP_SIZE :
10495 							SLI2_IOCB_RSP_SIZE;
10496 			pring->iotag_max = phba->cfg_hba_queue_depth;
10497 			pring->num_mask = 0;
10498 			break;
10499 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10500 			/* numCiocb and numRiocb are used in config_port */
10501 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10502 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10503 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10504 							SLI3_IOCB_CMD_SIZE :
10505 							SLI2_IOCB_CMD_SIZE;
10506 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10507 							SLI3_IOCB_RSP_SIZE :
10508 							SLI2_IOCB_RSP_SIZE;
10509 			pring->fast_iotag = 0;
10510 			pring->iotag_ctr = 0;
10511 			pring->iotag_max = 4096;
10512 			pring->lpfc_sli_rcv_async_status =
10513 				lpfc_sli_async_event_handler;
10514 			pring->num_mask = LPFC_MAX_RING_MASK;
10515 			pring->prt[0].profile = 0;	/* Mask 0 */
10516 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10517 			pring->prt[0].type = FC_TYPE_ELS;
10518 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10519 			    lpfc_els_unsol_event;
10520 			pring->prt[1].profile = 0;	/* Mask 1 */
10521 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10522 			pring->prt[1].type = FC_TYPE_ELS;
10523 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10524 			    lpfc_els_unsol_event;
10525 			pring->prt[2].profile = 0;	/* Mask 2 */
10526 			/* NameServer Inquiry */
10527 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10528 			/* NameServer */
10529 			pring->prt[2].type = FC_TYPE_CT;
10530 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10531 			    lpfc_ct_unsol_event;
10532 			pring->prt[3].profile = 0;	/* Mask 3 */
10533 			/* NameServer response */
10534 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10535 			/* NameServer */
10536 			pring->prt[3].type = FC_TYPE_CT;
10537 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10538 			    lpfc_ct_unsol_event;
10539 			break;
10540 		}
10541 		totiocbsize += (pring->sli.sli3.numCiocb *
10542 			pring->sli.sli3.sizeCiocb) +
10543 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10544 	}
10545 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10546 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10547 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10548 		       "SLI2 SLIM Data: x%x x%lx\n",
10549 		       phba->brd_no, totiocbsize,
10550 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10551 	}
10552 	if (phba->cfg_multi_ring_support == 2)
10553 		lpfc_extra_ring_setup(phba);
10554 
10555 	return 0;
10556 }
10557 
10558 /**
10559  * lpfc_sli4_queue_init - Queue initialization function
10560  * @phba: Pointer to HBA context object.
10561  *
10562  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10563  * ring. This function also initializes ring indices of each ring.
10564  * This function is called during the initialization of the SLI
10565  * interface of an HBA.
10566  * This function is called with no lock held and always returns
10567  * 1.
10568  **/
10569 void
10570 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10571 {
10572 	struct lpfc_sli *psli;
10573 	struct lpfc_sli_ring *pring;
10574 	int i;
10575 
10576 	psli = &phba->sli;
10577 	spin_lock_irq(&phba->hbalock);
10578 	INIT_LIST_HEAD(&psli->mboxq);
10579 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10580 	/* Initialize list headers for txq and txcmplq as double linked lists */
10581 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10582 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10583 		pring->flag = 0;
10584 		pring->ringno = LPFC_FCP_RING;
10585 		pring->txcmplq_cnt = 0;
10586 		INIT_LIST_HEAD(&pring->txq);
10587 		INIT_LIST_HEAD(&pring->txcmplq);
10588 		INIT_LIST_HEAD(&pring->iocb_continueq);
10589 		spin_lock_init(&pring->ring_lock);
10590 	}
10591 	pring = phba->sli4_hba.els_wq->pring;
10592 	pring->flag = 0;
10593 	pring->ringno = LPFC_ELS_RING;
10594 	pring->txcmplq_cnt = 0;
10595 	INIT_LIST_HEAD(&pring->txq);
10596 	INIT_LIST_HEAD(&pring->txcmplq);
10597 	INIT_LIST_HEAD(&pring->iocb_continueq);
10598 	spin_lock_init(&pring->ring_lock);
10599 
10600 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10601 		pring = phba->sli4_hba.nvmels_wq->pring;
10602 		pring->flag = 0;
10603 		pring->ringno = LPFC_ELS_RING;
10604 		pring->txcmplq_cnt = 0;
10605 		INIT_LIST_HEAD(&pring->txq);
10606 		INIT_LIST_HEAD(&pring->txcmplq);
10607 		INIT_LIST_HEAD(&pring->iocb_continueq);
10608 		spin_lock_init(&pring->ring_lock);
10609 	}
10610 
10611 	spin_unlock_irq(&phba->hbalock);
10612 }
10613 
10614 /**
10615  * lpfc_sli_queue_init - Queue initialization function
10616  * @phba: Pointer to HBA context object.
10617  *
10618  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10619  * ring. This function also initializes ring indices of each ring.
10620  * This function is called during the initialization of the SLI
10621  * interface of an HBA.
10622  * This function is called with no lock held and always returns
10623  * 1.
10624  **/
10625 void
10626 lpfc_sli_queue_init(struct lpfc_hba *phba)
10627 {
10628 	struct lpfc_sli *psli;
10629 	struct lpfc_sli_ring *pring;
10630 	int i;
10631 
10632 	psli = &phba->sli;
10633 	spin_lock_irq(&phba->hbalock);
10634 	INIT_LIST_HEAD(&psli->mboxq);
10635 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10636 	/* Initialize list headers for txq and txcmplq as double linked lists */
10637 	for (i = 0; i < psli->num_rings; i++) {
10638 		pring = &psli->sli3_ring[i];
10639 		pring->ringno = i;
10640 		pring->sli.sli3.next_cmdidx  = 0;
10641 		pring->sli.sli3.local_getidx = 0;
10642 		pring->sli.sli3.cmdidx = 0;
10643 		INIT_LIST_HEAD(&pring->iocb_continueq);
10644 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10645 		INIT_LIST_HEAD(&pring->postbufq);
10646 		pring->flag = 0;
10647 		INIT_LIST_HEAD(&pring->txq);
10648 		INIT_LIST_HEAD(&pring->txcmplq);
10649 		spin_lock_init(&pring->ring_lock);
10650 	}
10651 	spin_unlock_irq(&phba->hbalock);
10652 }
10653 
10654 /**
10655  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10656  * @phba: Pointer to HBA context object.
10657  *
10658  * This routine flushes the mailbox command subsystem. It will unconditionally
10659  * flush all the mailbox commands in the three possible stages in the mailbox
10660  * command sub-system: pending mailbox command queue; the outstanding mailbox
10661  * command; and completed mailbox command queue. It is caller's responsibility
10662  * to make sure that the driver is in the proper state to flush the mailbox
10663  * command sub-system. Namely, the posting of mailbox commands into the
10664  * pending mailbox command queue from the various clients must be stopped;
10665  * either the HBA is in a state that it will never works on the outstanding
10666  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10667  * mailbox command has been completed.
10668  **/
10669 static void
10670 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10671 {
10672 	LIST_HEAD(completions);
10673 	struct lpfc_sli *psli = &phba->sli;
10674 	LPFC_MBOXQ_t *pmb;
10675 	unsigned long iflag;
10676 
10677 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10678 	local_bh_disable();
10679 
10680 	/* Flush all the mailbox commands in the mbox system */
10681 	spin_lock_irqsave(&phba->hbalock, iflag);
10682 
10683 	/* The pending mailbox command queue */
10684 	list_splice_init(&phba->sli.mboxq, &completions);
10685 	/* The outstanding active mailbox command */
10686 	if (psli->mbox_active) {
10687 		list_add_tail(&psli->mbox_active->list, &completions);
10688 		psli->mbox_active = NULL;
10689 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10690 	}
10691 	/* The completed mailbox command queue */
10692 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10693 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10694 
10695 	/* Enable softirqs again, done with phba->hbalock */
10696 	local_bh_enable();
10697 
10698 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10699 	while (!list_empty(&completions)) {
10700 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10701 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10702 		if (pmb->mbox_cmpl)
10703 			pmb->mbox_cmpl(phba, pmb);
10704 	}
10705 }
10706 
10707 /**
10708  * lpfc_sli_host_down - Vport cleanup function
10709  * @vport: Pointer to virtual port object.
10710  *
10711  * lpfc_sli_host_down is called to clean up the resources
10712  * associated with a vport before destroying virtual
10713  * port data structures.
10714  * This function does following operations:
10715  * - Free discovery resources associated with this virtual
10716  *   port.
10717  * - Free iocbs associated with this virtual port in
10718  *   the txq.
10719  * - Send abort for all iocb commands associated with this
10720  *   vport in txcmplq.
10721  *
10722  * This function is called with no lock held and always returns 1.
10723  **/
10724 int
10725 lpfc_sli_host_down(struct lpfc_vport *vport)
10726 {
10727 	LIST_HEAD(completions);
10728 	struct lpfc_hba *phba = vport->phba;
10729 	struct lpfc_sli *psli = &phba->sli;
10730 	struct lpfc_queue *qp = NULL;
10731 	struct lpfc_sli_ring *pring;
10732 	struct lpfc_iocbq *iocb, *next_iocb;
10733 	int i;
10734 	unsigned long flags = 0;
10735 	uint16_t prev_pring_flag;
10736 
10737 	lpfc_cleanup_discovery_resources(vport);
10738 
10739 	spin_lock_irqsave(&phba->hbalock, flags);
10740 
10741 	/*
10742 	 * Error everything on the txq since these iocbs
10743 	 * have not been given to the FW yet.
10744 	 * Also issue ABTS for everything on the txcmplq
10745 	 */
10746 	if (phba->sli_rev != LPFC_SLI_REV4) {
10747 		for (i = 0; i < psli->num_rings; i++) {
10748 			pring = &psli->sli3_ring[i];
10749 			prev_pring_flag = pring->flag;
10750 			/* Only slow rings */
10751 			if (pring->ringno == LPFC_ELS_RING) {
10752 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10753 				/* Set the lpfc data pending flag */
10754 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10755 			}
10756 			list_for_each_entry_safe(iocb, next_iocb,
10757 						 &pring->txq, list) {
10758 				if (iocb->vport != vport)
10759 					continue;
10760 				list_move_tail(&iocb->list, &completions);
10761 			}
10762 			list_for_each_entry_safe(iocb, next_iocb,
10763 						 &pring->txcmplq, list) {
10764 				if (iocb->vport != vport)
10765 					continue;
10766 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10767 			}
10768 			pring->flag = prev_pring_flag;
10769 		}
10770 	} else {
10771 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10772 			pring = qp->pring;
10773 			if (!pring)
10774 				continue;
10775 			if (pring == phba->sli4_hba.els_wq->pring) {
10776 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10777 				/* Set the lpfc data pending flag */
10778 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10779 			}
10780 			prev_pring_flag = pring->flag;
10781 			spin_lock(&pring->ring_lock);
10782 			list_for_each_entry_safe(iocb, next_iocb,
10783 						 &pring->txq, list) {
10784 				if (iocb->vport != vport)
10785 					continue;
10786 				list_move_tail(&iocb->list, &completions);
10787 			}
10788 			spin_unlock(&pring->ring_lock);
10789 			list_for_each_entry_safe(iocb, next_iocb,
10790 						 &pring->txcmplq, list) {
10791 				if (iocb->vport != vport)
10792 					continue;
10793 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10794 			}
10795 			pring->flag = prev_pring_flag;
10796 		}
10797 	}
10798 	spin_unlock_irqrestore(&phba->hbalock, flags);
10799 
10800 	/* Cancel all the IOCBs from the completions list */
10801 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10802 			      IOERR_SLI_DOWN);
10803 	return 1;
10804 }
10805 
10806 /**
10807  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10808  * @phba: Pointer to HBA context object.
10809  *
10810  * This function cleans up all iocb, buffers, mailbox commands
10811  * while shutting down the HBA. This function is called with no
10812  * lock held and always returns 1.
10813  * This function does the following to cleanup driver resources:
10814  * - Free discovery resources for each virtual port
10815  * - Cleanup any pending fabric iocbs
10816  * - Iterate through the iocb txq and free each entry
10817  *   in the list.
10818  * - Free up any buffer posted to the HBA
10819  * - Free mailbox commands in the mailbox queue.
10820  **/
10821 int
10822 lpfc_sli_hba_down(struct lpfc_hba *phba)
10823 {
10824 	LIST_HEAD(completions);
10825 	struct lpfc_sli *psli = &phba->sli;
10826 	struct lpfc_queue *qp = NULL;
10827 	struct lpfc_sli_ring *pring;
10828 	struct lpfc_dmabuf *buf_ptr;
10829 	unsigned long flags = 0;
10830 	int i;
10831 
10832 	/* Shutdown the mailbox command sub-system */
10833 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10834 
10835 	lpfc_hba_down_prep(phba);
10836 
10837 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10838 	local_bh_disable();
10839 
10840 	lpfc_fabric_abort_hba(phba);
10841 
10842 	spin_lock_irqsave(&phba->hbalock, flags);
10843 
10844 	/*
10845 	 * Error everything on the txq since these iocbs
10846 	 * have not been given to the FW yet.
10847 	 */
10848 	if (phba->sli_rev != LPFC_SLI_REV4) {
10849 		for (i = 0; i < psli->num_rings; i++) {
10850 			pring = &psli->sli3_ring[i];
10851 			/* Only slow rings */
10852 			if (pring->ringno == LPFC_ELS_RING) {
10853 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10854 				/* Set the lpfc data pending flag */
10855 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10856 			}
10857 			list_splice_init(&pring->txq, &completions);
10858 		}
10859 	} else {
10860 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10861 			pring = qp->pring;
10862 			if (!pring)
10863 				continue;
10864 			spin_lock(&pring->ring_lock);
10865 			list_splice_init(&pring->txq, &completions);
10866 			spin_unlock(&pring->ring_lock);
10867 			if (pring == phba->sli4_hba.els_wq->pring) {
10868 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10869 				/* Set the lpfc data pending flag */
10870 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10871 			}
10872 		}
10873 	}
10874 	spin_unlock_irqrestore(&phba->hbalock, flags);
10875 
10876 	/* Cancel all the IOCBs from the completions list */
10877 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10878 			      IOERR_SLI_DOWN);
10879 
10880 	spin_lock_irqsave(&phba->hbalock, flags);
10881 	list_splice_init(&phba->elsbuf, &completions);
10882 	phba->elsbuf_cnt = 0;
10883 	phba->elsbuf_prev_cnt = 0;
10884 	spin_unlock_irqrestore(&phba->hbalock, flags);
10885 
10886 	while (!list_empty(&completions)) {
10887 		list_remove_head(&completions, buf_ptr,
10888 			struct lpfc_dmabuf, list);
10889 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10890 		kfree(buf_ptr);
10891 	}
10892 
10893 	/* Enable softirqs again, done with phba->hbalock */
10894 	local_bh_enable();
10895 
10896 	/* Return any active mbox cmds */
10897 	del_timer_sync(&psli->mbox_tmo);
10898 
10899 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10900 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10901 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10902 
10903 	return 1;
10904 }
10905 
10906 /**
10907  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10908  * @srcp: Source memory pointer.
10909  * @destp: Destination memory pointer.
10910  * @cnt: Number of words required to be copied.
10911  *
10912  * This function is used for copying data between driver memory
10913  * and the SLI memory. This function also changes the endianness
10914  * of each word if native endianness is different from SLI
10915  * endianness. This function can be called with or without
10916  * lock.
10917  **/
10918 void
10919 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10920 {
10921 	uint32_t *src = srcp;
10922 	uint32_t *dest = destp;
10923 	uint32_t ldata;
10924 	int i;
10925 
10926 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10927 		ldata = *src;
10928 		ldata = le32_to_cpu(ldata);
10929 		*dest = ldata;
10930 		src++;
10931 		dest++;
10932 	}
10933 }
10934 
10935 
10936 /**
10937  * lpfc_sli_bemem_bcopy - SLI memory copy function
10938  * @srcp: Source memory pointer.
10939  * @destp: Destination memory pointer.
10940  * @cnt: Number of words required to be copied.
10941  *
10942  * This function is used for copying data between a data structure
10943  * with big endian representation to local endianness.
10944  * This function can be called with or without lock.
10945  **/
10946 void
10947 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10948 {
10949 	uint32_t *src = srcp;
10950 	uint32_t *dest = destp;
10951 	uint32_t ldata;
10952 	int i;
10953 
10954 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10955 		ldata = *src;
10956 		ldata = be32_to_cpu(ldata);
10957 		*dest = ldata;
10958 		src++;
10959 		dest++;
10960 	}
10961 }
10962 
10963 /**
10964  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10965  * @phba: Pointer to HBA context object.
10966  * @pring: Pointer to driver SLI ring object.
10967  * @mp: Pointer to driver buffer object.
10968  *
10969  * This function is called with no lock held.
10970  * It always return zero after adding the buffer to the postbufq
10971  * buffer list.
10972  **/
10973 int
10974 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10975 			 struct lpfc_dmabuf *mp)
10976 {
10977 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10978 	   later */
10979 	spin_lock_irq(&phba->hbalock);
10980 	list_add_tail(&mp->list, &pring->postbufq);
10981 	pring->postbufq_cnt++;
10982 	spin_unlock_irq(&phba->hbalock);
10983 	return 0;
10984 }
10985 
10986 /**
10987  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10988  * @phba: Pointer to HBA context object.
10989  *
10990  * When HBQ is enabled, buffers are searched based on tags. This function
10991  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10992  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10993  * does not conflict with tags of buffer posted for unsolicited events.
10994  * The function returns the allocated tag. The function is called with
10995  * no locks held.
10996  **/
10997 uint32_t
10998 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10999 {
11000 	spin_lock_irq(&phba->hbalock);
11001 	phba->buffer_tag_count++;
11002 	/*
11003 	 * Always set the QUE_BUFTAG_BIT to distiguish between
11004 	 * a tag assigned by HBQ.
11005 	 */
11006 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11007 	spin_unlock_irq(&phba->hbalock);
11008 	return phba->buffer_tag_count;
11009 }
11010 
11011 /**
11012  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11013  * @phba: Pointer to HBA context object.
11014  * @pring: Pointer to driver SLI ring object.
11015  * @tag: Buffer tag.
11016  *
11017  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11018  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11019  * iocb is posted to the response ring with the tag of the buffer.
11020  * This function searches the pring->postbufq list using the tag
11021  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11022  * iocb. If the buffer is found then lpfc_dmabuf object of the
11023  * buffer is returned to the caller else NULL is returned.
11024  * This function is called with no lock held.
11025  **/
11026 struct lpfc_dmabuf *
11027 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11028 			uint32_t tag)
11029 {
11030 	struct lpfc_dmabuf *mp, *next_mp;
11031 	struct list_head *slp = &pring->postbufq;
11032 
11033 	/* Search postbufq, from the beginning, looking for a match on tag */
11034 	spin_lock_irq(&phba->hbalock);
11035 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11036 		if (mp->buffer_tag == tag) {
11037 			list_del_init(&mp->list);
11038 			pring->postbufq_cnt--;
11039 			spin_unlock_irq(&phba->hbalock);
11040 			return mp;
11041 		}
11042 	}
11043 
11044 	spin_unlock_irq(&phba->hbalock);
11045 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11046 			"0402 Cannot find virtual addr for buffer tag on "
11047 			"ring %d Data x%lx x%px x%px x%x\n",
11048 			pring->ringno, (unsigned long) tag,
11049 			slp->next, slp->prev, pring->postbufq_cnt);
11050 
11051 	return NULL;
11052 }
11053 
11054 /**
11055  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11056  * @phba: Pointer to HBA context object.
11057  * @pring: Pointer to driver SLI ring object.
11058  * @phys: DMA address of the buffer.
11059  *
11060  * This function searches the buffer list using the dma_address
11061  * of unsolicited event to find the driver's lpfc_dmabuf object
11062  * corresponding to the dma_address. The function returns the
11063  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11064  * This function is called by the ct and els unsolicited event
11065  * handlers to get the buffer associated with the unsolicited
11066  * event.
11067  *
11068  * This function is called with no lock held.
11069  **/
11070 struct lpfc_dmabuf *
11071 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11072 			 dma_addr_t phys)
11073 {
11074 	struct lpfc_dmabuf *mp, *next_mp;
11075 	struct list_head *slp = &pring->postbufq;
11076 
11077 	/* Search postbufq, from the beginning, looking for a match on phys */
11078 	spin_lock_irq(&phba->hbalock);
11079 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11080 		if (mp->phys == phys) {
11081 			list_del_init(&mp->list);
11082 			pring->postbufq_cnt--;
11083 			spin_unlock_irq(&phba->hbalock);
11084 			return mp;
11085 		}
11086 	}
11087 
11088 	spin_unlock_irq(&phba->hbalock);
11089 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11090 			"0410 Cannot find virtual addr for mapped buf on "
11091 			"ring %d Data x%llx x%px x%px x%x\n",
11092 			pring->ringno, (unsigned long long)phys,
11093 			slp->next, slp->prev, pring->postbufq_cnt);
11094 	return NULL;
11095 }
11096 
11097 /**
11098  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11099  * @phba: Pointer to HBA context object.
11100  * @cmdiocb: Pointer to driver command iocb object.
11101  * @rspiocb: Pointer to driver response iocb object.
11102  *
11103  * This function is the completion handler for the abort iocbs for
11104  * ELS commands. This function is called from the ELS ring event
11105  * handler with no lock held. This function frees memory resources
11106  * associated with the abort iocb.
11107  **/
11108 static void
11109 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11110 			struct lpfc_iocbq *rspiocb)
11111 {
11112 	IOCB_t *irsp = &rspiocb->iocb;
11113 	uint16_t abort_iotag, abort_context;
11114 	struct lpfc_iocbq *abort_iocb = NULL;
11115 
11116 	if (irsp->ulpStatus) {
11117 
11118 		/*
11119 		 * Assume that the port already completed and returned, or
11120 		 * will return the iocb. Just Log the message.
11121 		 */
11122 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11123 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11124 
11125 		spin_lock_irq(&phba->hbalock);
11126 		if (phba->sli_rev < LPFC_SLI_REV4) {
11127 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11128 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11129 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11130 				spin_unlock_irq(&phba->hbalock);
11131 				goto release_iocb;
11132 			}
11133 			if (abort_iotag != 0 &&
11134 				abort_iotag <= phba->sli.last_iotag)
11135 				abort_iocb =
11136 					phba->sli.iocbq_lookup[abort_iotag];
11137 		} else
11138 			/* For sli4 the abort_tag is the XRI,
11139 			 * so the abort routine puts the iotag  of the iocb
11140 			 * being aborted in the context field of the abort
11141 			 * IOCB.
11142 			 */
11143 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11144 
11145 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11146 				"0327 Cannot abort els iocb x%px "
11147 				"with tag %x context %x, abort status %x, "
11148 				"abort code %x\n",
11149 				abort_iocb, abort_iotag, abort_context,
11150 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11151 
11152 		spin_unlock_irq(&phba->hbalock);
11153 	}
11154 release_iocb:
11155 	lpfc_sli_release_iocbq(phba, cmdiocb);
11156 	return;
11157 }
11158 
11159 /**
11160  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11161  * @phba: Pointer to HBA context object.
11162  * @cmdiocb: Pointer to driver command iocb object.
11163  * @rspiocb: Pointer to driver response iocb object.
11164  *
11165  * The function is called from SLI ring event handler with no
11166  * lock held. This function is the completion handler for ELS commands
11167  * which are aborted. The function frees memory resources used for
11168  * the aborted ELS commands.
11169  **/
11170 static void
11171 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11172 		     struct lpfc_iocbq *rspiocb)
11173 {
11174 	IOCB_t *irsp = &rspiocb->iocb;
11175 
11176 	/* ELS cmd tag <ulpIoTag> completes */
11177 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11178 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11179 			"x%x x%x x%x\n",
11180 			irsp->ulpIoTag, irsp->ulpStatus,
11181 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11182 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11183 		lpfc_ct_free_iocb(phba, cmdiocb);
11184 	else
11185 		lpfc_els_free_iocb(phba, cmdiocb);
11186 	return;
11187 }
11188 
11189 /**
11190  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11191  * @phba: Pointer to HBA context object.
11192  * @pring: Pointer to driver SLI ring object.
11193  * @cmdiocb: Pointer to driver command iocb object.
11194  *
11195  * This function issues an abort iocb for the provided command iocb down to
11196  * the port. Other than the case the outstanding command iocb is an abort
11197  * request, this function issues abort out unconditionally. This function is
11198  * called with hbalock held. The function returns 0 when it fails due to
11199  * memory allocation failure or when the command iocb is an abort request.
11200  **/
11201 static int
11202 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11203 			   struct lpfc_iocbq *cmdiocb)
11204 {
11205 	struct lpfc_vport *vport = cmdiocb->vport;
11206 	struct lpfc_iocbq *abtsiocbp;
11207 	IOCB_t *icmd = NULL;
11208 	IOCB_t *iabt = NULL;
11209 	int retval;
11210 	unsigned long iflags;
11211 	struct lpfc_nodelist *ndlp;
11212 
11213 	lockdep_assert_held(&phba->hbalock);
11214 
11215 	/*
11216 	 * There are certain command types we don't want to abort.  And we
11217 	 * don't want to abort commands that are already in the process of
11218 	 * being aborted.
11219 	 */
11220 	icmd = &cmdiocb->iocb;
11221 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11222 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11223 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11224 		return 0;
11225 
11226 	/* issue ABTS for this IOCB based on iotag */
11227 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11228 	if (abtsiocbp == NULL)
11229 		return 0;
11230 
11231 	/* This signals the response to set the correct status
11232 	 * before calling the completion handler
11233 	 */
11234 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11235 
11236 	iabt = &abtsiocbp->iocb;
11237 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11238 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11239 	if (phba->sli_rev == LPFC_SLI_REV4) {
11240 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11241 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11242 	} else {
11243 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11244 		if (pring->ringno == LPFC_ELS_RING) {
11245 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11246 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11247 		}
11248 	}
11249 	iabt->ulpLe = 1;
11250 	iabt->ulpClass = icmd->ulpClass;
11251 
11252 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11253 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11254 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11255 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11256 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11257 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11258 
11259 	if (phba->link_state >= LPFC_LINK_UP)
11260 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11261 	else
11262 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11263 
11264 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11265 	abtsiocbp->vport = vport;
11266 
11267 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11268 			 "0339 Abort xri x%x, original iotag x%x, "
11269 			 "abort cmd iotag x%x\n",
11270 			 iabt->un.acxri.abortIoTag,
11271 			 iabt->un.acxri.abortContextTag,
11272 			 abtsiocbp->iotag);
11273 
11274 	if (phba->sli_rev == LPFC_SLI_REV4) {
11275 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11276 		if (unlikely(pring == NULL))
11277 			return 0;
11278 		/* Note: both hbalock and ring_lock need to be set here */
11279 		spin_lock_irqsave(&pring->ring_lock, iflags);
11280 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11281 			abtsiocbp, 0);
11282 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11283 	} else {
11284 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11285 			abtsiocbp, 0);
11286 	}
11287 
11288 	if (retval)
11289 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11290 
11291 	/*
11292 	 * Caller to this routine should check for IOCB_ERROR
11293 	 * and handle it properly.  This routine no longer removes
11294 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11295 	 */
11296 	return retval;
11297 }
11298 
11299 /**
11300  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11301  * @phba: Pointer to HBA context object.
11302  * @pring: Pointer to driver SLI ring object.
11303  * @cmdiocb: Pointer to driver command iocb object.
11304  *
11305  * This function issues an abort iocb for the provided command iocb. In case
11306  * of unloading, the abort iocb will not be issued to commands on the ELS
11307  * ring. Instead, the callback function shall be changed to those commands
11308  * so that nothing happens when them finishes. This function is called with
11309  * hbalock held. The function returns 0 when the command iocb is an abort
11310  * request.
11311  **/
11312 int
11313 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11314 			   struct lpfc_iocbq *cmdiocb)
11315 {
11316 	struct lpfc_vport *vport = cmdiocb->vport;
11317 	int retval = IOCB_ERROR;
11318 	IOCB_t *icmd = NULL;
11319 
11320 	lockdep_assert_held(&phba->hbalock);
11321 
11322 	/*
11323 	 * There are certain command types we don't want to abort.  And we
11324 	 * don't want to abort commands that are already in the process of
11325 	 * being aborted.
11326 	 */
11327 	icmd = &cmdiocb->iocb;
11328 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11329 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11330 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11331 		return 0;
11332 
11333 	if (!pring) {
11334 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11335 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11336 		else
11337 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11338 		goto abort_iotag_exit;
11339 	}
11340 
11341 	/*
11342 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11343 	 * the callback so that nothing happens when it finishes.
11344 	 */
11345 	if ((vport->load_flag & FC_UNLOADING) &&
11346 	    (pring->ringno == LPFC_ELS_RING)) {
11347 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11348 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11349 		else
11350 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11351 		goto abort_iotag_exit;
11352 	}
11353 
11354 	/* Now, we try to issue the abort to the cmdiocb out */
11355 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11356 
11357 abort_iotag_exit:
11358 	/*
11359 	 * Caller to this routine should check for IOCB_ERROR
11360 	 * and handle it properly.  This routine no longer removes
11361 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11362 	 */
11363 	return retval;
11364 }
11365 
11366 /**
11367  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11368  * @phba: pointer to lpfc HBA data structure.
11369  *
11370  * This routine will abort all pending and outstanding iocbs to an HBA.
11371  **/
11372 void
11373 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11374 {
11375 	struct lpfc_sli *psli = &phba->sli;
11376 	struct lpfc_sli_ring *pring;
11377 	struct lpfc_queue *qp = NULL;
11378 	int i;
11379 
11380 	if (phba->sli_rev != LPFC_SLI_REV4) {
11381 		for (i = 0; i < psli->num_rings; i++) {
11382 			pring = &psli->sli3_ring[i];
11383 			lpfc_sli_abort_iocb_ring(phba, pring);
11384 		}
11385 		return;
11386 	}
11387 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11388 		pring = qp->pring;
11389 		if (!pring)
11390 			continue;
11391 		lpfc_sli_abort_iocb_ring(phba, pring);
11392 	}
11393 }
11394 
11395 /**
11396  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11397  * @iocbq: Pointer to driver iocb object.
11398  * @vport: Pointer to driver virtual port object.
11399  * @tgt_id: SCSI ID of the target.
11400  * @lun_id: LUN ID of the scsi device.
11401  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11402  *
11403  * This function acts as an iocb filter for functions which abort or count
11404  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11405  * 0 if the filtering criteria is met for the given iocb and will return
11406  * 1 if the filtering criteria is not met.
11407  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11408  * given iocb is for the SCSI device specified by vport, tgt_id and
11409  * lun_id parameter.
11410  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11411  * given iocb is for the SCSI target specified by vport and tgt_id
11412  * parameters.
11413  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11414  * given iocb is for the SCSI host associated with the given vport.
11415  * This function is called with no locks held.
11416  **/
11417 static int
11418 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11419 			   uint16_t tgt_id, uint64_t lun_id,
11420 			   lpfc_ctx_cmd ctx_cmd)
11421 {
11422 	struct lpfc_io_buf *lpfc_cmd;
11423 	int rc = 1;
11424 
11425 	if (iocbq->vport != vport)
11426 		return rc;
11427 
11428 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11429 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11430 		return rc;
11431 
11432 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11433 
11434 	if (lpfc_cmd->pCmd == NULL)
11435 		return rc;
11436 
11437 	switch (ctx_cmd) {
11438 	case LPFC_CTX_LUN:
11439 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11440 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11441 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11442 			rc = 0;
11443 		break;
11444 	case LPFC_CTX_TGT:
11445 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11446 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11447 			rc = 0;
11448 		break;
11449 	case LPFC_CTX_HOST:
11450 		rc = 0;
11451 		break;
11452 	default:
11453 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11454 			__func__, ctx_cmd);
11455 		break;
11456 	}
11457 
11458 	return rc;
11459 }
11460 
11461 /**
11462  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11463  * @vport: Pointer to virtual port.
11464  * @tgt_id: SCSI ID of the target.
11465  * @lun_id: LUN ID of the scsi device.
11466  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11467  *
11468  * This function returns number of FCP commands pending for the vport.
11469  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11470  * commands pending on the vport associated with SCSI device specified
11471  * by tgt_id and lun_id parameters.
11472  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11473  * commands pending on the vport associated with SCSI target specified
11474  * by tgt_id parameter.
11475  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11476  * commands pending on the vport.
11477  * This function returns the number of iocbs which satisfy the filter.
11478  * This function is called without any lock held.
11479  **/
11480 int
11481 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11482 		  lpfc_ctx_cmd ctx_cmd)
11483 {
11484 	struct lpfc_hba *phba = vport->phba;
11485 	struct lpfc_iocbq *iocbq;
11486 	int sum, i;
11487 
11488 	spin_lock_irq(&phba->hbalock);
11489 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11490 		iocbq = phba->sli.iocbq_lookup[i];
11491 
11492 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11493 						ctx_cmd) == 0)
11494 			sum++;
11495 	}
11496 	spin_unlock_irq(&phba->hbalock);
11497 
11498 	return sum;
11499 }
11500 
11501 /**
11502  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11503  * @phba: Pointer to HBA context object
11504  * @cmdiocb: Pointer to command iocb object.
11505  * @rspiocb: Pointer to response iocb object.
11506  *
11507  * This function is called when an aborted FCP iocb completes. This
11508  * function is called by the ring event handler with no lock held.
11509  * This function frees the iocb.
11510  **/
11511 void
11512 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11513 			struct lpfc_iocbq *rspiocb)
11514 {
11515 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11516 			"3096 ABORT_XRI_CN completing on rpi x%x "
11517 			"original iotag x%x, abort cmd iotag x%x "
11518 			"status 0x%x, reason 0x%x\n",
11519 			cmdiocb->iocb.un.acxri.abortContextTag,
11520 			cmdiocb->iocb.un.acxri.abortIoTag,
11521 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11522 			rspiocb->iocb.un.ulpWord[4]);
11523 	lpfc_sli_release_iocbq(phba, cmdiocb);
11524 	return;
11525 }
11526 
11527 /**
11528  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11529  * @vport: Pointer to virtual port.
11530  * @pring: Pointer to driver SLI ring object.
11531  * @tgt_id: SCSI ID of the target.
11532  * @lun_id: LUN ID of the scsi device.
11533  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11534  *
11535  * This function sends an abort command for every SCSI command
11536  * associated with the given virtual port pending on the ring
11537  * filtered by lpfc_sli_validate_fcp_iocb function.
11538  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11539  * FCP iocbs associated with lun specified by tgt_id and lun_id
11540  * parameters
11541  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11542  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11543  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11544  * FCP iocbs associated with virtual port.
11545  * This function returns number of iocbs it failed to abort.
11546  * This function is called with no locks held.
11547  **/
11548 int
11549 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11550 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11551 {
11552 	struct lpfc_hba *phba = vport->phba;
11553 	struct lpfc_iocbq *iocbq;
11554 	struct lpfc_iocbq *abtsiocb;
11555 	struct lpfc_sli_ring *pring_s4;
11556 	IOCB_t *cmd = NULL;
11557 	int errcnt = 0, ret_val = 0;
11558 	int i;
11559 
11560 	/* all I/Os are in process of being flushed */
11561 	if (phba->hba_flag & HBA_IOQ_FLUSH)
11562 		return errcnt;
11563 
11564 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11565 		iocbq = phba->sli.iocbq_lookup[i];
11566 
11567 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11568 					       abort_cmd) != 0)
11569 			continue;
11570 
11571 		/*
11572 		 * If the iocbq is already being aborted, don't take a second
11573 		 * action, but do count it.
11574 		 */
11575 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11576 			continue;
11577 
11578 		/* issue ABTS for this IOCB based on iotag */
11579 		abtsiocb = lpfc_sli_get_iocbq(phba);
11580 		if (abtsiocb == NULL) {
11581 			errcnt++;
11582 			continue;
11583 		}
11584 
11585 		/* indicate the IO is being aborted by the driver. */
11586 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11587 
11588 		cmd = &iocbq->iocb;
11589 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11590 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11591 		if (phba->sli_rev == LPFC_SLI_REV4)
11592 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11593 		else
11594 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11595 		abtsiocb->iocb.ulpLe = 1;
11596 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11597 		abtsiocb->vport = vport;
11598 
11599 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11600 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11601 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11602 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11603 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11604 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11605 
11606 		if (lpfc_is_link_up(phba))
11607 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11608 		else
11609 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11610 
11611 		/* Setup callback routine and issue the command. */
11612 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11613 		if (phba->sli_rev == LPFC_SLI_REV4) {
11614 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11615 			if (!pring_s4)
11616 				continue;
11617 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11618 						      abtsiocb, 0);
11619 		} else
11620 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11621 						      abtsiocb, 0);
11622 		if (ret_val == IOCB_ERROR) {
11623 			lpfc_sli_release_iocbq(phba, abtsiocb);
11624 			errcnt++;
11625 			continue;
11626 		}
11627 	}
11628 
11629 	return errcnt;
11630 }
11631 
11632 /**
11633  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11634  * @vport: Pointer to virtual port.
11635  * @pring: Pointer to driver SLI ring object.
11636  * @tgt_id: SCSI ID of the target.
11637  * @lun_id: LUN ID of the scsi device.
11638  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11639  *
11640  * This function sends an abort command for every SCSI command
11641  * associated with the given virtual port pending on the ring
11642  * filtered by lpfc_sli_validate_fcp_iocb function.
11643  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11644  * FCP iocbs associated with lun specified by tgt_id and lun_id
11645  * parameters
11646  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11647  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11648  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11649  * FCP iocbs associated with virtual port.
11650  * This function returns number of iocbs it aborted .
11651  * This function is called with no locks held right after a taskmgmt
11652  * command is sent.
11653  **/
11654 int
11655 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11656 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11657 {
11658 	struct lpfc_hba *phba = vport->phba;
11659 	struct lpfc_io_buf *lpfc_cmd;
11660 	struct lpfc_iocbq *abtsiocbq;
11661 	struct lpfc_nodelist *ndlp;
11662 	struct lpfc_iocbq *iocbq;
11663 	IOCB_t *icmd;
11664 	int sum, i, ret_val;
11665 	unsigned long iflags;
11666 	struct lpfc_sli_ring *pring_s4 = NULL;
11667 
11668 	spin_lock_irqsave(&phba->hbalock, iflags);
11669 
11670 	/* all I/Os are in process of being flushed */
11671 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
11672 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11673 		return 0;
11674 	}
11675 	sum = 0;
11676 
11677 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11678 		iocbq = phba->sli.iocbq_lookup[i];
11679 
11680 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11681 					       cmd) != 0)
11682 			continue;
11683 
11684 		/* Guard against IO completion being called at same time */
11685 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11686 		spin_lock(&lpfc_cmd->buf_lock);
11687 
11688 		if (!lpfc_cmd->pCmd) {
11689 			spin_unlock(&lpfc_cmd->buf_lock);
11690 			continue;
11691 		}
11692 
11693 		if (phba->sli_rev == LPFC_SLI_REV4) {
11694 			pring_s4 =
11695 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11696 			if (!pring_s4) {
11697 				spin_unlock(&lpfc_cmd->buf_lock);
11698 				continue;
11699 			}
11700 			/* Note: both hbalock and ring_lock must be set here */
11701 			spin_lock(&pring_s4->ring_lock);
11702 		}
11703 
11704 		/*
11705 		 * If the iocbq is already being aborted, don't take a second
11706 		 * action, but do count it.
11707 		 */
11708 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11709 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11710 			if (phba->sli_rev == LPFC_SLI_REV4)
11711 				spin_unlock(&pring_s4->ring_lock);
11712 			spin_unlock(&lpfc_cmd->buf_lock);
11713 			continue;
11714 		}
11715 
11716 		/* issue ABTS for this IOCB based on iotag */
11717 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11718 		if (!abtsiocbq) {
11719 			if (phba->sli_rev == LPFC_SLI_REV4)
11720 				spin_unlock(&pring_s4->ring_lock);
11721 			spin_unlock(&lpfc_cmd->buf_lock);
11722 			continue;
11723 		}
11724 
11725 		icmd = &iocbq->iocb;
11726 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11727 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11728 		if (phba->sli_rev == LPFC_SLI_REV4)
11729 			abtsiocbq->iocb.un.acxri.abortIoTag =
11730 							 iocbq->sli4_xritag;
11731 		else
11732 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11733 		abtsiocbq->iocb.ulpLe = 1;
11734 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11735 		abtsiocbq->vport = vport;
11736 
11737 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11738 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11739 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11740 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11741 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11742 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11743 
11744 		ndlp = lpfc_cmd->rdata->pnode;
11745 
11746 		if (lpfc_is_link_up(phba) &&
11747 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11748 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11749 		else
11750 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11751 
11752 		/* Setup callback routine and issue the command. */
11753 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11754 
11755 		/*
11756 		 * Indicate the IO is being aborted by the driver and set
11757 		 * the caller's flag into the aborted IO.
11758 		 */
11759 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11760 
11761 		if (phba->sli_rev == LPFC_SLI_REV4) {
11762 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11763 							abtsiocbq, 0);
11764 			spin_unlock(&pring_s4->ring_lock);
11765 		} else {
11766 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11767 							abtsiocbq, 0);
11768 		}
11769 
11770 		spin_unlock(&lpfc_cmd->buf_lock);
11771 
11772 		if (ret_val == IOCB_ERROR)
11773 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11774 		else
11775 			sum++;
11776 	}
11777 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11778 	return sum;
11779 }
11780 
11781 /**
11782  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11783  * @phba: Pointer to HBA context object.
11784  * @cmdiocbq: Pointer to command iocb.
11785  * @rspiocbq: Pointer to response iocb.
11786  *
11787  * This function is the completion handler for iocbs issued using
11788  * lpfc_sli_issue_iocb_wait function. This function is called by the
11789  * ring event handler function without any lock held. This function
11790  * can be called from both worker thread context and interrupt
11791  * context. This function also can be called from other thread which
11792  * cleans up the SLI layer objects.
11793  * This function copy the contents of the response iocb to the
11794  * response iocb memory object provided by the caller of
11795  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11796  * sleeps for the iocb completion.
11797  **/
11798 static void
11799 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11800 			struct lpfc_iocbq *cmdiocbq,
11801 			struct lpfc_iocbq *rspiocbq)
11802 {
11803 	wait_queue_head_t *pdone_q;
11804 	unsigned long iflags;
11805 	struct lpfc_io_buf *lpfc_cmd;
11806 
11807 	spin_lock_irqsave(&phba->hbalock, iflags);
11808 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11809 
11810 		/*
11811 		 * A time out has occurred for the iocb.  If a time out
11812 		 * completion handler has been supplied, call it.  Otherwise,
11813 		 * just free the iocbq.
11814 		 */
11815 
11816 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11817 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11818 		cmdiocbq->wait_iocb_cmpl = NULL;
11819 		if (cmdiocbq->iocb_cmpl)
11820 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11821 		else
11822 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11823 		return;
11824 	}
11825 
11826 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11827 	if (cmdiocbq->context2 && rspiocbq)
11828 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11829 		       &rspiocbq->iocb, sizeof(IOCB_t));
11830 
11831 	/* Set the exchange busy flag for task management commands */
11832 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11833 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11834 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11835 			cur_iocbq);
11836 		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
11837 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
11838 		else
11839 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
11840 	}
11841 
11842 	pdone_q = cmdiocbq->context_un.wait_queue;
11843 	if (pdone_q)
11844 		wake_up(pdone_q);
11845 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11846 	return;
11847 }
11848 
11849 /**
11850  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11851  * @phba: Pointer to HBA context object..
11852  * @piocbq: Pointer to command iocb.
11853  * @flag: Flag to test.
11854  *
11855  * This routine grabs the hbalock and then test the iocb_flag to
11856  * see if the passed in flag is set.
11857  * Returns:
11858  * 1 if flag is set.
11859  * 0 if flag is not set.
11860  **/
11861 static int
11862 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11863 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11864 {
11865 	unsigned long iflags;
11866 	int ret;
11867 
11868 	spin_lock_irqsave(&phba->hbalock, iflags);
11869 	ret = piocbq->iocb_flag & flag;
11870 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11871 	return ret;
11872 
11873 }
11874 
11875 /**
11876  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11877  * @phba: Pointer to HBA context object..
11878  * @pring: Pointer to sli ring.
11879  * @piocb: Pointer to command iocb.
11880  * @prspiocbq: Pointer to response iocb.
11881  * @timeout: Timeout in number of seconds.
11882  *
11883  * This function issues the iocb to firmware and waits for the
11884  * iocb to complete. The iocb_cmpl field of the shall be used
11885  * to handle iocbs which time out. If the field is NULL, the
11886  * function shall free the iocbq structure.  If more clean up is
11887  * needed, the caller is expected to provide a completion function
11888  * that will provide the needed clean up.  If the iocb command is
11889  * not completed within timeout seconds, the function will either
11890  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11891  * completion function set in the iocb_cmpl field and then return
11892  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11893  * resources if this function returns IOCB_TIMEDOUT.
11894  * The function waits for the iocb completion using an
11895  * non-interruptible wait.
11896  * This function will sleep while waiting for iocb completion.
11897  * So, this function should not be called from any context which
11898  * does not allow sleeping. Due to the same reason, this function
11899  * cannot be called with interrupt disabled.
11900  * This function assumes that the iocb completions occur while
11901  * this function sleep. So, this function cannot be called from
11902  * the thread which process iocb completion for this ring.
11903  * This function clears the iocb_flag of the iocb object before
11904  * issuing the iocb and the iocb completion handler sets this
11905  * flag and wakes this thread when the iocb completes.
11906  * The contents of the response iocb will be copied to prspiocbq
11907  * by the completion handler when the command completes.
11908  * This function returns IOCB_SUCCESS when success.
11909  * This function is called with no lock held.
11910  **/
11911 int
11912 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11913 			 uint32_t ring_number,
11914 			 struct lpfc_iocbq *piocb,
11915 			 struct lpfc_iocbq *prspiocbq,
11916 			 uint32_t timeout)
11917 {
11918 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11919 	long timeleft, timeout_req = 0;
11920 	int retval = IOCB_SUCCESS;
11921 	uint32_t creg_val;
11922 	struct lpfc_iocbq *iocb;
11923 	int txq_cnt = 0;
11924 	int txcmplq_cnt = 0;
11925 	struct lpfc_sli_ring *pring;
11926 	unsigned long iflags;
11927 	bool iocb_completed = true;
11928 
11929 	if (phba->sli_rev >= LPFC_SLI_REV4)
11930 		pring = lpfc_sli4_calc_ring(phba, piocb);
11931 	else
11932 		pring = &phba->sli.sli3_ring[ring_number];
11933 	/*
11934 	 * If the caller has provided a response iocbq buffer, then context2
11935 	 * is NULL or its an error.
11936 	 */
11937 	if (prspiocbq) {
11938 		if (piocb->context2)
11939 			return IOCB_ERROR;
11940 		piocb->context2 = prspiocbq;
11941 	}
11942 
11943 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11944 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11945 	piocb->context_un.wait_queue = &done_q;
11946 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11947 
11948 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11949 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11950 			return IOCB_ERROR;
11951 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11952 		writel(creg_val, phba->HCregaddr);
11953 		readl(phba->HCregaddr); /* flush */
11954 	}
11955 
11956 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11957 				     SLI_IOCB_RET_IOCB);
11958 	if (retval == IOCB_SUCCESS) {
11959 		timeout_req = msecs_to_jiffies(timeout * 1000);
11960 		timeleft = wait_event_timeout(done_q,
11961 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11962 				timeout_req);
11963 		spin_lock_irqsave(&phba->hbalock, iflags);
11964 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11965 
11966 			/*
11967 			 * IOCB timed out.  Inform the wake iocb wait
11968 			 * completion function and set local status
11969 			 */
11970 
11971 			iocb_completed = false;
11972 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11973 		}
11974 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11975 		if (iocb_completed) {
11976 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11977 					"0331 IOCB wake signaled\n");
11978 			/* Note: we are not indicating if the IOCB has a success
11979 			 * status or not - that's for the caller to check.
11980 			 * IOCB_SUCCESS means just that the command was sent and
11981 			 * completed. Not that it completed successfully.
11982 			 * */
11983 		} else if (timeleft == 0) {
11984 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11985 					"0338 IOCB wait timeout error - no "
11986 					"wake response Data x%x\n", timeout);
11987 			retval = IOCB_TIMEDOUT;
11988 		} else {
11989 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11990 					"0330 IOCB wake NOT set, "
11991 					"Data x%x x%lx\n",
11992 					timeout, (timeleft / jiffies));
11993 			retval = IOCB_TIMEDOUT;
11994 		}
11995 	} else if (retval == IOCB_BUSY) {
11996 		if (phba->cfg_log_verbose & LOG_SLI) {
11997 			list_for_each_entry(iocb, &pring->txq, list) {
11998 				txq_cnt++;
11999 			}
12000 			list_for_each_entry(iocb, &pring->txcmplq, list) {
12001 				txcmplq_cnt++;
12002 			}
12003 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12004 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12005 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12006 		}
12007 		return retval;
12008 	} else {
12009 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12010 				"0332 IOCB wait issue failed, Data x%x\n",
12011 				retval);
12012 		retval = IOCB_ERROR;
12013 	}
12014 
12015 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12016 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12017 			return IOCB_ERROR;
12018 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12019 		writel(creg_val, phba->HCregaddr);
12020 		readl(phba->HCregaddr); /* flush */
12021 	}
12022 
12023 	if (prspiocbq)
12024 		piocb->context2 = NULL;
12025 
12026 	piocb->context_un.wait_queue = NULL;
12027 	piocb->iocb_cmpl = NULL;
12028 	return retval;
12029 }
12030 
12031 /**
12032  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12033  * @phba: Pointer to HBA context object.
12034  * @pmboxq: Pointer to driver mailbox object.
12035  * @timeout: Timeout in number of seconds.
12036  *
12037  * This function issues the mailbox to firmware and waits for the
12038  * mailbox command to complete. If the mailbox command is not
12039  * completed within timeout seconds, it returns MBX_TIMEOUT.
12040  * The function waits for the mailbox completion using an
12041  * interruptible wait. If the thread is woken up due to a
12042  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12043  * should not free the mailbox resources, if this function returns
12044  * MBX_TIMEOUT.
12045  * This function will sleep while waiting for mailbox completion.
12046  * So, this function should not be called from any context which
12047  * does not allow sleeping. Due to the same reason, this function
12048  * cannot be called with interrupt disabled.
12049  * This function assumes that the mailbox completion occurs while
12050  * this function sleep. So, this function cannot be called from
12051  * the worker thread which processes mailbox completion.
12052  * This function is called in the context of HBA management
12053  * applications.
12054  * This function returns MBX_SUCCESS when successful.
12055  * This function is called with no lock held.
12056  **/
12057 int
12058 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12059 			 uint32_t timeout)
12060 {
12061 	struct completion mbox_done;
12062 	int retval;
12063 	unsigned long flag;
12064 
12065 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12066 	/* setup wake call as IOCB callback */
12067 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12068 
12069 	/* setup context3 field to pass wait_queue pointer to wake function  */
12070 	init_completion(&mbox_done);
12071 	pmboxq->context3 = &mbox_done;
12072 	/* now issue the command */
12073 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12074 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12075 		wait_for_completion_timeout(&mbox_done,
12076 					    msecs_to_jiffies(timeout * 1000));
12077 
12078 		spin_lock_irqsave(&phba->hbalock, flag);
12079 		pmboxq->context3 = NULL;
12080 		/*
12081 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12082 		 * else do not free the resources.
12083 		 */
12084 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12085 			retval = MBX_SUCCESS;
12086 		} else {
12087 			retval = MBX_TIMEOUT;
12088 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12089 		}
12090 		spin_unlock_irqrestore(&phba->hbalock, flag);
12091 	}
12092 	return retval;
12093 }
12094 
12095 /**
12096  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12097  * @phba: Pointer to HBA context.
12098  *
12099  * This function is called to shutdown the driver's mailbox sub-system.
12100  * It first marks the mailbox sub-system is in a block state to prevent
12101  * the asynchronous mailbox command from issued off the pending mailbox
12102  * command queue. If the mailbox command sub-system shutdown is due to
12103  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12104  * the mailbox sub-system flush routine to forcefully bring down the
12105  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12106  * as with offline or HBA function reset), this routine will wait for the
12107  * outstanding mailbox command to complete before invoking the mailbox
12108  * sub-system flush routine to gracefully bring down mailbox sub-system.
12109  **/
12110 void
12111 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12112 {
12113 	struct lpfc_sli *psli = &phba->sli;
12114 	unsigned long timeout;
12115 
12116 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12117 		/* delay 100ms for port state */
12118 		msleep(100);
12119 		lpfc_sli_mbox_sys_flush(phba);
12120 		return;
12121 	}
12122 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12123 
12124 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12125 	local_bh_disable();
12126 
12127 	spin_lock_irq(&phba->hbalock);
12128 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12129 
12130 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12131 		/* Determine how long we might wait for the active mailbox
12132 		 * command to be gracefully completed by firmware.
12133 		 */
12134 		if (phba->sli.mbox_active)
12135 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12136 						phba->sli.mbox_active) *
12137 						1000) + jiffies;
12138 		spin_unlock_irq(&phba->hbalock);
12139 
12140 		/* Enable softirqs again, done with phba->hbalock */
12141 		local_bh_enable();
12142 
12143 		while (phba->sli.mbox_active) {
12144 			/* Check active mailbox complete status every 2ms */
12145 			msleep(2);
12146 			if (time_after(jiffies, timeout))
12147 				/* Timeout, let the mailbox flush routine to
12148 				 * forcefully release active mailbox command
12149 				 */
12150 				break;
12151 		}
12152 	} else {
12153 		spin_unlock_irq(&phba->hbalock);
12154 
12155 		/* Enable softirqs again, done with phba->hbalock */
12156 		local_bh_enable();
12157 	}
12158 
12159 	lpfc_sli_mbox_sys_flush(phba);
12160 }
12161 
12162 /**
12163  * lpfc_sli_eratt_read - read sli-3 error attention events
12164  * @phba: Pointer to HBA context.
12165  *
12166  * This function is called to read the SLI3 device error attention registers
12167  * for possible error attention events. The caller must hold the hostlock
12168  * with spin_lock_irq().
12169  *
12170  * This function returns 1 when there is Error Attention in the Host Attention
12171  * Register and returns 0 otherwise.
12172  **/
12173 static int
12174 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12175 {
12176 	uint32_t ha_copy;
12177 
12178 	/* Read chip Host Attention (HA) register */
12179 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12180 		goto unplug_err;
12181 
12182 	if (ha_copy & HA_ERATT) {
12183 		/* Read host status register to retrieve error event */
12184 		if (lpfc_sli_read_hs(phba))
12185 			goto unplug_err;
12186 
12187 		/* Check if there is a deferred error condition is active */
12188 		if ((HS_FFER1 & phba->work_hs) &&
12189 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12190 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12191 			phba->hba_flag |= DEFER_ERATT;
12192 			/* Clear all interrupt enable conditions */
12193 			writel(0, phba->HCregaddr);
12194 			readl(phba->HCregaddr);
12195 		}
12196 
12197 		/* Set the driver HA work bitmap */
12198 		phba->work_ha |= HA_ERATT;
12199 		/* Indicate polling handles this ERATT */
12200 		phba->hba_flag |= HBA_ERATT_HANDLED;
12201 		return 1;
12202 	}
12203 	return 0;
12204 
12205 unplug_err:
12206 	/* Set the driver HS work bitmap */
12207 	phba->work_hs |= UNPLUG_ERR;
12208 	/* Set the driver HA work bitmap */
12209 	phba->work_ha |= HA_ERATT;
12210 	/* Indicate polling handles this ERATT */
12211 	phba->hba_flag |= HBA_ERATT_HANDLED;
12212 	return 1;
12213 }
12214 
12215 /**
12216  * lpfc_sli4_eratt_read - read sli-4 error attention events
12217  * @phba: Pointer to HBA context.
12218  *
12219  * This function is called to read the SLI4 device error attention registers
12220  * for possible error attention events. The caller must hold the hostlock
12221  * with spin_lock_irq().
12222  *
12223  * This function returns 1 when there is Error Attention in the Host Attention
12224  * Register and returns 0 otherwise.
12225  **/
12226 static int
12227 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12228 {
12229 	uint32_t uerr_sta_hi, uerr_sta_lo;
12230 	uint32_t if_type, portsmphr;
12231 	struct lpfc_register portstat_reg;
12232 
12233 	/*
12234 	 * For now, use the SLI4 device internal unrecoverable error
12235 	 * registers for error attention. This can be changed later.
12236 	 */
12237 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12238 	switch (if_type) {
12239 	case LPFC_SLI_INTF_IF_TYPE_0:
12240 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12241 			&uerr_sta_lo) ||
12242 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12243 			&uerr_sta_hi)) {
12244 			phba->work_hs |= UNPLUG_ERR;
12245 			phba->work_ha |= HA_ERATT;
12246 			phba->hba_flag |= HBA_ERATT_HANDLED;
12247 			return 1;
12248 		}
12249 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12250 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12251 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12252 					"1423 HBA Unrecoverable error: "
12253 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12254 					"ue_mask_lo_reg=0x%x, "
12255 					"ue_mask_hi_reg=0x%x\n",
12256 					uerr_sta_lo, uerr_sta_hi,
12257 					phba->sli4_hba.ue_mask_lo,
12258 					phba->sli4_hba.ue_mask_hi);
12259 			phba->work_status[0] = uerr_sta_lo;
12260 			phba->work_status[1] = uerr_sta_hi;
12261 			phba->work_ha |= HA_ERATT;
12262 			phba->hba_flag |= HBA_ERATT_HANDLED;
12263 			return 1;
12264 		}
12265 		break;
12266 	case LPFC_SLI_INTF_IF_TYPE_2:
12267 	case LPFC_SLI_INTF_IF_TYPE_6:
12268 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12269 			&portstat_reg.word0) ||
12270 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12271 			&portsmphr)){
12272 			phba->work_hs |= UNPLUG_ERR;
12273 			phba->work_ha |= HA_ERATT;
12274 			phba->hba_flag |= HBA_ERATT_HANDLED;
12275 			return 1;
12276 		}
12277 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12278 			phba->work_status[0] =
12279 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12280 			phba->work_status[1] =
12281 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12282 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12283 					"2885 Port Status Event: "
12284 					"port status reg 0x%x, "
12285 					"port smphr reg 0x%x, "
12286 					"error 1=0x%x, error 2=0x%x\n",
12287 					portstat_reg.word0,
12288 					portsmphr,
12289 					phba->work_status[0],
12290 					phba->work_status[1]);
12291 			phba->work_ha |= HA_ERATT;
12292 			phba->hba_flag |= HBA_ERATT_HANDLED;
12293 			return 1;
12294 		}
12295 		break;
12296 	case LPFC_SLI_INTF_IF_TYPE_1:
12297 	default:
12298 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12299 				"2886 HBA Error Attention on unsupported "
12300 				"if type %d.", if_type);
12301 		return 1;
12302 	}
12303 
12304 	return 0;
12305 }
12306 
12307 /**
12308  * lpfc_sli_check_eratt - check error attention events
12309  * @phba: Pointer to HBA context.
12310  *
12311  * This function is called from timer soft interrupt context to check HBA's
12312  * error attention register bit for error attention events.
12313  *
12314  * This function returns 1 when there is Error Attention in the Host Attention
12315  * Register and returns 0 otherwise.
12316  **/
12317 int
12318 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12319 {
12320 	uint32_t ha_copy;
12321 
12322 	/* If somebody is waiting to handle an eratt, don't process it
12323 	 * here. The brdkill function will do this.
12324 	 */
12325 	if (phba->link_flag & LS_IGNORE_ERATT)
12326 		return 0;
12327 
12328 	/* Check if interrupt handler handles this ERATT */
12329 	spin_lock_irq(&phba->hbalock);
12330 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12331 		/* Interrupt handler has handled ERATT */
12332 		spin_unlock_irq(&phba->hbalock);
12333 		return 0;
12334 	}
12335 
12336 	/*
12337 	 * If there is deferred error attention, do not check for error
12338 	 * attention
12339 	 */
12340 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12341 		spin_unlock_irq(&phba->hbalock);
12342 		return 0;
12343 	}
12344 
12345 	/* If PCI channel is offline, don't process it */
12346 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12347 		spin_unlock_irq(&phba->hbalock);
12348 		return 0;
12349 	}
12350 
12351 	switch (phba->sli_rev) {
12352 	case LPFC_SLI_REV2:
12353 	case LPFC_SLI_REV3:
12354 		/* Read chip Host Attention (HA) register */
12355 		ha_copy = lpfc_sli_eratt_read(phba);
12356 		break;
12357 	case LPFC_SLI_REV4:
12358 		/* Read device Uncoverable Error (UERR) registers */
12359 		ha_copy = lpfc_sli4_eratt_read(phba);
12360 		break;
12361 	default:
12362 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12363 				"0299 Invalid SLI revision (%d)\n",
12364 				phba->sli_rev);
12365 		ha_copy = 0;
12366 		break;
12367 	}
12368 	spin_unlock_irq(&phba->hbalock);
12369 
12370 	return ha_copy;
12371 }
12372 
12373 /**
12374  * lpfc_intr_state_check - Check device state for interrupt handling
12375  * @phba: Pointer to HBA context.
12376  *
12377  * This inline routine checks whether a device or its PCI slot is in a state
12378  * that the interrupt should be handled.
12379  *
12380  * This function returns 0 if the device or the PCI slot is in a state that
12381  * interrupt should be handled, otherwise -EIO.
12382  */
12383 static inline int
12384 lpfc_intr_state_check(struct lpfc_hba *phba)
12385 {
12386 	/* If the pci channel is offline, ignore all the interrupts */
12387 	if (unlikely(pci_channel_offline(phba->pcidev)))
12388 		return -EIO;
12389 
12390 	/* Update device level interrupt statistics */
12391 	phba->sli.slistat.sli_intr++;
12392 
12393 	/* Ignore all interrupts during initialization. */
12394 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12395 		return -EIO;
12396 
12397 	return 0;
12398 }
12399 
12400 /**
12401  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12402  * @irq: Interrupt number.
12403  * @dev_id: The device context pointer.
12404  *
12405  * This function is directly called from the PCI layer as an interrupt
12406  * service routine when device with SLI-3 interface spec is enabled with
12407  * MSI-X multi-message interrupt mode and there are slow-path events in
12408  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12409  * interrupt mode, this function is called as part of the device-level
12410  * interrupt handler. When the PCI slot is in error recovery or the HBA
12411  * is undergoing initialization, the interrupt handler will not process
12412  * the interrupt. The link attention and ELS ring attention events are
12413  * handled by the worker thread. The interrupt handler signals the worker
12414  * thread and returns for these events. This function is called without
12415  * any lock held. It gets the hbalock to access and update SLI data
12416  * structures.
12417  *
12418  * This function returns IRQ_HANDLED when interrupt is handled else it
12419  * returns IRQ_NONE.
12420  **/
12421 irqreturn_t
12422 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12423 {
12424 	struct lpfc_hba  *phba;
12425 	uint32_t ha_copy, hc_copy;
12426 	uint32_t work_ha_copy;
12427 	unsigned long status;
12428 	unsigned long iflag;
12429 	uint32_t control;
12430 
12431 	MAILBOX_t *mbox, *pmbox;
12432 	struct lpfc_vport *vport;
12433 	struct lpfc_nodelist *ndlp;
12434 	struct lpfc_dmabuf *mp;
12435 	LPFC_MBOXQ_t *pmb;
12436 	int rc;
12437 
12438 	/*
12439 	 * Get the driver's phba structure from the dev_id and
12440 	 * assume the HBA is not interrupting.
12441 	 */
12442 	phba = (struct lpfc_hba *)dev_id;
12443 
12444 	if (unlikely(!phba))
12445 		return IRQ_NONE;
12446 
12447 	/*
12448 	 * Stuff needs to be attented to when this function is invoked as an
12449 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12450 	 */
12451 	if (phba->intr_type == MSIX) {
12452 		/* Check device state for handling interrupt */
12453 		if (lpfc_intr_state_check(phba))
12454 			return IRQ_NONE;
12455 		/* Need to read HA REG for slow-path events */
12456 		spin_lock_irqsave(&phba->hbalock, iflag);
12457 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12458 			goto unplug_error;
12459 		/* If somebody is waiting to handle an eratt don't process it
12460 		 * here. The brdkill function will do this.
12461 		 */
12462 		if (phba->link_flag & LS_IGNORE_ERATT)
12463 			ha_copy &= ~HA_ERATT;
12464 		/* Check the need for handling ERATT in interrupt handler */
12465 		if (ha_copy & HA_ERATT) {
12466 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12467 				/* ERATT polling has handled ERATT */
12468 				ha_copy &= ~HA_ERATT;
12469 			else
12470 				/* Indicate interrupt handler handles ERATT */
12471 				phba->hba_flag |= HBA_ERATT_HANDLED;
12472 		}
12473 
12474 		/*
12475 		 * If there is deferred error attention, do not check for any
12476 		 * interrupt.
12477 		 */
12478 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12479 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12480 			return IRQ_NONE;
12481 		}
12482 
12483 		/* Clear up only attention source related to slow-path */
12484 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12485 			goto unplug_error;
12486 
12487 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12488 			HC_LAINT_ENA | HC_ERINT_ENA),
12489 			phba->HCregaddr);
12490 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12491 			phba->HAregaddr);
12492 		writel(hc_copy, phba->HCregaddr);
12493 		readl(phba->HAregaddr); /* flush */
12494 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12495 	} else
12496 		ha_copy = phba->ha_copy;
12497 
12498 	work_ha_copy = ha_copy & phba->work_ha_mask;
12499 
12500 	if (work_ha_copy) {
12501 		if (work_ha_copy & HA_LATT) {
12502 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12503 				/*
12504 				 * Turn off Link Attention interrupts
12505 				 * until CLEAR_LA done
12506 				 */
12507 				spin_lock_irqsave(&phba->hbalock, iflag);
12508 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12509 				if (lpfc_readl(phba->HCregaddr, &control))
12510 					goto unplug_error;
12511 				control &= ~HC_LAINT_ENA;
12512 				writel(control, phba->HCregaddr);
12513 				readl(phba->HCregaddr); /* flush */
12514 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12515 			}
12516 			else
12517 				work_ha_copy &= ~HA_LATT;
12518 		}
12519 
12520 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12521 			/*
12522 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12523 			 * the only slow ring.
12524 			 */
12525 			status = (work_ha_copy &
12526 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12527 			status >>= (4*LPFC_ELS_RING);
12528 			if (status & HA_RXMASK) {
12529 				spin_lock_irqsave(&phba->hbalock, iflag);
12530 				if (lpfc_readl(phba->HCregaddr, &control))
12531 					goto unplug_error;
12532 
12533 				lpfc_debugfs_slow_ring_trc(phba,
12534 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12535 				control, status,
12536 				(uint32_t)phba->sli.slistat.sli_intr);
12537 
12538 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12539 					lpfc_debugfs_slow_ring_trc(phba,
12540 						"ISR Disable ring:"
12541 						"pwork:x%x hawork:x%x wait:x%x",
12542 						phba->work_ha, work_ha_copy,
12543 						(uint32_t)((unsigned long)
12544 						&phba->work_waitq));
12545 
12546 					control &=
12547 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12548 					writel(control, phba->HCregaddr);
12549 					readl(phba->HCregaddr); /* flush */
12550 				}
12551 				else {
12552 					lpfc_debugfs_slow_ring_trc(phba,
12553 						"ISR slow ring:   pwork:"
12554 						"x%x hawork:x%x wait:x%x",
12555 						phba->work_ha, work_ha_copy,
12556 						(uint32_t)((unsigned long)
12557 						&phba->work_waitq));
12558 				}
12559 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12560 			}
12561 		}
12562 		spin_lock_irqsave(&phba->hbalock, iflag);
12563 		if (work_ha_copy & HA_ERATT) {
12564 			if (lpfc_sli_read_hs(phba))
12565 				goto unplug_error;
12566 			/*
12567 			 * Check if there is a deferred error condition
12568 			 * is active
12569 			 */
12570 			if ((HS_FFER1 & phba->work_hs) &&
12571 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12572 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12573 				  phba->work_hs)) {
12574 				phba->hba_flag |= DEFER_ERATT;
12575 				/* Clear all interrupt enable conditions */
12576 				writel(0, phba->HCregaddr);
12577 				readl(phba->HCregaddr);
12578 			}
12579 		}
12580 
12581 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12582 			pmb = phba->sli.mbox_active;
12583 			pmbox = &pmb->u.mb;
12584 			mbox = phba->mbox;
12585 			vport = pmb->vport;
12586 
12587 			/* First check out the status word */
12588 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12589 			if (pmbox->mbxOwner != OWN_HOST) {
12590 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12591 				/*
12592 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12593 				 * mbxStatus <status>
12594 				 */
12595 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12596 						LOG_SLI,
12597 						"(%d):0304 Stray Mailbox "
12598 						"Interrupt mbxCommand x%x "
12599 						"mbxStatus x%x\n",
12600 						(vport ? vport->vpi : 0),
12601 						pmbox->mbxCommand,
12602 						pmbox->mbxStatus);
12603 				/* clear mailbox attention bit */
12604 				work_ha_copy &= ~HA_MBATT;
12605 			} else {
12606 				phba->sli.mbox_active = NULL;
12607 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12608 				phba->last_completion_time = jiffies;
12609 				del_timer(&phba->sli.mbox_tmo);
12610 				if (pmb->mbox_cmpl) {
12611 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12612 							MAILBOX_CMD_SIZE);
12613 					if (pmb->out_ext_byte_len &&
12614 						pmb->ctx_buf)
12615 						lpfc_sli_pcimem_bcopy(
12616 						phba->mbox_ext,
12617 						pmb->ctx_buf,
12618 						pmb->out_ext_byte_len);
12619 				}
12620 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12621 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12622 
12623 					lpfc_debugfs_disc_trc(vport,
12624 						LPFC_DISC_TRC_MBOX_VPORT,
12625 						"MBOX dflt rpi: : "
12626 						"status:x%x rpi:x%x",
12627 						(uint32_t)pmbox->mbxStatus,
12628 						pmbox->un.varWords[0], 0);
12629 
12630 					if (!pmbox->mbxStatus) {
12631 						mp = (struct lpfc_dmabuf *)
12632 							(pmb->ctx_buf);
12633 						ndlp = (struct lpfc_nodelist *)
12634 							pmb->ctx_ndlp;
12635 
12636 						/* Reg_LOGIN of dflt RPI was
12637 						 * successful. new lets get
12638 						 * rid of the RPI using the
12639 						 * same mbox buffer.
12640 						 */
12641 						lpfc_unreg_login(phba,
12642 							vport->vpi,
12643 							pmbox->un.varWords[0],
12644 							pmb);
12645 						pmb->mbox_cmpl =
12646 							lpfc_mbx_cmpl_dflt_rpi;
12647 						pmb->ctx_buf = mp;
12648 						pmb->ctx_ndlp = ndlp;
12649 						pmb->vport = vport;
12650 						rc = lpfc_sli_issue_mbox(phba,
12651 								pmb,
12652 								MBX_NOWAIT);
12653 						if (rc != MBX_BUSY)
12654 							lpfc_printf_log(phba,
12655 							KERN_ERR,
12656 							LOG_MBOX | LOG_SLI,
12657 							"0350 rc should have"
12658 							"been MBX_BUSY\n");
12659 						if (rc != MBX_NOT_FINISHED)
12660 							goto send_current_mbox;
12661 					}
12662 				}
12663 				spin_lock_irqsave(
12664 						&phba->pport->work_port_lock,
12665 						iflag);
12666 				phba->pport->work_port_events &=
12667 					~WORKER_MBOX_TMO;
12668 				spin_unlock_irqrestore(
12669 						&phba->pport->work_port_lock,
12670 						iflag);
12671 				lpfc_mbox_cmpl_put(phba, pmb);
12672 			}
12673 		} else
12674 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12675 
12676 		if ((work_ha_copy & HA_MBATT) &&
12677 		    (phba->sli.mbox_active == NULL)) {
12678 send_current_mbox:
12679 			/* Process next mailbox command if there is one */
12680 			do {
12681 				rc = lpfc_sli_issue_mbox(phba, NULL,
12682 							 MBX_NOWAIT);
12683 			} while (rc == MBX_NOT_FINISHED);
12684 			if (rc != MBX_SUCCESS)
12685 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12686 						LOG_SLI, "0349 rc should be "
12687 						"MBX_SUCCESS\n");
12688 		}
12689 
12690 		spin_lock_irqsave(&phba->hbalock, iflag);
12691 		phba->work_ha |= work_ha_copy;
12692 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12693 		lpfc_worker_wake_up(phba);
12694 	}
12695 	return IRQ_HANDLED;
12696 unplug_error:
12697 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12698 	return IRQ_HANDLED;
12699 
12700 } /* lpfc_sli_sp_intr_handler */
12701 
12702 /**
12703  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12704  * @irq: Interrupt number.
12705  * @dev_id: The device context pointer.
12706  *
12707  * This function is directly called from the PCI layer as an interrupt
12708  * service routine when device with SLI-3 interface spec is enabled with
12709  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12710  * ring event in the HBA. However, when the device is enabled with either
12711  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12712  * device-level interrupt handler. When the PCI slot is in error recovery
12713  * or the HBA is undergoing initialization, the interrupt handler will not
12714  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12715  * the intrrupt context. This function is called without any lock held.
12716  * It gets the hbalock to access and update SLI data structures.
12717  *
12718  * This function returns IRQ_HANDLED when interrupt is handled else it
12719  * returns IRQ_NONE.
12720  **/
12721 irqreturn_t
12722 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12723 {
12724 	struct lpfc_hba  *phba;
12725 	uint32_t ha_copy;
12726 	unsigned long status;
12727 	unsigned long iflag;
12728 	struct lpfc_sli_ring *pring;
12729 
12730 	/* Get the driver's phba structure from the dev_id and
12731 	 * assume the HBA is not interrupting.
12732 	 */
12733 	phba = (struct lpfc_hba *) dev_id;
12734 
12735 	if (unlikely(!phba))
12736 		return IRQ_NONE;
12737 
12738 	/*
12739 	 * Stuff needs to be attented to when this function is invoked as an
12740 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12741 	 */
12742 	if (phba->intr_type == MSIX) {
12743 		/* Check device state for handling interrupt */
12744 		if (lpfc_intr_state_check(phba))
12745 			return IRQ_NONE;
12746 		/* Need to read HA REG for FCP ring and other ring events */
12747 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12748 			return IRQ_HANDLED;
12749 		/* Clear up only attention source related to fast-path */
12750 		spin_lock_irqsave(&phba->hbalock, iflag);
12751 		/*
12752 		 * If there is deferred error attention, do not check for
12753 		 * any interrupt.
12754 		 */
12755 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12756 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12757 			return IRQ_NONE;
12758 		}
12759 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12760 			phba->HAregaddr);
12761 		readl(phba->HAregaddr); /* flush */
12762 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12763 	} else
12764 		ha_copy = phba->ha_copy;
12765 
12766 	/*
12767 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12768 	 */
12769 	ha_copy &= ~(phba->work_ha_mask);
12770 
12771 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12772 	status >>= (4*LPFC_FCP_RING);
12773 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12774 	if (status & HA_RXMASK)
12775 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12776 
12777 	if (phba->cfg_multi_ring_support == 2) {
12778 		/*
12779 		 * Process all events on extra ring. Take the optimized path
12780 		 * for extra ring IO.
12781 		 */
12782 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12783 		status >>= (4*LPFC_EXTRA_RING);
12784 		if (status & HA_RXMASK) {
12785 			lpfc_sli_handle_fast_ring_event(phba,
12786 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12787 					status);
12788 		}
12789 	}
12790 	return IRQ_HANDLED;
12791 }  /* lpfc_sli_fp_intr_handler */
12792 
12793 /**
12794  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12795  * @irq: Interrupt number.
12796  * @dev_id: The device context pointer.
12797  *
12798  * This function is the HBA device-level interrupt handler to device with
12799  * SLI-3 interface spec, called from the PCI layer when either MSI or
12800  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12801  * requires driver attention. This function invokes the slow-path interrupt
12802  * attention handling function and fast-path interrupt attention handling
12803  * function in turn to process the relevant HBA attention events. This
12804  * function is called without any lock held. It gets the hbalock to access
12805  * and update SLI data structures.
12806  *
12807  * This function returns IRQ_HANDLED when interrupt is handled, else it
12808  * returns IRQ_NONE.
12809  **/
12810 irqreturn_t
12811 lpfc_sli_intr_handler(int irq, void *dev_id)
12812 {
12813 	struct lpfc_hba  *phba;
12814 	irqreturn_t sp_irq_rc, fp_irq_rc;
12815 	unsigned long status1, status2;
12816 	uint32_t hc_copy;
12817 
12818 	/*
12819 	 * Get the driver's phba structure from the dev_id and
12820 	 * assume the HBA is not interrupting.
12821 	 */
12822 	phba = (struct lpfc_hba *) dev_id;
12823 
12824 	if (unlikely(!phba))
12825 		return IRQ_NONE;
12826 
12827 	/* Check device state for handling interrupt */
12828 	if (lpfc_intr_state_check(phba))
12829 		return IRQ_NONE;
12830 
12831 	spin_lock(&phba->hbalock);
12832 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12833 		spin_unlock(&phba->hbalock);
12834 		return IRQ_HANDLED;
12835 	}
12836 
12837 	if (unlikely(!phba->ha_copy)) {
12838 		spin_unlock(&phba->hbalock);
12839 		return IRQ_NONE;
12840 	} else if (phba->ha_copy & HA_ERATT) {
12841 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12842 			/* ERATT polling has handled ERATT */
12843 			phba->ha_copy &= ~HA_ERATT;
12844 		else
12845 			/* Indicate interrupt handler handles ERATT */
12846 			phba->hba_flag |= HBA_ERATT_HANDLED;
12847 	}
12848 
12849 	/*
12850 	 * If there is deferred error attention, do not check for any interrupt.
12851 	 */
12852 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12853 		spin_unlock(&phba->hbalock);
12854 		return IRQ_NONE;
12855 	}
12856 
12857 	/* Clear attention sources except link and error attentions */
12858 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12859 		spin_unlock(&phba->hbalock);
12860 		return IRQ_HANDLED;
12861 	}
12862 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12863 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12864 		phba->HCregaddr);
12865 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12866 	writel(hc_copy, phba->HCregaddr);
12867 	readl(phba->HAregaddr); /* flush */
12868 	spin_unlock(&phba->hbalock);
12869 
12870 	/*
12871 	 * Invokes slow-path host attention interrupt handling as appropriate.
12872 	 */
12873 
12874 	/* status of events with mailbox and link attention */
12875 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12876 
12877 	/* status of events with ELS ring */
12878 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12879 	status2 >>= (4*LPFC_ELS_RING);
12880 
12881 	if (status1 || (status2 & HA_RXMASK))
12882 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12883 	else
12884 		sp_irq_rc = IRQ_NONE;
12885 
12886 	/*
12887 	 * Invoke fast-path host attention interrupt handling as appropriate.
12888 	 */
12889 
12890 	/* status of events with FCP ring */
12891 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12892 	status1 >>= (4*LPFC_FCP_RING);
12893 
12894 	/* status of events with extra ring */
12895 	if (phba->cfg_multi_ring_support == 2) {
12896 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12897 		status2 >>= (4*LPFC_EXTRA_RING);
12898 	} else
12899 		status2 = 0;
12900 
12901 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12902 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12903 	else
12904 		fp_irq_rc = IRQ_NONE;
12905 
12906 	/* Return device-level interrupt handling status */
12907 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12908 }  /* lpfc_sli_intr_handler */
12909 
12910 /**
12911  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12912  * @phba: pointer to lpfc hba data structure.
12913  *
12914  * This routine is invoked by the worker thread to process all the pending
12915  * SLI4 els abort xri events.
12916  **/
12917 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12918 {
12919 	struct lpfc_cq_event *cq_event;
12920 
12921 	/* First, declare the els xri abort event has been handled */
12922 	spin_lock_irq(&phba->hbalock);
12923 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12924 	spin_unlock_irq(&phba->hbalock);
12925 	/* Now, handle all the els xri abort events */
12926 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12927 		/* Get the first event from the head of the event queue */
12928 		spin_lock_irq(&phba->hbalock);
12929 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12930 				 cq_event, struct lpfc_cq_event, list);
12931 		spin_unlock_irq(&phba->hbalock);
12932 		/* Notify aborted XRI for ELS work queue */
12933 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12934 		/* Free the event processed back to the free pool */
12935 		lpfc_sli4_cq_event_release(phba, cq_event);
12936 	}
12937 }
12938 
12939 /**
12940  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12941  * @phba: pointer to lpfc hba data structure
12942  * @pIocbIn: pointer to the rspiocbq
12943  * @pIocbOut: pointer to the cmdiocbq
12944  * @wcqe: pointer to the complete wcqe
12945  *
12946  * This routine transfers the fields of a command iocbq to a response iocbq
12947  * by copying all the IOCB fields from command iocbq and transferring the
12948  * completion status information from the complete wcqe.
12949  **/
12950 static void
12951 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12952 			      struct lpfc_iocbq *pIocbIn,
12953 			      struct lpfc_iocbq *pIocbOut,
12954 			      struct lpfc_wcqe_complete *wcqe)
12955 {
12956 	int numBdes, i;
12957 	unsigned long iflags;
12958 	uint32_t status, max_response;
12959 	struct lpfc_dmabuf *dmabuf;
12960 	struct ulp_bde64 *bpl, bde;
12961 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12962 
12963 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12964 	       sizeof(struct lpfc_iocbq) - offset);
12965 	/* Map WCQE parameters into irspiocb parameters */
12966 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12967 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12968 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12969 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12970 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12971 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12972 					wcqe->total_data_placed;
12973 		else
12974 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12975 	else {
12976 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12977 		switch (pIocbOut->iocb.ulpCommand) {
12978 		case CMD_ELS_REQUEST64_CR:
12979 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12980 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12981 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12982 			max_response = bde.tus.f.bdeSize;
12983 			break;
12984 		case CMD_GEN_REQUEST64_CR:
12985 			max_response = 0;
12986 			if (!pIocbOut->context3)
12987 				break;
12988 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12989 					sizeof(struct ulp_bde64);
12990 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12991 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12992 			for (i = 0; i < numBdes; i++) {
12993 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12994 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12995 					max_response += bde.tus.f.bdeSize;
12996 			}
12997 			break;
12998 		default:
12999 			max_response = wcqe->total_data_placed;
13000 			break;
13001 		}
13002 		if (max_response < wcqe->total_data_placed)
13003 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13004 		else
13005 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13006 				wcqe->total_data_placed;
13007 	}
13008 
13009 	/* Convert BG errors for completion status */
13010 	if (status == CQE_STATUS_DI_ERROR) {
13011 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13012 
13013 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13014 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13015 		else
13016 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13017 
13018 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13019 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13020 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13021 				BGS_GUARD_ERR_MASK;
13022 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13023 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13024 				BGS_APPTAG_ERR_MASK;
13025 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13026 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13027 				BGS_REFTAG_ERR_MASK;
13028 
13029 		/* Check to see if there was any good data before the error */
13030 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13031 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13032 				BGS_HI_WATER_MARK_PRESENT_MASK;
13033 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13034 				wcqe->total_data_placed;
13035 		}
13036 
13037 		/*
13038 		* Set ALL the error bits to indicate we don't know what
13039 		* type of error it is.
13040 		*/
13041 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13042 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13043 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13044 				BGS_GUARD_ERR_MASK);
13045 	}
13046 
13047 	/* Pick up HBA exchange busy condition */
13048 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13049 		spin_lock_irqsave(&phba->hbalock, iflags);
13050 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13051 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13052 	}
13053 }
13054 
13055 /**
13056  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13057  * @phba: Pointer to HBA context object.
13058  * @wcqe: Pointer to work-queue completion queue entry.
13059  *
13060  * This routine handles an ELS work-queue completion event and construct
13061  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13062  * discovery engine to handle.
13063  *
13064  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13065  **/
13066 static struct lpfc_iocbq *
13067 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13068 			       struct lpfc_iocbq *irspiocbq)
13069 {
13070 	struct lpfc_sli_ring *pring;
13071 	struct lpfc_iocbq *cmdiocbq;
13072 	struct lpfc_wcqe_complete *wcqe;
13073 	unsigned long iflags;
13074 
13075 	pring = lpfc_phba_elsring(phba);
13076 	if (unlikely(!pring))
13077 		return NULL;
13078 
13079 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13080 	pring->stats.iocb_event++;
13081 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13082 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13083 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13084 	if (unlikely(!cmdiocbq)) {
13085 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13086 				"0386 ELS complete with no corresponding "
13087 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13088 				wcqe->word0, wcqe->total_data_placed,
13089 				wcqe->parameter, wcqe->word3);
13090 		lpfc_sli_release_iocbq(phba, irspiocbq);
13091 		return NULL;
13092 	}
13093 
13094 	spin_lock_irqsave(&pring->ring_lock, iflags);
13095 	/* Put the iocb back on the txcmplq */
13096 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13097 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13098 
13099 	/* Fake the irspiocbq and copy necessary response information */
13100 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13101 
13102 	return irspiocbq;
13103 }
13104 
13105 inline struct lpfc_cq_event *
13106 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13107 {
13108 	struct lpfc_cq_event *cq_event;
13109 
13110 	/* Allocate a new internal CQ_EVENT entry */
13111 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13112 	if (!cq_event) {
13113 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13114 				"0602 Failed to alloc CQ_EVENT entry\n");
13115 		return NULL;
13116 	}
13117 
13118 	/* Move the CQE into the event */
13119 	memcpy(&cq_event->cqe, entry, size);
13120 	return cq_event;
13121 }
13122 
13123 /**
13124  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13125  * @phba: Pointer to HBA context object.
13126  * @cqe: Pointer to mailbox completion queue entry.
13127  *
13128  * This routine process a mailbox completion queue entry with asynchronous
13129  * event.
13130  *
13131  * Return: true if work posted to worker thread, otherwise false.
13132  **/
13133 static bool
13134 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13135 {
13136 	struct lpfc_cq_event *cq_event;
13137 	unsigned long iflags;
13138 
13139 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13140 			"0392 Async Event: word0:x%x, word1:x%x, "
13141 			"word2:x%x, word3:x%x\n", mcqe->word0,
13142 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13143 
13144 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13145 	if (!cq_event)
13146 		return false;
13147 	spin_lock_irqsave(&phba->hbalock, iflags);
13148 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13149 	/* Set the async event flag */
13150 	phba->hba_flag |= ASYNC_EVENT;
13151 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13152 
13153 	return true;
13154 }
13155 
13156 /**
13157  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13158  * @phba: Pointer to HBA context object.
13159  * @cqe: Pointer to mailbox completion queue entry.
13160  *
13161  * This routine process a mailbox completion queue entry with mailbox
13162  * completion event.
13163  *
13164  * Return: true if work posted to worker thread, otherwise false.
13165  **/
13166 static bool
13167 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13168 {
13169 	uint32_t mcqe_status;
13170 	MAILBOX_t *mbox, *pmbox;
13171 	struct lpfc_mqe *mqe;
13172 	struct lpfc_vport *vport;
13173 	struct lpfc_nodelist *ndlp;
13174 	struct lpfc_dmabuf *mp;
13175 	unsigned long iflags;
13176 	LPFC_MBOXQ_t *pmb;
13177 	bool workposted = false;
13178 	int rc;
13179 
13180 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13181 	if (!bf_get(lpfc_trailer_completed, mcqe))
13182 		goto out_no_mqe_complete;
13183 
13184 	/* Get the reference to the active mbox command */
13185 	spin_lock_irqsave(&phba->hbalock, iflags);
13186 	pmb = phba->sli.mbox_active;
13187 	if (unlikely(!pmb)) {
13188 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13189 				"1832 No pending MBOX command to handle\n");
13190 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13191 		goto out_no_mqe_complete;
13192 	}
13193 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13194 	mqe = &pmb->u.mqe;
13195 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13196 	mbox = phba->mbox;
13197 	vport = pmb->vport;
13198 
13199 	/* Reset heartbeat timer */
13200 	phba->last_completion_time = jiffies;
13201 	del_timer(&phba->sli.mbox_tmo);
13202 
13203 	/* Move mbox data to caller's mailbox region, do endian swapping */
13204 	if (pmb->mbox_cmpl && mbox)
13205 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13206 
13207 	/*
13208 	 * For mcqe errors, conditionally move a modified error code to
13209 	 * the mbox so that the error will not be missed.
13210 	 */
13211 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13212 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13213 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13214 			bf_set(lpfc_mqe_status, mqe,
13215 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13216 	}
13217 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13218 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13219 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13220 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13221 				      mcqe_status,
13222 				      pmbox->un.varWords[0], 0);
13223 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13224 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13225 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13226 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13227 			 * RID of the PPI using the same mbox buffer.
13228 			 */
13229 			lpfc_unreg_login(phba, vport->vpi,
13230 					 pmbox->un.varWords[0], pmb);
13231 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13232 			pmb->ctx_buf = mp;
13233 			pmb->ctx_ndlp = ndlp;
13234 			pmb->vport = vport;
13235 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13236 			if (rc != MBX_BUSY)
13237 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13238 						LOG_SLI, "0385 rc should "
13239 						"have been MBX_BUSY\n");
13240 			if (rc != MBX_NOT_FINISHED)
13241 				goto send_current_mbox;
13242 		}
13243 	}
13244 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13245 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13246 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13247 
13248 	/* There is mailbox completion work to do */
13249 	spin_lock_irqsave(&phba->hbalock, iflags);
13250 	__lpfc_mbox_cmpl_put(phba, pmb);
13251 	phba->work_ha |= HA_MBATT;
13252 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13253 	workposted = true;
13254 
13255 send_current_mbox:
13256 	spin_lock_irqsave(&phba->hbalock, iflags);
13257 	/* Release the mailbox command posting token */
13258 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13259 	/* Setting active mailbox pointer need to be in sync to flag clear */
13260 	phba->sli.mbox_active = NULL;
13261 	if (bf_get(lpfc_trailer_consumed, mcqe))
13262 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13263 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13264 	/* Wake up worker thread to post the next pending mailbox command */
13265 	lpfc_worker_wake_up(phba);
13266 	return workposted;
13267 
13268 out_no_mqe_complete:
13269 	spin_lock_irqsave(&phba->hbalock, iflags);
13270 	if (bf_get(lpfc_trailer_consumed, mcqe))
13271 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13272 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13273 	return false;
13274 }
13275 
13276 /**
13277  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13278  * @phba: Pointer to HBA context object.
13279  * @cqe: Pointer to mailbox completion queue entry.
13280  *
13281  * This routine process a mailbox completion queue entry, it invokes the
13282  * proper mailbox complete handling or asynchronous event handling routine
13283  * according to the MCQE's async bit.
13284  *
13285  * Return: true if work posted to worker thread, otherwise false.
13286  **/
13287 static bool
13288 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13289 			 struct lpfc_cqe *cqe)
13290 {
13291 	struct lpfc_mcqe mcqe;
13292 	bool workposted;
13293 
13294 	cq->CQ_mbox++;
13295 
13296 	/* Copy the mailbox MCQE and convert endian order as needed */
13297 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13298 
13299 	/* Invoke the proper event handling routine */
13300 	if (!bf_get(lpfc_trailer_async, &mcqe))
13301 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13302 	else
13303 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13304 	return workposted;
13305 }
13306 
13307 /**
13308  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13309  * @phba: Pointer to HBA context object.
13310  * @cq: Pointer to associated CQ
13311  * @wcqe: Pointer to work-queue completion queue entry.
13312  *
13313  * This routine handles an ELS work-queue completion event.
13314  *
13315  * Return: true if work posted to worker thread, otherwise false.
13316  **/
13317 static bool
13318 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13319 			     struct lpfc_wcqe_complete *wcqe)
13320 {
13321 	struct lpfc_iocbq *irspiocbq;
13322 	unsigned long iflags;
13323 	struct lpfc_sli_ring *pring = cq->pring;
13324 	int txq_cnt = 0;
13325 	int txcmplq_cnt = 0;
13326 
13327 	/* Check for response status */
13328 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13329 		/* Log the error status */
13330 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13331 				"0357 ELS CQE error: status=x%x: "
13332 				"CQE: %08x %08x %08x %08x\n",
13333 				bf_get(lpfc_wcqe_c_status, wcqe),
13334 				wcqe->word0, wcqe->total_data_placed,
13335 				wcqe->parameter, wcqe->word3);
13336 	}
13337 
13338 	/* Get an irspiocbq for later ELS response processing use */
13339 	irspiocbq = lpfc_sli_get_iocbq(phba);
13340 	if (!irspiocbq) {
13341 		if (!list_empty(&pring->txq))
13342 			txq_cnt++;
13343 		if (!list_empty(&pring->txcmplq))
13344 			txcmplq_cnt++;
13345 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13346 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13347 			"els_txcmplq_cnt=%d\n",
13348 			txq_cnt, phba->iocb_cnt,
13349 			txcmplq_cnt);
13350 		return false;
13351 	}
13352 
13353 	/* Save off the slow-path queue event for work thread to process */
13354 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13355 	spin_lock_irqsave(&phba->hbalock, iflags);
13356 	list_add_tail(&irspiocbq->cq_event.list,
13357 		      &phba->sli4_hba.sp_queue_event);
13358 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13359 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13360 
13361 	return true;
13362 }
13363 
13364 /**
13365  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13366  * @phba: Pointer to HBA context object.
13367  * @wcqe: Pointer to work-queue completion queue entry.
13368  *
13369  * This routine handles slow-path WQ entry consumed event by invoking the
13370  * proper WQ release routine to the slow-path WQ.
13371  **/
13372 static void
13373 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13374 			     struct lpfc_wcqe_release *wcqe)
13375 {
13376 	/* sanity check on queue memory */
13377 	if (unlikely(!phba->sli4_hba.els_wq))
13378 		return;
13379 	/* Check for the slow-path ELS work queue */
13380 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13381 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13382 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13383 	else
13384 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13385 				"2579 Slow-path wqe consume event carries "
13386 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13387 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13388 				phba->sli4_hba.els_wq->queue_id);
13389 }
13390 
13391 /**
13392  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13393  * @phba: Pointer to HBA context object.
13394  * @cq: Pointer to a WQ completion queue.
13395  * @wcqe: Pointer to work-queue completion queue entry.
13396  *
13397  * This routine handles an XRI abort event.
13398  *
13399  * Return: true if work posted to worker thread, otherwise false.
13400  **/
13401 static bool
13402 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13403 				   struct lpfc_queue *cq,
13404 				   struct sli4_wcqe_xri_aborted *wcqe)
13405 {
13406 	bool workposted = false;
13407 	struct lpfc_cq_event *cq_event;
13408 	unsigned long iflags;
13409 
13410 	switch (cq->subtype) {
13411 	case LPFC_IO:
13412 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13413 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13414 			/* Notify aborted XRI for NVME work queue */
13415 			if (phba->nvmet_support)
13416 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13417 		}
13418 		workposted = false;
13419 		break;
13420 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13421 	case LPFC_ELS:
13422 		cq_event = lpfc_cq_event_setup(
13423 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13424 		if (!cq_event)
13425 			return false;
13426 		cq_event->hdwq = cq->hdwq;
13427 		spin_lock_irqsave(&phba->hbalock, iflags);
13428 		list_add_tail(&cq_event->list,
13429 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13430 		/* Set the els xri abort event flag */
13431 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13432 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13433 		workposted = true;
13434 		break;
13435 	default:
13436 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13437 				"0603 Invalid CQ subtype %d: "
13438 				"%08x %08x %08x %08x\n",
13439 				cq->subtype, wcqe->word0, wcqe->parameter,
13440 				wcqe->word2, wcqe->word3);
13441 		workposted = false;
13442 		break;
13443 	}
13444 	return workposted;
13445 }
13446 
13447 #define FC_RCTL_MDS_DIAGS	0xF4
13448 
13449 /**
13450  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13451  * @phba: Pointer to HBA context object.
13452  * @rcqe: Pointer to receive-queue completion queue entry.
13453  *
13454  * This routine process a receive-queue completion queue entry.
13455  *
13456  * Return: true if work posted to worker thread, otherwise false.
13457  **/
13458 static bool
13459 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13460 {
13461 	bool workposted = false;
13462 	struct fc_frame_header *fc_hdr;
13463 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13464 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13465 	struct lpfc_nvmet_tgtport *tgtp;
13466 	struct hbq_dmabuf *dma_buf;
13467 	uint32_t status, rq_id;
13468 	unsigned long iflags;
13469 
13470 	/* sanity check on queue memory */
13471 	if (unlikely(!hrq) || unlikely(!drq))
13472 		return workposted;
13473 
13474 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13475 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13476 	else
13477 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13478 	if (rq_id != hrq->queue_id)
13479 		goto out;
13480 
13481 	status = bf_get(lpfc_rcqe_status, rcqe);
13482 	switch (status) {
13483 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13484 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13485 				"2537 Receive Frame Truncated!!\n");
13486 		/* fall through */
13487 	case FC_STATUS_RQ_SUCCESS:
13488 		spin_lock_irqsave(&phba->hbalock, iflags);
13489 		lpfc_sli4_rq_release(hrq, drq);
13490 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13491 		if (!dma_buf) {
13492 			hrq->RQ_no_buf_found++;
13493 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13494 			goto out;
13495 		}
13496 		hrq->RQ_rcv_buf++;
13497 		hrq->RQ_buf_posted--;
13498 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13499 
13500 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13501 
13502 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13503 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13504 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13505 			/* Handle MDS Loopback frames */
13506 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13507 			break;
13508 		}
13509 
13510 		/* save off the frame for the work thread to process */
13511 		list_add_tail(&dma_buf->cq_event.list,
13512 			      &phba->sli4_hba.sp_queue_event);
13513 		/* Frame received */
13514 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13515 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13516 		workposted = true;
13517 		break;
13518 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13519 		if (phba->nvmet_support) {
13520 			tgtp = phba->targetport->private;
13521 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13522 					"6402 RQE Error x%x, posted %d err_cnt "
13523 					"%d: %x %x %x\n",
13524 					status, hrq->RQ_buf_posted,
13525 					hrq->RQ_no_posted_buf,
13526 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13527 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13528 					atomic_read(&tgtp->xmt_fcp_release));
13529 		}
13530 		/* fallthrough */
13531 
13532 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13533 		hrq->RQ_no_posted_buf++;
13534 		/* Post more buffers if possible */
13535 		spin_lock_irqsave(&phba->hbalock, iflags);
13536 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13537 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13538 		workposted = true;
13539 		break;
13540 	}
13541 out:
13542 	return workposted;
13543 }
13544 
13545 /**
13546  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13547  * @phba: Pointer to HBA context object.
13548  * @cq: Pointer to the completion queue.
13549  * @cqe: Pointer to a completion queue entry.
13550  *
13551  * This routine process a slow-path work-queue or receive queue completion queue
13552  * entry.
13553  *
13554  * Return: true if work posted to worker thread, otherwise false.
13555  **/
13556 static bool
13557 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13558 			 struct lpfc_cqe *cqe)
13559 {
13560 	struct lpfc_cqe cqevt;
13561 	bool workposted = false;
13562 
13563 	/* Copy the work queue CQE and convert endian order if needed */
13564 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13565 
13566 	/* Check and process for different type of WCQE and dispatch */
13567 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13568 	case CQE_CODE_COMPL_WQE:
13569 		/* Process the WQ/RQ complete event */
13570 		phba->last_completion_time = jiffies;
13571 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13572 				(struct lpfc_wcqe_complete *)&cqevt);
13573 		break;
13574 	case CQE_CODE_RELEASE_WQE:
13575 		/* Process the WQ release event */
13576 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13577 				(struct lpfc_wcqe_release *)&cqevt);
13578 		break;
13579 	case CQE_CODE_XRI_ABORTED:
13580 		/* Process the WQ XRI abort event */
13581 		phba->last_completion_time = jiffies;
13582 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13583 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13584 		break;
13585 	case CQE_CODE_RECEIVE:
13586 	case CQE_CODE_RECEIVE_V1:
13587 		/* Process the RQ event */
13588 		phba->last_completion_time = jiffies;
13589 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13590 				(struct lpfc_rcqe *)&cqevt);
13591 		break;
13592 	default:
13593 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13594 				"0388 Not a valid WCQE code: x%x\n",
13595 				bf_get(lpfc_cqe_code, &cqevt));
13596 		break;
13597 	}
13598 	return workposted;
13599 }
13600 
13601 /**
13602  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13603  * @phba: Pointer to HBA context object.
13604  * @eqe: Pointer to fast-path event queue entry.
13605  *
13606  * This routine process a event queue entry from the slow-path event queue.
13607  * It will check the MajorCode and MinorCode to determine this is for a
13608  * completion event on a completion queue, if not, an error shall be logged
13609  * and just return. Otherwise, it will get to the corresponding completion
13610  * queue and process all the entries on that completion queue, rearm the
13611  * completion queue, and then return.
13612  *
13613  **/
13614 static void
13615 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13616 	struct lpfc_queue *speq)
13617 {
13618 	struct lpfc_queue *cq = NULL, *childq;
13619 	uint16_t cqid;
13620 
13621 	/* Get the reference to the corresponding CQ */
13622 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13623 
13624 	list_for_each_entry(childq, &speq->child_list, list) {
13625 		if (childq->queue_id == cqid) {
13626 			cq = childq;
13627 			break;
13628 		}
13629 	}
13630 	if (unlikely(!cq)) {
13631 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13632 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13633 					"0365 Slow-path CQ identifier "
13634 					"(%d) does not exist\n", cqid);
13635 		return;
13636 	}
13637 
13638 	/* Save EQ associated with this CQ */
13639 	cq->assoc_qp = speq;
13640 
13641 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13642 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13643 				"0390 Cannot schedule soft IRQ "
13644 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13645 				cqid, cq->queue_id, raw_smp_processor_id());
13646 }
13647 
13648 /**
13649  * __lpfc_sli4_process_cq - Process elements of a CQ
13650  * @phba: Pointer to HBA context object.
13651  * @cq: Pointer to CQ to be processed
13652  * @handler: Routine to process each cqe
13653  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13654  *
13655  * This routine processes completion queue entries in a CQ. While a valid
13656  * queue element is found, the handler is called. During processing checks
13657  * are made for periodic doorbell writes to let the hardware know of
13658  * element consumption.
13659  *
13660  * If the max limit on cqes to process is hit, or there are no more valid
13661  * entries, the loop stops. If we processed a sufficient number of elements,
13662  * meaning there is sufficient load, rather than rearming and generating
13663  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13664  * indicates no rescheduling.
13665  *
13666  * Returns True if work scheduled, False otherwise.
13667  **/
13668 static bool
13669 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13670 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13671 			struct lpfc_cqe *), unsigned long *delay)
13672 {
13673 	struct lpfc_cqe *cqe;
13674 	bool workposted = false;
13675 	int count = 0, consumed = 0;
13676 	bool arm = true;
13677 
13678 	/* default - no reschedule */
13679 	*delay = 0;
13680 
13681 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13682 		goto rearm_and_exit;
13683 
13684 	/* Process all the entries to the CQ */
13685 	cq->q_flag = 0;
13686 	cqe = lpfc_sli4_cq_get(cq);
13687 	while (cqe) {
13688 		workposted |= handler(phba, cq, cqe);
13689 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13690 
13691 		consumed++;
13692 		if (!(++count % cq->max_proc_limit))
13693 			break;
13694 
13695 		if (!(count % cq->notify_interval)) {
13696 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13697 						LPFC_QUEUE_NOARM);
13698 			consumed = 0;
13699 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
13700 		}
13701 
13702 		if (count == LPFC_NVMET_CQ_NOTIFY)
13703 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13704 
13705 		cqe = lpfc_sli4_cq_get(cq);
13706 	}
13707 	if (count >= phba->cfg_cq_poll_threshold) {
13708 		*delay = 1;
13709 		arm = false;
13710 	}
13711 
13712 	/* Track the max number of CQEs processed in 1 EQ */
13713 	if (count > cq->CQ_max_cqe)
13714 		cq->CQ_max_cqe = count;
13715 
13716 	cq->assoc_qp->EQ_cqe_cnt += count;
13717 
13718 	/* Catch the no cq entry condition */
13719 	if (unlikely(count == 0))
13720 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13721 				"0369 No entry from completion queue "
13722 				"qid=%d\n", cq->queue_id);
13723 
13724 	cq->queue_claimed = 0;
13725 
13726 rearm_and_exit:
13727 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13728 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13729 
13730 	return workposted;
13731 }
13732 
13733 /**
13734  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13735  * @cq: pointer to CQ to process
13736  *
13737  * This routine calls the cq processing routine with a handler specific
13738  * to the type of queue bound to it.
13739  *
13740  * The CQ routine returns two values: the first is the calling status,
13741  * which indicates whether work was queued to the  background discovery
13742  * thread. If true, the routine should wakeup the discovery thread;
13743  * the second is the delay parameter. If non-zero, rather than rearming
13744  * the CQ and yet another interrupt, the CQ handler should be queued so
13745  * that it is processed in a subsequent polling action. The value of
13746  * the delay indicates when to reschedule it.
13747  **/
13748 static void
13749 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13750 {
13751 	struct lpfc_hba *phba = cq->phba;
13752 	unsigned long delay;
13753 	bool workposted = false;
13754 
13755 	/* Process and rearm the CQ */
13756 	switch (cq->type) {
13757 	case LPFC_MCQ:
13758 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13759 						lpfc_sli4_sp_handle_mcqe,
13760 						&delay);
13761 		break;
13762 	case LPFC_WCQ:
13763 		if (cq->subtype == LPFC_IO)
13764 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13765 						lpfc_sli4_fp_handle_cqe,
13766 						&delay);
13767 		else
13768 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13769 						lpfc_sli4_sp_handle_cqe,
13770 						&delay);
13771 		break;
13772 	default:
13773 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13774 				"0370 Invalid completion queue type (%d)\n",
13775 				cq->type);
13776 		return;
13777 	}
13778 
13779 	if (delay) {
13780 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13781 					   &cq->sched_spwork, delay))
13782 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13783 				"0394 Cannot schedule soft IRQ "
13784 				"for cqid=%d on CPU %d\n",
13785 				cq->queue_id, cq->chann);
13786 	}
13787 
13788 	/* wake up worker thread if there are works to be done */
13789 	if (workposted)
13790 		lpfc_worker_wake_up(phba);
13791 }
13792 
13793 /**
13794  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13795  *   interrupt
13796  * @work: pointer to work element
13797  *
13798  * translates from the work handler and calls the slow-path handler.
13799  **/
13800 static void
13801 lpfc_sli4_sp_process_cq(struct work_struct *work)
13802 {
13803 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13804 
13805 	__lpfc_sli4_sp_process_cq(cq);
13806 }
13807 
13808 /**
13809  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13810  * @work: pointer to work element
13811  *
13812  * translates from the work handler and calls the slow-path handler.
13813  **/
13814 static void
13815 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13816 {
13817 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13818 					struct lpfc_queue, sched_spwork);
13819 
13820 	__lpfc_sli4_sp_process_cq(cq);
13821 }
13822 
13823 /**
13824  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13825  * @phba: Pointer to HBA context object.
13826  * @cq: Pointer to associated CQ
13827  * @wcqe: Pointer to work-queue completion queue entry.
13828  *
13829  * This routine process a fast-path work queue completion entry from fast-path
13830  * event queue for FCP command response completion.
13831  **/
13832 static void
13833 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13834 			     struct lpfc_wcqe_complete *wcqe)
13835 {
13836 	struct lpfc_sli_ring *pring = cq->pring;
13837 	struct lpfc_iocbq *cmdiocbq;
13838 	struct lpfc_iocbq irspiocbq;
13839 	unsigned long iflags;
13840 
13841 	/* Check for response status */
13842 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13843 		/* If resource errors reported from HBA, reduce queue
13844 		 * depth of the SCSI device.
13845 		 */
13846 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13847 		     IOSTAT_LOCAL_REJECT)) &&
13848 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13849 		     IOERR_NO_RESOURCES))
13850 			phba->lpfc_rampdown_queue_depth(phba);
13851 
13852 		/* Log the error status */
13853 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13854 				"0373 FCP CQE error: status=x%x: "
13855 				"CQE: %08x %08x %08x %08x\n",
13856 				bf_get(lpfc_wcqe_c_status, wcqe),
13857 				wcqe->word0, wcqe->total_data_placed,
13858 				wcqe->parameter, wcqe->word3);
13859 	}
13860 
13861 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13862 	spin_lock_irqsave(&pring->ring_lock, iflags);
13863 	pring->stats.iocb_event++;
13864 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13865 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13866 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13867 	if (unlikely(!cmdiocbq)) {
13868 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13869 				"0374 FCP complete with no corresponding "
13870 				"cmdiocb: iotag (%d)\n",
13871 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13872 		return;
13873 	}
13874 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13875 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13876 #endif
13877 	if (cmdiocbq->iocb_cmpl == NULL) {
13878 		if (cmdiocbq->wqe_cmpl) {
13879 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13880 				spin_lock_irqsave(&phba->hbalock, iflags);
13881 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13882 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13883 			}
13884 
13885 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13886 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13887 			return;
13888 		}
13889 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13890 				"0375 FCP cmdiocb not callback function "
13891 				"iotag: (%d)\n",
13892 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13893 		return;
13894 	}
13895 
13896 	/* Fake the irspiocb and copy necessary response information */
13897 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13898 
13899 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13900 		spin_lock_irqsave(&phba->hbalock, iflags);
13901 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13902 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13903 	}
13904 
13905 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13906 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13907 }
13908 
13909 /**
13910  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13911  * @phba: Pointer to HBA context object.
13912  * @cq: Pointer to completion queue.
13913  * @wcqe: Pointer to work-queue completion queue entry.
13914  *
13915  * This routine handles an fast-path WQ entry consumed event by invoking the
13916  * proper WQ release routine to the slow-path WQ.
13917  **/
13918 static void
13919 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13920 			     struct lpfc_wcqe_release *wcqe)
13921 {
13922 	struct lpfc_queue *childwq;
13923 	bool wqid_matched = false;
13924 	uint16_t hba_wqid;
13925 
13926 	/* Check for fast-path FCP work queue release */
13927 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13928 	list_for_each_entry(childwq, &cq->child_list, list) {
13929 		if (childwq->queue_id == hba_wqid) {
13930 			lpfc_sli4_wq_release(childwq,
13931 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13932 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13933 				lpfc_nvmet_wqfull_process(phba, childwq);
13934 			wqid_matched = true;
13935 			break;
13936 		}
13937 	}
13938 	/* Report warning log message if no match found */
13939 	if (wqid_matched != true)
13940 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13941 				"2580 Fast-path wqe consume event carries "
13942 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13943 }
13944 
13945 /**
13946  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13947  * @phba: Pointer to HBA context object.
13948  * @rcqe: Pointer to receive-queue completion queue entry.
13949  *
13950  * This routine process a receive-queue completion queue entry.
13951  *
13952  * Return: true if work posted to worker thread, otherwise false.
13953  **/
13954 static bool
13955 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13956 			    struct lpfc_rcqe *rcqe)
13957 {
13958 	bool workposted = false;
13959 	struct lpfc_queue *hrq;
13960 	struct lpfc_queue *drq;
13961 	struct rqb_dmabuf *dma_buf;
13962 	struct fc_frame_header *fc_hdr;
13963 	struct lpfc_nvmet_tgtport *tgtp;
13964 	uint32_t status, rq_id;
13965 	unsigned long iflags;
13966 	uint32_t fctl, idx;
13967 
13968 	if ((phba->nvmet_support == 0) ||
13969 	    (phba->sli4_hba.nvmet_cqset == NULL))
13970 		return workposted;
13971 
13972 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13973 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13974 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13975 
13976 	/* sanity check on queue memory */
13977 	if (unlikely(!hrq) || unlikely(!drq))
13978 		return workposted;
13979 
13980 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13981 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13982 	else
13983 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13984 
13985 	if ((phba->nvmet_support == 0) ||
13986 	    (rq_id != hrq->queue_id))
13987 		return workposted;
13988 
13989 	status = bf_get(lpfc_rcqe_status, rcqe);
13990 	switch (status) {
13991 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13992 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13993 				"6126 Receive Frame Truncated!!\n");
13994 		/* fall through */
13995 	case FC_STATUS_RQ_SUCCESS:
13996 		spin_lock_irqsave(&phba->hbalock, iflags);
13997 		lpfc_sli4_rq_release(hrq, drq);
13998 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13999 		if (!dma_buf) {
14000 			hrq->RQ_no_buf_found++;
14001 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14002 			goto out;
14003 		}
14004 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14005 		hrq->RQ_rcv_buf++;
14006 		hrq->RQ_buf_posted--;
14007 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14008 
14009 		/* Just some basic sanity checks on FCP Command frame */
14010 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14011 		fc_hdr->fh_f_ctl[1] << 8 |
14012 		fc_hdr->fh_f_ctl[2]);
14013 		if (((fctl &
14014 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14015 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14016 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14017 			goto drop;
14018 
14019 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14020 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14021 			lpfc_nvmet_unsol_fcp_event(
14022 				phba, idx, dma_buf, cq->isr_timestamp,
14023 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14024 			return false;
14025 		}
14026 drop:
14027 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14028 		break;
14029 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14030 		if (phba->nvmet_support) {
14031 			tgtp = phba->targetport->private;
14032 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
14033 					"6401 RQE Error x%x, posted %d err_cnt "
14034 					"%d: %x %x %x\n",
14035 					status, hrq->RQ_buf_posted,
14036 					hrq->RQ_no_posted_buf,
14037 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14038 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14039 					atomic_read(&tgtp->xmt_fcp_release));
14040 		}
14041 		/* fallthrough */
14042 
14043 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14044 		hrq->RQ_no_posted_buf++;
14045 		/* Post more buffers if possible */
14046 		break;
14047 	}
14048 out:
14049 	return workposted;
14050 }
14051 
14052 /**
14053  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14054  * @phba: adapter with cq
14055  * @cq: Pointer to the completion queue.
14056  * @eqe: Pointer to fast-path completion queue entry.
14057  *
14058  * This routine process a fast-path work queue completion entry from fast-path
14059  * event queue for FCP command response completion.
14060  *
14061  * Return: true if work posted to worker thread, otherwise false.
14062  **/
14063 static bool
14064 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14065 			 struct lpfc_cqe *cqe)
14066 {
14067 	struct lpfc_wcqe_release wcqe;
14068 	bool workposted = false;
14069 
14070 	/* Copy the work queue CQE and convert endian order if needed */
14071 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14072 
14073 	/* Check and process for different type of WCQE and dispatch */
14074 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14075 	case CQE_CODE_COMPL_WQE:
14076 	case CQE_CODE_NVME_ERSP:
14077 		cq->CQ_wq++;
14078 		/* Process the WQ complete event */
14079 		phba->last_completion_time = jiffies;
14080 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14081 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14082 				(struct lpfc_wcqe_complete *)&wcqe);
14083 		break;
14084 	case CQE_CODE_RELEASE_WQE:
14085 		cq->CQ_release_wqe++;
14086 		/* Process the WQ release event */
14087 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14088 				(struct lpfc_wcqe_release *)&wcqe);
14089 		break;
14090 	case CQE_CODE_XRI_ABORTED:
14091 		cq->CQ_xri_aborted++;
14092 		/* Process the WQ XRI abort event */
14093 		phba->last_completion_time = jiffies;
14094 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14095 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14096 		break;
14097 	case CQE_CODE_RECEIVE_V1:
14098 	case CQE_CODE_RECEIVE:
14099 		phba->last_completion_time = jiffies;
14100 		if (cq->subtype == LPFC_NVMET) {
14101 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14102 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14103 		}
14104 		break;
14105 	default:
14106 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14107 				"0144 Not a valid CQE code: x%x\n",
14108 				bf_get(lpfc_wcqe_c_code, &wcqe));
14109 		break;
14110 	}
14111 	return workposted;
14112 }
14113 
14114 /**
14115  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14116  * @phba: Pointer to HBA context object.
14117  * @eqe: Pointer to fast-path event queue entry.
14118  *
14119  * This routine process a event queue entry from the fast-path event queue.
14120  * It will check the MajorCode and MinorCode to determine this is for a
14121  * completion event on a completion queue, if not, an error shall be logged
14122  * and just return. Otherwise, it will get to the corresponding completion
14123  * queue and process all the entries on the completion queue, rearm the
14124  * completion queue, and then return.
14125  **/
14126 static void
14127 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14128 			 struct lpfc_eqe *eqe)
14129 {
14130 	struct lpfc_queue *cq = NULL;
14131 	uint32_t qidx = eq->hdwq;
14132 	uint16_t cqid, id;
14133 
14134 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14135 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14136 				"0366 Not a valid completion "
14137 				"event: majorcode=x%x, minorcode=x%x\n",
14138 				bf_get_le32(lpfc_eqe_major_code, eqe),
14139 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14140 		return;
14141 	}
14142 
14143 	/* Get the reference to the corresponding CQ */
14144 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14145 
14146 	/* Use the fast lookup method first */
14147 	if (cqid <= phba->sli4_hba.cq_max) {
14148 		cq = phba->sli4_hba.cq_lookup[cqid];
14149 		if (cq)
14150 			goto  work_cq;
14151 	}
14152 
14153 	/* Next check for NVMET completion */
14154 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14155 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14156 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14157 			/* Process NVMET unsol rcv */
14158 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14159 			goto  process_cq;
14160 		}
14161 	}
14162 
14163 	if (phba->sli4_hba.nvmels_cq &&
14164 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14165 		/* Process NVME unsol rcv */
14166 		cq = phba->sli4_hba.nvmels_cq;
14167 	}
14168 
14169 	/* Otherwise this is a Slow path event */
14170 	if (cq == NULL) {
14171 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14172 					phba->sli4_hba.hdwq[qidx].hba_eq);
14173 		return;
14174 	}
14175 
14176 process_cq:
14177 	if (unlikely(cqid != cq->queue_id)) {
14178 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14179 				"0368 Miss-matched fast-path completion "
14180 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14181 				cqid, cq->queue_id);
14182 		return;
14183 	}
14184 
14185 work_cq:
14186 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14187 	if (phba->ktime_on)
14188 		cq->isr_timestamp = ktime_get_ns();
14189 	else
14190 		cq->isr_timestamp = 0;
14191 #endif
14192 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14193 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14194 				"0363 Cannot schedule soft IRQ "
14195 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14196 				cqid, cq->queue_id, raw_smp_processor_id());
14197 }
14198 
14199 /**
14200  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14201  * @cq: Pointer to CQ to be processed
14202  *
14203  * This routine calls the cq processing routine with the handler for
14204  * fast path CQEs.
14205  *
14206  * The CQ routine returns two values: the first is the calling status,
14207  * which indicates whether work was queued to the  background discovery
14208  * thread. If true, the routine should wakeup the discovery thread;
14209  * the second is the delay parameter. If non-zero, rather than rearming
14210  * the CQ and yet another interrupt, the CQ handler should be queued so
14211  * that it is processed in a subsequent polling action. The value of
14212  * the delay indicates when to reschedule it.
14213  **/
14214 static void
14215 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14216 {
14217 	struct lpfc_hba *phba = cq->phba;
14218 	unsigned long delay;
14219 	bool workposted = false;
14220 
14221 	/* process and rearm the CQ */
14222 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14223 					     &delay);
14224 
14225 	if (delay) {
14226 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14227 					   &cq->sched_irqwork, delay))
14228 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14229 				"0367 Cannot schedule soft IRQ "
14230 				"for cqid=%d on CPU %d\n",
14231 				cq->queue_id, cq->chann);
14232 	}
14233 
14234 	/* wake up worker thread if there are works to be done */
14235 	if (workposted)
14236 		lpfc_worker_wake_up(phba);
14237 }
14238 
14239 /**
14240  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14241  *   interrupt
14242  * @work: pointer to work element
14243  *
14244  * translates from the work handler and calls the fast-path handler.
14245  **/
14246 static void
14247 lpfc_sli4_hba_process_cq(struct work_struct *work)
14248 {
14249 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14250 
14251 	__lpfc_sli4_hba_process_cq(cq);
14252 }
14253 
14254 /**
14255  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14256  * @work: pointer to work element
14257  *
14258  * translates from the work handler and calls the fast-path handler.
14259  **/
14260 static void
14261 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14262 {
14263 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14264 					struct lpfc_queue, sched_irqwork);
14265 
14266 	__lpfc_sli4_hba_process_cq(cq);
14267 }
14268 
14269 /**
14270  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14271  * @irq: Interrupt number.
14272  * @dev_id: The device context pointer.
14273  *
14274  * This function is directly called from the PCI layer as an interrupt
14275  * service routine when device with SLI-4 interface spec is enabled with
14276  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14277  * ring event in the HBA. However, when the device is enabled with either
14278  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14279  * device-level interrupt handler. When the PCI slot is in error recovery
14280  * or the HBA is undergoing initialization, the interrupt handler will not
14281  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14282  * the intrrupt context. This function is called without any lock held.
14283  * It gets the hbalock to access and update SLI data structures. Note that,
14284  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14285  * equal to that of FCP CQ index.
14286  *
14287  * The link attention and ELS ring attention events are handled
14288  * by the worker thread. The interrupt handler signals the worker thread
14289  * and returns for these events. This function is called without any lock
14290  * held. It gets the hbalock to access and update SLI data structures.
14291  *
14292  * This function returns IRQ_HANDLED when interrupt is handled else it
14293  * returns IRQ_NONE.
14294  **/
14295 irqreturn_t
14296 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14297 {
14298 	struct lpfc_hba *phba;
14299 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14300 	struct lpfc_queue *fpeq;
14301 	unsigned long iflag;
14302 	int ecount = 0;
14303 	int hba_eqidx;
14304 	struct lpfc_eq_intr_info *eqi;
14305 	uint32_t icnt;
14306 
14307 	/* Get the driver's phba structure from the dev_id */
14308 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14309 	phba = hba_eq_hdl->phba;
14310 	hba_eqidx = hba_eq_hdl->idx;
14311 
14312 	if (unlikely(!phba))
14313 		return IRQ_NONE;
14314 	if (unlikely(!phba->sli4_hba.hdwq))
14315 		return IRQ_NONE;
14316 
14317 	/* Get to the EQ struct associated with this vector */
14318 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14319 	if (unlikely(!fpeq))
14320 		return IRQ_NONE;
14321 
14322 	/* Check device state for handling interrupt */
14323 	if (unlikely(lpfc_intr_state_check(phba))) {
14324 		/* Check again for link_state with lock held */
14325 		spin_lock_irqsave(&phba->hbalock, iflag);
14326 		if (phba->link_state < LPFC_LINK_DOWN)
14327 			/* Flush, clear interrupt, and rearm the EQ */
14328 			lpfc_sli4_eqcq_flush(phba, fpeq);
14329 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14330 		return IRQ_NONE;
14331 	}
14332 
14333 	eqi = phba->sli4_hba.eq_info;
14334 	icnt = this_cpu_inc_return(eqi->icnt);
14335 	fpeq->last_cpu = raw_smp_processor_id();
14336 
14337 	if (icnt > LPFC_EQD_ISR_TRIGGER &&
14338 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14339 	    phba->cfg_auto_imax &&
14340 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14341 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14342 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14343 
14344 	/* process and rearm the EQ */
14345 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14346 
14347 	if (unlikely(ecount == 0)) {
14348 		fpeq->EQ_no_entry++;
14349 		if (phba->intr_type == MSIX)
14350 			/* MSI-X treated interrupt served as no EQ share INT */
14351 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14352 					"0358 MSI-X interrupt with no EQE\n");
14353 		else
14354 			/* Non MSI-X treated on interrupt as EQ share INT */
14355 			return IRQ_NONE;
14356 	}
14357 
14358 	return IRQ_HANDLED;
14359 } /* lpfc_sli4_fp_intr_handler */
14360 
14361 /**
14362  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14363  * @irq: Interrupt number.
14364  * @dev_id: The device context pointer.
14365  *
14366  * This function is the device-level interrupt handler to device with SLI-4
14367  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14368  * interrupt mode is enabled and there is an event in the HBA which requires
14369  * driver attention. This function invokes the slow-path interrupt attention
14370  * handling function and fast-path interrupt attention handling function in
14371  * turn to process the relevant HBA attention events. This function is called
14372  * without any lock held. It gets the hbalock to access and update SLI data
14373  * structures.
14374  *
14375  * This function returns IRQ_HANDLED when interrupt is handled, else it
14376  * returns IRQ_NONE.
14377  **/
14378 irqreturn_t
14379 lpfc_sli4_intr_handler(int irq, void *dev_id)
14380 {
14381 	struct lpfc_hba  *phba;
14382 	irqreturn_t hba_irq_rc;
14383 	bool hba_handled = false;
14384 	int qidx;
14385 
14386 	/* Get the driver's phba structure from the dev_id */
14387 	phba = (struct lpfc_hba *)dev_id;
14388 
14389 	if (unlikely(!phba))
14390 		return IRQ_NONE;
14391 
14392 	/*
14393 	 * Invoke fast-path host attention interrupt handling as appropriate.
14394 	 */
14395 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14396 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14397 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14398 		if (hba_irq_rc == IRQ_HANDLED)
14399 			hba_handled |= true;
14400 	}
14401 
14402 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14403 } /* lpfc_sli4_intr_handler */
14404 
14405 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14406 {
14407 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14408 	struct lpfc_queue *eq;
14409 	int i = 0;
14410 
14411 	rcu_read_lock();
14412 
14413 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14414 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14415 	if (!list_empty(&phba->poll_list))
14416 		mod_timer(&phba->cpuhp_poll_timer,
14417 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14418 
14419 	rcu_read_unlock();
14420 }
14421 
14422 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14423 {
14424 	struct lpfc_hba *phba = eq->phba;
14425 	int i = 0;
14426 
14427 	/*
14428 	 * Unlocking an irq is one of the entry point to check
14429 	 * for re-schedule, but we are good for io submission
14430 	 * path as midlayer does a get_cpu to glue us in. Flush
14431 	 * out the invalidate queue so we can see the updated
14432 	 * value for flag.
14433 	 */
14434 	smp_rmb();
14435 
14436 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14437 		/* We will not likely get the completion for the caller
14438 		 * during this iteration but i guess that's fine.
14439 		 * Future io's coming on this eq should be able to
14440 		 * pick it up.  As for the case of single io's, they
14441 		 * will be handled through a sched from polling timer
14442 		 * function which is currently triggered every 1msec.
14443 		 */
14444 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14445 
14446 	return i;
14447 }
14448 
14449 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14450 {
14451 	struct lpfc_hba *phba = eq->phba;
14452 
14453 	if (list_empty(&phba->poll_list)) {
14454 		timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14455 		/* kickstart slowpath processing for this eq */
14456 		mod_timer(&phba->cpuhp_poll_timer,
14457 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14458 	}
14459 
14460 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
14461 	synchronize_rcu();
14462 }
14463 
14464 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14465 {
14466 	struct lpfc_hba *phba = eq->phba;
14467 
14468 	/* Disable slowpath processing for this eq.  Kick start the eq
14469 	 * by RE-ARMING the eq's ASAP
14470 	 */
14471 	list_del_rcu(&eq->_poll_list);
14472 	synchronize_rcu();
14473 
14474 	if (list_empty(&phba->poll_list))
14475 		del_timer_sync(&phba->cpuhp_poll_timer);
14476 }
14477 
14478 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14479 {
14480 	struct lpfc_queue *eq, *next;
14481 
14482 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14483 		list_del(&eq->_poll_list);
14484 
14485 	INIT_LIST_HEAD(&phba->poll_list);
14486 	synchronize_rcu();
14487 }
14488 
14489 static inline void
14490 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14491 {
14492 	if (mode == eq->mode)
14493 		return;
14494 	/*
14495 	 * currently this function is only called during a hotplug
14496 	 * event and the cpu on which this function is executing
14497 	 * is going offline.  By now the hotplug has instructed
14498 	 * the scheduler to remove this cpu from cpu active mask.
14499 	 * So we don't need to work about being put aside by the
14500 	 * scheduler for a high priority process.  Yes, the inte-
14501 	 * rrupts could come but they are known to retire ASAP.
14502 	 */
14503 
14504 	/* Disable polling in the fastpath */
14505 	WRITE_ONCE(eq->mode, mode);
14506 	/* flush out the store buffer */
14507 	smp_wmb();
14508 
14509 	/*
14510 	 * Add this eq to the polling list and start polling. For
14511 	 * a grace period both interrupt handler and poller will
14512 	 * try to process the eq _but_ that's fine.  We have a
14513 	 * synchronization mechanism in place (queue_claimed) to
14514 	 * deal with it.  This is just a draining phase for int-
14515 	 * errupt handler (not eq's) as we have guranteed through
14516 	 * barrier that all the CPUs have seen the new CQ_POLLED
14517 	 * state. which will effectively disable the REARMING of
14518 	 * the EQ.  The whole idea is eq's die off eventually as
14519 	 * we are not rearming EQ's anymore.
14520 	 */
14521 	mode ? lpfc_sli4_add_to_poll_list(eq) :
14522 	       lpfc_sli4_remove_from_poll_list(eq);
14523 }
14524 
14525 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14526 {
14527 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14528 }
14529 
14530 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14531 {
14532 	struct lpfc_hba *phba = eq->phba;
14533 
14534 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14535 
14536 	/* Kick start for the pending io's in h/w.
14537 	 * Once we switch back to interrupt processing on a eq
14538 	 * the io path completion will only arm eq's when it
14539 	 * receives a completion.  But since eq's are in disa-
14540 	 * rmed state it doesn't receive a completion.  This
14541 	 * creates a deadlock scenaro.
14542 	 */
14543 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14544 }
14545 
14546 /**
14547  * lpfc_sli4_queue_free - free a queue structure and associated memory
14548  * @queue: The queue structure to free.
14549  *
14550  * This function frees a queue structure and the DMAable memory used for
14551  * the host resident queue. This function must be called after destroying the
14552  * queue on the HBA.
14553  **/
14554 void
14555 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14556 {
14557 	struct lpfc_dmabuf *dmabuf;
14558 
14559 	if (!queue)
14560 		return;
14561 
14562 	if (!list_empty(&queue->wq_list))
14563 		list_del(&queue->wq_list);
14564 
14565 	while (!list_empty(&queue->page_list)) {
14566 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14567 				 list);
14568 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14569 				  dmabuf->virt, dmabuf->phys);
14570 		kfree(dmabuf);
14571 	}
14572 	if (queue->rqbp) {
14573 		lpfc_free_rq_buffer(queue->phba, queue);
14574 		kfree(queue->rqbp);
14575 	}
14576 
14577 	if (!list_empty(&queue->cpu_list))
14578 		list_del(&queue->cpu_list);
14579 
14580 	kfree(queue);
14581 	return;
14582 }
14583 
14584 /**
14585  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14586  * @phba: The HBA that this queue is being created on.
14587  * @page_size: The size of a queue page
14588  * @entry_size: The size of each queue entry for this queue.
14589  * @entry count: The number of entries that this queue will handle.
14590  * @cpu: The cpu that will primarily utilize this queue.
14591  *
14592  * This function allocates a queue structure and the DMAable memory used for
14593  * the host resident queue. This function must be called before creating the
14594  * queue on the HBA.
14595  **/
14596 struct lpfc_queue *
14597 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14598 		      uint32_t entry_size, uint32_t entry_count, int cpu)
14599 {
14600 	struct lpfc_queue *queue;
14601 	struct lpfc_dmabuf *dmabuf;
14602 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14603 	uint16_t x, pgcnt;
14604 
14605 	if (!phba->sli4_hba.pc_sli4_params.supported)
14606 		hw_page_size = page_size;
14607 
14608 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14609 
14610 	/* If needed, Adjust page count to match the max the adapter supports */
14611 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14612 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14613 
14614 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14615 			     GFP_KERNEL, cpu_to_node(cpu));
14616 	if (!queue)
14617 		return NULL;
14618 
14619 	INIT_LIST_HEAD(&queue->list);
14620 	INIT_LIST_HEAD(&queue->_poll_list);
14621 	INIT_LIST_HEAD(&queue->wq_list);
14622 	INIT_LIST_HEAD(&queue->wqfull_list);
14623 	INIT_LIST_HEAD(&queue->page_list);
14624 	INIT_LIST_HEAD(&queue->child_list);
14625 	INIT_LIST_HEAD(&queue->cpu_list);
14626 
14627 	/* Set queue parameters now.  If the system cannot provide memory
14628 	 * resources, the free routine needs to know what was allocated.
14629 	 */
14630 	queue->page_count = pgcnt;
14631 	queue->q_pgs = (void **)&queue[1];
14632 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14633 	queue->entry_size = entry_size;
14634 	queue->entry_count = entry_count;
14635 	queue->page_size = hw_page_size;
14636 	queue->phba = phba;
14637 
14638 	for (x = 0; x < queue->page_count; x++) {
14639 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14640 				      dev_to_node(&phba->pcidev->dev));
14641 		if (!dmabuf)
14642 			goto out_fail;
14643 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14644 						  hw_page_size, &dmabuf->phys,
14645 						  GFP_KERNEL);
14646 		if (!dmabuf->virt) {
14647 			kfree(dmabuf);
14648 			goto out_fail;
14649 		}
14650 		dmabuf->buffer_tag = x;
14651 		list_add_tail(&dmabuf->list, &queue->page_list);
14652 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14653 		queue->q_pgs[x] = dmabuf->virt;
14654 	}
14655 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14656 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14657 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14658 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14659 
14660 	/* notify_interval will be set during q creation */
14661 
14662 	return queue;
14663 out_fail:
14664 	lpfc_sli4_queue_free(queue);
14665 	return NULL;
14666 }
14667 
14668 /**
14669  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14670  * @phba: HBA structure that indicates port to create a queue on.
14671  * @pci_barset: PCI BAR set flag.
14672  *
14673  * This function shall perform iomap of the specified PCI BAR address to host
14674  * memory address if not already done so and return it. The returned host
14675  * memory address can be NULL.
14676  */
14677 static void __iomem *
14678 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14679 {
14680 	if (!phba->pcidev)
14681 		return NULL;
14682 
14683 	switch (pci_barset) {
14684 	case WQ_PCI_BAR_0_AND_1:
14685 		return phba->pci_bar0_memmap_p;
14686 	case WQ_PCI_BAR_2_AND_3:
14687 		return phba->pci_bar2_memmap_p;
14688 	case WQ_PCI_BAR_4_AND_5:
14689 		return phba->pci_bar4_memmap_p;
14690 	default:
14691 		break;
14692 	}
14693 	return NULL;
14694 }
14695 
14696 /**
14697  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14698  * @phba: HBA structure that EQs are on.
14699  * @startq: The starting EQ index to modify
14700  * @numq: The number of EQs (consecutive indexes) to modify
14701  * @usdelay: amount of delay
14702  *
14703  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14704  * is set either by writing to a register (if supported by the SLI Port)
14705  * or by mailbox command. The mailbox command allows several EQs to be
14706  * updated at once.
14707  *
14708  * The @phba struct is used to send a mailbox command to HBA. The @startq
14709  * is used to get the starting EQ index to change. The @numq value is
14710  * used to specify how many consecutive EQ indexes, starting at EQ index,
14711  * are to be changed. This function is asynchronous and will wait for any
14712  * mailbox commands to finish before returning.
14713  *
14714  * On success this function will return a zero. If unable to allocate
14715  * enough memory this function will return -ENOMEM. If a mailbox command
14716  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14717  * have had their delay multipler changed.
14718  **/
14719 void
14720 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14721 			 uint32_t numq, uint32_t usdelay)
14722 {
14723 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14724 	LPFC_MBOXQ_t *mbox;
14725 	struct lpfc_queue *eq;
14726 	int cnt = 0, rc, length;
14727 	uint32_t shdr_status, shdr_add_status;
14728 	uint32_t dmult;
14729 	int qidx;
14730 	union lpfc_sli4_cfg_shdr *shdr;
14731 
14732 	if (startq >= phba->cfg_irq_chann)
14733 		return;
14734 
14735 	if (usdelay > 0xFFFF) {
14736 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14737 				"6429 usdelay %d too large. Scaled down to "
14738 				"0xFFFF.\n", usdelay);
14739 		usdelay = 0xFFFF;
14740 	}
14741 
14742 	/* set values by EQ_DELAY register if supported */
14743 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14744 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14745 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14746 			if (!eq)
14747 				continue;
14748 
14749 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14750 
14751 			if (++cnt >= numq)
14752 				break;
14753 		}
14754 		return;
14755 	}
14756 
14757 	/* Otherwise, set values by mailbox cmd */
14758 
14759 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14760 	if (!mbox) {
14761 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14762 				"6428 Failed allocating mailbox cmd buffer."
14763 				" EQ delay was not set.\n");
14764 		return;
14765 	}
14766 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14767 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14768 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14769 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14770 			 length, LPFC_SLI4_MBX_EMBED);
14771 	eq_delay = &mbox->u.mqe.un.eq_delay;
14772 
14773 	/* Calculate delay multiper from maximum interrupt per second */
14774 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14775 	if (dmult)
14776 		dmult--;
14777 	if (dmult > LPFC_DMULT_MAX)
14778 		dmult = LPFC_DMULT_MAX;
14779 
14780 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14781 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14782 		if (!eq)
14783 			continue;
14784 		eq->q_mode = usdelay;
14785 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14786 		eq_delay->u.request.eq[cnt].phase = 0;
14787 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14788 
14789 		if (++cnt >= numq)
14790 			break;
14791 	}
14792 	eq_delay->u.request.num_eq = cnt;
14793 
14794 	mbox->vport = phba->pport;
14795 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14796 	mbox->ctx_buf = NULL;
14797 	mbox->ctx_ndlp = NULL;
14798 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14799 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14800 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14801 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14802 	if (shdr_status || shdr_add_status || rc) {
14803 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14804 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14805 				"status x%x add_status x%x, mbx status x%x\n",
14806 				shdr_status, shdr_add_status, rc);
14807 	}
14808 	mempool_free(mbox, phba->mbox_mem_pool);
14809 	return;
14810 }
14811 
14812 /**
14813  * lpfc_eq_create - Create an Event Queue on the HBA
14814  * @phba: HBA structure that indicates port to create a queue on.
14815  * @eq: The queue structure to use to create the event queue.
14816  * @imax: The maximum interrupt per second limit.
14817  *
14818  * This function creates an event queue, as detailed in @eq, on a port,
14819  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14820  *
14821  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14822  * is used to get the entry count and entry size that are necessary to
14823  * determine the number of pages to allocate and use for this queue. This
14824  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14825  * event queue. This function is asynchronous and will wait for the mailbox
14826  * command to finish before continuing.
14827  *
14828  * On success this function will return a zero. If unable to allocate enough
14829  * memory this function will return -ENOMEM. If the queue create mailbox command
14830  * fails this function will return -ENXIO.
14831  **/
14832 int
14833 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14834 {
14835 	struct lpfc_mbx_eq_create *eq_create;
14836 	LPFC_MBOXQ_t *mbox;
14837 	int rc, length, status = 0;
14838 	struct lpfc_dmabuf *dmabuf;
14839 	uint32_t shdr_status, shdr_add_status;
14840 	union lpfc_sli4_cfg_shdr *shdr;
14841 	uint16_t dmult;
14842 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14843 
14844 	/* sanity check on queue memory */
14845 	if (!eq)
14846 		return -ENODEV;
14847 	if (!phba->sli4_hba.pc_sli4_params.supported)
14848 		hw_page_size = SLI4_PAGE_SIZE;
14849 
14850 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14851 	if (!mbox)
14852 		return -ENOMEM;
14853 	length = (sizeof(struct lpfc_mbx_eq_create) -
14854 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14855 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14856 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14857 			 length, LPFC_SLI4_MBX_EMBED);
14858 	eq_create = &mbox->u.mqe.un.eq_create;
14859 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14860 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14861 	       eq->page_count);
14862 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14863 	       LPFC_EQE_SIZE);
14864 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14865 
14866 	/* Use version 2 of CREATE_EQ if eqav is set */
14867 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14868 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14869 		       LPFC_Q_CREATE_VERSION_2);
14870 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14871 		       phba->sli4_hba.pc_sli4_params.eqav);
14872 	}
14873 
14874 	/* don't setup delay multiplier using EQ_CREATE */
14875 	dmult = 0;
14876 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14877 	       dmult);
14878 	switch (eq->entry_count) {
14879 	default:
14880 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14881 				"0360 Unsupported EQ count. (%d)\n",
14882 				eq->entry_count);
14883 		if (eq->entry_count < 256) {
14884 			status = -EINVAL;
14885 			goto out;
14886 		}
14887 		/* fall through - otherwise default to smallest count */
14888 	case 256:
14889 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14890 		       LPFC_EQ_CNT_256);
14891 		break;
14892 	case 512:
14893 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14894 		       LPFC_EQ_CNT_512);
14895 		break;
14896 	case 1024:
14897 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14898 		       LPFC_EQ_CNT_1024);
14899 		break;
14900 	case 2048:
14901 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14902 		       LPFC_EQ_CNT_2048);
14903 		break;
14904 	case 4096:
14905 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14906 		       LPFC_EQ_CNT_4096);
14907 		break;
14908 	}
14909 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14910 		memset(dmabuf->virt, 0, hw_page_size);
14911 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14912 					putPaddrLow(dmabuf->phys);
14913 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14914 					putPaddrHigh(dmabuf->phys);
14915 	}
14916 	mbox->vport = phba->pport;
14917 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14918 	mbox->ctx_buf = NULL;
14919 	mbox->ctx_ndlp = NULL;
14920 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14921 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14922 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14923 	if (shdr_status || shdr_add_status || rc) {
14924 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14925 				"2500 EQ_CREATE mailbox failed with "
14926 				"status x%x add_status x%x, mbx status x%x\n",
14927 				shdr_status, shdr_add_status, rc);
14928 		status = -ENXIO;
14929 	}
14930 	eq->type = LPFC_EQ;
14931 	eq->subtype = LPFC_NONE;
14932 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14933 	if (eq->queue_id == 0xFFFF)
14934 		status = -ENXIO;
14935 	eq->host_index = 0;
14936 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14937 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14938 out:
14939 	mempool_free(mbox, phba->mbox_mem_pool);
14940 	return status;
14941 }
14942 
14943 /**
14944  * lpfc_cq_create - Create a Completion Queue on the HBA
14945  * @phba: HBA structure that indicates port to create a queue on.
14946  * @cq: The queue structure to use to create the completion queue.
14947  * @eq: The event queue to bind this completion queue to.
14948  *
14949  * This function creates a completion queue, as detailed in @wq, on a port,
14950  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14951  *
14952  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14953  * is used to get the entry count and entry size that are necessary to
14954  * determine the number of pages to allocate and use for this queue. The @eq
14955  * is used to indicate which event queue to bind this completion queue to. This
14956  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14957  * completion queue. This function is asynchronous and will wait for the mailbox
14958  * command to finish before continuing.
14959  *
14960  * On success this function will return a zero. If unable to allocate enough
14961  * memory this function will return -ENOMEM. If the queue create mailbox command
14962  * fails this function will return -ENXIO.
14963  **/
14964 int
14965 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14966 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14967 {
14968 	struct lpfc_mbx_cq_create *cq_create;
14969 	struct lpfc_dmabuf *dmabuf;
14970 	LPFC_MBOXQ_t *mbox;
14971 	int rc, length, status = 0;
14972 	uint32_t shdr_status, shdr_add_status;
14973 	union lpfc_sli4_cfg_shdr *shdr;
14974 
14975 	/* sanity check on queue memory */
14976 	if (!cq || !eq)
14977 		return -ENODEV;
14978 
14979 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14980 	if (!mbox)
14981 		return -ENOMEM;
14982 	length = (sizeof(struct lpfc_mbx_cq_create) -
14983 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14984 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14985 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14986 			 length, LPFC_SLI4_MBX_EMBED);
14987 	cq_create = &mbox->u.mqe.un.cq_create;
14988 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14989 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14990 		    cq->page_count);
14991 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14992 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14993 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14994 	       phba->sli4_hba.pc_sli4_params.cqv);
14995 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14996 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14997 		       (cq->page_size / SLI4_PAGE_SIZE));
14998 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14999 		       eq->queue_id);
15000 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15001 		       phba->sli4_hba.pc_sli4_params.cqav);
15002 	} else {
15003 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15004 		       eq->queue_id);
15005 	}
15006 	switch (cq->entry_count) {
15007 	case 2048:
15008 	case 4096:
15009 		if (phba->sli4_hba.pc_sli4_params.cqv ==
15010 		    LPFC_Q_CREATE_VERSION_2) {
15011 			cq_create->u.request.context.lpfc_cq_context_count =
15012 				cq->entry_count;
15013 			bf_set(lpfc_cq_context_count,
15014 			       &cq_create->u.request.context,
15015 			       LPFC_CQ_CNT_WORD7);
15016 			break;
15017 		}
15018 		/* fall through */
15019 	default:
15020 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15021 				"0361 Unsupported CQ count: "
15022 				"entry cnt %d sz %d pg cnt %d\n",
15023 				cq->entry_count, cq->entry_size,
15024 				cq->page_count);
15025 		if (cq->entry_count < 256) {
15026 			status = -EINVAL;
15027 			goto out;
15028 		}
15029 		/* fall through - otherwise default to smallest count */
15030 	case 256:
15031 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15032 		       LPFC_CQ_CNT_256);
15033 		break;
15034 	case 512:
15035 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15036 		       LPFC_CQ_CNT_512);
15037 		break;
15038 	case 1024:
15039 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15040 		       LPFC_CQ_CNT_1024);
15041 		break;
15042 	}
15043 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15044 		memset(dmabuf->virt, 0, cq->page_size);
15045 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15046 					putPaddrLow(dmabuf->phys);
15047 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15048 					putPaddrHigh(dmabuf->phys);
15049 	}
15050 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15051 
15052 	/* The IOCTL status is embedded in the mailbox subheader. */
15053 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15054 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15055 	if (shdr_status || shdr_add_status || rc) {
15056 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15057 				"2501 CQ_CREATE mailbox failed with "
15058 				"status x%x add_status x%x, mbx status x%x\n",
15059 				shdr_status, shdr_add_status, rc);
15060 		status = -ENXIO;
15061 		goto out;
15062 	}
15063 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15064 	if (cq->queue_id == 0xFFFF) {
15065 		status = -ENXIO;
15066 		goto out;
15067 	}
15068 	/* link the cq onto the parent eq child list */
15069 	list_add_tail(&cq->list, &eq->child_list);
15070 	/* Set up completion queue's type and subtype */
15071 	cq->type = type;
15072 	cq->subtype = subtype;
15073 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15074 	cq->assoc_qid = eq->queue_id;
15075 	cq->assoc_qp = eq;
15076 	cq->host_index = 0;
15077 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15078 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15079 
15080 	if (cq->queue_id > phba->sli4_hba.cq_max)
15081 		phba->sli4_hba.cq_max = cq->queue_id;
15082 out:
15083 	mempool_free(mbox, phba->mbox_mem_pool);
15084 	return status;
15085 }
15086 
15087 /**
15088  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15089  * @phba: HBA structure that indicates port to create a queue on.
15090  * @cqp: The queue structure array to use to create the completion queues.
15091  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
15092  *
15093  * This function creates a set of  completion queue, s to support MRQ
15094  * as detailed in @cqp, on a port,
15095  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15096  *
15097  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15098  * is used to get the entry count and entry size that are necessary to
15099  * determine the number of pages to allocate and use for this queue. The @eq
15100  * is used to indicate which event queue to bind this completion queue to. This
15101  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15102  * completion queue. This function is asynchronous and will wait for the mailbox
15103  * command to finish before continuing.
15104  *
15105  * On success this function will return a zero. If unable to allocate enough
15106  * memory this function will return -ENOMEM. If the queue create mailbox command
15107  * fails this function will return -ENXIO.
15108  **/
15109 int
15110 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15111 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15112 		   uint32_t subtype)
15113 {
15114 	struct lpfc_queue *cq;
15115 	struct lpfc_queue *eq;
15116 	struct lpfc_mbx_cq_create_set *cq_set;
15117 	struct lpfc_dmabuf *dmabuf;
15118 	LPFC_MBOXQ_t *mbox;
15119 	int rc, length, alloclen, status = 0;
15120 	int cnt, idx, numcq, page_idx = 0;
15121 	uint32_t shdr_status, shdr_add_status;
15122 	union lpfc_sli4_cfg_shdr *shdr;
15123 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15124 
15125 	/* sanity check on queue memory */
15126 	numcq = phba->cfg_nvmet_mrq;
15127 	if (!cqp || !hdwq || !numcq)
15128 		return -ENODEV;
15129 
15130 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15131 	if (!mbox)
15132 		return -ENOMEM;
15133 
15134 	length = sizeof(struct lpfc_mbx_cq_create_set);
15135 	length += ((numcq * cqp[0]->page_count) *
15136 		   sizeof(struct dma_address));
15137 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15138 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15139 			LPFC_SLI4_MBX_NEMBED);
15140 	if (alloclen < length) {
15141 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15142 				"3098 Allocated DMA memory size (%d) is "
15143 				"less than the requested DMA memory size "
15144 				"(%d)\n", alloclen, length);
15145 		status = -ENOMEM;
15146 		goto out;
15147 	}
15148 	cq_set = mbox->sge_array->addr[0];
15149 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15150 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15151 
15152 	for (idx = 0; idx < numcq; idx++) {
15153 		cq = cqp[idx];
15154 		eq = hdwq[idx].hba_eq;
15155 		if (!cq || !eq) {
15156 			status = -ENOMEM;
15157 			goto out;
15158 		}
15159 		if (!phba->sli4_hba.pc_sli4_params.supported)
15160 			hw_page_size = cq->page_size;
15161 
15162 		switch (idx) {
15163 		case 0:
15164 			bf_set(lpfc_mbx_cq_create_set_page_size,
15165 			       &cq_set->u.request,
15166 			       (hw_page_size / SLI4_PAGE_SIZE));
15167 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15168 			       &cq_set->u.request, cq->page_count);
15169 			bf_set(lpfc_mbx_cq_create_set_evt,
15170 			       &cq_set->u.request, 1);
15171 			bf_set(lpfc_mbx_cq_create_set_valid,
15172 			       &cq_set->u.request, 1);
15173 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15174 			       &cq_set->u.request, 0);
15175 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15176 			       &cq_set->u.request, numcq);
15177 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15178 			       &cq_set->u.request,
15179 			       phba->sli4_hba.pc_sli4_params.cqav);
15180 			switch (cq->entry_count) {
15181 			case 2048:
15182 			case 4096:
15183 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15184 				    LPFC_Q_CREATE_VERSION_2) {
15185 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15186 					       &cq_set->u.request,
15187 						cq->entry_count);
15188 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15189 					       &cq_set->u.request,
15190 					       LPFC_CQ_CNT_WORD7);
15191 					break;
15192 				}
15193 				/* fall through */
15194 			default:
15195 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15196 						"3118 Bad CQ count. (%d)\n",
15197 						cq->entry_count);
15198 				if (cq->entry_count < 256) {
15199 					status = -EINVAL;
15200 					goto out;
15201 				}
15202 				/* fall through - otherwise default to smallest */
15203 			case 256:
15204 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15205 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15206 				break;
15207 			case 512:
15208 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15209 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15210 				break;
15211 			case 1024:
15212 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15213 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15214 				break;
15215 			}
15216 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15217 			       &cq_set->u.request, eq->queue_id);
15218 			break;
15219 		case 1:
15220 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15221 			       &cq_set->u.request, eq->queue_id);
15222 			break;
15223 		case 2:
15224 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15225 			       &cq_set->u.request, eq->queue_id);
15226 			break;
15227 		case 3:
15228 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15229 			       &cq_set->u.request, eq->queue_id);
15230 			break;
15231 		case 4:
15232 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15233 			       &cq_set->u.request, eq->queue_id);
15234 			break;
15235 		case 5:
15236 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15237 			       &cq_set->u.request, eq->queue_id);
15238 			break;
15239 		case 6:
15240 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15241 			       &cq_set->u.request, eq->queue_id);
15242 			break;
15243 		case 7:
15244 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15245 			       &cq_set->u.request, eq->queue_id);
15246 			break;
15247 		case 8:
15248 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15249 			       &cq_set->u.request, eq->queue_id);
15250 			break;
15251 		case 9:
15252 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15253 			       &cq_set->u.request, eq->queue_id);
15254 			break;
15255 		case 10:
15256 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15257 			       &cq_set->u.request, eq->queue_id);
15258 			break;
15259 		case 11:
15260 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15261 			       &cq_set->u.request, eq->queue_id);
15262 			break;
15263 		case 12:
15264 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15265 			       &cq_set->u.request, eq->queue_id);
15266 			break;
15267 		case 13:
15268 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15269 			       &cq_set->u.request, eq->queue_id);
15270 			break;
15271 		case 14:
15272 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15273 			       &cq_set->u.request, eq->queue_id);
15274 			break;
15275 		case 15:
15276 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15277 			       &cq_set->u.request, eq->queue_id);
15278 			break;
15279 		}
15280 
15281 		/* link the cq onto the parent eq child list */
15282 		list_add_tail(&cq->list, &eq->child_list);
15283 		/* Set up completion queue's type and subtype */
15284 		cq->type = type;
15285 		cq->subtype = subtype;
15286 		cq->assoc_qid = eq->queue_id;
15287 		cq->assoc_qp = eq;
15288 		cq->host_index = 0;
15289 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15290 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15291 					 cq->entry_count);
15292 		cq->chann = idx;
15293 
15294 		rc = 0;
15295 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15296 			memset(dmabuf->virt, 0, hw_page_size);
15297 			cnt = page_idx + dmabuf->buffer_tag;
15298 			cq_set->u.request.page[cnt].addr_lo =
15299 					putPaddrLow(dmabuf->phys);
15300 			cq_set->u.request.page[cnt].addr_hi =
15301 					putPaddrHigh(dmabuf->phys);
15302 			rc++;
15303 		}
15304 		page_idx += rc;
15305 	}
15306 
15307 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15308 
15309 	/* The IOCTL status is embedded in the mailbox subheader. */
15310 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15311 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15312 	if (shdr_status || shdr_add_status || rc) {
15313 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15314 				"3119 CQ_CREATE_SET mailbox failed with "
15315 				"status x%x add_status x%x, mbx status x%x\n",
15316 				shdr_status, shdr_add_status, rc);
15317 		status = -ENXIO;
15318 		goto out;
15319 	}
15320 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15321 	if (rc == 0xFFFF) {
15322 		status = -ENXIO;
15323 		goto out;
15324 	}
15325 
15326 	for (idx = 0; idx < numcq; idx++) {
15327 		cq = cqp[idx];
15328 		cq->queue_id = rc + idx;
15329 		if (cq->queue_id > phba->sli4_hba.cq_max)
15330 			phba->sli4_hba.cq_max = cq->queue_id;
15331 	}
15332 
15333 out:
15334 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15335 	return status;
15336 }
15337 
15338 /**
15339  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15340  * @phba: HBA structure that indicates port to create a queue on.
15341  * @mq: The queue structure to use to create the mailbox queue.
15342  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15343  * @cq: The completion queue to associate with this cq.
15344  *
15345  * This function provides failback (fb) functionality when the
15346  * mq_create_ext fails on older FW generations.  It's purpose is identical
15347  * to mq_create_ext otherwise.
15348  *
15349  * This routine cannot fail as all attributes were previously accessed and
15350  * initialized in mq_create_ext.
15351  **/
15352 static void
15353 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15354 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15355 {
15356 	struct lpfc_mbx_mq_create *mq_create;
15357 	struct lpfc_dmabuf *dmabuf;
15358 	int length;
15359 
15360 	length = (sizeof(struct lpfc_mbx_mq_create) -
15361 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15362 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15363 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15364 			 length, LPFC_SLI4_MBX_EMBED);
15365 	mq_create = &mbox->u.mqe.un.mq_create;
15366 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15367 	       mq->page_count);
15368 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15369 	       cq->queue_id);
15370 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15371 	switch (mq->entry_count) {
15372 	case 16:
15373 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15374 		       LPFC_MQ_RING_SIZE_16);
15375 		break;
15376 	case 32:
15377 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15378 		       LPFC_MQ_RING_SIZE_32);
15379 		break;
15380 	case 64:
15381 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15382 		       LPFC_MQ_RING_SIZE_64);
15383 		break;
15384 	case 128:
15385 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15386 		       LPFC_MQ_RING_SIZE_128);
15387 		break;
15388 	}
15389 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15390 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15391 			putPaddrLow(dmabuf->phys);
15392 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15393 			putPaddrHigh(dmabuf->phys);
15394 	}
15395 }
15396 
15397 /**
15398  * lpfc_mq_create - Create a mailbox Queue on the HBA
15399  * @phba: HBA structure that indicates port to create a queue on.
15400  * @mq: The queue structure to use to create the mailbox queue.
15401  * @cq: The completion queue to associate with this cq.
15402  * @subtype: The queue's subtype.
15403  *
15404  * This function creates a mailbox queue, as detailed in @mq, on a port,
15405  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15406  *
15407  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15408  * is used to get the entry count and entry size that are necessary to
15409  * determine the number of pages to allocate and use for this queue. This
15410  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15411  * mailbox queue. This function is asynchronous and will wait for the mailbox
15412  * command to finish before continuing.
15413  *
15414  * On success this function will return a zero. If unable to allocate enough
15415  * memory this function will return -ENOMEM. If the queue create mailbox command
15416  * fails this function will return -ENXIO.
15417  **/
15418 int32_t
15419 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15420 	       struct lpfc_queue *cq, uint32_t subtype)
15421 {
15422 	struct lpfc_mbx_mq_create *mq_create;
15423 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15424 	struct lpfc_dmabuf *dmabuf;
15425 	LPFC_MBOXQ_t *mbox;
15426 	int rc, length, status = 0;
15427 	uint32_t shdr_status, shdr_add_status;
15428 	union lpfc_sli4_cfg_shdr *shdr;
15429 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15430 
15431 	/* sanity check on queue memory */
15432 	if (!mq || !cq)
15433 		return -ENODEV;
15434 	if (!phba->sli4_hba.pc_sli4_params.supported)
15435 		hw_page_size = SLI4_PAGE_SIZE;
15436 
15437 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15438 	if (!mbox)
15439 		return -ENOMEM;
15440 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15441 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15442 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15443 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15444 			 length, LPFC_SLI4_MBX_EMBED);
15445 
15446 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15447 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15448 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15449 	       &mq_create_ext->u.request, mq->page_count);
15450 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15451 	       &mq_create_ext->u.request, 1);
15452 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15453 	       &mq_create_ext->u.request, 1);
15454 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15455 	       &mq_create_ext->u.request, 1);
15456 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15457 	       &mq_create_ext->u.request, 1);
15458 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15459 	       &mq_create_ext->u.request, 1);
15460 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15461 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15462 	       phba->sli4_hba.pc_sli4_params.mqv);
15463 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15464 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15465 		       cq->queue_id);
15466 	else
15467 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15468 		       cq->queue_id);
15469 	switch (mq->entry_count) {
15470 	default:
15471 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15472 				"0362 Unsupported MQ count. (%d)\n",
15473 				mq->entry_count);
15474 		if (mq->entry_count < 16) {
15475 			status = -EINVAL;
15476 			goto out;
15477 		}
15478 		/* fall through - otherwise default to smallest count */
15479 	case 16:
15480 		bf_set(lpfc_mq_context_ring_size,
15481 		       &mq_create_ext->u.request.context,
15482 		       LPFC_MQ_RING_SIZE_16);
15483 		break;
15484 	case 32:
15485 		bf_set(lpfc_mq_context_ring_size,
15486 		       &mq_create_ext->u.request.context,
15487 		       LPFC_MQ_RING_SIZE_32);
15488 		break;
15489 	case 64:
15490 		bf_set(lpfc_mq_context_ring_size,
15491 		       &mq_create_ext->u.request.context,
15492 		       LPFC_MQ_RING_SIZE_64);
15493 		break;
15494 	case 128:
15495 		bf_set(lpfc_mq_context_ring_size,
15496 		       &mq_create_ext->u.request.context,
15497 		       LPFC_MQ_RING_SIZE_128);
15498 		break;
15499 	}
15500 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15501 		memset(dmabuf->virt, 0, hw_page_size);
15502 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15503 					putPaddrLow(dmabuf->phys);
15504 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15505 					putPaddrHigh(dmabuf->phys);
15506 	}
15507 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15508 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15509 			      &mq_create_ext->u.response);
15510 	if (rc != MBX_SUCCESS) {
15511 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15512 				"2795 MQ_CREATE_EXT failed with "
15513 				"status x%x. Failback to MQ_CREATE.\n",
15514 				rc);
15515 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15516 		mq_create = &mbox->u.mqe.un.mq_create;
15517 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15518 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15519 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15520 				      &mq_create->u.response);
15521 	}
15522 
15523 	/* The IOCTL status is embedded in the mailbox subheader. */
15524 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15525 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15526 	if (shdr_status || shdr_add_status || rc) {
15527 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15528 				"2502 MQ_CREATE mailbox failed with "
15529 				"status x%x add_status x%x, mbx status x%x\n",
15530 				shdr_status, shdr_add_status, rc);
15531 		status = -ENXIO;
15532 		goto out;
15533 	}
15534 	if (mq->queue_id == 0xFFFF) {
15535 		status = -ENXIO;
15536 		goto out;
15537 	}
15538 	mq->type = LPFC_MQ;
15539 	mq->assoc_qid = cq->queue_id;
15540 	mq->subtype = subtype;
15541 	mq->host_index = 0;
15542 	mq->hba_index = 0;
15543 
15544 	/* link the mq onto the parent cq child list */
15545 	list_add_tail(&mq->list, &cq->child_list);
15546 out:
15547 	mempool_free(mbox, phba->mbox_mem_pool);
15548 	return status;
15549 }
15550 
15551 /**
15552  * lpfc_wq_create - Create a Work Queue on the HBA
15553  * @phba: HBA structure that indicates port to create a queue on.
15554  * @wq: The queue structure to use to create the work queue.
15555  * @cq: The completion queue to bind this work queue to.
15556  * @subtype: The subtype of the work queue indicating its functionality.
15557  *
15558  * This function creates a work queue, as detailed in @wq, on a port, described
15559  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15560  *
15561  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15562  * is used to get the entry count and entry size that are necessary to
15563  * determine the number of pages to allocate and use for this queue. The @cq
15564  * is used to indicate which completion queue to bind this work queue to. This
15565  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15566  * work queue. This function is asynchronous and will wait for the mailbox
15567  * command to finish before continuing.
15568  *
15569  * On success this function will return a zero. If unable to allocate enough
15570  * memory this function will return -ENOMEM. If the queue create mailbox command
15571  * fails this function will return -ENXIO.
15572  **/
15573 int
15574 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15575 	       struct lpfc_queue *cq, uint32_t subtype)
15576 {
15577 	struct lpfc_mbx_wq_create *wq_create;
15578 	struct lpfc_dmabuf *dmabuf;
15579 	LPFC_MBOXQ_t *mbox;
15580 	int rc, length, status = 0;
15581 	uint32_t shdr_status, shdr_add_status;
15582 	union lpfc_sli4_cfg_shdr *shdr;
15583 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15584 	struct dma_address *page;
15585 	void __iomem *bar_memmap_p;
15586 	uint32_t db_offset;
15587 	uint16_t pci_barset;
15588 	uint8_t dpp_barset;
15589 	uint32_t dpp_offset;
15590 	unsigned long pg_addr;
15591 	uint8_t wq_create_version;
15592 
15593 	/* sanity check on queue memory */
15594 	if (!wq || !cq)
15595 		return -ENODEV;
15596 	if (!phba->sli4_hba.pc_sli4_params.supported)
15597 		hw_page_size = wq->page_size;
15598 
15599 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15600 	if (!mbox)
15601 		return -ENOMEM;
15602 	length = (sizeof(struct lpfc_mbx_wq_create) -
15603 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15604 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15605 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15606 			 length, LPFC_SLI4_MBX_EMBED);
15607 	wq_create = &mbox->u.mqe.un.wq_create;
15608 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15609 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15610 		    wq->page_count);
15611 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15612 		    cq->queue_id);
15613 
15614 	/* wqv is the earliest version supported, NOT the latest */
15615 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15616 	       phba->sli4_hba.pc_sli4_params.wqv);
15617 
15618 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15619 	    (wq->page_size > SLI4_PAGE_SIZE))
15620 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15621 	else
15622 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15623 
15624 
15625 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15626 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15627 	else
15628 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15629 
15630 	switch (wq_create_version) {
15631 	case LPFC_Q_CREATE_VERSION_1:
15632 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15633 		       wq->entry_count);
15634 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15635 		       LPFC_Q_CREATE_VERSION_1);
15636 
15637 		switch (wq->entry_size) {
15638 		default:
15639 		case 64:
15640 			bf_set(lpfc_mbx_wq_create_wqe_size,
15641 			       &wq_create->u.request_1,
15642 			       LPFC_WQ_WQE_SIZE_64);
15643 			break;
15644 		case 128:
15645 			bf_set(lpfc_mbx_wq_create_wqe_size,
15646 			       &wq_create->u.request_1,
15647 			       LPFC_WQ_WQE_SIZE_128);
15648 			break;
15649 		}
15650 		/* Request DPP by default */
15651 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15652 		bf_set(lpfc_mbx_wq_create_page_size,
15653 		       &wq_create->u.request_1,
15654 		       (wq->page_size / SLI4_PAGE_SIZE));
15655 		page = wq_create->u.request_1.page;
15656 		break;
15657 	default:
15658 		page = wq_create->u.request.page;
15659 		break;
15660 	}
15661 
15662 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15663 		memset(dmabuf->virt, 0, hw_page_size);
15664 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15665 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15666 	}
15667 
15668 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15669 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15670 
15671 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15672 	/* The IOCTL status is embedded in the mailbox subheader. */
15673 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15674 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15675 	if (shdr_status || shdr_add_status || rc) {
15676 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15677 				"2503 WQ_CREATE mailbox failed with "
15678 				"status x%x add_status x%x, mbx status x%x\n",
15679 				shdr_status, shdr_add_status, rc);
15680 		status = -ENXIO;
15681 		goto out;
15682 	}
15683 
15684 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15685 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15686 					&wq_create->u.response);
15687 	else
15688 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15689 					&wq_create->u.response_1);
15690 
15691 	if (wq->queue_id == 0xFFFF) {
15692 		status = -ENXIO;
15693 		goto out;
15694 	}
15695 
15696 	wq->db_format = LPFC_DB_LIST_FORMAT;
15697 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15698 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15699 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15700 					       &wq_create->u.response);
15701 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15702 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15703 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15704 						"3265 WQ[%d] doorbell format "
15705 						"not supported: x%x\n",
15706 						wq->queue_id, wq->db_format);
15707 				status = -EINVAL;
15708 				goto out;
15709 			}
15710 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15711 					    &wq_create->u.response);
15712 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15713 								   pci_barset);
15714 			if (!bar_memmap_p) {
15715 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15716 						"3263 WQ[%d] failed to memmap "
15717 						"pci barset:x%x\n",
15718 						wq->queue_id, pci_barset);
15719 				status = -ENOMEM;
15720 				goto out;
15721 			}
15722 			db_offset = wq_create->u.response.doorbell_offset;
15723 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15724 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15725 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15726 						"3252 WQ[%d] doorbell offset "
15727 						"not supported: x%x\n",
15728 						wq->queue_id, db_offset);
15729 				status = -EINVAL;
15730 				goto out;
15731 			}
15732 			wq->db_regaddr = bar_memmap_p + db_offset;
15733 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15734 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15735 					"format:x%x\n", wq->queue_id,
15736 					pci_barset, db_offset, wq->db_format);
15737 		} else
15738 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15739 	} else {
15740 		/* Check if DPP was honored by the firmware */
15741 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15742 				    &wq_create->u.response_1);
15743 		if (wq->dpp_enable) {
15744 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15745 					    &wq_create->u.response_1);
15746 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15747 								   pci_barset);
15748 			if (!bar_memmap_p) {
15749 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15750 						"3267 WQ[%d] failed to memmap "
15751 						"pci barset:x%x\n",
15752 						wq->queue_id, pci_barset);
15753 				status = -ENOMEM;
15754 				goto out;
15755 			}
15756 			db_offset = wq_create->u.response_1.doorbell_offset;
15757 			wq->db_regaddr = bar_memmap_p + db_offset;
15758 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15759 					    &wq_create->u.response_1);
15760 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15761 					    &wq_create->u.response_1);
15762 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15763 								   dpp_barset);
15764 			if (!bar_memmap_p) {
15765 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15766 						"3268 WQ[%d] failed to memmap "
15767 						"pci barset:x%x\n",
15768 						wq->queue_id, dpp_barset);
15769 				status = -ENOMEM;
15770 				goto out;
15771 			}
15772 			dpp_offset = wq_create->u.response_1.dpp_offset;
15773 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15774 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15775 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15776 					"dpp_id:x%x dpp_barset:x%x "
15777 					"dpp_offset:x%x\n",
15778 					wq->queue_id, pci_barset, db_offset,
15779 					wq->dpp_id, dpp_barset, dpp_offset);
15780 
15781 			/* Enable combined writes for DPP aperture */
15782 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15783 #ifdef CONFIG_X86
15784 			rc = set_memory_wc(pg_addr, 1);
15785 			if (rc) {
15786 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15787 					"3272 Cannot setup Combined "
15788 					"Write on WQ[%d] - disable DPP\n",
15789 					wq->queue_id);
15790 				phba->cfg_enable_dpp = 0;
15791 			}
15792 #else
15793 			phba->cfg_enable_dpp = 0;
15794 #endif
15795 		} else
15796 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15797 	}
15798 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15799 	if (wq->pring == NULL) {
15800 		status = -ENOMEM;
15801 		goto out;
15802 	}
15803 	wq->type = LPFC_WQ;
15804 	wq->assoc_qid = cq->queue_id;
15805 	wq->subtype = subtype;
15806 	wq->host_index = 0;
15807 	wq->hba_index = 0;
15808 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15809 
15810 	/* link the wq onto the parent cq child list */
15811 	list_add_tail(&wq->list, &cq->child_list);
15812 out:
15813 	mempool_free(mbox, phba->mbox_mem_pool);
15814 	return status;
15815 }
15816 
15817 /**
15818  * lpfc_rq_create - Create a Receive Queue on the HBA
15819  * @phba: HBA structure that indicates port to create a queue on.
15820  * @hrq: The queue structure to use to create the header receive queue.
15821  * @drq: The queue structure to use to create the data receive queue.
15822  * @cq: The completion queue to bind this work queue to.
15823  *
15824  * This function creates a receive buffer queue pair , as detailed in @hrq and
15825  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15826  * to the HBA.
15827  *
15828  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15829  * struct is used to get the entry count that is necessary to determine the
15830  * number of pages to use for this queue. The @cq is used to indicate which
15831  * completion queue to bind received buffers that are posted to these queues to.
15832  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15833  * receive queue pair. This function is asynchronous and will wait for the
15834  * mailbox command to finish before continuing.
15835  *
15836  * On success this function will return a zero. If unable to allocate enough
15837  * memory this function will return -ENOMEM. If the queue create mailbox command
15838  * fails this function will return -ENXIO.
15839  **/
15840 int
15841 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15842 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15843 {
15844 	struct lpfc_mbx_rq_create *rq_create;
15845 	struct lpfc_dmabuf *dmabuf;
15846 	LPFC_MBOXQ_t *mbox;
15847 	int rc, length, status = 0;
15848 	uint32_t shdr_status, shdr_add_status;
15849 	union lpfc_sli4_cfg_shdr *shdr;
15850 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15851 	void __iomem *bar_memmap_p;
15852 	uint32_t db_offset;
15853 	uint16_t pci_barset;
15854 
15855 	/* sanity check on queue memory */
15856 	if (!hrq || !drq || !cq)
15857 		return -ENODEV;
15858 	if (!phba->sli4_hba.pc_sli4_params.supported)
15859 		hw_page_size = SLI4_PAGE_SIZE;
15860 
15861 	if (hrq->entry_count != drq->entry_count)
15862 		return -EINVAL;
15863 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15864 	if (!mbox)
15865 		return -ENOMEM;
15866 	length = (sizeof(struct lpfc_mbx_rq_create) -
15867 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15868 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15869 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15870 			 length, LPFC_SLI4_MBX_EMBED);
15871 	rq_create = &mbox->u.mqe.un.rq_create;
15872 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15873 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15874 	       phba->sli4_hba.pc_sli4_params.rqv);
15875 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15876 		bf_set(lpfc_rq_context_rqe_count_1,
15877 		       &rq_create->u.request.context,
15878 		       hrq->entry_count);
15879 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15880 		bf_set(lpfc_rq_context_rqe_size,
15881 		       &rq_create->u.request.context,
15882 		       LPFC_RQE_SIZE_8);
15883 		bf_set(lpfc_rq_context_page_size,
15884 		       &rq_create->u.request.context,
15885 		       LPFC_RQ_PAGE_SIZE_4096);
15886 	} else {
15887 		switch (hrq->entry_count) {
15888 		default:
15889 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15890 					"2535 Unsupported RQ count. (%d)\n",
15891 					hrq->entry_count);
15892 			if (hrq->entry_count < 512) {
15893 				status = -EINVAL;
15894 				goto out;
15895 			}
15896 			/* fall through - otherwise default to smallest count */
15897 		case 512:
15898 			bf_set(lpfc_rq_context_rqe_count,
15899 			       &rq_create->u.request.context,
15900 			       LPFC_RQ_RING_SIZE_512);
15901 			break;
15902 		case 1024:
15903 			bf_set(lpfc_rq_context_rqe_count,
15904 			       &rq_create->u.request.context,
15905 			       LPFC_RQ_RING_SIZE_1024);
15906 			break;
15907 		case 2048:
15908 			bf_set(lpfc_rq_context_rqe_count,
15909 			       &rq_create->u.request.context,
15910 			       LPFC_RQ_RING_SIZE_2048);
15911 			break;
15912 		case 4096:
15913 			bf_set(lpfc_rq_context_rqe_count,
15914 			       &rq_create->u.request.context,
15915 			       LPFC_RQ_RING_SIZE_4096);
15916 			break;
15917 		}
15918 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15919 		       LPFC_HDR_BUF_SIZE);
15920 	}
15921 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15922 	       cq->queue_id);
15923 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15924 	       hrq->page_count);
15925 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15926 		memset(dmabuf->virt, 0, hw_page_size);
15927 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15928 					putPaddrLow(dmabuf->phys);
15929 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15930 					putPaddrHigh(dmabuf->phys);
15931 	}
15932 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15933 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15934 
15935 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15936 	/* The IOCTL status is embedded in the mailbox subheader. */
15937 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15938 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15939 	if (shdr_status || shdr_add_status || rc) {
15940 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15941 				"2504 RQ_CREATE mailbox failed with "
15942 				"status x%x add_status x%x, mbx status x%x\n",
15943 				shdr_status, shdr_add_status, rc);
15944 		status = -ENXIO;
15945 		goto out;
15946 	}
15947 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15948 	if (hrq->queue_id == 0xFFFF) {
15949 		status = -ENXIO;
15950 		goto out;
15951 	}
15952 
15953 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15954 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15955 					&rq_create->u.response);
15956 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15957 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15958 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15959 					"3262 RQ [%d] doorbell format not "
15960 					"supported: x%x\n", hrq->queue_id,
15961 					hrq->db_format);
15962 			status = -EINVAL;
15963 			goto out;
15964 		}
15965 
15966 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15967 				    &rq_create->u.response);
15968 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15969 		if (!bar_memmap_p) {
15970 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15971 					"3269 RQ[%d] failed to memmap pci "
15972 					"barset:x%x\n", hrq->queue_id,
15973 					pci_barset);
15974 			status = -ENOMEM;
15975 			goto out;
15976 		}
15977 
15978 		db_offset = rq_create->u.response.doorbell_offset;
15979 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15980 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15981 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15982 					"3270 RQ[%d] doorbell offset not "
15983 					"supported: x%x\n", hrq->queue_id,
15984 					db_offset);
15985 			status = -EINVAL;
15986 			goto out;
15987 		}
15988 		hrq->db_regaddr = bar_memmap_p + db_offset;
15989 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15990 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15991 				"format:x%x\n", hrq->queue_id, pci_barset,
15992 				db_offset, hrq->db_format);
15993 	} else {
15994 		hrq->db_format = LPFC_DB_RING_FORMAT;
15995 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15996 	}
15997 	hrq->type = LPFC_HRQ;
15998 	hrq->assoc_qid = cq->queue_id;
15999 	hrq->subtype = subtype;
16000 	hrq->host_index = 0;
16001 	hrq->hba_index = 0;
16002 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16003 
16004 	/* now create the data queue */
16005 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16006 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16007 			 length, LPFC_SLI4_MBX_EMBED);
16008 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16009 	       phba->sli4_hba.pc_sli4_params.rqv);
16010 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16011 		bf_set(lpfc_rq_context_rqe_count_1,
16012 		       &rq_create->u.request.context, hrq->entry_count);
16013 		if (subtype == LPFC_NVMET)
16014 			rq_create->u.request.context.buffer_size =
16015 				LPFC_NVMET_DATA_BUF_SIZE;
16016 		else
16017 			rq_create->u.request.context.buffer_size =
16018 				LPFC_DATA_BUF_SIZE;
16019 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16020 		       LPFC_RQE_SIZE_8);
16021 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16022 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16023 	} else {
16024 		switch (drq->entry_count) {
16025 		default:
16026 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16027 					"2536 Unsupported RQ count. (%d)\n",
16028 					drq->entry_count);
16029 			if (drq->entry_count < 512) {
16030 				status = -EINVAL;
16031 				goto out;
16032 			}
16033 			/* fall through - otherwise default to smallest count */
16034 		case 512:
16035 			bf_set(lpfc_rq_context_rqe_count,
16036 			       &rq_create->u.request.context,
16037 			       LPFC_RQ_RING_SIZE_512);
16038 			break;
16039 		case 1024:
16040 			bf_set(lpfc_rq_context_rqe_count,
16041 			       &rq_create->u.request.context,
16042 			       LPFC_RQ_RING_SIZE_1024);
16043 			break;
16044 		case 2048:
16045 			bf_set(lpfc_rq_context_rqe_count,
16046 			       &rq_create->u.request.context,
16047 			       LPFC_RQ_RING_SIZE_2048);
16048 			break;
16049 		case 4096:
16050 			bf_set(lpfc_rq_context_rqe_count,
16051 			       &rq_create->u.request.context,
16052 			       LPFC_RQ_RING_SIZE_4096);
16053 			break;
16054 		}
16055 		if (subtype == LPFC_NVMET)
16056 			bf_set(lpfc_rq_context_buf_size,
16057 			       &rq_create->u.request.context,
16058 			       LPFC_NVMET_DATA_BUF_SIZE);
16059 		else
16060 			bf_set(lpfc_rq_context_buf_size,
16061 			       &rq_create->u.request.context,
16062 			       LPFC_DATA_BUF_SIZE);
16063 	}
16064 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16065 	       cq->queue_id);
16066 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16067 	       drq->page_count);
16068 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16069 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16070 					putPaddrLow(dmabuf->phys);
16071 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16072 					putPaddrHigh(dmabuf->phys);
16073 	}
16074 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16075 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16076 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16077 	/* The IOCTL status is embedded in the mailbox subheader. */
16078 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16079 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16080 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16081 	if (shdr_status || shdr_add_status || rc) {
16082 		status = -ENXIO;
16083 		goto out;
16084 	}
16085 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16086 	if (drq->queue_id == 0xFFFF) {
16087 		status = -ENXIO;
16088 		goto out;
16089 	}
16090 	drq->type = LPFC_DRQ;
16091 	drq->assoc_qid = cq->queue_id;
16092 	drq->subtype = subtype;
16093 	drq->host_index = 0;
16094 	drq->hba_index = 0;
16095 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16096 
16097 	/* link the header and data RQs onto the parent cq child list */
16098 	list_add_tail(&hrq->list, &cq->child_list);
16099 	list_add_tail(&drq->list, &cq->child_list);
16100 
16101 out:
16102 	mempool_free(mbox, phba->mbox_mem_pool);
16103 	return status;
16104 }
16105 
16106 /**
16107  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16108  * @phba: HBA structure that indicates port to create a queue on.
16109  * @hrqp: The queue structure array to use to create the header receive queues.
16110  * @drqp: The queue structure array to use to create the data receive queues.
16111  * @cqp: The completion queue array to bind these receive queues to.
16112  *
16113  * This function creates a receive buffer queue pair , as detailed in @hrq and
16114  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16115  * to the HBA.
16116  *
16117  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16118  * struct is used to get the entry count that is necessary to determine the
16119  * number of pages to use for this queue. The @cq is used to indicate which
16120  * completion queue to bind received buffers that are posted to these queues to.
16121  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16122  * receive queue pair. This function is asynchronous and will wait for the
16123  * mailbox command to finish before continuing.
16124  *
16125  * On success this function will return a zero. If unable to allocate enough
16126  * memory this function will return -ENOMEM. If the queue create mailbox command
16127  * fails this function will return -ENXIO.
16128  **/
16129 int
16130 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16131 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16132 		uint32_t subtype)
16133 {
16134 	struct lpfc_queue *hrq, *drq, *cq;
16135 	struct lpfc_mbx_rq_create_v2 *rq_create;
16136 	struct lpfc_dmabuf *dmabuf;
16137 	LPFC_MBOXQ_t *mbox;
16138 	int rc, length, alloclen, status = 0;
16139 	int cnt, idx, numrq, page_idx = 0;
16140 	uint32_t shdr_status, shdr_add_status;
16141 	union lpfc_sli4_cfg_shdr *shdr;
16142 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16143 
16144 	numrq = phba->cfg_nvmet_mrq;
16145 	/* sanity check on array memory */
16146 	if (!hrqp || !drqp || !cqp || !numrq)
16147 		return -ENODEV;
16148 	if (!phba->sli4_hba.pc_sli4_params.supported)
16149 		hw_page_size = SLI4_PAGE_SIZE;
16150 
16151 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16152 	if (!mbox)
16153 		return -ENOMEM;
16154 
16155 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16156 	length += ((2 * numrq * hrqp[0]->page_count) *
16157 		   sizeof(struct dma_address));
16158 
16159 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16160 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16161 				    LPFC_SLI4_MBX_NEMBED);
16162 	if (alloclen < length) {
16163 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16164 				"3099 Allocated DMA memory size (%d) is "
16165 				"less than the requested DMA memory size "
16166 				"(%d)\n", alloclen, length);
16167 		status = -ENOMEM;
16168 		goto out;
16169 	}
16170 
16171 
16172 
16173 	rq_create = mbox->sge_array->addr[0];
16174 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16175 
16176 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16177 	cnt = 0;
16178 
16179 	for (idx = 0; idx < numrq; idx++) {
16180 		hrq = hrqp[idx];
16181 		drq = drqp[idx];
16182 		cq  = cqp[idx];
16183 
16184 		/* sanity check on queue memory */
16185 		if (!hrq || !drq || !cq) {
16186 			status = -ENODEV;
16187 			goto out;
16188 		}
16189 
16190 		if (hrq->entry_count != drq->entry_count) {
16191 			status = -EINVAL;
16192 			goto out;
16193 		}
16194 
16195 		if (idx == 0) {
16196 			bf_set(lpfc_mbx_rq_create_num_pages,
16197 			       &rq_create->u.request,
16198 			       hrq->page_count);
16199 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16200 			       &rq_create->u.request, (numrq * 2));
16201 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16202 			       1);
16203 			bf_set(lpfc_rq_context_base_cq,
16204 			       &rq_create->u.request.context,
16205 			       cq->queue_id);
16206 			bf_set(lpfc_rq_context_data_size,
16207 			       &rq_create->u.request.context,
16208 			       LPFC_NVMET_DATA_BUF_SIZE);
16209 			bf_set(lpfc_rq_context_hdr_size,
16210 			       &rq_create->u.request.context,
16211 			       LPFC_HDR_BUF_SIZE);
16212 			bf_set(lpfc_rq_context_rqe_count_1,
16213 			       &rq_create->u.request.context,
16214 			       hrq->entry_count);
16215 			bf_set(lpfc_rq_context_rqe_size,
16216 			       &rq_create->u.request.context,
16217 			       LPFC_RQE_SIZE_8);
16218 			bf_set(lpfc_rq_context_page_size,
16219 			       &rq_create->u.request.context,
16220 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16221 		}
16222 		rc = 0;
16223 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16224 			memset(dmabuf->virt, 0, hw_page_size);
16225 			cnt = page_idx + dmabuf->buffer_tag;
16226 			rq_create->u.request.page[cnt].addr_lo =
16227 					putPaddrLow(dmabuf->phys);
16228 			rq_create->u.request.page[cnt].addr_hi =
16229 					putPaddrHigh(dmabuf->phys);
16230 			rc++;
16231 		}
16232 		page_idx += rc;
16233 
16234 		rc = 0;
16235 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16236 			memset(dmabuf->virt, 0, hw_page_size);
16237 			cnt = page_idx + dmabuf->buffer_tag;
16238 			rq_create->u.request.page[cnt].addr_lo =
16239 					putPaddrLow(dmabuf->phys);
16240 			rq_create->u.request.page[cnt].addr_hi =
16241 					putPaddrHigh(dmabuf->phys);
16242 			rc++;
16243 		}
16244 		page_idx += rc;
16245 
16246 		hrq->db_format = LPFC_DB_RING_FORMAT;
16247 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16248 		hrq->type = LPFC_HRQ;
16249 		hrq->assoc_qid = cq->queue_id;
16250 		hrq->subtype = subtype;
16251 		hrq->host_index = 0;
16252 		hrq->hba_index = 0;
16253 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16254 
16255 		drq->db_format = LPFC_DB_RING_FORMAT;
16256 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16257 		drq->type = LPFC_DRQ;
16258 		drq->assoc_qid = cq->queue_id;
16259 		drq->subtype = subtype;
16260 		drq->host_index = 0;
16261 		drq->hba_index = 0;
16262 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16263 
16264 		list_add_tail(&hrq->list, &cq->child_list);
16265 		list_add_tail(&drq->list, &cq->child_list);
16266 	}
16267 
16268 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16269 	/* The IOCTL status is embedded in the mailbox subheader. */
16270 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16271 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16272 	if (shdr_status || shdr_add_status || rc) {
16273 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16274 				"3120 RQ_CREATE mailbox failed with "
16275 				"status x%x add_status x%x, mbx status x%x\n",
16276 				shdr_status, shdr_add_status, rc);
16277 		status = -ENXIO;
16278 		goto out;
16279 	}
16280 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16281 	if (rc == 0xFFFF) {
16282 		status = -ENXIO;
16283 		goto out;
16284 	}
16285 
16286 	/* Initialize all RQs with associated queue id */
16287 	for (idx = 0; idx < numrq; idx++) {
16288 		hrq = hrqp[idx];
16289 		hrq->queue_id = rc + (2 * idx);
16290 		drq = drqp[idx];
16291 		drq->queue_id = rc + (2 * idx) + 1;
16292 	}
16293 
16294 out:
16295 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16296 	return status;
16297 }
16298 
16299 /**
16300  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16301  * @eq: The queue structure associated with the queue to destroy.
16302  *
16303  * This function destroys a queue, as detailed in @eq by sending an mailbox
16304  * command, specific to the type of queue, to the HBA.
16305  *
16306  * The @eq struct is used to get the queue ID of the queue to destroy.
16307  *
16308  * On success this function will return a zero. If the queue destroy mailbox
16309  * command fails this function will return -ENXIO.
16310  **/
16311 int
16312 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16313 {
16314 	LPFC_MBOXQ_t *mbox;
16315 	int rc, length, status = 0;
16316 	uint32_t shdr_status, shdr_add_status;
16317 	union lpfc_sli4_cfg_shdr *shdr;
16318 
16319 	/* sanity check on queue memory */
16320 	if (!eq)
16321 		return -ENODEV;
16322 
16323 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16324 	if (!mbox)
16325 		return -ENOMEM;
16326 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16327 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16328 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16329 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16330 			 length, LPFC_SLI4_MBX_EMBED);
16331 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16332 	       eq->queue_id);
16333 	mbox->vport = eq->phba->pport;
16334 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16335 
16336 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16337 	/* The IOCTL status is embedded in the mailbox subheader. */
16338 	shdr = (union lpfc_sli4_cfg_shdr *)
16339 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16340 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16341 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16342 	if (shdr_status || shdr_add_status || rc) {
16343 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16344 				"2505 EQ_DESTROY mailbox failed with "
16345 				"status x%x add_status x%x, mbx status x%x\n",
16346 				shdr_status, shdr_add_status, rc);
16347 		status = -ENXIO;
16348 	}
16349 
16350 	/* Remove eq from any list */
16351 	list_del_init(&eq->list);
16352 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16353 	return status;
16354 }
16355 
16356 /**
16357  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16358  * @cq: The queue structure associated with the queue to destroy.
16359  *
16360  * This function destroys a queue, as detailed in @cq by sending an mailbox
16361  * command, specific to the type of queue, to the HBA.
16362  *
16363  * The @cq struct is used to get the queue ID of the queue to destroy.
16364  *
16365  * On success this function will return a zero. If the queue destroy mailbox
16366  * command fails this function will return -ENXIO.
16367  **/
16368 int
16369 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16370 {
16371 	LPFC_MBOXQ_t *mbox;
16372 	int rc, length, status = 0;
16373 	uint32_t shdr_status, shdr_add_status;
16374 	union lpfc_sli4_cfg_shdr *shdr;
16375 
16376 	/* sanity check on queue memory */
16377 	if (!cq)
16378 		return -ENODEV;
16379 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16380 	if (!mbox)
16381 		return -ENOMEM;
16382 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16383 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16384 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16385 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16386 			 length, LPFC_SLI4_MBX_EMBED);
16387 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16388 	       cq->queue_id);
16389 	mbox->vport = cq->phba->pport;
16390 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16391 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16392 	/* The IOCTL status is embedded in the mailbox subheader. */
16393 	shdr = (union lpfc_sli4_cfg_shdr *)
16394 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16395 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16396 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16397 	if (shdr_status || shdr_add_status || rc) {
16398 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16399 				"2506 CQ_DESTROY mailbox failed with "
16400 				"status x%x add_status x%x, mbx status x%x\n",
16401 				shdr_status, shdr_add_status, rc);
16402 		status = -ENXIO;
16403 	}
16404 	/* Remove cq from any list */
16405 	list_del_init(&cq->list);
16406 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16407 	return status;
16408 }
16409 
16410 /**
16411  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16412  * @qm: The queue structure associated with the queue to destroy.
16413  *
16414  * This function destroys a queue, as detailed in @mq by sending an mailbox
16415  * command, specific to the type of queue, to the HBA.
16416  *
16417  * The @mq struct is used to get the queue ID of the queue to destroy.
16418  *
16419  * On success this function will return a zero. If the queue destroy mailbox
16420  * command fails this function will return -ENXIO.
16421  **/
16422 int
16423 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16424 {
16425 	LPFC_MBOXQ_t *mbox;
16426 	int rc, length, status = 0;
16427 	uint32_t shdr_status, shdr_add_status;
16428 	union lpfc_sli4_cfg_shdr *shdr;
16429 
16430 	/* sanity check on queue memory */
16431 	if (!mq)
16432 		return -ENODEV;
16433 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16434 	if (!mbox)
16435 		return -ENOMEM;
16436 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16437 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16438 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16439 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16440 			 length, LPFC_SLI4_MBX_EMBED);
16441 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16442 	       mq->queue_id);
16443 	mbox->vport = mq->phba->pport;
16444 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16445 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16446 	/* The IOCTL status is embedded in the mailbox subheader. */
16447 	shdr = (union lpfc_sli4_cfg_shdr *)
16448 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16449 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16450 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16451 	if (shdr_status || shdr_add_status || rc) {
16452 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16453 				"2507 MQ_DESTROY mailbox failed with "
16454 				"status x%x add_status x%x, mbx status x%x\n",
16455 				shdr_status, shdr_add_status, rc);
16456 		status = -ENXIO;
16457 	}
16458 	/* Remove mq from any list */
16459 	list_del_init(&mq->list);
16460 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16461 	return status;
16462 }
16463 
16464 /**
16465  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16466  * @wq: The queue structure associated with the queue to destroy.
16467  *
16468  * This function destroys a queue, as detailed in @wq by sending an mailbox
16469  * command, specific to the type of queue, to the HBA.
16470  *
16471  * The @wq struct is used to get the queue ID of the queue to destroy.
16472  *
16473  * On success this function will return a zero. If the queue destroy mailbox
16474  * command fails this function will return -ENXIO.
16475  **/
16476 int
16477 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16478 {
16479 	LPFC_MBOXQ_t *mbox;
16480 	int rc, length, status = 0;
16481 	uint32_t shdr_status, shdr_add_status;
16482 	union lpfc_sli4_cfg_shdr *shdr;
16483 
16484 	/* sanity check on queue memory */
16485 	if (!wq)
16486 		return -ENODEV;
16487 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16488 	if (!mbox)
16489 		return -ENOMEM;
16490 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16491 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16492 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16493 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16494 			 length, LPFC_SLI4_MBX_EMBED);
16495 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16496 	       wq->queue_id);
16497 	mbox->vport = wq->phba->pport;
16498 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16499 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16500 	shdr = (union lpfc_sli4_cfg_shdr *)
16501 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16502 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16503 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16504 	if (shdr_status || shdr_add_status || rc) {
16505 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16506 				"2508 WQ_DESTROY mailbox failed with "
16507 				"status x%x add_status x%x, mbx status x%x\n",
16508 				shdr_status, shdr_add_status, rc);
16509 		status = -ENXIO;
16510 	}
16511 	/* Remove wq from any list */
16512 	list_del_init(&wq->list);
16513 	kfree(wq->pring);
16514 	wq->pring = NULL;
16515 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16516 	return status;
16517 }
16518 
16519 /**
16520  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16521  * @rq: The queue structure associated with the queue to destroy.
16522  *
16523  * This function destroys a queue, as detailed in @rq by sending an mailbox
16524  * command, specific to the type of queue, to the HBA.
16525  *
16526  * The @rq struct is used to get the queue ID of the queue to destroy.
16527  *
16528  * On success this function will return a zero. If the queue destroy mailbox
16529  * command fails this function will return -ENXIO.
16530  **/
16531 int
16532 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16533 		struct lpfc_queue *drq)
16534 {
16535 	LPFC_MBOXQ_t *mbox;
16536 	int rc, length, status = 0;
16537 	uint32_t shdr_status, shdr_add_status;
16538 	union lpfc_sli4_cfg_shdr *shdr;
16539 
16540 	/* sanity check on queue memory */
16541 	if (!hrq || !drq)
16542 		return -ENODEV;
16543 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16544 	if (!mbox)
16545 		return -ENOMEM;
16546 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16547 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16548 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16549 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16550 			 length, LPFC_SLI4_MBX_EMBED);
16551 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16552 	       hrq->queue_id);
16553 	mbox->vport = hrq->phba->pport;
16554 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16555 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16556 	/* The IOCTL status is embedded in the mailbox subheader. */
16557 	shdr = (union lpfc_sli4_cfg_shdr *)
16558 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16559 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16560 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16561 	if (shdr_status || shdr_add_status || rc) {
16562 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16563 				"2509 RQ_DESTROY mailbox failed with "
16564 				"status x%x add_status x%x, mbx status x%x\n",
16565 				shdr_status, shdr_add_status, rc);
16566 		if (rc != MBX_TIMEOUT)
16567 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16568 		return -ENXIO;
16569 	}
16570 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16571 	       drq->queue_id);
16572 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16573 	shdr = (union lpfc_sli4_cfg_shdr *)
16574 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16575 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16576 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16577 	if (shdr_status || shdr_add_status || rc) {
16578 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16579 				"2510 RQ_DESTROY mailbox failed with "
16580 				"status x%x add_status x%x, mbx status x%x\n",
16581 				shdr_status, shdr_add_status, rc);
16582 		status = -ENXIO;
16583 	}
16584 	list_del_init(&hrq->list);
16585 	list_del_init(&drq->list);
16586 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16587 	return status;
16588 }
16589 
16590 /**
16591  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16592  * @phba: The virtual port for which this call being executed.
16593  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16594  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16595  * @xritag: the xritag that ties this io to the SGL pages.
16596  *
16597  * This routine will post the sgl pages for the IO that has the xritag
16598  * that is in the iocbq structure. The xritag is assigned during iocbq
16599  * creation and persists for as long as the driver is loaded.
16600  * if the caller has fewer than 256 scatter gather segments to map then
16601  * pdma_phys_addr1 should be 0.
16602  * If the caller needs to map more than 256 scatter gather segment then
16603  * pdma_phys_addr1 should be a valid physical address.
16604  * physical address for SGLs must be 64 byte aligned.
16605  * If you are going to map 2 SGL's then the first one must have 256 entries
16606  * the second sgl can have between 1 and 256 entries.
16607  *
16608  * Return codes:
16609  * 	0 - Success
16610  * 	-ENXIO, -ENOMEM - Failure
16611  **/
16612 int
16613 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16614 		dma_addr_t pdma_phys_addr0,
16615 		dma_addr_t pdma_phys_addr1,
16616 		uint16_t xritag)
16617 {
16618 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16619 	LPFC_MBOXQ_t *mbox;
16620 	int rc;
16621 	uint32_t shdr_status, shdr_add_status;
16622 	uint32_t mbox_tmo;
16623 	union lpfc_sli4_cfg_shdr *shdr;
16624 
16625 	if (xritag == NO_XRI) {
16626 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16627 				"0364 Invalid param:\n");
16628 		return -EINVAL;
16629 	}
16630 
16631 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16632 	if (!mbox)
16633 		return -ENOMEM;
16634 
16635 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16636 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16637 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16638 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16639 
16640 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16641 				&mbox->u.mqe.un.post_sgl_pages;
16642 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16643 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16644 
16645 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16646 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16647 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16648 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16649 
16650 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16651 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16652 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16653 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16654 	if (!phba->sli4_hba.intr_enable)
16655 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16656 	else {
16657 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16658 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16659 	}
16660 	/* The IOCTL status is embedded in the mailbox subheader. */
16661 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16662 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16663 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16664 	if (rc != MBX_TIMEOUT)
16665 		mempool_free(mbox, phba->mbox_mem_pool);
16666 	if (shdr_status || shdr_add_status || rc) {
16667 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16668 				"2511 POST_SGL mailbox failed with "
16669 				"status x%x add_status x%x, mbx status x%x\n",
16670 				shdr_status, shdr_add_status, rc);
16671 	}
16672 	return 0;
16673 }
16674 
16675 /**
16676  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16677  * @phba: pointer to lpfc hba data structure.
16678  *
16679  * This routine is invoked to post rpi header templates to the
16680  * HBA consistent with the SLI-4 interface spec.  This routine
16681  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16682  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16683  *
16684  * Returns
16685  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16686  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16687  **/
16688 static uint16_t
16689 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16690 {
16691 	unsigned long xri;
16692 
16693 	/*
16694 	 * Fetch the next logical xri.  Because this index is logical,
16695 	 * the driver starts at 0 each time.
16696 	 */
16697 	spin_lock_irq(&phba->hbalock);
16698 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16699 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16700 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16701 		spin_unlock_irq(&phba->hbalock);
16702 		return NO_XRI;
16703 	} else {
16704 		set_bit(xri, phba->sli4_hba.xri_bmask);
16705 		phba->sli4_hba.max_cfg_param.xri_used++;
16706 	}
16707 	spin_unlock_irq(&phba->hbalock);
16708 	return xri;
16709 }
16710 
16711 /**
16712  * lpfc_sli4_free_xri - Release an xri for reuse.
16713  * @phba: pointer to lpfc hba data structure.
16714  *
16715  * This routine is invoked to release an xri to the pool of
16716  * available rpis maintained by the driver.
16717  **/
16718 static void
16719 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16720 {
16721 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16722 		phba->sli4_hba.max_cfg_param.xri_used--;
16723 	}
16724 }
16725 
16726 /**
16727  * lpfc_sli4_free_xri - Release an xri for reuse.
16728  * @phba: pointer to lpfc hba data structure.
16729  *
16730  * This routine is invoked to release an xri to the pool of
16731  * available rpis maintained by the driver.
16732  **/
16733 void
16734 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16735 {
16736 	spin_lock_irq(&phba->hbalock);
16737 	__lpfc_sli4_free_xri(phba, xri);
16738 	spin_unlock_irq(&phba->hbalock);
16739 }
16740 
16741 /**
16742  * lpfc_sli4_next_xritag - Get an xritag for the io
16743  * @phba: Pointer to HBA context object.
16744  *
16745  * This function gets an xritag for the iocb. If there is no unused xritag
16746  * it will return 0xffff.
16747  * The function returns the allocated xritag if successful, else returns zero.
16748  * Zero is not a valid xritag.
16749  * The caller is not required to hold any lock.
16750  **/
16751 uint16_t
16752 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16753 {
16754 	uint16_t xri_index;
16755 
16756 	xri_index = lpfc_sli4_alloc_xri(phba);
16757 	if (xri_index == NO_XRI)
16758 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16759 				"2004 Failed to allocate XRI.last XRITAG is %d"
16760 				" Max XRI is %d, Used XRI is %d\n",
16761 				xri_index,
16762 				phba->sli4_hba.max_cfg_param.max_xri,
16763 				phba->sli4_hba.max_cfg_param.xri_used);
16764 	return xri_index;
16765 }
16766 
16767 /**
16768  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16769  * @phba: pointer to lpfc hba data structure.
16770  * @post_sgl_list: pointer to els sgl entry list.
16771  * @count: number of els sgl entries on the list.
16772  *
16773  * This routine is invoked to post a block of driver's sgl pages to the
16774  * HBA using non-embedded mailbox command. No Lock is held. This routine
16775  * is only called when the driver is loading and after all IO has been
16776  * stopped.
16777  **/
16778 static int
16779 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16780 			    struct list_head *post_sgl_list,
16781 			    int post_cnt)
16782 {
16783 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16784 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16785 	struct sgl_page_pairs *sgl_pg_pairs;
16786 	void *viraddr;
16787 	LPFC_MBOXQ_t *mbox;
16788 	uint32_t reqlen, alloclen, pg_pairs;
16789 	uint32_t mbox_tmo;
16790 	uint16_t xritag_start = 0;
16791 	int rc = 0;
16792 	uint32_t shdr_status, shdr_add_status;
16793 	union lpfc_sli4_cfg_shdr *shdr;
16794 
16795 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16796 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16797 	if (reqlen > SLI4_PAGE_SIZE) {
16798 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16799 				"2559 Block sgl registration required DMA "
16800 				"size (%d) great than a page\n", reqlen);
16801 		return -ENOMEM;
16802 	}
16803 
16804 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16805 	if (!mbox)
16806 		return -ENOMEM;
16807 
16808 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16809 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16810 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16811 			 LPFC_SLI4_MBX_NEMBED);
16812 
16813 	if (alloclen < reqlen) {
16814 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16815 				"0285 Allocated DMA memory size (%d) is "
16816 				"less than the requested DMA memory "
16817 				"size (%d)\n", alloclen, reqlen);
16818 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16819 		return -ENOMEM;
16820 	}
16821 	/* Set up the SGL pages in the non-embedded DMA pages */
16822 	viraddr = mbox->sge_array->addr[0];
16823 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16824 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16825 
16826 	pg_pairs = 0;
16827 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16828 		/* Set up the sge entry */
16829 		sgl_pg_pairs->sgl_pg0_addr_lo =
16830 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16831 		sgl_pg_pairs->sgl_pg0_addr_hi =
16832 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16833 		sgl_pg_pairs->sgl_pg1_addr_lo =
16834 				cpu_to_le32(putPaddrLow(0));
16835 		sgl_pg_pairs->sgl_pg1_addr_hi =
16836 				cpu_to_le32(putPaddrHigh(0));
16837 
16838 		/* Keep the first xritag on the list */
16839 		if (pg_pairs == 0)
16840 			xritag_start = sglq_entry->sli4_xritag;
16841 		sgl_pg_pairs++;
16842 		pg_pairs++;
16843 	}
16844 
16845 	/* Complete initialization and perform endian conversion. */
16846 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16847 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16848 	sgl->word0 = cpu_to_le32(sgl->word0);
16849 
16850 	if (!phba->sli4_hba.intr_enable)
16851 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16852 	else {
16853 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16854 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16855 	}
16856 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16857 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16858 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16859 	if (rc != MBX_TIMEOUT)
16860 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16861 	if (shdr_status || shdr_add_status || rc) {
16862 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16863 				"2513 POST_SGL_BLOCK mailbox command failed "
16864 				"status x%x add_status x%x mbx status x%x\n",
16865 				shdr_status, shdr_add_status, rc);
16866 		rc = -ENXIO;
16867 	}
16868 	return rc;
16869 }
16870 
16871 /**
16872  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16873  * @phba: pointer to lpfc hba data structure.
16874  * @nblist: pointer to nvme buffer list.
16875  * @count: number of scsi buffers on the list.
16876  *
16877  * This routine is invoked to post a block of @count scsi sgl pages from a
16878  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16879  * No Lock is held.
16880  *
16881  **/
16882 static int
16883 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16884 			    int count)
16885 {
16886 	struct lpfc_io_buf *lpfc_ncmd;
16887 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16888 	struct sgl_page_pairs *sgl_pg_pairs;
16889 	void *viraddr;
16890 	LPFC_MBOXQ_t *mbox;
16891 	uint32_t reqlen, alloclen, pg_pairs;
16892 	uint32_t mbox_tmo;
16893 	uint16_t xritag_start = 0;
16894 	int rc = 0;
16895 	uint32_t shdr_status, shdr_add_status;
16896 	dma_addr_t pdma_phys_bpl1;
16897 	union lpfc_sli4_cfg_shdr *shdr;
16898 
16899 	/* Calculate the requested length of the dma memory */
16900 	reqlen = count * sizeof(struct sgl_page_pairs) +
16901 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16902 	if (reqlen > SLI4_PAGE_SIZE) {
16903 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16904 				"6118 Block sgl registration required DMA "
16905 				"size (%d) great than a page\n", reqlen);
16906 		return -ENOMEM;
16907 	}
16908 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16909 	if (!mbox) {
16910 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16911 				"6119 Failed to allocate mbox cmd memory\n");
16912 		return -ENOMEM;
16913 	}
16914 
16915 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16916 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16917 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16918 				    reqlen, LPFC_SLI4_MBX_NEMBED);
16919 
16920 	if (alloclen < reqlen) {
16921 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16922 				"6120 Allocated DMA memory size (%d) is "
16923 				"less than the requested DMA memory "
16924 				"size (%d)\n", alloclen, reqlen);
16925 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16926 		return -ENOMEM;
16927 	}
16928 
16929 	/* Get the first SGE entry from the non-embedded DMA memory */
16930 	viraddr = mbox->sge_array->addr[0];
16931 
16932 	/* Set up the SGL pages in the non-embedded DMA pages */
16933 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16934 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16935 
16936 	pg_pairs = 0;
16937 	list_for_each_entry(lpfc_ncmd, nblist, list) {
16938 		/* Set up the sge entry */
16939 		sgl_pg_pairs->sgl_pg0_addr_lo =
16940 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16941 		sgl_pg_pairs->sgl_pg0_addr_hi =
16942 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16943 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16944 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16945 						SGL_PAGE_SIZE;
16946 		else
16947 			pdma_phys_bpl1 = 0;
16948 		sgl_pg_pairs->sgl_pg1_addr_lo =
16949 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16950 		sgl_pg_pairs->sgl_pg1_addr_hi =
16951 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16952 		/* Keep the first xritag on the list */
16953 		if (pg_pairs == 0)
16954 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16955 		sgl_pg_pairs++;
16956 		pg_pairs++;
16957 	}
16958 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16959 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16960 	/* Perform endian conversion if necessary */
16961 	sgl->word0 = cpu_to_le32(sgl->word0);
16962 
16963 	if (!phba->sli4_hba.intr_enable) {
16964 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16965 	} else {
16966 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16967 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16968 	}
16969 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16970 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16971 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16972 	if (rc != MBX_TIMEOUT)
16973 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16974 	if (shdr_status || shdr_add_status || rc) {
16975 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16976 				"6125 POST_SGL_BLOCK mailbox command failed "
16977 				"status x%x add_status x%x mbx status x%x\n",
16978 				shdr_status, shdr_add_status, rc);
16979 		rc = -ENXIO;
16980 	}
16981 	return rc;
16982 }
16983 
16984 /**
16985  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16986  * @phba: pointer to lpfc hba data structure.
16987  * @post_nblist: pointer to the nvme buffer list.
16988  *
16989  * This routine walks a list of nvme buffers that was passed in. It attempts
16990  * to construct blocks of nvme buffer sgls which contains contiguous xris and
16991  * uses the non-embedded SGL block post mailbox commands to post to the port.
16992  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16993  * embedded SGL post mailbox command for posting. The @post_nblist passed in
16994  * must be local list, thus no lock is needed when manipulate the list.
16995  *
16996  * Returns: 0 = failure, non-zero number of successfully posted buffers.
16997  **/
16998 int
16999 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17000 			   struct list_head *post_nblist, int sb_count)
17001 {
17002 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17003 	int status, sgl_size;
17004 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17005 	dma_addr_t pdma_phys_sgl1;
17006 	int last_xritag = NO_XRI;
17007 	int cur_xritag;
17008 	LIST_HEAD(prep_nblist);
17009 	LIST_HEAD(blck_nblist);
17010 	LIST_HEAD(nvme_nblist);
17011 
17012 	/* sanity check */
17013 	if (sb_count <= 0)
17014 		return -EINVAL;
17015 
17016 	sgl_size = phba->cfg_sg_dma_buf_size;
17017 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17018 		list_del_init(&lpfc_ncmd->list);
17019 		block_cnt++;
17020 		if ((last_xritag != NO_XRI) &&
17021 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17022 			/* a hole in xri block, form a sgl posting block */
17023 			list_splice_init(&prep_nblist, &blck_nblist);
17024 			post_cnt = block_cnt - 1;
17025 			/* prepare list for next posting block */
17026 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17027 			block_cnt = 1;
17028 		} else {
17029 			/* prepare list for next posting block */
17030 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17031 			/* enough sgls for non-embed sgl mbox command */
17032 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17033 				list_splice_init(&prep_nblist, &blck_nblist);
17034 				post_cnt = block_cnt;
17035 				block_cnt = 0;
17036 			}
17037 		}
17038 		num_posting++;
17039 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17040 
17041 		/* end of repost sgl list condition for NVME buffers */
17042 		if (num_posting == sb_count) {
17043 			if (post_cnt == 0) {
17044 				/* last sgl posting block */
17045 				list_splice_init(&prep_nblist, &blck_nblist);
17046 				post_cnt = block_cnt;
17047 			} else if (block_cnt == 1) {
17048 				/* last single sgl with non-contiguous xri */
17049 				if (sgl_size > SGL_PAGE_SIZE)
17050 					pdma_phys_sgl1 =
17051 						lpfc_ncmd->dma_phys_sgl +
17052 						SGL_PAGE_SIZE;
17053 				else
17054 					pdma_phys_sgl1 = 0;
17055 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17056 				status = lpfc_sli4_post_sgl(
17057 						phba, lpfc_ncmd->dma_phys_sgl,
17058 						pdma_phys_sgl1, cur_xritag);
17059 				if (status) {
17060 					/* Post error.  Buffer unavailable. */
17061 					lpfc_ncmd->flags |=
17062 						LPFC_SBUF_NOT_POSTED;
17063 				} else {
17064 					/* Post success. Bffer available. */
17065 					lpfc_ncmd->flags &=
17066 						~LPFC_SBUF_NOT_POSTED;
17067 					lpfc_ncmd->status = IOSTAT_SUCCESS;
17068 					num_posted++;
17069 				}
17070 				/* success, put on NVME buffer sgl list */
17071 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17072 			}
17073 		}
17074 
17075 		/* continue until a nembed page worth of sgls */
17076 		if (post_cnt == 0)
17077 			continue;
17078 
17079 		/* post block of NVME buffer list sgls */
17080 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17081 						     post_cnt);
17082 
17083 		/* don't reset xirtag due to hole in xri block */
17084 		if (block_cnt == 0)
17085 			last_xritag = NO_XRI;
17086 
17087 		/* reset NVME buffer post count for next round of posting */
17088 		post_cnt = 0;
17089 
17090 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17091 		while (!list_empty(&blck_nblist)) {
17092 			list_remove_head(&blck_nblist, lpfc_ncmd,
17093 					 struct lpfc_io_buf, list);
17094 			if (status) {
17095 				/* Post error.  Mark buffer unavailable. */
17096 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17097 			} else {
17098 				/* Post success, Mark buffer available. */
17099 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17100 				lpfc_ncmd->status = IOSTAT_SUCCESS;
17101 				num_posted++;
17102 			}
17103 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17104 		}
17105 	}
17106 	/* Push NVME buffers with sgl posted to the available list */
17107 	lpfc_io_buf_replenish(phba, &nvme_nblist);
17108 
17109 	return num_posted;
17110 }
17111 
17112 /**
17113  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17114  * @phba: pointer to lpfc_hba struct that the frame was received on
17115  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17116  *
17117  * This function checks the fields in the @fc_hdr to see if the FC frame is a
17118  * valid type of frame that the LPFC driver will handle. This function will
17119  * return a zero if the frame is a valid frame or a non zero value when the
17120  * frame does not pass the check.
17121  **/
17122 static int
17123 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17124 {
17125 	/*  make rctl_names static to save stack space */
17126 	struct fc_vft_header *fc_vft_hdr;
17127 	uint32_t *header = (uint32_t *) fc_hdr;
17128 
17129 #define FC_RCTL_MDS_DIAGS	0xF4
17130 
17131 	switch (fc_hdr->fh_r_ctl) {
17132 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
17133 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
17134 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
17135 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
17136 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
17137 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
17138 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
17139 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
17140 	case FC_RCTL_ELS_REQ:	/* extended link services request */
17141 	case FC_RCTL_ELS_REP:	/* extended link services reply */
17142 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
17143 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
17144 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
17145 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
17146 	case FC_RCTL_BA_RMC: 	/* remove connection */
17147 	case FC_RCTL_BA_ACC:	/* basic accept */
17148 	case FC_RCTL_BA_RJT:	/* basic reject */
17149 	case FC_RCTL_BA_PRMT:
17150 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17151 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17152 	case FC_RCTL_P_RJT:	/* port reject */
17153 	case FC_RCTL_F_RJT:	/* fabric reject */
17154 	case FC_RCTL_P_BSY:	/* port busy */
17155 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17156 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17157 	case FC_RCTL_LCR:	/* link credit reset */
17158 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17159 	case FC_RCTL_END:	/* end */
17160 		break;
17161 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17162 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17163 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17164 		return lpfc_fc_frame_check(phba, fc_hdr);
17165 	default:
17166 		goto drop;
17167 	}
17168 
17169 	switch (fc_hdr->fh_type) {
17170 	case FC_TYPE_BLS:
17171 	case FC_TYPE_ELS:
17172 	case FC_TYPE_FCP:
17173 	case FC_TYPE_CT:
17174 	case FC_TYPE_NVME:
17175 		break;
17176 	case FC_TYPE_IP:
17177 	case FC_TYPE_ILS:
17178 	default:
17179 		goto drop;
17180 	}
17181 
17182 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17183 			"2538 Received frame rctl:x%x, type:x%x, "
17184 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17185 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17186 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17187 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17188 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17189 			be32_to_cpu(header[6]));
17190 	return 0;
17191 drop:
17192 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17193 			"2539 Dropped frame rctl:x%x type:x%x\n",
17194 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17195 	return 1;
17196 }
17197 
17198 /**
17199  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17200  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17201  *
17202  * This function processes the FC header to retrieve the VFI from the VF
17203  * header, if one exists. This function will return the VFI if one exists
17204  * or 0 if no VSAN Header exists.
17205  **/
17206 static uint32_t
17207 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17208 {
17209 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17210 
17211 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17212 		return 0;
17213 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17214 }
17215 
17216 /**
17217  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17218  * @phba: Pointer to the HBA structure to search for the vport on
17219  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17220  * @fcfi: The FC Fabric ID that the frame came from
17221  *
17222  * This function searches the @phba for a vport that matches the content of the
17223  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17224  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17225  * returns the matching vport pointer or NULL if unable to match frame to a
17226  * vport.
17227  **/
17228 static struct lpfc_vport *
17229 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17230 		       uint16_t fcfi, uint32_t did)
17231 {
17232 	struct lpfc_vport **vports;
17233 	struct lpfc_vport *vport = NULL;
17234 	int i;
17235 
17236 	if (did == Fabric_DID)
17237 		return phba->pport;
17238 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17239 		!(phba->link_state == LPFC_HBA_READY))
17240 		return phba->pport;
17241 
17242 	vports = lpfc_create_vport_work_array(phba);
17243 	if (vports != NULL) {
17244 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17245 			if (phba->fcf.fcfi == fcfi &&
17246 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17247 			    vports[i]->fc_myDID == did) {
17248 				vport = vports[i];
17249 				break;
17250 			}
17251 		}
17252 	}
17253 	lpfc_destroy_vport_work_array(phba, vports);
17254 	return vport;
17255 }
17256 
17257 /**
17258  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17259  * @vport: The vport to work on.
17260  *
17261  * This function updates the receive sequence time stamp for this vport. The
17262  * receive sequence time stamp indicates the time that the last frame of the
17263  * the sequence that has been idle for the longest amount of time was received.
17264  * the driver uses this time stamp to indicate if any received sequences have
17265  * timed out.
17266  **/
17267 static void
17268 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17269 {
17270 	struct lpfc_dmabuf *h_buf;
17271 	struct hbq_dmabuf *dmabuf = NULL;
17272 
17273 	/* get the oldest sequence on the rcv list */
17274 	h_buf = list_get_first(&vport->rcv_buffer_list,
17275 			       struct lpfc_dmabuf, list);
17276 	if (!h_buf)
17277 		return;
17278 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17279 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17280 }
17281 
17282 /**
17283  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17284  * @vport: The vport that the received sequences were sent to.
17285  *
17286  * This function cleans up all outstanding received sequences. This is called
17287  * by the driver when a link event or user action invalidates all the received
17288  * sequences.
17289  **/
17290 void
17291 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17292 {
17293 	struct lpfc_dmabuf *h_buf, *hnext;
17294 	struct lpfc_dmabuf *d_buf, *dnext;
17295 	struct hbq_dmabuf *dmabuf = NULL;
17296 
17297 	/* start with the oldest sequence on the rcv list */
17298 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17299 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17300 		list_del_init(&dmabuf->hbuf.list);
17301 		list_for_each_entry_safe(d_buf, dnext,
17302 					 &dmabuf->dbuf.list, list) {
17303 			list_del_init(&d_buf->list);
17304 			lpfc_in_buf_free(vport->phba, d_buf);
17305 		}
17306 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17307 	}
17308 }
17309 
17310 /**
17311  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17312  * @vport: The vport that the received sequences were sent to.
17313  *
17314  * This function determines whether any received sequences have timed out by
17315  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17316  * indicates that there is at least one timed out sequence this routine will
17317  * go through the received sequences one at a time from most inactive to most
17318  * active to determine which ones need to be cleaned up. Once it has determined
17319  * that a sequence needs to be cleaned up it will simply free up the resources
17320  * without sending an abort.
17321  **/
17322 void
17323 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17324 {
17325 	struct lpfc_dmabuf *h_buf, *hnext;
17326 	struct lpfc_dmabuf *d_buf, *dnext;
17327 	struct hbq_dmabuf *dmabuf = NULL;
17328 	unsigned long timeout;
17329 	int abort_count = 0;
17330 
17331 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17332 		   vport->rcv_buffer_time_stamp);
17333 	if (list_empty(&vport->rcv_buffer_list) ||
17334 	    time_before(jiffies, timeout))
17335 		return;
17336 	/* start with the oldest sequence on the rcv list */
17337 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17338 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17339 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17340 			   dmabuf->time_stamp);
17341 		if (time_before(jiffies, timeout))
17342 			break;
17343 		abort_count++;
17344 		list_del_init(&dmabuf->hbuf.list);
17345 		list_for_each_entry_safe(d_buf, dnext,
17346 					 &dmabuf->dbuf.list, list) {
17347 			list_del_init(&d_buf->list);
17348 			lpfc_in_buf_free(vport->phba, d_buf);
17349 		}
17350 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17351 	}
17352 	if (abort_count)
17353 		lpfc_update_rcv_time_stamp(vport);
17354 }
17355 
17356 /**
17357  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17358  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17359  *
17360  * This function searches through the existing incomplete sequences that have
17361  * been sent to this @vport. If the frame matches one of the incomplete
17362  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17363  * make up that sequence. If no sequence is found that matches this frame then
17364  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17365  * This function returns a pointer to the first dmabuf in the sequence list that
17366  * the frame was linked to.
17367  **/
17368 static struct hbq_dmabuf *
17369 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17370 {
17371 	struct fc_frame_header *new_hdr;
17372 	struct fc_frame_header *temp_hdr;
17373 	struct lpfc_dmabuf *d_buf;
17374 	struct lpfc_dmabuf *h_buf;
17375 	struct hbq_dmabuf *seq_dmabuf = NULL;
17376 	struct hbq_dmabuf *temp_dmabuf = NULL;
17377 	uint8_t	found = 0;
17378 
17379 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17380 	dmabuf->time_stamp = jiffies;
17381 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17382 
17383 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17384 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17385 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17386 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17387 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17388 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17389 			continue;
17390 		/* found a pending sequence that matches this frame */
17391 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17392 		break;
17393 	}
17394 	if (!seq_dmabuf) {
17395 		/*
17396 		 * This indicates first frame received for this sequence.
17397 		 * Queue the buffer on the vport's rcv_buffer_list.
17398 		 */
17399 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17400 		lpfc_update_rcv_time_stamp(vport);
17401 		return dmabuf;
17402 	}
17403 	temp_hdr = seq_dmabuf->hbuf.virt;
17404 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17405 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17406 		list_del_init(&seq_dmabuf->hbuf.list);
17407 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17408 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17409 		lpfc_update_rcv_time_stamp(vport);
17410 		return dmabuf;
17411 	}
17412 	/* move this sequence to the tail to indicate a young sequence */
17413 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17414 	seq_dmabuf->time_stamp = jiffies;
17415 	lpfc_update_rcv_time_stamp(vport);
17416 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17417 		temp_hdr = dmabuf->hbuf.virt;
17418 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17419 		return seq_dmabuf;
17420 	}
17421 	/* find the correct place in the sequence to insert this frame */
17422 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17423 	while (!found) {
17424 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17425 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17426 		/*
17427 		 * If the frame's sequence count is greater than the frame on
17428 		 * the list then insert the frame right after this frame
17429 		 */
17430 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17431 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17432 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17433 			found = 1;
17434 			break;
17435 		}
17436 
17437 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17438 			break;
17439 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17440 	}
17441 
17442 	if (found)
17443 		return seq_dmabuf;
17444 	return NULL;
17445 }
17446 
17447 /**
17448  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17449  * @vport: pointer to a vitural port
17450  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17451  *
17452  * This function tries to abort from the partially assembed sequence, described
17453  * by the information from basic abbort @dmabuf. It checks to see whether such
17454  * partially assembled sequence held by the driver. If so, it shall free up all
17455  * the frames from the partially assembled sequence.
17456  *
17457  * Return
17458  * true  -- if there is matching partially assembled sequence present and all
17459  *          the frames freed with the sequence;
17460  * false -- if there is no matching partially assembled sequence present so
17461  *          nothing got aborted in the lower layer driver
17462  **/
17463 static bool
17464 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17465 			    struct hbq_dmabuf *dmabuf)
17466 {
17467 	struct fc_frame_header *new_hdr;
17468 	struct fc_frame_header *temp_hdr;
17469 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17470 	struct hbq_dmabuf *seq_dmabuf = NULL;
17471 
17472 	/* Use the hdr_buf to find the sequence that matches this frame */
17473 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17474 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17475 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17476 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17477 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17478 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17479 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17480 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17481 			continue;
17482 		/* found a pending sequence that matches this frame */
17483 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17484 		break;
17485 	}
17486 
17487 	/* Free up all the frames from the partially assembled sequence */
17488 	if (seq_dmabuf) {
17489 		list_for_each_entry_safe(d_buf, n_buf,
17490 					 &seq_dmabuf->dbuf.list, list) {
17491 			list_del_init(&d_buf->list);
17492 			lpfc_in_buf_free(vport->phba, d_buf);
17493 		}
17494 		return true;
17495 	}
17496 	return false;
17497 }
17498 
17499 /**
17500  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17501  * @vport: pointer to a vitural port
17502  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17503  *
17504  * This function tries to abort from the assembed sequence from upper level
17505  * protocol, described by the information from basic abbort @dmabuf. It
17506  * checks to see whether such pending context exists at upper level protocol.
17507  * If so, it shall clean up the pending context.
17508  *
17509  * Return
17510  * true  -- if there is matching pending context of the sequence cleaned
17511  *          at ulp;
17512  * false -- if there is no matching pending context of the sequence present
17513  *          at ulp.
17514  **/
17515 static bool
17516 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17517 {
17518 	struct lpfc_hba *phba = vport->phba;
17519 	int handled;
17520 
17521 	/* Accepting abort at ulp with SLI4 only */
17522 	if (phba->sli_rev < LPFC_SLI_REV4)
17523 		return false;
17524 
17525 	/* Register all caring upper level protocols to attend abort */
17526 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17527 	if (handled)
17528 		return true;
17529 
17530 	return false;
17531 }
17532 
17533 /**
17534  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17535  * @phba: Pointer to HBA context object.
17536  * @cmd_iocbq: pointer to the command iocbq structure.
17537  * @rsp_iocbq: pointer to the response iocbq structure.
17538  *
17539  * This function handles the sequence abort response iocb command complete
17540  * event. It properly releases the memory allocated to the sequence abort
17541  * accept iocb.
17542  **/
17543 static void
17544 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17545 			     struct lpfc_iocbq *cmd_iocbq,
17546 			     struct lpfc_iocbq *rsp_iocbq)
17547 {
17548 	struct lpfc_nodelist *ndlp;
17549 
17550 	if (cmd_iocbq) {
17551 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17552 		lpfc_nlp_put(ndlp);
17553 		lpfc_nlp_not_used(ndlp);
17554 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17555 	}
17556 
17557 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17558 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17559 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17560 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17561 			rsp_iocbq->iocb.ulpStatus,
17562 			rsp_iocbq->iocb.un.ulpWord[4]);
17563 }
17564 
17565 /**
17566  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17567  * @phba: Pointer to HBA context object.
17568  * @xri: xri id in transaction.
17569  *
17570  * This function validates the xri maps to the known range of XRIs allocated an
17571  * used by the driver.
17572  **/
17573 uint16_t
17574 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17575 		      uint16_t xri)
17576 {
17577 	uint16_t i;
17578 
17579 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17580 		if (xri == phba->sli4_hba.xri_ids[i])
17581 			return i;
17582 	}
17583 	return NO_XRI;
17584 }
17585 
17586 /**
17587  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17588  * @phba: Pointer to HBA context object.
17589  * @fc_hdr: pointer to a FC frame header.
17590  *
17591  * This function sends a basic response to a previous unsol sequence abort
17592  * event after aborting the sequence handling.
17593  **/
17594 void
17595 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17596 			struct fc_frame_header *fc_hdr, bool aborted)
17597 {
17598 	struct lpfc_hba *phba = vport->phba;
17599 	struct lpfc_iocbq *ctiocb = NULL;
17600 	struct lpfc_nodelist *ndlp;
17601 	uint16_t oxid, rxid, xri, lxri;
17602 	uint32_t sid, fctl;
17603 	IOCB_t *icmd;
17604 	int rc;
17605 
17606 	if (!lpfc_is_link_up(phba))
17607 		return;
17608 
17609 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17610 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17611 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17612 
17613 	ndlp = lpfc_findnode_did(vport, sid);
17614 	if (!ndlp) {
17615 		ndlp = lpfc_nlp_init(vport, sid);
17616 		if (!ndlp) {
17617 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17618 					 "1268 Failed to allocate ndlp for "
17619 					 "oxid:x%x SID:x%x\n", oxid, sid);
17620 			return;
17621 		}
17622 		/* Put ndlp onto pport node list */
17623 		lpfc_enqueue_node(vport, ndlp);
17624 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17625 		/* re-setup ndlp without removing from node list */
17626 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17627 		if (!ndlp) {
17628 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17629 					 "3275 Failed to active ndlp found "
17630 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17631 			return;
17632 		}
17633 	}
17634 
17635 	/* Allocate buffer for rsp iocb */
17636 	ctiocb = lpfc_sli_get_iocbq(phba);
17637 	if (!ctiocb)
17638 		return;
17639 
17640 	/* Extract the F_CTL field from FC_HDR */
17641 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17642 
17643 	icmd = &ctiocb->iocb;
17644 	icmd->un.xseq64.bdl.bdeSize = 0;
17645 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17646 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17647 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17648 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17649 
17650 	/* Fill in the rest of iocb fields */
17651 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17652 	icmd->ulpBdeCount = 0;
17653 	icmd->ulpLe = 1;
17654 	icmd->ulpClass = CLASS3;
17655 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17656 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17657 
17658 	ctiocb->vport = phba->pport;
17659 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17660 	ctiocb->sli4_lxritag = NO_XRI;
17661 	ctiocb->sli4_xritag = NO_XRI;
17662 
17663 	if (fctl & FC_FC_EX_CTX)
17664 		/* Exchange responder sent the abort so we
17665 		 * own the oxid.
17666 		 */
17667 		xri = oxid;
17668 	else
17669 		xri = rxid;
17670 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17671 	if (lxri != NO_XRI)
17672 		lpfc_set_rrq_active(phba, ndlp, lxri,
17673 			(xri == oxid) ? rxid : oxid, 0);
17674 	/* For BA_ABTS from exchange responder, if the logical xri with
17675 	 * the oxid maps to the FCP XRI range, the port no longer has
17676 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17677 	 * a BA_RJT.
17678 	 */
17679 	if ((fctl & FC_FC_EX_CTX) &&
17680 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17681 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17682 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17683 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17684 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17685 	}
17686 
17687 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17688 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17689 	 * the IOCB for a BA_RJT.
17690 	 */
17691 	if (aborted == false) {
17692 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17693 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17694 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17695 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17696 	}
17697 
17698 	if (fctl & FC_FC_EX_CTX) {
17699 		/* ABTS sent by responder to CT exchange, construction
17700 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17701 		 * field and RX_ID from ABTS for RX_ID field.
17702 		 */
17703 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17704 	} else {
17705 		/* ABTS sent by initiator to CT exchange, construction
17706 		 * of BA_ACC will need to allocate a new XRI as for the
17707 		 * XRI_TAG field.
17708 		 */
17709 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17710 	}
17711 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17712 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17713 
17714 	/* Xmit CT abts response on exchange <xid> */
17715 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17716 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17717 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17718 
17719 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17720 	if (rc == IOCB_ERROR) {
17721 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17722 				 "2925 Failed to issue CT ABTS RSP x%x on "
17723 				 "xri x%x, Data x%x\n",
17724 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17725 				 phba->link_state);
17726 		lpfc_nlp_put(ndlp);
17727 		ctiocb->context1 = NULL;
17728 		lpfc_sli_release_iocbq(phba, ctiocb);
17729 	}
17730 }
17731 
17732 /**
17733  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17734  * @vport: Pointer to the vport on which this sequence was received
17735  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17736  *
17737  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17738  * receive sequence is only partially assembed by the driver, it shall abort
17739  * the partially assembled frames for the sequence. Otherwise, if the
17740  * unsolicited receive sequence has been completely assembled and passed to
17741  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17742  * unsolicited sequence has been aborted. After that, it will issue a basic
17743  * accept to accept the abort.
17744  **/
17745 static void
17746 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17747 			     struct hbq_dmabuf *dmabuf)
17748 {
17749 	struct lpfc_hba *phba = vport->phba;
17750 	struct fc_frame_header fc_hdr;
17751 	uint32_t fctl;
17752 	bool aborted;
17753 
17754 	/* Make a copy of fc_hdr before the dmabuf being released */
17755 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17756 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17757 
17758 	if (fctl & FC_FC_EX_CTX) {
17759 		/* ABTS by responder to exchange, no cleanup needed */
17760 		aborted = true;
17761 	} else {
17762 		/* ABTS by initiator to exchange, need to do cleanup */
17763 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17764 		if (aborted == false)
17765 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17766 	}
17767 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17768 
17769 	if (phba->nvmet_support) {
17770 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17771 		return;
17772 	}
17773 
17774 	/* Respond with BA_ACC or BA_RJT accordingly */
17775 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17776 }
17777 
17778 /**
17779  * lpfc_seq_complete - Indicates if a sequence is complete
17780  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17781  *
17782  * This function checks the sequence, starting with the frame described by
17783  * @dmabuf, to see if all the frames associated with this sequence are present.
17784  * the frames associated with this sequence are linked to the @dmabuf using the
17785  * dbuf list. This function looks for two major things. 1) That the first frame
17786  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17787  * set. 3) That there are no holes in the sequence count. The function will
17788  * return 1 when the sequence is complete, otherwise it will return 0.
17789  **/
17790 static int
17791 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17792 {
17793 	struct fc_frame_header *hdr;
17794 	struct lpfc_dmabuf *d_buf;
17795 	struct hbq_dmabuf *seq_dmabuf;
17796 	uint32_t fctl;
17797 	int seq_count = 0;
17798 
17799 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17800 	/* make sure first fame of sequence has a sequence count of zero */
17801 	if (hdr->fh_seq_cnt != seq_count)
17802 		return 0;
17803 	fctl = (hdr->fh_f_ctl[0] << 16 |
17804 		hdr->fh_f_ctl[1] << 8 |
17805 		hdr->fh_f_ctl[2]);
17806 	/* If last frame of sequence we can return success. */
17807 	if (fctl & FC_FC_END_SEQ)
17808 		return 1;
17809 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17810 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17811 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17812 		/* If there is a hole in the sequence count then fail. */
17813 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17814 			return 0;
17815 		fctl = (hdr->fh_f_ctl[0] << 16 |
17816 			hdr->fh_f_ctl[1] << 8 |
17817 			hdr->fh_f_ctl[2]);
17818 		/* If last frame of sequence we can return success. */
17819 		if (fctl & FC_FC_END_SEQ)
17820 			return 1;
17821 	}
17822 	return 0;
17823 }
17824 
17825 /**
17826  * lpfc_prep_seq - Prep sequence for ULP processing
17827  * @vport: Pointer to the vport on which this sequence was received
17828  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17829  *
17830  * This function takes a sequence, described by a list of frames, and creates
17831  * a list of iocbq structures to describe the sequence. This iocbq list will be
17832  * used to issue to the generic unsolicited sequence handler. This routine
17833  * returns a pointer to the first iocbq in the list. If the function is unable
17834  * to allocate an iocbq then it throw out the received frames that were not
17835  * able to be described and return a pointer to the first iocbq. If unable to
17836  * allocate any iocbqs (including the first) this function will return NULL.
17837  **/
17838 static struct lpfc_iocbq *
17839 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17840 {
17841 	struct hbq_dmabuf *hbq_buf;
17842 	struct lpfc_dmabuf *d_buf, *n_buf;
17843 	struct lpfc_iocbq *first_iocbq, *iocbq;
17844 	struct fc_frame_header *fc_hdr;
17845 	uint32_t sid;
17846 	uint32_t len, tot_len;
17847 	struct ulp_bde64 *pbde;
17848 
17849 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17850 	/* remove from receive buffer list */
17851 	list_del_init(&seq_dmabuf->hbuf.list);
17852 	lpfc_update_rcv_time_stamp(vport);
17853 	/* get the Remote Port's SID */
17854 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17855 	tot_len = 0;
17856 	/* Get an iocbq struct to fill in. */
17857 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17858 	if (first_iocbq) {
17859 		/* Initialize the first IOCB. */
17860 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17861 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17862 		first_iocbq->vport = vport;
17863 
17864 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17865 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17866 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17867 			first_iocbq->iocb.un.rcvels.parmRo =
17868 				sli4_did_from_fc_hdr(fc_hdr);
17869 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17870 		} else
17871 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17872 		first_iocbq->iocb.ulpContext = NO_XRI;
17873 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17874 			be16_to_cpu(fc_hdr->fh_ox_id);
17875 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17876 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17877 			vport->phba->vpi_ids[vport->vpi];
17878 		/* put the first buffer into the first IOCBq */
17879 		tot_len = bf_get(lpfc_rcqe_length,
17880 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17881 
17882 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17883 		first_iocbq->context3 = NULL;
17884 		first_iocbq->iocb.ulpBdeCount = 1;
17885 		if (tot_len > LPFC_DATA_BUF_SIZE)
17886 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17887 							LPFC_DATA_BUF_SIZE;
17888 		else
17889 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17890 
17891 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17892 
17893 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17894 	}
17895 	iocbq = first_iocbq;
17896 	/*
17897 	 * Each IOCBq can have two Buffers assigned, so go through the list
17898 	 * of buffers for this sequence and save two buffers in each IOCBq
17899 	 */
17900 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17901 		if (!iocbq) {
17902 			lpfc_in_buf_free(vport->phba, d_buf);
17903 			continue;
17904 		}
17905 		if (!iocbq->context3) {
17906 			iocbq->context3 = d_buf;
17907 			iocbq->iocb.ulpBdeCount++;
17908 			/* We need to get the size out of the right CQE */
17909 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17910 			len = bf_get(lpfc_rcqe_length,
17911 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17912 			pbde = (struct ulp_bde64 *)
17913 					&iocbq->iocb.unsli3.sli3Words[4];
17914 			if (len > LPFC_DATA_BUF_SIZE)
17915 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17916 			else
17917 				pbde->tus.f.bdeSize = len;
17918 
17919 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17920 			tot_len += len;
17921 		} else {
17922 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17923 			if (!iocbq) {
17924 				if (first_iocbq) {
17925 					first_iocbq->iocb.ulpStatus =
17926 							IOSTAT_FCP_RSP_ERROR;
17927 					first_iocbq->iocb.un.ulpWord[4] =
17928 							IOERR_NO_RESOURCES;
17929 				}
17930 				lpfc_in_buf_free(vport->phba, d_buf);
17931 				continue;
17932 			}
17933 			/* We need to get the size out of the right CQE */
17934 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17935 			len = bf_get(lpfc_rcqe_length,
17936 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17937 			iocbq->context2 = d_buf;
17938 			iocbq->context3 = NULL;
17939 			iocbq->iocb.ulpBdeCount = 1;
17940 			if (len > LPFC_DATA_BUF_SIZE)
17941 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17942 							LPFC_DATA_BUF_SIZE;
17943 			else
17944 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17945 
17946 			tot_len += len;
17947 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17948 
17949 			iocbq->iocb.un.rcvels.remoteID = sid;
17950 			list_add_tail(&iocbq->list, &first_iocbq->list);
17951 		}
17952 	}
17953 	return first_iocbq;
17954 }
17955 
17956 static void
17957 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17958 			  struct hbq_dmabuf *seq_dmabuf)
17959 {
17960 	struct fc_frame_header *fc_hdr;
17961 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17962 	struct lpfc_hba *phba = vport->phba;
17963 
17964 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17965 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17966 	if (!iocbq) {
17967 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17968 				"2707 Ring %d handler: Failed to allocate "
17969 				"iocb Rctl x%x Type x%x received\n",
17970 				LPFC_ELS_RING,
17971 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17972 		return;
17973 	}
17974 	if (!lpfc_complete_unsol_iocb(phba,
17975 				      phba->sli4_hba.els_wq->pring,
17976 				      iocbq, fc_hdr->fh_r_ctl,
17977 				      fc_hdr->fh_type))
17978 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17979 				"2540 Ring %d handler: unexpected Rctl "
17980 				"x%x Type x%x received\n",
17981 				LPFC_ELS_RING,
17982 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17983 
17984 	/* Free iocb created in lpfc_prep_seq */
17985 	list_for_each_entry_safe(curr_iocb, next_iocb,
17986 		&iocbq->list, list) {
17987 		list_del_init(&curr_iocb->list);
17988 		lpfc_sli_release_iocbq(phba, curr_iocb);
17989 	}
17990 	lpfc_sli_release_iocbq(phba, iocbq);
17991 }
17992 
17993 static void
17994 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17995 			    struct lpfc_iocbq *rspiocb)
17996 {
17997 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17998 
17999 	if (pcmd && pcmd->virt)
18000 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18001 	kfree(pcmd);
18002 	lpfc_sli_release_iocbq(phba, cmdiocb);
18003 	lpfc_drain_txq(phba);
18004 }
18005 
18006 static void
18007 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18008 			      struct hbq_dmabuf *dmabuf)
18009 {
18010 	struct fc_frame_header *fc_hdr;
18011 	struct lpfc_hba *phba = vport->phba;
18012 	struct lpfc_iocbq *iocbq = NULL;
18013 	union  lpfc_wqe *wqe;
18014 	struct lpfc_dmabuf *pcmd = NULL;
18015 	uint32_t frame_len;
18016 	int rc;
18017 	unsigned long iflags;
18018 
18019 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18020 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18021 
18022 	/* Send the received frame back */
18023 	iocbq = lpfc_sli_get_iocbq(phba);
18024 	if (!iocbq) {
18025 		/* Queue cq event and wakeup worker thread to process it */
18026 		spin_lock_irqsave(&phba->hbalock, iflags);
18027 		list_add_tail(&dmabuf->cq_event.list,
18028 			      &phba->sli4_hba.sp_queue_event);
18029 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18030 		spin_unlock_irqrestore(&phba->hbalock, iflags);
18031 		lpfc_worker_wake_up(phba);
18032 		return;
18033 	}
18034 
18035 	/* Allocate buffer for command payload */
18036 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18037 	if (pcmd)
18038 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18039 					    &pcmd->phys);
18040 	if (!pcmd || !pcmd->virt)
18041 		goto exit;
18042 
18043 	INIT_LIST_HEAD(&pcmd->list);
18044 
18045 	/* copyin the payload */
18046 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18047 
18048 	/* fill in BDE's for command */
18049 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18050 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18051 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18052 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18053 
18054 	iocbq->context2 = pcmd;
18055 	iocbq->vport = vport;
18056 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18057 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18058 
18059 	/*
18060 	 * Setup rest of the iocb as though it were a WQE
18061 	 * Build the SEND_FRAME WQE
18062 	 */
18063 	wqe = (union lpfc_wqe *)&iocbq->iocb;
18064 
18065 	wqe->send_frame.frame_len = frame_len;
18066 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18067 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18068 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18069 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18070 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18071 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18072 
18073 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18074 	iocbq->iocb.ulpLe = 1;
18075 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18076 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18077 	if (rc == IOCB_ERROR)
18078 		goto exit;
18079 
18080 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18081 	return;
18082 
18083 exit:
18084 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18085 			"2023 Unable to process MDS loopback frame\n");
18086 	if (pcmd && pcmd->virt)
18087 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18088 	kfree(pcmd);
18089 	if (iocbq)
18090 		lpfc_sli_release_iocbq(phba, iocbq);
18091 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18092 }
18093 
18094 /**
18095  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18096  * @phba: Pointer to HBA context object.
18097  *
18098  * This function is called with no lock held. This function processes all
18099  * the received buffers and gives it to upper layers when a received buffer
18100  * indicates that it is the final frame in the sequence. The interrupt
18101  * service routine processes received buffers at interrupt contexts.
18102  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18103  * appropriate receive function when the final frame in a sequence is received.
18104  **/
18105 void
18106 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18107 				 struct hbq_dmabuf *dmabuf)
18108 {
18109 	struct hbq_dmabuf *seq_dmabuf;
18110 	struct fc_frame_header *fc_hdr;
18111 	struct lpfc_vport *vport;
18112 	uint32_t fcfi;
18113 	uint32_t did;
18114 
18115 	/* Process each received buffer */
18116 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18117 
18118 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18119 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18120 		vport = phba->pport;
18121 		/* Handle MDS Loopback frames */
18122 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18123 		return;
18124 	}
18125 
18126 	/* check to see if this a valid type of frame */
18127 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
18128 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18129 		return;
18130 	}
18131 
18132 	if ((bf_get(lpfc_cqe_code,
18133 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18134 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18135 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18136 	else
18137 		fcfi = bf_get(lpfc_rcqe_fcf_id,
18138 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18139 
18140 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18141 		vport = phba->pport;
18142 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18143 				"2023 MDS Loopback %d bytes\n",
18144 				bf_get(lpfc_rcqe_length,
18145 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
18146 		/* Handle MDS Loopback frames */
18147 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18148 		return;
18149 	}
18150 
18151 	/* d_id this frame is directed to */
18152 	did = sli4_did_from_fc_hdr(fc_hdr);
18153 
18154 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18155 	if (!vport) {
18156 		/* throw out the frame */
18157 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18158 		return;
18159 	}
18160 
18161 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18162 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18163 		(did != Fabric_DID)) {
18164 		/*
18165 		 * Throw out the frame if we are not pt2pt.
18166 		 * The pt2pt protocol allows for discovery frames
18167 		 * to be received without a registered VPI.
18168 		 */
18169 		if (!(vport->fc_flag & FC_PT2PT) ||
18170 			(phba->link_state == LPFC_HBA_READY)) {
18171 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18172 			return;
18173 		}
18174 	}
18175 
18176 	/* Handle the basic abort sequence (BA_ABTS) event */
18177 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18178 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18179 		return;
18180 	}
18181 
18182 	/* Link this frame */
18183 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18184 	if (!seq_dmabuf) {
18185 		/* unable to add frame to vport - throw it out */
18186 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18187 		return;
18188 	}
18189 	/* If not last frame in sequence continue processing frames. */
18190 	if (!lpfc_seq_complete(seq_dmabuf))
18191 		return;
18192 
18193 	/* Send the complete sequence to the upper layer protocol */
18194 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18195 }
18196 
18197 /**
18198  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18199  * @phba: pointer to lpfc hba data structure.
18200  *
18201  * This routine is invoked to post rpi header templates to the
18202  * HBA consistent with the SLI-4 interface spec.  This routine
18203  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18204  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18205  *
18206  * This routine does not require any locks.  It's usage is expected
18207  * to be driver load or reset recovery when the driver is
18208  * sequential.
18209  *
18210  * Return codes
18211  * 	0 - successful
18212  *      -EIO - The mailbox failed to complete successfully.
18213  * 	When this error occurs, the driver is not guaranteed
18214  *	to have any rpi regions posted to the device and
18215  *	must either attempt to repost the regions or take a
18216  *	fatal error.
18217  **/
18218 int
18219 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18220 {
18221 	struct lpfc_rpi_hdr *rpi_page;
18222 	uint32_t rc = 0;
18223 	uint16_t lrpi = 0;
18224 
18225 	/* SLI4 ports that support extents do not require RPI headers. */
18226 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18227 		goto exit;
18228 	if (phba->sli4_hba.extents_in_use)
18229 		return -EIO;
18230 
18231 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18232 		/*
18233 		 * Assign the rpi headers a physical rpi only if the driver
18234 		 * has not initialized those resources.  A port reset only
18235 		 * needs the headers posted.
18236 		 */
18237 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18238 		    LPFC_RPI_RSRC_RDY)
18239 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18240 
18241 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18242 		if (rc != MBX_SUCCESS) {
18243 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18244 					"2008 Error %d posting all rpi "
18245 					"headers\n", rc);
18246 			rc = -EIO;
18247 			break;
18248 		}
18249 	}
18250 
18251  exit:
18252 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18253 	       LPFC_RPI_RSRC_RDY);
18254 	return rc;
18255 }
18256 
18257 /**
18258  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18259  * @phba: pointer to lpfc hba data structure.
18260  * @rpi_page:  pointer to the rpi memory region.
18261  *
18262  * This routine is invoked to post a single rpi header to the
18263  * HBA consistent with the SLI-4 interface spec.  This memory region
18264  * maps up to 64 rpi context regions.
18265  *
18266  * Return codes
18267  * 	0 - successful
18268  * 	-ENOMEM - No available memory
18269  *      -EIO - The mailbox failed to complete successfully.
18270  **/
18271 int
18272 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18273 {
18274 	LPFC_MBOXQ_t *mboxq;
18275 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18276 	uint32_t rc = 0;
18277 	uint32_t shdr_status, shdr_add_status;
18278 	union lpfc_sli4_cfg_shdr *shdr;
18279 
18280 	/* SLI4 ports that support extents do not require RPI headers. */
18281 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18282 		return rc;
18283 	if (phba->sli4_hba.extents_in_use)
18284 		return -EIO;
18285 
18286 	/* The port is notified of the header region via a mailbox command. */
18287 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18288 	if (!mboxq) {
18289 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18290 				"2001 Unable to allocate memory for issuing "
18291 				"SLI_CONFIG_SPECIAL mailbox command\n");
18292 		return -ENOMEM;
18293 	}
18294 
18295 	/* Post all rpi memory regions to the port. */
18296 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18297 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18298 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18299 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18300 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18301 			 LPFC_SLI4_MBX_EMBED);
18302 
18303 
18304 	/* Post the physical rpi to the port for this rpi header. */
18305 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18306 	       rpi_page->start_rpi);
18307 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18308 	       hdr_tmpl, rpi_page->page_count);
18309 
18310 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18311 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18312 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18313 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18314 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18315 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18316 	if (rc != MBX_TIMEOUT)
18317 		mempool_free(mboxq, phba->mbox_mem_pool);
18318 	if (shdr_status || shdr_add_status || rc) {
18319 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18320 				"2514 POST_RPI_HDR mailbox failed with "
18321 				"status x%x add_status x%x, mbx status x%x\n",
18322 				shdr_status, shdr_add_status, rc);
18323 		rc = -ENXIO;
18324 	} else {
18325 		/*
18326 		 * The next_rpi stores the next logical module-64 rpi value used
18327 		 * to post physical rpis in subsequent rpi postings.
18328 		 */
18329 		spin_lock_irq(&phba->hbalock);
18330 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18331 		spin_unlock_irq(&phba->hbalock);
18332 	}
18333 	return rc;
18334 }
18335 
18336 /**
18337  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18338  * @phba: pointer to lpfc hba data structure.
18339  *
18340  * This routine is invoked to post rpi header templates to the
18341  * HBA consistent with the SLI-4 interface spec.  This routine
18342  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18343  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18344  *
18345  * Returns
18346  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18347  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18348  **/
18349 int
18350 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18351 {
18352 	unsigned long rpi;
18353 	uint16_t max_rpi, rpi_limit;
18354 	uint16_t rpi_remaining, lrpi = 0;
18355 	struct lpfc_rpi_hdr *rpi_hdr;
18356 	unsigned long iflag;
18357 
18358 	/*
18359 	 * Fetch the next logical rpi.  Because this index is logical,
18360 	 * the  driver starts at 0 each time.
18361 	 */
18362 	spin_lock_irqsave(&phba->hbalock, iflag);
18363 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18364 	rpi_limit = phba->sli4_hba.next_rpi;
18365 
18366 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18367 	if (rpi >= rpi_limit)
18368 		rpi = LPFC_RPI_ALLOC_ERROR;
18369 	else {
18370 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18371 		phba->sli4_hba.max_cfg_param.rpi_used++;
18372 		phba->sli4_hba.rpi_count++;
18373 	}
18374 	lpfc_printf_log(phba, KERN_INFO,
18375 			LOG_NODE | LOG_DISCOVERY,
18376 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18377 			(int) rpi, max_rpi, rpi_limit);
18378 
18379 	/*
18380 	 * Don't try to allocate more rpi header regions if the device limit
18381 	 * has been exhausted.
18382 	 */
18383 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18384 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18385 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18386 		return rpi;
18387 	}
18388 
18389 	/*
18390 	 * RPI header postings are not required for SLI4 ports capable of
18391 	 * extents.
18392 	 */
18393 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18394 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18395 		return rpi;
18396 	}
18397 
18398 	/*
18399 	 * If the driver is running low on rpi resources, allocate another
18400 	 * page now.  Note that the next_rpi value is used because
18401 	 * it represents how many are actually in use whereas max_rpi notes
18402 	 * how many are supported max by the device.
18403 	 */
18404 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18405 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18406 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18407 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18408 		if (!rpi_hdr) {
18409 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18410 					"2002 Error Could not grow rpi "
18411 					"count\n");
18412 		} else {
18413 			lrpi = rpi_hdr->start_rpi;
18414 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18415 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18416 		}
18417 	}
18418 
18419 	return rpi;
18420 }
18421 
18422 /**
18423  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18424  * @phba: pointer to lpfc hba data structure.
18425  *
18426  * This routine is invoked to release an rpi to the pool of
18427  * available rpis maintained by the driver.
18428  **/
18429 static void
18430 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18431 {
18432 	/*
18433 	 * if the rpi value indicates a prior unreg has already
18434 	 * been done, skip the unreg.
18435 	 */
18436 	if (rpi == LPFC_RPI_ALLOC_ERROR)
18437 		return;
18438 
18439 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18440 		phba->sli4_hba.rpi_count--;
18441 		phba->sli4_hba.max_cfg_param.rpi_used--;
18442 	} else {
18443 		lpfc_printf_log(phba, KERN_INFO,
18444 				LOG_NODE | LOG_DISCOVERY,
18445 				"2016 rpi %x not inuse\n",
18446 				rpi);
18447 	}
18448 }
18449 
18450 /**
18451  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18452  * @phba: pointer to lpfc hba data structure.
18453  *
18454  * This routine is invoked to release an rpi to the pool of
18455  * available rpis maintained by the driver.
18456  **/
18457 void
18458 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18459 {
18460 	spin_lock_irq(&phba->hbalock);
18461 	__lpfc_sli4_free_rpi(phba, rpi);
18462 	spin_unlock_irq(&phba->hbalock);
18463 }
18464 
18465 /**
18466  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18467  * @phba: pointer to lpfc hba data structure.
18468  *
18469  * This routine is invoked to remove the memory region that
18470  * provided rpi via a bitmask.
18471  **/
18472 void
18473 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18474 {
18475 	kfree(phba->sli4_hba.rpi_bmask);
18476 	kfree(phba->sli4_hba.rpi_ids);
18477 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18478 }
18479 
18480 /**
18481  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18482  * @phba: pointer to lpfc hba data structure.
18483  *
18484  * This routine is invoked to remove the memory region that
18485  * provided rpi via a bitmask.
18486  **/
18487 int
18488 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18489 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18490 {
18491 	LPFC_MBOXQ_t *mboxq;
18492 	struct lpfc_hba *phba = ndlp->phba;
18493 	int rc;
18494 
18495 	/* The port is notified of the header region via a mailbox command. */
18496 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18497 	if (!mboxq)
18498 		return -ENOMEM;
18499 
18500 	/* Post all rpi memory regions to the port. */
18501 	lpfc_resume_rpi(mboxq, ndlp);
18502 	if (cmpl) {
18503 		mboxq->mbox_cmpl = cmpl;
18504 		mboxq->ctx_buf = arg;
18505 		mboxq->ctx_ndlp = ndlp;
18506 	} else
18507 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18508 	mboxq->vport = ndlp->vport;
18509 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18510 	if (rc == MBX_NOT_FINISHED) {
18511 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18512 				"2010 Resume RPI Mailbox failed "
18513 				"status %d, mbxStatus x%x\n", rc,
18514 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18515 		mempool_free(mboxq, phba->mbox_mem_pool);
18516 		return -EIO;
18517 	}
18518 	return 0;
18519 }
18520 
18521 /**
18522  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18523  * @vport: Pointer to the vport for which the vpi is being initialized
18524  *
18525  * This routine is invoked to activate a vpi with the port.
18526  *
18527  * Returns:
18528  *    0 success
18529  *    -Evalue otherwise
18530  **/
18531 int
18532 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18533 {
18534 	LPFC_MBOXQ_t *mboxq;
18535 	int rc = 0;
18536 	int retval = MBX_SUCCESS;
18537 	uint32_t mbox_tmo;
18538 	struct lpfc_hba *phba = vport->phba;
18539 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18540 	if (!mboxq)
18541 		return -ENOMEM;
18542 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18543 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18544 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18545 	if (rc != MBX_SUCCESS) {
18546 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18547 				"2022 INIT VPI Mailbox failed "
18548 				"status %d, mbxStatus x%x\n", rc,
18549 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18550 		retval = -EIO;
18551 	}
18552 	if (rc != MBX_TIMEOUT)
18553 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18554 
18555 	return retval;
18556 }
18557 
18558 /**
18559  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18560  * @phba: pointer to lpfc hba data structure.
18561  * @mboxq: Pointer to mailbox object.
18562  *
18563  * This routine is invoked to manually add a single FCF record. The caller
18564  * must pass a completely initialized FCF_Record.  This routine takes
18565  * care of the nonembedded mailbox operations.
18566  **/
18567 static void
18568 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18569 {
18570 	void *virt_addr;
18571 	union lpfc_sli4_cfg_shdr *shdr;
18572 	uint32_t shdr_status, shdr_add_status;
18573 
18574 	virt_addr = mboxq->sge_array->addr[0];
18575 	/* The IOCTL status is embedded in the mailbox subheader. */
18576 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18577 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18578 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18579 
18580 	if ((shdr_status || shdr_add_status) &&
18581 		(shdr_status != STATUS_FCF_IN_USE))
18582 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18583 			"2558 ADD_FCF_RECORD mailbox failed with "
18584 			"status x%x add_status x%x\n",
18585 			shdr_status, shdr_add_status);
18586 
18587 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18588 }
18589 
18590 /**
18591  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18592  * @phba: pointer to lpfc hba data structure.
18593  * @fcf_record:  pointer to the initialized fcf record to add.
18594  *
18595  * This routine is invoked to manually add a single FCF record. The caller
18596  * must pass a completely initialized FCF_Record.  This routine takes
18597  * care of the nonembedded mailbox operations.
18598  **/
18599 int
18600 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18601 {
18602 	int rc = 0;
18603 	LPFC_MBOXQ_t *mboxq;
18604 	uint8_t *bytep;
18605 	void *virt_addr;
18606 	struct lpfc_mbx_sge sge;
18607 	uint32_t alloc_len, req_len;
18608 	uint32_t fcfindex;
18609 
18610 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18611 	if (!mboxq) {
18612 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18613 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18614 		return -ENOMEM;
18615 	}
18616 
18617 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18618 		  sizeof(uint32_t);
18619 
18620 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18621 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18622 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18623 				     req_len, LPFC_SLI4_MBX_NEMBED);
18624 	if (alloc_len < req_len) {
18625 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18626 			"2523 Allocated DMA memory size (x%x) is "
18627 			"less than the requested DMA memory "
18628 			"size (x%x)\n", alloc_len, req_len);
18629 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18630 		return -ENOMEM;
18631 	}
18632 
18633 	/*
18634 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18635 	 * routine only uses a single SGE.
18636 	 */
18637 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18638 	virt_addr = mboxq->sge_array->addr[0];
18639 	/*
18640 	 * Configure the FCF record for FCFI 0.  This is the driver's
18641 	 * hardcoded default and gets used in nonFIP mode.
18642 	 */
18643 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18644 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18645 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18646 
18647 	/*
18648 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18649 	 * the FCoE header plus word10. The data copy needs to be endian
18650 	 * correct.
18651 	 */
18652 	bytep += sizeof(uint32_t);
18653 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18654 	mboxq->vport = phba->pport;
18655 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18656 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18657 	if (rc == MBX_NOT_FINISHED) {
18658 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18659 			"2515 ADD_FCF_RECORD mailbox failed with "
18660 			"status 0x%x\n", rc);
18661 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18662 		rc = -EIO;
18663 	} else
18664 		rc = 0;
18665 
18666 	return rc;
18667 }
18668 
18669 /**
18670  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18671  * @phba: pointer to lpfc hba data structure.
18672  * @fcf_record:  pointer to the fcf record to write the default data.
18673  * @fcf_index: FCF table entry index.
18674  *
18675  * This routine is invoked to build the driver's default FCF record.  The
18676  * values used are hardcoded.  This routine handles memory initialization.
18677  *
18678  **/
18679 void
18680 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18681 				struct fcf_record *fcf_record,
18682 				uint16_t fcf_index)
18683 {
18684 	memset(fcf_record, 0, sizeof(struct fcf_record));
18685 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18686 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18687 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18688 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18689 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18690 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18691 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18692 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18693 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18694 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18695 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18696 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18697 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18698 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18699 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18700 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18701 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18702 	/* Set the VLAN bit map */
18703 	if (phba->valid_vlan) {
18704 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18705 			= 1 << (phba->vlan_id % 8);
18706 	}
18707 }
18708 
18709 /**
18710  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18711  * @phba: pointer to lpfc hba data structure.
18712  * @fcf_index: FCF table entry offset.
18713  *
18714  * This routine is invoked to scan the entire FCF table by reading FCF
18715  * record and processing it one at a time starting from the @fcf_index
18716  * for initial FCF discovery or fast FCF failover rediscovery.
18717  *
18718  * Return 0 if the mailbox command is submitted successfully, none 0
18719  * otherwise.
18720  **/
18721 int
18722 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18723 {
18724 	int rc = 0, error;
18725 	LPFC_MBOXQ_t *mboxq;
18726 
18727 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18728 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18729 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18730 	if (!mboxq) {
18731 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18732 				"2000 Failed to allocate mbox for "
18733 				"READ_FCF cmd\n");
18734 		error = -ENOMEM;
18735 		goto fail_fcf_scan;
18736 	}
18737 	/* Construct the read FCF record mailbox command */
18738 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18739 	if (rc) {
18740 		error = -EINVAL;
18741 		goto fail_fcf_scan;
18742 	}
18743 	/* Issue the mailbox command asynchronously */
18744 	mboxq->vport = phba->pport;
18745 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18746 
18747 	spin_lock_irq(&phba->hbalock);
18748 	phba->hba_flag |= FCF_TS_INPROG;
18749 	spin_unlock_irq(&phba->hbalock);
18750 
18751 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18752 	if (rc == MBX_NOT_FINISHED)
18753 		error = -EIO;
18754 	else {
18755 		/* Reset eligible FCF count for new scan */
18756 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18757 			phba->fcf.eligible_fcf_cnt = 0;
18758 		error = 0;
18759 	}
18760 fail_fcf_scan:
18761 	if (error) {
18762 		if (mboxq)
18763 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18764 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18765 		spin_lock_irq(&phba->hbalock);
18766 		phba->hba_flag &= ~FCF_TS_INPROG;
18767 		spin_unlock_irq(&phba->hbalock);
18768 	}
18769 	return error;
18770 }
18771 
18772 /**
18773  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18774  * @phba: pointer to lpfc hba data structure.
18775  * @fcf_index: FCF table entry offset.
18776  *
18777  * This routine is invoked to read an FCF record indicated by @fcf_index
18778  * and to use it for FLOGI roundrobin FCF failover.
18779  *
18780  * Return 0 if the mailbox command is submitted successfully, none 0
18781  * otherwise.
18782  **/
18783 int
18784 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18785 {
18786 	int rc = 0, error;
18787 	LPFC_MBOXQ_t *mboxq;
18788 
18789 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18790 	if (!mboxq) {
18791 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18792 				"2763 Failed to allocate mbox for "
18793 				"READ_FCF cmd\n");
18794 		error = -ENOMEM;
18795 		goto fail_fcf_read;
18796 	}
18797 	/* Construct the read FCF record mailbox command */
18798 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18799 	if (rc) {
18800 		error = -EINVAL;
18801 		goto fail_fcf_read;
18802 	}
18803 	/* Issue the mailbox command asynchronously */
18804 	mboxq->vport = phba->pport;
18805 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18806 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18807 	if (rc == MBX_NOT_FINISHED)
18808 		error = -EIO;
18809 	else
18810 		error = 0;
18811 
18812 fail_fcf_read:
18813 	if (error && mboxq)
18814 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18815 	return error;
18816 }
18817 
18818 /**
18819  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18820  * @phba: pointer to lpfc hba data structure.
18821  * @fcf_index: FCF table entry offset.
18822  *
18823  * This routine is invoked to read an FCF record indicated by @fcf_index to
18824  * determine whether it's eligible for FLOGI roundrobin failover list.
18825  *
18826  * Return 0 if the mailbox command is submitted successfully, none 0
18827  * otherwise.
18828  **/
18829 int
18830 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18831 {
18832 	int rc = 0, error;
18833 	LPFC_MBOXQ_t *mboxq;
18834 
18835 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18836 	if (!mboxq) {
18837 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18838 				"2758 Failed to allocate mbox for "
18839 				"READ_FCF cmd\n");
18840 				error = -ENOMEM;
18841 				goto fail_fcf_read;
18842 	}
18843 	/* Construct the read FCF record mailbox command */
18844 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18845 	if (rc) {
18846 		error = -EINVAL;
18847 		goto fail_fcf_read;
18848 	}
18849 	/* Issue the mailbox command asynchronously */
18850 	mboxq->vport = phba->pport;
18851 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18852 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18853 	if (rc == MBX_NOT_FINISHED)
18854 		error = -EIO;
18855 	else
18856 		error = 0;
18857 
18858 fail_fcf_read:
18859 	if (error && mboxq)
18860 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18861 	return error;
18862 }
18863 
18864 /**
18865  * lpfc_check_next_fcf_pri_level
18866  * phba pointer to the lpfc_hba struct for this port.
18867  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18868  * routine when the rr_bmask is empty. The FCF indecies are put into the
18869  * rr_bmask based on their priority level. Starting from the highest priority
18870  * to the lowest. The most likely FCF candidate will be in the highest
18871  * priority group. When this routine is called it searches the fcf_pri list for
18872  * next lowest priority group and repopulates the rr_bmask with only those
18873  * fcf_indexes.
18874  * returns:
18875  * 1=success 0=failure
18876  **/
18877 static int
18878 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18879 {
18880 	uint16_t next_fcf_pri;
18881 	uint16_t last_index;
18882 	struct lpfc_fcf_pri *fcf_pri;
18883 	int rc;
18884 	int ret = 0;
18885 
18886 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18887 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18888 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18889 			"3060 Last IDX %d\n", last_index);
18890 
18891 	/* Verify the priority list has 2 or more entries */
18892 	spin_lock_irq(&phba->hbalock);
18893 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18894 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18895 		spin_unlock_irq(&phba->hbalock);
18896 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18897 			"3061 Last IDX %d\n", last_index);
18898 		return 0; /* Empty rr list */
18899 	}
18900 	spin_unlock_irq(&phba->hbalock);
18901 
18902 	next_fcf_pri = 0;
18903 	/*
18904 	 * Clear the rr_bmask and set all of the bits that are at this
18905 	 * priority.
18906 	 */
18907 	memset(phba->fcf.fcf_rr_bmask, 0,
18908 			sizeof(*phba->fcf.fcf_rr_bmask));
18909 	spin_lock_irq(&phba->hbalock);
18910 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18911 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18912 			continue;
18913 		/*
18914 		 * the 1st priority that has not FLOGI failed
18915 		 * will be the highest.
18916 		 */
18917 		if (!next_fcf_pri)
18918 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18919 		spin_unlock_irq(&phba->hbalock);
18920 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18921 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18922 						fcf_pri->fcf_rec.fcf_index);
18923 			if (rc)
18924 				return 0;
18925 		}
18926 		spin_lock_irq(&phba->hbalock);
18927 	}
18928 	/*
18929 	 * if next_fcf_pri was not set above and the list is not empty then
18930 	 * we have failed flogis on all of them. So reset flogi failed
18931 	 * and start at the beginning.
18932 	 */
18933 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18934 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18935 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18936 			/*
18937 			 * the 1st priority that has not FLOGI failed
18938 			 * will be the highest.
18939 			 */
18940 			if (!next_fcf_pri)
18941 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18942 			spin_unlock_irq(&phba->hbalock);
18943 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18944 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18945 						fcf_pri->fcf_rec.fcf_index);
18946 				if (rc)
18947 					return 0;
18948 			}
18949 			spin_lock_irq(&phba->hbalock);
18950 		}
18951 	} else
18952 		ret = 1;
18953 	spin_unlock_irq(&phba->hbalock);
18954 
18955 	return ret;
18956 }
18957 /**
18958  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18959  * @phba: pointer to lpfc hba data structure.
18960  *
18961  * This routine is to get the next eligible FCF record index in a round
18962  * robin fashion. If the next eligible FCF record index equals to the
18963  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18964  * shall be returned, otherwise, the next eligible FCF record's index
18965  * shall be returned.
18966  **/
18967 uint16_t
18968 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18969 {
18970 	uint16_t next_fcf_index;
18971 
18972 initial_priority:
18973 	/* Search start from next bit of currently registered FCF index */
18974 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18975 
18976 next_priority:
18977 	/* Determine the next fcf index to check */
18978 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18979 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18980 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18981 				       next_fcf_index);
18982 
18983 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18984 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18985 		/*
18986 		 * If we have wrapped then we need to clear the bits that
18987 		 * have been tested so that we can detect when we should
18988 		 * change the priority level.
18989 		 */
18990 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18991 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18992 	}
18993 
18994 
18995 	/* Check roundrobin failover list empty condition */
18996 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18997 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18998 		/*
18999 		 * If next fcf index is not found check if there are lower
19000 		 * Priority level fcf's in the fcf_priority list.
19001 		 * Set up the rr_bmask with all of the avaiable fcf bits
19002 		 * at that level and continue the selection process.
19003 		 */
19004 		if (lpfc_check_next_fcf_pri_level(phba))
19005 			goto initial_priority;
19006 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19007 				"2844 No roundrobin failover FCF available\n");
19008 
19009 		return LPFC_FCOE_FCF_NEXT_NONE;
19010 	}
19011 
19012 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19013 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19014 		LPFC_FCF_FLOGI_FAILED) {
19015 		if (list_is_singular(&phba->fcf.fcf_pri_list))
19016 			return LPFC_FCOE_FCF_NEXT_NONE;
19017 
19018 		goto next_priority;
19019 	}
19020 
19021 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19022 			"2845 Get next roundrobin failover FCF (x%x)\n",
19023 			next_fcf_index);
19024 
19025 	return next_fcf_index;
19026 }
19027 
19028 /**
19029  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19030  * @phba: pointer to lpfc hba data structure.
19031  *
19032  * This routine sets the FCF record index in to the eligible bmask for
19033  * roundrobin failover search. It checks to make sure that the index
19034  * does not go beyond the range of the driver allocated bmask dimension
19035  * before setting the bit.
19036  *
19037  * Returns 0 if the index bit successfully set, otherwise, it returns
19038  * -EINVAL.
19039  **/
19040 int
19041 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19042 {
19043 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19044 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19045 				"2610 FCF (x%x) reached driver's book "
19046 				"keeping dimension:x%x\n",
19047 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19048 		return -EINVAL;
19049 	}
19050 	/* Set the eligible FCF record index bmask */
19051 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19052 
19053 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19054 			"2790 Set FCF (x%x) to roundrobin FCF failover "
19055 			"bmask\n", fcf_index);
19056 
19057 	return 0;
19058 }
19059 
19060 /**
19061  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19062  * @phba: pointer to lpfc hba data structure.
19063  *
19064  * This routine clears the FCF record index from the eligible bmask for
19065  * roundrobin failover search. It checks to make sure that the index
19066  * does not go beyond the range of the driver allocated bmask dimension
19067  * before clearing the bit.
19068  **/
19069 void
19070 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19071 {
19072 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19073 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19074 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19075 				"2762 FCF (x%x) reached driver's book "
19076 				"keeping dimension:x%x\n",
19077 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19078 		return;
19079 	}
19080 	/* Clear the eligible FCF record index bmask */
19081 	spin_lock_irq(&phba->hbalock);
19082 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19083 				 list) {
19084 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19085 			list_del_init(&fcf_pri->list);
19086 			break;
19087 		}
19088 	}
19089 	spin_unlock_irq(&phba->hbalock);
19090 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19091 
19092 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19093 			"2791 Clear FCF (x%x) from roundrobin failover "
19094 			"bmask\n", fcf_index);
19095 }
19096 
19097 /**
19098  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19099  * @phba: pointer to lpfc hba data structure.
19100  *
19101  * This routine is the completion routine for the rediscover FCF table mailbox
19102  * command. If the mailbox command returned failure, it will try to stop the
19103  * FCF rediscover wait timer.
19104  **/
19105 static void
19106 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19107 {
19108 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19109 	uint32_t shdr_status, shdr_add_status;
19110 
19111 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19112 
19113 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19114 			     &redisc_fcf->header.cfg_shdr.response);
19115 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19116 			     &redisc_fcf->header.cfg_shdr.response);
19117 	if (shdr_status || shdr_add_status) {
19118 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19119 				"2746 Requesting for FCF rediscovery failed "
19120 				"status x%x add_status x%x\n",
19121 				shdr_status, shdr_add_status);
19122 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19123 			spin_lock_irq(&phba->hbalock);
19124 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19125 			spin_unlock_irq(&phba->hbalock);
19126 			/*
19127 			 * CVL event triggered FCF rediscover request failed,
19128 			 * last resort to re-try current registered FCF entry.
19129 			 */
19130 			lpfc_retry_pport_discovery(phba);
19131 		} else {
19132 			spin_lock_irq(&phba->hbalock);
19133 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19134 			spin_unlock_irq(&phba->hbalock);
19135 			/*
19136 			 * DEAD FCF event triggered FCF rediscover request
19137 			 * failed, last resort to fail over as a link down
19138 			 * to FCF registration.
19139 			 */
19140 			lpfc_sli4_fcf_dead_failthrough(phba);
19141 		}
19142 	} else {
19143 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19144 				"2775 Start FCF rediscover quiescent timer\n");
19145 		/*
19146 		 * Start FCF rediscovery wait timer for pending FCF
19147 		 * before rescan FCF record table.
19148 		 */
19149 		lpfc_fcf_redisc_wait_start_timer(phba);
19150 	}
19151 
19152 	mempool_free(mbox, phba->mbox_mem_pool);
19153 }
19154 
19155 /**
19156  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19157  * @phba: pointer to lpfc hba data structure.
19158  *
19159  * This routine is invoked to request for rediscovery of the entire FCF table
19160  * by the port.
19161  **/
19162 int
19163 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19164 {
19165 	LPFC_MBOXQ_t *mbox;
19166 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19167 	int rc, length;
19168 
19169 	/* Cancel retry delay timers to all vports before FCF rediscover */
19170 	lpfc_cancel_all_vport_retry_delay_timer(phba);
19171 
19172 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19173 	if (!mbox) {
19174 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19175 				"2745 Failed to allocate mbox for "
19176 				"requesting FCF rediscover.\n");
19177 		return -ENOMEM;
19178 	}
19179 
19180 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19181 		  sizeof(struct lpfc_sli4_cfg_mhdr));
19182 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19183 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19184 			 length, LPFC_SLI4_MBX_EMBED);
19185 
19186 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19187 	/* Set count to 0 for invalidating the entire FCF database */
19188 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19189 
19190 	/* Issue the mailbox command asynchronously */
19191 	mbox->vport = phba->pport;
19192 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19193 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19194 
19195 	if (rc == MBX_NOT_FINISHED) {
19196 		mempool_free(mbox, phba->mbox_mem_pool);
19197 		return -EIO;
19198 	}
19199 	return 0;
19200 }
19201 
19202 /**
19203  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19204  * @phba: pointer to lpfc hba data structure.
19205  *
19206  * This function is the failover routine as a last resort to the FCF DEAD
19207  * event when driver failed to perform fast FCF failover.
19208  **/
19209 void
19210 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19211 {
19212 	uint32_t link_state;
19213 
19214 	/*
19215 	 * Last resort as FCF DEAD event failover will treat this as
19216 	 * a link down, but save the link state because we don't want
19217 	 * it to be changed to Link Down unless it is already down.
19218 	 */
19219 	link_state = phba->link_state;
19220 	lpfc_linkdown(phba);
19221 	phba->link_state = link_state;
19222 
19223 	/* Unregister FCF if no devices connected to it */
19224 	lpfc_unregister_unused_fcf(phba);
19225 }
19226 
19227 /**
19228  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19229  * @phba: pointer to lpfc hba data structure.
19230  * @rgn23_data: pointer to configure region 23 data.
19231  *
19232  * This function gets SLI3 port configure region 23 data through memory dump
19233  * mailbox command. When it successfully retrieves data, the size of the data
19234  * will be returned, otherwise, 0 will be returned.
19235  **/
19236 static uint32_t
19237 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19238 {
19239 	LPFC_MBOXQ_t *pmb = NULL;
19240 	MAILBOX_t *mb;
19241 	uint32_t offset = 0;
19242 	int rc;
19243 
19244 	if (!rgn23_data)
19245 		return 0;
19246 
19247 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19248 	if (!pmb) {
19249 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19250 				"2600 failed to allocate mailbox memory\n");
19251 		return 0;
19252 	}
19253 	mb = &pmb->u.mb;
19254 
19255 	do {
19256 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19257 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19258 
19259 		if (rc != MBX_SUCCESS) {
19260 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19261 					"2601 failed to read config "
19262 					"region 23, rc 0x%x Status 0x%x\n",
19263 					rc, mb->mbxStatus);
19264 			mb->un.varDmp.word_cnt = 0;
19265 		}
19266 		/*
19267 		 * dump mem may return a zero when finished or we got a
19268 		 * mailbox error, either way we are done.
19269 		 */
19270 		if (mb->un.varDmp.word_cnt == 0)
19271 			break;
19272 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19273 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19274 
19275 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19276 				       rgn23_data + offset,
19277 				       mb->un.varDmp.word_cnt);
19278 		offset += mb->un.varDmp.word_cnt;
19279 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19280 
19281 	mempool_free(pmb, phba->mbox_mem_pool);
19282 	return offset;
19283 }
19284 
19285 /**
19286  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19287  * @phba: pointer to lpfc hba data structure.
19288  * @rgn23_data: pointer to configure region 23 data.
19289  *
19290  * This function gets SLI4 port configure region 23 data through memory dump
19291  * mailbox command. When it successfully retrieves data, the size of the data
19292  * will be returned, otherwise, 0 will be returned.
19293  **/
19294 static uint32_t
19295 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19296 {
19297 	LPFC_MBOXQ_t *mboxq = NULL;
19298 	struct lpfc_dmabuf *mp = NULL;
19299 	struct lpfc_mqe *mqe;
19300 	uint32_t data_length = 0;
19301 	int rc;
19302 
19303 	if (!rgn23_data)
19304 		return 0;
19305 
19306 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19307 	if (!mboxq) {
19308 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19309 				"3105 failed to allocate mailbox memory\n");
19310 		return 0;
19311 	}
19312 
19313 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19314 		goto out;
19315 	mqe = &mboxq->u.mqe;
19316 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19317 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19318 	if (rc)
19319 		goto out;
19320 	data_length = mqe->un.mb_words[5];
19321 	if (data_length == 0)
19322 		goto out;
19323 	if (data_length > DMP_RGN23_SIZE) {
19324 		data_length = 0;
19325 		goto out;
19326 	}
19327 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19328 out:
19329 	mempool_free(mboxq, phba->mbox_mem_pool);
19330 	if (mp) {
19331 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19332 		kfree(mp);
19333 	}
19334 	return data_length;
19335 }
19336 
19337 /**
19338  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19339  * @phba: pointer to lpfc hba data structure.
19340  *
19341  * This function read region 23 and parse TLV for port status to
19342  * decide if the user disaled the port. If the TLV indicates the
19343  * port is disabled, the hba_flag is set accordingly.
19344  **/
19345 void
19346 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19347 {
19348 	uint8_t *rgn23_data = NULL;
19349 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19350 	uint32_t offset = 0;
19351 
19352 	/* Get adapter Region 23 data */
19353 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19354 	if (!rgn23_data)
19355 		goto out;
19356 
19357 	if (phba->sli_rev < LPFC_SLI_REV4)
19358 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19359 	else {
19360 		if_type = bf_get(lpfc_sli_intf_if_type,
19361 				 &phba->sli4_hba.sli_intf);
19362 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19363 			goto out;
19364 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19365 	}
19366 
19367 	if (!data_size)
19368 		goto out;
19369 
19370 	/* Check the region signature first */
19371 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19372 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19373 			"2619 Config region 23 has bad signature\n");
19374 			goto out;
19375 	}
19376 	offset += 4;
19377 
19378 	/* Check the data structure version */
19379 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19380 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19381 			"2620 Config region 23 has bad version\n");
19382 		goto out;
19383 	}
19384 	offset += 4;
19385 
19386 	/* Parse TLV entries in the region */
19387 	while (offset < data_size) {
19388 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19389 			break;
19390 		/*
19391 		 * If the TLV is not driver specific TLV or driver id is
19392 		 * not linux driver id, skip the record.
19393 		 */
19394 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19395 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19396 		    (rgn23_data[offset + 3] != 0)) {
19397 			offset += rgn23_data[offset + 1] * 4 + 4;
19398 			continue;
19399 		}
19400 
19401 		/* Driver found a driver specific TLV in the config region */
19402 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19403 		offset += 4;
19404 		tlv_offset = 0;
19405 
19406 		/*
19407 		 * Search for configured port state sub-TLV.
19408 		 */
19409 		while ((offset < data_size) &&
19410 			(tlv_offset < sub_tlv_len)) {
19411 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19412 				offset += 4;
19413 				tlv_offset += 4;
19414 				break;
19415 			}
19416 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19417 				offset += rgn23_data[offset + 1] * 4 + 4;
19418 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19419 				continue;
19420 			}
19421 
19422 			/* This HBA contains PORT_STE configured */
19423 			if (!rgn23_data[offset + 2])
19424 				phba->hba_flag |= LINK_DISABLED;
19425 
19426 			goto out;
19427 		}
19428 	}
19429 
19430 out:
19431 	kfree(rgn23_data);
19432 	return;
19433 }
19434 
19435 /**
19436  * lpfc_wr_object - write an object to the firmware
19437  * @phba: HBA structure that indicates port to create a queue on.
19438  * @dmabuf_list: list of dmabufs to write to the port.
19439  * @size: the total byte value of the objects to write to the port.
19440  * @offset: the current offset to be used to start the transfer.
19441  *
19442  * This routine will create a wr_object mailbox command to send to the port.
19443  * the mailbox command will be constructed using the dma buffers described in
19444  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19445  * BDEs that the imbedded mailbox can support. The @offset variable will be
19446  * used to indicate the starting offset of the transfer and will also return
19447  * the offset after the write object mailbox has completed. @size is used to
19448  * determine the end of the object and whether the eof bit should be set.
19449  *
19450  * Return 0 is successful and offset will contain the the new offset to use
19451  * for the next write.
19452  * Return negative value for error cases.
19453  **/
19454 int
19455 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19456 	       uint32_t size, uint32_t *offset)
19457 {
19458 	struct lpfc_mbx_wr_object *wr_object;
19459 	LPFC_MBOXQ_t *mbox;
19460 	int rc = 0, i = 0;
19461 	uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19462 	uint32_t mbox_tmo;
19463 	struct lpfc_dmabuf *dmabuf;
19464 	uint32_t written = 0;
19465 	bool check_change_status = false;
19466 
19467 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19468 	if (!mbox)
19469 		return -ENOMEM;
19470 
19471 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19472 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19473 			sizeof(struct lpfc_mbx_wr_object) -
19474 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19475 
19476 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19477 	wr_object->u.request.write_offset = *offset;
19478 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19479 	wr_object->u.request.object_name[0] =
19480 		cpu_to_le32(wr_object->u.request.object_name[0]);
19481 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19482 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19483 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19484 			break;
19485 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19486 		wr_object->u.request.bde[i].addrHigh =
19487 			putPaddrHigh(dmabuf->phys);
19488 		if (written + SLI4_PAGE_SIZE >= size) {
19489 			wr_object->u.request.bde[i].tus.f.bdeSize =
19490 				(size - written);
19491 			written += (size - written);
19492 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19493 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19494 			check_change_status = true;
19495 		} else {
19496 			wr_object->u.request.bde[i].tus.f.bdeSize =
19497 				SLI4_PAGE_SIZE;
19498 			written += SLI4_PAGE_SIZE;
19499 		}
19500 		i++;
19501 	}
19502 	wr_object->u.request.bde_count = i;
19503 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19504 	if (!phba->sli4_hba.intr_enable)
19505 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19506 	else {
19507 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19508 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19509 	}
19510 	/* The IOCTL status is embedded in the mailbox subheader. */
19511 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19512 			     &wr_object->header.cfg_shdr.response);
19513 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19514 				 &wr_object->header.cfg_shdr.response);
19515 	if (check_change_status) {
19516 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19517 					    &wr_object->u.response);
19518 
19519 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
19520 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
19521 			shdr_csf = bf_get(lpfc_wr_object_csf,
19522 					  &wr_object->u.response);
19523 			if (shdr_csf)
19524 				shdr_change_status =
19525 						   LPFC_CHANGE_STATUS_PCI_RESET;
19526 		}
19527 
19528 		switch (shdr_change_status) {
19529 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19530 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19531 					"3198 Firmware write complete: System "
19532 					"reboot required to instantiate\n");
19533 			break;
19534 		case (LPFC_CHANGE_STATUS_FW_RESET):
19535 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19536 					"3199 Firmware write complete: Firmware"
19537 					" reset required to instantiate\n");
19538 			break;
19539 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19540 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19541 					"3200 Firmware write complete: Port "
19542 					"Migration or PCI Reset required to "
19543 					"instantiate\n");
19544 			break;
19545 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19546 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19547 					"3201 Firmware write complete: PCI "
19548 					"Reset required to instantiate\n");
19549 			break;
19550 		default:
19551 			break;
19552 		}
19553 	}
19554 	if (rc != MBX_TIMEOUT)
19555 		mempool_free(mbox, phba->mbox_mem_pool);
19556 	if (shdr_status || shdr_add_status || rc) {
19557 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19558 				"3025 Write Object mailbox failed with "
19559 				"status x%x add_status x%x, mbx status x%x\n",
19560 				shdr_status, shdr_add_status, rc);
19561 		rc = -ENXIO;
19562 		*offset = shdr_add_status;
19563 	} else
19564 		*offset += wr_object->u.response.actual_write_length;
19565 	return rc;
19566 }
19567 
19568 /**
19569  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19570  * @vport: pointer to vport data structure.
19571  *
19572  * This function iterate through the mailboxq and clean up all REG_LOGIN
19573  * and REG_VPI mailbox commands associated with the vport. This function
19574  * is called when driver want to restart discovery of the vport due to
19575  * a Clear Virtual Link event.
19576  **/
19577 void
19578 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19579 {
19580 	struct lpfc_hba *phba = vport->phba;
19581 	LPFC_MBOXQ_t *mb, *nextmb;
19582 	struct lpfc_dmabuf *mp;
19583 	struct lpfc_nodelist *ndlp;
19584 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19585 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19586 	LIST_HEAD(mbox_cmd_list);
19587 	uint8_t restart_loop;
19588 
19589 	/* Clean up internally queued mailbox commands with the vport */
19590 	spin_lock_irq(&phba->hbalock);
19591 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19592 		if (mb->vport != vport)
19593 			continue;
19594 
19595 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19596 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19597 			continue;
19598 
19599 		list_del(&mb->list);
19600 		list_add_tail(&mb->list, &mbox_cmd_list);
19601 	}
19602 	/* Clean up active mailbox command with the vport */
19603 	mb = phba->sli.mbox_active;
19604 	if (mb && (mb->vport == vport)) {
19605 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19606 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19607 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19608 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19609 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19610 			/* Put reference count for delayed processing */
19611 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19612 			/* Unregister the RPI when mailbox complete */
19613 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19614 		}
19615 	}
19616 	/* Cleanup any mailbox completions which are not yet processed */
19617 	do {
19618 		restart_loop = 0;
19619 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19620 			/*
19621 			 * If this mailox is already processed or it is
19622 			 * for another vport ignore it.
19623 			 */
19624 			if ((mb->vport != vport) ||
19625 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19626 				continue;
19627 
19628 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19629 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19630 				continue;
19631 
19632 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19633 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19634 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19635 				/* Unregister the RPI when mailbox complete */
19636 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19637 				restart_loop = 1;
19638 				spin_unlock_irq(&phba->hbalock);
19639 				spin_lock(shost->host_lock);
19640 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19641 				spin_unlock(shost->host_lock);
19642 				spin_lock_irq(&phba->hbalock);
19643 				break;
19644 			}
19645 		}
19646 	} while (restart_loop);
19647 
19648 	spin_unlock_irq(&phba->hbalock);
19649 
19650 	/* Release the cleaned-up mailbox commands */
19651 	while (!list_empty(&mbox_cmd_list)) {
19652 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19653 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19654 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19655 			if (mp) {
19656 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19657 				kfree(mp);
19658 			}
19659 			mb->ctx_buf = NULL;
19660 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19661 			mb->ctx_ndlp = NULL;
19662 			if (ndlp) {
19663 				spin_lock(shost->host_lock);
19664 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19665 				spin_unlock(shost->host_lock);
19666 				lpfc_nlp_put(ndlp);
19667 			}
19668 		}
19669 		mempool_free(mb, phba->mbox_mem_pool);
19670 	}
19671 
19672 	/* Release the ndlp with the cleaned-up active mailbox command */
19673 	if (act_mbx_ndlp) {
19674 		spin_lock(shost->host_lock);
19675 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19676 		spin_unlock(shost->host_lock);
19677 		lpfc_nlp_put(act_mbx_ndlp);
19678 	}
19679 }
19680 
19681 /**
19682  * lpfc_drain_txq - Drain the txq
19683  * @phba: Pointer to HBA context object.
19684  *
19685  * This function attempt to submit IOCBs on the txq
19686  * to the adapter.  For SLI4 adapters, the txq contains
19687  * ELS IOCBs that have been deferred because the there
19688  * are no SGLs.  This congestion can occur with large
19689  * vport counts during node discovery.
19690  **/
19691 
19692 uint32_t
19693 lpfc_drain_txq(struct lpfc_hba *phba)
19694 {
19695 	LIST_HEAD(completions);
19696 	struct lpfc_sli_ring *pring;
19697 	struct lpfc_iocbq *piocbq = NULL;
19698 	unsigned long iflags = 0;
19699 	char *fail_msg = NULL;
19700 	struct lpfc_sglq *sglq;
19701 	union lpfc_wqe128 wqe;
19702 	uint32_t txq_cnt = 0;
19703 	struct lpfc_queue *wq;
19704 
19705 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19706 		/* MDS WQE are posted only to first WQ*/
19707 		wq = phba->sli4_hba.hdwq[0].io_wq;
19708 		if (unlikely(!wq))
19709 			return 0;
19710 		pring = wq->pring;
19711 	} else {
19712 		wq = phba->sli4_hba.els_wq;
19713 		if (unlikely(!wq))
19714 			return 0;
19715 		pring = lpfc_phba_elsring(phba);
19716 	}
19717 
19718 	if (unlikely(!pring) || list_empty(&pring->txq))
19719 		return 0;
19720 
19721 	spin_lock_irqsave(&pring->ring_lock, iflags);
19722 	list_for_each_entry(piocbq, &pring->txq, list) {
19723 		txq_cnt++;
19724 	}
19725 
19726 	if (txq_cnt > pring->txq_max)
19727 		pring->txq_max = txq_cnt;
19728 
19729 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19730 
19731 	while (!list_empty(&pring->txq)) {
19732 		spin_lock_irqsave(&pring->ring_lock, iflags);
19733 
19734 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19735 		if (!piocbq) {
19736 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19737 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19738 				"2823 txq empty and txq_cnt is %d\n ",
19739 				txq_cnt);
19740 			break;
19741 		}
19742 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19743 		if (!sglq) {
19744 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19745 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19746 			break;
19747 		}
19748 		txq_cnt--;
19749 
19750 		/* The xri and iocb resources secured,
19751 		 * attempt to issue request
19752 		 */
19753 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19754 		piocbq->sli4_xritag = sglq->sli4_xritag;
19755 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19756 			fail_msg = "to convert bpl to sgl";
19757 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19758 			fail_msg = "to convert iocb to wqe";
19759 		else if (lpfc_sli4_wq_put(wq, &wqe))
19760 			fail_msg = " - Wq is full";
19761 		else
19762 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19763 
19764 		if (fail_msg) {
19765 			/* Failed means we can't issue and need to cancel */
19766 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19767 					"2822 IOCB failed %s iotag 0x%x "
19768 					"xri 0x%x\n",
19769 					fail_msg,
19770 					piocbq->iotag, piocbq->sli4_xritag);
19771 			list_add_tail(&piocbq->list, &completions);
19772 		}
19773 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19774 	}
19775 
19776 	/* Cancel all the IOCBs that cannot be issued */
19777 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19778 				IOERR_SLI_ABORTED);
19779 
19780 	return txq_cnt;
19781 }
19782 
19783 /**
19784  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19785  * @phba: Pointer to HBA context object.
19786  * @pwqe: Pointer to command WQE.
19787  * @sglq: Pointer to the scatter gather queue object.
19788  *
19789  * This routine converts the bpl or bde that is in the WQE
19790  * to a sgl list for the sli4 hardware. The physical address
19791  * of the bpl/bde is converted back to a virtual address.
19792  * If the WQE contains a BPL then the list of BDE's is
19793  * converted to sli4_sge's. If the WQE contains a single
19794  * BDE then it is converted to a single sli_sge.
19795  * The WQE is still in cpu endianness so the contents of
19796  * the bpl can be used without byte swapping.
19797  *
19798  * Returns valid XRI = Success, NO_XRI = Failure.
19799  */
19800 static uint16_t
19801 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19802 		 struct lpfc_sglq *sglq)
19803 {
19804 	uint16_t xritag = NO_XRI;
19805 	struct ulp_bde64 *bpl = NULL;
19806 	struct ulp_bde64 bde;
19807 	struct sli4_sge *sgl  = NULL;
19808 	struct lpfc_dmabuf *dmabuf;
19809 	union lpfc_wqe128 *wqe;
19810 	int numBdes = 0;
19811 	int i = 0;
19812 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19813 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19814 	uint32_t cmd;
19815 
19816 	if (!pwqeq || !sglq)
19817 		return xritag;
19818 
19819 	sgl  = (struct sli4_sge *)sglq->sgl;
19820 	wqe = &pwqeq->wqe;
19821 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19822 
19823 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19824 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19825 		return sglq->sli4_xritag;
19826 	numBdes = pwqeq->rsvd2;
19827 	if (numBdes) {
19828 		/* The addrHigh and addrLow fields within the WQE
19829 		 * have not been byteswapped yet so there is no
19830 		 * need to swap them back.
19831 		 */
19832 		if (pwqeq->context3)
19833 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19834 		else
19835 			return xritag;
19836 
19837 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19838 		if (!bpl)
19839 			return xritag;
19840 
19841 		for (i = 0; i < numBdes; i++) {
19842 			/* Should already be byte swapped. */
19843 			sgl->addr_hi = bpl->addrHigh;
19844 			sgl->addr_lo = bpl->addrLow;
19845 
19846 			sgl->word2 = le32_to_cpu(sgl->word2);
19847 			if ((i+1) == numBdes)
19848 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19849 			else
19850 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19851 			/* swap the size field back to the cpu so we
19852 			 * can assign it to the sgl.
19853 			 */
19854 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19855 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19856 			/* The offsets in the sgl need to be accumulated
19857 			 * separately for the request and reply lists.
19858 			 * The request is always first, the reply follows.
19859 			 */
19860 			switch (cmd) {
19861 			case CMD_GEN_REQUEST64_WQE:
19862 				/* add up the reply sg entries */
19863 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19864 					inbound++;
19865 				/* first inbound? reset the offset */
19866 				if (inbound == 1)
19867 					offset = 0;
19868 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19869 				bf_set(lpfc_sli4_sge_type, sgl,
19870 					LPFC_SGE_TYPE_DATA);
19871 				offset += bde.tus.f.bdeSize;
19872 				break;
19873 			case CMD_FCP_TRSP64_WQE:
19874 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19875 				bf_set(lpfc_sli4_sge_type, sgl,
19876 					LPFC_SGE_TYPE_DATA);
19877 				break;
19878 			case CMD_FCP_TSEND64_WQE:
19879 			case CMD_FCP_TRECEIVE64_WQE:
19880 				bf_set(lpfc_sli4_sge_type, sgl,
19881 					bpl->tus.f.bdeFlags);
19882 				if (i < 3)
19883 					offset = 0;
19884 				else
19885 					offset += bde.tus.f.bdeSize;
19886 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19887 				break;
19888 			}
19889 			sgl->word2 = cpu_to_le32(sgl->word2);
19890 			bpl++;
19891 			sgl++;
19892 		}
19893 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19894 		/* The addrHigh and addrLow fields of the BDE have not
19895 		 * been byteswapped yet so they need to be swapped
19896 		 * before putting them in the sgl.
19897 		 */
19898 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19899 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19900 		sgl->word2 = le32_to_cpu(sgl->word2);
19901 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19902 		sgl->word2 = cpu_to_le32(sgl->word2);
19903 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19904 	}
19905 	return sglq->sli4_xritag;
19906 }
19907 
19908 /**
19909  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19910  * @phba: Pointer to HBA context object.
19911  * @ring_number: Base sli ring number
19912  * @pwqe: Pointer to command WQE.
19913  **/
19914 int
19915 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19916 		    struct lpfc_iocbq *pwqe)
19917 {
19918 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19919 	struct lpfc_nvmet_rcv_ctx *ctxp;
19920 	struct lpfc_queue *wq;
19921 	struct lpfc_sglq *sglq;
19922 	struct lpfc_sli_ring *pring;
19923 	unsigned long iflags;
19924 	uint32_t ret = 0;
19925 
19926 	/* NVME_LS and NVME_LS ABTS requests. */
19927 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19928 		pring =  phba->sli4_hba.nvmels_wq->pring;
19929 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19930 					  qp, wq_access);
19931 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19932 		if (!sglq) {
19933 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19934 			return WQE_BUSY;
19935 		}
19936 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19937 		pwqe->sli4_xritag = sglq->sli4_xritag;
19938 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19939 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19940 			return WQE_ERROR;
19941 		}
19942 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19943 		       pwqe->sli4_xritag);
19944 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19945 		if (ret) {
19946 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19947 			return ret;
19948 		}
19949 
19950 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19951 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19952 
19953 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19954 		return 0;
19955 	}
19956 
19957 	/* NVME_FCREQ and NVME_ABTS requests */
19958 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19959 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19960 		wq = qp->io_wq;
19961 		pring = wq->pring;
19962 
19963 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19964 
19965 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19966 					  qp, wq_access);
19967 		ret = lpfc_sli4_wq_put(wq, wqe);
19968 		if (ret) {
19969 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19970 			return ret;
19971 		}
19972 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19973 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19974 
19975 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19976 		return 0;
19977 	}
19978 
19979 	/* NVMET requests */
19980 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19981 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19982 		wq = qp->io_wq;
19983 		pring = wq->pring;
19984 
19985 		ctxp = pwqe->context2;
19986 		sglq = ctxp->ctxbuf->sglq;
19987 		if (pwqe->sli4_xritag ==  NO_XRI) {
19988 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19989 			pwqe->sli4_xritag = sglq->sli4_xritag;
19990 		}
19991 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19992 		       pwqe->sli4_xritag);
19993 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19994 
19995 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19996 					  qp, wq_access);
19997 		ret = lpfc_sli4_wq_put(wq, wqe);
19998 		if (ret) {
19999 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20000 			return ret;
20001 		}
20002 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20003 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20004 
20005 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20006 		return 0;
20007 	}
20008 	return WQE_ERROR;
20009 }
20010 
20011 #ifdef LPFC_MXP_STAT
20012 /**
20013  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20014  * @phba: pointer to lpfc hba data structure.
20015  * @hwqid: belong to which HWQ.
20016  *
20017  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20018  * 15 seconds after a test case is running.
20019  *
20020  * The user should call lpfc_debugfs_multixripools_write before running a test
20021  * case to clear stat_snapshot_taken. Then the user starts a test case. During
20022  * test case is running, stat_snapshot_taken is incremented by 1 every time when
20023  * this routine is called from heartbeat timer. When stat_snapshot_taken is
20024  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20025  **/
20026 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20027 {
20028 	struct lpfc_sli4_hdw_queue *qp;
20029 	struct lpfc_multixri_pool *multixri_pool;
20030 	struct lpfc_pvt_pool *pvt_pool;
20031 	struct lpfc_pbl_pool *pbl_pool;
20032 	u32 txcmplq_cnt;
20033 
20034 	qp = &phba->sli4_hba.hdwq[hwqid];
20035 	multixri_pool = qp->p_multixri_pool;
20036 	if (!multixri_pool)
20037 		return;
20038 
20039 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20040 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20041 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20042 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20043 
20044 		multixri_pool->stat_pbl_count = pbl_pool->count;
20045 		multixri_pool->stat_pvt_count = pvt_pool->count;
20046 		multixri_pool->stat_busy_count = txcmplq_cnt;
20047 	}
20048 
20049 	multixri_pool->stat_snapshot_taken++;
20050 }
20051 #endif
20052 
20053 /**
20054  * lpfc_adjust_pvt_pool_count - Adjust private pool count
20055  * @phba: pointer to lpfc hba data structure.
20056  * @hwqid: belong to which HWQ.
20057  *
20058  * This routine moves some XRIs from private to public pool when private pool
20059  * is not busy.
20060  **/
20061 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20062 {
20063 	struct lpfc_multixri_pool *multixri_pool;
20064 	u32 io_req_count;
20065 	u32 prev_io_req_count;
20066 
20067 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20068 	if (!multixri_pool)
20069 		return;
20070 	io_req_count = multixri_pool->io_req_count;
20071 	prev_io_req_count = multixri_pool->prev_io_req_count;
20072 
20073 	if (prev_io_req_count != io_req_count) {
20074 		/* Private pool is busy */
20075 		multixri_pool->prev_io_req_count = io_req_count;
20076 	} else {
20077 		/* Private pool is not busy.
20078 		 * Move XRIs from private to public pool.
20079 		 */
20080 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20081 	}
20082 }
20083 
20084 /**
20085  * lpfc_adjust_high_watermark - Adjust high watermark
20086  * @phba: pointer to lpfc hba data structure.
20087  * @hwqid: belong to which HWQ.
20088  *
20089  * This routine sets high watermark as number of outstanding XRIs,
20090  * but make sure the new value is between xri_limit/2 and xri_limit.
20091  **/
20092 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20093 {
20094 	u32 new_watermark;
20095 	u32 watermark_max;
20096 	u32 watermark_min;
20097 	u32 xri_limit;
20098 	u32 txcmplq_cnt;
20099 	u32 abts_io_bufs;
20100 	struct lpfc_multixri_pool *multixri_pool;
20101 	struct lpfc_sli4_hdw_queue *qp;
20102 
20103 	qp = &phba->sli4_hba.hdwq[hwqid];
20104 	multixri_pool = qp->p_multixri_pool;
20105 	if (!multixri_pool)
20106 		return;
20107 	xri_limit = multixri_pool->xri_limit;
20108 
20109 	watermark_max = xri_limit;
20110 	watermark_min = xri_limit / 2;
20111 
20112 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20113 	abts_io_bufs = qp->abts_scsi_io_bufs;
20114 	abts_io_bufs += qp->abts_nvme_io_bufs;
20115 
20116 	new_watermark = txcmplq_cnt + abts_io_bufs;
20117 	new_watermark = min(watermark_max, new_watermark);
20118 	new_watermark = max(watermark_min, new_watermark);
20119 	multixri_pool->pvt_pool.high_watermark = new_watermark;
20120 
20121 #ifdef LPFC_MXP_STAT
20122 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20123 					  new_watermark);
20124 #endif
20125 }
20126 
20127 /**
20128  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20129  * @phba: pointer to lpfc hba data structure.
20130  * @hwqid: belong to which HWQ.
20131  *
20132  * This routine is called from hearbeat timer when pvt_pool is idle.
20133  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20134  * The first step moves (all - low_watermark) amount of XRIs.
20135  * The second step moves the rest of XRIs.
20136  **/
20137 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20138 {
20139 	struct lpfc_pbl_pool *pbl_pool;
20140 	struct lpfc_pvt_pool *pvt_pool;
20141 	struct lpfc_sli4_hdw_queue *qp;
20142 	struct lpfc_io_buf *lpfc_ncmd;
20143 	struct lpfc_io_buf *lpfc_ncmd_next;
20144 	unsigned long iflag;
20145 	struct list_head tmp_list;
20146 	u32 tmp_count;
20147 
20148 	qp = &phba->sli4_hba.hdwq[hwqid];
20149 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
20150 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
20151 	tmp_count = 0;
20152 
20153 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20154 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20155 
20156 	if (pvt_pool->count > pvt_pool->low_watermark) {
20157 		/* Step 1: move (all - low_watermark) from pvt_pool
20158 		 * to pbl_pool
20159 		 */
20160 
20161 		/* Move low watermark of bufs from pvt_pool to tmp_list */
20162 		INIT_LIST_HEAD(&tmp_list);
20163 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20164 					 &pvt_pool->list, list) {
20165 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
20166 			tmp_count++;
20167 			if (tmp_count >= pvt_pool->low_watermark)
20168 				break;
20169 		}
20170 
20171 		/* Move all bufs from pvt_pool to pbl_pool */
20172 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20173 
20174 		/* Move all bufs from tmp_list to pvt_pool */
20175 		list_splice(&tmp_list, &pvt_pool->list);
20176 
20177 		pbl_pool->count += (pvt_pool->count - tmp_count);
20178 		pvt_pool->count = tmp_count;
20179 	} else {
20180 		/* Step 2: move the rest from pvt_pool to pbl_pool */
20181 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20182 		pbl_pool->count += pvt_pool->count;
20183 		pvt_pool->count = 0;
20184 	}
20185 
20186 	spin_unlock(&pvt_pool->lock);
20187 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20188 }
20189 
20190 /**
20191  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20192  * @phba: pointer to lpfc hba data structure
20193  * @pbl_pool: specified public free XRI pool
20194  * @pvt_pool: specified private free XRI pool
20195  * @count: number of XRIs to move
20196  *
20197  * This routine tries to move some free common bufs from the specified pbl_pool
20198  * to the specified pvt_pool. It might move less than count XRIs if there's not
20199  * enough in public pool.
20200  *
20201  * Return:
20202  *   true - if XRIs are successfully moved from the specified pbl_pool to the
20203  *          specified pvt_pool
20204  *   false - if the specified pbl_pool is empty or locked by someone else
20205  **/
20206 static bool
20207 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20208 			  struct lpfc_pbl_pool *pbl_pool,
20209 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20210 {
20211 	struct lpfc_io_buf *lpfc_ncmd;
20212 	struct lpfc_io_buf *lpfc_ncmd_next;
20213 	unsigned long iflag;
20214 	int ret;
20215 
20216 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20217 	if (ret) {
20218 		if (pbl_pool->count) {
20219 			/* Move a batch of XRIs from public to private pool */
20220 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20221 			list_for_each_entry_safe(lpfc_ncmd,
20222 						 lpfc_ncmd_next,
20223 						 &pbl_pool->list,
20224 						 list) {
20225 				list_move_tail(&lpfc_ncmd->list,
20226 					       &pvt_pool->list);
20227 				pvt_pool->count++;
20228 				pbl_pool->count--;
20229 				count--;
20230 				if (count == 0)
20231 					break;
20232 			}
20233 
20234 			spin_unlock(&pvt_pool->lock);
20235 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20236 			return true;
20237 		}
20238 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20239 	}
20240 
20241 	return false;
20242 }
20243 
20244 /**
20245  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20246  * @phba: pointer to lpfc hba data structure.
20247  * @hwqid: belong to which HWQ.
20248  * @count: number of XRIs to move
20249  *
20250  * This routine tries to find some free common bufs in one of public pools with
20251  * Round Robin method. The search always starts from local hwqid, then the next
20252  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20253  * a batch of free common bufs are moved to private pool on hwqid.
20254  * It might move less than count XRIs if there's not enough in public pool.
20255  **/
20256 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20257 {
20258 	struct lpfc_multixri_pool *multixri_pool;
20259 	struct lpfc_multixri_pool *next_multixri_pool;
20260 	struct lpfc_pvt_pool *pvt_pool;
20261 	struct lpfc_pbl_pool *pbl_pool;
20262 	struct lpfc_sli4_hdw_queue *qp;
20263 	u32 next_hwqid;
20264 	u32 hwq_count;
20265 	int ret;
20266 
20267 	qp = &phba->sli4_hba.hdwq[hwqid];
20268 	multixri_pool = qp->p_multixri_pool;
20269 	pvt_pool = &multixri_pool->pvt_pool;
20270 	pbl_pool = &multixri_pool->pbl_pool;
20271 
20272 	/* Check if local pbl_pool is available */
20273 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20274 	if (ret) {
20275 #ifdef LPFC_MXP_STAT
20276 		multixri_pool->local_pbl_hit_count++;
20277 #endif
20278 		return;
20279 	}
20280 
20281 	hwq_count = phba->cfg_hdw_queue;
20282 
20283 	/* Get the next hwqid which was found last time */
20284 	next_hwqid = multixri_pool->rrb_next_hwqid;
20285 
20286 	do {
20287 		/* Go to next hwq */
20288 		next_hwqid = (next_hwqid + 1) % hwq_count;
20289 
20290 		next_multixri_pool =
20291 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20292 		pbl_pool = &next_multixri_pool->pbl_pool;
20293 
20294 		/* Check if the public free xri pool is available */
20295 		ret = _lpfc_move_xri_pbl_to_pvt(
20296 			phba, qp, pbl_pool, pvt_pool, count);
20297 
20298 		/* Exit while-loop if success or all hwqid are checked */
20299 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20300 
20301 	/* Starting point for the next time */
20302 	multixri_pool->rrb_next_hwqid = next_hwqid;
20303 
20304 	if (!ret) {
20305 		/* stats: all public pools are empty*/
20306 		multixri_pool->pbl_empty_count++;
20307 	}
20308 
20309 #ifdef LPFC_MXP_STAT
20310 	if (ret) {
20311 		if (next_hwqid == hwqid)
20312 			multixri_pool->local_pbl_hit_count++;
20313 		else
20314 			multixri_pool->other_pbl_hit_count++;
20315 	}
20316 #endif
20317 }
20318 
20319 /**
20320  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20321  * @phba: pointer to lpfc hba data structure.
20322  * @qp: belong to which HWQ.
20323  *
20324  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20325  * low watermark.
20326  **/
20327 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20328 {
20329 	struct lpfc_multixri_pool *multixri_pool;
20330 	struct lpfc_pvt_pool *pvt_pool;
20331 
20332 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20333 	pvt_pool = &multixri_pool->pvt_pool;
20334 
20335 	if (pvt_pool->count < pvt_pool->low_watermark)
20336 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20337 }
20338 
20339 /**
20340  * lpfc_release_io_buf - Return one IO buf back to free pool
20341  * @phba: pointer to lpfc hba data structure.
20342  * @lpfc_ncmd: IO buf to be returned.
20343  * @qp: belong to which HWQ.
20344  *
20345  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20346  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20347  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20348  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20349  * lpfc_io_buf_list_put.
20350  **/
20351 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20352 			 struct lpfc_sli4_hdw_queue *qp)
20353 {
20354 	unsigned long iflag;
20355 	struct lpfc_pbl_pool *pbl_pool;
20356 	struct lpfc_pvt_pool *pvt_pool;
20357 	struct lpfc_epd_pool *epd_pool;
20358 	u32 txcmplq_cnt;
20359 	u32 xri_owned;
20360 	u32 xri_limit;
20361 	u32 abts_io_bufs;
20362 
20363 	/* MUST zero fields if buffer is reused by another protocol */
20364 	lpfc_ncmd->nvmeCmd = NULL;
20365 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20366 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20367 
20368 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
20369 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20370 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20371 
20372 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20373 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20374 
20375 	if (phba->cfg_xri_rebalancing) {
20376 		if (lpfc_ncmd->expedite) {
20377 			/* Return to expedite pool */
20378 			epd_pool = &phba->epd_pool;
20379 			spin_lock_irqsave(&epd_pool->lock, iflag);
20380 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20381 			epd_pool->count++;
20382 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20383 			return;
20384 		}
20385 
20386 		/* Avoid invalid access if an IO sneaks in and is being rejected
20387 		 * just _after_ xri pools are destroyed in lpfc_offline.
20388 		 * Nothing much can be done at this point.
20389 		 */
20390 		if (!qp->p_multixri_pool)
20391 			return;
20392 
20393 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20394 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20395 
20396 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20397 		abts_io_bufs = qp->abts_scsi_io_bufs;
20398 		abts_io_bufs += qp->abts_nvme_io_bufs;
20399 
20400 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20401 		xri_limit = qp->p_multixri_pool->xri_limit;
20402 
20403 #ifdef LPFC_MXP_STAT
20404 		if (xri_owned <= xri_limit)
20405 			qp->p_multixri_pool->below_limit_count++;
20406 		else
20407 			qp->p_multixri_pool->above_limit_count++;
20408 #endif
20409 
20410 		/* XRI goes to either public or private free xri pool
20411 		 *     based on watermark and xri_limit
20412 		 */
20413 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20414 		    (xri_owned < xri_limit &&
20415 		     pvt_pool->count < pvt_pool->high_watermark)) {
20416 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20417 						  qp, free_pvt_pool);
20418 			list_add_tail(&lpfc_ncmd->list,
20419 				      &pvt_pool->list);
20420 			pvt_pool->count++;
20421 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20422 		} else {
20423 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20424 						  qp, free_pub_pool);
20425 			list_add_tail(&lpfc_ncmd->list,
20426 				      &pbl_pool->list);
20427 			pbl_pool->count++;
20428 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20429 		}
20430 	} else {
20431 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20432 					  qp, free_xri);
20433 		list_add_tail(&lpfc_ncmd->list,
20434 			      &qp->lpfc_io_buf_list_put);
20435 		qp->put_io_bufs++;
20436 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20437 				       iflag);
20438 	}
20439 }
20440 
20441 /**
20442  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20443  * @phba: pointer to lpfc hba data structure.
20444  * @pvt_pool: pointer to private pool data structure.
20445  * @ndlp: pointer to lpfc nodelist data structure.
20446  *
20447  * This routine tries to get one free IO buf from private pool.
20448  *
20449  * Return:
20450  *   pointer to one free IO buf - if private pool is not empty
20451  *   NULL - if private pool is empty
20452  **/
20453 static struct lpfc_io_buf *
20454 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20455 				  struct lpfc_sli4_hdw_queue *qp,
20456 				  struct lpfc_pvt_pool *pvt_pool,
20457 				  struct lpfc_nodelist *ndlp)
20458 {
20459 	struct lpfc_io_buf *lpfc_ncmd;
20460 	struct lpfc_io_buf *lpfc_ncmd_next;
20461 	unsigned long iflag;
20462 
20463 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20464 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20465 				 &pvt_pool->list, list) {
20466 		if (lpfc_test_rrq_active(
20467 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20468 			continue;
20469 		list_del(&lpfc_ncmd->list);
20470 		pvt_pool->count--;
20471 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20472 		return lpfc_ncmd;
20473 	}
20474 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20475 
20476 	return NULL;
20477 }
20478 
20479 /**
20480  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20481  * @phba: pointer to lpfc hba data structure.
20482  *
20483  * This routine tries to get one free IO buf from expedite pool.
20484  *
20485  * Return:
20486  *   pointer to one free IO buf - if expedite pool is not empty
20487  *   NULL - if expedite pool is empty
20488  **/
20489 static struct lpfc_io_buf *
20490 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20491 {
20492 	struct lpfc_io_buf *lpfc_ncmd;
20493 	struct lpfc_io_buf *lpfc_ncmd_next;
20494 	unsigned long iflag;
20495 	struct lpfc_epd_pool *epd_pool;
20496 
20497 	epd_pool = &phba->epd_pool;
20498 	lpfc_ncmd = NULL;
20499 
20500 	spin_lock_irqsave(&epd_pool->lock, iflag);
20501 	if (epd_pool->count > 0) {
20502 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20503 					 &epd_pool->list, list) {
20504 			list_del(&lpfc_ncmd->list);
20505 			epd_pool->count--;
20506 			break;
20507 		}
20508 	}
20509 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20510 
20511 	return lpfc_ncmd;
20512 }
20513 
20514 /**
20515  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20516  * @phba: pointer to lpfc hba data structure.
20517  * @ndlp: pointer to lpfc nodelist data structure.
20518  * @hwqid: belong to which HWQ
20519  * @expedite: 1 means this request is urgent.
20520  *
20521  * This routine will do the following actions and then return a pointer to
20522  * one free IO buf.
20523  *
20524  * 1. If private free xri count is empty, move some XRIs from public to
20525  *    private pool.
20526  * 2. Get one XRI from private free xri pool.
20527  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20528  *    get one free xri from expedite pool.
20529  *
20530  * Note: ndlp is only used on SCSI side for RRQ testing.
20531  *       The caller should pass NULL for ndlp on NVME side.
20532  *
20533  * Return:
20534  *   pointer to one free IO buf - if private pool is not empty
20535  *   NULL - if private pool is empty
20536  **/
20537 static struct lpfc_io_buf *
20538 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20539 				    struct lpfc_nodelist *ndlp,
20540 				    int hwqid, int expedite)
20541 {
20542 	struct lpfc_sli4_hdw_queue *qp;
20543 	struct lpfc_multixri_pool *multixri_pool;
20544 	struct lpfc_pvt_pool *pvt_pool;
20545 	struct lpfc_io_buf *lpfc_ncmd;
20546 
20547 	qp = &phba->sli4_hba.hdwq[hwqid];
20548 	lpfc_ncmd = NULL;
20549 	multixri_pool = qp->p_multixri_pool;
20550 	pvt_pool = &multixri_pool->pvt_pool;
20551 	multixri_pool->io_req_count++;
20552 
20553 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20554 	if (pvt_pool->count == 0)
20555 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20556 
20557 	/* Get one XRI from private free xri pool */
20558 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20559 
20560 	if (lpfc_ncmd) {
20561 		lpfc_ncmd->hdwq = qp;
20562 		lpfc_ncmd->hdwq_no = hwqid;
20563 	} else if (expedite) {
20564 		/* If we fail to get one from pvt_pool and this is an expedite
20565 		 * request, get one free xri from expedite pool.
20566 		 */
20567 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20568 	}
20569 
20570 	return lpfc_ncmd;
20571 }
20572 
20573 static inline struct lpfc_io_buf *
20574 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20575 {
20576 	struct lpfc_sli4_hdw_queue *qp;
20577 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20578 
20579 	qp = &phba->sli4_hba.hdwq[idx];
20580 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20581 				 &qp->lpfc_io_buf_list_get, list) {
20582 		if (lpfc_test_rrq_active(phba, ndlp,
20583 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20584 			continue;
20585 
20586 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20587 			continue;
20588 
20589 		list_del_init(&lpfc_cmd->list);
20590 		qp->get_io_bufs--;
20591 		lpfc_cmd->hdwq = qp;
20592 		lpfc_cmd->hdwq_no = idx;
20593 		return lpfc_cmd;
20594 	}
20595 	return NULL;
20596 }
20597 
20598 /**
20599  * lpfc_get_io_buf - Get one IO buffer from free pool
20600  * @phba: The HBA for which this call is being executed.
20601  * @ndlp: pointer to lpfc nodelist data structure.
20602  * @hwqid: belong to which HWQ
20603  * @expedite: 1 means this request is urgent.
20604  *
20605  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20606  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20607  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20608  *
20609  * Note: ndlp is only used on SCSI side for RRQ testing.
20610  *       The caller should pass NULL for ndlp on NVME side.
20611  *
20612  * Return codes:
20613  *   NULL - Error
20614  *   Pointer to lpfc_io_buf - Success
20615  **/
20616 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20617 				    struct lpfc_nodelist *ndlp,
20618 				    u32 hwqid, int expedite)
20619 {
20620 	struct lpfc_sli4_hdw_queue *qp;
20621 	unsigned long iflag;
20622 	struct lpfc_io_buf *lpfc_cmd;
20623 
20624 	qp = &phba->sli4_hba.hdwq[hwqid];
20625 	lpfc_cmd = NULL;
20626 
20627 	if (phba->cfg_xri_rebalancing)
20628 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20629 			phba, ndlp, hwqid, expedite);
20630 	else {
20631 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20632 					  qp, alloc_xri_get);
20633 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20634 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20635 		if (!lpfc_cmd) {
20636 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20637 					  qp, alloc_xri_put);
20638 			list_splice(&qp->lpfc_io_buf_list_put,
20639 				    &qp->lpfc_io_buf_list_get);
20640 			qp->get_io_bufs += qp->put_io_bufs;
20641 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20642 			qp->put_io_bufs = 0;
20643 			spin_unlock(&qp->io_buf_list_put_lock);
20644 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20645 			    expedite)
20646 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20647 		}
20648 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20649 	}
20650 
20651 	return lpfc_cmd;
20652 }
20653 
20654 /**
20655  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20656  * @phba: The HBA for which this call is being executed.
20657  * @lpfc_buf: IO buf structure to append the SGL chunk
20658  *
20659  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20660  * and will allocate an SGL chunk if the pool is empty.
20661  *
20662  * Return codes:
20663  *   NULL - Error
20664  *   Pointer to sli4_hybrid_sgl - Success
20665  **/
20666 struct sli4_hybrid_sgl *
20667 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20668 {
20669 	struct sli4_hybrid_sgl *list_entry = NULL;
20670 	struct sli4_hybrid_sgl *tmp = NULL;
20671 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
20672 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20673 	struct list_head *buf_list = &hdwq->sgl_list;
20674 	unsigned long iflags;
20675 
20676 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20677 
20678 	if (likely(!list_empty(buf_list))) {
20679 		/* break off 1 chunk from the sgl_list */
20680 		list_for_each_entry_safe(list_entry, tmp,
20681 					 buf_list, list_node) {
20682 			list_move_tail(&list_entry->list_node,
20683 				       &lpfc_buf->dma_sgl_xtra_list);
20684 			break;
20685 		}
20686 	} else {
20687 		/* allocate more */
20688 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20689 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20690 				   cpu_to_node(hdwq->io_wq->chann));
20691 		if (!tmp) {
20692 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20693 					"8353 error kmalloc memory for HDWQ "
20694 					"%d %s\n",
20695 					lpfc_buf->hdwq_no, __func__);
20696 			return NULL;
20697 		}
20698 
20699 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20700 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
20701 		if (!tmp->dma_sgl) {
20702 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20703 					"8354 error pool_alloc memory for HDWQ "
20704 					"%d %s\n",
20705 					lpfc_buf->hdwq_no, __func__);
20706 			kfree(tmp);
20707 			return NULL;
20708 		}
20709 
20710 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20711 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20712 	}
20713 
20714 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20715 					struct sli4_hybrid_sgl,
20716 					list_node);
20717 
20718 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20719 
20720 	return allocated_sgl;
20721 }
20722 
20723 /**
20724  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20725  * @phba: The HBA for which this call is being executed.
20726  * @lpfc_buf: IO buf structure with the SGL chunk
20727  *
20728  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20729  *
20730  * Return codes:
20731  *   0 - Success
20732  *   -EINVAL - Error
20733  **/
20734 int
20735 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20736 {
20737 	int rc = 0;
20738 	struct sli4_hybrid_sgl *list_entry = NULL;
20739 	struct sli4_hybrid_sgl *tmp = NULL;
20740 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20741 	struct list_head *buf_list = &hdwq->sgl_list;
20742 	unsigned long iflags;
20743 
20744 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20745 
20746 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
20747 		list_for_each_entry_safe(list_entry, tmp,
20748 					 &lpfc_buf->dma_sgl_xtra_list,
20749 					 list_node) {
20750 			list_move_tail(&list_entry->list_node,
20751 				       buf_list);
20752 		}
20753 	} else {
20754 		rc = -EINVAL;
20755 	}
20756 
20757 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20758 	return rc;
20759 }
20760 
20761 /**
20762  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
20763  * @phba: phba object
20764  * @hdwq: hdwq to cleanup sgl buff resources on
20765  *
20766  * This routine frees all SGL chunks of hdwq SGL chunk pool.
20767  *
20768  * Return codes:
20769  *   None
20770  **/
20771 void
20772 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
20773 		       struct lpfc_sli4_hdw_queue *hdwq)
20774 {
20775 	struct list_head *buf_list = &hdwq->sgl_list;
20776 	struct sli4_hybrid_sgl *list_entry = NULL;
20777 	struct sli4_hybrid_sgl *tmp = NULL;
20778 	unsigned long iflags;
20779 
20780 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20781 
20782 	/* Free sgl pool */
20783 	list_for_each_entry_safe(list_entry, tmp,
20784 				 buf_list, list_node) {
20785 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
20786 			      list_entry->dma_sgl,
20787 			      list_entry->dma_phys_sgl);
20788 		list_del(&list_entry->list_node);
20789 		kfree(list_entry);
20790 	}
20791 
20792 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20793 }
20794 
20795 /**
20796  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
20797  * @phba: The HBA for which this call is being executed.
20798  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
20799  *
20800  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
20801  * and will allocate an CMD/RSP buffer if the pool is empty.
20802  *
20803  * Return codes:
20804  *   NULL - Error
20805  *   Pointer to fcp_cmd_rsp_buf - Success
20806  **/
20807 struct fcp_cmd_rsp_buf *
20808 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20809 			      struct lpfc_io_buf *lpfc_buf)
20810 {
20811 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20812 	struct fcp_cmd_rsp_buf *tmp = NULL;
20813 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
20814 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20815 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20816 	unsigned long iflags;
20817 
20818 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20819 
20820 	if (likely(!list_empty(buf_list))) {
20821 		/* break off 1 chunk from the list */
20822 		list_for_each_entry_safe(list_entry, tmp,
20823 					 buf_list,
20824 					 list_node) {
20825 			list_move_tail(&list_entry->list_node,
20826 				       &lpfc_buf->dma_cmd_rsp_list);
20827 			break;
20828 		}
20829 	} else {
20830 		/* allocate more */
20831 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20832 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20833 				   cpu_to_node(hdwq->io_wq->chann));
20834 		if (!tmp) {
20835 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20836 					"8355 error kmalloc memory for HDWQ "
20837 					"%d %s\n",
20838 					lpfc_buf->hdwq_no, __func__);
20839 			return NULL;
20840 		}
20841 
20842 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
20843 						GFP_ATOMIC,
20844 						&tmp->fcp_cmd_rsp_dma_handle);
20845 
20846 		if (!tmp->fcp_cmnd) {
20847 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20848 					"8356 error pool_alloc memory for HDWQ "
20849 					"%d %s\n",
20850 					lpfc_buf->hdwq_no, __func__);
20851 			kfree(tmp);
20852 			return NULL;
20853 		}
20854 
20855 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
20856 				sizeof(struct fcp_cmnd));
20857 
20858 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20859 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
20860 	}
20861 
20862 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
20863 					struct fcp_cmd_rsp_buf,
20864 					list_node);
20865 
20866 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20867 
20868 	return allocated_buf;
20869 }
20870 
20871 /**
20872  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
20873  * @phba: The HBA for which this call is being executed.
20874  * @lpfc_buf: IO buf structure with the CMD/RSP buf
20875  *
20876  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
20877  *
20878  * Return codes:
20879  *   0 - Success
20880  *   -EINVAL - Error
20881  **/
20882 int
20883 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20884 			      struct lpfc_io_buf *lpfc_buf)
20885 {
20886 	int rc = 0;
20887 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20888 	struct fcp_cmd_rsp_buf *tmp = NULL;
20889 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20890 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20891 	unsigned long iflags;
20892 
20893 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20894 
20895 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
20896 		list_for_each_entry_safe(list_entry, tmp,
20897 					 &lpfc_buf->dma_cmd_rsp_list,
20898 					 list_node) {
20899 			list_move_tail(&list_entry->list_node,
20900 				       buf_list);
20901 		}
20902 	} else {
20903 		rc = -EINVAL;
20904 	}
20905 
20906 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20907 	return rc;
20908 }
20909 
20910 /**
20911  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
20912  * @phba: phba object
20913  * @hdwq: hdwq to cleanup cmd rsp buff resources on
20914  *
20915  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
20916  *
20917  * Return codes:
20918  *   None
20919  **/
20920 void
20921 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20922 			       struct lpfc_sli4_hdw_queue *hdwq)
20923 {
20924 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20925 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20926 	struct fcp_cmd_rsp_buf *tmp = NULL;
20927 	unsigned long iflags;
20928 
20929 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20930 
20931 	/* Free cmd_rsp buf pool */
20932 	list_for_each_entry_safe(list_entry, tmp,
20933 				 buf_list,
20934 				 list_node) {
20935 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
20936 			      list_entry->fcp_cmnd,
20937 			      list_entry->fcp_cmd_rsp_dma_handle);
20938 		list_del(&list_entry->list_node);
20939 		kfree(list_entry);
20940 	}
20941 
20942 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20943 }
20944