1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 spin_unlock_irqrestore(&phba->hbalock, iflags); 1221 if (empty) 1222 lpfc_worker_wake_up(phba); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!(phba->pport->load_flag & FC_UNLOADING) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !(phba->pport->load_flag & FC_UNLOADING) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2913 spin_unlock_irq(shost->host_lock); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2999 "0010 UNREG_LOGIN vpi:%x " 3000 "rpi:%x DID:%x defer x%x flg x%x " 3001 "x%px\n", 3002 vport->vpi, ndlp->nlp_rpi, 3003 ndlp->nlp_DID, ndlp->nlp_defer_did, 3004 ndlp->nlp_flag, 3005 ndlp); 3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3007 3008 /* Check to see if there are any deferred 3009 * events to process 3010 */ 3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3012 (ndlp->nlp_defer_did != 3013 NLP_EVT_NOTHING_PENDING)) { 3014 lpfc_printf_vlog( 3015 vport, KERN_INFO, LOG_DISCOVERY, 3016 "4111 UNREG cmpl deferred " 3017 "clr x%x on " 3018 "NPort x%x Data: x%x x%px\n", 3019 ndlp->nlp_rpi, ndlp->nlp_DID, 3020 ndlp->nlp_defer_did, ndlp); 3021 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3022 ndlp->nlp_defer_did = 3023 NLP_EVT_NOTHING_PENDING; 3024 lpfc_issue_els_plogi( 3025 vport, ndlp->nlp_DID, 0); 3026 } else { 3027 __lpfc_sli_rpi_release(vport, ndlp); 3028 } 3029 lpfc_nlp_put(ndlp); 3030 } 3031 } 3032 } 3033 3034 mempool_free(pmb, phba->mbox_mem_pool); 3035 } 3036 3037 /** 3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3039 * @phba: Pointer to HBA context object. 3040 * 3041 * This function is called with no lock held. This function processes all 3042 * the completed mailbox commands and gives it to upper layers. The interrupt 3043 * service routine processes mailbox completion interrupt and adds completed 3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3047 * function returns the mailbox commands to the upper layer by calling the 3048 * completion handler function of each mailbox. 3049 **/ 3050 int 3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3052 { 3053 MAILBOX_t *pmbox; 3054 LPFC_MBOXQ_t *pmb; 3055 int rc; 3056 LIST_HEAD(cmplq); 3057 3058 phba->sli.slistat.mbox_event++; 3059 3060 /* Get all completed mailboxe buffers into the cmplq */ 3061 spin_lock_irq(&phba->hbalock); 3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3063 spin_unlock_irq(&phba->hbalock); 3064 3065 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3066 do { 3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3068 if (pmb == NULL) 3069 break; 3070 3071 pmbox = &pmb->u.mb; 3072 3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3074 if (pmb->vport) { 3075 lpfc_debugfs_disc_trc(pmb->vport, 3076 LPFC_DISC_TRC_MBOX_VPORT, 3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3078 (uint32_t)pmbox->mbxCommand, 3079 pmbox->un.varWords[0], 3080 pmbox->un.varWords[1]); 3081 } 3082 else { 3083 lpfc_debugfs_disc_trc(phba->pport, 3084 LPFC_DISC_TRC_MBOX, 3085 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3086 (uint32_t)pmbox->mbxCommand, 3087 pmbox->un.varWords[0], 3088 pmbox->un.varWords[1]); 3089 } 3090 } 3091 3092 /* 3093 * It is a fatal error if unknown mbox command completion. 3094 */ 3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3096 MBX_SHUTDOWN) { 3097 /* Unknown mailbox command compl */ 3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3099 "(%d):0323 Unknown Mailbox command " 3100 "x%x (x%x/x%x) Cmpl\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb)); 3108 phba->link_state = LPFC_HBA_ERROR; 3109 phba->work_hs = HS_FFER3; 3110 lpfc_handle_eratt(phba); 3111 continue; 3112 } 3113 3114 if (pmbox->mbxStatus) { 3115 phba->sli.slistat.mbox_stat_err++; 3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3117 /* Mbox cmd cmpl error - RETRYing */ 3118 lpfc_printf_log(phba, KERN_INFO, 3119 LOG_MBOX | LOG_SLI, 3120 "(%d):0305 Mbox cmd cmpl " 3121 "error - RETRYing Data: x%x " 3122 "(x%x/x%x) x%x x%x x%x\n", 3123 pmb->vport ? pmb->vport->vpi : 3124 LPFC_VPORT_UNKNOWN, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, 3127 pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, 3129 pmb), 3130 pmbox->mbxStatus, 3131 pmbox->un.varWords[0], 3132 pmb->vport ? pmb->vport->port_state : 3133 LPFC_VPORT_UNKNOWN); 3134 pmbox->mbxStatus = 0; 3135 pmbox->mbxOwner = OWN_HOST; 3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3137 if (rc != MBX_NOT_FINISHED) 3138 continue; 3139 } 3140 } 3141 3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3146 "x%x x%x x%x\n", 3147 pmb->vport ? pmb->vport->vpi : 0, 3148 pmbox->mbxCommand, 3149 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3150 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3151 pmb->mbox_cmpl, 3152 *((uint32_t *) pmbox), 3153 pmbox->un.varWords[0], 3154 pmbox->un.varWords[1], 3155 pmbox->un.varWords[2], 3156 pmbox->un.varWords[3], 3157 pmbox->un.varWords[4], 3158 pmbox->un.varWords[5], 3159 pmbox->un.varWords[6], 3160 pmbox->un.varWords[7], 3161 pmbox->un.varWords[8], 3162 pmbox->un.varWords[9], 3163 pmbox->un.varWords[10]); 3164 3165 if (pmb->mbox_cmpl) 3166 pmb->mbox_cmpl(phba,pmb); 3167 } while (1); 3168 return 0; 3169 } 3170 3171 /** 3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3173 * @phba: Pointer to HBA context object. 3174 * @pring: Pointer to driver SLI ring object. 3175 * @tag: buffer tag. 3176 * 3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3178 * is set in the tag the buffer is posted for a particular exchange, 3179 * the function will return the buffer without replacing the buffer. 3180 * If the buffer is for unsolicited ELS or CT traffic, this function 3181 * returns the buffer and also posts another buffer to the firmware. 3182 **/ 3183 static struct lpfc_dmabuf * 3184 lpfc_sli_get_buff(struct lpfc_hba *phba, 3185 struct lpfc_sli_ring *pring, 3186 uint32_t tag) 3187 { 3188 struct hbq_dmabuf *hbq_entry; 3189 3190 if (tag & QUE_BUFTAG_BIT) 3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3193 if (!hbq_entry) 3194 return NULL; 3195 return &hbq_entry->dbuf; 3196 } 3197 3198 /** 3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3200 * containing a NVME LS request. 3201 * @phba: pointer to lpfc hba data structure. 3202 * @piocb: pointer to the iocbq struct representing the sequence starting 3203 * frame. 3204 * 3205 * This routine initially validates the NVME LS, validates there is a login 3206 * with the port that sent the LS, and then calls the appropriate nvme host 3207 * or target LS request handler. 3208 **/ 3209 static void 3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3211 { 3212 struct lpfc_nodelist *ndlp; 3213 struct lpfc_dmabuf *d_buf; 3214 struct hbq_dmabuf *nvmebuf; 3215 struct fc_frame_header *fc_hdr; 3216 struct lpfc_async_xchg_ctx *axchg = NULL; 3217 char *failwhy = NULL; 3218 uint32_t oxid, sid, did, fctl, size; 3219 int ret = 1; 3220 3221 d_buf = piocb->cmd_dmabuf; 3222 3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3224 fc_hdr = nvmebuf->hbuf.virt; 3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3226 sid = sli4_sid_from_fc_hdr(fc_hdr); 3227 did = sli4_did_from_fc_hdr(fc_hdr); 3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3229 fc_hdr->fh_f_ctl[1] << 8 | 3230 fc_hdr->fh_f_ctl[2]); 3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3232 3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3234 oxid, size, sid); 3235 3236 if (phba->pport->load_flag & FC_UNLOADING) { 3237 failwhy = "Driver Unloading"; 3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3239 failwhy = "NVME FC4 Disabled"; 3240 } else if (!phba->nvmet_support && !phba->pport->localport) { 3241 failwhy = "No Localport"; 3242 } else if (phba->nvmet_support && !phba->targetport) { 3243 failwhy = "No Targetport"; 3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3245 failwhy = "Bad NVME LS R_CTL"; 3246 } else if (unlikely((fctl & 0x00FF0000) != 3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3248 failwhy = "Bad NVME LS F_CTL"; 3249 } else { 3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3251 if (!axchg) 3252 failwhy = "No CTX memory"; 3253 } 3254 3255 if (unlikely(failwhy)) { 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3258 sid, oxid, failwhy); 3259 goto out_fail; 3260 } 3261 3262 /* validate the source of the LS is logged in */ 3263 ndlp = lpfc_findnode_did(phba->pport, sid); 3264 if (!ndlp || 3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3268 "6216 NVME Unsol rcv: No ndlp: " 3269 "NPort_ID x%x oxid x%x\n", 3270 sid, oxid); 3271 goto out_fail; 3272 } 3273 3274 axchg->phba = phba; 3275 axchg->ndlp = ndlp; 3276 axchg->size = size; 3277 axchg->oxid = oxid; 3278 axchg->sid = sid; 3279 axchg->wqeq = NULL; 3280 axchg->state = LPFC_NVME_STE_LS_RCV; 3281 axchg->entry_cnt = 1; 3282 axchg->rqb_buffer = (void *)nvmebuf; 3283 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3284 axchg->payload = nvmebuf->dbuf.virt; 3285 INIT_LIST_HEAD(&axchg->list); 3286 3287 if (phba->nvmet_support) { 3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3289 spin_lock_irq(&ndlp->lock); 3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3292 spin_unlock_irq(&ndlp->lock); 3293 3294 /* This reference is a single occurrence to hold the 3295 * node valid until the nvmet transport calls 3296 * host_release. 3297 */ 3298 if (!lpfc_nlp_get(ndlp)) 3299 goto out_fail; 3300 3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3302 "6206 NVMET unsol ls_req ndlp x%px " 3303 "DID x%x xflags x%x refcnt %d\n", 3304 ndlp, ndlp->nlp_DID, 3305 ndlp->fc4_xpt_flags, 3306 kref_read(&ndlp->kref)); 3307 } else { 3308 spin_unlock_irq(&ndlp->lock); 3309 } 3310 } else { 3311 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3312 } 3313 3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3315 if (!ret) 3316 return; 3317 3318 out_fail: 3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3321 "NVMe%s handler failed %d\n", 3322 did, sid, oxid, 3323 (phba->nvmet_support) ? "T" : "I", ret); 3324 3325 /* recycle receive buffer */ 3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3327 3328 /* If start of new exchange, abort it */ 3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3331 3332 if (ret) 3333 kfree(axchg); 3334 } 3335 3336 /** 3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3338 * @phba: Pointer to HBA context object. 3339 * @pring: Pointer to driver SLI ring object. 3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3342 * @fch_type: the type for the first frame of the sequence. 3343 * 3344 * This function is called with no lock held. This function uses the r_ctl and 3345 * type of the received sequence to find the correct callback function to call 3346 * to process the sequence. 3347 **/ 3348 static int 3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3351 uint32_t fch_type) 3352 { 3353 int i; 3354 3355 switch (fch_type) { 3356 case FC_TYPE_NVME: 3357 lpfc_nvme_unsol_ls_handler(phba, saveq); 3358 return 1; 3359 default: 3360 break; 3361 } 3362 3363 /* unSolicited Responses */ 3364 if (pring->prt[0].profile) { 3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3367 saveq); 3368 return 1; 3369 } 3370 /* We must search, based on rctl / type 3371 for the right routine */ 3372 for (i = 0; i < pring->num_mask; i++) { 3373 if ((pring->prt[i].rctl == fch_r_ctl) && 3374 (pring->prt[i].type == fch_type)) { 3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3377 (phba, pring, saveq); 3378 return 1; 3379 } 3380 } 3381 return 0; 3382 } 3383 3384 static void 3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3386 struct lpfc_iocbq *saveq) 3387 { 3388 IOCB_t *irsp; 3389 union lpfc_wqe128 *wqe; 3390 u16 i = 0; 3391 3392 irsp = &saveq->iocb; 3393 wqe = &saveq->wqe; 3394 3395 /* Fill wcqe with the IOCB status fields */ 3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3400 3401 /* Source ID */ 3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3403 3404 /* rx-id of the response frame */ 3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3406 3407 /* ox-id of the frame */ 3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3409 irsp->unsli3.rcvsli3.ox_id); 3410 3411 /* DID */ 3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3413 irsp->un.rcvels.remoteID); 3414 3415 /* unsol data len */ 3416 for (i = 0; i < irsp->ulpBdeCount; i++) { 3417 struct lpfc_hbq_entry *hbqe = NULL; 3418 3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3420 if (i == 0) { 3421 hbqe = (struct lpfc_hbq_entry *) 3422 &irsp->un.ulpWord[0]; 3423 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3424 hbqe->bde.tus.f.bdeSize; 3425 } else if (i == 1) { 3426 hbqe = (struct lpfc_hbq_entry *) 3427 &irsp->unsli3.sli3Words[4]; 3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3429 } 3430 } 3431 } 3432 } 3433 3434 /** 3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3436 * @phba: Pointer to HBA context object. 3437 * @pring: Pointer to driver SLI ring object. 3438 * @saveq: Pointer to the unsolicited iocb. 3439 * 3440 * This function is called with no lock held by the ring event handler 3441 * when there is an unsolicited iocb posted to the response ring by the 3442 * firmware. This function gets the buffer associated with the iocbs 3443 * and calls the event handler for the ring. This function handles both 3444 * qring buffers and hbq buffers. 3445 * When the function returns 1 the caller can free the iocb object otherwise 3446 * upper layer functions will free the iocb objects. 3447 **/ 3448 static int 3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3450 struct lpfc_iocbq *saveq) 3451 { 3452 IOCB_t * irsp; 3453 WORD5 * w5p; 3454 dma_addr_t paddr; 3455 uint32_t Rctl, Type; 3456 struct lpfc_iocbq *iocbq; 3457 struct lpfc_dmabuf *dmzbuf; 3458 3459 irsp = &saveq->iocb; 3460 saveq->vport = phba->pport; 3461 3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3463 if (pring->lpfc_sli_rcv_async_status) 3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3465 else 3466 lpfc_printf_log(phba, 3467 KERN_WARNING, 3468 LOG_SLI, 3469 "0316 Ring %d handler: unexpected " 3470 "ASYNC_STATUS iocb received evt_code " 3471 "0x%x\n", 3472 pring->ringno, 3473 irsp->un.asyncstat.evt_code); 3474 return 1; 3475 } 3476 3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3479 if (irsp->ulpBdeCount > 0) { 3480 dmzbuf = lpfc_sli_get_buff(phba, pring, 3481 irsp->un.ulpWord[3]); 3482 lpfc_in_buf_free(phba, dmzbuf); 3483 } 3484 3485 if (irsp->ulpBdeCount > 1) { 3486 dmzbuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->unsli3.sli3Words[3]); 3488 lpfc_in_buf_free(phba, dmzbuf); 3489 } 3490 3491 if (irsp->ulpBdeCount > 2) { 3492 dmzbuf = lpfc_sli_get_buff(phba, pring, 3493 irsp->unsli3.sli3Words[7]); 3494 lpfc_in_buf_free(phba, dmzbuf); 3495 } 3496 3497 return 1; 3498 } 3499 3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3501 if (irsp->ulpBdeCount != 0) { 3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3503 irsp->un.ulpWord[3]); 3504 if (!saveq->cmd_dmabuf) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0341 Ring %d Cannot find buffer for " 3509 "an unsolicited iocb. tag 0x%x\n", 3510 pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3515 irsp->unsli3.sli3Words[7]); 3516 if (!saveq->bpl_dmabuf) 3517 lpfc_printf_log(phba, 3518 KERN_ERR, 3519 LOG_SLI, 3520 "0342 Ring %d Cannot find buffer for an" 3521 " unsolicited iocb. tag 0x%x\n", 3522 pring->ringno, 3523 irsp->unsli3.sli3Words[7]); 3524 } 3525 list_for_each_entry(iocbq, &saveq->list, list) { 3526 irsp = &iocbq->iocb; 3527 if (irsp->ulpBdeCount != 0) { 3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3529 pring, 3530 irsp->un.ulpWord[3]); 3531 if (!iocbq->cmd_dmabuf) 3532 lpfc_printf_log(phba, 3533 KERN_ERR, 3534 LOG_SLI, 3535 "0343 Ring %d Cannot find " 3536 "buffer for an unsolicited iocb" 3537 ". tag 0x%x\n", pring->ringno, 3538 irsp->un.ulpWord[3]); 3539 } 3540 if (irsp->ulpBdeCount == 2) { 3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3542 pring, 3543 irsp->unsli3.sli3Words[7]); 3544 if (!iocbq->bpl_dmabuf) 3545 lpfc_printf_log(phba, 3546 KERN_ERR, 3547 LOG_SLI, 3548 "0344 Ring %d Cannot find " 3549 "buffer for an unsolicited " 3550 "iocb. tag 0x%x\n", 3551 pring->ringno, 3552 irsp->unsli3.sli3Words[7]); 3553 } 3554 } 3555 } else { 3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3557 irsp->un.cont64[0].addrLow); 3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3559 paddr); 3560 if (irsp->ulpBdeCount == 2) { 3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3562 irsp->un.cont64[1].addrLow); 3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3564 pring, 3565 paddr); 3566 } 3567 } 3568 3569 if (irsp->ulpBdeCount != 0 && 3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3572 int found = 0; 3573 3574 /* search continue save q for same XRI */ 3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3577 saveq->iocb.unsli3.rcvsli3.ox_id) { 3578 list_add_tail(&saveq->list, &iocbq->list); 3579 found = 1; 3580 break; 3581 } 3582 } 3583 if (!found) 3584 list_add_tail(&saveq->clist, 3585 &pring->iocb_continue_saveq); 3586 3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3588 list_del_init(&iocbq->clist); 3589 saveq = iocbq; 3590 irsp = &saveq->iocb; 3591 } else { 3592 return 0; 3593 } 3594 } 3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3598 Rctl = FC_RCTL_ELS_REQ; 3599 Type = FC_TYPE_ELS; 3600 } else { 3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3602 Rctl = w5p->hcsw.Rctl; 3603 Type = w5p->hcsw.Type; 3604 3605 /* Firmware Workaround */ 3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3609 Rctl = FC_RCTL_ELS_REQ; 3610 Type = FC_TYPE_ELS; 3611 w5p->hcsw.Rctl = Rctl; 3612 w5p->hcsw.Type = Type; 3613 } 3614 } 3615 3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3620 saveq->vport = phba->pport; 3621 else 3622 saveq->vport = lpfc_find_vport_by_vpid(phba, 3623 irsp->unsli3.rcvsli3.vpi); 3624 } 3625 3626 /* Prepare WQE with Unsol frame */ 3627 lpfc_sli_prep_unsol_wqe(phba, saveq); 3628 3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3631 "0313 Ring %d handler: unexpected Rctl x%x " 3632 "Type x%x received\n", 3633 pring->ringno, Rctl, Type); 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3640 * @phba: Pointer to HBA context object. 3641 * @pring: Pointer to driver SLI ring object. 3642 * @prspiocb: Pointer to response iocb object. 3643 * 3644 * This function looks up the iocb_lookup table to get the command iocb 3645 * corresponding to the given response iocb using the iotag of the 3646 * response iocb. The driver calls this function with the hbalock held 3647 * for SLI3 ports or the ring lock held for SLI4 ports. 3648 * This function returns the command iocb object if it finds the command 3649 * iocb else returns NULL. 3650 **/ 3651 static struct lpfc_iocbq * 3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3653 struct lpfc_sli_ring *pring, 3654 struct lpfc_iocbq *prspiocb) 3655 { 3656 struct lpfc_iocbq *cmd_iocb = NULL; 3657 u16 iotag; 3658 3659 if (phba->sli_rev == LPFC_SLI_REV4) 3660 iotag = get_wqe_reqtag(prspiocb); 3661 else 3662 iotag = prspiocb->iocb.ulpIoTag; 3663 3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3665 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3667 /* remove from txcmpl queue list */ 3668 list_del_init(&cmd_iocb->list); 3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3670 pring->txcmplq_cnt--; 3671 return cmd_iocb; 3672 } 3673 } 3674 3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3676 "0317 iotag x%x is out of " 3677 "range: max iotag x%x\n", 3678 iotag, phba->sli.last_iotag); 3679 return NULL; 3680 } 3681 3682 /** 3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3684 * @phba: Pointer to HBA context object. 3685 * @pring: Pointer to driver SLI ring object. 3686 * @iotag: IOCB tag. 3687 * 3688 * This function looks up the iocb_lookup table to get the command iocb 3689 * corresponding to the given iotag. The driver calls this function with 3690 * the ring lock held because this function is an SLI4 port only helper. 3691 * This function returns the command iocb object if it finds the command 3692 * iocb else returns NULL. 3693 **/ 3694 static struct lpfc_iocbq * 3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3696 struct lpfc_sli_ring *pring, uint16_t iotag) 3697 { 3698 struct lpfc_iocbq *cmd_iocb = NULL; 3699 3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3701 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3703 /* remove from txcmpl queue list */ 3704 list_del_init(&cmd_iocb->list); 3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3706 pring->txcmplq_cnt--; 3707 return cmd_iocb; 3708 } 3709 } 3710 3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3712 "0372 iotag x%x lookup error: max iotag (x%x) " 3713 "cmd_flag x%x\n", 3714 iotag, phba->sli.last_iotag, 3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3716 return NULL; 3717 } 3718 3719 /** 3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3721 * @phba: Pointer to HBA context object. 3722 * @pring: Pointer to driver SLI ring object. 3723 * @saveq: Pointer to the response iocb to be processed. 3724 * 3725 * This function is called by the ring event handler for non-fcp 3726 * rings when there is a new response iocb in the response ring. 3727 * The caller is not required to hold any locks. This function 3728 * gets the command iocb associated with the response iocb and 3729 * calls the completion handler for the command iocb. If there 3730 * is no completion handler, the function will free the resources 3731 * associated with command iocb. If the response iocb is for 3732 * an already aborted command iocb, the status of the completion 3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3734 * This function always returns 1. 3735 **/ 3736 static int 3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3738 struct lpfc_iocbq *saveq) 3739 { 3740 struct lpfc_iocbq *cmdiocbp; 3741 unsigned long iflag; 3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3743 3744 if (phba->sli_rev == LPFC_SLI_REV4) 3745 spin_lock_irqsave(&pring->ring_lock, iflag); 3746 else 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3751 else 3752 spin_unlock_irqrestore(&phba->hbalock, iflag); 3753 3754 ulp_command = get_job_cmnd(phba, saveq); 3755 ulp_status = get_job_ulpstatus(phba, saveq); 3756 ulp_word4 = get_job_word4(phba, saveq); 3757 ulp_context = get_job_ulpcontext(phba, saveq); 3758 if (phba->sli_rev == LPFC_SLI_REV4) 3759 iotag = get_wqe_reqtag(saveq); 3760 else 3761 iotag = saveq->iocb.ulpIoTag; 3762 3763 if (cmdiocbp) { 3764 ulp_command = get_job_cmnd(phba, cmdiocbp); 3765 if (cmdiocbp->cmd_cmpl) { 3766 /* 3767 * If an ELS command failed send an event to mgmt 3768 * application. 3769 */ 3770 if (ulp_status && 3771 (pring->ringno == LPFC_ELS_RING) && 3772 (ulp_command == CMD_ELS_REQUEST64_CR)) 3773 lpfc_send_els_failure_event(phba, 3774 cmdiocbp, saveq); 3775 3776 /* 3777 * Post all ELS completions to the worker thread. 3778 * All other are passed to the completion callback. 3779 */ 3780 if (pring->ringno == LPFC_ELS_RING) { 3781 if ((phba->sli_rev < LPFC_SLI_REV4) && 3782 (cmdiocbp->cmd_flag & 3783 LPFC_DRIVER_ABORTED)) { 3784 spin_lock_irqsave(&phba->hbalock, 3785 iflag); 3786 cmdiocbp->cmd_flag &= 3787 ~LPFC_DRIVER_ABORTED; 3788 spin_unlock_irqrestore(&phba->hbalock, 3789 iflag); 3790 saveq->iocb.ulpStatus = 3791 IOSTAT_LOCAL_REJECT; 3792 saveq->iocb.un.ulpWord[4] = 3793 IOERR_SLI_ABORTED; 3794 3795 /* Firmware could still be in progress 3796 * of DMAing payload, so don't free data 3797 * buffer till after a hbeat. 3798 */ 3799 spin_lock_irqsave(&phba->hbalock, 3800 iflag); 3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3802 spin_unlock_irqrestore(&phba->hbalock, 3803 iflag); 3804 } 3805 if (phba->sli_rev == LPFC_SLI_REV4) { 3806 if (saveq->cmd_flag & 3807 LPFC_EXCHANGE_BUSY) { 3808 /* Set cmdiocb flag for the 3809 * exchange busy so sgl (xri) 3810 * will not be released until 3811 * the abort xri is received 3812 * from hba. 3813 */ 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 cmdiocbp->cmd_flag |= 3817 LPFC_EXCHANGE_BUSY; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 if (cmdiocbp->cmd_flag & 3822 LPFC_DRIVER_ABORTED) { 3823 /* 3824 * Clear LPFC_DRIVER_ABORTED 3825 * bit in case it was driver 3826 * initiated abort. 3827 */ 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 cmdiocbp->cmd_flag &= 3831 ~LPFC_DRIVER_ABORTED; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 set_job_ulpstatus(cmdiocbp, 3835 IOSTAT_LOCAL_REJECT); 3836 set_job_ulpword4(cmdiocbp, 3837 IOERR_ABORT_REQUESTED); 3838 /* 3839 * For SLI4, irspiocb contains 3840 * NO_XRI in sli_xritag, it 3841 * shall not affect releasing 3842 * sgl (xri) process. 3843 */ 3844 set_job_ulpstatus(saveq, 3845 IOSTAT_LOCAL_REJECT); 3846 set_job_ulpword4(saveq, 3847 IOERR_SLI_ABORTED); 3848 spin_lock_irqsave( 3849 &phba->hbalock, iflag); 3850 saveq->cmd_flag |= 3851 LPFC_DELAY_MEM_FREE; 3852 spin_unlock_irqrestore( 3853 &phba->hbalock, iflag); 3854 } 3855 } 3856 } 3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3858 } else 3859 lpfc_sli_release_iocbq(phba, cmdiocbp); 3860 } else { 3861 /* 3862 * Unknown initiating command based on the response iotag. 3863 * This could be the case on the ELS ring because of 3864 * lpfc_els_abort(). 3865 */ 3866 if (pring->ringno != LPFC_ELS_RING) { 3867 /* 3868 * Ring <ringno> handler: unexpected completion IoTag 3869 * <IoTag> 3870 */ 3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3872 "0322 Ring %d handler: " 3873 "unexpected completion IoTag x%x " 3874 "Data: x%x x%x x%x x%x\n", 3875 pring->ringno, iotag, ulp_status, 3876 ulp_word4, ulp_command, ulp_context); 3877 } 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3885 * @phba: Pointer to HBA context object. 3886 * @pring: Pointer to driver SLI ring object. 3887 * 3888 * This function is called from the iocb ring event handlers when 3889 * put pointer is ahead of the get pointer for a ring. This function signal 3890 * an error attention condition to the worker thread and the worker 3891 * thread will transition the HBA to offline state. 3892 **/ 3893 static void 3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3895 { 3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3897 /* 3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3899 * rsp ring <portRspMax> 3900 */ 3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3902 "0312 Ring %d handler: portRspPut %d " 3903 "is bigger than rsp ring %d\n", 3904 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3905 pring->sli.sli3.numRiocb); 3906 3907 phba->link_state = LPFC_HBA_ERROR; 3908 3909 /* 3910 * All error attention handlers are posted to 3911 * worker thread 3912 */ 3913 phba->work_ha |= HA_ERATT; 3914 phba->work_hs = HS_FFER3; 3915 3916 lpfc_worker_wake_up(phba); 3917 3918 return; 3919 } 3920 3921 /** 3922 * lpfc_poll_eratt - Error attention polling timer timeout handler 3923 * @t: Context to fetch pointer to address of HBA context object from. 3924 * 3925 * This function is invoked by the Error Attention polling timer when the 3926 * timer times out. It will check the SLI Error Attention register for 3927 * possible attention events. If so, it will post an Error Attention event 3928 * and wake up worker thread to process it. Otherwise, it will set up the 3929 * Error Attention polling timer for the next poll. 3930 **/ 3931 void lpfc_poll_eratt(struct timer_list *t) 3932 { 3933 struct lpfc_hba *phba; 3934 uint32_t eratt = 0; 3935 uint64_t sli_intr, cnt; 3936 3937 phba = from_timer(phba, t, eratt_poll); 3938 if (!(phba->hba_flag & HBA_SETUP)) 3939 return; 3940 3941 /* Here we will also keep track of interrupts per sec of the hba */ 3942 sli_intr = phba->sli.slistat.sli_intr; 3943 3944 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3945 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3946 sli_intr); 3947 else 3948 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3949 3950 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3951 do_div(cnt, phba->eratt_poll_interval); 3952 phba->sli.slistat.sli_ips = cnt; 3953 3954 phba->sli.slistat.sli_prev_intr = sli_intr; 3955 3956 /* Check chip HA register for error event */ 3957 eratt = lpfc_sli_check_eratt(phba); 3958 3959 if (eratt) 3960 /* Tell the worker thread there is work to do */ 3961 lpfc_worker_wake_up(phba); 3962 else 3963 /* Restart the timer for next eratt poll */ 3964 mod_timer(&phba->eratt_poll, 3965 jiffies + 3966 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3967 return; 3968 } 3969 3970 3971 /** 3972 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3973 * @phba: Pointer to HBA context object. 3974 * @pring: Pointer to driver SLI ring object. 3975 * @mask: Host attention register mask for this ring. 3976 * 3977 * This function is called from the interrupt context when there is a ring 3978 * event for the fcp ring. The caller does not hold any lock. 3979 * The function processes each response iocb in the response ring until it 3980 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3981 * LE bit set. The function will call the completion handler of the command iocb 3982 * if the response iocb indicates a completion for a command iocb or it is 3983 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3984 * function if this is an unsolicited iocb. 3985 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3986 * to check it explicitly. 3987 */ 3988 int 3989 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3990 struct lpfc_sli_ring *pring, uint32_t mask) 3991 { 3992 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3993 IOCB_t *irsp = NULL; 3994 IOCB_t *entry = NULL; 3995 struct lpfc_iocbq *cmdiocbq = NULL; 3996 struct lpfc_iocbq rspiocbq; 3997 uint32_t status; 3998 uint32_t portRspPut, portRspMax; 3999 int rc = 1; 4000 lpfc_iocb_type type; 4001 unsigned long iflag; 4002 uint32_t rsp_cmpl = 0; 4003 4004 spin_lock_irqsave(&phba->hbalock, iflag); 4005 pring->stats.iocb_event++; 4006 4007 /* 4008 * The next available response entry should never exceed the maximum 4009 * entries. If it does, treat it as an adapter hardware error. 4010 */ 4011 portRspMax = pring->sli.sli3.numRiocb; 4012 portRspPut = le32_to_cpu(pgp->rspPutInx); 4013 if (unlikely(portRspPut >= portRspMax)) { 4014 lpfc_sli_rsp_pointers_error(phba, pring); 4015 spin_unlock_irqrestore(&phba->hbalock, iflag); 4016 return 1; 4017 } 4018 if (phba->fcp_ring_in_use) { 4019 spin_unlock_irqrestore(&phba->hbalock, iflag); 4020 return 1; 4021 } else 4022 phba->fcp_ring_in_use = 1; 4023 4024 rmb(); 4025 while (pring->sli.sli3.rspidx != portRspPut) { 4026 /* 4027 * Fetch an entry off the ring and copy it into a local data 4028 * structure. The copy involves a byte-swap since the 4029 * network byte order and pci byte orders are different. 4030 */ 4031 entry = lpfc_resp_iocb(phba, pring); 4032 phba->last_completion_time = jiffies; 4033 4034 if (++pring->sli.sli3.rspidx >= portRspMax) 4035 pring->sli.sli3.rspidx = 0; 4036 4037 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4038 (uint32_t *) &rspiocbq.iocb, 4039 phba->iocb_rsp_size); 4040 INIT_LIST_HEAD(&(rspiocbq.list)); 4041 irsp = &rspiocbq.iocb; 4042 4043 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4044 pring->stats.iocb_rsp++; 4045 rsp_cmpl++; 4046 4047 if (unlikely(irsp->ulpStatus)) { 4048 /* 4049 * If resource errors reported from HBA, reduce 4050 * queuedepths of the SCSI device. 4051 */ 4052 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4053 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4054 IOERR_NO_RESOURCES)) { 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 phba->lpfc_rampdown_queue_depth(phba); 4057 spin_lock_irqsave(&phba->hbalock, iflag); 4058 } 4059 4060 /* Rsp ring <ringno> error: IOCB */ 4061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4062 "0336 Rsp Ring %d error: IOCB Data: " 4063 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4064 pring->ringno, 4065 irsp->un.ulpWord[0], 4066 irsp->un.ulpWord[1], 4067 irsp->un.ulpWord[2], 4068 irsp->un.ulpWord[3], 4069 irsp->un.ulpWord[4], 4070 irsp->un.ulpWord[5], 4071 *(uint32_t *)&irsp->un1, 4072 *((uint32_t *)&irsp->un1 + 1)); 4073 } 4074 4075 switch (type) { 4076 case LPFC_ABORT_IOCB: 4077 case LPFC_SOL_IOCB: 4078 /* 4079 * Idle exchange closed via ABTS from port. No iocb 4080 * resources need to be recovered. 4081 */ 4082 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4084 "0333 IOCB cmd 0x%x" 4085 " processed. Skipping" 4086 " completion\n", 4087 irsp->ulpCommand); 4088 break; 4089 } 4090 4091 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4092 &rspiocbq); 4093 if (unlikely(!cmdiocbq)) 4094 break; 4095 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4096 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4097 if (cmdiocbq->cmd_cmpl) { 4098 spin_unlock_irqrestore(&phba->hbalock, iflag); 4099 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 } 4102 break; 4103 case LPFC_UNSOL_IOCB: 4104 spin_unlock_irqrestore(&phba->hbalock, iflag); 4105 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4106 spin_lock_irqsave(&phba->hbalock, iflag); 4107 break; 4108 default: 4109 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4110 char adaptermsg[LPFC_MAX_ADPTMSG]; 4111 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4112 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4113 MAX_MSG_DATA); 4114 dev_warn(&((phba->pcidev)->dev), 4115 "lpfc%d: %s\n", 4116 phba->brd_no, adaptermsg); 4117 } else { 4118 /* Unknown IOCB command */ 4119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4120 "0334 Unknown IOCB command " 4121 "Data: x%x, x%x x%x x%x x%x\n", 4122 type, irsp->ulpCommand, 4123 irsp->ulpStatus, 4124 irsp->ulpIoTag, 4125 irsp->ulpContext); 4126 } 4127 break; 4128 } 4129 4130 /* 4131 * The response IOCB has been processed. Update the ring 4132 * pointer in SLIM. If the port response put pointer has not 4133 * been updated, sync the pgp->rspPutInx and fetch the new port 4134 * response put pointer. 4135 */ 4136 writel(pring->sli.sli3.rspidx, 4137 &phba->host_gp[pring->ringno].rspGetInx); 4138 4139 if (pring->sli.sli3.rspidx == portRspPut) 4140 portRspPut = le32_to_cpu(pgp->rspPutInx); 4141 } 4142 4143 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4144 pring->stats.iocb_rsp_full++; 4145 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4146 writel(status, phba->CAregaddr); 4147 readl(phba->CAregaddr); 4148 } 4149 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4150 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4151 pring->stats.iocb_cmd_empty++; 4152 4153 /* Force update of the local copy of cmdGetInx */ 4154 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4155 lpfc_sli_resume_iocb(phba, pring); 4156 4157 if ((pring->lpfc_sli_cmd_available)) 4158 (pring->lpfc_sli_cmd_available) (phba, pring); 4159 4160 } 4161 4162 phba->fcp_ring_in_use = 0; 4163 spin_unlock_irqrestore(&phba->hbalock, iflag); 4164 return rc; 4165 } 4166 4167 /** 4168 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4169 * @phba: Pointer to HBA context object. 4170 * @pring: Pointer to driver SLI ring object. 4171 * @rspiocbp: Pointer to driver response IOCB object. 4172 * 4173 * This function is called from the worker thread when there is a slow-path 4174 * response IOCB to process. This function chains all the response iocbs until 4175 * seeing the iocb with the LE bit set. The function will call 4176 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4177 * completion of a command iocb. The function will call the 4178 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4179 * The function frees the resources or calls the completion handler if this 4180 * iocb is an abort completion. The function returns NULL when the response 4181 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4182 * this function shall chain the iocb on to the iocb_continueq and return the 4183 * response iocb passed in. 4184 **/ 4185 static struct lpfc_iocbq * 4186 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4187 struct lpfc_iocbq *rspiocbp) 4188 { 4189 struct lpfc_iocbq *saveq; 4190 struct lpfc_iocbq *cmdiocb; 4191 struct lpfc_iocbq *next_iocb; 4192 IOCB_t *irsp; 4193 uint32_t free_saveq; 4194 u8 cmd_type; 4195 lpfc_iocb_type type; 4196 unsigned long iflag; 4197 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4198 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4199 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4200 int rc; 4201 4202 spin_lock_irqsave(&phba->hbalock, iflag); 4203 /* First add the response iocb to the countinueq list */ 4204 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4205 pring->iocb_continueq_cnt++; 4206 4207 /* 4208 * By default, the driver expects to free all resources 4209 * associated with this iocb completion. 4210 */ 4211 free_saveq = 1; 4212 saveq = list_get_first(&pring->iocb_continueq, 4213 struct lpfc_iocbq, list); 4214 list_del_init(&pring->iocb_continueq); 4215 pring->iocb_continueq_cnt = 0; 4216 4217 pring->stats.iocb_rsp++; 4218 4219 /* 4220 * If resource errors reported from HBA, reduce 4221 * queuedepths of the SCSI device. 4222 */ 4223 if (ulp_status == IOSTAT_LOCAL_REJECT && 4224 ((ulp_word4 & IOERR_PARAM_MASK) == 4225 IOERR_NO_RESOURCES)) { 4226 spin_unlock_irqrestore(&phba->hbalock, iflag); 4227 phba->lpfc_rampdown_queue_depth(phba); 4228 spin_lock_irqsave(&phba->hbalock, iflag); 4229 } 4230 4231 if (ulp_status) { 4232 /* Rsp ring <ringno> error: IOCB */ 4233 if (phba->sli_rev < LPFC_SLI_REV4) { 4234 irsp = &rspiocbp->iocb; 4235 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4236 "0328 Rsp Ring %d error: ulp_status x%x " 4237 "IOCB Data: " 4238 "x%08x x%08x x%08x x%08x " 4239 "x%08x x%08x x%08x x%08x " 4240 "x%08x x%08x x%08x x%08x " 4241 "x%08x x%08x x%08x x%08x\n", 4242 pring->ringno, ulp_status, 4243 get_job_ulpword(rspiocbp, 0), 4244 get_job_ulpword(rspiocbp, 1), 4245 get_job_ulpword(rspiocbp, 2), 4246 get_job_ulpword(rspiocbp, 3), 4247 get_job_ulpword(rspiocbp, 4), 4248 get_job_ulpword(rspiocbp, 5), 4249 *(((uint32_t *)irsp) + 6), 4250 *(((uint32_t *)irsp) + 7), 4251 *(((uint32_t *)irsp) + 8), 4252 *(((uint32_t *)irsp) + 9), 4253 *(((uint32_t *)irsp) + 10), 4254 *(((uint32_t *)irsp) + 11), 4255 *(((uint32_t *)irsp) + 12), 4256 *(((uint32_t *)irsp) + 13), 4257 *(((uint32_t *)irsp) + 14), 4258 *(((uint32_t *)irsp) + 15)); 4259 } else { 4260 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4261 "0321 Rsp Ring %d error: " 4262 "IOCB Data: " 4263 "x%x x%x x%x x%x\n", 4264 pring->ringno, 4265 rspiocbp->wcqe_cmpl.word0, 4266 rspiocbp->wcqe_cmpl.total_data_placed, 4267 rspiocbp->wcqe_cmpl.parameter, 4268 rspiocbp->wcqe_cmpl.word3); 4269 } 4270 } 4271 4272 4273 /* 4274 * Fetch the iocb command type and call the correct completion 4275 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4276 * get freed back to the lpfc_iocb_list by the discovery 4277 * kernel thread. 4278 */ 4279 cmd_type = ulp_command & CMD_IOCB_MASK; 4280 type = lpfc_sli_iocb_cmd_type(cmd_type); 4281 switch (type) { 4282 case LPFC_SOL_IOCB: 4283 spin_unlock_irqrestore(&phba->hbalock, iflag); 4284 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4285 spin_lock_irqsave(&phba->hbalock, iflag); 4286 break; 4287 case LPFC_UNSOL_IOCB: 4288 spin_unlock_irqrestore(&phba->hbalock, iflag); 4289 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4290 spin_lock_irqsave(&phba->hbalock, iflag); 4291 if (!rc) 4292 free_saveq = 0; 4293 break; 4294 case LPFC_ABORT_IOCB: 4295 cmdiocb = NULL; 4296 if (ulp_command != CMD_XRI_ABORTED_CX) 4297 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4298 saveq); 4299 if (cmdiocb) { 4300 /* Call the specified completion routine */ 4301 if (cmdiocb->cmd_cmpl) { 4302 spin_unlock_irqrestore(&phba->hbalock, iflag); 4303 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4304 spin_lock_irqsave(&phba->hbalock, iflag); 4305 } else { 4306 __lpfc_sli_release_iocbq(phba, cmdiocb); 4307 } 4308 } 4309 break; 4310 case LPFC_UNKNOWN_IOCB: 4311 if (ulp_command == CMD_ADAPTER_MSG) { 4312 char adaptermsg[LPFC_MAX_ADPTMSG]; 4313 4314 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4315 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4316 MAX_MSG_DATA); 4317 dev_warn(&((phba->pcidev)->dev), 4318 "lpfc%d: %s\n", 4319 phba->brd_no, adaptermsg); 4320 } else { 4321 /* Unknown command */ 4322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4323 "0335 Unknown IOCB " 4324 "command Data: x%x " 4325 "x%x x%x x%x\n", 4326 ulp_command, 4327 ulp_status, 4328 get_wqe_reqtag(rspiocbp), 4329 get_job_ulpcontext(phba, rspiocbp)); 4330 } 4331 break; 4332 } 4333 4334 if (free_saveq) { 4335 list_for_each_entry_safe(rspiocbp, next_iocb, 4336 &saveq->list, list) { 4337 list_del_init(&rspiocbp->list); 4338 __lpfc_sli_release_iocbq(phba, rspiocbp); 4339 } 4340 __lpfc_sli_release_iocbq(phba, saveq); 4341 } 4342 rspiocbp = NULL; 4343 spin_unlock_irqrestore(&phba->hbalock, iflag); 4344 return rspiocbp; 4345 } 4346 4347 /** 4348 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4349 * @phba: Pointer to HBA context object. 4350 * @pring: Pointer to driver SLI ring object. 4351 * @mask: Host attention register mask for this ring. 4352 * 4353 * This routine wraps the actual slow_ring event process routine from the 4354 * API jump table function pointer from the lpfc_hba struct. 4355 **/ 4356 void 4357 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4358 struct lpfc_sli_ring *pring, uint32_t mask) 4359 { 4360 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4361 } 4362 4363 /** 4364 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4365 * @phba: Pointer to HBA context object. 4366 * @pring: Pointer to driver SLI ring object. 4367 * @mask: Host attention register mask for this ring. 4368 * 4369 * This function is called from the worker thread when there is a ring event 4370 * for non-fcp rings. The caller does not hold any lock. The function will 4371 * remove each response iocb in the response ring and calls the handle 4372 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4373 **/ 4374 static void 4375 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4376 struct lpfc_sli_ring *pring, uint32_t mask) 4377 { 4378 struct lpfc_pgp *pgp; 4379 IOCB_t *entry; 4380 IOCB_t *irsp = NULL; 4381 struct lpfc_iocbq *rspiocbp = NULL; 4382 uint32_t portRspPut, portRspMax; 4383 unsigned long iflag; 4384 uint32_t status; 4385 4386 pgp = &phba->port_gp[pring->ringno]; 4387 spin_lock_irqsave(&phba->hbalock, iflag); 4388 pring->stats.iocb_event++; 4389 4390 /* 4391 * The next available response entry should never exceed the maximum 4392 * entries. If it does, treat it as an adapter hardware error. 4393 */ 4394 portRspMax = pring->sli.sli3.numRiocb; 4395 portRspPut = le32_to_cpu(pgp->rspPutInx); 4396 if (portRspPut >= portRspMax) { 4397 /* 4398 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4399 * rsp ring <portRspMax> 4400 */ 4401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4402 "0303 Ring %d handler: portRspPut %d " 4403 "is bigger than rsp ring %d\n", 4404 pring->ringno, portRspPut, portRspMax); 4405 4406 phba->link_state = LPFC_HBA_ERROR; 4407 spin_unlock_irqrestore(&phba->hbalock, iflag); 4408 4409 phba->work_hs = HS_FFER3; 4410 lpfc_handle_eratt(phba); 4411 4412 return; 4413 } 4414 4415 rmb(); 4416 while (pring->sli.sli3.rspidx != portRspPut) { 4417 /* 4418 * Build a completion list and call the appropriate handler. 4419 * The process is to get the next available response iocb, get 4420 * a free iocb from the list, copy the response data into the 4421 * free iocb, insert to the continuation list, and update the 4422 * next response index to slim. This process makes response 4423 * iocb's in the ring available to DMA as fast as possible but 4424 * pays a penalty for a copy operation. Since the iocb is 4425 * only 32 bytes, this penalty is considered small relative to 4426 * the PCI reads for register values and a slim write. When 4427 * the ulpLe field is set, the entire Command has been 4428 * received. 4429 */ 4430 entry = lpfc_resp_iocb(phba, pring); 4431 4432 phba->last_completion_time = jiffies; 4433 rspiocbp = __lpfc_sli_get_iocbq(phba); 4434 if (rspiocbp == NULL) { 4435 printk(KERN_ERR "%s: out of buffers! Failing " 4436 "completion.\n", __func__); 4437 break; 4438 } 4439 4440 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4441 phba->iocb_rsp_size); 4442 irsp = &rspiocbp->iocb; 4443 4444 if (++pring->sli.sli3.rspidx >= portRspMax) 4445 pring->sli.sli3.rspidx = 0; 4446 4447 if (pring->ringno == LPFC_ELS_RING) { 4448 lpfc_debugfs_slow_ring_trc(phba, 4449 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4450 *(((uint32_t *) irsp) + 4), 4451 *(((uint32_t *) irsp) + 6), 4452 *(((uint32_t *) irsp) + 7)); 4453 } 4454 4455 writel(pring->sli.sli3.rspidx, 4456 &phba->host_gp[pring->ringno].rspGetInx); 4457 4458 spin_unlock_irqrestore(&phba->hbalock, iflag); 4459 /* Handle the response IOCB */ 4460 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4461 spin_lock_irqsave(&phba->hbalock, iflag); 4462 4463 /* 4464 * If the port response put pointer has not been updated, sync 4465 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4466 * response put pointer. 4467 */ 4468 if (pring->sli.sli3.rspidx == portRspPut) { 4469 portRspPut = le32_to_cpu(pgp->rspPutInx); 4470 } 4471 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4472 4473 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4474 /* At least one response entry has been freed */ 4475 pring->stats.iocb_rsp_full++; 4476 /* SET RxRE_RSP in Chip Att register */ 4477 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4478 writel(status, phba->CAregaddr); 4479 readl(phba->CAregaddr); /* flush */ 4480 } 4481 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4482 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4483 pring->stats.iocb_cmd_empty++; 4484 4485 /* Force update of the local copy of cmdGetInx */ 4486 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4487 lpfc_sli_resume_iocb(phba, pring); 4488 4489 if ((pring->lpfc_sli_cmd_available)) 4490 (pring->lpfc_sli_cmd_available) (phba, pring); 4491 4492 } 4493 4494 spin_unlock_irqrestore(&phba->hbalock, iflag); 4495 return; 4496 } 4497 4498 /** 4499 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4500 * @phba: Pointer to HBA context object. 4501 * @pring: Pointer to driver SLI ring object. 4502 * @mask: Host attention register mask for this ring. 4503 * 4504 * This function is called from the worker thread when there is a pending 4505 * ELS response iocb on the driver internal slow-path response iocb worker 4506 * queue. The caller does not hold any lock. The function will remove each 4507 * response iocb from the response worker queue and calls the handle 4508 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4509 **/ 4510 static void 4511 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4512 struct lpfc_sli_ring *pring, uint32_t mask) 4513 { 4514 struct lpfc_iocbq *irspiocbq; 4515 struct hbq_dmabuf *dmabuf; 4516 struct lpfc_cq_event *cq_event; 4517 unsigned long iflag; 4518 int count = 0; 4519 4520 spin_lock_irqsave(&phba->hbalock, iflag); 4521 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4522 spin_unlock_irqrestore(&phba->hbalock, iflag); 4523 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4524 /* Get the response iocb from the head of work queue */ 4525 spin_lock_irqsave(&phba->hbalock, iflag); 4526 list_remove_head(&phba->sli4_hba.sp_queue_event, 4527 cq_event, struct lpfc_cq_event, list); 4528 spin_unlock_irqrestore(&phba->hbalock, iflag); 4529 4530 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4531 case CQE_CODE_COMPL_WQE: 4532 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4533 cq_event); 4534 /* Translate ELS WCQE to response IOCBQ */ 4535 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4536 irspiocbq); 4537 if (irspiocbq) 4538 lpfc_sli_sp_handle_rspiocb(phba, pring, 4539 irspiocbq); 4540 count++; 4541 break; 4542 case CQE_CODE_RECEIVE: 4543 case CQE_CODE_RECEIVE_V1: 4544 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4545 cq_event); 4546 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4547 count++; 4548 break; 4549 default: 4550 break; 4551 } 4552 4553 /* Limit the number of events to 64 to avoid soft lockups */ 4554 if (count == 64) 4555 break; 4556 } 4557 } 4558 4559 /** 4560 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4561 * @phba: Pointer to HBA context object. 4562 * @pring: Pointer to driver SLI ring object. 4563 * 4564 * This function aborts all iocbs in the given ring and frees all the iocb 4565 * objects in txq. This function issues an abort iocb for all the iocb commands 4566 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4567 * the return of this function. The caller is not required to hold any locks. 4568 **/ 4569 void 4570 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4571 { 4572 LIST_HEAD(tx_completions); 4573 LIST_HEAD(txcmplq_completions); 4574 struct lpfc_iocbq *iocb, *next_iocb; 4575 int offline; 4576 4577 if (pring->ringno == LPFC_ELS_RING) { 4578 lpfc_fabric_abort_hba(phba); 4579 } 4580 offline = pci_channel_offline(phba->pcidev); 4581 4582 /* Error everything on txq and txcmplq 4583 * First do the txq. 4584 */ 4585 if (phba->sli_rev >= LPFC_SLI_REV4) { 4586 spin_lock_irq(&pring->ring_lock); 4587 list_splice_init(&pring->txq, &tx_completions); 4588 pring->txq_cnt = 0; 4589 4590 if (offline) { 4591 list_splice_init(&pring->txcmplq, 4592 &txcmplq_completions); 4593 } else { 4594 /* Next issue ABTS for everything on the txcmplq */ 4595 list_for_each_entry_safe(iocb, next_iocb, 4596 &pring->txcmplq, list) 4597 lpfc_sli_issue_abort_iotag(phba, pring, 4598 iocb, NULL); 4599 } 4600 spin_unlock_irq(&pring->ring_lock); 4601 } else { 4602 spin_lock_irq(&phba->hbalock); 4603 list_splice_init(&pring->txq, &tx_completions); 4604 pring->txq_cnt = 0; 4605 4606 if (offline) { 4607 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4608 } else { 4609 /* Next issue ABTS for everything on the txcmplq */ 4610 list_for_each_entry_safe(iocb, next_iocb, 4611 &pring->txcmplq, list) 4612 lpfc_sli_issue_abort_iotag(phba, pring, 4613 iocb, NULL); 4614 } 4615 spin_unlock_irq(&phba->hbalock); 4616 } 4617 4618 if (offline) { 4619 /* Cancel all the IOCBs from the completions list */ 4620 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4621 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4622 } else { 4623 /* Make sure HBA is alive */ 4624 lpfc_issue_hb_tmo(phba); 4625 } 4626 /* Cancel all the IOCBs from the completions list */ 4627 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4628 IOERR_SLI_ABORTED); 4629 } 4630 4631 /** 4632 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4633 * @phba: Pointer to HBA context object. 4634 * 4635 * This function aborts all iocbs in FCP rings and frees all the iocb 4636 * objects in txq. This function issues an abort iocb for all the iocb commands 4637 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4638 * the return of this function. The caller is not required to hold any locks. 4639 **/ 4640 void 4641 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4642 { 4643 struct lpfc_sli *psli = &phba->sli; 4644 struct lpfc_sli_ring *pring; 4645 uint32_t i; 4646 4647 /* Look on all the FCP Rings for the iotag */ 4648 if (phba->sli_rev >= LPFC_SLI_REV4) { 4649 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4650 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4651 lpfc_sli_abort_iocb_ring(phba, pring); 4652 } 4653 } else { 4654 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4655 lpfc_sli_abort_iocb_ring(phba, pring); 4656 } 4657 } 4658 4659 /** 4660 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4661 * @phba: Pointer to HBA context object. 4662 * 4663 * This function flushes all iocbs in the IO ring and frees all the iocb 4664 * objects in txq and txcmplq. This function will not issue abort iocbs 4665 * for all the iocb commands in txcmplq, they will just be returned with 4666 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4667 * slot has been permanently disabled. 4668 **/ 4669 void 4670 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4671 { 4672 LIST_HEAD(txq); 4673 LIST_HEAD(txcmplq); 4674 struct lpfc_sli *psli = &phba->sli; 4675 struct lpfc_sli_ring *pring; 4676 uint32_t i; 4677 struct lpfc_iocbq *piocb, *next_iocb; 4678 4679 spin_lock_irq(&phba->hbalock); 4680 /* Indicate the I/O queues are flushed */ 4681 phba->hba_flag |= HBA_IOQ_FLUSH; 4682 spin_unlock_irq(&phba->hbalock); 4683 4684 /* Look on all the FCP Rings for the iotag */ 4685 if (phba->sli_rev >= LPFC_SLI_REV4) { 4686 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4687 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4688 4689 spin_lock_irq(&pring->ring_lock); 4690 /* Retrieve everything on txq */ 4691 list_splice_init(&pring->txq, &txq); 4692 list_for_each_entry_safe(piocb, next_iocb, 4693 &pring->txcmplq, list) 4694 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4695 /* Retrieve everything on the txcmplq */ 4696 list_splice_init(&pring->txcmplq, &txcmplq); 4697 pring->txq_cnt = 0; 4698 pring->txcmplq_cnt = 0; 4699 spin_unlock_irq(&pring->ring_lock); 4700 4701 /* Flush the txq */ 4702 lpfc_sli_cancel_iocbs(phba, &txq, 4703 IOSTAT_LOCAL_REJECT, 4704 IOERR_SLI_DOWN); 4705 /* Flush the txcmplq */ 4706 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4707 IOSTAT_LOCAL_REJECT, 4708 IOERR_SLI_DOWN); 4709 if (unlikely(pci_channel_offline(phba->pcidev))) 4710 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4711 } 4712 } else { 4713 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4714 4715 spin_lock_irq(&phba->hbalock); 4716 /* Retrieve everything on txq */ 4717 list_splice_init(&pring->txq, &txq); 4718 list_for_each_entry_safe(piocb, next_iocb, 4719 &pring->txcmplq, list) 4720 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4721 /* Retrieve everything on the txcmplq */ 4722 list_splice_init(&pring->txcmplq, &txcmplq); 4723 pring->txq_cnt = 0; 4724 pring->txcmplq_cnt = 0; 4725 spin_unlock_irq(&phba->hbalock); 4726 4727 /* Flush the txq */ 4728 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4729 IOERR_SLI_DOWN); 4730 /* Flush the txcmpq */ 4731 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4732 IOERR_SLI_DOWN); 4733 } 4734 } 4735 4736 /** 4737 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4738 * @phba: Pointer to HBA context object. 4739 * @mask: Bit mask to be checked. 4740 * 4741 * This function reads the host status register and compares 4742 * with the provided bit mask to check if HBA completed 4743 * the restart. This function will wait in a loop for the 4744 * HBA to complete restart. If the HBA does not restart within 4745 * 15 iterations, the function will reset the HBA again. The 4746 * function returns 1 when HBA fail to restart otherwise returns 4747 * zero. 4748 **/ 4749 static int 4750 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4751 { 4752 uint32_t status; 4753 int i = 0; 4754 int retval = 0; 4755 4756 /* Read the HBA Host Status Register */ 4757 if (lpfc_readl(phba->HSregaddr, &status)) 4758 return 1; 4759 4760 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4761 4762 /* 4763 * Check status register every 100ms for 5 retries, then every 4764 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4765 * every 2.5 sec for 4. 4766 * Break our of the loop if errors occurred during init. 4767 */ 4768 while (((status & mask) != mask) && 4769 !(status & HS_FFERM) && 4770 i++ < 20) { 4771 4772 if (i <= 5) 4773 msleep(10); 4774 else if (i <= 10) 4775 msleep(500); 4776 else 4777 msleep(2500); 4778 4779 if (i == 15) { 4780 /* Do post */ 4781 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4782 lpfc_sli_brdrestart(phba); 4783 } 4784 /* Read the HBA Host Status Register */ 4785 if (lpfc_readl(phba->HSregaddr, &status)) { 4786 retval = 1; 4787 break; 4788 } 4789 } 4790 4791 /* Check to see if any errors occurred during init */ 4792 if ((status & HS_FFERM) || (i >= 20)) { 4793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4794 "2751 Adapter failed to restart, " 4795 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4796 status, 4797 readl(phba->MBslimaddr + 0xa8), 4798 readl(phba->MBslimaddr + 0xac)); 4799 phba->link_state = LPFC_HBA_ERROR; 4800 retval = 1; 4801 } 4802 4803 return retval; 4804 } 4805 4806 /** 4807 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4808 * @phba: Pointer to HBA context object. 4809 * @mask: Bit mask to be checked. 4810 * 4811 * This function checks the host status register to check if HBA is 4812 * ready. This function will wait in a loop for the HBA to be ready 4813 * If the HBA is not ready , the function will will reset the HBA PCI 4814 * function again. The function returns 1 when HBA fail to be ready 4815 * otherwise returns zero. 4816 **/ 4817 static int 4818 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4819 { 4820 uint32_t status; 4821 int retval = 0; 4822 4823 /* Read the HBA Host Status Register */ 4824 status = lpfc_sli4_post_status_check(phba); 4825 4826 if (status) { 4827 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4828 lpfc_sli_brdrestart(phba); 4829 status = lpfc_sli4_post_status_check(phba); 4830 } 4831 4832 /* Check to see if any errors occurred during init */ 4833 if (status) { 4834 phba->link_state = LPFC_HBA_ERROR; 4835 retval = 1; 4836 } else 4837 phba->sli4_hba.intr_enable = 0; 4838 4839 phba->hba_flag &= ~HBA_SETUP; 4840 return retval; 4841 } 4842 4843 /** 4844 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4845 * @phba: Pointer to HBA context object. 4846 * @mask: Bit mask to be checked. 4847 * 4848 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4849 * from the API jump table function pointer from the lpfc_hba struct. 4850 **/ 4851 int 4852 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4853 { 4854 return phba->lpfc_sli_brdready(phba, mask); 4855 } 4856 4857 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4858 4859 /** 4860 * lpfc_reset_barrier - Make HBA ready for HBA reset 4861 * @phba: Pointer to HBA context object. 4862 * 4863 * This function is called before resetting an HBA. This function is called 4864 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4865 **/ 4866 void lpfc_reset_barrier(struct lpfc_hba *phba) 4867 { 4868 uint32_t __iomem *resp_buf; 4869 uint32_t __iomem *mbox_buf; 4870 volatile struct MAILBOX_word0 mbox; 4871 uint32_t hc_copy, ha_copy, resp_data; 4872 int i; 4873 uint8_t hdrtype; 4874 4875 lockdep_assert_held(&phba->hbalock); 4876 4877 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4878 if (hdrtype != 0x80 || 4879 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4880 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4881 return; 4882 4883 /* 4884 * Tell the other part of the chip to suspend temporarily all 4885 * its DMA activity. 4886 */ 4887 resp_buf = phba->MBslimaddr; 4888 4889 /* Disable the error attention */ 4890 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4891 return; 4892 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4893 readl(phba->HCregaddr); /* flush */ 4894 phba->link_flag |= LS_IGNORE_ERATT; 4895 4896 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4897 return; 4898 if (ha_copy & HA_ERATT) { 4899 /* Clear Chip error bit */ 4900 writel(HA_ERATT, phba->HAregaddr); 4901 phba->pport->stopped = 1; 4902 } 4903 4904 mbox.word0 = 0; 4905 mbox.mbxCommand = MBX_KILL_BOARD; 4906 mbox.mbxOwner = OWN_CHIP; 4907 4908 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4909 mbox_buf = phba->MBslimaddr; 4910 writel(mbox.word0, mbox_buf); 4911 4912 for (i = 0; i < 50; i++) { 4913 if (lpfc_readl((resp_buf + 1), &resp_data)) 4914 return; 4915 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4916 mdelay(1); 4917 else 4918 break; 4919 } 4920 resp_data = 0; 4921 if (lpfc_readl((resp_buf + 1), &resp_data)) 4922 return; 4923 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4924 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4925 phba->pport->stopped) 4926 goto restore_hc; 4927 else 4928 goto clear_errat; 4929 } 4930 4931 mbox.mbxOwner = OWN_HOST; 4932 resp_data = 0; 4933 for (i = 0; i < 500; i++) { 4934 if (lpfc_readl(resp_buf, &resp_data)) 4935 return; 4936 if (resp_data != mbox.word0) 4937 mdelay(1); 4938 else 4939 break; 4940 } 4941 4942 clear_errat: 4943 4944 while (++i < 500) { 4945 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4946 return; 4947 if (!(ha_copy & HA_ERATT)) 4948 mdelay(1); 4949 else 4950 break; 4951 } 4952 4953 if (readl(phba->HAregaddr) & HA_ERATT) { 4954 writel(HA_ERATT, phba->HAregaddr); 4955 phba->pport->stopped = 1; 4956 } 4957 4958 restore_hc: 4959 phba->link_flag &= ~LS_IGNORE_ERATT; 4960 writel(hc_copy, phba->HCregaddr); 4961 readl(phba->HCregaddr); /* flush */ 4962 } 4963 4964 /** 4965 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4966 * @phba: Pointer to HBA context object. 4967 * 4968 * This function issues a kill_board mailbox command and waits for 4969 * the error attention interrupt. This function is called for stopping 4970 * the firmware processing. The caller is not required to hold any 4971 * locks. This function calls lpfc_hba_down_post function to free 4972 * any pending commands after the kill. The function will return 1 when it 4973 * fails to kill the board else will return 0. 4974 **/ 4975 int 4976 lpfc_sli_brdkill(struct lpfc_hba *phba) 4977 { 4978 struct lpfc_sli *psli; 4979 LPFC_MBOXQ_t *pmb; 4980 uint32_t status; 4981 uint32_t ha_copy; 4982 int retval; 4983 int i = 0; 4984 4985 psli = &phba->sli; 4986 4987 /* Kill HBA */ 4988 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4989 "0329 Kill HBA Data: x%x x%x\n", 4990 phba->pport->port_state, psli->sli_flag); 4991 4992 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4993 if (!pmb) 4994 return 1; 4995 4996 /* Disable the error attention */ 4997 spin_lock_irq(&phba->hbalock); 4998 if (lpfc_readl(phba->HCregaddr, &status)) { 4999 spin_unlock_irq(&phba->hbalock); 5000 mempool_free(pmb, phba->mbox_mem_pool); 5001 return 1; 5002 } 5003 status &= ~HC_ERINT_ENA; 5004 writel(status, phba->HCregaddr); 5005 readl(phba->HCregaddr); /* flush */ 5006 phba->link_flag |= LS_IGNORE_ERATT; 5007 spin_unlock_irq(&phba->hbalock); 5008 5009 lpfc_kill_board(phba, pmb); 5010 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5011 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5012 5013 if (retval != MBX_SUCCESS) { 5014 if (retval != MBX_BUSY) 5015 mempool_free(pmb, phba->mbox_mem_pool); 5016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5017 "2752 KILL_BOARD command failed retval %d\n", 5018 retval); 5019 spin_lock_irq(&phba->hbalock); 5020 phba->link_flag &= ~LS_IGNORE_ERATT; 5021 spin_unlock_irq(&phba->hbalock); 5022 return 1; 5023 } 5024 5025 spin_lock_irq(&phba->hbalock); 5026 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5027 spin_unlock_irq(&phba->hbalock); 5028 5029 mempool_free(pmb, phba->mbox_mem_pool); 5030 5031 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5032 * attention every 100ms for 3 seconds. If we don't get ERATT after 5033 * 3 seconds we still set HBA_ERROR state because the status of the 5034 * board is now undefined. 5035 */ 5036 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5037 return 1; 5038 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5039 mdelay(100); 5040 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5041 return 1; 5042 } 5043 5044 del_timer_sync(&psli->mbox_tmo); 5045 if (ha_copy & HA_ERATT) { 5046 writel(HA_ERATT, phba->HAregaddr); 5047 phba->pport->stopped = 1; 5048 } 5049 spin_lock_irq(&phba->hbalock); 5050 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5051 psli->mbox_active = NULL; 5052 phba->link_flag &= ~LS_IGNORE_ERATT; 5053 spin_unlock_irq(&phba->hbalock); 5054 5055 lpfc_hba_down_post(phba); 5056 phba->link_state = LPFC_HBA_ERROR; 5057 5058 return ha_copy & HA_ERATT ? 0 : 1; 5059 } 5060 5061 /** 5062 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5063 * @phba: Pointer to HBA context object. 5064 * 5065 * This function resets the HBA by writing HC_INITFF to the control 5066 * register. After the HBA resets, this function resets all the iocb ring 5067 * indices. This function disables PCI layer parity checking during 5068 * the reset. 5069 * This function returns 0 always. 5070 * The caller is not required to hold any locks. 5071 **/ 5072 int 5073 lpfc_sli_brdreset(struct lpfc_hba *phba) 5074 { 5075 struct lpfc_sli *psli; 5076 struct lpfc_sli_ring *pring; 5077 uint16_t cfg_value; 5078 int i; 5079 5080 psli = &phba->sli; 5081 5082 /* Reset HBA */ 5083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5084 "0325 Reset HBA Data: x%x x%x\n", 5085 (phba->pport) ? phba->pport->port_state : 0, 5086 psli->sli_flag); 5087 5088 /* perform board reset */ 5089 phba->fc_eventTag = 0; 5090 phba->link_events = 0; 5091 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5092 if (phba->pport) { 5093 phba->pport->fc_myDID = 0; 5094 phba->pport->fc_prevDID = 0; 5095 } 5096 5097 /* Turn off parity checking and serr during the physical reset */ 5098 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5099 return -EIO; 5100 5101 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5102 (cfg_value & 5103 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5104 5105 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5106 5107 /* Now toggle INITFF bit in the Host Control Register */ 5108 writel(HC_INITFF, phba->HCregaddr); 5109 mdelay(1); 5110 readl(phba->HCregaddr); /* flush */ 5111 writel(0, phba->HCregaddr); 5112 readl(phba->HCregaddr); /* flush */ 5113 5114 /* Restore PCI cmd register */ 5115 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5116 5117 /* Initialize relevant SLI info */ 5118 for (i = 0; i < psli->num_rings; i++) { 5119 pring = &psli->sli3_ring[i]; 5120 pring->flag = 0; 5121 pring->sli.sli3.rspidx = 0; 5122 pring->sli.sli3.next_cmdidx = 0; 5123 pring->sli.sli3.local_getidx = 0; 5124 pring->sli.sli3.cmdidx = 0; 5125 pring->missbufcnt = 0; 5126 } 5127 5128 phba->link_state = LPFC_WARM_START; 5129 return 0; 5130 } 5131 5132 /** 5133 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5134 * @phba: Pointer to HBA context object. 5135 * 5136 * This function resets a SLI4 HBA. This function disables PCI layer parity 5137 * checking during resets the device. The caller is not required to hold 5138 * any locks. 5139 * 5140 * This function returns 0 on success else returns negative error code. 5141 **/ 5142 int 5143 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5144 { 5145 struct lpfc_sli *psli = &phba->sli; 5146 uint16_t cfg_value; 5147 int rc = 0; 5148 5149 /* Reset HBA */ 5150 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5151 "0295 Reset HBA Data: x%x x%x x%x\n", 5152 phba->pport->port_state, psli->sli_flag, 5153 phba->hba_flag); 5154 5155 /* perform board reset */ 5156 phba->fc_eventTag = 0; 5157 phba->link_events = 0; 5158 phba->pport->fc_myDID = 0; 5159 phba->pport->fc_prevDID = 0; 5160 phba->hba_flag &= ~HBA_SETUP; 5161 5162 spin_lock_irq(&phba->hbalock); 5163 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5164 phba->fcf.fcf_flag = 0; 5165 spin_unlock_irq(&phba->hbalock); 5166 5167 /* Now physically reset the device */ 5168 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5169 "0389 Performing PCI function reset!\n"); 5170 5171 /* Turn off parity checking and serr during the physical reset */ 5172 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5174 "3205 PCI read Config failed\n"); 5175 return -EIO; 5176 } 5177 5178 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5179 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5180 5181 /* Perform FCoE PCI function reset before freeing queue memory */ 5182 rc = lpfc_pci_function_reset(phba); 5183 5184 /* Restore PCI cmd register */ 5185 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5186 5187 return rc; 5188 } 5189 5190 /** 5191 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5192 * @phba: Pointer to HBA context object. 5193 * 5194 * This function is called in the SLI initialization code path to 5195 * restart the HBA. The caller is not required to hold any lock. 5196 * This function writes MBX_RESTART mailbox command to the SLIM and 5197 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5198 * function to free any pending commands. The function enables 5199 * POST only during the first initialization. The function returns zero. 5200 * The function does not guarantee completion of MBX_RESTART mailbox 5201 * command before the return of this function. 5202 **/ 5203 static int 5204 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5205 { 5206 volatile struct MAILBOX_word0 mb; 5207 struct lpfc_sli *psli; 5208 void __iomem *to_slim; 5209 5210 spin_lock_irq(&phba->hbalock); 5211 5212 psli = &phba->sli; 5213 5214 /* Restart HBA */ 5215 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5216 "0337 Restart HBA Data: x%x x%x\n", 5217 (phba->pport) ? phba->pport->port_state : 0, 5218 psli->sli_flag); 5219 5220 mb.word0 = 0; 5221 mb.mbxCommand = MBX_RESTART; 5222 mb.mbxHc = 1; 5223 5224 lpfc_reset_barrier(phba); 5225 5226 to_slim = phba->MBslimaddr; 5227 writel(mb.word0, to_slim); 5228 readl(to_slim); /* flush */ 5229 5230 /* Only skip post after fc_ffinit is completed */ 5231 if (phba->pport && phba->pport->port_state) 5232 mb.word0 = 1; /* This is really setting up word1 */ 5233 else 5234 mb.word0 = 0; /* This is really setting up word1 */ 5235 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5236 writel(mb.word0, to_slim); 5237 readl(to_slim); /* flush */ 5238 5239 lpfc_sli_brdreset(phba); 5240 if (phba->pport) 5241 phba->pport->stopped = 0; 5242 phba->link_state = LPFC_INIT_START; 5243 phba->hba_flag = 0; 5244 spin_unlock_irq(&phba->hbalock); 5245 5246 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5247 psli->stats_start = ktime_get_seconds(); 5248 5249 /* Give the INITFF and Post time to settle. */ 5250 mdelay(100); 5251 5252 lpfc_hba_down_post(phba); 5253 5254 return 0; 5255 } 5256 5257 /** 5258 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5259 * @phba: Pointer to HBA context object. 5260 * 5261 * This function is called in the SLI initialization code path to restart 5262 * a SLI4 HBA. The caller is not required to hold any lock. 5263 * At the end of the function, it calls lpfc_hba_down_post function to 5264 * free any pending commands. 5265 **/ 5266 static int 5267 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5268 { 5269 struct lpfc_sli *psli = &phba->sli; 5270 int rc; 5271 5272 /* Restart HBA */ 5273 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5274 "0296 Restart HBA Data: x%x x%x\n", 5275 phba->pport->port_state, psli->sli_flag); 5276 5277 rc = lpfc_sli4_brdreset(phba); 5278 if (rc) { 5279 phba->link_state = LPFC_HBA_ERROR; 5280 goto hba_down_queue; 5281 } 5282 5283 spin_lock_irq(&phba->hbalock); 5284 phba->pport->stopped = 0; 5285 phba->link_state = LPFC_INIT_START; 5286 phba->hba_flag = 0; 5287 /* Preserve FA-PWWN expectation */ 5288 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5289 spin_unlock_irq(&phba->hbalock); 5290 5291 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5292 psli->stats_start = ktime_get_seconds(); 5293 5294 hba_down_queue: 5295 lpfc_hba_down_post(phba); 5296 lpfc_sli4_queue_destroy(phba); 5297 5298 return rc; 5299 } 5300 5301 /** 5302 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5303 * @phba: Pointer to HBA context object. 5304 * 5305 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5306 * API jump table function pointer from the lpfc_hba struct. 5307 **/ 5308 int 5309 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5310 { 5311 return phba->lpfc_sli_brdrestart(phba); 5312 } 5313 5314 /** 5315 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5316 * @phba: Pointer to HBA context object. 5317 * 5318 * This function is called after a HBA restart to wait for successful 5319 * restart of the HBA. Successful restart of the HBA is indicated by 5320 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5321 * iteration, the function will restart the HBA again. The function returns 5322 * zero if HBA successfully restarted else returns negative error code. 5323 **/ 5324 int 5325 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5326 { 5327 uint32_t status, i = 0; 5328 5329 /* Read the HBA Host Status Register */ 5330 if (lpfc_readl(phba->HSregaddr, &status)) 5331 return -EIO; 5332 5333 /* Check status register to see what current state is */ 5334 i = 0; 5335 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5336 5337 /* Check every 10ms for 10 retries, then every 100ms for 90 5338 * retries, then every 1 sec for 50 retires for a total of 5339 * ~60 seconds before reset the board again and check every 5340 * 1 sec for 50 retries. The up to 60 seconds before the 5341 * board ready is required by the Falcon FIPS zeroization 5342 * complete, and any reset the board in between shall cause 5343 * restart of zeroization, further delay the board ready. 5344 */ 5345 if (i++ >= 200) { 5346 /* Adapter failed to init, timeout, status reg 5347 <status> */ 5348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5349 "0436 Adapter failed to init, " 5350 "timeout, status reg x%x, " 5351 "FW Data: A8 x%x AC x%x\n", status, 5352 readl(phba->MBslimaddr + 0xa8), 5353 readl(phba->MBslimaddr + 0xac)); 5354 phba->link_state = LPFC_HBA_ERROR; 5355 return -ETIMEDOUT; 5356 } 5357 5358 /* Check to see if any errors occurred during init */ 5359 if (status & HS_FFERM) { 5360 /* ERROR: During chipset initialization */ 5361 /* Adapter failed to init, chipset, status reg 5362 <status> */ 5363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5364 "0437 Adapter failed to init, " 5365 "chipset, status reg x%x, " 5366 "FW Data: A8 x%x AC x%x\n", status, 5367 readl(phba->MBslimaddr + 0xa8), 5368 readl(phba->MBslimaddr + 0xac)); 5369 phba->link_state = LPFC_HBA_ERROR; 5370 return -EIO; 5371 } 5372 5373 if (i <= 10) 5374 msleep(10); 5375 else if (i <= 100) 5376 msleep(100); 5377 else 5378 msleep(1000); 5379 5380 if (i == 150) { 5381 /* Do post */ 5382 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5383 lpfc_sli_brdrestart(phba); 5384 } 5385 /* Read the HBA Host Status Register */ 5386 if (lpfc_readl(phba->HSregaddr, &status)) 5387 return -EIO; 5388 } 5389 5390 /* Check to see if any errors occurred during init */ 5391 if (status & HS_FFERM) { 5392 /* ERROR: During chipset initialization */ 5393 /* Adapter failed to init, chipset, status reg <status> */ 5394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5395 "0438 Adapter failed to init, chipset, " 5396 "status reg x%x, " 5397 "FW Data: A8 x%x AC x%x\n", status, 5398 readl(phba->MBslimaddr + 0xa8), 5399 readl(phba->MBslimaddr + 0xac)); 5400 phba->link_state = LPFC_HBA_ERROR; 5401 return -EIO; 5402 } 5403 5404 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5405 5406 /* Clear all interrupt enable conditions */ 5407 writel(0, phba->HCregaddr); 5408 readl(phba->HCregaddr); /* flush */ 5409 5410 /* setup host attn register */ 5411 writel(0xffffffff, phba->HAregaddr); 5412 readl(phba->HAregaddr); /* flush */ 5413 return 0; 5414 } 5415 5416 /** 5417 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5418 * 5419 * This function calculates and returns the number of HBQs required to be 5420 * configured. 5421 **/ 5422 int 5423 lpfc_sli_hbq_count(void) 5424 { 5425 return ARRAY_SIZE(lpfc_hbq_defs); 5426 } 5427 5428 /** 5429 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5430 * 5431 * This function adds the number of hbq entries in every HBQ to get 5432 * the total number of hbq entries required for the HBA and returns 5433 * the total count. 5434 **/ 5435 static int 5436 lpfc_sli_hbq_entry_count(void) 5437 { 5438 int hbq_count = lpfc_sli_hbq_count(); 5439 int count = 0; 5440 int i; 5441 5442 for (i = 0; i < hbq_count; ++i) 5443 count += lpfc_hbq_defs[i]->entry_count; 5444 return count; 5445 } 5446 5447 /** 5448 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5449 * 5450 * This function calculates amount of memory required for all hbq entries 5451 * to be configured and returns the total memory required. 5452 **/ 5453 int 5454 lpfc_sli_hbq_size(void) 5455 { 5456 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5457 } 5458 5459 /** 5460 * lpfc_sli_hbq_setup - configure and initialize HBQs 5461 * @phba: Pointer to HBA context object. 5462 * 5463 * This function is called during the SLI initialization to configure 5464 * all the HBQs and post buffers to the HBQ. The caller is not 5465 * required to hold any locks. This function will return zero if successful 5466 * else it will return negative error code. 5467 **/ 5468 static int 5469 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5470 { 5471 int hbq_count = lpfc_sli_hbq_count(); 5472 LPFC_MBOXQ_t *pmb; 5473 MAILBOX_t *pmbox; 5474 uint32_t hbqno; 5475 uint32_t hbq_entry_index; 5476 5477 /* Get a Mailbox buffer to setup mailbox 5478 * commands for HBA initialization 5479 */ 5480 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5481 5482 if (!pmb) 5483 return -ENOMEM; 5484 5485 pmbox = &pmb->u.mb; 5486 5487 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5488 phba->link_state = LPFC_INIT_MBX_CMDS; 5489 phba->hbq_in_use = 1; 5490 5491 hbq_entry_index = 0; 5492 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5493 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5494 phba->hbqs[hbqno].hbqPutIdx = 0; 5495 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5496 phba->hbqs[hbqno].entry_count = 5497 lpfc_hbq_defs[hbqno]->entry_count; 5498 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5499 hbq_entry_index, pmb); 5500 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5501 5502 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5503 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5504 mbxStatus <status>, ring <num> */ 5505 5506 lpfc_printf_log(phba, KERN_ERR, 5507 LOG_SLI | LOG_VPORT, 5508 "1805 Adapter failed to init. " 5509 "Data: x%x x%x x%x\n", 5510 pmbox->mbxCommand, 5511 pmbox->mbxStatus, hbqno); 5512 5513 phba->link_state = LPFC_HBA_ERROR; 5514 mempool_free(pmb, phba->mbox_mem_pool); 5515 return -ENXIO; 5516 } 5517 } 5518 phba->hbq_count = hbq_count; 5519 5520 mempool_free(pmb, phba->mbox_mem_pool); 5521 5522 /* Initially populate or replenish the HBQs */ 5523 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5524 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5525 return 0; 5526 } 5527 5528 /** 5529 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5530 * @phba: Pointer to HBA context object. 5531 * 5532 * This function is called during the SLI initialization to configure 5533 * all the HBQs and post buffers to the HBQ. The caller is not 5534 * required to hold any locks. This function will return zero if successful 5535 * else it will return negative error code. 5536 **/ 5537 static int 5538 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5539 { 5540 phba->hbq_in_use = 1; 5541 /** 5542 * Specific case when the MDS diagnostics is enabled and supported. 5543 * The receive buffer count is truncated to manage the incoming 5544 * traffic. 5545 **/ 5546 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5547 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5548 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5549 else 5550 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5551 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5552 phba->hbq_count = 1; 5553 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5554 /* Initially populate or replenish the HBQs */ 5555 return 0; 5556 } 5557 5558 /** 5559 * lpfc_sli_config_port - Issue config port mailbox command 5560 * @phba: Pointer to HBA context object. 5561 * @sli_mode: sli mode - 2/3 5562 * 5563 * This function is called by the sli initialization code path 5564 * to issue config_port mailbox command. This function restarts the 5565 * HBA firmware and issues a config_port mailbox command to configure 5566 * the SLI interface in the sli mode specified by sli_mode 5567 * variable. The caller is not required to hold any locks. 5568 * The function returns 0 if successful, else returns negative error 5569 * code. 5570 **/ 5571 int 5572 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5573 { 5574 LPFC_MBOXQ_t *pmb; 5575 uint32_t resetcount = 0, rc = 0, done = 0; 5576 5577 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5578 if (!pmb) { 5579 phba->link_state = LPFC_HBA_ERROR; 5580 return -ENOMEM; 5581 } 5582 5583 phba->sli_rev = sli_mode; 5584 while (resetcount < 2 && !done) { 5585 spin_lock_irq(&phba->hbalock); 5586 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5587 spin_unlock_irq(&phba->hbalock); 5588 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5589 lpfc_sli_brdrestart(phba); 5590 rc = lpfc_sli_chipset_init(phba); 5591 if (rc) 5592 break; 5593 5594 spin_lock_irq(&phba->hbalock); 5595 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5596 spin_unlock_irq(&phba->hbalock); 5597 resetcount++; 5598 5599 /* Call pre CONFIG_PORT mailbox command initialization. A 5600 * value of 0 means the call was successful. Any other 5601 * nonzero value is a failure, but if ERESTART is returned, 5602 * the driver may reset the HBA and try again. 5603 */ 5604 rc = lpfc_config_port_prep(phba); 5605 if (rc == -ERESTART) { 5606 phba->link_state = LPFC_LINK_UNKNOWN; 5607 continue; 5608 } else if (rc) 5609 break; 5610 5611 phba->link_state = LPFC_INIT_MBX_CMDS; 5612 lpfc_config_port(phba, pmb); 5613 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5614 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5615 LPFC_SLI3_HBQ_ENABLED | 5616 LPFC_SLI3_CRP_ENABLED | 5617 LPFC_SLI3_DSS_ENABLED); 5618 if (rc != MBX_SUCCESS) { 5619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5620 "0442 Adapter failed to init, mbxCmd x%x " 5621 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5622 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5623 spin_lock_irq(&phba->hbalock); 5624 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5625 spin_unlock_irq(&phba->hbalock); 5626 rc = -ENXIO; 5627 } else { 5628 /* Allow asynchronous mailbox command to go through */ 5629 spin_lock_irq(&phba->hbalock); 5630 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5631 spin_unlock_irq(&phba->hbalock); 5632 done = 1; 5633 5634 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5635 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5636 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5637 "3110 Port did not grant ASABT\n"); 5638 } 5639 } 5640 if (!done) { 5641 rc = -EINVAL; 5642 goto do_prep_failed; 5643 } 5644 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5645 if (!pmb->u.mb.un.varCfgPort.cMA) { 5646 rc = -ENXIO; 5647 goto do_prep_failed; 5648 } 5649 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5650 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5651 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5652 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5653 phba->max_vpi : phba->max_vports; 5654 5655 } else 5656 phba->max_vpi = 0; 5657 if (pmb->u.mb.un.varCfgPort.gerbm) 5658 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5659 if (pmb->u.mb.un.varCfgPort.gcrp) 5660 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5661 5662 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5663 phba->port_gp = phba->mbox->us.s3_pgp.port; 5664 5665 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5666 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5667 phba->cfg_enable_bg = 0; 5668 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5670 "0443 Adapter did not grant " 5671 "BlockGuard\n"); 5672 } 5673 } 5674 } else { 5675 phba->hbq_get = NULL; 5676 phba->port_gp = phba->mbox->us.s2.port; 5677 phba->max_vpi = 0; 5678 } 5679 do_prep_failed: 5680 mempool_free(pmb, phba->mbox_mem_pool); 5681 return rc; 5682 } 5683 5684 5685 /** 5686 * lpfc_sli_hba_setup - SLI initialization function 5687 * @phba: Pointer to HBA context object. 5688 * 5689 * This function is the main SLI initialization function. This function 5690 * is called by the HBA initialization code, HBA reset code and HBA 5691 * error attention handler code. Caller is not required to hold any 5692 * locks. This function issues config_port mailbox command to configure 5693 * the SLI, setup iocb rings and HBQ rings. In the end the function 5694 * calls the config_port_post function to issue init_link mailbox 5695 * command and to start the discovery. The function will return zero 5696 * if successful, else it will return negative error code. 5697 **/ 5698 int 5699 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5700 { 5701 uint32_t rc; 5702 int i; 5703 int longs; 5704 5705 /* Enable ISR already does config_port because of config_msi mbx */ 5706 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5707 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5708 if (rc) 5709 return -EIO; 5710 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5711 } 5712 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5713 5714 if (phba->sli_rev == 3) { 5715 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5716 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5717 } else { 5718 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5719 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5720 phba->sli3_options = 0; 5721 } 5722 5723 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5724 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5725 phba->sli_rev, phba->max_vpi); 5726 rc = lpfc_sli_ring_map(phba); 5727 5728 if (rc) 5729 goto lpfc_sli_hba_setup_error; 5730 5731 /* Initialize VPIs. */ 5732 if (phba->sli_rev == LPFC_SLI_REV3) { 5733 /* 5734 * The VPI bitmask and physical ID array are allocated 5735 * and initialized once only - at driver load. A port 5736 * reset doesn't need to reinitialize this memory. 5737 */ 5738 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5739 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5740 phba->vpi_bmask = kcalloc(longs, 5741 sizeof(unsigned long), 5742 GFP_KERNEL); 5743 if (!phba->vpi_bmask) { 5744 rc = -ENOMEM; 5745 goto lpfc_sli_hba_setup_error; 5746 } 5747 5748 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5749 sizeof(uint16_t), 5750 GFP_KERNEL); 5751 if (!phba->vpi_ids) { 5752 kfree(phba->vpi_bmask); 5753 rc = -ENOMEM; 5754 goto lpfc_sli_hba_setup_error; 5755 } 5756 for (i = 0; i < phba->max_vpi; i++) 5757 phba->vpi_ids[i] = i; 5758 } 5759 } 5760 5761 /* Init HBQs */ 5762 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5763 rc = lpfc_sli_hbq_setup(phba); 5764 if (rc) 5765 goto lpfc_sli_hba_setup_error; 5766 } 5767 spin_lock_irq(&phba->hbalock); 5768 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5769 spin_unlock_irq(&phba->hbalock); 5770 5771 rc = lpfc_config_port_post(phba); 5772 if (rc) 5773 goto lpfc_sli_hba_setup_error; 5774 5775 return rc; 5776 5777 lpfc_sli_hba_setup_error: 5778 phba->link_state = LPFC_HBA_ERROR; 5779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5780 "0445 Firmware initialization failed\n"); 5781 return rc; 5782 } 5783 5784 /** 5785 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5786 * @phba: Pointer to HBA context object. 5787 * 5788 * This function issue a dump mailbox command to read config region 5789 * 23 and parse the records in the region and populate driver 5790 * data structure. 5791 **/ 5792 static int 5793 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5794 { 5795 LPFC_MBOXQ_t *mboxq; 5796 struct lpfc_dmabuf *mp; 5797 struct lpfc_mqe *mqe; 5798 uint32_t data_length; 5799 int rc; 5800 5801 /* Program the default value of vlan_id and fc_map */ 5802 phba->valid_vlan = 0; 5803 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5804 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5805 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5806 5807 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5808 if (!mboxq) 5809 return -ENOMEM; 5810 5811 mqe = &mboxq->u.mqe; 5812 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5813 rc = -ENOMEM; 5814 goto out_free_mboxq; 5815 } 5816 5817 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5818 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5819 5820 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5821 "(%d):2571 Mailbox cmd x%x Status x%x " 5822 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5823 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5824 "CQ: x%x x%x x%x x%x\n", 5825 mboxq->vport ? mboxq->vport->vpi : 0, 5826 bf_get(lpfc_mqe_command, mqe), 5827 bf_get(lpfc_mqe_status, mqe), 5828 mqe->un.mb_words[0], mqe->un.mb_words[1], 5829 mqe->un.mb_words[2], mqe->un.mb_words[3], 5830 mqe->un.mb_words[4], mqe->un.mb_words[5], 5831 mqe->un.mb_words[6], mqe->un.mb_words[7], 5832 mqe->un.mb_words[8], mqe->un.mb_words[9], 5833 mqe->un.mb_words[10], mqe->un.mb_words[11], 5834 mqe->un.mb_words[12], mqe->un.mb_words[13], 5835 mqe->un.mb_words[14], mqe->un.mb_words[15], 5836 mqe->un.mb_words[16], mqe->un.mb_words[50], 5837 mboxq->mcqe.word0, 5838 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5839 mboxq->mcqe.trailer); 5840 5841 if (rc) { 5842 rc = -EIO; 5843 goto out_free_mboxq; 5844 } 5845 data_length = mqe->un.mb_words[5]; 5846 if (data_length > DMP_RGN23_SIZE) { 5847 rc = -EIO; 5848 goto out_free_mboxq; 5849 } 5850 5851 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5852 rc = 0; 5853 5854 out_free_mboxq: 5855 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5856 return rc; 5857 } 5858 5859 /** 5860 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5861 * @phba: pointer to lpfc hba data structure. 5862 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5863 * @vpd: pointer to the memory to hold resulting port vpd data. 5864 * @vpd_size: On input, the number of bytes allocated to @vpd. 5865 * On output, the number of data bytes in @vpd. 5866 * 5867 * This routine executes a READ_REV SLI4 mailbox command. In 5868 * addition, this routine gets the port vpd data. 5869 * 5870 * Return codes 5871 * 0 - successful 5872 * -ENOMEM - could not allocated memory. 5873 **/ 5874 static int 5875 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5876 uint8_t *vpd, uint32_t *vpd_size) 5877 { 5878 int rc = 0; 5879 uint32_t dma_size; 5880 struct lpfc_dmabuf *dmabuf; 5881 struct lpfc_mqe *mqe; 5882 5883 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5884 if (!dmabuf) 5885 return -ENOMEM; 5886 5887 /* 5888 * Get a DMA buffer for the vpd data resulting from the READ_REV 5889 * mailbox command. 5890 */ 5891 dma_size = *vpd_size; 5892 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5893 &dmabuf->phys, GFP_KERNEL); 5894 if (!dmabuf->virt) { 5895 kfree(dmabuf); 5896 return -ENOMEM; 5897 } 5898 5899 /* 5900 * The SLI4 implementation of READ_REV conflicts at word1, 5901 * bits 31:16 and SLI4 adds vpd functionality not present 5902 * in SLI3. This code corrects the conflicts. 5903 */ 5904 lpfc_read_rev(phba, mboxq); 5905 mqe = &mboxq->u.mqe; 5906 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5907 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5908 mqe->un.read_rev.word1 &= 0x0000FFFF; 5909 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5910 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5911 5912 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5913 if (rc) { 5914 dma_free_coherent(&phba->pcidev->dev, dma_size, 5915 dmabuf->virt, dmabuf->phys); 5916 kfree(dmabuf); 5917 return -EIO; 5918 } 5919 5920 /* 5921 * The available vpd length cannot be bigger than the 5922 * DMA buffer passed to the port. Catch the less than 5923 * case and update the caller's size. 5924 */ 5925 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5926 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5927 5928 memcpy(vpd, dmabuf->virt, *vpd_size); 5929 5930 dma_free_coherent(&phba->pcidev->dev, dma_size, 5931 dmabuf->virt, dmabuf->phys); 5932 kfree(dmabuf); 5933 return 0; 5934 } 5935 5936 /** 5937 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5938 * @phba: pointer to lpfc hba data structure. 5939 * 5940 * This routine retrieves SLI4 device physical port name this PCI function 5941 * is attached to. 5942 * 5943 * Return codes 5944 * 0 - successful 5945 * otherwise - failed to retrieve controller attributes 5946 **/ 5947 static int 5948 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5949 { 5950 LPFC_MBOXQ_t *mboxq; 5951 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5952 struct lpfc_controller_attribute *cntl_attr; 5953 void *virtaddr = NULL; 5954 uint32_t alloclen, reqlen; 5955 uint32_t shdr_status, shdr_add_status; 5956 union lpfc_sli4_cfg_shdr *shdr; 5957 int rc; 5958 5959 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5960 if (!mboxq) 5961 return -ENOMEM; 5962 5963 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5964 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5965 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5966 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5967 LPFC_SLI4_MBX_NEMBED); 5968 5969 if (alloclen < reqlen) { 5970 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5971 "3084 Allocated DMA memory size (%d) is " 5972 "less than the requested DMA memory size " 5973 "(%d)\n", alloclen, reqlen); 5974 rc = -ENOMEM; 5975 goto out_free_mboxq; 5976 } 5977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5978 virtaddr = mboxq->sge_array->addr[0]; 5979 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5980 shdr = &mbx_cntl_attr->cfg_shdr; 5981 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5982 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5983 if (shdr_status || shdr_add_status || rc) { 5984 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5985 "3085 Mailbox x%x (x%x/x%x) failed, " 5986 "rc:x%x, status:x%x, add_status:x%x\n", 5987 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5988 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5989 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5990 rc, shdr_status, shdr_add_status); 5991 rc = -ENXIO; 5992 goto out_free_mboxq; 5993 } 5994 5995 cntl_attr = &mbx_cntl_attr->cntl_attr; 5996 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5997 phba->sli4_hba.lnk_info.lnk_tp = 5998 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5999 phba->sli4_hba.lnk_info.lnk_no = 6000 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6001 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6002 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6003 6004 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6005 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6006 sizeof(phba->BIOSVersion)); 6007 6008 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6009 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6010 "flash_id: x%02x, asic_rev: x%02x\n", 6011 phba->sli4_hba.lnk_info.lnk_tp, 6012 phba->sli4_hba.lnk_info.lnk_no, 6013 phba->BIOSVersion, phba->sli4_hba.flash_id, 6014 phba->sli4_hba.asic_rev); 6015 out_free_mboxq: 6016 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6017 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6018 else 6019 mempool_free(mboxq, phba->mbox_mem_pool); 6020 return rc; 6021 } 6022 6023 /** 6024 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6025 * @phba: pointer to lpfc hba data structure. 6026 * 6027 * This routine retrieves SLI4 device physical port name this PCI function 6028 * is attached to. 6029 * 6030 * Return codes 6031 * 0 - successful 6032 * otherwise - failed to retrieve physical port name 6033 **/ 6034 static int 6035 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6036 { 6037 LPFC_MBOXQ_t *mboxq; 6038 struct lpfc_mbx_get_port_name *get_port_name; 6039 uint32_t shdr_status, shdr_add_status; 6040 union lpfc_sli4_cfg_shdr *shdr; 6041 char cport_name = 0; 6042 int rc; 6043 6044 /* We assume nothing at this point */ 6045 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6046 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6047 6048 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6049 if (!mboxq) 6050 return -ENOMEM; 6051 /* obtain link type and link number via READ_CONFIG */ 6052 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6053 lpfc_sli4_read_config(phba); 6054 6055 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6056 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6057 6058 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6059 goto retrieve_ppname; 6060 6061 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6062 rc = lpfc_sli4_get_ctl_attr(phba); 6063 if (rc) 6064 goto out_free_mboxq; 6065 6066 retrieve_ppname: 6067 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6068 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6069 sizeof(struct lpfc_mbx_get_port_name) - 6070 sizeof(struct lpfc_sli4_cfg_mhdr), 6071 LPFC_SLI4_MBX_EMBED); 6072 get_port_name = &mboxq->u.mqe.un.get_port_name; 6073 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6074 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6075 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6076 phba->sli4_hba.lnk_info.lnk_tp); 6077 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6078 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6079 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6080 if (shdr_status || shdr_add_status || rc) { 6081 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6082 "3087 Mailbox x%x (x%x/x%x) failed: " 6083 "rc:x%x, status:x%x, add_status:x%x\n", 6084 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6085 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6086 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6087 rc, shdr_status, shdr_add_status); 6088 rc = -ENXIO; 6089 goto out_free_mboxq; 6090 } 6091 switch (phba->sli4_hba.lnk_info.lnk_no) { 6092 case LPFC_LINK_NUMBER_0: 6093 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6094 &get_port_name->u.response); 6095 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6096 break; 6097 case LPFC_LINK_NUMBER_1: 6098 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6099 &get_port_name->u.response); 6100 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6101 break; 6102 case LPFC_LINK_NUMBER_2: 6103 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6104 &get_port_name->u.response); 6105 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6106 break; 6107 case LPFC_LINK_NUMBER_3: 6108 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6109 &get_port_name->u.response); 6110 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6111 break; 6112 default: 6113 break; 6114 } 6115 6116 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6117 phba->Port[0] = cport_name; 6118 phba->Port[1] = '\0'; 6119 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6120 "3091 SLI get port name: %s\n", phba->Port); 6121 } 6122 6123 out_free_mboxq: 6124 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6125 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6126 else 6127 mempool_free(mboxq, phba->mbox_mem_pool); 6128 return rc; 6129 } 6130 6131 /** 6132 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6133 * @phba: pointer to lpfc hba data structure. 6134 * 6135 * This routine is called to explicitly arm the SLI4 device's completion and 6136 * event queues 6137 **/ 6138 static void 6139 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6140 { 6141 int qidx; 6142 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6143 struct lpfc_sli4_hdw_queue *qp; 6144 struct lpfc_queue *eq; 6145 6146 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6147 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6148 if (sli4_hba->nvmels_cq) 6149 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6150 LPFC_QUEUE_REARM); 6151 6152 if (sli4_hba->hdwq) { 6153 /* Loop thru all Hardware Queues */ 6154 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6155 qp = &sli4_hba->hdwq[qidx]; 6156 /* ARM the corresponding CQ */ 6157 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6158 LPFC_QUEUE_REARM); 6159 } 6160 6161 /* Loop thru all IRQ vectors */ 6162 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6163 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6164 /* ARM the corresponding EQ */ 6165 sli4_hba->sli4_write_eq_db(phba, eq, 6166 0, LPFC_QUEUE_REARM); 6167 } 6168 } 6169 6170 if (phba->nvmet_support) { 6171 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6172 sli4_hba->sli4_write_cq_db(phba, 6173 sli4_hba->nvmet_cqset[qidx], 0, 6174 LPFC_QUEUE_REARM); 6175 } 6176 } 6177 } 6178 6179 /** 6180 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6181 * @phba: Pointer to HBA context object. 6182 * @type: The resource extent type. 6183 * @extnt_count: buffer to hold port available extent count. 6184 * @extnt_size: buffer to hold element count per extent. 6185 * 6186 * This function calls the port and retrievs the number of available 6187 * extents and their size for a particular extent type. 6188 * 6189 * Returns: 0 if successful. Nonzero otherwise. 6190 **/ 6191 int 6192 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6193 uint16_t *extnt_count, uint16_t *extnt_size) 6194 { 6195 int rc = 0; 6196 uint32_t length; 6197 uint32_t mbox_tmo; 6198 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6199 LPFC_MBOXQ_t *mbox; 6200 6201 *extnt_count = 0; 6202 *extnt_size = 0; 6203 6204 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6205 if (!mbox) 6206 return -ENOMEM; 6207 6208 /* Find out how many extents are available for this resource type */ 6209 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6210 sizeof(struct lpfc_sli4_cfg_mhdr)); 6211 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6212 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6213 length, LPFC_SLI4_MBX_EMBED); 6214 6215 /* Send an extents count of 0 - the GET doesn't use it. */ 6216 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6217 LPFC_SLI4_MBX_EMBED); 6218 if (unlikely(rc)) { 6219 rc = -EIO; 6220 goto err_exit; 6221 } 6222 6223 if (!phba->sli4_hba.intr_enable) 6224 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6225 else { 6226 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6227 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6228 } 6229 if (unlikely(rc)) { 6230 rc = -EIO; 6231 goto err_exit; 6232 } 6233 6234 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6235 if (bf_get(lpfc_mbox_hdr_status, 6236 &rsrc_info->header.cfg_shdr.response)) { 6237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6238 "2930 Failed to get resource extents " 6239 "Status 0x%x Add'l Status 0x%x\n", 6240 bf_get(lpfc_mbox_hdr_status, 6241 &rsrc_info->header.cfg_shdr.response), 6242 bf_get(lpfc_mbox_hdr_add_status, 6243 &rsrc_info->header.cfg_shdr.response)); 6244 rc = -EIO; 6245 goto err_exit; 6246 } 6247 6248 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6249 &rsrc_info->u.rsp); 6250 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6251 &rsrc_info->u.rsp); 6252 6253 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6254 "3162 Retrieved extents type-%d from port: count:%d, " 6255 "size:%d\n", type, *extnt_count, *extnt_size); 6256 6257 err_exit: 6258 mempool_free(mbox, phba->mbox_mem_pool); 6259 return rc; 6260 } 6261 6262 /** 6263 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6264 * @phba: Pointer to HBA context object. 6265 * @type: The extent type to check. 6266 * 6267 * This function reads the current available extents from the port and checks 6268 * if the extent count or extent size has changed since the last access. 6269 * Callers use this routine post port reset to understand if there is a 6270 * extent reprovisioning requirement. 6271 * 6272 * Returns: 6273 * -Error: error indicates problem. 6274 * 1: Extent count or size has changed. 6275 * 0: No changes. 6276 **/ 6277 static int 6278 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6279 { 6280 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6281 uint16_t size_diff, rsrc_ext_size; 6282 int rc = 0; 6283 struct lpfc_rsrc_blks *rsrc_entry; 6284 struct list_head *rsrc_blk_list = NULL; 6285 6286 size_diff = 0; 6287 curr_ext_cnt = 0; 6288 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6289 &rsrc_ext_cnt, 6290 &rsrc_ext_size); 6291 if (unlikely(rc)) 6292 return -EIO; 6293 6294 switch (type) { 6295 case LPFC_RSC_TYPE_FCOE_RPI: 6296 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6297 break; 6298 case LPFC_RSC_TYPE_FCOE_VPI: 6299 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6300 break; 6301 case LPFC_RSC_TYPE_FCOE_XRI: 6302 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6303 break; 6304 case LPFC_RSC_TYPE_FCOE_VFI: 6305 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6306 break; 6307 default: 6308 break; 6309 } 6310 6311 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6312 curr_ext_cnt++; 6313 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6314 size_diff++; 6315 } 6316 6317 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6318 rc = 1; 6319 6320 return rc; 6321 } 6322 6323 /** 6324 * lpfc_sli4_cfg_post_extnts - 6325 * @phba: Pointer to HBA context object. 6326 * @extnt_cnt: number of available extents. 6327 * @type: the extent type (rpi, xri, vfi, vpi). 6328 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6329 * @mbox: pointer to the caller's allocated mailbox structure. 6330 * 6331 * This function executes the extents allocation request. It also 6332 * takes care of the amount of memory needed to allocate or get the 6333 * allocated extents. It is the caller's responsibility to evaluate 6334 * the response. 6335 * 6336 * Returns: 6337 * -Error: Error value describes the condition found. 6338 * 0: if successful 6339 **/ 6340 static int 6341 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6342 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6343 { 6344 int rc = 0; 6345 uint32_t req_len; 6346 uint32_t emb_len; 6347 uint32_t alloc_len, mbox_tmo; 6348 6349 /* Calculate the total requested length of the dma memory */ 6350 req_len = extnt_cnt * sizeof(uint16_t); 6351 6352 /* 6353 * Calculate the size of an embedded mailbox. The uint32_t 6354 * accounts for extents-specific word. 6355 */ 6356 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6357 sizeof(uint32_t); 6358 6359 /* 6360 * Presume the allocation and response will fit into an embedded 6361 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6362 */ 6363 *emb = LPFC_SLI4_MBX_EMBED; 6364 if (req_len > emb_len) { 6365 req_len = extnt_cnt * sizeof(uint16_t) + 6366 sizeof(union lpfc_sli4_cfg_shdr) + 6367 sizeof(uint32_t); 6368 *emb = LPFC_SLI4_MBX_NEMBED; 6369 } 6370 6371 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6372 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6373 req_len, *emb); 6374 if (alloc_len < req_len) { 6375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6376 "2982 Allocated DMA memory size (x%x) is " 6377 "less than the requested DMA memory " 6378 "size (x%x)\n", alloc_len, req_len); 6379 return -ENOMEM; 6380 } 6381 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6382 if (unlikely(rc)) 6383 return -EIO; 6384 6385 if (!phba->sli4_hba.intr_enable) 6386 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6387 else { 6388 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6389 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6390 } 6391 6392 if (unlikely(rc)) 6393 rc = -EIO; 6394 return rc; 6395 } 6396 6397 /** 6398 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6399 * @phba: Pointer to HBA context object. 6400 * @type: The resource extent type to allocate. 6401 * 6402 * This function allocates the number of elements for the specified 6403 * resource type. 6404 **/ 6405 static int 6406 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6407 { 6408 bool emb = false; 6409 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6410 uint16_t rsrc_id, rsrc_start, j, k; 6411 uint16_t *ids; 6412 int i, rc; 6413 unsigned long longs; 6414 unsigned long *bmask; 6415 struct lpfc_rsrc_blks *rsrc_blks; 6416 LPFC_MBOXQ_t *mbox; 6417 uint32_t length; 6418 struct lpfc_id_range *id_array = NULL; 6419 void *virtaddr = NULL; 6420 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6421 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6422 struct list_head *ext_blk_list; 6423 6424 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6425 &rsrc_cnt, 6426 &rsrc_size); 6427 if (unlikely(rc)) 6428 return -EIO; 6429 6430 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6432 "3009 No available Resource Extents " 6433 "for resource type 0x%x: Count: 0x%x, " 6434 "Size 0x%x\n", type, rsrc_cnt, 6435 rsrc_size); 6436 return -ENOMEM; 6437 } 6438 6439 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6440 "2903 Post resource extents type-0x%x: " 6441 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6442 6443 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6444 if (!mbox) 6445 return -ENOMEM; 6446 6447 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6448 if (unlikely(rc)) { 6449 rc = -EIO; 6450 goto err_exit; 6451 } 6452 6453 /* 6454 * Figure out where the response is located. Then get local pointers 6455 * to the response data. The port does not guarantee to respond to 6456 * all extents counts request so update the local variable with the 6457 * allocated count from the port. 6458 */ 6459 if (emb == LPFC_SLI4_MBX_EMBED) { 6460 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6461 id_array = &rsrc_ext->u.rsp.id[0]; 6462 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6463 } else { 6464 virtaddr = mbox->sge_array->addr[0]; 6465 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6466 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6467 id_array = &n_rsrc->id; 6468 } 6469 6470 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6471 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6472 6473 /* 6474 * Based on the resource size and count, correct the base and max 6475 * resource values. 6476 */ 6477 length = sizeof(struct lpfc_rsrc_blks); 6478 switch (type) { 6479 case LPFC_RSC_TYPE_FCOE_RPI: 6480 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6481 sizeof(unsigned long), 6482 GFP_KERNEL); 6483 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6484 rc = -ENOMEM; 6485 goto err_exit; 6486 } 6487 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6488 sizeof(uint16_t), 6489 GFP_KERNEL); 6490 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6491 kfree(phba->sli4_hba.rpi_bmask); 6492 rc = -ENOMEM; 6493 goto err_exit; 6494 } 6495 6496 /* 6497 * The next_rpi was initialized with the maximum available 6498 * count but the port may allocate a smaller number. Catch 6499 * that case and update the next_rpi. 6500 */ 6501 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6502 6503 /* Initialize local ptrs for common extent processing later. */ 6504 bmask = phba->sli4_hba.rpi_bmask; 6505 ids = phba->sli4_hba.rpi_ids; 6506 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6507 break; 6508 case LPFC_RSC_TYPE_FCOE_VPI: 6509 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6510 GFP_KERNEL); 6511 if (unlikely(!phba->vpi_bmask)) { 6512 rc = -ENOMEM; 6513 goto err_exit; 6514 } 6515 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6516 GFP_KERNEL); 6517 if (unlikely(!phba->vpi_ids)) { 6518 kfree(phba->vpi_bmask); 6519 rc = -ENOMEM; 6520 goto err_exit; 6521 } 6522 6523 /* Initialize local ptrs for common extent processing later. */ 6524 bmask = phba->vpi_bmask; 6525 ids = phba->vpi_ids; 6526 ext_blk_list = &phba->lpfc_vpi_blk_list; 6527 break; 6528 case LPFC_RSC_TYPE_FCOE_XRI: 6529 phba->sli4_hba.xri_bmask = kcalloc(longs, 6530 sizeof(unsigned long), 6531 GFP_KERNEL); 6532 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6533 rc = -ENOMEM; 6534 goto err_exit; 6535 } 6536 phba->sli4_hba.max_cfg_param.xri_used = 0; 6537 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6538 sizeof(uint16_t), 6539 GFP_KERNEL); 6540 if (unlikely(!phba->sli4_hba.xri_ids)) { 6541 kfree(phba->sli4_hba.xri_bmask); 6542 rc = -ENOMEM; 6543 goto err_exit; 6544 } 6545 6546 /* Initialize local ptrs for common extent processing later. */ 6547 bmask = phba->sli4_hba.xri_bmask; 6548 ids = phba->sli4_hba.xri_ids; 6549 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6550 break; 6551 case LPFC_RSC_TYPE_FCOE_VFI: 6552 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6553 sizeof(unsigned long), 6554 GFP_KERNEL); 6555 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6556 rc = -ENOMEM; 6557 goto err_exit; 6558 } 6559 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6560 sizeof(uint16_t), 6561 GFP_KERNEL); 6562 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6563 kfree(phba->sli4_hba.vfi_bmask); 6564 rc = -ENOMEM; 6565 goto err_exit; 6566 } 6567 6568 /* Initialize local ptrs for common extent processing later. */ 6569 bmask = phba->sli4_hba.vfi_bmask; 6570 ids = phba->sli4_hba.vfi_ids; 6571 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6572 break; 6573 default: 6574 /* Unsupported Opcode. Fail call. */ 6575 id_array = NULL; 6576 bmask = NULL; 6577 ids = NULL; 6578 ext_blk_list = NULL; 6579 goto err_exit; 6580 } 6581 6582 /* 6583 * Complete initializing the extent configuration with the 6584 * allocated ids assigned to this function. The bitmask serves 6585 * as an index into the array and manages the available ids. The 6586 * array just stores the ids communicated to the port via the wqes. 6587 */ 6588 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6589 if ((i % 2) == 0) 6590 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6591 &id_array[k]); 6592 else 6593 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6594 &id_array[k]); 6595 6596 rsrc_blks = kzalloc(length, GFP_KERNEL); 6597 if (unlikely(!rsrc_blks)) { 6598 rc = -ENOMEM; 6599 kfree(bmask); 6600 kfree(ids); 6601 goto err_exit; 6602 } 6603 rsrc_blks->rsrc_start = rsrc_id; 6604 rsrc_blks->rsrc_size = rsrc_size; 6605 list_add_tail(&rsrc_blks->list, ext_blk_list); 6606 rsrc_start = rsrc_id; 6607 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6608 phba->sli4_hba.io_xri_start = rsrc_start + 6609 lpfc_sli4_get_iocb_cnt(phba); 6610 } 6611 6612 while (rsrc_id < (rsrc_start + rsrc_size)) { 6613 ids[j] = rsrc_id; 6614 rsrc_id++; 6615 j++; 6616 } 6617 /* Entire word processed. Get next word.*/ 6618 if ((i % 2) == 1) 6619 k++; 6620 } 6621 err_exit: 6622 lpfc_sli4_mbox_cmd_free(phba, mbox); 6623 return rc; 6624 } 6625 6626 6627 6628 /** 6629 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6630 * @phba: Pointer to HBA context object. 6631 * @type: the extent's type. 6632 * 6633 * This function deallocates all extents of a particular resource type. 6634 * SLI4 does not allow for deallocating a particular extent range. It 6635 * is the caller's responsibility to release all kernel memory resources. 6636 **/ 6637 static int 6638 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6639 { 6640 int rc; 6641 uint32_t length, mbox_tmo = 0; 6642 LPFC_MBOXQ_t *mbox; 6643 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6644 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6645 6646 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6647 if (!mbox) 6648 return -ENOMEM; 6649 6650 /* 6651 * This function sends an embedded mailbox because it only sends the 6652 * the resource type. All extents of this type are released by the 6653 * port. 6654 */ 6655 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6656 sizeof(struct lpfc_sli4_cfg_mhdr)); 6657 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6658 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6659 length, LPFC_SLI4_MBX_EMBED); 6660 6661 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6662 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6663 LPFC_SLI4_MBX_EMBED); 6664 if (unlikely(rc)) { 6665 rc = -EIO; 6666 goto out_free_mbox; 6667 } 6668 if (!phba->sli4_hba.intr_enable) 6669 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6670 else { 6671 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6672 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6673 } 6674 if (unlikely(rc)) { 6675 rc = -EIO; 6676 goto out_free_mbox; 6677 } 6678 6679 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6680 if (bf_get(lpfc_mbox_hdr_status, 6681 &dealloc_rsrc->header.cfg_shdr.response)) { 6682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6683 "2919 Failed to release resource extents " 6684 "for type %d - Status 0x%x Add'l Status 0x%x. " 6685 "Resource memory not released.\n", 6686 type, 6687 bf_get(lpfc_mbox_hdr_status, 6688 &dealloc_rsrc->header.cfg_shdr.response), 6689 bf_get(lpfc_mbox_hdr_add_status, 6690 &dealloc_rsrc->header.cfg_shdr.response)); 6691 rc = -EIO; 6692 goto out_free_mbox; 6693 } 6694 6695 /* Release kernel memory resources for the specific type. */ 6696 switch (type) { 6697 case LPFC_RSC_TYPE_FCOE_VPI: 6698 kfree(phba->vpi_bmask); 6699 kfree(phba->vpi_ids); 6700 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6701 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6702 &phba->lpfc_vpi_blk_list, list) { 6703 list_del_init(&rsrc_blk->list); 6704 kfree(rsrc_blk); 6705 } 6706 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6707 break; 6708 case LPFC_RSC_TYPE_FCOE_XRI: 6709 kfree(phba->sli4_hba.xri_bmask); 6710 kfree(phba->sli4_hba.xri_ids); 6711 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6712 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6713 list_del_init(&rsrc_blk->list); 6714 kfree(rsrc_blk); 6715 } 6716 break; 6717 case LPFC_RSC_TYPE_FCOE_VFI: 6718 kfree(phba->sli4_hba.vfi_bmask); 6719 kfree(phba->sli4_hba.vfi_ids); 6720 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6721 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6722 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6723 list_del_init(&rsrc_blk->list); 6724 kfree(rsrc_blk); 6725 } 6726 break; 6727 case LPFC_RSC_TYPE_FCOE_RPI: 6728 /* RPI bitmask and physical id array are cleaned up earlier. */ 6729 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6730 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6731 list_del_init(&rsrc_blk->list); 6732 kfree(rsrc_blk); 6733 } 6734 break; 6735 default: 6736 break; 6737 } 6738 6739 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6740 6741 out_free_mbox: 6742 mempool_free(mbox, phba->mbox_mem_pool); 6743 return rc; 6744 } 6745 6746 static void 6747 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6748 uint32_t feature) 6749 { 6750 uint32_t len; 6751 u32 sig_freq = 0; 6752 6753 len = sizeof(struct lpfc_mbx_set_feature) - 6754 sizeof(struct lpfc_sli4_cfg_mhdr); 6755 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6756 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6757 LPFC_SLI4_MBX_EMBED); 6758 6759 switch (feature) { 6760 case LPFC_SET_UE_RECOVERY: 6761 bf_set(lpfc_mbx_set_feature_UER, 6762 &mbox->u.mqe.un.set_feature, 1); 6763 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6764 mbox->u.mqe.un.set_feature.param_len = 8; 6765 break; 6766 case LPFC_SET_MDS_DIAGS: 6767 bf_set(lpfc_mbx_set_feature_mds, 6768 &mbox->u.mqe.un.set_feature, 1); 6769 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6770 &mbox->u.mqe.un.set_feature, 1); 6771 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6772 mbox->u.mqe.un.set_feature.param_len = 8; 6773 break; 6774 case LPFC_SET_CGN_SIGNAL: 6775 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6776 sig_freq = 0; 6777 else 6778 sig_freq = phba->cgn_sig_freq; 6779 6780 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6781 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6782 &mbox->u.mqe.un.set_feature, sig_freq); 6783 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6784 &mbox->u.mqe.un.set_feature, sig_freq); 6785 } 6786 6787 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6788 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6789 &mbox->u.mqe.un.set_feature, sig_freq); 6790 6791 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6792 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6793 sig_freq = 0; 6794 else 6795 sig_freq = lpfc_acqe_cgn_frequency; 6796 6797 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6798 &mbox->u.mqe.un.set_feature, sig_freq); 6799 6800 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6801 mbox->u.mqe.un.set_feature.param_len = 12; 6802 break; 6803 case LPFC_SET_DUAL_DUMP: 6804 bf_set(lpfc_mbx_set_feature_dd, 6805 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6806 bf_set(lpfc_mbx_set_feature_ddquery, 6807 &mbox->u.mqe.un.set_feature, 0); 6808 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6809 mbox->u.mqe.un.set_feature.param_len = 4; 6810 break; 6811 case LPFC_SET_ENABLE_MI: 6812 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6813 mbox->u.mqe.un.set_feature.param_len = 4; 6814 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6815 phba->pport->cfg_lun_queue_depth); 6816 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6817 phba->sli4_hba.pc_sli4_params.mi_ver); 6818 break; 6819 case LPFC_SET_LD_SIGNAL: 6820 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6821 mbox->u.mqe.un.set_feature.param_len = 16; 6822 bf_set(lpfc_mbx_set_feature_lds_qry, 6823 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6824 break; 6825 case LPFC_SET_ENABLE_CMF: 6826 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6827 mbox->u.mqe.un.set_feature.param_len = 4; 6828 bf_set(lpfc_mbx_set_feature_cmf, 6829 &mbox->u.mqe.un.set_feature, 1); 6830 break; 6831 } 6832 return; 6833 } 6834 6835 /** 6836 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6837 * @phba: Pointer to HBA context object. 6838 * 6839 * Disable FW logging into host memory on the adapter. To 6840 * be done before reading logs from the host memory. 6841 **/ 6842 void 6843 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6844 { 6845 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6846 6847 spin_lock_irq(&phba->ras_fwlog_lock); 6848 ras_fwlog->state = INACTIVE; 6849 spin_unlock_irq(&phba->ras_fwlog_lock); 6850 6851 /* Disable FW logging to host memory */ 6852 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6853 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6854 6855 /* Wait 10ms for firmware to stop using DMA buffer */ 6856 usleep_range(10 * 1000, 20 * 1000); 6857 } 6858 6859 /** 6860 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6861 * @phba: Pointer to HBA context object. 6862 * 6863 * This function is called to free memory allocated for RAS FW logging 6864 * support in the driver. 6865 **/ 6866 void 6867 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6868 { 6869 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6870 struct lpfc_dmabuf *dmabuf, *next; 6871 6872 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6873 list_for_each_entry_safe(dmabuf, next, 6874 &ras_fwlog->fwlog_buff_list, 6875 list) { 6876 list_del(&dmabuf->list); 6877 dma_free_coherent(&phba->pcidev->dev, 6878 LPFC_RAS_MAX_ENTRY_SIZE, 6879 dmabuf->virt, dmabuf->phys); 6880 kfree(dmabuf); 6881 } 6882 } 6883 6884 if (ras_fwlog->lwpd.virt) { 6885 dma_free_coherent(&phba->pcidev->dev, 6886 sizeof(uint32_t) * 2, 6887 ras_fwlog->lwpd.virt, 6888 ras_fwlog->lwpd.phys); 6889 ras_fwlog->lwpd.virt = NULL; 6890 } 6891 6892 spin_lock_irq(&phba->ras_fwlog_lock); 6893 ras_fwlog->state = INACTIVE; 6894 spin_unlock_irq(&phba->ras_fwlog_lock); 6895 } 6896 6897 /** 6898 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6899 * @phba: Pointer to HBA context object. 6900 * @fwlog_buff_count: Count of buffers to be created. 6901 * 6902 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6903 * to update FW log is posted to the adapter. 6904 * Buffer count is calculated based on module param ras_fwlog_buffsize 6905 * Size of each buffer posted to FW is 64K. 6906 **/ 6907 6908 static int 6909 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6910 uint32_t fwlog_buff_count) 6911 { 6912 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6913 struct lpfc_dmabuf *dmabuf; 6914 int rc = 0, i = 0; 6915 6916 /* Initialize List */ 6917 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6918 6919 /* Allocate memory for the LWPD */ 6920 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6921 sizeof(uint32_t) * 2, 6922 &ras_fwlog->lwpd.phys, 6923 GFP_KERNEL); 6924 if (!ras_fwlog->lwpd.virt) { 6925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6926 "6185 LWPD Memory Alloc Failed\n"); 6927 6928 return -ENOMEM; 6929 } 6930 6931 ras_fwlog->fw_buffcount = fwlog_buff_count; 6932 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6933 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6934 GFP_KERNEL); 6935 if (!dmabuf) { 6936 rc = -ENOMEM; 6937 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6938 "6186 Memory Alloc failed FW logging"); 6939 goto free_mem; 6940 } 6941 6942 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6943 LPFC_RAS_MAX_ENTRY_SIZE, 6944 &dmabuf->phys, GFP_KERNEL); 6945 if (!dmabuf->virt) { 6946 kfree(dmabuf); 6947 rc = -ENOMEM; 6948 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6949 "6187 DMA Alloc Failed FW logging"); 6950 goto free_mem; 6951 } 6952 dmabuf->buffer_tag = i; 6953 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6954 } 6955 6956 free_mem: 6957 if (rc) 6958 lpfc_sli4_ras_dma_free(phba); 6959 6960 return rc; 6961 } 6962 6963 /** 6964 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6965 * @phba: pointer to lpfc hba data structure. 6966 * @pmb: pointer to the driver internal queue element for mailbox command. 6967 * 6968 * Completion handler for driver's RAS MBX command to the device. 6969 **/ 6970 static void 6971 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6972 { 6973 MAILBOX_t *mb; 6974 union lpfc_sli4_cfg_shdr *shdr; 6975 uint32_t shdr_status, shdr_add_status; 6976 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6977 6978 mb = &pmb->u.mb; 6979 6980 shdr = (union lpfc_sli4_cfg_shdr *) 6981 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6984 6985 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6987 "6188 FW LOG mailbox " 6988 "completed with status x%x add_status x%x," 6989 " mbx status x%x\n", 6990 shdr_status, shdr_add_status, mb->mbxStatus); 6991 6992 ras_fwlog->ras_hwsupport = false; 6993 goto disable_ras; 6994 } 6995 6996 spin_lock_irq(&phba->ras_fwlog_lock); 6997 ras_fwlog->state = ACTIVE; 6998 spin_unlock_irq(&phba->ras_fwlog_lock); 6999 mempool_free(pmb, phba->mbox_mem_pool); 7000 7001 return; 7002 7003 disable_ras: 7004 /* Free RAS DMA memory */ 7005 lpfc_sli4_ras_dma_free(phba); 7006 mempool_free(pmb, phba->mbox_mem_pool); 7007 } 7008 7009 /** 7010 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7011 * @phba: pointer to lpfc hba data structure. 7012 * @fwlog_level: Logging verbosity level. 7013 * @fwlog_enable: Enable/Disable logging. 7014 * 7015 * Initialize memory and post mailbox command to enable FW logging in host 7016 * memory. 7017 **/ 7018 int 7019 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7020 uint32_t fwlog_level, 7021 uint32_t fwlog_enable) 7022 { 7023 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7024 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7025 struct lpfc_dmabuf *dmabuf; 7026 LPFC_MBOXQ_t *mbox; 7027 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7028 int rc = 0; 7029 7030 spin_lock_irq(&phba->ras_fwlog_lock); 7031 ras_fwlog->state = INACTIVE; 7032 spin_unlock_irq(&phba->ras_fwlog_lock); 7033 7034 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7035 phba->cfg_ras_fwlog_buffsize); 7036 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7037 7038 /* 7039 * If re-enabling FW logging support use earlier allocated 7040 * DMA buffers while posting MBX command. 7041 **/ 7042 if (!ras_fwlog->lwpd.virt) { 7043 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7044 if (rc) { 7045 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7046 "6189 FW Log Memory Allocation Failed"); 7047 return rc; 7048 } 7049 } 7050 7051 /* Setup Mailbox command */ 7052 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7053 if (!mbox) { 7054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7055 "6190 RAS MBX Alloc Failed"); 7056 rc = -ENOMEM; 7057 goto mem_free; 7058 } 7059 7060 ras_fwlog->fw_loglevel = fwlog_level; 7061 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7062 sizeof(struct lpfc_sli4_cfg_mhdr)); 7063 7064 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7065 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7066 len, LPFC_SLI4_MBX_EMBED); 7067 7068 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7069 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7070 fwlog_enable); 7071 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7072 ras_fwlog->fw_loglevel); 7073 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7074 ras_fwlog->fw_buffcount); 7075 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7076 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7077 7078 /* Update DMA buffer address */ 7079 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7080 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7081 7082 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7083 putPaddrLow(dmabuf->phys); 7084 7085 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7086 putPaddrHigh(dmabuf->phys); 7087 } 7088 7089 /* Update LPWD address */ 7090 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7091 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7092 7093 spin_lock_irq(&phba->ras_fwlog_lock); 7094 ras_fwlog->state = REG_INPROGRESS; 7095 spin_unlock_irq(&phba->ras_fwlog_lock); 7096 mbox->vport = phba->pport; 7097 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7098 7099 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7100 7101 if (rc == MBX_NOT_FINISHED) { 7102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7103 "6191 FW-Log Mailbox failed. " 7104 "status %d mbxStatus : x%x", rc, 7105 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7106 mempool_free(mbox, phba->mbox_mem_pool); 7107 rc = -EIO; 7108 goto mem_free; 7109 } else 7110 rc = 0; 7111 mem_free: 7112 if (rc) 7113 lpfc_sli4_ras_dma_free(phba); 7114 7115 return rc; 7116 } 7117 7118 /** 7119 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7120 * @phba: Pointer to HBA context object. 7121 * 7122 * Check if RAS is supported on the adapter and initialize it. 7123 **/ 7124 void 7125 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7126 { 7127 /* Check RAS FW Log needs to be enabled or not */ 7128 if (lpfc_check_fwlog_support(phba)) 7129 return; 7130 7131 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7132 LPFC_RAS_ENABLE_LOGGING); 7133 } 7134 7135 /** 7136 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7137 * @phba: Pointer to HBA context object. 7138 * 7139 * This function allocates all SLI4 resource identifiers. 7140 **/ 7141 int 7142 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7143 { 7144 int i, rc, error = 0; 7145 uint16_t count, base; 7146 unsigned long longs; 7147 7148 if (!phba->sli4_hba.rpi_hdrs_in_use) 7149 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7150 if (phba->sli4_hba.extents_in_use) { 7151 /* 7152 * The port supports resource extents. The XRI, VPI, VFI, RPI 7153 * resource extent count must be read and allocated before 7154 * provisioning the resource id arrays. 7155 */ 7156 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7157 LPFC_IDX_RSRC_RDY) { 7158 /* 7159 * Extent-based resources are set - the driver could 7160 * be in a port reset. Figure out if any corrective 7161 * actions need to be taken. 7162 */ 7163 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7164 LPFC_RSC_TYPE_FCOE_VFI); 7165 if (rc != 0) 7166 error++; 7167 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7168 LPFC_RSC_TYPE_FCOE_VPI); 7169 if (rc != 0) 7170 error++; 7171 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7172 LPFC_RSC_TYPE_FCOE_XRI); 7173 if (rc != 0) 7174 error++; 7175 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7176 LPFC_RSC_TYPE_FCOE_RPI); 7177 if (rc != 0) 7178 error++; 7179 7180 /* 7181 * It's possible that the number of resources 7182 * provided to this port instance changed between 7183 * resets. Detect this condition and reallocate 7184 * resources. Otherwise, there is no action. 7185 */ 7186 if (error) { 7187 lpfc_printf_log(phba, KERN_INFO, 7188 LOG_MBOX | LOG_INIT, 7189 "2931 Detected extent resource " 7190 "change. Reallocating all " 7191 "extents.\n"); 7192 rc = lpfc_sli4_dealloc_extent(phba, 7193 LPFC_RSC_TYPE_FCOE_VFI); 7194 rc = lpfc_sli4_dealloc_extent(phba, 7195 LPFC_RSC_TYPE_FCOE_VPI); 7196 rc = lpfc_sli4_dealloc_extent(phba, 7197 LPFC_RSC_TYPE_FCOE_XRI); 7198 rc = lpfc_sli4_dealloc_extent(phba, 7199 LPFC_RSC_TYPE_FCOE_RPI); 7200 } else 7201 return 0; 7202 } 7203 7204 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7205 if (unlikely(rc)) 7206 goto err_exit; 7207 7208 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7209 if (unlikely(rc)) 7210 goto err_exit; 7211 7212 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7213 if (unlikely(rc)) 7214 goto err_exit; 7215 7216 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7217 if (unlikely(rc)) 7218 goto err_exit; 7219 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7220 LPFC_IDX_RSRC_RDY); 7221 return rc; 7222 } else { 7223 /* 7224 * The port does not support resource extents. The XRI, VPI, 7225 * VFI, RPI resource ids were determined from READ_CONFIG. 7226 * Just allocate the bitmasks and provision the resource id 7227 * arrays. If a port reset is active, the resources don't 7228 * need any action - just exit. 7229 */ 7230 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7231 LPFC_IDX_RSRC_RDY) { 7232 lpfc_sli4_dealloc_resource_identifiers(phba); 7233 lpfc_sli4_remove_rpis(phba); 7234 } 7235 /* RPIs. */ 7236 count = phba->sli4_hba.max_cfg_param.max_rpi; 7237 if (count <= 0) { 7238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7239 "3279 Invalid provisioning of " 7240 "rpi:%d\n", count); 7241 rc = -EINVAL; 7242 goto err_exit; 7243 } 7244 base = phba->sli4_hba.max_cfg_param.rpi_base; 7245 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7246 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7247 sizeof(unsigned long), 7248 GFP_KERNEL); 7249 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7250 rc = -ENOMEM; 7251 goto err_exit; 7252 } 7253 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7254 GFP_KERNEL); 7255 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7256 rc = -ENOMEM; 7257 goto free_rpi_bmask; 7258 } 7259 7260 for (i = 0; i < count; i++) 7261 phba->sli4_hba.rpi_ids[i] = base + i; 7262 7263 /* VPIs. */ 7264 count = phba->sli4_hba.max_cfg_param.max_vpi; 7265 if (count <= 0) { 7266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7267 "3280 Invalid provisioning of " 7268 "vpi:%d\n", count); 7269 rc = -EINVAL; 7270 goto free_rpi_ids; 7271 } 7272 base = phba->sli4_hba.max_cfg_param.vpi_base; 7273 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7274 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7275 GFP_KERNEL); 7276 if (unlikely(!phba->vpi_bmask)) { 7277 rc = -ENOMEM; 7278 goto free_rpi_ids; 7279 } 7280 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7281 GFP_KERNEL); 7282 if (unlikely(!phba->vpi_ids)) { 7283 rc = -ENOMEM; 7284 goto free_vpi_bmask; 7285 } 7286 7287 for (i = 0; i < count; i++) 7288 phba->vpi_ids[i] = base + i; 7289 7290 /* XRIs. */ 7291 count = phba->sli4_hba.max_cfg_param.max_xri; 7292 if (count <= 0) { 7293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7294 "3281 Invalid provisioning of " 7295 "xri:%d\n", count); 7296 rc = -EINVAL; 7297 goto free_vpi_ids; 7298 } 7299 base = phba->sli4_hba.max_cfg_param.xri_base; 7300 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7301 phba->sli4_hba.xri_bmask = kcalloc(longs, 7302 sizeof(unsigned long), 7303 GFP_KERNEL); 7304 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7305 rc = -ENOMEM; 7306 goto free_vpi_ids; 7307 } 7308 phba->sli4_hba.max_cfg_param.xri_used = 0; 7309 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7310 GFP_KERNEL); 7311 if (unlikely(!phba->sli4_hba.xri_ids)) { 7312 rc = -ENOMEM; 7313 goto free_xri_bmask; 7314 } 7315 7316 for (i = 0; i < count; i++) 7317 phba->sli4_hba.xri_ids[i] = base + i; 7318 7319 /* VFIs. */ 7320 count = phba->sli4_hba.max_cfg_param.max_vfi; 7321 if (count <= 0) { 7322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7323 "3282 Invalid provisioning of " 7324 "vfi:%d\n", count); 7325 rc = -EINVAL; 7326 goto free_xri_ids; 7327 } 7328 base = phba->sli4_hba.max_cfg_param.vfi_base; 7329 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7330 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7331 sizeof(unsigned long), 7332 GFP_KERNEL); 7333 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7334 rc = -ENOMEM; 7335 goto free_xri_ids; 7336 } 7337 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7338 GFP_KERNEL); 7339 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7340 rc = -ENOMEM; 7341 goto free_vfi_bmask; 7342 } 7343 7344 for (i = 0; i < count; i++) 7345 phba->sli4_hba.vfi_ids[i] = base + i; 7346 7347 /* 7348 * Mark all resources ready. An HBA reset doesn't need 7349 * to reset the initialization. 7350 */ 7351 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7352 LPFC_IDX_RSRC_RDY); 7353 return 0; 7354 } 7355 7356 free_vfi_bmask: 7357 kfree(phba->sli4_hba.vfi_bmask); 7358 phba->sli4_hba.vfi_bmask = NULL; 7359 free_xri_ids: 7360 kfree(phba->sli4_hba.xri_ids); 7361 phba->sli4_hba.xri_ids = NULL; 7362 free_xri_bmask: 7363 kfree(phba->sli4_hba.xri_bmask); 7364 phba->sli4_hba.xri_bmask = NULL; 7365 free_vpi_ids: 7366 kfree(phba->vpi_ids); 7367 phba->vpi_ids = NULL; 7368 free_vpi_bmask: 7369 kfree(phba->vpi_bmask); 7370 phba->vpi_bmask = NULL; 7371 free_rpi_ids: 7372 kfree(phba->sli4_hba.rpi_ids); 7373 phba->sli4_hba.rpi_ids = NULL; 7374 free_rpi_bmask: 7375 kfree(phba->sli4_hba.rpi_bmask); 7376 phba->sli4_hba.rpi_bmask = NULL; 7377 err_exit: 7378 return rc; 7379 } 7380 7381 /** 7382 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7383 * @phba: Pointer to HBA context object. 7384 * 7385 * This function allocates the number of elements for the specified 7386 * resource type. 7387 **/ 7388 int 7389 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7390 { 7391 if (phba->sli4_hba.extents_in_use) { 7392 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7393 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7394 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7395 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7396 } else { 7397 kfree(phba->vpi_bmask); 7398 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7399 kfree(phba->vpi_ids); 7400 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7401 kfree(phba->sli4_hba.xri_bmask); 7402 kfree(phba->sli4_hba.xri_ids); 7403 kfree(phba->sli4_hba.vfi_bmask); 7404 kfree(phba->sli4_hba.vfi_ids); 7405 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7406 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7407 } 7408 7409 return 0; 7410 } 7411 7412 /** 7413 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7414 * @phba: Pointer to HBA context object. 7415 * @type: The resource extent type. 7416 * @extnt_cnt: buffer to hold port extent count response 7417 * @extnt_size: buffer to hold port extent size response. 7418 * 7419 * This function calls the port to read the host allocated extents 7420 * for a particular type. 7421 **/ 7422 int 7423 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7424 uint16_t *extnt_cnt, uint16_t *extnt_size) 7425 { 7426 bool emb; 7427 int rc = 0; 7428 uint16_t curr_blks = 0; 7429 uint32_t req_len, emb_len; 7430 uint32_t alloc_len, mbox_tmo; 7431 struct list_head *blk_list_head; 7432 struct lpfc_rsrc_blks *rsrc_blk; 7433 LPFC_MBOXQ_t *mbox; 7434 void *virtaddr = NULL; 7435 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7436 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7437 union lpfc_sli4_cfg_shdr *shdr; 7438 7439 switch (type) { 7440 case LPFC_RSC_TYPE_FCOE_VPI: 7441 blk_list_head = &phba->lpfc_vpi_blk_list; 7442 break; 7443 case LPFC_RSC_TYPE_FCOE_XRI: 7444 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7445 break; 7446 case LPFC_RSC_TYPE_FCOE_VFI: 7447 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7448 break; 7449 case LPFC_RSC_TYPE_FCOE_RPI: 7450 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7451 break; 7452 default: 7453 return -EIO; 7454 } 7455 7456 /* Count the number of extents currently allocatd for this type. */ 7457 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7458 if (curr_blks == 0) { 7459 /* 7460 * The GET_ALLOCATED mailbox does not return the size, 7461 * just the count. The size should be just the size 7462 * stored in the current allocated block and all sizes 7463 * for an extent type are the same so set the return 7464 * value now. 7465 */ 7466 *extnt_size = rsrc_blk->rsrc_size; 7467 } 7468 curr_blks++; 7469 } 7470 7471 /* 7472 * Calculate the size of an embedded mailbox. The uint32_t 7473 * accounts for extents-specific word. 7474 */ 7475 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7476 sizeof(uint32_t); 7477 7478 /* 7479 * Presume the allocation and response will fit into an embedded 7480 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7481 */ 7482 emb = LPFC_SLI4_MBX_EMBED; 7483 req_len = emb_len; 7484 if (req_len > emb_len) { 7485 req_len = curr_blks * sizeof(uint16_t) + 7486 sizeof(union lpfc_sli4_cfg_shdr) + 7487 sizeof(uint32_t); 7488 emb = LPFC_SLI4_MBX_NEMBED; 7489 } 7490 7491 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7492 if (!mbox) 7493 return -ENOMEM; 7494 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7495 7496 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7497 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7498 req_len, emb); 7499 if (alloc_len < req_len) { 7500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7501 "2983 Allocated DMA memory size (x%x) is " 7502 "less than the requested DMA memory " 7503 "size (x%x)\n", alloc_len, req_len); 7504 rc = -ENOMEM; 7505 goto err_exit; 7506 } 7507 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7508 if (unlikely(rc)) { 7509 rc = -EIO; 7510 goto err_exit; 7511 } 7512 7513 if (!phba->sli4_hba.intr_enable) 7514 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7515 else { 7516 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7517 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7518 } 7519 7520 if (unlikely(rc)) { 7521 rc = -EIO; 7522 goto err_exit; 7523 } 7524 7525 /* 7526 * Figure out where the response is located. Then get local pointers 7527 * to the response data. The port does not guarantee to respond to 7528 * all extents counts request so update the local variable with the 7529 * allocated count from the port. 7530 */ 7531 if (emb == LPFC_SLI4_MBX_EMBED) { 7532 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7533 shdr = &rsrc_ext->header.cfg_shdr; 7534 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7535 } else { 7536 virtaddr = mbox->sge_array->addr[0]; 7537 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7538 shdr = &n_rsrc->cfg_shdr; 7539 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7540 } 7541 7542 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7544 "2984 Failed to read allocated resources " 7545 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7546 type, 7547 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7548 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7549 rc = -EIO; 7550 goto err_exit; 7551 } 7552 err_exit: 7553 lpfc_sli4_mbox_cmd_free(phba, mbox); 7554 return rc; 7555 } 7556 7557 /** 7558 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7559 * @phba: pointer to lpfc hba data structure. 7560 * @sgl_list: linked link of sgl buffers to post 7561 * @cnt: number of linked list buffers 7562 * 7563 * This routine walks the list of buffers that have been allocated and 7564 * repost them to the port by using SGL block post. This is needed after a 7565 * pci_function_reset/warm_start or start. It attempts to construct blocks 7566 * of buffer sgls which contains contiguous xris and uses the non-embedded 7567 * SGL block post mailbox commands to post them to the port. For single 7568 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7569 * mailbox command for posting. 7570 * 7571 * Returns: 0 = success, non-zero failure. 7572 **/ 7573 static int 7574 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7575 struct list_head *sgl_list, int cnt) 7576 { 7577 struct lpfc_sglq *sglq_entry = NULL; 7578 struct lpfc_sglq *sglq_entry_next = NULL; 7579 struct lpfc_sglq *sglq_entry_first = NULL; 7580 int status, total_cnt; 7581 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7582 int last_xritag = NO_XRI; 7583 LIST_HEAD(prep_sgl_list); 7584 LIST_HEAD(blck_sgl_list); 7585 LIST_HEAD(allc_sgl_list); 7586 LIST_HEAD(post_sgl_list); 7587 LIST_HEAD(free_sgl_list); 7588 7589 spin_lock_irq(&phba->hbalock); 7590 spin_lock(&phba->sli4_hba.sgl_list_lock); 7591 list_splice_init(sgl_list, &allc_sgl_list); 7592 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7593 spin_unlock_irq(&phba->hbalock); 7594 7595 total_cnt = cnt; 7596 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7597 &allc_sgl_list, list) { 7598 list_del_init(&sglq_entry->list); 7599 block_cnt++; 7600 if ((last_xritag != NO_XRI) && 7601 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7602 /* a hole in xri block, form a sgl posting block */ 7603 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7604 post_cnt = block_cnt - 1; 7605 /* prepare list for next posting block */ 7606 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7607 block_cnt = 1; 7608 } else { 7609 /* prepare list for next posting block */ 7610 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7611 /* enough sgls for non-embed sgl mbox command */ 7612 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7613 list_splice_init(&prep_sgl_list, 7614 &blck_sgl_list); 7615 post_cnt = block_cnt; 7616 block_cnt = 0; 7617 } 7618 } 7619 num_posted++; 7620 7621 /* keep track of last sgl's xritag */ 7622 last_xritag = sglq_entry->sli4_xritag; 7623 7624 /* end of repost sgl list condition for buffers */ 7625 if (num_posted == total_cnt) { 7626 if (post_cnt == 0) { 7627 list_splice_init(&prep_sgl_list, 7628 &blck_sgl_list); 7629 post_cnt = block_cnt; 7630 } else if (block_cnt == 1) { 7631 status = lpfc_sli4_post_sgl(phba, 7632 sglq_entry->phys, 0, 7633 sglq_entry->sli4_xritag); 7634 if (!status) { 7635 /* successful, put sgl to posted list */ 7636 list_add_tail(&sglq_entry->list, 7637 &post_sgl_list); 7638 } else { 7639 /* Failure, put sgl to free list */ 7640 lpfc_printf_log(phba, KERN_WARNING, 7641 LOG_SLI, 7642 "3159 Failed to post " 7643 "sgl, xritag:x%x\n", 7644 sglq_entry->sli4_xritag); 7645 list_add_tail(&sglq_entry->list, 7646 &free_sgl_list); 7647 total_cnt--; 7648 } 7649 } 7650 } 7651 7652 /* continue until a nembed page worth of sgls */ 7653 if (post_cnt == 0) 7654 continue; 7655 7656 /* post the buffer list sgls as a block */ 7657 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7658 post_cnt); 7659 7660 if (!status) { 7661 /* success, put sgl list to posted sgl list */ 7662 list_splice_init(&blck_sgl_list, &post_sgl_list); 7663 } else { 7664 /* Failure, put sgl list to free sgl list */ 7665 sglq_entry_first = list_first_entry(&blck_sgl_list, 7666 struct lpfc_sglq, 7667 list); 7668 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7669 "3160 Failed to post sgl-list, " 7670 "xritag:x%x-x%x\n", 7671 sglq_entry_first->sli4_xritag, 7672 (sglq_entry_first->sli4_xritag + 7673 post_cnt - 1)); 7674 list_splice_init(&blck_sgl_list, &free_sgl_list); 7675 total_cnt -= post_cnt; 7676 } 7677 7678 /* don't reset xirtag due to hole in xri block */ 7679 if (block_cnt == 0) 7680 last_xritag = NO_XRI; 7681 7682 /* reset sgl post count for next round of posting */ 7683 post_cnt = 0; 7684 } 7685 7686 /* free the sgls failed to post */ 7687 lpfc_free_sgl_list(phba, &free_sgl_list); 7688 7689 /* push sgls posted to the available list */ 7690 if (!list_empty(&post_sgl_list)) { 7691 spin_lock_irq(&phba->hbalock); 7692 spin_lock(&phba->sli4_hba.sgl_list_lock); 7693 list_splice_init(&post_sgl_list, sgl_list); 7694 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7695 spin_unlock_irq(&phba->hbalock); 7696 } else { 7697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7698 "3161 Failure to post sgl to port,status %x " 7699 "blkcnt %d totalcnt %d postcnt %d\n", 7700 status, block_cnt, total_cnt, post_cnt); 7701 return -EIO; 7702 } 7703 7704 /* return the number of XRIs actually posted */ 7705 return total_cnt; 7706 } 7707 7708 /** 7709 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7710 * @phba: pointer to lpfc hba data structure. 7711 * 7712 * This routine walks the list of nvme buffers that have been allocated and 7713 * repost them to the port by using SGL block post. This is needed after a 7714 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7715 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7716 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7717 * 7718 * Returns: 0 = success, non-zero failure. 7719 **/ 7720 static int 7721 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7722 { 7723 LIST_HEAD(post_nblist); 7724 int num_posted, rc = 0; 7725 7726 /* get all NVME buffers need to repost to a local list */ 7727 lpfc_io_buf_flush(phba, &post_nblist); 7728 7729 /* post the list of nvme buffer sgls to port if available */ 7730 if (!list_empty(&post_nblist)) { 7731 num_posted = lpfc_sli4_post_io_sgl_list( 7732 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7733 /* failed to post any nvme buffer, return error */ 7734 if (num_posted == 0) 7735 rc = -EIO; 7736 } 7737 return rc; 7738 } 7739 7740 static void 7741 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7742 { 7743 uint32_t len; 7744 7745 len = sizeof(struct lpfc_mbx_set_host_data) - 7746 sizeof(struct lpfc_sli4_cfg_mhdr); 7747 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7748 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7749 LPFC_SLI4_MBX_EMBED); 7750 7751 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7752 mbox->u.mqe.un.set_host_data.param_len = 7753 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7754 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7755 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7756 "Linux %s v"LPFC_DRIVER_VERSION, 7757 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7758 } 7759 7760 int 7761 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7762 struct lpfc_queue *drq, int count, int idx) 7763 { 7764 int rc, i; 7765 struct lpfc_rqe hrqe; 7766 struct lpfc_rqe drqe; 7767 struct lpfc_rqb *rqbp; 7768 unsigned long flags; 7769 struct rqb_dmabuf *rqb_buffer; 7770 LIST_HEAD(rqb_buf_list); 7771 7772 rqbp = hrq->rqbp; 7773 for (i = 0; i < count; i++) { 7774 spin_lock_irqsave(&phba->hbalock, flags); 7775 /* IF RQ is already full, don't bother */ 7776 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7777 spin_unlock_irqrestore(&phba->hbalock, flags); 7778 break; 7779 } 7780 spin_unlock_irqrestore(&phba->hbalock, flags); 7781 7782 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7783 if (!rqb_buffer) 7784 break; 7785 rqb_buffer->hrq = hrq; 7786 rqb_buffer->drq = drq; 7787 rqb_buffer->idx = idx; 7788 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7789 } 7790 7791 spin_lock_irqsave(&phba->hbalock, flags); 7792 while (!list_empty(&rqb_buf_list)) { 7793 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7794 hbuf.list); 7795 7796 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7797 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7798 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7799 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7800 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7801 if (rc < 0) { 7802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7803 "6421 Cannot post to HRQ %d: %x %x %x " 7804 "DRQ %x %x\n", 7805 hrq->queue_id, 7806 hrq->host_index, 7807 hrq->hba_index, 7808 hrq->entry_count, 7809 drq->host_index, 7810 drq->hba_index); 7811 rqbp->rqb_free_buffer(phba, rqb_buffer); 7812 } else { 7813 list_add_tail(&rqb_buffer->hbuf.list, 7814 &rqbp->rqb_buffer_list); 7815 rqbp->buffer_count++; 7816 } 7817 } 7818 spin_unlock_irqrestore(&phba->hbalock, flags); 7819 return 1; 7820 } 7821 7822 static void 7823 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7824 { 7825 union lpfc_sli4_cfg_shdr *shdr; 7826 u32 shdr_status, shdr_add_status; 7827 7828 shdr = (union lpfc_sli4_cfg_shdr *) 7829 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7830 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7831 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7832 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7833 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7834 "4622 SET_FEATURE (x%x) mbox failed, " 7835 "status x%x add_status x%x, mbx status x%x\n", 7836 LPFC_SET_LD_SIGNAL, shdr_status, 7837 shdr_add_status, pmb->u.mb.mbxStatus); 7838 phba->degrade_activate_threshold = 0; 7839 phba->degrade_deactivate_threshold = 0; 7840 phba->fec_degrade_interval = 0; 7841 goto out; 7842 } 7843 7844 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7845 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7846 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7847 7848 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7849 "4624 Success: da x%x dd x%x interval x%x\n", 7850 phba->degrade_activate_threshold, 7851 phba->degrade_deactivate_threshold, 7852 phba->fec_degrade_interval); 7853 out: 7854 mempool_free(pmb, phba->mbox_mem_pool); 7855 } 7856 7857 int 7858 lpfc_read_lds_params(struct lpfc_hba *phba) 7859 { 7860 LPFC_MBOXQ_t *mboxq; 7861 int rc; 7862 7863 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7864 if (!mboxq) 7865 return -ENOMEM; 7866 7867 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7868 mboxq->vport = phba->pport; 7869 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7870 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7871 if (rc == MBX_NOT_FINISHED) { 7872 mempool_free(mboxq, phba->mbox_mem_pool); 7873 return -EIO; 7874 } 7875 return 0; 7876 } 7877 7878 static void 7879 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7880 { 7881 struct lpfc_vport *vport = pmb->vport; 7882 union lpfc_sli4_cfg_shdr *shdr; 7883 u32 shdr_status, shdr_add_status; 7884 u32 sig, acqe; 7885 7886 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7887 * is done. (2) Mailbox failed and send FPIN support only. 7888 */ 7889 shdr = (union lpfc_sli4_cfg_shdr *) 7890 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7891 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7892 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7893 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7894 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7895 "2516 CGN SET_FEATURE mbox failed with " 7896 "status x%x add_status x%x, mbx status x%x " 7897 "Reset Congestion to FPINs only\n", 7898 shdr_status, shdr_add_status, 7899 pmb->u.mb.mbxStatus); 7900 /* If there is a mbox error, move on to RDF */ 7901 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7902 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7903 goto out; 7904 } 7905 7906 /* Zero out Congestion Signal ACQE counter */ 7907 phba->cgn_acqe_cnt = 0; 7908 7909 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7910 &pmb->u.mqe.un.set_feature); 7911 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7912 &pmb->u.mqe.un.set_feature); 7913 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7914 "4620 SET_FEATURES Success: Freq: %ds %dms " 7915 " Reg: x%x x%x\n", acqe, sig, 7916 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7917 out: 7918 mempool_free(pmb, phba->mbox_mem_pool); 7919 7920 /* Register for FPIN events from the fabric now that the 7921 * EDC common_set_features has completed. 7922 */ 7923 lpfc_issue_els_rdf(vport, 0); 7924 } 7925 7926 int 7927 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7928 { 7929 LPFC_MBOXQ_t *mboxq; 7930 u32 rc; 7931 7932 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7933 if (!mboxq) 7934 goto out_rdf; 7935 7936 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7937 mboxq->vport = phba->pport; 7938 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7939 7940 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7941 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7942 "Reg: x%x x%x\n", 7943 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7944 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7945 7946 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7947 if (rc == MBX_NOT_FINISHED) 7948 goto out; 7949 return 0; 7950 7951 out: 7952 mempool_free(mboxq, phba->mbox_mem_pool); 7953 out_rdf: 7954 /* If there is a mbox error, move on to RDF */ 7955 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7956 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7957 lpfc_issue_els_rdf(phba->pport, 0); 7958 return -EIO; 7959 } 7960 7961 /** 7962 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7963 * @phba: pointer to lpfc hba data structure. 7964 * 7965 * This routine initializes the per-eq idle_stat to dynamically dictate 7966 * polling decisions. 7967 * 7968 * Return codes: 7969 * None 7970 **/ 7971 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7972 { 7973 int i; 7974 struct lpfc_sli4_hdw_queue *hdwq; 7975 struct lpfc_queue *eq; 7976 struct lpfc_idle_stat *idle_stat; 7977 u64 wall; 7978 7979 for_each_present_cpu(i) { 7980 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7981 eq = hdwq->hba_eq; 7982 7983 /* Skip if we've already handled this eq's primary CPU */ 7984 if (eq->chann != i) 7985 continue; 7986 7987 idle_stat = &phba->sli4_hba.idle_stat[i]; 7988 7989 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7990 idle_stat->prev_wall = wall; 7991 7992 if (phba->nvmet_support || 7993 phba->cmf_active_mode != LPFC_CFG_OFF || 7994 phba->intr_type != MSIX) 7995 eq->poll_mode = LPFC_QUEUE_WORK; 7996 else 7997 eq->poll_mode = LPFC_THREADED_IRQ; 7998 } 7999 8000 if (!phba->nvmet_support && phba->intr_type == MSIX) 8001 schedule_delayed_work(&phba->idle_stat_delay_work, 8002 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8003 } 8004 8005 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8006 { 8007 uint32_t if_type; 8008 8009 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8010 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8011 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8012 struct lpfc_register reg_data; 8013 8014 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8015 ®_data.word0)) 8016 return; 8017 8018 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8019 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8020 "2904 Firmware Dump Image Present" 8021 " on Adapter"); 8022 } 8023 } 8024 8025 /** 8026 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8027 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8028 * @entries: Number of rx_info_entry objects to allocate in ring 8029 * 8030 * Return: 8031 * 0 - Success 8032 * ENOMEM - Failure to kmalloc 8033 **/ 8034 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8035 u32 entries) 8036 { 8037 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8038 GFP_KERNEL); 8039 if (!rx_monitor->ring) 8040 return -ENOMEM; 8041 8042 rx_monitor->head_idx = 0; 8043 rx_monitor->tail_idx = 0; 8044 spin_lock_init(&rx_monitor->lock); 8045 rx_monitor->entries = entries; 8046 8047 return 0; 8048 } 8049 8050 /** 8051 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8052 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8053 * 8054 * Called after cancellation of cmf_timer. 8055 **/ 8056 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8057 { 8058 kfree(rx_monitor->ring); 8059 rx_monitor->ring = NULL; 8060 rx_monitor->entries = 0; 8061 rx_monitor->head_idx = 0; 8062 rx_monitor->tail_idx = 0; 8063 } 8064 8065 /** 8066 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8067 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8068 * @entry: Pointer to rx_info_entry 8069 * 8070 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8071 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8072 * 8073 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8074 * 8075 * In cases of old data overflow, we do a best effort of FIFO order. 8076 **/ 8077 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8078 struct rx_info_entry *entry) 8079 { 8080 struct rx_info_entry *ring = rx_monitor->ring; 8081 u32 *head_idx = &rx_monitor->head_idx; 8082 u32 *tail_idx = &rx_monitor->tail_idx; 8083 spinlock_t *ring_lock = &rx_monitor->lock; 8084 u32 ring_size = rx_monitor->entries; 8085 8086 spin_lock(ring_lock); 8087 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8088 *tail_idx = (*tail_idx + 1) % ring_size; 8089 8090 /* Best effort of FIFO saved data */ 8091 if (*tail_idx == *head_idx) 8092 *head_idx = (*head_idx + 1) % ring_size; 8093 8094 spin_unlock(ring_lock); 8095 } 8096 8097 /** 8098 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8099 * @phba: Pointer to lpfc_hba object 8100 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8101 * @buf: Pointer to char buffer that will contain rx monitor info data 8102 * @buf_len: Length buf including null char 8103 * @max_read_entries: Maximum number of entries to read out of ring 8104 * 8105 * Used to dump/read what's in rx_monitor's ring buffer. 8106 * 8107 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8108 * information to kmsg instead of filling out buf. 8109 * 8110 * Return: 8111 * Number of entries read out of the ring 8112 **/ 8113 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8114 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8115 u32 buf_len, u32 max_read_entries) 8116 { 8117 struct rx_info_entry *ring = rx_monitor->ring; 8118 struct rx_info_entry *entry; 8119 u32 *head_idx = &rx_monitor->head_idx; 8120 u32 *tail_idx = &rx_monitor->tail_idx; 8121 spinlock_t *ring_lock = &rx_monitor->lock; 8122 u32 ring_size = rx_monitor->entries; 8123 u32 cnt = 0; 8124 char tmp[DBG_LOG_STR_SZ] = {0}; 8125 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8126 8127 if (!log_to_kmsg) { 8128 /* clear the buffer to be sure */ 8129 memset(buf, 0, buf_len); 8130 8131 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8132 "%-8s%-8s%-8s%-16s\n", 8133 "MaxBPI", "Tot_Data_CMF", 8134 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8135 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8136 "IO_cnt", "Info", "BWutil(ms)"); 8137 } 8138 8139 /* Needs to be _irq because record is called from timer interrupt 8140 * context 8141 */ 8142 spin_lock_irq(ring_lock); 8143 while (*head_idx != *tail_idx) { 8144 entry = &ring[*head_idx]; 8145 8146 /* Read out this entry's data. */ 8147 if (!log_to_kmsg) { 8148 /* If !log_to_kmsg, then store to buf. */ 8149 scnprintf(tmp, sizeof(tmp), 8150 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8151 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8152 *head_idx, entry->max_bytes_per_interval, 8153 entry->cmf_bytes, entry->total_bytes, 8154 entry->rcv_bytes, entry->avg_io_latency, 8155 entry->avg_io_size, entry->max_read_cnt, 8156 entry->cmf_busy, entry->io_cnt, 8157 entry->cmf_info, entry->timer_utilization, 8158 entry->timer_interval); 8159 8160 /* Check for buffer overflow */ 8161 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8162 break; 8163 8164 /* Append entry's data to buffer */ 8165 strlcat(buf, tmp, buf_len); 8166 } else { 8167 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8168 "4410 %02u: MBPI %llu Xmit %llu " 8169 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8170 "BWUtil %u Int %u slot %u\n", 8171 cnt, entry->max_bytes_per_interval, 8172 entry->total_bytes, entry->rcv_bytes, 8173 entry->avg_io_latency, 8174 entry->avg_io_size, entry->cmf_info, 8175 entry->timer_utilization, 8176 entry->timer_interval, *head_idx); 8177 } 8178 8179 *head_idx = (*head_idx + 1) % ring_size; 8180 8181 /* Don't feed more than max_read_entries */ 8182 cnt++; 8183 if (cnt >= max_read_entries) 8184 break; 8185 } 8186 spin_unlock_irq(ring_lock); 8187 8188 return cnt; 8189 } 8190 8191 /** 8192 * lpfc_cmf_setup - Initialize idle_stat tracking 8193 * @phba: Pointer to HBA context object. 8194 * 8195 * This is called from HBA setup during driver load or when the HBA 8196 * comes online. this does all the initialization to support CMF and MI. 8197 **/ 8198 static int 8199 lpfc_cmf_setup(struct lpfc_hba *phba) 8200 { 8201 LPFC_MBOXQ_t *mboxq; 8202 struct lpfc_dmabuf *mp; 8203 struct lpfc_pc_sli4_params *sli4_params; 8204 int rc, cmf, mi_ver; 8205 8206 rc = lpfc_sli4_refresh_params(phba); 8207 if (unlikely(rc)) 8208 return rc; 8209 8210 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8211 if (!mboxq) 8212 return -ENOMEM; 8213 8214 sli4_params = &phba->sli4_hba.pc_sli4_params; 8215 8216 /* Always try to enable MI feature if we can */ 8217 if (sli4_params->mi_ver) { 8218 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8219 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8220 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8221 &mboxq->u.mqe.un.set_feature); 8222 8223 if (rc == MBX_SUCCESS) { 8224 if (mi_ver) { 8225 lpfc_printf_log(phba, 8226 KERN_WARNING, LOG_CGN_MGMT, 8227 "6215 MI is enabled\n"); 8228 sli4_params->mi_ver = mi_ver; 8229 } else { 8230 lpfc_printf_log(phba, 8231 KERN_WARNING, LOG_CGN_MGMT, 8232 "6338 MI is disabled\n"); 8233 sli4_params->mi_ver = 0; 8234 } 8235 } else { 8236 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8237 lpfc_printf_log(phba, KERN_INFO, 8238 LOG_CGN_MGMT | LOG_INIT, 8239 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8240 "failed, rc:x%x mi:x%x\n", 8241 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8242 lpfc_sli_config_mbox_subsys_get 8243 (phba, mboxq), 8244 lpfc_sli_config_mbox_opcode_get 8245 (phba, mboxq), 8246 rc, sli4_params->mi_ver); 8247 } 8248 } else { 8249 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8250 "6217 MI is disabled\n"); 8251 } 8252 8253 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8254 if (sli4_params->mi_ver) 8255 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8256 8257 /* Always try to enable CMF feature if we can */ 8258 if (sli4_params->cmf) { 8259 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8260 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8261 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8262 &mboxq->u.mqe.un.set_feature); 8263 if (rc == MBX_SUCCESS && cmf) { 8264 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8265 "6218 CMF is enabled: mode %d\n", 8266 phba->cmf_active_mode); 8267 } else { 8268 lpfc_printf_log(phba, KERN_WARNING, 8269 LOG_CGN_MGMT | LOG_INIT, 8270 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8271 "failed, rc:x%x dd:x%x\n", 8272 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8273 lpfc_sli_config_mbox_subsys_get 8274 (phba, mboxq), 8275 lpfc_sli_config_mbox_opcode_get 8276 (phba, mboxq), 8277 rc, cmf); 8278 sli4_params->cmf = 0; 8279 phba->cmf_active_mode = LPFC_CFG_OFF; 8280 goto no_cmf; 8281 } 8282 8283 /* Allocate Congestion Information Buffer */ 8284 if (!phba->cgn_i) { 8285 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8286 if (mp) 8287 mp->virt = dma_alloc_coherent 8288 (&phba->pcidev->dev, 8289 sizeof(struct lpfc_cgn_info), 8290 &mp->phys, GFP_KERNEL); 8291 if (!mp || !mp->virt) { 8292 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8293 "2640 Failed to alloc memory " 8294 "for Congestion Info\n"); 8295 kfree(mp); 8296 sli4_params->cmf = 0; 8297 phba->cmf_active_mode = LPFC_CFG_OFF; 8298 goto no_cmf; 8299 } 8300 phba->cgn_i = mp; 8301 8302 /* initialize congestion buffer info */ 8303 lpfc_init_congestion_buf(phba); 8304 lpfc_init_congestion_stat(phba); 8305 8306 /* Zero out Congestion Signal counters */ 8307 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8308 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8309 } 8310 8311 rc = lpfc_sli4_cgn_params_read(phba); 8312 if (rc < 0) { 8313 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8314 "6242 Error reading Cgn Params (%d)\n", 8315 rc); 8316 /* Ensure CGN Mode is off */ 8317 sli4_params->cmf = 0; 8318 } else if (!rc) { 8319 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8320 "6243 CGN Event empty object.\n"); 8321 /* Ensure CGN Mode is off */ 8322 sli4_params->cmf = 0; 8323 } 8324 } else { 8325 no_cmf: 8326 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8327 "6220 CMF is disabled\n"); 8328 } 8329 8330 /* Only register congestion buffer with firmware if BOTH 8331 * CMF and E2E are enabled. 8332 */ 8333 if (sli4_params->cmf && sli4_params->mi_ver) { 8334 rc = lpfc_reg_congestion_buf(phba); 8335 if (rc) { 8336 dma_free_coherent(&phba->pcidev->dev, 8337 sizeof(struct lpfc_cgn_info), 8338 phba->cgn_i->virt, phba->cgn_i->phys); 8339 kfree(phba->cgn_i); 8340 phba->cgn_i = NULL; 8341 /* Ensure CGN Mode is off */ 8342 phba->cmf_active_mode = LPFC_CFG_OFF; 8343 sli4_params->cmf = 0; 8344 return 0; 8345 } 8346 } 8347 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8348 "6470 Setup MI version %d CMF %d mode %d\n", 8349 sli4_params->mi_ver, sli4_params->cmf, 8350 phba->cmf_active_mode); 8351 8352 mempool_free(mboxq, phba->mbox_mem_pool); 8353 8354 /* Initialize atomic counters */ 8355 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8356 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8357 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8358 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8359 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8360 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8361 atomic64_set(&phba->cgn_latency_evt, 0); 8362 8363 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8364 8365 /* Allocate RX Monitor Buffer */ 8366 if (!phba->rx_monitor) { 8367 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8368 GFP_KERNEL); 8369 8370 if (!phba->rx_monitor) { 8371 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8372 "2644 Failed to alloc memory " 8373 "for RX Monitor Buffer\n"); 8374 return -ENOMEM; 8375 } 8376 8377 /* Instruct the rx_monitor object to instantiate its ring */ 8378 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8379 LPFC_MAX_RXMONITOR_ENTRY)) { 8380 kfree(phba->rx_monitor); 8381 phba->rx_monitor = NULL; 8382 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8383 "2645 Failed to alloc memory " 8384 "for RX Monitor's Ring\n"); 8385 return -ENOMEM; 8386 } 8387 } 8388 8389 return 0; 8390 } 8391 8392 static int 8393 lpfc_set_host_tm(struct lpfc_hba *phba) 8394 { 8395 LPFC_MBOXQ_t *mboxq; 8396 uint32_t len, rc; 8397 struct timespec64 cur_time; 8398 struct tm broken; 8399 uint32_t month, day, year; 8400 uint32_t hour, minute, second; 8401 struct lpfc_mbx_set_host_date_time *tm; 8402 8403 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8404 if (!mboxq) 8405 return -ENOMEM; 8406 8407 len = sizeof(struct lpfc_mbx_set_host_data) - 8408 sizeof(struct lpfc_sli4_cfg_mhdr); 8409 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8410 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8411 LPFC_SLI4_MBX_EMBED); 8412 8413 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8414 mboxq->u.mqe.un.set_host_data.param_len = 8415 sizeof(struct lpfc_mbx_set_host_date_time); 8416 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8417 ktime_get_real_ts64(&cur_time); 8418 time64_to_tm(cur_time.tv_sec, 0, &broken); 8419 month = broken.tm_mon + 1; 8420 day = broken.tm_mday; 8421 year = broken.tm_year - 100; 8422 hour = broken.tm_hour; 8423 minute = broken.tm_min; 8424 second = broken.tm_sec; 8425 bf_set(lpfc_mbx_set_host_month, tm, month); 8426 bf_set(lpfc_mbx_set_host_day, tm, day); 8427 bf_set(lpfc_mbx_set_host_year, tm, year); 8428 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8429 bf_set(lpfc_mbx_set_host_min, tm, minute); 8430 bf_set(lpfc_mbx_set_host_sec, tm, second); 8431 8432 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8433 mempool_free(mboxq, phba->mbox_mem_pool); 8434 return rc; 8435 } 8436 8437 /** 8438 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8439 * @phba: Pointer to HBA context object. 8440 * 8441 * This function is the main SLI4 device initialization PCI function. This 8442 * function is called by the HBA initialization code, HBA reset code and 8443 * HBA error attention handler code. Caller is not required to hold any 8444 * locks. 8445 **/ 8446 int 8447 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8448 { 8449 int rc, i, cnt, len, dd; 8450 LPFC_MBOXQ_t *mboxq; 8451 struct lpfc_mqe *mqe; 8452 uint8_t *vpd; 8453 uint32_t vpd_size; 8454 uint32_t ftr_rsp = 0; 8455 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8456 struct lpfc_vport *vport = phba->pport; 8457 struct lpfc_dmabuf *mp; 8458 struct lpfc_rqb *rqbp; 8459 u32 flg; 8460 8461 /* Perform a PCI function reset to start from clean */ 8462 rc = lpfc_pci_function_reset(phba); 8463 if (unlikely(rc)) 8464 return -ENODEV; 8465 8466 /* Check the HBA Host Status Register for readyness */ 8467 rc = lpfc_sli4_post_status_check(phba); 8468 if (unlikely(rc)) 8469 return -ENODEV; 8470 else { 8471 spin_lock_irq(&phba->hbalock); 8472 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8473 flg = phba->sli.sli_flag; 8474 spin_unlock_irq(&phba->hbalock); 8475 /* Allow a little time after setting SLI_ACTIVE for any polled 8476 * MBX commands to complete via BSG. 8477 */ 8478 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8479 msleep(20); 8480 spin_lock_irq(&phba->hbalock); 8481 flg = phba->sli.sli_flag; 8482 spin_unlock_irq(&phba->hbalock); 8483 } 8484 } 8485 phba->hba_flag &= ~HBA_SETUP; 8486 8487 lpfc_sli4_dip(phba); 8488 8489 /* 8490 * Allocate a single mailbox container for initializing the 8491 * port. 8492 */ 8493 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8494 if (!mboxq) 8495 return -ENOMEM; 8496 8497 /* Issue READ_REV to collect vpd and FW information. */ 8498 vpd_size = SLI4_PAGE_SIZE; 8499 vpd = kzalloc(vpd_size, GFP_KERNEL); 8500 if (!vpd) { 8501 rc = -ENOMEM; 8502 goto out_free_mbox; 8503 } 8504 8505 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8506 if (unlikely(rc)) { 8507 kfree(vpd); 8508 goto out_free_mbox; 8509 } 8510 8511 mqe = &mboxq->u.mqe; 8512 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8513 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8514 phba->hba_flag |= HBA_FCOE_MODE; 8515 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8516 } else { 8517 phba->hba_flag &= ~HBA_FCOE_MODE; 8518 } 8519 8520 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8521 LPFC_DCBX_CEE_MODE) 8522 phba->hba_flag |= HBA_FIP_SUPPORT; 8523 else 8524 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8525 8526 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8527 8528 if (phba->sli_rev != LPFC_SLI_REV4) { 8529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8530 "0376 READ_REV Error. SLI Level %d " 8531 "FCoE enabled %d\n", 8532 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8533 rc = -EIO; 8534 kfree(vpd); 8535 goto out_free_mbox; 8536 } 8537 8538 rc = lpfc_set_host_tm(phba); 8539 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8540 "6468 Set host date / time: Status x%x:\n", rc); 8541 8542 /* 8543 * Continue initialization with default values even if driver failed 8544 * to read FCoE param config regions, only read parameters if the 8545 * board is FCoE 8546 */ 8547 if (phba->hba_flag & HBA_FCOE_MODE && 8548 lpfc_sli4_read_fcoe_params(phba)) 8549 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8550 "2570 Failed to read FCoE parameters\n"); 8551 8552 /* 8553 * Retrieve sli4 device physical port name, failure of doing it 8554 * is considered as non-fatal. 8555 */ 8556 rc = lpfc_sli4_retrieve_pport_name(phba); 8557 if (!rc) 8558 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8559 "3080 Successful retrieving SLI4 device " 8560 "physical port name: %s.\n", phba->Port); 8561 8562 rc = lpfc_sli4_get_ctl_attr(phba); 8563 if (!rc) 8564 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8565 "8351 Successful retrieving SLI4 device " 8566 "CTL ATTR\n"); 8567 8568 /* 8569 * Evaluate the read rev and vpd data. Populate the driver 8570 * state with the results. If this routine fails, the failure 8571 * is not fatal as the driver will use generic values. 8572 */ 8573 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8574 if (unlikely(!rc)) { 8575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8576 "0377 Error %d parsing vpd. " 8577 "Using defaults.\n", rc); 8578 rc = 0; 8579 } 8580 kfree(vpd); 8581 8582 /* Save information as VPD data */ 8583 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8584 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8585 8586 /* 8587 * This is because first G7 ASIC doesn't support the standard 8588 * 0x5a NVME cmd descriptor type/subtype 8589 */ 8590 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8591 LPFC_SLI_INTF_IF_TYPE_6) && 8592 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8593 (phba->vpd.rev.smRev == 0) && 8594 (phba->cfg_nvme_embed_cmd == 1)) 8595 phba->cfg_nvme_embed_cmd = 0; 8596 8597 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8598 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8599 &mqe->un.read_rev); 8600 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8601 &mqe->un.read_rev); 8602 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8603 &mqe->un.read_rev); 8604 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8605 &mqe->un.read_rev); 8606 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8607 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8608 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8609 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8610 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8611 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8612 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8613 "(%d):0380 READ_REV Status x%x " 8614 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8615 mboxq->vport ? mboxq->vport->vpi : 0, 8616 bf_get(lpfc_mqe_status, mqe), 8617 phba->vpd.rev.opFwName, 8618 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8619 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8620 8621 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8622 LPFC_SLI_INTF_IF_TYPE_0) { 8623 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8624 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8625 if (rc == MBX_SUCCESS) { 8626 phba->hba_flag |= HBA_RECOVERABLE_UE; 8627 /* Set 1Sec interval to detect UE */ 8628 phba->eratt_poll_interval = 1; 8629 phba->sli4_hba.ue_to_sr = bf_get( 8630 lpfc_mbx_set_feature_UESR, 8631 &mboxq->u.mqe.un.set_feature); 8632 phba->sli4_hba.ue_to_rp = bf_get( 8633 lpfc_mbx_set_feature_UERP, 8634 &mboxq->u.mqe.un.set_feature); 8635 } 8636 } 8637 8638 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8639 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8640 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8641 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8642 if (rc != MBX_SUCCESS) 8643 phba->mds_diags_support = 0; 8644 } 8645 8646 /* 8647 * Discover the port's supported feature set and match it against the 8648 * hosts requests. 8649 */ 8650 lpfc_request_features(phba, mboxq); 8651 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8652 if (unlikely(rc)) { 8653 rc = -EIO; 8654 goto out_free_mbox; 8655 } 8656 8657 /* Disable VMID if app header is not supported */ 8658 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8659 &mqe->un.req_ftrs))) { 8660 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8661 phba->cfg_vmid_app_header = 0; 8662 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8663 "1242 vmid feature not supported\n"); 8664 } 8665 8666 /* 8667 * The port must support FCP initiator mode as this is the 8668 * only mode running in the host. 8669 */ 8670 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8671 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8672 "0378 No support for fcpi mode.\n"); 8673 ftr_rsp++; 8674 } 8675 8676 /* Performance Hints are ONLY for FCoE */ 8677 if (phba->hba_flag & HBA_FCOE_MODE) { 8678 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8679 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8680 else 8681 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8682 } 8683 8684 /* 8685 * If the port cannot support the host's requested features 8686 * then turn off the global config parameters to disable the 8687 * feature in the driver. This is not a fatal error. 8688 */ 8689 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8690 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8691 phba->cfg_enable_bg = 0; 8692 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8693 ftr_rsp++; 8694 } 8695 } 8696 8697 if (phba->max_vpi && phba->cfg_enable_npiv && 8698 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8699 ftr_rsp++; 8700 8701 if (ftr_rsp) { 8702 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8703 "0379 Feature Mismatch Data: x%08x %08x " 8704 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8705 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8706 phba->cfg_enable_npiv, phba->max_vpi); 8707 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8708 phba->cfg_enable_bg = 0; 8709 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8710 phba->cfg_enable_npiv = 0; 8711 } 8712 8713 /* These SLI3 features are assumed in SLI4 */ 8714 spin_lock_irq(&phba->hbalock); 8715 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8716 spin_unlock_irq(&phba->hbalock); 8717 8718 /* Always try to enable dual dump feature if we can */ 8719 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8720 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8721 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8722 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8723 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8724 "6448 Dual Dump is enabled\n"); 8725 else 8726 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8727 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8728 "rc:x%x dd:x%x\n", 8729 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8730 lpfc_sli_config_mbox_subsys_get( 8731 phba, mboxq), 8732 lpfc_sli_config_mbox_opcode_get( 8733 phba, mboxq), 8734 rc, dd); 8735 /* 8736 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8737 * calls depends on these resources to complete port setup. 8738 */ 8739 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8740 if (rc) { 8741 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8742 "2920 Failed to alloc Resource IDs " 8743 "rc = x%x\n", rc); 8744 goto out_free_mbox; 8745 } 8746 8747 lpfc_set_host_data(phba, mboxq); 8748 8749 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8750 if (rc) { 8751 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8752 "2134 Failed to set host os driver version %x", 8753 rc); 8754 } 8755 8756 /* Read the port's service parameters. */ 8757 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8758 if (rc) { 8759 phba->link_state = LPFC_HBA_ERROR; 8760 rc = -ENOMEM; 8761 goto out_free_mbox; 8762 } 8763 8764 mboxq->vport = vport; 8765 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8766 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8767 if (rc == MBX_SUCCESS) { 8768 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8769 rc = 0; 8770 } 8771 8772 /* 8773 * This memory was allocated by the lpfc_read_sparam routine but is 8774 * no longer needed. It is released and ctx_buf NULLed to prevent 8775 * unintended pointer access as the mbox is reused. 8776 */ 8777 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8778 kfree(mp); 8779 mboxq->ctx_buf = NULL; 8780 if (unlikely(rc)) { 8781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8782 "0382 READ_SPARAM command failed " 8783 "status %d, mbxStatus x%x\n", 8784 rc, bf_get(lpfc_mqe_status, mqe)); 8785 phba->link_state = LPFC_HBA_ERROR; 8786 rc = -EIO; 8787 goto out_free_mbox; 8788 } 8789 8790 lpfc_update_vport_wwn(vport); 8791 8792 /* Update the fc_host data structures with new wwn. */ 8793 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8794 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8795 8796 /* Create all the SLI4 queues */ 8797 rc = lpfc_sli4_queue_create(phba); 8798 if (rc) { 8799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8800 "3089 Failed to allocate queues\n"); 8801 rc = -ENODEV; 8802 goto out_free_mbox; 8803 } 8804 /* Set up all the queues to the device */ 8805 rc = lpfc_sli4_queue_setup(phba); 8806 if (unlikely(rc)) { 8807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8808 "0381 Error %d during queue setup.\n ", rc); 8809 goto out_stop_timers; 8810 } 8811 /* Initialize the driver internal SLI layer lists. */ 8812 lpfc_sli4_setup(phba); 8813 lpfc_sli4_queue_init(phba); 8814 8815 /* update host els xri-sgl sizes and mappings */ 8816 rc = lpfc_sli4_els_sgl_update(phba); 8817 if (unlikely(rc)) { 8818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8819 "1400 Failed to update xri-sgl size and " 8820 "mapping: %d\n", rc); 8821 goto out_destroy_queue; 8822 } 8823 8824 /* register the els sgl pool to the port */ 8825 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8826 phba->sli4_hba.els_xri_cnt); 8827 if (unlikely(rc < 0)) { 8828 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8829 "0582 Error %d during els sgl post " 8830 "operation\n", rc); 8831 rc = -ENODEV; 8832 goto out_destroy_queue; 8833 } 8834 phba->sli4_hba.els_xri_cnt = rc; 8835 8836 if (phba->nvmet_support) { 8837 /* update host nvmet xri-sgl sizes and mappings */ 8838 rc = lpfc_sli4_nvmet_sgl_update(phba); 8839 if (unlikely(rc)) { 8840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8841 "6308 Failed to update nvmet-sgl size " 8842 "and mapping: %d\n", rc); 8843 goto out_destroy_queue; 8844 } 8845 8846 /* register the nvmet sgl pool to the port */ 8847 rc = lpfc_sli4_repost_sgl_list( 8848 phba, 8849 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8850 phba->sli4_hba.nvmet_xri_cnt); 8851 if (unlikely(rc < 0)) { 8852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8853 "3117 Error %d during nvmet " 8854 "sgl post\n", rc); 8855 rc = -ENODEV; 8856 goto out_destroy_queue; 8857 } 8858 phba->sli4_hba.nvmet_xri_cnt = rc; 8859 8860 /* We allocate an iocbq for every receive context SGL. 8861 * The additional allocation is for abort and ls handling. 8862 */ 8863 cnt = phba->sli4_hba.nvmet_xri_cnt + 8864 phba->sli4_hba.max_cfg_param.max_xri; 8865 } else { 8866 /* update host common xri-sgl sizes and mappings */ 8867 rc = lpfc_sli4_io_sgl_update(phba); 8868 if (unlikely(rc)) { 8869 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8870 "6082 Failed to update nvme-sgl size " 8871 "and mapping: %d\n", rc); 8872 goto out_destroy_queue; 8873 } 8874 8875 /* register the allocated common sgl pool to the port */ 8876 rc = lpfc_sli4_repost_io_sgl_list(phba); 8877 if (unlikely(rc)) { 8878 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8879 "6116 Error %d during nvme sgl post " 8880 "operation\n", rc); 8881 /* Some NVME buffers were moved to abort nvme list */ 8882 /* A pci function reset will repost them */ 8883 rc = -ENODEV; 8884 goto out_destroy_queue; 8885 } 8886 /* Each lpfc_io_buf job structure has an iocbq element. 8887 * This cnt provides for abort, els, ct and ls requests. 8888 */ 8889 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8890 } 8891 8892 if (!phba->sli.iocbq_lookup) { 8893 /* Initialize and populate the iocb list per host */ 8894 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8895 "2821 initialize iocb list with %d entries\n", 8896 cnt); 8897 rc = lpfc_init_iocb_list(phba, cnt); 8898 if (rc) { 8899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8900 "1413 Failed to init iocb list.\n"); 8901 goto out_destroy_queue; 8902 } 8903 } 8904 8905 if (phba->nvmet_support) 8906 lpfc_nvmet_create_targetport(phba); 8907 8908 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8909 /* Post initial buffers to all RQs created */ 8910 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8911 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8912 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8913 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8914 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8915 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8916 rqbp->buffer_count = 0; 8917 8918 lpfc_post_rq_buffer( 8919 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8920 phba->sli4_hba.nvmet_mrq_data[i], 8921 phba->cfg_nvmet_mrq_post, i); 8922 } 8923 } 8924 8925 /* Post the rpi header region to the device. */ 8926 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8927 if (unlikely(rc)) { 8928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8929 "0393 Error %d during rpi post operation\n", 8930 rc); 8931 rc = -ENODEV; 8932 goto out_free_iocblist; 8933 } 8934 lpfc_sli4_node_prep(phba); 8935 8936 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8937 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8938 /* 8939 * The FC Port needs to register FCFI (index 0) 8940 */ 8941 lpfc_reg_fcfi(phba, mboxq); 8942 mboxq->vport = phba->pport; 8943 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8944 if (rc != MBX_SUCCESS) 8945 goto out_unset_queue; 8946 rc = 0; 8947 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8948 &mboxq->u.mqe.un.reg_fcfi); 8949 } else { 8950 /* We are a NVME Target mode with MRQ > 1 */ 8951 8952 /* First register the FCFI */ 8953 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8954 mboxq->vport = phba->pport; 8955 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8956 if (rc != MBX_SUCCESS) 8957 goto out_unset_queue; 8958 rc = 0; 8959 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8960 &mboxq->u.mqe.un.reg_fcfi_mrq); 8961 8962 /* Next register the MRQs */ 8963 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8964 mboxq->vport = phba->pport; 8965 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8966 if (rc != MBX_SUCCESS) 8967 goto out_unset_queue; 8968 rc = 0; 8969 } 8970 /* Check if the port is configured to be disabled */ 8971 lpfc_sli_read_link_ste(phba); 8972 } 8973 8974 /* Don't post more new bufs if repost already recovered 8975 * the nvme sgls. 8976 */ 8977 if (phba->nvmet_support == 0) { 8978 if (phba->sli4_hba.io_xri_cnt == 0) { 8979 len = lpfc_new_io_buf( 8980 phba, phba->sli4_hba.io_xri_max); 8981 if (len == 0) { 8982 rc = -ENOMEM; 8983 goto out_unset_queue; 8984 } 8985 8986 if (phba->cfg_xri_rebalancing) 8987 lpfc_create_multixri_pools(phba); 8988 } 8989 } else { 8990 phba->cfg_xri_rebalancing = 0; 8991 } 8992 8993 /* Allow asynchronous mailbox command to go through */ 8994 spin_lock_irq(&phba->hbalock); 8995 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8996 spin_unlock_irq(&phba->hbalock); 8997 8998 /* Post receive buffers to the device */ 8999 lpfc_sli4_rb_setup(phba); 9000 9001 /* Reset HBA FCF states after HBA reset */ 9002 phba->fcf.fcf_flag = 0; 9003 phba->fcf.current_rec.flag = 0; 9004 9005 /* Start the ELS watchdog timer */ 9006 mod_timer(&vport->els_tmofunc, 9007 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9008 9009 /* Start heart beat timer */ 9010 mod_timer(&phba->hb_tmofunc, 9011 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9012 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9013 phba->last_completion_time = jiffies; 9014 9015 /* start eq_delay heartbeat */ 9016 if (phba->cfg_auto_imax) 9017 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9018 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9019 9020 /* start per phba idle_stat_delay heartbeat */ 9021 lpfc_init_idle_stat_hb(phba); 9022 9023 /* Start error attention (ERATT) polling timer */ 9024 mod_timer(&phba->eratt_poll, 9025 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9026 9027 /* 9028 * The port is ready, set the host's link state to LINK_DOWN 9029 * in preparation for link interrupts. 9030 */ 9031 spin_lock_irq(&phba->hbalock); 9032 phba->link_state = LPFC_LINK_DOWN; 9033 9034 /* Check if physical ports are trunked */ 9035 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9036 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9037 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9038 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9039 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9040 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9041 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9042 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9043 spin_unlock_irq(&phba->hbalock); 9044 9045 /* Arm the CQs and then EQs on device */ 9046 lpfc_sli4_arm_cqeq_intr(phba); 9047 9048 /* Indicate device interrupt mode */ 9049 phba->sli4_hba.intr_enable = 1; 9050 9051 /* Setup CMF after HBA is initialized */ 9052 lpfc_cmf_setup(phba); 9053 9054 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9055 (phba->hba_flag & LINK_DISABLED)) { 9056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9057 "3103 Adapter Link is disabled.\n"); 9058 lpfc_down_link(phba, mboxq); 9059 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9060 if (rc != MBX_SUCCESS) { 9061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9062 "3104 Adapter failed to issue " 9063 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9064 goto out_io_buff_free; 9065 } 9066 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9067 /* don't perform init_link on SLI4 FC port loopback test */ 9068 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9069 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9070 if (rc) 9071 goto out_io_buff_free; 9072 } 9073 } 9074 mempool_free(mboxq, phba->mbox_mem_pool); 9075 9076 /* Enable RAS FW log support */ 9077 lpfc_sli4_ras_setup(phba); 9078 9079 phba->hba_flag |= HBA_SETUP; 9080 return rc; 9081 9082 out_io_buff_free: 9083 /* Free allocated IO Buffers */ 9084 lpfc_io_free(phba); 9085 out_unset_queue: 9086 /* Unset all the queues set up in this routine when error out */ 9087 lpfc_sli4_queue_unset(phba); 9088 out_free_iocblist: 9089 lpfc_free_iocb_list(phba); 9090 out_destroy_queue: 9091 lpfc_sli4_queue_destroy(phba); 9092 out_stop_timers: 9093 lpfc_stop_hba_timers(phba); 9094 out_free_mbox: 9095 mempool_free(mboxq, phba->mbox_mem_pool); 9096 return rc; 9097 } 9098 9099 /** 9100 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9101 * @t: Context to fetch pointer to hba structure from. 9102 * 9103 * This is the callback function for mailbox timer. The mailbox 9104 * timer is armed when a new mailbox command is issued and the timer 9105 * is deleted when the mailbox complete. The function is called by 9106 * the kernel timer code when a mailbox does not complete within 9107 * expected time. This function wakes up the worker thread to 9108 * process the mailbox timeout and returns. All the processing is 9109 * done by the worker thread function lpfc_mbox_timeout_handler. 9110 **/ 9111 void 9112 lpfc_mbox_timeout(struct timer_list *t) 9113 { 9114 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9115 unsigned long iflag; 9116 uint32_t tmo_posted; 9117 9118 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9119 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9120 if (!tmo_posted) 9121 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9122 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9123 9124 if (!tmo_posted) 9125 lpfc_worker_wake_up(phba); 9126 return; 9127 } 9128 9129 /** 9130 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9131 * are pending 9132 * @phba: Pointer to HBA context object. 9133 * 9134 * This function checks if any mailbox completions are present on the mailbox 9135 * completion queue. 9136 **/ 9137 static bool 9138 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9139 { 9140 9141 uint32_t idx; 9142 struct lpfc_queue *mcq; 9143 struct lpfc_mcqe *mcqe; 9144 bool pending_completions = false; 9145 uint8_t qe_valid; 9146 9147 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9148 return false; 9149 9150 /* Check for completions on mailbox completion queue */ 9151 9152 mcq = phba->sli4_hba.mbx_cq; 9153 idx = mcq->hba_index; 9154 qe_valid = mcq->qe_valid; 9155 while (bf_get_le32(lpfc_cqe_valid, 9156 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9157 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9158 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9159 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9160 pending_completions = true; 9161 break; 9162 } 9163 idx = (idx + 1) % mcq->entry_count; 9164 if (mcq->hba_index == idx) 9165 break; 9166 9167 /* if the index wrapped around, toggle the valid bit */ 9168 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9169 qe_valid = (qe_valid) ? 0 : 1; 9170 } 9171 return pending_completions; 9172 9173 } 9174 9175 /** 9176 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9177 * that were missed. 9178 * @phba: Pointer to HBA context object. 9179 * 9180 * For sli4, it is possible to miss an interrupt. As such mbox completions 9181 * maybe missed causing erroneous mailbox timeouts to occur. This function 9182 * checks to see if mbox completions are on the mailbox completion queue 9183 * and will process all the completions associated with the eq for the 9184 * mailbox completion queue. 9185 **/ 9186 static bool 9187 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9188 { 9189 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9190 uint32_t eqidx; 9191 struct lpfc_queue *fpeq = NULL; 9192 struct lpfc_queue *eq; 9193 bool mbox_pending; 9194 9195 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9196 return false; 9197 9198 /* Find the EQ associated with the mbox CQ */ 9199 if (sli4_hba->hdwq) { 9200 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9201 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9202 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9203 fpeq = eq; 9204 break; 9205 } 9206 } 9207 } 9208 if (!fpeq) 9209 return false; 9210 9211 /* Turn off interrupts from this EQ */ 9212 9213 sli4_hba->sli4_eq_clr_intr(fpeq); 9214 9215 /* Check to see if a mbox completion is pending */ 9216 9217 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9218 9219 /* 9220 * If a mbox completion is pending, process all the events on EQ 9221 * associated with the mbox completion queue (this could include 9222 * mailbox commands, async events, els commands, receive queue data 9223 * and fcp commands) 9224 */ 9225 9226 if (mbox_pending) 9227 /* process and rearm the EQ */ 9228 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9229 LPFC_QUEUE_WORK); 9230 else 9231 /* Always clear and re-arm the EQ */ 9232 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9233 9234 return mbox_pending; 9235 9236 } 9237 9238 /** 9239 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9240 * @phba: Pointer to HBA context object. 9241 * 9242 * This function is called from worker thread when a mailbox command times out. 9243 * The caller is not required to hold any locks. This function will reset the 9244 * HBA and recover all the pending commands. 9245 **/ 9246 void 9247 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9248 { 9249 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9250 MAILBOX_t *mb = NULL; 9251 9252 struct lpfc_sli *psli = &phba->sli; 9253 9254 /* If the mailbox completed, process the completion */ 9255 lpfc_sli4_process_missed_mbox_completions(phba); 9256 9257 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9258 return; 9259 9260 if (pmbox != NULL) 9261 mb = &pmbox->u.mb; 9262 /* Check the pmbox pointer first. There is a race condition 9263 * between the mbox timeout handler getting executed in the 9264 * worklist and the mailbox actually completing. When this 9265 * race condition occurs, the mbox_active will be NULL. 9266 */ 9267 spin_lock_irq(&phba->hbalock); 9268 if (pmbox == NULL) { 9269 lpfc_printf_log(phba, KERN_WARNING, 9270 LOG_MBOX | LOG_SLI, 9271 "0353 Active Mailbox cleared - mailbox timeout " 9272 "exiting\n"); 9273 spin_unlock_irq(&phba->hbalock); 9274 return; 9275 } 9276 9277 /* Mbox cmd <mbxCommand> timeout */ 9278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9279 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9280 mb->mbxCommand, 9281 phba->pport->port_state, 9282 phba->sli.sli_flag, 9283 phba->sli.mbox_active); 9284 spin_unlock_irq(&phba->hbalock); 9285 9286 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9287 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9288 * it to fail all outstanding SCSI IO. 9289 */ 9290 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9291 spin_lock_irq(&phba->pport->work_port_lock); 9292 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9293 spin_unlock_irq(&phba->pport->work_port_lock); 9294 spin_lock_irq(&phba->hbalock); 9295 phba->link_state = LPFC_LINK_UNKNOWN; 9296 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9297 spin_unlock_irq(&phba->hbalock); 9298 9299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9300 "0345 Resetting board due to mailbox timeout\n"); 9301 9302 /* Reset the HBA device */ 9303 lpfc_reset_hba(phba); 9304 } 9305 9306 /** 9307 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9308 * @phba: Pointer to HBA context object. 9309 * @pmbox: Pointer to mailbox object. 9310 * @flag: Flag indicating how the mailbox need to be processed. 9311 * 9312 * This function is called by discovery code and HBA management code 9313 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9314 * function gets the hbalock to protect the data structures. 9315 * The mailbox command can be submitted in polling mode, in which case 9316 * this function will wait in a polling loop for the completion of the 9317 * mailbox. 9318 * If the mailbox is submitted in no_wait mode (not polling) the 9319 * function will submit the command and returns immediately without waiting 9320 * for the mailbox completion. The no_wait is supported only when HBA 9321 * is in SLI2/SLI3 mode - interrupts are enabled. 9322 * The SLI interface allows only one mailbox pending at a time. If the 9323 * mailbox is issued in polling mode and there is already a mailbox 9324 * pending, then the function will return an error. If the mailbox is issued 9325 * in NO_WAIT mode and there is a mailbox pending already, the function 9326 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9327 * The sli layer owns the mailbox object until the completion of mailbox 9328 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9329 * return codes the caller owns the mailbox command after the return of 9330 * the function. 9331 **/ 9332 static int 9333 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9334 uint32_t flag) 9335 { 9336 MAILBOX_t *mbx; 9337 struct lpfc_sli *psli = &phba->sli; 9338 uint32_t status, evtctr; 9339 uint32_t ha_copy, hc_copy; 9340 int i; 9341 unsigned long timeout; 9342 unsigned long drvr_flag = 0; 9343 uint32_t word0, ldata; 9344 void __iomem *to_slim; 9345 int processing_queue = 0; 9346 9347 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9348 if (!pmbox) { 9349 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9350 /* processing mbox queue from intr_handler */ 9351 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9352 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9353 return MBX_SUCCESS; 9354 } 9355 processing_queue = 1; 9356 pmbox = lpfc_mbox_get(phba); 9357 if (!pmbox) { 9358 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9359 return MBX_SUCCESS; 9360 } 9361 } 9362 9363 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9364 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9365 if(!pmbox->vport) { 9366 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9367 lpfc_printf_log(phba, KERN_ERR, 9368 LOG_MBOX | LOG_VPORT, 9369 "1806 Mbox x%x failed. No vport\n", 9370 pmbox->u.mb.mbxCommand); 9371 dump_stack(); 9372 goto out_not_finished; 9373 } 9374 } 9375 9376 /* If the PCI channel is in offline state, do not post mbox. */ 9377 if (unlikely(pci_channel_offline(phba->pcidev))) { 9378 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9379 goto out_not_finished; 9380 } 9381 9382 /* If HBA has a deferred error attention, fail the iocb. */ 9383 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9384 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9385 goto out_not_finished; 9386 } 9387 9388 psli = &phba->sli; 9389 9390 mbx = &pmbox->u.mb; 9391 status = MBX_SUCCESS; 9392 9393 if (phba->link_state == LPFC_HBA_ERROR) { 9394 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9395 9396 /* Mbox command <mbxCommand> cannot issue */ 9397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9398 "(%d):0311 Mailbox command x%x cannot " 9399 "issue Data: x%x x%x\n", 9400 pmbox->vport ? pmbox->vport->vpi : 0, 9401 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9402 goto out_not_finished; 9403 } 9404 9405 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9406 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9407 !(hc_copy & HC_MBINT_ENA)) { 9408 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9410 "(%d):2528 Mailbox command x%x cannot " 9411 "issue Data: x%x x%x\n", 9412 pmbox->vport ? pmbox->vport->vpi : 0, 9413 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9414 goto out_not_finished; 9415 } 9416 } 9417 9418 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9419 /* Polling for a mbox command when another one is already active 9420 * is not allowed in SLI. Also, the driver must have established 9421 * SLI2 mode to queue and process multiple mbox commands. 9422 */ 9423 9424 if (flag & MBX_POLL) { 9425 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9426 9427 /* Mbox command <mbxCommand> cannot issue */ 9428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9429 "(%d):2529 Mailbox command x%x " 9430 "cannot issue Data: x%x x%x\n", 9431 pmbox->vport ? pmbox->vport->vpi : 0, 9432 pmbox->u.mb.mbxCommand, 9433 psli->sli_flag, flag); 9434 goto out_not_finished; 9435 } 9436 9437 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9438 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9439 /* Mbox command <mbxCommand> cannot issue */ 9440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9441 "(%d):2530 Mailbox command x%x " 9442 "cannot issue Data: x%x x%x\n", 9443 pmbox->vport ? pmbox->vport->vpi : 0, 9444 pmbox->u.mb.mbxCommand, 9445 psli->sli_flag, flag); 9446 goto out_not_finished; 9447 } 9448 9449 /* Another mailbox command is still being processed, queue this 9450 * command to be processed later. 9451 */ 9452 lpfc_mbox_put(phba, pmbox); 9453 9454 /* Mbox cmd issue - BUSY */ 9455 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9456 "(%d):0308 Mbox cmd issue - BUSY Data: " 9457 "x%x x%x x%x x%x\n", 9458 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9459 mbx->mbxCommand, 9460 phba->pport ? phba->pport->port_state : 0xff, 9461 psli->sli_flag, flag); 9462 9463 psli->slistat.mbox_busy++; 9464 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9465 9466 if (pmbox->vport) { 9467 lpfc_debugfs_disc_trc(pmbox->vport, 9468 LPFC_DISC_TRC_MBOX_VPORT, 9469 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9470 (uint32_t)mbx->mbxCommand, 9471 mbx->un.varWords[0], mbx->un.varWords[1]); 9472 } 9473 else { 9474 lpfc_debugfs_disc_trc(phba->pport, 9475 LPFC_DISC_TRC_MBOX, 9476 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9477 (uint32_t)mbx->mbxCommand, 9478 mbx->un.varWords[0], mbx->un.varWords[1]); 9479 } 9480 9481 return MBX_BUSY; 9482 } 9483 9484 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9485 9486 /* If we are not polling, we MUST be in SLI2 mode */ 9487 if (flag != MBX_POLL) { 9488 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9489 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9490 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9491 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9492 /* Mbox command <mbxCommand> cannot issue */ 9493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9494 "(%d):2531 Mailbox command x%x " 9495 "cannot issue Data: x%x x%x\n", 9496 pmbox->vport ? pmbox->vport->vpi : 0, 9497 pmbox->u.mb.mbxCommand, 9498 psli->sli_flag, flag); 9499 goto out_not_finished; 9500 } 9501 /* timeout active mbox command */ 9502 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9503 1000); 9504 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9505 } 9506 9507 /* Mailbox cmd <cmd> issue */ 9508 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9509 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9510 "x%x\n", 9511 pmbox->vport ? pmbox->vport->vpi : 0, 9512 mbx->mbxCommand, 9513 phba->pport ? phba->pport->port_state : 0xff, 9514 psli->sli_flag, flag); 9515 9516 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9517 if (pmbox->vport) { 9518 lpfc_debugfs_disc_trc(pmbox->vport, 9519 LPFC_DISC_TRC_MBOX_VPORT, 9520 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9521 (uint32_t)mbx->mbxCommand, 9522 mbx->un.varWords[0], mbx->un.varWords[1]); 9523 } 9524 else { 9525 lpfc_debugfs_disc_trc(phba->pport, 9526 LPFC_DISC_TRC_MBOX, 9527 "MBOX Send: cmd:x%x mb:x%x x%x", 9528 (uint32_t)mbx->mbxCommand, 9529 mbx->un.varWords[0], mbx->un.varWords[1]); 9530 } 9531 } 9532 9533 psli->slistat.mbox_cmd++; 9534 evtctr = psli->slistat.mbox_event; 9535 9536 /* next set own bit for the adapter and copy over command word */ 9537 mbx->mbxOwner = OWN_CHIP; 9538 9539 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9540 /* Populate mbox extension offset word. */ 9541 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9542 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9543 = (uint8_t *)phba->mbox_ext 9544 - (uint8_t *)phba->mbox; 9545 } 9546 9547 /* Copy the mailbox extension data */ 9548 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9549 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9550 (uint8_t *)phba->mbox_ext, 9551 pmbox->in_ext_byte_len); 9552 } 9553 /* Copy command data to host SLIM area */ 9554 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9555 } else { 9556 /* Populate mbox extension offset word. */ 9557 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9558 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9559 = MAILBOX_HBA_EXT_OFFSET; 9560 9561 /* Copy the mailbox extension data */ 9562 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9563 lpfc_memcpy_to_slim(phba->MBslimaddr + 9564 MAILBOX_HBA_EXT_OFFSET, 9565 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9566 9567 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9568 /* copy command data into host mbox for cmpl */ 9569 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9570 MAILBOX_CMD_SIZE); 9571 9572 /* First copy mbox command data to HBA SLIM, skip past first 9573 word */ 9574 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9575 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9576 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9577 9578 /* Next copy over first word, with mbxOwner set */ 9579 ldata = *((uint32_t *)mbx); 9580 to_slim = phba->MBslimaddr; 9581 writel(ldata, to_slim); 9582 readl(to_slim); /* flush */ 9583 9584 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9585 /* switch over to host mailbox */ 9586 psli->sli_flag |= LPFC_SLI_ACTIVE; 9587 } 9588 9589 wmb(); 9590 9591 switch (flag) { 9592 case MBX_NOWAIT: 9593 /* Set up reference to mailbox command */ 9594 psli->mbox_active = pmbox; 9595 /* Interrupt board to do it */ 9596 writel(CA_MBATT, phba->CAregaddr); 9597 readl(phba->CAregaddr); /* flush */ 9598 /* Don't wait for it to finish, just return */ 9599 break; 9600 9601 case MBX_POLL: 9602 /* Set up null reference to mailbox command */ 9603 psli->mbox_active = NULL; 9604 /* Interrupt board to do it */ 9605 writel(CA_MBATT, phba->CAregaddr); 9606 readl(phba->CAregaddr); /* flush */ 9607 9608 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9609 /* First read mbox status word */ 9610 word0 = *((uint32_t *)phba->mbox); 9611 word0 = le32_to_cpu(word0); 9612 } else { 9613 /* First read mbox status word */ 9614 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9615 spin_unlock_irqrestore(&phba->hbalock, 9616 drvr_flag); 9617 goto out_not_finished; 9618 } 9619 } 9620 9621 /* Read the HBA Host Attention Register */ 9622 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9623 spin_unlock_irqrestore(&phba->hbalock, 9624 drvr_flag); 9625 goto out_not_finished; 9626 } 9627 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9628 1000) + jiffies; 9629 i = 0; 9630 /* Wait for command to complete */ 9631 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9632 (!(ha_copy & HA_MBATT) && 9633 (phba->link_state > LPFC_WARM_START))) { 9634 if (time_after(jiffies, timeout)) { 9635 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9636 spin_unlock_irqrestore(&phba->hbalock, 9637 drvr_flag); 9638 goto out_not_finished; 9639 } 9640 9641 /* Check if we took a mbox interrupt while we were 9642 polling */ 9643 if (((word0 & OWN_CHIP) != OWN_CHIP) 9644 && (evtctr != psli->slistat.mbox_event)) 9645 break; 9646 9647 if (i++ > 10) { 9648 spin_unlock_irqrestore(&phba->hbalock, 9649 drvr_flag); 9650 msleep(1); 9651 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9652 } 9653 9654 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9655 /* First copy command data */ 9656 word0 = *((uint32_t *)phba->mbox); 9657 word0 = le32_to_cpu(word0); 9658 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9659 MAILBOX_t *slimmb; 9660 uint32_t slimword0; 9661 /* Check real SLIM for any errors */ 9662 slimword0 = readl(phba->MBslimaddr); 9663 slimmb = (MAILBOX_t *) & slimword0; 9664 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9665 && slimmb->mbxStatus) { 9666 psli->sli_flag &= 9667 ~LPFC_SLI_ACTIVE; 9668 word0 = slimword0; 9669 } 9670 } 9671 } else { 9672 /* First copy command data */ 9673 word0 = readl(phba->MBslimaddr); 9674 } 9675 /* Read the HBA Host Attention Register */ 9676 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9677 spin_unlock_irqrestore(&phba->hbalock, 9678 drvr_flag); 9679 goto out_not_finished; 9680 } 9681 } 9682 9683 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9684 /* copy results back to user */ 9685 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9686 MAILBOX_CMD_SIZE); 9687 /* Copy the mailbox extension data */ 9688 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9689 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9690 pmbox->ctx_buf, 9691 pmbox->out_ext_byte_len); 9692 } 9693 } else { 9694 /* First copy command data */ 9695 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9696 MAILBOX_CMD_SIZE); 9697 /* Copy the mailbox extension data */ 9698 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9699 lpfc_memcpy_from_slim( 9700 pmbox->ctx_buf, 9701 phba->MBslimaddr + 9702 MAILBOX_HBA_EXT_OFFSET, 9703 pmbox->out_ext_byte_len); 9704 } 9705 } 9706 9707 writel(HA_MBATT, phba->HAregaddr); 9708 readl(phba->HAregaddr); /* flush */ 9709 9710 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9711 status = mbx->mbxStatus; 9712 } 9713 9714 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9715 return status; 9716 9717 out_not_finished: 9718 if (processing_queue) { 9719 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9720 lpfc_mbox_cmpl_put(phba, pmbox); 9721 } 9722 return MBX_NOT_FINISHED; 9723 } 9724 9725 /** 9726 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9727 * @phba: Pointer to HBA context object. 9728 * 9729 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9730 * the driver internal pending mailbox queue. It will then try to wait out the 9731 * possible outstanding mailbox command before return. 9732 * 9733 * Returns: 9734 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9735 * the outstanding mailbox command timed out. 9736 **/ 9737 static int 9738 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9739 { 9740 struct lpfc_sli *psli = &phba->sli; 9741 LPFC_MBOXQ_t *mboxq; 9742 int rc = 0; 9743 unsigned long timeout = 0; 9744 u32 sli_flag; 9745 u8 cmd, subsys, opcode; 9746 9747 /* Mark the asynchronous mailbox command posting as blocked */ 9748 spin_lock_irq(&phba->hbalock); 9749 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9750 /* Determine how long we might wait for the active mailbox 9751 * command to be gracefully completed by firmware. 9752 */ 9753 if (phba->sli.mbox_active) 9754 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9755 phba->sli.mbox_active) * 9756 1000) + jiffies; 9757 spin_unlock_irq(&phba->hbalock); 9758 9759 /* Make sure the mailbox is really active */ 9760 if (timeout) 9761 lpfc_sli4_process_missed_mbox_completions(phba); 9762 9763 /* Wait for the outstanding mailbox command to complete */ 9764 while (phba->sli.mbox_active) { 9765 /* Check active mailbox complete status every 2ms */ 9766 msleep(2); 9767 if (time_after(jiffies, timeout)) { 9768 /* Timeout, mark the outstanding cmd not complete */ 9769 9770 /* Sanity check sli.mbox_active has not completed or 9771 * cancelled from another context during last 2ms sleep, 9772 * so take hbalock to be sure before logging. 9773 */ 9774 spin_lock_irq(&phba->hbalock); 9775 if (phba->sli.mbox_active) { 9776 mboxq = phba->sli.mbox_active; 9777 cmd = mboxq->u.mb.mbxCommand; 9778 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9779 mboxq); 9780 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9781 mboxq); 9782 sli_flag = psli->sli_flag; 9783 spin_unlock_irq(&phba->hbalock); 9784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9785 "2352 Mailbox command x%x " 9786 "(x%x/x%x) sli_flag x%x could " 9787 "not complete\n", 9788 cmd, subsys, opcode, 9789 sli_flag); 9790 } else { 9791 spin_unlock_irq(&phba->hbalock); 9792 } 9793 9794 rc = 1; 9795 break; 9796 } 9797 } 9798 9799 /* Can not cleanly block async mailbox command, fails it */ 9800 if (rc) { 9801 spin_lock_irq(&phba->hbalock); 9802 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9803 spin_unlock_irq(&phba->hbalock); 9804 } 9805 return rc; 9806 } 9807 9808 /** 9809 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9810 * @phba: Pointer to HBA context object. 9811 * 9812 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9813 * commands from the driver internal pending mailbox queue. It makes sure 9814 * that there is no outstanding mailbox command before resuming posting 9815 * asynchronous mailbox commands. If, for any reason, there is outstanding 9816 * mailbox command, it will try to wait it out before resuming asynchronous 9817 * mailbox command posting. 9818 **/ 9819 static void 9820 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9821 { 9822 struct lpfc_sli *psli = &phba->sli; 9823 9824 spin_lock_irq(&phba->hbalock); 9825 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9826 /* Asynchronous mailbox posting is not blocked, do nothing */ 9827 spin_unlock_irq(&phba->hbalock); 9828 return; 9829 } 9830 9831 /* Outstanding synchronous mailbox command is guaranteed to be done, 9832 * successful or timeout, after timing-out the outstanding mailbox 9833 * command shall always be removed, so just unblock posting async 9834 * mailbox command and resume 9835 */ 9836 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9837 spin_unlock_irq(&phba->hbalock); 9838 9839 /* wake up worker thread to post asynchronous mailbox command */ 9840 lpfc_worker_wake_up(phba); 9841 } 9842 9843 /** 9844 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9845 * @phba: Pointer to HBA context object. 9846 * @mboxq: Pointer to mailbox object. 9847 * 9848 * The function waits for the bootstrap mailbox register ready bit from 9849 * port for twice the regular mailbox command timeout value. 9850 * 9851 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9852 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9853 * is in an unrecoverable state. 9854 **/ 9855 static int 9856 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9857 { 9858 uint32_t db_ready; 9859 unsigned long timeout; 9860 struct lpfc_register bmbx_reg; 9861 struct lpfc_register portstat_reg = {-1}; 9862 9863 /* Sanity check - there is no point to wait if the port is in an 9864 * unrecoverable state. 9865 */ 9866 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9867 LPFC_SLI_INTF_IF_TYPE_2) { 9868 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9869 &portstat_reg.word0) || 9870 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9871 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9872 "3858 Skipping bmbx ready because " 9873 "Port Status x%x\n", 9874 portstat_reg.word0); 9875 return MBXERR_ERROR; 9876 } 9877 } 9878 9879 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9880 * 1000) + jiffies; 9881 9882 do { 9883 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9884 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9885 if (!db_ready) 9886 mdelay(2); 9887 9888 if (time_after(jiffies, timeout)) 9889 return MBXERR_ERROR; 9890 } while (!db_ready); 9891 9892 return 0; 9893 } 9894 9895 /** 9896 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9897 * @phba: Pointer to HBA context object. 9898 * @mboxq: Pointer to mailbox object. 9899 * 9900 * The function posts a mailbox to the port. The mailbox is expected 9901 * to be comletely filled in and ready for the port to operate on it. 9902 * This routine executes a synchronous completion operation on the 9903 * mailbox by polling for its completion. 9904 * 9905 * The caller must not be holding any locks when calling this routine. 9906 * 9907 * Returns: 9908 * MBX_SUCCESS - mailbox posted successfully 9909 * Any of the MBX error values. 9910 **/ 9911 static int 9912 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9913 { 9914 int rc = MBX_SUCCESS; 9915 unsigned long iflag; 9916 uint32_t mcqe_status; 9917 uint32_t mbx_cmnd; 9918 struct lpfc_sli *psli = &phba->sli; 9919 struct lpfc_mqe *mb = &mboxq->u.mqe; 9920 struct lpfc_bmbx_create *mbox_rgn; 9921 struct dma_address *dma_address; 9922 9923 /* 9924 * Only one mailbox can be active to the bootstrap mailbox region 9925 * at a time and there is no queueing provided. 9926 */ 9927 spin_lock_irqsave(&phba->hbalock, iflag); 9928 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9929 spin_unlock_irqrestore(&phba->hbalock, iflag); 9930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9931 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9932 "cannot issue Data: x%x x%x\n", 9933 mboxq->vport ? mboxq->vport->vpi : 0, 9934 mboxq->u.mb.mbxCommand, 9935 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9936 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9937 psli->sli_flag, MBX_POLL); 9938 return MBXERR_ERROR; 9939 } 9940 /* The server grabs the token and owns it until release */ 9941 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9942 phba->sli.mbox_active = mboxq; 9943 spin_unlock_irqrestore(&phba->hbalock, iflag); 9944 9945 /* wait for bootstrap mbox register for readyness */ 9946 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9947 if (rc) 9948 goto exit; 9949 /* 9950 * Initialize the bootstrap memory region to avoid stale data areas 9951 * in the mailbox post. Then copy the caller's mailbox contents to 9952 * the bmbx mailbox region. 9953 */ 9954 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9955 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9956 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9957 sizeof(struct lpfc_mqe)); 9958 9959 /* Post the high mailbox dma address to the port and wait for ready. */ 9960 dma_address = &phba->sli4_hba.bmbx.dma_address; 9961 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9962 9963 /* wait for bootstrap mbox register for hi-address write done */ 9964 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9965 if (rc) 9966 goto exit; 9967 9968 /* Post the low mailbox dma address to the port. */ 9969 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9970 9971 /* wait for bootstrap mbox register for low address write done */ 9972 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9973 if (rc) 9974 goto exit; 9975 9976 /* 9977 * Read the CQ to ensure the mailbox has completed. 9978 * If so, update the mailbox status so that the upper layers 9979 * can complete the request normally. 9980 */ 9981 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9982 sizeof(struct lpfc_mqe)); 9983 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9984 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9985 sizeof(struct lpfc_mcqe)); 9986 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9987 /* 9988 * When the CQE status indicates a failure and the mailbox status 9989 * indicates success then copy the CQE status into the mailbox status 9990 * (and prefix it with x4000). 9991 */ 9992 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9993 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9994 bf_set(lpfc_mqe_status, mb, 9995 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9996 rc = MBXERR_ERROR; 9997 } else 9998 lpfc_sli4_swap_str(phba, mboxq); 9999 10000 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10001 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10002 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10003 " x%x x%x CQ: x%x x%x x%x x%x\n", 10004 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10005 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10006 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10007 bf_get(lpfc_mqe_status, mb), 10008 mb->un.mb_words[0], mb->un.mb_words[1], 10009 mb->un.mb_words[2], mb->un.mb_words[3], 10010 mb->un.mb_words[4], mb->un.mb_words[5], 10011 mb->un.mb_words[6], mb->un.mb_words[7], 10012 mb->un.mb_words[8], mb->un.mb_words[9], 10013 mb->un.mb_words[10], mb->un.mb_words[11], 10014 mb->un.mb_words[12], mboxq->mcqe.word0, 10015 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10016 mboxq->mcqe.trailer); 10017 exit: 10018 /* We are holding the token, no needed for lock when release */ 10019 spin_lock_irqsave(&phba->hbalock, iflag); 10020 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10021 phba->sli.mbox_active = NULL; 10022 spin_unlock_irqrestore(&phba->hbalock, iflag); 10023 return rc; 10024 } 10025 10026 /** 10027 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10028 * @phba: Pointer to HBA context object. 10029 * @mboxq: Pointer to mailbox object. 10030 * @flag: Flag indicating how the mailbox need to be processed. 10031 * 10032 * This function is called by discovery code and HBA management code to submit 10033 * a mailbox command to firmware with SLI-4 interface spec. 10034 * 10035 * Return codes the caller owns the mailbox command after the return of the 10036 * function. 10037 **/ 10038 static int 10039 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10040 uint32_t flag) 10041 { 10042 struct lpfc_sli *psli = &phba->sli; 10043 unsigned long iflags; 10044 int rc; 10045 10046 /* dump from issue mailbox command if setup */ 10047 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10048 10049 rc = lpfc_mbox_dev_check(phba); 10050 if (unlikely(rc)) { 10051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10052 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10053 "cannot issue Data: x%x x%x\n", 10054 mboxq->vport ? mboxq->vport->vpi : 0, 10055 mboxq->u.mb.mbxCommand, 10056 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10057 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10058 psli->sli_flag, flag); 10059 goto out_not_finished; 10060 } 10061 10062 /* Detect polling mode and jump to a handler */ 10063 if (!phba->sli4_hba.intr_enable) { 10064 if (flag == MBX_POLL) 10065 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10066 else 10067 rc = -EIO; 10068 if (rc != MBX_SUCCESS) 10069 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10070 "(%d):2541 Mailbox command x%x " 10071 "(x%x/x%x) failure: " 10072 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10073 "Data: x%x x%x\n", 10074 mboxq->vport ? mboxq->vport->vpi : 0, 10075 mboxq->u.mb.mbxCommand, 10076 lpfc_sli_config_mbox_subsys_get(phba, 10077 mboxq), 10078 lpfc_sli_config_mbox_opcode_get(phba, 10079 mboxq), 10080 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10081 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10082 bf_get(lpfc_mcqe_ext_status, 10083 &mboxq->mcqe), 10084 psli->sli_flag, flag); 10085 return rc; 10086 } else if (flag == MBX_POLL) { 10087 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10088 "(%d):2542 Try to issue mailbox command " 10089 "x%x (x%x/x%x) synchronously ahead of async " 10090 "mailbox command queue: x%x x%x\n", 10091 mboxq->vport ? mboxq->vport->vpi : 0, 10092 mboxq->u.mb.mbxCommand, 10093 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10094 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10095 psli->sli_flag, flag); 10096 /* Try to block the asynchronous mailbox posting */ 10097 rc = lpfc_sli4_async_mbox_block(phba); 10098 if (!rc) { 10099 /* Successfully blocked, now issue sync mbox cmd */ 10100 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10101 if (rc != MBX_SUCCESS) 10102 lpfc_printf_log(phba, KERN_WARNING, 10103 LOG_MBOX | LOG_SLI, 10104 "(%d):2597 Sync Mailbox command " 10105 "x%x (x%x/x%x) failure: " 10106 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10107 "Data: x%x x%x\n", 10108 mboxq->vport ? mboxq->vport->vpi : 0, 10109 mboxq->u.mb.mbxCommand, 10110 lpfc_sli_config_mbox_subsys_get(phba, 10111 mboxq), 10112 lpfc_sli_config_mbox_opcode_get(phba, 10113 mboxq), 10114 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10115 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10116 bf_get(lpfc_mcqe_ext_status, 10117 &mboxq->mcqe), 10118 psli->sli_flag, flag); 10119 /* Unblock the async mailbox posting afterward */ 10120 lpfc_sli4_async_mbox_unblock(phba); 10121 } 10122 return rc; 10123 } 10124 10125 /* Now, interrupt mode asynchronous mailbox command */ 10126 rc = lpfc_mbox_cmd_check(phba, mboxq); 10127 if (rc) { 10128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10129 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10130 "cannot issue Data: x%x x%x\n", 10131 mboxq->vport ? mboxq->vport->vpi : 0, 10132 mboxq->u.mb.mbxCommand, 10133 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10134 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10135 psli->sli_flag, flag); 10136 goto out_not_finished; 10137 } 10138 10139 /* Put the mailbox command to the driver internal FIFO */ 10140 psli->slistat.mbox_busy++; 10141 spin_lock_irqsave(&phba->hbalock, iflags); 10142 lpfc_mbox_put(phba, mboxq); 10143 spin_unlock_irqrestore(&phba->hbalock, iflags); 10144 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10145 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10146 "x%x (x%x/x%x) x%x x%x x%x\n", 10147 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10148 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10149 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10150 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10151 phba->pport->port_state, 10152 psli->sli_flag, MBX_NOWAIT); 10153 /* Wake up worker thread to transport mailbox command from head */ 10154 lpfc_worker_wake_up(phba); 10155 10156 return MBX_BUSY; 10157 10158 out_not_finished: 10159 return MBX_NOT_FINISHED; 10160 } 10161 10162 /** 10163 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10164 * @phba: Pointer to HBA context object. 10165 * 10166 * This function is called by worker thread to send a mailbox command to 10167 * SLI4 HBA firmware. 10168 * 10169 **/ 10170 int 10171 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10172 { 10173 struct lpfc_sli *psli = &phba->sli; 10174 LPFC_MBOXQ_t *mboxq; 10175 int rc = MBX_SUCCESS; 10176 unsigned long iflags; 10177 struct lpfc_mqe *mqe; 10178 uint32_t mbx_cmnd; 10179 10180 /* Check interrupt mode before post async mailbox command */ 10181 if (unlikely(!phba->sli4_hba.intr_enable)) 10182 return MBX_NOT_FINISHED; 10183 10184 /* Check for mailbox command service token */ 10185 spin_lock_irqsave(&phba->hbalock, iflags); 10186 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10187 spin_unlock_irqrestore(&phba->hbalock, iflags); 10188 return MBX_NOT_FINISHED; 10189 } 10190 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10191 spin_unlock_irqrestore(&phba->hbalock, iflags); 10192 return MBX_NOT_FINISHED; 10193 } 10194 if (unlikely(phba->sli.mbox_active)) { 10195 spin_unlock_irqrestore(&phba->hbalock, iflags); 10196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10197 "0384 There is pending active mailbox cmd\n"); 10198 return MBX_NOT_FINISHED; 10199 } 10200 /* Take the mailbox command service token */ 10201 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10202 10203 /* Get the next mailbox command from head of queue */ 10204 mboxq = lpfc_mbox_get(phba); 10205 10206 /* If no more mailbox command waiting for post, we're done */ 10207 if (!mboxq) { 10208 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10209 spin_unlock_irqrestore(&phba->hbalock, iflags); 10210 return MBX_SUCCESS; 10211 } 10212 phba->sli.mbox_active = mboxq; 10213 spin_unlock_irqrestore(&phba->hbalock, iflags); 10214 10215 /* Check device readiness for posting mailbox command */ 10216 rc = lpfc_mbox_dev_check(phba); 10217 if (unlikely(rc)) 10218 /* Driver clean routine will clean up pending mailbox */ 10219 goto out_not_finished; 10220 10221 /* Prepare the mbox command to be posted */ 10222 mqe = &mboxq->u.mqe; 10223 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10224 10225 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10226 mod_timer(&psli->mbox_tmo, (jiffies + 10227 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10228 10229 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10230 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10231 "x%x x%x\n", 10232 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10233 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10234 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10235 phba->pport->port_state, psli->sli_flag); 10236 10237 if (mbx_cmnd != MBX_HEARTBEAT) { 10238 if (mboxq->vport) { 10239 lpfc_debugfs_disc_trc(mboxq->vport, 10240 LPFC_DISC_TRC_MBOX_VPORT, 10241 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10242 mbx_cmnd, mqe->un.mb_words[0], 10243 mqe->un.mb_words[1]); 10244 } else { 10245 lpfc_debugfs_disc_trc(phba->pport, 10246 LPFC_DISC_TRC_MBOX, 10247 "MBOX Send: cmd:x%x mb:x%x x%x", 10248 mbx_cmnd, mqe->un.mb_words[0], 10249 mqe->un.mb_words[1]); 10250 } 10251 } 10252 psli->slistat.mbox_cmd++; 10253 10254 /* Post the mailbox command to the port */ 10255 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10256 if (rc != MBX_SUCCESS) { 10257 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10258 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10259 "cannot issue Data: x%x x%x\n", 10260 mboxq->vport ? mboxq->vport->vpi : 0, 10261 mboxq->u.mb.mbxCommand, 10262 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10263 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10264 psli->sli_flag, MBX_NOWAIT); 10265 goto out_not_finished; 10266 } 10267 10268 return rc; 10269 10270 out_not_finished: 10271 spin_lock_irqsave(&phba->hbalock, iflags); 10272 if (phba->sli.mbox_active) { 10273 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10274 __lpfc_mbox_cmpl_put(phba, mboxq); 10275 /* Release the token */ 10276 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10277 phba->sli.mbox_active = NULL; 10278 } 10279 spin_unlock_irqrestore(&phba->hbalock, iflags); 10280 10281 return MBX_NOT_FINISHED; 10282 } 10283 10284 /** 10285 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10286 * @phba: Pointer to HBA context object. 10287 * @pmbox: Pointer to mailbox object. 10288 * @flag: Flag indicating how the mailbox need to be processed. 10289 * 10290 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10291 * the API jump table function pointer from the lpfc_hba struct. 10292 * 10293 * Return codes the caller owns the mailbox command after the return of the 10294 * function. 10295 **/ 10296 int 10297 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10298 { 10299 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10300 } 10301 10302 /** 10303 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10304 * @phba: The hba struct for which this call is being executed. 10305 * @dev_grp: The HBA PCI-Device group number. 10306 * 10307 * This routine sets up the mbox interface API function jump table in @phba 10308 * struct. 10309 * Returns: 0 - success, -ENODEV - failure. 10310 **/ 10311 int 10312 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10313 { 10314 10315 switch (dev_grp) { 10316 case LPFC_PCI_DEV_LP: 10317 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10318 phba->lpfc_sli_handle_slow_ring_event = 10319 lpfc_sli_handle_slow_ring_event_s3; 10320 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10321 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10322 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10323 break; 10324 case LPFC_PCI_DEV_OC: 10325 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10326 phba->lpfc_sli_handle_slow_ring_event = 10327 lpfc_sli_handle_slow_ring_event_s4; 10328 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10329 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10330 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10331 break; 10332 default: 10333 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10334 "1420 Invalid HBA PCI-device group: 0x%x\n", 10335 dev_grp); 10336 return -ENODEV; 10337 } 10338 return 0; 10339 } 10340 10341 /** 10342 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10343 * @phba: Pointer to HBA context object. 10344 * @pring: Pointer to driver SLI ring object. 10345 * @piocb: Pointer to address of newly added command iocb. 10346 * 10347 * This function is called with hbalock held for SLI3 ports or 10348 * the ring lock held for SLI4 ports to add a command 10349 * iocb to the txq when SLI layer cannot submit the command iocb 10350 * to the ring. 10351 **/ 10352 void 10353 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10354 struct lpfc_iocbq *piocb) 10355 { 10356 if (phba->sli_rev == LPFC_SLI_REV4) 10357 lockdep_assert_held(&pring->ring_lock); 10358 else 10359 lockdep_assert_held(&phba->hbalock); 10360 /* Insert the caller's iocb in the txq tail for later processing. */ 10361 list_add_tail(&piocb->list, &pring->txq); 10362 } 10363 10364 /** 10365 * lpfc_sli_next_iocb - Get the next iocb in the txq 10366 * @phba: Pointer to HBA context object. 10367 * @pring: Pointer to driver SLI ring object. 10368 * @piocb: Pointer to address of newly added command iocb. 10369 * 10370 * This function is called with hbalock held before a new 10371 * iocb is submitted to the firmware. This function checks 10372 * txq to flush the iocbs in txq to Firmware before 10373 * submitting new iocbs to the Firmware. 10374 * If there are iocbs in the txq which need to be submitted 10375 * to firmware, lpfc_sli_next_iocb returns the first element 10376 * of the txq after dequeuing it from txq. 10377 * If there is no iocb in the txq then the function will return 10378 * *piocb and *piocb is set to NULL. Caller needs to check 10379 * *piocb to find if there are more commands in the txq. 10380 **/ 10381 static struct lpfc_iocbq * 10382 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10383 struct lpfc_iocbq **piocb) 10384 { 10385 struct lpfc_iocbq * nextiocb; 10386 10387 lockdep_assert_held(&phba->hbalock); 10388 10389 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10390 if (!nextiocb) { 10391 nextiocb = *piocb; 10392 *piocb = NULL; 10393 } 10394 10395 return nextiocb; 10396 } 10397 10398 /** 10399 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10400 * @phba: Pointer to HBA context object. 10401 * @ring_number: SLI ring number to issue iocb on. 10402 * @piocb: Pointer to command iocb. 10403 * @flag: Flag indicating if this command can be put into txq. 10404 * 10405 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10406 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10407 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10408 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10409 * this function allows only iocbs for posting buffers. This function finds 10410 * next available slot in the command ring and posts the command to the 10411 * available slot and writes the port attention register to request HBA start 10412 * processing new iocb. If there is no slot available in the ring and 10413 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10414 * the function returns IOCB_BUSY. 10415 * 10416 * This function is called with hbalock held. The function will return success 10417 * after it successfully submit the iocb to firmware or after adding to the 10418 * txq. 10419 **/ 10420 static int 10421 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10422 struct lpfc_iocbq *piocb, uint32_t flag) 10423 { 10424 struct lpfc_iocbq *nextiocb; 10425 IOCB_t *iocb; 10426 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10427 10428 lockdep_assert_held(&phba->hbalock); 10429 10430 if (piocb->cmd_cmpl && (!piocb->vport) && 10431 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10432 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10434 "1807 IOCB x%x failed. No vport\n", 10435 piocb->iocb.ulpCommand); 10436 dump_stack(); 10437 return IOCB_ERROR; 10438 } 10439 10440 10441 /* If the PCI channel is in offline state, do not post iocbs. */ 10442 if (unlikely(pci_channel_offline(phba->pcidev))) 10443 return IOCB_ERROR; 10444 10445 /* If HBA has a deferred error attention, fail the iocb. */ 10446 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10447 return IOCB_ERROR; 10448 10449 /* 10450 * We should never get an IOCB if we are in a < LINK_DOWN state 10451 */ 10452 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10453 return IOCB_ERROR; 10454 10455 /* 10456 * Check to see if we are blocking IOCB processing because of a 10457 * outstanding event. 10458 */ 10459 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10460 goto iocb_busy; 10461 10462 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10463 /* 10464 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10465 * can be issued if the link is not up. 10466 */ 10467 switch (piocb->iocb.ulpCommand) { 10468 case CMD_QUE_RING_BUF_CN: 10469 case CMD_QUE_RING_BUF64_CN: 10470 /* 10471 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10472 * completion, cmd_cmpl MUST be 0. 10473 */ 10474 if (piocb->cmd_cmpl) 10475 piocb->cmd_cmpl = NULL; 10476 fallthrough; 10477 case CMD_CREATE_XRI_CR: 10478 case CMD_CLOSE_XRI_CN: 10479 case CMD_CLOSE_XRI_CX: 10480 break; 10481 default: 10482 goto iocb_busy; 10483 } 10484 10485 /* 10486 * For FCP commands, we must be in a state where we can process link 10487 * attention events. 10488 */ 10489 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10490 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10491 goto iocb_busy; 10492 } 10493 10494 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10495 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10496 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10497 10498 if (iocb) 10499 lpfc_sli_update_ring(phba, pring); 10500 else 10501 lpfc_sli_update_full_ring(phba, pring); 10502 10503 if (!piocb) 10504 return IOCB_SUCCESS; 10505 10506 goto out_busy; 10507 10508 iocb_busy: 10509 pring->stats.iocb_cmd_delay++; 10510 10511 out_busy: 10512 10513 if (!(flag & SLI_IOCB_RET_IOCB)) { 10514 __lpfc_sli_ringtx_put(phba, pring, piocb); 10515 return IOCB_SUCCESS; 10516 } 10517 10518 return IOCB_BUSY; 10519 } 10520 10521 /** 10522 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10523 * @phba: Pointer to HBA context object. 10524 * @ring_number: SLI ring number to issue wqe on. 10525 * @piocb: Pointer to command iocb. 10526 * @flag: Flag indicating if this command can be put into txq. 10527 * 10528 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10529 * send an iocb command to an HBA with SLI-3 interface spec. 10530 * 10531 * This function takes the hbalock before invoking the lockless version. 10532 * The function will return success after it successfully submit the wqe to 10533 * firmware or after adding to the txq. 10534 **/ 10535 static int 10536 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10537 struct lpfc_iocbq *piocb, uint32_t flag) 10538 { 10539 unsigned long iflags; 10540 int rc; 10541 10542 spin_lock_irqsave(&phba->hbalock, iflags); 10543 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10544 spin_unlock_irqrestore(&phba->hbalock, iflags); 10545 10546 return rc; 10547 } 10548 10549 /** 10550 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10551 * @phba: Pointer to HBA context object. 10552 * @ring_number: SLI ring number to issue wqe on. 10553 * @piocb: Pointer to command iocb. 10554 * @flag: Flag indicating if this command can be put into txq. 10555 * 10556 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10557 * an wqe command to an HBA with SLI-4 interface spec. 10558 * 10559 * This function is a lockless version. The function will return success 10560 * after it successfully submit the wqe to firmware or after adding to the 10561 * txq. 10562 **/ 10563 static int 10564 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10565 struct lpfc_iocbq *piocb, uint32_t flag) 10566 { 10567 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10568 10569 lpfc_prep_embed_io(phba, lpfc_cmd); 10570 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10571 } 10572 10573 void 10574 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10575 { 10576 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10577 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10578 struct sli4_sge *sgl; 10579 10580 /* 128 byte wqe support here */ 10581 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10582 10583 if (phba->fcp_embed_io) { 10584 struct fcp_cmnd *fcp_cmnd; 10585 u32 *ptr; 10586 10587 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10588 10589 /* Word 0-2 - FCP_CMND */ 10590 wqe->generic.bde.tus.f.bdeFlags = 10591 BUFF_TYPE_BDE_IMMED; 10592 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10593 wqe->generic.bde.addrHigh = 0; 10594 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10595 10596 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10597 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10598 10599 /* Word 22-29 FCP CMND Payload */ 10600 ptr = &wqe->words[22]; 10601 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10602 } else { 10603 /* Word 0-2 - Inline BDE */ 10604 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10605 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10606 wqe->generic.bde.addrHigh = sgl->addr_hi; 10607 wqe->generic.bde.addrLow = sgl->addr_lo; 10608 10609 /* Word 10 */ 10610 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10611 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10612 } 10613 10614 /* add the VMID tags as per switch response */ 10615 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10616 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10617 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10618 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10619 (piocb->vmid_tag.cs_ctl_vmid)); 10620 } else if (phba->cfg_vmid_app_header) { 10621 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10622 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10623 wqe->words[31] = piocb->vmid_tag.app_id; 10624 } 10625 } 10626 } 10627 10628 /** 10629 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10630 * @phba: Pointer to HBA context object. 10631 * @ring_number: SLI ring number to issue iocb on. 10632 * @piocb: Pointer to command iocb. 10633 * @flag: Flag indicating if this command can be put into txq. 10634 * 10635 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10636 * an iocb command to an HBA with SLI-4 interface spec. 10637 * 10638 * This function is called with ringlock held. The function will return success 10639 * after it successfully submit the iocb to firmware or after adding to the 10640 * txq. 10641 **/ 10642 static int 10643 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10644 struct lpfc_iocbq *piocb, uint32_t flag) 10645 { 10646 struct lpfc_sglq *sglq; 10647 union lpfc_wqe128 *wqe; 10648 struct lpfc_queue *wq; 10649 struct lpfc_sli_ring *pring; 10650 u32 ulp_command = get_job_cmnd(phba, piocb); 10651 10652 /* Get the WQ */ 10653 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10654 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10655 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10656 } else { 10657 wq = phba->sli4_hba.els_wq; 10658 } 10659 10660 /* Get corresponding ring */ 10661 pring = wq->pring; 10662 10663 /* 10664 * The WQE can be either 64 or 128 bytes, 10665 */ 10666 10667 lockdep_assert_held(&pring->ring_lock); 10668 wqe = &piocb->wqe; 10669 if (piocb->sli4_xritag == NO_XRI) { 10670 if (ulp_command == CMD_ABORT_XRI_CX) 10671 sglq = NULL; 10672 else { 10673 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10674 if (!sglq) { 10675 if (!(flag & SLI_IOCB_RET_IOCB)) { 10676 __lpfc_sli_ringtx_put(phba, 10677 pring, 10678 piocb); 10679 return IOCB_SUCCESS; 10680 } else { 10681 return IOCB_BUSY; 10682 } 10683 } 10684 } 10685 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10686 /* These IO's already have an XRI and a mapped sgl. */ 10687 sglq = NULL; 10688 } 10689 else { 10690 /* 10691 * This is a continuation of a commandi,(CX) so this 10692 * sglq is on the active list 10693 */ 10694 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10695 if (!sglq) 10696 return IOCB_ERROR; 10697 } 10698 10699 if (sglq) { 10700 piocb->sli4_lxritag = sglq->sli4_lxritag; 10701 piocb->sli4_xritag = sglq->sli4_xritag; 10702 10703 /* ABTS sent by initiator to CT exchange, the 10704 * RX_ID field will be filled with the newly 10705 * allocated responder XRI. 10706 */ 10707 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10708 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10709 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10710 piocb->sli4_xritag); 10711 10712 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10713 piocb->sli4_xritag); 10714 10715 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10716 return IOCB_ERROR; 10717 } 10718 10719 if (lpfc_sli4_wq_put(wq, wqe)) 10720 return IOCB_ERROR; 10721 10722 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10723 10724 return 0; 10725 } 10726 10727 /* 10728 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10729 * 10730 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10731 * or IOCB for sli-3 function. 10732 * pointer from the lpfc_hba struct. 10733 * 10734 * Return codes: 10735 * IOCB_ERROR - Error 10736 * IOCB_SUCCESS - Success 10737 * IOCB_BUSY - Busy 10738 **/ 10739 int 10740 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10741 struct lpfc_iocbq *piocb, uint32_t flag) 10742 { 10743 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10744 } 10745 10746 /* 10747 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10748 * 10749 * This routine wraps the actual lockless version for issusing IOCB function 10750 * pointer from the lpfc_hba struct. 10751 * 10752 * Return codes: 10753 * IOCB_ERROR - Error 10754 * IOCB_SUCCESS - Success 10755 * IOCB_BUSY - Busy 10756 **/ 10757 int 10758 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10759 struct lpfc_iocbq *piocb, uint32_t flag) 10760 { 10761 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10762 } 10763 10764 static void 10765 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10766 struct lpfc_vport *vport, 10767 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10768 u32 elscmd, u8 tmo, u8 expect_rsp) 10769 { 10770 struct lpfc_hba *phba = vport->phba; 10771 IOCB_t *cmd; 10772 10773 cmd = &cmdiocbq->iocb; 10774 memset(cmd, 0, sizeof(*cmd)); 10775 10776 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10777 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10778 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10779 10780 if (expect_rsp) { 10781 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10782 cmd->un.elsreq64.remoteID = did; /* DID */ 10783 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10784 cmd->ulpTimeout = tmo; 10785 } else { 10786 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10787 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10788 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10789 cmd->ulpPU = PARM_NPIV_DID; 10790 } 10791 cmd->ulpBdeCount = 1; 10792 cmd->ulpLe = 1; 10793 cmd->ulpClass = CLASS3; 10794 10795 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10796 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10797 if (expect_rsp) { 10798 cmd->un.elsreq64.myID = vport->fc_myDID; 10799 10800 /* For ELS_REQUEST64_CR, use the VPI by default */ 10801 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10802 } 10803 10804 cmd->ulpCt_h = 0; 10805 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10806 if (elscmd == ELS_CMD_ECHO) 10807 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10808 else 10809 cmd->ulpCt_l = 1; /* context = VPI */ 10810 } 10811 } 10812 10813 static void 10814 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10815 struct lpfc_vport *vport, 10816 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10817 u32 elscmd, u8 tmo, u8 expect_rsp) 10818 { 10819 struct lpfc_hba *phba = vport->phba; 10820 union lpfc_wqe128 *wqe; 10821 struct ulp_bde64_le *bde; 10822 u8 els_id; 10823 10824 wqe = &cmdiocbq->wqe; 10825 memset(wqe, 0, sizeof(*wqe)); 10826 10827 /* Word 0 - 2 BDE */ 10828 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10829 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10830 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10831 bde->type_size = cpu_to_le32(cmd_size); 10832 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10833 10834 if (expect_rsp) { 10835 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10836 10837 /* Transfer length */ 10838 wqe->els_req.payload_len = cmd_size; 10839 wqe->els_req.max_response_payload_len = FCELSSIZE; 10840 10841 /* DID */ 10842 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10843 10844 /* Word 11 - ELS_ID */ 10845 switch (elscmd) { 10846 case ELS_CMD_PLOGI: 10847 els_id = LPFC_ELS_ID_PLOGI; 10848 break; 10849 case ELS_CMD_FLOGI: 10850 els_id = LPFC_ELS_ID_FLOGI; 10851 break; 10852 case ELS_CMD_LOGO: 10853 els_id = LPFC_ELS_ID_LOGO; 10854 break; 10855 case ELS_CMD_FDISC: 10856 if (!vport->fc_myDID) { 10857 els_id = LPFC_ELS_ID_FDISC; 10858 break; 10859 } 10860 fallthrough; 10861 default: 10862 els_id = LPFC_ELS_ID_DEFAULT; 10863 break; 10864 } 10865 10866 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10867 } else { 10868 /* DID */ 10869 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10870 10871 /* Transfer length */ 10872 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10873 10874 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10875 CMD_XMIT_ELS_RSP64_WQE); 10876 } 10877 10878 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10879 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10880 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10881 10882 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10883 * For SLI4, since the driver controls VPIs we also want to include 10884 * all ELS pt2pt protocol traffic as well. 10885 */ 10886 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10887 (vport->fc_flag & FC_PT2PT)) { 10888 if (expect_rsp) { 10889 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10890 10891 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10892 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10893 phba->vpi_ids[vport->vpi]); 10894 } 10895 10896 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10897 if (elscmd == ELS_CMD_ECHO) 10898 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10899 else 10900 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10901 } 10902 } 10903 10904 void 10905 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10906 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10907 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10908 u8 expect_rsp) 10909 { 10910 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10911 elscmd, tmo, expect_rsp); 10912 } 10913 10914 static void 10915 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10916 u16 rpi, u32 num_entry, u8 tmo) 10917 { 10918 IOCB_t *cmd; 10919 10920 cmd = &cmdiocbq->iocb; 10921 memset(cmd, 0, sizeof(*cmd)); 10922 10923 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10924 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10925 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10926 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10927 10928 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10929 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10930 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10931 10932 cmd->ulpContext = rpi; 10933 cmd->ulpClass = CLASS3; 10934 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10935 cmd->ulpBdeCount = 1; 10936 cmd->ulpLe = 1; 10937 cmd->ulpOwner = OWN_CHIP; 10938 cmd->ulpTimeout = tmo; 10939 } 10940 10941 static void 10942 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10943 u16 rpi, u32 num_entry, u8 tmo) 10944 { 10945 union lpfc_wqe128 *cmdwqe; 10946 struct ulp_bde64_le *bde, *bpl; 10947 u32 xmit_len = 0, total_len = 0, size, type, i; 10948 10949 cmdwqe = &cmdiocbq->wqe; 10950 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10951 10952 /* Calculate total_len and xmit_len */ 10953 bpl = (struct ulp_bde64_le *)bmp->virt; 10954 for (i = 0; i < num_entry; i++) { 10955 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10956 total_len += size; 10957 } 10958 for (i = 0; i < num_entry; i++) { 10959 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10960 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10961 if (type != ULP_BDE64_TYPE_BDE_64) 10962 break; 10963 xmit_len += size; 10964 } 10965 10966 /* Words 0 - 2 */ 10967 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10968 bde->addr_low = bpl->addr_low; 10969 bde->addr_high = bpl->addr_high; 10970 bde->type_size = cpu_to_le32(xmit_len); 10971 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10972 10973 /* Word 3 */ 10974 cmdwqe->gen_req.request_payload_len = xmit_len; 10975 10976 /* Word 5 */ 10977 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10978 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10979 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10980 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10981 10982 /* Word 6 */ 10983 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10984 10985 /* Word 7 */ 10986 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10987 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10988 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10989 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10990 10991 /* Word 12 */ 10992 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10993 } 10994 10995 void 10996 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10997 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10998 { 10999 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11000 } 11001 11002 static void 11003 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11004 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11005 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11006 { 11007 IOCB_t *icmd; 11008 11009 icmd = &cmdiocbq->iocb; 11010 memset(icmd, 0, sizeof(*icmd)); 11011 11012 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11013 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11014 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11015 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11016 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11017 if (last_seq) 11018 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11019 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11020 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11021 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11022 11023 icmd->ulpBdeCount = 1; 11024 icmd->ulpLe = 1; 11025 icmd->ulpClass = CLASS3; 11026 11027 switch (cr_cx_cmd) { 11028 case CMD_XMIT_SEQUENCE64_CR: 11029 icmd->ulpContext = rpi; 11030 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11031 break; 11032 case CMD_XMIT_SEQUENCE64_CX: 11033 icmd->ulpContext = ox_id; 11034 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11035 break; 11036 default: 11037 break; 11038 } 11039 } 11040 11041 static void 11042 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11043 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11044 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11045 { 11046 union lpfc_wqe128 *wqe; 11047 struct ulp_bde64 *bpl; 11048 11049 wqe = &cmdiocbq->wqe; 11050 memset(wqe, 0, sizeof(*wqe)); 11051 11052 /* Words 0 - 2 */ 11053 bpl = (struct ulp_bde64 *)bmp->virt; 11054 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11055 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11056 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11057 11058 /* Word 5 */ 11059 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11060 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11061 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11062 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11063 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11064 11065 /* Word 6 */ 11066 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11067 11068 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11069 CMD_XMIT_SEQUENCE64_WQE); 11070 11071 /* Word 7 */ 11072 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11073 11074 /* Word 9 */ 11075 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11076 11077 /* Word 12 */ 11078 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11079 wqe->xmit_sequence.xmit_len = full_size; 11080 else 11081 wqe->xmit_sequence.xmit_len = 11082 wqe->xmit_sequence.bde.tus.f.bdeSize; 11083 } 11084 11085 void 11086 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11087 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11088 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11089 { 11090 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11091 rctl, last_seq, cr_cx_cmd); 11092 } 11093 11094 static void 11095 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11096 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11097 bool wqec) 11098 { 11099 IOCB_t *icmd = NULL; 11100 11101 icmd = &cmdiocbq->iocb; 11102 memset(icmd, 0, sizeof(*icmd)); 11103 11104 /* Word 5 */ 11105 icmd->un.acxri.abortContextTag = ulp_context; 11106 icmd->un.acxri.abortIoTag = iotag; 11107 11108 if (ia) { 11109 /* Word 7 */ 11110 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11111 } else { 11112 /* Word 3 */ 11113 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11114 11115 /* Word 7 */ 11116 icmd->ulpClass = ulp_class; 11117 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11118 } 11119 11120 /* Word 7 */ 11121 icmd->ulpLe = 1; 11122 } 11123 11124 static void 11125 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11126 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11127 bool wqec) 11128 { 11129 union lpfc_wqe128 *wqe; 11130 11131 wqe = &cmdiocbq->wqe; 11132 memset(wqe, 0, sizeof(*wqe)); 11133 11134 /* Word 3 */ 11135 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11136 if (ia) 11137 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11138 else 11139 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11140 11141 /* Word 7 */ 11142 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11143 11144 /* Word 8 */ 11145 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11146 11147 /* Word 9 */ 11148 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11149 11150 /* Word 10 */ 11151 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11152 11153 /* Word 11 */ 11154 if (wqec) 11155 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11156 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11157 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11158 } 11159 11160 void 11161 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11162 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11163 bool ia, bool wqec) 11164 { 11165 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11166 cqid, ia, wqec); 11167 } 11168 11169 /** 11170 * lpfc_sli_api_table_setup - Set up sli api function jump table 11171 * @phba: The hba struct for which this call is being executed. 11172 * @dev_grp: The HBA PCI-Device group number. 11173 * 11174 * This routine sets up the SLI interface API function jump table in @phba 11175 * struct. 11176 * Returns: 0 - success, -ENODEV - failure. 11177 **/ 11178 int 11179 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11180 { 11181 11182 switch (dev_grp) { 11183 case LPFC_PCI_DEV_LP: 11184 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11185 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11186 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11187 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11188 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11189 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11190 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11191 break; 11192 case LPFC_PCI_DEV_OC: 11193 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11194 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11195 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11196 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11197 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11198 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11199 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11200 break; 11201 default: 11202 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11203 "1419 Invalid HBA PCI-device group: 0x%x\n", 11204 dev_grp); 11205 return -ENODEV; 11206 } 11207 return 0; 11208 } 11209 11210 /** 11211 * lpfc_sli4_calc_ring - Calculates which ring to use 11212 * @phba: Pointer to HBA context object. 11213 * @piocb: Pointer to command iocb. 11214 * 11215 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11216 * hba_wqidx, thus we need to calculate the corresponding ring. 11217 * Since ABORTS must go on the same WQ of the command they are 11218 * aborting, we use command's hba_wqidx. 11219 */ 11220 struct lpfc_sli_ring * 11221 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11222 { 11223 struct lpfc_io_buf *lpfc_cmd; 11224 11225 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11226 if (unlikely(!phba->sli4_hba.hdwq)) 11227 return NULL; 11228 /* 11229 * for abort iocb hba_wqidx should already 11230 * be setup based on what work queue we used. 11231 */ 11232 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11233 lpfc_cmd = piocb->io_buf; 11234 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11235 } 11236 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11237 } else { 11238 if (unlikely(!phba->sli4_hba.els_wq)) 11239 return NULL; 11240 piocb->hba_wqidx = 0; 11241 return phba->sli4_hba.els_wq->pring; 11242 } 11243 } 11244 11245 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11246 { 11247 struct lpfc_hba *phba = eq->phba; 11248 11249 /* 11250 * Unlocking an irq is one of the entry point to check 11251 * for re-schedule, but we are good for io submission 11252 * path as midlayer does a get_cpu to glue us in. Flush 11253 * out the invalidate queue so we can see the updated 11254 * value for flag. 11255 */ 11256 smp_rmb(); 11257 11258 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11259 /* We will not likely get the completion for the caller 11260 * during this iteration but i guess that's fine. 11261 * Future io's coming on this eq should be able to 11262 * pick it up. As for the case of single io's, they 11263 * will be handled through a sched from polling timer 11264 * function which is currently triggered every 1msec. 11265 */ 11266 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11267 LPFC_QUEUE_WORK); 11268 } 11269 11270 /** 11271 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11272 * @phba: Pointer to HBA context object. 11273 * @ring_number: Ring number 11274 * @piocb: Pointer to command iocb. 11275 * @flag: Flag indicating if this command can be put into txq. 11276 * 11277 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11278 * function. This function gets the hbalock and calls 11279 * __lpfc_sli_issue_iocb function and will return the error returned 11280 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11281 * functions which do not hold hbalock. 11282 **/ 11283 int 11284 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11285 struct lpfc_iocbq *piocb, uint32_t flag) 11286 { 11287 struct lpfc_sli_ring *pring; 11288 struct lpfc_queue *eq; 11289 unsigned long iflags; 11290 int rc; 11291 11292 /* If the PCI channel is in offline state, do not post iocbs. */ 11293 if (unlikely(pci_channel_offline(phba->pcidev))) 11294 return IOCB_ERROR; 11295 11296 if (phba->sli_rev == LPFC_SLI_REV4) { 11297 lpfc_sli_prep_wqe(phba, piocb); 11298 11299 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11300 11301 pring = lpfc_sli4_calc_ring(phba, piocb); 11302 if (unlikely(pring == NULL)) 11303 return IOCB_ERROR; 11304 11305 spin_lock_irqsave(&pring->ring_lock, iflags); 11306 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11307 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11308 11309 lpfc_sli4_poll_eq(eq); 11310 } else { 11311 /* For now, SLI2/3 will still use hbalock */ 11312 spin_lock_irqsave(&phba->hbalock, iflags); 11313 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11314 spin_unlock_irqrestore(&phba->hbalock, iflags); 11315 } 11316 return rc; 11317 } 11318 11319 /** 11320 * lpfc_extra_ring_setup - Extra ring setup function 11321 * @phba: Pointer to HBA context object. 11322 * 11323 * This function is called while driver attaches with the 11324 * HBA to setup the extra ring. The extra ring is used 11325 * only when driver needs to support target mode functionality 11326 * or IP over FC functionalities. 11327 * 11328 * This function is called with no lock held. SLI3 only. 11329 **/ 11330 static int 11331 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11332 { 11333 struct lpfc_sli *psli; 11334 struct lpfc_sli_ring *pring; 11335 11336 psli = &phba->sli; 11337 11338 /* Adjust cmd/rsp ring iocb entries more evenly */ 11339 11340 /* Take some away from the FCP ring */ 11341 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11342 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11343 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11344 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11345 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11346 11347 /* and give them to the extra ring */ 11348 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11349 11350 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11351 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11352 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11353 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11354 11355 /* Setup default profile for this ring */ 11356 pring->iotag_max = 4096; 11357 pring->num_mask = 1; 11358 pring->prt[0].profile = 0; /* Mask 0 */ 11359 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11360 pring->prt[0].type = phba->cfg_multi_ring_type; 11361 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11362 return 0; 11363 } 11364 11365 static void 11366 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11367 struct lpfc_nodelist *ndlp) 11368 { 11369 unsigned long iflags; 11370 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11371 11372 /* Hold a node reference for outstanding queued work */ 11373 if (!lpfc_nlp_get(ndlp)) 11374 return; 11375 11376 spin_lock_irqsave(&phba->hbalock, iflags); 11377 if (!list_empty(&evtp->evt_listp)) { 11378 spin_unlock_irqrestore(&phba->hbalock, iflags); 11379 lpfc_nlp_put(ndlp); 11380 return; 11381 } 11382 11383 evtp->evt_arg1 = ndlp; 11384 evtp->evt = LPFC_EVT_RECOVER_PORT; 11385 list_add_tail(&evtp->evt_listp, &phba->work_list); 11386 spin_unlock_irqrestore(&phba->hbalock, iflags); 11387 11388 lpfc_worker_wake_up(phba); 11389 } 11390 11391 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11392 * @phba: Pointer to HBA context object. 11393 * @iocbq: Pointer to iocb object. 11394 * 11395 * The async_event handler calls this routine when it receives 11396 * an ASYNC_STATUS_CN event from the port. The port generates 11397 * this event when an Abort Sequence request to an rport fails 11398 * twice in succession. The abort could be originated by the 11399 * driver or by the port. The ABTS could have been for an ELS 11400 * or FCP IO. The port only generates this event when an ABTS 11401 * fails to complete after one retry. 11402 */ 11403 static void 11404 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11405 struct lpfc_iocbq *iocbq) 11406 { 11407 struct lpfc_nodelist *ndlp = NULL; 11408 uint16_t rpi = 0, vpi = 0; 11409 struct lpfc_vport *vport = NULL; 11410 11411 /* The rpi in the ulpContext is vport-sensitive. */ 11412 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11413 rpi = iocbq->iocb.ulpContext; 11414 11415 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11416 "3092 Port generated ABTS async event " 11417 "on vpi %d rpi %d status 0x%x\n", 11418 vpi, rpi, iocbq->iocb.ulpStatus); 11419 11420 vport = lpfc_find_vport_by_vpid(phba, vpi); 11421 if (!vport) 11422 goto err_exit; 11423 ndlp = lpfc_findnode_rpi(vport, rpi); 11424 if (!ndlp) 11425 goto err_exit; 11426 11427 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11428 lpfc_sli_abts_recover_port(vport, ndlp); 11429 return; 11430 11431 err_exit: 11432 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11433 "3095 Event Context not found, no " 11434 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11435 vpi, rpi, iocbq->iocb.ulpStatus, 11436 iocbq->iocb.ulpContext); 11437 } 11438 11439 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11440 * @phba: pointer to HBA context object. 11441 * @ndlp: nodelist pointer for the impacted rport. 11442 * @axri: pointer to the wcqe containing the failed exchange. 11443 * 11444 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11445 * port. The port generates this event when an abort exchange request to an 11446 * rport fails twice in succession with no reply. The abort could be originated 11447 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11448 */ 11449 void 11450 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11451 struct lpfc_nodelist *ndlp, 11452 struct sli4_wcqe_xri_aborted *axri) 11453 { 11454 uint32_t ext_status = 0; 11455 11456 if (!ndlp) { 11457 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11458 "3115 Node Context not found, driver " 11459 "ignoring abts err event\n"); 11460 return; 11461 } 11462 11463 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11464 "3116 Port generated FCP XRI ABORT event on " 11465 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11466 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11467 bf_get(lpfc_wcqe_xa_xri, axri), 11468 bf_get(lpfc_wcqe_xa_status, axri), 11469 axri->parameter); 11470 11471 /* 11472 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11473 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11474 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11475 */ 11476 ext_status = axri->parameter & IOERR_PARAM_MASK; 11477 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11478 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11479 lpfc_sli_post_recovery_event(phba, ndlp); 11480 } 11481 11482 /** 11483 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11484 * @phba: Pointer to HBA context object. 11485 * @pring: Pointer to driver SLI ring object. 11486 * @iocbq: Pointer to iocb object. 11487 * 11488 * This function is called by the slow ring event handler 11489 * function when there is an ASYNC event iocb in the ring. 11490 * This function is called with no lock held. 11491 * Currently this function handles only temperature related 11492 * ASYNC events. The function decodes the temperature sensor 11493 * event message and posts events for the management applications. 11494 **/ 11495 static void 11496 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11497 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11498 { 11499 IOCB_t *icmd; 11500 uint16_t evt_code; 11501 struct temp_event temp_event_data; 11502 struct Scsi_Host *shost; 11503 uint32_t *iocb_w; 11504 11505 icmd = &iocbq->iocb; 11506 evt_code = icmd->un.asyncstat.evt_code; 11507 11508 switch (evt_code) { 11509 case ASYNC_TEMP_WARN: 11510 case ASYNC_TEMP_SAFE: 11511 temp_event_data.data = (uint32_t) icmd->ulpContext; 11512 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11513 if (evt_code == ASYNC_TEMP_WARN) { 11514 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11516 "0347 Adapter is very hot, please take " 11517 "corrective action. temperature : %d Celsius\n", 11518 (uint32_t) icmd->ulpContext); 11519 } else { 11520 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11521 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11522 "0340 Adapter temperature is OK now. " 11523 "temperature : %d Celsius\n", 11524 (uint32_t) icmd->ulpContext); 11525 } 11526 11527 /* Send temperature change event to applications */ 11528 shost = lpfc_shost_from_vport(phba->pport); 11529 fc_host_post_vendor_event(shost, fc_get_event_number(), 11530 sizeof(temp_event_data), (char *) &temp_event_data, 11531 LPFC_NL_VENDOR_ID); 11532 break; 11533 case ASYNC_STATUS_CN: 11534 lpfc_sli_abts_err_handler(phba, iocbq); 11535 break; 11536 default: 11537 iocb_w = (uint32_t *) icmd; 11538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11539 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11540 " evt_code 0x%x\n" 11541 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11542 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11543 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11544 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11545 pring->ringno, icmd->un.asyncstat.evt_code, 11546 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11547 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11548 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11549 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11550 11551 break; 11552 } 11553 } 11554 11555 11556 /** 11557 * lpfc_sli4_setup - SLI ring setup function 11558 * @phba: Pointer to HBA context object. 11559 * 11560 * lpfc_sli_setup sets up rings of the SLI interface with 11561 * number of iocbs per ring and iotags. This function is 11562 * called while driver attach to the HBA and before the 11563 * interrupts are enabled. So there is no need for locking. 11564 * 11565 * This function always returns 0. 11566 **/ 11567 int 11568 lpfc_sli4_setup(struct lpfc_hba *phba) 11569 { 11570 struct lpfc_sli_ring *pring; 11571 11572 pring = phba->sli4_hba.els_wq->pring; 11573 pring->num_mask = LPFC_MAX_RING_MASK; 11574 pring->prt[0].profile = 0; /* Mask 0 */ 11575 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11576 pring->prt[0].type = FC_TYPE_ELS; 11577 pring->prt[0].lpfc_sli_rcv_unsol_event = 11578 lpfc_els_unsol_event; 11579 pring->prt[1].profile = 0; /* Mask 1 */ 11580 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11581 pring->prt[1].type = FC_TYPE_ELS; 11582 pring->prt[1].lpfc_sli_rcv_unsol_event = 11583 lpfc_els_unsol_event; 11584 pring->prt[2].profile = 0; /* Mask 2 */ 11585 /* NameServer Inquiry */ 11586 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11587 /* NameServer */ 11588 pring->prt[2].type = FC_TYPE_CT; 11589 pring->prt[2].lpfc_sli_rcv_unsol_event = 11590 lpfc_ct_unsol_event; 11591 pring->prt[3].profile = 0; /* Mask 3 */ 11592 /* NameServer response */ 11593 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11594 /* NameServer */ 11595 pring->prt[3].type = FC_TYPE_CT; 11596 pring->prt[3].lpfc_sli_rcv_unsol_event = 11597 lpfc_ct_unsol_event; 11598 return 0; 11599 } 11600 11601 /** 11602 * lpfc_sli_setup - SLI ring setup function 11603 * @phba: Pointer to HBA context object. 11604 * 11605 * lpfc_sli_setup sets up rings of the SLI interface with 11606 * number of iocbs per ring and iotags. This function is 11607 * called while driver attach to the HBA and before the 11608 * interrupts are enabled. So there is no need for locking. 11609 * 11610 * This function always returns 0. SLI3 only. 11611 **/ 11612 int 11613 lpfc_sli_setup(struct lpfc_hba *phba) 11614 { 11615 int i, totiocbsize = 0; 11616 struct lpfc_sli *psli = &phba->sli; 11617 struct lpfc_sli_ring *pring; 11618 11619 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11620 psli->sli_flag = 0; 11621 11622 psli->iocbq_lookup = NULL; 11623 psli->iocbq_lookup_len = 0; 11624 psli->last_iotag = 0; 11625 11626 for (i = 0; i < psli->num_rings; i++) { 11627 pring = &psli->sli3_ring[i]; 11628 switch (i) { 11629 case LPFC_FCP_RING: /* ring 0 - FCP */ 11630 /* numCiocb and numRiocb are used in config_port */ 11631 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11632 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11633 pring->sli.sli3.numCiocb += 11634 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11635 pring->sli.sli3.numRiocb += 11636 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11637 pring->sli.sli3.numCiocb += 11638 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11639 pring->sli.sli3.numRiocb += 11640 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11641 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11642 SLI3_IOCB_CMD_SIZE : 11643 SLI2_IOCB_CMD_SIZE; 11644 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11645 SLI3_IOCB_RSP_SIZE : 11646 SLI2_IOCB_RSP_SIZE; 11647 pring->iotag_ctr = 0; 11648 pring->iotag_max = 11649 (phba->cfg_hba_queue_depth * 2); 11650 pring->fast_iotag = pring->iotag_max; 11651 pring->num_mask = 0; 11652 break; 11653 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11654 /* numCiocb and numRiocb are used in config_port */ 11655 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11656 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11657 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11658 SLI3_IOCB_CMD_SIZE : 11659 SLI2_IOCB_CMD_SIZE; 11660 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11661 SLI3_IOCB_RSP_SIZE : 11662 SLI2_IOCB_RSP_SIZE; 11663 pring->iotag_max = phba->cfg_hba_queue_depth; 11664 pring->num_mask = 0; 11665 break; 11666 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11667 /* numCiocb and numRiocb are used in config_port */ 11668 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11669 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11670 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11671 SLI3_IOCB_CMD_SIZE : 11672 SLI2_IOCB_CMD_SIZE; 11673 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11674 SLI3_IOCB_RSP_SIZE : 11675 SLI2_IOCB_RSP_SIZE; 11676 pring->fast_iotag = 0; 11677 pring->iotag_ctr = 0; 11678 pring->iotag_max = 4096; 11679 pring->lpfc_sli_rcv_async_status = 11680 lpfc_sli_async_event_handler; 11681 pring->num_mask = LPFC_MAX_RING_MASK; 11682 pring->prt[0].profile = 0; /* Mask 0 */ 11683 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11684 pring->prt[0].type = FC_TYPE_ELS; 11685 pring->prt[0].lpfc_sli_rcv_unsol_event = 11686 lpfc_els_unsol_event; 11687 pring->prt[1].profile = 0; /* Mask 1 */ 11688 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11689 pring->prt[1].type = FC_TYPE_ELS; 11690 pring->prt[1].lpfc_sli_rcv_unsol_event = 11691 lpfc_els_unsol_event; 11692 pring->prt[2].profile = 0; /* Mask 2 */ 11693 /* NameServer Inquiry */ 11694 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11695 /* NameServer */ 11696 pring->prt[2].type = FC_TYPE_CT; 11697 pring->prt[2].lpfc_sli_rcv_unsol_event = 11698 lpfc_ct_unsol_event; 11699 pring->prt[3].profile = 0; /* Mask 3 */ 11700 /* NameServer response */ 11701 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11702 /* NameServer */ 11703 pring->prt[3].type = FC_TYPE_CT; 11704 pring->prt[3].lpfc_sli_rcv_unsol_event = 11705 lpfc_ct_unsol_event; 11706 break; 11707 } 11708 totiocbsize += (pring->sli.sli3.numCiocb * 11709 pring->sli.sli3.sizeCiocb) + 11710 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11711 } 11712 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11713 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11714 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11715 "SLI2 SLIM Data: x%x x%lx\n", 11716 phba->brd_no, totiocbsize, 11717 (unsigned long) MAX_SLIM_IOCB_SIZE); 11718 } 11719 if (phba->cfg_multi_ring_support == 2) 11720 lpfc_extra_ring_setup(phba); 11721 11722 return 0; 11723 } 11724 11725 /** 11726 * lpfc_sli4_queue_init - Queue initialization function 11727 * @phba: Pointer to HBA context object. 11728 * 11729 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11730 * ring. This function also initializes ring indices of each ring. 11731 * This function is called during the initialization of the SLI 11732 * interface of an HBA. 11733 * This function is called with no lock held and always returns 11734 * 1. 11735 **/ 11736 void 11737 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11738 { 11739 struct lpfc_sli *psli; 11740 struct lpfc_sli_ring *pring; 11741 int i; 11742 11743 psli = &phba->sli; 11744 spin_lock_irq(&phba->hbalock); 11745 INIT_LIST_HEAD(&psli->mboxq); 11746 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11747 /* Initialize list headers for txq and txcmplq as double linked lists */ 11748 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11749 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11750 pring->flag = 0; 11751 pring->ringno = LPFC_FCP_RING; 11752 pring->txcmplq_cnt = 0; 11753 INIT_LIST_HEAD(&pring->txq); 11754 INIT_LIST_HEAD(&pring->txcmplq); 11755 INIT_LIST_HEAD(&pring->iocb_continueq); 11756 spin_lock_init(&pring->ring_lock); 11757 } 11758 pring = phba->sli4_hba.els_wq->pring; 11759 pring->flag = 0; 11760 pring->ringno = LPFC_ELS_RING; 11761 pring->txcmplq_cnt = 0; 11762 INIT_LIST_HEAD(&pring->txq); 11763 INIT_LIST_HEAD(&pring->txcmplq); 11764 INIT_LIST_HEAD(&pring->iocb_continueq); 11765 spin_lock_init(&pring->ring_lock); 11766 11767 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11768 pring = phba->sli4_hba.nvmels_wq->pring; 11769 pring->flag = 0; 11770 pring->ringno = LPFC_ELS_RING; 11771 pring->txcmplq_cnt = 0; 11772 INIT_LIST_HEAD(&pring->txq); 11773 INIT_LIST_HEAD(&pring->txcmplq); 11774 INIT_LIST_HEAD(&pring->iocb_continueq); 11775 spin_lock_init(&pring->ring_lock); 11776 } 11777 11778 spin_unlock_irq(&phba->hbalock); 11779 } 11780 11781 /** 11782 * lpfc_sli_queue_init - Queue initialization function 11783 * @phba: Pointer to HBA context object. 11784 * 11785 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11786 * ring. This function also initializes ring indices of each ring. 11787 * This function is called during the initialization of the SLI 11788 * interface of an HBA. 11789 * This function is called with no lock held and always returns 11790 * 1. 11791 **/ 11792 void 11793 lpfc_sli_queue_init(struct lpfc_hba *phba) 11794 { 11795 struct lpfc_sli *psli; 11796 struct lpfc_sli_ring *pring; 11797 int i; 11798 11799 psli = &phba->sli; 11800 spin_lock_irq(&phba->hbalock); 11801 INIT_LIST_HEAD(&psli->mboxq); 11802 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11803 /* Initialize list headers for txq and txcmplq as double linked lists */ 11804 for (i = 0; i < psli->num_rings; i++) { 11805 pring = &psli->sli3_ring[i]; 11806 pring->ringno = i; 11807 pring->sli.sli3.next_cmdidx = 0; 11808 pring->sli.sli3.local_getidx = 0; 11809 pring->sli.sli3.cmdidx = 0; 11810 INIT_LIST_HEAD(&pring->iocb_continueq); 11811 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11812 INIT_LIST_HEAD(&pring->postbufq); 11813 pring->flag = 0; 11814 INIT_LIST_HEAD(&pring->txq); 11815 INIT_LIST_HEAD(&pring->txcmplq); 11816 spin_lock_init(&pring->ring_lock); 11817 } 11818 spin_unlock_irq(&phba->hbalock); 11819 } 11820 11821 /** 11822 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11823 * @phba: Pointer to HBA context object. 11824 * 11825 * This routine flushes the mailbox command subsystem. It will unconditionally 11826 * flush all the mailbox commands in the three possible stages in the mailbox 11827 * command sub-system: pending mailbox command queue; the outstanding mailbox 11828 * command; and completed mailbox command queue. It is caller's responsibility 11829 * to make sure that the driver is in the proper state to flush the mailbox 11830 * command sub-system. Namely, the posting of mailbox commands into the 11831 * pending mailbox command queue from the various clients must be stopped; 11832 * either the HBA is in a state that it will never works on the outstanding 11833 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11834 * mailbox command has been completed. 11835 **/ 11836 static void 11837 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11838 { 11839 LIST_HEAD(completions); 11840 struct lpfc_sli *psli = &phba->sli; 11841 LPFC_MBOXQ_t *pmb; 11842 unsigned long iflag; 11843 11844 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11845 local_bh_disable(); 11846 11847 /* Flush all the mailbox commands in the mbox system */ 11848 spin_lock_irqsave(&phba->hbalock, iflag); 11849 11850 /* The pending mailbox command queue */ 11851 list_splice_init(&phba->sli.mboxq, &completions); 11852 /* The outstanding active mailbox command */ 11853 if (psli->mbox_active) { 11854 list_add_tail(&psli->mbox_active->list, &completions); 11855 psli->mbox_active = NULL; 11856 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11857 } 11858 /* The completed mailbox command queue */ 11859 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11860 spin_unlock_irqrestore(&phba->hbalock, iflag); 11861 11862 /* Enable softirqs again, done with phba->hbalock */ 11863 local_bh_enable(); 11864 11865 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11866 while (!list_empty(&completions)) { 11867 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11868 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11869 if (pmb->mbox_cmpl) 11870 pmb->mbox_cmpl(phba, pmb); 11871 } 11872 } 11873 11874 /** 11875 * lpfc_sli_host_down - Vport cleanup function 11876 * @vport: Pointer to virtual port object. 11877 * 11878 * lpfc_sli_host_down is called to clean up the resources 11879 * associated with a vport before destroying virtual 11880 * port data structures. 11881 * This function does following operations: 11882 * - Free discovery resources associated with this virtual 11883 * port. 11884 * - Free iocbs associated with this virtual port in 11885 * the txq. 11886 * - Send abort for all iocb commands associated with this 11887 * vport in txcmplq. 11888 * 11889 * This function is called with no lock held and always returns 1. 11890 **/ 11891 int 11892 lpfc_sli_host_down(struct lpfc_vport *vport) 11893 { 11894 LIST_HEAD(completions); 11895 struct lpfc_hba *phba = vport->phba; 11896 struct lpfc_sli *psli = &phba->sli; 11897 struct lpfc_queue *qp = NULL; 11898 struct lpfc_sli_ring *pring; 11899 struct lpfc_iocbq *iocb, *next_iocb; 11900 int i; 11901 unsigned long flags = 0; 11902 uint16_t prev_pring_flag; 11903 11904 lpfc_cleanup_discovery_resources(vport); 11905 11906 spin_lock_irqsave(&phba->hbalock, flags); 11907 11908 /* 11909 * Error everything on the txq since these iocbs 11910 * have not been given to the FW yet. 11911 * Also issue ABTS for everything on the txcmplq 11912 */ 11913 if (phba->sli_rev != LPFC_SLI_REV4) { 11914 for (i = 0; i < psli->num_rings; i++) { 11915 pring = &psli->sli3_ring[i]; 11916 prev_pring_flag = pring->flag; 11917 /* Only slow rings */ 11918 if (pring->ringno == LPFC_ELS_RING) { 11919 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11920 /* Set the lpfc data pending flag */ 11921 set_bit(LPFC_DATA_READY, &phba->data_flags); 11922 } 11923 list_for_each_entry_safe(iocb, next_iocb, 11924 &pring->txq, list) { 11925 if (iocb->vport != vport) 11926 continue; 11927 list_move_tail(&iocb->list, &completions); 11928 } 11929 list_for_each_entry_safe(iocb, next_iocb, 11930 &pring->txcmplq, list) { 11931 if (iocb->vport != vport) 11932 continue; 11933 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11934 NULL); 11935 } 11936 pring->flag = prev_pring_flag; 11937 } 11938 } else { 11939 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11940 pring = qp->pring; 11941 if (!pring) 11942 continue; 11943 if (pring == phba->sli4_hba.els_wq->pring) { 11944 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11945 /* Set the lpfc data pending flag */ 11946 set_bit(LPFC_DATA_READY, &phba->data_flags); 11947 } 11948 prev_pring_flag = pring->flag; 11949 spin_lock(&pring->ring_lock); 11950 list_for_each_entry_safe(iocb, next_iocb, 11951 &pring->txq, list) { 11952 if (iocb->vport != vport) 11953 continue; 11954 list_move_tail(&iocb->list, &completions); 11955 } 11956 spin_unlock(&pring->ring_lock); 11957 list_for_each_entry_safe(iocb, next_iocb, 11958 &pring->txcmplq, list) { 11959 if (iocb->vport != vport) 11960 continue; 11961 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11962 NULL); 11963 } 11964 pring->flag = prev_pring_flag; 11965 } 11966 } 11967 spin_unlock_irqrestore(&phba->hbalock, flags); 11968 11969 /* Make sure HBA is alive */ 11970 lpfc_issue_hb_tmo(phba); 11971 11972 /* Cancel all the IOCBs from the completions list */ 11973 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11974 IOERR_SLI_DOWN); 11975 return 1; 11976 } 11977 11978 /** 11979 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11980 * @phba: Pointer to HBA context object. 11981 * 11982 * This function cleans up all iocb, buffers, mailbox commands 11983 * while shutting down the HBA. This function is called with no 11984 * lock held and always returns 1. 11985 * This function does the following to cleanup driver resources: 11986 * - Free discovery resources for each virtual port 11987 * - Cleanup any pending fabric iocbs 11988 * - Iterate through the iocb txq and free each entry 11989 * in the list. 11990 * - Free up any buffer posted to the HBA 11991 * - Free mailbox commands in the mailbox queue. 11992 **/ 11993 int 11994 lpfc_sli_hba_down(struct lpfc_hba *phba) 11995 { 11996 LIST_HEAD(completions); 11997 struct lpfc_sli *psli = &phba->sli; 11998 struct lpfc_queue *qp = NULL; 11999 struct lpfc_sli_ring *pring; 12000 struct lpfc_dmabuf *buf_ptr; 12001 unsigned long flags = 0; 12002 int i; 12003 12004 /* Shutdown the mailbox command sub-system */ 12005 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12006 12007 lpfc_hba_down_prep(phba); 12008 12009 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12010 local_bh_disable(); 12011 12012 lpfc_fabric_abort_hba(phba); 12013 12014 spin_lock_irqsave(&phba->hbalock, flags); 12015 12016 /* 12017 * Error everything on the txq since these iocbs 12018 * have not been given to the FW yet. 12019 */ 12020 if (phba->sli_rev != LPFC_SLI_REV4) { 12021 for (i = 0; i < psli->num_rings; i++) { 12022 pring = &psli->sli3_ring[i]; 12023 /* Only slow rings */ 12024 if (pring->ringno == LPFC_ELS_RING) { 12025 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12026 /* Set the lpfc data pending flag */ 12027 set_bit(LPFC_DATA_READY, &phba->data_flags); 12028 } 12029 list_splice_init(&pring->txq, &completions); 12030 } 12031 } else { 12032 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12033 pring = qp->pring; 12034 if (!pring) 12035 continue; 12036 spin_lock(&pring->ring_lock); 12037 list_splice_init(&pring->txq, &completions); 12038 spin_unlock(&pring->ring_lock); 12039 if (pring == phba->sli4_hba.els_wq->pring) { 12040 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12041 /* Set the lpfc data pending flag */ 12042 set_bit(LPFC_DATA_READY, &phba->data_flags); 12043 } 12044 } 12045 } 12046 spin_unlock_irqrestore(&phba->hbalock, flags); 12047 12048 /* Cancel all the IOCBs from the completions list */ 12049 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12050 IOERR_SLI_DOWN); 12051 12052 spin_lock_irqsave(&phba->hbalock, flags); 12053 list_splice_init(&phba->elsbuf, &completions); 12054 phba->elsbuf_cnt = 0; 12055 phba->elsbuf_prev_cnt = 0; 12056 spin_unlock_irqrestore(&phba->hbalock, flags); 12057 12058 while (!list_empty(&completions)) { 12059 list_remove_head(&completions, buf_ptr, 12060 struct lpfc_dmabuf, list); 12061 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12062 kfree(buf_ptr); 12063 } 12064 12065 /* Enable softirqs again, done with phba->hbalock */ 12066 local_bh_enable(); 12067 12068 /* Return any active mbox cmds */ 12069 del_timer_sync(&psli->mbox_tmo); 12070 12071 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12072 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12073 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12074 12075 return 1; 12076 } 12077 12078 /** 12079 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12080 * @srcp: Source memory pointer. 12081 * @destp: Destination memory pointer. 12082 * @cnt: Number of words required to be copied. 12083 * 12084 * This function is used for copying data between driver memory 12085 * and the SLI memory. This function also changes the endianness 12086 * of each word if native endianness is different from SLI 12087 * endianness. This function can be called with or without 12088 * lock. 12089 **/ 12090 void 12091 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12092 { 12093 uint32_t *src = srcp; 12094 uint32_t *dest = destp; 12095 uint32_t ldata; 12096 int i; 12097 12098 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12099 ldata = *src; 12100 ldata = le32_to_cpu(ldata); 12101 *dest = ldata; 12102 src++; 12103 dest++; 12104 } 12105 } 12106 12107 12108 /** 12109 * lpfc_sli_bemem_bcopy - SLI memory copy function 12110 * @srcp: Source memory pointer. 12111 * @destp: Destination memory pointer. 12112 * @cnt: Number of words required to be copied. 12113 * 12114 * This function is used for copying data between a data structure 12115 * with big endian representation to local endianness. 12116 * This function can be called with or without lock. 12117 **/ 12118 void 12119 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12120 { 12121 uint32_t *src = srcp; 12122 uint32_t *dest = destp; 12123 uint32_t ldata; 12124 int i; 12125 12126 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12127 ldata = *src; 12128 ldata = be32_to_cpu(ldata); 12129 *dest = ldata; 12130 src++; 12131 dest++; 12132 } 12133 } 12134 12135 /** 12136 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12137 * @phba: Pointer to HBA context object. 12138 * @pring: Pointer to driver SLI ring object. 12139 * @mp: Pointer to driver buffer object. 12140 * 12141 * This function is called with no lock held. 12142 * It always return zero after adding the buffer to the postbufq 12143 * buffer list. 12144 **/ 12145 int 12146 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12147 struct lpfc_dmabuf *mp) 12148 { 12149 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12150 later */ 12151 spin_lock_irq(&phba->hbalock); 12152 list_add_tail(&mp->list, &pring->postbufq); 12153 pring->postbufq_cnt++; 12154 spin_unlock_irq(&phba->hbalock); 12155 return 0; 12156 } 12157 12158 /** 12159 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12160 * @phba: Pointer to HBA context object. 12161 * 12162 * When HBQ is enabled, buffers are searched based on tags. This function 12163 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12164 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12165 * does not conflict with tags of buffer posted for unsolicited events. 12166 * The function returns the allocated tag. The function is called with 12167 * no locks held. 12168 **/ 12169 uint32_t 12170 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12171 { 12172 spin_lock_irq(&phba->hbalock); 12173 phba->buffer_tag_count++; 12174 /* 12175 * Always set the QUE_BUFTAG_BIT to distiguish between 12176 * a tag assigned by HBQ. 12177 */ 12178 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12179 spin_unlock_irq(&phba->hbalock); 12180 return phba->buffer_tag_count; 12181 } 12182 12183 /** 12184 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12185 * @phba: Pointer to HBA context object. 12186 * @pring: Pointer to driver SLI ring object. 12187 * @tag: Buffer tag. 12188 * 12189 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12190 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12191 * iocb is posted to the response ring with the tag of the buffer. 12192 * This function searches the pring->postbufq list using the tag 12193 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12194 * iocb. If the buffer is found then lpfc_dmabuf object of the 12195 * buffer is returned to the caller else NULL is returned. 12196 * This function is called with no lock held. 12197 **/ 12198 struct lpfc_dmabuf * 12199 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12200 uint32_t tag) 12201 { 12202 struct lpfc_dmabuf *mp, *next_mp; 12203 struct list_head *slp = &pring->postbufq; 12204 12205 /* Search postbufq, from the beginning, looking for a match on tag */ 12206 spin_lock_irq(&phba->hbalock); 12207 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12208 if (mp->buffer_tag == tag) { 12209 list_del_init(&mp->list); 12210 pring->postbufq_cnt--; 12211 spin_unlock_irq(&phba->hbalock); 12212 return mp; 12213 } 12214 } 12215 12216 spin_unlock_irq(&phba->hbalock); 12217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12218 "0402 Cannot find virtual addr for buffer tag on " 12219 "ring %d Data x%lx x%px x%px x%x\n", 12220 pring->ringno, (unsigned long) tag, 12221 slp->next, slp->prev, pring->postbufq_cnt); 12222 12223 return NULL; 12224 } 12225 12226 /** 12227 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12228 * @phba: Pointer to HBA context object. 12229 * @pring: Pointer to driver SLI ring object. 12230 * @phys: DMA address of the buffer. 12231 * 12232 * This function searches the buffer list using the dma_address 12233 * of unsolicited event to find the driver's lpfc_dmabuf object 12234 * corresponding to the dma_address. The function returns the 12235 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12236 * This function is called by the ct and els unsolicited event 12237 * handlers to get the buffer associated with the unsolicited 12238 * event. 12239 * 12240 * This function is called with no lock held. 12241 **/ 12242 struct lpfc_dmabuf * 12243 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12244 dma_addr_t phys) 12245 { 12246 struct lpfc_dmabuf *mp, *next_mp; 12247 struct list_head *slp = &pring->postbufq; 12248 12249 /* Search postbufq, from the beginning, looking for a match on phys */ 12250 spin_lock_irq(&phba->hbalock); 12251 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12252 if (mp->phys == phys) { 12253 list_del_init(&mp->list); 12254 pring->postbufq_cnt--; 12255 spin_unlock_irq(&phba->hbalock); 12256 return mp; 12257 } 12258 } 12259 12260 spin_unlock_irq(&phba->hbalock); 12261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12262 "0410 Cannot find virtual addr for mapped buf on " 12263 "ring %d Data x%llx x%px x%px x%x\n", 12264 pring->ringno, (unsigned long long)phys, 12265 slp->next, slp->prev, pring->postbufq_cnt); 12266 return NULL; 12267 } 12268 12269 /** 12270 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12271 * @phba: Pointer to HBA context object. 12272 * @cmdiocb: Pointer to driver command iocb object. 12273 * @rspiocb: Pointer to driver response iocb object. 12274 * 12275 * This function is the completion handler for the abort iocbs for 12276 * ELS commands. This function is called from the ELS ring event 12277 * handler with no lock held. This function frees memory resources 12278 * associated with the abort iocb. 12279 **/ 12280 static void 12281 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12282 struct lpfc_iocbq *rspiocb) 12283 { 12284 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12285 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12286 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12287 12288 if (ulp_status) { 12289 /* 12290 * Assume that the port already completed and returned, or 12291 * will return the iocb. Just Log the message. 12292 */ 12293 if (phba->sli_rev < LPFC_SLI_REV4) { 12294 if (cmnd == CMD_ABORT_XRI_CX && 12295 ulp_status == IOSTAT_LOCAL_REJECT && 12296 ulp_word4 == IOERR_ABORT_REQUESTED) { 12297 goto release_iocb; 12298 } 12299 } 12300 12301 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12302 "0327 Cannot abort els iocb x%px " 12303 "with io cmd xri %x abort tag : x%x, " 12304 "abort status %x abort code %x\n", 12305 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12306 (phba->sli_rev == LPFC_SLI_REV4) ? 12307 get_wqe_reqtag(cmdiocb) : 12308 cmdiocb->iocb.un.acxri.abortContextTag, 12309 ulp_status, ulp_word4); 12310 12311 } 12312 release_iocb: 12313 lpfc_sli_release_iocbq(phba, cmdiocb); 12314 return; 12315 } 12316 12317 /** 12318 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12319 * @phba: Pointer to HBA context object. 12320 * @cmdiocb: Pointer to driver command iocb object. 12321 * @rspiocb: Pointer to driver response iocb object. 12322 * 12323 * The function is called from SLI ring event handler with no 12324 * lock held. This function is the completion handler for ELS commands 12325 * which are aborted. The function frees memory resources used for 12326 * the aborted ELS commands. 12327 **/ 12328 void 12329 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12330 struct lpfc_iocbq *rspiocb) 12331 { 12332 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12333 IOCB_t *irsp; 12334 LPFC_MBOXQ_t *mbox; 12335 u32 ulp_command, ulp_status, ulp_word4, iotag; 12336 12337 ulp_command = get_job_cmnd(phba, cmdiocb); 12338 ulp_status = get_job_ulpstatus(phba, rspiocb); 12339 ulp_word4 = get_job_word4(phba, rspiocb); 12340 12341 if (phba->sli_rev == LPFC_SLI_REV4) { 12342 iotag = get_wqe_reqtag(cmdiocb); 12343 } else { 12344 irsp = &rspiocb->iocb; 12345 iotag = irsp->ulpIoTag; 12346 12347 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12348 * The MBX_REG_LOGIN64 mbox command is freed back to the 12349 * mbox_mem_pool here. 12350 */ 12351 if (cmdiocb->context_un.mbox) { 12352 mbox = cmdiocb->context_un.mbox; 12353 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12354 cmdiocb->context_un.mbox = NULL; 12355 } 12356 } 12357 12358 /* ELS cmd tag <ulpIoTag> completes */ 12359 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12360 "0139 Ignoring ELS cmd code x%x completion Data: " 12361 "x%x x%x x%x x%px\n", 12362 ulp_command, ulp_status, ulp_word4, iotag, 12363 cmdiocb->ndlp); 12364 /* 12365 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12366 * if exchange is busy. 12367 */ 12368 if (ulp_command == CMD_GEN_REQUEST64_CR) 12369 lpfc_ct_free_iocb(phba, cmdiocb); 12370 else 12371 lpfc_els_free_iocb(phba, cmdiocb); 12372 12373 lpfc_nlp_put(ndlp); 12374 } 12375 12376 /** 12377 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12378 * @phba: Pointer to HBA context object. 12379 * @pring: Pointer to driver SLI ring object. 12380 * @cmdiocb: Pointer to driver command iocb object. 12381 * @cmpl: completion function. 12382 * 12383 * This function issues an abort iocb for the provided command iocb. In case 12384 * of unloading, the abort iocb will not be issued to commands on the ELS 12385 * ring. Instead, the callback function shall be changed to those commands 12386 * so that nothing happens when them finishes. This function is called with 12387 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12388 * when the command iocb is an abort request. 12389 * 12390 **/ 12391 int 12392 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12393 struct lpfc_iocbq *cmdiocb, void *cmpl) 12394 { 12395 struct lpfc_vport *vport = cmdiocb->vport; 12396 struct lpfc_iocbq *abtsiocbp; 12397 int retval = IOCB_ERROR; 12398 unsigned long iflags; 12399 struct lpfc_nodelist *ndlp = NULL; 12400 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12401 u16 ulp_context, iotag; 12402 bool ia; 12403 12404 /* 12405 * There are certain command types we don't want to abort. And we 12406 * don't want to abort commands that are already in the process of 12407 * being aborted. 12408 */ 12409 if (ulp_command == CMD_ABORT_XRI_WQE || 12410 ulp_command == CMD_ABORT_XRI_CN || 12411 ulp_command == CMD_CLOSE_XRI_CN || 12412 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12413 return IOCB_ABORTING; 12414 12415 if (!pring) { 12416 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12417 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12418 else 12419 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12420 return retval; 12421 } 12422 12423 /* 12424 * If we're unloading, don't abort iocb on the ELS ring, but change 12425 * the callback so that nothing happens when it finishes. 12426 */ 12427 if ((vport->load_flag & FC_UNLOADING) && 12428 pring->ringno == LPFC_ELS_RING) { 12429 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12430 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12431 else 12432 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12433 return retval; 12434 } 12435 12436 /* issue ABTS for this IOCB based on iotag */ 12437 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12438 if (abtsiocbp == NULL) 12439 return IOCB_NORESOURCE; 12440 12441 /* This signals the response to set the correct status 12442 * before calling the completion handler 12443 */ 12444 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12445 12446 if (phba->sli_rev == LPFC_SLI_REV4) { 12447 ulp_context = cmdiocb->sli4_xritag; 12448 iotag = abtsiocbp->iotag; 12449 } else { 12450 iotag = cmdiocb->iocb.ulpIoTag; 12451 if (pring->ringno == LPFC_ELS_RING) { 12452 ndlp = cmdiocb->ndlp; 12453 ulp_context = ndlp->nlp_rpi; 12454 } else { 12455 ulp_context = cmdiocb->iocb.ulpContext; 12456 } 12457 } 12458 12459 if (phba->link_state < LPFC_LINK_UP || 12460 (phba->sli_rev == LPFC_SLI_REV4 && 12461 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12462 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12463 ia = true; 12464 else 12465 ia = false; 12466 12467 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12468 cmdiocb->iocb.ulpClass, 12469 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12470 12471 abtsiocbp->vport = vport; 12472 12473 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12474 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12475 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12476 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12477 12478 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12479 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12480 12481 if (cmpl) 12482 abtsiocbp->cmd_cmpl = cmpl; 12483 else 12484 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12485 abtsiocbp->vport = vport; 12486 12487 if (phba->sli_rev == LPFC_SLI_REV4) { 12488 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12489 if (unlikely(pring == NULL)) 12490 goto abort_iotag_exit; 12491 /* Note: both hbalock and ring_lock need to be set here */ 12492 spin_lock_irqsave(&pring->ring_lock, iflags); 12493 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12494 abtsiocbp, 0); 12495 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12496 } else { 12497 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12498 abtsiocbp, 0); 12499 } 12500 12501 abort_iotag_exit: 12502 12503 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12504 "0339 Abort IO XRI x%x, Original iotag x%x, " 12505 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12506 "retval x%x\n", 12507 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12508 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12509 retval); 12510 if (retval) { 12511 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12512 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12513 } 12514 12515 /* 12516 * Caller to this routine should check for IOCB_ERROR 12517 * and handle it properly. This routine no longer removes 12518 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12519 */ 12520 return retval; 12521 } 12522 12523 /** 12524 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12525 * @phba: pointer to lpfc HBA data structure. 12526 * 12527 * This routine will abort all pending and outstanding iocbs to an HBA. 12528 **/ 12529 void 12530 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12531 { 12532 struct lpfc_sli *psli = &phba->sli; 12533 struct lpfc_sli_ring *pring; 12534 struct lpfc_queue *qp = NULL; 12535 int i; 12536 12537 if (phba->sli_rev != LPFC_SLI_REV4) { 12538 for (i = 0; i < psli->num_rings; i++) { 12539 pring = &psli->sli3_ring[i]; 12540 lpfc_sli_abort_iocb_ring(phba, pring); 12541 } 12542 return; 12543 } 12544 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12545 pring = qp->pring; 12546 if (!pring) 12547 continue; 12548 lpfc_sli_abort_iocb_ring(phba, pring); 12549 } 12550 } 12551 12552 /** 12553 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12554 * @iocbq: Pointer to iocb object. 12555 * @vport: Pointer to driver virtual port object. 12556 * 12557 * This function acts as an iocb filter for functions which abort FCP iocbs. 12558 * 12559 * Return values 12560 * -ENODEV, if a null iocb or vport ptr is encountered 12561 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12562 * driver already started the abort process, or is an abort iocb itself 12563 * 0, passes criteria for aborting the FCP I/O iocb 12564 **/ 12565 static int 12566 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12567 struct lpfc_vport *vport) 12568 { 12569 u8 ulp_command; 12570 12571 /* No null ptr vports */ 12572 if (!iocbq || iocbq->vport != vport) 12573 return -ENODEV; 12574 12575 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12576 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12577 */ 12578 ulp_command = get_job_cmnd(vport->phba, iocbq); 12579 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12580 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12581 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12582 (ulp_command == CMD_ABORT_XRI_CN || 12583 ulp_command == CMD_CLOSE_XRI_CN || 12584 ulp_command == CMD_ABORT_XRI_WQE)) 12585 return -EINVAL; 12586 12587 return 0; 12588 } 12589 12590 /** 12591 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12592 * @iocbq: Pointer to driver iocb object. 12593 * @vport: Pointer to driver virtual port object. 12594 * @tgt_id: SCSI ID of the target. 12595 * @lun_id: LUN ID of the scsi device. 12596 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12597 * 12598 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12599 * host. 12600 * 12601 * It will return 12602 * 0 if the filtering criteria is met for the given iocb and will return 12603 * 1 if the filtering criteria is not met. 12604 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12605 * given iocb is for the SCSI device specified by vport, tgt_id and 12606 * lun_id parameter. 12607 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12608 * given iocb is for the SCSI target specified by vport and tgt_id 12609 * parameters. 12610 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12611 * given iocb is for the SCSI host associated with the given vport. 12612 * This function is called with no locks held. 12613 **/ 12614 static int 12615 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12616 uint16_t tgt_id, uint64_t lun_id, 12617 lpfc_ctx_cmd ctx_cmd) 12618 { 12619 struct lpfc_io_buf *lpfc_cmd; 12620 int rc = 1; 12621 12622 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12623 12624 if (lpfc_cmd->pCmd == NULL) 12625 return rc; 12626 12627 switch (ctx_cmd) { 12628 case LPFC_CTX_LUN: 12629 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12630 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12631 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12632 rc = 0; 12633 break; 12634 case LPFC_CTX_TGT: 12635 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12636 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12637 rc = 0; 12638 break; 12639 case LPFC_CTX_HOST: 12640 rc = 0; 12641 break; 12642 default: 12643 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12644 __func__, ctx_cmd); 12645 break; 12646 } 12647 12648 return rc; 12649 } 12650 12651 /** 12652 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12653 * @vport: Pointer to virtual port. 12654 * @tgt_id: SCSI ID of the target. 12655 * @lun_id: LUN ID of the scsi device. 12656 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12657 * 12658 * This function returns number of FCP commands pending for the vport. 12659 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12660 * commands pending on the vport associated with SCSI device specified 12661 * by tgt_id and lun_id parameters. 12662 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12663 * commands pending on the vport associated with SCSI target specified 12664 * by tgt_id parameter. 12665 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12666 * commands pending on the vport. 12667 * This function returns the number of iocbs which satisfy the filter. 12668 * This function is called without any lock held. 12669 **/ 12670 int 12671 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12672 lpfc_ctx_cmd ctx_cmd) 12673 { 12674 struct lpfc_hba *phba = vport->phba; 12675 struct lpfc_iocbq *iocbq; 12676 int sum, i; 12677 unsigned long iflags; 12678 u8 ulp_command; 12679 12680 spin_lock_irqsave(&phba->hbalock, iflags); 12681 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12682 iocbq = phba->sli.iocbq_lookup[i]; 12683 12684 if (!iocbq || iocbq->vport != vport) 12685 continue; 12686 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12687 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12688 continue; 12689 12690 /* Include counting outstanding aborts */ 12691 ulp_command = get_job_cmnd(phba, iocbq); 12692 if (ulp_command == CMD_ABORT_XRI_CN || 12693 ulp_command == CMD_CLOSE_XRI_CN || 12694 ulp_command == CMD_ABORT_XRI_WQE) { 12695 sum++; 12696 continue; 12697 } 12698 12699 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12700 ctx_cmd) == 0) 12701 sum++; 12702 } 12703 spin_unlock_irqrestore(&phba->hbalock, iflags); 12704 12705 return sum; 12706 } 12707 12708 /** 12709 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12710 * @phba: Pointer to HBA context object 12711 * @cmdiocb: Pointer to command iocb object. 12712 * @rspiocb: Pointer to response iocb object. 12713 * 12714 * This function is called when an aborted FCP iocb completes. This 12715 * function is called by the ring event handler with no lock held. 12716 * This function frees the iocb. 12717 **/ 12718 void 12719 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12720 struct lpfc_iocbq *rspiocb) 12721 { 12722 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12723 "3096 ABORT_XRI_CX completing on rpi x%x " 12724 "original iotag x%x, abort cmd iotag x%x " 12725 "status 0x%x, reason 0x%x\n", 12726 (phba->sli_rev == LPFC_SLI_REV4) ? 12727 cmdiocb->sli4_xritag : 12728 cmdiocb->iocb.un.acxri.abortContextTag, 12729 get_job_abtsiotag(phba, cmdiocb), 12730 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12731 get_job_word4(phba, rspiocb)); 12732 lpfc_sli_release_iocbq(phba, cmdiocb); 12733 return; 12734 } 12735 12736 /** 12737 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12738 * @vport: Pointer to virtual port. 12739 * @tgt_id: SCSI ID of the target. 12740 * @lun_id: LUN ID of the scsi device. 12741 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12742 * 12743 * This function sends an abort command for every SCSI command 12744 * associated with the given virtual port pending on the ring 12745 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12746 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12747 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12748 * followed by lpfc_sli_validate_fcp_iocb. 12749 * 12750 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12751 * FCP iocbs associated with lun specified by tgt_id and lun_id 12752 * parameters 12753 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12754 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12755 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12756 * FCP iocbs associated with virtual port. 12757 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12758 * lpfc_sli4_calc_ring is used. 12759 * This function returns number of iocbs it failed to abort. 12760 * This function is called with no locks held. 12761 **/ 12762 int 12763 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12764 lpfc_ctx_cmd abort_cmd) 12765 { 12766 struct lpfc_hba *phba = vport->phba; 12767 struct lpfc_sli_ring *pring = NULL; 12768 struct lpfc_iocbq *iocbq; 12769 int errcnt = 0, ret_val = 0; 12770 unsigned long iflags; 12771 int i; 12772 12773 /* all I/Os are in process of being flushed */ 12774 if (phba->hba_flag & HBA_IOQ_FLUSH) 12775 return errcnt; 12776 12777 for (i = 1; i <= phba->sli.last_iotag; i++) { 12778 iocbq = phba->sli.iocbq_lookup[i]; 12779 12780 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12781 continue; 12782 12783 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12784 abort_cmd) != 0) 12785 continue; 12786 12787 spin_lock_irqsave(&phba->hbalock, iflags); 12788 if (phba->sli_rev == LPFC_SLI_REV3) { 12789 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12790 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12791 pring = lpfc_sli4_calc_ring(phba, iocbq); 12792 } 12793 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12794 lpfc_sli_abort_fcp_cmpl); 12795 spin_unlock_irqrestore(&phba->hbalock, iflags); 12796 if (ret_val != IOCB_SUCCESS) 12797 errcnt++; 12798 } 12799 12800 return errcnt; 12801 } 12802 12803 /** 12804 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12805 * @vport: Pointer to virtual port. 12806 * @pring: Pointer to driver SLI ring object. 12807 * @tgt_id: SCSI ID of the target. 12808 * @lun_id: LUN ID of the scsi device. 12809 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12810 * 12811 * This function sends an abort command for every SCSI command 12812 * associated with the given virtual port pending on the ring 12813 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12814 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12815 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12816 * followed by lpfc_sli_validate_fcp_iocb. 12817 * 12818 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12819 * FCP iocbs associated with lun specified by tgt_id and lun_id 12820 * parameters 12821 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12822 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12823 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12824 * FCP iocbs associated with virtual port. 12825 * This function returns number of iocbs it aborted . 12826 * This function is called with no locks held right after a taskmgmt 12827 * command is sent. 12828 **/ 12829 int 12830 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12831 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12832 { 12833 struct lpfc_hba *phba = vport->phba; 12834 struct lpfc_io_buf *lpfc_cmd; 12835 struct lpfc_iocbq *abtsiocbq; 12836 struct lpfc_nodelist *ndlp = NULL; 12837 struct lpfc_iocbq *iocbq; 12838 int sum, i, ret_val; 12839 unsigned long iflags; 12840 struct lpfc_sli_ring *pring_s4 = NULL; 12841 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12842 bool ia; 12843 12844 spin_lock_irqsave(&phba->hbalock, iflags); 12845 12846 /* all I/Os are in process of being flushed */ 12847 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12848 spin_unlock_irqrestore(&phba->hbalock, iflags); 12849 return 0; 12850 } 12851 sum = 0; 12852 12853 for (i = 1; i <= phba->sli.last_iotag; i++) { 12854 iocbq = phba->sli.iocbq_lookup[i]; 12855 12856 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12857 continue; 12858 12859 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12860 cmd) != 0) 12861 continue; 12862 12863 /* Guard against IO completion being called at same time */ 12864 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12865 spin_lock(&lpfc_cmd->buf_lock); 12866 12867 if (!lpfc_cmd->pCmd) { 12868 spin_unlock(&lpfc_cmd->buf_lock); 12869 continue; 12870 } 12871 12872 if (phba->sli_rev == LPFC_SLI_REV4) { 12873 pring_s4 = 12874 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12875 if (!pring_s4) { 12876 spin_unlock(&lpfc_cmd->buf_lock); 12877 continue; 12878 } 12879 /* Note: both hbalock and ring_lock must be set here */ 12880 spin_lock(&pring_s4->ring_lock); 12881 } 12882 12883 /* 12884 * If the iocbq is already being aborted, don't take a second 12885 * action, but do count it. 12886 */ 12887 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12888 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12889 if (phba->sli_rev == LPFC_SLI_REV4) 12890 spin_unlock(&pring_s4->ring_lock); 12891 spin_unlock(&lpfc_cmd->buf_lock); 12892 continue; 12893 } 12894 12895 /* issue ABTS for this IOCB based on iotag */ 12896 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12897 if (!abtsiocbq) { 12898 if (phba->sli_rev == LPFC_SLI_REV4) 12899 spin_unlock(&pring_s4->ring_lock); 12900 spin_unlock(&lpfc_cmd->buf_lock); 12901 continue; 12902 } 12903 12904 if (phba->sli_rev == LPFC_SLI_REV4) { 12905 iotag = abtsiocbq->iotag; 12906 ulp_context = iocbq->sli4_xritag; 12907 cqid = lpfc_cmd->hdwq->io_cq_map; 12908 } else { 12909 iotag = iocbq->iocb.ulpIoTag; 12910 if (pring->ringno == LPFC_ELS_RING) { 12911 ndlp = iocbq->ndlp; 12912 ulp_context = ndlp->nlp_rpi; 12913 } else { 12914 ulp_context = iocbq->iocb.ulpContext; 12915 } 12916 } 12917 12918 ndlp = lpfc_cmd->rdata->pnode; 12919 12920 if (lpfc_is_link_up(phba) && 12921 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12922 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12923 ia = false; 12924 else 12925 ia = true; 12926 12927 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12928 iocbq->iocb.ulpClass, cqid, 12929 ia, false); 12930 12931 abtsiocbq->vport = vport; 12932 12933 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12934 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12935 if (iocbq->cmd_flag & LPFC_IO_FCP) 12936 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12937 if (iocbq->cmd_flag & LPFC_IO_FOF) 12938 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12939 12940 /* Setup callback routine and issue the command. */ 12941 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12942 12943 /* 12944 * Indicate the IO is being aborted by the driver and set 12945 * the caller's flag into the aborted IO. 12946 */ 12947 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12948 12949 if (phba->sli_rev == LPFC_SLI_REV4) { 12950 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12951 abtsiocbq, 0); 12952 spin_unlock(&pring_s4->ring_lock); 12953 } else { 12954 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12955 abtsiocbq, 0); 12956 } 12957 12958 spin_unlock(&lpfc_cmd->buf_lock); 12959 12960 if (ret_val == IOCB_ERROR) 12961 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12962 else 12963 sum++; 12964 } 12965 spin_unlock_irqrestore(&phba->hbalock, iflags); 12966 return sum; 12967 } 12968 12969 /** 12970 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12971 * @phba: Pointer to HBA context object. 12972 * @cmdiocbq: Pointer to command iocb. 12973 * @rspiocbq: Pointer to response iocb. 12974 * 12975 * This function is the completion handler for iocbs issued using 12976 * lpfc_sli_issue_iocb_wait function. This function is called by the 12977 * ring event handler function without any lock held. This function 12978 * can be called from both worker thread context and interrupt 12979 * context. This function also can be called from other thread which 12980 * cleans up the SLI layer objects. 12981 * This function copy the contents of the response iocb to the 12982 * response iocb memory object provided by the caller of 12983 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12984 * sleeps for the iocb completion. 12985 **/ 12986 static void 12987 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12988 struct lpfc_iocbq *cmdiocbq, 12989 struct lpfc_iocbq *rspiocbq) 12990 { 12991 wait_queue_head_t *pdone_q; 12992 unsigned long iflags; 12993 struct lpfc_io_buf *lpfc_cmd; 12994 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12995 12996 spin_lock_irqsave(&phba->hbalock, iflags); 12997 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12998 12999 /* 13000 * A time out has occurred for the iocb. If a time out 13001 * completion handler has been supplied, call it. Otherwise, 13002 * just free the iocbq. 13003 */ 13004 13005 spin_unlock_irqrestore(&phba->hbalock, iflags); 13006 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13007 cmdiocbq->wait_cmd_cmpl = NULL; 13008 if (cmdiocbq->cmd_cmpl) 13009 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13010 else 13011 lpfc_sli_release_iocbq(phba, cmdiocbq); 13012 return; 13013 } 13014 13015 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13016 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13017 if (cmdiocbq->rsp_iocb && rspiocbq) 13018 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13019 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13020 13021 /* Set the exchange busy flag for task management commands */ 13022 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13023 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13024 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13025 cur_iocbq); 13026 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13027 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13028 else 13029 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13030 } 13031 13032 pdone_q = cmdiocbq->context_un.wait_queue; 13033 if (pdone_q) 13034 wake_up(pdone_q); 13035 spin_unlock_irqrestore(&phba->hbalock, iflags); 13036 return; 13037 } 13038 13039 /** 13040 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13041 * @phba: Pointer to HBA context object.. 13042 * @piocbq: Pointer to command iocb. 13043 * @flag: Flag to test. 13044 * 13045 * This routine grabs the hbalock and then test the cmd_flag to 13046 * see if the passed in flag is set. 13047 * Returns: 13048 * 1 if flag is set. 13049 * 0 if flag is not set. 13050 **/ 13051 static int 13052 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13053 struct lpfc_iocbq *piocbq, uint32_t flag) 13054 { 13055 unsigned long iflags; 13056 int ret; 13057 13058 spin_lock_irqsave(&phba->hbalock, iflags); 13059 ret = piocbq->cmd_flag & flag; 13060 spin_unlock_irqrestore(&phba->hbalock, iflags); 13061 return ret; 13062 13063 } 13064 13065 /** 13066 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13067 * @phba: Pointer to HBA context object.. 13068 * @ring_number: Ring number 13069 * @piocb: Pointer to command iocb. 13070 * @prspiocbq: Pointer to response iocb. 13071 * @timeout: Timeout in number of seconds. 13072 * 13073 * This function issues the iocb to firmware and waits for the 13074 * iocb to complete. The cmd_cmpl field of the shall be used 13075 * to handle iocbs which time out. If the field is NULL, the 13076 * function shall free the iocbq structure. If more clean up is 13077 * needed, the caller is expected to provide a completion function 13078 * that will provide the needed clean up. If the iocb command is 13079 * not completed within timeout seconds, the function will either 13080 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13081 * completion function set in the cmd_cmpl field and then return 13082 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13083 * resources if this function returns IOCB_TIMEDOUT. 13084 * The function waits for the iocb completion using an 13085 * non-interruptible wait. 13086 * This function will sleep while waiting for iocb completion. 13087 * So, this function should not be called from any context which 13088 * does not allow sleeping. Due to the same reason, this function 13089 * cannot be called with interrupt disabled. 13090 * This function assumes that the iocb completions occur while 13091 * this function sleep. So, this function cannot be called from 13092 * the thread which process iocb completion for this ring. 13093 * This function clears the cmd_flag of the iocb object before 13094 * issuing the iocb and the iocb completion handler sets this 13095 * flag and wakes this thread when the iocb completes. 13096 * The contents of the response iocb will be copied to prspiocbq 13097 * by the completion handler when the command completes. 13098 * This function returns IOCB_SUCCESS when success. 13099 * This function is called with no lock held. 13100 **/ 13101 int 13102 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13103 uint32_t ring_number, 13104 struct lpfc_iocbq *piocb, 13105 struct lpfc_iocbq *prspiocbq, 13106 uint32_t timeout) 13107 { 13108 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13109 long timeleft, timeout_req = 0; 13110 int retval = IOCB_SUCCESS; 13111 uint32_t creg_val; 13112 struct lpfc_iocbq *iocb; 13113 int txq_cnt = 0; 13114 int txcmplq_cnt = 0; 13115 struct lpfc_sli_ring *pring; 13116 unsigned long iflags; 13117 bool iocb_completed = true; 13118 13119 if (phba->sli_rev >= LPFC_SLI_REV4) { 13120 lpfc_sli_prep_wqe(phba, piocb); 13121 13122 pring = lpfc_sli4_calc_ring(phba, piocb); 13123 } else 13124 pring = &phba->sli.sli3_ring[ring_number]; 13125 /* 13126 * If the caller has provided a response iocbq buffer, then rsp_iocb 13127 * is NULL or its an error. 13128 */ 13129 if (prspiocbq) { 13130 if (piocb->rsp_iocb) 13131 return IOCB_ERROR; 13132 piocb->rsp_iocb = prspiocbq; 13133 } 13134 13135 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13136 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13137 piocb->context_un.wait_queue = &done_q; 13138 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13139 13140 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13141 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13142 return IOCB_ERROR; 13143 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13144 writel(creg_val, phba->HCregaddr); 13145 readl(phba->HCregaddr); /* flush */ 13146 } 13147 13148 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13149 SLI_IOCB_RET_IOCB); 13150 if (retval == IOCB_SUCCESS) { 13151 timeout_req = msecs_to_jiffies(timeout * 1000); 13152 timeleft = wait_event_timeout(done_q, 13153 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13154 timeout_req); 13155 spin_lock_irqsave(&phba->hbalock, iflags); 13156 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13157 13158 /* 13159 * IOCB timed out. Inform the wake iocb wait 13160 * completion function and set local status 13161 */ 13162 13163 iocb_completed = false; 13164 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13165 } 13166 spin_unlock_irqrestore(&phba->hbalock, iflags); 13167 if (iocb_completed) { 13168 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13169 "0331 IOCB wake signaled\n"); 13170 /* Note: we are not indicating if the IOCB has a success 13171 * status or not - that's for the caller to check. 13172 * IOCB_SUCCESS means just that the command was sent and 13173 * completed. Not that it completed successfully. 13174 * */ 13175 } else if (timeleft == 0) { 13176 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13177 "0338 IOCB wait timeout error - no " 13178 "wake response Data x%x\n", timeout); 13179 retval = IOCB_TIMEDOUT; 13180 } else { 13181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13182 "0330 IOCB wake NOT set, " 13183 "Data x%x x%lx\n", 13184 timeout, (timeleft / jiffies)); 13185 retval = IOCB_TIMEDOUT; 13186 } 13187 } else if (retval == IOCB_BUSY) { 13188 if (phba->cfg_log_verbose & LOG_SLI) { 13189 list_for_each_entry(iocb, &pring->txq, list) { 13190 txq_cnt++; 13191 } 13192 list_for_each_entry(iocb, &pring->txcmplq, list) { 13193 txcmplq_cnt++; 13194 } 13195 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13196 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13197 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13198 } 13199 return retval; 13200 } else { 13201 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13202 "0332 IOCB wait issue failed, Data x%x\n", 13203 retval); 13204 retval = IOCB_ERROR; 13205 } 13206 13207 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13208 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13209 return IOCB_ERROR; 13210 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13211 writel(creg_val, phba->HCregaddr); 13212 readl(phba->HCregaddr); /* flush */ 13213 } 13214 13215 if (prspiocbq) 13216 piocb->rsp_iocb = NULL; 13217 13218 piocb->context_un.wait_queue = NULL; 13219 piocb->cmd_cmpl = NULL; 13220 return retval; 13221 } 13222 13223 /** 13224 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13225 * @phba: Pointer to HBA context object. 13226 * @pmboxq: Pointer to driver mailbox object. 13227 * @timeout: Timeout in number of seconds. 13228 * 13229 * This function issues the mailbox to firmware and waits for the 13230 * mailbox command to complete. If the mailbox command is not 13231 * completed within timeout seconds, it returns MBX_TIMEOUT. 13232 * The function waits for the mailbox completion using an 13233 * interruptible wait. If the thread is woken up due to a 13234 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13235 * should not free the mailbox resources, if this function returns 13236 * MBX_TIMEOUT. 13237 * This function will sleep while waiting for mailbox completion. 13238 * So, this function should not be called from any context which 13239 * does not allow sleeping. Due to the same reason, this function 13240 * cannot be called with interrupt disabled. 13241 * This function assumes that the mailbox completion occurs while 13242 * this function sleep. So, this function cannot be called from 13243 * the worker thread which processes mailbox completion. 13244 * This function is called in the context of HBA management 13245 * applications. 13246 * This function returns MBX_SUCCESS when successful. 13247 * This function is called with no lock held. 13248 **/ 13249 int 13250 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13251 uint32_t timeout) 13252 { 13253 struct completion mbox_done; 13254 int retval; 13255 unsigned long flag; 13256 13257 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13258 /* setup wake call as IOCB callback */ 13259 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13260 13261 /* setup context3 field to pass wait_queue pointer to wake function */ 13262 init_completion(&mbox_done); 13263 pmboxq->context3 = &mbox_done; 13264 /* now issue the command */ 13265 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13266 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13267 wait_for_completion_timeout(&mbox_done, 13268 msecs_to_jiffies(timeout * 1000)); 13269 13270 spin_lock_irqsave(&phba->hbalock, flag); 13271 pmboxq->context3 = NULL; 13272 /* 13273 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13274 * else do not free the resources. 13275 */ 13276 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13277 retval = MBX_SUCCESS; 13278 } else { 13279 retval = MBX_TIMEOUT; 13280 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13281 } 13282 spin_unlock_irqrestore(&phba->hbalock, flag); 13283 } 13284 return retval; 13285 } 13286 13287 /** 13288 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13289 * @phba: Pointer to HBA context. 13290 * @mbx_action: Mailbox shutdown options. 13291 * 13292 * This function is called to shutdown the driver's mailbox sub-system. 13293 * It first marks the mailbox sub-system is in a block state to prevent 13294 * the asynchronous mailbox command from issued off the pending mailbox 13295 * command queue. If the mailbox command sub-system shutdown is due to 13296 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13297 * the mailbox sub-system flush routine to forcefully bring down the 13298 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13299 * as with offline or HBA function reset), this routine will wait for the 13300 * outstanding mailbox command to complete before invoking the mailbox 13301 * sub-system flush routine to gracefully bring down mailbox sub-system. 13302 **/ 13303 void 13304 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13305 { 13306 struct lpfc_sli *psli = &phba->sli; 13307 unsigned long timeout; 13308 13309 if (mbx_action == LPFC_MBX_NO_WAIT) { 13310 /* delay 100ms for port state */ 13311 msleep(100); 13312 lpfc_sli_mbox_sys_flush(phba); 13313 return; 13314 } 13315 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13316 13317 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13318 local_bh_disable(); 13319 13320 spin_lock_irq(&phba->hbalock); 13321 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13322 13323 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13324 /* Determine how long we might wait for the active mailbox 13325 * command to be gracefully completed by firmware. 13326 */ 13327 if (phba->sli.mbox_active) 13328 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13329 phba->sli.mbox_active) * 13330 1000) + jiffies; 13331 spin_unlock_irq(&phba->hbalock); 13332 13333 /* Enable softirqs again, done with phba->hbalock */ 13334 local_bh_enable(); 13335 13336 while (phba->sli.mbox_active) { 13337 /* Check active mailbox complete status every 2ms */ 13338 msleep(2); 13339 if (time_after(jiffies, timeout)) 13340 /* Timeout, let the mailbox flush routine to 13341 * forcefully release active mailbox command 13342 */ 13343 break; 13344 } 13345 } else { 13346 spin_unlock_irq(&phba->hbalock); 13347 13348 /* Enable softirqs again, done with phba->hbalock */ 13349 local_bh_enable(); 13350 } 13351 13352 lpfc_sli_mbox_sys_flush(phba); 13353 } 13354 13355 /** 13356 * lpfc_sli_eratt_read - read sli-3 error attention events 13357 * @phba: Pointer to HBA context. 13358 * 13359 * This function is called to read the SLI3 device error attention registers 13360 * for possible error attention events. The caller must hold the hostlock 13361 * with spin_lock_irq(). 13362 * 13363 * This function returns 1 when there is Error Attention in the Host Attention 13364 * Register and returns 0 otherwise. 13365 **/ 13366 static int 13367 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13368 { 13369 uint32_t ha_copy; 13370 13371 /* Read chip Host Attention (HA) register */ 13372 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13373 goto unplug_err; 13374 13375 if (ha_copy & HA_ERATT) { 13376 /* Read host status register to retrieve error event */ 13377 if (lpfc_sli_read_hs(phba)) 13378 goto unplug_err; 13379 13380 /* Check if there is a deferred error condition is active */ 13381 if ((HS_FFER1 & phba->work_hs) && 13382 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13383 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13384 phba->hba_flag |= DEFER_ERATT; 13385 /* Clear all interrupt enable conditions */ 13386 writel(0, phba->HCregaddr); 13387 readl(phba->HCregaddr); 13388 } 13389 13390 /* Set the driver HA work bitmap */ 13391 phba->work_ha |= HA_ERATT; 13392 /* Indicate polling handles this ERATT */ 13393 phba->hba_flag |= HBA_ERATT_HANDLED; 13394 return 1; 13395 } 13396 return 0; 13397 13398 unplug_err: 13399 /* Set the driver HS work bitmap */ 13400 phba->work_hs |= UNPLUG_ERR; 13401 /* Set the driver HA work bitmap */ 13402 phba->work_ha |= HA_ERATT; 13403 /* Indicate polling handles this ERATT */ 13404 phba->hba_flag |= HBA_ERATT_HANDLED; 13405 return 1; 13406 } 13407 13408 /** 13409 * lpfc_sli4_eratt_read - read sli-4 error attention events 13410 * @phba: Pointer to HBA context. 13411 * 13412 * This function is called to read the SLI4 device error attention registers 13413 * for possible error attention events. The caller must hold the hostlock 13414 * with spin_lock_irq(). 13415 * 13416 * This function returns 1 when there is Error Attention in the Host Attention 13417 * Register and returns 0 otherwise. 13418 **/ 13419 static int 13420 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13421 { 13422 uint32_t uerr_sta_hi, uerr_sta_lo; 13423 uint32_t if_type, portsmphr; 13424 struct lpfc_register portstat_reg; 13425 u32 logmask; 13426 13427 /* 13428 * For now, use the SLI4 device internal unrecoverable error 13429 * registers for error attention. This can be changed later. 13430 */ 13431 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13432 switch (if_type) { 13433 case LPFC_SLI_INTF_IF_TYPE_0: 13434 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13435 &uerr_sta_lo) || 13436 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13437 &uerr_sta_hi)) { 13438 phba->work_hs |= UNPLUG_ERR; 13439 phba->work_ha |= HA_ERATT; 13440 phba->hba_flag |= HBA_ERATT_HANDLED; 13441 return 1; 13442 } 13443 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13444 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13446 "1423 HBA Unrecoverable error: " 13447 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13448 "ue_mask_lo_reg=0x%x, " 13449 "ue_mask_hi_reg=0x%x\n", 13450 uerr_sta_lo, uerr_sta_hi, 13451 phba->sli4_hba.ue_mask_lo, 13452 phba->sli4_hba.ue_mask_hi); 13453 phba->work_status[0] = uerr_sta_lo; 13454 phba->work_status[1] = uerr_sta_hi; 13455 phba->work_ha |= HA_ERATT; 13456 phba->hba_flag |= HBA_ERATT_HANDLED; 13457 return 1; 13458 } 13459 break; 13460 case LPFC_SLI_INTF_IF_TYPE_2: 13461 case LPFC_SLI_INTF_IF_TYPE_6: 13462 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13463 &portstat_reg.word0) || 13464 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13465 &portsmphr)){ 13466 phba->work_hs |= UNPLUG_ERR; 13467 phba->work_ha |= HA_ERATT; 13468 phba->hba_flag |= HBA_ERATT_HANDLED; 13469 return 1; 13470 } 13471 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13472 phba->work_status[0] = 13473 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13474 phba->work_status[1] = 13475 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13476 logmask = LOG_TRACE_EVENT; 13477 if (phba->work_status[0] == 13478 SLIPORT_ERR1_REG_ERR_CODE_2 && 13479 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13480 logmask = LOG_SLI; 13481 lpfc_printf_log(phba, KERN_ERR, logmask, 13482 "2885 Port Status Event: " 13483 "port status reg 0x%x, " 13484 "port smphr reg 0x%x, " 13485 "error 1=0x%x, error 2=0x%x\n", 13486 portstat_reg.word0, 13487 portsmphr, 13488 phba->work_status[0], 13489 phba->work_status[1]); 13490 phba->work_ha |= HA_ERATT; 13491 phba->hba_flag |= HBA_ERATT_HANDLED; 13492 return 1; 13493 } 13494 break; 13495 case LPFC_SLI_INTF_IF_TYPE_1: 13496 default: 13497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13498 "2886 HBA Error Attention on unsupported " 13499 "if type %d.", if_type); 13500 return 1; 13501 } 13502 13503 return 0; 13504 } 13505 13506 /** 13507 * lpfc_sli_check_eratt - check error attention events 13508 * @phba: Pointer to HBA context. 13509 * 13510 * This function is called from timer soft interrupt context to check HBA's 13511 * error attention register bit for error attention events. 13512 * 13513 * This function returns 1 when there is Error Attention in the Host Attention 13514 * Register and returns 0 otherwise. 13515 **/ 13516 int 13517 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13518 { 13519 uint32_t ha_copy; 13520 13521 /* If somebody is waiting to handle an eratt, don't process it 13522 * here. The brdkill function will do this. 13523 */ 13524 if (phba->link_flag & LS_IGNORE_ERATT) 13525 return 0; 13526 13527 /* Check if interrupt handler handles this ERATT */ 13528 spin_lock_irq(&phba->hbalock); 13529 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13530 /* Interrupt handler has handled ERATT */ 13531 spin_unlock_irq(&phba->hbalock); 13532 return 0; 13533 } 13534 13535 /* 13536 * If there is deferred error attention, do not check for error 13537 * attention 13538 */ 13539 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13540 spin_unlock_irq(&phba->hbalock); 13541 return 0; 13542 } 13543 13544 /* If PCI channel is offline, don't process it */ 13545 if (unlikely(pci_channel_offline(phba->pcidev))) { 13546 spin_unlock_irq(&phba->hbalock); 13547 return 0; 13548 } 13549 13550 switch (phba->sli_rev) { 13551 case LPFC_SLI_REV2: 13552 case LPFC_SLI_REV3: 13553 /* Read chip Host Attention (HA) register */ 13554 ha_copy = lpfc_sli_eratt_read(phba); 13555 break; 13556 case LPFC_SLI_REV4: 13557 /* Read device Uncoverable Error (UERR) registers */ 13558 ha_copy = lpfc_sli4_eratt_read(phba); 13559 break; 13560 default: 13561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13562 "0299 Invalid SLI revision (%d)\n", 13563 phba->sli_rev); 13564 ha_copy = 0; 13565 break; 13566 } 13567 spin_unlock_irq(&phba->hbalock); 13568 13569 return ha_copy; 13570 } 13571 13572 /** 13573 * lpfc_intr_state_check - Check device state for interrupt handling 13574 * @phba: Pointer to HBA context. 13575 * 13576 * This inline routine checks whether a device or its PCI slot is in a state 13577 * that the interrupt should be handled. 13578 * 13579 * This function returns 0 if the device or the PCI slot is in a state that 13580 * interrupt should be handled, otherwise -EIO. 13581 */ 13582 static inline int 13583 lpfc_intr_state_check(struct lpfc_hba *phba) 13584 { 13585 /* If the pci channel is offline, ignore all the interrupts */ 13586 if (unlikely(pci_channel_offline(phba->pcidev))) 13587 return -EIO; 13588 13589 /* Update device level interrupt statistics */ 13590 phba->sli.slistat.sli_intr++; 13591 13592 /* Ignore all interrupts during initialization. */ 13593 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13594 return -EIO; 13595 13596 return 0; 13597 } 13598 13599 /** 13600 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13601 * @irq: Interrupt number. 13602 * @dev_id: The device context pointer. 13603 * 13604 * This function is directly called from the PCI layer as an interrupt 13605 * service routine when device with SLI-3 interface spec is enabled with 13606 * MSI-X multi-message interrupt mode and there are slow-path events in 13607 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13608 * interrupt mode, this function is called as part of the device-level 13609 * interrupt handler. When the PCI slot is in error recovery or the HBA 13610 * is undergoing initialization, the interrupt handler will not process 13611 * the interrupt. The link attention and ELS ring attention events are 13612 * handled by the worker thread. The interrupt handler signals the worker 13613 * thread and returns for these events. This function is called without 13614 * any lock held. It gets the hbalock to access and update SLI data 13615 * structures. 13616 * 13617 * This function returns IRQ_HANDLED when interrupt is handled else it 13618 * returns IRQ_NONE. 13619 **/ 13620 irqreturn_t 13621 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13622 { 13623 struct lpfc_hba *phba; 13624 uint32_t ha_copy, hc_copy; 13625 uint32_t work_ha_copy; 13626 unsigned long status; 13627 unsigned long iflag; 13628 uint32_t control; 13629 13630 MAILBOX_t *mbox, *pmbox; 13631 struct lpfc_vport *vport; 13632 struct lpfc_nodelist *ndlp; 13633 struct lpfc_dmabuf *mp; 13634 LPFC_MBOXQ_t *pmb; 13635 int rc; 13636 13637 /* 13638 * Get the driver's phba structure from the dev_id and 13639 * assume the HBA is not interrupting. 13640 */ 13641 phba = (struct lpfc_hba *)dev_id; 13642 13643 if (unlikely(!phba)) 13644 return IRQ_NONE; 13645 13646 /* 13647 * Stuff needs to be attented to when this function is invoked as an 13648 * individual interrupt handler in MSI-X multi-message interrupt mode 13649 */ 13650 if (phba->intr_type == MSIX) { 13651 /* Check device state for handling interrupt */ 13652 if (lpfc_intr_state_check(phba)) 13653 return IRQ_NONE; 13654 /* Need to read HA REG for slow-path events */ 13655 spin_lock_irqsave(&phba->hbalock, iflag); 13656 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13657 goto unplug_error; 13658 /* If somebody is waiting to handle an eratt don't process it 13659 * here. The brdkill function will do this. 13660 */ 13661 if (phba->link_flag & LS_IGNORE_ERATT) 13662 ha_copy &= ~HA_ERATT; 13663 /* Check the need for handling ERATT in interrupt handler */ 13664 if (ha_copy & HA_ERATT) { 13665 if (phba->hba_flag & HBA_ERATT_HANDLED) 13666 /* ERATT polling has handled ERATT */ 13667 ha_copy &= ~HA_ERATT; 13668 else 13669 /* Indicate interrupt handler handles ERATT */ 13670 phba->hba_flag |= HBA_ERATT_HANDLED; 13671 } 13672 13673 /* 13674 * If there is deferred error attention, do not check for any 13675 * interrupt. 13676 */ 13677 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13678 spin_unlock_irqrestore(&phba->hbalock, iflag); 13679 return IRQ_NONE; 13680 } 13681 13682 /* Clear up only attention source related to slow-path */ 13683 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13684 goto unplug_error; 13685 13686 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13687 HC_LAINT_ENA | HC_ERINT_ENA), 13688 phba->HCregaddr); 13689 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13690 phba->HAregaddr); 13691 writel(hc_copy, phba->HCregaddr); 13692 readl(phba->HAregaddr); /* flush */ 13693 spin_unlock_irqrestore(&phba->hbalock, iflag); 13694 } else 13695 ha_copy = phba->ha_copy; 13696 13697 work_ha_copy = ha_copy & phba->work_ha_mask; 13698 13699 if (work_ha_copy) { 13700 if (work_ha_copy & HA_LATT) { 13701 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13702 /* 13703 * Turn off Link Attention interrupts 13704 * until CLEAR_LA done 13705 */ 13706 spin_lock_irqsave(&phba->hbalock, iflag); 13707 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13708 if (lpfc_readl(phba->HCregaddr, &control)) 13709 goto unplug_error; 13710 control &= ~HC_LAINT_ENA; 13711 writel(control, phba->HCregaddr); 13712 readl(phba->HCregaddr); /* flush */ 13713 spin_unlock_irqrestore(&phba->hbalock, iflag); 13714 } 13715 else 13716 work_ha_copy &= ~HA_LATT; 13717 } 13718 13719 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13720 /* 13721 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13722 * the only slow ring. 13723 */ 13724 status = (work_ha_copy & 13725 (HA_RXMASK << (4*LPFC_ELS_RING))); 13726 status >>= (4*LPFC_ELS_RING); 13727 if (status & HA_RXMASK) { 13728 spin_lock_irqsave(&phba->hbalock, iflag); 13729 if (lpfc_readl(phba->HCregaddr, &control)) 13730 goto unplug_error; 13731 13732 lpfc_debugfs_slow_ring_trc(phba, 13733 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13734 control, status, 13735 (uint32_t)phba->sli.slistat.sli_intr); 13736 13737 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13738 lpfc_debugfs_slow_ring_trc(phba, 13739 "ISR Disable ring:" 13740 "pwork:x%x hawork:x%x wait:x%x", 13741 phba->work_ha, work_ha_copy, 13742 (uint32_t)((unsigned long) 13743 &phba->work_waitq)); 13744 13745 control &= 13746 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13747 writel(control, phba->HCregaddr); 13748 readl(phba->HCregaddr); /* flush */ 13749 } 13750 else { 13751 lpfc_debugfs_slow_ring_trc(phba, 13752 "ISR slow ring: pwork:" 13753 "x%x hawork:x%x wait:x%x", 13754 phba->work_ha, work_ha_copy, 13755 (uint32_t)((unsigned long) 13756 &phba->work_waitq)); 13757 } 13758 spin_unlock_irqrestore(&phba->hbalock, iflag); 13759 } 13760 } 13761 spin_lock_irqsave(&phba->hbalock, iflag); 13762 if (work_ha_copy & HA_ERATT) { 13763 if (lpfc_sli_read_hs(phba)) 13764 goto unplug_error; 13765 /* 13766 * Check if there is a deferred error condition 13767 * is active 13768 */ 13769 if ((HS_FFER1 & phba->work_hs) && 13770 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13771 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13772 phba->work_hs)) { 13773 phba->hba_flag |= DEFER_ERATT; 13774 /* Clear all interrupt enable conditions */ 13775 writel(0, phba->HCregaddr); 13776 readl(phba->HCregaddr); 13777 } 13778 } 13779 13780 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13781 pmb = phba->sli.mbox_active; 13782 pmbox = &pmb->u.mb; 13783 mbox = phba->mbox; 13784 vport = pmb->vport; 13785 13786 /* First check out the status word */ 13787 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13788 if (pmbox->mbxOwner != OWN_HOST) { 13789 spin_unlock_irqrestore(&phba->hbalock, iflag); 13790 /* 13791 * Stray Mailbox Interrupt, mbxCommand <cmd> 13792 * mbxStatus <status> 13793 */ 13794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13795 "(%d):0304 Stray Mailbox " 13796 "Interrupt mbxCommand x%x " 13797 "mbxStatus x%x\n", 13798 (vport ? vport->vpi : 0), 13799 pmbox->mbxCommand, 13800 pmbox->mbxStatus); 13801 /* clear mailbox attention bit */ 13802 work_ha_copy &= ~HA_MBATT; 13803 } else { 13804 phba->sli.mbox_active = NULL; 13805 spin_unlock_irqrestore(&phba->hbalock, iflag); 13806 phba->last_completion_time = jiffies; 13807 del_timer(&phba->sli.mbox_tmo); 13808 if (pmb->mbox_cmpl) { 13809 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13810 MAILBOX_CMD_SIZE); 13811 if (pmb->out_ext_byte_len && 13812 pmb->ctx_buf) 13813 lpfc_sli_pcimem_bcopy( 13814 phba->mbox_ext, 13815 pmb->ctx_buf, 13816 pmb->out_ext_byte_len); 13817 } 13818 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13819 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13820 13821 lpfc_debugfs_disc_trc(vport, 13822 LPFC_DISC_TRC_MBOX_VPORT, 13823 "MBOX dflt rpi: : " 13824 "status:x%x rpi:x%x", 13825 (uint32_t)pmbox->mbxStatus, 13826 pmbox->un.varWords[0], 0); 13827 13828 if (!pmbox->mbxStatus) { 13829 mp = (struct lpfc_dmabuf *) 13830 (pmb->ctx_buf); 13831 ndlp = (struct lpfc_nodelist *) 13832 pmb->ctx_ndlp; 13833 13834 /* Reg_LOGIN of dflt RPI was 13835 * successful. new lets get 13836 * rid of the RPI using the 13837 * same mbox buffer. 13838 */ 13839 lpfc_unreg_login(phba, 13840 vport->vpi, 13841 pmbox->un.varWords[0], 13842 pmb); 13843 pmb->mbox_cmpl = 13844 lpfc_mbx_cmpl_dflt_rpi; 13845 pmb->ctx_buf = mp; 13846 pmb->ctx_ndlp = ndlp; 13847 pmb->vport = vport; 13848 rc = lpfc_sli_issue_mbox(phba, 13849 pmb, 13850 MBX_NOWAIT); 13851 if (rc != MBX_BUSY) 13852 lpfc_printf_log(phba, 13853 KERN_ERR, 13854 LOG_TRACE_EVENT, 13855 "0350 rc should have" 13856 "been MBX_BUSY\n"); 13857 if (rc != MBX_NOT_FINISHED) 13858 goto send_current_mbox; 13859 } 13860 } 13861 spin_lock_irqsave( 13862 &phba->pport->work_port_lock, 13863 iflag); 13864 phba->pport->work_port_events &= 13865 ~WORKER_MBOX_TMO; 13866 spin_unlock_irqrestore( 13867 &phba->pport->work_port_lock, 13868 iflag); 13869 13870 /* Do NOT queue MBX_HEARTBEAT to the worker 13871 * thread for processing. 13872 */ 13873 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13874 /* Process mbox now */ 13875 phba->sli.mbox_active = NULL; 13876 phba->sli.sli_flag &= 13877 ~LPFC_SLI_MBOX_ACTIVE; 13878 if (pmb->mbox_cmpl) 13879 pmb->mbox_cmpl(phba, pmb); 13880 } else { 13881 /* Queue to worker thread to process */ 13882 lpfc_mbox_cmpl_put(phba, pmb); 13883 } 13884 } 13885 } else 13886 spin_unlock_irqrestore(&phba->hbalock, iflag); 13887 13888 if ((work_ha_copy & HA_MBATT) && 13889 (phba->sli.mbox_active == NULL)) { 13890 send_current_mbox: 13891 /* Process next mailbox command if there is one */ 13892 do { 13893 rc = lpfc_sli_issue_mbox(phba, NULL, 13894 MBX_NOWAIT); 13895 } while (rc == MBX_NOT_FINISHED); 13896 if (rc != MBX_SUCCESS) 13897 lpfc_printf_log(phba, KERN_ERR, 13898 LOG_TRACE_EVENT, 13899 "0349 rc should be " 13900 "MBX_SUCCESS\n"); 13901 } 13902 13903 spin_lock_irqsave(&phba->hbalock, iflag); 13904 phba->work_ha |= work_ha_copy; 13905 spin_unlock_irqrestore(&phba->hbalock, iflag); 13906 lpfc_worker_wake_up(phba); 13907 } 13908 return IRQ_HANDLED; 13909 unplug_error: 13910 spin_unlock_irqrestore(&phba->hbalock, iflag); 13911 return IRQ_HANDLED; 13912 13913 } /* lpfc_sli_sp_intr_handler */ 13914 13915 /** 13916 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13917 * @irq: Interrupt number. 13918 * @dev_id: The device context pointer. 13919 * 13920 * This function is directly called from the PCI layer as an interrupt 13921 * service routine when device with SLI-3 interface spec is enabled with 13922 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13923 * ring event in the HBA. However, when the device is enabled with either 13924 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13925 * device-level interrupt handler. When the PCI slot is in error recovery 13926 * or the HBA is undergoing initialization, the interrupt handler will not 13927 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13928 * the intrrupt context. This function is called without any lock held. 13929 * It gets the hbalock to access and update SLI data structures. 13930 * 13931 * This function returns IRQ_HANDLED when interrupt is handled else it 13932 * returns IRQ_NONE. 13933 **/ 13934 irqreturn_t 13935 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13936 { 13937 struct lpfc_hba *phba; 13938 uint32_t ha_copy; 13939 unsigned long status; 13940 unsigned long iflag; 13941 struct lpfc_sli_ring *pring; 13942 13943 /* Get the driver's phba structure from the dev_id and 13944 * assume the HBA is not interrupting. 13945 */ 13946 phba = (struct lpfc_hba *) dev_id; 13947 13948 if (unlikely(!phba)) 13949 return IRQ_NONE; 13950 13951 /* 13952 * Stuff needs to be attented to when this function is invoked as an 13953 * individual interrupt handler in MSI-X multi-message interrupt mode 13954 */ 13955 if (phba->intr_type == MSIX) { 13956 /* Check device state for handling interrupt */ 13957 if (lpfc_intr_state_check(phba)) 13958 return IRQ_NONE; 13959 /* Need to read HA REG for FCP ring and other ring events */ 13960 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13961 return IRQ_HANDLED; 13962 /* Clear up only attention source related to fast-path */ 13963 spin_lock_irqsave(&phba->hbalock, iflag); 13964 /* 13965 * If there is deferred error attention, do not check for 13966 * any interrupt. 13967 */ 13968 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13969 spin_unlock_irqrestore(&phba->hbalock, iflag); 13970 return IRQ_NONE; 13971 } 13972 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13973 phba->HAregaddr); 13974 readl(phba->HAregaddr); /* flush */ 13975 spin_unlock_irqrestore(&phba->hbalock, iflag); 13976 } else 13977 ha_copy = phba->ha_copy; 13978 13979 /* 13980 * Process all events on FCP ring. Take the optimized path for FCP IO. 13981 */ 13982 ha_copy &= ~(phba->work_ha_mask); 13983 13984 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13985 status >>= (4*LPFC_FCP_RING); 13986 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13987 if (status & HA_RXMASK) 13988 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13989 13990 if (phba->cfg_multi_ring_support == 2) { 13991 /* 13992 * Process all events on extra ring. Take the optimized path 13993 * for extra ring IO. 13994 */ 13995 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13996 status >>= (4*LPFC_EXTRA_RING); 13997 if (status & HA_RXMASK) { 13998 lpfc_sli_handle_fast_ring_event(phba, 13999 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14000 status); 14001 } 14002 } 14003 return IRQ_HANDLED; 14004 } /* lpfc_sli_fp_intr_handler */ 14005 14006 /** 14007 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14008 * @irq: Interrupt number. 14009 * @dev_id: The device context pointer. 14010 * 14011 * This function is the HBA device-level interrupt handler to device with 14012 * SLI-3 interface spec, called from the PCI layer when either MSI or 14013 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14014 * requires driver attention. This function invokes the slow-path interrupt 14015 * attention handling function and fast-path interrupt attention handling 14016 * function in turn to process the relevant HBA attention events. This 14017 * function is called without any lock held. It gets the hbalock to access 14018 * and update SLI data structures. 14019 * 14020 * This function returns IRQ_HANDLED when interrupt is handled, else it 14021 * returns IRQ_NONE. 14022 **/ 14023 irqreturn_t 14024 lpfc_sli_intr_handler(int irq, void *dev_id) 14025 { 14026 struct lpfc_hba *phba; 14027 irqreturn_t sp_irq_rc, fp_irq_rc; 14028 unsigned long status1, status2; 14029 uint32_t hc_copy; 14030 14031 /* 14032 * Get the driver's phba structure from the dev_id and 14033 * assume the HBA is not interrupting. 14034 */ 14035 phba = (struct lpfc_hba *) dev_id; 14036 14037 if (unlikely(!phba)) 14038 return IRQ_NONE; 14039 14040 /* Check device state for handling interrupt */ 14041 if (lpfc_intr_state_check(phba)) 14042 return IRQ_NONE; 14043 14044 spin_lock(&phba->hbalock); 14045 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14046 spin_unlock(&phba->hbalock); 14047 return IRQ_HANDLED; 14048 } 14049 14050 if (unlikely(!phba->ha_copy)) { 14051 spin_unlock(&phba->hbalock); 14052 return IRQ_NONE; 14053 } else if (phba->ha_copy & HA_ERATT) { 14054 if (phba->hba_flag & HBA_ERATT_HANDLED) 14055 /* ERATT polling has handled ERATT */ 14056 phba->ha_copy &= ~HA_ERATT; 14057 else 14058 /* Indicate interrupt handler handles ERATT */ 14059 phba->hba_flag |= HBA_ERATT_HANDLED; 14060 } 14061 14062 /* 14063 * If there is deferred error attention, do not check for any interrupt. 14064 */ 14065 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14066 spin_unlock(&phba->hbalock); 14067 return IRQ_NONE; 14068 } 14069 14070 /* Clear attention sources except link and error attentions */ 14071 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14072 spin_unlock(&phba->hbalock); 14073 return IRQ_HANDLED; 14074 } 14075 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14076 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14077 phba->HCregaddr); 14078 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14079 writel(hc_copy, phba->HCregaddr); 14080 readl(phba->HAregaddr); /* flush */ 14081 spin_unlock(&phba->hbalock); 14082 14083 /* 14084 * Invokes slow-path host attention interrupt handling as appropriate. 14085 */ 14086 14087 /* status of events with mailbox and link attention */ 14088 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14089 14090 /* status of events with ELS ring */ 14091 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14092 status2 >>= (4*LPFC_ELS_RING); 14093 14094 if (status1 || (status2 & HA_RXMASK)) 14095 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14096 else 14097 sp_irq_rc = IRQ_NONE; 14098 14099 /* 14100 * Invoke fast-path host attention interrupt handling as appropriate. 14101 */ 14102 14103 /* status of events with FCP ring */ 14104 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14105 status1 >>= (4*LPFC_FCP_RING); 14106 14107 /* status of events with extra ring */ 14108 if (phba->cfg_multi_ring_support == 2) { 14109 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14110 status2 >>= (4*LPFC_EXTRA_RING); 14111 } else 14112 status2 = 0; 14113 14114 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14115 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14116 else 14117 fp_irq_rc = IRQ_NONE; 14118 14119 /* Return device-level interrupt handling status */ 14120 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14121 } /* lpfc_sli_intr_handler */ 14122 14123 /** 14124 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14125 * @phba: pointer to lpfc hba data structure. 14126 * 14127 * This routine is invoked by the worker thread to process all the pending 14128 * SLI4 els abort xri events. 14129 **/ 14130 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14131 { 14132 struct lpfc_cq_event *cq_event; 14133 unsigned long iflags; 14134 14135 /* First, declare the els xri abort event has been handled */ 14136 spin_lock_irqsave(&phba->hbalock, iflags); 14137 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14138 spin_unlock_irqrestore(&phba->hbalock, iflags); 14139 14140 /* Now, handle all the els xri abort events */ 14141 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14142 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14143 /* Get the first event from the head of the event queue */ 14144 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14145 cq_event, struct lpfc_cq_event, list); 14146 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14147 iflags); 14148 /* Notify aborted XRI for ELS work queue */ 14149 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14150 14151 /* Free the event processed back to the free pool */ 14152 lpfc_sli4_cq_event_release(phba, cq_event); 14153 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14154 iflags); 14155 } 14156 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14157 } 14158 14159 /** 14160 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14161 * @phba: Pointer to HBA context object. 14162 * @irspiocbq: Pointer to work-queue completion queue entry. 14163 * 14164 * This routine handles an ELS work-queue completion event and construct 14165 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14166 * discovery engine to handle. 14167 * 14168 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14169 **/ 14170 static struct lpfc_iocbq * 14171 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14172 struct lpfc_iocbq *irspiocbq) 14173 { 14174 struct lpfc_sli_ring *pring; 14175 struct lpfc_iocbq *cmdiocbq; 14176 struct lpfc_wcqe_complete *wcqe; 14177 unsigned long iflags; 14178 14179 pring = lpfc_phba_elsring(phba); 14180 if (unlikely(!pring)) 14181 return NULL; 14182 14183 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14184 spin_lock_irqsave(&pring->ring_lock, iflags); 14185 pring->stats.iocb_event++; 14186 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14187 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14188 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14189 if (unlikely(!cmdiocbq)) { 14190 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14191 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14192 "0386 ELS complete with no corresponding " 14193 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14194 wcqe->word0, wcqe->total_data_placed, 14195 wcqe->parameter, wcqe->word3); 14196 lpfc_sli_release_iocbq(phba, irspiocbq); 14197 return NULL; 14198 } 14199 14200 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14201 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14202 14203 /* Put the iocb back on the txcmplq */ 14204 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14205 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14206 14207 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14208 spin_lock_irqsave(&phba->hbalock, iflags); 14209 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14210 spin_unlock_irqrestore(&phba->hbalock, iflags); 14211 } 14212 14213 return irspiocbq; 14214 } 14215 14216 inline struct lpfc_cq_event * 14217 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14218 { 14219 struct lpfc_cq_event *cq_event; 14220 14221 /* Allocate a new internal CQ_EVENT entry */ 14222 cq_event = lpfc_sli4_cq_event_alloc(phba); 14223 if (!cq_event) { 14224 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14225 "0602 Failed to alloc CQ_EVENT entry\n"); 14226 return NULL; 14227 } 14228 14229 /* Move the CQE into the event */ 14230 memcpy(&cq_event->cqe, entry, size); 14231 return cq_event; 14232 } 14233 14234 /** 14235 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14236 * @phba: Pointer to HBA context object. 14237 * @mcqe: Pointer to mailbox completion queue entry. 14238 * 14239 * This routine process a mailbox completion queue entry with asynchronous 14240 * event. 14241 * 14242 * Return: true if work posted to worker thread, otherwise false. 14243 **/ 14244 static bool 14245 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14246 { 14247 struct lpfc_cq_event *cq_event; 14248 unsigned long iflags; 14249 14250 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14251 "0392 Async Event: word0:x%x, word1:x%x, " 14252 "word2:x%x, word3:x%x\n", mcqe->word0, 14253 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14254 14255 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14256 if (!cq_event) 14257 return false; 14258 14259 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14260 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14261 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14262 14263 /* Set the async event flag */ 14264 spin_lock_irqsave(&phba->hbalock, iflags); 14265 phba->hba_flag |= ASYNC_EVENT; 14266 spin_unlock_irqrestore(&phba->hbalock, iflags); 14267 14268 return true; 14269 } 14270 14271 /** 14272 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14273 * @phba: Pointer to HBA context object. 14274 * @mcqe: Pointer to mailbox completion queue entry. 14275 * 14276 * This routine process a mailbox completion queue entry with mailbox 14277 * completion event. 14278 * 14279 * Return: true if work posted to worker thread, otherwise false. 14280 **/ 14281 static bool 14282 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14283 { 14284 uint32_t mcqe_status; 14285 MAILBOX_t *mbox, *pmbox; 14286 struct lpfc_mqe *mqe; 14287 struct lpfc_vport *vport; 14288 struct lpfc_nodelist *ndlp; 14289 struct lpfc_dmabuf *mp; 14290 unsigned long iflags; 14291 LPFC_MBOXQ_t *pmb; 14292 bool workposted = false; 14293 int rc; 14294 14295 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14296 if (!bf_get(lpfc_trailer_completed, mcqe)) 14297 goto out_no_mqe_complete; 14298 14299 /* Get the reference to the active mbox command */ 14300 spin_lock_irqsave(&phba->hbalock, iflags); 14301 pmb = phba->sli.mbox_active; 14302 if (unlikely(!pmb)) { 14303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14304 "1832 No pending MBOX command to handle\n"); 14305 spin_unlock_irqrestore(&phba->hbalock, iflags); 14306 goto out_no_mqe_complete; 14307 } 14308 spin_unlock_irqrestore(&phba->hbalock, iflags); 14309 mqe = &pmb->u.mqe; 14310 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14311 mbox = phba->mbox; 14312 vport = pmb->vport; 14313 14314 /* Reset heartbeat timer */ 14315 phba->last_completion_time = jiffies; 14316 del_timer(&phba->sli.mbox_tmo); 14317 14318 /* Move mbox data to caller's mailbox region, do endian swapping */ 14319 if (pmb->mbox_cmpl && mbox) 14320 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14321 14322 /* 14323 * For mcqe errors, conditionally move a modified error code to 14324 * the mbox so that the error will not be missed. 14325 */ 14326 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14327 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14328 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14329 bf_set(lpfc_mqe_status, mqe, 14330 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14331 } 14332 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14333 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14334 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14335 "MBOX dflt rpi: status:x%x rpi:x%x", 14336 mcqe_status, 14337 pmbox->un.varWords[0], 0); 14338 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14339 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14340 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14341 14342 /* Reg_LOGIN of dflt RPI was successful. Mark the 14343 * node as having an UNREG_LOGIN in progress to stop 14344 * an unsolicited PLOGI from the same NPortId from 14345 * starting another mailbox transaction. 14346 */ 14347 spin_lock_irqsave(&ndlp->lock, iflags); 14348 ndlp->nlp_flag |= NLP_UNREG_INP; 14349 spin_unlock_irqrestore(&ndlp->lock, iflags); 14350 lpfc_unreg_login(phba, vport->vpi, 14351 pmbox->un.varWords[0], pmb); 14352 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14353 pmb->ctx_buf = mp; 14354 14355 /* No reference taken here. This is a default 14356 * RPI reg/immediate unreg cycle. The reference was 14357 * taken in the reg rpi path and is released when 14358 * this mailbox completes. 14359 */ 14360 pmb->ctx_ndlp = ndlp; 14361 pmb->vport = vport; 14362 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14363 if (rc != MBX_BUSY) 14364 lpfc_printf_log(phba, KERN_ERR, 14365 LOG_TRACE_EVENT, 14366 "0385 rc should " 14367 "have been MBX_BUSY\n"); 14368 if (rc != MBX_NOT_FINISHED) 14369 goto send_current_mbox; 14370 } 14371 } 14372 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14373 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14374 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14375 14376 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14377 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14378 spin_lock_irqsave(&phba->hbalock, iflags); 14379 /* Release the mailbox command posting token */ 14380 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14381 phba->sli.mbox_active = NULL; 14382 if (bf_get(lpfc_trailer_consumed, mcqe)) 14383 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14384 spin_unlock_irqrestore(&phba->hbalock, iflags); 14385 14386 /* Post the next mbox command, if there is one */ 14387 lpfc_sli4_post_async_mbox(phba); 14388 14389 /* Process cmpl now */ 14390 if (pmb->mbox_cmpl) 14391 pmb->mbox_cmpl(phba, pmb); 14392 return false; 14393 } 14394 14395 /* There is mailbox completion work to queue to the worker thread */ 14396 spin_lock_irqsave(&phba->hbalock, iflags); 14397 __lpfc_mbox_cmpl_put(phba, pmb); 14398 phba->work_ha |= HA_MBATT; 14399 spin_unlock_irqrestore(&phba->hbalock, iflags); 14400 workposted = true; 14401 14402 send_current_mbox: 14403 spin_lock_irqsave(&phba->hbalock, iflags); 14404 /* Release the mailbox command posting token */ 14405 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14406 /* Setting active mailbox pointer need to be in sync to flag clear */ 14407 phba->sli.mbox_active = NULL; 14408 if (bf_get(lpfc_trailer_consumed, mcqe)) 14409 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14410 spin_unlock_irqrestore(&phba->hbalock, iflags); 14411 /* Wake up worker thread to post the next pending mailbox command */ 14412 lpfc_worker_wake_up(phba); 14413 return workposted; 14414 14415 out_no_mqe_complete: 14416 spin_lock_irqsave(&phba->hbalock, iflags); 14417 if (bf_get(lpfc_trailer_consumed, mcqe)) 14418 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14419 spin_unlock_irqrestore(&phba->hbalock, iflags); 14420 return false; 14421 } 14422 14423 /** 14424 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14425 * @phba: Pointer to HBA context object. 14426 * @cq: Pointer to associated CQ 14427 * @cqe: Pointer to mailbox completion queue entry. 14428 * 14429 * This routine process a mailbox completion queue entry, it invokes the 14430 * proper mailbox complete handling or asynchronous event handling routine 14431 * according to the MCQE's async bit. 14432 * 14433 * Return: true if work posted to worker thread, otherwise false. 14434 **/ 14435 static bool 14436 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14437 struct lpfc_cqe *cqe) 14438 { 14439 struct lpfc_mcqe mcqe; 14440 bool workposted; 14441 14442 cq->CQ_mbox++; 14443 14444 /* Copy the mailbox MCQE and convert endian order as needed */ 14445 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14446 14447 /* Invoke the proper event handling routine */ 14448 if (!bf_get(lpfc_trailer_async, &mcqe)) 14449 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14450 else 14451 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14452 return workposted; 14453 } 14454 14455 /** 14456 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14457 * @phba: Pointer to HBA context object. 14458 * @cq: Pointer to associated CQ 14459 * @wcqe: Pointer to work-queue completion queue entry. 14460 * 14461 * This routine handles an ELS work-queue completion event. 14462 * 14463 * Return: true if work posted to worker thread, otherwise false. 14464 **/ 14465 static bool 14466 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14467 struct lpfc_wcqe_complete *wcqe) 14468 { 14469 struct lpfc_iocbq *irspiocbq; 14470 unsigned long iflags; 14471 struct lpfc_sli_ring *pring = cq->pring; 14472 int txq_cnt = 0; 14473 int txcmplq_cnt = 0; 14474 14475 /* Check for response status */ 14476 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14477 /* Log the error status */ 14478 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14479 "0357 ELS CQE error: status=x%x: " 14480 "CQE: %08x %08x %08x %08x\n", 14481 bf_get(lpfc_wcqe_c_status, wcqe), 14482 wcqe->word0, wcqe->total_data_placed, 14483 wcqe->parameter, wcqe->word3); 14484 } 14485 14486 /* Get an irspiocbq for later ELS response processing use */ 14487 irspiocbq = lpfc_sli_get_iocbq(phba); 14488 if (!irspiocbq) { 14489 if (!list_empty(&pring->txq)) 14490 txq_cnt++; 14491 if (!list_empty(&pring->txcmplq)) 14492 txcmplq_cnt++; 14493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14494 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14495 "els_txcmplq_cnt=%d\n", 14496 txq_cnt, phba->iocb_cnt, 14497 txcmplq_cnt); 14498 return false; 14499 } 14500 14501 /* Save off the slow-path queue event for work thread to process */ 14502 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14503 spin_lock_irqsave(&phba->hbalock, iflags); 14504 list_add_tail(&irspiocbq->cq_event.list, 14505 &phba->sli4_hba.sp_queue_event); 14506 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14507 spin_unlock_irqrestore(&phba->hbalock, iflags); 14508 14509 return true; 14510 } 14511 14512 /** 14513 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14514 * @phba: Pointer to HBA context object. 14515 * @wcqe: Pointer to work-queue completion queue entry. 14516 * 14517 * This routine handles slow-path WQ entry consumed event by invoking the 14518 * proper WQ release routine to the slow-path WQ. 14519 **/ 14520 static void 14521 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14522 struct lpfc_wcqe_release *wcqe) 14523 { 14524 /* sanity check on queue memory */ 14525 if (unlikely(!phba->sli4_hba.els_wq)) 14526 return; 14527 /* Check for the slow-path ELS work queue */ 14528 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14529 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14530 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14531 else 14532 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14533 "2579 Slow-path wqe consume event carries " 14534 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14535 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14536 phba->sli4_hba.els_wq->queue_id); 14537 } 14538 14539 /** 14540 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14541 * @phba: Pointer to HBA context object. 14542 * @cq: Pointer to a WQ completion queue. 14543 * @wcqe: Pointer to work-queue completion queue entry. 14544 * 14545 * This routine handles an XRI abort event. 14546 * 14547 * Return: true if work posted to worker thread, otherwise false. 14548 **/ 14549 static bool 14550 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14551 struct lpfc_queue *cq, 14552 struct sli4_wcqe_xri_aborted *wcqe) 14553 { 14554 bool workposted = false; 14555 struct lpfc_cq_event *cq_event; 14556 unsigned long iflags; 14557 14558 switch (cq->subtype) { 14559 case LPFC_IO: 14560 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14561 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14562 /* Notify aborted XRI for NVME work queue */ 14563 if (phba->nvmet_support) 14564 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14565 } 14566 workposted = false; 14567 break; 14568 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14569 case LPFC_ELS: 14570 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14571 if (!cq_event) { 14572 workposted = false; 14573 break; 14574 } 14575 cq_event->hdwq = cq->hdwq; 14576 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14577 iflags); 14578 list_add_tail(&cq_event->list, 14579 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14580 /* Set the els xri abort event flag */ 14581 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14582 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14583 iflags); 14584 workposted = true; 14585 break; 14586 default: 14587 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14588 "0603 Invalid CQ subtype %d: " 14589 "%08x %08x %08x %08x\n", 14590 cq->subtype, wcqe->word0, wcqe->parameter, 14591 wcqe->word2, wcqe->word3); 14592 workposted = false; 14593 break; 14594 } 14595 return workposted; 14596 } 14597 14598 #define FC_RCTL_MDS_DIAGS 0xF4 14599 14600 /** 14601 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14602 * @phba: Pointer to HBA context object. 14603 * @rcqe: Pointer to receive-queue completion queue entry. 14604 * 14605 * This routine process a receive-queue completion queue entry. 14606 * 14607 * Return: true if work posted to worker thread, otherwise false. 14608 **/ 14609 static bool 14610 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14611 { 14612 bool workposted = false; 14613 struct fc_frame_header *fc_hdr; 14614 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14615 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14616 struct lpfc_nvmet_tgtport *tgtp; 14617 struct hbq_dmabuf *dma_buf; 14618 uint32_t status, rq_id; 14619 unsigned long iflags; 14620 14621 /* sanity check on queue memory */ 14622 if (unlikely(!hrq) || unlikely(!drq)) 14623 return workposted; 14624 14625 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14626 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14627 else 14628 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14629 if (rq_id != hrq->queue_id) 14630 goto out; 14631 14632 status = bf_get(lpfc_rcqe_status, rcqe); 14633 switch (status) { 14634 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14636 "2537 Receive Frame Truncated!!\n"); 14637 fallthrough; 14638 case FC_STATUS_RQ_SUCCESS: 14639 spin_lock_irqsave(&phba->hbalock, iflags); 14640 lpfc_sli4_rq_release(hrq, drq); 14641 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14642 if (!dma_buf) { 14643 hrq->RQ_no_buf_found++; 14644 spin_unlock_irqrestore(&phba->hbalock, iflags); 14645 goto out; 14646 } 14647 hrq->RQ_rcv_buf++; 14648 hrq->RQ_buf_posted--; 14649 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14650 14651 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14652 14653 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14654 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14655 spin_unlock_irqrestore(&phba->hbalock, iflags); 14656 /* Handle MDS Loopback frames */ 14657 if (!(phba->pport->load_flag & FC_UNLOADING)) 14658 lpfc_sli4_handle_mds_loopback(phba->pport, 14659 dma_buf); 14660 else 14661 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14662 break; 14663 } 14664 14665 /* save off the frame for the work thread to process */ 14666 list_add_tail(&dma_buf->cq_event.list, 14667 &phba->sli4_hba.sp_queue_event); 14668 /* Frame received */ 14669 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14670 spin_unlock_irqrestore(&phba->hbalock, iflags); 14671 workposted = true; 14672 break; 14673 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14674 if (phba->nvmet_support) { 14675 tgtp = phba->targetport->private; 14676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14677 "6402 RQE Error x%x, posted %d err_cnt " 14678 "%d: %x %x %x\n", 14679 status, hrq->RQ_buf_posted, 14680 hrq->RQ_no_posted_buf, 14681 atomic_read(&tgtp->rcv_fcp_cmd_in), 14682 atomic_read(&tgtp->rcv_fcp_cmd_out), 14683 atomic_read(&tgtp->xmt_fcp_release)); 14684 } 14685 fallthrough; 14686 14687 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14688 hrq->RQ_no_posted_buf++; 14689 /* Post more buffers if possible */ 14690 spin_lock_irqsave(&phba->hbalock, iflags); 14691 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14692 spin_unlock_irqrestore(&phba->hbalock, iflags); 14693 workposted = true; 14694 break; 14695 case FC_STATUS_RQ_DMA_FAILURE: 14696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14697 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14698 "x%08x\n", 14699 status, rcqe->word0, rcqe->word1, 14700 rcqe->word2, rcqe->word3); 14701 14702 /* If IV set, no further recovery */ 14703 if (bf_get(lpfc_rcqe_iv, rcqe)) 14704 break; 14705 14706 /* recycle consumed resource */ 14707 spin_lock_irqsave(&phba->hbalock, iflags); 14708 lpfc_sli4_rq_release(hrq, drq); 14709 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14710 if (!dma_buf) { 14711 hrq->RQ_no_buf_found++; 14712 spin_unlock_irqrestore(&phba->hbalock, iflags); 14713 break; 14714 } 14715 hrq->RQ_rcv_buf++; 14716 hrq->RQ_buf_posted--; 14717 spin_unlock_irqrestore(&phba->hbalock, iflags); 14718 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14719 break; 14720 default: 14721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14722 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14723 "x%08x x%08x x%08x\n", 14724 status, rcqe->word0, rcqe->word1, 14725 rcqe->word2, rcqe->word3); 14726 break; 14727 } 14728 out: 14729 return workposted; 14730 } 14731 14732 /** 14733 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14734 * @phba: Pointer to HBA context object. 14735 * @cq: Pointer to the completion queue. 14736 * @cqe: Pointer to a completion queue entry. 14737 * 14738 * This routine process a slow-path work-queue or receive queue completion queue 14739 * entry. 14740 * 14741 * Return: true if work posted to worker thread, otherwise false. 14742 **/ 14743 static bool 14744 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14745 struct lpfc_cqe *cqe) 14746 { 14747 struct lpfc_cqe cqevt; 14748 bool workposted = false; 14749 14750 /* Copy the work queue CQE and convert endian order if needed */ 14751 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14752 14753 /* Check and process for different type of WCQE and dispatch */ 14754 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14755 case CQE_CODE_COMPL_WQE: 14756 /* Process the WQ/RQ complete event */ 14757 phba->last_completion_time = jiffies; 14758 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14759 (struct lpfc_wcqe_complete *)&cqevt); 14760 break; 14761 case CQE_CODE_RELEASE_WQE: 14762 /* Process the WQ release event */ 14763 lpfc_sli4_sp_handle_rel_wcqe(phba, 14764 (struct lpfc_wcqe_release *)&cqevt); 14765 break; 14766 case CQE_CODE_XRI_ABORTED: 14767 /* Process the WQ XRI abort event */ 14768 phba->last_completion_time = jiffies; 14769 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14770 (struct sli4_wcqe_xri_aborted *)&cqevt); 14771 break; 14772 case CQE_CODE_RECEIVE: 14773 case CQE_CODE_RECEIVE_V1: 14774 /* Process the RQ event */ 14775 phba->last_completion_time = jiffies; 14776 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14777 (struct lpfc_rcqe *)&cqevt); 14778 break; 14779 default: 14780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14781 "0388 Not a valid WCQE code: x%x\n", 14782 bf_get(lpfc_cqe_code, &cqevt)); 14783 break; 14784 } 14785 return workposted; 14786 } 14787 14788 /** 14789 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14790 * @phba: Pointer to HBA context object. 14791 * @eqe: Pointer to fast-path event queue entry. 14792 * @speq: Pointer to slow-path event queue. 14793 * 14794 * This routine process a event queue entry from the slow-path event queue. 14795 * It will check the MajorCode and MinorCode to determine this is for a 14796 * completion event on a completion queue, if not, an error shall be logged 14797 * and just return. Otherwise, it will get to the corresponding completion 14798 * queue and process all the entries on that completion queue, rearm the 14799 * completion queue, and then return. 14800 * 14801 **/ 14802 static void 14803 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14804 struct lpfc_queue *speq) 14805 { 14806 struct lpfc_queue *cq = NULL, *childq; 14807 uint16_t cqid; 14808 int ret = 0; 14809 14810 /* Get the reference to the corresponding CQ */ 14811 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14812 14813 list_for_each_entry(childq, &speq->child_list, list) { 14814 if (childq->queue_id == cqid) { 14815 cq = childq; 14816 break; 14817 } 14818 } 14819 if (unlikely(!cq)) { 14820 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14822 "0365 Slow-path CQ identifier " 14823 "(%d) does not exist\n", cqid); 14824 return; 14825 } 14826 14827 /* Save EQ associated with this CQ */ 14828 cq->assoc_qp = speq; 14829 14830 if (is_kdump_kernel()) 14831 ret = queue_work(phba->wq, &cq->spwork); 14832 else 14833 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14834 14835 if (!ret) 14836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14837 "0390 Cannot schedule queue work " 14838 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14839 cqid, cq->queue_id, raw_smp_processor_id()); 14840 } 14841 14842 /** 14843 * __lpfc_sli4_process_cq - Process elements of a CQ 14844 * @phba: Pointer to HBA context object. 14845 * @cq: Pointer to CQ to be processed 14846 * @handler: Routine to process each cqe 14847 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14848 * 14849 * This routine processes completion queue entries in a CQ. While a valid 14850 * queue element is found, the handler is called. During processing checks 14851 * are made for periodic doorbell writes to let the hardware know of 14852 * element consumption. 14853 * 14854 * If the max limit on cqes to process is hit, or there are no more valid 14855 * entries, the loop stops. If we processed a sufficient number of elements, 14856 * meaning there is sufficient load, rather than rearming and generating 14857 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14858 * indicates no rescheduling. 14859 * 14860 * Returns True if work scheduled, False otherwise. 14861 **/ 14862 static bool 14863 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14864 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14865 struct lpfc_cqe *), unsigned long *delay) 14866 { 14867 struct lpfc_cqe *cqe; 14868 bool workposted = false; 14869 int count = 0, consumed = 0; 14870 bool arm = true; 14871 14872 /* default - no reschedule */ 14873 *delay = 0; 14874 14875 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14876 goto rearm_and_exit; 14877 14878 /* Process all the entries to the CQ */ 14879 cq->q_flag = 0; 14880 cqe = lpfc_sli4_cq_get(cq); 14881 while (cqe) { 14882 workposted |= handler(phba, cq, cqe); 14883 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14884 14885 consumed++; 14886 if (!(++count % cq->max_proc_limit)) 14887 break; 14888 14889 if (!(count % cq->notify_interval)) { 14890 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14891 LPFC_QUEUE_NOARM); 14892 consumed = 0; 14893 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14894 } 14895 14896 if (count == LPFC_NVMET_CQ_NOTIFY) 14897 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14898 14899 cqe = lpfc_sli4_cq_get(cq); 14900 } 14901 if (count >= phba->cfg_cq_poll_threshold) { 14902 *delay = 1; 14903 arm = false; 14904 } 14905 14906 /* Track the max number of CQEs processed in 1 EQ */ 14907 if (count > cq->CQ_max_cqe) 14908 cq->CQ_max_cqe = count; 14909 14910 cq->assoc_qp->EQ_cqe_cnt += count; 14911 14912 /* Catch the no cq entry condition */ 14913 if (unlikely(count == 0)) 14914 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14915 "0369 No entry from completion queue " 14916 "qid=%d\n", cq->queue_id); 14917 14918 xchg(&cq->queue_claimed, 0); 14919 14920 rearm_and_exit: 14921 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14922 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14923 14924 return workposted; 14925 } 14926 14927 /** 14928 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14929 * @cq: pointer to CQ to process 14930 * 14931 * This routine calls the cq processing routine with a handler specific 14932 * to the type of queue bound to it. 14933 * 14934 * The CQ routine returns two values: the first is the calling status, 14935 * which indicates whether work was queued to the background discovery 14936 * thread. If true, the routine should wakeup the discovery thread; 14937 * the second is the delay parameter. If non-zero, rather than rearming 14938 * the CQ and yet another interrupt, the CQ handler should be queued so 14939 * that it is processed in a subsequent polling action. The value of 14940 * the delay indicates when to reschedule it. 14941 **/ 14942 static void 14943 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14944 { 14945 struct lpfc_hba *phba = cq->phba; 14946 unsigned long delay; 14947 bool workposted = false; 14948 int ret = 0; 14949 14950 /* Process and rearm the CQ */ 14951 switch (cq->type) { 14952 case LPFC_MCQ: 14953 workposted |= __lpfc_sli4_process_cq(phba, cq, 14954 lpfc_sli4_sp_handle_mcqe, 14955 &delay); 14956 break; 14957 case LPFC_WCQ: 14958 if (cq->subtype == LPFC_IO) 14959 workposted |= __lpfc_sli4_process_cq(phba, cq, 14960 lpfc_sli4_fp_handle_cqe, 14961 &delay); 14962 else 14963 workposted |= __lpfc_sli4_process_cq(phba, cq, 14964 lpfc_sli4_sp_handle_cqe, 14965 &delay); 14966 break; 14967 default: 14968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14969 "0370 Invalid completion queue type (%d)\n", 14970 cq->type); 14971 return; 14972 } 14973 14974 if (delay) { 14975 if (is_kdump_kernel()) 14976 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14977 delay); 14978 else 14979 ret = queue_delayed_work_on(cq->chann, phba->wq, 14980 &cq->sched_spwork, delay); 14981 if (!ret) 14982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14983 "0394 Cannot schedule queue work " 14984 "for cqid=%d on CPU %d\n", 14985 cq->queue_id, cq->chann); 14986 } 14987 14988 /* wake up worker thread if there are works to be done */ 14989 if (workposted) 14990 lpfc_worker_wake_up(phba); 14991 } 14992 14993 /** 14994 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14995 * interrupt 14996 * @work: pointer to work element 14997 * 14998 * translates from the work handler and calls the slow-path handler. 14999 **/ 15000 static void 15001 lpfc_sli4_sp_process_cq(struct work_struct *work) 15002 { 15003 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15004 15005 __lpfc_sli4_sp_process_cq(cq); 15006 } 15007 15008 /** 15009 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15010 * @work: pointer to work element 15011 * 15012 * translates from the work handler and calls the slow-path handler. 15013 **/ 15014 static void 15015 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15016 { 15017 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15018 struct lpfc_queue, sched_spwork); 15019 15020 __lpfc_sli4_sp_process_cq(cq); 15021 } 15022 15023 /** 15024 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15025 * @phba: Pointer to HBA context object. 15026 * @cq: Pointer to associated CQ 15027 * @wcqe: Pointer to work-queue completion queue entry. 15028 * 15029 * This routine process a fast-path work queue completion entry from fast-path 15030 * event queue for FCP command response completion. 15031 **/ 15032 static void 15033 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15034 struct lpfc_wcqe_complete *wcqe) 15035 { 15036 struct lpfc_sli_ring *pring = cq->pring; 15037 struct lpfc_iocbq *cmdiocbq; 15038 unsigned long iflags; 15039 15040 /* Check for response status */ 15041 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15042 /* If resource errors reported from HBA, reduce queue 15043 * depth of the SCSI device. 15044 */ 15045 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15046 IOSTAT_LOCAL_REJECT)) && 15047 ((wcqe->parameter & IOERR_PARAM_MASK) == 15048 IOERR_NO_RESOURCES)) 15049 phba->lpfc_rampdown_queue_depth(phba); 15050 15051 /* Log the cmpl status */ 15052 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15053 "0373 FCP CQE cmpl: status=x%x: " 15054 "CQE: %08x %08x %08x %08x\n", 15055 bf_get(lpfc_wcqe_c_status, wcqe), 15056 wcqe->word0, wcqe->total_data_placed, 15057 wcqe->parameter, wcqe->word3); 15058 } 15059 15060 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15061 spin_lock_irqsave(&pring->ring_lock, iflags); 15062 pring->stats.iocb_event++; 15063 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15064 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15065 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15066 if (unlikely(!cmdiocbq)) { 15067 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15068 "0374 FCP complete with no corresponding " 15069 "cmdiocb: iotag (%d)\n", 15070 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15071 return; 15072 } 15073 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15074 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15075 #endif 15076 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15077 spin_lock_irqsave(&phba->hbalock, iflags); 15078 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15079 spin_unlock_irqrestore(&phba->hbalock, iflags); 15080 } 15081 15082 if (cmdiocbq->cmd_cmpl) { 15083 /* For FCP the flag is cleared in cmd_cmpl */ 15084 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15085 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15086 spin_lock_irqsave(&phba->hbalock, iflags); 15087 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15088 spin_unlock_irqrestore(&phba->hbalock, iflags); 15089 } 15090 15091 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15092 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15093 sizeof(struct lpfc_wcqe_complete)); 15094 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15095 } else { 15096 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15097 "0375 FCP cmdiocb not callback function " 15098 "iotag: (%d)\n", 15099 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15100 } 15101 } 15102 15103 /** 15104 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15105 * @phba: Pointer to HBA context object. 15106 * @cq: Pointer to completion queue. 15107 * @wcqe: Pointer to work-queue completion queue entry. 15108 * 15109 * This routine handles an fast-path WQ entry consumed event by invoking the 15110 * proper WQ release routine to the slow-path WQ. 15111 **/ 15112 static void 15113 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15114 struct lpfc_wcqe_release *wcqe) 15115 { 15116 struct lpfc_queue *childwq; 15117 bool wqid_matched = false; 15118 uint16_t hba_wqid; 15119 15120 /* Check for fast-path FCP work queue release */ 15121 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15122 list_for_each_entry(childwq, &cq->child_list, list) { 15123 if (childwq->queue_id == hba_wqid) { 15124 lpfc_sli4_wq_release(childwq, 15125 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15126 if (childwq->q_flag & HBA_NVMET_WQFULL) 15127 lpfc_nvmet_wqfull_process(phba, childwq); 15128 wqid_matched = true; 15129 break; 15130 } 15131 } 15132 /* Report warning log message if no match found */ 15133 if (wqid_matched != true) 15134 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15135 "2580 Fast-path wqe consume event carries " 15136 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15137 } 15138 15139 /** 15140 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15141 * @phba: Pointer to HBA context object. 15142 * @cq: Pointer to completion queue. 15143 * @rcqe: Pointer to receive-queue completion queue entry. 15144 * 15145 * This routine process a receive-queue completion queue entry. 15146 * 15147 * Return: true if work posted to worker thread, otherwise false. 15148 **/ 15149 static bool 15150 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15151 struct lpfc_rcqe *rcqe) 15152 { 15153 bool workposted = false; 15154 struct lpfc_queue *hrq; 15155 struct lpfc_queue *drq; 15156 struct rqb_dmabuf *dma_buf; 15157 struct fc_frame_header *fc_hdr; 15158 struct lpfc_nvmet_tgtport *tgtp; 15159 uint32_t status, rq_id; 15160 unsigned long iflags; 15161 uint32_t fctl, idx; 15162 15163 if ((phba->nvmet_support == 0) || 15164 (phba->sli4_hba.nvmet_cqset == NULL)) 15165 return workposted; 15166 15167 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15168 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15169 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15170 15171 /* sanity check on queue memory */ 15172 if (unlikely(!hrq) || unlikely(!drq)) 15173 return workposted; 15174 15175 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15176 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15177 else 15178 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15179 15180 if ((phba->nvmet_support == 0) || 15181 (rq_id != hrq->queue_id)) 15182 return workposted; 15183 15184 status = bf_get(lpfc_rcqe_status, rcqe); 15185 switch (status) { 15186 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15188 "6126 Receive Frame Truncated!!\n"); 15189 fallthrough; 15190 case FC_STATUS_RQ_SUCCESS: 15191 spin_lock_irqsave(&phba->hbalock, iflags); 15192 lpfc_sli4_rq_release(hrq, drq); 15193 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15194 if (!dma_buf) { 15195 hrq->RQ_no_buf_found++; 15196 spin_unlock_irqrestore(&phba->hbalock, iflags); 15197 goto out; 15198 } 15199 spin_unlock_irqrestore(&phba->hbalock, iflags); 15200 hrq->RQ_rcv_buf++; 15201 hrq->RQ_buf_posted--; 15202 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15203 15204 /* Just some basic sanity checks on FCP Command frame */ 15205 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15206 fc_hdr->fh_f_ctl[1] << 8 | 15207 fc_hdr->fh_f_ctl[2]); 15208 if (((fctl & 15209 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15210 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15211 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15212 goto drop; 15213 15214 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15215 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15216 lpfc_nvmet_unsol_fcp_event( 15217 phba, idx, dma_buf, cq->isr_timestamp, 15218 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15219 return false; 15220 } 15221 drop: 15222 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15223 break; 15224 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15225 if (phba->nvmet_support) { 15226 tgtp = phba->targetport->private; 15227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15228 "6401 RQE Error x%x, posted %d err_cnt " 15229 "%d: %x %x %x\n", 15230 status, hrq->RQ_buf_posted, 15231 hrq->RQ_no_posted_buf, 15232 atomic_read(&tgtp->rcv_fcp_cmd_in), 15233 atomic_read(&tgtp->rcv_fcp_cmd_out), 15234 atomic_read(&tgtp->xmt_fcp_release)); 15235 } 15236 fallthrough; 15237 15238 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15239 hrq->RQ_no_posted_buf++; 15240 /* Post more buffers if possible */ 15241 break; 15242 case FC_STATUS_RQ_DMA_FAILURE: 15243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15244 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15245 "x%08x\n", 15246 status, rcqe->word0, rcqe->word1, 15247 rcqe->word2, rcqe->word3); 15248 15249 /* If IV set, no further recovery */ 15250 if (bf_get(lpfc_rcqe_iv, rcqe)) 15251 break; 15252 15253 /* recycle consumed resource */ 15254 spin_lock_irqsave(&phba->hbalock, iflags); 15255 lpfc_sli4_rq_release(hrq, drq); 15256 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15257 if (!dma_buf) { 15258 hrq->RQ_no_buf_found++; 15259 spin_unlock_irqrestore(&phba->hbalock, iflags); 15260 break; 15261 } 15262 hrq->RQ_rcv_buf++; 15263 hrq->RQ_buf_posted--; 15264 spin_unlock_irqrestore(&phba->hbalock, iflags); 15265 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15266 break; 15267 default: 15268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15269 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15270 "x%08x x%08x x%08x\n", 15271 status, rcqe->word0, rcqe->word1, 15272 rcqe->word2, rcqe->word3); 15273 break; 15274 } 15275 out: 15276 return workposted; 15277 } 15278 15279 /** 15280 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15281 * @phba: adapter with cq 15282 * @cq: Pointer to the completion queue. 15283 * @cqe: Pointer to fast-path completion queue entry. 15284 * 15285 * This routine process a fast-path work queue completion entry from fast-path 15286 * event queue for FCP command response completion. 15287 * 15288 * Return: true if work posted to worker thread, otherwise false. 15289 **/ 15290 static bool 15291 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15292 struct lpfc_cqe *cqe) 15293 { 15294 struct lpfc_wcqe_release wcqe; 15295 bool workposted = false; 15296 15297 /* Copy the work queue CQE and convert endian order if needed */ 15298 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15299 15300 /* Check and process for different type of WCQE and dispatch */ 15301 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15302 case CQE_CODE_COMPL_WQE: 15303 case CQE_CODE_NVME_ERSP: 15304 cq->CQ_wq++; 15305 /* Process the WQ complete event */ 15306 phba->last_completion_time = jiffies; 15307 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15308 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15309 (struct lpfc_wcqe_complete *)&wcqe); 15310 break; 15311 case CQE_CODE_RELEASE_WQE: 15312 cq->CQ_release_wqe++; 15313 /* Process the WQ release event */ 15314 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15315 (struct lpfc_wcqe_release *)&wcqe); 15316 break; 15317 case CQE_CODE_XRI_ABORTED: 15318 cq->CQ_xri_aborted++; 15319 /* Process the WQ XRI abort event */ 15320 phba->last_completion_time = jiffies; 15321 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15322 (struct sli4_wcqe_xri_aborted *)&wcqe); 15323 break; 15324 case CQE_CODE_RECEIVE_V1: 15325 case CQE_CODE_RECEIVE: 15326 phba->last_completion_time = jiffies; 15327 if (cq->subtype == LPFC_NVMET) { 15328 workposted = lpfc_sli4_nvmet_handle_rcqe( 15329 phba, cq, (struct lpfc_rcqe *)&wcqe); 15330 } 15331 break; 15332 default: 15333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15334 "0144 Not a valid CQE code: x%x\n", 15335 bf_get(lpfc_wcqe_c_code, &wcqe)); 15336 break; 15337 } 15338 return workposted; 15339 } 15340 15341 /** 15342 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15343 * @cq: Pointer to CQ to be processed 15344 * 15345 * This routine calls the cq processing routine with the handler for 15346 * fast path CQEs. 15347 * 15348 * The CQ routine returns two values: the first is the calling status, 15349 * which indicates whether work was queued to the background discovery 15350 * thread. If true, the routine should wakeup the discovery thread; 15351 * the second is the delay parameter. If non-zero, rather than rearming 15352 * the CQ and yet another interrupt, the CQ handler should be queued so 15353 * that it is processed in a subsequent polling action. The value of 15354 * the delay indicates when to reschedule it. 15355 **/ 15356 static void 15357 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15358 { 15359 struct lpfc_hba *phba = cq->phba; 15360 unsigned long delay; 15361 bool workposted = false; 15362 int ret; 15363 15364 /* process and rearm the CQ */ 15365 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15366 &delay); 15367 15368 if (delay) { 15369 if (is_kdump_kernel()) 15370 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15371 delay); 15372 else 15373 ret = queue_delayed_work_on(cq->chann, phba->wq, 15374 &cq->sched_irqwork, delay); 15375 if (!ret) 15376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15377 "0367 Cannot schedule queue work " 15378 "for cqid=%d on CPU %d\n", 15379 cq->queue_id, cq->chann); 15380 } 15381 15382 /* wake up worker thread if there are works to be done */ 15383 if (workposted) 15384 lpfc_worker_wake_up(phba); 15385 } 15386 15387 /** 15388 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15389 * interrupt 15390 * @work: pointer to work element 15391 * 15392 * translates from the work handler and calls the fast-path handler. 15393 **/ 15394 static void 15395 lpfc_sli4_hba_process_cq(struct work_struct *work) 15396 { 15397 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15398 15399 __lpfc_sli4_hba_process_cq(cq); 15400 } 15401 15402 /** 15403 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15404 * @phba: Pointer to HBA context object. 15405 * @eq: Pointer to the queue structure. 15406 * @eqe: Pointer to fast-path event queue entry. 15407 * @poll_mode: poll_mode to execute processing the cq. 15408 * 15409 * This routine process a event queue entry from the fast-path event queue. 15410 * It will check the MajorCode and MinorCode to determine this is for a 15411 * completion event on a completion queue, if not, an error shall be logged 15412 * and just return. Otherwise, it will get to the corresponding completion 15413 * queue and process all the entries on the completion queue, rearm the 15414 * completion queue, and then return. 15415 **/ 15416 static void 15417 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15418 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15419 { 15420 struct lpfc_queue *cq = NULL; 15421 uint32_t qidx = eq->hdwq; 15422 uint16_t cqid, id; 15423 int ret; 15424 15425 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15427 "0366 Not a valid completion " 15428 "event: majorcode=x%x, minorcode=x%x\n", 15429 bf_get_le32(lpfc_eqe_major_code, eqe), 15430 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15431 return; 15432 } 15433 15434 /* Get the reference to the corresponding CQ */ 15435 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15436 15437 /* Use the fast lookup method first */ 15438 if (cqid <= phba->sli4_hba.cq_max) { 15439 cq = phba->sli4_hba.cq_lookup[cqid]; 15440 if (cq) 15441 goto work_cq; 15442 } 15443 15444 /* Next check for NVMET completion */ 15445 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15446 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15447 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15448 /* Process NVMET unsol rcv */ 15449 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15450 goto process_cq; 15451 } 15452 } 15453 15454 if (phba->sli4_hba.nvmels_cq && 15455 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15456 /* Process NVME unsol rcv */ 15457 cq = phba->sli4_hba.nvmels_cq; 15458 } 15459 15460 /* Otherwise this is a Slow path event */ 15461 if (cq == NULL) { 15462 lpfc_sli4_sp_handle_eqe(phba, eqe, 15463 phba->sli4_hba.hdwq[qidx].hba_eq); 15464 return; 15465 } 15466 15467 process_cq: 15468 if (unlikely(cqid != cq->queue_id)) { 15469 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15470 "0368 Miss-matched fast-path completion " 15471 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15472 cqid, cq->queue_id); 15473 return; 15474 } 15475 15476 work_cq: 15477 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15478 if (phba->ktime_on) 15479 cq->isr_timestamp = ktime_get_ns(); 15480 else 15481 cq->isr_timestamp = 0; 15482 #endif 15483 15484 switch (poll_mode) { 15485 case LPFC_THREADED_IRQ: 15486 __lpfc_sli4_hba_process_cq(cq); 15487 break; 15488 case LPFC_QUEUE_WORK: 15489 default: 15490 if (is_kdump_kernel()) 15491 ret = queue_work(phba->wq, &cq->irqwork); 15492 else 15493 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15494 if (!ret) 15495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15496 "0383 Cannot schedule queue work " 15497 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15498 cqid, cq->queue_id, 15499 raw_smp_processor_id()); 15500 break; 15501 } 15502 } 15503 15504 /** 15505 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15506 * @work: pointer to work element 15507 * 15508 * translates from the work handler and calls the fast-path handler. 15509 **/ 15510 static void 15511 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15512 { 15513 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15514 struct lpfc_queue, sched_irqwork); 15515 15516 __lpfc_sli4_hba_process_cq(cq); 15517 } 15518 15519 /** 15520 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15521 * @irq: Interrupt number. 15522 * @dev_id: The device context pointer. 15523 * 15524 * This function is directly called from the PCI layer as an interrupt 15525 * service routine when device with SLI-4 interface spec is enabled with 15526 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15527 * ring event in the HBA. However, when the device is enabled with either 15528 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15529 * device-level interrupt handler. When the PCI slot is in error recovery 15530 * or the HBA is undergoing initialization, the interrupt handler will not 15531 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15532 * the intrrupt context. This function is called without any lock held. 15533 * It gets the hbalock to access and update SLI data structures. Note that, 15534 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15535 * equal to that of FCP CQ index. 15536 * 15537 * The link attention and ELS ring attention events are handled 15538 * by the worker thread. The interrupt handler signals the worker thread 15539 * and returns for these events. This function is called without any lock 15540 * held. It gets the hbalock to access and update SLI data structures. 15541 * 15542 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15543 * when interrupt is scheduled to be handled from a threaded irq context, or 15544 * else returns IRQ_NONE. 15545 **/ 15546 irqreturn_t 15547 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15548 { 15549 struct lpfc_hba *phba; 15550 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15551 struct lpfc_queue *fpeq; 15552 unsigned long iflag; 15553 int hba_eqidx; 15554 int ecount = 0; 15555 struct lpfc_eq_intr_info *eqi; 15556 15557 /* Get the driver's phba structure from the dev_id */ 15558 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15559 phba = hba_eq_hdl->phba; 15560 hba_eqidx = hba_eq_hdl->idx; 15561 15562 if (unlikely(!phba)) 15563 return IRQ_NONE; 15564 if (unlikely(!phba->sli4_hba.hdwq)) 15565 return IRQ_NONE; 15566 15567 /* Get to the EQ struct associated with this vector */ 15568 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15569 if (unlikely(!fpeq)) 15570 return IRQ_NONE; 15571 15572 /* Check device state for handling interrupt */ 15573 if (unlikely(lpfc_intr_state_check(phba))) { 15574 /* Check again for link_state with lock held */ 15575 spin_lock_irqsave(&phba->hbalock, iflag); 15576 if (phba->link_state < LPFC_LINK_DOWN) 15577 /* Flush, clear interrupt, and rearm the EQ */ 15578 lpfc_sli4_eqcq_flush(phba, fpeq); 15579 spin_unlock_irqrestore(&phba->hbalock, iflag); 15580 return IRQ_NONE; 15581 } 15582 15583 switch (fpeq->poll_mode) { 15584 case LPFC_THREADED_IRQ: 15585 /* CGN mgmt is mutually exclusive from irq processing */ 15586 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15587 return IRQ_WAKE_THREAD; 15588 fallthrough; 15589 case LPFC_QUEUE_WORK: 15590 default: 15591 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15592 eqi->icnt++; 15593 15594 fpeq->last_cpu = raw_smp_processor_id(); 15595 15596 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15597 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15598 phba->cfg_auto_imax && 15599 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15600 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15601 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15602 LPFC_MAX_AUTO_EQ_DELAY); 15603 15604 /* process and rearm the EQ */ 15605 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15606 LPFC_QUEUE_WORK); 15607 15608 if (unlikely(ecount == 0)) { 15609 fpeq->EQ_no_entry++; 15610 if (phba->intr_type == MSIX) 15611 /* MSI-X treated interrupt served as no EQ share INT */ 15612 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15613 "0358 MSI-X interrupt with no EQE\n"); 15614 else 15615 /* Non MSI-X treated on interrupt as EQ share INT */ 15616 return IRQ_NONE; 15617 } 15618 } 15619 15620 return IRQ_HANDLED; 15621 } /* lpfc_sli4_hba_intr_handler */ 15622 15623 /** 15624 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15625 * @irq: Interrupt number. 15626 * @dev_id: The device context pointer. 15627 * 15628 * This function is the device-level interrupt handler to device with SLI-4 15629 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15630 * interrupt mode is enabled and there is an event in the HBA which requires 15631 * driver attention. This function invokes the slow-path interrupt attention 15632 * handling function and fast-path interrupt attention handling function in 15633 * turn to process the relevant HBA attention events. This function is called 15634 * without any lock held. It gets the hbalock to access and update SLI data 15635 * structures. 15636 * 15637 * This function returns IRQ_HANDLED when interrupt is handled, else it 15638 * returns IRQ_NONE. 15639 **/ 15640 irqreturn_t 15641 lpfc_sli4_intr_handler(int irq, void *dev_id) 15642 { 15643 struct lpfc_hba *phba; 15644 irqreturn_t hba_irq_rc; 15645 bool hba_handled = false; 15646 int qidx; 15647 15648 /* Get the driver's phba structure from the dev_id */ 15649 phba = (struct lpfc_hba *)dev_id; 15650 15651 if (unlikely(!phba)) 15652 return IRQ_NONE; 15653 15654 /* 15655 * Invoke fast-path host attention interrupt handling as appropriate. 15656 */ 15657 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15658 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15659 &phba->sli4_hba.hba_eq_hdl[qidx]); 15660 if (hba_irq_rc == IRQ_HANDLED) 15661 hba_handled |= true; 15662 } 15663 15664 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15665 } /* lpfc_sli4_intr_handler */ 15666 15667 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15668 { 15669 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15670 struct lpfc_queue *eq; 15671 15672 rcu_read_lock(); 15673 15674 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15675 lpfc_sli4_poll_eq(eq); 15676 if (!list_empty(&phba->poll_list)) 15677 mod_timer(&phba->cpuhp_poll_timer, 15678 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15679 15680 rcu_read_unlock(); 15681 } 15682 15683 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15684 { 15685 struct lpfc_hba *phba = eq->phba; 15686 15687 /* kickstart slowpath processing if needed */ 15688 if (list_empty(&phba->poll_list)) 15689 mod_timer(&phba->cpuhp_poll_timer, 15690 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15691 15692 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15693 synchronize_rcu(); 15694 } 15695 15696 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15697 { 15698 struct lpfc_hba *phba = eq->phba; 15699 15700 /* Disable slowpath processing for this eq. Kick start the eq 15701 * by RE-ARMING the eq's ASAP 15702 */ 15703 list_del_rcu(&eq->_poll_list); 15704 synchronize_rcu(); 15705 15706 if (list_empty(&phba->poll_list)) 15707 del_timer_sync(&phba->cpuhp_poll_timer); 15708 } 15709 15710 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15711 { 15712 struct lpfc_queue *eq, *next; 15713 15714 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15715 list_del(&eq->_poll_list); 15716 15717 INIT_LIST_HEAD(&phba->poll_list); 15718 synchronize_rcu(); 15719 } 15720 15721 static inline void 15722 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15723 { 15724 if (mode == eq->mode) 15725 return; 15726 /* 15727 * currently this function is only called during a hotplug 15728 * event and the cpu on which this function is executing 15729 * is going offline. By now the hotplug has instructed 15730 * the scheduler to remove this cpu from cpu active mask. 15731 * So we don't need to work about being put aside by the 15732 * scheduler for a high priority process. Yes, the inte- 15733 * rrupts could come but they are known to retire ASAP. 15734 */ 15735 15736 /* Disable polling in the fastpath */ 15737 WRITE_ONCE(eq->mode, mode); 15738 /* flush out the store buffer */ 15739 smp_wmb(); 15740 15741 /* 15742 * Add this eq to the polling list and start polling. For 15743 * a grace period both interrupt handler and poller will 15744 * try to process the eq _but_ that's fine. We have a 15745 * synchronization mechanism in place (queue_claimed) to 15746 * deal with it. This is just a draining phase for int- 15747 * errupt handler (not eq's) as we have guranteed through 15748 * barrier that all the CPUs have seen the new CQ_POLLED 15749 * state. which will effectively disable the REARMING of 15750 * the EQ. The whole idea is eq's die off eventually as 15751 * we are not rearming EQ's anymore. 15752 */ 15753 mode ? lpfc_sli4_add_to_poll_list(eq) : 15754 lpfc_sli4_remove_from_poll_list(eq); 15755 } 15756 15757 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15758 { 15759 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15760 } 15761 15762 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15763 { 15764 struct lpfc_hba *phba = eq->phba; 15765 15766 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15767 15768 /* Kick start for the pending io's in h/w. 15769 * Once we switch back to interrupt processing on a eq 15770 * the io path completion will only arm eq's when it 15771 * receives a completion. But since eq's are in disa- 15772 * rmed state it doesn't receive a completion. This 15773 * creates a deadlock scenaro. 15774 */ 15775 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15776 } 15777 15778 /** 15779 * lpfc_sli4_queue_free - free a queue structure and associated memory 15780 * @queue: The queue structure to free. 15781 * 15782 * This function frees a queue structure and the DMAable memory used for 15783 * the host resident queue. This function must be called after destroying the 15784 * queue on the HBA. 15785 **/ 15786 void 15787 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15788 { 15789 struct lpfc_dmabuf *dmabuf; 15790 15791 if (!queue) 15792 return; 15793 15794 if (!list_empty(&queue->wq_list)) 15795 list_del(&queue->wq_list); 15796 15797 while (!list_empty(&queue->page_list)) { 15798 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15799 list); 15800 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15801 dmabuf->virt, dmabuf->phys); 15802 kfree(dmabuf); 15803 } 15804 if (queue->rqbp) { 15805 lpfc_free_rq_buffer(queue->phba, queue); 15806 kfree(queue->rqbp); 15807 } 15808 15809 if (!list_empty(&queue->cpu_list)) 15810 list_del(&queue->cpu_list); 15811 15812 kfree(queue); 15813 return; 15814 } 15815 15816 /** 15817 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15818 * @phba: The HBA that this queue is being created on. 15819 * @page_size: The size of a queue page 15820 * @entry_size: The size of each queue entry for this queue. 15821 * @entry_count: The number of entries that this queue will handle. 15822 * @cpu: The cpu that will primarily utilize this queue. 15823 * 15824 * This function allocates a queue structure and the DMAable memory used for 15825 * the host resident queue. This function must be called before creating the 15826 * queue on the HBA. 15827 **/ 15828 struct lpfc_queue * 15829 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15830 uint32_t entry_size, uint32_t entry_count, int cpu) 15831 { 15832 struct lpfc_queue *queue; 15833 struct lpfc_dmabuf *dmabuf; 15834 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15835 uint16_t x, pgcnt; 15836 15837 if (!phba->sli4_hba.pc_sli4_params.supported) 15838 hw_page_size = page_size; 15839 15840 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15841 15842 /* If needed, Adjust page count to match the max the adapter supports */ 15843 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15844 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15845 15846 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15847 GFP_KERNEL, cpu_to_node(cpu)); 15848 if (!queue) 15849 return NULL; 15850 15851 INIT_LIST_HEAD(&queue->list); 15852 INIT_LIST_HEAD(&queue->_poll_list); 15853 INIT_LIST_HEAD(&queue->wq_list); 15854 INIT_LIST_HEAD(&queue->wqfull_list); 15855 INIT_LIST_HEAD(&queue->page_list); 15856 INIT_LIST_HEAD(&queue->child_list); 15857 INIT_LIST_HEAD(&queue->cpu_list); 15858 15859 /* Set queue parameters now. If the system cannot provide memory 15860 * resources, the free routine needs to know what was allocated. 15861 */ 15862 queue->page_count = pgcnt; 15863 queue->q_pgs = (void **)&queue[1]; 15864 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15865 queue->entry_size = entry_size; 15866 queue->entry_count = entry_count; 15867 queue->page_size = hw_page_size; 15868 queue->phba = phba; 15869 15870 for (x = 0; x < queue->page_count; x++) { 15871 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15872 dev_to_node(&phba->pcidev->dev)); 15873 if (!dmabuf) 15874 goto out_fail; 15875 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15876 hw_page_size, &dmabuf->phys, 15877 GFP_KERNEL); 15878 if (!dmabuf->virt) { 15879 kfree(dmabuf); 15880 goto out_fail; 15881 } 15882 dmabuf->buffer_tag = x; 15883 list_add_tail(&dmabuf->list, &queue->page_list); 15884 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15885 queue->q_pgs[x] = dmabuf->virt; 15886 } 15887 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15888 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15889 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15890 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15891 15892 /* notify_interval will be set during q creation */ 15893 15894 return queue; 15895 out_fail: 15896 lpfc_sli4_queue_free(queue); 15897 return NULL; 15898 } 15899 15900 /** 15901 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15902 * @phba: HBA structure that indicates port to create a queue on. 15903 * @pci_barset: PCI BAR set flag. 15904 * 15905 * This function shall perform iomap of the specified PCI BAR address to host 15906 * memory address if not already done so and return it. The returned host 15907 * memory address can be NULL. 15908 */ 15909 static void __iomem * 15910 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15911 { 15912 if (!phba->pcidev) 15913 return NULL; 15914 15915 switch (pci_barset) { 15916 case WQ_PCI_BAR_0_AND_1: 15917 return phba->pci_bar0_memmap_p; 15918 case WQ_PCI_BAR_2_AND_3: 15919 return phba->pci_bar2_memmap_p; 15920 case WQ_PCI_BAR_4_AND_5: 15921 return phba->pci_bar4_memmap_p; 15922 default: 15923 break; 15924 } 15925 return NULL; 15926 } 15927 15928 /** 15929 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15930 * @phba: HBA structure that EQs are on. 15931 * @startq: The starting EQ index to modify 15932 * @numq: The number of EQs (consecutive indexes) to modify 15933 * @usdelay: amount of delay 15934 * 15935 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15936 * is set either by writing to a register (if supported by the SLI Port) 15937 * or by mailbox command. The mailbox command allows several EQs to be 15938 * updated at once. 15939 * 15940 * The @phba struct is used to send a mailbox command to HBA. The @startq 15941 * is used to get the starting EQ index to change. The @numq value is 15942 * used to specify how many consecutive EQ indexes, starting at EQ index, 15943 * are to be changed. This function is asynchronous and will wait for any 15944 * mailbox commands to finish before returning. 15945 * 15946 * On success this function will return a zero. If unable to allocate 15947 * enough memory this function will return -ENOMEM. If a mailbox command 15948 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15949 * have had their delay multipler changed. 15950 **/ 15951 void 15952 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15953 uint32_t numq, uint32_t usdelay) 15954 { 15955 struct lpfc_mbx_modify_eq_delay *eq_delay; 15956 LPFC_MBOXQ_t *mbox; 15957 struct lpfc_queue *eq; 15958 int cnt = 0, rc, length; 15959 uint32_t shdr_status, shdr_add_status; 15960 uint32_t dmult; 15961 int qidx; 15962 union lpfc_sli4_cfg_shdr *shdr; 15963 15964 if (startq >= phba->cfg_irq_chann) 15965 return; 15966 15967 if (usdelay > 0xFFFF) { 15968 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15969 "6429 usdelay %d too large. Scaled down to " 15970 "0xFFFF.\n", usdelay); 15971 usdelay = 0xFFFF; 15972 } 15973 15974 /* set values by EQ_DELAY register if supported */ 15975 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15976 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15977 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15978 if (!eq) 15979 continue; 15980 15981 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15982 15983 if (++cnt >= numq) 15984 break; 15985 } 15986 return; 15987 } 15988 15989 /* Otherwise, set values by mailbox cmd */ 15990 15991 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15992 if (!mbox) { 15993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15994 "6428 Failed allocating mailbox cmd buffer." 15995 " EQ delay was not set.\n"); 15996 return; 15997 } 15998 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15999 sizeof(struct lpfc_sli4_cfg_mhdr)); 16000 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16001 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16002 length, LPFC_SLI4_MBX_EMBED); 16003 eq_delay = &mbox->u.mqe.un.eq_delay; 16004 16005 /* Calculate delay multiper from maximum interrupt per second */ 16006 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16007 if (dmult) 16008 dmult--; 16009 if (dmult > LPFC_DMULT_MAX) 16010 dmult = LPFC_DMULT_MAX; 16011 16012 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16013 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16014 if (!eq) 16015 continue; 16016 eq->q_mode = usdelay; 16017 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16018 eq_delay->u.request.eq[cnt].phase = 0; 16019 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16020 16021 if (++cnt >= numq) 16022 break; 16023 } 16024 eq_delay->u.request.num_eq = cnt; 16025 16026 mbox->vport = phba->pport; 16027 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16028 mbox->ctx_ndlp = NULL; 16029 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16030 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16031 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16032 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16033 if (shdr_status || shdr_add_status || rc) { 16034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16035 "2512 MODIFY_EQ_DELAY mailbox failed with " 16036 "status x%x add_status x%x, mbx status x%x\n", 16037 shdr_status, shdr_add_status, rc); 16038 } 16039 mempool_free(mbox, phba->mbox_mem_pool); 16040 return; 16041 } 16042 16043 /** 16044 * lpfc_eq_create - Create an Event Queue on the HBA 16045 * @phba: HBA structure that indicates port to create a queue on. 16046 * @eq: The queue structure to use to create the event queue. 16047 * @imax: The maximum interrupt per second limit. 16048 * 16049 * This function creates an event queue, as detailed in @eq, on a port, 16050 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16051 * 16052 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16053 * is used to get the entry count and entry size that are necessary to 16054 * determine the number of pages to allocate and use for this queue. This 16055 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16056 * event queue. This function is asynchronous and will wait for the mailbox 16057 * command to finish before continuing. 16058 * 16059 * On success this function will return a zero. If unable to allocate enough 16060 * memory this function will return -ENOMEM. If the queue create mailbox command 16061 * fails this function will return -ENXIO. 16062 **/ 16063 int 16064 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16065 { 16066 struct lpfc_mbx_eq_create *eq_create; 16067 LPFC_MBOXQ_t *mbox; 16068 int rc, length, status = 0; 16069 struct lpfc_dmabuf *dmabuf; 16070 uint32_t shdr_status, shdr_add_status; 16071 union lpfc_sli4_cfg_shdr *shdr; 16072 uint16_t dmult; 16073 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16074 16075 /* sanity check on queue memory */ 16076 if (!eq) 16077 return -ENODEV; 16078 if (!phba->sli4_hba.pc_sli4_params.supported) 16079 hw_page_size = SLI4_PAGE_SIZE; 16080 16081 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16082 if (!mbox) 16083 return -ENOMEM; 16084 length = (sizeof(struct lpfc_mbx_eq_create) - 16085 sizeof(struct lpfc_sli4_cfg_mhdr)); 16086 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16087 LPFC_MBOX_OPCODE_EQ_CREATE, 16088 length, LPFC_SLI4_MBX_EMBED); 16089 eq_create = &mbox->u.mqe.un.eq_create; 16090 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16091 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16092 eq->page_count); 16093 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16094 LPFC_EQE_SIZE); 16095 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16096 16097 /* Use version 2 of CREATE_EQ if eqav is set */ 16098 if (phba->sli4_hba.pc_sli4_params.eqav) { 16099 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16100 LPFC_Q_CREATE_VERSION_2); 16101 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16102 phba->sli4_hba.pc_sli4_params.eqav); 16103 } 16104 16105 /* don't setup delay multiplier using EQ_CREATE */ 16106 dmult = 0; 16107 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16108 dmult); 16109 switch (eq->entry_count) { 16110 default: 16111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16112 "0360 Unsupported EQ count. (%d)\n", 16113 eq->entry_count); 16114 if (eq->entry_count < 256) { 16115 status = -EINVAL; 16116 goto out; 16117 } 16118 fallthrough; /* otherwise default to smallest count */ 16119 case 256: 16120 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16121 LPFC_EQ_CNT_256); 16122 break; 16123 case 512: 16124 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16125 LPFC_EQ_CNT_512); 16126 break; 16127 case 1024: 16128 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16129 LPFC_EQ_CNT_1024); 16130 break; 16131 case 2048: 16132 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16133 LPFC_EQ_CNT_2048); 16134 break; 16135 case 4096: 16136 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16137 LPFC_EQ_CNT_4096); 16138 break; 16139 } 16140 list_for_each_entry(dmabuf, &eq->page_list, list) { 16141 memset(dmabuf->virt, 0, hw_page_size); 16142 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16143 putPaddrLow(dmabuf->phys); 16144 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16145 putPaddrHigh(dmabuf->phys); 16146 } 16147 mbox->vport = phba->pport; 16148 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16149 mbox->ctx_buf = NULL; 16150 mbox->ctx_ndlp = NULL; 16151 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16152 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16153 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16154 if (shdr_status || shdr_add_status || rc) { 16155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16156 "2500 EQ_CREATE mailbox failed with " 16157 "status x%x add_status x%x, mbx status x%x\n", 16158 shdr_status, shdr_add_status, rc); 16159 status = -ENXIO; 16160 } 16161 eq->type = LPFC_EQ; 16162 eq->subtype = LPFC_NONE; 16163 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16164 if (eq->queue_id == 0xFFFF) 16165 status = -ENXIO; 16166 eq->host_index = 0; 16167 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16168 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16169 out: 16170 mempool_free(mbox, phba->mbox_mem_pool); 16171 return status; 16172 } 16173 16174 /** 16175 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16176 * @irq: Interrupt number. 16177 * @dev_id: The device context pointer. 16178 * 16179 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16180 * threaded irq context. 16181 * 16182 * Returns 16183 * IRQ_HANDLED - interrupt is handled 16184 * IRQ_NONE - otherwise 16185 **/ 16186 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16187 { 16188 struct lpfc_hba *phba; 16189 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16190 struct lpfc_queue *fpeq; 16191 int ecount = 0; 16192 int hba_eqidx; 16193 struct lpfc_eq_intr_info *eqi; 16194 16195 /* Get the driver's phba structure from the dev_id */ 16196 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16197 phba = hba_eq_hdl->phba; 16198 hba_eqidx = hba_eq_hdl->idx; 16199 16200 if (unlikely(!phba)) 16201 return IRQ_NONE; 16202 if (unlikely(!phba->sli4_hba.hdwq)) 16203 return IRQ_NONE; 16204 16205 /* Get to the EQ struct associated with this vector */ 16206 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16207 if (unlikely(!fpeq)) 16208 return IRQ_NONE; 16209 16210 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16211 eqi->icnt++; 16212 16213 fpeq->last_cpu = raw_smp_processor_id(); 16214 16215 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16216 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16217 phba->cfg_auto_imax && 16218 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16219 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16220 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16221 16222 /* process and rearm the EQ */ 16223 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16224 LPFC_THREADED_IRQ); 16225 16226 if (unlikely(ecount == 0)) { 16227 fpeq->EQ_no_entry++; 16228 if (phba->intr_type == MSIX) 16229 /* MSI-X treated interrupt served as no EQ share INT */ 16230 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16231 "3358 MSI-X interrupt with no EQE\n"); 16232 else 16233 /* Non MSI-X treated on interrupt as EQ share INT */ 16234 return IRQ_NONE; 16235 } 16236 return IRQ_HANDLED; 16237 } 16238 16239 /** 16240 * lpfc_cq_create - Create a Completion Queue on the HBA 16241 * @phba: HBA structure that indicates port to create a queue on. 16242 * @cq: The queue structure to use to create the completion queue. 16243 * @eq: The event queue to bind this completion queue to. 16244 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16245 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16246 * 16247 * This function creates a completion queue, as detailed in @wq, on a port, 16248 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16249 * 16250 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16251 * is used to get the entry count and entry size that are necessary to 16252 * determine the number of pages to allocate and use for this queue. The @eq 16253 * is used to indicate which event queue to bind this completion queue to. This 16254 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16255 * completion queue. This function is asynchronous and will wait for the mailbox 16256 * command to finish before continuing. 16257 * 16258 * On success this function will return a zero. If unable to allocate enough 16259 * memory this function will return -ENOMEM. If the queue create mailbox command 16260 * fails this function will return -ENXIO. 16261 **/ 16262 int 16263 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16264 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16265 { 16266 struct lpfc_mbx_cq_create *cq_create; 16267 struct lpfc_dmabuf *dmabuf; 16268 LPFC_MBOXQ_t *mbox; 16269 int rc, length, status = 0; 16270 uint32_t shdr_status, shdr_add_status; 16271 union lpfc_sli4_cfg_shdr *shdr; 16272 16273 /* sanity check on queue memory */ 16274 if (!cq || !eq) 16275 return -ENODEV; 16276 16277 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16278 if (!mbox) 16279 return -ENOMEM; 16280 length = (sizeof(struct lpfc_mbx_cq_create) - 16281 sizeof(struct lpfc_sli4_cfg_mhdr)); 16282 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16283 LPFC_MBOX_OPCODE_CQ_CREATE, 16284 length, LPFC_SLI4_MBX_EMBED); 16285 cq_create = &mbox->u.mqe.un.cq_create; 16286 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16287 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16288 cq->page_count); 16289 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16290 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16291 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16292 phba->sli4_hba.pc_sli4_params.cqv); 16293 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16294 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16295 (cq->page_size / SLI4_PAGE_SIZE)); 16296 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16297 eq->queue_id); 16298 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16299 phba->sli4_hba.pc_sli4_params.cqav); 16300 } else { 16301 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16302 eq->queue_id); 16303 } 16304 switch (cq->entry_count) { 16305 case 2048: 16306 case 4096: 16307 if (phba->sli4_hba.pc_sli4_params.cqv == 16308 LPFC_Q_CREATE_VERSION_2) { 16309 cq_create->u.request.context.lpfc_cq_context_count = 16310 cq->entry_count; 16311 bf_set(lpfc_cq_context_count, 16312 &cq_create->u.request.context, 16313 LPFC_CQ_CNT_WORD7); 16314 break; 16315 } 16316 fallthrough; 16317 default: 16318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16319 "0361 Unsupported CQ count: " 16320 "entry cnt %d sz %d pg cnt %d\n", 16321 cq->entry_count, cq->entry_size, 16322 cq->page_count); 16323 if (cq->entry_count < 256) { 16324 status = -EINVAL; 16325 goto out; 16326 } 16327 fallthrough; /* otherwise default to smallest count */ 16328 case 256: 16329 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16330 LPFC_CQ_CNT_256); 16331 break; 16332 case 512: 16333 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16334 LPFC_CQ_CNT_512); 16335 break; 16336 case 1024: 16337 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16338 LPFC_CQ_CNT_1024); 16339 break; 16340 } 16341 list_for_each_entry(dmabuf, &cq->page_list, list) { 16342 memset(dmabuf->virt, 0, cq->page_size); 16343 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16344 putPaddrLow(dmabuf->phys); 16345 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16346 putPaddrHigh(dmabuf->phys); 16347 } 16348 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16349 16350 /* The IOCTL status is embedded in the mailbox subheader. */ 16351 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16352 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16353 if (shdr_status || shdr_add_status || rc) { 16354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16355 "2501 CQ_CREATE mailbox failed with " 16356 "status x%x add_status x%x, mbx status x%x\n", 16357 shdr_status, shdr_add_status, rc); 16358 status = -ENXIO; 16359 goto out; 16360 } 16361 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16362 if (cq->queue_id == 0xFFFF) { 16363 status = -ENXIO; 16364 goto out; 16365 } 16366 /* link the cq onto the parent eq child list */ 16367 list_add_tail(&cq->list, &eq->child_list); 16368 /* Set up completion queue's type and subtype */ 16369 cq->type = type; 16370 cq->subtype = subtype; 16371 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16372 cq->assoc_qid = eq->queue_id; 16373 cq->assoc_qp = eq; 16374 cq->host_index = 0; 16375 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16376 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16377 16378 if (cq->queue_id > phba->sli4_hba.cq_max) 16379 phba->sli4_hba.cq_max = cq->queue_id; 16380 out: 16381 mempool_free(mbox, phba->mbox_mem_pool); 16382 return status; 16383 } 16384 16385 /** 16386 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16387 * @phba: HBA structure that indicates port to create a queue on. 16388 * @cqp: The queue structure array to use to create the completion queues. 16389 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16390 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16391 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16392 * 16393 * This function creates a set of completion queue, s to support MRQ 16394 * as detailed in @cqp, on a port, 16395 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16396 * 16397 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16398 * is used to get the entry count and entry size that are necessary to 16399 * determine the number of pages to allocate and use for this queue. The @eq 16400 * is used to indicate which event queue to bind this completion queue to. This 16401 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16402 * completion queue. This function is asynchronous and will wait for the mailbox 16403 * command to finish before continuing. 16404 * 16405 * On success this function will return a zero. If unable to allocate enough 16406 * memory this function will return -ENOMEM. If the queue create mailbox command 16407 * fails this function will return -ENXIO. 16408 **/ 16409 int 16410 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16411 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16412 uint32_t subtype) 16413 { 16414 struct lpfc_queue *cq; 16415 struct lpfc_queue *eq; 16416 struct lpfc_mbx_cq_create_set *cq_set; 16417 struct lpfc_dmabuf *dmabuf; 16418 LPFC_MBOXQ_t *mbox; 16419 int rc, length, alloclen, status = 0; 16420 int cnt, idx, numcq, page_idx = 0; 16421 uint32_t shdr_status, shdr_add_status; 16422 union lpfc_sli4_cfg_shdr *shdr; 16423 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16424 16425 /* sanity check on queue memory */ 16426 numcq = phba->cfg_nvmet_mrq; 16427 if (!cqp || !hdwq || !numcq) 16428 return -ENODEV; 16429 16430 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16431 if (!mbox) 16432 return -ENOMEM; 16433 16434 length = sizeof(struct lpfc_mbx_cq_create_set); 16435 length += ((numcq * cqp[0]->page_count) * 16436 sizeof(struct dma_address)); 16437 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16438 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16439 LPFC_SLI4_MBX_NEMBED); 16440 if (alloclen < length) { 16441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16442 "3098 Allocated DMA memory size (%d) is " 16443 "less than the requested DMA memory size " 16444 "(%d)\n", alloclen, length); 16445 status = -ENOMEM; 16446 goto out; 16447 } 16448 cq_set = mbox->sge_array->addr[0]; 16449 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16450 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16451 16452 for (idx = 0; idx < numcq; idx++) { 16453 cq = cqp[idx]; 16454 eq = hdwq[idx].hba_eq; 16455 if (!cq || !eq) { 16456 status = -ENOMEM; 16457 goto out; 16458 } 16459 if (!phba->sli4_hba.pc_sli4_params.supported) 16460 hw_page_size = cq->page_size; 16461 16462 switch (idx) { 16463 case 0: 16464 bf_set(lpfc_mbx_cq_create_set_page_size, 16465 &cq_set->u.request, 16466 (hw_page_size / SLI4_PAGE_SIZE)); 16467 bf_set(lpfc_mbx_cq_create_set_num_pages, 16468 &cq_set->u.request, cq->page_count); 16469 bf_set(lpfc_mbx_cq_create_set_evt, 16470 &cq_set->u.request, 1); 16471 bf_set(lpfc_mbx_cq_create_set_valid, 16472 &cq_set->u.request, 1); 16473 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16474 &cq_set->u.request, 0); 16475 bf_set(lpfc_mbx_cq_create_set_num_cq, 16476 &cq_set->u.request, numcq); 16477 bf_set(lpfc_mbx_cq_create_set_autovalid, 16478 &cq_set->u.request, 16479 phba->sli4_hba.pc_sli4_params.cqav); 16480 switch (cq->entry_count) { 16481 case 2048: 16482 case 4096: 16483 if (phba->sli4_hba.pc_sli4_params.cqv == 16484 LPFC_Q_CREATE_VERSION_2) { 16485 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16486 &cq_set->u.request, 16487 cq->entry_count); 16488 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16489 &cq_set->u.request, 16490 LPFC_CQ_CNT_WORD7); 16491 break; 16492 } 16493 fallthrough; 16494 default: 16495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16496 "3118 Bad CQ count. (%d)\n", 16497 cq->entry_count); 16498 if (cq->entry_count < 256) { 16499 status = -EINVAL; 16500 goto out; 16501 } 16502 fallthrough; /* otherwise default to smallest */ 16503 case 256: 16504 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16505 &cq_set->u.request, LPFC_CQ_CNT_256); 16506 break; 16507 case 512: 16508 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16509 &cq_set->u.request, LPFC_CQ_CNT_512); 16510 break; 16511 case 1024: 16512 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16513 &cq_set->u.request, LPFC_CQ_CNT_1024); 16514 break; 16515 } 16516 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16517 &cq_set->u.request, eq->queue_id); 16518 break; 16519 case 1: 16520 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16521 &cq_set->u.request, eq->queue_id); 16522 break; 16523 case 2: 16524 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16525 &cq_set->u.request, eq->queue_id); 16526 break; 16527 case 3: 16528 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16529 &cq_set->u.request, eq->queue_id); 16530 break; 16531 case 4: 16532 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16533 &cq_set->u.request, eq->queue_id); 16534 break; 16535 case 5: 16536 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16537 &cq_set->u.request, eq->queue_id); 16538 break; 16539 case 6: 16540 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16541 &cq_set->u.request, eq->queue_id); 16542 break; 16543 case 7: 16544 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16545 &cq_set->u.request, eq->queue_id); 16546 break; 16547 case 8: 16548 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16549 &cq_set->u.request, eq->queue_id); 16550 break; 16551 case 9: 16552 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16553 &cq_set->u.request, eq->queue_id); 16554 break; 16555 case 10: 16556 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16557 &cq_set->u.request, eq->queue_id); 16558 break; 16559 case 11: 16560 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16561 &cq_set->u.request, eq->queue_id); 16562 break; 16563 case 12: 16564 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16565 &cq_set->u.request, eq->queue_id); 16566 break; 16567 case 13: 16568 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16569 &cq_set->u.request, eq->queue_id); 16570 break; 16571 case 14: 16572 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16573 &cq_set->u.request, eq->queue_id); 16574 break; 16575 case 15: 16576 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16577 &cq_set->u.request, eq->queue_id); 16578 break; 16579 } 16580 16581 /* link the cq onto the parent eq child list */ 16582 list_add_tail(&cq->list, &eq->child_list); 16583 /* Set up completion queue's type and subtype */ 16584 cq->type = type; 16585 cq->subtype = subtype; 16586 cq->assoc_qid = eq->queue_id; 16587 cq->assoc_qp = eq; 16588 cq->host_index = 0; 16589 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16590 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16591 cq->entry_count); 16592 cq->chann = idx; 16593 16594 rc = 0; 16595 list_for_each_entry(dmabuf, &cq->page_list, list) { 16596 memset(dmabuf->virt, 0, hw_page_size); 16597 cnt = page_idx + dmabuf->buffer_tag; 16598 cq_set->u.request.page[cnt].addr_lo = 16599 putPaddrLow(dmabuf->phys); 16600 cq_set->u.request.page[cnt].addr_hi = 16601 putPaddrHigh(dmabuf->phys); 16602 rc++; 16603 } 16604 page_idx += rc; 16605 } 16606 16607 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16608 16609 /* The IOCTL status is embedded in the mailbox subheader. */ 16610 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16611 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16612 if (shdr_status || shdr_add_status || rc) { 16613 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16614 "3119 CQ_CREATE_SET mailbox failed with " 16615 "status x%x add_status x%x, mbx status x%x\n", 16616 shdr_status, shdr_add_status, rc); 16617 status = -ENXIO; 16618 goto out; 16619 } 16620 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16621 if (rc == 0xFFFF) { 16622 status = -ENXIO; 16623 goto out; 16624 } 16625 16626 for (idx = 0; idx < numcq; idx++) { 16627 cq = cqp[idx]; 16628 cq->queue_id = rc + idx; 16629 if (cq->queue_id > phba->sli4_hba.cq_max) 16630 phba->sli4_hba.cq_max = cq->queue_id; 16631 } 16632 16633 out: 16634 lpfc_sli4_mbox_cmd_free(phba, mbox); 16635 return status; 16636 } 16637 16638 /** 16639 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16640 * @phba: HBA structure that indicates port to create a queue on. 16641 * @mq: The queue structure to use to create the mailbox queue. 16642 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16643 * @cq: The completion queue to associate with this cq. 16644 * 16645 * This function provides failback (fb) functionality when the 16646 * mq_create_ext fails on older FW generations. It's purpose is identical 16647 * to mq_create_ext otherwise. 16648 * 16649 * This routine cannot fail as all attributes were previously accessed and 16650 * initialized in mq_create_ext. 16651 **/ 16652 static void 16653 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16654 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16655 { 16656 struct lpfc_mbx_mq_create *mq_create; 16657 struct lpfc_dmabuf *dmabuf; 16658 int length; 16659 16660 length = (sizeof(struct lpfc_mbx_mq_create) - 16661 sizeof(struct lpfc_sli4_cfg_mhdr)); 16662 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16663 LPFC_MBOX_OPCODE_MQ_CREATE, 16664 length, LPFC_SLI4_MBX_EMBED); 16665 mq_create = &mbox->u.mqe.un.mq_create; 16666 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16667 mq->page_count); 16668 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16669 cq->queue_id); 16670 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16671 switch (mq->entry_count) { 16672 case 16: 16673 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16674 LPFC_MQ_RING_SIZE_16); 16675 break; 16676 case 32: 16677 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16678 LPFC_MQ_RING_SIZE_32); 16679 break; 16680 case 64: 16681 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16682 LPFC_MQ_RING_SIZE_64); 16683 break; 16684 case 128: 16685 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16686 LPFC_MQ_RING_SIZE_128); 16687 break; 16688 } 16689 list_for_each_entry(dmabuf, &mq->page_list, list) { 16690 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16691 putPaddrLow(dmabuf->phys); 16692 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16693 putPaddrHigh(dmabuf->phys); 16694 } 16695 } 16696 16697 /** 16698 * lpfc_mq_create - Create a mailbox Queue on the HBA 16699 * @phba: HBA structure that indicates port to create a queue on. 16700 * @mq: The queue structure to use to create the mailbox queue. 16701 * @cq: The completion queue to associate with this cq. 16702 * @subtype: The queue's subtype. 16703 * 16704 * This function creates a mailbox queue, as detailed in @mq, on a port, 16705 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16706 * 16707 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16708 * is used to get the entry count and entry size that are necessary to 16709 * determine the number of pages to allocate and use for this queue. This 16710 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16711 * mailbox queue. This function is asynchronous and will wait for the mailbox 16712 * command to finish before continuing. 16713 * 16714 * On success this function will return a zero. If unable to allocate enough 16715 * memory this function will return -ENOMEM. If the queue create mailbox command 16716 * fails this function will return -ENXIO. 16717 **/ 16718 int32_t 16719 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16720 struct lpfc_queue *cq, uint32_t subtype) 16721 { 16722 struct lpfc_mbx_mq_create *mq_create; 16723 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16724 struct lpfc_dmabuf *dmabuf; 16725 LPFC_MBOXQ_t *mbox; 16726 int rc, length, status = 0; 16727 uint32_t shdr_status, shdr_add_status; 16728 union lpfc_sli4_cfg_shdr *shdr; 16729 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16730 16731 /* sanity check on queue memory */ 16732 if (!mq || !cq) 16733 return -ENODEV; 16734 if (!phba->sli4_hba.pc_sli4_params.supported) 16735 hw_page_size = SLI4_PAGE_SIZE; 16736 16737 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16738 if (!mbox) 16739 return -ENOMEM; 16740 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16741 sizeof(struct lpfc_sli4_cfg_mhdr)); 16742 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16743 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16744 length, LPFC_SLI4_MBX_EMBED); 16745 16746 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16747 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16748 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16749 &mq_create_ext->u.request, mq->page_count); 16750 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16751 &mq_create_ext->u.request, 1); 16752 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16753 &mq_create_ext->u.request, 1); 16754 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16755 &mq_create_ext->u.request, 1); 16756 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16757 &mq_create_ext->u.request, 1); 16758 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16759 &mq_create_ext->u.request, 1); 16760 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16761 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16762 phba->sli4_hba.pc_sli4_params.mqv); 16763 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16764 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16765 cq->queue_id); 16766 else 16767 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16768 cq->queue_id); 16769 switch (mq->entry_count) { 16770 default: 16771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16772 "0362 Unsupported MQ count. (%d)\n", 16773 mq->entry_count); 16774 if (mq->entry_count < 16) { 16775 status = -EINVAL; 16776 goto out; 16777 } 16778 fallthrough; /* otherwise default to smallest count */ 16779 case 16: 16780 bf_set(lpfc_mq_context_ring_size, 16781 &mq_create_ext->u.request.context, 16782 LPFC_MQ_RING_SIZE_16); 16783 break; 16784 case 32: 16785 bf_set(lpfc_mq_context_ring_size, 16786 &mq_create_ext->u.request.context, 16787 LPFC_MQ_RING_SIZE_32); 16788 break; 16789 case 64: 16790 bf_set(lpfc_mq_context_ring_size, 16791 &mq_create_ext->u.request.context, 16792 LPFC_MQ_RING_SIZE_64); 16793 break; 16794 case 128: 16795 bf_set(lpfc_mq_context_ring_size, 16796 &mq_create_ext->u.request.context, 16797 LPFC_MQ_RING_SIZE_128); 16798 break; 16799 } 16800 list_for_each_entry(dmabuf, &mq->page_list, list) { 16801 memset(dmabuf->virt, 0, hw_page_size); 16802 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16803 putPaddrLow(dmabuf->phys); 16804 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16805 putPaddrHigh(dmabuf->phys); 16806 } 16807 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16808 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16809 &mq_create_ext->u.response); 16810 if (rc != MBX_SUCCESS) { 16811 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16812 "2795 MQ_CREATE_EXT failed with " 16813 "status x%x. Failback to MQ_CREATE.\n", 16814 rc); 16815 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16816 mq_create = &mbox->u.mqe.un.mq_create; 16817 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16818 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16819 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16820 &mq_create->u.response); 16821 } 16822 16823 /* The IOCTL status is embedded in the mailbox subheader. */ 16824 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16825 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16826 if (shdr_status || shdr_add_status || rc) { 16827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16828 "2502 MQ_CREATE mailbox failed with " 16829 "status x%x add_status x%x, mbx status x%x\n", 16830 shdr_status, shdr_add_status, rc); 16831 status = -ENXIO; 16832 goto out; 16833 } 16834 if (mq->queue_id == 0xFFFF) { 16835 status = -ENXIO; 16836 goto out; 16837 } 16838 mq->type = LPFC_MQ; 16839 mq->assoc_qid = cq->queue_id; 16840 mq->subtype = subtype; 16841 mq->host_index = 0; 16842 mq->hba_index = 0; 16843 16844 /* link the mq onto the parent cq child list */ 16845 list_add_tail(&mq->list, &cq->child_list); 16846 out: 16847 mempool_free(mbox, phba->mbox_mem_pool); 16848 return status; 16849 } 16850 16851 /** 16852 * lpfc_wq_create - Create a Work Queue on the HBA 16853 * @phba: HBA structure that indicates port to create a queue on. 16854 * @wq: The queue structure to use to create the work queue. 16855 * @cq: The completion queue to bind this work queue to. 16856 * @subtype: The subtype of the work queue indicating its functionality. 16857 * 16858 * This function creates a work queue, as detailed in @wq, on a port, described 16859 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16860 * 16861 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16862 * is used to get the entry count and entry size that are necessary to 16863 * determine the number of pages to allocate and use for this queue. The @cq 16864 * is used to indicate which completion queue to bind this work queue to. This 16865 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16866 * work queue. This function is asynchronous and will wait for the mailbox 16867 * command to finish before continuing. 16868 * 16869 * On success this function will return a zero. If unable to allocate enough 16870 * memory this function will return -ENOMEM. If the queue create mailbox command 16871 * fails this function will return -ENXIO. 16872 **/ 16873 int 16874 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16875 struct lpfc_queue *cq, uint32_t subtype) 16876 { 16877 struct lpfc_mbx_wq_create *wq_create; 16878 struct lpfc_dmabuf *dmabuf; 16879 LPFC_MBOXQ_t *mbox; 16880 int rc, length, status = 0; 16881 uint32_t shdr_status, shdr_add_status; 16882 union lpfc_sli4_cfg_shdr *shdr; 16883 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16884 struct dma_address *page; 16885 void __iomem *bar_memmap_p; 16886 uint32_t db_offset; 16887 uint16_t pci_barset; 16888 uint8_t dpp_barset; 16889 uint32_t dpp_offset; 16890 uint8_t wq_create_version; 16891 #ifdef CONFIG_X86 16892 unsigned long pg_addr; 16893 #endif 16894 16895 /* sanity check on queue memory */ 16896 if (!wq || !cq) 16897 return -ENODEV; 16898 if (!phba->sli4_hba.pc_sli4_params.supported) 16899 hw_page_size = wq->page_size; 16900 16901 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16902 if (!mbox) 16903 return -ENOMEM; 16904 length = (sizeof(struct lpfc_mbx_wq_create) - 16905 sizeof(struct lpfc_sli4_cfg_mhdr)); 16906 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16907 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16908 length, LPFC_SLI4_MBX_EMBED); 16909 wq_create = &mbox->u.mqe.un.wq_create; 16910 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16911 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16912 wq->page_count); 16913 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16914 cq->queue_id); 16915 16916 /* wqv is the earliest version supported, NOT the latest */ 16917 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16918 phba->sli4_hba.pc_sli4_params.wqv); 16919 16920 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16921 (wq->page_size > SLI4_PAGE_SIZE)) 16922 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16923 else 16924 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16925 16926 switch (wq_create_version) { 16927 case LPFC_Q_CREATE_VERSION_1: 16928 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16929 wq->entry_count); 16930 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16931 LPFC_Q_CREATE_VERSION_1); 16932 16933 switch (wq->entry_size) { 16934 default: 16935 case 64: 16936 bf_set(lpfc_mbx_wq_create_wqe_size, 16937 &wq_create->u.request_1, 16938 LPFC_WQ_WQE_SIZE_64); 16939 break; 16940 case 128: 16941 bf_set(lpfc_mbx_wq_create_wqe_size, 16942 &wq_create->u.request_1, 16943 LPFC_WQ_WQE_SIZE_128); 16944 break; 16945 } 16946 /* Request DPP by default */ 16947 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16948 bf_set(lpfc_mbx_wq_create_page_size, 16949 &wq_create->u.request_1, 16950 (wq->page_size / SLI4_PAGE_SIZE)); 16951 page = wq_create->u.request_1.page; 16952 break; 16953 default: 16954 page = wq_create->u.request.page; 16955 break; 16956 } 16957 16958 list_for_each_entry(dmabuf, &wq->page_list, list) { 16959 memset(dmabuf->virt, 0, hw_page_size); 16960 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16961 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16962 } 16963 16964 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16965 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16966 16967 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16968 /* The IOCTL status is embedded in the mailbox subheader. */ 16969 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16970 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16971 if (shdr_status || shdr_add_status || rc) { 16972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16973 "2503 WQ_CREATE mailbox failed with " 16974 "status x%x add_status x%x, mbx status x%x\n", 16975 shdr_status, shdr_add_status, rc); 16976 status = -ENXIO; 16977 goto out; 16978 } 16979 16980 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16981 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16982 &wq_create->u.response); 16983 else 16984 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16985 &wq_create->u.response_1); 16986 16987 if (wq->queue_id == 0xFFFF) { 16988 status = -ENXIO; 16989 goto out; 16990 } 16991 16992 wq->db_format = LPFC_DB_LIST_FORMAT; 16993 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16994 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16995 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16996 &wq_create->u.response); 16997 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16998 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17000 "3265 WQ[%d] doorbell format " 17001 "not supported: x%x\n", 17002 wq->queue_id, wq->db_format); 17003 status = -EINVAL; 17004 goto out; 17005 } 17006 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17007 &wq_create->u.response); 17008 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17009 pci_barset); 17010 if (!bar_memmap_p) { 17011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17012 "3263 WQ[%d] failed to memmap " 17013 "pci barset:x%x\n", 17014 wq->queue_id, pci_barset); 17015 status = -ENOMEM; 17016 goto out; 17017 } 17018 db_offset = wq_create->u.response.doorbell_offset; 17019 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17020 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17022 "3252 WQ[%d] doorbell offset " 17023 "not supported: x%x\n", 17024 wq->queue_id, db_offset); 17025 status = -EINVAL; 17026 goto out; 17027 } 17028 wq->db_regaddr = bar_memmap_p + db_offset; 17029 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17030 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17031 "format:x%x\n", wq->queue_id, 17032 pci_barset, db_offset, wq->db_format); 17033 } else 17034 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17035 } else { 17036 /* Check if DPP was honored by the firmware */ 17037 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17038 &wq_create->u.response_1); 17039 if (wq->dpp_enable) { 17040 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17041 &wq_create->u.response_1); 17042 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17043 pci_barset); 17044 if (!bar_memmap_p) { 17045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17046 "3267 WQ[%d] failed to memmap " 17047 "pci barset:x%x\n", 17048 wq->queue_id, pci_barset); 17049 status = -ENOMEM; 17050 goto out; 17051 } 17052 db_offset = wq_create->u.response_1.doorbell_offset; 17053 wq->db_regaddr = bar_memmap_p + db_offset; 17054 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17055 &wq_create->u.response_1); 17056 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17057 &wq_create->u.response_1); 17058 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17059 dpp_barset); 17060 if (!bar_memmap_p) { 17061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17062 "3268 WQ[%d] failed to memmap " 17063 "pci barset:x%x\n", 17064 wq->queue_id, dpp_barset); 17065 status = -ENOMEM; 17066 goto out; 17067 } 17068 dpp_offset = wq_create->u.response_1.dpp_offset; 17069 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17070 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17071 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17072 "dpp_id:x%x dpp_barset:x%x " 17073 "dpp_offset:x%x\n", 17074 wq->queue_id, pci_barset, db_offset, 17075 wq->dpp_id, dpp_barset, dpp_offset); 17076 17077 #ifdef CONFIG_X86 17078 /* Enable combined writes for DPP aperture */ 17079 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17080 rc = set_memory_wc(pg_addr, 1); 17081 if (rc) { 17082 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17083 "3272 Cannot setup Combined " 17084 "Write on WQ[%d] - disable DPP\n", 17085 wq->queue_id); 17086 phba->cfg_enable_dpp = 0; 17087 } 17088 #else 17089 phba->cfg_enable_dpp = 0; 17090 #endif 17091 } else 17092 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17093 } 17094 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17095 if (wq->pring == NULL) { 17096 status = -ENOMEM; 17097 goto out; 17098 } 17099 wq->type = LPFC_WQ; 17100 wq->assoc_qid = cq->queue_id; 17101 wq->subtype = subtype; 17102 wq->host_index = 0; 17103 wq->hba_index = 0; 17104 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17105 17106 /* link the wq onto the parent cq child list */ 17107 list_add_tail(&wq->list, &cq->child_list); 17108 out: 17109 mempool_free(mbox, phba->mbox_mem_pool); 17110 return status; 17111 } 17112 17113 /** 17114 * lpfc_rq_create - Create a Receive Queue on the HBA 17115 * @phba: HBA structure that indicates port to create a queue on. 17116 * @hrq: The queue structure to use to create the header receive queue. 17117 * @drq: The queue structure to use to create the data receive queue. 17118 * @cq: The completion queue to bind this work queue to. 17119 * @subtype: The subtype of the work queue indicating its functionality. 17120 * 17121 * This function creates a receive buffer queue pair , as detailed in @hrq and 17122 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17123 * to the HBA. 17124 * 17125 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17126 * struct is used to get the entry count that is necessary to determine the 17127 * number of pages to use for this queue. The @cq is used to indicate which 17128 * completion queue to bind received buffers that are posted to these queues to. 17129 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17130 * receive queue pair. This function is asynchronous and will wait for the 17131 * mailbox command to finish before continuing. 17132 * 17133 * On success this function will return a zero. If unable to allocate enough 17134 * memory this function will return -ENOMEM. If the queue create mailbox command 17135 * fails this function will return -ENXIO. 17136 **/ 17137 int 17138 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17139 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17140 { 17141 struct lpfc_mbx_rq_create *rq_create; 17142 struct lpfc_dmabuf *dmabuf; 17143 LPFC_MBOXQ_t *mbox; 17144 int rc, length, status = 0; 17145 uint32_t shdr_status, shdr_add_status; 17146 union lpfc_sli4_cfg_shdr *shdr; 17147 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17148 void __iomem *bar_memmap_p; 17149 uint32_t db_offset; 17150 uint16_t pci_barset; 17151 17152 /* sanity check on queue memory */ 17153 if (!hrq || !drq || !cq) 17154 return -ENODEV; 17155 if (!phba->sli4_hba.pc_sli4_params.supported) 17156 hw_page_size = SLI4_PAGE_SIZE; 17157 17158 if (hrq->entry_count != drq->entry_count) 17159 return -EINVAL; 17160 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17161 if (!mbox) 17162 return -ENOMEM; 17163 length = (sizeof(struct lpfc_mbx_rq_create) - 17164 sizeof(struct lpfc_sli4_cfg_mhdr)); 17165 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17166 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17167 length, LPFC_SLI4_MBX_EMBED); 17168 rq_create = &mbox->u.mqe.un.rq_create; 17169 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17170 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17171 phba->sli4_hba.pc_sli4_params.rqv); 17172 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17173 bf_set(lpfc_rq_context_rqe_count_1, 17174 &rq_create->u.request.context, 17175 hrq->entry_count); 17176 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17177 bf_set(lpfc_rq_context_rqe_size, 17178 &rq_create->u.request.context, 17179 LPFC_RQE_SIZE_8); 17180 bf_set(lpfc_rq_context_page_size, 17181 &rq_create->u.request.context, 17182 LPFC_RQ_PAGE_SIZE_4096); 17183 } else { 17184 switch (hrq->entry_count) { 17185 default: 17186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17187 "2535 Unsupported RQ count. (%d)\n", 17188 hrq->entry_count); 17189 if (hrq->entry_count < 512) { 17190 status = -EINVAL; 17191 goto out; 17192 } 17193 fallthrough; /* otherwise default to smallest count */ 17194 case 512: 17195 bf_set(lpfc_rq_context_rqe_count, 17196 &rq_create->u.request.context, 17197 LPFC_RQ_RING_SIZE_512); 17198 break; 17199 case 1024: 17200 bf_set(lpfc_rq_context_rqe_count, 17201 &rq_create->u.request.context, 17202 LPFC_RQ_RING_SIZE_1024); 17203 break; 17204 case 2048: 17205 bf_set(lpfc_rq_context_rqe_count, 17206 &rq_create->u.request.context, 17207 LPFC_RQ_RING_SIZE_2048); 17208 break; 17209 case 4096: 17210 bf_set(lpfc_rq_context_rqe_count, 17211 &rq_create->u.request.context, 17212 LPFC_RQ_RING_SIZE_4096); 17213 break; 17214 } 17215 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17216 LPFC_HDR_BUF_SIZE); 17217 } 17218 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17219 cq->queue_id); 17220 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17221 hrq->page_count); 17222 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17223 memset(dmabuf->virt, 0, hw_page_size); 17224 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17225 putPaddrLow(dmabuf->phys); 17226 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17227 putPaddrHigh(dmabuf->phys); 17228 } 17229 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17230 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17231 17232 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17233 /* The IOCTL status is embedded in the mailbox subheader. */ 17234 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17235 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17236 if (shdr_status || shdr_add_status || rc) { 17237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17238 "2504 RQ_CREATE mailbox failed with " 17239 "status x%x add_status x%x, mbx status x%x\n", 17240 shdr_status, shdr_add_status, rc); 17241 status = -ENXIO; 17242 goto out; 17243 } 17244 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17245 if (hrq->queue_id == 0xFFFF) { 17246 status = -ENXIO; 17247 goto out; 17248 } 17249 17250 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17251 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17252 &rq_create->u.response); 17253 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17254 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17256 "3262 RQ [%d] doorbell format not " 17257 "supported: x%x\n", hrq->queue_id, 17258 hrq->db_format); 17259 status = -EINVAL; 17260 goto out; 17261 } 17262 17263 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17264 &rq_create->u.response); 17265 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17266 if (!bar_memmap_p) { 17267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17268 "3269 RQ[%d] failed to memmap pci " 17269 "barset:x%x\n", hrq->queue_id, 17270 pci_barset); 17271 status = -ENOMEM; 17272 goto out; 17273 } 17274 17275 db_offset = rq_create->u.response.doorbell_offset; 17276 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17277 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17279 "3270 RQ[%d] doorbell offset not " 17280 "supported: x%x\n", hrq->queue_id, 17281 db_offset); 17282 status = -EINVAL; 17283 goto out; 17284 } 17285 hrq->db_regaddr = bar_memmap_p + db_offset; 17286 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17287 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17288 "format:x%x\n", hrq->queue_id, pci_barset, 17289 db_offset, hrq->db_format); 17290 } else { 17291 hrq->db_format = LPFC_DB_RING_FORMAT; 17292 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17293 } 17294 hrq->type = LPFC_HRQ; 17295 hrq->assoc_qid = cq->queue_id; 17296 hrq->subtype = subtype; 17297 hrq->host_index = 0; 17298 hrq->hba_index = 0; 17299 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17300 17301 /* now create the data queue */ 17302 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17303 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17304 length, LPFC_SLI4_MBX_EMBED); 17305 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17306 phba->sli4_hba.pc_sli4_params.rqv); 17307 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17308 bf_set(lpfc_rq_context_rqe_count_1, 17309 &rq_create->u.request.context, hrq->entry_count); 17310 if (subtype == LPFC_NVMET) 17311 rq_create->u.request.context.buffer_size = 17312 LPFC_NVMET_DATA_BUF_SIZE; 17313 else 17314 rq_create->u.request.context.buffer_size = 17315 LPFC_DATA_BUF_SIZE; 17316 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17317 LPFC_RQE_SIZE_8); 17318 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17319 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17320 } else { 17321 switch (drq->entry_count) { 17322 default: 17323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17324 "2536 Unsupported RQ count. (%d)\n", 17325 drq->entry_count); 17326 if (drq->entry_count < 512) { 17327 status = -EINVAL; 17328 goto out; 17329 } 17330 fallthrough; /* otherwise default to smallest count */ 17331 case 512: 17332 bf_set(lpfc_rq_context_rqe_count, 17333 &rq_create->u.request.context, 17334 LPFC_RQ_RING_SIZE_512); 17335 break; 17336 case 1024: 17337 bf_set(lpfc_rq_context_rqe_count, 17338 &rq_create->u.request.context, 17339 LPFC_RQ_RING_SIZE_1024); 17340 break; 17341 case 2048: 17342 bf_set(lpfc_rq_context_rqe_count, 17343 &rq_create->u.request.context, 17344 LPFC_RQ_RING_SIZE_2048); 17345 break; 17346 case 4096: 17347 bf_set(lpfc_rq_context_rqe_count, 17348 &rq_create->u.request.context, 17349 LPFC_RQ_RING_SIZE_4096); 17350 break; 17351 } 17352 if (subtype == LPFC_NVMET) 17353 bf_set(lpfc_rq_context_buf_size, 17354 &rq_create->u.request.context, 17355 LPFC_NVMET_DATA_BUF_SIZE); 17356 else 17357 bf_set(lpfc_rq_context_buf_size, 17358 &rq_create->u.request.context, 17359 LPFC_DATA_BUF_SIZE); 17360 } 17361 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17362 cq->queue_id); 17363 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17364 drq->page_count); 17365 list_for_each_entry(dmabuf, &drq->page_list, list) { 17366 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17367 putPaddrLow(dmabuf->phys); 17368 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17369 putPaddrHigh(dmabuf->phys); 17370 } 17371 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17372 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17373 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17374 /* The IOCTL status is embedded in the mailbox subheader. */ 17375 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17376 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17377 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17378 if (shdr_status || shdr_add_status || rc) { 17379 status = -ENXIO; 17380 goto out; 17381 } 17382 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17383 if (drq->queue_id == 0xFFFF) { 17384 status = -ENXIO; 17385 goto out; 17386 } 17387 drq->type = LPFC_DRQ; 17388 drq->assoc_qid = cq->queue_id; 17389 drq->subtype = subtype; 17390 drq->host_index = 0; 17391 drq->hba_index = 0; 17392 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17393 17394 /* link the header and data RQs onto the parent cq child list */ 17395 list_add_tail(&hrq->list, &cq->child_list); 17396 list_add_tail(&drq->list, &cq->child_list); 17397 17398 out: 17399 mempool_free(mbox, phba->mbox_mem_pool); 17400 return status; 17401 } 17402 17403 /** 17404 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17405 * @phba: HBA structure that indicates port to create a queue on. 17406 * @hrqp: The queue structure array to use to create the header receive queues. 17407 * @drqp: The queue structure array to use to create the data receive queues. 17408 * @cqp: The completion queue array to bind these receive queues to. 17409 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17410 * 17411 * This function creates a receive buffer queue pair , as detailed in @hrq and 17412 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17413 * to the HBA. 17414 * 17415 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17416 * struct is used to get the entry count that is necessary to determine the 17417 * number of pages to use for this queue. The @cq is used to indicate which 17418 * completion queue to bind received buffers that are posted to these queues to. 17419 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17420 * receive queue pair. This function is asynchronous and will wait for the 17421 * mailbox command to finish before continuing. 17422 * 17423 * On success this function will return a zero. If unable to allocate enough 17424 * memory this function will return -ENOMEM. If the queue create mailbox command 17425 * fails this function will return -ENXIO. 17426 **/ 17427 int 17428 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17429 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17430 uint32_t subtype) 17431 { 17432 struct lpfc_queue *hrq, *drq, *cq; 17433 struct lpfc_mbx_rq_create_v2 *rq_create; 17434 struct lpfc_dmabuf *dmabuf; 17435 LPFC_MBOXQ_t *mbox; 17436 int rc, length, alloclen, status = 0; 17437 int cnt, idx, numrq, page_idx = 0; 17438 uint32_t shdr_status, shdr_add_status; 17439 union lpfc_sli4_cfg_shdr *shdr; 17440 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17441 17442 numrq = phba->cfg_nvmet_mrq; 17443 /* sanity check on array memory */ 17444 if (!hrqp || !drqp || !cqp || !numrq) 17445 return -ENODEV; 17446 if (!phba->sli4_hba.pc_sli4_params.supported) 17447 hw_page_size = SLI4_PAGE_SIZE; 17448 17449 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17450 if (!mbox) 17451 return -ENOMEM; 17452 17453 length = sizeof(struct lpfc_mbx_rq_create_v2); 17454 length += ((2 * numrq * hrqp[0]->page_count) * 17455 sizeof(struct dma_address)); 17456 17457 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17458 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17459 LPFC_SLI4_MBX_NEMBED); 17460 if (alloclen < length) { 17461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17462 "3099 Allocated DMA memory size (%d) is " 17463 "less than the requested DMA memory size " 17464 "(%d)\n", alloclen, length); 17465 status = -ENOMEM; 17466 goto out; 17467 } 17468 17469 17470 17471 rq_create = mbox->sge_array->addr[0]; 17472 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17473 17474 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17475 cnt = 0; 17476 17477 for (idx = 0; idx < numrq; idx++) { 17478 hrq = hrqp[idx]; 17479 drq = drqp[idx]; 17480 cq = cqp[idx]; 17481 17482 /* sanity check on queue memory */ 17483 if (!hrq || !drq || !cq) { 17484 status = -ENODEV; 17485 goto out; 17486 } 17487 17488 if (hrq->entry_count != drq->entry_count) { 17489 status = -EINVAL; 17490 goto out; 17491 } 17492 17493 if (idx == 0) { 17494 bf_set(lpfc_mbx_rq_create_num_pages, 17495 &rq_create->u.request, 17496 hrq->page_count); 17497 bf_set(lpfc_mbx_rq_create_rq_cnt, 17498 &rq_create->u.request, (numrq * 2)); 17499 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17500 1); 17501 bf_set(lpfc_rq_context_base_cq, 17502 &rq_create->u.request.context, 17503 cq->queue_id); 17504 bf_set(lpfc_rq_context_data_size, 17505 &rq_create->u.request.context, 17506 LPFC_NVMET_DATA_BUF_SIZE); 17507 bf_set(lpfc_rq_context_hdr_size, 17508 &rq_create->u.request.context, 17509 LPFC_HDR_BUF_SIZE); 17510 bf_set(lpfc_rq_context_rqe_count_1, 17511 &rq_create->u.request.context, 17512 hrq->entry_count); 17513 bf_set(lpfc_rq_context_rqe_size, 17514 &rq_create->u.request.context, 17515 LPFC_RQE_SIZE_8); 17516 bf_set(lpfc_rq_context_page_size, 17517 &rq_create->u.request.context, 17518 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17519 } 17520 rc = 0; 17521 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17522 memset(dmabuf->virt, 0, hw_page_size); 17523 cnt = page_idx + dmabuf->buffer_tag; 17524 rq_create->u.request.page[cnt].addr_lo = 17525 putPaddrLow(dmabuf->phys); 17526 rq_create->u.request.page[cnt].addr_hi = 17527 putPaddrHigh(dmabuf->phys); 17528 rc++; 17529 } 17530 page_idx += rc; 17531 17532 rc = 0; 17533 list_for_each_entry(dmabuf, &drq->page_list, list) { 17534 memset(dmabuf->virt, 0, hw_page_size); 17535 cnt = page_idx + dmabuf->buffer_tag; 17536 rq_create->u.request.page[cnt].addr_lo = 17537 putPaddrLow(dmabuf->phys); 17538 rq_create->u.request.page[cnt].addr_hi = 17539 putPaddrHigh(dmabuf->phys); 17540 rc++; 17541 } 17542 page_idx += rc; 17543 17544 hrq->db_format = LPFC_DB_RING_FORMAT; 17545 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17546 hrq->type = LPFC_HRQ; 17547 hrq->assoc_qid = cq->queue_id; 17548 hrq->subtype = subtype; 17549 hrq->host_index = 0; 17550 hrq->hba_index = 0; 17551 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17552 17553 drq->db_format = LPFC_DB_RING_FORMAT; 17554 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17555 drq->type = LPFC_DRQ; 17556 drq->assoc_qid = cq->queue_id; 17557 drq->subtype = subtype; 17558 drq->host_index = 0; 17559 drq->hba_index = 0; 17560 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17561 17562 list_add_tail(&hrq->list, &cq->child_list); 17563 list_add_tail(&drq->list, &cq->child_list); 17564 } 17565 17566 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17567 /* The IOCTL status is embedded in the mailbox subheader. */ 17568 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17569 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17570 if (shdr_status || shdr_add_status || rc) { 17571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17572 "3120 RQ_CREATE mailbox failed with " 17573 "status x%x add_status x%x, mbx status x%x\n", 17574 shdr_status, shdr_add_status, rc); 17575 status = -ENXIO; 17576 goto out; 17577 } 17578 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17579 if (rc == 0xFFFF) { 17580 status = -ENXIO; 17581 goto out; 17582 } 17583 17584 /* Initialize all RQs with associated queue id */ 17585 for (idx = 0; idx < numrq; idx++) { 17586 hrq = hrqp[idx]; 17587 hrq->queue_id = rc + (2 * idx); 17588 drq = drqp[idx]; 17589 drq->queue_id = rc + (2 * idx) + 1; 17590 } 17591 17592 out: 17593 lpfc_sli4_mbox_cmd_free(phba, mbox); 17594 return status; 17595 } 17596 17597 /** 17598 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17599 * @phba: HBA structure that indicates port to destroy a queue on. 17600 * @eq: The queue structure associated with the queue to destroy. 17601 * 17602 * This function destroys a queue, as detailed in @eq by sending an mailbox 17603 * command, specific to the type of queue, to the HBA. 17604 * 17605 * The @eq struct is used to get the queue ID of the queue to destroy. 17606 * 17607 * On success this function will return a zero. If the queue destroy mailbox 17608 * command fails this function will return -ENXIO. 17609 **/ 17610 int 17611 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17612 { 17613 LPFC_MBOXQ_t *mbox; 17614 int rc, length, status = 0; 17615 uint32_t shdr_status, shdr_add_status; 17616 union lpfc_sli4_cfg_shdr *shdr; 17617 17618 /* sanity check on queue memory */ 17619 if (!eq) 17620 return -ENODEV; 17621 17622 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17623 if (!mbox) 17624 return -ENOMEM; 17625 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17626 sizeof(struct lpfc_sli4_cfg_mhdr)); 17627 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17628 LPFC_MBOX_OPCODE_EQ_DESTROY, 17629 length, LPFC_SLI4_MBX_EMBED); 17630 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17631 eq->queue_id); 17632 mbox->vport = eq->phba->pport; 17633 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17634 17635 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17636 /* The IOCTL status is embedded in the mailbox subheader. */ 17637 shdr = (union lpfc_sli4_cfg_shdr *) 17638 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17639 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17640 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17641 if (shdr_status || shdr_add_status || rc) { 17642 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17643 "2505 EQ_DESTROY mailbox failed with " 17644 "status x%x add_status x%x, mbx status x%x\n", 17645 shdr_status, shdr_add_status, rc); 17646 status = -ENXIO; 17647 } 17648 17649 /* Remove eq from any list */ 17650 list_del_init(&eq->list); 17651 mempool_free(mbox, eq->phba->mbox_mem_pool); 17652 return status; 17653 } 17654 17655 /** 17656 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17657 * @phba: HBA structure that indicates port to destroy a queue on. 17658 * @cq: The queue structure associated with the queue to destroy. 17659 * 17660 * This function destroys a queue, as detailed in @cq by sending an mailbox 17661 * command, specific to the type of queue, to the HBA. 17662 * 17663 * The @cq struct is used to get the queue ID of the queue to destroy. 17664 * 17665 * On success this function will return a zero. If the queue destroy mailbox 17666 * command fails this function will return -ENXIO. 17667 **/ 17668 int 17669 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17670 { 17671 LPFC_MBOXQ_t *mbox; 17672 int rc, length, status = 0; 17673 uint32_t shdr_status, shdr_add_status; 17674 union lpfc_sli4_cfg_shdr *shdr; 17675 17676 /* sanity check on queue memory */ 17677 if (!cq) 17678 return -ENODEV; 17679 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17680 if (!mbox) 17681 return -ENOMEM; 17682 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17683 sizeof(struct lpfc_sli4_cfg_mhdr)); 17684 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17685 LPFC_MBOX_OPCODE_CQ_DESTROY, 17686 length, LPFC_SLI4_MBX_EMBED); 17687 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17688 cq->queue_id); 17689 mbox->vport = cq->phba->pport; 17690 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17691 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17692 /* The IOCTL status is embedded in the mailbox subheader. */ 17693 shdr = (union lpfc_sli4_cfg_shdr *) 17694 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17695 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17696 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17697 if (shdr_status || shdr_add_status || rc) { 17698 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17699 "2506 CQ_DESTROY mailbox failed with " 17700 "status x%x add_status x%x, mbx status x%x\n", 17701 shdr_status, shdr_add_status, rc); 17702 status = -ENXIO; 17703 } 17704 /* Remove cq from any list */ 17705 list_del_init(&cq->list); 17706 mempool_free(mbox, cq->phba->mbox_mem_pool); 17707 return status; 17708 } 17709 17710 /** 17711 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17712 * @phba: HBA structure that indicates port to destroy a queue on. 17713 * @mq: The queue structure associated with the queue to destroy. 17714 * 17715 * This function destroys a queue, as detailed in @mq by sending an mailbox 17716 * command, specific to the type of queue, to the HBA. 17717 * 17718 * The @mq struct is used to get the queue ID of the queue to destroy. 17719 * 17720 * On success this function will return a zero. If the queue destroy mailbox 17721 * command fails this function will return -ENXIO. 17722 **/ 17723 int 17724 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17725 { 17726 LPFC_MBOXQ_t *mbox; 17727 int rc, length, status = 0; 17728 uint32_t shdr_status, shdr_add_status; 17729 union lpfc_sli4_cfg_shdr *shdr; 17730 17731 /* sanity check on queue memory */ 17732 if (!mq) 17733 return -ENODEV; 17734 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17735 if (!mbox) 17736 return -ENOMEM; 17737 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17738 sizeof(struct lpfc_sli4_cfg_mhdr)); 17739 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17740 LPFC_MBOX_OPCODE_MQ_DESTROY, 17741 length, LPFC_SLI4_MBX_EMBED); 17742 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17743 mq->queue_id); 17744 mbox->vport = mq->phba->pport; 17745 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17746 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17747 /* The IOCTL status is embedded in the mailbox subheader. */ 17748 shdr = (union lpfc_sli4_cfg_shdr *) 17749 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17752 if (shdr_status || shdr_add_status || rc) { 17753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17754 "2507 MQ_DESTROY mailbox failed with " 17755 "status x%x add_status x%x, mbx status x%x\n", 17756 shdr_status, shdr_add_status, rc); 17757 status = -ENXIO; 17758 } 17759 /* Remove mq from any list */ 17760 list_del_init(&mq->list); 17761 mempool_free(mbox, mq->phba->mbox_mem_pool); 17762 return status; 17763 } 17764 17765 /** 17766 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17767 * @phba: HBA structure that indicates port to destroy a queue on. 17768 * @wq: The queue structure associated with the queue to destroy. 17769 * 17770 * This function destroys a queue, as detailed in @wq by sending an mailbox 17771 * command, specific to the type of queue, to the HBA. 17772 * 17773 * The @wq struct is used to get the queue ID of the queue to destroy. 17774 * 17775 * On success this function will return a zero. If the queue destroy mailbox 17776 * command fails this function will return -ENXIO. 17777 **/ 17778 int 17779 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17780 { 17781 LPFC_MBOXQ_t *mbox; 17782 int rc, length, status = 0; 17783 uint32_t shdr_status, shdr_add_status; 17784 union lpfc_sli4_cfg_shdr *shdr; 17785 17786 /* sanity check on queue memory */ 17787 if (!wq) 17788 return -ENODEV; 17789 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17790 if (!mbox) 17791 return -ENOMEM; 17792 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17793 sizeof(struct lpfc_sli4_cfg_mhdr)); 17794 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17795 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17796 length, LPFC_SLI4_MBX_EMBED); 17797 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17798 wq->queue_id); 17799 mbox->vport = wq->phba->pport; 17800 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17801 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17802 shdr = (union lpfc_sli4_cfg_shdr *) 17803 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17804 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17805 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17806 if (shdr_status || shdr_add_status || rc) { 17807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17808 "2508 WQ_DESTROY mailbox failed with " 17809 "status x%x add_status x%x, mbx status x%x\n", 17810 shdr_status, shdr_add_status, rc); 17811 status = -ENXIO; 17812 } 17813 /* Remove wq from any list */ 17814 list_del_init(&wq->list); 17815 kfree(wq->pring); 17816 wq->pring = NULL; 17817 mempool_free(mbox, wq->phba->mbox_mem_pool); 17818 return status; 17819 } 17820 17821 /** 17822 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17823 * @phba: HBA structure that indicates port to destroy a queue on. 17824 * @hrq: The queue structure associated with the queue to destroy. 17825 * @drq: The queue structure associated with the queue to destroy. 17826 * 17827 * This function destroys a queue, as detailed in @rq by sending an mailbox 17828 * command, specific to the type of queue, to the HBA. 17829 * 17830 * The @rq struct is used to get the queue ID of the queue to destroy. 17831 * 17832 * On success this function will return a zero. If the queue destroy mailbox 17833 * command fails this function will return -ENXIO. 17834 **/ 17835 int 17836 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17837 struct lpfc_queue *drq) 17838 { 17839 LPFC_MBOXQ_t *mbox; 17840 int rc, length, status = 0; 17841 uint32_t shdr_status, shdr_add_status; 17842 union lpfc_sli4_cfg_shdr *shdr; 17843 17844 /* sanity check on queue memory */ 17845 if (!hrq || !drq) 17846 return -ENODEV; 17847 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17848 if (!mbox) 17849 return -ENOMEM; 17850 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17851 sizeof(struct lpfc_sli4_cfg_mhdr)); 17852 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17853 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17854 length, LPFC_SLI4_MBX_EMBED); 17855 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17856 hrq->queue_id); 17857 mbox->vport = hrq->phba->pport; 17858 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17859 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17860 /* The IOCTL status is embedded in the mailbox subheader. */ 17861 shdr = (union lpfc_sli4_cfg_shdr *) 17862 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17863 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17864 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17865 if (shdr_status || shdr_add_status || rc) { 17866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17867 "2509 RQ_DESTROY mailbox failed with " 17868 "status x%x add_status x%x, mbx status x%x\n", 17869 shdr_status, shdr_add_status, rc); 17870 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17871 return -ENXIO; 17872 } 17873 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17874 drq->queue_id); 17875 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17876 shdr = (union lpfc_sli4_cfg_shdr *) 17877 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17878 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17879 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17880 if (shdr_status || shdr_add_status || rc) { 17881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17882 "2510 RQ_DESTROY mailbox failed with " 17883 "status x%x add_status x%x, mbx status x%x\n", 17884 shdr_status, shdr_add_status, rc); 17885 status = -ENXIO; 17886 } 17887 list_del_init(&hrq->list); 17888 list_del_init(&drq->list); 17889 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17890 return status; 17891 } 17892 17893 /** 17894 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17895 * @phba: The virtual port for which this call being executed. 17896 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17897 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17898 * @xritag: the xritag that ties this io to the SGL pages. 17899 * 17900 * This routine will post the sgl pages for the IO that has the xritag 17901 * that is in the iocbq structure. The xritag is assigned during iocbq 17902 * creation and persists for as long as the driver is loaded. 17903 * if the caller has fewer than 256 scatter gather segments to map then 17904 * pdma_phys_addr1 should be 0. 17905 * If the caller needs to map more than 256 scatter gather segment then 17906 * pdma_phys_addr1 should be a valid physical address. 17907 * physical address for SGLs must be 64 byte aligned. 17908 * If you are going to map 2 SGL's then the first one must have 256 entries 17909 * the second sgl can have between 1 and 256 entries. 17910 * 17911 * Return codes: 17912 * 0 - Success 17913 * -ENXIO, -ENOMEM - Failure 17914 **/ 17915 int 17916 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17917 dma_addr_t pdma_phys_addr0, 17918 dma_addr_t pdma_phys_addr1, 17919 uint16_t xritag) 17920 { 17921 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17922 LPFC_MBOXQ_t *mbox; 17923 int rc; 17924 uint32_t shdr_status, shdr_add_status; 17925 uint32_t mbox_tmo; 17926 union lpfc_sli4_cfg_shdr *shdr; 17927 17928 if (xritag == NO_XRI) { 17929 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17930 "0364 Invalid param:\n"); 17931 return -EINVAL; 17932 } 17933 17934 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17935 if (!mbox) 17936 return -ENOMEM; 17937 17938 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17939 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17940 sizeof(struct lpfc_mbx_post_sgl_pages) - 17941 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17942 17943 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17944 &mbox->u.mqe.un.post_sgl_pages; 17945 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17946 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17947 17948 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17949 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17950 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17951 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17952 17953 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17954 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17955 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17956 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17957 if (!phba->sli4_hba.intr_enable) 17958 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17959 else { 17960 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17961 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17962 } 17963 /* The IOCTL status is embedded in the mailbox subheader. */ 17964 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17965 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17966 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17967 if (!phba->sli4_hba.intr_enable) 17968 mempool_free(mbox, phba->mbox_mem_pool); 17969 else if (rc != MBX_TIMEOUT) 17970 mempool_free(mbox, phba->mbox_mem_pool); 17971 if (shdr_status || shdr_add_status || rc) { 17972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17973 "2511 POST_SGL mailbox failed with " 17974 "status x%x add_status x%x, mbx status x%x\n", 17975 shdr_status, shdr_add_status, rc); 17976 } 17977 return 0; 17978 } 17979 17980 /** 17981 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17982 * @phba: pointer to lpfc hba data structure. 17983 * 17984 * This routine is invoked to post rpi header templates to the 17985 * HBA consistent with the SLI-4 interface spec. This routine 17986 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17987 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17988 * 17989 * Returns 17990 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17991 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17992 **/ 17993 static uint16_t 17994 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17995 { 17996 unsigned long xri; 17997 17998 /* 17999 * Fetch the next logical xri. Because this index is logical, 18000 * the driver starts at 0 each time. 18001 */ 18002 spin_lock_irq(&phba->hbalock); 18003 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18004 phba->sli4_hba.max_cfg_param.max_xri); 18005 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18006 spin_unlock_irq(&phba->hbalock); 18007 return NO_XRI; 18008 } else { 18009 set_bit(xri, phba->sli4_hba.xri_bmask); 18010 phba->sli4_hba.max_cfg_param.xri_used++; 18011 } 18012 spin_unlock_irq(&phba->hbalock); 18013 return xri; 18014 } 18015 18016 /** 18017 * __lpfc_sli4_free_xri - Release an xri for reuse. 18018 * @phba: pointer to lpfc hba data structure. 18019 * @xri: xri to release. 18020 * 18021 * This routine is invoked to release an xri to the pool of 18022 * available rpis maintained by the driver. 18023 **/ 18024 static void 18025 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18026 { 18027 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18028 phba->sli4_hba.max_cfg_param.xri_used--; 18029 } 18030 } 18031 18032 /** 18033 * lpfc_sli4_free_xri - Release an xri for reuse. 18034 * @phba: pointer to lpfc hba data structure. 18035 * @xri: xri to release. 18036 * 18037 * This routine is invoked to release an xri to the pool of 18038 * available rpis maintained by the driver. 18039 **/ 18040 void 18041 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18042 { 18043 spin_lock_irq(&phba->hbalock); 18044 __lpfc_sli4_free_xri(phba, xri); 18045 spin_unlock_irq(&phba->hbalock); 18046 } 18047 18048 /** 18049 * lpfc_sli4_next_xritag - Get an xritag for the io 18050 * @phba: Pointer to HBA context object. 18051 * 18052 * This function gets an xritag for the iocb. If there is no unused xritag 18053 * it will return 0xffff. 18054 * The function returns the allocated xritag if successful, else returns zero. 18055 * Zero is not a valid xritag. 18056 * The caller is not required to hold any lock. 18057 **/ 18058 uint16_t 18059 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18060 { 18061 uint16_t xri_index; 18062 18063 xri_index = lpfc_sli4_alloc_xri(phba); 18064 if (xri_index == NO_XRI) 18065 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18066 "2004 Failed to allocate XRI.last XRITAG is %d" 18067 " Max XRI is %d, Used XRI is %d\n", 18068 xri_index, 18069 phba->sli4_hba.max_cfg_param.max_xri, 18070 phba->sli4_hba.max_cfg_param.xri_used); 18071 return xri_index; 18072 } 18073 18074 /** 18075 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18076 * @phba: pointer to lpfc hba data structure. 18077 * @post_sgl_list: pointer to els sgl entry list. 18078 * @post_cnt: number of els sgl entries on the list. 18079 * 18080 * This routine is invoked to post a block of driver's sgl pages to the 18081 * HBA using non-embedded mailbox command. No Lock is held. This routine 18082 * is only called when the driver is loading and after all IO has been 18083 * stopped. 18084 **/ 18085 static int 18086 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18087 struct list_head *post_sgl_list, 18088 int post_cnt) 18089 { 18090 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18091 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18092 struct sgl_page_pairs *sgl_pg_pairs; 18093 void *viraddr; 18094 LPFC_MBOXQ_t *mbox; 18095 uint32_t reqlen, alloclen, pg_pairs; 18096 uint32_t mbox_tmo; 18097 uint16_t xritag_start = 0; 18098 int rc = 0; 18099 uint32_t shdr_status, shdr_add_status; 18100 union lpfc_sli4_cfg_shdr *shdr; 18101 18102 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18103 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18104 if (reqlen > SLI4_PAGE_SIZE) { 18105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18106 "2559 Block sgl registration required DMA " 18107 "size (%d) great than a page\n", reqlen); 18108 return -ENOMEM; 18109 } 18110 18111 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18112 if (!mbox) 18113 return -ENOMEM; 18114 18115 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18116 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18117 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18118 LPFC_SLI4_MBX_NEMBED); 18119 18120 if (alloclen < reqlen) { 18121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18122 "0285 Allocated DMA memory size (%d) is " 18123 "less than the requested DMA memory " 18124 "size (%d)\n", alloclen, reqlen); 18125 lpfc_sli4_mbox_cmd_free(phba, mbox); 18126 return -ENOMEM; 18127 } 18128 /* Set up the SGL pages in the non-embedded DMA pages */ 18129 viraddr = mbox->sge_array->addr[0]; 18130 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18131 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18132 18133 pg_pairs = 0; 18134 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18135 /* Set up the sge entry */ 18136 sgl_pg_pairs->sgl_pg0_addr_lo = 18137 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18138 sgl_pg_pairs->sgl_pg0_addr_hi = 18139 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18140 sgl_pg_pairs->sgl_pg1_addr_lo = 18141 cpu_to_le32(putPaddrLow(0)); 18142 sgl_pg_pairs->sgl_pg1_addr_hi = 18143 cpu_to_le32(putPaddrHigh(0)); 18144 18145 /* Keep the first xritag on the list */ 18146 if (pg_pairs == 0) 18147 xritag_start = sglq_entry->sli4_xritag; 18148 sgl_pg_pairs++; 18149 pg_pairs++; 18150 } 18151 18152 /* Complete initialization and perform endian conversion. */ 18153 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18154 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18155 sgl->word0 = cpu_to_le32(sgl->word0); 18156 18157 if (!phba->sli4_hba.intr_enable) 18158 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18159 else { 18160 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18161 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18162 } 18163 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18164 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18165 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18166 if (!phba->sli4_hba.intr_enable) 18167 lpfc_sli4_mbox_cmd_free(phba, mbox); 18168 else if (rc != MBX_TIMEOUT) 18169 lpfc_sli4_mbox_cmd_free(phba, mbox); 18170 if (shdr_status || shdr_add_status || rc) { 18171 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18172 "2513 POST_SGL_BLOCK mailbox command failed " 18173 "status x%x add_status x%x mbx status x%x\n", 18174 shdr_status, shdr_add_status, rc); 18175 rc = -ENXIO; 18176 } 18177 return rc; 18178 } 18179 18180 /** 18181 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18182 * @phba: pointer to lpfc hba data structure. 18183 * @nblist: pointer to nvme buffer list. 18184 * @count: number of scsi buffers on the list. 18185 * 18186 * This routine is invoked to post a block of @count scsi sgl pages from a 18187 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18188 * No Lock is held. 18189 * 18190 **/ 18191 static int 18192 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18193 int count) 18194 { 18195 struct lpfc_io_buf *lpfc_ncmd; 18196 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18197 struct sgl_page_pairs *sgl_pg_pairs; 18198 void *viraddr; 18199 LPFC_MBOXQ_t *mbox; 18200 uint32_t reqlen, alloclen, pg_pairs; 18201 uint32_t mbox_tmo; 18202 uint16_t xritag_start = 0; 18203 int rc = 0; 18204 uint32_t shdr_status, shdr_add_status; 18205 dma_addr_t pdma_phys_bpl1; 18206 union lpfc_sli4_cfg_shdr *shdr; 18207 18208 /* Calculate the requested length of the dma memory */ 18209 reqlen = count * sizeof(struct sgl_page_pairs) + 18210 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18211 if (reqlen > SLI4_PAGE_SIZE) { 18212 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18213 "6118 Block sgl registration required DMA " 18214 "size (%d) great than a page\n", reqlen); 18215 return -ENOMEM; 18216 } 18217 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18218 if (!mbox) { 18219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18220 "6119 Failed to allocate mbox cmd memory\n"); 18221 return -ENOMEM; 18222 } 18223 18224 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18225 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18226 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18227 reqlen, LPFC_SLI4_MBX_NEMBED); 18228 18229 if (alloclen < reqlen) { 18230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18231 "6120 Allocated DMA memory size (%d) is " 18232 "less than the requested DMA memory " 18233 "size (%d)\n", alloclen, reqlen); 18234 lpfc_sli4_mbox_cmd_free(phba, mbox); 18235 return -ENOMEM; 18236 } 18237 18238 /* Get the first SGE entry from the non-embedded DMA memory */ 18239 viraddr = mbox->sge_array->addr[0]; 18240 18241 /* Set up the SGL pages in the non-embedded DMA pages */ 18242 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18243 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18244 18245 pg_pairs = 0; 18246 list_for_each_entry(lpfc_ncmd, nblist, list) { 18247 /* Set up the sge entry */ 18248 sgl_pg_pairs->sgl_pg0_addr_lo = 18249 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18250 sgl_pg_pairs->sgl_pg0_addr_hi = 18251 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18252 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18253 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18254 SGL_PAGE_SIZE; 18255 else 18256 pdma_phys_bpl1 = 0; 18257 sgl_pg_pairs->sgl_pg1_addr_lo = 18258 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18259 sgl_pg_pairs->sgl_pg1_addr_hi = 18260 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18261 /* Keep the first xritag on the list */ 18262 if (pg_pairs == 0) 18263 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18264 sgl_pg_pairs++; 18265 pg_pairs++; 18266 } 18267 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18268 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18269 /* Perform endian conversion if necessary */ 18270 sgl->word0 = cpu_to_le32(sgl->word0); 18271 18272 if (!phba->sli4_hba.intr_enable) { 18273 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18274 } else { 18275 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18276 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18277 } 18278 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18279 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18280 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18281 if (!phba->sli4_hba.intr_enable) 18282 lpfc_sli4_mbox_cmd_free(phba, mbox); 18283 else if (rc != MBX_TIMEOUT) 18284 lpfc_sli4_mbox_cmd_free(phba, mbox); 18285 if (shdr_status || shdr_add_status || rc) { 18286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18287 "6125 POST_SGL_BLOCK mailbox command failed " 18288 "status x%x add_status x%x mbx status x%x\n", 18289 shdr_status, shdr_add_status, rc); 18290 rc = -ENXIO; 18291 } 18292 return rc; 18293 } 18294 18295 /** 18296 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18297 * @phba: pointer to lpfc hba data structure. 18298 * @post_nblist: pointer to the nvme buffer list. 18299 * @sb_count: number of nvme buffers. 18300 * 18301 * This routine walks a list of nvme buffers that was passed in. It attempts 18302 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18303 * uses the non-embedded SGL block post mailbox commands to post to the port. 18304 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18305 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18306 * must be local list, thus no lock is needed when manipulate the list. 18307 * 18308 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18309 **/ 18310 int 18311 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18312 struct list_head *post_nblist, int sb_count) 18313 { 18314 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18315 int status, sgl_size; 18316 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18317 dma_addr_t pdma_phys_sgl1; 18318 int last_xritag = NO_XRI; 18319 int cur_xritag; 18320 LIST_HEAD(prep_nblist); 18321 LIST_HEAD(blck_nblist); 18322 LIST_HEAD(nvme_nblist); 18323 18324 /* sanity check */ 18325 if (sb_count <= 0) 18326 return -EINVAL; 18327 18328 sgl_size = phba->cfg_sg_dma_buf_size; 18329 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18330 list_del_init(&lpfc_ncmd->list); 18331 block_cnt++; 18332 if ((last_xritag != NO_XRI) && 18333 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18334 /* a hole in xri block, form a sgl posting block */ 18335 list_splice_init(&prep_nblist, &blck_nblist); 18336 post_cnt = block_cnt - 1; 18337 /* prepare list for next posting block */ 18338 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18339 block_cnt = 1; 18340 } else { 18341 /* prepare list for next posting block */ 18342 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18343 /* enough sgls for non-embed sgl mbox command */ 18344 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18345 list_splice_init(&prep_nblist, &blck_nblist); 18346 post_cnt = block_cnt; 18347 block_cnt = 0; 18348 } 18349 } 18350 num_posting++; 18351 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18352 18353 /* end of repost sgl list condition for NVME buffers */ 18354 if (num_posting == sb_count) { 18355 if (post_cnt == 0) { 18356 /* last sgl posting block */ 18357 list_splice_init(&prep_nblist, &blck_nblist); 18358 post_cnt = block_cnt; 18359 } else if (block_cnt == 1) { 18360 /* last single sgl with non-contiguous xri */ 18361 if (sgl_size > SGL_PAGE_SIZE) 18362 pdma_phys_sgl1 = 18363 lpfc_ncmd->dma_phys_sgl + 18364 SGL_PAGE_SIZE; 18365 else 18366 pdma_phys_sgl1 = 0; 18367 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18368 status = lpfc_sli4_post_sgl( 18369 phba, lpfc_ncmd->dma_phys_sgl, 18370 pdma_phys_sgl1, cur_xritag); 18371 if (status) { 18372 /* Post error. Buffer unavailable. */ 18373 lpfc_ncmd->flags |= 18374 LPFC_SBUF_NOT_POSTED; 18375 } else { 18376 /* Post success. Bffer available. */ 18377 lpfc_ncmd->flags &= 18378 ~LPFC_SBUF_NOT_POSTED; 18379 lpfc_ncmd->status = IOSTAT_SUCCESS; 18380 num_posted++; 18381 } 18382 /* success, put on NVME buffer sgl list */ 18383 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18384 } 18385 } 18386 18387 /* continue until a nembed page worth of sgls */ 18388 if (post_cnt == 0) 18389 continue; 18390 18391 /* post block of NVME buffer list sgls */ 18392 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18393 post_cnt); 18394 18395 /* don't reset xirtag due to hole in xri block */ 18396 if (block_cnt == 0) 18397 last_xritag = NO_XRI; 18398 18399 /* reset NVME buffer post count for next round of posting */ 18400 post_cnt = 0; 18401 18402 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18403 while (!list_empty(&blck_nblist)) { 18404 list_remove_head(&blck_nblist, lpfc_ncmd, 18405 struct lpfc_io_buf, list); 18406 if (status) { 18407 /* Post error. Mark buffer unavailable. */ 18408 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18409 } else { 18410 /* Post success, Mark buffer available. */ 18411 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18412 lpfc_ncmd->status = IOSTAT_SUCCESS; 18413 num_posted++; 18414 } 18415 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18416 } 18417 } 18418 /* Push NVME buffers with sgl posted to the available list */ 18419 lpfc_io_buf_replenish(phba, &nvme_nblist); 18420 18421 return num_posted; 18422 } 18423 18424 /** 18425 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18426 * @phba: pointer to lpfc_hba struct that the frame was received on 18427 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18428 * 18429 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18430 * valid type of frame that the LPFC driver will handle. This function will 18431 * return a zero if the frame is a valid frame or a non zero value when the 18432 * frame does not pass the check. 18433 **/ 18434 static int 18435 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18436 { 18437 /* make rctl_names static to save stack space */ 18438 struct fc_vft_header *fc_vft_hdr; 18439 uint32_t *header = (uint32_t *) fc_hdr; 18440 18441 #define FC_RCTL_MDS_DIAGS 0xF4 18442 18443 switch (fc_hdr->fh_r_ctl) { 18444 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18445 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18446 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18447 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18448 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18449 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18450 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18451 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18452 case FC_RCTL_ELS_REQ: /* extended link services request */ 18453 case FC_RCTL_ELS_REP: /* extended link services reply */ 18454 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18455 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18456 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18457 case FC_RCTL_BA_RMC: /* remove connection */ 18458 case FC_RCTL_BA_ACC: /* basic accept */ 18459 case FC_RCTL_BA_RJT: /* basic reject */ 18460 case FC_RCTL_BA_PRMT: 18461 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18462 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18463 case FC_RCTL_P_RJT: /* port reject */ 18464 case FC_RCTL_F_RJT: /* fabric reject */ 18465 case FC_RCTL_P_BSY: /* port busy */ 18466 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18467 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18468 case FC_RCTL_LCR: /* link credit reset */ 18469 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18470 case FC_RCTL_END: /* end */ 18471 break; 18472 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18473 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18474 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18475 return lpfc_fc_frame_check(phba, fc_hdr); 18476 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18477 default: 18478 goto drop; 18479 } 18480 18481 switch (fc_hdr->fh_type) { 18482 case FC_TYPE_BLS: 18483 case FC_TYPE_ELS: 18484 case FC_TYPE_FCP: 18485 case FC_TYPE_CT: 18486 case FC_TYPE_NVME: 18487 break; 18488 case FC_TYPE_IP: 18489 case FC_TYPE_ILS: 18490 default: 18491 goto drop; 18492 } 18493 18494 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18495 "2538 Received frame rctl:x%x, type:x%x, " 18496 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18497 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18498 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18499 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18500 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18501 be32_to_cpu(header[6])); 18502 return 0; 18503 drop: 18504 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18505 "2539 Dropped frame rctl:x%x type:x%x\n", 18506 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18507 return 1; 18508 } 18509 18510 /** 18511 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18512 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18513 * 18514 * This function processes the FC header to retrieve the VFI from the VF 18515 * header, if one exists. This function will return the VFI if one exists 18516 * or 0 if no VSAN Header exists. 18517 **/ 18518 static uint32_t 18519 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18520 { 18521 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18522 18523 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18524 return 0; 18525 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18526 } 18527 18528 /** 18529 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18530 * @phba: Pointer to the HBA structure to search for the vport on 18531 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18532 * @fcfi: The FC Fabric ID that the frame came from 18533 * @did: Destination ID to match against 18534 * 18535 * This function searches the @phba for a vport that matches the content of the 18536 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18537 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18538 * returns the matching vport pointer or NULL if unable to match frame to a 18539 * vport. 18540 **/ 18541 static struct lpfc_vport * 18542 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18543 uint16_t fcfi, uint32_t did) 18544 { 18545 struct lpfc_vport **vports; 18546 struct lpfc_vport *vport = NULL; 18547 int i; 18548 18549 if (did == Fabric_DID) 18550 return phba->pport; 18551 if ((phba->pport->fc_flag & FC_PT2PT) && 18552 !(phba->link_state == LPFC_HBA_READY)) 18553 return phba->pport; 18554 18555 vports = lpfc_create_vport_work_array(phba); 18556 if (vports != NULL) { 18557 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18558 if (phba->fcf.fcfi == fcfi && 18559 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18560 vports[i]->fc_myDID == did) { 18561 vport = vports[i]; 18562 break; 18563 } 18564 } 18565 } 18566 lpfc_destroy_vport_work_array(phba, vports); 18567 return vport; 18568 } 18569 18570 /** 18571 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18572 * @vport: The vport to work on. 18573 * 18574 * This function updates the receive sequence time stamp for this vport. The 18575 * receive sequence time stamp indicates the time that the last frame of the 18576 * the sequence that has been idle for the longest amount of time was received. 18577 * the driver uses this time stamp to indicate if any received sequences have 18578 * timed out. 18579 **/ 18580 static void 18581 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18582 { 18583 struct lpfc_dmabuf *h_buf; 18584 struct hbq_dmabuf *dmabuf = NULL; 18585 18586 /* get the oldest sequence on the rcv list */ 18587 h_buf = list_get_first(&vport->rcv_buffer_list, 18588 struct lpfc_dmabuf, list); 18589 if (!h_buf) 18590 return; 18591 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18592 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18593 } 18594 18595 /** 18596 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18597 * @vport: The vport that the received sequences were sent to. 18598 * 18599 * This function cleans up all outstanding received sequences. This is called 18600 * by the driver when a link event or user action invalidates all the received 18601 * sequences. 18602 **/ 18603 void 18604 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18605 { 18606 struct lpfc_dmabuf *h_buf, *hnext; 18607 struct lpfc_dmabuf *d_buf, *dnext; 18608 struct hbq_dmabuf *dmabuf = NULL; 18609 18610 /* start with the oldest sequence on the rcv list */ 18611 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18612 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18613 list_del_init(&dmabuf->hbuf.list); 18614 list_for_each_entry_safe(d_buf, dnext, 18615 &dmabuf->dbuf.list, list) { 18616 list_del_init(&d_buf->list); 18617 lpfc_in_buf_free(vport->phba, d_buf); 18618 } 18619 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18620 } 18621 } 18622 18623 /** 18624 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18625 * @vport: The vport that the received sequences were sent to. 18626 * 18627 * This function determines whether any received sequences have timed out by 18628 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18629 * indicates that there is at least one timed out sequence this routine will 18630 * go through the received sequences one at a time from most inactive to most 18631 * active to determine which ones need to be cleaned up. Once it has determined 18632 * that a sequence needs to be cleaned up it will simply free up the resources 18633 * without sending an abort. 18634 **/ 18635 void 18636 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18637 { 18638 struct lpfc_dmabuf *h_buf, *hnext; 18639 struct lpfc_dmabuf *d_buf, *dnext; 18640 struct hbq_dmabuf *dmabuf = NULL; 18641 unsigned long timeout; 18642 int abort_count = 0; 18643 18644 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18645 vport->rcv_buffer_time_stamp); 18646 if (list_empty(&vport->rcv_buffer_list) || 18647 time_before(jiffies, timeout)) 18648 return; 18649 /* start with the oldest sequence on the rcv list */ 18650 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18651 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18652 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18653 dmabuf->time_stamp); 18654 if (time_before(jiffies, timeout)) 18655 break; 18656 abort_count++; 18657 list_del_init(&dmabuf->hbuf.list); 18658 list_for_each_entry_safe(d_buf, dnext, 18659 &dmabuf->dbuf.list, list) { 18660 list_del_init(&d_buf->list); 18661 lpfc_in_buf_free(vport->phba, d_buf); 18662 } 18663 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18664 } 18665 if (abort_count) 18666 lpfc_update_rcv_time_stamp(vport); 18667 } 18668 18669 /** 18670 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18671 * @vport: pointer to a vitural port 18672 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18673 * 18674 * This function searches through the existing incomplete sequences that have 18675 * been sent to this @vport. If the frame matches one of the incomplete 18676 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18677 * make up that sequence. If no sequence is found that matches this frame then 18678 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18679 * This function returns a pointer to the first dmabuf in the sequence list that 18680 * the frame was linked to. 18681 **/ 18682 static struct hbq_dmabuf * 18683 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18684 { 18685 struct fc_frame_header *new_hdr; 18686 struct fc_frame_header *temp_hdr; 18687 struct lpfc_dmabuf *d_buf; 18688 struct lpfc_dmabuf *h_buf; 18689 struct hbq_dmabuf *seq_dmabuf = NULL; 18690 struct hbq_dmabuf *temp_dmabuf = NULL; 18691 uint8_t found = 0; 18692 18693 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18694 dmabuf->time_stamp = jiffies; 18695 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18696 18697 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18698 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18699 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18700 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18701 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18702 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18703 continue; 18704 /* found a pending sequence that matches this frame */ 18705 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18706 break; 18707 } 18708 if (!seq_dmabuf) { 18709 /* 18710 * This indicates first frame received for this sequence. 18711 * Queue the buffer on the vport's rcv_buffer_list. 18712 */ 18713 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18714 lpfc_update_rcv_time_stamp(vport); 18715 return dmabuf; 18716 } 18717 temp_hdr = seq_dmabuf->hbuf.virt; 18718 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18719 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18720 list_del_init(&seq_dmabuf->hbuf.list); 18721 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18722 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18723 lpfc_update_rcv_time_stamp(vport); 18724 return dmabuf; 18725 } 18726 /* move this sequence to the tail to indicate a young sequence */ 18727 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18728 seq_dmabuf->time_stamp = jiffies; 18729 lpfc_update_rcv_time_stamp(vport); 18730 if (list_empty(&seq_dmabuf->dbuf.list)) { 18731 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18732 return seq_dmabuf; 18733 } 18734 /* find the correct place in the sequence to insert this frame */ 18735 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18736 while (!found) { 18737 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18738 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18739 /* 18740 * If the frame's sequence count is greater than the frame on 18741 * the list then insert the frame right after this frame 18742 */ 18743 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18744 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18745 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18746 found = 1; 18747 break; 18748 } 18749 18750 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18751 break; 18752 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18753 } 18754 18755 if (found) 18756 return seq_dmabuf; 18757 return NULL; 18758 } 18759 18760 /** 18761 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18762 * @vport: pointer to a vitural port 18763 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18764 * 18765 * This function tries to abort from the partially assembed sequence, described 18766 * by the information from basic abbort @dmabuf. It checks to see whether such 18767 * partially assembled sequence held by the driver. If so, it shall free up all 18768 * the frames from the partially assembled sequence. 18769 * 18770 * Return 18771 * true -- if there is matching partially assembled sequence present and all 18772 * the frames freed with the sequence; 18773 * false -- if there is no matching partially assembled sequence present so 18774 * nothing got aborted in the lower layer driver 18775 **/ 18776 static bool 18777 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18778 struct hbq_dmabuf *dmabuf) 18779 { 18780 struct fc_frame_header *new_hdr; 18781 struct fc_frame_header *temp_hdr; 18782 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18783 struct hbq_dmabuf *seq_dmabuf = NULL; 18784 18785 /* Use the hdr_buf to find the sequence that matches this frame */ 18786 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18787 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18788 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18789 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18790 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18791 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18792 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18793 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18794 continue; 18795 /* found a pending sequence that matches this frame */ 18796 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18797 break; 18798 } 18799 18800 /* Free up all the frames from the partially assembled sequence */ 18801 if (seq_dmabuf) { 18802 list_for_each_entry_safe(d_buf, n_buf, 18803 &seq_dmabuf->dbuf.list, list) { 18804 list_del_init(&d_buf->list); 18805 lpfc_in_buf_free(vport->phba, d_buf); 18806 } 18807 return true; 18808 } 18809 return false; 18810 } 18811 18812 /** 18813 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18814 * @vport: pointer to a vitural port 18815 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18816 * 18817 * This function tries to abort from the assembed sequence from upper level 18818 * protocol, described by the information from basic abbort @dmabuf. It 18819 * checks to see whether such pending context exists at upper level protocol. 18820 * If so, it shall clean up the pending context. 18821 * 18822 * Return 18823 * true -- if there is matching pending context of the sequence cleaned 18824 * at ulp; 18825 * false -- if there is no matching pending context of the sequence present 18826 * at ulp. 18827 **/ 18828 static bool 18829 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18830 { 18831 struct lpfc_hba *phba = vport->phba; 18832 int handled; 18833 18834 /* Accepting abort at ulp with SLI4 only */ 18835 if (phba->sli_rev < LPFC_SLI_REV4) 18836 return false; 18837 18838 /* Register all caring upper level protocols to attend abort */ 18839 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18840 if (handled) 18841 return true; 18842 18843 return false; 18844 } 18845 18846 /** 18847 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18848 * @phba: Pointer to HBA context object. 18849 * @cmd_iocbq: pointer to the command iocbq structure. 18850 * @rsp_iocbq: pointer to the response iocbq structure. 18851 * 18852 * This function handles the sequence abort response iocb command complete 18853 * event. It properly releases the memory allocated to the sequence abort 18854 * accept iocb. 18855 **/ 18856 static void 18857 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18858 struct lpfc_iocbq *cmd_iocbq, 18859 struct lpfc_iocbq *rsp_iocbq) 18860 { 18861 if (cmd_iocbq) { 18862 lpfc_nlp_put(cmd_iocbq->ndlp); 18863 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18864 } 18865 18866 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18867 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18868 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18869 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18870 get_job_ulpstatus(phba, rsp_iocbq), 18871 get_job_word4(phba, rsp_iocbq)); 18872 } 18873 18874 /** 18875 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18876 * @phba: Pointer to HBA context object. 18877 * @xri: xri id in transaction. 18878 * 18879 * This function validates the xri maps to the known range of XRIs allocated an 18880 * used by the driver. 18881 **/ 18882 uint16_t 18883 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18884 uint16_t xri) 18885 { 18886 uint16_t i; 18887 18888 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18889 if (xri == phba->sli4_hba.xri_ids[i]) 18890 return i; 18891 } 18892 return NO_XRI; 18893 } 18894 18895 /** 18896 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18897 * @vport: pointer to a virtual port. 18898 * @fc_hdr: pointer to a FC frame header. 18899 * @aborted: was the partially assembled receive sequence successfully aborted 18900 * 18901 * This function sends a basic response to a previous unsol sequence abort 18902 * event after aborting the sequence handling. 18903 **/ 18904 void 18905 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18906 struct fc_frame_header *fc_hdr, bool aborted) 18907 { 18908 struct lpfc_hba *phba = vport->phba; 18909 struct lpfc_iocbq *ctiocb = NULL; 18910 struct lpfc_nodelist *ndlp; 18911 uint16_t oxid, rxid, xri, lxri; 18912 uint32_t sid, fctl; 18913 union lpfc_wqe128 *icmd; 18914 int rc; 18915 18916 if (!lpfc_is_link_up(phba)) 18917 return; 18918 18919 sid = sli4_sid_from_fc_hdr(fc_hdr); 18920 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18921 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18922 18923 ndlp = lpfc_findnode_did(vport, sid); 18924 if (!ndlp) { 18925 ndlp = lpfc_nlp_init(vport, sid); 18926 if (!ndlp) { 18927 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18928 "1268 Failed to allocate ndlp for " 18929 "oxid:x%x SID:x%x\n", oxid, sid); 18930 return; 18931 } 18932 /* Put ndlp onto pport node list */ 18933 lpfc_enqueue_node(vport, ndlp); 18934 } 18935 18936 /* Allocate buffer for rsp iocb */ 18937 ctiocb = lpfc_sli_get_iocbq(phba); 18938 if (!ctiocb) 18939 return; 18940 18941 icmd = &ctiocb->wqe; 18942 18943 /* Extract the F_CTL field from FC_HDR */ 18944 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18945 18946 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18947 if (!ctiocb->ndlp) { 18948 lpfc_sli_release_iocbq(phba, ctiocb); 18949 return; 18950 } 18951 18952 ctiocb->vport = phba->pport; 18953 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18954 ctiocb->sli4_lxritag = NO_XRI; 18955 ctiocb->sli4_xritag = NO_XRI; 18956 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18957 18958 if (fctl & FC_FC_EX_CTX) 18959 /* Exchange responder sent the abort so we 18960 * own the oxid. 18961 */ 18962 xri = oxid; 18963 else 18964 xri = rxid; 18965 lxri = lpfc_sli4_xri_inrange(phba, xri); 18966 if (lxri != NO_XRI) 18967 lpfc_set_rrq_active(phba, ndlp, lxri, 18968 (xri == oxid) ? rxid : oxid, 0); 18969 /* For BA_ABTS from exchange responder, if the logical xri with 18970 * the oxid maps to the FCP XRI range, the port no longer has 18971 * that exchange context, send a BLS_RJT. Override the IOCB for 18972 * a BA_RJT. 18973 */ 18974 if ((fctl & FC_FC_EX_CTX) && 18975 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18976 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18977 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18978 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18979 FC_BA_RJT_INV_XID); 18980 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18981 FC_BA_RJT_UNABLE); 18982 } 18983 18984 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18985 * the driver no longer has that exchange, send a BLS_RJT. Override 18986 * the IOCB for a BA_RJT. 18987 */ 18988 if (aborted == false) { 18989 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18990 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18991 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18992 FC_BA_RJT_INV_XID); 18993 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18994 FC_BA_RJT_UNABLE); 18995 } 18996 18997 if (fctl & FC_FC_EX_CTX) { 18998 /* ABTS sent by responder to CT exchange, construction 18999 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19000 * field and RX_ID from ABTS for RX_ID field. 19001 */ 19002 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19003 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19004 } else { 19005 /* ABTS sent by initiator to CT exchange, construction 19006 * of BA_ACC will need to allocate a new XRI as for the 19007 * XRI_TAG field. 19008 */ 19009 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19010 } 19011 19012 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19013 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19014 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19015 19016 /* Use CT=VPI */ 19017 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19018 ndlp->nlp_DID); 19019 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19020 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19021 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19022 19023 /* Xmit CT abts response on exchange <xid> */ 19024 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19025 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19026 ctiocb->abort_rctl, oxid, phba->link_state); 19027 19028 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19029 if (rc == IOCB_ERROR) { 19030 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19031 "2925 Failed to issue CT ABTS RSP x%x on " 19032 "xri x%x, Data x%x\n", 19033 ctiocb->abort_rctl, oxid, 19034 phba->link_state); 19035 lpfc_nlp_put(ndlp); 19036 ctiocb->ndlp = NULL; 19037 lpfc_sli_release_iocbq(phba, ctiocb); 19038 } 19039 } 19040 19041 /** 19042 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19043 * @vport: Pointer to the vport on which this sequence was received 19044 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19045 * 19046 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19047 * receive sequence is only partially assembed by the driver, it shall abort 19048 * the partially assembled frames for the sequence. Otherwise, if the 19049 * unsolicited receive sequence has been completely assembled and passed to 19050 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19051 * unsolicited sequence has been aborted. After that, it will issue a basic 19052 * accept to accept the abort. 19053 **/ 19054 static void 19055 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19056 struct hbq_dmabuf *dmabuf) 19057 { 19058 struct lpfc_hba *phba = vport->phba; 19059 struct fc_frame_header fc_hdr; 19060 uint32_t fctl; 19061 bool aborted; 19062 19063 /* Make a copy of fc_hdr before the dmabuf being released */ 19064 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19065 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19066 19067 if (fctl & FC_FC_EX_CTX) { 19068 /* ABTS by responder to exchange, no cleanup needed */ 19069 aborted = true; 19070 } else { 19071 /* ABTS by initiator to exchange, need to do cleanup */ 19072 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19073 if (aborted == false) 19074 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19075 } 19076 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19077 19078 if (phba->nvmet_support) { 19079 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19080 return; 19081 } 19082 19083 /* Respond with BA_ACC or BA_RJT accordingly */ 19084 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19085 } 19086 19087 /** 19088 * lpfc_seq_complete - Indicates if a sequence is complete 19089 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19090 * 19091 * This function checks the sequence, starting with the frame described by 19092 * @dmabuf, to see if all the frames associated with this sequence are present. 19093 * the frames associated with this sequence are linked to the @dmabuf using the 19094 * dbuf list. This function looks for two major things. 1) That the first frame 19095 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19096 * set. 3) That there are no holes in the sequence count. The function will 19097 * return 1 when the sequence is complete, otherwise it will return 0. 19098 **/ 19099 static int 19100 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19101 { 19102 struct fc_frame_header *hdr; 19103 struct lpfc_dmabuf *d_buf; 19104 struct hbq_dmabuf *seq_dmabuf; 19105 uint32_t fctl; 19106 int seq_count = 0; 19107 19108 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19109 /* make sure first fame of sequence has a sequence count of zero */ 19110 if (hdr->fh_seq_cnt != seq_count) 19111 return 0; 19112 fctl = (hdr->fh_f_ctl[0] << 16 | 19113 hdr->fh_f_ctl[1] << 8 | 19114 hdr->fh_f_ctl[2]); 19115 /* If last frame of sequence we can return success. */ 19116 if (fctl & FC_FC_END_SEQ) 19117 return 1; 19118 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19119 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19120 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19121 /* If there is a hole in the sequence count then fail. */ 19122 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19123 return 0; 19124 fctl = (hdr->fh_f_ctl[0] << 16 | 19125 hdr->fh_f_ctl[1] << 8 | 19126 hdr->fh_f_ctl[2]); 19127 /* If last frame of sequence we can return success. */ 19128 if (fctl & FC_FC_END_SEQ) 19129 return 1; 19130 } 19131 return 0; 19132 } 19133 19134 /** 19135 * lpfc_prep_seq - Prep sequence for ULP processing 19136 * @vport: Pointer to the vport on which this sequence was received 19137 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19138 * 19139 * This function takes a sequence, described by a list of frames, and creates 19140 * a list of iocbq structures to describe the sequence. This iocbq list will be 19141 * used to issue to the generic unsolicited sequence handler. This routine 19142 * returns a pointer to the first iocbq in the list. If the function is unable 19143 * to allocate an iocbq then it throw out the received frames that were not 19144 * able to be described and return a pointer to the first iocbq. If unable to 19145 * allocate any iocbqs (including the first) this function will return NULL. 19146 **/ 19147 static struct lpfc_iocbq * 19148 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19149 { 19150 struct hbq_dmabuf *hbq_buf; 19151 struct lpfc_dmabuf *d_buf, *n_buf; 19152 struct lpfc_iocbq *first_iocbq, *iocbq; 19153 struct fc_frame_header *fc_hdr; 19154 uint32_t sid; 19155 uint32_t len, tot_len; 19156 19157 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19158 /* remove from receive buffer list */ 19159 list_del_init(&seq_dmabuf->hbuf.list); 19160 lpfc_update_rcv_time_stamp(vport); 19161 /* get the Remote Port's SID */ 19162 sid = sli4_sid_from_fc_hdr(fc_hdr); 19163 tot_len = 0; 19164 /* Get an iocbq struct to fill in. */ 19165 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19166 if (first_iocbq) { 19167 /* Initialize the first IOCB. */ 19168 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19169 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19170 IOSTAT_SUCCESS); 19171 first_iocbq->vport = vport; 19172 19173 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19174 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19175 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19176 sli4_did_from_fc_hdr(fc_hdr)); 19177 } 19178 19179 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19180 NO_XRI); 19181 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19182 be16_to_cpu(fc_hdr->fh_ox_id)); 19183 19184 /* put the first buffer into the first iocb */ 19185 tot_len = bf_get(lpfc_rcqe_length, 19186 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19187 19188 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19189 first_iocbq->bpl_dmabuf = NULL; 19190 /* Keep track of the BDE count */ 19191 first_iocbq->wcqe_cmpl.word3 = 1; 19192 19193 if (tot_len > LPFC_DATA_BUF_SIZE) 19194 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19195 LPFC_DATA_BUF_SIZE; 19196 else 19197 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19198 19199 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19200 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19201 sid); 19202 } 19203 iocbq = first_iocbq; 19204 /* 19205 * Each IOCBq can have two Buffers assigned, so go through the list 19206 * of buffers for this sequence and save two buffers in each IOCBq 19207 */ 19208 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19209 if (!iocbq) { 19210 lpfc_in_buf_free(vport->phba, d_buf); 19211 continue; 19212 } 19213 if (!iocbq->bpl_dmabuf) { 19214 iocbq->bpl_dmabuf = d_buf; 19215 iocbq->wcqe_cmpl.word3++; 19216 /* We need to get the size out of the right CQE */ 19217 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19218 len = bf_get(lpfc_rcqe_length, 19219 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19220 iocbq->unsol_rcv_len = len; 19221 iocbq->wcqe_cmpl.total_data_placed += len; 19222 tot_len += len; 19223 } else { 19224 iocbq = lpfc_sli_get_iocbq(vport->phba); 19225 if (!iocbq) { 19226 if (first_iocbq) { 19227 bf_set(lpfc_wcqe_c_status, 19228 &first_iocbq->wcqe_cmpl, 19229 IOSTAT_SUCCESS); 19230 first_iocbq->wcqe_cmpl.parameter = 19231 IOERR_NO_RESOURCES; 19232 } 19233 lpfc_in_buf_free(vport->phba, d_buf); 19234 continue; 19235 } 19236 /* We need to get the size out of the right CQE */ 19237 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19238 len = bf_get(lpfc_rcqe_length, 19239 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19240 iocbq->cmd_dmabuf = d_buf; 19241 iocbq->bpl_dmabuf = NULL; 19242 iocbq->wcqe_cmpl.word3 = 1; 19243 19244 if (len > LPFC_DATA_BUF_SIZE) 19245 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19246 LPFC_DATA_BUF_SIZE; 19247 else 19248 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19249 len; 19250 19251 tot_len += len; 19252 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19253 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19254 sid); 19255 list_add_tail(&iocbq->list, &first_iocbq->list); 19256 } 19257 } 19258 /* Free the sequence's header buffer */ 19259 if (!first_iocbq) 19260 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19261 19262 return first_iocbq; 19263 } 19264 19265 static void 19266 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19267 struct hbq_dmabuf *seq_dmabuf) 19268 { 19269 struct fc_frame_header *fc_hdr; 19270 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19271 struct lpfc_hba *phba = vport->phba; 19272 19273 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19274 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19275 if (!iocbq) { 19276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19277 "2707 Ring %d handler: Failed to allocate " 19278 "iocb Rctl x%x Type x%x received\n", 19279 LPFC_ELS_RING, 19280 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19281 return; 19282 } 19283 if (!lpfc_complete_unsol_iocb(phba, 19284 phba->sli4_hba.els_wq->pring, 19285 iocbq, fc_hdr->fh_r_ctl, 19286 fc_hdr->fh_type)) { 19287 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19288 "2540 Ring %d handler: unexpected Rctl " 19289 "x%x Type x%x received\n", 19290 LPFC_ELS_RING, 19291 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19292 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19293 } 19294 19295 /* Free iocb created in lpfc_prep_seq */ 19296 list_for_each_entry_safe(curr_iocb, next_iocb, 19297 &iocbq->list, list) { 19298 list_del_init(&curr_iocb->list); 19299 lpfc_sli_release_iocbq(phba, curr_iocb); 19300 } 19301 lpfc_sli_release_iocbq(phba, iocbq); 19302 } 19303 19304 static void 19305 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19306 struct lpfc_iocbq *rspiocb) 19307 { 19308 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19309 19310 if (pcmd && pcmd->virt) 19311 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19312 kfree(pcmd); 19313 lpfc_sli_release_iocbq(phba, cmdiocb); 19314 lpfc_drain_txq(phba); 19315 } 19316 19317 static void 19318 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19319 struct hbq_dmabuf *dmabuf) 19320 { 19321 struct fc_frame_header *fc_hdr; 19322 struct lpfc_hba *phba = vport->phba; 19323 struct lpfc_iocbq *iocbq = NULL; 19324 union lpfc_wqe128 *pwqe; 19325 struct lpfc_dmabuf *pcmd = NULL; 19326 uint32_t frame_len; 19327 int rc; 19328 unsigned long iflags; 19329 19330 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19331 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19332 19333 /* Send the received frame back */ 19334 iocbq = lpfc_sli_get_iocbq(phba); 19335 if (!iocbq) { 19336 /* Queue cq event and wakeup worker thread to process it */ 19337 spin_lock_irqsave(&phba->hbalock, iflags); 19338 list_add_tail(&dmabuf->cq_event.list, 19339 &phba->sli4_hba.sp_queue_event); 19340 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19341 spin_unlock_irqrestore(&phba->hbalock, iflags); 19342 lpfc_worker_wake_up(phba); 19343 return; 19344 } 19345 19346 /* Allocate buffer for command payload */ 19347 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19348 if (pcmd) 19349 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19350 &pcmd->phys); 19351 if (!pcmd || !pcmd->virt) 19352 goto exit; 19353 19354 INIT_LIST_HEAD(&pcmd->list); 19355 19356 /* copyin the payload */ 19357 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19358 19359 iocbq->cmd_dmabuf = pcmd; 19360 iocbq->vport = vport; 19361 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19362 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19363 iocbq->num_bdes = 0; 19364 19365 pwqe = &iocbq->wqe; 19366 /* fill in BDE's for command */ 19367 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19368 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19369 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19370 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19371 19372 pwqe->send_frame.frame_len = frame_len; 19373 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19374 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19375 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19376 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19377 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19378 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19379 19380 pwqe->generic.wqe_com.word7 = 0; 19381 pwqe->generic.wqe_com.word10 = 0; 19382 19383 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19384 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19385 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19386 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19387 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19388 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19389 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19390 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19391 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19392 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19393 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19394 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19395 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19396 19397 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19398 19399 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19400 if (rc == IOCB_ERROR) 19401 goto exit; 19402 19403 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19404 return; 19405 19406 exit: 19407 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19408 "2023 Unable to process MDS loopback frame\n"); 19409 if (pcmd && pcmd->virt) 19410 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19411 kfree(pcmd); 19412 if (iocbq) 19413 lpfc_sli_release_iocbq(phba, iocbq); 19414 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19415 } 19416 19417 /** 19418 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19419 * @phba: Pointer to HBA context object. 19420 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19421 * 19422 * This function is called with no lock held. This function processes all 19423 * the received buffers and gives it to upper layers when a received buffer 19424 * indicates that it is the final frame in the sequence. The interrupt 19425 * service routine processes received buffers at interrupt contexts. 19426 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19427 * appropriate receive function when the final frame in a sequence is received. 19428 **/ 19429 void 19430 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19431 struct hbq_dmabuf *dmabuf) 19432 { 19433 struct hbq_dmabuf *seq_dmabuf; 19434 struct fc_frame_header *fc_hdr; 19435 struct lpfc_vport *vport; 19436 uint32_t fcfi; 19437 uint32_t did; 19438 19439 /* Process each received buffer */ 19440 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19441 19442 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19443 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19444 vport = phba->pport; 19445 /* Handle MDS Loopback frames */ 19446 if (!(phba->pport->load_flag & FC_UNLOADING)) 19447 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19448 else 19449 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19450 return; 19451 } 19452 19453 /* check to see if this a valid type of frame */ 19454 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19455 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19456 return; 19457 } 19458 19459 if ((bf_get(lpfc_cqe_code, 19460 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19461 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19462 &dmabuf->cq_event.cqe.rcqe_cmpl); 19463 else 19464 fcfi = bf_get(lpfc_rcqe_fcf_id, 19465 &dmabuf->cq_event.cqe.rcqe_cmpl); 19466 19467 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19468 vport = phba->pport; 19469 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19470 "2023 MDS Loopback %d bytes\n", 19471 bf_get(lpfc_rcqe_length, 19472 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19473 /* Handle MDS Loopback frames */ 19474 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19475 return; 19476 } 19477 19478 /* d_id this frame is directed to */ 19479 did = sli4_did_from_fc_hdr(fc_hdr); 19480 19481 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19482 if (!vport) { 19483 /* throw out the frame */ 19484 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19485 return; 19486 } 19487 19488 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19489 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19490 (did != Fabric_DID)) { 19491 /* 19492 * Throw out the frame if we are not pt2pt. 19493 * The pt2pt protocol allows for discovery frames 19494 * to be received without a registered VPI. 19495 */ 19496 if (!(vport->fc_flag & FC_PT2PT) || 19497 (phba->link_state == LPFC_HBA_READY)) { 19498 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19499 return; 19500 } 19501 } 19502 19503 /* Handle the basic abort sequence (BA_ABTS) event */ 19504 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19505 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19506 return; 19507 } 19508 19509 /* Link this frame */ 19510 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19511 if (!seq_dmabuf) { 19512 /* unable to add frame to vport - throw it out */ 19513 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19514 return; 19515 } 19516 /* If not last frame in sequence continue processing frames. */ 19517 if (!lpfc_seq_complete(seq_dmabuf)) 19518 return; 19519 19520 /* Send the complete sequence to the upper layer protocol */ 19521 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19522 } 19523 19524 /** 19525 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19526 * @phba: pointer to lpfc hba data structure. 19527 * 19528 * This routine is invoked to post rpi header templates to the 19529 * HBA consistent with the SLI-4 interface spec. This routine 19530 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19531 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19532 * 19533 * This routine does not require any locks. It's usage is expected 19534 * to be driver load or reset recovery when the driver is 19535 * sequential. 19536 * 19537 * Return codes 19538 * 0 - successful 19539 * -EIO - The mailbox failed to complete successfully. 19540 * When this error occurs, the driver is not guaranteed 19541 * to have any rpi regions posted to the device and 19542 * must either attempt to repost the regions or take a 19543 * fatal error. 19544 **/ 19545 int 19546 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19547 { 19548 struct lpfc_rpi_hdr *rpi_page; 19549 uint32_t rc = 0; 19550 uint16_t lrpi = 0; 19551 19552 /* SLI4 ports that support extents do not require RPI headers. */ 19553 if (!phba->sli4_hba.rpi_hdrs_in_use) 19554 goto exit; 19555 if (phba->sli4_hba.extents_in_use) 19556 return -EIO; 19557 19558 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19559 /* 19560 * Assign the rpi headers a physical rpi only if the driver 19561 * has not initialized those resources. A port reset only 19562 * needs the headers posted. 19563 */ 19564 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19565 LPFC_RPI_RSRC_RDY) 19566 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19567 19568 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19569 if (rc != MBX_SUCCESS) { 19570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19571 "2008 Error %d posting all rpi " 19572 "headers\n", rc); 19573 rc = -EIO; 19574 break; 19575 } 19576 } 19577 19578 exit: 19579 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19580 LPFC_RPI_RSRC_RDY); 19581 return rc; 19582 } 19583 19584 /** 19585 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19586 * @phba: pointer to lpfc hba data structure. 19587 * @rpi_page: pointer to the rpi memory region. 19588 * 19589 * This routine is invoked to post a single rpi header to the 19590 * HBA consistent with the SLI-4 interface spec. This memory region 19591 * maps up to 64 rpi context regions. 19592 * 19593 * Return codes 19594 * 0 - successful 19595 * -ENOMEM - No available memory 19596 * -EIO - The mailbox failed to complete successfully. 19597 **/ 19598 int 19599 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19600 { 19601 LPFC_MBOXQ_t *mboxq; 19602 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19603 uint32_t rc = 0; 19604 uint32_t shdr_status, shdr_add_status; 19605 union lpfc_sli4_cfg_shdr *shdr; 19606 19607 /* SLI4 ports that support extents do not require RPI headers. */ 19608 if (!phba->sli4_hba.rpi_hdrs_in_use) 19609 return rc; 19610 if (phba->sli4_hba.extents_in_use) 19611 return -EIO; 19612 19613 /* The port is notified of the header region via a mailbox command. */ 19614 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19615 if (!mboxq) { 19616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19617 "2001 Unable to allocate memory for issuing " 19618 "SLI_CONFIG_SPECIAL mailbox command\n"); 19619 return -ENOMEM; 19620 } 19621 19622 /* Post all rpi memory regions to the port. */ 19623 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19624 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19625 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19626 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19627 sizeof(struct lpfc_sli4_cfg_mhdr), 19628 LPFC_SLI4_MBX_EMBED); 19629 19630 19631 /* Post the physical rpi to the port for this rpi header. */ 19632 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19633 rpi_page->start_rpi); 19634 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19635 hdr_tmpl, rpi_page->page_count); 19636 19637 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19638 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19639 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19640 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19641 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19642 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19643 mempool_free(mboxq, phba->mbox_mem_pool); 19644 if (shdr_status || shdr_add_status || rc) { 19645 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19646 "2514 POST_RPI_HDR mailbox failed with " 19647 "status x%x add_status x%x, mbx status x%x\n", 19648 shdr_status, shdr_add_status, rc); 19649 rc = -ENXIO; 19650 } else { 19651 /* 19652 * The next_rpi stores the next logical module-64 rpi value used 19653 * to post physical rpis in subsequent rpi postings. 19654 */ 19655 spin_lock_irq(&phba->hbalock); 19656 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19657 spin_unlock_irq(&phba->hbalock); 19658 } 19659 return rc; 19660 } 19661 19662 /** 19663 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19664 * @phba: pointer to lpfc hba data structure. 19665 * 19666 * This routine is invoked to post rpi header templates to the 19667 * HBA consistent with the SLI-4 interface spec. This routine 19668 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19669 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19670 * 19671 * Returns 19672 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19673 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19674 **/ 19675 int 19676 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19677 { 19678 unsigned long rpi; 19679 uint16_t max_rpi, rpi_limit; 19680 uint16_t rpi_remaining, lrpi = 0; 19681 struct lpfc_rpi_hdr *rpi_hdr; 19682 unsigned long iflag; 19683 19684 /* 19685 * Fetch the next logical rpi. Because this index is logical, 19686 * the driver starts at 0 each time. 19687 */ 19688 spin_lock_irqsave(&phba->hbalock, iflag); 19689 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19690 rpi_limit = phba->sli4_hba.next_rpi; 19691 19692 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19693 if (rpi >= rpi_limit) 19694 rpi = LPFC_RPI_ALLOC_ERROR; 19695 else { 19696 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19697 phba->sli4_hba.max_cfg_param.rpi_used++; 19698 phba->sli4_hba.rpi_count++; 19699 } 19700 lpfc_printf_log(phba, KERN_INFO, 19701 LOG_NODE | LOG_DISCOVERY, 19702 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19703 (int) rpi, max_rpi, rpi_limit); 19704 19705 /* 19706 * Don't try to allocate more rpi header regions if the device limit 19707 * has been exhausted. 19708 */ 19709 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19710 (phba->sli4_hba.rpi_count >= max_rpi)) { 19711 spin_unlock_irqrestore(&phba->hbalock, iflag); 19712 return rpi; 19713 } 19714 19715 /* 19716 * RPI header postings are not required for SLI4 ports capable of 19717 * extents. 19718 */ 19719 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19720 spin_unlock_irqrestore(&phba->hbalock, iflag); 19721 return rpi; 19722 } 19723 19724 /* 19725 * If the driver is running low on rpi resources, allocate another 19726 * page now. Note that the next_rpi value is used because 19727 * it represents how many are actually in use whereas max_rpi notes 19728 * how many are supported max by the device. 19729 */ 19730 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19731 spin_unlock_irqrestore(&phba->hbalock, iflag); 19732 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19733 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19734 if (!rpi_hdr) { 19735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19736 "2002 Error Could not grow rpi " 19737 "count\n"); 19738 } else { 19739 lrpi = rpi_hdr->start_rpi; 19740 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19741 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19742 } 19743 } 19744 19745 return rpi; 19746 } 19747 19748 /** 19749 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19750 * @phba: pointer to lpfc hba data structure. 19751 * @rpi: rpi to free 19752 * 19753 * This routine is invoked to release an rpi to the pool of 19754 * available rpis maintained by the driver. 19755 **/ 19756 static void 19757 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19758 { 19759 /* 19760 * if the rpi value indicates a prior unreg has already 19761 * been done, skip the unreg. 19762 */ 19763 if (rpi == LPFC_RPI_ALLOC_ERROR) 19764 return; 19765 19766 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19767 phba->sli4_hba.rpi_count--; 19768 phba->sli4_hba.max_cfg_param.rpi_used--; 19769 } else { 19770 lpfc_printf_log(phba, KERN_INFO, 19771 LOG_NODE | LOG_DISCOVERY, 19772 "2016 rpi %x not inuse\n", 19773 rpi); 19774 } 19775 } 19776 19777 /** 19778 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19779 * @phba: pointer to lpfc hba data structure. 19780 * @rpi: rpi to free 19781 * 19782 * This routine is invoked to release an rpi to the pool of 19783 * available rpis maintained by the driver. 19784 **/ 19785 void 19786 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19787 { 19788 spin_lock_irq(&phba->hbalock); 19789 __lpfc_sli4_free_rpi(phba, rpi); 19790 spin_unlock_irq(&phba->hbalock); 19791 } 19792 19793 /** 19794 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19795 * @phba: pointer to lpfc hba data structure. 19796 * 19797 * This routine is invoked to remove the memory region that 19798 * provided rpi via a bitmask. 19799 **/ 19800 void 19801 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19802 { 19803 kfree(phba->sli4_hba.rpi_bmask); 19804 kfree(phba->sli4_hba.rpi_ids); 19805 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19806 } 19807 19808 /** 19809 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19810 * @ndlp: pointer to lpfc nodelist data structure. 19811 * @cmpl: completion call-back. 19812 * @arg: data to load as MBox 'caller buffer information' 19813 * 19814 * This routine is invoked to remove the memory region that 19815 * provided rpi via a bitmask. 19816 **/ 19817 int 19818 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19819 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19820 { 19821 LPFC_MBOXQ_t *mboxq; 19822 struct lpfc_hba *phba = ndlp->phba; 19823 int rc; 19824 19825 /* The port is notified of the header region via a mailbox command. */ 19826 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19827 if (!mboxq) 19828 return -ENOMEM; 19829 19830 /* If cmpl assigned, then this nlp_get pairs with 19831 * lpfc_mbx_cmpl_resume_rpi. 19832 * 19833 * Else cmpl is NULL, then this nlp_get pairs with 19834 * lpfc_sli_def_mbox_cmpl. 19835 */ 19836 if (!lpfc_nlp_get(ndlp)) { 19837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19838 "2122 %s: Failed to get nlp ref\n", 19839 __func__); 19840 mempool_free(mboxq, phba->mbox_mem_pool); 19841 return -EIO; 19842 } 19843 19844 /* Post all rpi memory regions to the port. */ 19845 lpfc_resume_rpi(mboxq, ndlp); 19846 if (cmpl) { 19847 mboxq->mbox_cmpl = cmpl; 19848 mboxq->ctx_buf = arg; 19849 } else 19850 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19851 mboxq->ctx_ndlp = ndlp; 19852 mboxq->vport = ndlp->vport; 19853 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19854 if (rc == MBX_NOT_FINISHED) { 19855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19856 "2010 Resume RPI Mailbox failed " 19857 "status %d, mbxStatus x%x\n", rc, 19858 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19859 lpfc_nlp_put(ndlp); 19860 mempool_free(mboxq, phba->mbox_mem_pool); 19861 return -EIO; 19862 } 19863 return 0; 19864 } 19865 19866 /** 19867 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19868 * @vport: Pointer to the vport for which the vpi is being initialized 19869 * 19870 * This routine is invoked to activate a vpi with the port. 19871 * 19872 * Returns: 19873 * 0 success 19874 * -Evalue otherwise 19875 **/ 19876 int 19877 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19878 { 19879 LPFC_MBOXQ_t *mboxq; 19880 int rc = 0; 19881 int retval = MBX_SUCCESS; 19882 uint32_t mbox_tmo; 19883 struct lpfc_hba *phba = vport->phba; 19884 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19885 if (!mboxq) 19886 return -ENOMEM; 19887 lpfc_init_vpi(phba, mboxq, vport->vpi); 19888 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19889 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19890 if (rc != MBX_SUCCESS) { 19891 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19892 "2022 INIT VPI Mailbox failed " 19893 "status %d, mbxStatus x%x\n", rc, 19894 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19895 retval = -EIO; 19896 } 19897 if (rc != MBX_TIMEOUT) 19898 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19899 19900 return retval; 19901 } 19902 19903 /** 19904 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19905 * @phba: pointer to lpfc hba data structure. 19906 * @mboxq: Pointer to mailbox object. 19907 * 19908 * This routine is invoked to manually add a single FCF record. The caller 19909 * must pass a completely initialized FCF_Record. This routine takes 19910 * care of the nonembedded mailbox operations. 19911 **/ 19912 static void 19913 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19914 { 19915 void *virt_addr; 19916 union lpfc_sli4_cfg_shdr *shdr; 19917 uint32_t shdr_status, shdr_add_status; 19918 19919 virt_addr = mboxq->sge_array->addr[0]; 19920 /* The IOCTL status is embedded in the mailbox subheader. */ 19921 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19922 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19923 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19924 19925 if ((shdr_status || shdr_add_status) && 19926 (shdr_status != STATUS_FCF_IN_USE)) 19927 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19928 "2558 ADD_FCF_RECORD mailbox failed with " 19929 "status x%x add_status x%x\n", 19930 shdr_status, shdr_add_status); 19931 19932 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19933 } 19934 19935 /** 19936 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19937 * @phba: pointer to lpfc hba data structure. 19938 * @fcf_record: pointer to the initialized fcf record to add. 19939 * 19940 * This routine is invoked to manually add a single FCF record. The caller 19941 * must pass a completely initialized FCF_Record. This routine takes 19942 * care of the nonembedded mailbox operations. 19943 **/ 19944 int 19945 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19946 { 19947 int rc = 0; 19948 LPFC_MBOXQ_t *mboxq; 19949 uint8_t *bytep; 19950 void *virt_addr; 19951 struct lpfc_mbx_sge sge; 19952 uint32_t alloc_len, req_len; 19953 uint32_t fcfindex; 19954 19955 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19956 if (!mboxq) { 19957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19958 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19959 return -ENOMEM; 19960 } 19961 19962 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19963 sizeof(uint32_t); 19964 19965 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19966 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19967 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19968 req_len, LPFC_SLI4_MBX_NEMBED); 19969 if (alloc_len < req_len) { 19970 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19971 "2523 Allocated DMA memory size (x%x) is " 19972 "less than the requested DMA memory " 19973 "size (x%x)\n", alloc_len, req_len); 19974 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19975 return -ENOMEM; 19976 } 19977 19978 /* 19979 * Get the first SGE entry from the non-embedded DMA memory. This 19980 * routine only uses a single SGE. 19981 */ 19982 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19983 virt_addr = mboxq->sge_array->addr[0]; 19984 /* 19985 * Configure the FCF record for FCFI 0. This is the driver's 19986 * hardcoded default and gets used in nonFIP mode. 19987 */ 19988 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19989 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19990 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19991 19992 /* 19993 * Copy the fcf_index and the FCF Record Data. The data starts after 19994 * the FCoE header plus word10. The data copy needs to be endian 19995 * correct. 19996 */ 19997 bytep += sizeof(uint32_t); 19998 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19999 mboxq->vport = phba->pport; 20000 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20001 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20002 if (rc == MBX_NOT_FINISHED) { 20003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20004 "2515 ADD_FCF_RECORD mailbox failed with " 20005 "status 0x%x\n", rc); 20006 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20007 rc = -EIO; 20008 } else 20009 rc = 0; 20010 20011 return rc; 20012 } 20013 20014 /** 20015 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20016 * @phba: pointer to lpfc hba data structure. 20017 * @fcf_record: pointer to the fcf record to write the default data. 20018 * @fcf_index: FCF table entry index. 20019 * 20020 * This routine is invoked to build the driver's default FCF record. The 20021 * values used are hardcoded. This routine handles memory initialization. 20022 * 20023 **/ 20024 void 20025 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20026 struct fcf_record *fcf_record, 20027 uint16_t fcf_index) 20028 { 20029 memset(fcf_record, 0, sizeof(struct fcf_record)); 20030 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20031 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20032 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20033 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20034 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20035 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20036 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20037 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20038 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20039 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20040 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20041 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20042 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20043 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20044 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20045 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20046 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20047 /* Set the VLAN bit map */ 20048 if (phba->valid_vlan) { 20049 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20050 = 1 << (phba->vlan_id % 8); 20051 } 20052 } 20053 20054 /** 20055 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20056 * @phba: pointer to lpfc hba data structure. 20057 * @fcf_index: FCF table entry offset. 20058 * 20059 * This routine is invoked to scan the entire FCF table by reading FCF 20060 * record and processing it one at a time starting from the @fcf_index 20061 * for initial FCF discovery or fast FCF failover rediscovery. 20062 * 20063 * Return 0 if the mailbox command is submitted successfully, none 0 20064 * otherwise. 20065 **/ 20066 int 20067 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20068 { 20069 int rc = 0, error; 20070 LPFC_MBOXQ_t *mboxq; 20071 20072 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20073 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20074 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20075 if (!mboxq) { 20076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20077 "2000 Failed to allocate mbox for " 20078 "READ_FCF cmd\n"); 20079 error = -ENOMEM; 20080 goto fail_fcf_scan; 20081 } 20082 /* Construct the read FCF record mailbox command */ 20083 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20084 if (rc) { 20085 error = -EINVAL; 20086 goto fail_fcf_scan; 20087 } 20088 /* Issue the mailbox command asynchronously */ 20089 mboxq->vport = phba->pport; 20090 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20091 20092 spin_lock_irq(&phba->hbalock); 20093 phba->hba_flag |= FCF_TS_INPROG; 20094 spin_unlock_irq(&phba->hbalock); 20095 20096 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20097 if (rc == MBX_NOT_FINISHED) 20098 error = -EIO; 20099 else { 20100 /* Reset eligible FCF count for new scan */ 20101 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20102 phba->fcf.eligible_fcf_cnt = 0; 20103 error = 0; 20104 } 20105 fail_fcf_scan: 20106 if (error) { 20107 if (mboxq) 20108 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20109 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20110 spin_lock_irq(&phba->hbalock); 20111 phba->hba_flag &= ~FCF_TS_INPROG; 20112 spin_unlock_irq(&phba->hbalock); 20113 } 20114 return error; 20115 } 20116 20117 /** 20118 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20119 * @phba: pointer to lpfc hba data structure. 20120 * @fcf_index: FCF table entry offset. 20121 * 20122 * This routine is invoked to read an FCF record indicated by @fcf_index 20123 * and to use it for FLOGI roundrobin FCF failover. 20124 * 20125 * Return 0 if the mailbox command is submitted successfully, none 0 20126 * otherwise. 20127 **/ 20128 int 20129 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20130 { 20131 int rc = 0, error; 20132 LPFC_MBOXQ_t *mboxq; 20133 20134 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20135 if (!mboxq) { 20136 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20137 "2763 Failed to allocate mbox for " 20138 "READ_FCF cmd\n"); 20139 error = -ENOMEM; 20140 goto fail_fcf_read; 20141 } 20142 /* Construct the read FCF record mailbox command */ 20143 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20144 if (rc) { 20145 error = -EINVAL; 20146 goto fail_fcf_read; 20147 } 20148 /* Issue the mailbox command asynchronously */ 20149 mboxq->vport = phba->pport; 20150 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20151 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20152 if (rc == MBX_NOT_FINISHED) 20153 error = -EIO; 20154 else 20155 error = 0; 20156 20157 fail_fcf_read: 20158 if (error && mboxq) 20159 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20160 return error; 20161 } 20162 20163 /** 20164 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20165 * @phba: pointer to lpfc hba data structure. 20166 * @fcf_index: FCF table entry offset. 20167 * 20168 * This routine is invoked to read an FCF record indicated by @fcf_index to 20169 * determine whether it's eligible for FLOGI roundrobin failover list. 20170 * 20171 * Return 0 if the mailbox command is submitted successfully, none 0 20172 * otherwise. 20173 **/ 20174 int 20175 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20176 { 20177 int rc = 0, error; 20178 LPFC_MBOXQ_t *mboxq; 20179 20180 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20181 if (!mboxq) { 20182 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20183 "2758 Failed to allocate mbox for " 20184 "READ_FCF cmd\n"); 20185 error = -ENOMEM; 20186 goto fail_fcf_read; 20187 } 20188 /* Construct the read FCF record mailbox command */ 20189 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20190 if (rc) { 20191 error = -EINVAL; 20192 goto fail_fcf_read; 20193 } 20194 /* Issue the mailbox command asynchronously */ 20195 mboxq->vport = phba->pport; 20196 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20197 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20198 if (rc == MBX_NOT_FINISHED) 20199 error = -EIO; 20200 else 20201 error = 0; 20202 20203 fail_fcf_read: 20204 if (error && mboxq) 20205 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20206 return error; 20207 } 20208 20209 /** 20210 * lpfc_check_next_fcf_pri_level 20211 * @phba: pointer to the lpfc_hba struct for this port. 20212 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20213 * routine when the rr_bmask is empty. The FCF indecies are put into the 20214 * rr_bmask based on their priority level. Starting from the highest priority 20215 * to the lowest. The most likely FCF candidate will be in the highest 20216 * priority group. When this routine is called it searches the fcf_pri list for 20217 * next lowest priority group and repopulates the rr_bmask with only those 20218 * fcf_indexes. 20219 * returns: 20220 * 1=success 0=failure 20221 **/ 20222 static int 20223 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20224 { 20225 uint16_t next_fcf_pri; 20226 uint16_t last_index; 20227 struct lpfc_fcf_pri *fcf_pri; 20228 int rc; 20229 int ret = 0; 20230 20231 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20232 LPFC_SLI4_FCF_TBL_INDX_MAX); 20233 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20234 "3060 Last IDX %d\n", last_index); 20235 20236 /* Verify the priority list has 2 or more entries */ 20237 spin_lock_irq(&phba->hbalock); 20238 if (list_empty(&phba->fcf.fcf_pri_list) || 20239 list_is_singular(&phba->fcf.fcf_pri_list)) { 20240 spin_unlock_irq(&phba->hbalock); 20241 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20242 "3061 Last IDX %d\n", last_index); 20243 return 0; /* Empty rr list */ 20244 } 20245 spin_unlock_irq(&phba->hbalock); 20246 20247 next_fcf_pri = 0; 20248 /* 20249 * Clear the rr_bmask and set all of the bits that are at this 20250 * priority. 20251 */ 20252 memset(phba->fcf.fcf_rr_bmask, 0, 20253 sizeof(*phba->fcf.fcf_rr_bmask)); 20254 spin_lock_irq(&phba->hbalock); 20255 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20256 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20257 continue; 20258 /* 20259 * the 1st priority that has not FLOGI failed 20260 * will be the highest. 20261 */ 20262 if (!next_fcf_pri) 20263 next_fcf_pri = fcf_pri->fcf_rec.priority; 20264 spin_unlock_irq(&phba->hbalock); 20265 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20266 rc = lpfc_sli4_fcf_rr_index_set(phba, 20267 fcf_pri->fcf_rec.fcf_index); 20268 if (rc) 20269 return 0; 20270 } 20271 spin_lock_irq(&phba->hbalock); 20272 } 20273 /* 20274 * if next_fcf_pri was not set above and the list is not empty then 20275 * we have failed flogis on all of them. So reset flogi failed 20276 * and start at the beginning. 20277 */ 20278 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20279 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20280 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20281 /* 20282 * the 1st priority that has not FLOGI failed 20283 * will be the highest. 20284 */ 20285 if (!next_fcf_pri) 20286 next_fcf_pri = fcf_pri->fcf_rec.priority; 20287 spin_unlock_irq(&phba->hbalock); 20288 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20289 rc = lpfc_sli4_fcf_rr_index_set(phba, 20290 fcf_pri->fcf_rec.fcf_index); 20291 if (rc) 20292 return 0; 20293 } 20294 spin_lock_irq(&phba->hbalock); 20295 } 20296 } else 20297 ret = 1; 20298 spin_unlock_irq(&phba->hbalock); 20299 20300 return ret; 20301 } 20302 /** 20303 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20304 * @phba: pointer to lpfc hba data structure. 20305 * 20306 * This routine is to get the next eligible FCF record index in a round 20307 * robin fashion. If the next eligible FCF record index equals to the 20308 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20309 * shall be returned, otherwise, the next eligible FCF record's index 20310 * shall be returned. 20311 **/ 20312 uint16_t 20313 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20314 { 20315 uint16_t next_fcf_index; 20316 20317 initial_priority: 20318 /* Search start from next bit of currently registered FCF index */ 20319 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20320 20321 next_priority: 20322 /* Determine the next fcf index to check */ 20323 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20324 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20325 LPFC_SLI4_FCF_TBL_INDX_MAX, 20326 next_fcf_index); 20327 20328 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20329 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20330 /* 20331 * If we have wrapped then we need to clear the bits that 20332 * have been tested so that we can detect when we should 20333 * change the priority level. 20334 */ 20335 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20336 LPFC_SLI4_FCF_TBL_INDX_MAX); 20337 } 20338 20339 20340 /* Check roundrobin failover list empty condition */ 20341 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20342 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20343 /* 20344 * If next fcf index is not found check if there are lower 20345 * Priority level fcf's in the fcf_priority list. 20346 * Set up the rr_bmask with all of the avaiable fcf bits 20347 * at that level and continue the selection process. 20348 */ 20349 if (lpfc_check_next_fcf_pri_level(phba)) 20350 goto initial_priority; 20351 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20352 "2844 No roundrobin failover FCF available\n"); 20353 20354 return LPFC_FCOE_FCF_NEXT_NONE; 20355 } 20356 20357 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20358 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20359 LPFC_FCF_FLOGI_FAILED) { 20360 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20361 return LPFC_FCOE_FCF_NEXT_NONE; 20362 20363 goto next_priority; 20364 } 20365 20366 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20367 "2845 Get next roundrobin failover FCF (x%x)\n", 20368 next_fcf_index); 20369 20370 return next_fcf_index; 20371 } 20372 20373 /** 20374 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20375 * @phba: pointer to lpfc hba data structure. 20376 * @fcf_index: index into the FCF table to 'set' 20377 * 20378 * This routine sets the FCF record index in to the eligible bmask for 20379 * roundrobin failover search. It checks to make sure that the index 20380 * does not go beyond the range of the driver allocated bmask dimension 20381 * before setting the bit. 20382 * 20383 * Returns 0 if the index bit successfully set, otherwise, it returns 20384 * -EINVAL. 20385 **/ 20386 int 20387 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20388 { 20389 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20390 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20391 "2610 FCF (x%x) reached driver's book " 20392 "keeping dimension:x%x\n", 20393 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20394 return -EINVAL; 20395 } 20396 /* Set the eligible FCF record index bmask */ 20397 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20398 20399 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20400 "2790 Set FCF (x%x) to roundrobin FCF failover " 20401 "bmask\n", fcf_index); 20402 20403 return 0; 20404 } 20405 20406 /** 20407 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20408 * @phba: pointer to lpfc hba data structure. 20409 * @fcf_index: index into the FCF table to 'clear' 20410 * 20411 * This routine clears the FCF record index from the eligible bmask for 20412 * roundrobin failover search. It checks to make sure that the index 20413 * does not go beyond the range of the driver allocated bmask dimension 20414 * before clearing the bit. 20415 **/ 20416 void 20417 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20418 { 20419 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20420 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20421 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20422 "2762 FCF (x%x) reached driver's book " 20423 "keeping dimension:x%x\n", 20424 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20425 return; 20426 } 20427 /* Clear the eligible FCF record index bmask */ 20428 spin_lock_irq(&phba->hbalock); 20429 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20430 list) { 20431 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20432 list_del_init(&fcf_pri->list); 20433 break; 20434 } 20435 } 20436 spin_unlock_irq(&phba->hbalock); 20437 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20438 20439 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20440 "2791 Clear FCF (x%x) from roundrobin failover " 20441 "bmask\n", fcf_index); 20442 } 20443 20444 /** 20445 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20446 * @phba: pointer to lpfc hba data structure. 20447 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20448 * 20449 * This routine is the completion routine for the rediscover FCF table mailbox 20450 * command. If the mailbox command returned failure, it will try to stop the 20451 * FCF rediscover wait timer. 20452 **/ 20453 static void 20454 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20455 { 20456 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20457 uint32_t shdr_status, shdr_add_status; 20458 20459 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20460 20461 shdr_status = bf_get(lpfc_mbox_hdr_status, 20462 &redisc_fcf->header.cfg_shdr.response); 20463 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20464 &redisc_fcf->header.cfg_shdr.response); 20465 if (shdr_status || shdr_add_status) { 20466 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20467 "2746 Requesting for FCF rediscovery failed " 20468 "status x%x add_status x%x\n", 20469 shdr_status, shdr_add_status); 20470 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20471 spin_lock_irq(&phba->hbalock); 20472 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20473 spin_unlock_irq(&phba->hbalock); 20474 /* 20475 * CVL event triggered FCF rediscover request failed, 20476 * last resort to re-try current registered FCF entry. 20477 */ 20478 lpfc_retry_pport_discovery(phba); 20479 } else { 20480 spin_lock_irq(&phba->hbalock); 20481 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20482 spin_unlock_irq(&phba->hbalock); 20483 /* 20484 * DEAD FCF event triggered FCF rediscover request 20485 * failed, last resort to fail over as a link down 20486 * to FCF registration. 20487 */ 20488 lpfc_sli4_fcf_dead_failthrough(phba); 20489 } 20490 } else { 20491 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20492 "2775 Start FCF rediscover quiescent timer\n"); 20493 /* 20494 * Start FCF rediscovery wait timer for pending FCF 20495 * before rescan FCF record table. 20496 */ 20497 lpfc_fcf_redisc_wait_start_timer(phba); 20498 } 20499 20500 mempool_free(mbox, phba->mbox_mem_pool); 20501 } 20502 20503 /** 20504 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20505 * @phba: pointer to lpfc hba data structure. 20506 * 20507 * This routine is invoked to request for rediscovery of the entire FCF table 20508 * by the port. 20509 **/ 20510 int 20511 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20512 { 20513 LPFC_MBOXQ_t *mbox; 20514 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20515 int rc, length; 20516 20517 /* Cancel retry delay timers to all vports before FCF rediscover */ 20518 lpfc_cancel_all_vport_retry_delay_timer(phba); 20519 20520 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20521 if (!mbox) { 20522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20523 "2745 Failed to allocate mbox for " 20524 "requesting FCF rediscover.\n"); 20525 return -ENOMEM; 20526 } 20527 20528 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20529 sizeof(struct lpfc_sli4_cfg_mhdr)); 20530 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20531 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20532 length, LPFC_SLI4_MBX_EMBED); 20533 20534 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20535 /* Set count to 0 for invalidating the entire FCF database */ 20536 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20537 20538 /* Issue the mailbox command asynchronously */ 20539 mbox->vport = phba->pport; 20540 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20541 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20542 20543 if (rc == MBX_NOT_FINISHED) { 20544 mempool_free(mbox, phba->mbox_mem_pool); 20545 return -EIO; 20546 } 20547 return 0; 20548 } 20549 20550 /** 20551 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20552 * @phba: pointer to lpfc hba data structure. 20553 * 20554 * This function is the failover routine as a last resort to the FCF DEAD 20555 * event when driver failed to perform fast FCF failover. 20556 **/ 20557 void 20558 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20559 { 20560 uint32_t link_state; 20561 20562 /* 20563 * Last resort as FCF DEAD event failover will treat this as 20564 * a link down, but save the link state because we don't want 20565 * it to be changed to Link Down unless it is already down. 20566 */ 20567 link_state = phba->link_state; 20568 lpfc_linkdown(phba); 20569 phba->link_state = link_state; 20570 20571 /* Unregister FCF if no devices connected to it */ 20572 lpfc_unregister_unused_fcf(phba); 20573 } 20574 20575 /** 20576 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20577 * @phba: pointer to lpfc hba data structure. 20578 * @rgn23_data: pointer to configure region 23 data. 20579 * 20580 * This function gets SLI3 port configure region 23 data through memory dump 20581 * mailbox command. When it successfully retrieves data, the size of the data 20582 * will be returned, otherwise, 0 will be returned. 20583 **/ 20584 static uint32_t 20585 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20586 { 20587 LPFC_MBOXQ_t *pmb = NULL; 20588 MAILBOX_t *mb; 20589 uint32_t offset = 0; 20590 int rc; 20591 20592 if (!rgn23_data) 20593 return 0; 20594 20595 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20596 if (!pmb) { 20597 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20598 "2600 failed to allocate mailbox memory\n"); 20599 return 0; 20600 } 20601 mb = &pmb->u.mb; 20602 20603 do { 20604 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20605 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20606 20607 if (rc != MBX_SUCCESS) { 20608 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20609 "2601 failed to read config " 20610 "region 23, rc 0x%x Status 0x%x\n", 20611 rc, mb->mbxStatus); 20612 mb->un.varDmp.word_cnt = 0; 20613 } 20614 /* 20615 * dump mem may return a zero when finished or we got a 20616 * mailbox error, either way we are done. 20617 */ 20618 if (mb->un.varDmp.word_cnt == 0) 20619 break; 20620 20621 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20622 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20623 20624 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20625 rgn23_data + offset, 20626 mb->un.varDmp.word_cnt); 20627 offset += mb->un.varDmp.word_cnt; 20628 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20629 20630 mempool_free(pmb, phba->mbox_mem_pool); 20631 return offset; 20632 } 20633 20634 /** 20635 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20636 * @phba: pointer to lpfc hba data structure. 20637 * @rgn23_data: pointer to configure region 23 data. 20638 * 20639 * This function gets SLI4 port configure region 23 data through memory dump 20640 * mailbox command. When it successfully retrieves data, the size of the data 20641 * will be returned, otherwise, 0 will be returned. 20642 **/ 20643 static uint32_t 20644 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20645 { 20646 LPFC_MBOXQ_t *mboxq = NULL; 20647 struct lpfc_dmabuf *mp = NULL; 20648 struct lpfc_mqe *mqe; 20649 uint32_t data_length = 0; 20650 int rc; 20651 20652 if (!rgn23_data) 20653 return 0; 20654 20655 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20656 if (!mboxq) { 20657 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20658 "3105 failed to allocate mailbox memory\n"); 20659 return 0; 20660 } 20661 20662 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20663 goto out; 20664 mqe = &mboxq->u.mqe; 20665 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20666 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20667 if (rc) 20668 goto out; 20669 data_length = mqe->un.mb_words[5]; 20670 if (data_length == 0) 20671 goto out; 20672 if (data_length > DMP_RGN23_SIZE) { 20673 data_length = 0; 20674 goto out; 20675 } 20676 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20677 out: 20678 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20679 return data_length; 20680 } 20681 20682 /** 20683 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20684 * @phba: pointer to lpfc hba data structure. 20685 * 20686 * This function read region 23 and parse TLV for port status to 20687 * decide if the user disaled the port. If the TLV indicates the 20688 * port is disabled, the hba_flag is set accordingly. 20689 **/ 20690 void 20691 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20692 { 20693 uint8_t *rgn23_data = NULL; 20694 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20695 uint32_t offset = 0; 20696 20697 /* Get adapter Region 23 data */ 20698 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20699 if (!rgn23_data) 20700 goto out; 20701 20702 if (phba->sli_rev < LPFC_SLI_REV4) 20703 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20704 else { 20705 if_type = bf_get(lpfc_sli_intf_if_type, 20706 &phba->sli4_hba.sli_intf); 20707 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20708 goto out; 20709 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20710 } 20711 20712 if (!data_size) 20713 goto out; 20714 20715 /* Check the region signature first */ 20716 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20718 "2619 Config region 23 has bad signature\n"); 20719 goto out; 20720 } 20721 offset += 4; 20722 20723 /* Check the data structure version */ 20724 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20726 "2620 Config region 23 has bad version\n"); 20727 goto out; 20728 } 20729 offset += 4; 20730 20731 /* Parse TLV entries in the region */ 20732 while (offset < data_size) { 20733 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20734 break; 20735 /* 20736 * If the TLV is not driver specific TLV or driver id is 20737 * not linux driver id, skip the record. 20738 */ 20739 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20740 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20741 (rgn23_data[offset + 3] != 0)) { 20742 offset += rgn23_data[offset + 1] * 4 + 4; 20743 continue; 20744 } 20745 20746 /* Driver found a driver specific TLV in the config region */ 20747 sub_tlv_len = rgn23_data[offset + 1] * 4; 20748 offset += 4; 20749 tlv_offset = 0; 20750 20751 /* 20752 * Search for configured port state sub-TLV. 20753 */ 20754 while ((offset < data_size) && 20755 (tlv_offset < sub_tlv_len)) { 20756 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20757 offset += 4; 20758 tlv_offset += 4; 20759 break; 20760 } 20761 if (rgn23_data[offset] != PORT_STE_TYPE) { 20762 offset += rgn23_data[offset + 1] * 4 + 4; 20763 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20764 continue; 20765 } 20766 20767 /* This HBA contains PORT_STE configured */ 20768 if (!rgn23_data[offset + 2]) 20769 phba->hba_flag |= LINK_DISABLED; 20770 20771 goto out; 20772 } 20773 } 20774 20775 out: 20776 kfree(rgn23_data); 20777 return; 20778 } 20779 20780 /** 20781 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20782 * @phba: pointer to lpfc hba data structure 20783 * @shdr_status: wr_object rsp's status field 20784 * @shdr_add_status: wr_object rsp's add_status field 20785 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20786 * @shdr_change_status: wr_object rsp's change_status field 20787 * @shdr_csf: wr_object rsp's csf bit 20788 * 20789 * This routine is intended to be called after a firmware write completes. 20790 * It will log next action items to be performed by the user to instantiate 20791 * the newly downloaded firmware or reason for incompatibility. 20792 **/ 20793 static void 20794 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20795 u32 shdr_add_status, u32 shdr_add_status_2, 20796 u32 shdr_change_status, u32 shdr_csf) 20797 { 20798 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20799 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20800 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20801 "change_status x%02x, csf %01x\n", __func__, 20802 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20803 shdr_status, shdr_add_status, shdr_add_status_2, 20804 shdr_change_status, shdr_csf); 20805 20806 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20807 switch (shdr_add_status_2) { 20808 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20809 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20810 "4199 Firmware write failed: " 20811 "image incompatible with flash x%02x\n", 20812 phba->sli4_hba.flash_id); 20813 break; 20814 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20815 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20816 "4200 Firmware write failed: " 20817 "image incompatible with ASIC " 20818 "architecture x%02x\n", 20819 phba->sli4_hba.asic_rev); 20820 break; 20821 default: 20822 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20823 "4210 Firmware write failed: " 20824 "add_status_2 x%02x\n", 20825 shdr_add_status_2); 20826 break; 20827 } 20828 } else if (!shdr_status && !shdr_add_status) { 20829 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20830 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20831 if (shdr_csf) 20832 shdr_change_status = 20833 LPFC_CHANGE_STATUS_PCI_RESET; 20834 } 20835 20836 switch (shdr_change_status) { 20837 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20838 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20839 "3198 Firmware write complete: System " 20840 "reboot required to instantiate\n"); 20841 break; 20842 case (LPFC_CHANGE_STATUS_FW_RESET): 20843 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20844 "3199 Firmware write complete: " 20845 "Firmware reset required to " 20846 "instantiate\n"); 20847 break; 20848 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20849 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20850 "3200 Firmware write complete: Port " 20851 "Migration or PCI Reset required to " 20852 "instantiate\n"); 20853 break; 20854 case (LPFC_CHANGE_STATUS_PCI_RESET): 20855 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20856 "3201 Firmware write complete: PCI " 20857 "Reset required to instantiate\n"); 20858 break; 20859 default: 20860 break; 20861 } 20862 } 20863 } 20864 20865 /** 20866 * lpfc_wr_object - write an object to the firmware 20867 * @phba: HBA structure that indicates port to create a queue on. 20868 * @dmabuf_list: list of dmabufs to write to the port. 20869 * @size: the total byte value of the objects to write to the port. 20870 * @offset: the current offset to be used to start the transfer. 20871 * 20872 * This routine will create a wr_object mailbox command to send to the port. 20873 * the mailbox command will be constructed using the dma buffers described in 20874 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20875 * BDEs that the imbedded mailbox can support. The @offset variable will be 20876 * used to indicate the starting offset of the transfer and will also return 20877 * the offset after the write object mailbox has completed. @size is used to 20878 * determine the end of the object and whether the eof bit should be set. 20879 * 20880 * Return 0 is successful and offset will contain the new offset to use 20881 * for the next write. 20882 * Return negative value for error cases. 20883 **/ 20884 int 20885 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20886 uint32_t size, uint32_t *offset) 20887 { 20888 struct lpfc_mbx_wr_object *wr_object; 20889 LPFC_MBOXQ_t *mbox; 20890 int rc = 0, i = 0; 20891 int mbox_status = 0; 20892 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20893 uint32_t shdr_change_status = 0, shdr_csf = 0; 20894 uint32_t mbox_tmo; 20895 struct lpfc_dmabuf *dmabuf; 20896 uint32_t written = 0; 20897 bool check_change_status = false; 20898 20899 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20900 if (!mbox) 20901 return -ENOMEM; 20902 20903 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20904 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20905 sizeof(struct lpfc_mbx_wr_object) - 20906 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20907 20908 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20909 wr_object->u.request.write_offset = *offset; 20910 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20911 wr_object->u.request.object_name[0] = 20912 cpu_to_le32(wr_object->u.request.object_name[0]); 20913 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20914 list_for_each_entry(dmabuf, dmabuf_list, list) { 20915 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20916 break; 20917 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20918 wr_object->u.request.bde[i].addrHigh = 20919 putPaddrHigh(dmabuf->phys); 20920 if (written + SLI4_PAGE_SIZE >= size) { 20921 wr_object->u.request.bde[i].tus.f.bdeSize = 20922 (size - written); 20923 written += (size - written); 20924 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20925 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20926 check_change_status = true; 20927 } else { 20928 wr_object->u.request.bde[i].tus.f.bdeSize = 20929 SLI4_PAGE_SIZE; 20930 written += SLI4_PAGE_SIZE; 20931 } 20932 i++; 20933 } 20934 wr_object->u.request.bde_count = i; 20935 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20936 if (!phba->sli4_hba.intr_enable) 20937 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20938 else { 20939 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20940 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20941 } 20942 20943 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20944 rc = mbox_status; 20945 20946 /* The IOCTL status is embedded in the mailbox subheader. */ 20947 shdr_status = bf_get(lpfc_mbox_hdr_status, 20948 &wr_object->header.cfg_shdr.response); 20949 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20950 &wr_object->header.cfg_shdr.response); 20951 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20952 &wr_object->header.cfg_shdr.response); 20953 if (check_change_status) { 20954 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20955 &wr_object->u.response); 20956 shdr_csf = bf_get(lpfc_wr_object_csf, 20957 &wr_object->u.response); 20958 } 20959 20960 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20962 "3025 Write Object mailbox failed with " 20963 "status x%x add_status x%x, add_status_2 x%x, " 20964 "mbx status x%x\n", 20965 shdr_status, shdr_add_status, shdr_add_status_2, 20966 rc); 20967 rc = -ENXIO; 20968 *offset = shdr_add_status; 20969 } else { 20970 *offset += wr_object->u.response.actual_write_length; 20971 } 20972 20973 if (rc || check_change_status) 20974 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20975 shdr_add_status_2, shdr_change_status, 20976 shdr_csf); 20977 20978 if (!phba->sli4_hba.intr_enable) 20979 mempool_free(mbox, phba->mbox_mem_pool); 20980 else if (mbox_status != MBX_TIMEOUT) 20981 mempool_free(mbox, phba->mbox_mem_pool); 20982 20983 return rc; 20984 } 20985 20986 /** 20987 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20988 * @vport: pointer to vport data structure. 20989 * 20990 * This function iterate through the mailboxq and clean up all REG_LOGIN 20991 * and REG_VPI mailbox commands associated with the vport. This function 20992 * is called when driver want to restart discovery of the vport due to 20993 * a Clear Virtual Link event. 20994 **/ 20995 void 20996 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20997 { 20998 struct lpfc_hba *phba = vport->phba; 20999 LPFC_MBOXQ_t *mb, *nextmb; 21000 struct lpfc_nodelist *ndlp; 21001 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21002 LIST_HEAD(mbox_cmd_list); 21003 uint8_t restart_loop; 21004 21005 /* Clean up internally queued mailbox commands with the vport */ 21006 spin_lock_irq(&phba->hbalock); 21007 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21008 if (mb->vport != vport) 21009 continue; 21010 21011 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21012 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21013 continue; 21014 21015 list_move_tail(&mb->list, &mbox_cmd_list); 21016 } 21017 /* Clean up active mailbox command with the vport */ 21018 mb = phba->sli.mbox_active; 21019 if (mb && (mb->vport == vport)) { 21020 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21021 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21022 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21023 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21024 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21025 21026 /* This reference is local to this routine. The 21027 * reference is removed at routine exit. 21028 */ 21029 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21030 21031 /* Unregister the RPI when mailbox complete */ 21032 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21033 } 21034 } 21035 /* Cleanup any mailbox completions which are not yet processed */ 21036 do { 21037 restart_loop = 0; 21038 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21039 /* 21040 * If this mailox is already processed or it is 21041 * for another vport ignore it. 21042 */ 21043 if ((mb->vport != vport) || 21044 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21045 continue; 21046 21047 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21048 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21049 continue; 21050 21051 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21052 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21053 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21054 /* Unregister the RPI when mailbox complete */ 21055 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21056 restart_loop = 1; 21057 spin_unlock_irq(&phba->hbalock); 21058 spin_lock(&ndlp->lock); 21059 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21060 spin_unlock(&ndlp->lock); 21061 spin_lock_irq(&phba->hbalock); 21062 break; 21063 } 21064 } 21065 } while (restart_loop); 21066 21067 spin_unlock_irq(&phba->hbalock); 21068 21069 /* Release the cleaned-up mailbox commands */ 21070 while (!list_empty(&mbox_cmd_list)) { 21071 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21072 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21073 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21074 mb->ctx_ndlp = NULL; 21075 if (ndlp) { 21076 spin_lock(&ndlp->lock); 21077 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21078 spin_unlock(&ndlp->lock); 21079 lpfc_nlp_put(ndlp); 21080 } 21081 } 21082 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21083 } 21084 21085 /* Release the ndlp with the cleaned-up active mailbox command */ 21086 if (act_mbx_ndlp) { 21087 spin_lock(&act_mbx_ndlp->lock); 21088 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21089 spin_unlock(&act_mbx_ndlp->lock); 21090 lpfc_nlp_put(act_mbx_ndlp); 21091 } 21092 } 21093 21094 /** 21095 * lpfc_drain_txq - Drain the txq 21096 * @phba: Pointer to HBA context object. 21097 * 21098 * This function attempt to submit IOCBs on the txq 21099 * to the adapter. For SLI4 adapters, the txq contains 21100 * ELS IOCBs that have been deferred because the there 21101 * are no SGLs. This congestion can occur with large 21102 * vport counts during node discovery. 21103 **/ 21104 21105 uint32_t 21106 lpfc_drain_txq(struct lpfc_hba *phba) 21107 { 21108 LIST_HEAD(completions); 21109 struct lpfc_sli_ring *pring; 21110 struct lpfc_iocbq *piocbq = NULL; 21111 unsigned long iflags = 0; 21112 char *fail_msg = NULL; 21113 uint32_t txq_cnt = 0; 21114 struct lpfc_queue *wq; 21115 int ret = 0; 21116 21117 if (phba->link_flag & LS_MDS_LOOPBACK) { 21118 /* MDS WQE are posted only to first WQ*/ 21119 wq = phba->sli4_hba.hdwq[0].io_wq; 21120 if (unlikely(!wq)) 21121 return 0; 21122 pring = wq->pring; 21123 } else { 21124 wq = phba->sli4_hba.els_wq; 21125 if (unlikely(!wq)) 21126 return 0; 21127 pring = lpfc_phba_elsring(phba); 21128 } 21129 21130 if (unlikely(!pring) || list_empty(&pring->txq)) 21131 return 0; 21132 21133 spin_lock_irqsave(&pring->ring_lock, iflags); 21134 list_for_each_entry(piocbq, &pring->txq, list) { 21135 txq_cnt++; 21136 } 21137 21138 if (txq_cnt > pring->txq_max) 21139 pring->txq_max = txq_cnt; 21140 21141 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21142 21143 while (!list_empty(&pring->txq)) { 21144 spin_lock_irqsave(&pring->ring_lock, iflags); 21145 21146 piocbq = lpfc_sli_ringtx_get(phba, pring); 21147 if (!piocbq) { 21148 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21150 "2823 txq empty and txq_cnt is %d\n ", 21151 txq_cnt); 21152 break; 21153 } 21154 txq_cnt--; 21155 21156 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21157 21158 if (ret && ret != IOCB_BUSY) { 21159 fail_msg = " - Cannot send IO "; 21160 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21161 } 21162 if (fail_msg) { 21163 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21164 /* Failed means we can't issue and need to cancel */ 21165 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21166 "2822 IOCB failed %s iotag 0x%x " 21167 "xri 0x%x %d flg x%x\n", 21168 fail_msg, piocbq->iotag, 21169 piocbq->sli4_xritag, ret, 21170 piocbq->cmd_flag); 21171 list_add_tail(&piocbq->list, &completions); 21172 fail_msg = NULL; 21173 } 21174 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21175 if (txq_cnt == 0 || ret == IOCB_BUSY) 21176 break; 21177 } 21178 /* Cancel all the IOCBs that cannot be issued */ 21179 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21180 IOERR_SLI_ABORTED); 21181 21182 return txq_cnt; 21183 } 21184 21185 /** 21186 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21187 * @phba: Pointer to HBA context object. 21188 * @pwqeq: Pointer to command WQE. 21189 * @sglq: Pointer to the scatter gather queue object. 21190 * 21191 * This routine converts the bpl or bde that is in the WQE 21192 * to a sgl list for the sli4 hardware. The physical address 21193 * of the bpl/bde is converted back to a virtual address. 21194 * If the WQE contains a BPL then the list of BDE's is 21195 * converted to sli4_sge's. If the WQE contains a single 21196 * BDE then it is converted to a single sli_sge. 21197 * The WQE is still in cpu endianness so the contents of 21198 * the bpl can be used without byte swapping. 21199 * 21200 * Returns valid XRI = Success, NO_XRI = Failure. 21201 */ 21202 static uint16_t 21203 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21204 struct lpfc_sglq *sglq) 21205 { 21206 uint16_t xritag = NO_XRI; 21207 struct ulp_bde64 *bpl = NULL; 21208 struct ulp_bde64 bde; 21209 struct sli4_sge *sgl = NULL; 21210 struct lpfc_dmabuf *dmabuf; 21211 union lpfc_wqe128 *wqe; 21212 int numBdes = 0; 21213 int i = 0; 21214 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21215 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21216 uint32_t cmd; 21217 21218 if (!pwqeq || !sglq) 21219 return xritag; 21220 21221 sgl = (struct sli4_sge *)sglq->sgl; 21222 wqe = &pwqeq->wqe; 21223 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21224 21225 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21226 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21227 return sglq->sli4_xritag; 21228 numBdes = pwqeq->num_bdes; 21229 if (numBdes) { 21230 /* The addrHigh and addrLow fields within the WQE 21231 * have not been byteswapped yet so there is no 21232 * need to swap them back. 21233 */ 21234 if (pwqeq->bpl_dmabuf) 21235 dmabuf = pwqeq->bpl_dmabuf; 21236 else 21237 return xritag; 21238 21239 bpl = (struct ulp_bde64 *)dmabuf->virt; 21240 if (!bpl) 21241 return xritag; 21242 21243 for (i = 0; i < numBdes; i++) { 21244 /* Should already be byte swapped. */ 21245 sgl->addr_hi = bpl->addrHigh; 21246 sgl->addr_lo = bpl->addrLow; 21247 21248 sgl->word2 = le32_to_cpu(sgl->word2); 21249 if ((i+1) == numBdes) 21250 bf_set(lpfc_sli4_sge_last, sgl, 1); 21251 else 21252 bf_set(lpfc_sli4_sge_last, sgl, 0); 21253 /* swap the size field back to the cpu so we 21254 * can assign it to the sgl. 21255 */ 21256 bde.tus.w = le32_to_cpu(bpl->tus.w); 21257 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21258 /* The offsets in the sgl need to be accumulated 21259 * separately for the request and reply lists. 21260 * The request is always first, the reply follows. 21261 */ 21262 switch (cmd) { 21263 case CMD_GEN_REQUEST64_WQE: 21264 /* add up the reply sg entries */ 21265 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21266 inbound++; 21267 /* first inbound? reset the offset */ 21268 if (inbound == 1) 21269 offset = 0; 21270 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21271 bf_set(lpfc_sli4_sge_type, sgl, 21272 LPFC_SGE_TYPE_DATA); 21273 offset += bde.tus.f.bdeSize; 21274 break; 21275 case CMD_FCP_TRSP64_WQE: 21276 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21277 bf_set(lpfc_sli4_sge_type, sgl, 21278 LPFC_SGE_TYPE_DATA); 21279 break; 21280 case CMD_FCP_TSEND64_WQE: 21281 case CMD_FCP_TRECEIVE64_WQE: 21282 bf_set(lpfc_sli4_sge_type, sgl, 21283 bpl->tus.f.bdeFlags); 21284 if (i < 3) 21285 offset = 0; 21286 else 21287 offset += bde.tus.f.bdeSize; 21288 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21289 break; 21290 } 21291 sgl->word2 = cpu_to_le32(sgl->word2); 21292 bpl++; 21293 sgl++; 21294 } 21295 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21296 /* The addrHigh and addrLow fields of the BDE have not 21297 * been byteswapped yet so they need to be swapped 21298 * before putting them in the sgl. 21299 */ 21300 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21301 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21302 sgl->word2 = le32_to_cpu(sgl->word2); 21303 bf_set(lpfc_sli4_sge_last, sgl, 1); 21304 sgl->word2 = cpu_to_le32(sgl->word2); 21305 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21306 } 21307 return sglq->sli4_xritag; 21308 } 21309 21310 /** 21311 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21312 * @phba: Pointer to HBA context object. 21313 * @qp: Pointer to HDW queue. 21314 * @pwqe: Pointer to command WQE. 21315 **/ 21316 int 21317 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21318 struct lpfc_iocbq *pwqe) 21319 { 21320 union lpfc_wqe128 *wqe = &pwqe->wqe; 21321 struct lpfc_async_xchg_ctx *ctxp; 21322 struct lpfc_queue *wq; 21323 struct lpfc_sglq *sglq; 21324 struct lpfc_sli_ring *pring; 21325 unsigned long iflags; 21326 uint32_t ret = 0; 21327 21328 /* NVME_LS and NVME_LS ABTS requests. */ 21329 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21330 pring = phba->sli4_hba.nvmels_wq->pring; 21331 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21332 qp, wq_access); 21333 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21334 if (!sglq) { 21335 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21336 return WQE_BUSY; 21337 } 21338 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21339 pwqe->sli4_xritag = sglq->sli4_xritag; 21340 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21341 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21342 return WQE_ERROR; 21343 } 21344 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21345 pwqe->sli4_xritag); 21346 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21347 if (ret) { 21348 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21349 return ret; 21350 } 21351 21352 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21353 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21354 21355 lpfc_sli4_poll_eq(qp->hba_eq); 21356 return 0; 21357 } 21358 21359 /* NVME_FCREQ and NVME_ABTS requests */ 21360 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21361 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21362 wq = qp->io_wq; 21363 pring = wq->pring; 21364 21365 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21366 21367 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21368 qp, wq_access); 21369 ret = lpfc_sli4_wq_put(wq, wqe); 21370 if (ret) { 21371 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21372 return ret; 21373 } 21374 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21375 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21376 21377 lpfc_sli4_poll_eq(qp->hba_eq); 21378 return 0; 21379 } 21380 21381 /* NVMET requests */ 21382 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21383 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21384 wq = qp->io_wq; 21385 pring = wq->pring; 21386 21387 ctxp = pwqe->context_un.axchg; 21388 sglq = ctxp->ctxbuf->sglq; 21389 if (pwqe->sli4_xritag == NO_XRI) { 21390 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21391 pwqe->sli4_xritag = sglq->sli4_xritag; 21392 } 21393 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21394 pwqe->sli4_xritag); 21395 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21396 21397 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21398 qp, wq_access); 21399 ret = lpfc_sli4_wq_put(wq, wqe); 21400 if (ret) { 21401 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21402 return ret; 21403 } 21404 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21405 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21406 21407 lpfc_sli4_poll_eq(qp->hba_eq); 21408 return 0; 21409 } 21410 return WQE_ERROR; 21411 } 21412 21413 /** 21414 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21415 * @phba: Pointer to HBA context object. 21416 * @cmdiocb: Pointer to driver command iocb object. 21417 * @cmpl: completion function. 21418 * 21419 * Fill the appropriate fields for the abort WQE and call 21420 * internal routine lpfc_sli4_issue_wqe to send the WQE 21421 * This function is called with hbalock held and no ring_lock held. 21422 * 21423 * RETURNS 0 - SUCCESS 21424 **/ 21425 21426 int 21427 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21428 void *cmpl) 21429 { 21430 struct lpfc_vport *vport = cmdiocb->vport; 21431 struct lpfc_iocbq *abtsiocb = NULL; 21432 union lpfc_wqe128 *abtswqe; 21433 struct lpfc_io_buf *lpfc_cmd; 21434 int retval = IOCB_ERROR; 21435 u16 xritag = cmdiocb->sli4_xritag; 21436 21437 /* 21438 * The scsi command can not be in txq and it is in flight because the 21439 * pCmd is still pointing at the SCSI command we have to abort. There 21440 * is no need to search the txcmplq. Just send an abort to the FW. 21441 */ 21442 21443 abtsiocb = __lpfc_sli_get_iocbq(phba); 21444 if (!abtsiocb) 21445 return WQE_NORESOURCE; 21446 21447 /* Indicate the IO is being aborted by the driver. */ 21448 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21449 21450 abtswqe = &abtsiocb->wqe; 21451 memset(abtswqe, 0, sizeof(*abtswqe)); 21452 21453 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21454 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21455 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21456 abtswqe->abort_cmd.rsrvd5 = 0; 21457 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21458 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21459 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21460 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21461 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21462 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21463 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21464 21465 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21466 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21467 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21468 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21469 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21470 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21471 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21472 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21473 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21474 abtsiocb->vport = vport; 21475 abtsiocb->cmd_cmpl = cmpl; 21476 21477 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21478 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21479 21480 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21481 "0359 Abort xri x%x, original iotag x%x, " 21482 "abort cmd iotag x%x retval x%x\n", 21483 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21484 21485 if (retval) { 21486 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21487 __lpfc_sli_release_iocbq(phba, abtsiocb); 21488 } 21489 21490 return retval; 21491 } 21492 21493 #ifdef LPFC_MXP_STAT 21494 /** 21495 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21496 * @phba: pointer to lpfc hba data structure. 21497 * @hwqid: belong to which HWQ. 21498 * 21499 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21500 * 15 seconds after a test case is running. 21501 * 21502 * The user should call lpfc_debugfs_multixripools_write before running a test 21503 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21504 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21505 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21506 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21507 **/ 21508 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21509 { 21510 struct lpfc_sli4_hdw_queue *qp; 21511 struct lpfc_multixri_pool *multixri_pool; 21512 struct lpfc_pvt_pool *pvt_pool; 21513 struct lpfc_pbl_pool *pbl_pool; 21514 u32 txcmplq_cnt; 21515 21516 qp = &phba->sli4_hba.hdwq[hwqid]; 21517 multixri_pool = qp->p_multixri_pool; 21518 if (!multixri_pool) 21519 return; 21520 21521 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21522 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21523 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21524 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21525 21526 multixri_pool->stat_pbl_count = pbl_pool->count; 21527 multixri_pool->stat_pvt_count = pvt_pool->count; 21528 multixri_pool->stat_busy_count = txcmplq_cnt; 21529 } 21530 21531 multixri_pool->stat_snapshot_taken++; 21532 } 21533 #endif 21534 21535 /** 21536 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21537 * @phba: pointer to lpfc hba data structure. 21538 * @hwqid: belong to which HWQ. 21539 * 21540 * This routine moves some XRIs from private to public pool when private pool 21541 * is not busy. 21542 **/ 21543 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21544 { 21545 struct lpfc_multixri_pool *multixri_pool; 21546 u32 io_req_count; 21547 u32 prev_io_req_count; 21548 21549 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21550 if (!multixri_pool) 21551 return; 21552 io_req_count = multixri_pool->io_req_count; 21553 prev_io_req_count = multixri_pool->prev_io_req_count; 21554 21555 if (prev_io_req_count != io_req_count) { 21556 /* Private pool is busy */ 21557 multixri_pool->prev_io_req_count = io_req_count; 21558 } else { 21559 /* Private pool is not busy. 21560 * Move XRIs from private to public pool. 21561 */ 21562 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21563 } 21564 } 21565 21566 /** 21567 * lpfc_adjust_high_watermark - Adjust high watermark 21568 * @phba: pointer to lpfc hba data structure. 21569 * @hwqid: belong to which HWQ. 21570 * 21571 * This routine sets high watermark as number of outstanding XRIs, 21572 * but make sure the new value is between xri_limit/2 and xri_limit. 21573 **/ 21574 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21575 { 21576 u32 new_watermark; 21577 u32 watermark_max; 21578 u32 watermark_min; 21579 u32 xri_limit; 21580 u32 txcmplq_cnt; 21581 u32 abts_io_bufs; 21582 struct lpfc_multixri_pool *multixri_pool; 21583 struct lpfc_sli4_hdw_queue *qp; 21584 21585 qp = &phba->sli4_hba.hdwq[hwqid]; 21586 multixri_pool = qp->p_multixri_pool; 21587 if (!multixri_pool) 21588 return; 21589 xri_limit = multixri_pool->xri_limit; 21590 21591 watermark_max = xri_limit; 21592 watermark_min = xri_limit / 2; 21593 21594 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21595 abts_io_bufs = qp->abts_scsi_io_bufs; 21596 abts_io_bufs += qp->abts_nvme_io_bufs; 21597 21598 new_watermark = txcmplq_cnt + abts_io_bufs; 21599 new_watermark = min(watermark_max, new_watermark); 21600 new_watermark = max(watermark_min, new_watermark); 21601 multixri_pool->pvt_pool.high_watermark = new_watermark; 21602 21603 #ifdef LPFC_MXP_STAT 21604 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21605 new_watermark); 21606 #endif 21607 } 21608 21609 /** 21610 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21611 * @phba: pointer to lpfc hba data structure. 21612 * @hwqid: belong to which HWQ. 21613 * 21614 * This routine is called from hearbeat timer when pvt_pool is idle. 21615 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21616 * The first step moves (all - low_watermark) amount of XRIs. 21617 * The second step moves the rest of XRIs. 21618 **/ 21619 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21620 { 21621 struct lpfc_pbl_pool *pbl_pool; 21622 struct lpfc_pvt_pool *pvt_pool; 21623 struct lpfc_sli4_hdw_queue *qp; 21624 struct lpfc_io_buf *lpfc_ncmd; 21625 struct lpfc_io_buf *lpfc_ncmd_next; 21626 unsigned long iflag; 21627 struct list_head tmp_list; 21628 u32 tmp_count; 21629 21630 qp = &phba->sli4_hba.hdwq[hwqid]; 21631 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21632 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21633 tmp_count = 0; 21634 21635 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21636 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21637 21638 if (pvt_pool->count > pvt_pool->low_watermark) { 21639 /* Step 1: move (all - low_watermark) from pvt_pool 21640 * to pbl_pool 21641 */ 21642 21643 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21644 INIT_LIST_HEAD(&tmp_list); 21645 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21646 &pvt_pool->list, list) { 21647 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21648 tmp_count++; 21649 if (tmp_count >= pvt_pool->low_watermark) 21650 break; 21651 } 21652 21653 /* Move all bufs from pvt_pool to pbl_pool */ 21654 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21655 21656 /* Move all bufs from tmp_list to pvt_pool */ 21657 list_splice(&tmp_list, &pvt_pool->list); 21658 21659 pbl_pool->count += (pvt_pool->count - tmp_count); 21660 pvt_pool->count = tmp_count; 21661 } else { 21662 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21663 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21664 pbl_pool->count += pvt_pool->count; 21665 pvt_pool->count = 0; 21666 } 21667 21668 spin_unlock(&pvt_pool->lock); 21669 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21670 } 21671 21672 /** 21673 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21674 * @phba: pointer to lpfc hba data structure 21675 * @qp: pointer to HDW queue 21676 * @pbl_pool: specified public free XRI pool 21677 * @pvt_pool: specified private free XRI pool 21678 * @count: number of XRIs to move 21679 * 21680 * This routine tries to move some free common bufs from the specified pbl_pool 21681 * to the specified pvt_pool. It might move less than count XRIs if there's not 21682 * enough in public pool. 21683 * 21684 * Return: 21685 * true - if XRIs are successfully moved from the specified pbl_pool to the 21686 * specified pvt_pool 21687 * false - if the specified pbl_pool is empty or locked by someone else 21688 **/ 21689 static bool 21690 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21691 struct lpfc_pbl_pool *pbl_pool, 21692 struct lpfc_pvt_pool *pvt_pool, u32 count) 21693 { 21694 struct lpfc_io_buf *lpfc_ncmd; 21695 struct lpfc_io_buf *lpfc_ncmd_next; 21696 unsigned long iflag; 21697 int ret; 21698 21699 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21700 if (ret) { 21701 if (pbl_pool->count) { 21702 /* Move a batch of XRIs from public to private pool */ 21703 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21704 list_for_each_entry_safe(lpfc_ncmd, 21705 lpfc_ncmd_next, 21706 &pbl_pool->list, 21707 list) { 21708 list_move_tail(&lpfc_ncmd->list, 21709 &pvt_pool->list); 21710 pvt_pool->count++; 21711 pbl_pool->count--; 21712 count--; 21713 if (count == 0) 21714 break; 21715 } 21716 21717 spin_unlock(&pvt_pool->lock); 21718 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21719 return true; 21720 } 21721 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21722 } 21723 21724 return false; 21725 } 21726 21727 /** 21728 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21729 * @phba: pointer to lpfc hba data structure. 21730 * @hwqid: belong to which HWQ. 21731 * @count: number of XRIs to move 21732 * 21733 * This routine tries to find some free common bufs in one of public pools with 21734 * Round Robin method. The search always starts from local hwqid, then the next 21735 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21736 * a batch of free common bufs are moved to private pool on hwqid. 21737 * It might move less than count XRIs if there's not enough in public pool. 21738 **/ 21739 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21740 { 21741 struct lpfc_multixri_pool *multixri_pool; 21742 struct lpfc_multixri_pool *next_multixri_pool; 21743 struct lpfc_pvt_pool *pvt_pool; 21744 struct lpfc_pbl_pool *pbl_pool; 21745 struct lpfc_sli4_hdw_queue *qp; 21746 u32 next_hwqid; 21747 u32 hwq_count; 21748 int ret; 21749 21750 qp = &phba->sli4_hba.hdwq[hwqid]; 21751 multixri_pool = qp->p_multixri_pool; 21752 pvt_pool = &multixri_pool->pvt_pool; 21753 pbl_pool = &multixri_pool->pbl_pool; 21754 21755 /* Check if local pbl_pool is available */ 21756 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21757 if (ret) { 21758 #ifdef LPFC_MXP_STAT 21759 multixri_pool->local_pbl_hit_count++; 21760 #endif 21761 return; 21762 } 21763 21764 hwq_count = phba->cfg_hdw_queue; 21765 21766 /* Get the next hwqid which was found last time */ 21767 next_hwqid = multixri_pool->rrb_next_hwqid; 21768 21769 do { 21770 /* Go to next hwq */ 21771 next_hwqid = (next_hwqid + 1) % hwq_count; 21772 21773 next_multixri_pool = 21774 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21775 pbl_pool = &next_multixri_pool->pbl_pool; 21776 21777 /* Check if the public free xri pool is available */ 21778 ret = _lpfc_move_xri_pbl_to_pvt( 21779 phba, qp, pbl_pool, pvt_pool, count); 21780 21781 /* Exit while-loop if success or all hwqid are checked */ 21782 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21783 21784 /* Starting point for the next time */ 21785 multixri_pool->rrb_next_hwqid = next_hwqid; 21786 21787 if (!ret) { 21788 /* stats: all public pools are empty*/ 21789 multixri_pool->pbl_empty_count++; 21790 } 21791 21792 #ifdef LPFC_MXP_STAT 21793 if (ret) { 21794 if (next_hwqid == hwqid) 21795 multixri_pool->local_pbl_hit_count++; 21796 else 21797 multixri_pool->other_pbl_hit_count++; 21798 } 21799 #endif 21800 } 21801 21802 /** 21803 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21804 * @phba: pointer to lpfc hba data structure. 21805 * @hwqid: belong to which HWQ. 21806 * 21807 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21808 * low watermark. 21809 **/ 21810 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21811 { 21812 struct lpfc_multixri_pool *multixri_pool; 21813 struct lpfc_pvt_pool *pvt_pool; 21814 21815 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21816 pvt_pool = &multixri_pool->pvt_pool; 21817 21818 if (pvt_pool->count < pvt_pool->low_watermark) 21819 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21820 } 21821 21822 /** 21823 * lpfc_release_io_buf - Return one IO buf back to free pool 21824 * @phba: pointer to lpfc hba data structure. 21825 * @lpfc_ncmd: IO buf to be returned. 21826 * @qp: belong to which HWQ. 21827 * 21828 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21829 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21830 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21831 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21832 * lpfc_io_buf_list_put. 21833 **/ 21834 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21835 struct lpfc_sli4_hdw_queue *qp) 21836 { 21837 unsigned long iflag; 21838 struct lpfc_pbl_pool *pbl_pool; 21839 struct lpfc_pvt_pool *pvt_pool; 21840 struct lpfc_epd_pool *epd_pool; 21841 u32 txcmplq_cnt; 21842 u32 xri_owned; 21843 u32 xri_limit; 21844 u32 abts_io_bufs; 21845 21846 /* MUST zero fields if buffer is reused by another protocol */ 21847 lpfc_ncmd->nvmeCmd = NULL; 21848 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21849 21850 if (phba->cfg_xpsgl && !phba->nvmet_support && 21851 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21852 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21853 21854 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21855 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21856 21857 if (phba->cfg_xri_rebalancing) { 21858 if (lpfc_ncmd->expedite) { 21859 /* Return to expedite pool */ 21860 epd_pool = &phba->epd_pool; 21861 spin_lock_irqsave(&epd_pool->lock, iflag); 21862 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21863 epd_pool->count++; 21864 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21865 return; 21866 } 21867 21868 /* Avoid invalid access if an IO sneaks in and is being rejected 21869 * just _after_ xri pools are destroyed in lpfc_offline. 21870 * Nothing much can be done at this point. 21871 */ 21872 if (!qp->p_multixri_pool) 21873 return; 21874 21875 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21876 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21877 21878 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21879 abts_io_bufs = qp->abts_scsi_io_bufs; 21880 abts_io_bufs += qp->abts_nvme_io_bufs; 21881 21882 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21883 xri_limit = qp->p_multixri_pool->xri_limit; 21884 21885 #ifdef LPFC_MXP_STAT 21886 if (xri_owned <= xri_limit) 21887 qp->p_multixri_pool->below_limit_count++; 21888 else 21889 qp->p_multixri_pool->above_limit_count++; 21890 #endif 21891 21892 /* XRI goes to either public or private free xri pool 21893 * based on watermark and xri_limit 21894 */ 21895 if ((pvt_pool->count < pvt_pool->low_watermark) || 21896 (xri_owned < xri_limit && 21897 pvt_pool->count < pvt_pool->high_watermark)) { 21898 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21899 qp, free_pvt_pool); 21900 list_add_tail(&lpfc_ncmd->list, 21901 &pvt_pool->list); 21902 pvt_pool->count++; 21903 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21904 } else { 21905 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21906 qp, free_pub_pool); 21907 list_add_tail(&lpfc_ncmd->list, 21908 &pbl_pool->list); 21909 pbl_pool->count++; 21910 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21911 } 21912 } else { 21913 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21914 qp, free_xri); 21915 list_add_tail(&lpfc_ncmd->list, 21916 &qp->lpfc_io_buf_list_put); 21917 qp->put_io_bufs++; 21918 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21919 iflag); 21920 } 21921 } 21922 21923 /** 21924 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21925 * @phba: pointer to lpfc hba data structure. 21926 * @qp: pointer to HDW queue 21927 * @pvt_pool: pointer to private pool data structure. 21928 * @ndlp: pointer to lpfc nodelist data structure. 21929 * 21930 * This routine tries to get one free IO buf from private pool. 21931 * 21932 * Return: 21933 * pointer to one free IO buf - if private pool is not empty 21934 * NULL - if private pool is empty 21935 **/ 21936 static struct lpfc_io_buf * 21937 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21938 struct lpfc_sli4_hdw_queue *qp, 21939 struct lpfc_pvt_pool *pvt_pool, 21940 struct lpfc_nodelist *ndlp) 21941 { 21942 struct lpfc_io_buf *lpfc_ncmd; 21943 struct lpfc_io_buf *lpfc_ncmd_next; 21944 unsigned long iflag; 21945 21946 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21947 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21948 &pvt_pool->list, list) { 21949 if (lpfc_test_rrq_active( 21950 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21951 continue; 21952 list_del(&lpfc_ncmd->list); 21953 pvt_pool->count--; 21954 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21955 return lpfc_ncmd; 21956 } 21957 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21958 21959 return NULL; 21960 } 21961 21962 /** 21963 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21964 * @phba: pointer to lpfc hba data structure. 21965 * 21966 * This routine tries to get one free IO buf from expedite pool. 21967 * 21968 * Return: 21969 * pointer to one free IO buf - if expedite pool is not empty 21970 * NULL - if expedite pool is empty 21971 **/ 21972 static struct lpfc_io_buf * 21973 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21974 { 21975 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21976 struct lpfc_io_buf *lpfc_ncmd_next; 21977 unsigned long iflag; 21978 struct lpfc_epd_pool *epd_pool; 21979 21980 epd_pool = &phba->epd_pool; 21981 21982 spin_lock_irqsave(&epd_pool->lock, iflag); 21983 if (epd_pool->count > 0) { 21984 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21985 &epd_pool->list, list) { 21986 list_del(&iter->list); 21987 epd_pool->count--; 21988 lpfc_ncmd = iter; 21989 break; 21990 } 21991 } 21992 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21993 21994 return lpfc_ncmd; 21995 } 21996 21997 /** 21998 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21999 * @phba: pointer to lpfc hba data structure. 22000 * @ndlp: pointer to lpfc nodelist data structure. 22001 * @hwqid: belong to which HWQ 22002 * @expedite: 1 means this request is urgent. 22003 * 22004 * This routine will do the following actions and then return a pointer to 22005 * one free IO buf. 22006 * 22007 * 1. If private free xri count is empty, move some XRIs from public to 22008 * private pool. 22009 * 2. Get one XRI from private free xri pool. 22010 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22011 * get one free xri from expedite pool. 22012 * 22013 * Note: ndlp is only used on SCSI side for RRQ testing. 22014 * The caller should pass NULL for ndlp on NVME side. 22015 * 22016 * Return: 22017 * pointer to one free IO buf - if private pool is not empty 22018 * NULL - if private pool is empty 22019 **/ 22020 static struct lpfc_io_buf * 22021 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22022 struct lpfc_nodelist *ndlp, 22023 int hwqid, int expedite) 22024 { 22025 struct lpfc_sli4_hdw_queue *qp; 22026 struct lpfc_multixri_pool *multixri_pool; 22027 struct lpfc_pvt_pool *pvt_pool; 22028 struct lpfc_io_buf *lpfc_ncmd; 22029 22030 qp = &phba->sli4_hba.hdwq[hwqid]; 22031 lpfc_ncmd = NULL; 22032 if (!qp) { 22033 lpfc_printf_log(phba, KERN_INFO, 22034 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22035 "5556 NULL qp for hwqid x%x\n", hwqid); 22036 return lpfc_ncmd; 22037 } 22038 multixri_pool = qp->p_multixri_pool; 22039 if (!multixri_pool) { 22040 lpfc_printf_log(phba, KERN_INFO, 22041 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22042 "5557 NULL multixri for hwqid x%x\n", hwqid); 22043 return lpfc_ncmd; 22044 } 22045 pvt_pool = &multixri_pool->pvt_pool; 22046 if (!pvt_pool) { 22047 lpfc_printf_log(phba, KERN_INFO, 22048 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22049 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22050 return lpfc_ncmd; 22051 } 22052 multixri_pool->io_req_count++; 22053 22054 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22055 if (pvt_pool->count == 0) 22056 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22057 22058 /* Get one XRI from private free xri pool */ 22059 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22060 22061 if (lpfc_ncmd) { 22062 lpfc_ncmd->hdwq = qp; 22063 lpfc_ncmd->hdwq_no = hwqid; 22064 } else if (expedite) { 22065 /* If we fail to get one from pvt_pool and this is an expedite 22066 * request, get one free xri from expedite pool. 22067 */ 22068 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22069 } 22070 22071 return lpfc_ncmd; 22072 } 22073 22074 static inline struct lpfc_io_buf * 22075 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22076 { 22077 struct lpfc_sli4_hdw_queue *qp; 22078 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22079 22080 qp = &phba->sli4_hba.hdwq[idx]; 22081 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22082 &qp->lpfc_io_buf_list_get, list) { 22083 if (lpfc_test_rrq_active(phba, ndlp, 22084 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22085 continue; 22086 22087 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22088 continue; 22089 22090 list_del_init(&lpfc_cmd->list); 22091 qp->get_io_bufs--; 22092 lpfc_cmd->hdwq = qp; 22093 lpfc_cmd->hdwq_no = idx; 22094 return lpfc_cmd; 22095 } 22096 return NULL; 22097 } 22098 22099 /** 22100 * lpfc_get_io_buf - Get one IO buffer from free pool 22101 * @phba: The HBA for which this call is being executed. 22102 * @ndlp: pointer to lpfc nodelist data structure. 22103 * @hwqid: belong to which HWQ 22104 * @expedite: 1 means this request is urgent. 22105 * 22106 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22107 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22108 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22109 * 22110 * Note: ndlp is only used on SCSI side for RRQ testing. 22111 * The caller should pass NULL for ndlp on NVME side. 22112 * 22113 * Return codes: 22114 * NULL - Error 22115 * Pointer to lpfc_io_buf - Success 22116 **/ 22117 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22118 struct lpfc_nodelist *ndlp, 22119 u32 hwqid, int expedite) 22120 { 22121 struct lpfc_sli4_hdw_queue *qp; 22122 unsigned long iflag; 22123 struct lpfc_io_buf *lpfc_cmd; 22124 22125 qp = &phba->sli4_hba.hdwq[hwqid]; 22126 lpfc_cmd = NULL; 22127 if (!qp) { 22128 lpfc_printf_log(phba, KERN_WARNING, 22129 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22130 "5555 NULL qp for hwqid x%x\n", hwqid); 22131 return lpfc_cmd; 22132 } 22133 22134 if (phba->cfg_xri_rebalancing) 22135 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22136 phba, ndlp, hwqid, expedite); 22137 else { 22138 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22139 qp, alloc_xri_get); 22140 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22141 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22142 if (!lpfc_cmd) { 22143 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22144 qp, alloc_xri_put); 22145 list_splice(&qp->lpfc_io_buf_list_put, 22146 &qp->lpfc_io_buf_list_get); 22147 qp->get_io_bufs += qp->put_io_bufs; 22148 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22149 qp->put_io_bufs = 0; 22150 spin_unlock(&qp->io_buf_list_put_lock); 22151 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22152 expedite) 22153 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22154 } 22155 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22156 } 22157 22158 return lpfc_cmd; 22159 } 22160 22161 /** 22162 * lpfc_read_object - Retrieve object data from HBA 22163 * @phba: The HBA for which this call is being executed. 22164 * @rdobject: Pathname of object data we want to read. 22165 * @datap: Pointer to where data will be copied to. 22166 * @datasz: size of data area 22167 * 22168 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22169 * The data will be truncated if datasz is not large enough. 22170 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22171 * Returns the actual bytes read from the object. 22172 */ 22173 int 22174 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22175 uint32_t datasz) 22176 { 22177 struct lpfc_mbx_read_object *read_object; 22178 LPFC_MBOXQ_t *mbox; 22179 int rc, length, eof, j, byte_cnt = 0; 22180 uint32_t shdr_status, shdr_add_status; 22181 union lpfc_sli4_cfg_shdr *shdr; 22182 struct lpfc_dmabuf *pcmd; 22183 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22184 22185 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22186 if (!mbox) 22187 return -ENOMEM; 22188 length = (sizeof(struct lpfc_mbx_read_object) - 22189 sizeof(struct lpfc_sli4_cfg_mhdr)); 22190 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22191 LPFC_MBOX_OPCODE_READ_OBJECT, 22192 length, LPFC_SLI4_MBX_EMBED); 22193 read_object = &mbox->u.mqe.un.read_object; 22194 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22195 22196 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22197 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22198 read_object->u.request.rd_object_offset = 0; 22199 read_object->u.request.rd_object_cnt = 1; 22200 22201 memset((void *)read_object->u.request.rd_object_name, 0, 22202 LPFC_OBJ_NAME_SZ); 22203 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22204 for (j = 0; j < strlen(rdobject); j++) 22205 read_object->u.request.rd_object_name[j] = 22206 cpu_to_le32(rd_object_name[j]); 22207 22208 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22209 if (pcmd) 22210 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22211 if (!pcmd || !pcmd->virt) { 22212 kfree(pcmd); 22213 mempool_free(mbox, phba->mbox_mem_pool); 22214 return -ENOMEM; 22215 } 22216 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22217 read_object->u.request.rd_object_hbuf[0].pa_lo = 22218 putPaddrLow(pcmd->phys); 22219 read_object->u.request.rd_object_hbuf[0].pa_hi = 22220 putPaddrHigh(pcmd->phys); 22221 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22222 22223 mbox->vport = phba->pport; 22224 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22225 mbox->ctx_ndlp = NULL; 22226 22227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22228 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22229 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22230 22231 if (shdr_status == STATUS_FAILED && 22232 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22233 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22234 "4674 No port cfg file in FW.\n"); 22235 byte_cnt = -ENOENT; 22236 } else if (shdr_status || shdr_add_status || rc) { 22237 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22238 "2625 READ_OBJECT mailbox failed with " 22239 "status x%x add_status x%x, mbx status x%x\n", 22240 shdr_status, shdr_add_status, rc); 22241 byte_cnt = -ENXIO; 22242 } else { 22243 /* Success */ 22244 length = read_object->u.response.rd_object_actual_rlen; 22245 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22246 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22247 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22248 length, datasz, eof); 22249 22250 /* Detect the port config file exists but is empty */ 22251 if (!length && eof) { 22252 byte_cnt = 0; 22253 goto exit; 22254 } 22255 22256 byte_cnt = length; 22257 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22258 } 22259 22260 exit: 22261 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22262 * Free the pcmd and then cleanup with the correct routine. 22263 */ 22264 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22265 kfree(pcmd); 22266 lpfc_sli4_mbox_cmd_free(phba, mbox); 22267 return byte_cnt; 22268 } 22269 22270 /** 22271 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22272 * @phba: The HBA for which this call is being executed. 22273 * @lpfc_buf: IO buf structure to append the SGL chunk 22274 * 22275 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22276 * and will allocate an SGL chunk if the pool is empty. 22277 * 22278 * Return codes: 22279 * NULL - Error 22280 * Pointer to sli4_hybrid_sgl - Success 22281 **/ 22282 struct sli4_hybrid_sgl * 22283 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22284 { 22285 struct sli4_hybrid_sgl *list_entry = NULL; 22286 struct sli4_hybrid_sgl *tmp = NULL; 22287 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22288 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22289 struct list_head *buf_list = &hdwq->sgl_list; 22290 unsigned long iflags; 22291 22292 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22293 22294 if (likely(!list_empty(buf_list))) { 22295 /* break off 1 chunk from the sgl_list */ 22296 list_for_each_entry_safe(list_entry, tmp, 22297 buf_list, list_node) { 22298 list_move_tail(&list_entry->list_node, 22299 &lpfc_buf->dma_sgl_xtra_list); 22300 break; 22301 } 22302 } else { 22303 /* allocate more */ 22304 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22305 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22306 cpu_to_node(hdwq->io_wq->chann)); 22307 if (!tmp) { 22308 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22309 "8353 error kmalloc memory for HDWQ " 22310 "%d %s\n", 22311 lpfc_buf->hdwq_no, __func__); 22312 return NULL; 22313 } 22314 22315 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22316 GFP_ATOMIC, &tmp->dma_phys_sgl); 22317 if (!tmp->dma_sgl) { 22318 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22319 "8354 error pool_alloc memory for HDWQ " 22320 "%d %s\n", 22321 lpfc_buf->hdwq_no, __func__); 22322 kfree(tmp); 22323 return NULL; 22324 } 22325 22326 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22327 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22328 } 22329 22330 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22331 struct sli4_hybrid_sgl, 22332 list_node); 22333 22334 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22335 22336 return allocated_sgl; 22337 } 22338 22339 /** 22340 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22341 * @phba: The HBA for which this call is being executed. 22342 * @lpfc_buf: IO buf structure with the SGL chunk 22343 * 22344 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22345 * 22346 * Return codes: 22347 * 0 - Success 22348 * -EINVAL - Error 22349 **/ 22350 int 22351 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22352 { 22353 int rc = 0; 22354 struct sli4_hybrid_sgl *list_entry = NULL; 22355 struct sli4_hybrid_sgl *tmp = NULL; 22356 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22357 struct list_head *buf_list = &hdwq->sgl_list; 22358 unsigned long iflags; 22359 22360 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22361 22362 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22363 list_for_each_entry_safe(list_entry, tmp, 22364 &lpfc_buf->dma_sgl_xtra_list, 22365 list_node) { 22366 list_move_tail(&list_entry->list_node, 22367 buf_list); 22368 } 22369 } else { 22370 rc = -EINVAL; 22371 } 22372 22373 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22374 return rc; 22375 } 22376 22377 /** 22378 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22379 * @phba: phba object 22380 * @hdwq: hdwq to cleanup sgl buff resources on 22381 * 22382 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22383 * 22384 * Return codes: 22385 * None 22386 **/ 22387 void 22388 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22389 struct lpfc_sli4_hdw_queue *hdwq) 22390 { 22391 struct list_head *buf_list = &hdwq->sgl_list; 22392 struct sli4_hybrid_sgl *list_entry = NULL; 22393 struct sli4_hybrid_sgl *tmp = NULL; 22394 unsigned long iflags; 22395 22396 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22397 22398 /* Free sgl pool */ 22399 list_for_each_entry_safe(list_entry, tmp, 22400 buf_list, list_node) { 22401 list_del(&list_entry->list_node); 22402 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22403 list_entry->dma_sgl, 22404 list_entry->dma_phys_sgl); 22405 kfree(list_entry); 22406 } 22407 22408 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22409 } 22410 22411 /** 22412 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22413 * @phba: The HBA for which this call is being executed. 22414 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22415 * 22416 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22417 * and will allocate an CMD/RSP buffer if the pool is empty. 22418 * 22419 * Return codes: 22420 * NULL - Error 22421 * Pointer to fcp_cmd_rsp_buf - Success 22422 **/ 22423 struct fcp_cmd_rsp_buf * 22424 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22425 struct lpfc_io_buf *lpfc_buf) 22426 { 22427 struct fcp_cmd_rsp_buf *list_entry = NULL; 22428 struct fcp_cmd_rsp_buf *tmp = NULL; 22429 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22430 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22431 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22432 unsigned long iflags; 22433 22434 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22435 22436 if (likely(!list_empty(buf_list))) { 22437 /* break off 1 chunk from the list */ 22438 list_for_each_entry_safe(list_entry, tmp, 22439 buf_list, 22440 list_node) { 22441 list_move_tail(&list_entry->list_node, 22442 &lpfc_buf->dma_cmd_rsp_list); 22443 break; 22444 } 22445 } else { 22446 /* allocate more */ 22447 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22448 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22449 cpu_to_node(hdwq->io_wq->chann)); 22450 if (!tmp) { 22451 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22452 "8355 error kmalloc memory for HDWQ " 22453 "%d %s\n", 22454 lpfc_buf->hdwq_no, __func__); 22455 return NULL; 22456 } 22457 22458 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22459 GFP_ATOMIC, 22460 &tmp->fcp_cmd_rsp_dma_handle); 22461 22462 if (!tmp->fcp_cmnd) { 22463 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22464 "8356 error pool_alloc memory for HDWQ " 22465 "%d %s\n", 22466 lpfc_buf->hdwq_no, __func__); 22467 kfree(tmp); 22468 return NULL; 22469 } 22470 22471 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22472 sizeof(struct fcp_cmnd)); 22473 22474 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22475 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22476 } 22477 22478 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22479 struct fcp_cmd_rsp_buf, 22480 list_node); 22481 22482 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22483 22484 return allocated_buf; 22485 } 22486 22487 /** 22488 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22489 * @phba: The HBA for which this call is being executed. 22490 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22491 * 22492 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22493 * 22494 * Return codes: 22495 * 0 - Success 22496 * -EINVAL - Error 22497 **/ 22498 int 22499 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22500 struct lpfc_io_buf *lpfc_buf) 22501 { 22502 int rc = 0; 22503 struct fcp_cmd_rsp_buf *list_entry = NULL; 22504 struct fcp_cmd_rsp_buf *tmp = NULL; 22505 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22506 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22507 unsigned long iflags; 22508 22509 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22510 22511 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22512 list_for_each_entry_safe(list_entry, tmp, 22513 &lpfc_buf->dma_cmd_rsp_list, 22514 list_node) { 22515 list_move_tail(&list_entry->list_node, 22516 buf_list); 22517 } 22518 } else { 22519 rc = -EINVAL; 22520 } 22521 22522 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22523 return rc; 22524 } 22525 22526 /** 22527 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22528 * @phba: phba object 22529 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22530 * 22531 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22532 * 22533 * Return codes: 22534 * None 22535 **/ 22536 void 22537 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22538 struct lpfc_sli4_hdw_queue *hdwq) 22539 { 22540 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22541 struct fcp_cmd_rsp_buf *list_entry = NULL; 22542 struct fcp_cmd_rsp_buf *tmp = NULL; 22543 unsigned long iflags; 22544 22545 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22546 22547 /* Free cmd_rsp buf pool */ 22548 list_for_each_entry_safe(list_entry, tmp, 22549 buf_list, 22550 list_node) { 22551 list_del(&list_entry->list_node); 22552 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22553 list_entry->fcp_cmnd, 22554 list_entry->fcp_cmd_rsp_dma_handle); 22555 kfree(list_entry); 22556 } 22557 22558 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22559 } 22560 22561 /** 22562 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22563 * @phba: phba object 22564 * @job: job entry of the command to be posted. 22565 * 22566 * Fill the common fields of the wqe for each of the command. 22567 * 22568 * Return codes: 22569 * None 22570 **/ 22571 void 22572 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22573 { 22574 u8 cmnd; 22575 u32 *pcmd; 22576 u32 if_type = 0; 22577 u32 fip, abort_tag; 22578 struct lpfc_nodelist *ndlp = NULL; 22579 union lpfc_wqe128 *wqe = &job->wqe; 22580 u8 command_type = ELS_COMMAND_NON_FIP; 22581 22582 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22583 /* The fcp commands will set command type */ 22584 if (job->cmd_flag & LPFC_IO_FCP) 22585 command_type = FCP_COMMAND; 22586 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22587 command_type = ELS_COMMAND_FIP; 22588 else 22589 command_type = ELS_COMMAND_NON_FIP; 22590 22591 abort_tag = job->iotag; 22592 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22593 22594 switch (cmnd) { 22595 case CMD_ELS_REQUEST64_WQE: 22596 ndlp = job->ndlp; 22597 22598 if_type = bf_get(lpfc_sli_intf_if_type, 22599 &phba->sli4_hba.sli_intf); 22600 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22601 pcmd = (u32 *)job->cmd_dmabuf->virt; 22602 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22603 *pcmd == ELS_CMD_SCR || 22604 *pcmd == ELS_CMD_RDF || 22605 *pcmd == ELS_CMD_EDC || 22606 *pcmd == ELS_CMD_RSCN_XMT || 22607 *pcmd == ELS_CMD_FDISC || 22608 *pcmd == ELS_CMD_LOGO || 22609 *pcmd == ELS_CMD_QFPA || 22610 *pcmd == ELS_CMD_UVEM || 22611 *pcmd == ELS_CMD_PLOGI)) { 22612 bf_set(els_req64_sp, &wqe->els_req, 1); 22613 bf_set(els_req64_sid, &wqe->els_req, 22614 job->vport->fc_myDID); 22615 22616 if ((*pcmd == ELS_CMD_FLOGI) && 22617 !(phba->fc_topology == 22618 LPFC_TOPOLOGY_LOOP)) 22619 bf_set(els_req64_sid, &wqe->els_req, 0); 22620 22621 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22622 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22623 phba->vpi_ids[job->vport->vpi]); 22624 } else if (pcmd) { 22625 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22626 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22627 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22628 } 22629 } 22630 22631 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22632 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22633 22634 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22635 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22636 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22637 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22638 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22639 break; 22640 case CMD_XMIT_ELS_RSP64_WQE: 22641 ndlp = job->ndlp; 22642 22643 /* word4 */ 22644 wqe->xmit_els_rsp.word4 = 0; 22645 22646 if_type = bf_get(lpfc_sli_intf_if_type, 22647 &phba->sli4_hba.sli_intf); 22648 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22649 if (job->vport->fc_flag & FC_PT2PT) { 22650 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22651 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22652 job->vport->fc_myDID); 22653 if (job->vport->fc_myDID == Fabric_DID) { 22654 bf_set(wqe_els_did, 22655 &wqe->xmit_els_rsp.wqe_dest, 0); 22656 } 22657 } 22658 } 22659 22660 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22661 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22662 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22663 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22664 LPFC_WQE_LENLOC_WORD3); 22665 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22666 22667 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22668 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22669 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22670 job->vport->fc_myDID); 22671 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22672 } 22673 22674 if (phba->sli_rev == LPFC_SLI_REV4) { 22675 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22676 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22677 22678 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22679 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22680 phba->vpi_ids[job->vport->vpi]); 22681 } 22682 command_type = OTHER_COMMAND; 22683 break; 22684 case CMD_GEN_REQUEST64_WQE: 22685 /* Word 10 */ 22686 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22687 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22688 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22689 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22690 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22691 command_type = OTHER_COMMAND; 22692 break; 22693 case CMD_XMIT_SEQUENCE64_WQE: 22694 if (phba->link_flag & LS_LOOPBACK_MODE) 22695 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22696 22697 wqe->xmit_sequence.rsvd3 = 0; 22698 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22699 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22700 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22701 LPFC_WQE_IOD_WRITE); 22702 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22703 LPFC_WQE_LENLOC_WORD12); 22704 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22705 command_type = OTHER_COMMAND; 22706 break; 22707 case CMD_XMIT_BLS_RSP64_WQE: 22708 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22709 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22710 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22711 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22712 phba->vpi_ids[phba->pport->vpi]); 22713 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22714 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22715 LPFC_WQE_LENLOC_NONE); 22716 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22717 command_type = OTHER_COMMAND; 22718 break; 22719 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22720 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22721 case CMD_SEND_FRAME: /* mds loopback */ 22722 /* cases already formatted for sli4 wqe - no chgs necessary */ 22723 return; 22724 default: 22725 dump_stack(); 22726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22727 "6207 Invalid command 0x%x\n", 22728 cmnd); 22729 break; 22730 } 22731 22732 wqe->generic.wqe_com.abort_tag = abort_tag; 22733 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22734 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22735 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22736 } 22737