xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 8dda2eac)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
42 
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58 
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 	LPFC_UNKNOWN_IOCB,
62 	LPFC_UNSOL_IOCB,
63 	LPFC_SOL_IOCB,
64 	LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66 
67 
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 				  uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 			      uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 							 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 				      struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 					  struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 				       int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 				     struct lpfc_queue *eq,
85 				     struct lpfc_eqe *eqe);
86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90 				    struct lpfc_queue *cq,
91 				    struct lpfc_cqe *cqe);
92 
93 union lpfc_wqe128 lpfc_iread_cmd_template;
94 union lpfc_wqe128 lpfc_iwrite_cmd_template;
95 union lpfc_wqe128 lpfc_icmnd_cmd_template;
96 
97 static IOCB_t *
98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
99 {
100 	return &iocbq->iocb;
101 }
102 
103 /* Setup WQE templates for IOs */
104 void lpfc_wqe_cmd_template(void)
105 {
106 	union lpfc_wqe128 *wqe;
107 
108 	/* IREAD template */
109 	wqe = &lpfc_iread_cmd_template;
110 	memset(wqe, 0, sizeof(union lpfc_wqe128));
111 
112 	/* Word 0, 1, 2 - BDE is variable */
113 
114 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
115 
116 	/* Word 4 - total_xfer_len is variable */
117 
118 	/* Word 5 - is zero */
119 
120 	/* Word 6 - ctxt_tag, xri_tag is variable */
121 
122 	/* Word 7 */
123 	bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
124 	bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
125 	bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
126 	bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
127 
128 	/* Word 8 - abort_tag is variable */
129 
130 	/* Word 9  - reqtag is variable */
131 
132 	/* Word 10 - dbde, wqes is variable */
133 	bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
134 	bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
135 	bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
136 	bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
137 	bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
138 
139 	/* Word 11 - pbde is variable */
140 	bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
141 	bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
142 	bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
143 
144 	/* Word 12 - is zero */
145 
146 	/* Word 13, 14, 15 - PBDE is variable */
147 
148 	/* IWRITE template */
149 	wqe = &lpfc_iwrite_cmd_template;
150 	memset(wqe, 0, sizeof(union lpfc_wqe128));
151 
152 	/* Word 0, 1, 2 - BDE is variable */
153 
154 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
155 
156 	/* Word 4 - total_xfer_len is variable */
157 
158 	/* Word 5 - initial_xfer_len is variable */
159 
160 	/* Word 6 - ctxt_tag, xri_tag is variable */
161 
162 	/* Word 7 */
163 	bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
164 	bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
165 	bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
166 	bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
167 
168 	/* Word 8 - abort_tag is variable */
169 
170 	/* Word 9  - reqtag is variable */
171 
172 	/* Word 10 - dbde, wqes is variable */
173 	bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
174 	bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
175 	bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
176 	bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
177 	bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
178 
179 	/* Word 11 - pbde is variable */
180 	bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
181 	bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
182 	bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
183 
184 	/* Word 12 - is zero */
185 
186 	/* Word 13, 14, 15 - PBDE is variable */
187 
188 	/* ICMND template */
189 	wqe = &lpfc_icmnd_cmd_template;
190 	memset(wqe, 0, sizeof(union lpfc_wqe128));
191 
192 	/* Word 0, 1, 2 - BDE is variable */
193 
194 	/* Word 3 - payload_offset_len is variable */
195 
196 	/* Word 4, 5 - is zero */
197 
198 	/* Word 6 - ctxt_tag, xri_tag is variable */
199 
200 	/* Word 7 */
201 	bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
202 	bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
203 	bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
204 	bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
205 
206 	/* Word 8 - abort_tag is variable */
207 
208 	/* Word 9  - reqtag is variable */
209 
210 	/* Word 10 - dbde, wqes is variable */
211 	bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
212 	bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
213 	bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
214 	bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
215 	bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
216 
217 	/* Word 11 */
218 	bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
219 	bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
220 	bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
221 
222 	/* Word 12, 13, 14, 15 - is zero */
223 }
224 
225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
226 /**
227  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
228  * @srcp: Source memory pointer.
229  * @destp: Destination memory pointer.
230  * @cnt: Number of words required to be copied.
231  *       Must be a multiple of sizeof(uint64_t)
232  *
233  * This function is used for copying data between driver memory
234  * and the SLI WQ. This function also changes the endianness
235  * of each word if native endianness is different from SLI
236  * endianness. This function can be called with or without
237  * lock.
238  **/
239 static void
240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
241 {
242 	uint64_t *src = srcp;
243 	uint64_t *dest = destp;
244 	int i;
245 
246 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
247 		*dest++ = *src++;
248 }
249 #else
250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
251 #endif
252 
253 /**
254  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
255  * @q: The Work Queue to operate on.
256  * @wqe: The work Queue Entry to put on the Work queue.
257  *
258  * This routine will copy the contents of @wqe to the next available entry on
259  * the @q. This function will then ring the Work Queue Doorbell to signal the
260  * HBA to start processing the Work Queue Entry. This function returns 0 if
261  * successful. If no entries are available on @q then this function will return
262  * -ENOMEM.
263  * The caller is expected to hold the hbalock when calling this routine.
264  **/
265 static int
266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
267 {
268 	union lpfc_wqe *temp_wqe;
269 	struct lpfc_register doorbell;
270 	uint32_t host_index;
271 	uint32_t idx;
272 	uint32_t i = 0;
273 	uint8_t *tmp;
274 	u32 if_type;
275 
276 	/* sanity check on queue memory */
277 	if (unlikely(!q))
278 		return -ENOMEM;
279 
280 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
281 
282 	/* If the host has not yet processed the next entry then we are done */
283 	idx = ((q->host_index + 1) % q->entry_count);
284 	if (idx == q->hba_index) {
285 		q->WQ_overflow++;
286 		return -EBUSY;
287 	}
288 	q->WQ_posted++;
289 	/* set consumption flag every once in a while */
290 	if (!((q->host_index + 1) % q->notify_interval))
291 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
292 	else
293 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
294 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
295 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
296 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
297 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
298 		/* write to DPP aperture taking advatage of Combined Writes */
299 		tmp = (uint8_t *)temp_wqe;
300 #ifdef __raw_writeq
301 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
302 			__raw_writeq(*((uint64_t *)(tmp + i)),
303 					q->dpp_regaddr + i);
304 #else
305 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
306 			__raw_writel(*((uint32_t *)(tmp + i)),
307 					q->dpp_regaddr + i);
308 #endif
309 	}
310 	/* ensure WQE bcopy and DPP flushed before doorbell write */
311 	wmb();
312 
313 	/* Update the host index before invoking device */
314 	host_index = q->host_index;
315 
316 	q->host_index = idx;
317 
318 	/* Ring Doorbell */
319 	doorbell.word0 = 0;
320 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
321 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
322 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
323 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
324 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
325 			    q->dpp_id);
326 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
327 			    q->queue_id);
328 		} else {
329 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
330 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
331 
332 			/* Leave bits <23:16> clear for if_type 6 dpp */
333 			if_type = bf_get(lpfc_sli_intf_if_type,
334 					 &q->phba->sli4_hba.sli_intf);
335 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
336 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
337 				       host_index);
338 		}
339 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
340 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
341 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
342 	} else {
343 		return -EINVAL;
344 	}
345 	writel(doorbell.word0, q->db_regaddr);
346 
347 	return 0;
348 }
349 
350 /**
351  * lpfc_sli4_wq_release - Updates internal hba index for WQ
352  * @q: The Work Queue to operate on.
353  * @index: The index to advance the hba index to.
354  *
355  * This routine will update the HBA index of a queue to reflect consumption of
356  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
357  * an entry the host calls this function to update the queue's internal
358  * pointers.
359  **/
360 static void
361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
362 {
363 	/* sanity check on queue memory */
364 	if (unlikely(!q))
365 		return;
366 
367 	q->hba_index = index;
368 }
369 
370 /**
371  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
372  * @q: The Mailbox Queue to operate on.
373  * @mqe: The Mailbox Queue Entry to put on the Work queue.
374  *
375  * This routine will copy the contents of @mqe to the next available entry on
376  * the @q. This function will then ring the Work Queue Doorbell to signal the
377  * HBA to start processing the Work Queue Entry. This function returns 0 if
378  * successful. If no entries are available on @q then this function will return
379  * -ENOMEM.
380  * The caller is expected to hold the hbalock when calling this routine.
381  **/
382 static uint32_t
383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
384 {
385 	struct lpfc_mqe *temp_mqe;
386 	struct lpfc_register doorbell;
387 
388 	/* sanity check on queue memory */
389 	if (unlikely(!q))
390 		return -ENOMEM;
391 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
392 
393 	/* If the host has not yet processed the next entry then we are done */
394 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
395 		return -ENOMEM;
396 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
397 	/* Save off the mailbox pointer for completion */
398 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
399 
400 	/* Update the host index before invoking device */
401 	q->host_index = ((q->host_index + 1) % q->entry_count);
402 
403 	/* Ring Doorbell */
404 	doorbell.word0 = 0;
405 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
406 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
407 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
408 	return 0;
409 }
410 
411 /**
412  * lpfc_sli4_mq_release - Updates internal hba index for MQ
413  * @q: The Mailbox Queue to operate on.
414  *
415  * This routine will update the HBA index of a queue to reflect consumption of
416  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
417  * an entry the host calls this function to update the queue's internal
418  * pointers. This routine returns the number of entries that were consumed by
419  * the HBA.
420  **/
421 static uint32_t
422 lpfc_sli4_mq_release(struct lpfc_queue *q)
423 {
424 	/* sanity check on queue memory */
425 	if (unlikely(!q))
426 		return 0;
427 
428 	/* Clear the mailbox pointer for completion */
429 	q->phba->mbox = NULL;
430 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
431 	return 1;
432 }
433 
434 /**
435  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
436  * @q: The Event Queue to get the first valid EQE from
437  *
438  * This routine will get the first valid Event Queue Entry from @q, update
439  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
440  * the Queue (no more work to do), or the Queue is full of EQEs that have been
441  * processed, but not popped back to the HBA then this routine will return NULL.
442  **/
443 static struct lpfc_eqe *
444 lpfc_sli4_eq_get(struct lpfc_queue *q)
445 {
446 	struct lpfc_eqe *eqe;
447 
448 	/* sanity check on queue memory */
449 	if (unlikely(!q))
450 		return NULL;
451 	eqe = lpfc_sli4_qe(q, q->host_index);
452 
453 	/* If the next EQE is not valid then we are done */
454 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
455 		return NULL;
456 
457 	/*
458 	 * insert barrier for instruction interlock : data from the hardware
459 	 * must have the valid bit checked before it can be copied and acted
460 	 * upon. Speculative instructions were allowing a bcopy at the start
461 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
462 	 * after our return, to copy data before the valid bit check above
463 	 * was done. As such, some of the copied data was stale. The barrier
464 	 * ensures the check is before any data is copied.
465 	 */
466 	mb();
467 	return eqe;
468 }
469 
470 /**
471  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
472  * @q: The Event Queue to disable interrupts
473  *
474  **/
475 void
476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
477 {
478 	struct lpfc_register doorbell;
479 
480 	doorbell.word0 = 0;
481 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
482 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
483 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
484 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
485 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
486 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
487 }
488 
489 /**
490  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
491  * @q: The Event Queue to disable interrupts
492  *
493  **/
494 void
495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
496 {
497 	struct lpfc_register doorbell;
498 
499 	doorbell.word0 = 0;
500 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
501 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
502 }
503 
504 /**
505  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
506  * @phba: adapter with EQ
507  * @q: The Event Queue that the host has completed processing for.
508  * @count: Number of elements that have been consumed
509  * @arm: Indicates whether the host wants to arms this CQ.
510  *
511  * This routine will notify the HBA, by ringing the doorbell, that count
512  * number of EQEs have been processed. The @arm parameter indicates whether
513  * the queue should be rearmed when ringing the doorbell.
514  **/
515 void
516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
517 		     uint32_t count, bool arm)
518 {
519 	struct lpfc_register doorbell;
520 
521 	/* sanity check on queue memory */
522 	if (unlikely(!q || (count == 0 && !arm)))
523 		return;
524 
525 	/* ring doorbell for number popped */
526 	doorbell.word0 = 0;
527 	if (arm) {
528 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
529 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
530 	}
531 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
532 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
533 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
534 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
535 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
536 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
537 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
538 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
539 		readl(q->phba->sli4_hba.EQDBregaddr);
540 }
541 
542 /**
543  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
544  * @phba: adapter with EQ
545  * @q: The Event Queue that the host has completed processing for.
546  * @count: Number of elements that have been consumed
547  * @arm: Indicates whether the host wants to arms this CQ.
548  *
549  * This routine will notify the HBA, by ringing the doorbell, that count
550  * number of EQEs have been processed. The @arm parameter indicates whether
551  * the queue should be rearmed when ringing the doorbell.
552  **/
553 void
554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
555 			  uint32_t count, bool arm)
556 {
557 	struct lpfc_register doorbell;
558 
559 	/* sanity check on queue memory */
560 	if (unlikely(!q || (count == 0 && !arm)))
561 		return;
562 
563 	/* ring doorbell for number popped */
564 	doorbell.word0 = 0;
565 	if (arm)
566 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
567 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
568 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
569 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
570 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
571 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
572 		readl(q->phba->sli4_hba.EQDBregaddr);
573 }
574 
575 static void
576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
577 			struct lpfc_eqe *eqe)
578 {
579 	if (!phba->sli4_hba.pc_sli4_params.eqav)
580 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
581 
582 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
583 
584 	/* if the index wrapped around, toggle the valid bit */
585 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
586 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
587 }
588 
589 static void
590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
591 {
592 	struct lpfc_eqe *eqe = NULL;
593 	u32 eq_count = 0, cq_count = 0;
594 	struct lpfc_cqe *cqe = NULL;
595 	struct lpfc_queue *cq = NULL, *childq = NULL;
596 	int cqid = 0;
597 
598 	/* walk all the EQ entries and drop on the floor */
599 	eqe = lpfc_sli4_eq_get(eq);
600 	while (eqe) {
601 		/* Get the reference to the corresponding CQ */
602 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
603 		cq = NULL;
604 
605 		list_for_each_entry(childq, &eq->child_list, list) {
606 			if (childq->queue_id == cqid) {
607 				cq = childq;
608 				break;
609 			}
610 		}
611 		/* If CQ is valid, iterate through it and drop all the CQEs */
612 		if (cq) {
613 			cqe = lpfc_sli4_cq_get(cq);
614 			while (cqe) {
615 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
616 				cq_count++;
617 				cqe = lpfc_sli4_cq_get(cq);
618 			}
619 			/* Clear and re-arm the CQ */
620 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
621 			    LPFC_QUEUE_REARM);
622 			cq_count = 0;
623 		}
624 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
625 		eq_count++;
626 		eqe = lpfc_sli4_eq_get(eq);
627 	}
628 
629 	/* Clear and re-arm the EQ */
630 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
631 }
632 
633 static int
634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
635 		     uint8_t rearm)
636 {
637 	struct lpfc_eqe *eqe;
638 	int count = 0, consumed = 0;
639 
640 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
641 		goto rearm_and_exit;
642 
643 	eqe = lpfc_sli4_eq_get(eq);
644 	while (eqe) {
645 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
646 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
647 
648 		consumed++;
649 		if (!(++count % eq->max_proc_limit))
650 			break;
651 
652 		if (!(count % eq->notify_interval)) {
653 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
654 							LPFC_QUEUE_NOARM);
655 			consumed = 0;
656 		}
657 
658 		eqe = lpfc_sli4_eq_get(eq);
659 	}
660 	eq->EQ_processed += count;
661 
662 	/* Track the max number of EQEs processed in 1 intr */
663 	if (count > eq->EQ_max_eqe)
664 		eq->EQ_max_eqe = count;
665 
666 	xchg(&eq->queue_claimed, 0);
667 
668 rearm_and_exit:
669 	/* Always clear the EQ. */
670 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
671 
672 	return count;
673 }
674 
675 /**
676  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
677  * @q: The Completion Queue to get the first valid CQE from
678  *
679  * This routine will get the first valid Completion Queue Entry from @q, update
680  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
681  * the Queue (no more work to do), or the Queue is full of CQEs that have been
682  * processed, but not popped back to the HBA then this routine will return NULL.
683  **/
684 static struct lpfc_cqe *
685 lpfc_sli4_cq_get(struct lpfc_queue *q)
686 {
687 	struct lpfc_cqe *cqe;
688 
689 	/* sanity check on queue memory */
690 	if (unlikely(!q))
691 		return NULL;
692 	cqe = lpfc_sli4_qe(q, q->host_index);
693 
694 	/* If the next CQE is not valid then we are done */
695 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
696 		return NULL;
697 
698 	/*
699 	 * insert barrier for instruction interlock : data from the hardware
700 	 * must have the valid bit checked before it can be copied and acted
701 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
702 	 * instructions allowing action on content before valid bit checked,
703 	 * add barrier here as well. May not be needed as "content" is a
704 	 * single 32-bit entity here (vs multi word structure for cq's).
705 	 */
706 	mb();
707 	return cqe;
708 }
709 
710 static void
711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
712 			struct lpfc_cqe *cqe)
713 {
714 	if (!phba->sli4_hba.pc_sli4_params.cqav)
715 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
716 
717 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
718 
719 	/* if the index wrapped around, toggle the valid bit */
720 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
721 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
722 }
723 
724 /**
725  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
726  * @phba: the adapter with the CQ
727  * @q: The Completion Queue that the host has completed processing for.
728  * @count: the number of elements that were consumed
729  * @arm: Indicates whether the host wants to arms this CQ.
730  *
731  * This routine will notify the HBA, by ringing the doorbell, that the
732  * CQEs have been processed. The @arm parameter specifies whether the
733  * queue should be rearmed when ringing the doorbell.
734  **/
735 void
736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
737 		     uint32_t count, bool arm)
738 {
739 	struct lpfc_register doorbell;
740 
741 	/* sanity check on queue memory */
742 	if (unlikely(!q || (count == 0 && !arm)))
743 		return;
744 
745 	/* ring doorbell for number popped */
746 	doorbell.word0 = 0;
747 	if (arm)
748 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
749 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
750 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
751 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
752 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
753 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
754 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
755 }
756 
757 /**
758  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
759  * @phba: the adapter with the CQ
760  * @q: The Completion Queue that the host has completed processing for.
761  * @count: the number of elements that were consumed
762  * @arm: Indicates whether the host wants to arms this CQ.
763  *
764  * This routine will notify the HBA, by ringing the doorbell, that the
765  * CQEs have been processed. The @arm parameter specifies whether the
766  * queue should be rearmed when ringing the doorbell.
767  **/
768 void
769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
770 			 uint32_t count, bool arm)
771 {
772 	struct lpfc_register doorbell;
773 
774 	/* sanity check on queue memory */
775 	if (unlikely(!q || (count == 0 && !arm)))
776 		return;
777 
778 	/* ring doorbell for number popped */
779 	doorbell.word0 = 0;
780 	if (arm)
781 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
782 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
783 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
784 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
785 }
786 
787 /*
788  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
789  *
790  * This routine will copy the contents of @wqe to the next available entry on
791  * the @q. This function will then ring the Receive Queue Doorbell to signal the
792  * HBA to start processing the Receive Queue Entry. This function returns the
793  * index that the rqe was copied to if successful. If no entries are available
794  * on @q then this function will return -ENOMEM.
795  * The caller is expected to hold the hbalock when calling this routine.
796  **/
797 int
798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
799 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
800 {
801 	struct lpfc_rqe *temp_hrqe;
802 	struct lpfc_rqe *temp_drqe;
803 	struct lpfc_register doorbell;
804 	int hq_put_index;
805 	int dq_put_index;
806 
807 	/* sanity check on queue memory */
808 	if (unlikely(!hq) || unlikely(!dq))
809 		return -ENOMEM;
810 	hq_put_index = hq->host_index;
811 	dq_put_index = dq->host_index;
812 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
813 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
814 
815 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
816 		return -EINVAL;
817 	if (hq_put_index != dq_put_index)
818 		return -EINVAL;
819 	/* If the host has not yet processed the next entry then we are done */
820 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
821 		return -EBUSY;
822 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
823 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
824 
825 	/* Update the host index to point to the next slot */
826 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
827 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
828 	hq->RQ_buf_posted++;
829 
830 	/* Ring The Header Receive Queue Doorbell */
831 	if (!(hq->host_index % hq->notify_interval)) {
832 		doorbell.word0 = 0;
833 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
834 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
835 			       hq->notify_interval);
836 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
837 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
838 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
839 			       hq->notify_interval);
840 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
841 			       hq->host_index);
842 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
843 		} else {
844 			return -EINVAL;
845 		}
846 		writel(doorbell.word0, hq->db_regaddr);
847 	}
848 	return hq_put_index;
849 }
850 
851 /*
852  * lpfc_sli4_rq_release - Updates internal hba index for RQ
853  *
854  * This routine will update the HBA index of a queue to reflect consumption of
855  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
856  * consumed an entry the host calls this function to update the queue's
857  * internal pointers. This routine returns the number of entries that were
858  * consumed by the HBA.
859  **/
860 static uint32_t
861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
862 {
863 	/* sanity check on queue memory */
864 	if (unlikely(!hq) || unlikely(!dq))
865 		return 0;
866 
867 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
868 		return 0;
869 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
870 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
871 	return 1;
872 }
873 
874 /**
875  * lpfc_cmd_iocb - Get next command iocb entry in the ring
876  * @phba: Pointer to HBA context object.
877  * @pring: Pointer to driver SLI ring object.
878  *
879  * This function returns pointer to next command iocb entry
880  * in the command ring. The caller must hold hbalock to prevent
881  * other threads consume the next command iocb.
882  * SLI-2/SLI-3 provide different sized iocbs.
883  **/
884 static inline IOCB_t *
885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
886 {
887 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
888 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
889 }
890 
891 /**
892  * lpfc_resp_iocb - Get next response iocb entry in the ring
893  * @phba: Pointer to HBA context object.
894  * @pring: Pointer to driver SLI ring object.
895  *
896  * This function returns pointer to next response iocb entry
897  * in the response ring. The caller must hold hbalock to make sure
898  * that no other thread consume the next response iocb.
899  * SLI-2/SLI-3 provide different sized iocbs.
900  **/
901 static inline IOCB_t *
902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
903 {
904 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
905 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
906 }
907 
908 /**
909  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
910  * @phba: Pointer to HBA context object.
911  *
912  * This function is called with hbalock held. This function
913  * allocates a new driver iocb object from the iocb pool. If the
914  * allocation is successful, it returns pointer to the newly
915  * allocated iocb object else it returns NULL.
916  **/
917 struct lpfc_iocbq *
918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
919 {
920 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
921 	struct lpfc_iocbq * iocbq = NULL;
922 
923 	lockdep_assert_held(&phba->hbalock);
924 
925 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
926 	if (iocbq)
927 		phba->iocb_cnt++;
928 	if (phba->iocb_cnt > phba->iocb_max)
929 		phba->iocb_max = phba->iocb_cnt;
930 	return iocbq;
931 }
932 
933 /**
934  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
935  * @phba: Pointer to HBA context object.
936  * @xritag: XRI value.
937  *
938  * This function clears the sglq pointer from the array of active
939  * sglq's. The xritag that is passed in is used to index into the
940  * array. Before the xritag can be used it needs to be adjusted
941  * by subtracting the xribase.
942  *
943  * Returns sglq ponter = success, NULL = Failure.
944  **/
945 struct lpfc_sglq *
946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
947 {
948 	struct lpfc_sglq *sglq;
949 
950 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
951 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
952 	return sglq;
953 }
954 
955 /**
956  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
957  * @phba: Pointer to HBA context object.
958  * @xritag: XRI value.
959  *
960  * This function returns the sglq pointer from the array of active
961  * sglq's. The xritag that is passed in is used to index into the
962  * array. Before the xritag can be used it needs to be adjusted
963  * by subtracting the xribase.
964  *
965  * Returns sglq ponter = success, NULL = Failure.
966  **/
967 struct lpfc_sglq *
968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
969 {
970 	struct lpfc_sglq *sglq;
971 
972 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
973 	return sglq;
974 }
975 
976 /**
977  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
978  * @phba: Pointer to HBA context object.
979  * @xritag: xri used in this exchange.
980  * @rrq: The RRQ to be cleared.
981  *
982  **/
983 void
984 lpfc_clr_rrq_active(struct lpfc_hba *phba,
985 		    uint16_t xritag,
986 		    struct lpfc_node_rrq *rrq)
987 {
988 	struct lpfc_nodelist *ndlp = NULL;
989 
990 	/* Lookup did to verify if did is still active on this vport */
991 	if (rrq->vport)
992 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
993 
994 	if (!ndlp)
995 		goto out;
996 
997 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
998 		rrq->send_rrq = 0;
999 		rrq->xritag = 0;
1000 		rrq->rrq_stop_time = 0;
1001 	}
1002 out:
1003 	mempool_free(rrq, phba->rrq_pool);
1004 }
1005 
1006 /**
1007  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1008  * @phba: Pointer to HBA context object.
1009  *
1010  * This function is called with hbalock held. This function
1011  * Checks if stop_time (ratov from setting rrq active) has
1012  * been reached, if it has and the send_rrq flag is set then
1013  * it will call lpfc_send_rrq. If the send_rrq flag is not set
1014  * then it will just call the routine to clear the rrq and
1015  * free the rrq resource.
1016  * The timer is set to the next rrq that is going to expire before
1017  * leaving the routine.
1018  *
1019  **/
1020 void
1021 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1022 {
1023 	struct lpfc_node_rrq *rrq;
1024 	struct lpfc_node_rrq *nextrrq;
1025 	unsigned long next_time;
1026 	unsigned long iflags;
1027 	LIST_HEAD(send_rrq);
1028 
1029 	spin_lock_irqsave(&phba->hbalock, iflags);
1030 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1031 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1032 	list_for_each_entry_safe(rrq, nextrrq,
1033 				 &phba->active_rrq_list, list) {
1034 		if (time_after(jiffies, rrq->rrq_stop_time))
1035 			list_move(&rrq->list, &send_rrq);
1036 		else if (time_before(rrq->rrq_stop_time, next_time))
1037 			next_time = rrq->rrq_stop_time;
1038 	}
1039 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1040 	if ((!list_empty(&phba->active_rrq_list)) &&
1041 	    (!(phba->pport->load_flag & FC_UNLOADING)))
1042 		mod_timer(&phba->rrq_tmr, next_time);
1043 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1044 		list_del(&rrq->list);
1045 		if (!rrq->send_rrq) {
1046 			/* this call will free the rrq */
1047 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1048 		} else if (lpfc_send_rrq(phba, rrq)) {
1049 			/* if we send the rrq then the completion handler
1050 			*  will clear the bit in the xribitmap.
1051 			*/
1052 			lpfc_clr_rrq_active(phba, rrq->xritag,
1053 					    rrq);
1054 		}
1055 	}
1056 }
1057 
1058 /**
1059  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1060  * @vport: Pointer to vport context object.
1061  * @xri: The xri used in the exchange.
1062  * @did: The targets DID for this exchange.
1063  *
1064  * returns NULL = rrq not found in the phba->active_rrq_list.
1065  *         rrq = rrq for this xri and target.
1066  **/
1067 struct lpfc_node_rrq *
1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1069 {
1070 	struct lpfc_hba *phba = vport->phba;
1071 	struct lpfc_node_rrq *rrq;
1072 	struct lpfc_node_rrq *nextrrq;
1073 	unsigned long iflags;
1074 
1075 	if (phba->sli_rev != LPFC_SLI_REV4)
1076 		return NULL;
1077 	spin_lock_irqsave(&phba->hbalock, iflags);
1078 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1079 		if (rrq->vport == vport && rrq->xritag == xri &&
1080 				rrq->nlp_DID == did){
1081 			list_del(&rrq->list);
1082 			spin_unlock_irqrestore(&phba->hbalock, iflags);
1083 			return rrq;
1084 		}
1085 	}
1086 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1087 	return NULL;
1088 }
1089 
1090 /**
1091  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1092  * @vport: Pointer to vport context object.
1093  * @ndlp: Pointer to the lpfc_node_list structure.
1094  * If ndlp is NULL Remove all active RRQs for this vport from the
1095  * phba->active_rrq_list and clear the rrq.
1096  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1097  **/
1098 void
1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1100 
1101 {
1102 	struct lpfc_hba *phba = vport->phba;
1103 	struct lpfc_node_rrq *rrq;
1104 	struct lpfc_node_rrq *nextrrq;
1105 	unsigned long iflags;
1106 	LIST_HEAD(rrq_list);
1107 
1108 	if (phba->sli_rev != LPFC_SLI_REV4)
1109 		return;
1110 	if (!ndlp) {
1111 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1112 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1113 	}
1114 	spin_lock_irqsave(&phba->hbalock, iflags);
1115 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1116 		if (rrq->vport != vport)
1117 			continue;
1118 
1119 		if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1120 			list_move(&rrq->list, &rrq_list);
1121 
1122 	}
1123 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1124 
1125 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1126 		list_del(&rrq->list);
1127 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1128 	}
1129 }
1130 
1131 /**
1132  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1133  * @phba: Pointer to HBA context object.
1134  * @ndlp: Targets nodelist pointer for this exchange.
1135  * @xritag: the xri in the bitmap to test.
1136  *
1137  * This function returns:
1138  * 0 = rrq not active for this xri
1139  * 1 = rrq is valid for this xri.
1140  **/
1141 int
1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1143 			uint16_t  xritag)
1144 {
1145 	if (!ndlp)
1146 		return 0;
1147 	if (!ndlp->active_rrqs_xri_bitmap)
1148 		return 0;
1149 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1150 		return 1;
1151 	else
1152 		return 0;
1153 }
1154 
1155 /**
1156  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1157  * @phba: Pointer to HBA context object.
1158  * @ndlp: nodelist pointer for this target.
1159  * @xritag: xri used in this exchange.
1160  * @rxid: Remote Exchange ID.
1161  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1162  *
1163  * This function takes the hbalock.
1164  * The active bit is always set in the active rrq xri_bitmap even
1165  * if there is no slot avaiable for the other rrq information.
1166  *
1167  * returns 0 rrq actived for this xri
1168  *         < 0 No memory or invalid ndlp.
1169  **/
1170 int
1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1172 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1173 {
1174 	unsigned long iflags;
1175 	struct lpfc_node_rrq *rrq;
1176 	int empty;
1177 
1178 	if (!ndlp)
1179 		return -EINVAL;
1180 
1181 	if (!phba->cfg_enable_rrq)
1182 		return -EINVAL;
1183 
1184 	spin_lock_irqsave(&phba->hbalock, iflags);
1185 	if (phba->pport->load_flag & FC_UNLOADING) {
1186 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1187 		goto out;
1188 	}
1189 
1190 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1191 		goto out;
1192 
1193 	if (!ndlp->active_rrqs_xri_bitmap)
1194 		goto out;
1195 
1196 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1197 		goto out;
1198 
1199 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1200 	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1201 	if (!rrq) {
1202 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1203 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1204 				" DID:0x%x Send:%d\n",
1205 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1206 		return -EINVAL;
1207 	}
1208 	if (phba->cfg_enable_rrq == 1)
1209 		rrq->send_rrq = send_rrq;
1210 	else
1211 		rrq->send_rrq = 0;
1212 	rrq->xritag = xritag;
1213 	rrq->rrq_stop_time = jiffies +
1214 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1215 	rrq->nlp_DID = ndlp->nlp_DID;
1216 	rrq->vport = ndlp->vport;
1217 	rrq->rxid = rxid;
1218 	spin_lock_irqsave(&phba->hbalock, iflags);
1219 	empty = list_empty(&phba->active_rrq_list);
1220 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1221 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1222 	if (empty)
1223 		lpfc_worker_wake_up(phba);
1224 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1225 	return 0;
1226 out:
1227 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1228 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1229 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1230 			" DID:0x%x Send:%d\n",
1231 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1232 	return -EINVAL;
1233 }
1234 
1235 /**
1236  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1237  * @phba: Pointer to HBA context object.
1238  * @piocbq: Pointer to the iocbq.
1239  *
1240  * The driver calls this function with either the nvme ls ring lock
1241  * or the fc els ring lock held depending on the iocb usage.  This function
1242  * gets a new driver sglq object from the sglq list. If the list is not empty
1243  * then it is successful, it returns pointer to the newly allocated sglq
1244  * object else it returns NULL.
1245  **/
1246 static struct lpfc_sglq *
1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1248 {
1249 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1250 	struct lpfc_sglq *sglq = NULL;
1251 	struct lpfc_sglq *start_sglq = NULL;
1252 	struct lpfc_io_buf *lpfc_cmd;
1253 	struct lpfc_nodelist *ndlp;
1254 	struct lpfc_sli_ring *pring = NULL;
1255 	int found = 0;
1256 
1257 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1258 		pring =  phba->sli4_hba.nvmels_wq->pring;
1259 	else
1260 		pring = lpfc_phba_elsring(phba);
1261 
1262 	lockdep_assert_held(&pring->ring_lock);
1263 
1264 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1265 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1266 		ndlp = lpfc_cmd->rdata->pnode;
1267 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1268 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1269 		ndlp = piocbq->context_un.ndlp;
1270 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1271 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1272 			ndlp = NULL;
1273 		else
1274 			ndlp = piocbq->context_un.ndlp;
1275 	} else {
1276 		ndlp = piocbq->context1;
1277 	}
1278 
1279 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1280 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1281 	start_sglq = sglq;
1282 	while (!found) {
1283 		if (!sglq)
1284 			break;
1285 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1286 		    test_bit(sglq->sli4_lxritag,
1287 		    ndlp->active_rrqs_xri_bitmap)) {
1288 			/* This xri has an rrq outstanding for this DID.
1289 			 * put it back in the list and get another xri.
1290 			 */
1291 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1292 			sglq = NULL;
1293 			list_remove_head(lpfc_els_sgl_list, sglq,
1294 						struct lpfc_sglq, list);
1295 			if (sglq == start_sglq) {
1296 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1297 				sglq = NULL;
1298 				break;
1299 			} else
1300 				continue;
1301 		}
1302 		sglq->ndlp = ndlp;
1303 		found = 1;
1304 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1305 		sglq->state = SGL_ALLOCATED;
1306 	}
1307 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1308 	return sglq;
1309 }
1310 
1311 /**
1312  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1313  * @phba: Pointer to HBA context object.
1314  * @piocbq: Pointer to the iocbq.
1315  *
1316  * This function is called with the sgl_list lock held. This function
1317  * gets a new driver sglq object from the sglq list. If the
1318  * list is not empty then it is successful, it returns pointer to the newly
1319  * allocated sglq object else it returns NULL.
1320  **/
1321 struct lpfc_sglq *
1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1323 {
1324 	struct list_head *lpfc_nvmet_sgl_list;
1325 	struct lpfc_sglq *sglq = NULL;
1326 
1327 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1328 
1329 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1330 
1331 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1332 	if (!sglq)
1333 		return NULL;
1334 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1335 	sglq->state = SGL_ALLOCATED;
1336 	return sglq;
1337 }
1338 
1339 /**
1340  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1341  * @phba: Pointer to HBA context object.
1342  *
1343  * This function is called with no lock held. This function
1344  * allocates a new driver iocb object from the iocb pool. If the
1345  * allocation is successful, it returns pointer to the newly
1346  * allocated iocb object else it returns NULL.
1347  **/
1348 struct lpfc_iocbq *
1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1350 {
1351 	struct lpfc_iocbq * iocbq = NULL;
1352 	unsigned long iflags;
1353 
1354 	spin_lock_irqsave(&phba->hbalock, iflags);
1355 	iocbq = __lpfc_sli_get_iocbq(phba);
1356 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1357 	return iocbq;
1358 }
1359 
1360 /**
1361  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1362  * @phba: Pointer to HBA context object.
1363  * @iocbq: Pointer to driver iocb object.
1364  *
1365  * This function is called to release the driver iocb object
1366  * to the iocb pool. The iotag in the iocb object
1367  * does not change for each use of the iocb object. This function
1368  * clears all other fields of the iocb object when it is freed.
1369  * The sqlq structure that holds the xritag and phys and virtual
1370  * mappings for the scatter gather list is retrieved from the
1371  * active array of sglq. The get of the sglq pointer also clears
1372  * the entry in the array. If the status of the IO indiactes that
1373  * this IO was aborted then the sglq entry it put on the
1374  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1375  * IO has good status or fails for any other reason then the sglq
1376  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1377  *  asserted held in the code path calling this routine.
1378  **/
1379 static void
1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1381 {
1382 	struct lpfc_sglq *sglq;
1383 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1384 	unsigned long iflag = 0;
1385 	struct lpfc_sli_ring *pring;
1386 
1387 	if (iocbq->sli4_xritag == NO_XRI)
1388 		sglq = NULL;
1389 	else
1390 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1391 
1392 
1393 	if (sglq)  {
1394 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1395 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1396 					  iflag);
1397 			sglq->state = SGL_FREED;
1398 			sglq->ndlp = NULL;
1399 			list_add_tail(&sglq->list,
1400 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1401 			spin_unlock_irqrestore(
1402 				&phba->sli4_hba.sgl_list_lock, iflag);
1403 			goto out;
1404 		}
1405 
1406 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1407 			(sglq->state != SGL_XRI_ABORTED)) {
1408 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1409 					  iflag);
1410 
1411 			/* Check if we can get a reference on ndlp */
1412 			if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1413 				sglq->ndlp = NULL;
1414 
1415 			list_add(&sglq->list,
1416 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1417 			spin_unlock_irqrestore(
1418 				&phba->sli4_hba.sgl_list_lock, iflag);
1419 		} else {
1420 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1421 					  iflag);
1422 			sglq->state = SGL_FREED;
1423 			sglq->ndlp = NULL;
1424 			list_add_tail(&sglq->list,
1425 				      &phba->sli4_hba.lpfc_els_sgl_list);
1426 			spin_unlock_irqrestore(
1427 				&phba->sli4_hba.sgl_list_lock, iflag);
1428 			pring = lpfc_phba_elsring(phba);
1429 			/* Check if TXQ queue needs to be serviced */
1430 			if (pring && (!list_empty(&pring->txq)))
1431 				lpfc_worker_wake_up(phba);
1432 		}
1433 	}
1434 
1435 out:
1436 	/*
1437 	 * Clean all volatile data fields, preserve iotag and node struct.
1438 	 */
1439 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1440 	iocbq->sli4_lxritag = NO_XRI;
1441 	iocbq->sli4_xritag = NO_XRI;
1442 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1443 			      LPFC_IO_NVME_LS);
1444 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1445 }
1446 
1447 
1448 /**
1449  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1450  * @phba: Pointer to HBA context object.
1451  * @iocbq: Pointer to driver iocb object.
1452  *
1453  * This function is called to release the driver iocb object to the
1454  * iocb pool. The iotag in the iocb object does not change for each
1455  * use of the iocb object. This function clears all other fields of
1456  * the iocb object when it is freed. The hbalock is asserted held in
1457  * the code path calling this routine.
1458  **/
1459 static void
1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1461 {
1462 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1463 
1464 	/*
1465 	 * Clean all volatile data fields, preserve iotag and node struct.
1466 	 */
1467 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1468 	iocbq->sli4_xritag = NO_XRI;
1469 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1470 }
1471 
1472 /**
1473  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1474  * @phba: Pointer to HBA context object.
1475  * @iocbq: Pointer to driver iocb object.
1476  *
1477  * This function is called with hbalock held to release driver
1478  * iocb object to the iocb pool. The iotag in the iocb object
1479  * does not change for each use of the iocb object. This function
1480  * clears all other fields of the iocb object when it is freed.
1481  **/
1482 static void
1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1484 {
1485 	lockdep_assert_held(&phba->hbalock);
1486 
1487 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1488 	phba->iocb_cnt--;
1489 }
1490 
1491 /**
1492  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1493  * @phba: Pointer to HBA context object.
1494  * @iocbq: Pointer to driver iocb object.
1495  *
1496  * This function is called with no lock held to release the iocb to
1497  * iocb pool.
1498  **/
1499 void
1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1501 {
1502 	unsigned long iflags;
1503 
1504 	/*
1505 	 * Clean all volatile data fields, preserve iotag and node struct.
1506 	 */
1507 	spin_lock_irqsave(&phba->hbalock, iflags);
1508 	__lpfc_sli_release_iocbq(phba, iocbq);
1509 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1510 }
1511 
1512 /**
1513  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1514  * @phba: Pointer to HBA context object.
1515  * @iocblist: List of IOCBs.
1516  * @ulpstatus: ULP status in IOCB command field.
1517  * @ulpWord4: ULP word-4 in IOCB command field.
1518  *
1519  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1520  * on the list by invoking the complete callback function associated with the
1521  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1522  * fields.
1523  **/
1524 void
1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1526 		      uint32_t ulpstatus, uint32_t ulpWord4)
1527 {
1528 	struct lpfc_iocbq *piocb;
1529 
1530 	while (!list_empty(iocblist)) {
1531 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1532 		if (piocb->wqe_cmpl) {
1533 			if (piocb->iocb_flag & LPFC_IO_NVME)
1534 				lpfc_nvme_cancel_iocb(phba, piocb,
1535 						      ulpstatus, ulpWord4);
1536 			else
1537 				lpfc_sli_release_iocbq(phba, piocb);
1538 
1539 		} else if (piocb->iocb_cmpl) {
1540 			piocb->iocb.ulpStatus = ulpstatus;
1541 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1542 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1543 		} else {
1544 			lpfc_sli_release_iocbq(phba, piocb);
1545 		}
1546 	}
1547 	return;
1548 }
1549 
1550 /**
1551  * lpfc_sli_iocb_cmd_type - Get the iocb type
1552  * @iocb_cmnd: iocb command code.
1553  *
1554  * This function is called by ring event handler function to get the iocb type.
1555  * This function translates the iocb command to an iocb command type used to
1556  * decide the final disposition of each completed IOCB.
1557  * The function returns
1558  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1559  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1560  * LPFC_ABORT_IOCB   if it is an abort iocb
1561  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1562  *
1563  * The caller is not required to hold any lock.
1564  **/
1565 static lpfc_iocb_type
1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1567 {
1568 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1569 
1570 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1571 		return 0;
1572 
1573 	switch (iocb_cmnd) {
1574 	case CMD_XMIT_SEQUENCE_CR:
1575 	case CMD_XMIT_SEQUENCE_CX:
1576 	case CMD_XMIT_BCAST_CN:
1577 	case CMD_XMIT_BCAST_CX:
1578 	case CMD_ELS_REQUEST_CR:
1579 	case CMD_ELS_REQUEST_CX:
1580 	case CMD_CREATE_XRI_CR:
1581 	case CMD_CREATE_XRI_CX:
1582 	case CMD_GET_RPI_CN:
1583 	case CMD_XMIT_ELS_RSP_CX:
1584 	case CMD_GET_RPI_CR:
1585 	case CMD_FCP_IWRITE_CR:
1586 	case CMD_FCP_IWRITE_CX:
1587 	case CMD_FCP_IREAD_CR:
1588 	case CMD_FCP_IREAD_CX:
1589 	case CMD_FCP_ICMND_CR:
1590 	case CMD_FCP_ICMND_CX:
1591 	case CMD_FCP_TSEND_CX:
1592 	case CMD_FCP_TRSP_CX:
1593 	case CMD_FCP_TRECEIVE_CX:
1594 	case CMD_FCP_AUTO_TRSP_CX:
1595 	case CMD_ADAPTER_MSG:
1596 	case CMD_ADAPTER_DUMP:
1597 	case CMD_XMIT_SEQUENCE64_CR:
1598 	case CMD_XMIT_SEQUENCE64_CX:
1599 	case CMD_XMIT_BCAST64_CN:
1600 	case CMD_XMIT_BCAST64_CX:
1601 	case CMD_ELS_REQUEST64_CR:
1602 	case CMD_ELS_REQUEST64_CX:
1603 	case CMD_FCP_IWRITE64_CR:
1604 	case CMD_FCP_IWRITE64_CX:
1605 	case CMD_FCP_IREAD64_CR:
1606 	case CMD_FCP_IREAD64_CX:
1607 	case CMD_FCP_ICMND64_CR:
1608 	case CMD_FCP_ICMND64_CX:
1609 	case CMD_FCP_TSEND64_CX:
1610 	case CMD_FCP_TRSP64_CX:
1611 	case CMD_FCP_TRECEIVE64_CX:
1612 	case CMD_GEN_REQUEST64_CR:
1613 	case CMD_GEN_REQUEST64_CX:
1614 	case CMD_XMIT_ELS_RSP64_CX:
1615 	case DSSCMD_IWRITE64_CR:
1616 	case DSSCMD_IWRITE64_CX:
1617 	case DSSCMD_IREAD64_CR:
1618 	case DSSCMD_IREAD64_CX:
1619 	case CMD_SEND_FRAME:
1620 		type = LPFC_SOL_IOCB;
1621 		break;
1622 	case CMD_ABORT_XRI_CN:
1623 	case CMD_ABORT_XRI_CX:
1624 	case CMD_CLOSE_XRI_CN:
1625 	case CMD_CLOSE_XRI_CX:
1626 	case CMD_XRI_ABORTED_CX:
1627 	case CMD_ABORT_MXRI64_CN:
1628 	case CMD_XMIT_BLS_RSP64_CX:
1629 		type = LPFC_ABORT_IOCB;
1630 		break;
1631 	case CMD_RCV_SEQUENCE_CX:
1632 	case CMD_RCV_ELS_REQ_CX:
1633 	case CMD_RCV_SEQUENCE64_CX:
1634 	case CMD_RCV_ELS_REQ64_CX:
1635 	case CMD_ASYNC_STATUS:
1636 	case CMD_IOCB_RCV_SEQ64_CX:
1637 	case CMD_IOCB_RCV_ELS64_CX:
1638 	case CMD_IOCB_RCV_CONT64_CX:
1639 	case CMD_IOCB_RET_XRI64_CX:
1640 		type = LPFC_UNSOL_IOCB;
1641 		break;
1642 	case CMD_IOCB_XMIT_MSEQ64_CR:
1643 	case CMD_IOCB_XMIT_MSEQ64_CX:
1644 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1645 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1646 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1647 	case CMD_IOCB_ABORT_EXTENDED_CN:
1648 	case CMD_IOCB_RET_HBQE64_CN:
1649 	case CMD_IOCB_FCP_IBIDIR64_CR:
1650 	case CMD_IOCB_FCP_IBIDIR64_CX:
1651 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1652 	case CMD_IOCB_LOGENTRY_CN:
1653 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1654 		printk("%s - Unhandled SLI-3 Command x%x\n",
1655 				__func__, iocb_cmnd);
1656 		type = LPFC_UNKNOWN_IOCB;
1657 		break;
1658 	default:
1659 		type = LPFC_UNKNOWN_IOCB;
1660 		break;
1661 	}
1662 
1663 	return type;
1664 }
1665 
1666 /**
1667  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1668  * @phba: Pointer to HBA context object.
1669  *
1670  * This function is called from SLI initialization code
1671  * to configure every ring of the HBA's SLI interface. The
1672  * caller is not required to hold any lock. This function issues
1673  * a config_ring mailbox command for each ring.
1674  * This function returns zero if successful else returns a negative
1675  * error code.
1676  **/
1677 static int
1678 lpfc_sli_ring_map(struct lpfc_hba *phba)
1679 {
1680 	struct lpfc_sli *psli = &phba->sli;
1681 	LPFC_MBOXQ_t *pmb;
1682 	MAILBOX_t *pmbox;
1683 	int i, rc, ret = 0;
1684 
1685 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1686 	if (!pmb)
1687 		return -ENOMEM;
1688 	pmbox = &pmb->u.mb;
1689 	phba->link_state = LPFC_INIT_MBX_CMDS;
1690 	for (i = 0; i < psli->num_rings; i++) {
1691 		lpfc_config_ring(phba, i, pmb);
1692 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1693 		if (rc != MBX_SUCCESS) {
1694 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1695 					"0446 Adapter failed to init (%d), "
1696 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1697 					"ring %d\n",
1698 					rc, pmbox->mbxCommand,
1699 					pmbox->mbxStatus, i);
1700 			phba->link_state = LPFC_HBA_ERROR;
1701 			ret = -ENXIO;
1702 			break;
1703 		}
1704 	}
1705 	mempool_free(pmb, phba->mbox_mem_pool);
1706 	return ret;
1707 }
1708 
1709 /**
1710  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1711  * @phba: Pointer to HBA context object.
1712  * @pring: Pointer to driver SLI ring object.
1713  * @piocb: Pointer to the driver iocb object.
1714  *
1715  * The driver calls this function with the hbalock held for SLI3 ports or
1716  * the ring lock held for SLI4 ports. The function adds the
1717  * new iocb to txcmplq of the given ring. This function always returns
1718  * 0. If this function is called for ELS ring, this function checks if
1719  * there is a vport associated with the ELS command. This function also
1720  * starts els_tmofunc timer if this is an ELS command.
1721  **/
1722 static int
1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1724 			struct lpfc_iocbq *piocb)
1725 {
1726 	if (phba->sli_rev == LPFC_SLI_REV4)
1727 		lockdep_assert_held(&pring->ring_lock);
1728 	else
1729 		lockdep_assert_held(&phba->hbalock);
1730 
1731 	BUG_ON(!piocb);
1732 
1733 	list_add_tail(&piocb->list, &pring->txcmplq);
1734 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1735 	pring->txcmplq_cnt++;
1736 
1737 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1738 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1739 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1740 		BUG_ON(!piocb->vport);
1741 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1742 			mod_timer(&piocb->vport->els_tmofunc,
1743 				  jiffies +
1744 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 /**
1751  * lpfc_sli_ringtx_get - Get first element of the txq
1752  * @phba: Pointer to HBA context object.
1753  * @pring: Pointer to driver SLI ring object.
1754  *
1755  * This function is called with hbalock held to get next
1756  * iocb in txq of the given ring. If there is any iocb in
1757  * the txq, the function returns first iocb in the list after
1758  * removing the iocb from the list, else it returns NULL.
1759  **/
1760 struct lpfc_iocbq *
1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1762 {
1763 	struct lpfc_iocbq *cmd_iocb;
1764 
1765 	lockdep_assert_held(&phba->hbalock);
1766 
1767 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1768 	return cmd_iocb;
1769 }
1770 
1771 /**
1772  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1773  * @phba: Pointer to HBA context object.
1774  * @pring: Pointer to driver SLI ring object.
1775  *
1776  * This function is called with hbalock held and the caller must post the
1777  * iocb without releasing the lock. If the caller releases the lock,
1778  * iocb slot returned by the function is not guaranteed to be available.
1779  * The function returns pointer to the next available iocb slot if there
1780  * is available slot in the ring, else it returns NULL.
1781  * If the get index of the ring is ahead of the put index, the function
1782  * will post an error attention event to the worker thread to take the
1783  * HBA to offline state.
1784  **/
1785 static IOCB_t *
1786 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1787 {
1788 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1789 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1790 
1791 	lockdep_assert_held(&phba->hbalock);
1792 
1793 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1794 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1795 		pring->sli.sli3.next_cmdidx = 0;
1796 
1797 	if (unlikely(pring->sli.sli3.local_getidx ==
1798 		pring->sli.sli3.next_cmdidx)) {
1799 
1800 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1801 
1802 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1803 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1804 					"0315 Ring %d issue: portCmdGet %d "
1805 					"is bigger than cmd ring %d\n",
1806 					pring->ringno,
1807 					pring->sli.sli3.local_getidx,
1808 					max_cmd_idx);
1809 
1810 			phba->link_state = LPFC_HBA_ERROR;
1811 			/*
1812 			 * All error attention handlers are posted to
1813 			 * worker thread
1814 			 */
1815 			phba->work_ha |= HA_ERATT;
1816 			phba->work_hs = HS_FFER3;
1817 
1818 			lpfc_worker_wake_up(phba);
1819 
1820 			return NULL;
1821 		}
1822 
1823 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1824 			return NULL;
1825 	}
1826 
1827 	return lpfc_cmd_iocb(phba, pring);
1828 }
1829 
1830 /**
1831  * lpfc_sli_next_iotag - Get an iotag for the iocb
1832  * @phba: Pointer to HBA context object.
1833  * @iocbq: Pointer to driver iocb object.
1834  *
1835  * This function gets an iotag for the iocb. If there is no unused iotag and
1836  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1837  * array and assigns a new iotag.
1838  * The function returns the allocated iotag if successful, else returns zero.
1839  * Zero is not a valid iotag.
1840  * The caller is not required to hold any lock.
1841  **/
1842 uint16_t
1843 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1844 {
1845 	struct lpfc_iocbq **new_arr;
1846 	struct lpfc_iocbq **old_arr;
1847 	size_t new_len;
1848 	struct lpfc_sli *psli = &phba->sli;
1849 	uint16_t iotag;
1850 
1851 	spin_lock_irq(&phba->hbalock);
1852 	iotag = psli->last_iotag;
1853 	if(++iotag < psli->iocbq_lookup_len) {
1854 		psli->last_iotag = iotag;
1855 		psli->iocbq_lookup[iotag] = iocbq;
1856 		spin_unlock_irq(&phba->hbalock);
1857 		iocbq->iotag = iotag;
1858 		return iotag;
1859 	} else if (psli->iocbq_lookup_len < (0xffff
1860 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1861 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1862 		spin_unlock_irq(&phba->hbalock);
1863 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1864 				  GFP_KERNEL);
1865 		if (new_arr) {
1866 			spin_lock_irq(&phba->hbalock);
1867 			old_arr = psli->iocbq_lookup;
1868 			if (new_len <= psli->iocbq_lookup_len) {
1869 				/* highly unprobable case */
1870 				kfree(new_arr);
1871 				iotag = psli->last_iotag;
1872 				if(++iotag < psli->iocbq_lookup_len) {
1873 					psli->last_iotag = iotag;
1874 					psli->iocbq_lookup[iotag] = iocbq;
1875 					spin_unlock_irq(&phba->hbalock);
1876 					iocbq->iotag = iotag;
1877 					return iotag;
1878 				}
1879 				spin_unlock_irq(&phba->hbalock);
1880 				return 0;
1881 			}
1882 			if (psli->iocbq_lookup)
1883 				memcpy(new_arr, old_arr,
1884 				       ((psli->last_iotag  + 1) *
1885 					sizeof (struct lpfc_iocbq *)));
1886 			psli->iocbq_lookup = new_arr;
1887 			psli->iocbq_lookup_len = new_len;
1888 			psli->last_iotag = iotag;
1889 			psli->iocbq_lookup[iotag] = iocbq;
1890 			spin_unlock_irq(&phba->hbalock);
1891 			iocbq->iotag = iotag;
1892 			kfree(old_arr);
1893 			return iotag;
1894 		}
1895 	} else
1896 		spin_unlock_irq(&phba->hbalock);
1897 
1898 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1899 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1900 			psli->last_iotag);
1901 
1902 	return 0;
1903 }
1904 
1905 /**
1906  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1907  * @phba: Pointer to HBA context object.
1908  * @pring: Pointer to driver SLI ring object.
1909  * @iocb: Pointer to iocb slot in the ring.
1910  * @nextiocb: Pointer to driver iocb object which need to be
1911  *            posted to firmware.
1912  *
1913  * This function is called to post a new iocb to the firmware. This
1914  * function copies the new iocb to ring iocb slot and updates the
1915  * ring pointers. It adds the new iocb to txcmplq if there is
1916  * a completion call back for this iocb else the function will free the
1917  * iocb object.  The hbalock is asserted held in the code path calling
1918  * this routine.
1919  **/
1920 static void
1921 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1922 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1923 {
1924 	/*
1925 	 * Set up an iotag
1926 	 */
1927 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1928 
1929 
1930 	if (pring->ringno == LPFC_ELS_RING) {
1931 		lpfc_debugfs_slow_ring_trc(phba,
1932 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1933 			*(((uint32_t *) &nextiocb->iocb) + 4),
1934 			*(((uint32_t *) &nextiocb->iocb) + 6),
1935 			*(((uint32_t *) &nextiocb->iocb) + 7));
1936 	}
1937 
1938 	/*
1939 	 * Issue iocb command to adapter
1940 	 */
1941 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1942 	wmb();
1943 	pring->stats.iocb_cmd++;
1944 
1945 	/*
1946 	 * If there is no completion routine to call, we can release the
1947 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1948 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1949 	 */
1950 	if (nextiocb->iocb_cmpl)
1951 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1952 	else
1953 		__lpfc_sli_release_iocbq(phba, nextiocb);
1954 
1955 	/*
1956 	 * Let the HBA know what IOCB slot will be the next one the
1957 	 * driver will put a command into.
1958 	 */
1959 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1960 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1961 }
1962 
1963 /**
1964  * lpfc_sli_update_full_ring - Update the chip attention register
1965  * @phba: Pointer to HBA context object.
1966  * @pring: Pointer to driver SLI ring object.
1967  *
1968  * The caller is not required to hold any lock for calling this function.
1969  * This function updates the chip attention bits for the ring to inform firmware
1970  * that there are pending work to be done for this ring and requests an
1971  * interrupt when there is space available in the ring. This function is
1972  * called when the driver is unable to post more iocbs to the ring due
1973  * to unavailability of space in the ring.
1974  **/
1975 static void
1976 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1977 {
1978 	int ringno = pring->ringno;
1979 
1980 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1981 
1982 	wmb();
1983 
1984 	/*
1985 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1986 	 * The HBA will tell us when an IOCB entry is available.
1987 	 */
1988 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1989 	readl(phba->CAregaddr); /* flush */
1990 
1991 	pring->stats.iocb_cmd_full++;
1992 }
1993 
1994 /**
1995  * lpfc_sli_update_ring - Update chip attention register
1996  * @phba: Pointer to HBA context object.
1997  * @pring: Pointer to driver SLI ring object.
1998  *
1999  * This function updates the chip attention register bit for the
2000  * given ring to inform HBA that there is more work to be done
2001  * in this ring. The caller is not required to hold any lock.
2002  **/
2003 static void
2004 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2005 {
2006 	int ringno = pring->ringno;
2007 
2008 	/*
2009 	 * Tell the HBA that there is work to do in this ring.
2010 	 */
2011 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2012 		wmb();
2013 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2014 		readl(phba->CAregaddr); /* flush */
2015 	}
2016 }
2017 
2018 /**
2019  * lpfc_sli_resume_iocb - Process iocbs in the txq
2020  * @phba: Pointer to HBA context object.
2021  * @pring: Pointer to driver SLI ring object.
2022  *
2023  * This function is called with hbalock held to post pending iocbs
2024  * in the txq to the firmware. This function is called when driver
2025  * detects space available in the ring.
2026  **/
2027 static void
2028 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2029 {
2030 	IOCB_t *iocb;
2031 	struct lpfc_iocbq *nextiocb;
2032 
2033 	lockdep_assert_held(&phba->hbalock);
2034 
2035 	/*
2036 	 * Check to see if:
2037 	 *  (a) there is anything on the txq to send
2038 	 *  (b) link is up
2039 	 *  (c) link attention events can be processed (fcp ring only)
2040 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
2041 	 */
2042 
2043 	if (lpfc_is_link_up(phba) &&
2044 	    (!list_empty(&pring->txq)) &&
2045 	    (pring->ringno != LPFC_FCP_RING ||
2046 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2047 
2048 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2049 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2050 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2051 
2052 		if (iocb)
2053 			lpfc_sli_update_ring(phba, pring);
2054 		else
2055 			lpfc_sli_update_full_ring(phba, pring);
2056 	}
2057 
2058 	return;
2059 }
2060 
2061 /**
2062  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2063  * @phba: Pointer to HBA context object.
2064  * @hbqno: HBQ number.
2065  *
2066  * This function is called with hbalock held to get the next
2067  * available slot for the given HBQ. If there is free slot
2068  * available for the HBQ it will return pointer to the next available
2069  * HBQ entry else it will return NULL.
2070  **/
2071 static struct lpfc_hbq_entry *
2072 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2073 {
2074 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
2075 
2076 	lockdep_assert_held(&phba->hbalock);
2077 
2078 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2079 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2080 		hbqp->next_hbqPutIdx = 0;
2081 
2082 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2083 		uint32_t raw_index = phba->hbq_get[hbqno];
2084 		uint32_t getidx = le32_to_cpu(raw_index);
2085 
2086 		hbqp->local_hbqGetIdx = getidx;
2087 
2088 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2089 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2090 					"1802 HBQ %d: local_hbqGetIdx "
2091 					"%u is > than hbqp->entry_count %u\n",
2092 					hbqno, hbqp->local_hbqGetIdx,
2093 					hbqp->entry_count);
2094 
2095 			phba->link_state = LPFC_HBA_ERROR;
2096 			return NULL;
2097 		}
2098 
2099 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2100 			return NULL;
2101 	}
2102 
2103 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2104 			hbqp->hbqPutIdx;
2105 }
2106 
2107 /**
2108  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2109  * @phba: Pointer to HBA context object.
2110  *
2111  * This function is called with no lock held to free all the
2112  * hbq buffers while uninitializing the SLI interface. It also
2113  * frees the HBQ buffers returned by the firmware but not yet
2114  * processed by the upper layers.
2115  **/
2116 void
2117 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2118 {
2119 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2120 	struct hbq_dmabuf *hbq_buf;
2121 	unsigned long flags;
2122 	int i, hbq_count;
2123 
2124 	hbq_count = lpfc_sli_hbq_count();
2125 	/* Return all memory used by all HBQs */
2126 	spin_lock_irqsave(&phba->hbalock, flags);
2127 	for (i = 0; i < hbq_count; ++i) {
2128 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2129 				&phba->hbqs[i].hbq_buffer_list, list) {
2130 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2131 			list_del(&hbq_buf->dbuf.list);
2132 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2133 		}
2134 		phba->hbqs[i].buffer_count = 0;
2135 	}
2136 
2137 	/* Mark the HBQs not in use */
2138 	phba->hbq_in_use = 0;
2139 	spin_unlock_irqrestore(&phba->hbalock, flags);
2140 }
2141 
2142 /**
2143  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2144  * @phba: Pointer to HBA context object.
2145  * @hbqno: HBQ number.
2146  * @hbq_buf: Pointer to HBQ buffer.
2147  *
2148  * This function is called with the hbalock held to post a
2149  * hbq buffer to the firmware. If the function finds an empty
2150  * slot in the HBQ, it will post the buffer. The function will return
2151  * pointer to the hbq entry if it successfully post the buffer
2152  * else it will return NULL.
2153  **/
2154 static int
2155 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2156 			 struct hbq_dmabuf *hbq_buf)
2157 {
2158 	lockdep_assert_held(&phba->hbalock);
2159 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2160 }
2161 
2162 /**
2163  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2164  * @phba: Pointer to HBA context object.
2165  * @hbqno: HBQ number.
2166  * @hbq_buf: Pointer to HBQ buffer.
2167  *
2168  * This function is called with the hbalock held to post a hbq buffer to the
2169  * firmware. If the function finds an empty slot in the HBQ, it will post the
2170  * buffer and place it on the hbq_buffer_list. The function will return zero if
2171  * it successfully post the buffer else it will return an error.
2172  **/
2173 static int
2174 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2175 			    struct hbq_dmabuf *hbq_buf)
2176 {
2177 	struct lpfc_hbq_entry *hbqe;
2178 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2179 
2180 	lockdep_assert_held(&phba->hbalock);
2181 	/* Get next HBQ entry slot to use */
2182 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2183 	if (hbqe) {
2184 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2185 
2186 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2187 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2188 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2189 		hbqe->bde.tus.f.bdeFlags = 0;
2190 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2191 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2192 				/* Sync SLIM */
2193 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2194 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2195 				/* flush */
2196 		readl(phba->hbq_put + hbqno);
2197 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2198 		return 0;
2199 	} else
2200 		return -ENOMEM;
2201 }
2202 
2203 /**
2204  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2205  * @phba: Pointer to HBA context object.
2206  * @hbqno: HBQ number.
2207  * @hbq_buf: Pointer to HBQ buffer.
2208  *
2209  * This function is called with the hbalock held to post an RQE to the SLI4
2210  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2211  * the hbq_buffer_list and return zero, otherwise it will return an error.
2212  **/
2213 static int
2214 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2215 			    struct hbq_dmabuf *hbq_buf)
2216 {
2217 	int rc;
2218 	struct lpfc_rqe hrqe;
2219 	struct lpfc_rqe drqe;
2220 	struct lpfc_queue *hrq;
2221 	struct lpfc_queue *drq;
2222 
2223 	if (hbqno != LPFC_ELS_HBQ)
2224 		return 1;
2225 	hrq = phba->sli4_hba.hdr_rq;
2226 	drq = phba->sli4_hba.dat_rq;
2227 
2228 	lockdep_assert_held(&phba->hbalock);
2229 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2230 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2231 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2232 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2233 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2234 	if (rc < 0)
2235 		return rc;
2236 	hbq_buf->tag = (rc | (hbqno << 16));
2237 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2238 	return 0;
2239 }
2240 
2241 /* HBQ for ELS and CT traffic. */
2242 static struct lpfc_hbq_init lpfc_els_hbq = {
2243 	.rn = 1,
2244 	.entry_count = 256,
2245 	.mask_count = 0,
2246 	.profile = 0,
2247 	.ring_mask = (1 << LPFC_ELS_RING),
2248 	.buffer_count = 0,
2249 	.init_count = 40,
2250 	.add_count = 40,
2251 };
2252 
2253 /* Array of HBQs */
2254 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2255 	&lpfc_els_hbq,
2256 };
2257 
2258 /**
2259  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2260  * @phba: Pointer to HBA context object.
2261  * @hbqno: HBQ number.
2262  * @count: Number of HBQ buffers to be posted.
2263  *
2264  * This function is called with no lock held to post more hbq buffers to the
2265  * given HBQ. The function returns the number of HBQ buffers successfully
2266  * posted.
2267  **/
2268 static int
2269 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2270 {
2271 	uint32_t i, posted = 0;
2272 	unsigned long flags;
2273 	struct hbq_dmabuf *hbq_buffer;
2274 	LIST_HEAD(hbq_buf_list);
2275 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2276 		return 0;
2277 
2278 	if ((phba->hbqs[hbqno].buffer_count + count) >
2279 	    lpfc_hbq_defs[hbqno]->entry_count)
2280 		count = lpfc_hbq_defs[hbqno]->entry_count -
2281 					phba->hbqs[hbqno].buffer_count;
2282 	if (!count)
2283 		return 0;
2284 	/* Allocate HBQ entries */
2285 	for (i = 0; i < count; i++) {
2286 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2287 		if (!hbq_buffer)
2288 			break;
2289 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2290 	}
2291 	/* Check whether HBQ is still in use */
2292 	spin_lock_irqsave(&phba->hbalock, flags);
2293 	if (!phba->hbq_in_use)
2294 		goto err;
2295 	while (!list_empty(&hbq_buf_list)) {
2296 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2297 				 dbuf.list);
2298 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2299 				      (hbqno << 16));
2300 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2301 			phba->hbqs[hbqno].buffer_count++;
2302 			posted++;
2303 		} else
2304 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2305 	}
2306 	spin_unlock_irqrestore(&phba->hbalock, flags);
2307 	return posted;
2308 err:
2309 	spin_unlock_irqrestore(&phba->hbalock, flags);
2310 	while (!list_empty(&hbq_buf_list)) {
2311 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2312 				 dbuf.list);
2313 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2314 	}
2315 	return 0;
2316 }
2317 
2318 /**
2319  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2320  * @phba: Pointer to HBA context object.
2321  * @qno: HBQ number.
2322  *
2323  * This function posts more buffers to the HBQ. This function
2324  * is called with no lock held. The function returns the number of HBQ entries
2325  * successfully allocated.
2326  **/
2327 int
2328 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2329 {
2330 	if (phba->sli_rev == LPFC_SLI_REV4)
2331 		return 0;
2332 	else
2333 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2334 					 lpfc_hbq_defs[qno]->add_count);
2335 }
2336 
2337 /**
2338  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2339  * @phba: Pointer to HBA context object.
2340  * @qno:  HBQ queue number.
2341  *
2342  * This function is called from SLI initialization code path with
2343  * no lock held to post initial HBQ buffers to firmware. The
2344  * function returns the number of HBQ entries successfully allocated.
2345  **/
2346 static int
2347 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2348 {
2349 	if (phba->sli_rev == LPFC_SLI_REV4)
2350 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2351 					lpfc_hbq_defs[qno]->entry_count);
2352 	else
2353 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2354 					 lpfc_hbq_defs[qno]->init_count);
2355 }
2356 
2357 /*
2358  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2359  *
2360  * This function removes the first hbq buffer on an hbq list and returns a
2361  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2362  **/
2363 static struct hbq_dmabuf *
2364 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2365 {
2366 	struct lpfc_dmabuf *d_buf;
2367 
2368 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2369 	if (!d_buf)
2370 		return NULL;
2371 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2372 }
2373 
2374 /**
2375  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2376  * @phba: Pointer to HBA context object.
2377  * @hrq: HBQ number.
2378  *
2379  * This function removes the first RQ buffer on an RQ buffer list and returns a
2380  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2381  **/
2382 static struct rqb_dmabuf *
2383 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2384 {
2385 	struct lpfc_dmabuf *h_buf;
2386 	struct lpfc_rqb *rqbp;
2387 
2388 	rqbp = hrq->rqbp;
2389 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2390 			 struct lpfc_dmabuf, list);
2391 	if (!h_buf)
2392 		return NULL;
2393 	rqbp->buffer_count--;
2394 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2395 }
2396 
2397 /**
2398  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2399  * @phba: Pointer to HBA context object.
2400  * @tag: Tag of the hbq buffer.
2401  *
2402  * This function searches for the hbq buffer associated with the given tag in
2403  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2404  * otherwise it returns NULL.
2405  **/
2406 static struct hbq_dmabuf *
2407 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2408 {
2409 	struct lpfc_dmabuf *d_buf;
2410 	struct hbq_dmabuf *hbq_buf;
2411 	uint32_t hbqno;
2412 
2413 	hbqno = tag >> 16;
2414 	if (hbqno >= LPFC_MAX_HBQS)
2415 		return NULL;
2416 
2417 	spin_lock_irq(&phba->hbalock);
2418 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2419 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2420 		if (hbq_buf->tag == tag) {
2421 			spin_unlock_irq(&phba->hbalock);
2422 			return hbq_buf;
2423 		}
2424 	}
2425 	spin_unlock_irq(&phba->hbalock);
2426 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2427 			"1803 Bad hbq tag. Data: x%x x%x\n",
2428 			tag, phba->hbqs[tag >> 16].buffer_count);
2429 	return NULL;
2430 }
2431 
2432 /**
2433  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2434  * @phba: Pointer to HBA context object.
2435  * @hbq_buffer: Pointer to HBQ buffer.
2436  *
2437  * This function is called with hbalock. This function gives back
2438  * the hbq buffer to firmware. If the HBQ does not have space to
2439  * post the buffer, it will free the buffer.
2440  **/
2441 void
2442 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2443 {
2444 	uint32_t hbqno;
2445 
2446 	if (hbq_buffer) {
2447 		hbqno = hbq_buffer->tag >> 16;
2448 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2449 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2450 	}
2451 }
2452 
2453 /**
2454  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2455  * @mbxCommand: mailbox command code.
2456  *
2457  * This function is called by the mailbox event handler function to verify
2458  * that the completed mailbox command is a legitimate mailbox command. If the
2459  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2460  * and the mailbox event handler will take the HBA offline.
2461  **/
2462 static int
2463 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2464 {
2465 	uint8_t ret;
2466 
2467 	switch (mbxCommand) {
2468 	case MBX_LOAD_SM:
2469 	case MBX_READ_NV:
2470 	case MBX_WRITE_NV:
2471 	case MBX_WRITE_VPARMS:
2472 	case MBX_RUN_BIU_DIAG:
2473 	case MBX_INIT_LINK:
2474 	case MBX_DOWN_LINK:
2475 	case MBX_CONFIG_LINK:
2476 	case MBX_CONFIG_RING:
2477 	case MBX_RESET_RING:
2478 	case MBX_READ_CONFIG:
2479 	case MBX_READ_RCONFIG:
2480 	case MBX_READ_SPARM:
2481 	case MBX_READ_STATUS:
2482 	case MBX_READ_RPI:
2483 	case MBX_READ_XRI:
2484 	case MBX_READ_REV:
2485 	case MBX_READ_LNK_STAT:
2486 	case MBX_REG_LOGIN:
2487 	case MBX_UNREG_LOGIN:
2488 	case MBX_CLEAR_LA:
2489 	case MBX_DUMP_MEMORY:
2490 	case MBX_DUMP_CONTEXT:
2491 	case MBX_RUN_DIAGS:
2492 	case MBX_RESTART:
2493 	case MBX_UPDATE_CFG:
2494 	case MBX_DOWN_LOAD:
2495 	case MBX_DEL_LD_ENTRY:
2496 	case MBX_RUN_PROGRAM:
2497 	case MBX_SET_MASK:
2498 	case MBX_SET_VARIABLE:
2499 	case MBX_UNREG_D_ID:
2500 	case MBX_KILL_BOARD:
2501 	case MBX_CONFIG_FARP:
2502 	case MBX_BEACON:
2503 	case MBX_LOAD_AREA:
2504 	case MBX_RUN_BIU_DIAG64:
2505 	case MBX_CONFIG_PORT:
2506 	case MBX_READ_SPARM64:
2507 	case MBX_READ_RPI64:
2508 	case MBX_REG_LOGIN64:
2509 	case MBX_READ_TOPOLOGY:
2510 	case MBX_WRITE_WWN:
2511 	case MBX_SET_DEBUG:
2512 	case MBX_LOAD_EXP_ROM:
2513 	case MBX_ASYNCEVT_ENABLE:
2514 	case MBX_REG_VPI:
2515 	case MBX_UNREG_VPI:
2516 	case MBX_HEARTBEAT:
2517 	case MBX_PORT_CAPABILITIES:
2518 	case MBX_PORT_IOV_CONTROL:
2519 	case MBX_SLI4_CONFIG:
2520 	case MBX_SLI4_REQ_FTRS:
2521 	case MBX_REG_FCFI:
2522 	case MBX_UNREG_FCFI:
2523 	case MBX_REG_VFI:
2524 	case MBX_UNREG_VFI:
2525 	case MBX_INIT_VPI:
2526 	case MBX_INIT_VFI:
2527 	case MBX_RESUME_RPI:
2528 	case MBX_READ_EVENT_LOG_STATUS:
2529 	case MBX_READ_EVENT_LOG:
2530 	case MBX_SECURITY_MGMT:
2531 	case MBX_AUTH_PORT:
2532 	case MBX_ACCESS_VDATA:
2533 		ret = mbxCommand;
2534 		break;
2535 	default:
2536 		ret = MBX_SHUTDOWN;
2537 		break;
2538 	}
2539 	return ret;
2540 }
2541 
2542 /**
2543  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2544  * @phba: Pointer to HBA context object.
2545  * @pmboxq: Pointer to mailbox command.
2546  *
2547  * This is completion handler function for mailbox commands issued from
2548  * lpfc_sli_issue_mbox_wait function. This function is called by the
2549  * mailbox event handler function with no lock held. This function
2550  * will wake up thread waiting on the wait queue pointed by context1
2551  * of the mailbox.
2552  **/
2553 void
2554 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2555 {
2556 	unsigned long drvr_flag;
2557 	struct completion *pmbox_done;
2558 
2559 	/*
2560 	 * If pmbox_done is empty, the driver thread gave up waiting and
2561 	 * continued running.
2562 	 */
2563 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2564 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2565 	pmbox_done = (struct completion *)pmboxq->context3;
2566 	if (pmbox_done)
2567 		complete(pmbox_done);
2568 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2569 	return;
2570 }
2571 
2572 static void
2573 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2574 {
2575 	unsigned long iflags;
2576 
2577 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2578 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2579 		spin_lock_irqsave(&ndlp->lock, iflags);
2580 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2581 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2582 		spin_unlock_irqrestore(&ndlp->lock, iflags);
2583 	}
2584 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2585 }
2586 
2587 /**
2588  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2589  * @phba: Pointer to HBA context object.
2590  * @pmb: Pointer to mailbox object.
2591  *
2592  * This function is the default mailbox completion handler. It
2593  * frees the memory resources associated with the completed mailbox
2594  * command. If the completed command is a REG_LOGIN mailbox command,
2595  * this function will issue a UREG_LOGIN to re-claim the RPI.
2596  **/
2597 void
2598 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2599 {
2600 	struct lpfc_vport  *vport = pmb->vport;
2601 	struct lpfc_dmabuf *mp;
2602 	struct lpfc_nodelist *ndlp;
2603 	struct Scsi_Host *shost;
2604 	uint16_t rpi, vpi;
2605 	int rc;
2606 
2607 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2608 
2609 	if (mp) {
2610 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2611 		kfree(mp);
2612 	}
2613 
2614 	/*
2615 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2616 	 * is in re-discovery driver need to cleanup the RPI.
2617 	 */
2618 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2619 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2620 	    !pmb->u.mb.mbxStatus) {
2621 		rpi = pmb->u.mb.un.varWords[0];
2622 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2623 		if (phba->sli_rev == LPFC_SLI_REV4)
2624 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2625 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2626 		pmb->vport = vport;
2627 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2628 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2629 		if (rc != MBX_NOT_FINISHED)
2630 			return;
2631 	}
2632 
2633 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2634 		!(phba->pport->load_flag & FC_UNLOADING) &&
2635 		!pmb->u.mb.mbxStatus) {
2636 		shost = lpfc_shost_from_vport(vport);
2637 		spin_lock_irq(shost->host_lock);
2638 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2639 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2640 		spin_unlock_irq(shost->host_lock);
2641 	}
2642 
2643 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2644 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2645 		lpfc_nlp_put(ndlp);
2646 		pmb->ctx_buf = NULL;
2647 		pmb->ctx_ndlp = NULL;
2648 	}
2649 
2650 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2651 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2652 
2653 		/* Check to see if there are any deferred events to process */
2654 		if (ndlp) {
2655 			lpfc_printf_vlog(
2656 				vport,
2657 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2658 				"1438 UNREG cmpl deferred mbox x%x "
2659 				"on NPort x%x Data: x%x x%x x%px x%x x%x\n",
2660 				ndlp->nlp_rpi, ndlp->nlp_DID,
2661 				ndlp->nlp_flag, ndlp->nlp_defer_did,
2662 				ndlp, vport->load_flag, kref_read(&ndlp->kref));
2663 
2664 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2665 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2666 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2667 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2668 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2669 			} else {
2670 				__lpfc_sli_rpi_release(vport, ndlp);
2671 			}
2672 
2673 			/* The unreg_login mailbox is complete and had a
2674 			 * reference that has to be released.  The PLOGI
2675 			 * got its own ref.
2676 			 */
2677 			lpfc_nlp_put(ndlp);
2678 			pmb->ctx_ndlp = NULL;
2679 		}
2680 	}
2681 
2682 	/* This nlp_put pairs with lpfc_sli4_resume_rpi */
2683 	if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2684 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2685 		lpfc_nlp_put(ndlp);
2686 	}
2687 
2688 	/* Check security permission status on INIT_LINK mailbox command */
2689 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2690 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2691 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2692 				"2860 SLI authentication is required "
2693 				"for INIT_LINK but has not done yet\n");
2694 
2695 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2696 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2697 	else
2698 		mempool_free(pmb, phba->mbox_mem_pool);
2699 }
2700  /**
2701  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2702  * @phba: Pointer to HBA context object.
2703  * @pmb: Pointer to mailbox object.
2704  *
2705  * This function is the unreg rpi mailbox completion handler. It
2706  * frees the memory resources associated with the completed mailbox
2707  * command. An additional reference is put on the ndlp to prevent
2708  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2709  * the unreg mailbox command completes, this routine puts the
2710  * reference back.
2711  *
2712  **/
2713 void
2714 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2715 {
2716 	struct lpfc_vport  *vport = pmb->vport;
2717 	struct lpfc_nodelist *ndlp;
2718 
2719 	ndlp = pmb->ctx_ndlp;
2720 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2721 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2722 		    (bf_get(lpfc_sli_intf_if_type,
2723 		     &phba->sli4_hba.sli_intf) >=
2724 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2725 			if (ndlp) {
2726 				lpfc_printf_vlog(
2727 					 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2728 					 "0010 UNREG_LOGIN vpi:%x "
2729 					 "rpi:%x DID:%x defer x%x flg x%x "
2730 					 "x%px\n",
2731 					 vport->vpi, ndlp->nlp_rpi,
2732 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2733 					 ndlp->nlp_flag,
2734 					 ndlp);
2735 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2736 
2737 				/* Check to see if there are any deferred
2738 				 * events to process
2739 				 */
2740 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2741 				    (ndlp->nlp_defer_did !=
2742 				    NLP_EVT_NOTHING_PENDING)) {
2743 					lpfc_printf_vlog(
2744 						vport, KERN_INFO, LOG_DISCOVERY,
2745 						"4111 UNREG cmpl deferred "
2746 						"clr x%x on "
2747 						"NPort x%x Data: x%x x%px\n",
2748 						ndlp->nlp_rpi, ndlp->nlp_DID,
2749 						ndlp->nlp_defer_did, ndlp);
2750 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2751 					ndlp->nlp_defer_did =
2752 						NLP_EVT_NOTHING_PENDING;
2753 					lpfc_issue_els_plogi(
2754 						vport, ndlp->nlp_DID, 0);
2755 				} else {
2756 					__lpfc_sli_rpi_release(vport, ndlp);
2757 				}
2758 				lpfc_nlp_put(ndlp);
2759 			}
2760 		}
2761 	}
2762 
2763 	mempool_free(pmb, phba->mbox_mem_pool);
2764 }
2765 
2766 /**
2767  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2768  * @phba: Pointer to HBA context object.
2769  *
2770  * This function is called with no lock held. This function processes all
2771  * the completed mailbox commands and gives it to upper layers. The interrupt
2772  * service routine processes mailbox completion interrupt and adds completed
2773  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2774  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2775  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2776  * function returns the mailbox commands to the upper layer by calling the
2777  * completion handler function of each mailbox.
2778  **/
2779 int
2780 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2781 {
2782 	MAILBOX_t *pmbox;
2783 	LPFC_MBOXQ_t *pmb;
2784 	int rc;
2785 	LIST_HEAD(cmplq);
2786 
2787 	phba->sli.slistat.mbox_event++;
2788 
2789 	/* Get all completed mailboxe buffers into the cmplq */
2790 	spin_lock_irq(&phba->hbalock);
2791 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2792 	spin_unlock_irq(&phba->hbalock);
2793 
2794 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2795 	do {
2796 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2797 		if (pmb == NULL)
2798 			break;
2799 
2800 		pmbox = &pmb->u.mb;
2801 
2802 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2803 			if (pmb->vport) {
2804 				lpfc_debugfs_disc_trc(pmb->vport,
2805 					LPFC_DISC_TRC_MBOX_VPORT,
2806 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2807 					(uint32_t)pmbox->mbxCommand,
2808 					pmbox->un.varWords[0],
2809 					pmbox->un.varWords[1]);
2810 			}
2811 			else {
2812 				lpfc_debugfs_disc_trc(phba->pport,
2813 					LPFC_DISC_TRC_MBOX,
2814 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2815 					(uint32_t)pmbox->mbxCommand,
2816 					pmbox->un.varWords[0],
2817 					pmbox->un.varWords[1]);
2818 			}
2819 		}
2820 
2821 		/*
2822 		 * It is a fatal error if unknown mbox command completion.
2823 		 */
2824 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2825 		    MBX_SHUTDOWN) {
2826 			/* Unknown mailbox command compl */
2827 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2828 					"(%d):0323 Unknown Mailbox command "
2829 					"x%x (x%x/x%x) Cmpl\n",
2830 					pmb->vport ? pmb->vport->vpi :
2831 					LPFC_VPORT_UNKNOWN,
2832 					pmbox->mbxCommand,
2833 					lpfc_sli_config_mbox_subsys_get(phba,
2834 									pmb),
2835 					lpfc_sli_config_mbox_opcode_get(phba,
2836 									pmb));
2837 			phba->link_state = LPFC_HBA_ERROR;
2838 			phba->work_hs = HS_FFER3;
2839 			lpfc_handle_eratt(phba);
2840 			continue;
2841 		}
2842 
2843 		if (pmbox->mbxStatus) {
2844 			phba->sli.slistat.mbox_stat_err++;
2845 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2846 				/* Mbox cmd cmpl error - RETRYing */
2847 				lpfc_printf_log(phba, KERN_INFO,
2848 					LOG_MBOX | LOG_SLI,
2849 					"(%d):0305 Mbox cmd cmpl "
2850 					"error - RETRYing Data: x%x "
2851 					"(x%x/x%x) x%x x%x x%x\n",
2852 					pmb->vport ? pmb->vport->vpi :
2853 					LPFC_VPORT_UNKNOWN,
2854 					pmbox->mbxCommand,
2855 					lpfc_sli_config_mbox_subsys_get(phba,
2856 									pmb),
2857 					lpfc_sli_config_mbox_opcode_get(phba,
2858 									pmb),
2859 					pmbox->mbxStatus,
2860 					pmbox->un.varWords[0],
2861 					pmb->vport ? pmb->vport->port_state :
2862 					LPFC_VPORT_UNKNOWN);
2863 				pmbox->mbxStatus = 0;
2864 				pmbox->mbxOwner = OWN_HOST;
2865 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2866 				if (rc != MBX_NOT_FINISHED)
2867 					continue;
2868 			}
2869 		}
2870 
2871 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2872 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2873 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2874 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2875 				"x%x x%x x%x\n",
2876 				pmb->vport ? pmb->vport->vpi : 0,
2877 				pmbox->mbxCommand,
2878 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2879 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2880 				pmb->mbox_cmpl,
2881 				*((uint32_t *) pmbox),
2882 				pmbox->un.varWords[0],
2883 				pmbox->un.varWords[1],
2884 				pmbox->un.varWords[2],
2885 				pmbox->un.varWords[3],
2886 				pmbox->un.varWords[4],
2887 				pmbox->un.varWords[5],
2888 				pmbox->un.varWords[6],
2889 				pmbox->un.varWords[7],
2890 				pmbox->un.varWords[8],
2891 				pmbox->un.varWords[9],
2892 				pmbox->un.varWords[10]);
2893 
2894 		if (pmb->mbox_cmpl)
2895 			pmb->mbox_cmpl(phba,pmb);
2896 	} while (1);
2897 	return 0;
2898 }
2899 
2900 /**
2901  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2902  * @phba: Pointer to HBA context object.
2903  * @pring: Pointer to driver SLI ring object.
2904  * @tag: buffer tag.
2905  *
2906  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2907  * is set in the tag the buffer is posted for a particular exchange,
2908  * the function will return the buffer without replacing the buffer.
2909  * If the buffer is for unsolicited ELS or CT traffic, this function
2910  * returns the buffer and also posts another buffer to the firmware.
2911  **/
2912 static struct lpfc_dmabuf *
2913 lpfc_sli_get_buff(struct lpfc_hba *phba,
2914 		  struct lpfc_sli_ring *pring,
2915 		  uint32_t tag)
2916 {
2917 	struct hbq_dmabuf *hbq_entry;
2918 
2919 	if (tag & QUE_BUFTAG_BIT)
2920 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2921 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2922 	if (!hbq_entry)
2923 		return NULL;
2924 	return &hbq_entry->dbuf;
2925 }
2926 
2927 /**
2928  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
2929  *                              containing a NVME LS request.
2930  * @phba: pointer to lpfc hba data structure.
2931  * @piocb: pointer to the iocbq struct representing the sequence starting
2932  *        frame.
2933  *
2934  * This routine initially validates the NVME LS, validates there is a login
2935  * with the port that sent the LS, and then calls the appropriate nvme host
2936  * or target LS request handler.
2937  **/
2938 static void
2939 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
2940 {
2941 	struct lpfc_nodelist *ndlp;
2942 	struct lpfc_dmabuf *d_buf;
2943 	struct hbq_dmabuf *nvmebuf;
2944 	struct fc_frame_header *fc_hdr;
2945 	struct lpfc_async_xchg_ctx *axchg = NULL;
2946 	char *failwhy = NULL;
2947 	uint32_t oxid, sid, did, fctl, size;
2948 	int ret = 1;
2949 
2950 	d_buf = piocb->context2;
2951 
2952 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2953 	fc_hdr = nvmebuf->hbuf.virt;
2954 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2955 	sid = sli4_sid_from_fc_hdr(fc_hdr);
2956 	did = sli4_did_from_fc_hdr(fc_hdr);
2957 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
2958 		fc_hdr->fh_f_ctl[1] << 8 |
2959 		fc_hdr->fh_f_ctl[2]);
2960 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
2961 
2962 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
2963 			 oxid, size, sid);
2964 
2965 	if (phba->pport->load_flag & FC_UNLOADING) {
2966 		failwhy = "Driver Unloading";
2967 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
2968 		failwhy = "NVME FC4 Disabled";
2969 	} else if (!phba->nvmet_support && !phba->pport->localport) {
2970 		failwhy = "No Localport";
2971 	} else if (phba->nvmet_support && !phba->targetport) {
2972 		failwhy = "No Targetport";
2973 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
2974 		failwhy = "Bad NVME LS R_CTL";
2975 	} else if (unlikely((fctl & 0x00FF0000) !=
2976 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
2977 		failwhy = "Bad NVME LS F_CTL";
2978 	} else {
2979 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
2980 		if (!axchg)
2981 			failwhy = "No CTX memory";
2982 	}
2983 
2984 	if (unlikely(failwhy)) {
2985 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2986 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
2987 				sid, oxid, failwhy);
2988 		goto out_fail;
2989 	}
2990 
2991 	/* validate the source of the LS is logged in */
2992 	ndlp = lpfc_findnode_did(phba->pport, sid);
2993 	if (!ndlp ||
2994 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2995 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2996 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2997 				"6216 NVME Unsol rcv: No ndlp: "
2998 				"NPort_ID x%x oxid x%x\n",
2999 				sid, oxid);
3000 		goto out_fail;
3001 	}
3002 
3003 	axchg->phba = phba;
3004 	axchg->ndlp = ndlp;
3005 	axchg->size = size;
3006 	axchg->oxid = oxid;
3007 	axchg->sid = sid;
3008 	axchg->wqeq = NULL;
3009 	axchg->state = LPFC_NVME_STE_LS_RCV;
3010 	axchg->entry_cnt = 1;
3011 	axchg->rqb_buffer = (void *)nvmebuf;
3012 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
3013 	axchg->payload = nvmebuf->dbuf.virt;
3014 	INIT_LIST_HEAD(&axchg->list);
3015 
3016 	if (phba->nvmet_support) {
3017 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3018 		spin_lock_irq(&ndlp->lock);
3019 		if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3020 			ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3021 			spin_unlock_irq(&ndlp->lock);
3022 
3023 			/* This reference is a single occurrence to hold the
3024 			 * node valid until the nvmet transport calls
3025 			 * host_release.
3026 			 */
3027 			if (!lpfc_nlp_get(ndlp))
3028 				goto out_fail;
3029 
3030 			lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3031 					"6206 NVMET unsol ls_req ndlp x%px "
3032 					"DID x%x xflags x%x refcnt %d\n",
3033 					ndlp, ndlp->nlp_DID,
3034 					ndlp->fc4_xpt_flags,
3035 					kref_read(&ndlp->kref));
3036 		} else {
3037 			spin_unlock_irq(&ndlp->lock);
3038 		}
3039 	} else {
3040 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
3041 	}
3042 
3043 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
3044 	if (!ret)
3045 		return;
3046 
3047 out_fail:
3048 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3049 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3050 			"NVMe%s handler failed %d\n",
3051 			did, sid, oxid,
3052 			(phba->nvmet_support) ? "T" : "I", ret);
3053 
3054 	/* recycle receive buffer */
3055 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3056 
3057 	/* If start of new exchange, abort it */
3058 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3059 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3060 
3061 	if (ret)
3062 		kfree(axchg);
3063 }
3064 
3065 /**
3066  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3067  * @phba: Pointer to HBA context object.
3068  * @pring: Pointer to driver SLI ring object.
3069  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3070  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3071  * @fch_type: the type for the first frame of the sequence.
3072  *
3073  * This function is called with no lock held. This function uses the r_ctl and
3074  * type of the received sequence to find the correct callback function to call
3075  * to process the sequence.
3076  **/
3077 static int
3078 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3079 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3080 			 uint32_t fch_type)
3081 {
3082 	int i;
3083 
3084 	switch (fch_type) {
3085 	case FC_TYPE_NVME:
3086 		lpfc_nvme_unsol_ls_handler(phba, saveq);
3087 		return 1;
3088 	default:
3089 		break;
3090 	}
3091 
3092 	/* unSolicited Responses */
3093 	if (pring->prt[0].profile) {
3094 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3095 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3096 									saveq);
3097 		return 1;
3098 	}
3099 	/* We must search, based on rctl / type
3100 	   for the right routine */
3101 	for (i = 0; i < pring->num_mask; i++) {
3102 		if ((pring->prt[i].rctl == fch_r_ctl) &&
3103 		    (pring->prt[i].type == fch_type)) {
3104 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3105 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
3106 						(phba, pring, saveq);
3107 			return 1;
3108 		}
3109 	}
3110 	return 0;
3111 }
3112 
3113 /**
3114  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3115  * @phba: Pointer to HBA context object.
3116  * @pring: Pointer to driver SLI ring object.
3117  * @saveq: Pointer to the unsolicited iocb.
3118  *
3119  * This function is called with no lock held by the ring event handler
3120  * when there is an unsolicited iocb posted to the response ring by the
3121  * firmware. This function gets the buffer associated with the iocbs
3122  * and calls the event handler for the ring. This function handles both
3123  * qring buffers and hbq buffers.
3124  * When the function returns 1 the caller can free the iocb object otherwise
3125  * upper layer functions will free the iocb objects.
3126  **/
3127 static int
3128 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3129 			    struct lpfc_iocbq *saveq)
3130 {
3131 	IOCB_t           * irsp;
3132 	WORD5            * w5p;
3133 	uint32_t           Rctl, Type;
3134 	struct lpfc_iocbq *iocbq;
3135 	struct lpfc_dmabuf *dmzbuf;
3136 
3137 	irsp = &(saveq->iocb);
3138 
3139 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3140 		if (pring->lpfc_sli_rcv_async_status)
3141 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3142 		else
3143 			lpfc_printf_log(phba,
3144 					KERN_WARNING,
3145 					LOG_SLI,
3146 					"0316 Ring %d handler: unexpected "
3147 					"ASYNC_STATUS iocb received evt_code "
3148 					"0x%x\n",
3149 					pring->ringno,
3150 					irsp->un.asyncstat.evt_code);
3151 		return 1;
3152 	}
3153 
3154 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3155 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3156 		if (irsp->ulpBdeCount > 0) {
3157 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3158 					irsp->un.ulpWord[3]);
3159 			lpfc_in_buf_free(phba, dmzbuf);
3160 		}
3161 
3162 		if (irsp->ulpBdeCount > 1) {
3163 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3164 					irsp->unsli3.sli3Words[3]);
3165 			lpfc_in_buf_free(phba, dmzbuf);
3166 		}
3167 
3168 		if (irsp->ulpBdeCount > 2) {
3169 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3170 				irsp->unsli3.sli3Words[7]);
3171 			lpfc_in_buf_free(phba, dmzbuf);
3172 		}
3173 
3174 		return 1;
3175 	}
3176 
3177 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3178 		if (irsp->ulpBdeCount != 0) {
3179 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
3180 						irsp->un.ulpWord[3]);
3181 			if (!saveq->context2)
3182 				lpfc_printf_log(phba,
3183 					KERN_ERR,
3184 					LOG_SLI,
3185 					"0341 Ring %d Cannot find buffer for "
3186 					"an unsolicited iocb. tag 0x%x\n",
3187 					pring->ringno,
3188 					irsp->un.ulpWord[3]);
3189 		}
3190 		if (irsp->ulpBdeCount == 2) {
3191 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
3192 						irsp->unsli3.sli3Words[7]);
3193 			if (!saveq->context3)
3194 				lpfc_printf_log(phba,
3195 					KERN_ERR,
3196 					LOG_SLI,
3197 					"0342 Ring %d Cannot find buffer for an"
3198 					" unsolicited iocb. tag 0x%x\n",
3199 					pring->ringno,
3200 					irsp->unsli3.sli3Words[7]);
3201 		}
3202 		list_for_each_entry(iocbq, &saveq->list, list) {
3203 			irsp = &(iocbq->iocb);
3204 			if (irsp->ulpBdeCount != 0) {
3205 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3206 							irsp->un.ulpWord[3]);
3207 				if (!iocbq->context2)
3208 					lpfc_printf_log(phba,
3209 						KERN_ERR,
3210 						LOG_SLI,
3211 						"0343 Ring %d Cannot find "
3212 						"buffer for an unsolicited iocb"
3213 						". tag 0x%x\n", pring->ringno,
3214 						irsp->un.ulpWord[3]);
3215 			}
3216 			if (irsp->ulpBdeCount == 2) {
3217 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3218 						irsp->unsli3.sli3Words[7]);
3219 				if (!iocbq->context3)
3220 					lpfc_printf_log(phba,
3221 						KERN_ERR,
3222 						LOG_SLI,
3223 						"0344 Ring %d Cannot find "
3224 						"buffer for an unsolicited "
3225 						"iocb. tag 0x%x\n",
3226 						pring->ringno,
3227 						irsp->unsli3.sli3Words[7]);
3228 			}
3229 		}
3230 	}
3231 	if (irsp->ulpBdeCount != 0 &&
3232 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3233 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3234 		int found = 0;
3235 
3236 		/* search continue save q for same XRI */
3237 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3238 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3239 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3240 				list_add_tail(&saveq->list, &iocbq->list);
3241 				found = 1;
3242 				break;
3243 			}
3244 		}
3245 		if (!found)
3246 			list_add_tail(&saveq->clist,
3247 				      &pring->iocb_continue_saveq);
3248 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3249 			list_del_init(&iocbq->clist);
3250 			saveq = iocbq;
3251 			irsp = &(saveq->iocb);
3252 		} else
3253 			return 0;
3254 	}
3255 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3256 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3257 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3258 		Rctl = FC_RCTL_ELS_REQ;
3259 		Type = FC_TYPE_ELS;
3260 	} else {
3261 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3262 		Rctl = w5p->hcsw.Rctl;
3263 		Type = w5p->hcsw.Type;
3264 
3265 		/* Firmware Workaround */
3266 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3267 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3268 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3269 			Rctl = FC_RCTL_ELS_REQ;
3270 			Type = FC_TYPE_ELS;
3271 			w5p->hcsw.Rctl = Rctl;
3272 			w5p->hcsw.Type = Type;
3273 		}
3274 	}
3275 
3276 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3277 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3278 				"0313 Ring %d handler: unexpected Rctl x%x "
3279 				"Type x%x received\n",
3280 				pring->ringno, Rctl, Type);
3281 
3282 	return 1;
3283 }
3284 
3285 /**
3286  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3287  * @phba: Pointer to HBA context object.
3288  * @pring: Pointer to driver SLI ring object.
3289  * @prspiocb: Pointer to response iocb object.
3290  *
3291  * This function looks up the iocb_lookup table to get the command iocb
3292  * corresponding to the given response iocb using the iotag of the
3293  * response iocb. The driver calls this function with the hbalock held
3294  * for SLI3 ports or the ring lock held for SLI4 ports.
3295  * This function returns the command iocb object if it finds the command
3296  * iocb else returns NULL.
3297  **/
3298 static struct lpfc_iocbq *
3299 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3300 		      struct lpfc_sli_ring *pring,
3301 		      struct lpfc_iocbq *prspiocb)
3302 {
3303 	struct lpfc_iocbq *cmd_iocb = NULL;
3304 	uint16_t iotag;
3305 	spinlock_t *temp_lock = NULL;
3306 	unsigned long iflag = 0;
3307 
3308 	if (phba->sli_rev == LPFC_SLI_REV4)
3309 		temp_lock = &pring->ring_lock;
3310 	else
3311 		temp_lock = &phba->hbalock;
3312 
3313 	spin_lock_irqsave(temp_lock, iflag);
3314 	iotag = prspiocb->iocb.ulpIoTag;
3315 
3316 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3317 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3318 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3319 			/* remove from txcmpl queue list */
3320 			list_del_init(&cmd_iocb->list);
3321 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3322 			pring->txcmplq_cnt--;
3323 			spin_unlock_irqrestore(temp_lock, iflag);
3324 			return cmd_iocb;
3325 		}
3326 	}
3327 
3328 	spin_unlock_irqrestore(temp_lock, iflag);
3329 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3330 			"0317 iotag x%x is out of "
3331 			"range: max iotag x%x wd0 x%x\n",
3332 			iotag, phba->sli.last_iotag,
3333 			*(((uint32_t *) &prspiocb->iocb) + 7));
3334 	return NULL;
3335 }
3336 
3337 /**
3338  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3339  * @phba: Pointer to HBA context object.
3340  * @pring: Pointer to driver SLI ring object.
3341  * @iotag: IOCB tag.
3342  *
3343  * This function looks up the iocb_lookup table to get the command iocb
3344  * corresponding to the given iotag. The driver calls this function with
3345  * the ring lock held because this function is an SLI4 port only helper.
3346  * This function returns the command iocb object if it finds the command
3347  * iocb else returns NULL.
3348  **/
3349 static struct lpfc_iocbq *
3350 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3351 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3352 {
3353 	struct lpfc_iocbq *cmd_iocb = NULL;
3354 	spinlock_t *temp_lock = NULL;
3355 	unsigned long iflag = 0;
3356 
3357 	if (phba->sli_rev == LPFC_SLI_REV4)
3358 		temp_lock = &pring->ring_lock;
3359 	else
3360 		temp_lock = &phba->hbalock;
3361 
3362 	spin_lock_irqsave(temp_lock, iflag);
3363 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3364 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3365 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3366 			/* remove from txcmpl queue list */
3367 			list_del_init(&cmd_iocb->list);
3368 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3369 			pring->txcmplq_cnt--;
3370 			spin_unlock_irqrestore(temp_lock, iflag);
3371 			return cmd_iocb;
3372 		}
3373 	}
3374 
3375 	spin_unlock_irqrestore(temp_lock, iflag);
3376 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3377 			"0372 iotag x%x lookup error: max iotag (x%x) "
3378 			"iocb_flag x%x\n",
3379 			iotag, phba->sli.last_iotag,
3380 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3381 	return NULL;
3382 }
3383 
3384 /**
3385  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3386  * @phba: Pointer to HBA context object.
3387  * @pring: Pointer to driver SLI ring object.
3388  * @saveq: Pointer to the response iocb to be processed.
3389  *
3390  * This function is called by the ring event handler for non-fcp
3391  * rings when there is a new response iocb in the response ring.
3392  * The caller is not required to hold any locks. This function
3393  * gets the command iocb associated with the response iocb and
3394  * calls the completion handler for the command iocb. If there
3395  * is no completion handler, the function will free the resources
3396  * associated with command iocb. If the response iocb is for
3397  * an already aborted command iocb, the status of the completion
3398  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3399  * This function always returns 1.
3400  **/
3401 static int
3402 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3403 			  struct lpfc_iocbq *saveq)
3404 {
3405 	struct lpfc_iocbq *cmdiocbp;
3406 	int rc = 1;
3407 	unsigned long iflag;
3408 
3409 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3410 	if (cmdiocbp) {
3411 		if (cmdiocbp->iocb_cmpl) {
3412 			/*
3413 			 * If an ELS command failed send an event to mgmt
3414 			 * application.
3415 			 */
3416 			if (saveq->iocb.ulpStatus &&
3417 			     (pring->ringno == LPFC_ELS_RING) &&
3418 			     (cmdiocbp->iocb.ulpCommand ==
3419 				CMD_ELS_REQUEST64_CR))
3420 				lpfc_send_els_failure_event(phba,
3421 					cmdiocbp, saveq);
3422 
3423 			/*
3424 			 * Post all ELS completions to the worker thread.
3425 			 * All other are passed to the completion callback.
3426 			 */
3427 			if (pring->ringno == LPFC_ELS_RING) {
3428 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3429 				    (cmdiocbp->iocb_flag &
3430 							LPFC_DRIVER_ABORTED)) {
3431 					spin_lock_irqsave(&phba->hbalock,
3432 							  iflag);
3433 					cmdiocbp->iocb_flag &=
3434 						~LPFC_DRIVER_ABORTED;
3435 					spin_unlock_irqrestore(&phba->hbalock,
3436 							       iflag);
3437 					saveq->iocb.ulpStatus =
3438 						IOSTAT_LOCAL_REJECT;
3439 					saveq->iocb.un.ulpWord[4] =
3440 						IOERR_SLI_ABORTED;
3441 
3442 					/* Firmware could still be in progress
3443 					 * of DMAing payload, so don't free data
3444 					 * buffer till after a hbeat.
3445 					 */
3446 					spin_lock_irqsave(&phba->hbalock,
3447 							  iflag);
3448 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3449 					spin_unlock_irqrestore(&phba->hbalock,
3450 							       iflag);
3451 				}
3452 				if (phba->sli_rev == LPFC_SLI_REV4) {
3453 					if (saveq->iocb_flag &
3454 					    LPFC_EXCHANGE_BUSY) {
3455 						/* Set cmdiocb flag for the
3456 						 * exchange busy so sgl (xri)
3457 						 * will not be released until
3458 						 * the abort xri is received
3459 						 * from hba.
3460 						 */
3461 						spin_lock_irqsave(
3462 							&phba->hbalock, iflag);
3463 						cmdiocbp->iocb_flag |=
3464 							LPFC_EXCHANGE_BUSY;
3465 						spin_unlock_irqrestore(
3466 							&phba->hbalock, iflag);
3467 					}
3468 					if (cmdiocbp->iocb_flag &
3469 					    LPFC_DRIVER_ABORTED) {
3470 						/*
3471 						 * Clear LPFC_DRIVER_ABORTED
3472 						 * bit in case it was driver
3473 						 * initiated abort.
3474 						 */
3475 						spin_lock_irqsave(
3476 							&phba->hbalock, iflag);
3477 						cmdiocbp->iocb_flag &=
3478 							~LPFC_DRIVER_ABORTED;
3479 						spin_unlock_irqrestore(
3480 							&phba->hbalock, iflag);
3481 						cmdiocbp->iocb.ulpStatus =
3482 							IOSTAT_LOCAL_REJECT;
3483 						cmdiocbp->iocb.un.ulpWord[4] =
3484 							IOERR_ABORT_REQUESTED;
3485 						/*
3486 						 * For SLI4, irsiocb contains
3487 						 * NO_XRI in sli_xritag, it
3488 						 * shall not affect releasing
3489 						 * sgl (xri) process.
3490 						 */
3491 						saveq->iocb.ulpStatus =
3492 							IOSTAT_LOCAL_REJECT;
3493 						saveq->iocb.un.ulpWord[4] =
3494 							IOERR_SLI_ABORTED;
3495 						spin_lock_irqsave(
3496 							&phba->hbalock, iflag);
3497 						saveq->iocb_flag |=
3498 							LPFC_DELAY_MEM_FREE;
3499 						spin_unlock_irqrestore(
3500 							&phba->hbalock, iflag);
3501 					}
3502 				}
3503 			}
3504 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3505 		} else
3506 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3507 	} else {
3508 		/*
3509 		 * Unknown initiating command based on the response iotag.
3510 		 * This could be the case on the ELS ring because of
3511 		 * lpfc_els_abort().
3512 		 */
3513 		if (pring->ringno != LPFC_ELS_RING) {
3514 			/*
3515 			 * Ring <ringno> handler: unexpected completion IoTag
3516 			 * <IoTag>
3517 			 */
3518 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3519 					 "0322 Ring %d handler: "
3520 					 "unexpected completion IoTag x%x "
3521 					 "Data: x%x x%x x%x x%x\n",
3522 					 pring->ringno,
3523 					 saveq->iocb.ulpIoTag,
3524 					 saveq->iocb.ulpStatus,
3525 					 saveq->iocb.un.ulpWord[4],
3526 					 saveq->iocb.ulpCommand,
3527 					 saveq->iocb.ulpContext);
3528 		}
3529 	}
3530 
3531 	return rc;
3532 }
3533 
3534 /**
3535  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3536  * @phba: Pointer to HBA context object.
3537  * @pring: Pointer to driver SLI ring object.
3538  *
3539  * This function is called from the iocb ring event handlers when
3540  * put pointer is ahead of the get pointer for a ring. This function signal
3541  * an error attention condition to the worker thread and the worker
3542  * thread will transition the HBA to offline state.
3543  **/
3544 static void
3545 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3546 {
3547 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3548 	/*
3549 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3550 	 * rsp ring <portRspMax>
3551 	 */
3552 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3553 			"0312 Ring %d handler: portRspPut %d "
3554 			"is bigger than rsp ring %d\n",
3555 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3556 			pring->sli.sli3.numRiocb);
3557 
3558 	phba->link_state = LPFC_HBA_ERROR;
3559 
3560 	/*
3561 	 * All error attention handlers are posted to
3562 	 * worker thread
3563 	 */
3564 	phba->work_ha |= HA_ERATT;
3565 	phba->work_hs = HS_FFER3;
3566 
3567 	lpfc_worker_wake_up(phba);
3568 
3569 	return;
3570 }
3571 
3572 /**
3573  * lpfc_poll_eratt - Error attention polling timer timeout handler
3574  * @t: Context to fetch pointer to address of HBA context object from.
3575  *
3576  * This function is invoked by the Error Attention polling timer when the
3577  * timer times out. It will check the SLI Error Attention register for
3578  * possible attention events. If so, it will post an Error Attention event
3579  * and wake up worker thread to process it. Otherwise, it will set up the
3580  * Error Attention polling timer for the next poll.
3581  **/
3582 void lpfc_poll_eratt(struct timer_list *t)
3583 {
3584 	struct lpfc_hba *phba;
3585 	uint32_t eratt = 0;
3586 	uint64_t sli_intr, cnt;
3587 
3588 	phba = from_timer(phba, t, eratt_poll);
3589 
3590 	/* Here we will also keep track of interrupts per sec of the hba */
3591 	sli_intr = phba->sli.slistat.sli_intr;
3592 
3593 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3594 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3595 			sli_intr);
3596 	else
3597 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3598 
3599 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3600 	do_div(cnt, phba->eratt_poll_interval);
3601 	phba->sli.slistat.sli_ips = cnt;
3602 
3603 	phba->sli.slistat.sli_prev_intr = sli_intr;
3604 
3605 	/* Check chip HA register for error event */
3606 	eratt = lpfc_sli_check_eratt(phba);
3607 
3608 	if (eratt)
3609 		/* Tell the worker thread there is work to do */
3610 		lpfc_worker_wake_up(phba);
3611 	else
3612 		/* Restart the timer for next eratt poll */
3613 		mod_timer(&phba->eratt_poll,
3614 			  jiffies +
3615 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3616 	return;
3617 }
3618 
3619 
3620 /**
3621  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3622  * @phba: Pointer to HBA context object.
3623  * @pring: Pointer to driver SLI ring object.
3624  * @mask: Host attention register mask for this ring.
3625  *
3626  * This function is called from the interrupt context when there is a ring
3627  * event for the fcp ring. The caller does not hold any lock.
3628  * The function processes each response iocb in the response ring until it
3629  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3630  * LE bit set. The function will call the completion handler of the command iocb
3631  * if the response iocb indicates a completion for a command iocb or it is
3632  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3633  * function if this is an unsolicited iocb.
3634  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3635  * to check it explicitly.
3636  */
3637 int
3638 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3639 				struct lpfc_sli_ring *pring, uint32_t mask)
3640 {
3641 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3642 	IOCB_t *irsp = NULL;
3643 	IOCB_t *entry = NULL;
3644 	struct lpfc_iocbq *cmdiocbq = NULL;
3645 	struct lpfc_iocbq rspiocbq;
3646 	uint32_t status;
3647 	uint32_t portRspPut, portRspMax;
3648 	int rc = 1;
3649 	lpfc_iocb_type type;
3650 	unsigned long iflag;
3651 	uint32_t rsp_cmpl = 0;
3652 
3653 	spin_lock_irqsave(&phba->hbalock, iflag);
3654 	pring->stats.iocb_event++;
3655 
3656 	/*
3657 	 * The next available response entry should never exceed the maximum
3658 	 * entries.  If it does, treat it as an adapter hardware error.
3659 	 */
3660 	portRspMax = pring->sli.sli3.numRiocb;
3661 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3662 	if (unlikely(portRspPut >= portRspMax)) {
3663 		lpfc_sli_rsp_pointers_error(phba, pring);
3664 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3665 		return 1;
3666 	}
3667 	if (phba->fcp_ring_in_use) {
3668 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3669 		return 1;
3670 	} else
3671 		phba->fcp_ring_in_use = 1;
3672 
3673 	rmb();
3674 	while (pring->sli.sli3.rspidx != portRspPut) {
3675 		/*
3676 		 * Fetch an entry off the ring and copy it into a local data
3677 		 * structure.  The copy involves a byte-swap since the
3678 		 * network byte order and pci byte orders are different.
3679 		 */
3680 		entry = lpfc_resp_iocb(phba, pring);
3681 		phba->last_completion_time = jiffies;
3682 
3683 		if (++pring->sli.sli3.rspidx >= portRspMax)
3684 			pring->sli.sli3.rspidx = 0;
3685 
3686 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3687 				      (uint32_t *) &rspiocbq.iocb,
3688 				      phba->iocb_rsp_size);
3689 		INIT_LIST_HEAD(&(rspiocbq.list));
3690 		irsp = &rspiocbq.iocb;
3691 
3692 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3693 		pring->stats.iocb_rsp++;
3694 		rsp_cmpl++;
3695 
3696 		if (unlikely(irsp->ulpStatus)) {
3697 			/*
3698 			 * If resource errors reported from HBA, reduce
3699 			 * queuedepths of the SCSI device.
3700 			 */
3701 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3702 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3703 			     IOERR_NO_RESOURCES)) {
3704 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3705 				phba->lpfc_rampdown_queue_depth(phba);
3706 				spin_lock_irqsave(&phba->hbalock, iflag);
3707 			}
3708 
3709 			/* Rsp ring <ringno> error: IOCB */
3710 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3711 					"0336 Rsp Ring %d error: IOCB Data: "
3712 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3713 					pring->ringno,
3714 					irsp->un.ulpWord[0],
3715 					irsp->un.ulpWord[1],
3716 					irsp->un.ulpWord[2],
3717 					irsp->un.ulpWord[3],
3718 					irsp->un.ulpWord[4],
3719 					irsp->un.ulpWord[5],
3720 					*(uint32_t *)&irsp->un1,
3721 					*((uint32_t *)&irsp->un1 + 1));
3722 		}
3723 
3724 		switch (type) {
3725 		case LPFC_ABORT_IOCB:
3726 		case LPFC_SOL_IOCB:
3727 			/*
3728 			 * Idle exchange closed via ABTS from port.  No iocb
3729 			 * resources need to be recovered.
3730 			 */
3731 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3732 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3733 						"0333 IOCB cmd 0x%x"
3734 						" processed. Skipping"
3735 						" completion\n",
3736 						irsp->ulpCommand);
3737 				break;
3738 			}
3739 
3740 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3741 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3742 							 &rspiocbq);
3743 			spin_lock_irqsave(&phba->hbalock, iflag);
3744 			if (unlikely(!cmdiocbq))
3745 				break;
3746 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3747 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3748 			if (cmdiocbq->iocb_cmpl) {
3749 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3750 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3751 						      &rspiocbq);
3752 				spin_lock_irqsave(&phba->hbalock, iflag);
3753 			}
3754 			break;
3755 		case LPFC_UNSOL_IOCB:
3756 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3757 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3758 			spin_lock_irqsave(&phba->hbalock, iflag);
3759 			break;
3760 		default:
3761 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3762 				char adaptermsg[LPFC_MAX_ADPTMSG];
3763 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3764 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3765 				       MAX_MSG_DATA);
3766 				dev_warn(&((phba->pcidev)->dev),
3767 					 "lpfc%d: %s\n",
3768 					 phba->brd_no, adaptermsg);
3769 			} else {
3770 				/* Unknown IOCB command */
3771 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3772 						"0334 Unknown IOCB command "
3773 						"Data: x%x, x%x x%x x%x x%x\n",
3774 						type, irsp->ulpCommand,
3775 						irsp->ulpStatus,
3776 						irsp->ulpIoTag,
3777 						irsp->ulpContext);
3778 			}
3779 			break;
3780 		}
3781 
3782 		/*
3783 		 * The response IOCB has been processed.  Update the ring
3784 		 * pointer in SLIM.  If the port response put pointer has not
3785 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3786 		 * response put pointer.
3787 		 */
3788 		writel(pring->sli.sli3.rspidx,
3789 			&phba->host_gp[pring->ringno].rspGetInx);
3790 
3791 		if (pring->sli.sli3.rspidx == portRspPut)
3792 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3793 	}
3794 
3795 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3796 		pring->stats.iocb_rsp_full++;
3797 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3798 		writel(status, phba->CAregaddr);
3799 		readl(phba->CAregaddr);
3800 	}
3801 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3802 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3803 		pring->stats.iocb_cmd_empty++;
3804 
3805 		/* Force update of the local copy of cmdGetInx */
3806 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3807 		lpfc_sli_resume_iocb(phba, pring);
3808 
3809 		if ((pring->lpfc_sli_cmd_available))
3810 			(pring->lpfc_sli_cmd_available) (phba, pring);
3811 
3812 	}
3813 
3814 	phba->fcp_ring_in_use = 0;
3815 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3816 	return rc;
3817 }
3818 
3819 /**
3820  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3821  * @phba: Pointer to HBA context object.
3822  * @pring: Pointer to driver SLI ring object.
3823  * @rspiocbp: Pointer to driver response IOCB object.
3824  *
3825  * This function is called from the worker thread when there is a slow-path
3826  * response IOCB to process. This function chains all the response iocbs until
3827  * seeing the iocb with the LE bit set. The function will call
3828  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3829  * completion of a command iocb. The function will call the
3830  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3831  * The function frees the resources or calls the completion handler if this
3832  * iocb is an abort completion. The function returns NULL when the response
3833  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3834  * this function shall chain the iocb on to the iocb_continueq and return the
3835  * response iocb passed in.
3836  **/
3837 static struct lpfc_iocbq *
3838 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3839 			struct lpfc_iocbq *rspiocbp)
3840 {
3841 	struct lpfc_iocbq *saveq;
3842 	struct lpfc_iocbq *cmdiocbp;
3843 	struct lpfc_iocbq *next_iocb;
3844 	IOCB_t *irsp = NULL;
3845 	uint32_t free_saveq;
3846 	uint8_t iocb_cmd_type;
3847 	lpfc_iocb_type type;
3848 	unsigned long iflag;
3849 	int rc;
3850 
3851 	spin_lock_irqsave(&phba->hbalock, iflag);
3852 	/* First add the response iocb to the countinueq list */
3853 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3854 	pring->iocb_continueq_cnt++;
3855 
3856 	/* Now, determine whether the list is completed for processing */
3857 	irsp = &rspiocbp->iocb;
3858 	if (irsp->ulpLe) {
3859 		/*
3860 		 * By default, the driver expects to free all resources
3861 		 * associated with this iocb completion.
3862 		 */
3863 		free_saveq = 1;
3864 		saveq = list_get_first(&pring->iocb_continueq,
3865 				       struct lpfc_iocbq, list);
3866 		irsp = &(saveq->iocb);
3867 		list_del_init(&pring->iocb_continueq);
3868 		pring->iocb_continueq_cnt = 0;
3869 
3870 		pring->stats.iocb_rsp++;
3871 
3872 		/*
3873 		 * If resource errors reported from HBA, reduce
3874 		 * queuedepths of the SCSI device.
3875 		 */
3876 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3877 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3878 		     IOERR_NO_RESOURCES)) {
3879 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3880 			phba->lpfc_rampdown_queue_depth(phba);
3881 			spin_lock_irqsave(&phba->hbalock, iflag);
3882 		}
3883 
3884 		if (irsp->ulpStatus) {
3885 			/* Rsp ring <ringno> error: IOCB */
3886 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3887 					"0328 Rsp Ring %d error: "
3888 					"IOCB Data: "
3889 					"x%x x%x x%x x%x "
3890 					"x%x x%x x%x x%x "
3891 					"x%x x%x x%x x%x "
3892 					"x%x x%x x%x x%x\n",
3893 					pring->ringno,
3894 					irsp->un.ulpWord[0],
3895 					irsp->un.ulpWord[1],
3896 					irsp->un.ulpWord[2],
3897 					irsp->un.ulpWord[3],
3898 					irsp->un.ulpWord[4],
3899 					irsp->un.ulpWord[5],
3900 					*(((uint32_t *) irsp) + 6),
3901 					*(((uint32_t *) irsp) + 7),
3902 					*(((uint32_t *) irsp) + 8),
3903 					*(((uint32_t *) irsp) + 9),
3904 					*(((uint32_t *) irsp) + 10),
3905 					*(((uint32_t *) irsp) + 11),
3906 					*(((uint32_t *) irsp) + 12),
3907 					*(((uint32_t *) irsp) + 13),
3908 					*(((uint32_t *) irsp) + 14),
3909 					*(((uint32_t *) irsp) + 15));
3910 		}
3911 
3912 		/*
3913 		 * Fetch the IOCB command type and call the correct completion
3914 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3915 		 * get freed back to the lpfc_iocb_list by the discovery
3916 		 * kernel thread.
3917 		 */
3918 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3919 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3920 		switch (type) {
3921 		case LPFC_SOL_IOCB:
3922 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3923 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3924 			spin_lock_irqsave(&phba->hbalock, iflag);
3925 			break;
3926 
3927 		case LPFC_UNSOL_IOCB:
3928 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3929 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3930 			spin_lock_irqsave(&phba->hbalock, iflag);
3931 			if (!rc)
3932 				free_saveq = 0;
3933 			break;
3934 
3935 		case LPFC_ABORT_IOCB:
3936 			cmdiocbp = NULL;
3937 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3938 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3939 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3940 								 saveq);
3941 				spin_lock_irqsave(&phba->hbalock, iflag);
3942 			}
3943 			if (cmdiocbp) {
3944 				/* Call the specified completion routine */
3945 				if (cmdiocbp->iocb_cmpl) {
3946 					spin_unlock_irqrestore(&phba->hbalock,
3947 							       iflag);
3948 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3949 							      saveq);
3950 					spin_lock_irqsave(&phba->hbalock,
3951 							  iflag);
3952 				} else
3953 					__lpfc_sli_release_iocbq(phba,
3954 								 cmdiocbp);
3955 			}
3956 			break;
3957 
3958 		case LPFC_UNKNOWN_IOCB:
3959 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3960 				char adaptermsg[LPFC_MAX_ADPTMSG];
3961 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3962 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3963 				       MAX_MSG_DATA);
3964 				dev_warn(&((phba->pcidev)->dev),
3965 					 "lpfc%d: %s\n",
3966 					 phba->brd_no, adaptermsg);
3967 			} else {
3968 				/* Unknown IOCB command */
3969 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3970 						"0335 Unknown IOCB "
3971 						"command Data: x%x "
3972 						"x%x x%x x%x\n",
3973 						irsp->ulpCommand,
3974 						irsp->ulpStatus,
3975 						irsp->ulpIoTag,
3976 						irsp->ulpContext);
3977 			}
3978 			break;
3979 		}
3980 
3981 		if (free_saveq) {
3982 			list_for_each_entry_safe(rspiocbp, next_iocb,
3983 						 &saveq->list, list) {
3984 				list_del_init(&rspiocbp->list);
3985 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3986 			}
3987 			__lpfc_sli_release_iocbq(phba, saveq);
3988 		}
3989 		rspiocbp = NULL;
3990 	}
3991 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3992 	return rspiocbp;
3993 }
3994 
3995 /**
3996  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3997  * @phba: Pointer to HBA context object.
3998  * @pring: Pointer to driver SLI ring object.
3999  * @mask: Host attention register mask for this ring.
4000  *
4001  * This routine wraps the actual slow_ring event process routine from the
4002  * API jump table function pointer from the lpfc_hba struct.
4003  **/
4004 void
4005 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4006 				struct lpfc_sli_ring *pring, uint32_t mask)
4007 {
4008 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4009 }
4010 
4011 /**
4012  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4013  * @phba: Pointer to HBA context object.
4014  * @pring: Pointer to driver SLI ring object.
4015  * @mask: Host attention register mask for this ring.
4016  *
4017  * This function is called from the worker thread when there is a ring event
4018  * for non-fcp rings. The caller does not hold any lock. The function will
4019  * remove each response iocb in the response ring and calls the handle
4020  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4021  **/
4022 static void
4023 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4024 				   struct lpfc_sli_ring *pring, uint32_t mask)
4025 {
4026 	struct lpfc_pgp *pgp;
4027 	IOCB_t *entry;
4028 	IOCB_t *irsp = NULL;
4029 	struct lpfc_iocbq *rspiocbp = NULL;
4030 	uint32_t portRspPut, portRspMax;
4031 	unsigned long iflag;
4032 	uint32_t status;
4033 
4034 	pgp = &phba->port_gp[pring->ringno];
4035 	spin_lock_irqsave(&phba->hbalock, iflag);
4036 	pring->stats.iocb_event++;
4037 
4038 	/*
4039 	 * The next available response entry should never exceed the maximum
4040 	 * entries.  If it does, treat it as an adapter hardware error.
4041 	 */
4042 	portRspMax = pring->sli.sli3.numRiocb;
4043 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4044 	if (portRspPut >= portRspMax) {
4045 		/*
4046 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4047 		 * rsp ring <portRspMax>
4048 		 */
4049 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4050 				"0303 Ring %d handler: portRspPut %d "
4051 				"is bigger than rsp ring %d\n",
4052 				pring->ringno, portRspPut, portRspMax);
4053 
4054 		phba->link_state = LPFC_HBA_ERROR;
4055 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4056 
4057 		phba->work_hs = HS_FFER3;
4058 		lpfc_handle_eratt(phba);
4059 
4060 		return;
4061 	}
4062 
4063 	rmb();
4064 	while (pring->sli.sli3.rspidx != portRspPut) {
4065 		/*
4066 		 * Build a completion list and call the appropriate handler.
4067 		 * The process is to get the next available response iocb, get
4068 		 * a free iocb from the list, copy the response data into the
4069 		 * free iocb, insert to the continuation list, and update the
4070 		 * next response index to slim.  This process makes response
4071 		 * iocb's in the ring available to DMA as fast as possible but
4072 		 * pays a penalty for a copy operation.  Since the iocb is
4073 		 * only 32 bytes, this penalty is considered small relative to
4074 		 * the PCI reads for register values and a slim write.  When
4075 		 * the ulpLe field is set, the entire Command has been
4076 		 * received.
4077 		 */
4078 		entry = lpfc_resp_iocb(phba, pring);
4079 
4080 		phba->last_completion_time = jiffies;
4081 		rspiocbp = __lpfc_sli_get_iocbq(phba);
4082 		if (rspiocbp == NULL) {
4083 			printk(KERN_ERR "%s: out of buffers! Failing "
4084 			       "completion.\n", __func__);
4085 			break;
4086 		}
4087 
4088 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4089 				      phba->iocb_rsp_size);
4090 		irsp = &rspiocbp->iocb;
4091 
4092 		if (++pring->sli.sli3.rspidx >= portRspMax)
4093 			pring->sli.sli3.rspidx = 0;
4094 
4095 		if (pring->ringno == LPFC_ELS_RING) {
4096 			lpfc_debugfs_slow_ring_trc(phba,
4097 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
4098 				*(((uint32_t *) irsp) + 4),
4099 				*(((uint32_t *) irsp) + 6),
4100 				*(((uint32_t *) irsp) + 7));
4101 		}
4102 
4103 		writel(pring->sli.sli3.rspidx,
4104 			&phba->host_gp[pring->ringno].rspGetInx);
4105 
4106 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4107 		/* Handle the response IOCB */
4108 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4109 		spin_lock_irqsave(&phba->hbalock, iflag);
4110 
4111 		/*
4112 		 * If the port response put pointer has not been updated, sync
4113 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4114 		 * response put pointer.
4115 		 */
4116 		if (pring->sli.sli3.rspidx == portRspPut) {
4117 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4118 		}
4119 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
4120 
4121 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4122 		/* At least one response entry has been freed */
4123 		pring->stats.iocb_rsp_full++;
4124 		/* SET RxRE_RSP in Chip Att register */
4125 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4126 		writel(status, phba->CAregaddr);
4127 		readl(phba->CAregaddr); /* flush */
4128 	}
4129 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4130 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4131 		pring->stats.iocb_cmd_empty++;
4132 
4133 		/* Force update of the local copy of cmdGetInx */
4134 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4135 		lpfc_sli_resume_iocb(phba, pring);
4136 
4137 		if ((pring->lpfc_sli_cmd_available))
4138 			(pring->lpfc_sli_cmd_available) (phba, pring);
4139 
4140 	}
4141 
4142 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4143 	return;
4144 }
4145 
4146 /**
4147  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4148  * @phba: Pointer to HBA context object.
4149  * @pring: Pointer to driver SLI ring object.
4150  * @mask: Host attention register mask for this ring.
4151  *
4152  * This function is called from the worker thread when there is a pending
4153  * ELS response iocb on the driver internal slow-path response iocb worker
4154  * queue. The caller does not hold any lock. The function will remove each
4155  * response iocb from the response worker queue and calls the handle
4156  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4157  **/
4158 static void
4159 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4160 				   struct lpfc_sli_ring *pring, uint32_t mask)
4161 {
4162 	struct lpfc_iocbq *irspiocbq;
4163 	struct hbq_dmabuf *dmabuf;
4164 	struct lpfc_cq_event *cq_event;
4165 	unsigned long iflag;
4166 	int count = 0;
4167 
4168 	spin_lock_irqsave(&phba->hbalock, iflag);
4169 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4170 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4171 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4172 		/* Get the response iocb from the head of work queue */
4173 		spin_lock_irqsave(&phba->hbalock, iflag);
4174 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4175 				 cq_event, struct lpfc_cq_event, list);
4176 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4177 
4178 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4179 		case CQE_CODE_COMPL_WQE:
4180 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4181 						 cq_event);
4182 			/* Translate ELS WCQE to response IOCBQ */
4183 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4184 								   irspiocbq);
4185 			if (irspiocbq)
4186 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4187 							   irspiocbq);
4188 			count++;
4189 			break;
4190 		case CQE_CODE_RECEIVE:
4191 		case CQE_CODE_RECEIVE_V1:
4192 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4193 					      cq_event);
4194 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4195 			count++;
4196 			break;
4197 		default:
4198 			break;
4199 		}
4200 
4201 		/* Limit the number of events to 64 to avoid soft lockups */
4202 		if (count == 64)
4203 			break;
4204 	}
4205 }
4206 
4207 /**
4208  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4209  * @phba: Pointer to HBA context object.
4210  * @pring: Pointer to driver SLI ring object.
4211  *
4212  * This function aborts all iocbs in the given ring and frees all the iocb
4213  * objects in txq. This function issues an abort iocb for all the iocb commands
4214  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4215  * the return of this function. The caller is not required to hold any locks.
4216  **/
4217 void
4218 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4219 {
4220 	LIST_HEAD(completions);
4221 	struct lpfc_iocbq *iocb, *next_iocb;
4222 
4223 	if (pring->ringno == LPFC_ELS_RING) {
4224 		lpfc_fabric_abort_hba(phba);
4225 	}
4226 
4227 	/* Error everything on txq and txcmplq
4228 	 * First do the txq.
4229 	 */
4230 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4231 		spin_lock_irq(&pring->ring_lock);
4232 		list_splice_init(&pring->txq, &completions);
4233 		pring->txq_cnt = 0;
4234 		spin_unlock_irq(&pring->ring_lock);
4235 
4236 		spin_lock_irq(&phba->hbalock);
4237 		/* Next issue ABTS for everything on the txcmplq */
4238 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4239 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4240 		spin_unlock_irq(&phba->hbalock);
4241 	} else {
4242 		spin_lock_irq(&phba->hbalock);
4243 		list_splice_init(&pring->txq, &completions);
4244 		pring->txq_cnt = 0;
4245 
4246 		/* Next issue ABTS for everything on the txcmplq */
4247 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4248 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4249 		spin_unlock_irq(&phba->hbalock);
4250 	}
4251 	/* Make sure HBA is alive */
4252 	lpfc_issue_hb_tmo(phba);
4253 
4254 	/* Cancel all the IOCBs from the completions list */
4255 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4256 			      IOERR_SLI_ABORTED);
4257 }
4258 
4259 /**
4260  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4261  * @phba: Pointer to HBA context object.
4262  *
4263  * This function aborts all iocbs in FCP rings and frees all the iocb
4264  * objects in txq. This function issues an abort iocb for all the iocb commands
4265  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4266  * the return of this function. The caller is not required to hold any locks.
4267  **/
4268 void
4269 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4270 {
4271 	struct lpfc_sli *psli = &phba->sli;
4272 	struct lpfc_sli_ring  *pring;
4273 	uint32_t i;
4274 
4275 	/* Look on all the FCP Rings for the iotag */
4276 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4277 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4278 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4279 			lpfc_sli_abort_iocb_ring(phba, pring);
4280 		}
4281 	} else {
4282 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4283 		lpfc_sli_abort_iocb_ring(phba, pring);
4284 	}
4285 }
4286 
4287 /**
4288  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4289  * @phba: Pointer to HBA context object.
4290  *
4291  * This function flushes all iocbs in the IO ring and frees all the iocb
4292  * objects in txq and txcmplq. This function will not issue abort iocbs
4293  * for all the iocb commands in txcmplq, they will just be returned with
4294  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4295  * slot has been permanently disabled.
4296  **/
4297 void
4298 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4299 {
4300 	LIST_HEAD(txq);
4301 	LIST_HEAD(txcmplq);
4302 	struct lpfc_sli *psli = &phba->sli;
4303 	struct lpfc_sli_ring  *pring;
4304 	uint32_t i;
4305 	struct lpfc_iocbq *piocb, *next_iocb;
4306 
4307 	spin_lock_irq(&phba->hbalock);
4308 	if (phba->hba_flag & HBA_IOQ_FLUSH ||
4309 	    !phba->sli4_hba.hdwq) {
4310 		spin_unlock_irq(&phba->hbalock);
4311 		return;
4312 	}
4313 	/* Indicate the I/O queues are flushed */
4314 	phba->hba_flag |= HBA_IOQ_FLUSH;
4315 	spin_unlock_irq(&phba->hbalock);
4316 
4317 	/* Look on all the FCP Rings for the iotag */
4318 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4319 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4320 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4321 
4322 			spin_lock_irq(&pring->ring_lock);
4323 			/* Retrieve everything on txq */
4324 			list_splice_init(&pring->txq, &txq);
4325 			list_for_each_entry_safe(piocb, next_iocb,
4326 						 &pring->txcmplq, list)
4327 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4328 			/* Retrieve everything on the txcmplq */
4329 			list_splice_init(&pring->txcmplq, &txcmplq);
4330 			pring->txq_cnt = 0;
4331 			pring->txcmplq_cnt = 0;
4332 			spin_unlock_irq(&pring->ring_lock);
4333 
4334 			/* Flush the txq */
4335 			lpfc_sli_cancel_iocbs(phba, &txq,
4336 					      IOSTAT_LOCAL_REJECT,
4337 					      IOERR_SLI_DOWN);
4338 			/* Flush the txcmpq */
4339 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4340 					      IOSTAT_LOCAL_REJECT,
4341 					      IOERR_SLI_DOWN);
4342 		}
4343 	} else {
4344 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4345 
4346 		spin_lock_irq(&phba->hbalock);
4347 		/* Retrieve everything on txq */
4348 		list_splice_init(&pring->txq, &txq);
4349 		list_for_each_entry_safe(piocb, next_iocb,
4350 					 &pring->txcmplq, list)
4351 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4352 		/* Retrieve everything on the txcmplq */
4353 		list_splice_init(&pring->txcmplq, &txcmplq);
4354 		pring->txq_cnt = 0;
4355 		pring->txcmplq_cnt = 0;
4356 		spin_unlock_irq(&phba->hbalock);
4357 
4358 		/* Flush the txq */
4359 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4360 				      IOERR_SLI_DOWN);
4361 		/* Flush the txcmpq */
4362 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4363 				      IOERR_SLI_DOWN);
4364 	}
4365 }
4366 
4367 /**
4368  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4369  * @phba: Pointer to HBA context object.
4370  * @mask: Bit mask to be checked.
4371  *
4372  * This function reads the host status register and compares
4373  * with the provided bit mask to check if HBA completed
4374  * the restart. This function will wait in a loop for the
4375  * HBA to complete restart. If the HBA does not restart within
4376  * 15 iterations, the function will reset the HBA again. The
4377  * function returns 1 when HBA fail to restart otherwise returns
4378  * zero.
4379  **/
4380 static int
4381 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4382 {
4383 	uint32_t status;
4384 	int i = 0;
4385 	int retval = 0;
4386 
4387 	/* Read the HBA Host Status Register */
4388 	if (lpfc_readl(phba->HSregaddr, &status))
4389 		return 1;
4390 
4391 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4392 
4393 	/*
4394 	 * Check status register every 100ms for 5 retries, then every
4395 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4396 	 * every 2.5 sec for 4.
4397 	 * Break our of the loop if errors occurred during init.
4398 	 */
4399 	while (((status & mask) != mask) &&
4400 	       !(status & HS_FFERM) &&
4401 	       i++ < 20) {
4402 
4403 		if (i <= 5)
4404 			msleep(10);
4405 		else if (i <= 10)
4406 			msleep(500);
4407 		else
4408 			msleep(2500);
4409 
4410 		if (i == 15) {
4411 				/* Do post */
4412 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4413 			lpfc_sli_brdrestart(phba);
4414 		}
4415 		/* Read the HBA Host Status Register */
4416 		if (lpfc_readl(phba->HSregaddr, &status)) {
4417 			retval = 1;
4418 			break;
4419 		}
4420 	}
4421 
4422 	/* Check to see if any errors occurred during init */
4423 	if ((status & HS_FFERM) || (i >= 20)) {
4424 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4425 				"2751 Adapter failed to restart, "
4426 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4427 				status,
4428 				readl(phba->MBslimaddr + 0xa8),
4429 				readl(phba->MBslimaddr + 0xac));
4430 		phba->link_state = LPFC_HBA_ERROR;
4431 		retval = 1;
4432 	}
4433 
4434 	return retval;
4435 }
4436 
4437 /**
4438  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4439  * @phba: Pointer to HBA context object.
4440  * @mask: Bit mask to be checked.
4441  *
4442  * This function checks the host status register to check if HBA is
4443  * ready. This function will wait in a loop for the HBA to be ready
4444  * If the HBA is not ready , the function will will reset the HBA PCI
4445  * function again. The function returns 1 when HBA fail to be ready
4446  * otherwise returns zero.
4447  **/
4448 static int
4449 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4450 {
4451 	uint32_t status;
4452 	int retval = 0;
4453 
4454 	/* Read the HBA Host Status Register */
4455 	status = lpfc_sli4_post_status_check(phba);
4456 
4457 	if (status) {
4458 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4459 		lpfc_sli_brdrestart(phba);
4460 		status = lpfc_sli4_post_status_check(phba);
4461 	}
4462 
4463 	/* Check to see if any errors occurred during init */
4464 	if (status) {
4465 		phba->link_state = LPFC_HBA_ERROR;
4466 		retval = 1;
4467 	} else
4468 		phba->sli4_hba.intr_enable = 0;
4469 
4470 	return retval;
4471 }
4472 
4473 /**
4474  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4475  * @phba: Pointer to HBA context object.
4476  * @mask: Bit mask to be checked.
4477  *
4478  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4479  * from the API jump table function pointer from the lpfc_hba struct.
4480  **/
4481 int
4482 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4483 {
4484 	return phba->lpfc_sli_brdready(phba, mask);
4485 }
4486 
4487 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4488 
4489 /**
4490  * lpfc_reset_barrier - Make HBA ready for HBA reset
4491  * @phba: Pointer to HBA context object.
4492  *
4493  * This function is called before resetting an HBA. This function is called
4494  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4495  **/
4496 void lpfc_reset_barrier(struct lpfc_hba *phba)
4497 {
4498 	uint32_t __iomem *resp_buf;
4499 	uint32_t __iomem *mbox_buf;
4500 	volatile uint32_t mbox;
4501 	uint32_t hc_copy, ha_copy, resp_data;
4502 	int  i;
4503 	uint8_t hdrtype;
4504 
4505 	lockdep_assert_held(&phba->hbalock);
4506 
4507 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4508 	if (hdrtype != 0x80 ||
4509 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4510 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4511 		return;
4512 
4513 	/*
4514 	 * Tell the other part of the chip to suspend temporarily all
4515 	 * its DMA activity.
4516 	 */
4517 	resp_buf = phba->MBslimaddr;
4518 
4519 	/* Disable the error attention */
4520 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4521 		return;
4522 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4523 	readl(phba->HCregaddr); /* flush */
4524 	phba->link_flag |= LS_IGNORE_ERATT;
4525 
4526 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4527 		return;
4528 	if (ha_copy & HA_ERATT) {
4529 		/* Clear Chip error bit */
4530 		writel(HA_ERATT, phba->HAregaddr);
4531 		phba->pport->stopped = 1;
4532 	}
4533 
4534 	mbox = 0;
4535 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4536 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4537 
4538 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4539 	mbox_buf = phba->MBslimaddr;
4540 	writel(mbox, mbox_buf);
4541 
4542 	for (i = 0; i < 50; i++) {
4543 		if (lpfc_readl((resp_buf + 1), &resp_data))
4544 			return;
4545 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4546 			mdelay(1);
4547 		else
4548 			break;
4549 	}
4550 	resp_data = 0;
4551 	if (lpfc_readl((resp_buf + 1), &resp_data))
4552 		return;
4553 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4554 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4555 		    phba->pport->stopped)
4556 			goto restore_hc;
4557 		else
4558 			goto clear_errat;
4559 	}
4560 
4561 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4562 	resp_data = 0;
4563 	for (i = 0; i < 500; i++) {
4564 		if (lpfc_readl(resp_buf, &resp_data))
4565 			return;
4566 		if (resp_data != mbox)
4567 			mdelay(1);
4568 		else
4569 			break;
4570 	}
4571 
4572 clear_errat:
4573 
4574 	while (++i < 500) {
4575 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4576 			return;
4577 		if (!(ha_copy & HA_ERATT))
4578 			mdelay(1);
4579 		else
4580 			break;
4581 	}
4582 
4583 	if (readl(phba->HAregaddr) & HA_ERATT) {
4584 		writel(HA_ERATT, phba->HAregaddr);
4585 		phba->pport->stopped = 1;
4586 	}
4587 
4588 restore_hc:
4589 	phba->link_flag &= ~LS_IGNORE_ERATT;
4590 	writel(hc_copy, phba->HCregaddr);
4591 	readl(phba->HCregaddr); /* flush */
4592 }
4593 
4594 /**
4595  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4596  * @phba: Pointer to HBA context object.
4597  *
4598  * This function issues a kill_board mailbox command and waits for
4599  * the error attention interrupt. This function is called for stopping
4600  * the firmware processing. The caller is not required to hold any
4601  * locks. This function calls lpfc_hba_down_post function to free
4602  * any pending commands after the kill. The function will return 1 when it
4603  * fails to kill the board else will return 0.
4604  **/
4605 int
4606 lpfc_sli_brdkill(struct lpfc_hba *phba)
4607 {
4608 	struct lpfc_sli *psli;
4609 	LPFC_MBOXQ_t *pmb;
4610 	uint32_t status;
4611 	uint32_t ha_copy;
4612 	int retval;
4613 	int i = 0;
4614 
4615 	psli = &phba->sli;
4616 
4617 	/* Kill HBA */
4618 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4619 			"0329 Kill HBA Data: x%x x%x\n",
4620 			phba->pport->port_state, psli->sli_flag);
4621 
4622 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4623 	if (!pmb)
4624 		return 1;
4625 
4626 	/* Disable the error attention */
4627 	spin_lock_irq(&phba->hbalock);
4628 	if (lpfc_readl(phba->HCregaddr, &status)) {
4629 		spin_unlock_irq(&phba->hbalock);
4630 		mempool_free(pmb, phba->mbox_mem_pool);
4631 		return 1;
4632 	}
4633 	status &= ~HC_ERINT_ENA;
4634 	writel(status, phba->HCregaddr);
4635 	readl(phba->HCregaddr); /* flush */
4636 	phba->link_flag |= LS_IGNORE_ERATT;
4637 	spin_unlock_irq(&phba->hbalock);
4638 
4639 	lpfc_kill_board(phba, pmb);
4640 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4641 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4642 
4643 	if (retval != MBX_SUCCESS) {
4644 		if (retval != MBX_BUSY)
4645 			mempool_free(pmb, phba->mbox_mem_pool);
4646 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4647 				"2752 KILL_BOARD command failed retval %d\n",
4648 				retval);
4649 		spin_lock_irq(&phba->hbalock);
4650 		phba->link_flag &= ~LS_IGNORE_ERATT;
4651 		spin_unlock_irq(&phba->hbalock);
4652 		return 1;
4653 	}
4654 
4655 	spin_lock_irq(&phba->hbalock);
4656 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4657 	spin_unlock_irq(&phba->hbalock);
4658 
4659 	mempool_free(pmb, phba->mbox_mem_pool);
4660 
4661 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4662 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4663 	 * 3 seconds we still set HBA_ERROR state because the status of the
4664 	 * board is now undefined.
4665 	 */
4666 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4667 		return 1;
4668 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4669 		mdelay(100);
4670 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4671 			return 1;
4672 	}
4673 
4674 	del_timer_sync(&psli->mbox_tmo);
4675 	if (ha_copy & HA_ERATT) {
4676 		writel(HA_ERATT, phba->HAregaddr);
4677 		phba->pport->stopped = 1;
4678 	}
4679 	spin_lock_irq(&phba->hbalock);
4680 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4681 	psli->mbox_active = NULL;
4682 	phba->link_flag &= ~LS_IGNORE_ERATT;
4683 	spin_unlock_irq(&phba->hbalock);
4684 
4685 	lpfc_hba_down_post(phba);
4686 	phba->link_state = LPFC_HBA_ERROR;
4687 
4688 	return ha_copy & HA_ERATT ? 0 : 1;
4689 }
4690 
4691 /**
4692  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4693  * @phba: Pointer to HBA context object.
4694  *
4695  * This function resets the HBA by writing HC_INITFF to the control
4696  * register. After the HBA resets, this function resets all the iocb ring
4697  * indices. This function disables PCI layer parity checking during
4698  * the reset.
4699  * This function returns 0 always.
4700  * The caller is not required to hold any locks.
4701  **/
4702 int
4703 lpfc_sli_brdreset(struct lpfc_hba *phba)
4704 {
4705 	struct lpfc_sli *psli;
4706 	struct lpfc_sli_ring *pring;
4707 	uint16_t cfg_value;
4708 	int i;
4709 
4710 	psli = &phba->sli;
4711 
4712 	/* Reset HBA */
4713 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4714 			"0325 Reset HBA Data: x%x x%x\n",
4715 			(phba->pport) ? phba->pport->port_state : 0,
4716 			psli->sli_flag);
4717 
4718 	/* perform board reset */
4719 	phba->fc_eventTag = 0;
4720 	phba->link_events = 0;
4721 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4722 	if (phba->pport) {
4723 		phba->pport->fc_myDID = 0;
4724 		phba->pport->fc_prevDID = 0;
4725 	}
4726 
4727 	/* Turn off parity checking and serr during the physical reset */
4728 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4729 		return -EIO;
4730 
4731 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4732 			      (cfg_value &
4733 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4734 
4735 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4736 
4737 	/* Now toggle INITFF bit in the Host Control Register */
4738 	writel(HC_INITFF, phba->HCregaddr);
4739 	mdelay(1);
4740 	readl(phba->HCregaddr); /* flush */
4741 	writel(0, phba->HCregaddr);
4742 	readl(phba->HCregaddr); /* flush */
4743 
4744 	/* Restore PCI cmd register */
4745 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4746 
4747 	/* Initialize relevant SLI info */
4748 	for (i = 0; i < psli->num_rings; i++) {
4749 		pring = &psli->sli3_ring[i];
4750 		pring->flag = 0;
4751 		pring->sli.sli3.rspidx = 0;
4752 		pring->sli.sli3.next_cmdidx  = 0;
4753 		pring->sli.sli3.local_getidx = 0;
4754 		pring->sli.sli3.cmdidx = 0;
4755 		pring->missbufcnt = 0;
4756 	}
4757 
4758 	phba->link_state = LPFC_WARM_START;
4759 	return 0;
4760 }
4761 
4762 /**
4763  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4764  * @phba: Pointer to HBA context object.
4765  *
4766  * This function resets a SLI4 HBA. This function disables PCI layer parity
4767  * checking during resets the device. The caller is not required to hold
4768  * any locks.
4769  *
4770  * This function returns 0 on success else returns negative error code.
4771  **/
4772 int
4773 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4774 {
4775 	struct lpfc_sli *psli = &phba->sli;
4776 	uint16_t cfg_value;
4777 	int rc = 0;
4778 
4779 	/* Reset HBA */
4780 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4781 			"0295 Reset HBA Data: x%x x%x x%x\n",
4782 			phba->pport->port_state, psli->sli_flag,
4783 			phba->hba_flag);
4784 
4785 	/* perform board reset */
4786 	phba->fc_eventTag = 0;
4787 	phba->link_events = 0;
4788 	phba->pport->fc_myDID = 0;
4789 	phba->pport->fc_prevDID = 0;
4790 
4791 	spin_lock_irq(&phba->hbalock);
4792 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4793 	phba->fcf.fcf_flag = 0;
4794 	spin_unlock_irq(&phba->hbalock);
4795 
4796 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4797 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4798 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4799 		return rc;
4800 	}
4801 
4802 	/* Now physically reset the device */
4803 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4804 			"0389 Performing PCI function reset!\n");
4805 
4806 	/* Turn off parity checking and serr during the physical reset */
4807 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4808 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4809 				"3205 PCI read Config failed\n");
4810 		return -EIO;
4811 	}
4812 
4813 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4814 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4815 
4816 	/* Perform FCoE PCI function reset before freeing queue memory */
4817 	rc = lpfc_pci_function_reset(phba);
4818 
4819 	/* Restore PCI cmd register */
4820 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4821 
4822 	return rc;
4823 }
4824 
4825 /**
4826  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4827  * @phba: Pointer to HBA context object.
4828  *
4829  * This function is called in the SLI initialization code path to
4830  * restart the HBA. The caller is not required to hold any lock.
4831  * This function writes MBX_RESTART mailbox command to the SLIM and
4832  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4833  * function to free any pending commands. The function enables
4834  * POST only during the first initialization. The function returns zero.
4835  * The function does not guarantee completion of MBX_RESTART mailbox
4836  * command before the return of this function.
4837  **/
4838 static int
4839 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4840 {
4841 	MAILBOX_t *mb;
4842 	struct lpfc_sli *psli;
4843 	volatile uint32_t word0;
4844 	void __iomem *to_slim;
4845 	uint32_t hba_aer_enabled;
4846 
4847 	spin_lock_irq(&phba->hbalock);
4848 
4849 	/* Take PCIe device Advanced Error Reporting (AER) state */
4850 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4851 
4852 	psli = &phba->sli;
4853 
4854 	/* Restart HBA */
4855 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4856 			"0337 Restart HBA Data: x%x x%x\n",
4857 			(phba->pport) ? phba->pport->port_state : 0,
4858 			psli->sli_flag);
4859 
4860 	word0 = 0;
4861 	mb = (MAILBOX_t *) &word0;
4862 	mb->mbxCommand = MBX_RESTART;
4863 	mb->mbxHc = 1;
4864 
4865 	lpfc_reset_barrier(phba);
4866 
4867 	to_slim = phba->MBslimaddr;
4868 	writel(*(uint32_t *) mb, to_slim);
4869 	readl(to_slim); /* flush */
4870 
4871 	/* Only skip post after fc_ffinit is completed */
4872 	if (phba->pport && phba->pport->port_state)
4873 		word0 = 1;	/* This is really setting up word1 */
4874 	else
4875 		word0 = 0;	/* This is really setting up word1 */
4876 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4877 	writel(*(uint32_t *) mb, to_slim);
4878 	readl(to_slim); /* flush */
4879 
4880 	lpfc_sli_brdreset(phba);
4881 	if (phba->pport)
4882 		phba->pport->stopped = 0;
4883 	phba->link_state = LPFC_INIT_START;
4884 	phba->hba_flag = 0;
4885 	spin_unlock_irq(&phba->hbalock);
4886 
4887 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4888 	psli->stats_start = ktime_get_seconds();
4889 
4890 	/* Give the INITFF and Post time to settle. */
4891 	mdelay(100);
4892 
4893 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4894 	if (hba_aer_enabled)
4895 		pci_disable_pcie_error_reporting(phba->pcidev);
4896 
4897 	lpfc_hba_down_post(phba);
4898 
4899 	return 0;
4900 }
4901 
4902 /**
4903  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4904  * @phba: Pointer to HBA context object.
4905  *
4906  * This function is called in the SLI initialization code path to restart
4907  * a SLI4 HBA. The caller is not required to hold any lock.
4908  * At the end of the function, it calls lpfc_hba_down_post function to
4909  * free any pending commands.
4910  **/
4911 static int
4912 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4913 {
4914 	struct lpfc_sli *psli = &phba->sli;
4915 	uint32_t hba_aer_enabled;
4916 	int rc;
4917 
4918 	/* Restart HBA */
4919 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4920 			"0296 Restart HBA Data: x%x x%x\n",
4921 			phba->pport->port_state, psli->sli_flag);
4922 
4923 	/* Take PCIe device Advanced Error Reporting (AER) state */
4924 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4925 
4926 	rc = lpfc_sli4_brdreset(phba);
4927 	if (rc) {
4928 		phba->link_state = LPFC_HBA_ERROR;
4929 		goto hba_down_queue;
4930 	}
4931 
4932 	spin_lock_irq(&phba->hbalock);
4933 	phba->pport->stopped = 0;
4934 	phba->link_state = LPFC_INIT_START;
4935 	phba->hba_flag = 0;
4936 	spin_unlock_irq(&phba->hbalock);
4937 
4938 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4939 	psli->stats_start = ktime_get_seconds();
4940 
4941 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4942 	if (hba_aer_enabled)
4943 		pci_disable_pcie_error_reporting(phba->pcidev);
4944 
4945 hba_down_queue:
4946 	lpfc_hba_down_post(phba);
4947 	lpfc_sli4_queue_destroy(phba);
4948 
4949 	return rc;
4950 }
4951 
4952 /**
4953  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4954  * @phba: Pointer to HBA context object.
4955  *
4956  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4957  * API jump table function pointer from the lpfc_hba struct.
4958 **/
4959 int
4960 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4961 {
4962 	return phba->lpfc_sli_brdrestart(phba);
4963 }
4964 
4965 /**
4966  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4967  * @phba: Pointer to HBA context object.
4968  *
4969  * This function is called after a HBA restart to wait for successful
4970  * restart of the HBA. Successful restart of the HBA is indicated by
4971  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4972  * iteration, the function will restart the HBA again. The function returns
4973  * zero if HBA successfully restarted else returns negative error code.
4974  **/
4975 int
4976 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4977 {
4978 	uint32_t status, i = 0;
4979 
4980 	/* Read the HBA Host Status Register */
4981 	if (lpfc_readl(phba->HSregaddr, &status))
4982 		return -EIO;
4983 
4984 	/* Check status register to see what current state is */
4985 	i = 0;
4986 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4987 
4988 		/* Check every 10ms for 10 retries, then every 100ms for 90
4989 		 * retries, then every 1 sec for 50 retires for a total of
4990 		 * ~60 seconds before reset the board again and check every
4991 		 * 1 sec for 50 retries. The up to 60 seconds before the
4992 		 * board ready is required by the Falcon FIPS zeroization
4993 		 * complete, and any reset the board in between shall cause
4994 		 * restart of zeroization, further delay the board ready.
4995 		 */
4996 		if (i++ >= 200) {
4997 			/* Adapter failed to init, timeout, status reg
4998 			   <status> */
4999 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5000 					"0436 Adapter failed to init, "
5001 					"timeout, status reg x%x, "
5002 					"FW Data: A8 x%x AC x%x\n", status,
5003 					readl(phba->MBslimaddr + 0xa8),
5004 					readl(phba->MBslimaddr + 0xac));
5005 			phba->link_state = LPFC_HBA_ERROR;
5006 			return -ETIMEDOUT;
5007 		}
5008 
5009 		/* Check to see if any errors occurred during init */
5010 		if (status & HS_FFERM) {
5011 			/* ERROR: During chipset initialization */
5012 			/* Adapter failed to init, chipset, status reg
5013 			   <status> */
5014 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5015 					"0437 Adapter failed to init, "
5016 					"chipset, status reg x%x, "
5017 					"FW Data: A8 x%x AC x%x\n", status,
5018 					readl(phba->MBslimaddr + 0xa8),
5019 					readl(phba->MBslimaddr + 0xac));
5020 			phba->link_state = LPFC_HBA_ERROR;
5021 			return -EIO;
5022 		}
5023 
5024 		if (i <= 10)
5025 			msleep(10);
5026 		else if (i <= 100)
5027 			msleep(100);
5028 		else
5029 			msleep(1000);
5030 
5031 		if (i == 150) {
5032 			/* Do post */
5033 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5034 			lpfc_sli_brdrestart(phba);
5035 		}
5036 		/* Read the HBA Host Status Register */
5037 		if (lpfc_readl(phba->HSregaddr, &status))
5038 			return -EIO;
5039 	}
5040 
5041 	/* Check to see if any errors occurred during init */
5042 	if (status & HS_FFERM) {
5043 		/* ERROR: During chipset initialization */
5044 		/* Adapter failed to init, chipset, status reg <status> */
5045 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5046 				"0438 Adapter failed to init, chipset, "
5047 				"status reg x%x, "
5048 				"FW Data: A8 x%x AC x%x\n", status,
5049 				readl(phba->MBslimaddr + 0xa8),
5050 				readl(phba->MBslimaddr + 0xac));
5051 		phba->link_state = LPFC_HBA_ERROR;
5052 		return -EIO;
5053 	}
5054 
5055 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5056 
5057 	/* Clear all interrupt enable conditions */
5058 	writel(0, phba->HCregaddr);
5059 	readl(phba->HCregaddr); /* flush */
5060 
5061 	/* setup host attn register */
5062 	writel(0xffffffff, phba->HAregaddr);
5063 	readl(phba->HAregaddr); /* flush */
5064 	return 0;
5065 }
5066 
5067 /**
5068  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5069  *
5070  * This function calculates and returns the number of HBQs required to be
5071  * configured.
5072  **/
5073 int
5074 lpfc_sli_hbq_count(void)
5075 {
5076 	return ARRAY_SIZE(lpfc_hbq_defs);
5077 }
5078 
5079 /**
5080  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5081  *
5082  * This function adds the number of hbq entries in every HBQ to get
5083  * the total number of hbq entries required for the HBA and returns
5084  * the total count.
5085  **/
5086 static int
5087 lpfc_sli_hbq_entry_count(void)
5088 {
5089 	int  hbq_count = lpfc_sli_hbq_count();
5090 	int  count = 0;
5091 	int  i;
5092 
5093 	for (i = 0; i < hbq_count; ++i)
5094 		count += lpfc_hbq_defs[i]->entry_count;
5095 	return count;
5096 }
5097 
5098 /**
5099  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5100  *
5101  * This function calculates amount of memory required for all hbq entries
5102  * to be configured and returns the total memory required.
5103  **/
5104 int
5105 lpfc_sli_hbq_size(void)
5106 {
5107 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5108 }
5109 
5110 /**
5111  * lpfc_sli_hbq_setup - configure and initialize HBQs
5112  * @phba: Pointer to HBA context object.
5113  *
5114  * This function is called during the SLI initialization to configure
5115  * all the HBQs and post buffers to the HBQ. The caller is not
5116  * required to hold any locks. This function will return zero if successful
5117  * else it will return negative error code.
5118  **/
5119 static int
5120 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5121 {
5122 	int  hbq_count = lpfc_sli_hbq_count();
5123 	LPFC_MBOXQ_t *pmb;
5124 	MAILBOX_t *pmbox;
5125 	uint32_t hbqno;
5126 	uint32_t hbq_entry_index;
5127 
5128 				/* Get a Mailbox buffer to setup mailbox
5129 				 * commands for HBA initialization
5130 				 */
5131 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5132 
5133 	if (!pmb)
5134 		return -ENOMEM;
5135 
5136 	pmbox = &pmb->u.mb;
5137 
5138 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
5139 	phba->link_state = LPFC_INIT_MBX_CMDS;
5140 	phba->hbq_in_use = 1;
5141 
5142 	hbq_entry_index = 0;
5143 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5144 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
5145 		phba->hbqs[hbqno].hbqPutIdx      = 0;
5146 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
5147 		phba->hbqs[hbqno].entry_count =
5148 			lpfc_hbq_defs[hbqno]->entry_count;
5149 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5150 			hbq_entry_index, pmb);
5151 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
5152 
5153 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5154 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5155 			   mbxStatus <status>, ring <num> */
5156 
5157 			lpfc_printf_log(phba, KERN_ERR,
5158 					LOG_SLI | LOG_VPORT,
5159 					"1805 Adapter failed to init. "
5160 					"Data: x%x x%x x%x\n",
5161 					pmbox->mbxCommand,
5162 					pmbox->mbxStatus, hbqno);
5163 
5164 			phba->link_state = LPFC_HBA_ERROR;
5165 			mempool_free(pmb, phba->mbox_mem_pool);
5166 			return -ENXIO;
5167 		}
5168 	}
5169 	phba->hbq_count = hbq_count;
5170 
5171 	mempool_free(pmb, phba->mbox_mem_pool);
5172 
5173 	/* Initially populate or replenish the HBQs */
5174 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5175 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5176 	return 0;
5177 }
5178 
5179 /**
5180  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5181  * @phba: Pointer to HBA context object.
5182  *
5183  * This function is called during the SLI initialization to configure
5184  * all the HBQs and post buffers to the HBQ. The caller is not
5185  * required to hold any locks. This function will return zero if successful
5186  * else it will return negative error code.
5187  **/
5188 static int
5189 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5190 {
5191 	phba->hbq_in_use = 1;
5192 	/**
5193 	 * Specific case when the MDS diagnostics is enabled and supported.
5194 	 * The receive buffer count is truncated to manage the incoming
5195 	 * traffic.
5196 	 **/
5197 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5198 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5199 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5200 	else
5201 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5202 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5203 	phba->hbq_count = 1;
5204 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5205 	/* Initially populate or replenish the HBQs */
5206 	return 0;
5207 }
5208 
5209 /**
5210  * lpfc_sli_config_port - Issue config port mailbox command
5211  * @phba: Pointer to HBA context object.
5212  * @sli_mode: sli mode - 2/3
5213  *
5214  * This function is called by the sli initialization code path
5215  * to issue config_port mailbox command. This function restarts the
5216  * HBA firmware and issues a config_port mailbox command to configure
5217  * the SLI interface in the sli mode specified by sli_mode
5218  * variable. The caller is not required to hold any locks.
5219  * The function returns 0 if successful, else returns negative error
5220  * code.
5221  **/
5222 int
5223 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5224 {
5225 	LPFC_MBOXQ_t *pmb;
5226 	uint32_t resetcount = 0, rc = 0, done = 0;
5227 
5228 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5229 	if (!pmb) {
5230 		phba->link_state = LPFC_HBA_ERROR;
5231 		return -ENOMEM;
5232 	}
5233 
5234 	phba->sli_rev = sli_mode;
5235 	while (resetcount < 2 && !done) {
5236 		spin_lock_irq(&phba->hbalock);
5237 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5238 		spin_unlock_irq(&phba->hbalock);
5239 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5240 		lpfc_sli_brdrestart(phba);
5241 		rc = lpfc_sli_chipset_init(phba);
5242 		if (rc)
5243 			break;
5244 
5245 		spin_lock_irq(&phba->hbalock);
5246 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5247 		spin_unlock_irq(&phba->hbalock);
5248 		resetcount++;
5249 
5250 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5251 		 * value of 0 means the call was successful.  Any other
5252 		 * nonzero value is a failure, but if ERESTART is returned,
5253 		 * the driver may reset the HBA and try again.
5254 		 */
5255 		rc = lpfc_config_port_prep(phba);
5256 		if (rc == -ERESTART) {
5257 			phba->link_state = LPFC_LINK_UNKNOWN;
5258 			continue;
5259 		} else if (rc)
5260 			break;
5261 
5262 		phba->link_state = LPFC_INIT_MBX_CMDS;
5263 		lpfc_config_port(phba, pmb);
5264 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5265 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5266 					LPFC_SLI3_HBQ_ENABLED |
5267 					LPFC_SLI3_CRP_ENABLED |
5268 					LPFC_SLI3_DSS_ENABLED);
5269 		if (rc != MBX_SUCCESS) {
5270 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5271 				"0442 Adapter failed to init, mbxCmd x%x "
5272 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5273 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5274 			spin_lock_irq(&phba->hbalock);
5275 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5276 			spin_unlock_irq(&phba->hbalock);
5277 			rc = -ENXIO;
5278 		} else {
5279 			/* Allow asynchronous mailbox command to go through */
5280 			spin_lock_irq(&phba->hbalock);
5281 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5282 			spin_unlock_irq(&phba->hbalock);
5283 			done = 1;
5284 
5285 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5286 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5287 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5288 					"3110 Port did not grant ASABT\n");
5289 		}
5290 	}
5291 	if (!done) {
5292 		rc = -EINVAL;
5293 		goto do_prep_failed;
5294 	}
5295 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5296 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5297 			rc = -ENXIO;
5298 			goto do_prep_failed;
5299 		}
5300 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5301 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5302 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5303 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5304 				phba->max_vpi : phba->max_vports;
5305 
5306 		} else
5307 			phba->max_vpi = 0;
5308 		if (pmb->u.mb.un.varCfgPort.gerbm)
5309 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5310 		if (pmb->u.mb.un.varCfgPort.gcrp)
5311 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5312 
5313 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5314 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5315 
5316 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5317 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5318 				phba->cfg_enable_bg = 0;
5319 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5320 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5321 						"0443 Adapter did not grant "
5322 						"BlockGuard\n");
5323 			}
5324 		}
5325 	} else {
5326 		phba->hbq_get = NULL;
5327 		phba->port_gp = phba->mbox->us.s2.port;
5328 		phba->max_vpi = 0;
5329 	}
5330 do_prep_failed:
5331 	mempool_free(pmb, phba->mbox_mem_pool);
5332 	return rc;
5333 }
5334 
5335 
5336 /**
5337  * lpfc_sli_hba_setup - SLI initialization function
5338  * @phba: Pointer to HBA context object.
5339  *
5340  * This function is the main SLI initialization function. This function
5341  * is called by the HBA initialization code, HBA reset code and HBA
5342  * error attention handler code. Caller is not required to hold any
5343  * locks. This function issues config_port mailbox command to configure
5344  * the SLI, setup iocb rings and HBQ rings. In the end the function
5345  * calls the config_port_post function to issue init_link mailbox
5346  * command and to start the discovery. The function will return zero
5347  * if successful, else it will return negative error code.
5348  **/
5349 int
5350 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5351 {
5352 	uint32_t rc;
5353 	int  i;
5354 	int longs;
5355 
5356 	/* Enable ISR already does config_port because of config_msi mbx */
5357 	if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
5358 		rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5359 		if (rc)
5360 			return -EIO;
5361 		phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
5362 	}
5363 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5364 
5365 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5366 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5367 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5368 		if (!rc) {
5369 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5370 					"2709 This device supports "
5371 					"Advanced Error Reporting (AER)\n");
5372 			spin_lock_irq(&phba->hbalock);
5373 			phba->hba_flag |= HBA_AER_ENABLED;
5374 			spin_unlock_irq(&phba->hbalock);
5375 		} else {
5376 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5377 					"2708 This device does not support "
5378 					"Advanced Error Reporting (AER): %d\n",
5379 					rc);
5380 			phba->cfg_aer_support = 0;
5381 		}
5382 	}
5383 
5384 	if (phba->sli_rev == 3) {
5385 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5386 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5387 	} else {
5388 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5389 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5390 		phba->sli3_options = 0;
5391 	}
5392 
5393 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5394 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5395 			phba->sli_rev, phba->max_vpi);
5396 	rc = lpfc_sli_ring_map(phba);
5397 
5398 	if (rc)
5399 		goto lpfc_sli_hba_setup_error;
5400 
5401 	/* Initialize VPIs. */
5402 	if (phba->sli_rev == LPFC_SLI_REV3) {
5403 		/*
5404 		 * The VPI bitmask and physical ID array are allocated
5405 		 * and initialized once only - at driver load.  A port
5406 		 * reset doesn't need to reinitialize this memory.
5407 		 */
5408 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5409 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5410 			phba->vpi_bmask = kcalloc(longs,
5411 						  sizeof(unsigned long),
5412 						  GFP_KERNEL);
5413 			if (!phba->vpi_bmask) {
5414 				rc = -ENOMEM;
5415 				goto lpfc_sli_hba_setup_error;
5416 			}
5417 
5418 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5419 						sizeof(uint16_t),
5420 						GFP_KERNEL);
5421 			if (!phba->vpi_ids) {
5422 				kfree(phba->vpi_bmask);
5423 				rc = -ENOMEM;
5424 				goto lpfc_sli_hba_setup_error;
5425 			}
5426 			for (i = 0; i < phba->max_vpi; i++)
5427 				phba->vpi_ids[i] = i;
5428 		}
5429 	}
5430 
5431 	/* Init HBQs */
5432 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5433 		rc = lpfc_sli_hbq_setup(phba);
5434 		if (rc)
5435 			goto lpfc_sli_hba_setup_error;
5436 	}
5437 	spin_lock_irq(&phba->hbalock);
5438 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5439 	spin_unlock_irq(&phba->hbalock);
5440 
5441 	rc = lpfc_config_port_post(phba);
5442 	if (rc)
5443 		goto lpfc_sli_hba_setup_error;
5444 
5445 	return rc;
5446 
5447 lpfc_sli_hba_setup_error:
5448 	phba->link_state = LPFC_HBA_ERROR;
5449 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5450 			"0445 Firmware initialization failed\n");
5451 	return rc;
5452 }
5453 
5454 /**
5455  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5456  * @phba: Pointer to HBA context object.
5457  *
5458  * This function issue a dump mailbox command to read config region
5459  * 23 and parse the records in the region and populate driver
5460  * data structure.
5461  **/
5462 static int
5463 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5464 {
5465 	LPFC_MBOXQ_t *mboxq;
5466 	struct lpfc_dmabuf *mp;
5467 	struct lpfc_mqe *mqe;
5468 	uint32_t data_length;
5469 	int rc;
5470 
5471 	/* Program the default value of vlan_id and fc_map */
5472 	phba->valid_vlan = 0;
5473 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5474 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5475 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5476 
5477 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5478 	if (!mboxq)
5479 		return -ENOMEM;
5480 
5481 	mqe = &mboxq->u.mqe;
5482 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5483 		rc = -ENOMEM;
5484 		goto out_free_mboxq;
5485 	}
5486 
5487 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5488 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5489 
5490 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5491 			"(%d):2571 Mailbox cmd x%x Status x%x "
5492 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5493 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5494 			"CQ: x%x x%x x%x x%x\n",
5495 			mboxq->vport ? mboxq->vport->vpi : 0,
5496 			bf_get(lpfc_mqe_command, mqe),
5497 			bf_get(lpfc_mqe_status, mqe),
5498 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5499 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5500 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5501 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5502 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5503 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5504 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5505 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5506 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5507 			mboxq->mcqe.word0,
5508 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5509 			mboxq->mcqe.trailer);
5510 
5511 	if (rc) {
5512 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5513 		kfree(mp);
5514 		rc = -EIO;
5515 		goto out_free_mboxq;
5516 	}
5517 	data_length = mqe->un.mb_words[5];
5518 	if (data_length > DMP_RGN23_SIZE) {
5519 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5520 		kfree(mp);
5521 		rc = -EIO;
5522 		goto out_free_mboxq;
5523 	}
5524 
5525 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5526 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5527 	kfree(mp);
5528 	rc = 0;
5529 
5530 out_free_mboxq:
5531 	mempool_free(mboxq, phba->mbox_mem_pool);
5532 	return rc;
5533 }
5534 
5535 /**
5536  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5537  * @phba: pointer to lpfc hba data structure.
5538  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5539  * @vpd: pointer to the memory to hold resulting port vpd data.
5540  * @vpd_size: On input, the number of bytes allocated to @vpd.
5541  *	      On output, the number of data bytes in @vpd.
5542  *
5543  * This routine executes a READ_REV SLI4 mailbox command.  In
5544  * addition, this routine gets the port vpd data.
5545  *
5546  * Return codes
5547  * 	0 - successful
5548  * 	-ENOMEM - could not allocated memory.
5549  **/
5550 static int
5551 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5552 		    uint8_t *vpd, uint32_t *vpd_size)
5553 {
5554 	int rc = 0;
5555 	uint32_t dma_size;
5556 	struct lpfc_dmabuf *dmabuf;
5557 	struct lpfc_mqe *mqe;
5558 
5559 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5560 	if (!dmabuf)
5561 		return -ENOMEM;
5562 
5563 	/*
5564 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5565 	 * mailbox command.
5566 	 */
5567 	dma_size = *vpd_size;
5568 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5569 					  &dmabuf->phys, GFP_KERNEL);
5570 	if (!dmabuf->virt) {
5571 		kfree(dmabuf);
5572 		return -ENOMEM;
5573 	}
5574 
5575 	/*
5576 	 * The SLI4 implementation of READ_REV conflicts at word1,
5577 	 * bits 31:16 and SLI4 adds vpd functionality not present
5578 	 * in SLI3.  This code corrects the conflicts.
5579 	 */
5580 	lpfc_read_rev(phba, mboxq);
5581 	mqe = &mboxq->u.mqe;
5582 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5583 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5584 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5585 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5586 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5587 
5588 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5589 	if (rc) {
5590 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5591 				  dmabuf->virt, dmabuf->phys);
5592 		kfree(dmabuf);
5593 		return -EIO;
5594 	}
5595 
5596 	/*
5597 	 * The available vpd length cannot be bigger than the
5598 	 * DMA buffer passed to the port.  Catch the less than
5599 	 * case and update the caller's size.
5600 	 */
5601 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5602 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5603 
5604 	memcpy(vpd, dmabuf->virt, *vpd_size);
5605 
5606 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5607 			  dmabuf->virt, dmabuf->phys);
5608 	kfree(dmabuf);
5609 	return 0;
5610 }
5611 
5612 /**
5613  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5614  * @phba: pointer to lpfc hba data structure.
5615  *
5616  * This routine retrieves SLI4 device physical port name this PCI function
5617  * is attached to.
5618  *
5619  * Return codes
5620  *      0 - successful
5621  *      otherwise - failed to retrieve controller attributes
5622  **/
5623 static int
5624 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5625 {
5626 	LPFC_MBOXQ_t *mboxq;
5627 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5628 	struct lpfc_controller_attribute *cntl_attr;
5629 	void *virtaddr = NULL;
5630 	uint32_t alloclen, reqlen;
5631 	uint32_t shdr_status, shdr_add_status;
5632 	union lpfc_sli4_cfg_shdr *shdr;
5633 	int rc;
5634 
5635 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5636 	if (!mboxq)
5637 		return -ENOMEM;
5638 
5639 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5640 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5641 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5642 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5643 			LPFC_SLI4_MBX_NEMBED);
5644 
5645 	if (alloclen < reqlen) {
5646 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5647 				"3084 Allocated DMA memory size (%d) is "
5648 				"less than the requested DMA memory size "
5649 				"(%d)\n", alloclen, reqlen);
5650 		rc = -ENOMEM;
5651 		goto out_free_mboxq;
5652 	}
5653 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5654 	virtaddr = mboxq->sge_array->addr[0];
5655 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5656 	shdr = &mbx_cntl_attr->cfg_shdr;
5657 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5658 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5659 	if (shdr_status || shdr_add_status || rc) {
5660 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5661 				"3085 Mailbox x%x (x%x/x%x) failed, "
5662 				"rc:x%x, status:x%x, add_status:x%x\n",
5663 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5664 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5665 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5666 				rc, shdr_status, shdr_add_status);
5667 		rc = -ENXIO;
5668 		goto out_free_mboxq;
5669 	}
5670 
5671 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5672 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5673 	phba->sli4_hba.lnk_info.lnk_tp =
5674 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5675 	phba->sli4_hba.lnk_info.lnk_no =
5676 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5677 
5678 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5679 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5680 		sizeof(phba->BIOSVersion));
5681 
5682 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5683 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5684 			phba->sli4_hba.lnk_info.lnk_tp,
5685 			phba->sli4_hba.lnk_info.lnk_no,
5686 			phba->BIOSVersion);
5687 out_free_mboxq:
5688 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5689 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
5690 	else
5691 		mempool_free(mboxq, phba->mbox_mem_pool);
5692 	return rc;
5693 }
5694 
5695 /**
5696  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5697  * @phba: pointer to lpfc hba data structure.
5698  *
5699  * This routine retrieves SLI4 device physical port name this PCI function
5700  * is attached to.
5701  *
5702  * Return codes
5703  *      0 - successful
5704  *      otherwise - failed to retrieve physical port name
5705  **/
5706 static int
5707 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5708 {
5709 	LPFC_MBOXQ_t *mboxq;
5710 	struct lpfc_mbx_get_port_name *get_port_name;
5711 	uint32_t shdr_status, shdr_add_status;
5712 	union lpfc_sli4_cfg_shdr *shdr;
5713 	char cport_name = 0;
5714 	int rc;
5715 
5716 	/* We assume nothing at this point */
5717 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5718 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5719 
5720 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5721 	if (!mboxq)
5722 		return -ENOMEM;
5723 	/* obtain link type and link number via READ_CONFIG */
5724 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5725 	lpfc_sli4_read_config(phba);
5726 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5727 		goto retrieve_ppname;
5728 
5729 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5730 	rc = lpfc_sli4_get_ctl_attr(phba);
5731 	if (rc)
5732 		goto out_free_mboxq;
5733 
5734 retrieve_ppname:
5735 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5736 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5737 		sizeof(struct lpfc_mbx_get_port_name) -
5738 		sizeof(struct lpfc_sli4_cfg_mhdr),
5739 		LPFC_SLI4_MBX_EMBED);
5740 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5741 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5742 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5743 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5744 		phba->sli4_hba.lnk_info.lnk_tp);
5745 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5746 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5747 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5748 	if (shdr_status || shdr_add_status || rc) {
5749 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5750 				"3087 Mailbox x%x (x%x/x%x) failed: "
5751 				"rc:x%x, status:x%x, add_status:x%x\n",
5752 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5753 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5754 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5755 				rc, shdr_status, shdr_add_status);
5756 		rc = -ENXIO;
5757 		goto out_free_mboxq;
5758 	}
5759 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5760 	case LPFC_LINK_NUMBER_0:
5761 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5762 				&get_port_name->u.response);
5763 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5764 		break;
5765 	case LPFC_LINK_NUMBER_1:
5766 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5767 				&get_port_name->u.response);
5768 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5769 		break;
5770 	case LPFC_LINK_NUMBER_2:
5771 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5772 				&get_port_name->u.response);
5773 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5774 		break;
5775 	case LPFC_LINK_NUMBER_3:
5776 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5777 				&get_port_name->u.response);
5778 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5779 		break;
5780 	default:
5781 		break;
5782 	}
5783 
5784 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5785 		phba->Port[0] = cport_name;
5786 		phba->Port[1] = '\0';
5787 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5788 				"3091 SLI get port name: %s\n", phba->Port);
5789 	}
5790 
5791 out_free_mboxq:
5792 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5793 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
5794 	else
5795 		mempool_free(mboxq, phba->mbox_mem_pool);
5796 	return rc;
5797 }
5798 
5799 /**
5800  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5801  * @phba: pointer to lpfc hba data structure.
5802  *
5803  * This routine is called to explicitly arm the SLI4 device's completion and
5804  * event queues
5805  **/
5806 static void
5807 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5808 {
5809 	int qidx;
5810 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5811 	struct lpfc_sli4_hdw_queue *qp;
5812 	struct lpfc_queue *eq;
5813 
5814 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5815 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5816 	if (sli4_hba->nvmels_cq)
5817 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5818 					   LPFC_QUEUE_REARM);
5819 
5820 	if (sli4_hba->hdwq) {
5821 		/* Loop thru all Hardware Queues */
5822 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5823 			qp = &sli4_hba->hdwq[qidx];
5824 			/* ARM the corresponding CQ */
5825 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5826 						LPFC_QUEUE_REARM);
5827 		}
5828 
5829 		/* Loop thru all IRQ vectors */
5830 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5831 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5832 			/* ARM the corresponding EQ */
5833 			sli4_hba->sli4_write_eq_db(phba, eq,
5834 						   0, LPFC_QUEUE_REARM);
5835 		}
5836 	}
5837 
5838 	if (phba->nvmet_support) {
5839 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5840 			sli4_hba->sli4_write_cq_db(phba,
5841 				sli4_hba->nvmet_cqset[qidx], 0,
5842 				LPFC_QUEUE_REARM);
5843 		}
5844 	}
5845 }
5846 
5847 /**
5848  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5849  * @phba: Pointer to HBA context object.
5850  * @type: The resource extent type.
5851  * @extnt_count: buffer to hold port available extent count.
5852  * @extnt_size: buffer to hold element count per extent.
5853  *
5854  * This function calls the port and retrievs the number of available
5855  * extents and their size for a particular extent type.
5856  *
5857  * Returns: 0 if successful.  Nonzero otherwise.
5858  **/
5859 int
5860 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5861 			       uint16_t *extnt_count, uint16_t *extnt_size)
5862 {
5863 	int rc = 0;
5864 	uint32_t length;
5865 	uint32_t mbox_tmo;
5866 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5867 	LPFC_MBOXQ_t *mbox;
5868 
5869 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5870 	if (!mbox)
5871 		return -ENOMEM;
5872 
5873 	/* Find out how many extents are available for this resource type */
5874 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5875 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5876 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5877 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5878 			 length, LPFC_SLI4_MBX_EMBED);
5879 
5880 	/* Send an extents count of 0 - the GET doesn't use it. */
5881 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5882 					LPFC_SLI4_MBX_EMBED);
5883 	if (unlikely(rc)) {
5884 		rc = -EIO;
5885 		goto err_exit;
5886 	}
5887 
5888 	if (!phba->sli4_hba.intr_enable)
5889 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5890 	else {
5891 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5892 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5893 	}
5894 	if (unlikely(rc)) {
5895 		rc = -EIO;
5896 		goto err_exit;
5897 	}
5898 
5899 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5900 	if (bf_get(lpfc_mbox_hdr_status,
5901 		   &rsrc_info->header.cfg_shdr.response)) {
5902 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5903 				"2930 Failed to get resource extents "
5904 				"Status 0x%x Add'l Status 0x%x\n",
5905 				bf_get(lpfc_mbox_hdr_status,
5906 				       &rsrc_info->header.cfg_shdr.response),
5907 				bf_get(lpfc_mbox_hdr_add_status,
5908 				       &rsrc_info->header.cfg_shdr.response));
5909 		rc = -EIO;
5910 		goto err_exit;
5911 	}
5912 
5913 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5914 			      &rsrc_info->u.rsp);
5915 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5916 			     &rsrc_info->u.rsp);
5917 
5918 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5919 			"3162 Retrieved extents type-%d from port: count:%d, "
5920 			"size:%d\n", type, *extnt_count, *extnt_size);
5921 
5922 err_exit:
5923 	mempool_free(mbox, phba->mbox_mem_pool);
5924 	return rc;
5925 }
5926 
5927 /**
5928  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5929  * @phba: Pointer to HBA context object.
5930  * @type: The extent type to check.
5931  *
5932  * This function reads the current available extents from the port and checks
5933  * if the extent count or extent size has changed since the last access.
5934  * Callers use this routine post port reset to understand if there is a
5935  * extent reprovisioning requirement.
5936  *
5937  * Returns:
5938  *   -Error: error indicates problem.
5939  *   1: Extent count or size has changed.
5940  *   0: No changes.
5941  **/
5942 static int
5943 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5944 {
5945 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5946 	uint16_t size_diff, rsrc_ext_size;
5947 	int rc = 0;
5948 	struct lpfc_rsrc_blks *rsrc_entry;
5949 	struct list_head *rsrc_blk_list = NULL;
5950 
5951 	size_diff = 0;
5952 	curr_ext_cnt = 0;
5953 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5954 					    &rsrc_ext_cnt,
5955 					    &rsrc_ext_size);
5956 	if (unlikely(rc))
5957 		return -EIO;
5958 
5959 	switch (type) {
5960 	case LPFC_RSC_TYPE_FCOE_RPI:
5961 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5962 		break;
5963 	case LPFC_RSC_TYPE_FCOE_VPI:
5964 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5965 		break;
5966 	case LPFC_RSC_TYPE_FCOE_XRI:
5967 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5968 		break;
5969 	case LPFC_RSC_TYPE_FCOE_VFI:
5970 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5971 		break;
5972 	default:
5973 		break;
5974 	}
5975 
5976 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5977 		curr_ext_cnt++;
5978 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5979 			size_diff++;
5980 	}
5981 
5982 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5983 		rc = 1;
5984 
5985 	return rc;
5986 }
5987 
5988 /**
5989  * lpfc_sli4_cfg_post_extnts -
5990  * @phba: Pointer to HBA context object.
5991  * @extnt_cnt: number of available extents.
5992  * @type: the extent type (rpi, xri, vfi, vpi).
5993  * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5994  * @mbox: pointer to the caller's allocated mailbox structure.
5995  *
5996  * This function executes the extents allocation request.  It also
5997  * takes care of the amount of memory needed to allocate or get the
5998  * allocated extents. It is the caller's responsibility to evaluate
5999  * the response.
6000  *
6001  * Returns:
6002  *   -Error:  Error value describes the condition found.
6003  *   0: if successful
6004  **/
6005 static int
6006 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6007 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6008 {
6009 	int rc = 0;
6010 	uint32_t req_len;
6011 	uint32_t emb_len;
6012 	uint32_t alloc_len, mbox_tmo;
6013 
6014 	/* Calculate the total requested length of the dma memory */
6015 	req_len = extnt_cnt * sizeof(uint16_t);
6016 
6017 	/*
6018 	 * Calculate the size of an embedded mailbox.  The uint32_t
6019 	 * accounts for extents-specific word.
6020 	 */
6021 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6022 		sizeof(uint32_t);
6023 
6024 	/*
6025 	 * Presume the allocation and response will fit into an embedded
6026 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6027 	 */
6028 	*emb = LPFC_SLI4_MBX_EMBED;
6029 	if (req_len > emb_len) {
6030 		req_len = extnt_cnt * sizeof(uint16_t) +
6031 			sizeof(union lpfc_sli4_cfg_shdr) +
6032 			sizeof(uint32_t);
6033 		*emb = LPFC_SLI4_MBX_NEMBED;
6034 	}
6035 
6036 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6037 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6038 				     req_len, *emb);
6039 	if (alloc_len < req_len) {
6040 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6041 			"2982 Allocated DMA memory size (x%x) is "
6042 			"less than the requested DMA memory "
6043 			"size (x%x)\n", alloc_len, req_len);
6044 		return -ENOMEM;
6045 	}
6046 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6047 	if (unlikely(rc))
6048 		return -EIO;
6049 
6050 	if (!phba->sli4_hba.intr_enable)
6051 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6052 	else {
6053 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6054 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6055 	}
6056 
6057 	if (unlikely(rc))
6058 		rc = -EIO;
6059 	return rc;
6060 }
6061 
6062 /**
6063  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6064  * @phba: Pointer to HBA context object.
6065  * @type:  The resource extent type to allocate.
6066  *
6067  * This function allocates the number of elements for the specified
6068  * resource type.
6069  **/
6070 static int
6071 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6072 {
6073 	bool emb = false;
6074 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6075 	uint16_t rsrc_id, rsrc_start, j, k;
6076 	uint16_t *ids;
6077 	int i, rc;
6078 	unsigned long longs;
6079 	unsigned long *bmask;
6080 	struct lpfc_rsrc_blks *rsrc_blks;
6081 	LPFC_MBOXQ_t *mbox;
6082 	uint32_t length;
6083 	struct lpfc_id_range *id_array = NULL;
6084 	void *virtaddr = NULL;
6085 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6086 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6087 	struct list_head *ext_blk_list;
6088 
6089 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6090 					    &rsrc_cnt,
6091 					    &rsrc_size);
6092 	if (unlikely(rc))
6093 		return -EIO;
6094 
6095 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6096 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6097 			"3009 No available Resource Extents "
6098 			"for resource type 0x%x: Count: 0x%x, "
6099 			"Size 0x%x\n", type, rsrc_cnt,
6100 			rsrc_size);
6101 		return -ENOMEM;
6102 	}
6103 
6104 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6105 			"2903 Post resource extents type-0x%x: "
6106 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6107 
6108 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6109 	if (!mbox)
6110 		return -ENOMEM;
6111 
6112 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6113 	if (unlikely(rc)) {
6114 		rc = -EIO;
6115 		goto err_exit;
6116 	}
6117 
6118 	/*
6119 	 * Figure out where the response is located.  Then get local pointers
6120 	 * to the response data.  The port does not guarantee to respond to
6121 	 * all extents counts request so update the local variable with the
6122 	 * allocated count from the port.
6123 	 */
6124 	if (emb == LPFC_SLI4_MBX_EMBED) {
6125 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6126 		id_array = &rsrc_ext->u.rsp.id[0];
6127 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6128 	} else {
6129 		virtaddr = mbox->sge_array->addr[0];
6130 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6131 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6132 		id_array = &n_rsrc->id;
6133 	}
6134 
6135 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6136 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6137 
6138 	/*
6139 	 * Based on the resource size and count, correct the base and max
6140 	 * resource values.
6141 	 */
6142 	length = sizeof(struct lpfc_rsrc_blks);
6143 	switch (type) {
6144 	case LPFC_RSC_TYPE_FCOE_RPI:
6145 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6146 						   sizeof(unsigned long),
6147 						   GFP_KERNEL);
6148 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6149 			rc = -ENOMEM;
6150 			goto err_exit;
6151 		}
6152 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6153 						 sizeof(uint16_t),
6154 						 GFP_KERNEL);
6155 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6156 			kfree(phba->sli4_hba.rpi_bmask);
6157 			rc = -ENOMEM;
6158 			goto err_exit;
6159 		}
6160 
6161 		/*
6162 		 * The next_rpi was initialized with the maximum available
6163 		 * count but the port may allocate a smaller number.  Catch
6164 		 * that case and update the next_rpi.
6165 		 */
6166 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6167 
6168 		/* Initialize local ptrs for common extent processing later. */
6169 		bmask = phba->sli4_hba.rpi_bmask;
6170 		ids = phba->sli4_hba.rpi_ids;
6171 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6172 		break;
6173 	case LPFC_RSC_TYPE_FCOE_VPI:
6174 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6175 					  GFP_KERNEL);
6176 		if (unlikely(!phba->vpi_bmask)) {
6177 			rc = -ENOMEM;
6178 			goto err_exit;
6179 		}
6180 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6181 					 GFP_KERNEL);
6182 		if (unlikely(!phba->vpi_ids)) {
6183 			kfree(phba->vpi_bmask);
6184 			rc = -ENOMEM;
6185 			goto err_exit;
6186 		}
6187 
6188 		/* Initialize local ptrs for common extent processing later. */
6189 		bmask = phba->vpi_bmask;
6190 		ids = phba->vpi_ids;
6191 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6192 		break;
6193 	case LPFC_RSC_TYPE_FCOE_XRI:
6194 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6195 						   sizeof(unsigned long),
6196 						   GFP_KERNEL);
6197 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6198 			rc = -ENOMEM;
6199 			goto err_exit;
6200 		}
6201 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6202 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6203 						 sizeof(uint16_t),
6204 						 GFP_KERNEL);
6205 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6206 			kfree(phba->sli4_hba.xri_bmask);
6207 			rc = -ENOMEM;
6208 			goto err_exit;
6209 		}
6210 
6211 		/* Initialize local ptrs for common extent processing later. */
6212 		bmask = phba->sli4_hba.xri_bmask;
6213 		ids = phba->sli4_hba.xri_ids;
6214 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6215 		break;
6216 	case LPFC_RSC_TYPE_FCOE_VFI:
6217 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6218 						   sizeof(unsigned long),
6219 						   GFP_KERNEL);
6220 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6221 			rc = -ENOMEM;
6222 			goto err_exit;
6223 		}
6224 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6225 						 sizeof(uint16_t),
6226 						 GFP_KERNEL);
6227 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6228 			kfree(phba->sli4_hba.vfi_bmask);
6229 			rc = -ENOMEM;
6230 			goto err_exit;
6231 		}
6232 
6233 		/* Initialize local ptrs for common extent processing later. */
6234 		bmask = phba->sli4_hba.vfi_bmask;
6235 		ids = phba->sli4_hba.vfi_ids;
6236 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6237 		break;
6238 	default:
6239 		/* Unsupported Opcode.  Fail call. */
6240 		id_array = NULL;
6241 		bmask = NULL;
6242 		ids = NULL;
6243 		ext_blk_list = NULL;
6244 		goto err_exit;
6245 	}
6246 
6247 	/*
6248 	 * Complete initializing the extent configuration with the
6249 	 * allocated ids assigned to this function.  The bitmask serves
6250 	 * as an index into the array and manages the available ids.  The
6251 	 * array just stores the ids communicated to the port via the wqes.
6252 	 */
6253 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6254 		if ((i % 2) == 0)
6255 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6256 					 &id_array[k]);
6257 		else
6258 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6259 					 &id_array[k]);
6260 
6261 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6262 		if (unlikely(!rsrc_blks)) {
6263 			rc = -ENOMEM;
6264 			kfree(bmask);
6265 			kfree(ids);
6266 			goto err_exit;
6267 		}
6268 		rsrc_blks->rsrc_start = rsrc_id;
6269 		rsrc_blks->rsrc_size = rsrc_size;
6270 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6271 		rsrc_start = rsrc_id;
6272 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6273 			phba->sli4_hba.io_xri_start = rsrc_start +
6274 				lpfc_sli4_get_iocb_cnt(phba);
6275 		}
6276 
6277 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6278 			ids[j] = rsrc_id;
6279 			rsrc_id++;
6280 			j++;
6281 		}
6282 		/* Entire word processed.  Get next word.*/
6283 		if ((i % 2) == 1)
6284 			k++;
6285 	}
6286  err_exit:
6287 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6288 	return rc;
6289 }
6290 
6291 
6292 
6293 /**
6294  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6295  * @phba: Pointer to HBA context object.
6296  * @type: the extent's type.
6297  *
6298  * This function deallocates all extents of a particular resource type.
6299  * SLI4 does not allow for deallocating a particular extent range.  It
6300  * is the caller's responsibility to release all kernel memory resources.
6301  **/
6302 static int
6303 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6304 {
6305 	int rc;
6306 	uint32_t length, mbox_tmo = 0;
6307 	LPFC_MBOXQ_t *mbox;
6308 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6309 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6310 
6311 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6312 	if (!mbox)
6313 		return -ENOMEM;
6314 
6315 	/*
6316 	 * This function sends an embedded mailbox because it only sends the
6317 	 * the resource type.  All extents of this type are released by the
6318 	 * port.
6319 	 */
6320 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6321 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6322 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6323 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6324 			 length, LPFC_SLI4_MBX_EMBED);
6325 
6326 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6327 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6328 					LPFC_SLI4_MBX_EMBED);
6329 	if (unlikely(rc)) {
6330 		rc = -EIO;
6331 		goto out_free_mbox;
6332 	}
6333 	if (!phba->sli4_hba.intr_enable)
6334 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6335 	else {
6336 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6337 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6338 	}
6339 	if (unlikely(rc)) {
6340 		rc = -EIO;
6341 		goto out_free_mbox;
6342 	}
6343 
6344 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6345 	if (bf_get(lpfc_mbox_hdr_status,
6346 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6347 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6348 				"2919 Failed to release resource extents "
6349 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6350 				"Resource memory not released.\n",
6351 				type,
6352 				bf_get(lpfc_mbox_hdr_status,
6353 				    &dealloc_rsrc->header.cfg_shdr.response),
6354 				bf_get(lpfc_mbox_hdr_add_status,
6355 				    &dealloc_rsrc->header.cfg_shdr.response));
6356 		rc = -EIO;
6357 		goto out_free_mbox;
6358 	}
6359 
6360 	/* Release kernel memory resources for the specific type. */
6361 	switch (type) {
6362 	case LPFC_RSC_TYPE_FCOE_VPI:
6363 		kfree(phba->vpi_bmask);
6364 		kfree(phba->vpi_ids);
6365 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6366 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6367 				    &phba->lpfc_vpi_blk_list, list) {
6368 			list_del_init(&rsrc_blk->list);
6369 			kfree(rsrc_blk);
6370 		}
6371 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6372 		break;
6373 	case LPFC_RSC_TYPE_FCOE_XRI:
6374 		kfree(phba->sli4_hba.xri_bmask);
6375 		kfree(phba->sli4_hba.xri_ids);
6376 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6377 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6378 			list_del_init(&rsrc_blk->list);
6379 			kfree(rsrc_blk);
6380 		}
6381 		break;
6382 	case LPFC_RSC_TYPE_FCOE_VFI:
6383 		kfree(phba->sli4_hba.vfi_bmask);
6384 		kfree(phba->sli4_hba.vfi_ids);
6385 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6386 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6387 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6388 			list_del_init(&rsrc_blk->list);
6389 			kfree(rsrc_blk);
6390 		}
6391 		break;
6392 	case LPFC_RSC_TYPE_FCOE_RPI:
6393 		/* RPI bitmask and physical id array are cleaned up earlier. */
6394 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6395 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6396 			list_del_init(&rsrc_blk->list);
6397 			kfree(rsrc_blk);
6398 		}
6399 		break;
6400 	default:
6401 		break;
6402 	}
6403 
6404 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6405 
6406  out_free_mbox:
6407 	mempool_free(mbox, phba->mbox_mem_pool);
6408 	return rc;
6409 }
6410 
6411 static void
6412 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6413 		  uint32_t feature)
6414 {
6415 	uint32_t len;
6416 
6417 	len = sizeof(struct lpfc_mbx_set_feature) -
6418 		sizeof(struct lpfc_sli4_cfg_mhdr);
6419 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6420 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6421 			 LPFC_SLI4_MBX_EMBED);
6422 
6423 	switch (feature) {
6424 	case LPFC_SET_UE_RECOVERY:
6425 		bf_set(lpfc_mbx_set_feature_UER,
6426 		       &mbox->u.mqe.un.set_feature, 1);
6427 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6428 		mbox->u.mqe.un.set_feature.param_len = 8;
6429 		break;
6430 	case LPFC_SET_MDS_DIAGS:
6431 		bf_set(lpfc_mbx_set_feature_mds,
6432 		       &mbox->u.mqe.un.set_feature, 1);
6433 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6434 		       &mbox->u.mqe.un.set_feature, 1);
6435 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6436 		mbox->u.mqe.un.set_feature.param_len = 8;
6437 		break;
6438 	case LPFC_SET_DUAL_DUMP:
6439 		bf_set(lpfc_mbx_set_feature_dd,
6440 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6441 		bf_set(lpfc_mbx_set_feature_ddquery,
6442 		       &mbox->u.mqe.un.set_feature, 0);
6443 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6444 		mbox->u.mqe.un.set_feature.param_len = 4;
6445 		break;
6446 	}
6447 
6448 	return;
6449 }
6450 
6451 /**
6452  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6453  * @phba: Pointer to HBA context object.
6454  *
6455  * Disable FW logging into host memory on the adapter. To
6456  * be done before reading logs from the host memory.
6457  **/
6458 void
6459 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6460 {
6461 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6462 
6463 	spin_lock_irq(&phba->hbalock);
6464 	ras_fwlog->state = INACTIVE;
6465 	spin_unlock_irq(&phba->hbalock);
6466 
6467 	/* Disable FW logging to host memory */
6468 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6469 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6470 
6471 	/* Wait 10ms for firmware to stop using DMA buffer */
6472 	usleep_range(10 * 1000, 20 * 1000);
6473 }
6474 
6475 /**
6476  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6477  * @phba: Pointer to HBA context object.
6478  *
6479  * This function is called to free memory allocated for RAS FW logging
6480  * support in the driver.
6481  **/
6482 void
6483 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6484 {
6485 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6486 	struct lpfc_dmabuf *dmabuf, *next;
6487 
6488 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6489 		list_for_each_entry_safe(dmabuf, next,
6490 				    &ras_fwlog->fwlog_buff_list,
6491 				    list) {
6492 			list_del(&dmabuf->list);
6493 			dma_free_coherent(&phba->pcidev->dev,
6494 					  LPFC_RAS_MAX_ENTRY_SIZE,
6495 					  dmabuf->virt, dmabuf->phys);
6496 			kfree(dmabuf);
6497 		}
6498 	}
6499 
6500 	if (ras_fwlog->lwpd.virt) {
6501 		dma_free_coherent(&phba->pcidev->dev,
6502 				  sizeof(uint32_t) * 2,
6503 				  ras_fwlog->lwpd.virt,
6504 				  ras_fwlog->lwpd.phys);
6505 		ras_fwlog->lwpd.virt = NULL;
6506 	}
6507 
6508 	spin_lock_irq(&phba->hbalock);
6509 	ras_fwlog->state = INACTIVE;
6510 	spin_unlock_irq(&phba->hbalock);
6511 }
6512 
6513 /**
6514  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6515  * @phba: Pointer to HBA context object.
6516  * @fwlog_buff_count: Count of buffers to be created.
6517  *
6518  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6519  * to update FW log is posted to the adapter.
6520  * Buffer count is calculated based on module param ras_fwlog_buffsize
6521  * Size of each buffer posted to FW is 64K.
6522  **/
6523 
6524 static int
6525 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6526 			uint32_t fwlog_buff_count)
6527 {
6528 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6529 	struct lpfc_dmabuf *dmabuf;
6530 	int rc = 0, i = 0;
6531 
6532 	/* Initialize List */
6533 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6534 
6535 	/* Allocate memory for the LWPD */
6536 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6537 					    sizeof(uint32_t) * 2,
6538 					    &ras_fwlog->lwpd.phys,
6539 					    GFP_KERNEL);
6540 	if (!ras_fwlog->lwpd.virt) {
6541 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6542 				"6185 LWPD Memory Alloc Failed\n");
6543 
6544 		return -ENOMEM;
6545 	}
6546 
6547 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6548 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6549 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6550 				 GFP_KERNEL);
6551 		if (!dmabuf) {
6552 			rc = -ENOMEM;
6553 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6554 					"6186 Memory Alloc failed FW logging");
6555 			goto free_mem;
6556 		}
6557 
6558 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6559 						  LPFC_RAS_MAX_ENTRY_SIZE,
6560 						  &dmabuf->phys, GFP_KERNEL);
6561 		if (!dmabuf->virt) {
6562 			kfree(dmabuf);
6563 			rc = -ENOMEM;
6564 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6565 					"6187 DMA Alloc Failed FW logging");
6566 			goto free_mem;
6567 		}
6568 		dmabuf->buffer_tag = i;
6569 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6570 	}
6571 
6572 free_mem:
6573 	if (rc)
6574 		lpfc_sli4_ras_dma_free(phba);
6575 
6576 	return rc;
6577 }
6578 
6579 /**
6580  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6581  * @phba: pointer to lpfc hba data structure.
6582  * @pmb: pointer to the driver internal queue element for mailbox command.
6583  *
6584  * Completion handler for driver's RAS MBX command to the device.
6585  **/
6586 static void
6587 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6588 {
6589 	MAILBOX_t *mb;
6590 	union lpfc_sli4_cfg_shdr *shdr;
6591 	uint32_t shdr_status, shdr_add_status;
6592 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6593 
6594 	mb = &pmb->u.mb;
6595 
6596 	shdr = (union lpfc_sli4_cfg_shdr *)
6597 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6598 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6599 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6600 
6601 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6602 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6603 				"6188 FW LOG mailbox "
6604 				"completed with status x%x add_status x%x,"
6605 				" mbx status x%x\n",
6606 				shdr_status, shdr_add_status, mb->mbxStatus);
6607 
6608 		ras_fwlog->ras_hwsupport = false;
6609 		goto disable_ras;
6610 	}
6611 
6612 	spin_lock_irq(&phba->hbalock);
6613 	ras_fwlog->state = ACTIVE;
6614 	spin_unlock_irq(&phba->hbalock);
6615 	mempool_free(pmb, phba->mbox_mem_pool);
6616 
6617 	return;
6618 
6619 disable_ras:
6620 	/* Free RAS DMA memory */
6621 	lpfc_sli4_ras_dma_free(phba);
6622 	mempool_free(pmb, phba->mbox_mem_pool);
6623 }
6624 
6625 /**
6626  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6627  * @phba: pointer to lpfc hba data structure.
6628  * @fwlog_level: Logging verbosity level.
6629  * @fwlog_enable: Enable/Disable logging.
6630  *
6631  * Initialize memory and post mailbox command to enable FW logging in host
6632  * memory.
6633  **/
6634 int
6635 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6636 			 uint32_t fwlog_level,
6637 			 uint32_t fwlog_enable)
6638 {
6639 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6640 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6641 	struct lpfc_dmabuf *dmabuf;
6642 	LPFC_MBOXQ_t *mbox;
6643 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6644 	int rc = 0;
6645 
6646 	spin_lock_irq(&phba->hbalock);
6647 	ras_fwlog->state = INACTIVE;
6648 	spin_unlock_irq(&phba->hbalock);
6649 
6650 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6651 			  phba->cfg_ras_fwlog_buffsize);
6652 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6653 
6654 	/*
6655 	 * If re-enabling FW logging support use earlier allocated
6656 	 * DMA buffers while posting MBX command.
6657 	 **/
6658 	if (!ras_fwlog->lwpd.virt) {
6659 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6660 		if (rc) {
6661 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6662 					"6189 FW Log Memory Allocation Failed");
6663 			return rc;
6664 		}
6665 	}
6666 
6667 	/* Setup Mailbox command */
6668 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6669 	if (!mbox) {
6670 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6671 				"6190 RAS MBX Alloc Failed");
6672 		rc = -ENOMEM;
6673 		goto mem_free;
6674 	}
6675 
6676 	ras_fwlog->fw_loglevel = fwlog_level;
6677 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6678 		sizeof(struct lpfc_sli4_cfg_mhdr));
6679 
6680 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6681 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6682 			 len, LPFC_SLI4_MBX_EMBED);
6683 
6684 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6685 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6686 	       fwlog_enable);
6687 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6688 	       ras_fwlog->fw_loglevel);
6689 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6690 	       ras_fwlog->fw_buffcount);
6691 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6692 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6693 
6694 	/* Update DMA buffer address */
6695 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6696 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6697 
6698 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6699 			putPaddrLow(dmabuf->phys);
6700 
6701 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6702 			putPaddrHigh(dmabuf->phys);
6703 	}
6704 
6705 	/* Update LPWD address */
6706 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6707 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6708 
6709 	spin_lock_irq(&phba->hbalock);
6710 	ras_fwlog->state = REG_INPROGRESS;
6711 	spin_unlock_irq(&phba->hbalock);
6712 	mbox->vport = phba->pport;
6713 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6714 
6715 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6716 
6717 	if (rc == MBX_NOT_FINISHED) {
6718 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6719 				"6191 FW-Log Mailbox failed. "
6720 				"status %d mbxStatus : x%x", rc,
6721 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6722 		mempool_free(mbox, phba->mbox_mem_pool);
6723 		rc = -EIO;
6724 		goto mem_free;
6725 	} else
6726 		rc = 0;
6727 mem_free:
6728 	if (rc)
6729 		lpfc_sli4_ras_dma_free(phba);
6730 
6731 	return rc;
6732 }
6733 
6734 /**
6735  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6736  * @phba: Pointer to HBA context object.
6737  *
6738  * Check if RAS is supported on the adapter and initialize it.
6739  **/
6740 void
6741 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6742 {
6743 	/* Check RAS FW Log needs to be enabled or not */
6744 	if (lpfc_check_fwlog_support(phba))
6745 		return;
6746 
6747 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6748 				 LPFC_RAS_ENABLE_LOGGING);
6749 }
6750 
6751 /**
6752  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6753  * @phba: Pointer to HBA context object.
6754  *
6755  * This function allocates all SLI4 resource identifiers.
6756  **/
6757 int
6758 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6759 {
6760 	int i, rc, error = 0;
6761 	uint16_t count, base;
6762 	unsigned long longs;
6763 
6764 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6765 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6766 	if (phba->sli4_hba.extents_in_use) {
6767 		/*
6768 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6769 		 * resource extent count must be read and allocated before
6770 		 * provisioning the resource id arrays.
6771 		 */
6772 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6773 		    LPFC_IDX_RSRC_RDY) {
6774 			/*
6775 			 * Extent-based resources are set - the driver could
6776 			 * be in a port reset. Figure out if any corrective
6777 			 * actions need to be taken.
6778 			 */
6779 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6780 						 LPFC_RSC_TYPE_FCOE_VFI);
6781 			if (rc != 0)
6782 				error++;
6783 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6784 						 LPFC_RSC_TYPE_FCOE_VPI);
6785 			if (rc != 0)
6786 				error++;
6787 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6788 						 LPFC_RSC_TYPE_FCOE_XRI);
6789 			if (rc != 0)
6790 				error++;
6791 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6792 						 LPFC_RSC_TYPE_FCOE_RPI);
6793 			if (rc != 0)
6794 				error++;
6795 
6796 			/*
6797 			 * It's possible that the number of resources
6798 			 * provided to this port instance changed between
6799 			 * resets.  Detect this condition and reallocate
6800 			 * resources.  Otherwise, there is no action.
6801 			 */
6802 			if (error) {
6803 				lpfc_printf_log(phba, KERN_INFO,
6804 						LOG_MBOX | LOG_INIT,
6805 						"2931 Detected extent resource "
6806 						"change.  Reallocating all "
6807 						"extents.\n");
6808 				rc = lpfc_sli4_dealloc_extent(phba,
6809 						 LPFC_RSC_TYPE_FCOE_VFI);
6810 				rc = lpfc_sli4_dealloc_extent(phba,
6811 						 LPFC_RSC_TYPE_FCOE_VPI);
6812 				rc = lpfc_sli4_dealloc_extent(phba,
6813 						 LPFC_RSC_TYPE_FCOE_XRI);
6814 				rc = lpfc_sli4_dealloc_extent(phba,
6815 						 LPFC_RSC_TYPE_FCOE_RPI);
6816 			} else
6817 				return 0;
6818 		}
6819 
6820 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6821 		if (unlikely(rc))
6822 			goto err_exit;
6823 
6824 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6825 		if (unlikely(rc))
6826 			goto err_exit;
6827 
6828 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6829 		if (unlikely(rc))
6830 			goto err_exit;
6831 
6832 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6833 		if (unlikely(rc))
6834 			goto err_exit;
6835 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6836 		       LPFC_IDX_RSRC_RDY);
6837 		return rc;
6838 	} else {
6839 		/*
6840 		 * The port does not support resource extents.  The XRI, VPI,
6841 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6842 		 * Just allocate the bitmasks and provision the resource id
6843 		 * arrays.  If a port reset is active, the resources don't
6844 		 * need any action - just exit.
6845 		 */
6846 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6847 		    LPFC_IDX_RSRC_RDY) {
6848 			lpfc_sli4_dealloc_resource_identifiers(phba);
6849 			lpfc_sli4_remove_rpis(phba);
6850 		}
6851 		/* RPIs. */
6852 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6853 		if (count <= 0) {
6854 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6855 					"3279 Invalid provisioning of "
6856 					"rpi:%d\n", count);
6857 			rc = -EINVAL;
6858 			goto err_exit;
6859 		}
6860 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6861 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6862 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6863 						   sizeof(unsigned long),
6864 						   GFP_KERNEL);
6865 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6866 			rc = -ENOMEM;
6867 			goto err_exit;
6868 		}
6869 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6870 						 GFP_KERNEL);
6871 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6872 			rc = -ENOMEM;
6873 			goto free_rpi_bmask;
6874 		}
6875 
6876 		for (i = 0; i < count; i++)
6877 			phba->sli4_hba.rpi_ids[i] = base + i;
6878 
6879 		/* VPIs. */
6880 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6881 		if (count <= 0) {
6882 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6883 					"3280 Invalid provisioning of "
6884 					"vpi:%d\n", count);
6885 			rc = -EINVAL;
6886 			goto free_rpi_ids;
6887 		}
6888 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6889 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6890 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6891 					  GFP_KERNEL);
6892 		if (unlikely(!phba->vpi_bmask)) {
6893 			rc = -ENOMEM;
6894 			goto free_rpi_ids;
6895 		}
6896 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6897 					GFP_KERNEL);
6898 		if (unlikely(!phba->vpi_ids)) {
6899 			rc = -ENOMEM;
6900 			goto free_vpi_bmask;
6901 		}
6902 
6903 		for (i = 0; i < count; i++)
6904 			phba->vpi_ids[i] = base + i;
6905 
6906 		/* XRIs. */
6907 		count = phba->sli4_hba.max_cfg_param.max_xri;
6908 		if (count <= 0) {
6909 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6910 					"3281 Invalid provisioning of "
6911 					"xri:%d\n", count);
6912 			rc = -EINVAL;
6913 			goto free_vpi_ids;
6914 		}
6915 		base = phba->sli4_hba.max_cfg_param.xri_base;
6916 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6917 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6918 						   sizeof(unsigned long),
6919 						   GFP_KERNEL);
6920 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6921 			rc = -ENOMEM;
6922 			goto free_vpi_ids;
6923 		}
6924 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6925 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6926 						 GFP_KERNEL);
6927 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6928 			rc = -ENOMEM;
6929 			goto free_xri_bmask;
6930 		}
6931 
6932 		for (i = 0; i < count; i++)
6933 			phba->sli4_hba.xri_ids[i] = base + i;
6934 
6935 		/* VFIs. */
6936 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6937 		if (count <= 0) {
6938 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6939 					"3282 Invalid provisioning of "
6940 					"vfi:%d\n", count);
6941 			rc = -EINVAL;
6942 			goto free_xri_ids;
6943 		}
6944 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6945 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6946 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6947 						   sizeof(unsigned long),
6948 						   GFP_KERNEL);
6949 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6950 			rc = -ENOMEM;
6951 			goto free_xri_ids;
6952 		}
6953 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6954 						 GFP_KERNEL);
6955 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6956 			rc = -ENOMEM;
6957 			goto free_vfi_bmask;
6958 		}
6959 
6960 		for (i = 0; i < count; i++)
6961 			phba->sli4_hba.vfi_ids[i] = base + i;
6962 
6963 		/*
6964 		 * Mark all resources ready.  An HBA reset doesn't need
6965 		 * to reset the initialization.
6966 		 */
6967 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6968 		       LPFC_IDX_RSRC_RDY);
6969 		return 0;
6970 	}
6971 
6972  free_vfi_bmask:
6973 	kfree(phba->sli4_hba.vfi_bmask);
6974 	phba->sli4_hba.vfi_bmask = NULL;
6975  free_xri_ids:
6976 	kfree(phba->sli4_hba.xri_ids);
6977 	phba->sli4_hba.xri_ids = NULL;
6978  free_xri_bmask:
6979 	kfree(phba->sli4_hba.xri_bmask);
6980 	phba->sli4_hba.xri_bmask = NULL;
6981  free_vpi_ids:
6982 	kfree(phba->vpi_ids);
6983 	phba->vpi_ids = NULL;
6984  free_vpi_bmask:
6985 	kfree(phba->vpi_bmask);
6986 	phba->vpi_bmask = NULL;
6987  free_rpi_ids:
6988 	kfree(phba->sli4_hba.rpi_ids);
6989 	phba->sli4_hba.rpi_ids = NULL;
6990  free_rpi_bmask:
6991 	kfree(phba->sli4_hba.rpi_bmask);
6992 	phba->sli4_hba.rpi_bmask = NULL;
6993  err_exit:
6994 	return rc;
6995 }
6996 
6997 /**
6998  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6999  * @phba: Pointer to HBA context object.
7000  *
7001  * This function allocates the number of elements for the specified
7002  * resource type.
7003  **/
7004 int
7005 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7006 {
7007 	if (phba->sli4_hba.extents_in_use) {
7008 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7009 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7010 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7011 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7012 	} else {
7013 		kfree(phba->vpi_bmask);
7014 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
7015 		kfree(phba->vpi_ids);
7016 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7017 		kfree(phba->sli4_hba.xri_bmask);
7018 		kfree(phba->sli4_hba.xri_ids);
7019 		kfree(phba->sli4_hba.vfi_bmask);
7020 		kfree(phba->sli4_hba.vfi_ids);
7021 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7022 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7023 	}
7024 
7025 	return 0;
7026 }
7027 
7028 /**
7029  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7030  * @phba: Pointer to HBA context object.
7031  * @type: The resource extent type.
7032  * @extnt_cnt: buffer to hold port extent count response
7033  * @extnt_size: buffer to hold port extent size response.
7034  *
7035  * This function calls the port to read the host allocated extents
7036  * for a particular type.
7037  **/
7038 int
7039 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7040 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
7041 {
7042 	bool emb;
7043 	int rc = 0;
7044 	uint16_t curr_blks = 0;
7045 	uint32_t req_len, emb_len;
7046 	uint32_t alloc_len, mbox_tmo;
7047 	struct list_head *blk_list_head;
7048 	struct lpfc_rsrc_blks *rsrc_blk;
7049 	LPFC_MBOXQ_t *mbox;
7050 	void *virtaddr = NULL;
7051 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7052 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7053 	union  lpfc_sli4_cfg_shdr *shdr;
7054 
7055 	switch (type) {
7056 	case LPFC_RSC_TYPE_FCOE_VPI:
7057 		blk_list_head = &phba->lpfc_vpi_blk_list;
7058 		break;
7059 	case LPFC_RSC_TYPE_FCOE_XRI:
7060 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7061 		break;
7062 	case LPFC_RSC_TYPE_FCOE_VFI:
7063 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7064 		break;
7065 	case LPFC_RSC_TYPE_FCOE_RPI:
7066 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7067 		break;
7068 	default:
7069 		return -EIO;
7070 	}
7071 
7072 	/* Count the number of extents currently allocatd for this type. */
7073 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
7074 		if (curr_blks == 0) {
7075 			/*
7076 			 * The GET_ALLOCATED mailbox does not return the size,
7077 			 * just the count.  The size should be just the size
7078 			 * stored in the current allocated block and all sizes
7079 			 * for an extent type are the same so set the return
7080 			 * value now.
7081 			 */
7082 			*extnt_size = rsrc_blk->rsrc_size;
7083 		}
7084 		curr_blks++;
7085 	}
7086 
7087 	/*
7088 	 * Calculate the size of an embedded mailbox.  The uint32_t
7089 	 * accounts for extents-specific word.
7090 	 */
7091 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7092 		sizeof(uint32_t);
7093 
7094 	/*
7095 	 * Presume the allocation and response will fit into an embedded
7096 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
7097 	 */
7098 	emb = LPFC_SLI4_MBX_EMBED;
7099 	req_len = emb_len;
7100 	if (req_len > emb_len) {
7101 		req_len = curr_blks * sizeof(uint16_t) +
7102 			sizeof(union lpfc_sli4_cfg_shdr) +
7103 			sizeof(uint32_t);
7104 		emb = LPFC_SLI4_MBX_NEMBED;
7105 	}
7106 
7107 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7108 	if (!mbox)
7109 		return -ENOMEM;
7110 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7111 
7112 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7113 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7114 				     req_len, emb);
7115 	if (alloc_len < req_len) {
7116 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7117 			"2983 Allocated DMA memory size (x%x) is "
7118 			"less than the requested DMA memory "
7119 			"size (x%x)\n", alloc_len, req_len);
7120 		rc = -ENOMEM;
7121 		goto err_exit;
7122 	}
7123 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7124 	if (unlikely(rc)) {
7125 		rc = -EIO;
7126 		goto err_exit;
7127 	}
7128 
7129 	if (!phba->sli4_hba.intr_enable)
7130 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7131 	else {
7132 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7133 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7134 	}
7135 
7136 	if (unlikely(rc)) {
7137 		rc = -EIO;
7138 		goto err_exit;
7139 	}
7140 
7141 	/*
7142 	 * Figure out where the response is located.  Then get local pointers
7143 	 * to the response data.  The port does not guarantee to respond to
7144 	 * all extents counts request so update the local variable with the
7145 	 * allocated count from the port.
7146 	 */
7147 	if (emb == LPFC_SLI4_MBX_EMBED) {
7148 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7149 		shdr = &rsrc_ext->header.cfg_shdr;
7150 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7151 	} else {
7152 		virtaddr = mbox->sge_array->addr[0];
7153 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7154 		shdr = &n_rsrc->cfg_shdr;
7155 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7156 	}
7157 
7158 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7159 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7160 			"2984 Failed to read allocated resources "
7161 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7162 			type,
7163 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7164 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7165 		rc = -EIO;
7166 		goto err_exit;
7167 	}
7168  err_exit:
7169 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7170 	return rc;
7171 }
7172 
7173 /**
7174  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7175  * @phba: pointer to lpfc hba data structure.
7176  * @sgl_list: linked link of sgl buffers to post
7177  * @cnt: number of linked list buffers
7178  *
7179  * This routine walks the list of buffers that have been allocated and
7180  * repost them to the port by using SGL block post. This is needed after a
7181  * pci_function_reset/warm_start or start. It attempts to construct blocks
7182  * of buffer sgls which contains contiguous xris and uses the non-embedded
7183  * SGL block post mailbox commands to post them to the port. For single
7184  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7185  * mailbox command for posting.
7186  *
7187  * Returns: 0 = success, non-zero failure.
7188  **/
7189 static int
7190 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7191 			  struct list_head *sgl_list, int cnt)
7192 {
7193 	struct lpfc_sglq *sglq_entry = NULL;
7194 	struct lpfc_sglq *sglq_entry_next = NULL;
7195 	struct lpfc_sglq *sglq_entry_first = NULL;
7196 	int status, total_cnt;
7197 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7198 	int last_xritag = NO_XRI;
7199 	LIST_HEAD(prep_sgl_list);
7200 	LIST_HEAD(blck_sgl_list);
7201 	LIST_HEAD(allc_sgl_list);
7202 	LIST_HEAD(post_sgl_list);
7203 	LIST_HEAD(free_sgl_list);
7204 
7205 	spin_lock_irq(&phba->hbalock);
7206 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7207 	list_splice_init(sgl_list, &allc_sgl_list);
7208 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7209 	spin_unlock_irq(&phba->hbalock);
7210 
7211 	total_cnt = cnt;
7212 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7213 				 &allc_sgl_list, list) {
7214 		list_del_init(&sglq_entry->list);
7215 		block_cnt++;
7216 		if ((last_xritag != NO_XRI) &&
7217 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7218 			/* a hole in xri block, form a sgl posting block */
7219 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7220 			post_cnt = block_cnt - 1;
7221 			/* prepare list for next posting block */
7222 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7223 			block_cnt = 1;
7224 		} else {
7225 			/* prepare list for next posting block */
7226 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7227 			/* enough sgls for non-embed sgl mbox command */
7228 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7229 				list_splice_init(&prep_sgl_list,
7230 						 &blck_sgl_list);
7231 				post_cnt = block_cnt;
7232 				block_cnt = 0;
7233 			}
7234 		}
7235 		num_posted++;
7236 
7237 		/* keep track of last sgl's xritag */
7238 		last_xritag = sglq_entry->sli4_xritag;
7239 
7240 		/* end of repost sgl list condition for buffers */
7241 		if (num_posted == total_cnt) {
7242 			if (post_cnt == 0) {
7243 				list_splice_init(&prep_sgl_list,
7244 						 &blck_sgl_list);
7245 				post_cnt = block_cnt;
7246 			} else if (block_cnt == 1) {
7247 				status = lpfc_sli4_post_sgl(phba,
7248 						sglq_entry->phys, 0,
7249 						sglq_entry->sli4_xritag);
7250 				if (!status) {
7251 					/* successful, put sgl to posted list */
7252 					list_add_tail(&sglq_entry->list,
7253 						      &post_sgl_list);
7254 				} else {
7255 					/* Failure, put sgl to free list */
7256 					lpfc_printf_log(phba, KERN_WARNING,
7257 						LOG_SLI,
7258 						"3159 Failed to post "
7259 						"sgl, xritag:x%x\n",
7260 						sglq_entry->sli4_xritag);
7261 					list_add_tail(&sglq_entry->list,
7262 						      &free_sgl_list);
7263 					total_cnt--;
7264 				}
7265 			}
7266 		}
7267 
7268 		/* continue until a nembed page worth of sgls */
7269 		if (post_cnt == 0)
7270 			continue;
7271 
7272 		/* post the buffer list sgls as a block */
7273 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7274 						 post_cnt);
7275 
7276 		if (!status) {
7277 			/* success, put sgl list to posted sgl list */
7278 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7279 		} else {
7280 			/* Failure, put sgl list to free sgl list */
7281 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7282 							    struct lpfc_sglq,
7283 							    list);
7284 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7285 					"3160 Failed to post sgl-list, "
7286 					"xritag:x%x-x%x\n",
7287 					sglq_entry_first->sli4_xritag,
7288 					(sglq_entry_first->sli4_xritag +
7289 					 post_cnt - 1));
7290 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7291 			total_cnt -= post_cnt;
7292 		}
7293 
7294 		/* don't reset xirtag due to hole in xri block */
7295 		if (block_cnt == 0)
7296 			last_xritag = NO_XRI;
7297 
7298 		/* reset sgl post count for next round of posting */
7299 		post_cnt = 0;
7300 	}
7301 
7302 	/* free the sgls failed to post */
7303 	lpfc_free_sgl_list(phba, &free_sgl_list);
7304 
7305 	/* push sgls posted to the available list */
7306 	if (!list_empty(&post_sgl_list)) {
7307 		spin_lock_irq(&phba->hbalock);
7308 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7309 		list_splice_init(&post_sgl_list, sgl_list);
7310 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7311 		spin_unlock_irq(&phba->hbalock);
7312 	} else {
7313 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7314 				"3161 Failure to post sgl to port.\n");
7315 		return -EIO;
7316 	}
7317 
7318 	/* return the number of XRIs actually posted */
7319 	return total_cnt;
7320 }
7321 
7322 /**
7323  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7324  * @phba: pointer to lpfc hba data structure.
7325  *
7326  * This routine walks the list of nvme buffers that have been allocated and
7327  * repost them to the port by using SGL block post. This is needed after a
7328  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7329  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7330  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7331  *
7332  * Returns: 0 = success, non-zero failure.
7333  **/
7334 static int
7335 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7336 {
7337 	LIST_HEAD(post_nblist);
7338 	int num_posted, rc = 0;
7339 
7340 	/* get all NVME buffers need to repost to a local list */
7341 	lpfc_io_buf_flush(phba, &post_nblist);
7342 
7343 	/* post the list of nvme buffer sgls to port if available */
7344 	if (!list_empty(&post_nblist)) {
7345 		num_posted = lpfc_sli4_post_io_sgl_list(
7346 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7347 		/* failed to post any nvme buffer, return error */
7348 		if (num_posted == 0)
7349 			rc = -EIO;
7350 	}
7351 	return rc;
7352 }
7353 
7354 static void
7355 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7356 {
7357 	uint32_t len;
7358 
7359 	len = sizeof(struct lpfc_mbx_set_host_data) -
7360 		sizeof(struct lpfc_sli4_cfg_mhdr);
7361 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7362 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7363 			 LPFC_SLI4_MBX_EMBED);
7364 
7365 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7366 	mbox->u.mqe.un.set_host_data.param_len =
7367 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7368 	snprintf(mbox->u.mqe.un.set_host_data.data,
7369 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7370 		 "Linux %s v"LPFC_DRIVER_VERSION,
7371 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7372 }
7373 
7374 int
7375 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7376 		    struct lpfc_queue *drq, int count, int idx)
7377 {
7378 	int rc, i;
7379 	struct lpfc_rqe hrqe;
7380 	struct lpfc_rqe drqe;
7381 	struct lpfc_rqb *rqbp;
7382 	unsigned long flags;
7383 	struct rqb_dmabuf *rqb_buffer;
7384 	LIST_HEAD(rqb_buf_list);
7385 
7386 	rqbp = hrq->rqbp;
7387 	for (i = 0; i < count; i++) {
7388 		spin_lock_irqsave(&phba->hbalock, flags);
7389 		/* IF RQ is already full, don't bother */
7390 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7391 			spin_unlock_irqrestore(&phba->hbalock, flags);
7392 			break;
7393 		}
7394 		spin_unlock_irqrestore(&phba->hbalock, flags);
7395 
7396 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7397 		if (!rqb_buffer)
7398 			break;
7399 		rqb_buffer->hrq = hrq;
7400 		rqb_buffer->drq = drq;
7401 		rqb_buffer->idx = idx;
7402 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7403 	}
7404 
7405 	spin_lock_irqsave(&phba->hbalock, flags);
7406 	while (!list_empty(&rqb_buf_list)) {
7407 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7408 				 hbuf.list);
7409 
7410 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7411 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7412 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7413 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7414 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7415 		if (rc < 0) {
7416 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7417 					"6421 Cannot post to HRQ %d: %x %x %x "
7418 					"DRQ %x %x\n",
7419 					hrq->queue_id,
7420 					hrq->host_index,
7421 					hrq->hba_index,
7422 					hrq->entry_count,
7423 					drq->host_index,
7424 					drq->hba_index);
7425 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7426 		} else {
7427 			list_add_tail(&rqb_buffer->hbuf.list,
7428 				      &rqbp->rqb_buffer_list);
7429 			rqbp->buffer_count++;
7430 		}
7431 	}
7432 	spin_unlock_irqrestore(&phba->hbalock, flags);
7433 	return 1;
7434 }
7435 
7436 /**
7437  * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7438  * @phba: pointer to lpfc hba data structure.
7439  *
7440  * This routine initializes the per-cq idle_stat to dynamically dictate
7441  * polling decisions.
7442  *
7443  * Return codes:
7444  *   None
7445  **/
7446 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7447 {
7448 	int i;
7449 	struct lpfc_sli4_hdw_queue *hdwq;
7450 	struct lpfc_queue *cq;
7451 	struct lpfc_idle_stat *idle_stat;
7452 	u64 wall;
7453 
7454 	for_each_present_cpu(i) {
7455 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7456 		cq = hdwq->io_cq;
7457 
7458 		/* Skip if we've already handled this cq's primary CPU */
7459 		if (cq->chann != i)
7460 			continue;
7461 
7462 		idle_stat = &phba->sli4_hba.idle_stat[i];
7463 
7464 		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7465 		idle_stat->prev_wall = wall;
7466 
7467 		if (phba->nvmet_support)
7468 			cq->poll_mode = LPFC_QUEUE_WORK;
7469 		else
7470 			cq->poll_mode = LPFC_IRQ_POLL;
7471 	}
7472 
7473 	if (!phba->nvmet_support)
7474 		schedule_delayed_work(&phba->idle_stat_delay_work,
7475 				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7476 }
7477 
7478 static void lpfc_sli4_dip(struct lpfc_hba *phba)
7479 {
7480 	uint32_t if_type;
7481 
7482 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7483 	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7484 	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7485 		struct lpfc_register reg_data;
7486 
7487 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7488 			       &reg_data.word0))
7489 			return;
7490 
7491 		if (bf_get(lpfc_sliport_status_dip, &reg_data))
7492 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7493 					"2904 Firmware Dump Image Present"
7494 					" on Adapter");
7495 	}
7496 }
7497 
7498 /**
7499  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7500  * @phba: Pointer to HBA context object.
7501  *
7502  * This function is the main SLI4 device initialization PCI function. This
7503  * function is called by the HBA initialization code, HBA reset code and
7504  * HBA error attention handler code. Caller is not required to hold any
7505  * locks.
7506  **/
7507 int
7508 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7509 {
7510 	int rc, i, cnt, len, dd;
7511 	LPFC_MBOXQ_t *mboxq;
7512 	struct lpfc_mqe *mqe;
7513 	uint8_t *vpd;
7514 	uint32_t vpd_size;
7515 	uint32_t ftr_rsp = 0;
7516 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7517 	struct lpfc_vport *vport = phba->pport;
7518 	struct lpfc_dmabuf *mp;
7519 	struct lpfc_rqb *rqbp;
7520 
7521 	/* Perform a PCI function reset to start from clean */
7522 	rc = lpfc_pci_function_reset(phba);
7523 	if (unlikely(rc))
7524 		return -ENODEV;
7525 
7526 	/* Check the HBA Host Status Register for readyness */
7527 	rc = lpfc_sli4_post_status_check(phba);
7528 	if (unlikely(rc))
7529 		return -ENODEV;
7530 	else {
7531 		spin_lock_irq(&phba->hbalock);
7532 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7533 		spin_unlock_irq(&phba->hbalock);
7534 	}
7535 
7536 	lpfc_sli4_dip(phba);
7537 
7538 	/*
7539 	 * Allocate a single mailbox container for initializing the
7540 	 * port.
7541 	 */
7542 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7543 	if (!mboxq)
7544 		return -ENOMEM;
7545 
7546 	/* Issue READ_REV to collect vpd and FW information. */
7547 	vpd_size = SLI4_PAGE_SIZE;
7548 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7549 	if (!vpd) {
7550 		rc = -ENOMEM;
7551 		goto out_free_mbox;
7552 	}
7553 
7554 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7555 	if (unlikely(rc)) {
7556 		kfree(vpd);
7557 		goto out_free_mbox;
7558 	}
7559 
7560 	mqe = &mboxq->u.mqe;
7561 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7562 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7563 		phba->hba_flag |= HBA_FCOE_MODE;
7564 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7565 	} else {
7566 		phba->hba_flag &= ~HBA_FCOE_MODE;
7567 	}
7568 
7569 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7570 		LPFC_DCBX_CEE_MODE)
7571 		phba->hba_flag |= HBA_FIP_SUPPORT;
7572 	else
7573 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7574 
7575 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7576 
7577 	if (phba->sli_rev != LPFC_SLI_REV4) {
7578 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7579 			"0376 READ_REV Error. SLI Level %d "
7580 			"FCoE enabled %d\n",
7581 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7582 		rc = -EIO;
7583 		kfree(vpd);
7584 		goto out_free_mbox;
7585 	}
7586 
7587 	/*
7588 	 * Continue initialization with default values even if driver failed
7589 	 * to read FCoE param config regions, only read parameters if the
7590 	 * board is FCoE
7591 	 */
7592 	if (phba->hba_flag & HBA_FCOE_MODE &&
7593 	    lpfc_sli4_read_fcoe_params(phba))
7594 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7595 			"2570 Failed to read FCoE parameters\n");
7596 
7597 	/*
7598 	 * Retrieve sli4 device physical port name, failure of doing it
7599 	 * is considered as non-fatal.
7600 	 */
7601 	rc = lpfc_sli4_retrieve_pport_name(phba);
7602 	if (!rc)
7603 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7604 				"3080 Successful retrieving SLI4 device "
7605 				"physical port name: %s.\n", phba->Port);
7606 
7607 	rc = lpfc_sli4_get_ctl_attr(phba);
7608 	if (!rc)
7609 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7610 				"8351 Successful retrieving SLI4 device "
7611 				"CTL ATTR\n");
7612 
7613 	/*
7614 	 * Evaluate the read rev and vpd data. Populate the driver
7615 	 * state with the results. If this routine fails, the failure
7616 	 * is not fatal as the driver will use generic values.
7617 	 */
7618 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7619 	if (unlikely(!rc)) {
7620 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7621 				"0377 Error %d parsing vpd. "
7622 				"Using defaults.\n", rc);
7623 		rc = 0;
7624 	}
7625 	kfree(vpd);
7626 
7627 	/* Save information as VPD data */
7628 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7629 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7630 
7631 	/*
7632 	 * This is because first G7 ASIC doesn't support the standard
7633 	 * 0x5a NVME cmd descriptor type/subtype
7634 	 */
7635 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7636 			LPFC_SLI_INTF_IF_TYPE_6) &&
7637 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7638 	    (phba->vpd.rev.smRev == 0) &&
7639 	    (phba->cfg_nvme_embed_cmd == 1))
7640 		phba->cfg_nvme_embed_cmd = 0;
7641 
7642 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7643 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7644 					 &mqe->un.read_rev);
7645 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7646 				       &mqe->un.read_rev);
7647 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7648 					    &mqe->un.read_rev);
7649 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7650 					   &mqe->un.read_rev);
7651 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7652 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7653 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7654 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7655 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7656 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7657 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7658 			"(%d):0380 READ_REV Status x%x "
7659 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7660 			mboxq->vport ? mboxq->vport->vpi : 0,
7661 			bf_get(lpfc_mqe_status, mqe),
7662 			phba->vpd.rev.opFwName,
7663 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7664 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7665 
7666 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7667 	    LPFC_SLI_INTF_IF_TYPE_0) {
7668 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7669 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7670 		if (rc == MBX_SUCCESS) {
7671 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7672 			/* Set 1Sec interval to detect UE */
7673 			phba->eratt_poll_interval = 1;
7674 			phba->sli4_hba.ue_to_sr = bf_get(
7675 					lpfc_mbx_set_feature_UESR,
7676 					&mboxq->u.mqe.un.set_feature);
7677 			phba->sli4_hba.ue_to_rp = bf_get(
7678 					lpfc_mbx_set_feature_UERP,
7679 					&mboxq->u.mqe.un.set_feature);
7680 		}
7681 	}
7682 
7683 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7684 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7685 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7686 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7687 		if (rc != MBX_SUCCESS)
7688 			phba->mds_diags_support = 0;
7689 	}
7690 
7691 	/*
7692 	 * Discover the port's supported feature set and match it against the
7693 	 * hosts requests.
7694 	 */
7695 	lpfc_request_features(phba, mboxq);
7696 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7697 	if (unlikely(rc)) {
7698 		rc = -EIO;
7699 		goto out_free_mbox;
7700 	}
7701 
7702 	/* Disable VMID if app header is not supported */
7703 	if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
7704 						  &mqe->un.req_ftrs))) {
7705 		bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
7706 		phba->cfg_vmid_app_header = 0;
7707 		lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
7708 				"1242 vmid feature not supported\n");
7709 	}
7710 
7711 	/*
7712 	 * The port must support FCP initiator mode as this is the
7713 	 * only mode running in the host.
7714 	 */
7715 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7716 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7717 				"0378 No support for fcpi mode.\n");
7718 		ftr_rsp++;
7719 	}
7720 
7721 	/* Performance Hints are ONLY for FCoE */
7722 	if (phba->hba_flag & HBA_FCOE_MODE) {
7723 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7724 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7725 		else
7726 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7727 	}
7728 
7729 	/*
7730 	 * If the port cannot support the host's requested features
7731 	 * then turn off the global config parameters to disable the
7732 	 * feature in the driver.  This is not a fatal error.
7733 	 */
7734 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7735 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7736 			phba->cfg_enable_bg = 0;
7737 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7738 			ftr_rsp++;
7739 		}
7740 	}
7741 
7742 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7743 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7744 		ftr_rsp++;
7745 
7746 	if (ftr_rsp) {
7747 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7748 				"0379 Feature Mismatch Data: x%08x %08x "
7749 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7750 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7751 				phba->cfg_enable_npiv, phba->max_vpi);
7752 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7753 			phba->cfg_enable_bg = 0;
7754 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7755 			phba->cfg_enable_npiv = 0;
7756 	}
7757 
7758 	/* These SLI3 features are assumed in SLI4 */
7759 	spin_lock_irq(&phba->hbalock);
7760 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7761 	spin_unlock_irq(&phba->hbalock);
7762 
7763 	/* Always try to enable dual dump feature if we can */
7764 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7765 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7766 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7767 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7768 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7769 				"6448 Dual Dump is enabled\n");
7770 	else
7771 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7772 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7773 				"rc:x%x dd:x%x\n",
7774 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7775 				lpfc_sli_config_mbox_subsys_get(
7776 					phba, mboxq),
7777 				lpfc_sli_config_mbox_opcode_get(
7778 					phba, mboxq),
7779 				rc, dd);
7780 	/*
7781 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7782 	 * calls depends on these resources to complete port setup.
7783 	 */
7784 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7785 	if (rc) {
7786 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7787 				"2920 Failed to alloc Resource IDs "
7788 				"rc = x%x\n", rc);
7789 		goto out_free_mbox;
7790 	}
7791 
7792 	lpfc_set_host_data(phba, mboxq);
7793 
7794 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7795 	if (rc) {
7796 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7797 				"2134 Failed to set host os driver version %x",
7798 				rc);
7799 	}
7800 
7801 	/* Read the port's service parameters. */
7802 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7803 	if (rc) {
7804 		phba->link_state = LPFC_HBA_ERROR;
7805 		rc = -ENOMEM;
7806 		goto out_free_mbox;
7807 	}
7808 
7809 	mboxq->vport = vport;
7810 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7811 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7812 	if (rc == MBX_SUCCESS) {
7813 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7814 		rc = 0;
7815 	}
7816 
7817 	/*
7818 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7819 	 * it to the mbuf pool.
7820 	 */
7821 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7822 	kfree(mp);
7823 	mboxq->ctx_buf = NULL;
7824 	if (unlikely(rc)) {
7825 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7826 				"0382 READ_SPARAM command failed "
7827 				"status %d, mbxStatus x%x\n",
7828 				rc, bf_get(lpfc_mqe_status, mqe));
7829 		phba->link_state = LPFC_HBA_ERROR;
7830 		rc = -EIO;
7831 		goto out_free_mbox;
7832 	}
7833 
7834 	lpfc_update_vport_wwn(vport);
7835 
7836 	/* Update the fc_host data structures with new wwn. */
7837 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7838 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7839 
7840 	/* Create all the SLI4 queues */
7841 	rc = lpfc_sli4_queue_create(phba);
7842 	if (rc) {
7843 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7844 				"3089 Failed to allocate queues\n");
7845 		rc = -ENODEV;
7846 		goto out_free_mbox;
7847 	}
7848 	/* Set up all the queues to the device */
7849 	rc = lpfc_sli4_queue_setup(phba);
7850 	if (unlikely(rc)) {
7851 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7852 				"0381 Error %d during queue setup.\n ", rc);
7853 		goto out_stop_timers;
7854 	}
7855 	/* Initialize the driver internal SLI layer lists. */
7856 	lpfc_sli4_setup(phba);
7857 	lpfc_sli4_queue_init(phba);
7858 
7859 	/* update host els xri-sgl sizes and mappings */
7860 	rc = lpfc_sli4_els_sgl_update(phba);
7861 	if (unlikely(rc)) {
7862 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7863 				"1400 Failed to update xri-sgl size and "
7864 				"mapping: %d\n", rc);
7865 		goto out_destroy_queue;
7866 	}
7867 
7868 	/* register the els sgl pool to the port */
7869 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7870 				       phba->sli4_hba.els_xri_cnt);
7871 	if (unlikely(rc < 0)) {
7872 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7873 				"0582 Error %d during els sgl post "
7874 				"operation\n", rc);
7875 		rc = -ENODEV;
7876 		goto out_destroy_queue;
7877 	}
7878 	phba->sli4_hba.els_xri_cnt = rc;
7879 
7880 	if (phba->nvmet_support) {
7881 		/* update host nvmet xri-sgl sizes and mappings */
7882 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7883 		if (unlikely(rc)) {
7884 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7885 					"6308 Failed to update nvmet-sgl size "
7886 					"and mapping: %d\n", rc);
7887 			goto out_destroy_queue;
7888 		}
7889 
7890 		/* register the nvmet sgl pool to the port */
7891 		rc = lpfc_sli4_repost_sgl_list(
7892 			phba,
7893 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7894 			phba->sli4_hba.nvmet_xri_cnt);
7895 		if (unlikely(rc < 0)) {
7896 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7897 					"3117 Error %d during nvmet "
7898 					"sgl post\n", rc);
7899 			rc = -ENODEV;
7900 			goto out_destroy_queue;
7901 		}
7902 		phba->sli4_hba.nvmet_xri_cnt = rc;
7903 
7904 		/* We allocate an iocbq for every receive context SGL.
7905 		 * The additional allocation is for abort and ls handling.
7906 		 */
7907 		cnt = phba->sli4_hba.nvmet_xri_cnt +
7908 			phba->sli4_hba.max_cfg_param.max_xri;
7909 	} else {
7910 		/* update host common xri-sgl sizes and mappings */
7911 		rc = lpfc_sli4_io_sgl_update(phba);
7912 		if (unlikely(rc)) {
7913 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7914 					"6082 Failed to update nvme-sgl size "
7915 					"and mapping: %d\n", rc);
7916 			goto out_destroy_queue;
7917 		}
7918 
7919 		/* register the allocated common sgl pool to the port */
7920 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7921 		if (unlikely(rc)) {
7922 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7923 					"6116 Error %d during nvme sgl post "
7924 					"operation\n", rc);
7925 			/* Some NVME buffers were moved to abort nvme list */
7926 			/* A pci function reset will repost them */
7927 			rc = -ENODEV;
7928 			goto out_destroy_queue;
7929 		}
7930 		/* Each lpfc_io_buf job structure has an iocbq element.
7931 		 * This cnt provides for abort, els, ct and ls requests.
7932 		 */
7933 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
7934 	}
7935 
7936 	if (!phba->sli.iocbq_lookup) {
7937 		/* Initialize and populate the iocb list per host */
7938 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7939 				"2821 initialize iocb list with %d entries\n",
7940 				cnt);
7941 		rc = lpfc_init_iocb_list(phba, cnt);
7942 		if (rc) {
7943 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7944 					"1413 Failed to init iocb list.\n");
7945 			goto out_destroy_queue;
7946 		}
7947 	}
7948 
7949 	if (phba->nvmet_support)
7950 		lpfc_nvmet_create_targetport(phba);
7951 
7952 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7953 		/* Post initial buffers to all RQs created */
7954 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7955 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7956 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7957 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7958 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7959 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7960 			rqbp->buffer_count = 0;
7961 
7962 			lpfc_post_rq_buffer(
7963 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7964 				phba->sli4_hba.nvmet_mrq_data[i],
7965 				phba->cfg_nvmet_mrq_post, i);
7966 		}
7967 	}
7968 
7969 	/* Post the rpi header region to the device. */
7970 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7971 	if (unlikely(rc)) {
7972 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7973 				"0393 Error %d during rpi post operation\n",
7974 				rc);
7975 		rc = -ENODEV;
7976 		goto out_free_iocblist;
7977 	}
7978 	lpfc_sli4_node_prep(phba);
7979 
7980 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7981 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7982 			/*
7983 			 * The FC Port needs to register FCFI (index 0)
7984 			 */
7985 			lpfc_reg_fcfi(phba, mboxq);
7986 			mboxq->vport = phba->pport;
7987 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7988 			if (rc != MBX_SUCCESS)
7989 				goto out_unset_queue;
7990 			rc = 0;
7991 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7992 						&mboxq->u.mqe.un.reg_fcfi);
7993 		} else {
7994 			/* We are a NVME Target mode with MRQ > 1 */
7995 
7996 			/* First register the FCFI */
7997 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7998 			mboxq->vport = phba->pport;
7999 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8000 			if (rc != MBX_SUCCESS)
8001 				goto out_unset_queue;
8002 			rc = 0;
8003 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8004 						&mboxq->u.mqe.un.reg_fcfi_mrq);
8005 
8006 			/* Next register the MRQs */
8007 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8008 			mboxq->vport = phba->pport;
8009 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8010 			if (rc != MBX_SUCCESS)
8011 				goto out_unset_queue;
8012 			rc = 0;
8013 		}
8014 		/* Check if the port is configured to be disabled */
8015 		lpfc_sli_read_link_ste(phba);
8016 	}
8017 
8018 	/* Don't post more new bufs if repost already recovered
8019 	 * the nvme sgls.
8020 	 */
8021 	if (phba->nvmet_support == 0) {
8022 		if (phba->sli4_hba.io_xri_cnt == 0) {
8023 			len = lpfc_new_io_buf(
8024 					      phba, phba->sli4_hba.io_xri_max);
8025 			if (len == 0) {
8026 				rc = -ENOMEM;
8027 				goto out_unset_queue;
8028 			}
8029 
8030 			if (phba->cfg_xri_rebalancing)
8031 				lpfc_create_multixri_pools(phba);
8032 		}
8033 	} else {
8034 		phba->cfg_xri_rebalancing = 0;
8035 	}
8036 
8037 	/* Allow asynchronous mailbox command to go through */
8038 	spin_lock_irq(&phba->hbalock);
8039 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8040 	spin_unlock_irq(&phba->hbalock);
8041 
8042 	/* Post receive buffers to the device */
8043 	lpfc_sli4_rb_setup(phba);
8044 
8045 	/* Reset HBA FCF states after HBA reset */
8046 	phba->fcf.fcf_flag = 0;
8047 	phba->fcf.current_rec.flag = 0;
8048 
8049 	/* Start the ELS watchdog timer */
8050 	mod_timer(&vport->els_tmofunc,
8051 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
8052 
8053 	/* Start heart beat timer */
8054 	mod_timer(&phba->hb_tmofunc,
8055 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
8056 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
8057 	phba->last_completion_time = jiffies;
8058 
8059 	/* start eq_delay heartbeat */
8060 	if (phba->cfg_auto_imax)
8061 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
8062 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
8063 
8064 	/* start per phba idle_stat_delay heartbeat */
8065 	lpfc_init_idle_stat_hb(phba);
8066 
8067 	/* Start error attention (ERATT) polling timer */
8068 	mod_timer(&phba->eratt_poll,
8069 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
8070 
8071 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
8072 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
8073 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
8074 		if (!rc) {
8075 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8076 					"2829 This device supports "
8077 					"Advanced Error Reporting (AER)\n");
8078 			spin_lock_irq(&phba->hbalock);
8079 			phba->hba_flag |= HBA_AER_ENABLED;
8080 			spin_unlock_irq(&phba->hbalock);
8081 		} else {
8082 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8083 					"2830 This device does not support "
8084 					"Advanced Error Reporting (AER)\n");
8085 			phba->cfg_aer_support = 0;
8086 		}
8087 		rc = 0;
8088 	}
8089 
8090 	/*
8091 	 * The port is ready, set the host's link state to LINK_DOWN
8092 	 * in preparation for link interrupts.
8093 	 */
8094 	spin_lock_irq(&phba->hbalock);
8095 	phba->link_state = LPFC_LINK_DOWN;
8096 
8097 	/* Check if physical ports are trunked */
8098 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
8099 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
8100 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
8101 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
8102 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
8103 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
8104 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
8105 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
8106 	spin_unlock_irq(&phba->hbalock);
8107 
8108 	/* Arm the CQs and then EQs on device */
8109 	lpfc_sli4_arm_cqeq_intr(phba);
8110 
8111 	/* Indicate device interrupt mode */
8112 	phba->sli4_hba.intr_enable = 1;
8113 
8114 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
8115 	    (phba->hba_flag & LINK_DISABLED)) {
8116 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8117 				"3103 Adapter Link is disabled.\n");
8118 		lpfc_down_link(phba, mboxq);
8119 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8120 		if (rc != MBX_SUCCESS) {
8121 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8122 					"3104 Adapter failed to issue "
8123 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
8124 			goto out_io_buff_free;
8125 		}
8126 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
8127 		/* don't perform init_link on SLI4 FC port loopback test */
8128 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
8129 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
8130 			if (rc)
8131 				goto out_io_buff_free;
8132 		}
8133 	}
8134 	mempool_free(mboxq, phba->mbox_mem_pool);
8135 	return rc;
8136 out_io_buff_free:
8137 	/* Free allocated IO Buffers */
8138 	lpfc_io_free(phba);
8139 out_unset_queue:
8140 	/* Unset all the queues set up in this routine when error out */
8141 	lpfc_sli4_queue_unset(phba);
8142 out_free_iocblist:
8143 	lpfc_free_iocb_list(phba);
8144 out_destroy_queue:
8145 	lpfc_sli4_queue_destroy(phba);
8146 out_stop_timers:
8147 	lpfc_stop_hba_timers(phba);
8148 out_free_mbox:
8149 	mempool_free(mboxq, phba->mbox_mem_pool);
8150 	return rc;
8151 }
8152 
8153 /**
8154  * lpfc_mbox_timeout - Timeout call back function for mbox timer
8155  * @t: Context to fetch pointer to hba structure from.
8156  *
8157  * This is the callback function for mailbox timer. The mailbox
8158  * timer is armed when a new mailbox command is issued and the timer
8159  * is deleted when the mailbox complete. The function is called by
8160  * the kernel timer code when a mailbox does not complete within
8161  * expected time. This function wakes up the worker thread to
8162  * process the mailbox timeout and returns. All the processing is
8163  * done by the worker thread function lpfc_mbox_timeout_handler.
8164  **/
8165 void
8166 lpfc_mbox_timeout(struct timer_list *t)
8167 {
8168 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
8169 	unsigned long iflag;
8170 	uint32_t tmo_posted;
8171 
8172 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8173 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8174 	if (!tmo_posted)
8175 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
8176 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8177 
8178 	if (!tmo_posted)
8179 		lpfc_worker_wake_up(phba);
8180 	return;
8181 }
8182 
8183 /**
8184  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8185  *                                    are pending
8186  * @phba: Pointer to HBA context object.
8187  *
8188  * This function checks if any mailbox completions are present on the mailbox
8189  * completion queue.
8190  **/
8191 static bool
8192 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8193 {
8194 
8195 	uint32_t idx;
8196 	struct lpfc_queue *mcq;
8197 	struct lpfc_mcqe *mcqe;
8198 	bool pending_completions = false;
8199 	uint8_t	qe_valid;
8200 
8201 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8202 		return false;
8203 
8204 	/* Check for completions on mailbox completion queue */
8205 
8206 	mcq = phba->sli4_hba.mbx_cq;
8207 	idx = mcq->hba_index;
8208 	qe_valid = mcq->qe_valid;
8209 	while (bf_get_le32(lpfc_cqe_valid,
8210 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8211 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8212 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8213 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8214 			pending_completions = true;
8215 			break;
8216 		}
8217 		idx = (idx + 1) % mcq->entry_count;
8218 		if (mcq->hba_index == idx)
8219 			break;
8220 
8221 		/* if the index wrapped around, toggle the valid bit */
8222 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8223 			qe_valid = (qe_valid) ? 0 : 1;
8224 	}
8225 	return pending_completions;
8226 
8227 }
8228 
8229 /**
8230  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8231  *					      that were missed.
8232  * @phba: Pointer to HBA context object.
8233  *
8234  * For sli4, it is possible to miss an interrupt. As such mbox completions
8235  * maybe missed causing erroneous mailbox timeouts to occur. This function
8236  * checks to see if mbox completions are on the mailbox completion queue
8237  * and will process all the completions associated with the eq for the
8238  * mailbox completion queue.
8239  **/
8240 static bool
8241 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8242 {
8243 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8244 	uint32_t eqidx;
8245 	struct lpfc_queue *fpeq = NULL;
8246 	struct lpfc_queue *eq;
8247 	bool mbox_pending;
8248 
8249 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8250 		return false;
8251 
8252 	/* Find the EQ associated with the mbox CQ */
8253 	if (sli4_hba->hdwq) {
8254 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8255 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8256 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8257 				fpeq = eq;
8258 				break;
8259 			}
8260 		}
8261 	}
8262 	if (!fpeq)
8263 		return false;
8264 
8265 	/* Turn off interrupts from this EQ */
8266 
8267 	sli4_hba->sli4_eq_clr_intr(fpeq);
8268 
8269 	/* Check to see if a mbox completion is pending */
8270 
8271 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8272 
8273 	/*
8274 	 * If a mbox completion is pending, process all the events on EQ
8275 	 * associated with the mbox completion queue (this could include
8276 	 * mailbox commands, async events, els commands, receive queue data
8277 	 * and fcp commands)
8278 	 */
8279 
8280 	if (mbox_pending)
8281 		/* process and rearm the EQ */
8282 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8283 	else
8284 		/* Always clear and re-arm the EQ */
8285 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8286 
8287 	return mbox_pending;
8288 
8289 }
8290 
8291 /**
8292  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8293  * @phba: Pointer to HBA context object.
8294  *
8295  * This function is called from worker thread when a mailbox command times out.
8296  * The caller is not required to hold any locks. This function will reset the
8297  * HBA and recover all the pending commands.
8298  **/
8299 void
8300 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8301 {
8302 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8303 	MAILBOX_t *mb = NULL;
8304 
8305 	struct lpfc_sli *psli = &phba->sli;
8306 
8307 	/* If the mailbox completed, process the completion */
8308 	lpfc_sli4_process_missed_mbox_completions(phba);
8309 
8310 	if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
8311 		return;
8312 
8313 	if (pmbox != NULL)
8314 		mb = &pmbox->u.mb;
8315 	/* Check the pmbox pointer first.  There is a race condition
8316 	 * between the mbox timeout handler getting executed in the
8317 	 * worklist and the mailbox actually completing. When this
8318 	 * race condition occurs, the mbox_active will be NULL.
8319 	 */
8320 	spin_lock_irq(&phba->hbalock);
8321 	if (pmbox == NULL) {
8322 		lpfc_printf_log(phba, KERN_WARNING,
8323 				LOG_MBOX | LOG_SLI,
8324 				"0353 Active Mailbox cleared - mailbox timeout "
8325 				"exiting\n");
8326 		spin_unlock_irq(&phba->hbalock);
8327 		return;
8328 	}
8329 
8330 	/* Mbox cmd <mbxCommand> timeout */
8331 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8332 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8333 			mb->mbxCommand,
8334 			phba->pport->port_state,
8335 			phba->sli.sli_flag,
8336 			phba->sli.mbox_active);
8337 	spin_unlock_irq(&phba->hbalock);
8338 
8339 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8340 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8341 	 * it to fail all outstanding SCSI IO.
8342 	 */
8343 	spin_lock_irq(&phba->pport->work_port_lock);
8344 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8345 	spin_unlock_irq(&phba->pport->work_port_lock);
8346 	spin_lock_irq(&phba->hbalock);
8347 	phba->link_state = LPFC_LINK_UNKNOWN;
8348 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8349 	spin_unlock_irq(&phba->hbalock);
8350 
8351 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8352 			"0345 Resetting board due to mailbox timeout\n");
8353 
8354 	/* Reset the HBA device */
8355 	lpfc_reset_hba(phba);
8356 }
8357 
8358 /**
8359  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8360  * @phba: Pointer to HBA context object.
8361  * @pmbox: Pointer to mailbox object.
8362  * @flag: Flag indicating how the mailbox need to be processed.
8363  *
8364  * This function is called by discovery code and HBA management code
8365  * to submit a mailbox command to firmware with SLI-3 interface spec. This
8366  * function gets the hbalock to protect the data structures.
8367  * The mailbox command can be submitted in polling mode, in which case
8368  * this function will wait in a polling loop for the completion of the
8369  * mailbox.
8370  * If the mailbox is submitted in no_wait mode (not polling) the
8371  * function will submit the command and returns immediately without waiting
8372  * for the mailbox completion. The no_wait is supported only when HBA
8373  * is in SLI2/SLI3 mode - interrupts are enabled.
8374  * The SLI interface allows only one mailbox pending at a time. If the
8375  * mailbox is issued in polling mode and there is already a mailbox
8376  * pending, then the function will return an error. If the mailbox is issued
8377  * in NO_WAIT mode and there is a mailbox pending already, the function
8378  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8379  * The sli layer owns the mailbox object until the completion of mailbox
8380  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8381  * return codes the caller owns the mailbox command after the return of
8382  * the function.
8383  **/
8384 static int
8385 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8386 		       uint32_t flag)
8387 {
8388 	MAILBOX_t *mbx;
8389 	struct lpfc_sli *psli = &phba->sli;
8390 	uint32_t status, evtctr;
8391 	uint32_t ha_copy, hc_copy;
8392 	int i;
8393 	unsigned long timeout;
8394 	unsigned long drvr_flag = 0;
8395 	uint32_t word0, ldata;
8396 	void __iomem *to_slim;
8397 	int processing_queue = 0;
8398 
8399 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8400 	if (!pmbox) {
8401 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8402 		/* processing mbox queue from intr_handler */
8403 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8404 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8405 			return MBX_SUCCESS;
8406 		}
8407 		processing_queue = 1;
8408 		pmbox = lpfc_mbox_get(phba);
8409 		if (!pmbox) {
8410 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8411 			return MBX_SUCCESS;
8412 		}
8413 	}
8414 
8415 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8416 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8417 		if(!pmbox->vport) {
8418 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8419 			lpfc_printf_log(phba, KERN_ERR,
8420 					LOG_MBOX | LOG_VPORT,
8421 					"1806 Mbox x%x failed. No vport\n",
8422 					pmbox->u.mb.mbxCommand);
8423 			dump_stack();
8424 			goto out_not_finished;
8425 		}
8426 	}
8427 
8428 	/* If the PCI channel is in offline state, do not post mbox. */
8429 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8430 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8431 		goto out_not_finished;
8432 	}
8433 
8434 	/* If HBA has a deferred error attention, fail the iocb. */
8435 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8436 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8437 		goto out_not_finished;
8438 	}
8439 
8440 	psli = &phba->sli;
8441 
8442 	mbx = &pmbox->u.mb;
8443 	status = MBX_SUCCESS;
8444 
8445 	if (phba->link_state == LPFC_HBA_ERROR) {
8446 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8447 
8448 		/* Mbox command <mbxCommand> cannot issue */
8449 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8450 				"(%d):0311 Mailbox command x%x cannot "
8451 				"issue Data: x%x x%x\n",
8452 				pmbox->vport ? pmbox->vport->vpi : 0,
8453 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8454 		goto out_not_finished;
8455 	}
8456 
8457 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8458 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8459 			!(hc_copy & HC_MBINT_ENA)) {
8460 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8461 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8462 				"(%d):2528 Mailbox command x%x cannot "
8463 				"issue Data: x%x x%x\n",
8464 				pmbox->vport ? pmbox->vport->vpi : 0,
8465 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8466 			goto out_not_finished;
8467 		}
8468 	}
8469 
8470 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8471 		/* Polling for a mbox command when another one is already active
8472 		 * is not allowed in SLI. Also, the driver must have established
8473 		 * SLI2 mode to queue and process multiple mbox commands.
8474 		 */
8475 
8476 		if (flag & MBX_POLL) {
8477 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8478 
8479 			/* Mbox command <mbxCommand> cannot issue */
8480 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8481 					"(%d):2529 Mailbox command x%x "
8482 					"cannot issue Data: x%x x%x\n",
8483 					pmbox->vport ? pmbox->vport->vpi : 0,
8484 					pmbox->u.mb.mbxCommand,
8485 					psli->sli_flag, flag);
8486 			goto out_not_finished;
8487 		}
8488 
8489 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8490 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8491 			/* Mbox command <mbxCommand> cannot issue */
8492 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8493 					"(%d):2530 Mailbox command x%x "
8494 					"cannot issue Data: x%x x%x\n",
8495 					pmbox->vport ? pmbox->vport->vpi : 0,
8496 					pmbox->u.mb.mbxCommand,
8497 					psli->sli_flag, flag);
8498 			goto out_not_finished;
8499 		}
8500 
8501 		/* Another mailbox command is still being processed, queue this
8502 		 * command to be processed later.
8503 		 */
8504 		lpfc_mbox_put(phba, pmbox);
8505 
8506 		/* Mbox cmd issue - BUSY */
8507 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8508 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8509 				"x%x x%x x%x x%x\n",
8510 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8511 				mbx->mbxCommand,
8512 				phba->pport ? phba->pport->port_state : 0xff,
8513 				psli->sli_flag, flag);
8514 
8515 		psli->slistat.mbox_busy++;
8516 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8517 
8518 		if (pmbox->vport) {
8519 			lpfc_debugfs_disc_trc(pmbox->vport,
8520 				LPFC_DISC_TRC_MBOX_VPORT,
8521 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8522 				(uint32_t)mbx->mbxCommand,
8523 				mbx->un.varWords[0], mbx->un.varWords[1]);
8524 		}
8525 		else {
8526 			lpfc_debugfs_disc_trc(phba->pport,
8527 				LPFC_DISC_TRC_MBOX,
8528 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8529 				(uint32_t)mbx->mbxCommand,
8530 				mbx->un.varWords[0], mbx->un.varWords[1]);
8531 		}
8532 
8533 		return MBX_BUSY;
8534 	}
8535 
8536 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8537 
8538 	/* If we are not polling, we MUST be in SLI2 mode */
8539 	if (flag != MBX_POLL) {
8540 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8541 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8542 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8543 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8544 			/* Mbox command <mbxCommand> cannot issue */
8545 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8546 					"(%d):2531 Mailbox command x%x "
8547 					"cannot issue Data: x%x x%x\n",
8548 					pmbox->vport ? pmbox->vport->vpi : 0,
8549 					pmbox->u.mb.mbxCommand,
8550 					psli->sli_flag, flag);
8551 			goto out_not_finished;
8552 		}
8553 		/* timeout active mbox command */
8554 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8555 					   1000);
8556 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8557 	}
8558 
8559 	/* Mailbox cmd <cmd> issue */
8560 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8561 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8562 			"x%x\n",
8563 			pmbox->vport ? pmbox->vport->vpi : 0,
8564 			mbx->mbxCommand,
8565 			phba->pport ? phba->pport->port_state : 0xff,
8566 			psli->sli_flag, flag);
8567 
8568 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8569 		if (pmbox->vport) {
8570 			lpfc_debugfs_disc_trc(pmbox->vport,
8571 				LPFC_DISC_TRC_MBOX_VPORT,
8572 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8573 				(uint32_t)mbx->mbxCommand,
8574 				mbx->un.varWords[0], mbx->un.varWords[1]);
8575 		}
8576 		else {
8577 			lpfc_debugfs_disc_trc(phba->pport,
8578 				LPFC_DISC_TRC_MBOX,
8579 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8580 				(uint32_t)mbx->mbxCommand,
8581 				mbx->un.varWords[0], mbx->un.varWords[1]);
8582 		}
8583 	}
8584 
8585 	psli->slistat.mbox_cmd++;
8586 	evtctr = psli->slistat.mbox_event;
8587 
8588 	/* next set own bit for the adapter and copy over command word */
8589 	mbx->mbxOwner = OWN_CHIP;
8590 
8591 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8592 		/* Populate mbox extension offset word. */
8593 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8594 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8595 				= (uint8_t *)phba->mbox_ext
8596 				  - (uint8_t *)phba->mbox;
8597 		}
8598 
8599 		/* Copy the mailbox extension data */
8600 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8601 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8602 					      (uint8_t *)phba->mbox_ext,
8603 					      pmbox->in_ext_byte_len);
8604 		}
8605 		/* Copy command data to host SLIM area */
8606 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8607 	} else {
8608 		/* Populate mbox extension offset word. */
8609 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8610 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8611 				= MAILBOX_HBA_EXT_OFFSET;
8612 
8613 		/* Copy the mailbox extension data */
8614 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8615 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8616 				MAILBOX_HBA_EXT_OFFSET,
8617 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8618 
8619 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8620 			/* copy command data into host mbox for cmpl */
8621 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8622 					      MAILBOX_CMD_SIZE);
8623 
8624 		/* First copy mbox command data to HBA SLIM, skip past first
8625 		   word */
8626 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8627 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8628 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8629 
8630 		/* Next copy over first word, with mbxOwner set */
8631 		ldata = *((uint32_t *)mbx);
8632 		to_slim = phba->MBslimaddr;
8633 		writel(ldata, to_slim);
8634 		readl(to_slim); /* flush */
8635 
8636 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8637 			/* switch over to host mailbox */
8638 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8639 	}
8640 
8641 	wmb();
8642 
8643 	switch (flag) {
8644 	case MBX_NOWAIT:
8645 		/* Set up reference to mailbox command */
8646 		psli->mbox_active = pmbox;
8647 		/* Interrupt board to do it */
8648 		writel(CA_MBATT, phba->CAregaddr);
8649 		readl(phba->CAregaddr); /* flush */
8650 		/* Don't wait for it to finish, just return */
8651 		break;
8652 
8653 	case MBX_POLL:
8654 		/* Set up null reference to mailbox command */
8655 		psli->mbox_active = NULL;
8656 		/* Interrupt board to do it */
8657 		writel(CA_MBATT, phba->CAregaddr);
8658 		readl(phba->CAregaddr); /* flush */
8659 
8660 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8661 			/* First read mbox status word */
8662 			word0 = *((uint32_t *)phba->mbox);
8663 			word0 = le32_to_cpu(word0);
8664 		} else {
8665 			/* First read mbox status word */
8666 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8667 				spin_unlock_irqrestore(&phba->hbalock,
8668 						       drvr_flag);
8669 				goto out_not_finished;
8670 			}
8671 		}
8672 
8673 		/* Read the HBA Host Attention Register */
8674 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8675 			spin_unlock_irqrestore(&phba->hbalock,
8676 						       drvr_flag);
8677 			goto out_not_finished;
8678 		}
8679 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8680 							1000) + jiffies;
8681 		i = 0;
8682 		/* Wait for command to complete */
8683 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8684 		       (!(ha_copy & HA_MBATT) &&
8685 			(phba->link_state > LPFC_WARM_START))) {
8686 			if (time_after(jiffies, timeout)) {
8687 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8688 				spin_unlock_irqrestore(&phba->hbalock,
8689 						       drvr_flag);
8690 				goto out_not_finished;
8691 			}
8692 
8693 			/* Check if we took a mbox interrupt while we were
8694 			   polling */
8695 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8696 			    && (evtctr != psli->slistat.mbox_event))
8697 				break;
8698 
8699 			if (i++ > 10) {
8700 				spin_unlock_irqrestore(&phba->hbalock,
8701 						       drvr_flag);
8702 				msleep(1);
8703 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8704 			}
8705 
8706 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8707 				/* First copy command data */
8708 				word0 = *((uint32_t *)phba->mbox);
8709 				word0 = le32_to_cpu(word0);
8710 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8711 					MAILBOX_t *slimmb;
8712 					uint32_t slimword0;
8713 					/* Check real SLIM for any errors */
8714 					slimword0 = readl(phba->MBslimaddr);
8715 					slimmb = (MAILBOX_t *) & slimword0;
8716 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8717 					    && slimmb->mbxStatus) {
8718 						psli->sli_flag &=
8719 						    ~LPFC_SLI_ACTIVE;
8720 						word0 = slimword0;
8721 					}
8722 				}
8723 			} else {
8724 				/* First copy command data */
8725 				word0 = readl(phba->MBslimaddr);
8726 			}
8727 			/* Read the HBA Host Attention Register */
8728 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8729 				spin_unlock_irqrestore(&phba->hbalock,
8730 						       drvr_flag);
8731 				goto out_not_finished;
8732 			}
8733 		}
8734 
8735 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8736 			/* copy results back to user */
8737 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8738 						MAILBOX_CMD_SIZE);
8739 			/* Copy the mailbox extension data */
8740 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8741 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8742 						      pmbox->ctx_buf,
8743 						      pmbox->out_ext_byte_len);
8744 			}
8745 		} else {
8746 			/* First copy command data */
8747 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8748 						MAILBOX_CMD_SIZE);
8749 			/* Copy the mailbox extension data */
8750 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8751 				lpfc_memcpy_from_slim(
8752 					pmbox->ctx_buf,
8753 					phba->MBslimaddr +
8754 					MAILBOX_HBA_EXT_OFFSET,
8755 					pmbox->out_ext_byte_len);
8756 			}
8757 		}
8758 
8759 		writel(HA_MBATT, phba->HAregaddr);
8760 		readl(phba->HAregaddr); /* flush */
8761 
8762 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8763 		status = mbx->mbxStatus;
8764 	}
8765 
8766 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8767 	return status;
8768 
8769 out_not_finished:
8770 	if (processing_queue) {
8771 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8772 		lpfc_mbox_cmpl_put(phba, pmbox);
8773 	}
8774 	return MBX_NOT_FINISHED;
8775 }
8776 
8777 /**
8778  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8779  * @phba: Pointer to HBA context object.
8780  *
8781  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8782  * the driver internal pending mailbox queue. It will then try to wait out the
8783  * possible outstanding mailbox command before return.
8784  *
8785  * Returns:
8786  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8787  * 	the outstanding mailbox command timed out.
8788  **/
8789 static int
8790 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8791 {
8792 	struct lpfc_sli *psli = &phba->sli;
8793 	int rc = 0;
8794 	unsigned long timeout = 0;
8795 
8796 	/* Mark the asynchronous mailbox command posting as blocked */
8797 	spin_lock_irq(&phba->hbalock);
8798 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8799 	/* Determine how long we might wait for the active mailbox
8800 	 * command to be gracefully completed by firmware.
8801 	 */
8802 	if (phba->sli.mbox_active)
8803 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8804 						phba->sli.mbox_active) *
8805 						1000) + jiffies;
8806 	spin_unlock_irq(&phba->hbalock);
8807 
8808 	/* Make sure the mailbox is really active */
8809 	if (timeout)
8810 		lpfc_sli4_process_missed_mbox_completions(phba);
8811 
8812 	/* Wait for the outstnading mailbox command to complete */
8813 	while (phba->sli.mbox_active) {
8814 		/* Check active mailbox complete status every 2ms */
8815 		msleep(2);
8816 		if (time_after(jiffies, timeout)) {
8817 			/* Timeout, marked the outstanding cmd not complete */
8818 			rc = 1;
8819 			break;
8820 		}
8821 	}
8822 
8823 	/* Can not cleanly block async mailbox command, fails it */
8824 	if (rc) {
8825 		spin_lock_irq(&phba->hbalock);
8826 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8827 		spin_unlock_irq(&phba->hbalock);
8828 	}
8829 	return rc;
8830 }
8831 
8832 /**
8833  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8834  * @phba: Pointer to HBA context object.
8835  *
8836  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8837  * commands from the driver internal pending mailbox queue. It makes sure
8838  * that there is no outstanding mailbox command before resuming posting
8839  * asynchronous mailbox commands. If, for any reason, there is outstanding
8840  * mailbox command, it will try to wait it out before resuming asynchronous
8841  * mailbox command posting.
8842  **/
8843 static void
8844 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8845 {
8846 	struct lpfc_sli *psli = &phba->sli;
8847 
8848 	spin_lock_irq(&phba->hbalock);
8849 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8850 		/* Asynchronous mailbox posting is not blocked, do nothing */
8851 		spin_unlock_irq(&phba->hbalock);
8852 		return;
8853 	}
8854 
8855 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8856 	 * successful or timeout, after timing-out the outstanding mailbox
8857 	 * command shall always be removed, so just unblock posting async
8858 	 * mailbox command and resume
8859 	 */
8860 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8861 	spin_unlock_irq(&phba->hbalock);
8862 
8863 	/* wake up worker thread to post asynchronous mailbox command */
8864 	lpfc_worker_wake_up(phba);
8865 }
8866 
8867 /**
8868  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8869  * @phba: Pointer to HBA context object.
8870  * @mboxq: Pointer to mailbox object.
8871  *
8872  * The function waits for the bootstrap mailbox register ready bit from
8873  * port for twice the regular mailbox command timeout value.
8874  *
8875  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8876  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8877  **/
8878 static int
8879 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8880 {
8881 	uint32_t db_ready;
8882 	unsigned long timeout;
8883 	struct lpfc_register bmbx_reg;
8884 
8885 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8886 				   * 1000) + jiffies;
8887 
8888 	do {
8889 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8890 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8891 		if (!db_ready)
8892 			mdelay(2);
8893 
8894 		if (time_after(jiffies, timeout))
8895 			return MBXERR_ERROR;
8896 	} while (!db_ready);
8897 
8898 	return 0;
8899 }
8900 
8901 /**
8902  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8903  * @phba: Pointer to HBA context object.
8904  * @mboxq: Pointer to mailbox object.
8905  *
8906  * The function posts a mailbox to the port.  The mailbox is expected
8907  * to be comletely filled in and ready for the port to operate on it.
8908  * This routine executes a synchronous completion operation on the
8909  * mailbox by polling for its completion.
8910  *
8911  * The caller must not be holding any locks when calling this routine.
8912  *
8913  * Returns:
8914  *	MBX_SUCCESS - mailbox posted successfully
8915  *	Any of the MBX error values.
8916  **/
8917 static int
8918 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8919 {
8920 	int rc = MBX_SUCCESS;
8921 	unsigned long iflag;
8922 	uint32_t mcqe_status;
8923 	uint32_t mbx_cmnd;
8924 	struct lpfc_sli *psli = &phba->sli;
8925 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8926 	struct lpfc_bmbx_create *mbox_rgn;
8927 	struct dma_address *dma_address;
8928 
8929 	/*
8930 	 * Only one mailbox can be active to the bootstrap mailbox region
8931 	 * at a time and there is no queueing provided.
8932 	 */
8933 	spin_lock_irqsave(&phba->hbalock, iflag);
8934 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8935 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8936 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8937 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8938 				"cannot issue Data: x%x x%x\n",
8939 				mboxq->vport ? mboxq->vport->vpi : 0,
8940 				mboxq->u.mb.mbxCommand,
8941 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8942 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8943 				psli->sli_flag, MBX_POLL);
8944 		return MBXERR_ERROR;
8945 	}
8946 	/* The server grabs the token and owns it until release */
8947 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8948 	phba->sli.mbox_active = mboxq;
8949 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8950 
8951 	/* wait for bootstrap mbox register for readyness */
8952 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8953 	if (rc)
8954 		goto exit;
8955 	/*
8956 	 * Initialize the bootstrap memory region to avoid stale data areas
8957 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8958 	 * the bmbx mailbox region.
8959 	 */
8960 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8961 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8962 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8963 			       sizeof(struct lpfc_mqe));
8964 
8965 	/* Post the high mailbox dma address to the port and wait for ready. */
8966 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8967 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8968 
8969 	/* wait for bootstrap mbox register for hi-address write done */
8970 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8971 	if (rc)
8972 		goto exit;
8973 
8974 	/* Post the low mailbox dma address to the port. */
8975 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8976 
8977 	/* wait for bootstrap mbox register for low address write done */
8978 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8979 	if (rc)
8980 		goto exit;
8981 
8982 	/*
8983 	 * Read the CQ to ensure the mailbox has completed.
8984 	 * If so, update the mailbox status so that the upper layers
8985 	 * can complete the request normally.
8986 	 */
8987 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8988 			       sizeof(struct lpfc_mqe));
8989 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8990 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8991 			       sizeof(struct lpfc_mcqe));
8992 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8993 	/*
8994 	 * When the CQE status indicates a failure and the mailbox status
8995 	 * indicates success then copy the CQE status into the mailbox status
8996 	 * (and prefix it with x4000).
8997 	 */
8998 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8999 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
9000 			bf_set(lpfc_mqe_status, mb,
9001 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
9002 		rc = MBXERR_ERROR;
9003 	} else
9004 		lpfc_sli4_swap_str(phba, mboxq);
9005 
9006 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9007 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
9008 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
9009 			" x%x x%x CQ: x%x x%x x%x x%x\n",
9010 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9011 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9012 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9013 			bf_get(lpfc_mqe_status, mb),
9014 			mb->un.mb_words[0], mb->un.mb_words[1],
9015 			mb->un.mb_words[2], mb->un.mb_words[3],
9016 			mb->un.mb_words[4], mb->un.mb_words[5],
9017 			mb->un.mb_words[6], mb->un.mb_words[7],
9018 			mb->un.mb_words[8], mb->un.mb_words[9],
9019 			mb->un.mb_words[10], mb->un.mb_words[11],
9020 			mb->un.mb_words[12], mboxq->mcqe.word0,
9021 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
9022 			mboxq->mcqe.trailer);
9023 exit:
9024 	/* We are holding the token, no needed for lock when release */
9025 	spin_lock_irqsave(&phba->hbalock, iflag);
9026 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9027 	phba->sli.mbox_active = NULL;
9028 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9029 	return rc;
9030 }
9031 
9032 /**
9033  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
9034  * @phba: Pointer to HBA context object.
9035  * @mboxq: Pointer to mailbox object.
9036  * @flag: Flag indicating how the mailbox need to be processed.
9037  *
9038  * This function is called by discovery code and HBA management code to submit
9039  * a mailbox command to firmware with SLI-4 interface spec.
9040  *
9041  * Return codes the caller owns the mailbox command after the return of the
9042  * function.
9043  **/
9044 static int
9045 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
9046 		       uint32_t flag)
9047 {
9048 	struct lpfc_sli *psli = &phba->sli;
9049 	unsigned long iflags;
9050 	int rc;
9051 
9052 	/* dump from issue mailbox command if setup */
9053 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
9054 
9055 	rc = lpfc_mbox_dev_check(phba);
9056 	if (unlikely(rc)) {
9057 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9058 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
9059 				"cannot issue Data: x%x x%x\n",
9060 				mboxq->vport ? mboxq->vport->vpi : 0,
9061 				mboxq->u.mb.mbxCommand,
9062 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9063 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9064 				psli->sli_flag, flag);
9065 		goto out_not_finished;
9066 	}
9067 
9068 	/* Detect polling mode and jump to a handler */
9069 	if (!phba->sli4_hba.intr_enable) {
9070 		if (flag == MBX_POLL)
9071 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9072 		else
9073 			rc = -EIO;
9074 		if (rc != MBX_SUCCESS)
9075 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9076 					"(%d):2541 Mailbox command x%x "
9077 					"(x%x/x%x) failure: "
9078 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9079 					"Data: x%x x%x\n,",
9080 					mboxq->vport ? mboxq->vport->vpi : 0,
9081 					mboxq->u.mb.mbxCommand,
9082 					lpfc_sli_config_mbox_subsys_get(phba,
9083 									mboxq),
9084 					lpfc_sli_config_mbox_opcode_get(phba,
9085 									mboxq),
9086 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9087 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9088 					bf_get(lpfc_mcqe_ext_status,
9089 					       &mboxq->mcqe),
9090 					psli->sli_flag, flag);
9091 		return rc;
9092 	} else if (flag == MBX_POLL) {
9093 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9094 				"(%d):2542 Try to issue mailbox command "
9095 				"x%x (x%x/x%x) synchronously ahead of async "
9096 				"mailbox command queue: x%x x%x\n",
9097 				mboxq->vport ? mboxq->vport->vpi : 0,
9098 				mboxq->u.mb.mbxCommand,
9099 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9100 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9101 				psli->sli_flag, flag);
9102 		/* Try to block the asynchronous mailbox posting */
9103 		rc = lpfc_sli4_async_mbox_block(phba);
9104 		if (!rc) {
9105 			/* Successfully blocked, now issue sync mbox cmd */
9106 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9107 			if (rc != MBX_SUCCESS)
9108 				lpfc_printf_log(phba, KERN_WARNING,
9109 					LOG_MBOX | LOG_SLI,
9110 					"(%d):2597 Sync Mailbox command "
9111 					"x%x (x%x/x%x) failure: "
9112 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9113 					"Data: x%x x%x\n,",
9114 					mboxq->vport ? mboxq->vport->vpi : 0,
9115 					mboxq->u.mb.mbxCommand,
9116 					lpfc_sli_config_mbox_subsys_get(phba,
9117 									mboxq),
9118 					lpfc_sli_config_mbox_opcode_get(phba,
9119 									mboxq),
9120 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9121 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9122 					bf_get(lpfc_mcqe_ext_status,
9123 					       &mboxq->mcqe),
9124 					psli->sli_flag, flag);
9125 			/* Unblock the async mailbox posting afterward */
9126 			lpfc_sli4_async_mbox_unblock(phba);
9127 		}
9128 		return rc;
9129 	}
9130 
9131 	/* Now, interrupt mode asynchronous mailbox command */
9132 	rc = lpfc_mbox_cmd_check(phba, mboxq);
9133 	if (rc) {
9134 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9135 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
9136 				"cannot issue Data: x%x x%x\n",
9137 				mboxq->vport ? mboxq->vport->vpi : 0,
9138 				mboxq->u.mb.mbxCommand,
9139 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9140 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9141 				psli->sli_flag, flag);
9142 		goto out_not_finished;
9143 	}
9144 
9145 	/* Put the mailbox command to the driver internal FIFO */
9146 	psli->slistat.mbox_busy++;
9147 	spin_lock_irqsave(&phba->hbalock, iflags);
9148 	lpfc_mbox_put(phba, mboxq);
9149 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9150 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9151 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
9152 			"x%x (x%x/x%x) x%x x%x x%x\n",
9153 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9154 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9155 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9156 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9157 			phba->pport->port_state,
9158 			psli->sli_flag, MBX_NOWAIT);
9159 	/* Wake up worker thread to transport mailbox command from head */
9160 	lpfc_worker_wake_up(phba);
9161 
9162 	return MBX_BUSY;
9163 
9164 out_not_finished:
9165 	return MBX_NOT_FINISHED;
9166 }
9167 
9168 /**
9169  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9170  * @phba: Pointer to HBA context object.
9171  *
9172  * This function is called by worker thread to send a mailbox command to
9173  * SLI4 HBA firmware.
9174  *
9175  **/
9176 int
9177 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9178 {
9179 	struct lpfc_sli *psli = &phba->sli;
9180 	LPFC_MBOXQ_t *mboxq;
9181 	int rc = MBX_SUCCESS;
9182 	unsigned long iflags;
9183 	struct lpfc_mqe *mqe;
9184 	uint32_t mbx_cmnd;
9185 
9186 	/* Check interrupt mode before post async mailbox command */
9187 	if (unlikely(!phba->sli4_hba.intr_enable))
9188 		return MBX_NOT_FINISHED;
9189 
9190 	/* Check for mailbox command service token */
9191 	spin_lock_irqsave(&phba->hbalock, iflags);
9192 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9193 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9194 		return MBX_NOT_FINISHED;
9195 	}
9196 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9197 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9198 		return MBX_NOT_FINISHED;
9199 	}
9200 	if (unlikely(phba->sli.mbox_active)) {
9201 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9202 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9203 				"0384 There is pending active mailbox cmd\n");
9204 		return MBX_NOT_FINISHED;
9205 	}
9206 	/* Take the mailbox command service token */
9207 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9208 
9209 	/* Get the next mailbox command from head of queue */
9210 	mboxq = lpfc_mbox_get(phba);
9211 
9212 	/* If no more mailbox command waiting for post, we're done */
9213 	if (!mboxq) {
9214 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9215 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9216 		return MBX_SUCCESS;
9217 	}
9218 	phba->sli.mbox_active = mboxq;
9219 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9220 
9221 	/* Check device readiness for posting mailbox command */
9222 	rc = lpfc_mbox_dev_check(phba);
9223 	if (unlikely(rc))
9224 		/* Driver clean routine will clean up pending mailbox */
9225 		goto out_not_finished;
9226 
9227 	/* Prepare the mbox command to be posted */
9228 	mqe = &mboxq->u.mqe;
9229 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9230 
9231 	/* Start timer for the mbox_tmo and log some mailbox post messages */
9232 	mod_timer(&psli->mbox_tmo, (jiffies +
9233 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9234 
9235 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9236 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9237 			"x%x x%x\n",
9238 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9239 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9240 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9241 			phba->pport->port_state, psli->sli_flag);
9242 
9243 	if (mbx_cmnd != MBX_HEARTBEAT) {
9244 		if (mboxq->vport) {
9245 			lpfc_debugfs_disc_trc(mboxq->vport,
9246 				LPFC_DISC_TRC_MBOX_VPORT,
9247 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9248 				mbx_cmnd, mqe->un.mb_words[0],
9249 				mqe->un.mb_words[1]);
9250 		} else {
9251 			lpfc_debugfs_disc_trc(phba->pport,
9252 				LPFC_DISC_TRC_MBOX,
9253 				"MBOX Send: cmd:x%x mb:x%x x%x",
9254 				mbx_cmnd, mqe->un.mb_words[0],
9255 				mqe->un.mb_words[1]);
9256 		}
9257 	}
9258 	psli->slistat.mbox_cmd++;
9259 
9260 	/* Post the mailbox command to the port */
9261 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9262 	if (rc != MBX_SUCCESS) {
9263 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9264 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
9265 				"cannot issue Data: x%x x%x\n",
9266 				mboxq->vport ? mboxq->vport->vpi : 0,
9267 				mboxq->u.mb.mbxCommand,
9268 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9269 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9270 				psli->sli_flag, MBX_NOWAIT);
9271 		goto out_not_finished;
9272 	}
9273 
9274 	return rc;
9275 
9276 out_not_finished:
9277 	spin_lock_irqsave(&phba->hbalock, iflags);
9278 	if (phba->sli.mbox_active) {
9279 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9280 		__lpfc_mbox_cmpl_put(phba, mboxq);
9281 		/* Release the token */
9282 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9283 		phba->sli.mbox_active = NULL;
9284 	}
9285 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9286 
9287 	return MBX_NOT_FINISHED;
9288 }
9289 
9290 /**
9291  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9292  * @phba: Pointer to HBA context object.
9293  * @pmbox: Pointer to mailbox object.
9294  * @flag: Flag indicating how the mailbox need to be processed.
9295  *
9296  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9297  * the API jump table function pointer from the lpfc_hba struct.
9298  *
9299  * Return codes the caller owns the mailbox command after the return of the
9300  * function.
9301  **/
9302 int
9303 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9304 {
9305 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9306 }
9307 
9308 /**
9309  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9310  * @phba: The hba struct for which this call is being executed.
9311  * @dev_grp: The HBA PCI-Device group number.
9312  *
9313  * This routine sets up the mbox interface API function jump table in @phba
9314  * struct.
9315  * Returns: 0 - success, -ENODEV - failure.
9316  **/
9317 int
9318 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9319 {
9320 
9321 	switch (dev_grp) {
9322 	case LPFC_PCI_DEV_LP:
9323 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9324 		phba->lpfc_sli_handle_slow_ring_event =
9325 				lpfc_sli_handle_slow_ring_event_s3;
9326 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9327 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9328 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9329 		break;
9330 	case LPFC_PCI_DEV_OC:
9331 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9332 		phba->lpfc_sli_handle_slow_ring_event =
9333 				lpfc_sli_handle_slow_ring_event_s4;
9334 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9335 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9336 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9337 		break;
9338 	default:
9339 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9340 				"1420 Invalid HBA PCI-device group: 0x%x\n",
9341 				dev_grp);
9342 		return -ENODEV;
9343 	}
9344 	return 0;
9345 }
9346 
9347 /**
9348  * __lpfc_sli_ringtx_put - Add an iocb to the txq
9349  * @phba: Pointer to HBA context object.
9350  * @pring: Pointer to driver SLI ring object.
9351  * @piocb: Pointer to address of newly added command iocb.
9352  *
9353  * This function is called with hbalock held for SLI3 ports or
9354  * the ring lock held for SLI4 ports to add a command
9355  * iocb to the txq when SLI layer cannot submit the command iocb
9356  * to the ring.
9357  **/
9358 void
9359 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9360 		    struct lpfc_iocbq *piocb)
9361 {
9362 	if (phba->sli_rev == LPFC_SLI_REV4)
9363 		lockdep_assert_held(&pring->ring_lock);
9364 	else
9365 		lockdep_assert_held(&phba->hbalock);
9366 	/* Insert the caller's iocb in the txq tail for later processing. */
9367 	list_add_tail(&piocb->list, &pring->txq);
9368 }
9369 
9370 /**
9371  * lpfc_sli_next_iocb - Get the next iocb in the txq
9372  * @phba: Pointer to HBA context object.
9373  * @pring: Pointer to driver SLI ring object.
9374  * @piocb: Pointer to address of newly added command iocb.
9375  *
9376  * This function is called with hbalock held before a new
9377  * iocb is submitted to the firmware. This function checks
9378  * txq to flush the iocbs in txq to Firmware before
9379  * submitting new iocbs to the Firmware.
9380  * If there are iocbs in the txq which need to be submitted
9381  * to firmware, lpfc_sli_next_iocb returns the first element
9382  * of the txq after dequeuing it from txq.
9383  * If there is no iocb in the txq then the function will return
9384  * *piocb and *piocb is set to NULL. Caller needs to check
9385  * *piocb to find if there are more commands in the txq.
9386  **/
9387 static struct lpfc_iocbq *
9388 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9389 		   struct lpfc_iocbq **piocb)
9390 {
9391 	struct lpfc_iocbq * nextiocb;
9392 
9393 	lockdep_assert_held(&phba->hbalock);
9394 
9395 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9396 	if (!nextiocb) {
9397 		nextiocb = *piocb;
9398 		*piocb = NULL;
9399 	}
9400 
9401 	return nextiocb;
9402 }
9403 
9404 /**
9405  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9406  * @phba: Pointer to HBA context object.
9407  * @ring_number: SLI ring number to issue iocb on.
9408  * @piocb: Pointer to command iocb.
9409  * @flag: Flag indicating if this command can be put into txq.
9410  *
9411  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9412  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9413  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9414  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9415  * this function allows only iocbs for posting buffers. This function finds
9416  * next available slot in the command ring and posts the command to the
9417  * available slot and writes the port attention register to request HBA start
9418  * processing new iocb. If there is no slot available in the ring and
9419  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9420  * the function returns IOCB_BUSY.
9421  *
9422  * This function is called with hbalock held. The function will return success
9423  * after it successfully submit the iocb to firmware or after adding to the
9424  * txq.
9425  **/
9426 static int
9427 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9428 		    struct lpfc_iocbq *piocb, uint32_t flag)
9429 {
9430 	struct lpfc_iocbq *nextiocb;
9431 	IOCB_t *iocb;
9432 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9433 
9434 	lockdep_assert_held(&phba->hbalock);
9435 
9436 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9437 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9438 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9439 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9440 				"1807 IOCB x%x failed. No vport\n",
9441 				piocb->iocb.ulpCommand);
9442 		dump_stack();
9443 		return IOCB_ERROR;
9444 	}
9445 
9446 
9447 	/* If the PCI channel is in offline state, do not post iocbs. */
9448 	if (unlikely(pci_channel_offline(phba->pcidev)))
9449 		return IOCB_ERROR;
9450 
9451 	/* If HBA has a deferred error attention, fail the iocb. */
9452 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9453 		return IOCB_ERROR;
9454 
9455 	/*
9456 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9457 	 */
9458 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9459 		return IOCB_ERROR;
9460 
9461 	/*
9462 	 * Check to see if we are blocking IOCB processing because of a
9463 	 * outstanding event.
9464 	 */
9465 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9466 		goto iocb_busy;
9467 
9468 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9469 		/*
9470 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9471 		 * can be issued if the link is not up.
9472 		 */
9473 		switch (piocb->iocb.ulpCommand) {
9474 		case CMD_GEN_REQUEST64_CR:
9475 		case CMD_GEN_REQUEST64_CX:
9476 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9477 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9478 					FC_RCTL_DD_UNSOL_CMD) ||
9479 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9480 					MENLO_TRANSPORT_TYPE))
9481 
9482 				goto iocb_busy;
9483 			break;
9484 		case CMD_QUE_RING_BUF_CN:
9485 		case CMD_QUE_RING_BUF64_CN:
9486 			/*
9487 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9488 			 * completion, iocb_cmpl MUST be 0.
9489 			 */
9490 			if (piocb->iocb_cmpl)
9491 				piocb->iocb_cmpl = NULL;
9492 			fallthrough;
9493 		case CMD_CREATE_XRI_CR:
9494 		case CMD_CLOSE_XRI_CN:
9495 		case CMD_CLOSE_XRI_CX:
9496 			break;
9497 		default:
9498 			goto iocb_busy;
9499 		}
9500 
9501 	/*
9502 	 * For FCP commands, we must be in a state where we can process link
9503 	 * attention events.
9504 	 */
9505 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9506 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9507 		goto iocb_busy;
9508 	}
9509 
9510 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9511 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9512 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9513 
9514 	if (iocb)
9515 		lpfc_sli_update_ring(phba, pring);
9516 	else
9517 		lpfc_sli_update_full_ring(phba, pring);
9518 
9519 	if (!piocb)
9520 		return IOCB_SUCCESS;
9521 
9522 	goto out_busy;
9523 
9524  iocb_busy:
9525 	pring->stats.iocb_cmd_delay++;
9526 
9527  out_busy:
9528 
9529 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9530 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9531 		return IOCB_SUCCESS;
9532 	}
9533 
9534 	return IOCB_BUSY;
9535 }
9536 
9537 /**
9538  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9539  * @phba: Pointer to HBA context object.
9540  * @piocbq: Pointer to command iocb.
9541  * @sglq: Pointer to the scatter gather queue object.
9542  *
9543  * This routine converts the bpl or bde that is in the IOCB
9544  * to a sgl list for the sli4 hardware. The physical address
9545  * of the bpl/bde is converted back to a virtual address.
9546  * If the IOCB contains a BPL then the list of BDE's is
9547  * converted to sli4_sge's. If the IOCB contains a single
9548  * BDE then it is converted to a single sli_sge.
9549  * The IOCB is still in cpu endianess so the contents of
9550  * the bpl can be used without byte swapping.
9551  *
9552  * Returns valid XRI = Success, NO_XRI = Failure.
9553 **/
9554 static uint16_t
9555 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9556 		struct lpfc_sglq *sglq)
9557 {
9558 	uint16_t xritag = NO_XRI;
9559 	struct ulp_bde64 *bpl = NULL;
9560 	struct ulp_bde64 bde;
9561 	struct sli4_sge *sgl  = NULL;
9562 	struct lpfc_dmabuf *dmabuf;
9563 	IOCB_t *icmd;
9564 	int numBdes = 0;
9565 	int i = 0;
9566 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9567 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9568 
9569 	if (!piocbq || !sglq)
9570 		return xritag;
9571 
9572 	sgl  = (struct sli4_sge *)sglq->sgl;
9573 	icmd = &piocbq->iocb;
9574 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9575 		return sglq->sli4_xritag;
9576 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9577 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9578 				sizeof(struct ulp_bde64);
9579 		/* The addrHigh and addrLow fields within the IOCB
9580 		 * have not been byteswapped yet so there is no
9581 		 * need to swap them back.
9582 		 */
9583 		if (piocbq->context3)
9584 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9585 		else
9586 			return xritag;
9587 
9588 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9589 		if (!bpl)
9590 			return xritag;
9591 
9592 		for (i = 0; i < numBdes; i++) {
9593 			/* Should already be byte swapped. */
9594 			sgl->addr_hi = bpl->addrHigh;
9595 			sgl->addr_lo = bpl->addrLow;
9596 
9597 			sgl->word2 = le32_to_cpu(sgl->word2);
9598 			if ((i+1) == numBdes)
9599 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9600 			else
9601 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9602 			/* swap the size field back to the cpu so we
9603 			 * can assign it to the sgl.
9604 			 */
9605 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9606 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9607 			/* The offsets in the sgl need to be accumulated
9608 			 * separately for the request and reply lists.
9609 			 * The request is always first, the reply follows.
9610 			 */
9611 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9612 				/* add up the reply sg entries */
9613 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9614 					inbound++;
9615 				/* first inbound? reset the offset */
9616 				if (inbound == 1)
9617 					offset = 0;
9618 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9619 				bf_set(lpfc_sli4_sge_type, sgl,
9620 					LPFC_SGE_TYPE_DATA);
9621 				offset += bde.tus.f.bdeSize;
9622 			}
9623 			sgl->word2 = cpu_to_le32(sgl->word2);
9624 			bpl++;
9625 			sgl++;
9626 		}
9627 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9628 			/* The addrHigh and addrLow fields of the BDE have not
9629 			 * been byteswapped yet so they need to be swapped
9630 			 * before putting them in the sgl.
9631 			 */
9632 			sgl->addr_hi =
9633 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9634 			sgl->addr_lo =
9635 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9636 			sgl->word2 = le32_to_cpu(sgl->word2);
9637 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9638 			sgl->word2 = cpu_to_le32(sgl->word2);
9639 			sgl->sge_len =
9640 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9641 	}
9642 	return sglq->sli4_xritag;
9643 }
9644 
9645 /**
9646  * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry.
9647  * @phba: Pointer to HBA context object.
9648  * @iocbq: Pointer to command iocb.
9649  * @wqe: Pointer to the work queue entry.
9650  *
9651  * This routine converts the iocb command to its Work Queue Entry
9652  * equivalent. The wqe pointer should not have any fields set when
9653  * this routine is called because it will memcpy over them.
9654  * This routine does not set the CQ_ID or the WQEC bits in the
9655  * wqe.
9656  *
9657  * Returns: 0 = Success, IOCB_ERROR = Failure.
9658  **/
9659 static int
9660 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9661 		union lpfc_wqe128 *wqe)
9662 {
9663 	uint32_t xmit_len = 0, total_len = 0;
9664 	uint8_t ct = 0;
9665 	uint32_t fip;
9666 	uint32_t abort_tag;
9667 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9668 	uint8_t cmnd;
9669 	uint16_t xritag;
9670 	uint16_t abrt_iotag;
9671 	struct lpfc_iocbq *abrtiocbq;
9672 	struct ulp_bde64 *bpl = NULL;
9673 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9674 	int numBdes, i;
9675 	struct ulp_bde64 bde;
9676 	struct lpfc_nodelist *ndlp;
9677 	uint32_t *pcmd;
9678 	uint32_t if_type;
9679 
9680 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9681 	/* The fcp commands will set command type */
9682 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9683 		command_type = FCP_COMMAND;
9684 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9685 		command_type = ELS_COMMAND_FIP;
9686 	else
9687 		command_type = ELS_COMMAND_NON_FIP;
9688 
9689 	if (phba->fcp_embed_io)
9690 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9691 	/* Some of the fields are in the right position already */
9692 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9693 	/* The ct field has moved so reset */
9694 	wqe->generic.wqe_com.word7 = 0;
9695 	wqe->generic.wqe_com.word10 = 0;
9696 
9697 	abort_tag = (uint32_t) iocbq->iotag;
9698 	xritag = iocbq->sli4_xritag;
9699 	/* words0-2 bpl convert bde */
9700 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9701 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9702 				sizeof(struct ulp_bde64);
9703 		bpl  = (struct ulp_bde64 *)
9704 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9705 		if (!bpl)
9706 			return IOCB_ERROR;
9707 
9708 		/* Should already be byte swapped. */
9709 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9710 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9711 		/* swap the size field back to the cpu so we
9712 		 * can assign it to the sgl.
9713 		 */
9714 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9715 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9716 		total_len = 0;
9717 		for (i = 0; i < numBdes; i++) {
9718 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9719 			total_len += bde.tus.f.bdeSize;
9720 		}
9721 	} else
9722 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9723 
9724 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9725 	cmnd = iocbq->iocb.ulpCommand;
9726 
9727 	switch (iocbq->iocb.ulpCommand) {
9728 	case CMD_ELS_REQUEST64_CR:
9729 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9730 			ndlp = iocbq->context_un.ndlp;
9731 		else
9732 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9733 		if (!iocbq->iocb.ulpLe) {
9734 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9735 				"2007 Only Limited Edition cmd Format"
9736 				" supported 0x%x\n",
9737 				iocbq->iocb.ulpCommand);
9738 			return IOCB_ERROR;
9739 		}
9740 
9741 		wqe->els_req.payload_len = xmit_len;
9742 		/* Els_reguest64 has a TMO */
9743 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9744 			iocbq->iocb.ulpTimeout);
9745 		/* Need a VF for word 4 set the vf bit*/
9746 		bf_set(els_req64_vf, &wqe->els_req, 0);
9747 		/* And a VFID for word 12 */
9748 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9749 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9750 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9751 		       iocbq->iocb.ulpContext);
9752 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9753 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9754 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9755 		if (command_type == ELS_COMMAND_FIP)
9756 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9757 					>> LPFC_FIP_ELS_ID_SHIFT);
9758 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9759 					iocbq->context2)->virt);
9760 		if_type = bf_get(lpfc_sli_intf_if_type,
9761 					&phba->sli4_hba.sli_intf);
9762 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9763 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9764 				*pcmd == ELS_CMD_SCR ||
9765 				*pcmd == ELS_CMD_RDF ||
9766 				*pcmd == ELS_CMD_RSCN_XMT ||
9767 				*pcmd == ELS_CMD_FDISC ||
9768 				*pcmd == ELS_CMD_LOGO ||
9769 				*pcmd == ELS_CMD_QFPA ||
9770 				*pcmd == ELS_CMD_UVEM ||
9771 				*pcmd == ELS_CMD_PLOGI)) {
9772 				bf_set(els_req64_sp, &wqe->els_req, 1);
9773 				bf_set(els_req64_sid, &wqe->els_req,
9774 					iocbq->vport->fc_myDID);
9775 				if ((*pcmd == ELS_CMD_FLOGI) &&
9776 					!(phba->fc_topology ==
9777 						LPFC_TOPOLOGY_LOOP))
9778 					bf_set(els_req64_sid, &wqe->els_req, 0);
9779 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9780 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9781 					phba->vpi_ids[iocbq->vport->vpi]);
9782 			} else if (pcmd && iocbq->context1) {
9783 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9784 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9785 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9786 			}
9787 		}
9788 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9789 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9790 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9791 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9792 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9793 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9794 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9795 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9796 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9797 		break;
9798 	case CMD_XMIT_SEQUENCE64_CX:
9799 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9800 		       iocbq->iocb.un.ulpWord[3]);
9801 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9802 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9803 		/* The entire sequence is transmitted for this IOCB */
9804 		xmit_len = total_len;
9805 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9806 		if (phba->link_flag & LS_LOOPBACK_MODE)
9807 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9808 		fallthrough;
9809 	case CMD_XMIT_SEQUENCE64_CR:
9810 		/* word3 iocb=io_tag32 wqe=reserved */
9811 		wqe->xmit_sequence.rsvd3 = 0;
9812 		/* word4 relative_offset memcpy */
9813 		/* word5 r_ctl/df_ctl memcpy */
9814 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9815 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9816 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9817 		       LPFC_WQE_IOD_WRITE);
9818 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9819 		       LPFC_WQE_LENLOC_WORD12);
9820 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9821 		wqe->xmit_sequence.xmit_len = xmit_len;
9822 		command_type = OTHER_COMMAND;
9823 		break;
9824 	case CMD_XMIT_BCAST64_CN:
9825 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9826 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9827 		/* word4 iocb=rsvd wqe=rsvd */
9828 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9829 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9830 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9831 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9832 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9833 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9834 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9835 		       LPFC_WQE_LENLOC_WORD3);
9836 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9837 		break;
9838 	case CMD_FCP_IWRITE64_CR:
9839 		command_type = FCP_COMMAND_DATA_OUT;
9840 		/* word3 iocb=iotag wqe=payload_offset_len */
9841 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9842 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9843 		       xmit_len + sizeof(struct fcp_rsp));
9844 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9845 		       0);
9846 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9847 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9848 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9849 		       iocbq->iocb.ulpFCP2Rcvy);
9850 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9851 		/* Always open the exchange */
9852 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9853 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9854 		       LPFC_WQE_LENLOC_WORD4);
9855 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9856 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9857 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9858 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9859 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9860 			if (iocbq->priority) {
9861 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9862 				       (iocbq->priority << 1));
9863 			} else {
9864 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9865 				       (phba->cfg_XLanePriority << 1));
9866 			}
9867 		}
9868 		/* Note, word 10 is already initialized to 0 */
9869 
9870 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9871 		if (phba->cfg_enable_pbde)
9872 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9873 		else
9874 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9875 
9876 		if (phba->fcp_embed_io) {
9877 			struct lpfc_io_buf *lpfc_cmd;
9878 			struct sli4_sge *sgl;
9879 			struct fcp_cmnd *fcp_cmnd;
9880 			uint32_t *ptr;
9881 
9882 			/* 128 byte wqe support here */
9883 
9884 			lpfc_cmd = iocbq->context1;
9885 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9886 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9887 
9888 			/* Word 0-2 - FCP_CMND */
9889 			wqe->generic.bde.tus.f.bdeFlags =
9890 				BUFF_TYPE_BDE_IMMED;
9891 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9892 			wqe->generic.bde.addrHigh = 0;
9893 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9894 
9895 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9896 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9897 
9898 			/* Word 22-29  FCP CMND Payload */
9899 			ptr = &wqe->words[22];
9900 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9901 		}
9902 		break;
9903 	case CMD_FCP_IREAD64_CR:
9904 		/* word3 iocb=iotag wqe=payload_offset_len */
9905 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9906 		bf_set(payload_offset_len, &wqe->fcp_iread,
9907 		       xmit_len + sizeof(struct fcp_rsp));
9908 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9909 		       0);
9910 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9911 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9912 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9913 		       iocbq->iocb.ulpFCP2Rcvy);
9914 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9915 		/* Always open the exchange */
9916 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9917 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9918 		       LPFC_WQE_LENLOC_WORD4);
9919 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9920 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9921 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9922 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9923 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9924 			if (iocbq->priority) {
9925 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9926 				       (iocbq->priority << 1));
9927 			} else {
9928 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9929 				       (phba->cfg_XLanePriority << 1));
9930 			}
9931 		}
9932 		/* Note, word 10 is already initialized to 0 */
9933 
9934 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9935 		if (phba->cfg_enable_pbde)
9936 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9937 		else
9938 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9939 
9940 		if (phba->fcp_embed_io) {
9941 			struct lpfc_io_buf *lpfc_cmd;
9942 			struct sli4_sge *sgl;
9943 			struct fcp_cmnd *fcp_cmnd;
9944 			uint32_t *ptr;
9945 
9946 			/* 128 byte wqe support here */
9947 
9948 			lpfc_cmd = iocbq->context1;
9949 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9950 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9951 
9952 			/* Word 0-2 - FCP_CMND */
9953 			wqe->generic.bde.tus.f.bdeFlags =
9954 				BUFF_TYPE_BDE_IMMED;
9955 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9956 			wqe->generic.bde.addrHigh = 0;
9957 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9958 
9959 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9960 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9961 
9962 			/* Word 22-29  FCP CMND Payload */
9963 			ptr = &wqe->words[22];
9964 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9965 		}
9966 		break;
9967 	case CMD_FCP_ICMND64_CR:
9968 		/* word3 iocb=iotag wqe=payload_offset_len */
9969 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9970 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9971 		       xmit_len + sizeof(struct fcp_rsp));
9972 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9973 		       0);
9974 		/* word3 iocb=IO_TAG wqe=reserved */
9975 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9976 		/* Always open the exchange */
9977 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9978 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9979 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9980 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9981 		       LPFC_WQE_LENLOC_NONE);
9982 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9983 		       iocbq->iocb.ulpFCP2Rcvy);
9984 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9985 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9986 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9987 			if (iocbq->priority) {
9988 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9989 				       (iocbq->priority << 1));
9990 			} else {
9991 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9992 				       (phba->cfg_XLanePriority << 1));
9993 			}
9994 		}
9995 		/* Note, word 10 is already initialized to 0 */
9996 
9997 		if (phba->fcp_embed_io) {
9998 			struct lpfc_io_buf *lpfc_cmd;
9999 			struct sli4_sge *sgl;
10000 			struct fcp_cmnd *fcp_cmnd;
10001 			uint32_t *ptr;
10002 
10003 			/* 128 byte wqe support here */
10004 
10005 			lpfc_cmd = iocbq->context1;
10006 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10007 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
10008 
10009 			/* Word 0-2 - FCP_CMND */
10010 			wqe->generic.bde.tus.f.bdeFlags =
10011 				BUFF_TYPE_BDE_IMMED;
10012 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10013 			wqe->generic.bde.addrHigh = 0;
10014 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
10015 
10016 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
10017 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
10018 
10019 			/* Word 22-29  FCP CMND Payload */
10020 			ptr = &wqe->words[22];
10021 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10022 		}
10023 		break;
10024 	case CMD_GEN_REQUEST64_CR:
10025 		/* For this command calculate the xmit length of the
10026 		 * request bde.
10027 		 */
10028 		xmit_len = 0;
10029 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
10030 			sizeof(struct ulp_bde64);
10031 		for (i = 0; i < numBdes; i++) {
10032 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
10033 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
10034 				break;
10035 			xmit_len += bde.tus.f.bdeSize;
10036 		}
10037 		/* word3 iocb=IO_TAG wqe=request_payload_len */
10038 		wqe->gen_req.request_payload_len = xmit_len;
10039 		/* word4 iocb=parameter wqe=relative_offset memcpy */
10040 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
10041 		/* word6 context tag copied in memcpy */
10042 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
10043 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
10044 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10045 				"2015 Invalid CT %x command 0x%x\n",
10046 				ct, iocbq->iocb.ulpCommand);
10047 			return IOCB_ERROR;
10048 		}
10049 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
10050 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
10051 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
10052 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
10053 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
10054 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
10055 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
10056 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
10057 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
10058 		command_type = OTHER_COMMAND;
10059 		break;
10060 	case CMD_XMIT_ELS_RSP64_CX:
10061 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10062 		/* words0-2 BDE memcpy */
10063 		/* word3 iocb=iotag32 wqe=response_payload_len */
10064 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
10065 		/* word4 */
10066 		wqe->xmit_els_rsp.word4 = 0;
10067 		/* word5 iocb=rsvd wge=did */
10068 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
10069 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
10070 
10071 		if_type = bf_get(lpfc_sli_intf_if_type,
10072 					&phba->sli4_hba.sli_intf);
10073 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10074 			if (iocbq->vport->fc_flag & FC_PT2PT) {
10075 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10076 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10077 					iocbq->vport->fc_myDID);
10078 				if (iocbq->vport->fc_myDID == Fabric_DID) {
10079 					bf_set(wqe_els_did,
10080 						&wqe->xmit_els_rsp.wqe_dest, 0);
10081 				}
10082 			}
10083 		}
10084 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
10085 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10086 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
10087 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
10088 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
10089 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
10090 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10091 			       phba->vpi_ids[iocbq->vport->vpi]);
10092 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
10093 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
10094 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
10095 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
10096 		       LPFC_WQE_LENLOC_WORD3);
10097 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
10098 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
10099 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
10100 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
10101 					iocbq->context2)->virt);
10102 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
10103 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10104 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10105 					iocbq->vport->fc_myDID);
10106 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
10107 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10108 					phba->vpi_ids[phba->pport->vpi]);
10109 		}
10110 		command_type = OTHER_COMMAND;
10111 		break;
10112 	case CMD_CLOSE_XRI_CN:
10113 	case CMD_ABORT_XRI_CN:
10114 	case CMD_ABORT_XRI_CX:
10115 		/* words 0-2 memcpy should be 0 rserved */
10116 		/* port will send abts */
10117 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
10118 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
10119 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
10120 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
10121 		} else
10122 			fip = 0;
10123 
10124 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
10125 			/*
10126 			 * The link is down, or the command was ELS_FIP
10127 			 * so the fw does not need to send abts
10128 			 * on the wire.
10129 			 */
10130 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
10131 		else
10132 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
10133 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
10134 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
10135 		wqe->abort_cmd.rsrvd5 = 0;
10136 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
10137 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10138 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
10139 		/*
10140 		 * The abort handler will send us CMD_ABORT_XRI_CN or
10141 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
10142 		 */
10143 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10144 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
10145 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
10146 		       LPFC_WQE_LENLOC_NONE);
10147 		cmnd = CMD_ABORT_XRI_CX;
10148 		command_type = OTHER_COMMAND;
10149 		xritag = 0;
10150 		break;
10151 	case CMD_XMIT_BLS_RSP64_CX:
10152 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10153 		/* As BLS ABTS RSP WQE is very different from other WQEs,
10154 		 * we re-construct this WQE here based on information in
10155 		 * iocbq from scratch.
10156 		 */
10157 		memset(wqe, 0, sizeof(*wqe));
10158 		/* OX_ID is invariable to who sent ABTS to CT exchange */
10159 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
10160 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
10161 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
10162 		    LPFC_ABTS_UNSOL_INT) {
10163 			/* ABTS sent by initiator to CT exchange, the
10164 			 * RX_ID field will be filled with the newly
10165 			 * allocated responder XRI.
10166 			 */
10167 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10168 			       iocbq->sli4_xritag);
10169 		} else {
10170 			/* ABTS sent by responder to CT exchange, the
10171 			 * RX_ID field will be filled with the responder
10172 			 * RX_ID from ABTS.
10173 			 */
10174 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10175 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
10176 		}
10177 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
10178 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
10179 
10180 		/* Use CT=VPI */
10181 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
10182 			ndlp->nlp_DID);
10183 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
10184 			iocbq->iocb.ulpContext);
10185 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
10186 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
10187 			phba->vpi_ids[phba->pport->vpi]);
10188 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
10189 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
10190 		       LPFC_WQE_LENLOC_NONE);
10191 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
10192 		command_type = OTHER_COMMAND;
10193 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
10194 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
10195 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
10196 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
10197 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
10198 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
10199 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
10200 		}
10201 
10202 		break;
10203 	case CMD_SEND_FRAME:
10204 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
10205 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
10206 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
10207 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
10208 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
10209 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10210 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
10211 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10212 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10213 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10214 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10215 		return 0;
10216 	case CMD_XRI_ABORTED_CX:
10217 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10218 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10219 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10220 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10221 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10222 	default:
10223 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10224 				"2014 Invalid command 0x%x\n",
10225 				iocbq->iocb.ulpCommand);
10226 		return IOCB_ERROR;
10227 	}
10228 
10229 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10230 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10231 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10232 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10233 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10234 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10235 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10236 			      LPFC_IO_DIF_INSERT);
10237 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10238 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10239 	wqe->generic.wqe_com.abort_tag = abort_tag;
10240 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10241 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10242 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10243 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10244 	return 0;
10245 }
10246 
10247 /**
10248  * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10249  * @phba: Pointer to HBA context object.
10250  * @ring_number: SLI ring number to issue wqe on.
10251  * @piocb: Pointer to command iocb.
10252  * @flag: Flag indicating if this command can be put into txq.
10253  *
10254  * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10255  * send  an iocb command to an HBA with SLI-4 interface spec.
10256  *
10257  * This function takes the hbalock before invoking the lockless version.
10258  * The function will return success after it successfully submit the wqe to
10259  * firmware or after adding to the txq.
10260  **/
10261 static int
10262 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10263 			   struct lpfc_iocbq *piocb, uint32_t flag)
10264 {
10265 	unsigned long iflags;
10266 	int rc;
10267 
10268 	spin_lock_irqsave(&phba->hbalock, iflags);
10269 	rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10270 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10271 
10272 	return rc;
10273 }
10274 
10275 /**
10276  * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10277  * @phba: Pointer to HBA context object.
10278  * @ring_number: SLI ring number to issue wqe on.
10279  * @piocb: Pointer to command iocb.
10280  * @flag: Flag indicating if this command can be put into txq.
10281  *
10282  * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10283  * an wqe command to an HBA with SLI-4 interface spec.
10284  *
10285  * This function is a lockless version. The function will return success
10286  * after it successfully submit the wqe to firmware or after adding to the
10287  * txq.
10288  **/
10289 static int
10290 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10291 			   struct lpfc_iocbq *piocb, uint32_t flag)
10292 {
10293 	int rc;
10294 	struct lpfc_io_buf *lpfc_cmd =
10295 		(struct lpfc_io_buf *)piocb->context1;
10296 	union lpfc_wqe128 *wqe = &piocb->wqe;
10297 	struct sli4_sge *sgl;
10298 
10299 	/* 128 byte wqe support here */
10300 	sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10301 
10302 	if (phba->fcp_embed_io) {
10303 		struct fcp_cmnd *fcp_cmnd;
10304 		u32 *ptr;
10305 
10306 		fcp_cmnd = lpfc_cmd->fcp_cmnd;
10307 
10308 		/* Word 0-2 - FCP_CMND */
10309 		wqe->generic.bde.tus.f.bdeFlags =
10310 			BUFF_TYPE_BDE_IMMED;
10311 		wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10312 		wqe->generic.bde.addrHigh = 0;
10313 		wqe->generic.bde.addrLow =  88;  /* Word 22 */
10314 
10315 		bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10316 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10317 
10318 		/* Word 22-29  FCP CMND Payload */
10319 		ptr = &wqe->words[22];
10320 		memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10321 	} else {
10322 		/* Word 0-2 - Inline BDE */
10323 		wqe->generic.bde.tus.f.bdeFlags =  BUFF_TYPE_BDE_64;
10324 		wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10325 		wqe->generic.bde.addrHigh = sgl->addr_hi;
10326 		wqe->generic.bde.addrLow =  sgl->addr_lo;
10327 
10328 		/* Word 10 */
10329 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10330 		bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10331 	}
10332 
10333 	/* add the VMID tags as per switch response */
10334 	if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) {
10335 		if (phba->pport->vmid_priority_tagging) {
10336 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10337 			bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10338 					(piocb->vmid_tag.cs_ctl_vmid));
10339 		} else {
10340 			bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10341 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10342 			wqe->words[31] = piocb->vmid_tag.app_id;
10343 		}
10344 	}
10345 	rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10346 	return rc;
10347 }
10348 
10349 /**
10350  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10351  * @phba: Pointer to HBA context object.
10352  * @ring_number: SLI ring number to issue iocb on.
10353  * @piocb: Pointer to command iocb.
10354  * @flag: Flag indicating if this command can be put into txq.
10355  *
10356  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10357  * an iocb command to an HBA with SLI-4 interface spec.
10358  *
10359  * This function is called with ringlock held. The function will return success
10360  * after it successfully submit the iocb to firmware or after adding to the
10361  * txq.
10362  **/
10363 static int
10364 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10365 			 struct lpfc_iocbq *piocb, uint32_t flag)
10366 {
10367 	struct lpfc_sglq *sglq;
10368 	union lpfc_wqe128 wqe;
10369 	struct lpfc_queue *wq;
10370 	struct lpfc_sli_ring *pring;
10371 
10372 	/* Get the WQ */
10373 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
10374 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10375 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10376 	} else {
10377 		wq = phba->sli4_hba.els_wq;
10378 	}
10379 
10380 	/* Get corresponding ring */
10381 	pring = wq->pring;
10382 
10383 	/*
10384 	 * The WQE can be either 64 or 128 bytes,
10385 	 */
10386 
10387 	lockdep_assert_held(&pring->ring_lock);
10388 
10389 	if (piocb->sli4_xritag == NO_XRI) {
10390 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10391 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
10392 			sglq = NULL;
10393 		else {
10394 			if (!list_empty(&pring->txq)) {
10395 				if (!(flag & SLI_IOCB_RET_IOCB)) {
10396 					__lpfc_sli_ringtx_put(phba,
10397 						pring, piocb);
10398 					return IOCB_SUCCESS;
10399 				} else {
10400 					return IOCB_BUSY;
10401 				}
10402 			} else {
10403 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10404 				if (!sglq) {
10405 					if (!(flag & SLI_IOCB_RET_IOCB)) {
10406 						__lpfc_sli_ringtx_put(phba,
10407 								pring,
10408 								piocb);
10409 						return IOCB_SUCCESS;
10410 					} else
10411 						return IOCB_BUSY;
10412 				}
10413 			}
10414 		}
10415 	} else if (piocb->iocb_flag &  LPFC_IO_FCP) {
10416 		/* These IO's already have an XRI and a mapped sgl. */
10417 		sglq = NULL;
10418 	}
10419 	else {
10420 		/*
10421 		 * This is a continuation of a commandi,(CX) so this
10422 		 * sglq is on the active list
10423 		 */
10424 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10425 		if (!sglq)
10426 			return IOCB_ERROR;
10427 	}
10428 
10429 	if (sglq) {
10430 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10431 		piocb->sli4_xritag = sglq->sli4_xritag;
10432 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10433 			return IOCB_ERROR;
10434 	}
10435 
10436 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10437 		return IOCB_ERROR;
10438 
10439 	if (lpfc_sli4_wq_put(wq, &wqe))
10440 		return IOCB_ERROR;
10441 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10442 
10443 	return 0;
10444 }
10445 
10446 /*
10447  * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10448  *
10449  * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10450  * or IOCB for sli-3  function.
10451  * pointer from the lpfc_hba struct.
10452  *
10453  * Return codes:
10454  * IOCB_ERROR - Error
10455  * IOCB_SUCCESS - Success
10456  * IOCB_BUSY - Busy
10457  **/
10458 int
10459 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10460 		      struct lpfc_iocbq *piocb, uint32_t flag)
10461 {
10462 	return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10463 }
10464 
10465 /*
10466  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10467  *
10468  * This routine wraps the actual lockless version for issusing IOCB function
10469  * pointer from the lpfc_hba struct.
10470  *
10471  * Return codes:
10472  * IOCB_ERROR - Error
10473  * IOCB_SUCCESS - Success
10474  * IOCB_BUSY - Busy
10475  **/
10476 int
10477 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10478 		struct lpfc_iocbq *piocb, uint32_t flag)
10479 {
10480 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10481 }
10482 
10483 /**
10484  * lpfc_sli_api_table_setup - Set up sli api function jump table
10485  * @phba: The hba struct for which this call is being executed.
10486  * @dev_grp: The HBA PCI-Device group number.
10487  *
10488  * This routine sets up the SLI interface API function jump table in @phba
10489  * struct.
10490  * Returns: 0 - success, -ENODEV - failure.
10491  **/
10492 int
10493 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10494 {
10495 
10496 	switch (dev_grp) {
10497 	case LPFC_PCI_DEV_LP:
10498 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10499 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10500 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
10501 		break;
10502 	case LPFC_PCI_DEV_OC:
10503 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10504 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10505 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
10506 		break;
10507 	default:
10508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10509 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10510 				dev_grp);
10511 		return -ENODEV;
10512 	}
10513 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10514 	return 0;
10515 }
10516 
10517 /**
10518  * lpfc_sli4_calc_ring - Calculates which ring to use
10519  * @phba: Pointer to HBA context object.
10520  * @piocb: Pointer to command iocb.
10521  *
10522  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10523  * hba_wqidx, thus we need to calculate the corresponding ring.
10524  * Since ABORTS must go on the same WQ of the command they are
10525  * aborting, we use command's hba_wqidx.
10526  */
10527 struct lpfc_sli_ring *
10528 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10529 {
10530 	struct lpfc_io_buf *lpfc_cmd;
10531 
10532 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10533 		if (unlikely(!phba->sli4_hba.hdwq))
10534 			return NULL;
10535 		/*
10536 		 * for abort iocb hba_wqidx should already
10537 		 * be setup based on what work queue we used.
10538 		 */
10539 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10540 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10541 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10542 		}
10543 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10544 	} else {
10545 		if (unlikely(!phba->sli4_hba.els_wq))
10546 			return NULL;
10547 		piocb->hba_wqidx = 0;
10548 		return phba->sli4_hba.els_wq->pring;
10549 	}
10550 }
10551 
10552 /**
10553  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10554  * @phba: Pointer to HBA context object.
10555  * @ring_number: Ring number
10556  * @piocb: Pointer to command iocb.
10557  * @flag: Flag indicating if this command can be put into txq.
10558  *
10559  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10560  * function. This function gets the hbalock and calls
10561  * __lpfc_sli_issue_iocb function and will return the error returned
10562  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10563  * functions which do not hold hbalock.
10564  **/
10565 int
10566 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10567 		    struct lpfc_iocbq *piocb, uint32_t flag)
10568 {
10569 	struct lpfc_sli_ring *pring;
10570 	struct lpfc_queue *eq;
10571 	unsigned long iflags;
10572 	int rc;
10573 
10574 	if (phba->sli_rev == LPFC_SLI_REV4) {
10575 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10576 
10577 		pring = lpfc_sli4_calc_ring(phba, piocb);
10578 		if (unlikely(pring == NULL))
10579 			return IOCB_ERROR;
10580 
10581 		spin_lock_irqsave(&pring->ring_lock, iflags);
10582 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10583 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10584 
10585 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10586 	} else {
10587 		/* For now, SLI2/3 will still use hbalock */
10588 		spin_lock_irqsave(&phba->hbalock, iflags);
10589 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10590 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10591 	}
10592 	return rc;
10593 }
10594 
10595 /**
10596  * lpfc_extra_ring_setup - Extra ring setup function
10597  * @phba: Pointer to HBA context object.
10598  *
10599  * This function is called while driver attaches with the
10600  * HBA to setup the extra ring. The extra ring is used
10601  * only when driver needs to support target mode functionality
10602  * or IP over FC functionalities.
10603  *
10604  * This function is called with no lock held. SLI3 only.
10605  **/
10606 static int
10607 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10608 {
10609 	struct lpfc_sli *psli;
10610 	struct lpfc_sli_ring *pring;
10611 
10612 	psli = &phba->sli;
10613 
10614 	/* Adjust cmd/rsp ring iocb entries more evenly */
10615 
10616 	/* Take some away from the FCP ring */
10617 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10618 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10619 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10620 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10621 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10622 
10623 	/* and give them to the extra ring */
10624 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10625 
10626 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10627 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10628 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10629 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10630 
10631 	/* Setup default profile for this ring */
10632 	pring->iotag_max = 4096;
10633 	pring->num_mask = 1;
10634 	pring->prt[0].profile = 0;      /* Mask 0 */
10635 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10636 	pring->prt[0].type = phba->cfg_multi_ring_type;
10637 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10638 	return 0;
10639 }
10640 
10641 static void
10642 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
10643 			     struct lpfc_nodelist *ndlp)
10644 {
10645 	unsigned long iflags;
10646 	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
10647 
10648 	spin_lock_irqsave(&phba->hbalock, iflags);
10649 	if (!list_empty(&evtp->evt_listp)) {
10650 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10651 		return;
10652 	}
10653 
10654 	/* Incrementing the reference count until the queued work is done. */
10655 	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
10656 	if (!evtp->evt_arg1) {
10657 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10658 		return;
10659 	}
10660 	evtp->evt = LPFC_EVT_RECOVER_PORT;
10661 	list_add_tail(&evtp->evt_listp, &phba->work_list);
10662 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10663 
10664 	lpfc_worker_wake_up(phba);
10665 }
10666 
10667 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10668  * @phba: Pointer to HBA context object.
10669  * @iocbq: Pointer to iocb object.
10670  *
10671  * The async_event handler calls this routine when it receives
10672  * an ASYNC_STATUS_CN event from the port.  The port generates
10673  * this event when an Abort Sequence request to an rport fails
10674  * twice in succession.  The abort could be originated by the
10675  * driver or by the port.  The ABTS could have been for an ELS
10676  * or FCP IO.  The port only generates this event when an ABTS
10677  * fails to complete after one retry.
10678  */
10679 static void
10680 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10681 			  struct lpfc_iocbq *iocbq)
10682 {
10683 	struct lpfc_nodelist *ndlp = NULL;
10684 	uint16_t rpi = 0, vpi = 0;
10685 	struct lpfc_vport *vport = NULL;
10686 
10687 	/* The rpi in the ulpContext is vport-sensitive. */
10688 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10689 	rpi = iocbq->iocb.ulpContext;
10690 
10691 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10692 			"3092 Port generated ABTS async event "
10693 			"on vpi %d rpi %d status 0x%x\n",
10694 			vpi, rpi, iocbq->iocb.ulpStatus);
10695 
10696 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10697 	if (!vport)
10698 		goto err_exit;
10699 	ndlp = lpfc_findnode_rpi(vport, rpi);
10700 	if (!ndlp)
10701 		goto err_exit;
10702 
10703 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10704 		lpfc_sli_abts_recover_port(vport, ndlp);
10705 	return;
10706 
10707  err_exit:
10708 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10709 			"3095 Event Context not found, no "
10710 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10711 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10712 			vpi, rpi);
10713 }
10714 
10715 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10716  * @phba: pointer to HBA context object.
10717  * @ndlp: nodelist pointer for the impacted rport.
10718  * @axri: pointer to the wcqe containing the failed exchange.
10719  *
10720  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10721  * port.  The port generates this event when an abort exchange request to an
10722  * rport fails twice in succession with no reply.  The abort could be originated
10723  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10724  */
10725 void
10726 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10727 			   struct lpfc_nodelist *ndlp,
10728 			   struct sli4_wcqe_xri_aborted *axri)
10729 {
10730 	uint32_t ext_status = 0;
10731 
10732 	if (!ndlp) {
10733 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10734 				"3115 Node Context not found, driver "
10735 				"ignoring abts err event\n");
10736 		return;
10737 	}
10738 
10739 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10740 			"3116 Port generated FCP XRI ABORT event on "
10741 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10742 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10743 			bf_get(lpfc_wcqe_xa_xri, axri),
10744 			bf_get(lpfc_wcqe_xa_status, axri),
10745 			axri->parameter);
10746 
10747 	/*
10748 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10749 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10750 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10751 	 */
10752 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10753 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10754 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10755 		lpfc_sli_post_recovery_event(phba, ndlp);
10756 }
10757 
10758 /**
10759  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10760  * @phba: Pointer to HBA context object.
10761  * @pring: Pointer to driver SLI ring object.
10762  * @iocbq: Pointer to iocb object.
10763  *
10764  * This function is called by the slow ring event handler
10765  * function when there is an ASYNC event iocb in the ring.
10766  * This function is called with no lock held.
10767  * Currently this function handles only temperature related
10768  * ASYNC events. The function decodes the temperature sensor
10769  * event message and posts events for the management applications.
10770  **/
10771 static void
10772 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10773 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10774 {
10775 	IOCB_t *icmd;
10776 	uint16_t evt_code;
10777 	struct temp_event temp_event_data;
10778 	struct Scsi_Host *shost;
10779 	uint32_t *iocb_w;
10780 
10781 	icmd = &iocbq->iocb;
10782 	evt_code = icmd->un.asyncstat.evt_code;
10783 
10784 	switch (evt_code) {
10785 	case ASYNC_TEMP_WARN:
10786 	case ASYNC_TEMP_SAFE:
10787 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10788 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10789 		if (evt_code == ASYNC_TEMP_WARN) {
10790 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10791 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10792 				"0347 Adapter is very hot, please take "
10793 				"corrective action. temperature : %d Celsius\n",
10794 				(uint32_t) icmd->ulpContext);
10795 		} else {
10796 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10797 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10798 				"0340 Adapter temperature is OK now. "
10799 				"temperature : %d Celsius\n",
10800 				(uint32_t) icmd->ulpContext);
10801 		}
10802 
10803 		/* Send temperature change event to applications */
10804 		shost = lpfc_shost_from_vport(phba->pport);
10805 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10806 			sizeof(temp_event_data), (char *) &temp_event_data,
10807 			LPFC_NL_VENDOR_ID);
10808 		break;
10809 	case ASYNC_STATUS_CN:
10810 		lpfc_sli_abts_err_handler(phba, iocbq);
10811 		break;
10812 	default:
10813 		iocb_w = (uint32_t *) icmd;
10814 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10815 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10816 			" evt_code 0x%x\n"
10817 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10818 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10819 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10820 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10821 			pring->ringno, icmd->un.asyncstat.evt_code,
10822 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10823 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10824 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10825 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10826 
10827 		break;
10828 	}
10829 }
10830 
10831 
10832 /**
10833  * lpfc_sli4_setup - SLI ring setup function
10834  * @phba: Pointer to HBA context object.
10835  *
10836  * lpfc_sli_setup sets up rings of the SLI interface with
10837  * number of iocbs per ring and iotags. This function is
10838  * called while driver attach to the HBA and before the
10839  * interrupts are enabled. So there is no need for locking.
10840  *
10841  * This function always returns 0.
10842  **/
10843 int
10844 lpfc_sli4_setup(struct lpfc_hba *phba)
10845 {
10846 	struct lpfc_sli_ring *pring;
10847 
10848 	pring = phba->sli4_hba.els_wq->pring;
10849 	pring->num_mask = LPFC_MAX_RING_MASK;
10850 	pring->prt[0].profile = 0;	/* Mask 0 */
10851 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10852 	pring->prt[0].type = FC_TYPE_ELS;
10853 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10854 	    lpfc_els_unsol_event;
10855 	pring->prt[1].profile = 0;	/* Mask 1 */
10856 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10857 	pring->prt[1].type = FC_TYPE_ELS;
10858 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10859 	    lpfc_els_unsol_event;
10860 	pring->prt[2].profile = 0;	/* Mask 2 */
10861 	/* NameServer Inquiry */
10862 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10863 	/* NameServer */
10864 	pring->prt[2].type = FC_TYPE_CT;
10865 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10866 	    lpfc_ct_unsol_event;
10867 	pring->prt[3].profile = 0;	/* Mask 3 */
10868 	/* NameServer response */
10869 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10870 	/* NameServer */
10871 	pring->prt[3].type = FC_TYPE_CT;
10872 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10873 	    lpfc_ct_unsol_event;
10874 	return 0;
10875 }
10876 
10877 /**
10878  * lpfc_sli_setup - SLI ring setup function
10879  * @phba: Pointer to HBA context object.
10880  *
10881  * lpfc_sli_setup sets up rings of the SLI interface with
10882  * number of iocbs per ring and iotags. This function is
10883  * called while driver attach to the HBA and before the
10884  * interrupts are enabled. So there is no need for locking.
10885  *
10886  * This function always returns 0. SLI3 only.
10887  **/
10888 int
10889 lpfc_sli_setup(struct lpfc_hba *phba)
10890 {
10891 	int i, totiocbsize = 0;
10892 	struct lpfc_sli *psli = &phba->sli;
10893 	struct lpfc_sli_ring *pring;
10894 
10895 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10896 	psli->sli_flag = 0;
10897 
10898 	psli->iocbq_lookup = NULL;
10899 	psli->iocbq_lookup_len = 0;
10900 	psli->last_iotag = 0;
10901 
10902 	for (i = 0; i < psli->num_rings; i++) {
10903 		pring = &psli->sli3_ring[i];
10904 		switch (i) {
10905 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10906 			/* numCiocb and numRiocb are used in config_port */
10907 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10908 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10909 			pring->sli.sli3.numCiocb +=
10910 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10911 			pring->sli.sli3.numRiocb +=
10912 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10913 			pring->sli.sli3.numCiocb +=
10914 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10915 			pring->sli.sli3.numRiocb +=
10916 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10917 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10918 							SLI3_IOCB_CMD_SIZE :
10919 							SLI2_IOCB_CMD_SIZE;
10920 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10921 							SLI3_IOCB_RSP_SIZE :
10922 							SLI2_IOCB_RSP_SIZE;
10923 			pring->iotag_ctr = 0;
10924 			pring->iotag_max =
10925 			    (phba->cfg_hba_queue_depth * 2);
10926 			pring->fast_iotag = pring->iotag_max;
10927 			pring->num_mask = 0;
10928 			break;
10929 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10930 			/* numCiocb and numRiocb are used in config_port */
10931 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10932 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10933 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10934 							SLI3_IOCB_CMD_SIZE :
10935 							SLI2_IOCB_CMD_SIZE;
10936 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10937 							SLI3_IOCB_RSP_SIZE :
10938 							SLI2_IOCB_RSP_SIZE;
10939 			pring->iotag_max = phba->cfg_hba_queue_depth;
10940 			pring->num_mask = 0;
10941 			break;
10942 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10943 			/* numCiocb and numRiocb are used in config_port */
10944 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10945 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10946 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10947 							SLI3_IOCB_CMD_SIZE :
10948 							SLI2_IOCB_CMD_SIZE;
10949 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10950 							SLI3_IOCB_RSP_SIZE :
10951 							SLI2_IOCB_RSP_SIZE;
10952 			pring->fast_iotag = 0;
10953 			pring->iotag_ctr = 0;
10954 			pring->iotag_max = 4096;
10955 			pring->lpfc_sli_rcv_async_status =
10956 				lpfc_sli_async_event_handler;
10957 			pring->num_mask = LPFC_MAX_RING_MASK;
10958 			pring->prt[0].profile = 0;	/* Mask 0 */
10959 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10960 			pring->prt[0].type = FC_TYPE_ELS;
10961 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10962 			    lpfc_els_unsol_event;
10963 			pring->prt[1].profile = 0;	/* Mask 1 */
10964 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10965 			pring->prt[1].type = FC_TYPE_ELS;
10966 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10967 			    lpfc_els_unsol_event;
10968 			pring->prt[2].profile = 0;	/* Mask 2 */
10969 			/* NameServer Inquiry */
10970 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10971 			/* NameServer */
10972 			pring->prt[2].type = FC_TYPE_CT;
10973 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10974 			    lpfc_ct_unsol_event;
10975 			pring->prt[3].profile = 0;	/* Mask 3 */
10976 			/* NameServer response */
10977 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10978 			/* NameServer */
10979 			pring->prt[3].type = FC_TYPE_CT;
10980 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10981 			    lpfc_ct_unsol_event;
10982 			break;
10983 		}
10984 		totiocbsize += (pring->sli.sli3.numCiocb *
10985 			pring->sli.sli3.sizeCiocb) +
10986 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10987 	}
10988 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10989 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10990 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10991 		       "SLI2 SLIM Data: x%x x%lx\n",
10992 		       phba->brd_no, totiocbsize,
10993 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10994 	}
10995 	if (phba->cfg_multi_ring_support == 2)
10996 		lpfc_extra_ring_setup(phba);
10997 
10998 	return 0;
10999 }
11000 
11001 /**
11002  * lpfc_sli4_queue_init - Queue initialization function
11003  * @phba: Pointer to HBA context object.
11004  *
11005  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11006  * ring. This function also initializes ring indices of each ring.
11007  * This function is called during the initialization of the SLI
11008  * interface of an HBA.
11009  * This function is called with no lock held and always returns
11010  * 1.
11011  **/
11012 void
11013 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11014 {
11015 	struct lpfc_sli *psli;
11016 	struct lpfc_sli_ring *pring;
11017 	int i;
11018 
11019 	psli = &phba->sli;
11020 	spin_lock_irq(&phba->hbalock);
11021 	INIT_LIST_HEAD(&psli->mboxq);
11022 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11023 	/* Initialize list headers for txq and txcmplq as double linked lists */
11024 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
11025 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11026 		pring->flag = 0;
11027 		pring->ringno = LPFC_FCP_RING;
11028 		pring->txcmplq_cnt = 0;
11029 		INIT_LIST_HEAD(&pring->txq);
11030 		INIT_LIST_HEAD(&pring->txcmplq);
11031 		INIT_LIST_HEAD(&pring->iocb_continueq);
11032 		spin_lock_init(&pring->ring_lock);
11033 	}
11034 	pring = phba->sli4_hba.els_wq->pring;
11035 	pring->flag = 0;
11036 	pring->ringno = LPFC_ELS_RING;
11037 	pring->txcmplq_cnt = 0;
11038 	INIT_LIST_HEAD(&pring->txq);
11039 	INIT_LIST_HEAD(&pring->txcmplq);
11040 	INIT_LIST_HEAD(&pring->iocb_continueq);
11041 	spin_lock_init(&pring->ring_lock);
11042 
11043 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11044 		pring = phba->sli4_hba.nvmels_wq->pring;
11045 		pring->flag = 0;
11046 		pring->ringno = LPFC_ELS_RING;
11047 		pring->txcmplq_cnt = 0;
11048 		INIT_LIST_HEAD(&pring->txq);
11049 		INIT_LIST_HEAD(&pring->txcmplq);
11050 		INIT_LIST_HEAD(&pring->iocb_continueq);
11051 		spin_lock_init(&pring->ring_lock);
11052 	}
11053 
11054 	spin_unlock_irq(&phba->hbalock);
11055 }
11056 
11057 /**
11058  * lpfc_sli_queue_init - Queue initialization function
11059  * @phba: Pointer to HBA context object.
11060  *
11061  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11062  * ring. This function also initializes ring indices of each ring.
11063  * This function is called during the initialization of the SLI
11064  * interface of an HBA.
11065  * This function is called with no lock held and always returns
11066  * 1.
11067  **/
11068 void
11069 lpfc_sli_queue_init(struct lpfc_hba *phba)
11070 {
11071 	struct lpfc_sli *psli;
11072 	struct lpfc_sli_ring *pring;
11073 	int i;
11074 
11075 	psli = &phba->sli;
11076 	spin_lock_irq(&phba->hbalock);
11077 	INIT_LIST_HEAD(&psli->mboxq);
11078 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11079 	/* Initialize list headers for txq and txcmplq as double linked lists */
11080 	for (i = 0; i < psli->num_rings; i++) {
11081 		pring = &psli->sli3_ring[i];
11082 		pring->ringno = i;
11083 		pring->sli.sli3.next_cmdidx  = 0;
11084 		pring->sli.sli3.local_getidx = 0;
11085 		pring->sli.sli3.cmdidx = 0;
11086 		INIT_LIST_HEAD(&pring->iocb_continueq);
11087 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11088 		INIT_LIST_HEAD(&pring->postbufq);
11089 		pring->flag = 0;
11090 		INIT_LIST_HEAD(&pring->txq);
11091 		INIT_LIST_HEAD(&pring->txcmplq);
11092 		spin_lock_init(&pring->ring_lock);
11093 	}
11094 	spin_unlock_irq(&phba->hbalock);
11095 }
11096 
11097 /**
11098  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11099  * @phba: Pointer to HBA context object.
11100  *
11101  * This routine flushes the mailbox command subsystem. It will unconditionally
11102  * flush all the mailbox commands in the three possible stages in the mailbox
11103  * command sub-system: pending mailbox command queue; the outstanding mailbox
11104  * command; and completed mailbox command queue. It is caller's responsibility
11105  * to make sure that the driver is in the proper state to flush the mailbox
11106  * command sub-system. Namely, the posting of mailbox commands into the
11107  * pending mailbox command queue from the various clients must be stopped;
11108  * either the HBA is in a state that it will never works on the outstanding
11109  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11110  * mailbox command has been completed.
11111  **/
11112 static void
11113 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11114 {
11115 	LIST_HEAD(completions);
11116 	struct lpfc_sli *psli = &phba->sli;
11117 	LPFC_MBOXQ_t *pmb;
11118 	unsigned long iflag;
11119 
11120 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11121 	local_bh_disable();
11122 
11123 	/* Flush all the mailbox commands in the mbox system */
11124 	spin_lock_irqsave(&phba->hbalock, iflag);
11125 
11126 	/* The pending mailbox command queue */
11127 	list_splice_init(&phba->sli.mboxq, &completions);
11128 	/* The outstanding active mailbox command */
11129 	if (psli->mbox_active) {
11130 		list_add_tail(&psli->mbox_active->list, &completions);
11131 		psli->mbox_active = NULL;
11132 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11133 	}
11134 	/* The completed mailbox command queue */
11135 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11136 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11137 
11138 	/* Enable softirqs again, done with phba->hbalock */
11139 	local_bh_enable();
11140 
11141 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11142 	while (!list_empty(&completions)) {
11143 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11144 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11145 		if (pmb->mbox_cmpl)
11146 			pmb->mbox_cmpl(phba, pmb);
11147 	}
11148 }
11149 
11150 /**
11151  * lpfc_sli_host_down - Vport cleanup function
11152  * @vport: Pointer to virtual port object.
11153  *
11154  * lpfc_sli_host_down is called to clean up the resources
11155  * associated with a vport before destroying virtual
11156  * port data structures.
11157  * This function does following operations:
11158  * - Free discovery resources associated with this virtual
11159  *   port.
11160  * - Free iocbs associated with this virtual port in
11161  *   the txq.
11162  * - Send abort for all iocb commands associated with this
11163  *   vport in txcmplq.
11164  *
11165  * This function is called with no lock held and always returns 1.
11166  **/
11167 int
11168 lpfc_sli_host_down(struct lpfc_vport *vport)
11169 {
11170 	LIST_HEAD(completions);
11171 	struct lpfc_hba *phba = vport->phba;
11172 	struct lpfc_sli *psli = &phba->sli;
11173 	struct lpfc_queue *qp = NULL;
11174 	struct lpfc_sli_ring *pring;
11175 	struct lpfc_iocbq *iocb, *next_iocb;
11176 	int i;
11177 	unsigned long flags = 0;
11178 	uint16_t prev_pring_flag;
11179 
11180 	lpfc_cleanup_discovery_resources(vport);
11181 
11182 	spin_lock_irqsave(&phba->hbalock, flags);
11183 
11184 	/*
11185 	 * Error everything on the txq since these iocbs
11186 	 * have not been given to the FW yet.
11187 	 * Also issue ABTS for everything on the txcmplq
11188 	 */
11189 	if (phba->sli_rev != LPFC_SLI_REV4) {
11190 		for (i = 0; i < psli->num_rings; i++) {
11191 			pring = &psli->sli3_ring[i];
11192 			prev_pring_flag = pring->flag;
11193 			/* Only slow rings */
11194 			if (pring->ringno == LPFC_ELS_RING) {
11195 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11196 				/* Set the lpfc data pending flag */
11197 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11198 			}
11199 			list_for_each_entry_safe(iocb, next_iocb,
11200 						 &pring->txq, list) {
11201 				if (iocb->vport != vport)
11202 					continue;
11203 				list_move_tail(&iocb->list, &completions);
11204 			}
11205 			list_for_each_entry_safe(iocb, next_iocb,
11206 						 &pring->txcmplq, list) {
11207 				if (iocb->vport != vport)
11208 					continue;
11209 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11210 							   NULL);
11211 			}
11212 			pring->flag = prev_pring_flag;
11213 		}
11214 	} else {
11215 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11216 			pring = qp->pring;
11217 			if (!pring)
11218 				continue;
11219 			if (pring == phba->sli4_hba.els_wq->pring) {
11220 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11221 				/* Set the lpfc data pending flag */
11222 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11223 			}
11224 			prev_pring_flag = pring->flag;
11225 			spin_lock(&pring->ring_lock);
11226 			list_for_each_entry_safe(iocb, next_iocb,
11227 						 &pring->txq, list) {
11228 				if (iocb->vport != vport)
11229 					continue;
11230 				list_move_tail(&iocb->list, &completions);
11231 			}
11232 			spin_unlock(&pring->ring_lock);
11233 			list_for_each_entry_safe(iocb, next_iocb,
11234 						 &pring->txcmplq, list) {
11235 				if (iocb->vport != vport)
11236 					continue;
11237 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11238 							   NULL);
11239 			}
11240 			pring->flag = prev_pring_flag;
11241 		}
11242 	}
11243 	spin_unlock_irqrestore(&phba->hbalock, flags);
11244 
11245 	/* Make sure HBA is alive */
11246 	lpfc_issue_hb_tmo(phba);
11247 
11248 	/* Cancel all the IOCBs from the completions list */
11249 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11250 			      IOERR_SLI_DOWN);
11251 	return 1;
11252 }
11253 
11254 /**
11255  * lpfc_sli_hba_down - Resource cleanup function for the HBA
11256  * @phba: Pointer to HBA context object.
11257  *
11258  * This function cleans up all iocb, buffers, mailbox commands
11259  * while shutting down the HBA. This function is called with no
11260  * lock held and always returns 1.
11261  * This function does the following to cleanup driver resources:
11262  * - Free discovery resources for each virtual port
11263  * - Cleanup any pending fabric iocbs
11264  * - Iterate through the iocb txq and free each entry
11265  *   in the list.
11266  * - Free up any buffer posted to the HBA
11267  * - Free mailbox commands in the mailbox queue.
11268  **/
11269 int
11270 lpfc_sli_hba_down(struct lpfc_hba *phba)
11271 {
11272 	LIST_HEAD(completions);
11273 	struct lpfc_sli *psli = &phba->sli;
11274 	struct lpfc_queue *qp = NULL;
11275 	struct lpfc_sli_ring *pring;
11276 	struct lpfc_dmabuf *buf_ptr;
11277 	unsigned long flags = 0;
11278 	int i;
11279 
11280 	/* Shutdown the mailbox command sub-system */
11281 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11282 
11283 	lpfc_hba_down_prep(phba);
11284 
11285 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11286 	local_bh_disable();
11287 
11288 	lpfc_fabric_abort_hba(phba);
11289 
11290 	spin_lock_irqsave(&phba->hbalock, flags);
11291 
11292 	/*
11293 	 * Error everything on the txq since these iocbs
11294 	 * have not been given to the FW yet.
11295 	 */
11296 	if (phba->sli_rev != LPFC_SLI_REV4) {
11297 		for (i = 0; i < psli->num_rings; i++) {
11298 			pring = &psli->sli3_ring[i];
11299 			/* Only slow rings */
11300 			if (pring->ringno == LPFC_ELS_RING) {
11301 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11302 				/* Set the lpfc data pending flag */
11303 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11304 			}
11305 			list_splice_init(&pring->txq, &completions);
11306 		}
11307 	} else {
11308 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11309 			pring = qp->pring;
11310 			if (!pring)
11311 				continue;
11312 			spin_lock(&pring->ring_lock);
11313 			list_splice_init(&pring->txq, &completions);
11314 			spin_unlock(&pring->ring_lock);
11315 			if (pring == phba->sli4_hba.els_wq->pring) {
11316 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11317 				/* Set the lpfc data pending flag */
11318 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11319 			}
11320 		}
11321 	}
11322 	spin_unlock_irqrestore(&phba->hbalock, flags);
11323 
11324 	/* Cancel all the IOCBs from the completions list */
11325 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11326 			      IOERR_SLI_DOWN);
11327 
11328 	spin_lock_irqsave(&phba->hbalock, flags);
11329 	list_splice_init(&phba->elsbuf, &completions);
11330 	phba->elsbuf_cnt = 0;
11331 	phba->elsbuf_prev_cnt = 0;
11332 	spin_unlock_irqrestore(&phba->hbalock, flags);
11333 
11334 	while (!list_empty(&completions)) {
11335 		list_remove_head(&completions, buf_ptr,
11336 			struct lpfc_dmabuf, list);
11337 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
11338 		kfree(buf_ptr);
11339 	}
11340 
11341 	/* Enable softirqs again, done with phba->hbalock */
11342 	local_bh_enable();
11343 
11344 	/* Return any active mbox cmds */
11345 	del_timer_sync(&psli->mbox_tmo);
11346 
11347 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
11348 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11349 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
11350 
11351 	return 1;
11352 }
11353 
11354 /**
11355  * lpfc_sli_pcimem_bcopy - SLI memory copy function
11356  * @srcp: Source memory pointer.
11357  * @destp: Destination memory pointer.
11358  * @cnt: Number of words required to be copied.
11359  *
11360  * This function is used for copying data between driver memory
11361  * and the SLI memory. This function also changes the endianness
11362  * of each word if native endianness is different from SLI
11363  * endianness. This function can be called with or without
11364  * lock.
11365  **/
11366 void
11367 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11368 {
11369 	uint32_t *src = srcp;
11370 	uint32_t *dest = destp;
11371 	uint32_t ldata;
11372 	int i;
11373 
11374 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11375 		ldata = *src;
11376 		ldata = le32_to_cpu(ldata);
11377 		*dest = ldata;
11378 		src++;
11379 		dest++;
11380 	}
11381 }
11382 
11383 
11384 /**
11385  * lpfc_sli_bemem_bcopy - SLI memory copy function
11386  * @srcp: Source memory pointer.
11387  * @destp: Destination memory pointer.
11388  * @cnt: Number of words required to be copied.
11389  *
11390  * This function is used for copying data between a data structure
11391  * with big endian representation to local endianness.
11392  * This function can be called with or without lock.
11393  **/
11394 void
11395 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11396 {
11397 	uint32_t *src = srcp;
11398 	uint32_t *dest = destp;
11399 	uint32_t ldata;
11400 	int i;
11401 
11402 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11403 		ldata = *src;
11404 		ldata = be32_to_cpu(ldata);
11405 		*dest = ldata;
11406 		src++;
11407 		dest++;
11408 	}
11409 }
11410 
11411 /**
11412  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11413  * @phba: Pointer to HBA context object.
11414  * @pring: Pointer to driver SLI ring object.
11415  * @mp: Pointer to driver buffer object.
11416  *
11417  * This function is called with no lock held.
11418  * It always return zero after adding the buffer to the postbufq
11419  * buffer list.
11420  **/
11421 int
11422 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11423 			 struct lpfc_dmabuf *mp)
11424 {
11425 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11426 	   later */
11427 	spin_lock_irq(&phba->hbalock);
11428 	list_add_tail(&mp->list, &pring->postbufq);
11429 	pring->postbufq_cnt++;
11430 	spin_unlock_irq(&phba->hbalock);
11431 	return 0;
11432 }
11433 
11434 /**
11435  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11436  * @phba: Pointer to HBA context object.
11437  *
11438  * When HBQ is enabled, buffers are searched based on tags. This function
11439  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11440  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11441  * does not conflict with tags of buffer posted for unsolicited events.
11442  * The function returns the allocated tag. The function is called with
11443  * no locks held.
11444  **/
11445 uint32_t
11446 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11447 {
11448 	spin_lock_irq(&phba->hbalock);
11449 	phba->buffer_tag_count++;
11450 	/*
11451 	 * Always set the QUE_BUFTAG_BIT to distiguish between
11452 	 * a tag assigned by HBQ.
11453 	 */
11454 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11455 	spin_unlock_irq(&phba->hbalock);
11456 	return phba->buffer_tag_count;
11457 }
11458 
11459 /**
11460  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11461  * @phba: Pointer to HBA context object.
11462  * @pring: Pointer to driver SLI ring object.
11463  * @tag: Buffer tag.
11464  *
11465  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11466  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11467  * iocb is posted to the response ring with the tag of the buffer.
11468  * This function searches the pring->postbufq list using the tag
11469  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11470  * iocb. If the buffer is found then lpfc_dmabuf object of the
11471  * buffer is returned to the caller else NULL is returned.
11472  * This function is called with no lock held.
11473  **/
11474 struct lpfc_dmabuf *
11475 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11476 			uint32_t tag)
11477 {
11478 	struct lpfc_dmabuf *mp, *next_mp;
11479 	struct list_head *slp = &pring->postbufq;
11480 
11481 	/* Search postbufq, from the beginning, looking for a match on tag */
11482 	spin_lock_irq(&phba->hbalock);
11483 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11484 		if (mp->buffer_tag == tag) {
11485 			list_del_init(&mp->list);
11486 			pring->postbufq_cnt--;
11487 			spin_unlock_irq(&phba->hbalock);
11488 			return mp;
11489 		}
11490 	}
11491 
11492 	spin_unlock_irq(&phba->hbalock);
11493 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11494 			"0402 Cannot find virtual addr for buffer tag on "
11495 			"ring %d Data x%lx x%px x%px x%x\n",
11496 			pring->ringno, (unsigned long) tag,
11497 			slp->next, slp->prev, pring->postbufq_cnt);
11498 
11499 	return NULL;
11500 }
11501 
11502 /**
11503  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11504  * @phba: Pointer to HBA context object.
11505  * @pring: Pointer to driver SLI ring object.
11506  * @phys: DMA address of the buffer.
11507  *
11508  * This function searches the buffer list using the dma_address
11509  * of unsolicited event to find the driver's lpfc_dmabuf object
11510  * corresponding to the dma_address. The function returns the
11511  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11512  * This function is called by the ct and els unsolicited event
11513  * handlers to get the buffer associated with the unsolicited
11514  * event.
11515  *
11516  * This function is called with no lock held.
11517  **/
11518 struct lpfc_dmabuf *
11519 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11520 			 dma_addr_t phys)
11521 {
11522 	struct lpfc_dmabuf *mp, *next_mp;
11523 	struct list_head *slp = &pring->postbufq;
11524 
11525 	/* Search postbufq, from the beginning, looking for a match on phys */
11526 	spin_lock_irq(&phba->hbalock);
11527 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11528 		if (mp->phys == phys) {
11529 			list_del_init(&mp->list);
11530 			pring->postbufq_cnt--;
11531 			spin_unlock_irq(&phba->hbalock);
11532 			return mp;
11533 		}
11534 	}
11535 
11536 	spin_unlock_irq(&phba->hbalock);
11537 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11538 			"0410 Cannot find virtual addr for mapped buf on "
11539 			"ring %d Data x%llx x%px x%px x%x\n",
11540 			pring->ringno, (unsigned long long)phys,
11541 			slp->next, slp->prev, pring->postbufq_cnt);
11542 	return NULL;
11543 }
11544 
11545 /**
11546  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11547  * @phba: Pointer to HBA context object.
11548  * @cmdiocb: Pointer to driver command iocb object.
11549  * @rspiocb: Pointer to driver response iocb object.
11550  *
11551  * This function is the completion handler for the abort iocbs for
11552  * ELS commands. This function is called from the ELS ring event
11553  * handler with no lock held. This function frees memory resources
11554  * associated with the abort iocb.
11555  **/
11556 static void
11557 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11558 			struct lpfc_iocbq *rspiocb)
11559 {
11560 	IOCB_t *irsp = &rspiocb->iocb;
11561 	uint16_t abort_iotag, abort_context;
11562 	struct lpfc_iocbq *abort_iocb = NULL;
11563 
11564 	if (irsp->ulpStatus) {
11565 
11566 		/*
11567 		 * Assume that the port already completed and returned, or
11568 		 * will return the iocb. Just Log the message.
11569 		 */
11570 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11571 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11572 
11573 		spin_lock_irq(&phba->hbalock);
11574 		if (phba->sli_rev < LPFC_SLI_REV4) {
11575 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11576 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11577 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11578 				spin_unlock_irq(&phba->hbalock);
11579 				goto release_iocb;
11580 			}
11581 			if (abort_iotag != 0 &&
11582 				abort_iotag <= phba->sli.last_iotag)
11583 				abort_iocb =
11584 					phba->sli.iocbq_lookup[abort_iotag];
11585 		} else
11586 			/* For sli4 the abort_tag is the XRI,
11587 			 * so the abort routine puts the iotag  of the iocb
11588 			 * being aborted in the context field of the abort
11589 			 * IOCB.
11590 			 */
11591 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11592 
11593 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11594 				"0327 Cannot abort els iocb x%px "
11595 				"with tag %x context %x, abort status %x, "
11596 				"abort code %x\n",
11597 				abort_iocb, abort_iotag, abort_context,
11598 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11599 
11600 		spin_unlock_irq(&phba->hbalock);
11601 	}
11602 release_iocb:
11603 	lpfc_sli_release_iocbq(phba, cmdiocb);
11604 	return;
11605 }
11606 
11607 /**
11608  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11609  * @phba: Pointer to HBA context object.
11610  * @cmdiocb: Pointer to driver command iocb object.
11611  * @rspiocb: Pointer to driver response iocb object.
11612  *
11613  * The function is called from SLI ring event handler with no
11614  * lock held. This function is the completion handler for ELS commands
11615  * which are aborted. The function frees memory resources used for
11616  * the aborted ELS commands.
11617  **/
11618 void
11619 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11620 		     struct lpfc_iocbq *rspiocb)
11621 {
11622 	IOCB_t *irsp = &rspiocb->iocb;
11623 
11624 	/* ELS cmd tag <ulpIoTag> completes */
11625 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11626 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11627 			"x%x x%x x%x\n",
11628 			irsp->ulpIoTag, irsp->ulpStatus,
11629 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11630 	lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1);
11631 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11632 		lpfc_ct_free_iocb(phba, cmdiocb);
11633 	else
11634 		lpfc_els_free_iocb(phba, cmdiocb);
11635 }
11636 
11637 /**
11638  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11639  * @phba: Pointer to HBA context object.
11640  * @pring: Pointer to driver SLI ring object.
11641  * @cmdiocb: Pointer to driver command iocb object.
11642  * @cmpl: completion function.
11643  *
11644  * This function issues an abort iocb for the provided command iocb. In case
11645  * of unloading, the abort iocb will not be issued to commands on the ELS
11646  * ring. Instead, the callback function shall be changed to those commands
11647  * so that nothing happens when them finishes. This function is called with
11648  * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
11649  * when the command iocb is an abort request.
11650  *
11651  **/
11652 int
11653 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11654 			   struct lpfc_iocbq *cmdiocb, void *cmpl)
11655 {
11656 	struct lpfc_vport *vport = cmdiocb->vport;
11657 	struct lpfc_iocbq *abtsiocbp;
11658 	IOCB_t *icmd = NULL;
11659 	IOCB_t *iabt = NULL;
11660 	int retval = IOCB_ERROR;
11661 	unsigned long iflags;
11662 	struct lpfc_nodelist *ndlp;
11663 
11664 	/*
11665 	 * There are certain command types we don't want to abort.  And we
11666 	 * don't want to abort commands that are already in the process of
11667 	 * being aborted.
11668 	 */
11669 	icmd = &cmdiocb->iocb;
11670 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11671 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11672 	    cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED)
11673 		return IOCB_ABORTING;
11674 
11675 	if (!pring) {
11676 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11677 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11678 		else
11679 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11680 		return retval;
11681 	}
11682 
11683 	/*
11684 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11685 	 * the callback so that nothing happens when it finishes.
11686 	 */
11687 	if ((vport->load_flag & FC_UNLOADING) &&
11688 	    pring->ringno == LPFC_ELS_RING) {
11689 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11690 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11691 		else
11692 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11693 		return retval;
11694 	}
11695 
11696 	/* issue ABTS for this IOCB based on iotag */
11697 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11698 	if (abtsiocbp == NULL)
11699 		return IOCB_NORESOURCE;
11700 
11701 	/* This signals the response to set the correct status
11702 	 * before calling the completion handler
11703 	 */
11704 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11705 
11706 	iabt = &abtsiocbp->iocb;
11707 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11708 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11709 	if (phba->sli_rev == LPFC_SLI_REV4) {
11710 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11711 		if (pring->ringno == LPFC_ELS_RING)
11712 			iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11713 	} else {
11714 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11715 		if (pring->ringno == LPFC_ELS_RING) {
11716 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11717 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11718 		}
11719 	}
11720 	iabt->ulpLe = 1;
11721 	iabt->ulpClass = icmd->ulpClass;
11722 
11723 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11724 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11725 	if (cmdiocb->iocb_flag & LPFC_IO_FCP) {
11726 		abtsiocbp->iocb_flag |= LPFC_IO_FCP;
11727 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11728 	}
11729 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11730 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11731 
11732 	if (phba->link_state >= LPFC_LINK_UP)
11733 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11734 	else
11735 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11736 
11737 	if (cmpl)
11738 		abtsiocbp->iocb_cmpl = cmpl;
11739 	else
11740 		abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11741 	abtsiocbp->vport = vport;
11742 
11743 	if (phba->sli_rev == LPFC_SLI_REV4) {
11744 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11745 		if (unlikely(pring == NULL))
11746 			goto abort_iotag_exit;
11747 		/* Note: both hbalock and ring_lock need to be set here */
11748 		spin_lock_irqsave(&pring->ring_lock, iflags);
11749 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11750 			abtsiocbp, 0);
11751 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11752 	} else {
11753 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11754 			abtsiocbp, 0);
11755 	}
11756 
11757 abort_iotag_exit:
11758 
11759 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11760 			 "0339 Abort xri x%x, original iotag x%x, "
11761 			 "abort cmd iotag x%x retval x%x\n",
11762 			 iabt->un.acxri.abortIoTag,
11763 			 iabt->un.acxri.abortContextTag,
11764 			 abtsiocbp->iotag, retval);
11765 
11766 	if (retval) {
11767 		cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
11768 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11769 	}
11770 
11771 	/*
11772 	 * Caller to this routine should check for IOCB_ERROR
11773 	 * and handle it properly.  This routine no longer removes
11774 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11775 	 */
11776 	return retval;
11777 }
11778 
11779 /**
11780  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11781  * @phba: pointer to lpfc HBA data structure.
11782  *
11783  * This routine will abort all pending and outstanding iocbs to an HBA.
11784  **/
11785 void
11786 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11787 {
11788 	struct lpfc_sli *psli = &phba->sli;
11789 	struct lpfc_sli_ring *pring;
11790 	struct lpfc_queue *qp = NULL;
11791 	int i;
11792 
11793 	if (phba->sli_rev != LPFC_SLI_REV4) {
11794 		for (i = 0; i < psli->num_rings; i++) {
11795 			pring = &psli->sli3_ring[i];
11796 			lpfc_sli_abort_iocb_ring(phba, pring);
11797 		}
11798 		return;
11799 	}
11800 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11801 		pring = qp->pring;
11802 		if (!pring)
11803 			continue;
11804 		lpfc_sli_abort_iocb_ring(phba, pring);
11805 	}
11806 }
11807 
11808 /**
11809  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11810  * @iocbq: Pointer to driver iocb object.
11811  * @vport: Pointer to driver virtual port object.
11812  * @tgt_id: SCSI ID of the target.
11813  * @lun_id: LUN ID of the scsi device.
11814  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11815  *
11816  * This function acts as an iocb filter for functions which abort or count
11817  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11818  * 0 if the filtering criteria is met for the given iocb and will return
11819  * 1 if the filtering criteria is not met.
11820  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11821  * given iocb is for the SCSI device specified by vport, tgt_id and
11822  * lun_id parameter.
11823  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11824  * given iocb is for the SCSI target specified by vport and tgt_id
11825  * parameters.
11826  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11827  * given iocb is for the SCSI host associated with the given vport.
11828  * This function is called with no locks held.
11829  **/
11830 static int
11831 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11832 			   uint16_t tgt_id, uint64_t lun_id,
11833 			   lpfc_ctx_cmd ctx_cmd)
11834 {
11835 	struct lpfc_io_buf *lpfc_cmd;
11836 	IOCB_t *icmd = NULL;
11837 	int rc = 1;
11838 
11839 	if (!iocbq || iocbq->vport != vport)
11840 		return rc;
11841 
11842 	if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11843 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) ||
11844 	      iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11845 		return rc;
11846 
11847 	icmd = &iocbq->iocb;
11848 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11849 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN)
11850 		return rc;
11851 
11852 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11853 
11854 	if (lpfc_cmd->pCmd == NULL)
11855 		return rc;
11856 
11857 	switch (ctx_cmd) {
11858 	case LPFC_CTX_LUN:
11859 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11860 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11861 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11862 			rc = 0;
11863 		break;
11864 	case LPFC_CTX_TGT:
11865 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11866 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11867 			rc = 0;
11868 		break;
11869 	case LPFC_CTX_HOST:
11870 		rc = 0;
11871 		break;
11872 	default:
11873 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11874 			__func__, ctx_cmd);
11875 		break;
11876 	}
11877 
11878 	return rc;
11879 }
11880 
11881 /**
11882  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11883  * @vport: Pointer to virtual port.
11884  * @tgt_id: SCSI ID of the target.
11885  * @lun_id: LUN ID of the scsi device.
11886  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11887  *
11888  * This function returns number of FCP commands pending for the vport.
11889  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11890  * commands pending on the vport associated with SCSI device specified
11891  * by tgt_id and lun_id parameters.
11892  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11893  * commands pending on the vport associated with SCSI target specified
11894  * by tgt_id parameter.
11895  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11896  * commands pending on the vport.
11897  * This function returns the number of iocbs which satisfy the filter.
11898  * This function is called without any lock held.
11899  **/
11900 int
11901 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11902 		  lpfc_ctx_cmd ctx_cmd)
11903 {
11904 	struct lpfc_hba *phba = vport->phba;
11905 	struct lpfc_iocbq *iocbq;
11906 	int sum, i;
11907 
11908 	spin_lock_irq(&phba->hbalock);
11909 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11910 		iocbq = phba->sli.iocbq_lookup[i];
11911 
11912 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11913 						ctx_cmd) == 0)
11914 			sum++;
11915 	}
11916 	spin_unlock_irq(&phba->hbalock);
11917 
11918 	return sum;
11919 }
11920 
11921 /**
11922  * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11923  * @phba: Pointer to HBA context object
11924  * @cmdiocb: Pointer to command iocb object.
11925  * @wcqe: pointer to the complete wcqe
11926  *
11927  * This function is called when an aborted FCP iocb completes. This
11928  * function is called by the ring event handler with no lock held.
11929  * This function frees the iocb. It is called for sli-4 adapters.
11930  **/
11931 void
11932 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11933 			 struct lpfc_wcqe_complete *wcqe)
11934 {
11935 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11936 			"3017 ABORT_XRI_CN completing on rpi x%x "
11937 			"original iotag x%x, abort cmd iotag x%x "
11938 			"status 0x%x, reason 0x%x\n",
11939 			cmdiocb->iocb.un.acxri.abortContextTag,
11940 			cmdiocb->iocb.un.acxri.abortIoTag,
11941 			cmdiocb->iotag,
11942 			(bf_get(lpfc_wcqe_c_status, wcqe)
11943 			& LPFC_IOCB_STATUS_MASK),
11944 			wcqe->parameter);
11945 	lpfc_sli_release_iocbq(phba, cmdiocb);
11946 }
11947 
11948 /**
11949  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11950  * @phba: Pointer to HBA context object
11951  * @cmdiocb: Pointer to command iocb object.
11952  * @rspiocb: Pointer to response iocb object.
11953  *
11954  * This function is called when an aborted FCP iocb completes. This
11955  * function is called by the ring event handler with no lock held.
11956  * This function frees the iocb.
11957  **/
11958 void
11959 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11960 			struct lpfc_iocbq *rspiocb)
11961 {
11962 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11963 			"3096 ABORT_XRI_CN completing on rpi x%x "
11964 			"original iotag x%x, abort cmd iotag x%x "
11965 			"status 0x%x, reason 0x%x\n",
11966 			cmdiocb->iocb.un.acxri.abortContextTag,
11967 			cmdiocb->iocb.un.acxri.abortIoTag,
11968 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11969 			rspiocb->iocb.un.ulpWord[4]);
11970 	lpfc_sli_release_iocbq(phba, cmdiocb);
11971 	return;
11972 }
11973 
11974 /**
11975  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11976  * @vport: Pointer to virtual port.
11977  * @tgt_id: SCSI ID of the target.
11978  * @lun_id: LUN ID of the scsi device.
11979  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11980  *
11981  * This function sends an abort command for every SCSI command
11982  * associated with the given virtual port pending on the ring
11983  * filtered by lpfc_sli_validate_fcp_iocb function.
11984  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11985  * FCP iocbs associated with lun specified by tgt_id and lun_id
11986  * parameters
11987  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11988  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11989  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11990  * FCP iocbs associated with virtual port.
11991  * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
11992  * lpfc_sli4_calc_ring is used.
11993  * This function returns number of iocbs it failed to abort.
11994  * This function is called with no locks held.
11995  **/
11996 int
11997 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
11998 		    lpfc_ctx_cmd abort_cmd)
11999 {
12000 	struct lpfc_hba *phba = vport->phba;
12001 	struct lpfc_sli_ring *pring = NULL;
12002 	struct lpfc_iocbq *iocbq;
12003 	int errcnt = 0, ret_val = 0;
12004 	unsigned long iflags;
12005 	int i;
12006 	void *fcp_cmpl = NULL;
12007 
12008 	/* all I/Os are in process of being flushed */
12009 	if (phba->hba_flag & HBA_IOQ_FLUSH)
12010 		return errcnt;
12011 
12012 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12013 		iocbq = phba->sli.iocbq_lookup[i];
12014 
12015 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12016 					       abort_cmd) != 0)
12017 			continue;
12018 
12019 		spin_lock_irqsave(&phba->hbalock, iflags);
12020 		if (phba->sli_rev == LPFC_SLI_REV3) {
12021 			pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12022 			fcp_cmpl = lpfc_sli_abort_fcp_cmpl;
12023 		} else if (phba->sli_rev == LPFC_SLI_REV4) {
12024 			pring = lpfc_sli4_calc_ring(phba, iocbq);
12025 			fcp_cmpl = lpfc_sli4_abort_fcp_cmpl;
12026 		}
12027 		ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12028 						     fcp_cmpl);
12029 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12030 		if (ret_val != IOCB_SUCCESS)
12031 			errcnt++;
12032 	}
12033 
12034 	return errcnt;
12035 }
12036 
12037 /**
12038  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12039  * @vport: Pointer to virtual port.
12040  * @pring: Pointer to driver SLI ring object.
12041  * @tgt_id: SCSI ID of the target.
12042  * @lun_id: LUN ID of the scsi device.
12043  * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12044  *
12045  * This function sends an abort command for every SCSI command
12046  * associated with the given virtual port pending on the ring
12047  * filtered by lpfc_sli_validate_fcp_iocb function.
12048  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12049  * FCP iocbs associated with lun specified by tgt_id and lun_id
12050  * parameters
12051  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12052  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12053  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12054  * FCP iocbs associated with virtual port.
12055  * This function returns number of iocbs it aborted .
12056  * This function is called with no locks held right after a taskmgmt
12057  * command is sent.
12058  **/
12059 int
12060 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12061 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12062 {
12063 	struct lpfc_hba *phba = vport->phba;
12064 	struct lpfc_io_buf *lpfc_cmd;
12065 	struct lpfc_iocbq *abtsiocbq;
12066 	struct lpfc_nodelist *ndlp;
12067 	struct lpfc_iocbq *iocbq;
12068 	IOCB_t *icmd;
12069 	int sum, i, ret_val;
12070 	unsigned long iflags;
12071 	struct lpfc_sli_ring *pring_s4 = NULL;
12072 
12073 	spin_lock_irqsave(&phba->hbalock, iflags);
12074 
12075 	/* all I/Os are in process of being flushed */
12076 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
12077 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12078 		return 0;
12079 	}
12080 	sum = 0;
12081 
12082 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12083 		iocbq = phba->sli.iocbq_lookup[i];
12084 
12085 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12086 					       cmd) != 0)
12087 			continue;
12088 
12089 		/* Guard against IO completion being called at same time */
12090 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12091 		spin_lock(&lpfc_cmd->buf_lock);
12092 
12093 		if (!lpfc_cmd->pCmd) {
12094 			spin_unlock(&lpfc_cmd->buf_lock);
12095 			continue;
12096 		}
12097 
12098 		if (phba->sli_rev == LPFC_SLI_REV4) {
12099 			pring_s4 =
12100 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12101 			if (!pring_s4) {
12102 				spin_unlock(&lpfc_cmd->buf_lock);
12103 				continue;
12104 			}
12105 			/* Note: both hbalock and ring_lock must be set here */
12106 			spin_lock(&pring_s4->ring_lock);
12107 		}
12108 
12109 		/*
12110 		 * If the iocbq is already being aborted, don't take a second
12111 		 * action, but do count it.
12112 		 */
12113 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
12114 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
12115 			if (phba->sli_rev == LPFC_SLI_REV4)
12116 				spin_unlock(&pring_s4->ring_lock);
12117 			spin_unlock(&lpfc_cmd->buf_lock);
12118 			continue;
12119 		}
12120 
12121 		/* issue ABTS for this IOCB based on iotag */
12122 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
12123 		if (!abtsiocbq) {
12124 			if (phba->sli_rev == LPFC_SLI_REV4)
12125 				spin_unlock(&pring_s4->ring_lock);
12126 			spin_unlock(&lpfc_cmd->buf_lock);
12127 			continue;
12128 		}
12129 
12130 		icmd = &iocbq->iocb;
12131 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
12132 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
12133 		if (phba->sli_rev == LPFC_SLI_REV4)
12134 			abtsiocbq->iocb.un.acxri.abortIoTag =
12135 							 iocbq->sli4_xritag;
12136 		else
12137 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
12138 		abtsiocbq->iocb.ulpLe = 1;
12139 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
12140 		abtsiocbq->vport = vport;
12141 
12142 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12143 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12144 		if (iocbq->iocb_flag & LPFC_IO_FCP)
12145 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
12146 		if (iocbq->iocb_flag & LPFC_IO_FOF)
12147 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
12148 
12149 		ndlp = lpfc_cmd->rdata->pnode;
12150 
12151 		if (lpfc_is_link_up(phba) &&
12152 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
12153 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
12154 		else
12155 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
12156 
12157 		/* Setup callback routine and issue the command. */
12158 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
12159 
12160 		/*
12161 		 * Indicate the IO is being aborted by the driver and set
12162 		 * the caller's flag into the aborted IO.
12163 		 */
12164 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
12165 
12166 		if (phba->sli_rev == LPFC_SLI_REV4) {
12167 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12168 							abtsiocbq, 0);
12169 			spin_unlock(&pring_s4->ring_lock);
12170 		} else {
12171 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12172 							abtsiocbq, 0);
12173 		}
12174 
12175 		spin_unlock(&lpfc_cmd->buf_lock);
12176 
12177 		if (ret_val == IOCB_ERROR)
12178 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
12179 		else
12180 			sum++;
12181 	}
12182 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12183 	return sum;
12184 }
12185 
12186 /**
12187  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12188  * @phba: Pointer to HBA context object.
12189  * @cmdiocbq: Pointer to command iocb.
12190  * @rspiocbq: Pointer to response iocb.
12191  *
12192  * This function is the completion handler for iocbs issued using
12193  * lpfc_sli_issue_iocb_wait function. This function is called by the
12194  * ring event handler function without any lock held. This function
12195  * can be called from both worker thread context and interrupt
12196  * context. This function also can be called from other thread which
12197  * cleans up the SLI layer objects.
12198  * This function copy the contents of the response iocb to the
12199  * response iocb memory object provided by the caller of
12200  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12201  * sleeps for the iocb completion.
12202  **/
12203 static void
12204 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12205 			struct lpfc_iocbq *cmdiocbq,
12206 			struct lpfc_iocbq *rspiocbq)
12207 {
12208 	wait_queue_head_t *pdone_q;
12209 	unsigned long iflags;
12210 	struct lpfc_io_buf *lpfc_cmd;
12211 
12212 	spin_lock_irqsave(&phba->hbalock, iflags);
12213 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
12214 
12215 		/*
12216 		 * A time out has occurred for the iocb.  If a time out
12217 		 * completion handler has been supplied, call it.  Otherwise,
12218 		 * just free the iocbq.
12219 		 */
12220 
12221 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12222 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
12223 		cmdiocbq->wait_iocb_cmpl = NULL;
12224 		if (cmdiocbq->iocb_cmpl)
12225 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
12226 		else
12227 			lpfc_sli_release_iocbq(phba, cmdiocbq);
12228 		return;
12229 	}
12230 
12231 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
12232 	if (cmdiocbq->context2 && rspiocbq)
12233 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
12234 		       &rspiocbq->iocb, sizeof(IOCB_t));
12235 
12236 	/* Set the exchange busy flag for task management commands */
12237 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
12238 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
12239 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
12240 			cur_iocbq);
12241 		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
12242 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
12243 		else
12244 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
12245 	}
12246 
12247 	pdone_q = cmdiocbq->context_un.wait_queue;
12248 	if (pdone_q)
12249 		wake_up(pdone_q);
12250 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12251 	return;
12252 }
12253 
12254 /**
12255  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
12256  * @phba: Pointer to HBA context object..
12257  * @piocbq: Pointer to command iocb.
12258  * @flag: Flag to test.
12259  *
12260  * This routine grabs the hbalock and then test the iocb_flag to
12261  * see if the passed in flag is set.
12262  * Returns:
12263  * 1 if flag is set.
12264  * 0 if flag is not set.
12265  **/
12266 static int
12267 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
12268 		 struct lpfc_iocbq *piocbq, uint32_t flag)
12269 {
12270 	unsigned long iflags;
12271 	int ret;
12272 
12273 	spin_lock_irqsave(&phba->hbalock, iflags);
12274 	ret = piocbq->iocb_flag & flag;
12275 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12276 	return ret;
12277 
12278 }
12279 
12280 /**
12281  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
12282  * @phba: Pointer to HBA context object..
12283  * @ring_number: Ring number
12284  * @piocb: Pointer to command iocb.
12285  * @prspiocbq: Pointer to response iocb.
12286  * @timeout: Timeout in number of seconds.
12287  *
12288  * This function issues the iocb to firmware and waits for the
12289  * iocb to complete. The iocb_cmpl field of the shall be used
12290  * to handle iocbs which time out. If the field is NULL, the
12291  * function shall free the iocbq structure.  If more clean up is
12292  * needed, the caller is expected to provide a completion function
12293  * that will provide the needed clean up.  If the iocb command is
12294  * not completed within timeout seconds, the function will either
12295  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
12296  * completion function set in the iocb_cmpl field and then return
12297  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
12298  * resources if this function returns IOCB_TIMEDOUT.
12299  * The function waits for the iocb completion using an
12300  * non-interruptible wait.
12301  * This function will sleep while waiting for iocb completion.
12302  * So, this function should not be called from any context which
12303  * does not allow sleeping. Due to the same reason, this function
12304  * cannot be called with interrupt disabled.
12305  * This function assumes that the iocb completions occur while
12306  * this function sleep. So, this function cannot be called from
12307  * the thread which process iocb completion for this ring.
12308  * This function clears the iocb_flag of the iocb object before
12309  * issuing the iocb and the iocb completion handler sets this
12310  * flag and wakes this thread when the iocb completes.
12311  * The contents of the response iocb will be copied to prspiocbq
12312  * by the completion handler when the command completes.
12313  * This function returns IOCB_SUCCESS when success.
12314  * This function is called with no lock held.
12315  **/
12316 int
12317 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
12318 			 uint32_t ring_number,
12319 			 struct lpfc_iocbq *piocb,
12320 			 struct lpfc_iocbq *prspiocbq,
12321 			 uint32_t timeout)
12322 {
12323 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12324 	long timeleft, timeout_req = 0;
12325 	int retval = IOCB_SUCCESS;
12326 	uint32_t creg_val;
12327 	struct lpfc_iocbq *iocb;
12328 	int txq_cnt = 0;
12329 	int txcmplq_cnt = 0;
12330 	struct lpfc_sli_ring *pring;
12331 	unsigned long iflags;
12332 	bool iocb_completed = true;
12333 
12334 	if (phba->sli_rev >= LPFC_SLI_REV4)
12335 		pring = lpfc_sli4_calc_ring(phba, piocb);
12336 	else
12337 		pring = &phba->sli.sli3_ring[ring_number];
12338 	/*
12339 	 * If the caller has provided a response iocbq buffer, then context2
12340 	 * is NULL or its an error.
12341 	 */
12342 	if (prspiocbq) {
12343 		if (piocb->context2)
12344 			return IOCB_ERROR;
12345 		piocb->context2 = prspiocbq;
12346 	}
12347 
12348 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
12349 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
12350 	piocb->context_un.wait_queue = &done_q;
12351 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12352 
12353 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12354 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12355 			return IOCB_ERROR;
12356 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12357 		writel(creg_val, phba->HCregaddr);
12358 		readl(phba->HCregaddr); /* flush */
12359 	}
12360 
12361 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12362 				     SLI_IOCB_RET_IOCB);
12363 	if (retval == IOCB_SUCCESS) {
12364 		timeout_req = msecs_to_jiffies(timeout * 1000);
12365 		timeleft = wait_event_timeout(done_q,
12366 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12367 				timeout_req);
12368 		spin_lock_irqsave(&phba->hbalock, iflags);
12369 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
12370 
12371 			/*
12372 			 * IOCB timed out.  Inform the wake iocb wait
12373 			 * completion function and set local status
12374 			 */
12375 
12376 			iocb_completed = false;
12377 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
12378 		}
12379 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12380 		if (iocb_completed) {
12381 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12382 					"0331 IOCB wake signaled\n");
12383 			/* Note: we are not indicating if the IOCB has a success
12384 			 * status or not - that's for the caller to check.
12385 			 * IOCB_SUCCESS means just that the command was sent and
12386 			 * completed. Not that it completed successfully.
12387 			 * */
12388 		} else if (timeleft == 0) {
12389 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12390 					"0338 IOCB wait timeout error - no "
12391 					"wake response Data x%x\n", timeout);
12392 			retval = IOCB_TIMEDOUT;
12393 		} else {
12394 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12395 					"0330 IOCB wake NOT set, "
12396 					"Data x%x x%lx\n",
12397 					timeout, (timeleft / jiffies));
12398 			retval = IOCB_TIMEDOUT;
12399 		}
12400 	} else if (retval == IOCB_BUSY) {
12401 		if (phba->cfg_log_verbose & LOG_SLI) {
12402 			list_for_each_entry(iocb, &pring->txq, list) {
12403 				txq_cnt++;
12404 			}
12405 			list_for_each_entry(iocb, &pring->txcmplq, list) {
12406 				txcmplq_cnt++;
12407 			}
12408 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12409 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12410 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12411 		}
12412 		return retval;
12413 	} else {
12414 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12415 				"0332 IOCB wait issue failed, Data x%x\n",
12416 				retval);
12417 		retval = IOCB_ERROR;
12418 	}
12419 
12420 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12421 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12422 			return IOCB_ERROR;
12423 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12424 		writel(creg_val, phba->HCregaddr);
12425 		readl(phba->HCregaddr); /* flush */
12426 	}
12427 
12428 	if (prspiocbq)
12429 		piocb->context2 = NULL;
12430 
12431 	piocb->context_un.wait_queue = NULL;
12432 	piocb->iocb_cmpl = NULL;
12433 	return retval;
12434 }
12435 
12436 /**
12437  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12438  * @phba: Pointer to HBA context object.
12439  * @pmboxq: Pointer to driver mailbox object.
12440  * @timeout: Timeout in number of seconds.
12441  *
12442  * This function issues the mailbox to firmware and waits for the
12443  * mailbox command to complete. If the mailbox command is not
12444  * completed within timeout seconds, it returns MBX_TIMEOUT.
12445  * The function waits for the mailbox completion using an
12446  * interruptible wait. If the thread is woken up due to a
12447  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12448  * should not free the mailbox resources, if this function returns
12449  * MBX_TIMEOUT.
12450  * This function will sleep while waiting for mailbox completion.
12451  * So, this function should not be called from any context which
12452  * does not allow sleeping. Due to the same reason, this function
12453  * cannot be called with interrupt disabled.
12454  * This function assumes that the mailbox completion occurs while
12455  * this function sleep. So, this function cannot be called from
12456  * the worker thread which processes mailbox completion.
12457  * This function is called in the context of HBA management
12458  * applications.
12459  * This function returns MBX_SUCCESS when successful.
12460  * This function is called with no lock held.
12461  **/
12462 int
12463 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12464 			 uint32_t timeout)
12465 {
12466 	struct completion mbox_done;
12467 	int retval;
12468 	unsigned long flag;
12469 
12470 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12471 	/* setup wake call as IOCB callback */
12472 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12473 
12474 	/* setup context3 field to pass wait_queue pointer to wake function  */
12475 	init_completion(&mbox_done);
12476 	pmboxq->context3 = &mbox_done;
12477 	/* now issue the command */
12478 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12479 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12480 		wait_for_completion_timeout(&mbox_done,
12481 					    msecs_to_jiffies(timeout * 1000));
12482 
12483 		spin_lock_irqsave(&phba->hbalock, flag);
12484 		pmboxq->context3 = NULL;
12485 		/*
12486 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12487 		 * else do not free the resources.
12488 		 */
12489 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12490 			retval = MBX_SUCCESS;
12491 		} else {
12492 			retval = MBX_TIMEOUT;
12493 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12494 		}
12495 		spin_unlock_irqrestore(&phba->hbalock, flag);
12496 	}
12497 	return retval;
12498 }
12499 
12500 /**
12501  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12502  * @phba: Pointer to HBA context.
12503  * @mbx_action: Mailbox shutdown options.
12504  *
12505  * This function is called to shutdown the driver's mailbox sub-system.
12506  * It first marks the mailbox sub-system is in a block state to prevent
12507  * the asynchronous mailbox command from issued off the pending mailbox
12508  * command queue. If the mailbox command sub-system shutdown is due to
12509  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12510  * the mailbox sub-system flush routine to forcefully bring down the
12511  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12512  * as with offline or HBA function reset), this routine will wait for the
12513  * outstanding mailbox command to complete before invoking the mailbox
12514  * sub-system flush routine to gracefully bring down mailbox sub-system.
12515  **/
12516 void
12517 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12518 {
12519 	struct lpfc_sli *psli = &phba->sli;
12520 	unsigned long timeout;
12521 
12522 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12523 		/* delay 100ms for port state */
12524 		msleep(100);
12525 		lpfc_sli_mbox_sys_flush(phba);
12526 		return;
12527 	}
12528 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12529 
12530 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12531 	local_bh_disable();
12532 
12533 	spin_lock_irq(&phba->hbalock);
12534 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12535 
12536 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12537 		/* Determine how long we might wait for the active mailbox
12538 		 * command to be gracefully completed by firmware.
12539 		 */
12540 		if (phba->sli.mbox_active)
12541 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12542 						phba->sli.mbox_active) *
12543 						1000) + jiffies;
12544 		spin_unlock_irq(&phba->hbalock);
12545 
12546 		/* Enable softirqs again, done with phba->hbalock */
12547 		local_bh_enable();
12548 
12549 		while (phba->sli.mbox_active) {
12550 			/* Check active mailbox complete status every 2ms */
12551 			msleep(2);
12552 			if (time_after(jiffies, timeout))
12553 				/* Timeout, let the mailbox flush routine to
12554 				 * forcefully release active mailbox command
12555 				 */
12556 				break;
12557 		}
12558 	} else {
12559 		spin_unlock_irq(&phba->hbalock);
12560 
12561 		/* Enable softirqs again, done with phba->hbalock */
12562 		local_bh_enable();
12563 	}
12564 
12565 	lpfc_sli_mbox_sys_flush(phba);
12566 }
12567 
12568 /**
12569  * lpfc_sli_eratt_read - read sli-3 error attention events
12570  * @phba: Pointer to HBA context.
12571  *
12572  * This function is called to read the SLI3 device error attention registers
12573  * for possible error attention events. The caller must hold the hostlock
12574  * with spin_lock_irq().
12575  *
12576  * This function returns 1 when there is Error Attention in the Host Attention
12577  * Register and returns 0 otherwise.
12578  **/
12579 static int
12580 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12581 {
12582 	uint32_t ha_copy;
12583 
12584 	/* Read chip Host Attention (HA) register */
12585 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12586 		goto unplug_err;
12587 
12588 	if (ha_copy & HA_ERATT) {
12589 		/* Read host status register to retrieve error event */
12590 		if (lpfc_sli_read_hs(phba))
12591 			goto unplug_err;
12592 
12593 		/* Check if there is a deferred error condition is active */
12594 		if ((HS_FFER1 & phba->work_hs) &&
12595 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12596 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12597 			phba->hba_flag |= DEFER_ERATT;
12598 			/* Clear all interrupt enable conditions */
12599 			writel(0, phba->HCregaddr);
12600 			readl(phba->HCregaddr);
12601 		}
12602 
12603 		/* Set the driver HA work bitmap */
12604 		phba->work_ha |= HA_ERATT;
12605 		/* Indicate polling handles this ERATT */
12606 		phba->hba_flag |= HBA_ERATT_HANDLED;
12607 		return 1;
12608 	}
12609 	return 0;
12610 
12611 unplug_err:
12612 	/* Set the driver HS work bitmap */
12613 	phba->work_hs |= UNPLUG_ERR;
12614 	/* Set the driver HA work bitmap */
12615 	phba->work_ha |= HA_ERATT;
12616 	/* Indicate polling handles this ERATT */
12617 	phba->hba_flag |= HBA_ERATT_HANDLED;
12618 	return 1;
12619 }
12620 
12621 /**
12622  * lpfc_sli4_eratt_read - read sli-4 error attention events
12623  * @phba: Pointer to HBA context.
12624  *
12625  * This function is called to read the SLI4 device error attention registers
12626  * for possible error attention events. The caller must hold the hostlock
12627  * with spin_lock_irq().
12628  *
12629  * This function returns 1 when there is Error Attention in the Host Attention
12630  * Register and returns 0 otherwise.
12631  **/
12632 static int
12633 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12634 {
12635 	uint32_t uerr_sta_hi, uerr_sta_lo;
12636 	uint32_t if_type, portsmphr;
12637 	struct lpfc_register portstat_reg;
12638 
12639 	/*
12640 	 * For now, use the SLI4 device internal unrecoverable error
12641 	 * registers for error attention. This can be changed later.
12642 	 */
12643 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12644 	switch (if_type) {
12645 	case LPFC_SLI_INTF_IF_TYPE_0:
12646 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12647 			&uerr_sta_lo) ||
12648 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12649 			&uerr_sta_hi)) {
12650 			phba->work_hs |= UNPLUG_ERR;
12651 			phba->work_ha |= HA_ERATT;
12652 			phba->hba_flag |= HBA_ERATT_HANDLED;
12653 			return 1;
12654 		}
12655 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12656 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12657 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12658 					"1423 HBA Unrecoverable error: "
12659 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12660 					"ue_mask_lo_reg=0x%x, "
12661 					"ue_mask_hi_reg=0x%x\n",
12662 					uerr_sta_lo, uerr_sta_hi,
12663 					phba->sli4_hba.ue_mask_lo,
12664 					phba->sli4_hba.ue_mask_hi);
12665 			phba->work_status[0] = uerr_sta_lo;
12666 			phba->work_status[1] = uerr_sta_hi;
12667 			phba->work_ha |= HA_ERATT;
12668 			phba->hba_flag |= HBA_ERATT_HANDLED;
12669 			return 1;
12670 		}
12671 		break;
12672 	case LPFC_SLI_INTF_IF_TYPE_2:
12673 	case LPFC_SLI_INTF_IF_TYPE_6:
12674 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12675 			&portstat_reg.word0) ||
12676 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12677 			&portsmphr)){
12678 			phba->work_hs |= UNPLUG_ERR;
12679 			phba->work_ha |= HA_ERATT;
12680 			phba->hba_flag |= HBA_ERATT_HANDLED;
12681 			return 1;
12682 		}
12683 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12684 			phba->work_status[0] =
12685 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12686 			phba->work_status[1] =
12687 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12688 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12689 					"2885 Port Status Event: "
12690 					"port status reg 0x%x, "
12691 					"port smphr reg 0x%x, "
12692 					"error 1=0x%x, error 2=0x%x\n",
12693 					portstat_reg.word0,
12694 					portsmphr,
12695 					phba->work_status[0],
12696 					phba->work_status[1]);
12697 			phba->work_ha |= HA_ERATT;
12698 			phba->hba_flag |= HBA_ERATT_HANDLED;
12699 			return 1;
12700 		}
12701 		break;
12702 	case LPFC_SLI_INTF_IF_TYPE_1:
12703 	default:
12704 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12705 				"2886 HBA Error Attention on unsupported "
12706 				"if type %d.", if_type);
12707 		return 1;
12708 	}
12709 
12710 	return 0;
12711 }
12712 
12713 /**
12714  * lpfc_sli_check_eratt - check error attention events
12715  * @phba: Pointer to HBA context.
12716  *
12717  * This function is called from timer soft interrupt context to check HBA's
12718  * error attention register bit for error attention events.
12719  *
12720  * This function returns 1 when there is Error Attention in the Host Attention
12721  * Register and returns 0 otherwise.
12722  **/
12723 int
12724 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12725 {
12726 	uint32_t ha_copy;
12727 
12728 	/* If somebody is waiting to handle an eratt, don't process it
12729 	 * here. The brdkill function will do this.
12730 	 */
12731 	if (phba->link_flag & LS_IGNORE_ERATT)
12732 		return 0;
12733 
12734 	/* Check if interrupt handler handles this ERATT */
12735 	spin_lock_irq(&phba->hbalock);
12736 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12737 		/* Interrupt handler has handled ERATT */
12738 		spin_unlock_irq(&phba->hbalock);
12739 		return 0;
12740 	}
12741 
12742 	/*
12743 	 * If there is deferred error attention, do not check for error
12744 	 * attention
12745 	 */
12746 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12747 		spin_unlock_irq(&phba->hbalock);
12748 		return 0;
12749 	}
12750 
12751 	/* If PCI channel is offline, don't process it */
12752 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12753 		spin_unlock_irq(&phba->hbalock);
12754 		return 0;
12755 	}
12756 
12757 	switch (phba->sli_rev) {
12758 	case LPFC_SLI_REV2:
12759 	case LPFC_SLI_REV3:
12760 		/* Read chip Host Attention (HA) register */
12761 		ha_copy = lpfc_sli_eratt_read(phba);
12762 		break;
12763 	case LPFC_SLI_REV4:
12764 		/* Read device Uncoverable Error (UERR) registers */
12765 		ha_copy = lpfc_sli4_eratt_read(phba);
12766 		break;
12767 	default:
12768 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12769 				"0299 Invalid SLI revision (%d)\n",
12770 				phba->sli_rev);
12771 		ha_copy = 0;
12772 		break;
12773 	}
12774 	spin_unlock_irq(&phba->hbalock);
12775 
12776 	return ha_copy;
12777 }
12778 
12779 /**
12780  * lpfc_intr_state_check - Check device state for interrupt handling
12781  * @phba: Pointer to HBA context.
12782  *
12783  * This inline routine checks whether a device or its PCI slot is in a state
12784  * that the interrupt should be handled.
12785  *
12786  * This function returns 0 if the device or the PCI slot is in a state that
12787  * interrupt should be handled, otherwise -EIO.
12788  */
12789 static inline int
12790 lpfc_intr_state_check(struct lpfc_hba *phba)
12791 {
12792 	/* If the pci channel is offline, ignore all the interrupts */
12793 	if (unlikely(pci_channel_offline(phba->pcidev)))
12794 		return -EIO;
12795 
12796 	/* Update device level interrupt statistics */
12797 	phba->sli.slistat.sli_intr++;
12798 
12799 	/* Ignore all interrupts during initialization. */
12800 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12801 		return -EIO;
12802 
12803 	return 0;
12804 }
12805 
12806 /**
12807  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12808  * @irq: Interrupt number.
12809  * @dev_id: The device context pointer.
12810  *
12811  * This function is directly called from the PCI layer as an interrupt
12812  * service routine when device with SLI-3 interface spec is enabled with
12813  * MSI-X multi-message interrupt mode and there are slow-path events in
12814  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12815  * interrupt mode, this function is called as part of the device-level
12816  * interrupt handler. When the PCI slot is in error recovery or the HBA
12817  * is undergoing initialization, the interrupt handler will not process
12818  * the interrupt. The link attention and ELS ring attention events are
12819  * handled by the worker thread. The interrupt handler signals the worker
12820  * thread and returns for these events. This function is called without
12821  * any lock held. It gets the hbalock to access and update SLI data
12822  * structures.
12823  *
12824  * This function returns IRQ_HANDLED when interrupt is handled else it
12825  * returns IRQ_NONE.
12826  **/
12827 irqreturn_t
12828 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12829 {
12830 	struct lpfc_hba  *phba;
12831 	uint32_t ha_copy, hc_copy;
12832 	uint32_t work_ha_copy;
12833 	unsigned long status;
12834 	unsigned long iflag;
12835 	uint32_t control;
12836 
12837 	MAILBOX_t *mbox, *pmbox;
12838 	struct lpfc_vport *vport;
12839 	struct lpfc_nodelist *ndlp;
12840 	struct lpfc_dmabuf *mp;
12841 	LPFC_MBOXQ_t *pmb;
12842 	int rc;
12843 
12844 	/*
12845 	 * Get the driver's phba structure from the dev_id and
12846 	 * assume the HBA is not interrupting.
12847 	 */
12848 	phba = (struct lpfc_hba *)dev_id;
12849 
12850 	if (unlikely(!phba))
12851 		return IRQ_NONE;
12852 
12853 	/*
12854 	 * Stuff needs to be attented to when this function is invoked as an
12855 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12856 	 */
12857 	if (phba->intr_type == MSIX) {
12858 		/* Check device state for handling interrupt */
12859 		if (lpfc_intr_state_check(phba))
12860 			return IRQ_NONE;
12861 		/* Need to read HA REG for slow-path events */
12862 		spin_lock_irqsave(&phba->hbalock, iflag);
12863 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12864 			goto unplug_error;
12865 		/* If somebody is waiting to handle an eratt don't process it
12866 		 * here. The brdkill function will do this.
12867 		 */
12868 		if (phba->link_flag & LS_IGNORE_ERATT)
12869 			ha_copy &= ~HA_ERATT;
12870 		/* Check the need for handling ERATT in interrupt handler */
12871 		if (ha_copy & HA_ERATT) {
12872 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12873 				/* ERATT polling has handled ERATT */
12874 				ha_copy &= ~HA_ERATT;
12875 			else
12876 				/* Indicate interrupt handler handles ERATT */
12877 				phba->hba_flag |= HBA_ERATT_HANDLED;
12878 		}
12879 
12880 		/*
12881 		 * If there is deferred error attention, do not check for any
12882 		 * interrupt.
12883 		 */
12884 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12885 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12886 			return IRQ_NONE;
12887 		}
12888 
12889 		/* Clear up only attention source related to slow-path */
12890 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12891 			goto unplug_error;
12892 
12893 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12894 			HC_LAINT_ENA | HC_ERINT_ENA),
12895 			phba->HCregaddr);
12896 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12897 			phba->HAregaddr);
12898 		writel(hc_copy, phba->HCregaddr);
12899 		readl(phba->HAregaddr); /* flush */
12900 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12901 	} else
12902 		ha_copy = phba->ha_copy;
12903 
12904 	work_ha_copy = ha_copy & phba->work_ha_mask;
12905 
12906 	if (work_ha_copy) {
12907 		if (work_ha_copy & HA_LATT) {
12908 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12909 				/*
12910 				 * Turn off Link Attention interrupts
12911 				 * until CLEAR_LA done
12912 				 */
12913 				spin_lock_irqsave(&phba->hbalock, iflag);
12914 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12915 				if (lpfc_readl(phba->HCregaddr, &control))
12916 					goto unplug_error;
12917 				control &= ~HC_LAINT_ENA;
12918 				writel(control, phba->HCregaddr);
12919 				readl(phba->HCregaddr); /* flush */
12920 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12921 			}
12922 			else
12923 				work_ha_copy &= ~HA_LATT;
12924 		}
12925 
12926 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12927 			/*
12928 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12929 			 * the only slow ring.
12930 			 */
12931 			status = (work_ha_copy &
12932 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12933 			status >>= (4*LPFC_ELS_RING);
12934 			if (status & HA_RXMASK) {
12935 				spin_lock_irqsave(&phba->hbalock, iflag);
12936 				if (lpfc_readl(phba->HCregaddr, &control))
12937 					goto unplug_error;
12938 
12939 				lpfc_debugfs_slow_ring_trc(phba,
12940 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12941 				control, status,
12942 				(uint32_t)phba->sli.slistat.sli_intr);
12943 
12944 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12945 					lpfc_debugfs_slow_ring_trc(phba,
12946 						"ISR Disable ring:"
12947 						"pwork:x%x hawork:x%x wait:x%x",
12948 						phba->work_ha, work_ha_copy,
12949 						(uint32_t)((unsigned long)
12950 						&phba->work_waitq));
12951 
12952 					control &=
12953 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12954 					writel(control, phba->HCregaddr);
12955 					readl(phba->HCregaddr); /* flush */
12956 				}
12957 				else {
12958 					lpfc_debugfs_slow_ring_trc(phba,
12959 						"ISR slow ring:   pwork:"
12960 						"x%x hawork:x%x wait:x%x",
12961 						phba->work_ha, work_ha_copy,
12962 						(uint32_t)((unsigned long)
12963 						&phba->work_waitq));
12964 				}
12965 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12966 			}
12967 		}
12968 		spin_lock_irqsave(&phba->hbalock, iflag);
12969 		if (work_ha_copy & HA_ERATT) {
12970 			if (lpfc_sli_read_hs(phba))
12971 				goto unplug_error;
12972 			/*
12973 			 * Check if there is a deferred error condition
12974 			 * is active
12975 			 */
12976 			if ((HS_FFER1 & phba->work_hs) &&
12977 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12978 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12979 				  phba->work_hs)) {
12980 				phba->hba_flag |= DEFER_ERATT;
12981 				/* Clear all interrupt enable conditions */
12982 				writel(0, phba->HCregaddr);
12983 				readl(phba->HCregaddr);
12984 			}
12985 		}
12986 
12987 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12988 			pmb = phba->sli.mbox_active;
12989 			pmbox = &pmb->u.mb;
12990 			mbox = phba->mbox;
12991 			vport = pmb->vport;
12992 
12993 			/* First check out the status word */
12994 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12995 			if (pmbox->mbxOwner != OWN_HOST) {
12996 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12997 				/*
12998 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12999 				 * mbxStatus <status>
13000 				 */
13001 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13002 						"(%d):0304 Stray Mailbox "
13003 						"Interrupt mbxCommand x%x "
13004 						"mbxStatus x%x\n",
13005 						(vport ? vport->vpi : 0),
13006 						pmbox->mbxCommand,
13007 						pmbox->mbxStatus);
13008 				/* clear mailbox attention bit */
13009 				work_ha_copy &= ~HA_MBATT;
13010 			} else {
13011 				phba->sli.mbox_active = NULL;
13012 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13013 				phba->last_completion_time = jiffies;
13014 				del_timer(&phba->sli.mbox_tmo);
13015 				if (pmb->mbox_cmpl) {
13016 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
13017 							MAILBOX_CMD_SIZE);
13018 					if (pmb->out_ext_byte_len &&
13019 						pmb->ctx_buf)
13020 						lpfc_sli_pcimem_bcopy(
13021 						phba->mbox_ext,
13022 						pmb->ctx_buf,
13023 						pmb->out_ext_byte_len);
13024 				}
13025 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13026 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13027 
13028 					lpfc_debugfs_disc_trc(vport,
13029 						LPFC_DISC_TRC_MBOX_VPORT,
13030 						"MBOX dflt rpi: : "
13031 						"status:x%x rpi:x%x",
13032 						(uint32_t)pmbox->mbxStatus,
13033 						pmbox->un.varWords[0], 0);
13034 
13035 					if (!pmbox->mbxStatus) {
13036 						mp = (struct lpfc_dmabuf *)
13037 							(pmb->ctx_buf);
13038 						ndlp = (struct lpfc_nodelist *)
13039 							pmb->ctx_ndlp;
13040 
13041 						/* Reg_LOGIN of dflt RPI was
13042 						 * successful. new lets get
13043 						 * rid of the RPI using the
13044 						 * same mbox buffer.
13045 						 */
13046 						lpfc_unreg_login(phba,
13047 							vport->vpi,
13048 							pmbox->un.varWords[0],
13049 							pmb);
13050 						pmb->mbox_cmpl =
13051 							lpfc_mbx_cmpl_dflt_rpi;
13052 						pmb->ctx_buf = mp;
13053 						pmb->ctx_ndlp = ndlp;
13054 						pmb->vport = vport;
13055 						rc = lpfc_sli_issue_mbox(phba,
13056 								pmb,
13057 								MBX_NOWAIT);
13058 						if (rc != MBX_BUSY)
13059 							lpfc_printf_log(phba,
13060 							KERN_ERR,
13061 							LOG_TRACE_EVENT,
13062 							"0350 rc should have"
13063 							"been MBX_BUSY\n");
13064 						if (rc != MBX_NOT_FINISHED)
13065 							goto send_current_mbox;
13066 					}
13067 				}
13068 				spin_lock_irqsave(
13069 						&phba->pport->work_port_lock,
13070 						iflag);
13071 				phba->pport->work_port_events &=
13072 					~WORKER_MBOX_TMO;
13073 				spin_unlock_irqrestore(
13074 						&phba->pport->work_port_lock,
13075 						iflag);
13076 
13077 				/* Do NOT queue MBX_HEARTBEAT to the worker
13078 				 * thread for processing.
13079 				 */
13080 				if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13081 					/* Process mbox now */
13082 					phba->sli.mbox_active = NULL;
13083 					phba->sli.sli_flag &=
13084 						~LPFC_SLI_MBOX_ACTIVE;
13085 					if (pmb->mbox_cmpl)
13086 						pmb->mbox_cmpl(phba, pmb);
13087 				} else {
13088 					/* Queue to worker thread to process */
13089 					lpfc_mbox_cmpl_put(phba, pmb);
13090 				}
13091 			}
13092 		} else
13093 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13094 
13095 		if ((work_ha_copy & HA_MBATT) &&
13096 		    (phba->sli.mbox_active == NULL)) {
13097 send_current_mbox:
13098 			/* Process next mailbox command if there is one */
13099 			do {
13100 				rc = lpfc_sli_issue_mbox(phba, NULL,
13101 							 MBX_NOWAIT);
13102 			} while (rc == MBX_NOT_FINISHED);
13103 			if (rc != MBX_SUCCESS)
13104 				lpfc_printf_log(phba, KERN_ERR,
13105 						LOG_TRACE_EVENT,
13106 						"0349 rc should be "
13107 						"MBX_SUCCESS\n");
13108 		}
13109 
13110 		spin_lock_irqsave(&phba->hbalock, iflag);
13111 		phba->work_ha |= work_ha_copy;
13112 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13113 		lpfc_worker_wake_up(phba);
13114 	}
13115 	return IRQ_HANDLED;
13116 unplug_error:
13117 	spin_unlock_irqrestore(&phba->hbalock, iflag);
13118 	return IRQ_HANDLED;
13119 
13120 } /* lpfc_sli_sp_intr_handler */
13121 
13122 /**
13123  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13124  * @irq: Interrupt number.
13125  * @dev_id: The device context pointer.
13126  *
13127  * This function is directly called from the PCI layer as an interrupt
13128  * service routine when device with SLI-3 interface spec is enabled with
13129  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13130  * ring event in the HBA. However, when the device is enabled with either
13131  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13132  * device-level interrupt handler. When the PCI slot is in error recovery
13133  * or the HBA is undergoing initialization, the interrupt handler will not
13134  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13135  * the intrrupt context. This function is called without any lock held.
13136  * It gets the hbalock to access and update SLI data structures.
13137  *
13138  * This function returns IRQ_HANDLED when interrupt is handled else it
13139  * returns IRQ_NONE.
13140  **/
13141 irqreturn_t
13142 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13143 {
13144 	struct lpfc_hba  *phba;
13145 	uint32_t ha_copy;
13146 	unsigned long status;
13147 	unsigned long iflag;
13148 	struct lpfc_sli_ring *pring;
13149 
13150 	/* Get the driver's phba structure from the dev_id and
13151 	 * assume the HBA is not interrupting.
13152 	 */
13153 	phba = (struct lpfc_hba *) dev_id;
13154 
13155 	if (unlikely(!phba))
13156 		return IRQ_NONE;
13157 
13158 	/*
13159 	 * Stuff needs to be attented to when this function is invoked as an
13160 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13161 	 */
13162 	if (phba->intr_type == MSIX) {
13163 		/* Check device state for handling interrupt */
13164 		if (lpfc_intr_state_check(phba))
13165 			return IRQ_NONE;
13166 		/* Need to read HA REG for FCP ring and other ring events */
13167 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13168 			return IRQ_HANDLED;
13169 		/* Clear up only attention source related to fast-path */
13170 		spin_lock_irqsave(&phba->hbalock, iflag);
13171 		/*
13172 		 * If there is deferred error attention, do not check for
13173 		 * any interrupt.
13174 		 */
13175 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13176 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13177 			return IRQ_NONE;
13178 		}
13179 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13180 			phba->HAregaddr);
13181 		readl(phba->HAregaddr); /* flush */
13182 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13183 	} else
13184 		ha_copy = phba->ha_copy;
13185 
13186 	/*
13187 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
13188 	 */
13189 	ha_copy &= ~(phba->work_ha_mask);
13190 
13191 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13192 	status >>= (4*LPFC_FCP_RING);
13193 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13194 	if (status & HA_RXMASK)
13195 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
13196 
13197 	if (phba->cfg_multi_ring_support == 2) {
13198 		/*
13199 		 * Process all events on extra ring. Take the optimized path
13200 		 * for extra ring IO.
13201 		 */
13202 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13203 		status >>= (4*LPFC_EXTRA_RING);
13204 		if (status & HA_RXMASK) {
13205 			lpfc_sli_handle_fast_ring_event(phba,
13206 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
13207 					status);
13208 		}
13209 	}
13210 	return IRQ_HANDLED;
13211 }  /* lpfc_sli_fp_intr_handler */
13212 
13213 /**
13214  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13215  * @irq: Interrupt number.
13216  * @dev_id: The device context pointer.
13217  *
13218  * This function is the HBA device-level interrupt handler to device with
13219  * SLI-3 interface spec, called from the PCI layer when either MSI or
13220  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
13221  * requires driver attention. This function invokes the slow-path interrupt
13222  * attention handling function and fast-path interrupt attention handling
13223  * function in turn to process the relevant HBA attention events. This
13224  * function is called without any lock held. It gets the hbalock to access
13225  * and update SLI data structures.
13226  *
13227  * This function returns IRQ_HANDLED when interrupt is handled, else it
13228  * returns IRQ_NONE.
13229  **/
13230 irqreturn_t
13231 lpfc_sli_intr_handler(int irq, void *dev_id)
13232 {
13233 	struct lpfc_hba  *phba;
13234 	irqreturn_t sp_irq_rc, fp_irq_rc;
13235 	unsigned long status1, status2;
13236 	uint32_t hc_copy;
13237 
13238 	/*
13239 	 * Get the driver's phba structure from the dev_id and
13240 	 * assume the HBA is not interrupting.
13241 	 */
13242 	phba = (struct lpfc_hba *) dev_id;
13243 
13244 	if (unlikely(!phba))
13245 		return IRQ_NONE;
13246 
13247 	/* Check device state for handling interrupt */
13248 	if (lpfc_intr_state_check(phba))
13249 		return IRQ_NONE;
13250 
13251 	spin_lock(&phba->hbalock);
13252 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
13253 		spin_unlock(&phba->hbalock);
13254 		return IRQ_HANDLED;
13255 	}
13256 
13257 	if (unlikely(!phba->ha_copy)) {
13258 		spin_unlock(&phba->hbalock);
13259 		return IRQ_NONE;
13260 	} else if (phba->ha_copy & HA_ERATT) {
13261 		if (phba->hba_flag & HBA_ERATT_HANDLED)
13262 			/* ERATT polling has handled ERATT */
13263 			phba->ha_copy &= ~HA_ERATT;
13264 		else
13265 			/* Indicate interrupt handler handles ERATT */
13266 			phba->hba_flag |= HBA_ERATT_HANDLED;
13267 	}
13268 
13269 	/*
13270 	 * If there is deferred error attention, do not check for any interrupt.
13271 	 */
13272 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13273 		spin_unlock(&phba->hbalock);
13274 		return IRQ_NONE;
13275 	}
13276 
13277 	/* Clear attention sources except link and error attentions */
13278 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
13279 		spin_unlock(&phba->hbalock);
13280 		return IRQ_HANDLED;
13281 	}
13282 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
13283 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
13284 		phba->HCregaddr);
13285 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
13286 	writel(hc_copy, phba->HCregaddr);
13287 	readl(phba->HAregaddr); /* flush */
13288 	spin_unlock(&phba->hbalock);
13289 
13290 	/*
13291 	 * Invokes slow-path host attention interrupt handling as appropriate.
13292 	 */
13293 
13294 	/* status of events with mailbox and link attention */
13295 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
13296 
13297 	/* status of events with ELS ring */
13298 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
13299 	status2 >>= (4*LPFC_ELS_RING);
13300 
13301 	if (status1 || (status2 & HA_RXMASK))
13302 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
13303 	else
13304 		sp_irq_rc = IRQ_NONE;
13305 
13306 	/*
13307 	 * Invoke fast-path host attention interrupt handling as appropriate.
13308 	 */
13309 
13310 	/* status of events with FCP ring */
13311 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13312 	status1 >>= (4*LPFC_FCP_RING);
13313 
13314 	/* status of events with extra ring */
13315 	if (phba->cfg_multi_ring_support == 2) {
13316 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13317 		status2 >>= (4*LPFC_EXTRA_RING);
13318 	} else
13319 		status2 = 0;
13320 
13321 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
13322 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
13323 	else
13324 		fp_irq_rc = IRQ_NONE;
13325 
13326 	/* Return device-level interrupt handling status */
13327 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
13328 }  /* lpfc_sli_intr_handler */
13329 
13330 /**
13331  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
13332  * @phba: pointer to lpfc hba data structure.
13333  *
13334  * This routine is invoked by the worker thread to process all the pending
13335  * SLI4 els abort xri events.
13336  **/
13337 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13338 {
13339 	struct lpfc_cq_event *cq_event;
13340 	unsigned long iflags;
13341 
13342 	/* First, declare the els xri abort event has been handled */
13343 	spin_lock_irqsave(&phba->hbalock, iflags);
13344 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13345 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13346 
13347 	/* Now, handle all the els xri abort events */
13348 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13349 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13350 		/* Get the first event from the head of the event queue */
13351 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13352 				 cq_event, struct lpfc_cq_event, list);
13353 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13354 				       iflags);
13355 		/* Notify aborted XRI for ELS work queue */
13356 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13357 
13358 		/* Free the event processed back to the free pool */
13359 		lpfc_sli4_cq_event_release(phba, cq_event);
13360 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13361 				  iflags);
13362 	}
13363 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13364 }
13365 
13366 /**
13367  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
13368  * @phba: pointer to lpfc hba data structure
13369  * @pIocbIn: pointer to the rspiocbq
13370  * @pIocbOut: pointer to the cmdiocbq
13371  * @wcqe: pointer to the complete wcqe
13372  *
13373  * This routine transfers the fields of a command iocbq to a response iocbq
13374  * by copying all the IOCB fields from command iocbq and transferring the
13375  * completion status information from the complete wcqe.
13376  **/
13377 static void
13378 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
13379 			      struct lpfc_iocbq *pIocbIn,
13380 			      struct lpfc_iocbq *pIocbOut,
13381 			      struct lpfc_wcqe_complete *wcqe)
13382 {
13383 	int numBdes, i;
13384 	unsigned long iflags;
13385 	uint32_t status, max_response;
13386 	struct lpfc_dmabuf *dmabuf;
13387 	struct ulp_bde64 *bpl, bde;
13388 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
13389 
13390 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13391 	       sizeof(struct lpfc_iocbq) - offset);
13392 	/* Map WCQE parameters into irspiocb parameters */
13393 	status = bf_get(lpfc_wcqe_c_status, wcqe);
13394 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13395 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13396 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13397 			pIocbIn->iocb.un.fcpi.fcpi_parm =
13398 					pIocbOut->iocb.un.fcpi.fcpi_parm -
13399 					wcqe->total_data_placed;
13400 		else
13401 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13402 	else {
13403 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13404 		switch (pIocbOut->iocb.ulpCommand) {
13405 		case CMD_ELS_REQUEST64_CR:
13406 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13407 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
13408 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13409 			max_response = bde.tus.f.bdeSize;
13410 			break;
13411 		case CMD_GEN_REQUEST64_CR:
13412 			max_response = 0;
13413 			if (!pIocbOut->context3)
13414 				break;
13415 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13416 					sizeof(struct ulp_bde64);
13417 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13418 			bpl = (struct ulp_bde64 *)dmabuf->virt;
13419 			for (i = 0; i < numBdes; i++) {
13420 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13421 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13422 					max_response += bde.tus.f.bdeSize;
13423 			}
13424 			break;
13425 		default:
13426 			max_response = wcqe->total_data_placed;
13427 			break;
13428 		}
13429 		if (max_response < wcqe->total_data_placed)
13430 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13431 		else
13432 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13433 				wcqe->total_data_placed;
13434 	}
13435 
13436 	/* Convert BG errors for completion status */
13437 	if (status == CQE_STATUS_DI_ERROR) {
13438 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13439 
13440 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13441 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13442 		else
13443 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13444 
13445 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13446 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13447 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13448 				BGS_GUARD_ERR_MASK;
13449 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13450 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13451 				BGS_APPTAG_ERR_MASK;
13452 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13453 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13454 				BGS_REFTAG_ERR_MASK;
13455 
13456 		/* Check to see if there was any good data before the error */
13457 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13458 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13459 				BGS_HI_WATER_MARK_PRESENT_MASK;
13460 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13461 				wcqe->total_data_placed;
13462 		}
13463 
13464 		/*
13465 		* Set ALL the error bits to indicate we don't know what
13466 		* type of error it is.
13467 		*/
13468 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13469 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13470 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13471 				BGS_GUARD_ERR_MASK);
13472 	}
13473 
13474 	/* Pick up HBA exchange busy condition */
13475 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13476 		spin_lock_irqsave(&phba->hbalock, iflags);
13477 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13478 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13479 	}
13480 }
13481 
13482 /**
13483  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13484  * @phba: Pointer to HBA context object.
13485  * @irspiocbq: Pointer to work-queue completion queue entry.
13486  *
13487  * This routine handles an ELS work-queue completion event and construct
13488  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13489  * discovery engine to handle.
13490  *
13491  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13492  **/
13493 static struct lpfc_iocbq *
13494 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13495 			       struct lpfc_iocbq *irspiocbq)
13496 {
13497 	struct lpfc_sli_ring *pring;
13498 	struct lpfc_iocbq *cmdiocbq;
13499 	struct lpfc_wcqe_complete *wcqe;
13500 	unsigned long iflags;
13501 
13502 	pring = lpfc_phba_elsring(phba);
13503 	if (unlikely(!pring))
13504 		return NULL;
13505 
13506 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13507 	pring->stats.iocb_event++;
13508 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13509 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13510 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13511 	if (unlikely(!cmdiocbq)) {
13512 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13513 				"0386 ELS complete with no corresponding "
13514 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13515 				wcqe->word0, wcqe->total_data_placed,
13516 				wcqe->parameter, wcqe->word3);
13517 		lpfc_sli_release_iocbq(phba, irspiocbq);
13518 		return NULL;
13519 	}
13520 
13521 	spin_lock_irqsave(&pring->ring_lock, iflags);
13522 	/* Put the iocb back on the txcmplq */
13523 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13524 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13525 
13526 	/* Fake the irspiocbq and copy necessary response information */
13527 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13528 
13529 	return irspiocbq;
13530 }
13531 
13532 inline struct lpfc_cq_event *
13533 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13534 {
13535 	struct lpfc_cq_event *cq_event;
13536 
13537 	/* Allocate a new internal CQ_EVENT entry */
13538 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13539 	if (!cq_event) {
13540 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13541 				"0602 Failed to alloc CQ_EVENT entry\n");
13542 		return NULL;
13543 	}
13544 
13545 	/* Move the CQE into the event */
13546 	memcpy(&cq_event->cqe, entry, size);
13547 	return cq_event;
13548 }
13549 
13550 /**
13551  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13552  * @phba: Pointer to HBA context object.
13553  * @mcqe: Pointer to mailbox completion queue entry.
13554  *
13555  * This routine process a mailbox completion queue entry with asynchronous
13556  * event.
13557  *
13558  * Return: true if work posted to worker thread, otherwise false.
13559  **/
13560 static bool
13561 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13562 {
13563 	struct lpfc_cq_event *cq_event;
13564 	unsigned long iflags;
13565 
13566 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13567 			"0392 Async Event: word0:x%x, word1:x%x, "
13568 			"word2:x%x, word3:x%x\n", mcqe->word0,
13569 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13570 
13571 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13572 	if (!cq_event)
13573 		return false;
13574 
13575 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
13576 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13577 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
13578 
13579 	/* Set the async event flag */
13580 	spin_lock_irqsave(&phba->hbalock, iflags);
13581 	phba->hba_flag |= ASYNC_EVENT;
13582 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13583 
13584 	return true;
13585 }
13586 
13587 /**
13588  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13589  * @phba: Pointer to HBA context object.
13590  * @mcqe: Pointer to mailbox completion queue entry.
13591  *
13592  * This routine process a mailbox completion queue entry with mailbox
13593  * completion event.
13594  *
13595  * Return: true if work posted to worker thread, otherwise false.
13596  **/
13597 static bool
13598 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13599 {
13600 	uint32_t mcqe_status;
13601 	MAILBOX_t *mbox, *pmbox;
13602 	struct lpfc_mqe *mqe;
13603 	struct lpfc_vport *vport;
13604 	struct lpfc_nodelist *ndlp;
13605 	struct lpfc_dmabuf *mp;
13606 	unsigned long iflags;
13607 	LPFC_MBOXQ_t *pmb;
13608 	bool workposted = false;
13609 	int rc;
13610 
13611 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13612 	if (!bf_get(lpfc_trailer_completed, mcqe))
13613 		goto out_no_mqe_complete;
13614 
13615 	/* Get the reference to the active mbox command */
13616 	spin_lock_irqsave(&phba->hbalock, iflags);
13617 	pmb = phba->sli.mbox_active;
13618 	if (unlikely(!pmb)) {
13619 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13620 				"1832 No pending MBOX command to handle\n");
13621 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13622 		goto out_no_mqe_complete;
13623 	}
13624 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13625 	mqe = &pmb->u.mqe;
13626 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13627 	mbox = phba->mbox;
13628 	vport = pmb->vport;
13629 
13630 	/* Reset heartbeat timer */
13631 	phba->last_completion_time = jiffies;
13632 	del_timer(&phba->sli.mbox_tmo);
13633 
13634 	/* Move mbox data to caller's mailbox region, do endian swapping */
13635 	if (pmb->mbox_cmpl && mbox)
13636 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13637 
13638 	/*
13639 	 * For mcqe errors, conditionally move a modified error code to
13640 	 * the mbox so that the error will not be missed.
13641 	 */
13642 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13643 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13644 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13645 			bf_set(lpfc_mqe_status, mqe,
13646 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13647 	}
13648 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13649 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13650 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13651 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13652 				      mcqe_status,
13653 				      pmbox->un.varWords[0], 0);
13654 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13655 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13656 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13657 
13658 			/* Reg_LOGIN of dflt RPI was successful. Mark the
13659 			 * node as having an UNREG_LOGIN in progress to stop
13660 			 * an unsolicited PLOGI from the same NPortId from
13661 			 * starting another mailbox transaction.
13662 			 */
13663 			spin_lock_irqsave(&ndlp->lock, iflags);
13664 			ndlp->nlp_flag |= NLP_UNREG_INP;
13665 			spin_unlock_irqrestore(&ndlp->lock, iflags);
13666 			lpfc_unreg_login(phba, vport->vpi,
13667 					 pmbox->un.varWords[0], pmb);
13668 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13669 			pmb->ctx_buf = mp;
13670 
13671 			/* No reference taken here.  This is a default
13672 			 * RPI reg/immediate unreg cycle. The reference was
13673 			 * taken in the reg rpi path and is released when
13674 			 * this mailbox completes.
13675 			 */
13676 			pmb->ctx_ndlp = ndlp;
13677 			pmb->vport = vport;
13678 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13679 			if (rc != MBX_BUSY)
13680 				lpfc_printf_log(phba, KERN_ERR,
13681 						LOG_TRACE_EVENT,
13682 						"0385 rc should "
13683 						"have been MBX_BUSY\n");
13684 			if (rc != MBX_NOT_FINISHED)
13685 				goto send_current_mbox;
13686 		}
13687 	}
13688 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13689 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13690 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13691 
13692 	/* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
13693 	if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13694 		spin_lock_irqsave(&phba->hbalock, iflags);
13695 		/* Release the mailbox command posting token */
13696 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13697 		phba->sli.mbox_active = NULL;
13698 		if (bf_get(lpfc_trailer_consumed, mcqe))
13699 			lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13700 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13701 
13702 		/* Post the next mbox command, if there is one */
13703 		lpfc_sli4_post_async_mbox(phba);
13704 
13705 		/* Process cmpl now */
13706 		if (pmb->mbox_cmpl)
13707 			pmb->mbox_cmpl(phba, pmb);
13708 		return false;
13709 	}
13710 
13711 	/* There is mailbox completion work to queue to the worker thread */
13712 	spin_lock_irqsave(&phba->hbalock, iflags);
13713 	__lpfc_mbox_cmpl_put(phba, pmb);
13714 	phba->work_ha |= HA_MBATT;
13715 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13716 	workposted = true;
13717 
13718 send_current_mbox:
13719 	spin_lock_irqsave(&phba->hbalock, iflags);
13720 	/* Release the mailbox command posting token */
13721 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13722 	/* Setting active mailbox pointer need to be in sync to flag clear */
13723 	phba->sli.mbox_active = NULL;
13724 	if (bf_get(lpfc_trailer_consumed, mcqe))
13725 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13726 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13727 	/* Wake up worker thread to post the next pending mailbox command */
13728 	lpfc_worker_wake_up(phba);
13729 	return workposted;
13730 
13731 out_no_mqe_complete:
13732 	spin_lock_irqsave(&phba->hbalock, iflags);
13733 	if (bf_get(lpfc_trailer_consumed, mcqe))
13734 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13735 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13736 	return false;
13737 }
13738 
13739 /**
13740  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13741  * @phba: Pointer to HBA context object.
13742  * @cq: Pointer to associated CQ
13743  * @cqe: Pointer to mailbox completion queue entry.
13744  *
13745  * This routine process a mailbox completion queue entry, it invokes the
13746  * proper mailbox complete handling or asynchronous event handling routine
13747  * according to the MCQE's async bit.
13748  *
13749  * Return: true if work posted to worker thread, otherwise false.
13750  **/
13751 static bool
13752 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13753 			 struct lpfc_cqe *cqe)
13754 {
13755 	struct lpfc_mcqe mcqe;
13756 	bool workposted;
13757 
13758 	cq->CQ_mbox++;
13759 
13760 	/* Copy the mailbox MCQE and convert endian order as needed */
13761 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13762 
13763 	/* Invoke the proper event handling routine */
13764 	if (!bf_get(lpfc_trailer_async, &mcqe))
13765 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13766 	else
13767 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13768 	return workposted;
13769 }
13770 
13771 /**
13772  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13773  * @phba: Pointer to HBA context object.
13774  * @cq: Pointer to associated CQ
13775  * @wcqe: Pointer to work-queue completion queue entry.
13776  *
13777  * This routine handles an ELS work-queue completion event.
13778  *
13779  * Return: true if work posted to worker thread, otherwise false.
13780  **/
13781 static bool
13782 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13783 			     struct lpfc_wcqe_complete *wcqe)
13784 {
13785 	struct lpfc_iocbq *irspiocbq;
13786 	unsigned long iflags;
13787 	struct lpfc_sli_ring *pring = cq->pring;
13788 	int txq_cnt = 0;
13789 	int txcmplq_cnt = 0;
13790 
13791 	/* Check for response status */
13792 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13793 		/* Log the error status */
13794 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13795 				"0357 ELS CQE error: status=x%x: "
13796 				"CQE: %08x %08x %08x %08x\n",
13797 				bf_get(lpfc_wcqe_c_status, wcqe),
13798 				wcqe->word0, wcqe->total_data_placed,
13799 				wcqe->parameter, wcqe->word3);
13800 	}
13801 
13802 	/* Get an irspiocbq for later ELS response processing use */
13803 	irspiocbq = lpfc_sli_get_iocbq(phba);
13804 	if (!irspiocbq) {
13805 		if (!list_empty(&pring->txq))
13806 			txq_cnt++;
13807 		if (!list_empty(&pring->txcmplq))
13808 			txcmplq_cnt++;
13809 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13810 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13811 			"els_txcmplq_cnt=%d\n",
13812 			txq_cnt, phba->iocb_cnt,
13813 			txcmplq_cnt);
13814 		return false;
13815 	}
13816 
13817 	/* Save off the slow-path queue event for work thread to process */
13818 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13819 	spin_lock_irqsave(&phba->hbalock, iflags);
13820 	list_add_tail(&irspiocbq->cq_event.list,
13821 		      &phba->sli4_hba.sp_queue_event);
13822 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13823 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13824 
13825 	return true;
13826 }
13827 
13828 /**
13829  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13830  * @phba: Pointer to HBA context object.
13831  * @wcqe: Pointer to work-queue completion queue entry.
13832  *
13833  * This routine handles slow-path WQ entry consumed event by invoking the
13834  * proper WQ release routine to the slow-path WQ.
13835  **/
13836 static void
13837 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13838 			     struct lpfc_wcqe_release *wcqe)
13839 {
13840 	/* sanity check on queue memory */
13841 	if (unlikely(!phba->sli4_hba.els_wq))
13842 		return;
13843 	/* Check for the slow-path ELS work queue */
13844 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13845 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13846 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13847 	else
13848 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13849 				"2579 Slow-path wqe consume event carries "
13850 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13851 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13852 				phba->sli4_hba.els_wq->queue_id);
13853 }
13854 
13855 /**
13856  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13857  * @phba: Pointer to HBA context object.
13858  * @cq: Pointer to a WQ completion queue.
13859  * @wcqe: Pointer to work-queue completion queue entry.
13860  *
13861  * This routine handles an XRI abort event.
13862  *
13863  * Return: true if work posted to worker thread, otherwise false.
13864  **/
13865 static bool
13866 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13867 				   struct lpfc_queue *cq,
13868 				   struct sli4_wcqe_xri_aborted *wcqe)
13869 {
13870 	bool workposted = false;
13871 	struct lpfc_cq_event *cq_event;
13872 	unsigned long iflags;
13873 
13874 	switch (cq->subtype) {
13875 	case LPFC_IO:
13876 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13877 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13878 			/* Notify aborted XRI for NVME work queue */
13879 			if (phba->nvmet_support)
13880 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13881 		}
13882 		workposted = false;
13883 		break;
13884 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13885 	case LPFC_ELS:
13886 		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
13887 		if (!cq_event) {
13888 			workposted = false;
13889 			break;
13890 		}
13891 		cq_event->hdwq = cq->hdwq;
13892 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13893 				  iflags);
13894 		list_add_tail(&cq_event->list,
13895 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13896 		/* Set the els xri abort event flag */
13897 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13898 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13899 				       iflags);
13900 		workposted = true;
13901 		break;
13902 	default:
13903 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13904 				"0603 Invalid CQ subtype %d: "
13905 				"%08x %08x %08x %08x\n",
13906 				cq->subtype, wcqe->word0, wcqe->parameter,
13907 				wcqe->word2, wcqe->word3);
13908 		workposted = false;
13909 		break;
13910 	}
13911 	return workposted;
13912 }
13913 
13914 #define FC_RCTL_MDS_DIAGS	0xF4
13915 
13916 /**
13917  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13918  * @phba: Pointer to HBA context object.
13919  * @rcqe: Pointer to receive-queue completion queue entry.
13920  *
13921  * This routine process a receive-queue completion queue entry.
13922  *
13923  * Return: true if work posted to worker thread, otherwise false.
13924  **/
13925 static bool
13926 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13927 {
13928 	bool workposted = false;
13929 	struct fc_frame_header *fc_hdr;
13930 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13931 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13932 	struct lpfc_nvmet_tgtport *tgtp;
13933 	struct hbq_dmabuf *dma_buf;
13934 	uint32_t status, rq_id;
13935 	unsigned long iflags;
13936 
13937 	/* sanity check on queue memory */
13938 	if (unlikely(!hrq) || unlikely(!drq))
13939 		return workposted;
13940 
13941 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13942 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13943 	else
13944 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13945 	if (rq_id != hrq->queue_id)
13946 		goto out;
13947 
13948 	status = bf_get(lpfc_rcqe_status, rcqe);
13949 	switch (status) {
13950 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13951 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13952 				"2537 Receive Frame Truncated!!\n");
13953 		fallthrough;
13954 	case FC_STATUS_RQ_SUCCESS:
13955 		spin_lock_irqsave(&phba->hbalock, iflags);
13956 		lpfc_sli4_rq_release(hrq, drq);
13957 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13958 		if (!dma_buf) {
13959 			hrq->RQ_no_buf_found++;
13960 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13961 			goto out;
13962 		}
13963 		hrq->RQ_rcv_buf++;
13964 		hrq->RQ_buf_posted--;
13965 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13966 
13967 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13968 
13969 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13970 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13971 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13972 			/* Handle MDS Loopback frames */
13973 			if  (!(phba->pport->load_flag & FC_UNLOADING))
13974 				lpfc_sli4_handle_mds_loopback(phba->pport,
13975 							      dma_buf);
13976 			else
13977 				lpfc_in_buf_free(phba, &dma_buf->dbuf);
13978 			break;
13979 		}
13980 
13981 		/* save off the frame for the work thread to process */
13982 		list_add_tail(&dma_buf->cq_event.list,
13983 			      &phba->sli4_hba.sp_queue_event);
13984 		/* Frame received */
13985 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13986 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13987 		workposted = true;
13988 		break;
13989 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13990 		if (phba->nvmet_support) {
13991 			tgtp = phba->targetport->private;
13992 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13993 					"6402 RQE Error x%x, posted %d err_cnt "
13994 					"%d: %x %x %x\n",
13995 					status, hrq->RQ_buf_posted,
13996 					hrq->RQ_no_posted_buf,
13997 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13998 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13999 					atomic_read(&tgtp->xmt_fcp_release));
14000 		}
14001 		fallthrough;
14002 
14003 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14004 		hrq->RQ_no_posted_buf++;
14005 		/* Post more buffers if possible */
14006 		spin_lock_irqsave(&phba->hbalock, iflags);
14007 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
14008 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14009 		workposted = true;
14010 		break;
14011 	}
14012 out:
14013 	return workposted;
14014 }
14015 
14016 /**
14017  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14018  * @phba: Pointer to HBA context object.
14019  * @cq: Pointer to the completion queue.
14020  * @cqe: Pointer to a completion queue entry.
14021  *
14022  * This routine process a slow-path work-queue or receive queue completion queue
14023  * entry.
14024  *
14025  * Return: true if work posted to worker thread, otherwise false.
14026  **/
14027 static bool
14028 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14029 			 struct lpfc_cqe *cqe)
14030 {
14031 	struct lpfc_cqe cqevt;
14032 	bool workposted = false;
14033 
14034 	/* Copy the work queue CQE and convert endian order if needed */
14035 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14036 
14037 	/* Check and process for different type of WCQE and dispatch */
14038 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
14039 	case CQE_CODE_COMPL_WQE:
14040 		/* Process the WQ/RQ complete event */
14041 		phba->last_completion_time = jiffies;
14042 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14043 				(struct lpfc_wcqe_complete *)&cqevt);
14044 		break;
14045 	case CQE_CODE_RELEASE_WQE:
14046 		/* Process the WQ release event */
14047 		lpfc_sli4_sp_handle_rel_wcqe(phba,
14048 				(struct lpfc_wcqe_release *)&cqevt);
14049 		break;
14050 	case CQE_CODE_XRI_ABORTED:
14051 		/* Process the WQ XRI abort event */
14052 		phba->last_completion_time = jiffies;
14053 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14054 				(struct sli4_wcqe_xri_aborted *)&cqevt);
14055 		break;
14056 	case CQE_CODE_RECEIVE:
14057 	case CQE_CODE_RECEIVE_V1:
14058 		/* Process the RQ event */
14059 		phba->last_completion_time = jiffies;
14060 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
14061 				(struct lpfc_rcqe *)&cqevt);
14062 		break;
14063 	default:
14064 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14065 				"0388 Not a valid WCQE code: x%x\n",
14066 				bf_get(lpfc_cqe_code, &cqevt));
14067 		break;
14068 	}
14069 	return workposted;
14070 }
14071 
14072 /**
14073  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14074  * @phba: Pointer to HBA context object.
14075  * @eqe: Pointer to fast-path event queue entry.
14076  * @speq: Pointer to slow-path event queue.
14077  *
14078  * This routine process a event queue entry from the slow-path event queue.
14079  * It will check the MajorCode and MinorCode to determine this is for a
14080  * completion event on a completion queue, if not, an error shall be logged
14081  * and just return. Otherwise, it will get to the corresponding completion
14082  * queue and process all the entries on that completion queue, rearm the
14083  * completion queue, and then return.
14084  *
14085  **/
14086 static void
14087 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14088 	struct lpfc_queue *speq)
14089 {
14090 	struct lpfc_queue *cq = NULL, *childq;
14091 	uint16_t cqid;
14092 	int ret = 0;
14093 
14094 	/* Get the reference to the corresponding CQ */
14095 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14096 
14097 	list_for_each_entry(childq, &speq->child_list, list) {
14098 		if (childq->queue_id == cqid) {
14099 			cq = childq;
14100 			break;
14101 		}
14102 	}
14103 	if (unlikely(!cq)) {
14104 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14105 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14106 					"0365 Slow-path CQ identifier "
14107 					"(%d) does not exist\n", cqid);
14108 		return;
14109 	}
14110 
14111 	/* Save EQ associated with this CQ */
14112 	cq->assoc_qp = speq;
14113 
14114 	if (is_kdump_kernel())
14115 		ret = queue_work(phba->wq, &cq->spwork);
14116 	else
14117 		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14118 
14119 	if (!ret)
14120 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14121 				"0390 Cannot schedule queue work "
14122 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14123 				cqid, cq->queue_id, raw_smp_processor_id());
14124 }
14125 
14126 /**
14127  * __lpfc_sli4_process_cq - Process elements of a CQ
14128  * @phba: Pointer to HBA context object.
14129  * @cq: Pointer to CQ to be processed
14130  * @handler: Routine to process each cqe
14131  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14132  * @poll_mode: Polling mode we were called from
14133  *
14134  * This routine processes completion queue entries in a CQ. While a valid
14135  * queue element is found, the handler is called. During processing checks
14136  * are made for periodic doorbell writes to let the hardware know of
14137  * element consumption.
14138  *
14139  * If the max limit on cqes to process is hit, or there are no more valid
14140  * entries, the loop stops. If we processed a sufficient number of elements,
14141  * meaning there is sufficient load, rather than rearming and generating
14142  * another interrupt, a cq rescheduling delay will be set. A delay of 0
14143  * indicates no rescheduling.
14144  *
14145  * Returns True if work scheduled, False otherwise.
14146  **/
14147 static bool
14148 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14149 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14150 			struct lpfc_cqe *), unsigned long *delay,
14151 			enum lpfc_poll_mode poll_mode)
14152 {
14153 	struct lpfc_cqe *cqe;
14154 	bool workposted = false;
14155 	int count = 0, consumed = 0;
14156 	bool arm = true;
14157 
14158 	/* default - no reschedule */
14159 	*delay = 0;
14160 
14161 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14162 		goto rearm_and_exit;
14163 
14164 	/* Process all the entries to the CQ */
14165 	cq->q_flag = 0;
14166 	cqe = lpfc_sli4_cq_get(cq);
14167 	while (cqe) {
14168 		workposted |= handler(phba, cq, cqe);
14169 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
14170 
14171 		consumed++;
14172 		if (!(++count % cq->max_proc_limit))
14173 			break;
14174 
14175 		if (!(count % cq->notify_interval)) {
14176 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14177 						LPFC_QUEUE_NOARM);
14178 			consumed = 0;
14179 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14180 		}
14181 
14182 		if (count == LPFC_NVMET_CQ_NOTIFY)
14183 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14184 
14185 		cqe = lpfc_sli4_cq_get(cq);
14186 	}
14187 	if (count >= phba->cfg_cq_poll_threshold) {
14188 		*delay = 1;
14189 		arm = false;
14190 	}
14191 
14192 	/* Note: complete the irq_poll softirq before rearming CQ */
14193 	if (poll_mode == LPFC_IRQ_POLL)
14194 		irq_poll_complete(&cq->iop);
14195 
14196 	/* Track the max number of CQEs processed in 1 EQ */
14197 	if (count > cq->CQ_max_cqe)
14198 		cq->CQ_max_cqe = count;
14199 
14200 	cq->assoc_qp->EQ_cqe_cnt += count;
14201 
14202 	/* Catch the no cq entry condition */
14203 	if (unlikely(count == 0))
14204 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14205 				"0369 No entry from completion queue "
14206 				"qid=%d\n", cq->queue_id);
14207 
14208 	xchg(&cq->queue_claimed, 0);
14209 
14210 rearm_and_exit:
14211 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14212 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14213 
14214 	return workposted;
14215 }
14216 
14217 /**
14218  * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14219  * @cq: pointer to CQ to process
14220  *
14221  * This routine calls the cq processing routine with a handler specific
14222  * to the type of queue bound to it.
14223  *
14224  * The CQ routine returns two values: the first is the calling status,
14225  * which indicates whether work was queued to the  background discovery
14226  * thread. If true, the routine should wakeup the discovery thread;
14227  * the second is the delay parameter. If non-zero, rather than rearming
14228  * the CQ and yet another interrupt, the CQ handler should be queued so
14229  * that it is processed in a subsequent polling action. The value of
14230  * the delay indicates when to reschedule it.
14231  **/
14232 static void
14233 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14234 {
14235 	struct lpfc_hba *phba = cq->phba;
14236 	unsigned long delay;
14237 	bool workposted = false;
14238 	int ret = 0;
14239 
14240 	/* Process and rearm the CQ */
14241 	switch (cq->type) {
14242 	case LPFC_MCQ:
14243 		workposted |= __lpfc_sli4_process_cq(phba, cq,
14244 						lpfc_sli4_sp_handle_mcqe,
14245 						&delay, LPFC_QUEUE_WORK);
14246 		break;
14247 	case LPFC_WCQ:
14248 		if (cq->subtype == LPFC_IO)
14249 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14250 						lpfc_sli4_fp_handle_cqe,
14251 						&delay, LPFC_QUEUE_WORK);
14252 		else
14253 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14254 						lpfc_sli4_sp_handle_cqe,
14255 						&delay, LPFC_QUEUE_WORK);
14256 		break;
14257 	default:
14258 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14259 				"0370 Invalid completion queue type (%d)\n",
14260 				cq->type);
14261 		return;
14262 	}
14263 
14264 	if (delay) {
14265 		if (is_kdump_kernel())
14266 			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14267 						delay);
14268 		else
14269 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14270 						&cq->sched_spwork, delay);
14271 		if (!ret)
14272 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14273 				"0394 Cannot schedule queue work "
14274 				"for cqid=%d on CPU %d\n",
14275 				cq->queue_id, cq->chann);
14276 	}
14277 
14278 	/* wake up worker thread if there are works to be done */
14279 	if (workposted)
14280 		lpfc_worker_wake_up(phba);
14281 }
14282 
14283 /**
14284  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14285  *   interrupt
14286  * @work: pointer to work element
14287  *
14288  * translates from the work handler and calls the slow-path handler.
14289  **/
14290 static void
14291 lpfc_sli4_sp_process_cq(struct work_struct *work)
14292 {
14293 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14294 
14295 	__lpfc_sli4_sp_process_cq(cq);
14296 }
14297 
14298 /**
14299  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14300  * @work: pointer to work element
14301  *
14302  * translates from the work handler and calls the slow-path handler.
14303  **/
14304 static void
14305 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14306 {
14307 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14308 					struct lpfc_queue, sched_spwork);
14309 
14310 	__lpfc_sli4_sp_process_cq(cq);
14311 }
14312 
14313 /**
14314  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14315  * @phba: Pointer to HBA context object.
14316  * @cq: Pointer to associated CQ
14317  * @wcqe: Pointer to work-queue completion queue entry.
14318  *
14319  * This routine process a fast-path work queue completion entry from fast-path
14320  * event queue for FCP command response completion.
14321  **/
14322 static void
14323 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14324 			     struct lpfc_wcqe_complete *wcqe)
14325 {
14326 	struct lpfc_sli_ring *pring = cq->pring;
14327 	struct lpfc_iocbq *cmdiocbq;
14328 	struct lpfc_iocbq irspiocbq;
14329 	unsigned long iflags;
14330 
14331 	/* Check for response status */
14332 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14333 		/* If resource errors reported from HBA, reduce queue
14334 		 * depth of the SCSI device.
14335 		 */
14336 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
14337 		     IOSTAT_LOCAL_REJECT)) &&
14338 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
14339 		     IOERR_NO_RESOURCES))
14340 			phba->lpfc_rampdown_queue_depth(phba);
14341 
14342 		/* Log the cmpl status */
14343 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14344 				"0373 FCP CQE cmpl: status=x%x: "
14345 				"CQE: %08x %08x %08x %08x\n",
14346 				bf_get(lpfc_wcqe_c_status, wcqe),
14347 				wcqe->word0, wcqe->total_data_placed,
14348 				wcqe->parameter, wcqe->word3);
14349 	}
14350 
14351 	/* Look up the FCP command IOCB and create pseudo response IOCB */
14352 	spin_lock_irqsave(&pring->ring_lock, iflags);
14353 	pring->stats.iocb_event++;
14354 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14355 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14356 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14357 	if (unlikely(!cmdiocbq)) {
14358 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14359 				"0374 FCP complete with no corresponding "
14360 				"cmdiocb: iotag (%d)\n",
14361 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14362 		return;
14363 	}
14364 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14365 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
14366 #endif
14367 	if (cmdiocbq->iocb_cmpl == NULL) {
14368 		if (cmdiocbq->wqe_cmpl) {
14369 			/* For FCP the flag is cleared in wqe_cmpl */
14370 			if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
14371 			    cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14372 				spin_lock_irqsave(&phba->hbalock, iflags);
14373 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14374 				spin_unlock_irqrestore(&phba->hbalock, iflags);
14375 			}
14376 
14377 			/* Pass the cmd_iocb and the wcqe to the upper layer */
14378 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
14379 			return;
14380 		}
14381 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14382 				"0375 FCP cmdiocb not callback function "
14383 				"iotag: (%d)\n",
14384 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14385 		return;
14386 	}
14387 
14388 	/* Only SLI4 non-IO commands stil use IOCB */
14389 	/* Fake the irspiocb and copy necessary response information */
14390 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
14391 
14392 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14393 		spin_lock_irqsave(&phba->hbalock, iflags);
14394 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14395 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14396 	}
14397 
14398 	/* Pass the cmd_iocb and the rsp state to the upper layer */
14399 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
14400 }
14401 
14402 /**
14403  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
14404  * @phba: Pointer to HBA context object.
14405  * @cq: Pointer to completion queue.
14406  * @wcqe: Pointer to work-queue completion queue entry.
14407  *
14408  * This routine handles an fast-path WQ entry consumed event by invoking the
14409  * proper WQ release routine to the slow-path WQ.
14410  **/
14411 static void
14412 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14413 			     struct lpfc_wcqe_release *wcqe)
14414 {
14415 	struct lpfc_queue *childwq;
14416 	bool wqid_matched = false;
14417 	uint16_t hba_wqid;
14418 
14419 	/* Check for fast-path FCP work queue release */
14420 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14421 	list_for_each_entry(childwq, &cq->child_list, list) {
14422 		if (childwq->queue_id == hba_wqid) {
14423 			lpfc_sli4_wq_release(childwq,
14424 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14425 			if (childwq->q_flag & HBA_NVMET_WQFULL)
14426 				lpfc_nvmet_wqfull_process(phba, childwq);
14427 			wqid_matched = true;
14428 			break;
14429 		}
14430 	}
14431 	/* Report warning log message if no match found */
14432 	if (wqid_matched != true)
14433 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14434 				"2580 Fast-path wqe consume event carries "
14435 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14436 }
14437 
14438 /**
14439  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14440  * @phba: Pointer to HBA context object.
14441  * @cq: Pointer to completion queue.
14442  * @rcqe: Pointer to receive-queue completion queue entry.
14443  *
14444  * This routine process a receive-queue completion queue entry.
14445  *
14446  * Return: true if work posted to worker thread, otherwise false.
14447  **/
14448 static bool
14449 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14450 			    struct lpfc_rcqe *rcqe)
14451 {
14452 	bool workposted = false;
14453 	struct lpfc_queue *hrq;
14454 	struct lpfc_queue *drq;
14455 	struct rqb_dmabuf *dma_buf;
14456 	struct fc_frame_header *fc_hdr;
14457 	struct lpfc_nvmet_tgtport *tgtp;
14458 	uint32_t status, rq_id;
14459 	unsigned long iflags;
14460 	uint32_t fctl, idx;
14461 
14462 	if ((phba->nvmet_support == 0) ||
14463 	    (phba->sli4_hba.nvmet_cqset == NULL))
14464 		return workposted;
14465 
14466 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14467 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14468 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
14469 
14470 	/* sanity check on queue memory */
14471 	if (unlikely(!hrq) || unlikely(!drq))
14472 		return workposted;
14473 
14474 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14475 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14476 	else
14477 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14478 
14479 	if ((phba->nvmet_support == 0) ||
14480 	    (rq_id != hrq->queue_id))
14481 		return workposted;
14482 
14483 	status = bf_get(lpfc_rcqe_status, rcqe);
14484 	switch (status) {
14485 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14486 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14487 				"6126 Receive Frame Truncated!!\n");
14488 		fallthrough;
14489 	case FC_STATUS_RQ_SUCCESS:
14490 		spin_lock_irqsave(&phba->hbalock, iflags);
14491 		lpfc_sli4_rq_release(hrq, drq);
14492 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14493 		if (!dma_buf) {
14494 			hrq->RQ_no_buf_found++;
14495 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14496 			goto out;
14497 		}
14498 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14499 		hrq->RQ_rcv_buf++;
14500 		hrq->RQ_buf_posted--;
14501 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14502 
14503 		/* Just some basic sanity checks on FCP Command frame */
14504 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14505 			fc_hdr->fh_f_ctl[1] << 8 |
14506 			fc_hdr->fh_f_ctl[2]);
14507 		if (((fctl &
14508 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14509 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14510 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14511 			goto drop;
14512 
14513 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14514 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14515 			lpfc_nvmet_unsol_fcp_event(
14516 				phba, idx, dma_buf, cq->isr_timestamp,
14517 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14518 			return false;
14519 		}
14520 drop:
14521 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14522 		break;
14523 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14524 		if (phba->nvmet_support) {
14525 			tgtp = phba->targetport->private;
14526 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14527 					"6401 RQE Error x%x, posted %d err_cnt "
14528 					"%d: %x %x %x\n",
14529 					status, hrq->RQ_buf_posted,
14530 					hrq->RQ_no_posted_buf,
14531 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14532 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14533 					atomic_read(&tgtp->xmt_fcp_release));
14534 		}
14535 		fallthrough;
14536 
14537 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14538 		hrq->RQ_no_posted_buf++;
14539 		/* Post more buffers if possible */
14540 		break;
14541 	}
14542 out:
14543 	return workposted;
14544 }
14545 
14546 /**
14547  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14548  * @phba: adapter with cq
14549  * @cq: Pointer to the completion queue.
14550  * @cqe: Pointer to fast-path completion queue entry.
14551  *
14552  * This routine process a fast-path work queue completion entry from fast-path
14553  * event queue for FCP command response completion.
14554  *
14555  * Return: true if work posted to worker thread, otherwise false.
14556  **/
14557 static bool
14558 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14559 			 struct lpfc_cqe *cqe)
14560 {
14561 	struct lpfc_wcqe_release wcqe;
14562 	bool workposted = false;
14563 
14564 	/* Copy the work queue CQE and convert endian order if needed */
14565 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14566 
14567 	/* Check and process for different type of WCQE and dispatch */
14568 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14569 	case CQE_CODE_COMPL_WQE:
14570 	case CQE_CODE_NVME_ERSP:
14571 		cq->CQ_wq++;
14572 		/* Process the WQ complete event */
14573 		phba->last_completion_time = jiffies;
14574 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14575 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14576 				(struct lpfc_wcqe_complete *)&wcqe);
14577 		break;
14578 	case CQE_CODE_RELEASE_WQE:
14579 		cq->CQ_release_wqe++;
14580 		/* Process the WQ release event */
14581 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14582 				(struct lpfc_wcqe_release *)&wcqe);
14583 		break;
14584 	case CQE_CODE_XRI_ABORTED:
14585 		cq->CQ_xri_aborted++;
14586 		/* Process the WQ XRI abort event */
14587 		phba->last_completion_time = jiffies;
14588 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14589 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14590 		break;
14591 	case CQE_CODE_RECEIVE_V1:
14592 	case CQE_CODE_RECEIVE:
14593 		phba->last_completion_time = jiffies;
14594 		if (cq->subtype == LPFC_NVMET) {
14595 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14596 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14597 		}
14598 		break;
14599 	default:
14600 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14601 				"0144 Not a valid CQE code: x%x\n",
14602 				bf_get(lpfc_wcqe_c_code, &wcqe));
14603 		break;
14604 	}
14605 	return workposted;
14606 }
14607 
14608 /**
14609  * lpfc_sli4_sched_cq_work - Schedules cq work
14610  * @phba: Pointer to HBA context object.
14611  * @cq: Pointer to CQ
14612  * @cqid: CQ ID
14613  *
14614  * This routine checks the poll mode of the CQ corresponding to
14615  * cq->chann, then either schedules a softirq or queue_work to complete
14616  * cq work.
14617  *
14618  * queue_work path is taken if in NVMET mode, or if poll_mode is in
14619  * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
14620  *
14621  **/
14622 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
14623 				    struct lpfc_queue *cq, uint16_t cqid)
14624 {
14625 	int ret = 0;
14626 
14627 	switch (cq->poll_mode) {
14628 	case LPFC_IRQ_POLL:
14629 		irq_poll_sched(&cq->iop);
14630 		break;
14631 	case LPFC_QUEUE_WORK:
14632 	default:
14633 		if (is_kdump_kernel())
14634 			ret = queue_work(phba->wq, &cq->irqwork);
14635 		else
14636 			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
14637 		if (!ret)
14638 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14639 					"0383 Cannot schedule queue work "
14640 					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14641 					cqid, cq->queue_id,
14642 					raw_smp_processor_id());
14643 	}
14644 }
14645 
14646 /**
14647  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14648  * @phba: Pointer to HBA context object.
14649  * @eq: Pointer to the queue structure.
14650  * @eqe: Pointer to fast-path event queue entry.
14651  *
14652  * This routine process a event queue entry from the fast-path event queue.
14653  * It will check the MajorCode and MinorCode to determine this is for a
14654  * completion event on a completion queue, if not, an error shall be logged
14655  * and just return. Otherwise, it will get to the corresponding completion
14656  * queue and process all the entries on the completion queue, rearm the
14657  * completion queue, and then return.
14658  **/
14659 static void
14660 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14661 			 struct lpfc_eqe *eqe)
14662 {
14663 	struct lpfc_queue *cq = NULL;
14664 	uint32_t qidx = eq->hdwq;
14665 	uint16_t cqid, id;
14666 
14667 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14668 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14669 				"0366 Not a valid completion "
14670 				"event: majorcode=x%x, minorcode=x%x\n",
14671 				bf_get_le32(lpfc_eqe_major_code, eqe),
14672 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14673 		return;
14674 	}
14675 
14676 	/* Get the reference to the corresponding CQ */
14677 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14678 
14679 	/* Use the fast lookup method first */
14680 	if (cqid <= phba->sli4_hba.cq_max) {
14681 		cq = phba->sli4_hba.cq_lookup[cqid];
14682 		if (cq)
14683 			goto  work_cq;
14684 	}
14685 
14686 	/* Next check for NVMET completion */
14687 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14688 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14689 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14690 			/* Process NVMET unsol rcv */
14691 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14692 			goto  process_cq;
14693 		}
14694 	}
14695 
14696 	if (phba->sli4_hba.nvmels_cq &&
14697 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14698 		/* Process NVME unsol rcv */
14699 		cq = phba->sli4_hba.nvmels_cq;
14700 	}
14701 
14702 	/* Otherwise this is a Slow path event */
14703 	if (cq == NULL) {
14704 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14705 					phba->sli4_hba.hdwq[qidx].hba_eq);
14706 		return;
14707 	}
14708 
14709 process_cq:
14710 	if (unlikely(cqid != cq->queue_id)) {
14711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14712 				"0368 Miss-matched fast-path completion "
14713 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14714 				cqid, cq->queue_id);
14715 		return;
14716 	}
14717 
14718 work_cq:
14719 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14720 	if (phba->ktime_on)
14721 		cq->isr_timestamp = ktime_get_ns();
14722 	else
14723 		cq->isr_timestamp = 0;
14724 #endif
14725 	lpfc_sli4_sched_cq_work(phba, cq, cqid);
14726 }
14727 
14728 /**
14729  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14730  * @cq: Pointer to CQ to be processed
14731  * @poll_mode: Enum lpfc_poll_state to determine poll mode
14732  *
14733  * This routine calls the cq processing routine with the handler for
14734  * fast path CQEs.
14735  *
14736  * The CQ routine returns two values: the first is the calling status,
14737  * which indicates whether work was queued to the  background discovery
14738  * thread. If true, the routine should wakeup the discovery thread;
14739  * the second is the delay parameter. If non-zero, rather than rearming
14740  * the CQ and yet another interrupt, the CQ handler should be queued so
14741  * that it is processed in a subsequent polling action. The value of
14742  * the delay indicates when to reschedule it.
14743  **/
14744 static void
14745 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
14746 			   enum lpfc_poll_mode poll_mode)
14747 {
14748 	struct lpfc_hba *phba = cq->phba;
14749 	unsigned long delay;
14750 	bool workposted = false;
14751 	int ret = 0;
14752 
14753 	/* process and rearm the CQ */
14754 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14755 					     &delay, poll_mode);
14756 
14757 	if (delay) {
14758 		if (is_kdump_kernel())
14759 			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
14760 						delay);
14761 		else
14762 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14763 						&cq->sched_irqwork, delay);
14764 		if (!ret)
14765 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14766 					"0367 Cannot schedule queue work "
14767 					"for cqid=%d on CPU %d\n",
14768 					cq->queue_id, cq->chann);
14769 	}
14770 
14771 	/* wake up worker thread if there are works to be done */
14772 	if (workposted)
14773 		lpfc_worker_wake_up(phba);
14774 }
14775 
14776 /**
14777  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14778  *   interrupt
14779  * @work: pointer to work element
14780  *
14781  * translates from the work handler and calls the fast-path handler.
14782  **/
14783 static void
14784 lpfc_sli4_hba_process_cq(struct work_struct *work)
14785 {
14786 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14787 
14788 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14789 }
14790 
14791 /**
14792  * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
14793  * @work: pointer to work element
14794  *
14795  * translates from the work handler and calls the fast-path handler.
14796  **/
14797 static void
14798 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14799 {
14800 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14801 					struct lpfc_queue, sched_irqwork);
14802 
14803 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14804 }
14805 
14806 /**
14807  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14808  * @irq: Interrupt number.
14809  * @dev_id: The device context pointer.
14810  *
14811  * This function is directly called from the PCI layer as an interrupt
14812  * service routine when device with SLI-4 interface spec is enabled with
14813  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14814  * ring event in the HBA. However, when the device is enabled with either
14815  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14816  * device-level interrupt handler. When the PCI slot is in error recovery
14817  * or the HBA is undergoing initialization, the interrupt handler will not
14818  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14819  * the intrrupt context. This function is called without any lock held.
14820  * It gets the hbalock to access and update SLI data structures. Note that,
14821  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14822  * equal to that of FCP CQ index.
14823  *
14824  * The link attention and ELS ring attention events are handled
14825  * by the worker thread. The interrupt handler signals the worker thread
14826  * and returns for these events. This function is called without any lock
14827  * held. It gets the hbalock to access and update SLI data structures.
14828  *
14829  * This function returns IRQ_HANDLED when interrupt is handled else it
14830  * returns IRQ_NONE.
14831  **/
14832 irqreturn_t
14833 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14834 {
14835 	struct lpfc_hba *phba;
14836 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14837 	struct lpfc_queue *fpeq;
14838 	unsigned long iflag;
14839 	int ecount = 0;
14840 	int hba_eqidx;
14841 	struct lpfc_eq_intr_info *eqi;
14842 
14843 	/* Get the driver's phba structure from the dev_id */
14844 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14845 	phba = hba_eq_hdl->phba;
14846 	hba_eqidx = hba_eq_hdl->idx;
14847 
14848 	if (unlikely(!phba))
14849 		return IRQ_NONE;
14850 	if (unlikely(!phba->sli4_hba.hdwq))
14851 		return IRQ_NONE;
14852 
14853 	/* Get to the EQ struct associated with this vector */
14854 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14855 	if (unlikely(!fpeq))
14856 		return IRQ_NONE;
14857 
14858 	/* Check device state for handling interrupt */
14859 	if (unlikely(lpfc_intr_state_check(phba))) {
14860 		/* Check again for link_state with lock held */
14861 		spin_lock_irqsave(&phba->hbalock, iflag);
14862 		if (phba->link_state < LPFC_LINK_DOWN)
14863 			/* Flush, clear interrupt, and rearm the EQ */
14864 			lpfc_sli4_eqcq_flush(phba, fpeq);
14865 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14866 		return IRQ_NONE;
14867 	}
14868 
14869 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
14870 	eqi->icnt++;
14871 
14872 	fpeq->last_cpu = raw_smp_processor_id();
14873 
14874 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
14875 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14876 	    phba->cfg_auto_imax &&
14877 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14878 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14879 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14880 
14881 	/* process and rearm the EQ */
14882 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14883 
14884 	if (unlikely(ecount == 0)) {
14885 		fpeq->EQ_no_entry++;
14886 		if (phba->intr_type == MSIX)
14887 			/* MSI-X treated interrupt served as no EQ share INT */
14888 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14889 					"0358 MSI-X interrupt with no EQE\n");
14890 		else
14891 			/* Non MSI-X treated on interrupt as EQ share INT */
14892 			return IRQ_NONE;
14893 	}
14894 
14895 	return IRQ_HANDLED;
14896 } /* lpfc_sli4_hba_intr_handler */
14897 
14898 /**
14899  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14900  * @irq: Interrupt number.
14901  * @dev_id: The device context pointer.
14902  *
14903  * This function is the device-level interrupt handler to device with SLI-4
14904  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14905  * interrupt mode is enabled and there is an event in the HBA which requires
14906  * driver attention. This function invokes the slow-path interrupt attention
14907  * handling function and fast-path interrupt attention handling function in
14908  * turn to process the relevant HBA attention events. This function is called
14909  * without any lock held. It gets the hbalock to access and update SLI data
14910  * structures.
14911  *
14912  * This function returns IRQ_HANDLED when interrupt is handled, else it
14913  * returns IRQ_NONE.
14914  **/
14915 irqreturn_t
14916 lpfc_sli4_intr_handler(int irq, void *dev_id)
14917 {
14918 	struct lpfc_hba  *phba;
14919 	irqreturn_t hba_irq_rc;
14920 	bool hba_handled = false;
14921 	int qidx;
14922 
14923 	/* Get the driver's phba structure from the dev_id */
14924 	phba = (struct lpfc_hba *)dev_id;
14925 
14926 	if (unlikely(!phba))
14927 		return IRQ_NONE;
14928 
14929 	/*
14930 	 * Invoke fast-path host attention interrupt handling as appropriate.
14931 	 */
14932 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14933 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14934 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14935 		if (hba_irq_rc == IRQ_HANDLED)
14936 			hba_handled |= true;
14937 	}
14938 
14939 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14940 } /* lpfc_sli4_intr_handler */
14941 
14942 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14943 {
14944 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14945 	struct lpfc_queue *eq;
14946 	int i = 0;
14947 
14948 	rcu_read_lock();
14949 
14950 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14951 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14952 	if (!list_empty(&phba->poll_list))
14953 		mod_timer(&phba->cpuhp_poll_timer,
14954 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14955 
14956 	rcu_read_unlock();
14957 }
14958 
14959 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14960 {
14961 	struct lpfc_hba *phba = eq->phba;
14962 	int i = 0;
14963 
14964 	/*
14965 	 * Unlocking an irq is one of the entry point to check
14966 	 * for re-schedule, but we are good for io submission
14967 	 * path as midlayer does a get_cpu to glue us in. Flush
14968 	 * out the invalidate queue so we can see the updated
14969 	 * value for flag.
14970 	 */
14971 	smp_rmb();
14972 
14973 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14974 		/* We will not likely get the completion for the caller
14975 		 * during this iteration but i guess that's fine.
14976 		 * Future io's coming on this eq should be able to
14977 		 * pick it up.  As for the case of single io's, they
14978 		 * will be handled through a sched from polling timer
14979 		 * function which is currently triggered every 1msec.
14980 		 */
14981 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14982 
14983 	return i;
14984 }
14985 
14986 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14987 {
14988 	struct lpfc_hba *phba = eq->phba;
14989 
14990 	/* kickstart slowpath processing if needed */
14991 	if (list_empty(&phba->poll_list))
14992 		mod_timer(&phba->cpuhp_poll_timer,
14993 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14994 
14995 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
14996 	synchronize_rcu();
14997 }
14998 
14999 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15000 {
15001 	struct lpfc_hba *phba = eq->phba;
15002 
15003 	/* Disable slowpath processing for this eq.  Kick start the eq
15004 	 * by RE-ARMING the eq's ASAP
15005 	 */
15006 	list_del_rcu(&eq->_poll_list);
15007 	synchronize_rcu();
15008 
15009 	if (list_empty(&phba->poll_list))
15010 		del_timer_sync(&phba->cpuhp_poll_timer);
15011 }
15012 
15013 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15014 {
15015 	struct lpfc_queue *eq, *next;
15016 
15017 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15018 		list_del(&eq->_poll_list);
15019 
15020 	INIT_LIST_HEAD(&phba->poll_list);
15021 	synchronize_rcu();
15022 }
15023 
15024 static inline void
15025 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15026 {
15027 	if (mode == eq->mode)
15028 		return;
15029 	/*
15030 	 * currently this function is only called during a hotplug
15031 	 * event and the cpu on which this function is executing
15032 	 * is going offline.  By now the hotplug has instructed
15033 	 * the scheduler to remove this cpu from cpu active mask.
15034 	 * So we don't need to work about being put aside by the
15035 	 * scheduler for a high priority process.  Yes, the inte-
15036 	 * rrupts could come but they are known to retire ASAP.
15037 	 */
15038 
15039 	/* Disable polling in the fastpath */
15040 	WRITE_ONCE(eq->mode, mode);
15041 	/* flush out the store buffer */
15042 	smp_wmb();
15043 
15044 	/*
15045 	 * Add this eq to the polling list and start polling. For
15046 	 * a grace period both interrupt handler and poller will
15047 	 * try to process the eq _but_ that's fine.  We have a
15048 	 * synchronization mechanism in place (queue_claimed) to
15049 	 * deal with it.  This is just a draining phase for int-
15050 	 * errupt handler (not eq's) as we have guranteed through
15051 	 * barrier that all the CPUs have seen the new CQ_POLLED
15052 	 * state. which will effectively disable the REARMING of
15053 	 * the EQ.  The whole idea is eq's die off eventually as
15054 	 * we are not rearming EQ's anymore.
15055 	 */
15056 	mode ? lpfc_sli4_add_to_poll_list(eq) :
15057 	       lpfc_sli4_remove_from_poll_list(eq);
15058 }
15059 
15060 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15061 {
15062 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15063 }
15064 
15065 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15066 {
15067 	struct lpfc_hba *phba = eq->phba;
15068 
15069 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15070 
15071 	/* Kick start for the pending io's in h/w.
15072 	 * Once we switch back to interrupt processing on a eq
15073 	 * the io path completion will only arm eq's when it
15074 	 * receives a completion.  But since eq's are in disa-
15075 	 * rmed state it doesn't receive a completion.  This
15076 	 * creates a deadlock scenaro.
15077 	 */
15078 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15079 }
15080 
15081 /**
15082  * lpfc_sli4_queue_free - free a queue structure and associated memory
15083  * @queue: The queue structure to free.
15084  *
15085  * This function frees a queue structure and the DMAable memory used for
15086  * the host resident queue. This function must be called after destroying the
15087  * queue on the HBA.
15088  **/
15089 void
15090 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15091 {
15092 	struct lpfc_dmabuf *dmabuf;
15093 
15094 	if (!queue)
15095 		return;
15096 
15097 	if (!list_empty(&queue->wq_list))
15098 		list_del(&queue->wq_list);
15099 
15100 	while (!list_empty(&queue->page_list)) {
15101 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15102 				 list);
15103 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15104 				  dmabuf->virt, dmabuf->phys);
15105 		kfree(dmabuf);
15106 	}
15107 	if (queue->rqbp) {
15108 		lpfc_free_rq_buffer(queue->phba, queue);
15109 		kfree(queue->rqbp);
15110 	}
15111 
15112 	if (!list_empty(&queue->cpu_list))
15113 		list_del(&queue->cpu_list);
15114 
15115 	kfree(queue);
15116 	return;
15117 }
15118 
15119 /**
15120  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15121  * @phba: The HBA that this queue is being created on.
15122  * @page_size: The size of a queue page
15123  * @entry_size: The size of each queue entry for this queue.
15124  * @entry_count: The number of entries that this queue will handle.
15125  * @cpu: The cpu that will primarily utilize this queue.
15126  *
15127  * This function allocates a queue structure and the DMAable memory used for
15128  * the host resident queue. This function must be called before creating the
15129  * queue on the HBA.
15130  **/
15131 struct lpfc_queue *
15132 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15133 		      uint32_t entry_size, uint32_t entry_count, int cpu)
15134 {
15135 	struct lpfc_queue *queue;
15136 	struct lpfc_dmabuf *dmabuf;
15137 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15138 	uint16_t x, pgcnt;
15139 
15140 	if (!phba->sli4_hba.pc_sli4_params.supported)
15141 		hw_page_size = page_size;
15142 
15143 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15144 
15145 	/* If needed, Adjust page count to match the max the adapter supports */
15146 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15147 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15148 
15149 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15150 			     GFP_KERNEL, cpu_to_node(cpu));
15151 	if (!queue)
15152 		return NULL;
15153 
15154 	INIT_LIST_HEAD(&queue->list);
15155 	INIT_LIST_HEAD(&queue->_poll_list);
15156 	INIT_LIST_HEAD(&queue->wq_list);
15157 	INIT_LIST_HEAD(&queue->wqfull_list);
15158 	INIT_LIST_HEAD(&queue->page_list);
15159 	INIT_LIST_HEAD(&queue->child_list);
15160 	INIT_LIST_HEAD(&queue->cpu_list);
15161 
15162 	/* Set queue parameters now.  If the system cannot provide memory
15163 	 * resources, the free routine needs to know what was allocated.
15164 	 */
15165 	queue->page_count = pgcnt;
15166 	queue->q_pgs = (void **)&queue[1];
15167 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
15168 	queue->entry_size = entry_size;
15169 	queue->entry_count = entry_count;
15170 	queue->page_size = hw_page_size;
15171 	queue->phba = phba;
15172 
15173 	for (x = 0; x < queue->page_count; x++) {
15174 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15175 				      dev_to_node(&phba->pcidev->dev));
15176 		if (!dmabuf)
15177 			goto out_fail;
15178 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15179 						  hw_page_size, &dmabuf->phys,
15180 						  GFP_KERNEL);
15181 		if (!dmabuf->virt) {
15182 			kfree(dmabuf);
15183 			goto out_fail;
15184 		}
15185 		dmabuf->buffer_tag = x;
15186 		list_add_tail(&dmabuf->list, &queue->page_list);
15187 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
15188 		queue->q_pgs[x] = dmabuf->virt;
15189 	}
15190 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15191 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15192 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15193 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15194 
15195 	/* notify_interval will be set during q creation */
15196 
15197 	return queue;
15198 out_fail:
15199 	lpfc_sli4_queue_free(queue);
15200 	return NULL;
15201 }
15202 
15203 /**
15204  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15205  * @phba: HBA structure that indicates port to create a queue on.
15206  * @pci_barset: PCI BAR set flag.
15207  *
15208  * This function shall perform iomap of the specified PCI BAR address to host
15209  * memory address if not already done so and return it. The returned host
15210  * memory address can be NULL.
15211  */
15212 static void __iomem *
15213 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15214 {
15215 	if (!phba->pcidev)
15216 		return NULL;
15217 
15218 	switch (pci_barset) {
15219 	case WQ_PCI_BAR_0_AND_1:
15220 		return phba->pci_bar0_memmap_p;
15221 	case WQ_PCI_BAR_2_AND_3:
15222 		return phba->pci_bar2_memmap_p;
15223 	case WQ_PCI_BAR_4_AND_5:
15224 		return phba->pci_bar4_memmap_p;
15225 	default:
15226 		break;
15227 	}
15228 	return NULL;
15229 }
15230 
15231 /**
15232  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15233  * @phba: HBA structure that EQs are on.
15234  * @startq: The starting EQ index to modify
15235  * @numq: The number of EQs (consecutive indexes) to modify
15236  * @usdelay: amount of delay
15237  *
15238  * This function revises the EQ delay on 1 or more EQs. The EQ delay
15239  * is set either by writing to a register (if supported by the SLI Port)
15240  * or by mailbox command. The mailbox command allows several EQs to be
15241  * updated at once.
15242  *
15243  * The @phba struct is used to send a mailbox command to HBA. The @startq
15244  * is used to get the starting EQ index to change. The @numq value is
15245  * used to specify how many consecutive EQ indexes, starting at EQ index,
15246  * are to be changed. This function is asynchronous and will wait for any
15247  * mailbox commands to finish before returning.
15248  *
15249  * On success this function will return a zero. If unable to allocate
15250  * enough memory this function will return -ENOMEM. If a mailbox command
15251  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15252  * have had their delay multipler changed.
15253  **/
15254 void
15255 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15256 			 uint32_t numq, uint32_t usdelay)
15257 {
15258 	struct lpfc_mbx_modify_eq_delay *eq_delay;
15259 	LPFC_MBOXQ_t *mbox;
15260 	struct lpfc_queue *eq;
15261 	int cnt = 0, rc, length;
15262 	uint32_t shdr_status, shdr_add_status;
15263 	uint32_t dmult;
15264 	int qidx;
15265 	union lpfc_sli4_cfg_shdr *shdr;
15266 
15267 	if (startq >= phba->cfg_irq_chann)
15268 		return;
15269 
15270 	if (usdelay > 0xFFFF) {
15271 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15272 				"6429 usdelay %d too large. Scaled down to "
15273 				"0xFFFF.\n", usdelay);
15274 		usdelay = 0xFFFF;
15275 	}
15276 
15277 	/* set values by EQ_DELAY register if supported */
15278 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15279 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15280 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15281 			if (!eq)
15282 				continue;
15283 
15284 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15285 
15286 			if (++cnt >= numq)
15287 				break;
15288 		}
15289 		return;
15290 	}
15291 
15292 	/* Otherwise, set values by mailbox cmd */
15293 
15294 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15295 	if (!mbox) {
15296 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15297 				"6428 Failed allocating mailbox cmd buffer."
15298 				" EQ delay was not set.\n");
15299 		return;
15300 	}
15301 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15302 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15303 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15304 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15305 			 length, LPFC_SLI4_MBX_EMBED);
15306 	eq_delay = &mbox->u.mqe.un.eq_delay;
15307 
15308 	/* Calculate delay multiper from maximum interrupt per second */
15309 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15310 	if (dmult)
15311 		dmult--;
15312 	if (dmult > LPFC_DMULT_MAX)
15313 		dmult = LPFC_DMULT_MAX;
15314 
15315 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15316 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15317 		if (!eq)
15318 			continue;
15319 		eq->q_mode = usdelay;
15320 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15321 		eq_delay->u.request.eq[cnt].phase = 0;
15322 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
15323 
15324 		if (++cnt >= numq)
15325 			break;
15326 	}
15327 	eq_delay->u.request.num_eq = cnt;
15328 
15329 	mbox->vport = phba->pport;
15330 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15331 	mbox->ctx_buf = NULL;
15332 	mbox->ctx_ndlp = NULL;
15333 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15334 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15335 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15336 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15337 	if (shdr_status || shdr_add_status || rc) {
15338 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15339 				"2512 MODIFY_EQ_DELAY mailbox failed with "
15340 				"status x%x add_status x%x, mbx status x%x\n",
15341 				shdr_status, shdr_add_status, rc);
15342 	}
15343 	mempool_free(mbox, phba->mbox_mem_pool);
15344 	return;
15345 }
15346 
15347 /**
15348  * lpfc_eq_create - Create an Event Queue on the HBA
15349  * @phba: HBA structure that indicates port to create a queue on.
15350  * @eq: The queue structure to use to create the event queue.
15351  * @imax: The maximum interrupt per second limit.
15352  *
15353  * This function creates an event queue, as detailed in @eq, on a port,
15354  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15355  *
15356  * The @phba struct is used to send mailbox command to HBA. The @eq struct
15357  * is used to get the entry count and entry size that are necessary to
15358  * determine the number of pages to allocate and use for this queue. This
15359  * function will send the EQ_CREATE mailbox command to the HBA to setup the
15360  * event queue. This function is asynchronous and will wait for the mailbox
15361  * command to finish before continuing.
15362  *
15363  * On success this function will return a zero. If unable to allocate enough
15364  * memory this function will return -ENOMEM. If the queue create mailbox command
15365  * fails this function will return -ENXIO.
15366  **/
15367 int
15368 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
15369 {
15370 	struct lpfc_mbx_eq_create *eq_create;
15371 	LPFC_MBOXQ_t *mbox;
15372 	int rc, length, status = 0;
15373 	struct lpfc_dmabuf *dmabuf;
15374 	uint32_t shdr_status, shdr_add_status;
15375 	union lpfc_sli4_cfg_shdr *shdr;
15376 	uint16_t dmult;
15377 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15378 
15379 	/* sanity check on queue memory */
15380 	if (!eq)
15381 		return -ENODEV;
15382 	if (!phba->sli4_hba.pc_sli4_params.supported)
15383 		hw_page_size = SLI4_PAGE_SIZE;
15384 
15385 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15386 	if (!mbox)
15387 		return -ENOMEM;
15388 	length = (sizeof(struct lpfc_mbx_eq_create) -
15389 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15390 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15391 			 LPFC_MBOX_OPCODE_EQ_CREATE,
15392 			 length, LPFC_SLI4_MBX_EMBED);
15393 	eq_create = &mbox->u.mqe.un.eq_create;
15394 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
15395 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
15396 	       eq->page_count);
15397 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
15398 	       LPFC_EQE_SIZE);
15399 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
15400 
15401 	/* Use version 2 of CREATE_EQ if eqav is set */
15402 	if (phba->sli4_hba.pc_sli4_params.eqav) {
15403 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15404 		       LPFC_Q_CREATE_VERSION_2);
15405 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
15406 		       phba->sli4_hba.pc_sli4_params.eqav);
15407 	}
15408 
15409 	/* don't setup delay multiplier using EQ_CREATE */
15410 	dmult = 0;
15411 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
15412 	       dmult);
15413 	switch (eq->entry_count) {
15414 	default:
15415 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15416 				"0360 Unsupported EQ count. (%d)\n",
15417 				eq->entry_count);
15418 		if (eq->entry_count < 256) {
15419 			status = -EINVAL;
15420 			goto out;
15421 		}
15422 		fallthrough;	/* otherwise default to smallest count */
15423 	case 256:
15424 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15425 		       LPFC_EQ_CNT_256);
15426 		break;
15427 	case 512:
15428 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15429 		       LPFC_EQ_CNT_512);
15430 		break;
15431 	case 1024:
15432 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15433 		       LPFC_EQ_CNT_1024);
15434 		break;
15435 	case 2048:
15436 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15437 		       LPFC_EQ_CNT_2048);
15438 		break;
15439 	case 4096:
15440 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15441 		       LPFC_EQ_CNT_4096);
15442 		break;
15443 	}
15444 	list_for_each_entry(dmabuf, &eq->page_list, list) {
15445 		memset(dmabuf->virt, 0, hw_page_size);
15446 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15447 					putPaddrLow(dmabuf->phys);
15448 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15449 					putPaddrHigh(dmabuf->phys);
15450 	}
15451 	mbox->vport = phba->pport;
15452 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15453 	mbox->ctx_buf = NULL;
15454 	mbox->ctx_ndlp = NULL;
15455 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15456 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15457 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15458 	if (shdr_status || shdr_add_status || rc) {
15459 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15460 				"2500 EQ_CREATE mailbox failed with "
15461 				"status x%x add_status x%x, mbx status x%x\n",
15462 				shdr_status, shdr_add_status, rc);
15463 		status = -ENXIO;
15464 	}
15465 	eq->type = LPFC_EQ;
15466 	eq->subtype = LPFC_NONE;
15467 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15468 	if (eq->queue_id == 0xFFFF)
15469 		status = -ENXIO;
15470 	eq->host_index = 0;
15471 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15472 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15473 out:
15474 	mempool_free(mbox, phba->mbox_mem_pool);
15475 	return status;
15476 }
15477 
15478 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
15479 {
15480 	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
15481 
15482 	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
15483 
15484 	return 1;
15485 }
15486 
15487 /**
15488  * lpfc_cq_create - Create a Completion Queue on the HBA
15489  * @phba: HBA structure that indicates port to create a queue on.
15490  * @cq: The queue structure to use to create the completion queue.
15491  * @eq: The event queue to bind this completion queue to.
15492  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15493  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15494  *
15495  * This function creates a completion queue, as detailed in @wq, on a port,
15496  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15497  *
15498  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15499  * is used to get the entry count and entry size that are necessary to
15500  * determine the number of pages to allocate and use for this queue. The @eq
15501  * is used to indicate which event queue to bind this completion queue to. This
15502  * function will send the CQ_CREATE mailbox command to the HBA to setup the
15503  * completion queue. This function is asynchronous and will wait for the mailbox
15504  * command to finish before continuing.
15505  *
15506  * On success this function will return a zero. If unable to allocate enough
15507  * memory this function will return -ENOMEM. If the queue create mailbox command
15508  * fails this function will return -ENXIO.
15509  **/
15510 int
15511 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15512 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15513 {
15514 	struct lpfc_mbx_cq_create *cq_create;
15515 	struct lpfc_dmabuf *dmabuf;
15516 	LPFC_MBOXQ_t *mbox;
15517 	int rc, length, status = 0;
15518 	uint32_t shdr_status, shdr_add_status;
15519 	union lpfc_sli4_cfg_shdr *shdr;
15520 
15521 	/* sanity check on queue memory */
15522 	if (!cq || !eq)
15523 		return -ENODEV;
15524 
15525 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15526 	if (!mbox)
15527 		return -ENOMEM;
15528 	length = (sizeof(struct lpfc_mbx_cq_create) -
15529 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15530 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15531 			 LPFC_MBOX_OPCODE_CQ_CREATE,
15532 			 length, LPFC_SLI4_MBX_EMBED);
15533 	cq_create = &mbox->u.mqe.un.cq_create;
15534 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15535 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15536 		    cq->page_count);
15537 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15538 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15539 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15540 	       phba->sli4_hba.pc_sli4_params.cqv);
15541 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15542 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15543 		       (cq->page_size / SLI4_PAGE_SIZE));
15544 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15545 		       eq->queue_id);
15546 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15547 		       phba->sli4_hba.pc_sli4_params.cqav);
15548 	} else {
15549 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15550 		       eq->queue_id);
15551 	}
15552 	switch (cq->entry_count) {
15553 	case 2048:
15554 	case 4096:
15555 		if (phba->sli4_hba.pc_sli4_params.cqv ==
15556 		    LPFC_Q_CREATE_VERSION_2) {
15557 			cq_create->u.request.context.lpfc_cq_context_count =
15558 				cq->entry_count;
15559 			bf_set(lpfc_cq_context_count,
15560 			       &cq_create->u.request.context,
15561 			       LPFC_CQ_CNT_WORD7);
15562 			break;
15563 		}
15564 		fallthrough;
15565 	default:
15566 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15567 				"0361 Unsupported CQ count: "
15568 				"entry cnt %d sz %d pg cnt %d\n",
15569 				cq->entry_count, cq->entry_size,
15570 				cq->page_count);
15571 		if (cq->entry_count < 256) {
15572 			status = -EINVAL;
15573 			goto out;
15574 		}
15575 		fallthrough;	/* otherwise default to smallest count */
15576 	case 256:
15577 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15578 		       LPFC_CQ_CNT_256);
15579 		break;
15580 	case 512:
15581 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15582 		       LPFC_CQ_CNT_512);
15583 		break;
15584 	case 1024:
15585 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15586 		       LPFC_CQ_CNT_1024);
15587 		break;
15588 	}
15589 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15590 		memset(dmabuf->virt, 0, cq->page_size);
15591 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15592 					putPaddrLow(dmabuf->phys);
15593 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15594 					putPaddrHigh(dmabuf->phys);
15595 	}
15596 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15597 
15598 	/* The IOCTL status is embedded in the mailbox subheader. */
15599 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15600 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15601 	if (shdr_status || shdr_add_status || rc) {
15602 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15603 				"2501 CQ_CREATE mailbox failed with "
15604 				"status x%x add_status x%x, mbx status x%x\n",
15605 				shdr_status, shdr_add_status, rc);
15606 		status = -ENXIO;
15607 		goto out;
15608 	}
15609 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15610 	if (cq->queue_id == 0xFFFF) {
15611 		status = -ENXIO;
15612 		goto out;
15613 	}
15614 	/* link the cq onto the parent eq child list */
15615 	list_add_tail(&cq->list, &eq->child_list);
15616 	/* Set up completion queue's type and subtype */
15617 	cq->type = type;
15618 	cq->subtype = subtype;
15619 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15620 	cq->assoc_qid = eq->queue_id;
15621 	cq->assoc_qp = eq;
15622 	cq->host_index = 0;
15623 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15624 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15625 
15626 	if (cq->queue_id > phba->sli4_hba.cq_max)
15627 		phba->sli4_hba.cq_max = cq->queue_id;
15628 
15629 	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
15630 out:
15631 	mempool_free(mbox, phba->mbox_mem_pool);
15632 	return status;
15633 }
15634 
15635 /**
15636  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15637  * @phba: HBA structure that indicates port to create a queue on.
15638  * @cqp: The queue structure array to use to create the completion queues.
15639  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
15640  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15641  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15642  *
15643  * This function creates a set of  completion queue, s to support MRQ
15644  * as detailed in @cqp, on a port,
15645  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15646  *
15647  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15648  * is used to get the entry count and entry size that are necessary to
15649  * determine the number of pages to allocate and use for this queue. The @eq
15650  * is used to indicate which event queue to bind this completion queue to. This
15651  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15652  * completion queue. This function is asynchronous and will wait for the mailbox
15653  * command to finish before continuing.
15654  *
15655  * On success this function will return a zero. If unable to allocate enough
15656  * memory this function will return -ENOMEM. If the queue create mailbox command
15657  * fails this function will return -ENXIO.
15658  **/
15659 int
15660 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15661 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15662 		   uint32_t subtype)
15663 {
15664 	struct lpfc_queue *cq;
15665 	struct lpfc_queue *eq;
15666 	struct lpfc_mbx_cq_create_set *cq_set;
15667 	struct lpfc_dmabuf *dmabuf;
15668 	LPFC_MBOXQ_t *mbox;
15669 	int rc, length, alloclen, status = 0;
15670 	int cnt, idx, numcq, page_idx = 0;
15671 	uint32_t shdr_status, shdr_add_status;
15672 	union lpfc_sli4_cfg_shdr *shdr;
15673 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15674 
15675 	/* sanity check on queue memory */
15676 	numcq = phba->cfg_nvmet_mrq;
15677 	if (!cqp || !hdwq || !numcq)
15678 		return -ENODEV;
15679 
15680 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15681 	if (!mbox)
15682 		return -ENOMEM;
15683 
15684 	length = sizeof(struct lpfc_mbx_cq_create_set);
15685 	length += ((numcq * cqp[0]->page_count) *
15686 		   sizeof(struct dma_address));
15687 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15688 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15689 			LPFC_SLI4_MBX_NEMBED);
15690 	if (alloclen < length) {
15691 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15692 				"3098 Allocated DMA memory size (%d) is "
15693 				"less than the requested DMA memory size "
15694 				"(%d)\n", alloclen, length);
15695 		status = -ENOMEM;
15696 		goto out;
15697 	}
15698 	cq_set = mbox->sge_array->addr[0];
15699 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15700 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15701 
15702 	for (idx = 0; idx < numcq; idx++) {
15703 		cq = cqp[idx];
15704 		eq = hdwq[idx].hba_eq;
15705 		if (!cq || !eq) {
15706 			status = -ENOMEM;
15707 			goto out;
15708 		}
15709 		if (!phba->sli4_hba.pc_sli4_params.supported)
15710 			hw_page_size = cq->page_size;
15711 
15712 		switch (idx) {
15713 		case 0:
15714 			bf_set(lpfc_mbx_cq_create_set_page_size,
15715 			       &cq_set->u.request,
15716 			       (hw_page_size / SLI4_PAGE_SIZE));
15717 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15718 			       &cq_set->u.request, cq->page_count);
15719 			bf_set(lpfc_mbx_cq_create_set_evt,
15720 			       &cq_set->u.request, 1);
15721 			bf_set(lpfc_mbx_cq_create_set_valid,
15722 			       &cq_set->u.request, 1);
15723 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15724 			       &cq_set->u.request, 0);
15725 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15726 			       &cq_set->u.request, numcq);
15727 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15728 			       &cq_set->u.request,
15729 			       phba->sli4_hba.pc_sli4_params.cqav);
15730 			switch (cq->entry_count) {
15731 			case 2048:
15732 			case 4096:
15733 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15734 				    LPFC_Q_CREATE_VERSION_2) {
15735 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15736 					       &cq_set->u.request,
15737 						cq->entry_count);
15738 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15739 					       &cq_set->u.request,
15740 					       LPFC_CQ_CNT_WORD7);
15741 					break;
15742 				}
15743 				fallthrough;
15744 			default:
15745 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15746 						"3118 Bad CQ count. (%d)\n",
15747 						cq->entry_count);
15748 				if (cq->entry_count < 256) {
15749 					status = -EINVAL;
15750 					goto out;
15751 				}
15752 				fallthrough;	/* otherwise default to smallest */
15753 			case 256:
15754 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15755 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15756 				break;
15757 			case 512:
15758 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15759 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15760 				break;
15761 			case 1024:
15762 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15763 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15764 				break;
15765 			}
15766 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15767 			       &cq_set->u.request, eq->queue_id);
15768 			break;
15769 		case 1:
15770 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15771 			       &cq_set->u.request, eq->queue_id);
15772 			break;
15773 		case 2:
15774 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15775 			       &cq_set->u.request, eq->queue_id);
15776 			break;
15777 		case 3:
15778 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15779 			       &cq_set->u.request, eq->queue_id);
15780 			break;
15781 		case 4:
15782 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15783 			       &cq_set->u.request, eq->queue_id);
15784 			break;
15785 		case 5:
15786 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15787 			       &cq_set->u.request, eq->queue_id);
15788 			break;
15789 		case 6:
15790 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15791 			       &cq_set->u.request, eq->queue_id);
15792 			break;
15793 		case 7:
15794 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15795 			       &cq_set->u.request, eq->queue_id);
15796 			break;
15797 		case 8:
15798 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15799 			       &cq_set->u.request, eq->queue_id);
15800 			break;
15801 		case 9:
15802 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15803 			       &cq_set->u.request, eq->queue_id);
15804 			break;
15805 		case 10:
15806 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15807 			       &cq_set->u.request, eq->queue_id);
15808 			break;
15809 		case 11:
15810 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15811 			       &cq_set->u.request, eq->queue_id);
15812 			break;
15813 		case 12:
15814 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15815 			       &cq_set->u.request, eq->queue_id);
15816 			break;
15817 		case 13:
15818 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15819 			       &cq_set->u.request, eq->queue_id);
15820 			break;
15821 		case 14:
15822 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15823 			       &cq_set->u.request, eq->queue_id);
15824 			break;
15825 		case 15:
15826 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15827 			       &cq_set->u.request, eq->queue_id);
15828 			break;
15829 		}
15830 
15831 		/* link the cq onto the parent eq child list */
15832 		list_add_tail(&cq->list, &eq->child_list);
15833 		/* Set up completion queue's type and subtype */
15834 		cq->type = type;
15835 		cq->subtype = subtype;
15836 		cq->assoc_qid = eq->queue_id;
15837 		cq->assoc_qp = eq;
15838 		cq->host_index = 0;
15839 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15840 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15841 					 cq->entry_count);
15842 		cq->chann = idx;
15843 
15844 		rc = 0;
15845 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15846 			memset(dmabuf->virt, 0, hw_page_size);
15847 			cnt = page_idx + dmabuf->buffer_tag;
15848 			cq_set->u.request.page[cnt].addr_lo =
15849 					putPaddrLow(dmabuf->phys);
15850 			cq_set->u.request.page[cnt].addr_hi =
15851 					putPaddrHigh(dmabuf->phys);
15852 			rc++;
15853 		}
15854 		page_idx += rc;
15855 	}
15856 
15857 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15858 
15859 	/* The IOCTL status is embedded in the mailbox subheader. */
15860 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15861 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15862 	if (shdr_status || shdr_add_status || rc) {
15863 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15864 				"3119 CQ_CREATE_SET mailbox failed with "
15865 				"status x%x add_status x%x, mbx status x%x\n",
15866 				shdr_status, shdr_add_status, rc);
15867 		status = -ENXIO;
15868 		goto out;
15869 	}
15870 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15871 	if (rc == 0xFFFF) {
15872 		status = -ENXIO;
15873 		goto out;
15874 	}
15875 
15876 	for (idx = 0; idx < numcq; idx++) {
15877 		cq = cqp[idx];
15878 		cq->queue_id = rc + idx;
15879 		if (cq->queue_id > phba->sli4_hba.cq_max)
15880 			phba->sli4_hba.cq_max = cq->queue_id;
15881 	}
15882 
15883 out:
15884 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15885 	return status;
15886 }
15887 
15888 /**
15889  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15890  * @phba: HBA structure that indicates port to create a queue on.
15891  * @mq: The queue structure to use to create the mailbox queue.
15892  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15893  * @cq: The completion queue to associate with this cq.
15894  *
15895  * This function provides failback (fb) functionality when the
15896  * mq_create_ext fails on older FW generations.  It's purpose is identical
15897  * to mq_create_ext otherwise.
15898  *
15899  * This routine cannot fail as all attributes were previously accessed and
15900  * initialized in mq_create_ext.
15901  **/
15902 static void
15903 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15904 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15905 {
15906 	struct lpfc_mbx_mq_create *mq_create;
15907 	struct lpfc_dmabuf *dmabuf;
15908 	int length;
15909 
15910 	length = (sizeof(struct lpfc_mbx_mq_create) -
15911 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15912 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15913 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15914 			 length, LPFC_SLI4_MBX_EMBED);
15915 	mq_create = &mbox->u.mqe.un.mq_create;
15916 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15917 	       mq->page_count);
15918 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15919 	       cq->queue_id);
15920 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15921 	switch (mq->entry_count) {
15922 	case 16:
15923 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15924 		       LPFC_MQ_RING_SIZE_16);
15925 		break;
15926 	case 32:
15927 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15928 		       LPFC_MQ_RING_SIZE_32);
15929 		break;
15930 	case 64:
15931 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15932 		       LPFC_MQ_RING_SIZE_64);
15933 		break;
15934 	case 128:
15935 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15936 		       LPFC_MQ_RING_SIZE_128);
15937 		break;
15938 	}
15939 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15940 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15941 			putPaddrLow(dmabuf->phys);
15942 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15943 			putPaddrHigh(dmabuf->phys);
15944 	}
15945 }
15946 
15947 /**
15948  * lpfc_mq_create - Create a mailbox Queue on the HBA
15949  * @phba: HBA structure that indicates port to create a queue on.
15950  * @mq: The queue structure to use to create the mailbox queue.
15951  * @cq: The completion queue to associate with this cq.
15952  * @subtype: The queue's subtype.
15953  *
15954  * This function creates a mailbox queue, as detailed in @mq, on a port,
15955  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15956  *
15957  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15958  * is used to get the entry count and entry size that are necessary to
15959  * determine the number of pages to allocate and use for this queue. This
15960  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15961  * mailbox queue. This function is asynchronous and will wait for the mailbox
15962  * command to finish before continuing.
15963  *
15964  * On success this function will return a zero. If unable to allocate enough
15965  * memory this function will return -ENOMEM. If the queue create mailbox command
15966  * fails this function will return -ENXIO.
15967  **/
15968 int32_t
15969 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15970 	       struct lpfc_queue *cq, uint32_t subtype)
15971 {
15972 	struct lpfc_mbx_mq_create *mq_create;
15973 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15974 	struct lpfc_dmabuf *dmabuf;
15975 	LPFC_MBOXQ_t *mbox;
15976 	int rc, length, status = 0;
15977 	uint32_t shdr_status, shdr_add_status;
15978 	union lpfc_sli4_cfg_shdr *shdr;
15979 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15980 
15981 	/* sanity check on queue memory */
15982 	if (!mq || !cq)
15983 		return -ENODEV;
15984 	if (!phba->sli4_hba.pc_sli4_params.supported)
15985 		hw_page_size = SLI4_PAGE_SIZE;
15986 
15987 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15988 	if (!mbox)
15989 		return -ENOMEM;
15990 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15991 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15992 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15993 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15994 			 length, LPFC_SLI4_MBX_EMBED);
15995 
15996 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15997 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15998 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15999 	       &mq_create_ext->u.request, mq->page_count);
16000 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16001 	       &mq_create_ext->u.request, 1);
16002 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16003 	       &mq_create_ext->u.request, 1);
16004 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16005 	       &mq_create_ext->u.request, 1);
16006 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16007 	       &mq_create_ext->u.request, 1);
16008 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16009 	       &mq_create_ext->u.request, 1);
16010 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16011 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16012 	       phba->sli4_hba.pc_sli4_params.mqv);
16013 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16014 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16015 		       cq->queue_id);
16016 	else
16017 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16018 		       cq->queue_id);
16019 	switch (mq->entry_count) {
16020 	default:
16021 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16022 				"0362 Unsupported MQ count. (%d)\n",
16023 				mq->entry_count);
16024 		if (mq->entry_count < 16) {
16025 			status = -EINVAL;
16026 			goto out;
16027 		}
16028 		fallthrough;	/* otherwise default to smallest count */
16029 	case 16:
16030 		bf_set(lpfc_mq_context_ring_size,
16031 		       &mq_create_ext->u.request.context,
16032 		       LPFC_MQ_RING_SIZE_16);
16033 		break;
16034 	case 32:
16035 		bf_set(lpfc_mq_context_ring_size,
16036 		       &mq_create_ext->u.request.context,
16037 		       LPFC_MQ_RING_SIZE_32);
16038 		break;
16039 	case 64:
16040 		bf_set(lpfc_mq_context_ring_size,
16041 		       &mq_create_ext->u.request.context,
16042 		       LPFC_MQ_RING_SIZE_64);
16043 		break;
16044 	case 128:
16045 		bf_set(lpfc_mq_context_ring_size,
16046 		       &mq_create_ext->u.request.context,
16047 		       LPFC_MQ_RING_SIZE_128);
16048 		break;
16049 	}
16050 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16051 		memset(dmabuf->virt, 0, hw_page_size);
16052 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16053 					putPaddrLow(dmabuf->phys);
16054 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16055 					putPaddrHigh(dmabuf->phys);
16056 	}
16057 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16058 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16059 			      &mq_create_ext->u.response);
16060 	if (rc != MBX_SUCCESS) {
16061 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16062 				"2795 MQ_CREATE_EXT failed with "
16063 				"status x%x. Failback to MQ_CREATE.\n",
16064 				rc);
16065 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16066 		mq_create = &mbox->u.mqe.un.mq_create;
16067 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16068 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16069 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16070 				      &mq_create->u.response);
16071 	}
16072 
16073 	/* The IOCTL status is embedded in the mailbox subheader. */
16074 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16075 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16076 	if (shdr_status || shdr_add_status || rc) {
16077 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16078 				"2502 MQ_CREATE mailbox failed with "
16079 				"status x%x add_status x%x, mbx status x%x\n",
16080 				shdr_status, shdr_add_status, rc);
16081 		status = -ENXIO;
16082 		goto out;
16083 	}
16084 	if (mq->queue_id == 0xFFFF) {
16085 		status = -ENXIO;
16086 		goto out;
16087 	}
16088 	mq->type = LPFC_MQ;
16089 	mq->assoc_qid = cq->queue_id;
16090 	mq->subtype = subtype;
16091 	mq->host_index = 0;
16092 	mq->hba_index = 0;
16093 
16094 	/* link the mq onto the parent cq child list */
16095 	list_add_tail(&mq->list, &cq->child_list);
16096 out:
16097 	mempool_free(mbox, phba->mbox_mem_pool);
16098 	return status;
16099 }
16100 
16101 /**
16102  * lpfc_wq_create - Create a Work Queue on the HBA
16103  * @phba: HBA structure that indicates port to create a queue on.
16104  * @wq: The queue structure to use to create the work queue.
16105  * @cq: The completion queue to bind this work queue to.
16106  * @subtype: The subtype of the work queue indicating its functionality.
16107  *
16108  * This function creates a work queue, as detailed in @wq, on a port, described
16109  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16110  *
16111  * The @phba struct is used to send mailbox command to HBA. The @wq struct
16112  * is used to get the entry count and entry size that are necessary to
16113  * determine the number of pages to allocate and use for this queue. The @cq
16114  * is used to indicate which completion queue to bind this work queue to. This
16115  * function will send the WQ_CREATE mailbox command to the HBA to setup the
16116  * work queue. This function is asynchronous and will wait for the mailbox
16117  * command to finish before continuing.
16118  *
16119  * On success this function will return a zero. If unable to allocate enough
16120  * memory this function will return -ENOMEM. If the queue create mailbox command
16121  * fails this function will return -ENXIO.
16122  **/
16123 int
16124 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16125 	       struct lpfc_queue *cq, uint32_t subtype)
16126 {
16127 	struct lpfc_mbx_wq_create *wq_create;
16128 	struct lpfc_dmabuf *dmabuf;
16129 	LPFC_MBOXQ_t *mbox;
16130 	int rc, length, status = 0;
16131 	uint32_t shdr_status, shdr_add_status;
16132 	union lpfc_sli4_cfg_shdr *shdr;
16133 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16134 	struct dma_address *page;
16135 	void __iomem *bar_memmap_p;
16136 	uint32_t db_offset;
16137 	uint16_t pci_barset;
16138 	uint8_t dpp_barset;
16139 	uint32_t dpp_offset;
16140 	uint8_t wq_create_version;
16141 #ifdef CONFIG_X86
16142 	unsigned long pg_addr;
16143 #endif
16144 
16145 	/* sanity check on queue memory */
16146 	if (!wq || !cq)
16147 		return -ENODEV;
16148 	if (!phba->sli4_hba.pc_sli4_params.supported)
16149 		hw_page_size = wq->page_size;
16150 
16151 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16152 	if (!mbox)
16153 		return -ENOMEM;
16154 	length = (sizeof(struct lpfc_mbx_wq_create) -
16155 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16156 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16157 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16158 			 length, LPFC_SLI4_MBX_EMBED);
16159 	wq_create = &mbox->u.mqe.un.wq_create;
16160 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16161 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16162 		    wq->page_count);
16163 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16164 		    cq->queue_id);
16165 
16166 	/* wqv is the earliest version supported, NOT the latest */
16167 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16168 	       phba->sli4_hba.pc_sli4_params.wqv);
16169 
16170 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16171 	    (wq->page_size > SLI4_PAGE_SIZE))
16172 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
16173 	else
16174 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
16175 
16176 	switch (wq_create_version) {
16177 	case LPFC_Q_CREATE_VERSION_1:
16178 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16179 		       wq->entry_count);
16180 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16181 		       LPFC_Q_CREATE_VERSION_1);
16182 
16183 		switch (wq->entry_size) {
16184 		default:
16185 		case 64:
16186 			bf_set(lpfc_mbx_wq_create_wqe_size,
16187 			       &wq_create->u.request_1,
16188 			       LPFC_WQ_WQE_SIZE_64);
16189 			break;
16190 		case 128:
16191 			bf_set(lpfc_mbx_wq_create_wqe_size,
16192 			       &wq_create->u.request_1,
16193 			       LPFC_WQ_WQE_SIZE_128);
16194 			break;
16195 		}
16196 		/* Request DPP by default */
16197 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16198 		bf_set(lpfc_mbx_wq_create_page_size,
16199 		       &wq_create->u.request_1,
16200 		       (wq->page_size / SLI4_PAGE_SIZE));
16201 		page = wq_create->u.request_1.page;
16202 		break;
16203 	default:
16204 		page = wq_create->u.request.page;
16205 		break;
16206 	}
16207 
16208 	list_for_each_entry(dmabuf, &wq->page_list, list) {
16209 		memset(dmabuf->virt, 0, hw_page_size);
16210 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16211 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16212 	}
16213 
16214 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16215 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16216 
16217 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16218 	/* The IOCTL status is embedded in the mailbox subheader. */
16219 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16220 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16221 	if (shdr_status || shdr_add_status || rc) {
16222 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16223 				"2503 WQ_CREATE mailbox failed with "
16224 				"status x%x add_status x%x, mbx status x%x\n",
16225 				shdr_status, shdr_add_status, rc);
16226 		status = -ENXIO;
16227 		goto out;
16228 	}
16229 
16230 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16231 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16232 					&wq_create->u.response);
16233 	else
16234 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16235 					&wq_create->u.response_1);
16236 
16237 	if (wq->queue_id == 0xFFFF) {
16238 		status = -ENXIO;
16239 		goto out;
16240 	}
16241 
16242 	wq->db_format = LPFC_DB_LIST_FORMAT;
16243 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16244 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16245 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16246 					       &wq_create->u.response);
16247 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16248 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
16249 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16250 						"3265 WQ[%d] doorbell format "
16251 						"not supported: x%x\n",
16252 						wq->queue_id, wq->db_format);
16253 				status = -EINVAL;
16254 				goto out;
16255 			}
16256 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16257 					    &wq_create->u.response);
16258 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16259 								   pci_barset);
16260 			if (!bar_memmap_p) {
16261 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16262 						"3263 WQ[%d] failed to memmap "
16263 						"pci barset:x%x\n",
16264 						wq->queue_id, pci_barset);
16265 				status = -ENOMEM;
16266 				goto out;
16267 			}
16268 			db_offset = wq_create->u.response.doorbell_offset;
16269 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16270 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16271 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16272 						"3252 WQ[%d] doorbell offset "
16273 						"not supported: x%x\n",
16274 						wq->queue_id, db_offset);
16275 				status = -EINVAL;
16276 				goto out;
16277 			}
16278 			wq->db_regaddr = bar_memmap_p + db_offset;
16279 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16280 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
16281 					"format:x%x\n", wq->queue_id,
16282 					pci_barset, db_offset, wq->db_format);
16283 		} else
16284 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16285 	} else {
16286 		/* Check if DPP was honored by the firmware */
16287 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16288 				    &wq_create->u.response_1);
16289 		if (wq->dpp_enable) {
16290 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16291 					    &wq_create->u.response_1);
16292 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16293 								   pci_barset);
16294 			if (!bar_memmap_p) {
16295 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16296 						"3267 WQ[%d] failed to memmap "
16297 						"pci barset:x%x\n",
16298 						wq->queue_id, pci_barset);
16299 				status = -ENOMEM;
16300 				goto out;
16301 			}
16302 			db_offset = wq_create->u.response_1.doorbell_offset;
16303 			wq->db_regaddr = bar_memmap_p + db_offset;
16304 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16305 					    &wq_create->u.response_1);
16306 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16307 					    &wq_create->u.response_1);
16308 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16309 								   dpp_barset);
16310 			if (!bar_memmap_p) {
16311 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16312 						"3268 WQ[%d] failed to memmap "
16313 						"pci barset:x%x\n",
16314 						wq->queue_id, dpp_barset);
16315 				status = -ENOMEM;
16316 				goto out;
16317 			}
16318 			dpp_offset = wq_create->u.response_1.dpp_offset;
16319 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16320 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16321 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
16322 					"dpp_id:x%x dpp_barset:x%x "
16323 					"dpp_offset:x%x\n",
16324 					wq->queue_id, pci_barset, db_offset,
16325 					wq->dpp_id, dpp_barset, dpp_offset);
16326 
16327 #ifdef CONFIG_X86
16328 			/* Enable combined writes for DPP aperture */
16329 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16330 			rc = set_memory_wc(pg_addr, 1);
16331 			if (rc) {
16332 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16333 					"3272 Cannot setup Combined "
16334 					"Write on WQ[%d] - disable DPP\n",
16335 					wq->queue_id);
16336 				phba->cfg_enable_dpp = 0;
16337 			}
16338 #else
16339 			phba->cfg_enable_dpp = 0;
16340 #endif
16341 		} else
16342 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16343 	}
16344 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16345 	if (wq->pring == NULL) {
16346 		status = -ENOMEM;
16347 		goto out;
16348 	}
16349 	wq->type = LPFC_WQ;
16350 	wq->assoc_qid = cq->queue_id;
16351 	wq->subtype = subtype;
16352 	wq->host_index = 0;
16353 	wq->hba_index = 0;
16354 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16355 
16356 	/* link the wq onto the parent cq child list */
16357 	list_add_tail(&wq->list, &cq->child_list);
16358 out:
16359 	mempool_free(mbox, phba->mbox_mem_pool);
16360 	return status;
16361 }
16362 
16363 /**
16364  * lpfc_rq_create - Create a Receive Queue on the HBA
16365  * @phba: HBA structure that indicates port to create a queue on.
16366  * @hrq: The queue structure to use to create the header receive queue.
16367  * @drq: The queue structure to use to create the data receive queue.
16368  * @cq: The completion queue to bind this work queue to.
16369  * @subtype: The subtype of the work queue indicating its functionality.
16370  *
16371  * This function creates a receive buffer queue pair , as detailed in @hrq and
16372  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16373  * to the HBA.
16374  *
16375  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16376  * struct is used to get the entry count that is necessary to determine the
16377  * number of pages to use for this queue. The @cq is used to indicate which
16378  * completion queue to bind received buffers that are posted to these queues to.
16379  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16380  * receive queue pair. This function is asynchronous and will wait for the
16381  * mailbox command to finish before continuing.
16382  *
16383  * On success this function will return a zero. If unable to allocate enough
16384  * memory this function will return -ENOMEM. If the queue create mailbox command
16385  * fails this function will return -ENXIO.
16386  **/
16387 int
16388 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16389 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
16390 {
16391 	struct lpfc_mbx_rq_create *rq_create;
16392 	struct lpfc_dmabuf *dmabuf;
16393 	LPFC_MBOXQ_t *mbox;
16394 	int rc, length, status = 0;
16395 	uint32_t shdr_status, shdr_add_status;
16396 	union lpfc_sli4_cfg_shdr *shdr;
16397 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16398 	void __iomem *bar_memmap_p;
16399 	uint32_t db_offset;
16400 	uint16_t pci_barset;
16401 
16402 	/* sanity check on queue memory */
16403 	if (!hrq || !drq || !cq)
16404 		return -ENODEV;
16405 	if (!phba->sli4_hba.pc_sli4_params.supported)
16406 		hw_page_size = SLI4_PAGE_SIZE;
16407 
16408 	if (hrq->entry_count != drq->entry_count)
16409 		return -EINVAL;
16410 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16411 	if (!mbox)
16412 		return -ENOMEM;
16413 	length = (sizeof(struct lpfc_mbx_rq_create) -
16414 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16415 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16416 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16417 			 length, LPFC_SLI4_MBX_EMBED);
16418 	rq_create = &mbox->u.mqe.un.rq_create;
16419 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16420 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16421 	       phba->sli4_hba.pc_sli4_params.rqv);
16422 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16423 		bf_set(lpfc_rq_context_rqe_count_1,
16424 		       &rq_create->u.request.context,
16425 		       hrq->entry_count);
16426 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
16427 		bf_set(lpfc_rq_context_rqe_size,
16428 		       &rq_create->u.request.context,
16429 		       LPFC_RQE_SIZE_8);
16430 		bf_set(lpfc_rq_context_page_size,
16431 		       &rq_create->u.request.context,
16432 		       LPFC_RQ_PAGE_SIZE_4096);
16433 	} else {
16434 		switch (hrq->entry_count) {
16435 		default:
16436 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16437 					"2535 Unsupported RQ count. (%d)\n",
16438 					hrq->entry_count);
16439 			if (hrq->entry_count < 512) {
16440 				status = -EINVAL;
16441 				goto out;
16442 			}
16443 			fallthrough;	/* otherwise default to smallest count */
16444 		case 512:
16445 			bf_set(lpfc_rq_context_rqe_count,
16446 			       &rq_create->u.request.context,
16447 			       LPFC_RQ_RING_SIZE_512);
16448 			break;
16449 		case 1024:
16450 			bf_set(lpfc_rq_context_rqe_count,
16451 			       &rq_create->u.request.context,
16452 			       LPFC_RQ_RING_SIZE_1024);
16453 			break;
16454 		case 2048:
16455 			bf_set(lpfc_rq_context_rqe_count,
16456 			       &rq_create->u.request.context,
16457 			       LPFC_RQ_RING_SIZE_2048);
16458 			break;
16459 		case 4096:
16460 			bf_set(lpfc_rq_context_rqe_count,
16461 			       &rq_create->u.request.context,
16462 			       LPFC_RQ_RING_SIZE_4096);
16463 			break;
16464 		}
16465 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16466 		       LPFC_HDR_BUF_SIZE);
16467 	}
16468 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16469 	       cq->queue_id);
16470 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16471 	       hrq->page_count);
16472 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
16473 		memset(dmabuf->virt, 0, hw_page_size);
16474 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16475 					putPaddrLow(dmabuf->phys);
16476 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16477 					putPaddrHigh(dmabuf->phys);
16478 	}
16479 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16480 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16481 
16482 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16483 	/* The IOCTL status is embedded in the mailbox subheader. */
16484 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16485 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16486 	if (shdr_status || shdr_add_status || rc) {
16487 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16488 				"2504 RQ_CREATE mailbox failed with "
16489 				"status x%x add_status x%x, mbx status x%x\n",
16490 				shdr_status, shdr_add_status, rc);
16491 		status = -ENXIO;
16492 		goto out;
16493 	}
16494 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16495 	if (hrq->queue_id == 0xFFFF) {
16496 		status = -ENXIO;
16497 		goto out;
16498 	}
16499 
16500 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16501 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16502 					&rq_create->u.response);
16503 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16504 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16505 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16506 					"3262 RQ [%d] doorbell format not "
16507 					"supported: x%x\n", hrq->queue_id,
16508 					hrq->db_format);
16509 			status = -EINVAL;
16510 			goto out;
16511 		}
16512 
16513 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16514 				    &rq_create->u.response);
16515 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16516 		if (!bar_memmap_p) {
16517 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16518 					"3269 RQ[%d] failed to memmap pci "
16519 					"barset:x%x\n", hrq->queue_id,
16520 					pci_barset);
16521 			status = -ENOMEM;
16522 			goto out;
16523 		}
16524 
16525 		db_offset = rq_create->u.response.doorbell_offset;
16526 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16527 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16528 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16529 					"3270 RQ[%d] doorbell offset not "
16530 					"supported: x%x\n", hrq->queue_id,
16531 					db_offset);
16532 			status = -EINVAL;
16533 			goto out;
16534 		}
16535 		hrq->db_regaddr = bar_memmap_p + db_offset;
16536 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16537 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16538 				"format:x%x\n", hrq->queue_id, pci_barset,
16539 				db_offset, hrq->db_format);
16540 	} else {
16541 		hrq->db_format = LPFC_DB_RING_FORMAT;
16542 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16543 	}
16544 	hrq->type = LPFC_HRQ;
16545 	hrq->assoc_qid = cq->queue_id;
16546 	hrq->subtype = subtype;
16547 	hrq->host_index = 0;
16548 	hrq->hba_index = 0;
16549 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16550 
16551 	/* now create the data queue */
16552 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16553 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16554 			 length, LPFC_SLI4_MBX_EMBED);
16555 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16556 	       phba->sli4_hba.pc_sli4_params.rqv);
16557 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16558 		bf_set(lpfc_rq_context_rqe_count_1,
16559 		       &rq_create->u.request.context, hrq->entry_count);
16560 		if (subtype == LPFC_NVMET)
16561 			rq_create->u.request.context.buffer_size =
16562 				LPFC_NVMET_DATA_BUF_SIZE;
16563 		else
16564 			rq_create->u.request.context.buffer_size =
16565 				LPFC_DATA_BUF_SIZE;
16566 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16567 		       LPFC_RQE_SIZE_8);
16568 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16569 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16570 	} else {
16571 		switch (drq->entry_count) {
16572 		default:
16573 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16574 					"2536 Unsupported RQ count. (%d)\n",
16575 					drq->entry_count);
16576 			if (drq->entry_count < 512) {
16577 				status = -EINVAL;
16578 				goto out;
16579 			}
16580 			fallthrough;	/* otherwise default to smallest count */
16581 		case 512:
16582 			bf_set(lpfc_rq_context_rqe_count,
16583 			       &rq_create->u.request.context,
16584 			       LPFC_RQ_RING_SIZE_512);
16585 			break;
16586 		case 1024:
16587 			bf_set(lpfc_rq_context_rqe_count,
16588 			       &rq_create->u.request.context,
16589 			       LPFC_RQ_RING_SIZE_1024);
16590 			break;
16591 		case 2048:
16592 			bf_set(lpfc_rq_context_rqe_count,
16593 			       &rq_create->u.request.context,
16594 			       LPFC_RQ_RING_SIZE_2048);
16595 			break;
16596 		case 4096:
16597 			bf_set(lpfc_rq_context_rqe_count,
16598 			       &rq_create->u.request.context,
16599 			       LPFC_RQ_RING_SIZE_4096);
16600 			break;
16601 		}
16602 		if (subtype == LPFC_NVMET)
16603 			bf_set(lpfc_rq_context_buf_size,
16604 			       &rq_create->u.request.context,
16605 			       LPFC_NVMET_DATA_BUF_SIZE);
16606 		else
16607 			bf_set(lpfc_rq_context_buf_size,
16608 			       &rq_create->u.request.context,
16609 			       LPFC_DATA_BUF_SIZE);
16610 	}
16611 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16612 	       cq->queue_id);
16613 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16614 	       drq->page_count);
16615 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16616 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16617 					putPaddrLow(dmabuf->phys);
16618 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16619 					putPaddrHigh(dmabuf->phys);
16620 	}
16621 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16622 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16623 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16624 	/* The IOCTL status is embedded in the mailbox subheader. */
16625 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16626 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16627 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16628 	if (shdr_status || shdr_add_status || rc) {
16629 		status = -ENXIO;
16630 		goto out;
16631 	}
16632 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16633 	if (drq->queue_id == 0xFFFF) {
16634 		status = -ENXIO;
16635 		goto out;
16636 	}
16637 	drq->type = LPFC_DRQ;
16638 	drq->assoc_qid = cq->queue_id;
16639 	drq->subtype = subtype;
16640 	drq->host_index = 0;
16641 	drq->hba_index = 0;
16642 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16643 
16644 	/* link the header and data RQs onto the parent cq child list */
16645 	list_add_tail(&hrq->list, &cq->child_list);
16646 	list_add_tail(&drq->list, &cq->child_list);
16647 
16648 out:
16649 	mempool_free(mbox, phba->mbox_mem_pool);
16650 	return status;
16651 }
16652 
16653 /**
16654  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16655  * @phba: HBA structure that indicates port to create a queue on.
16656  * @hrqp: The queue structure array to use to create the header receive queues.
16657  * @drqp: The queue structure array to use to create the data receive queues.
16658  * @cqp: The completion queue array to bind these receive queues to.
16659  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16660  *
16661  * This function creates a receive buffer queue pair , as detailed in @hrq and
16662  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16663  * to the HBA.
16664  *
16665  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16666  * struct is used to get the entry count that is necessary to determine the
16667  * number of pages to use for this queue. The @cq is used to indicate which
16668  * completion queue to bind received buffers that are posted to these queues to.
16669  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16670  * receive queue pair. This function is asynchronous and will wait for the
16671  * mailbox command to finish before continuing.
16672  *
16673  * On success this function will return a zero. If unable to allocate enough
16674  * memory this function will return -ENOMEM. If the queue create mailbox command
16675  * fails this function will return -ENXIO.
16676  **/
16677 int
16678 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16679 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16680 		uint32_t subtype)
16681 {
16682 	struct lpfc_queue *hrq, *drq, *cq;
16683 	struct lpfc_mbx_rq_create_v2 *rq_create;
16684 	struct lpfc_dmabuf *dmabuf;
16685 	LPFC_MBOXQ_t *mbox;
16686 	int rc, length, alloclen, status = 0;
16687 	int cnt, idx, numrq, page_idx = 0;
16688 	uint32_t shdr_status, shdr_add_status;
16689 	union lpfc_sli4_cfg_shdr *shdr;
16690 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16691 
16692 	numrq = phba->cfg_nvmet_mrq;
16693 	/* sanity check on array memory */
16694 	if (!hrqp || !drqp || !cqp || !numrq)
16695 		return -ENODEV;
16696 	if (!phba->sli4_hba.pc_sli4_params.supported)
16697 		hw_page_size = SLI4_PAGE_SIZE;
16698 
16699 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16700 	if (!mbox)
16701 		return -ENOMEM;
16702 
16703 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16704 	length += ((2 * numrq * hrqp[0]->page_count) *
16705 		   sizeof(struct dma_address));
16706 
16707 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16708 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16709 				    LPFC_SLI4_MBX_NEMBED);
16710 	if (alloclen < length) {
16711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16712 				"3099 Allocated DMA memory size (%d) is "
16713 				"less than the requested DMA memory size "
16714 				"(%d)\n", alloclen, length);
16715 		status = -ENOMEM;
16716 		goto out;
16717 	}
16718 
16719 
16720 
16721 	rq_create = mbox->sge_array->addr[0];
16722 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16723 
16724 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16725 	cnt = 0;
16726 
16727 	for (idx = 0; idx < numrq; idx++) {
16728 		hrq = hrqp[idx];
16729 		drq = drqp[idx];
16730 		cq  = cqp[idx];
16731 
16732 		/* sanity check on queue memory */
16733 		if (!hrq || !drq || !cq) {
16734 			status = -ENODEV;
16735 			goto out;
16736 		}
16737 
16738 		if (hrq->entry_count != drq->entry_count) {
16739 			status = -EINVAL;
16740 			goto out;
16741 		}
16742 
16743 		if (idx == 0) {
16744 			bf_set(lpfc_mbx_rq_create_num_pages,
16745 			       &rq_create->u.request,
16746 			       hrq->page_count);
16747 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16748 			       &rq_create->u.request, (numrq * 2));
16749 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16750 			       1);
16751 			bf_set(lpfc_rq_context_base_cq,
16752 			       &rq_create->u.request.context,
16753 			       cq->queue_id);
16754 			bf_set(lpfc_rq_context_data_size,
16755 			       &rq_create->u.request.context,
16756 			       LPFC_NVMET_DATA_BUF_SIZE);
16757 			bf_set(lpfc_rq_context_hdr_size,
16758 			       &rq_create->u.request.context,
16759 			       LPFC_HDR_BUF_SIZE);
16760 			bf_set(lpfc_rq_context_rqe_count_1,
16761 			       &rq_create->u.request.context,
16762 			       hrq->entry_count);
16763 			bf_set(lpfc_rq_context_rqe_size,
16764 			       &rq_create->u.request.context,
16765 			       LPFC_RQE_SIZE_8);
16766 			bf_set(lpfc_rq_context_page_size,
16767 			       &rq_create->u.request.context,
16768 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16769 		}
16770 		rc = 0;
16771 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16772 			memset(dmabuf->virt, 0, hw_page_size);
16773 			cnt = page_idx + dmabuf->buffer_tag;
16774 			rq_create->u.request.page[cnt].addr_lo =
16775 					putPaddrLow(dmabuf->phys);
16776 			rq_create->u.request.page[cnt].addr_hi =
16777 					putPaddrHigh(dmabuf->phys);
16778 			rc++;
16779 		}
16780 		page_idx += rc;
16781 
16782 		rc = 0;
16783 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16784 			memset(dmabuf->virt, 0, hw_page_size);
16785 			cnt = page_idx + dmabuf->buffer_tag;
16786 			rq_create->u.request.page[cnt].addr_lo =
16787 					putPaddrLow(dmabuf->phys);
16788 			rq_create->u.request.page[cnt].addr_hi =
16789 					putPaddrHigh(dmabuf->phys);
16790 			rc++;
16791 		}
16792 		page_idx += rc;
16793 
16794 		hrq->db_format = LPFC_DB_RING_FORMAT;
16795 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16796 		hrq->type = LPFC_HRQ;
16797 		hrq->assoc_qid = cq->queue_id;
16798 		hrq->subtype = subtype;
16799 		hrq->host_index = 0;
16800 		hrq->hba_index = 0;
16801 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16802 
16803 		drq->db_format = LPFC_DB_RING_FORMAT;
16804 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16805 		drq->type = LPFC_DRQ;
16806 		drq->assoc_qid = cq->queue_id;
16807 		drq->subtype = subtype;
16808 		drq->host_index = 0;
16809 		drq->hba_index = 0;
16810 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16811 
16812 		list_add_tail(&hrq->list, &cq->child_list);
16813 		list_add_tail(&drq->list, &cq->child_list);
16814 	}
16815 
16816 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16817 	/* The IOCTL status is embedded in the mailbox subheader. */
16818 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16819 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16820 	if (shdr_status || shdr_add_status || rc) {
16821 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16822 				"3120 RQ_CREATE mailbox failed with "
16823 				"status x%x add_status x%x, mbx status x%x\n",
16824 				shdr_status, shdr_add_status, rc);
16825 		status = -ENXIO;
16826 		goto out;
16827 	}
16828 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16829 	if (rc == 0xFFFF) {
16830 		status = -ENXIO;
16831 		goto out;
16832 	}
16833 
16834 	/* Initialize all RQs with associated queue id */
16835 	for (idx = 0; idx < numrq; idx++) {
16836 		hrq = hrqp[idx];
16837 		hrq->queue_id = rc + (2 * idx);
16838 		drq = drqp[idx];
16839 		drq->queue_id = rc + (2 * idx) + 1;
16840 	}
16841 
16842 out:
16843 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16844 	return status;
16845 }
16846 
16847 /**
16848  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16849  * @phba: HBA structure that indicates port to destroy a queue on.
16850  * @eq: The queue structure associated with the queue to destroy.
16851  *
16852  * This function destroys a queue, as detailed in @eq by sending an mailbox
16853  * command, specific to the type of queue, to the HBA.
16854  *
16855  * The @eq struct is used to get the queue ID of the queue to destroy.
16856  *
16857  * On success this function will return a zero. If the queue destroy mailbox
16858  * command fails this function will return -ENXIO.
16859  **/
16860 int
16861 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16862 {
16863 	LPFC_MBOXQ_t *mbox;
16864 	int rc, length, status = 0;
16865 	uint32_t shdr_status, shdr_add_status;
16866 	union lpfc_sli4_cfg_shdr *shdr;
16867 
16868 	/* sanity check on queue memory */
16869 	if (!eq)
16870 		return -ENODEV;
16871 
16872 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16873 	if (!mbox)
16874 		return -ENOMEM;
16875 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16876 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16877 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16878 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16879 			 length, LPFC_SLI4_MBX_EMBED);
16880 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16881 	       eq->queue_id);
16882 	mbox->vport = eq->phba->pport;
16883 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16884 
16885 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16886 	/* The IOCTL status is embedded in the mailbox subheader. */
16887 	shdr = (union lpfc_sli4_cfg_shdr *)
16888 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16889 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16890 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16891 	if (shdr_status || shdr_add_status || rc) {
16892 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16893 				"2505 EQ_DESTROY mailbox failed with "
16894 				"status x%x add_status x%x, mbx status x%x\n",
16895 				shdr_status, shdr_add_status, rc);
16896 		status = -ENXIO;
16897 	}
16898 
16899 	/* Remove eq from any list */
16900 	list_del_init(&eq->list);
16901 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16902 	return status;
16903 }
16904 
16905 /**
16906  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16907  * @phba: HBA structure that indicates port to destroy a queue on.
16908  * @cq: The queue structure associated with the queue to destroy.
16909  *
16910  * This function destroys a queue, as detailed in @cq by sending an mailbox
16911  * command, specific to the type of queue, to the HBA.
16912  *
16913  * The @cq struct is used to get the queue ID of the queue to destroy.
16914  *
16915  * On success this function will return a zero. If the queue destroy mailbox
16916  * command fails this function will return -ENXIO.
16917  **/
16918 int
16919 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16920 {
16921 	LPFC_MBOXQ_t *mbox;
16922 	int rc, length, status = 0;
16923 	uint32_t shdr_status, shdr_add_status;
16924 	union lpfc_sli4_cfg_shdr *shdr;
16925 
16926 	/* sanity check on queue memory */
16927 	if (!cq)
16928 		return -ENODEV;
16929 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16930 	if (!mbox)
16931 		return -ENOMEM;
16932 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16933 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16934 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16935 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16936 			 length, LPFC_SLI4_MBX_EMBED);
16937 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16938 	       cq->queue_id);
16939 	mbox->vport = cq->phba->pport;
16940 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16941 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16942 	/* The IOCTL status is embedded in the mailbox subheader. */
16943 	shdr = (union lpfc_sli4_cfg_shdr *)
16944 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16945 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16946 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16947 	if (shdr_status || shdr_add_status || rc) {
16948 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16949 				"2506 CQ_DESTROY mailbox failed with "
16950 				"status x%x add_status x%x, mbx status x%x\n",
16951 				shdr_status, shdr_add_status, rc);
16952 		status = -ENXIO;
16953 	}
16954 	/* Remove cq from any list */
16955 	list_del_init(&cq->list);
16956 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16957 	return status;
16958 }
16959 
16960 /**
16961  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16962  * @phba: HBA structure that indicates port to destroy a queue on.
16963  * @mq: The queue structure associated with the queue to destroy.
16964  *
16965  * This function destroys a queue, as detailed in @mq by sending an mailbox
16966  * command, specific to the type of queue, to the HBA.
16967  *
16968  * The @mq struct is used to get the queue ID of the queue to destroy.
16969  *
16970  * On success this function will return a zero. If the queue destroy mailbox
16971  * command fails this function will return -ENXIO.
16972  **/
16973 int
16974 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16975 {
16976 	LPFC_MBOXQ_t *mbox;
16977 	int rc, length, status = 0;
16978 	uint32_t shdr_status, shdr_add_status;
16979 	union lpfc_sli4_cfg_shdr *shdr;
16980 
16981 	/* sanity check on queue memory */
16982 	if (!mq)
16983 		return -ENODEV;
16984 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16985 	if (!mbox)
16986 		return -ENOMEM;
16987 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16988 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16989 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16990 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16991 			 length, LPFC_SLI4_MBX_EMBED);
16992 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16993 	       mq->queue_id);
16994 	mbox->vport = mq->phba->pport;
16995 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16996 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16997 	/* The IOCTL status is embedded in the mailbox subheader. */
16998 	shdr = (union lpfc_sli4_cfg_shdr *)
16999 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17000 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17001 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17002 	if (shdr_status || shdr_add_status || rc) {
17003 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17004 				"2507 MQ_DESTROY mailbox failed with "
17005 				"status x%x add_status x%x, mbx status x%x\n",
17006 				shdr_status, shdr_add_status, rc);
17007 		status = -ENXIO;
17008 	}
17009 	/* Remove mq from any list */
17010 	list_del_init(&mq->list);
17011 	mempool_free(mbox, mq->phba->mbox_mem_pool);
17012 	return status;
17013 }
17014 
17015 /**
17016  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17017  * @phba: HBA structure that indicates port to destroy a queue on.
17018  * @wq: The queue structure associated with the queue to destroy.
17019  *
17020  * This function destroys a queue, as detailed in @wq by sending an mailbox
17021  * command, specific to the type of queue, to the HBA.
17022  *
17023  * The @wq struct is used to get the queue ID of the queue to destroy.
17024  *
17025  * On success this function will return a zero. If the queue destroy mailbox
17026  * command fails this function will return -ENXIO.
17027  **/
17028 int
17029 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17030 {
17031 	LPFC_MBOXQ_t *mbox;
17032 	int rc, length, status = 0;
17033 	uint32_t shdr_status, shdr_add_status;
17034 	union lpfc_sli4_cfg_shdr *shdr;
17035 
17036 	/* sanity check on queue memory */
17037 	if (!wq)
17038 		return -ENODEV;
17039 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17040 	if (!mbox)
17041 		return -ENOMEM;
17042 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
17043 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17044 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17045 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17046 			 length, LPFC_SLI4_MBX_EMBED);
17047 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17048 	       wq->queue_id);
17049 	mbox->vport = wq->phba->pport;
17050 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17051 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17052 	shdr = (union lpfc_sli4_cfg_shdr *)
17053 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17054 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17055 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17056 	if (shdr_status || shdr_add_status || rc) {
17057 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17058 				"2508 WQ_DESTROY mailbox failed with "
17059 				"status x%x add_status x%x, mbx status x%x\n",
17060 				shdr_status, shdr_add_status, rc);
17061 		status = -ENXIO;
17062 	}
17063 	/* Remove wq from any list */
17064 	list_del_init(&wq->list);
17065 	kfree(wq->pring);
17066 	wq->pring = NULL;
17067 	mempool_free(mbox, wq->phba->mbox_mem_pool);
17068 	return status;
17069 }
17070 
17071 /**
17072  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17073  * @phba: HBA structure that indicates port to destroy a queue on.
17074  * @hrq: The queue structure associated with the queue to destroy.
17075  * @drq: The queue structure associated with the queue to destroy.
17076  *
17077  * This function destroys a queue, as detailed in @rq by sending an mailbox
17078  * command, specific to the type of queue, to the HBA.
17079  *
17080  * The @rq struct is used to get the queue ID of the queue to destroy.
17081  *
17082  * On success this function will return a zero. If the queue destroy mailbox
17083  * command fails this function will return -ENXIO.
17084  **/
17085 int
17086 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17087 		struct lpfc_queue *drq)
17088 {
17089 	LPFC_MBOXQ_t *mbox;
17090 	int rc, length, status = 0;
17091 	uint32_t shdr_status, shdr_add_status;
17092 	union lpfc_sli4_cfg_shdr *shdr;
17093 
17094 	/* sanity check on queue memory */
17095 	if (!hrq || !drq)
17096 		return -ENODEV;
17097 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17098 	if (!mbox)
17099 		return -ENOMEM;
17100 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
17101 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17102 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17103 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17104 			 length, LPFC_SLI4_MBX_EMBED);
17105 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17106 	       hrq->queue_id);
17107 	mbox->vport = hrq->phba->pport;
17108 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17109 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17110 	/* The IOCTL status is embedded in the mailbox subheader. */
17111 	shdr = (union lpfc_sli4_cfg_shdr *)
17112 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17113 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17114 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17115 	if (shdr_status || shdr_add_status || rc) {
17116 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17117 				"2509 RQ_DESTROY mailbox failed with "
17118 				"status x%x add_status x%x, mbx status x%x\n",
17119 				shdr_status, shdr_add_status, rc);
17120 		mempool_free(mbox, hrq->phba->mbox_mem_pool);
17121 		return -ENXIO;
17122 	}
17123 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17124 	       drq->queue_id);
17125 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17126 	shdr = (union lpfc_sli4_cfg_shdr *)
17127 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17128 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17129 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17130 	if (shdr_status || shdr_add_status || rc) {
17131 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17132 				"2510 RQ_DESTROY mailbox failed with "
17133 				"status x%x add_status x%x, mbx status x%x\n",
17134 				shdr_status, shdr_add_status, rc);
17135 		status = -ENXIO;
17136 	}
17137 	list_del_init(&hrq->list);
17138 	list_del_init(&drq->list);
17139 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
17140 	return status;
17141 }
17142 
17143 /**
17144  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17145  * @phba: The virtual port for which this call being executed.
17146  * @pdma_phys_addr0: Physical address of the 1st SGL page.
17147  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17148  * @xritag: the xritag that ties this io to the SGL pages.
17149  *
17150  * This routine will post the sgl pages for the IO that has the xritag
17151  * that is in the iocbq structure. The xritag is assigned during iocbq
17152  * creation and persists for as long as the driver is loaded.
17153  * if the caller has fewer than 256 scatter gather segments to map then
17154  * pdma_phys_addr1 should be 0.
17155  * If the caller needs to map more than 256 scatter gather segment then
17156  * pdma_phys_addr1 should be a valid physical address.
17157  * physical address for SGLs must be 64 byte aligned.
17158  * If you are going to map 2 SGL's then the first one must have 256 entries
17159  * the second sgl can have between 1 and 256 entries.
17160  *
17161  * Return codes:
17162  * 	0 - Success
17163  * 	-ENXIO, -ENOMEM - Failure
17164  **/
17165 int
17166 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17167 		dma_addr_t pdma_phys_addr0,
17168 		dma_addr_t pdma_phys_addr1,
17169 		uint16_t xritag)
17170 {
17171 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17172 	LPFC_MBOXQ_t *mbox;
17173 	int rc;
17174 	uint32_t shdr_status, shdr_add_status;
17175 	uint32_t mbox_tmo;
17176 	union lpfc_sli4_cfg_shdr *shdr;
17177 
17178 	if (xritag == NO_XRI) {
17179 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17180 				"0364 Invalid param:\n");
17181 		return -EINVAL;
17182 	}
17183 
17184 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17185 	if (!mbox)
17186 		return -ENOMEM;
17187 
17188 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17189 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17190 			sizeof(struct lpfc_mbx_post_sgl_pages) -
17191 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17192 
17193 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17194 				&mbox->u.mqe.un.post_sgl_pages;
17195 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17196 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17197 
17198 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
17199 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17200 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17201 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17202 
17203 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
17204 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17205 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17206 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17207 	if (!phba->sli4_hba.intr_enable)
17208 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17209 	else {
17210 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17211 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17212 	}
17213 	/* The IOCTL status is embedded in the mailbox subheader. */
17214 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17215 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17216 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17217 	if (!phba->sli4_hba.intr_enable)
17218 		mempool_free(mbox, phba->mbox_mem_pool);
17219 	else if (rc != MBX_TIMEOUT)
17220 		mempool_free(mbox, phba->mbox_mem_pool);
17221 	if (shdr_status || shdr_add_status || rc) {
17222 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17223 				"2511 POST_SGL mailbox failed with "
17224 				"status x%x add_status x%x, mbx status x%x\n",
17225 				shdr_status, shdr_add_status, rc);
17226 	}
17227 	return 0;
17228 }
17229 
17230 /**
17231  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17232  * @phba: pointer to lpfc hba data structure.
17233  *
17234  * This routine is invoked to post rpi header templates to the
17235  * HBA consistent with the SLI-4 interface spec.  This routine
17236  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17237  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17238  *
17239  * Returns
17240  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17241  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17242  **/
17243 static uint16_t
17244 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17245 {
17246 	unsigned long xri;
17247 
17248 	/*
17249 	 * Fetch the next logical xri.  Because this index is logical,
17250 	 * the driver starts at 0 each time.
17251 	 */
17252 	spin_lock_irq(&phba->hbalock);
17253 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
17254 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
17255 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17256 		spin_unlock_irq(&phba->hbalock);
17257 		return NO_XRI;
17258 	} else {
17259 		set_bit(xri, phba->sli4_hba.xri_bmask);
17260 		phba->sli4_hba.max_cfg_param.xri_used++;
17261 	}
17262 	spin_unlock_irq(&phba->hbalock);
17263 	return xri;
17264 }
17265 
17266 /**
17267  * __lpfc_sli4_free_xri - Release an xri for reuse.
17268  * @phba: pointer to lpfc hba data structure.
17269  * @xri: xri to release.
17270  *
17271  * This routine is invoked to release an xri to the pool of
17272  * available rpis maintained by the driver.
17273  **/
17274 static void
17275 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17276 {
17277 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17278 		phba->sli4_hba.max_cfg_param.xri_used--;
17279 	}
17280 }
17281 
17282 /**
17283  * lpfc_sli4_free_xri - Release an xri for reuse.
17284  * @phba: pointer to lpfc hba data structure.
17285  * @xri: xri to release.
17286  *
17287  * This routine is invoked to release an xri to the pool of
17288  * available rpis maintained by the driver.
17289  **/
17290 void
17291 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17292 {
17293 	spin_lock_irq(&phba->hbalock);
17294 	__lpfc_sli4_free_xri(phba, xri);
17295 	spin_unlock_irq(&phba->hbalock);
17296 }
17297 
17298 /**
17299  * lpfc_sli4_next_xritag - Get an xritag for the io
17300  * @phba: Pointer to HBA context object.
17301  *
17302  * This function gets an xritag for the iocb. If there is no unused xritag
17303  * it will return 0xffff.
17304  * The function returns the allocated xritag if successful, else returns zero.
17305  * Zero is not a valid xritag.
17306  * The caller is not required to hold any lock.
17307  **/
17308 uint16_t
17309 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17310 {
17311 	uint16_t xri_index;
17312 
17313 	xri_index = lpfc_sli4_alloc_xri(phba);
17314 	if (xri_index == NO_XRI)
17315 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17316 				"2004 Failed to allocate XRI.last XRITAG is %d"
17317 				" Max XRI is %d, Used XRI is %d\n",
17318 				xri_index,
17319 				phba->sli4_hba.max_cfg_param.max_xri,
17320 				phba->sli4_hba.max_cfg_param.xri_used);
17321 	return xri_index;
17322 }
17323 
17324 /**
17325  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17326  * @phba: pointer to lpfc hba data structure.
17327  * @post_sgl_list: pointer to els sgl entry list.
17328  * @post_cnt: number of els sgl entries on the list.
17329  *
17330  * This routine is invoked to post a block of driver's sgl pages to the
17331  * HBA using non-embedded mailbox command. No Lock is held. This routine
17332  * is only called when the driver is loading and after all IO has been
17333  * stopped.
17334  **/
17335 static int
17336 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17337 			    struct list_head *post_sgl_list,
17338 			    int post_cnt)
17339 {
17340 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17341 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17342 	struct sgl_page_pairs *sgl_pg_pairs;
17343 	void *viraddr;
17344 	LPFC_MBOXQ_t *mbox;
17345 	uint32_t reqlen, alloclen, pg_pairs;
17346 	uint32_t mbox_tmo;
17347 	uint16_t xritag_start = 0;
17348 	int rc = 0;
17349 	uint32_t shdr_status, shdr_add_status;
17350 	union lpfc_sli4_cfg_shdr *shdr;
17351 
17352 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17353 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17354 	if (reqlen > SLI4_PAGE_SIZE) {
17355 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17356 				"2559 Block sgl registration required DMA "
17357 				"size (%d) great than a page\n", reqlen);
17358 		return -ENOMEM;
17359 	}
17360 
17361 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17362 	if (!mbox)
17363 		return -ENOMEM;
17364 
17365 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17366 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17367 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
17368 			 LPFC_SLI4_MBX_NEMBED);
17369 
17370 	if (alloclen < reqlen) {
17371 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17372 				"0285 Allocated DMA memory size (%d) is "
17373 				"less than the requested DMA memory "
17374 				"size (%d)\n", alloclen, reqlen);
17375 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17376 		return -ENOMEM;
17377 	}
17378 	/* Set up the SGL pages in the non-embedded DMA pages */
17379 	viraddr = mbox->sge_array->addr[0];
17380 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17381 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17382 
17383 	pg_pairs = 0;
17384 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
17385 		/* Set up the sge entry */
17386 		sgl_pg_pairs->sgl_pg0_addr_lo =
17387 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
17388 		sgl_pg_pairs->sgl_pg0_addr_hi =
17389 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
17390 		sgl_pg_pairs->sgl_pg1_addr_lo =
17391 				cpu_to_le32(putPaddrLow(0));
17392 		sgl_pg_pairs->sgl_pg1_addr_hi =
17393 				cpu_to_le32(putPaddrHigh(0));
17394 
17395 		/* Keep the first xritag on the list */
17396 		if (pg_pairs == 0)
17397 			xritag_start = sglq_entry->sli4_xritag;
17398 		sgl_pg_pairs++;
17399 		pg_pairs++;
17400 	}
17401 
17402 	/* Complete initialization and perform endian conversion. */
17403 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17404 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
17405 	sgl->word0 = cpu_to_le32(sgl->word0);
17406 
17407 	if (!phba->sli4_hba.intr_enable)
17408 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17409 	else {
17410 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17411 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17412 	}
17413 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
17414 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17415 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17416 	if (!phba->sli4_hba.intr_enable)
17417 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17418 	else if (rc != MBX_TIMEOUT)
17419 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17420 	if (shdr_status || shdr_add_status || rc) {
17421 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17422 				"2513 POST_SGL_BLOCK mailbox command failed "
17423 				"status x%x add_status x%x mbx status x%x\n",
17424 				shdr_status, shdr_add_status, rc);
17425 		rc = -ENXIO;
17426 	}
17427 	return rc;
17428 }
17429 
17430 /**
17431  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
17432  * @phba: pointer to lpfc hba data structure.
17433  * @nblist: pointer to nvme buffer list.
17434  * @count: number of scsi buffers on the list.
17435  *
17436  * This routine is invoked to post a block of @count scsi sgl pages from a
17437  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
17438  * No Lock is held.
17439  *
17440  **/
17441 static int
17442 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
17443 			    int count)
17444 {
17445 	struct lpfc_io_buf *lpfc_ncmd;
17446 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17447 	struct sgl_page_pairs *sgl_pg_pairs;
17448 	void *viraddr;
17449 	LPFC_MBOXQ_t *mbox;
17450 	uint32_t reqlen, alloclen, pg_pairs;
17451 	uint32_t mbox_tmo;
17452 	uint16_t xritag_start = 0;
17453 	int rc = 0;
17454 	uint32_t shdr_status, shdr_add_status;
17455 	dma_addr_t pdma_phys_bpl1;
17456 	union lpfc_sli4_cfg_shdr *shdr;
17457 
17458 	/* Calculate the requested length of the dma memory */
17459 	reqlen = count * sizeof(struct sgl_page_pairs) +
17460 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17461 	if (reqlen > SLI4_PAGE_SIZE) {
17462 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
17463 				"6118 Block sgl registration required DMA "
17464 				"size (%d) great than a page\n", reqlen);
17465 		return -ENOMEM;
17466 	}
17467 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17468 	if (!mbox) {
17469 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17470 				"6119 Failed to allocate mbox cmd memory\n");
17471 		return -ENOMEM;
17472 	}
17473 
17474 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17475 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17476 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17477 				    reqlen, LPFC_SLI4_MBX_NEMBED);
17478 
17479 	if (alloclen < reqlen) {
17480 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17481 				"6120 Allocated DMA memory size (%d) is "
17482 				"less than the requested DMA memory "
17483 				"size (%d)\n", alloclen, reqlen);
17484 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17485 		return -ENOMEM;
17486 	}
17487 
17488 	/* Get the first SGE entry from the non-embedded DMA memory */
17489 	viraddr = mbox->sge_array->addr[0];
17490 
17491 	/* Set up the SGL pages in the non-embedded DMA pages */
17492 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17493 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17494 
17495 	pg_pairs = 0;
17496 	list_for_each_entry(lpfc_ncmd, nblist, list) {
17497 		/* Set up the sge entry */
17498 		sgl_pg_pairs->sgl_pg0_addr_lo =
17499 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17500 		sgl_pg_pairs->sgl_pg0_addr_hi =
17501 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17502 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17503 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17504 						SGL_PAGE_SIZE;
17505 		else
17506 			pdma_phys_bpl1 = 0;
17507 		sgl_pg_pairs->sgl_pg1_addr_lo =
17508 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17509 		sgl_pg_pairs->sgl_pg1_addr_hi =
17510 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17511 		/* Keep the first xritag on the list */
17512 		if (pg_pairs == 0)
17513 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17514 		sgl_pg_pairs++;
17515 		pg_pairs++;
17516 	}
17517 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17518 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17519 	/* Perform endian conversion if necessary */
17520 	sgl->word0 = cpu_to_le32(sgl->word0);
17521 
17522 	if (!phba->sli4_hba.intr_enable) {
17523 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17524 	} else {
17525 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17526 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17527 	}
17528 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17529 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17530 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17531 	if (!phba->sli4_hba.intr_enable)
17532 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17533 	else if (rc != MBX_TIMEOUT)
17534 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17535 	if (shdr_status || shdr_add_status || rc) {
17536 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17537 				"6125 POST_SGL_BLOCK mailbox command failed "
17538 				"status x%x add_status x%x mbx status x%x\n",
17539 				shdr_status, shdr_add_status, rc);
17540 		rc = -ENXIO;
17541 	}
17542 	return rc;
17543 }
17544 
17545 /**
17546  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17547  * @phba: pointer to lpfc hba data structure.
17548  * @post_nblist: pointer to the nvme buffer list.
17549  * @sb_count: number of nvme buffers.
17550  *
17551  * This routine walks a list of nvme buffers that was passed in. It attempts
17552  * to construct blocks of nvme buffer sgls which contains contiguous xris and
17553  * uses the non-embedded SGL block post mailbox commands to post to the port.
17554  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17555  * embedded SGL post mailbox command for posting. The @post_nblist passed in
17556  * must be local list, thus no lock is needed when manipulate the list.
17557  *
17558  * Returns: 0 = failure, non-zero number of successfully posted buffers.
17559  **/
17560 int
17561 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17562 			   struct list_head *post_nblist, int sb_count)
17563 {
17564 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17565 	int status, sgl_size;
17566 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17567 	dma_addr_t pdma_phys_sgl1;
17568 	int last_xritag = NO_XRI;
17569 	int cur_xritag;
17570 	LIST_HEAD(prep_nblist);
17571 	LIST_HEAD(blck_nblist);
17572 	LIST_HEAD(nvme_nblist);
17573 
17574 	/* sanity check */
17575 	if (sb_count <= 0)
17576 		return -EINVAL;
17577 
17578 	sgl_size = phba->cfg_sg_dma_buf_size;
17579 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17580 		list_del_init(&lpfc_ncmd->list);
17581 		block_cnt++;
17582 		if ((last_xritag != NO_XRI) &&
17583 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17584 			/* a hole in xri block, form a sgl posting block */
17585 			list_splice_init(&prep_nblist, &blck_nblist);
17586 			post_cnt = block_cnt - 1;
17587 			/* prepare list for next posting block */
17588 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17589 			block_cnt = 1;
17590 		} else {
17591 			/* prepare list for next posting block */
17592 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17593 			/* enough sgls for non-embed sgl mbox command */
17594 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17595 				list_splice_init(&prep_nblist, &blck_nblist);
17596 				post_cnt = block_cnt;
17597 				block_cnt = 0;
17598 			}
17599 		}
17600 		num_posting++;
17601 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17602 
17603 		/* end of repost sgl list condition for NVME buffers */
17604 		if (num_posting == sb_count) {
17605 			if (post_cnt == 0) {
17606 				/* last sgl posting block */
17607 				list_splice_init(&prep_nblist, &blck_nblist);
17608 				post_cnt = block_cnt;
17609 			} else if (block_cnt == 1) {
17610 				/* last single sgl with non-contiguous xri */
17611 				if (sgl_size > SGL_PAGE_SIZE)
17612 					pdma_phys_sgl1 =
17613 						lpfc_ncmd->dma_phys_sgl +
17614 						SGL_PAGE_SIZE;
17615 				else
17616 					pdma_phys_sgl1 = 0;
17617 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17618 				status = lpfc_sli4_post_sgl(
17619 						phba, lpfc_ncmd->dma_phys_sgl,
17620 						pdma_phys_sgl1, cur_xritag);
17621 				if (status) {
17622 					/* Post error.  Buffer unavailable. */
17623 					lpfc_ncmd->flags |=
17624 						LPFC_SBUF_NOT_POSTED;
17625 				} else {
17626 					/* Post success. Bffer available. */
17627 					lpfc_ncmd->flags &=
17628 						~LPFC_SBUF_NOT_POSTED;
17629 					lpfc_ncmd->status = IOSTAT_SUCCESS;
17630 					num_posted++;
17631 				}
17632 				/* success, put on NVME buffer sgl list */
17633 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17634 			}
17635 		}
17636 
17637 		/* continue until a nembed page worth of sgls */
17638 		if (post_cnt == 0)
17639 			continue;
17640 
17641 		/* post block of NVME buffer list sgls */
17642 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17643 						     post_cnt);
17644 
17645 		/* don't reset xirtag due to hole in xri block */
17646 		if (block_cnt == 0)
17647 			last_xritag = NO_XRI;
17648 
17649 		/* reset NVME buffer post count for next round of posting */
17650 		post_cnt = 0;
17651 
17652 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17653 		while (!list_empty(&blck_nblist)) {
17654 			list_remove_head(&blck_nblist, lpfc_ncmd,
17655 					 struct lpfc_io_buf, list);
17656 			if (status) {
17657 				/* Post error.  Mark buffer unavailable. */
17658 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17659 			} else {
17660 				/* Post success, Mark buffer available. */
17661 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17662 				lpfc_ncmd->status = IOSTAT_SUCCESS;
17663 				num_posted++;
17664 			}
17665 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17666 		}
17667 	}
17668 	/* Push NVME buffers with sgl posted to the available list */
17669 	lpfc_io_buf_replenish(phba, &nvme_nblist);
17670 
17671 	return num_posted;
17672 }
17673 
17674 /**
17675  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17676  * @phba: pointer to lpfc_hba struct that the frame was received on
17677  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17678  *
17679  * This function checks the fields in the @fc_hdr to see if the FC frame is a
17680  * valid type of frame that the LPFC driver will handle. This function will
17681  * return a zero if the frame is a valid frame or a non zero value when the
17682  * frame does not pass the check.
17683  **/
17684 static int
17685 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17686 {
17687 	/*  make rctl_names static to save stack space */
17688 	struct fc_vft_header *fc_vft_hdr;
17689 	uint32_t *header = (uint32_t *) fc_hdr;
17690 
17691 #define FC_RCTL_MDS_DIAGS	0xF4
17692 
17693 	switch (fc_hdr->fh_r_ctl) {
17694 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
17695 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
17696 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
17697 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
17698 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
17699 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
17700 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
17701 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
17702 	case FC_RCTL_ELS_REQ:	/* extended link services request */
17703 	case FC_RCTL_ELS_REP:	/* extended link services reply */
17704 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
17705 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
17706 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
17707 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
17708 	case FC_RCTL_BA_RMC: 	/* remove connection */
17709 	case FC_RCTL_BA_ACC:	/* basic accept */
17710 	case FC_RCTL_BA_RJT:	/* basic reject */
17711 	case FC_RCTL_BA_PRMT:
17712 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17713 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17714 	case FC_RCTL_P_RJT:	/* port reject */
17715 	case FC_RCTL_F_RJT:	/* fabric reject */
17716 	case FC_RCTL_P_BSY:	/* port busy */
17717 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17718 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17719 	case FC_RCTL_LCR:	/* link credit reset */
17720 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17721 	case FC_RCTL_END:	/* end */
17722 		break;
17723 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17724 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17725 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17726 		return lpfc_fc_frame_check(phba, fc_hdr);
17727 	default:
17728 		goto drop;
17729 	}
17730 
17731 	switch (fc_hdr->fh_type) {
17732 	case FC_TYPE_BLS:
17733 	case FC_TYPE_ELS:
17734 	case FC_TYPE_FCP:
17735 	case FC_TYPE_CT:
17736 	case FC_TYPE_NVME:
17737 		break;
17738 	case FC_TYPE_IP:
17739 	case FC_TYPE_ILS:
17740 	default:
17741 		goto drop;
17742 	}
17743 
17744 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17745 			"2538 Received frame rctl:x%x, type:x%x, "
17746 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17747 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17748 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17749 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17750 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17751 			be32_to_cpu(header[6]));
17752 	return 0;
17753 drop:
17754 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17755 			"2539 Dropped frame rctl:x%x type:x%x\n",
17756 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17757 	return 1;
17758 }
17759 
17760 /**
17761  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17762  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17763  *
17764  * This function processes the FC header to retrieve the VFI from the VF
17765  * header, if one exists. This function will return the VFI if one exists
17766  * or 0 if no VSAN Header exists.
17767  **/
17768 static uint32_t
17769 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17770 {
17771 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17772 
17773 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17774 		return 0;
17775 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17776 }
17777 
17778 /**
17779  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17780  * @phba: Pointer to the HBA structure to search for the vport on
17781  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17782  * @fcfi: The FC Fabric ID that the frame came from
17783  * @did: Destination ID to match against
17784  *
17785  * This function searches the @phba for a vport that matches the content of the
17786  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17787  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17788  * returns the matching vport pointer or NULL if unable to match frame to a
17789  * vport.
17790  **/
17791 static struct lpfc_vport *
17792 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17793 		       uint16_t fcfi, uint32_t did)
17794 {
17795 	struct lpfc_vport **vports;
17796 	struct lpfc_vport *vport = NULL;
17797 	int i;
17798 
17799 	if (did == Fabric_DID)
17800 		return phba->pport;
17801 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17802 		!(phba->link_state == LPFC_HBA_READY))
17803 		return phba->pport;
17804 
17805 	vports = lpfc_create_vport_work_array(phba);
17806 	if (vports != NULL) {
17807 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17808 			if (phba->fcf.fcfi == fcfi &&
17809 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17810 			    vports[i]->fc_myDID == did) {
17811 				vport = vports[i];
17812 				break;
17813 			}
17814 		}
17815 	}
17816 	lpfc_destroy_vport_work_array(phba, vports);
17817 	return vport;
17818 }
17819 
17820 /**
17821  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17822  * @vport: The vport to work on.
17823  *
17824  * This function updates the receive sequence time stamp for this vport. The
17825  * receive sequence time stamp indicates the time that the last frame of the
17826  * the sequence that has been idle for the longest amount of time was received.
17827  * the driver uses this time stamp to indicate if any received sequences have
17828  * timed out.
17829  **/
17830 static void
17831 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17832 {
17833 	struct lpfc_dmabuf *h_buf;
17834 	struct hbq_dmabuf *dmabuf = NULL;
17835 
17836 	/* get the oldest sequence on the rcv list */
17837 	h_buf = list_get_first(&vport->rcv_buffer_list,
17838 			       struct lpfc_dmabuf, list);
17839 	if (!h_buf)
17840 		return;
17841 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17842 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17843 }
17844 
17845 /**
17846  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17847  * @vport: The vport that the received sequences were sent to.
17848  *
17849  * This function cleans up all outstanding received sequences. This is called
17850  * by the driver when a link event or user action invalidates all the received
17851  * sequences.
17852  **/
17853 void
17854 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17855 {
17856 	struct lpfc_dmabuf *h_buf, *hnext;
17857 	struct lpfc_dmabuf *d_buf, *dnext;
17858 	struct hbq_dmabuf *dmabuf = NULL;
17859 
17860 	/* start with the oldest sequence on the rcv list */
17861 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17862 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17863 		list_del_init(&dmabuf->hbuf.list);
17864 		list_for_each_entry_safe(d_buf, dnext,
17865 					 &dmabuf->dbuf.list, list) {
17866 			list_del_init(&d_buf->list);
17867 			lpfc_in_buf_free(vport->phba, d_buf);
17868 		}
17869 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17870 	}
17871 }
17872 
17873 /**
17874  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17875  * @vport: The vport that the received sequences were sent to.
17876  *
17877  * This function determines whether any received sequences have timed out by
17878  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17879  * indicates that there is at least one timed out sequence this routine will
17880  * go through the received sequences one at a time from most inactive to most
17881  * active to determine which ones need to be cleaned up. Once it has determined
17882  * that a sequence needs to be cleaned up it will simply free up the resources
17883  * without sending an abort.
17884  **/
17885 void
17886 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17887 {
17888 	struct lpfc_dmabuf *h_buf, *hnext;
17889 	struct lpfc_dmabuf *d_buf, *dnext;
17890 	struct hbq_dmabuf *dmabuf = NULL;
17891 	unsigned long timeout;
17892 	int abort_count = 0;
17893 
17894 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17895 		   vport->rcv_buffer_time_stamp);
17896 	if (list_empty(&vport->rcv_buffer_list) ||
17897 	    time_before(jiffies, timeout))
17898 		return;
17899 	/* start with the oldest sequence on the rcv list */
17900 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17901 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17902 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17903 			   dmabuf->time_stamp);
17904 		if (time_before(jiffies, timeout))
17905 			break;
17906 		abort_count++;
17907 		list_del_init(&dmabuf->hbuf.list);
17908 		list_for_each_entry_safe(d_buf, dnext,
17909 					 &dmabuf->dbuf.list, list) {
17910 			list_del_init(&d_buf->list);
17911 			lpfc_in_buf_free(vport->phba, d_buf);
17912 		}
17913 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17914 	}
17915 	if (abort_count)
17916 		lpfc_update_rcv_time_stamp(vport);
17917 }
17918 
17919 /**
17920  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17921  * @vport: pointer to a vitural port
17922  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17923  *
17924  * This function searches through the existing incomplete sequences that have
17925  * been sent to this @vport. If the frame matches one of the incomplete
17926  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17927  * make up that sequence. If no sequence is found that matches this frame then
17928  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17929  * This function returns a pointer to the first dmabuf in the sequence list that
17930  * the frame was linked to.
17931  **/
17932 static struct hbq_dmabuf *
17933 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17934 {
17935 	struct fc_frame_header *new_hdr;
17936 	struct fc_frame_header *temp_hdr;
17937 	struct lpfc_dmabuf *d_buf;
17938 	struct lpfc_dmabuf *h_buf;
17939 	struct hbq_dmabuf *seq_dmabuf = NULL;
17940 	struct hbq_dmabuf *temp_dmabuf = NULL;
17941 	uint8_t	found = 0;
17942 
17943 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17944 	dmabuf->time_stamp = jiffies;
17945 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17946 
17947 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17948 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17949 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17950 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17951 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17952 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17953 			continue;
17954 		/* found a pending sequence that matches this frame */
17955 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17956 		break;
17957 	}
17958 	if (!seq_dmabuf) {
17959 		/*
17960 		 * This indicates first frame received for this sequence.
17961 		 * Queue the buffer on the vport's rcv_buffer_list.
17962 		 */
17963 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17964 		lpfc_update_rcv_time_stamp(vport);
17965 		return dmabuf;
17966 	}
17967 	temp_hdr = seq_dmabuf->hbuf.virt;
17968 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17969 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17970 		list_del_init(&seq_dmabuf->hbuf.list);
17971 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17972 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17973 		lpfc_update_rcv_time_stamp(vport);
17974 		return dmabuf;
17975 	}
17976 	/* move this sequence to the tail to indicate a young sequence */
17977 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17978 	seq_dmabuf->time_stamp = jiffies;
17979 	lpfc_update_rcv_time_stamp(vport);
17980 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17981 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17982 		return seq_dmabuf;
17983 	}
17984 	/* find the correct place in the sequence to insert this frame */
17985 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17986 	while (!found) {
17987 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17988 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17989 		/*
17990 		 * If the frame's sequence count is greater than the frame on
17991 		 * the list then insert the frame right after this frame
17992 		 */
17993 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17994 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17995 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17996 			found = 1;
17997 			break;
17998 		}
17999 
18000 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
18001 			break;
18002 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18003 	}
18004 
18005 	if (found)
18006 		return seq_dmabuf;
18007 	return NULL;
18008 }
18009 
18010 /**
18011  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18012  * @vport: pointer to a vitural port
18013  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18014  *
18015  * This function tries to abort from the partially assembed sequence, described
18016  * by the information from basic abbort @dmabuf. It checks to see whether such
18017  * partially assembled sequence held by the driver. If so, it shall free up all
18018  * the frames from the partially assembled sequence.
18019  *
18020  * Return
18021  * true  -- if there is matching partially assembled sequence present and all
18022  *          the frames freed with the sequence;
18023  * false -- if there is no matching partially assembled sequence present so
18024  *          nothing got aborted in the lower layer driver
18025  **/
18026 static bool
18027 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18028 			    struct hbq_dmabuf *dmabuf)
18029 {
18030 	struct fc_frame_header *new_hdr;
18031 	struct fc_frame_header *temp_hdr;
18032 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18033 	struct hbq_dmabuf *seq_dmabuf = NULL;
18034 
18035 	/* Use the hdr_buf to find the sequence that matches this frame */
18036 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18037 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
18038 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18039 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18040 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18041 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18042 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18043 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18044 			continue;
18045 		/* found a pending sequence that matches this frame */
18046 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18047 		break;
18048 	}
18049 
18050 	/* Free up all the frames from the partially assembled sequence */
18051 	if (seq_dmabuf) {
18052 		list_for_each_entry_safe(d_buf, n_buf,
18053 					 &seq_dmabuf->dbuf.list, list) {
18054 			list_del_init(&d_buf->list);
18055 			lpfc_in_buf_free(vport->phba, d_buf);
18056 		}
18057 		return true;
18058 	}
18059 	return false;
18060 }
18061 
18062 /**
18063  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18064  * @vport: pointer to a vitural port
18065  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18066  *
18067  * This function tries to abort from the assembed sequence from upper level
18068  * protocol, described by the information from basic abbort @dmabuf. It
18069  * checks to see whether such pending context exists at upper level protocol.
18070  * If so, it shall clean up the pending context.
18071  *
18072  * Return
18073  * true  -- if there is matching pending context of the sequence cleaned
18074  *          at ulp;
18075  * false -- if there is no matching pending context of the sequence present
18076  *          at ulp.
18077  **/
18078 static bool
18079 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18080 {
18081 	struct lpfc_hba *phba = vport->phba;
18082 	int handled;
18083 
18084 	/* Accepting abort at ulp with SLI4 only */
18085 	if (phba->sli_rev < LPFC_SLI_REV4)
18086 		return false;
18087 
18088 	/* Register all caring upper level protocols to attend abort */
18089 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18090 	if (handled)
18091 		return true;
18092 
18093 	return false;
18094 }
18095 
18096 /**
18097  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18098  * @phba: Pointer to HBA context object.
18099  * @cmd_iocbq: pointer to the command iocbq structure.
18100  * @rsp_iocbq: pointer to the response iocbq structure.
18101  *
18102  * This function handles the sequence abort response iocb command complete
18103  * event. It properly releases the memory allocated to the sequence abort
18104  * accept iocb.
18105  **/
18106 static void
18107 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18108 			     struct lpfc_iocbq *cmd_iocbq,
18109 			     struct lpfc_iocbq *rsp_iocbq)
18110 {
18111 	struct lpfc_nodelist *ndlp;
18112 
18113 	if (cmd_iocbq) {
18114 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
18115 		lpfc_nlp_put(ndlp);
18116 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
18117 	}
18118 
18119 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
18120 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18121 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18122 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
18123 			rsp_iocbq->iocb.ulpStatus,
18124 			rsp_iocbq->iocb.un.ulpWord[4]);
18125 }
18126 
18127 /**
18128  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18129  * @phba: Pointer to HBA context object.
18130  * @xri: xri id in transaction.
18131  *
18132  * This function validates the xri maps to the known range of XRIs allocated an
18133  * used by the driver.
18134  **/
18135 uint16_t
18136 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18137 		      uint16_t xri)
18138 {
18139 	uint16_t i;
18140 
18141 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18142 		if (xri == phba->sli4_hba.xri_ids[i])
18143 			return i;
18144 	}
18145 	return NO_XRI;
18146 }
18147 
18148 /**
18149  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18150  * @vport: pointer to a virtual port.
18151  * @fc_hdr: pointer to a FC frame header.
18152  * @aborted: was the partially assembled receive sequence successfully aborted
18153  *
18154  * This function sends a basic response to a previous unsol sequence abort
18155  * event after aborting the sequence handling.
18156  **/
18157 void
18158 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18159 			struct fc_frame_header *fc_hdr, bool aborted)
18160 {
18161 	struct lpfc_hba *phba = vport->phba;
18162 	struct lpfc_iocbq *ctiocb = NULL;
18163 	struct lpfc_nodelist *ndlp;
18164 	uint16_t oxid, rxid, xri, lxri;
18165 	uint32_t sid, fctl;
18166 	IOCB_t *icmd;
18167 	int rc;
18168 
18169 	if (!lpfc_is_link_up(phba))
18170 		return;
18171 
18172 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18173 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18174 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18175 
18176 	ndlp = lpfc_findnode_did(vport, sid);
18177 	if (!ndlp) {
18178 		ndlp = lpfc_nlp_init(vport, sid);
18179 		if (!ndlp) {
18180 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18181 					 "1268 Failed to allocate ndlp for "
18182 					 "oxid:x%x SID:x%x\n", oxid, sid);
18183 			return;
18184 		}
18185 		/* Put ndlp onto pport node list */
18186 		lpfc_enqueue_node(vport, ndlp);
18187 	}
18188 
18189 	/* Allocate buffer for rsp iocb */
18190 	ctiocb = lpfc_sli_get_iocbq(phba);
18191 	if (!ctiocb)
18192 		return;
18193 
18194 	/* Extract the F_CTL field from FC_HDR */
18195 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18196 
18197 	icmd = &ctiocb->iocb;
18198 	icmd->un.xseq64.bdl.bdeSize = 0;
18199 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
18200 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
18201 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
18202 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
18203 
18204 	/* Fill in the rest of iocb fields */
18205 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
18206 	icmd->ulpBdeCount = 0;
18207 	icmd->ulpLe = 1;
18208 	icmd->ulpClass = CLASS3;
18209 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
18210 	ctiocb->context1 = lpfc_nlp_get(ndlp);
18211 	if (!ctiocb->context1) {
18212 		lpfc_sli_release_iocbq(phba, ctiocb);
18213 		return;
18214 	}
18215 
18216 	ctiocb->vport = phba->pport;
18217 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18218 	ctiocb->sli4_lxritag = NO_XRI;
18219 	ctiocb->sli4_xritag = NO_XRI;
18220 
18221 	if (fctl & FC_FC_EX_CTX)
18222 		/* Exchange responder sent the abort so we
18223 		 * own the oxid.
18224 		 */
18225 		xri = oxid;
18226 	else
18227 		xri = rxid;
18228 	lxri = lpfc_sli4_xri_inrange(phba, xri);
18229 	if (lxri != NO_XRI)
18230 		lpfc_set_rrq_active(phba, ndlp, lxri,
18231 			(xri == oxid) ? rxid : oxid, 0);
18232 	/* For BA_ABTS from exchange responder, if the logical xri with
18233 	 * the oxid maps to the FCP XRI range, the port no longer has
18234 	 * that exchange context, send a BLS_RJT. Override the IOCB for
18235 	 * a BA_RJT.
18236 	 */
18237 	if ((fctl & FC_FC_EX_CTX) &&
18238 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18239 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18240 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18241 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18242 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18243 	}
18244 
18245 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
18246 	 * the driver no longer has that exchange, send a BLS_RJT. Override
18247 	 * the IOCB for a BA_RJT.
18248 	 */
18249 	if (aborted == false) {
18250 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18251 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18252 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18253 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18254 	}
18255 
18256 	if (fctl & FC_FC_EX_CTX) {
18257 		/* ABTS sent by responder to CT exchange, construction
18258 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18259 		 * field and RX_ID from ABTS for RX_ID field.
18260 		 */
18261 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
18262 	} else {
18263 		/* ABTS sent by initiator to CT exchange, construction
18264 		 * of BA_ACC will need to allocate a new XRI as for the
18265 		 * XRI_TAG field.
18266 		 */
18267 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
18268 	}
18269 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
18270 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
18271 
18272 	/* Xmit CT abts response on exchange <xid> */
18273 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18274 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18275 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
18276 
18277 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18278 	if (rc == IOCB_ERROR) {
18279 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18280 				 "2925 Failed to issue CT ABTS RSP x%x on "
18281 				 "xri x%x, Data x%x\n",
18282 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
18283 				 phba->link_state);
18284 		lpfc_nlp_put(ndlp);
18285 		ctiocb->context1 = NULL;
18286 		lpfc_sli_release_iocbq(phba, ctiocb);
18287 	}
18288 }
18289 
18290 /**
18291  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18292  * @vport: Pointer to the vport on which this sequence was received
18293  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18294  *
18295  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18296  * receive sequence is only partially assembed by the driver, it shall abort
18297  * the partially assembled frames for the sequence. Otherwise, if the
18298  * unsolicited receive sequence has been completely assembled and passed to
18299  * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18300  * unsolicited sequence has been aborted. After that, it will issue a basic
18301  * accept to accept the abort.
18302  **/
18303 static void
18304 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18305 			     struct hbq_dmabuf *dmabuf)
18306 {
18307 	struct lpfc_hba *phba = vport->phba;
18308 	struct fc_frame_header fc_hdr;
18309 	uint32_t fctl;
18310 	bool aborted;
18311 
18312 	/* Make a copy of fc_hdr before the dmabuf being released */
18313 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18314 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18315 
18316 	if (fctl & FC_FC_EX_CTX) {
18317 		/* ABTS by responder to exchange, no cleanup needed */
18318 		aborted = true;
18319 	} else {
18320 		/* ABTS by initiator to exchange, need to do cleanup */
18321 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18322 		if (aborted == false)
18323 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18324 	}
18325 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18326 
18327 	if (phba->nvmet_support) {
18328 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18329 		return;
18330 	}
18331 
18332 	/* Respond with BA_ACC or BA_RJT accordingly */
18333 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18334 }
18335 
18336 /**
18337  * lpfc_seq_complete - Indicates if a sequence is complete
18338  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18339  *
18340  * This function checks the sequence, starting with the frame described by
18341  * @dmabuf, to see if all the frames associated with this sequence are present.
18342  * the frames associated with this sequence are linked to the @dmabuf using the
18343  * dbuf list. This function looks for two major things. 1) That the first frame
18344  * has a sequence count of zero. 2) There is a frame with last frame of sequence
18345  * set. 3) That there are no holes in the sequence count. The function will
18346  * return 1 when the sequence is complete, otherwise it will return 0.
18347  **/
18348 static int
18349 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18350 {
18351 	struct fc_frame_header *hdr;
18352 	struct lpfc_dmabuf *d_buf;
18353 	struct hbq_dmabuf *seq_dmabuf;
18354 	uint32_t fctl;
18355 	int seq_count = 0;
18356 
18357 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18358 	/* make sure first fame of sequence has a sequence count of zero */
18359 	if (hdr->fh_seq_cnt != seq_count)
18360 		return 0;
18361 	fctl = (hdr->fh_f_ctl[0] << 16 |
18362 		hdr->fh_f_ctl[1] << 8 |
18363 		hdr->fh_f_ctl[2]);
18364 	/* If last frame of sequence we can return success. */
18365 	if (fctl & FC_FC_END_SEQ)
18366 		return 1;
18367 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
18368 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18369 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18370 		/* If there is a hole in the sequence count then fail. */
18371 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
18372 			return 0;
18373 		fctl = (hdr->fh_f_ctl[0] << 16 |
18374 			hdr->fh_f_ctl[1] << 8 |
18375 			hdr->fh_f_ctl[2]);
18376 		/* If last frame of sequence we can return success. */
18377 		if (fctl & FC_FC_END_SEQ)
18378 			return 1;
18379 	}
18380 	return 0;
18381 }
18382 
18383 /**
18384  * lpfc_prep_seq - Prep sequence for ULP processing
18385  * @vport: Pointer to the vport on which this sequence was received
18386  * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
18387  *
18388  * This function takes a sequence, described by a list of frames, and creates
18389  * a list of iocbq structures to describe the sequence. This iocbq list will be
18390  * used to issue to the generic unsolicited sequence handler. This routine
18391  * returns a pointer to the first iocbq in the list. If the function is unable
18392  * to allocate an iocbq then it throw out the received frames that were not
18393  * able to be described and return a pointer to the first iocbq. If unable to
18394  * allocate any iocbqs (including the first) this function will return NULL.
18395  **/
18396 static struct lpfc_iocbq *
18397 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
18398 {
18399 	struct hbq_dmabuf *hbq_buf;
18400 	struct lpfc_dmabuf *d_buf, *n_buf;
18401 	struct lpfc_iocbq *first_iocbq, *iocbq;
18402 	struct fc_frame_header *fc_hdr;
18403 	uint32_t sid;
18404 	uint32_t len, tot_len;
18405 	struct ulp_bde64 *pbde;
18406 
18407 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18408 	/* remove from receive buffer list */
18409 	list_del_init(&seq_dmabuf->hbuf.list);
18410 	lpfc_update_rcv_time_stamp(vport);
18411 	/* get the Remote Port's SID */
18412 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18413 	tot_len = 0;
18414 	/* Get an iocbq struct to fill in. */
18415 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
18416 	if (first_iocbq) {
18417 		/* Initialize the first IOCB. */
18418 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
18419 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
18420 		first_iocbq->vport = vport;
18421 
18422 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
18423 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
18424 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
18425 			first_iocbq->iocb.un.rcvels.parmRo =
18426 				sli4_did_from_fc_hdr(fc_hdr);
18427 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
18428 		} else
18429 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
18430 		first_iocbq->iocb.ulpContext = NO_XRI;
18431 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
18432 			be16_to_cpu(fc_hdr->fh_ox_id);
18433 		/* iocbq is prepped for internal consumption.  Physical vpi. */
18434 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
18435 			vport->phba->vpi_ids[vport->vpi];
18436 		/* put the first buffer into the first IOCBq */
18437 		tot_len = bf_get(lpfc_rcqe_length,
18438 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
18439 
18440 		first_iocbq->context2 = &seq_dmabuf->dbuf;
18441 		first_iocbq->context3 = NULL;
18442 		first_iocbq->iocb.ulpBdeCount = 1;
18443 		if (tot_len > LPFC_DATA_BUF_SIZE)
18444 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18445 							LPFC_DATA_BUF_SIZE;
18446 		else
18447 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
18448 
18449 		first_iocbq->iocb.un.rcvels.remoteID = sid;
18450 
18451 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18452 	}
18453 	iocbq = first_iocbq;
18454 	/*
18455 	 * Each IOCBq can have two Buffers assigned, so go through the list
18456 	 * of buffers for this sequence and save two buffers in each IOCBq
18457 	 */
18458 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
18459 		if (!iocbq) {
18460 			lpfc_in_buf_free(vport->phba, d_buf);
18461 			continue;
18462 		}
18463 		if (!iocbq->context3) {
18464 			iocbq->context3 = d_buf;
18465 			iocbq->iocb.ulpBdeCount++;
18466 			/* We need to get the size out of the right CQE */
18467 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18468 			len = bf_get(lpfc_rcqe_length,
18469 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18470 			pbde = (struct ulp_bde64 *)
18471 					&iocbq->iocb.unsli3.sli3Words[4];
18472 			if (len > LPFC_DATA_BUF_SIZE)
18473 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
18474 			else
18475 				pbde->tus.f.bdeSize = len;
18476 
18477 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
18478 			tot_len += len;
18479 		} else {
18480 			iocbq = lpfc_sli_get_iocbq(vport->phba);
18481 			if (!iocbq) {
18482 				if (first_iocbq) {
18483 					first_iocbq->iocb.ulpStatus =
18484 							IOSTAT_FCP_RSP_ERROR;
18485 					first_iocbq->iocb.un.ulpWord[4] =
18486 							IOERR_NO_RESOURCES;
18487 				}
18488 				lpfc_in_buf_free(vport->phba, d_buf);
18489 				continue;
18490 			}
18491 			/* We need to get the size out of the right CQE */
18492 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18493 			len = bf_get(lpfc_rcqe_length,
18494 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18495 			iocbq->context2 = d_buf;
18496 			iocbq->context3 = NULL;
18497 			iocbq->iocb.ulpBdeCount = 1;
18498 			if (len > LPFC_DATA_BUF_SIZE)
18499 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18500 							LPFC_DATA_BUF_SIZE;
18501 			else
18502 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
18503 
18504 			tot_len += len;
18505 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18506 
18507 			iocbq->iocb.un.rcvels.remoteID = sid;
18508 			list_add_tail(&iocbq->list, &first_iocbq->list);
18509 		}
18510 	}
18511 	/* Free the sequence's header buffer */
18512 	if (!first_iocbq)
18513 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18514 
18515 	return first_iocbq;
18516 }
18517 
18518 static void
18519 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18520 			  struct hbq_dmabuf *seq_dmabuf)
18521 {
18522 	struct fc_frame_header *fc_hdr;
18523 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18524 	struct lpfc_hba *phba = vport->phba;
18525 
18526 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18527 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18528 	if (!iocbq) {
18529 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18530 				"2707 Ring %d handler: Failed to allocate "
18531 				"iocb Rctl x%x Type x%x received\n",
18532 				LPFC_ELS_RING,
18533 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18534 		return;
18535 	}
18536 	if (!lpfc_complete_unsol_iocb(phba,
18537 				      phba->sli4_hba.els_wq->pring,
18538 				      iocbq, fc_hdr->fh_r_ctl,
18539 				      fc_hdr->fh_type))
18540 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18541 				"2540 Ring %d handler: unexpected Rctl "
18542 				"x%x Type x%x received\n",
18543 				LPFC_ELS_RING,
18544 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18545 
18546 	/* Free iocb created in lpfc_prep_seq */
18547 	list_for_each_entry_safe(curr_iocb, next_iocb,
18548 		&iocbq->list, list) {
18549 		list_del_init(&curr_iocb->list);
18550 		lpfc_sli_release_iocbq(phba, curr_iocb);
18551 	}
18552 	lpfc_sli_release_iocbq(phba, iocbq);
18553 }
18554 
18555 static void
18556 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18557 			    struct lpfc_iocbq *rspiocb)
18558 {
18559 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18560 
18561 	if (pcmd && pcmd->virt)
18562 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18563 	kfree(pcmd);
18564 	lpfc_sli_release_iocbq(phba, cmdiocb);
18565 	lpfc_drain_txq(phba);
18566 }
18567 
18568 static void
18569 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18570 			      struct hbq_dmabuf *dmabuf)
18571 {
18572 	struct fc_frame_header *fc_hdr;
18573 	struct lpfc_hba *phba = vport->phba;
18574 	struct lpfc_iocbq *iocbq = NULL;
18575 	union  lpfc_wqe *wqe;
18576 	struct lpfc_dmabuf *pcmd = NULL;
18577 	uint32_t frame_len;
18578 	int rc;
18579 	unsigned long iflags;
18580 
18581 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18582 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18583 
18584 	/* Send the received frame back */
18585 	iocbq = lpfc_sli_get_iocbq(phba);
18586 	if (!iocbq) {
18587 		/* Queue cq event and wakeup worker thread to process it */
18588 		spin_lock_irqsave(&phba->hbalock, iflags);
18589 		list_add_tail(&dmabuf->cq_event.list,
18590 			      &phba->sli4_hba.sp_queue_event);
18591 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18592 		spin_unlock_irqrestore(&phba->hbalock, iflags);
18593 		lpfc_worker_wake_up(phba);
18594 		return;
18595 	}
18596 
18597 	/* Allocate buffer for command payload */
18598 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18599 	if (pcmd)
18600 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18601 					    &pcmd->phys);
18602 	if (!pcmd || !pcmd->virt)
18603 		goto exit;
18604 
18605 	INIT_LIST_HEAD(&pcmd->list);
18606 
18607 	/* copyin the payload */
18608 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18609 
18610 	/* fill in BDE's for command */
18611 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18612 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18613 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18614 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18615 
18616 	iocbq->context2 = pcmd;
18617 	iocbq->vport = vport;
18618 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18619 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18620 
18621 	/*
18622 	 * Setup rest of the iocb as though it were a WQE
18623 	 * Build the SEND_FRAME WQE
18624 	 */
18625 	wqe = (union lpfc_wqe *)&iocbq->iocb;
18626 
18627 	wqe->send_frame.frame_len = frame_len;
18628 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18629 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18630 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18631 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18632 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18633 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18634 
18635 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18636 	iocbq->iocb.ulpLe = 1;
18637 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18638 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18639 	if (rc == IOCB_ERROR)
18640 		goto exit;
18641 
18642 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18643 	return;
18644 
18645 exit:
18646 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18647 			"2023 Unable to process MDS loopback frame\n");
18648 	if (pcmd && pcmd->virt)
18649 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18650 	kfree(pcmd);
18651 	if (iocbq)
18652 		lpfc_sli_release_iocbq(phba, iocbq);
18653 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18654 }
18655 
18656 /**
18657  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18658  * @phba: Pointer to HBA context object.
18659  * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
18660  *
18661  * This function is called with no lock held. This function processes all
18662  * the received buffers and gives it to upper layers when a received buffer
18663  * indicates that it is the final frame in the sequence. The interrupt
18664  * service routine processes received buffers at interrupt contexts.
18665  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18666  * appropriate receive function when the final frame in a sequence is received.
18667  **/
18668 void
18669 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18670 				 struct hbq_dmabuf *dmabuf)
18671 {
18672 	struct hbq_dmabuf *seq_dmabuf;
18673 	struct fc_frame_header *fc_hdr;
18674 	struct lpfc_vport *vport;
18675 	uint32_t fcfi;
18676 	uint32_t did;
18677 
18678 	/* Process each received buffer */
18679 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18680 
18681 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18682 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18683 		vport = phba->pport;
18684 		/* Handle MDS Loopback frames */
18685 		if  (!(phba->pport->load_flag & FC_UNLOADING))
18686 			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18687 		else
18688 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18689 		return;
18690 	}
18691 
18692 	/* check to see if this a valid type of frame */
18693 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
18694 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18695 		return;
18696 	}
18697 
18698 	if ((bf_get(lpfc_cqe_code,
18699 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18700 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18701 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18702 	else
18703 		fcfi = bf_get(lpfc_rcqe_fcf_id,
18704 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18705 
18706 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18707 		vport = phba->pport;
18708 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18709 				"2023 MDS Loopback %d bytes\n",
18710 				bf_get(lpfc_rcqe_length,
18711 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
18712 		/* Handle MDS Loopback frames */
18713 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18714 		return;
18715 	}
18716 
18717 	/* d_id this frame is directed to */
18718 	did = sli4_did_from_fc_hdr(fc_hdr);
18719 
18720 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18721 	if (!vport) {
18722 		/* throw out the frame */
18723 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18724 		return;
18725 	}
18726 
18727 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18728 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18729 		(did != Fabric_DID)) {
18730 		/*
18731 		 * Throw out the frame if we are not pt2pt.
18732 		 * The pt2pt protocol allows for discovery frames
18733 		 * to be received without a registered VPI.
18734 		 */
18735 		if (!(vport->fc_flag & FC_PT2PT) ||
18736 			(phba->link_state == LPFC_HBA_READY)) {
18737 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18738 			return;
18739 		}
18740 	}
18741 
18742 	/* Handle the basic abort sequence (BA_ABTS) event */
18743 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18744 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18745 		return;
18746 	}
18747 
18748 	/* Link this frame */
18749 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18750 	if (!seq_dmabuf) {
18751 		/* unable to add frame to vport - throw it out */
18752 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18753 		return;
18754 	}
18755 	/* If not last frame in sequence continue processing frames. */
18756 	if (!lpfc_seq_complete(seq_dmabuf))
18757 		return;
18758 
18759 	/* Send the complete sequence to the upper layer protocol */
18760 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18761 }
18762 
18763 /**
18764  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18765  * @phba: pointer to lpfc hba data structure.
18766  *
18767  * This routine is invoked to post rpi header templates to the
18768  * HBA consistent with the SLI-4 interface spec.  This routine
18769  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18770  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18771  *
18772  * This routine does not require any locks.  It's usage is expected
18773  * to be driver load or reset recovery when the driver is
18774  * sequential.
18775  *
18776  * Return codes
18777  * 	0 - successful
18778  *      -EIO - The mailbox failed to complete successfully.
18779  * 	When this error occurs, the driver is not guaranteed
18780  *	to have any rpi regions posted to the device and
18781  *	must either attempt to repost the regions or take a
18782  *	fatal error.
18783  **/
18784 int
18785 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18786 {
18787 	struct lpfc_rpi_hdr *rpi_page;
18788 	uint32_t rc = 0;
18789 	uint16_t lrpi = 0;
18790 
18791 	/* SLI4 ports that support extents do not require RPI headers. */
18792 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18793 		goto exit;
18794 	if (phba->sli4_hba.extents_in_use)
18795 		return -EIO;
18796 
18797 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18798 		/*
18799 		 * Assign the rpi headers a physical rpi only if the driver
18800 		 * has not initialized those resources.  A port reset only
18801 		 * needs the headers posted.
18802 		 */
18803 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18804 		    LPFC_RPI_RSRC_RDY)
18805 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18806 
18807 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18808 		if (rc != MBX_SUCCESS) {
18809 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18810 					"2008 Error %d posting all rpi "
18811 					"headers\n", rc);
18812 			rc = -EIO;
18813 			break;
18814 		}
18815 	}
18816 
18817  exit:
18818 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18819 	       LPFC_RPI_RSRC_RDY);
18820 	return rc;
18821 }
18822 
18823 /**
18824  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18825  * @phba: pointer to lpfc hba data structure.
18826  * @rpi_page:  pointer to the rpi memory region.
18827  *
18828  * This routine is invoked to post a single rpi header to the
18829  * HBA consistent with the SLI-4 interface spec.  This memory region
18830  * maps up to 64 rpi context regions.
18831  *
18832  * Return codes
18833  * 	0 - successful
18834  * 	-ENOMEM - No available memory
18835  *      -EIO - The mailbox failed to complete successfully.
18836  **/
18837 int
18838 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18839 {
18840 	LPFC_MBOXQ_t *mboxq;
18841 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18842 	uint32_t rc = 0;
18843 	uint32_t shdr_status, shdr_add_status;
18844 	union lpfc_sli4_cfg_shdr *shdr;
18845 
18846 	/* SLI4 ports that support extents do not require RPI headers. */
18847 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18848 		return rc;
18849 	if (phba->sli4_hba.extents_in_use)
18850 		return -EIO;
18851 
18852 	/* The port is notified of the header region via a mailbox command. */
18853 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18854 	if (!mboxq) {
18855 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18856 				"2001 Unable to allocate memory for issuing "
18857 				"SLI_CONFIG_SPECIAL mailbox command\n");
18858 		return -ENOMEM;
18859 	}
18860 
18861 	/* Post all rpi memory regions to the port. */
18862 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18863 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18864 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18865 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18866 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18867 			 LPFC_SLI4_MBX_EMBED);
18868 
18869 
18870 	/* Post the physical rpi to the port for this rpi header. */
18871 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18872 	       rpi_page->start_rpi);
18873 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18874 	       hdr_tmpl, rpi_page->page_count);
18875 
18876 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18877 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18878 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18879 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18880 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18881 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18882 	mempool_free(mboxq, phba->mbox_mem_pool);
18883 	if (shdr_status || shdr_add_status || rc) {
18884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18885 				"2514 POST_RPI_HDR mailbox failed with "
18886 				"status x%x add_status x%x, mbx status x%x\n",
18887 				shdr_status, shdr_add_status, rc);
18888 		rc = -ENXIO;
18889 	} else {
18890 		/*
18891 		 * The next_rpi stores the next logical module-64 rpi value used
18892 		 * to post physical rpis in subsequent rpi postings.
18893 		 */
18894 		spin_lock_irq(&phba->hbalock);
18895 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18896 		spin_unlock_irq(&phba->hbalock);
18897 	}
18898 	return rc;
18899 }
18900 
18901 /**
18902  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18903  * @phba: pointer to lpfc hba data structure.
18904  *
18905  * This routine is invoked to post rpi header templates to the
18906  * HBA consistent with the SLI-4 interface spec.  This routine
18907  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18908  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18909  *
18910  * Returns
18911  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18912  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18913  **/
18914 int
18915 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18916 {
18917 	unsigned long rpi;
18918 	uint16_t max_rpi, rpi_limit;
18919 	uint16_t rpi_remaining, lrpi = 0;
18920 	struct lpfc_rpi_hdr *rpi_hdr;
18921 	unsigned long iflag;
18922 
18923 	/*
18924 	 * Fetch the next logical rpi.  Because this index is logical,
18925 	 * the  driver starts at 0 each time.
18926 	 */
18927 	spin_lock_irqsave(&phba->hbalock, iflag);
18928 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18929 	rpi_limit = phba->sli4_hba.next_rpi;
18930 
18931 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18932 	if (rpi >= rpi_limit)
18933 		rpi = LPFC_RPI_ALLOC_ERROR;
18934 	else {
18935 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18936 		phba->sli4_hba.max_cfg_param.rpi_used++;
18937 		phba->sli4_hba.rpi_count++;
18938 	}
18939 	lpfc_printf_log(phba, KERN_INFO,
18940 			LOG_NODE | LOG_DISCOVERY,
18941 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18942 			(int) rpi, max_rpi, rpi_limit);
18943 
18944 	/*
18945 	 * Don't try to allocate more rpi header regions if the device limit
18946 	 * has been exhausted.
18947 	 */
18948 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18949 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18950 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18951 		return rpi;
18952 	}
18953 
18954 	/*
18955 	 * RPI header postings are not required for SLI4 ports capable of
18956 	 * extents.
18957 	 */
18958 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18959 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18960 		return rpi;
18961 	}
18962 
18963 	/*
18964 	 * If the driver is running low on rpi resources, allocate another
18965 	 * page now.  Note that the next_rpi value is used because
18966 	 * it represents how many are actually in use whereas max_rpi notes
18967 	 * how many are supported max by the device.
18968 	 */
18969 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18970 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18971 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18972 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18973 		if (!rpi_hdr) {
18974 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18975 					"2002 Error Could not grow rpi "
18976 					"count\n");
18977 		} else {
18978 			lrpi = rpi_hdr->start_rpi;
18979 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18980 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18981 		}
18982 	}
18983 
18984 	return rpi;
18985 }
18986 
18987 /**
18988  * __lpfc_sli4_free_rpi - Release an rpi for reuse.
18989  * @phba: pointer to lpfc hba data structure.
18990  * @rpi: rpi to free
18991  *
18992  * This routine is invoked to release an rpi to the pool of
18993  * available rpis maintained by the driver.
18994  **/
18995 static void
18996 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18997 {
18998 	/*
18999 	 * if the rpi value indicates a prior unreg has already
19000 	 * been done, skip the unreg.
19001 	 */
19002 	if (rpi == LPFC_RPI_ALLOC_ERROR)
19003 		return;
19004 
19005 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19006 		phba->sli4_hba.rpi_count--;
19007 		phba->sli4_hba.max_cfg_param.rpi_used--;
19008 	} else {
19009 		lpfc_printf_log(phba, KERN_INFO,
19010 				LOG_NODE | LOG_DISCOVERY,
19011 				"2016 rpi %x not inuse\n",
19012 				rpi);
19013 	}
19014 }
19015 
19016 /**
19017  * lpfc_sli4_free_rpi - Release an rpi for reuse.
19018  * @phba: pointer to lpfc hba data structure.
19019  * @rpi: rpi to free
19020  *
19021  * This routine is invoked to release an rpi to the pool of
19022  * available rpis maintained by the driver.
19023  **/
19024 void
19025 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19026 {
19027 	spin_lock_irq(&phba->hbalock);
19028 	__lpfc_sli4_free_rpi(phba, rpi);
19029 	spin_unlock_irq(&phba->hbalock);
19030 }
19031 
19032 /**
19033  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19034  * @phba: pointer to lpfc hba data structure.
19035  *
19036  * This routine is invoked to remove the memory region that
19037  * provided rpi via a bitmask.
19038  **/
19039 void
19040 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19041 {
19042 	kfree(phba->sli4_hba.rpi_bmask);
19043 	kfree(phba->sli4_hba.rpi_ids);
19044 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19045 }
19046 
19047 /**
19048  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19049  * @ndlp: pointer to lpfc nodelist data structure.
19050  * @cmpl: completion call-back.
19051  * @arg: data to load as MBox 'caller buffer information'
19052  *
19053  * This routine is invoked to remove the memory region that
19054  * provided rpi via a bitmask.
19055  **/
19056 int
19057 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19058 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
19059 {
19060 	LPFC_MBOXQ_t *mboxq;
19061 	struct lpfc_hba *phba = ndlp->phba;
19062 	int rc;
19063 
19064 	/* The port is notified of the header region via a mailbox command. */
19065 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19066 	if (!mboxq)
19067 		return -ENOMEM;
19068 
19069 	/* If cmpl assigned, then this nlp_get pairs with
19070 	 * lpfc_mbx_cmpl_resume_rpi.
19071 	 *
19072 	 * Else cmpl is NULL, then this nlp_get pairs with
19073 	 * lpfc_sli_def_mbox_cmpl.
19074 	 */
19075 	if (!lpfc_nlp_get(ndlp)) {
19076 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19077 				"2122 %s: Failed to get nlp ref\n",
19078 				__func__);
19079 		mempool_free(mboxq, phba->mbox_mem_pool);
19080 		return -EIO;
19081 	}
19082 
19083 	/* Post all rpi memory regions to the port. */
19084 	lpfc_resume_rpi(mboxq, ndlp);
19085 	if (cmpl) {
19086 		mboxq->mbox_cmpl = cmpl;
19087 		mboxq->ctx_buf = arg;
19088 	} else
19089 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19090 	mboxq->ctx_ndlp = ndlp;
19091 	mboxq->vport = ndlp->vport;
19092 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19093 	if (rc == MBX_NOT_FINISHED) {
19094 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19095 				"2010 Resume RPI Mailbox failed "
19096 				"status %d, mbxStatus x%x\n", rc,
19097 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19098 		lpfc_nlp_put(ndlp);
19099 		mempool_free(mboxq, phba->mbox_mem_pool);
19100 		return -EIO;
19101 	}
19102 	return 0;
19103 }
19104 
19105 /**
19106  * lpfc_sli4_init_vpi - Initialize a vpi with the port
19107  * @vport: Pointer to the vport for which the vpi is being initialized
19108  *
19109  * This routine is invoked to activate a vpi with the port.
19110  *
19111  * Returns:
19112  *    0 success
19113  *    -Evalue otherwise
19114  **/
19115 int
19116 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19117 {
19118 	LPFC_MBOXQ_t *mboxq;
19119 	int rc = 0;
19120 	int retval = MBX_SUCCESS;
19121 	uint32_t mbox_tmo;
19122 	struct lpfc_hba *phba = vport->phba;
19123 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19124 	if (!mboxq)
19125 		return -ENOMEM;
19126 	lpfc_init_vpi(phba, mboxq, vport->vpi);
19127 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19128 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19129 	if (rc != MBX_SUCCESS) {
19130 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19131 				"2022 INIT VPI Mailbox failed "
19132 				"status %d, mbxStatus x%x\n", rc,
19133 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19134 		retval = -EIO;
19135 	}
19136 	if (rc != MBX_TIMEOUT)
19137 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
19138 
19139 	return retval;
19140 }
19141 
19142 /**
19143  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19144  * @phba: pointer to lpfc hba data structure.
19145  * @mboxq: Pointer to mailbox object.
19146  *
19147  * This routine is invoked to manually add a single FCF record. The caller
19148  * must pass a completely initialized FCF_Record.  This routine takes
19149  * care of the nonembedded mailbox operations.
19150  **/
19151 static void
19152 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19153 {
19154 	void *virt_addr;
19155 	union lpfc_sli4_cfg_shdr *shdr;
19156 	uint32_t shdr_status, shdr_add_status;
19157 
19158 	virt_addr = mboxq->sge_array->addr[0];
19159 	/* The IOCTL status is embedded in the mailbox subheader. */
19160 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19161 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19162 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19163 
19164 	if ((shdr_status || shdr_add_status) &&
19165 		(shdr_status != STATUS_FCF_IN_USE))
19166 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19167 			"2558 ADD_FCF_RECORD mailbox failed with "
19168 			"status x%x add_status x%x\n",
19169 			shdr_status, shdr_add_status);
19170 
19171 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
19172 }
19173 
19174 /**
19175  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19176  * @phba: pointer to lpfc hba data structure.
19177  * @fcf_record:  pointer to the initialized fcf record to add.
19178  *
19179  * This routine is invoked to manually add a single FCF record. The caller
19180  * must pass a completely initialized FCF_Record.  This routine takes
19181  * care of the nonembedded mailbox operations.
19182  **/
19183 int
19184 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19185 {
19186 	int rc = 0;
19187 	LPFC_MBOXQ_t *mboxq;
19188 	uint8_t *bytep;
19189 	void *virt_addr;
19190 	struct lpfc_mbx_sge sge;
19191 	uint32_t alloc_len, req_len;
19192 	uint32_t fcfindex;
19193 
19194 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19195 	if (!mboxq) {
19196 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19197 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
19198 		return -ENOMEM;
19199 	}
19200 
19201 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19202 		  sizeof(uint32_t);
19203 
19204 	/* Allocate DMA memory and set up the non-embedded mailbox command */
19205 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19206 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19207 				     req_len, LPFC_SLI4_MBX_NEMBED);
19208 	if (alloc_len < req_len) {
19209 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19210 			"2523 Allocated DMA memory size (x%x) is "
19211 			"less than the requested DMA memory "
19212 			"size (x%x)\n", alloc_len, req_len);
19213 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19214 		return -ENOMEM;
19215 	}
19216 
19217 	/*
19218 	 * Get the first SGE entry from the non-embedded DMA memory.  This
19219 	 * routine only uses a single SGE.
19220 	 */
19221 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19222 	virt_addr = mboxq->sge_array->addr[0];
19223 	/*
19224 	 * Configure the FCF record for FCFI 0.  This is the driver's
19225 	 * hardcoded default and gets used in nonFIP mode.
19226 	 */
19227 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19228 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19229 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19230 
19231 	/*
19232 	 * Copy the fcf_index and the FCF Record Data. The data starts after
19233 	 * the FCoE header plus word10. The data copy needs to be endian
19234 	 * correct.
19235 	 */
19236 	bytep += sizeof(uint32_t);
19237 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19238 	mboxq->vport = phba->pport;
19239 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19240 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19241 	if (rc == MBX_NOT_FINISHED) {
19242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19243 			"2515 ADD_FCF_RECORD mailbox failed with "
19244 			"status 0x%x\n", rc);
19245 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19246 		rc = -EIO;
19247 	} else
19248 		rc = 0;
19249 
19250 	return rc;
19251 }
19252 
19253 /**
19254  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19255  * @phba: pointer to lpfc hba data structure.
19256  * @fcf_record:  pointer to the fcf record to write the default data.
19257  * @fcf_index: FCF table entry index.
19258  *
19259  * This routine is invoked to build the driver's default FCF record.  The
19260  * values used are hardcoded.  This routine handles memory initialization.
19261  *
19262  **/
19263 void
19264 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19265 				struct fcf_record *fcf_record,
19266 				uint16_t fcf_index)
19267 {
19268 	memset(fcf_record, 0, sizeof(struct fcf_record));
19269 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19270 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19271 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19272 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19273 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19274 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19275 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19276 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19277 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19278 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19279 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19280 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19281 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19282 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19283 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19284 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19285 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19286 	/* Set the VLAN bit map */
19287 	if (phba->valid_vlan) {
19288 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
19289 			= 1 << (phba->vlan_id % 8);
19290 	}
19291 }
19292 
19293 /**
19294  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19295  * @phba: pointer to lpfc hba data structure.
19296  * @fcf_index: FCF table entry offset.
19297  *
19298  * This routine is invoked to scan the entire FCF table by reading FCF
19299  * record and processing it one at a time starting from the @fcf_index
19300  * for initial FCF discovery or fast FCF failover rediscovery.
19301  *
19302  * Return 0 if the mailbox command is submitted successfully, none 0
19303  * otherwise.
19304  **/
19305 int
19306 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19307 {
19308 	int rc = 0, error;
19309 	LPFC_MBOXQ_t *mboxq;
19310 
19311 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19312 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19313 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19314 	if (!mboxq) {
19315 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19316 				"2000 Failed to allocate mbox for "
19317 				"READ_FCF cmd\n");
19318 		error = -ENOMEM;
19319 		goto fail_fcf_scan;
19320 	}
19321 	/* Construct the read FCF record mailbox command */
19322 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19323 	if (rc) {
19324 		error = -EINVAL;
19325 		goto fail_fcf_scan;
19326 	}
19327 	/* Issue the mailbox command asynchronously */
19328 	mboxq->vport = phba->pport;
19329 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19330 
19331 	spin_lock_irq(&phba->hbalock);
19332 	phba->hba_flag |= FCF_TS_INPROG;
19333 	spin_unlock_irq(&phba->hbalock);
19334 
19335 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19336 	if (rc == MBX_NOT_FINISHED)
19337 		error = -EIO;
19338 	else {
19339 		/* Reset eligible FCF count for new scan */
19340 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19341 			phba->fcf.eligible_fcf_cnt = 0;
19342 		error = 0;
19343 	}
19344 fail_fcf_scan:
19345 	if (error) {
19346 		if (mboxq)
19347 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
19348 		/* FCF scan failed, clear FCF_TS_INPROG flag */
19349 		spin_lock_irq(&phba->hbalock);
19350 		phba->hba_flag &= ~FCF_TS_INPROG;
19351 		spin_unlock_irq(&phba->hbalock);
19352 	}
19353 	return error;
19354 }
19355 
19356 /**
19357  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
19358  * @phba: pointer to lpfc hba data structure.
19359  * @fcf_index: FCF table entry offset.
19360  *
19361  * This routine is invoked to read an FCF record indicated by @fcf_index
19362  * and to use it for FLOGI roundrobin FCF failover.
19363  *
19364  * Return 0 if the mailbox command is submitted successfully, none 0
19365  * otherwise.
19366  **/
19367 int
19368 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19369 {
19370 	int rc = 0, error;
19371 	LPFC_MBOXQ_t *mboxq;
19372 
19373 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19374 	if (!mboxq) {
19375 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19376 				"2763 Failed to allocate mbox for "
19377 				"READ_FCF cmd\n");
19378 		error = -ENOMEM;
19379 		goto fail_fcf_read;
19380 	}
19381 	/* Construct the read FCF record mailbox command */
19382 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19383 	if (rc) {
19384 		error = -EINVAL;
19385 		goto fail_fcf_read;
19386 	}
19387 	/* Issue the mailbox command asynchronously */
19388 	mboxq->vport = phba->pport;
19389 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
19390 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19391 	if (rc == MBX_NOT_FINISHED)
19392 		error = -EIO;
19393 	else
19394 		error = 0;
19395 
19396 fail_fcf_read:
19397 	if (error && mboxq)
19398 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19399 	return error;
19400 }
19401 
19402 /**
19403  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
19404  * @phba: pointer to lpfc hba data structure.
19405  * @fcf_index: FCF table entry offset.
19406  *
19407  * This routine is invoked to read an FCF record indicated by @fcf_index to
19408  * determine whether it's eligible for FLOGI roundrobin failover list.
19409  *
19410  * Return 0 if the mailbox command is submitted successfully, none 0
19411  * otherwise.
19412  **/
19413 int
19414 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19415 {
19416 	int rc = 0, error;
19417 	LPFC_MBOXQ_t *mboxq;
19418 
19419 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19420 	if (!mboxq) {
19421 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19422 				"2758 Failed to allocate mbox for "
19423 				"READ_FCF cmd\n");
19424 				error = -ENOMEM;
19425 				goto fail_fcf_read;
19426 	}
19427 	/* Construct the read FCF record mailbox command */
19428 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19429 	if (rc) {
19430 		error = -EINVAL;
19431 		goto fail_fcf_read;
19432 	}
19433 	/* Issue the mailbox command asynchronously */
19434 	mboxq->vport = phba->pport;
19435 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
19436 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19437 	if (rc == MBX_NOT_FINISHED)
19438 		error = -EIO;
19439 	else
19440 		error = 0;
19441 
19442 fail_fcf_read:
19443 	if (error && mboxq)
19444 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19445 	return error;
19446 }
19447 
19448 /**
19449  * lpfc_check_next_fcf_pri_level
19450  * @phba: pointer to the lpfc_hba struct for this port.
19451  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
19452  * routine when the rr_bmask is empty. The FCF indecies are put into the
19453  * rr_bmask based on their priority level. Starting from the highest priority
19454  * to the lowest. The most likely FCF candidate will be in the highest
19455  * priority group. When this routine is called it searches the fcf_pri list for
19456  * next lowest priority group and repopulates the rr_bmask with only those
19457  * fcf_indexes.
19458  * returns:
19459  * 1=success 0=failure
19460  **/
19461 static int
19462 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
19463 {
19464 	uint16_t next_fcf_pri;
19465 	uint16_t last_index;
19466 	struct lpfc_fcf_pri *fcf_pri;
19467 	int rc;
19468 	int ret = 0;
19469 
19470 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19471 			LPFC_SLI4_FCF_TBL_INDX_MAX);
19472 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19473 			"3060 Last IDX %d\n", last_index);
19474 
19475 	/* Verify the priority list has 2 or more entries */
19476 	spin_lock_irq(&phba->hbalock);
19477 	if (list_empty(&phba->fcf.fcf_pri_list) ||
19478 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
19479 		spin_unlock_irq(&phba->hbalock);
19480 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19481 			"3061 Last IDX %d\n", last_index);
19482 		return 0; /* Empty rr list */
19483 	}
19484 	spin_unlock_irq(&phba->hbalock);
19485 
19486 	next_fcf_pri = 0;
19487 	/*
19488 	 * Clear the rr_bmask and set all of the bits that are at this
19489 	 * priority.
19490 	 */
19491 	memset(phba->fcf.fcf_rr_bmask, 0,
19492 			sizeof(*phba->fcf.fcf_rr_bmask));
19493 	spin_lock_irq(&phba->hbalock);
19494 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19495 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
19496 			continue;
19497 		/*
19498 		 * the 1st priority that has not FLOGI failed
19499 		 * will be the highest.
19500 		 */
19501 		if (!next_fcf_pri)
19502 			next_fcf_pri = fcf_pri->fcf_rec.priority;
19503 		spin_unlock_irq(&phba->hbalock);
19504 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19505 			rc = lpfc_sli4_fcf_rr_index_set(phba,
19506 						fcf_pri->fcf_rec.fcf_index);
19507 			if (rc)
19508 				return 0;
19509 		}
19510 		spin_lock_irq(&phba->hbalock);
19511 	}
19512 	/*
19513 	 * if next_fcf_pri was not set above and the list is not empty then
19514 	 * we have failed flogis on all of them. So reset flogi failed
19515 	 * and start at the beginning.
19516 	 */
19517 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19518 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19519 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19520 			/*
19521 			 * the 1st priority that has not FLOGI failed
19522 			 * will be the highest.
19523 			 */
19524 			if (!next_fcf_pri)
19525 				next_fcf_pri = fcf_pri->fcf_rec.priority;
19526 			spin_unlock_irq(&phba->hbalock);
19527 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19528 				rc = lpfc_sli4_fcf_rr_index_set(phba,
19529 						fcf_pri->fcf_rec.fcf_index);
19530 				if (rc)
19531 					return 0;
19532 			}
19533 			spin_lock_irq(&phba->hbalock);
19534 		}
19535 	} else
19536 		ret = 1;
19537 	spin_unlock_irq(&phba->hbalock);
19538 
19539 	return ret;
19540 }
19541 /**
19542  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19543  * @phba: pointer to lpfc hba data structure.
19544  *
19545  * This routine is to get the next eligible FCF record index in a round
19546  * robin fashion. If the next eligible FCF record index equals to the
19547  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19548  * shall be returned, otherwise, the next eligible FCF record's index
19549  * shall be returned.
19550  **/
19551 uint16_t
19552 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19553 {
19554 	uint16_t next_fcf_index;
19555 
19556 initial_priority:
19557 	/* Search start from next bit of currently registered FCF index */
19558 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
19559 
19560 next_priority:
19561 	/* Determine the next fcf index to check */
19562 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19563 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19564 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
19565 				       next_fcf_index);
19566 
19567 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
19568 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19569 		/*
19570 		 * If we have wrapped then we need to clear the bits that
19571 		 * have been tested so that we can detect when we should
19572 		 * change the priority level.
19573 		 */
19574 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19575 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
19576 	}
19577 
19578 
19579 	/* Check roundrobin failover list empty condition */
19580 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19581 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19582 		/*
19583 		 * If next fcf index is not found check if there are lower
19584 		 * Priority level fcf's in the fcf_priority list.
19585 		 * Set up the rr_bmask with all of the avaiable fcf bits
19586 		 * at that level and continue the selection process.
19587 		 */
19588 		if (lpfc_check_next_fcf_pri_level(phba))
19589 			goto initial_priority;
19590 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19591 				"2844 No roundrobin failover FCF available\n");
19592 
19593 		return LPFC_FCOE_FCF_NEXT_NONE;
19594 	}
19595 
19596 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19597 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19598 		LPFC_FCF_FLOGI_FAILED) {
19599 		if (list_is_singular(&phba->fcf.fcf_pri_list))
19600 			return LPFC_FCOE_FCF_NEXT_NONE;
19601 
19602 		goto next_priority;
19603 	}
19604 
19605 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19606 			"2845 Get next roundrobin failover FCF (x%x)\n",
19607 			next_fcf_index);
19608 
19609 	return next_fcf_index;
19610 }
19611 
19612 /**
19613  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19614  * @phba: pointer to lpfc hba data structure.
19615  * @fcf_index: index into the FCF table to 'set'
19616  *
19617  * This routine sets the FCF record index in to the eligible bmask for
19618  * roundrobin failover search. It checks to make sure that the index
19619  * does not go beyond the range of the driver allocated bmask dimension
19620  * before setting the bit.
19621  *
19622  * Returns 0 if the index bit successfully set, otherwise, it returns
19623  * -EINVAL.
19624  **/
19625 int
19626 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19627 {
19628 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19629 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19630 				"2610 FCF (x%x) reached driver's book "
19631 				"keeping dimension:x%x\n",
19632 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19633 		return -EINVAL;
19634 	}
19635 	/* Set the eligible FCF record index bmask */
19636 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19637 
19638 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19639 			"2790 Set FCF (x%x) to roundrobin FCF failover "
19640 			"bmask\n", fcf_index);
19641 
19642 	return 0;
19643 }
19644 
19645 /**
19646  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19647  * @phba: pointer to lpfc hba data structure.
19648  * @fcf_index: index into the FCF table to 'clear'
19649  *
19650  * This routine clears the FCF record index from the eligible bmask for
19651  * roundrobin failover search. It checks to make sure that the index
19652  * does not go beyond the range of the driver allocated bmask dimension
19653  * before clearing the bit.
19654  **/
19655 void
19656 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19657 {
19658 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19659 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19660 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19661 				"2762 FCF (x%x) reached driver's book "
19662 				"keeping dimension:x%x\n",
19663 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19664 		return;
19665 	}
19666 	/* Clear the eligible FCF record index bmask */
19667 	spin_lock_irq(&phba->hbalock);
19668 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19669 				 list) {
19670 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19671 			list_del_init(&fcf_pri->list);
19672 			break;
19673 		}
19674 	}
19675 	spin_unlock_irq(&phba->hbalock);
19676 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19677 
19678 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19679 			"2791 Clear FCF (x%x) from roundrobin failover "
19680 			"bmask\n", fcf_index);
19681 }
19682 
19683 /**
19684  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19685  * @phba: pointer to lpfc hba data structure.
19686  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
19687  *
19688  * This routine is the completion routine for the rediscover FCF table mailbox
19689  * command. If the mailbox command returned failure, it will try to stop the
19690  * FCF rediscover wait timer.
19691  **/
19692 static void
19693 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19694 {
19695 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19696 	uint32_t shdr_status, shdr_add_status;
19697 
19698 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19699 
19700 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19701 			     &redisc_fcf->header.cfg_shdr.response);
19702 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19703 			     &redisc_fcf->header.cfg_shdr.response);
19704 	if (shdr_status || shdr_add_status) {
19705 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19706 				"2746 Requesting for FCF rediscovery failed "
19707 				"status x%x add_status x%x\n",
19708 				shdr_status, shdr_add_status);
19709 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19710 			spin_lock_irq(&phba->hbalock);
19711 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19712 			spin_unlock_irq(&phba->hbalock);
19713 			/*
19714 			 * CVL event triggered FCF rediscover request failed,
19715 			 * last resort to re-try current registered FCF entry.
19716 			 */
19717 			lpfc_retry_pport_discovery(phba);
19718 		} else {
19719 			spin_lock_irq(&phba->hbalock);
19720 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19721 			spin_unlock_irq(&phba->hbalock);
19722 			/*
19723 			 * DEAD FCF event triggered FCF rediscover request
19724 			 * failed, last resort to fail over as a link down
19725 			 * to FCF registration.
19726 			 */
19727 			lpfc_sli4_fcf_dead_failthrough(phba);
19728 		}
19729 	} else {
19730 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19731 				"2775 Start FCF rediscover quiescent timer\n");
19732 		/*
19733 		 * Start FCF rediscovery wait timer for pending FCF
19734 		 * before rescan FCF record table.
19735 		 */
19736 		lpfc_fcf_redisc_wait_start_timer(phba);
19737 	}
19738 
19739 	mempool_free(mbox, phba->mbox_mem_pool);
19740 }
19741 
19742 /**
19743  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19744  * @phba: pointer to lpfc hba data structure.
19745  *
19746  * This routine is invoked to request for rediscovery of the entire FCF table
19747  * by the port.
19748  **/
19749 int
19750 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19751 {
19752 	LPFC_MBOXQ_t *mbox;
19753 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19754 	int rc, length;
19755 
19756 	/* Cancel retry delay timers to all vports before FCF rediscover */
19757 	lpfc_cancel_all_vport_retry_delay_timer(phba);
19758 
19759 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19760 	if (!mbox) {
19761 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19762 				"2745 Failed to allocate mbox for "
19763 				"requesting FCF rediscover.\n");
19764 		return -ENOMEM;
19765 	}
19766 
19767 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19768 		  sizeof(struct lpfc_sli4_cfg_mhdr));
19769 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19770 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19771 			 length, LPFC_SLI4_MBX_EMBED);
19772 
19773 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19774 	/* Set count to 0 for invalidating the entire FCF database */
19775 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19776 
19777 	/* Issue the mailbox command asynchronously */
19778 	mbox->vport = phba->pport;
19779 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19780 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19781 
19782 	if (rc == MBX_NOT_FINISHED) {
19783 		mempool_free(mbox, phba->mbox_mem_pool);
19784 		return -EIO;
19785 	}
19786 	return 0;
19787 }
19788 
19789 /**
19790  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19791  * @phba: pointer to lpfc hba data structure.
19792  *
19793  * This function is the failover routine as a last resort to the FCF DEAD
19794  * event when driver failed to perform fast FCF failover.
19795  **/
19796 void
19797 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19798 {
19799 	uint32_t link_state;
19800 
19801 	/*
19802 	 * Last resort as FCF DEAD event failover will treat this as
19803 	 * a link down, but save the link state because we don't want
19804 	 * it to be changed to Link Down unless it is already down.
19805 	 */
19806 	link_state = phba->link_state;
19807 	lpfc_linkdown(phba);
19808 	phba->link_state = link_state;
19809 
19810 	/* Unregister FCF if no devices connected to it */
19811 	lpfc_unregister_unused_fcf(phba);
19812 }
19813 
19814 /**
19815  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19816  * @phba: pointer to lpfc hba data structure.
19817  * @rgn23_data: pointer to configure region 23 data.
19818  *
19819  * This function gets SLI3 port configure region 23 data through memory dump
19820  * mailbox command. When it successfully retrieves data, the size of the data
19821  * will be returned, otherwise, 0 will be returned.
19822  **/
19823 static uint32_t
19824 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19825 {
19826 	LPFC_MBOXQ_t *pmb = NULL;
19827 	MAILBOX_t *mb;
19828 	uint32_t offset = 0;
19829 	int rc;
19830 
19831 	if (!rgn23_data)
19832 		return 0;
19833 
19834 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19835 	if (!pmb) {
19836 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19837 				"2600 failed to allocate mailbox memory\n");
19838 		return 0;
19839 	}
19840 	mb = &pmb->u.mb;
19841 
19842 	do {
19843 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19844 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19845 
19846 		if (rc != MBX_SUCCESS) {
19847 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19848 					"2601 failed to read config "
19849 					"region 23, rc 0x%x Status 0x%x\n",
19850 					rc, mb->mbxStatus);
19851 			mb->un.varDmp.word_cnt = 0;
19852 		}
19853 		/*
19854 		 * dump mem may return a zero when finished or we got a
19855 		 * mailbox error, either way we are done.
19856 		 */
19857 		if (mb->un.varDmp.word_cnt == 0)
19858 			break;
19859 
19860 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19861 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19862 
19863 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19864 				       rgn23_data + offset,
19865 				       mb->un.varDmp.word_cnt);
19866 		offset += mb->un.varDmp.word_cnt;
19867 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19868 
19869 	mempool_free(pmb, phba->mbox_mem_pool);
19870 	return offset;
19871 }
19872 
19873 /**
19874  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19875  * @phba: pointer to lpfc hba data structure.
19876  * @rgn23_data: pointer to configure region 23 data.
19877  *
19878  * This function gets SLI4 port configure region 23 data through memory dump
19879  * mailbox command. When it successfully retrieves data, the size of the data
19880  * will be returned, otherwise, 0 will be returned.
19881  **/
19882 static uint32_t
19883 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19884 {
19885 	LPFC_MBOXQ_t *mboxq = NULL;
19886 	struct lpfc_dmabuf *mp = NULL;
19887 	struct lpfc_mqe *mqe;
19888 	uint32_t data_length = 0;
19889 	int rc;
19890 
19891 	if (!rgn23_data)
19892 		return 0;
19893 
19894 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19895 	if (!mboxq) {
19896 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19897 				"3105 failed to allocate mailbox memory\n");
19898 		return 0;
19899 	}
19900 
19901 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19902 		goto out;
19903 	mqe = &mboxq->u.mqe;
19904 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19905 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19906 	if (rc)
19907 		goto out;
19908 	data_length = mqe->un.mb_words[5];
19909 	if (data_length == 0)
19910 		goto out;
19911 	if (data_length > DMP_RGN23_SIZE) {
19912 		data_length = 0;
19913 		goto out;
19914 	}
19915 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19916 out:
19917 	mempool_free(mboxq, phba->mbox_mem_pool);
19918 	if (mp) {
19919 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19920 		kfree(mp);
19921 	}
19922 	return data_length;
19923 }
19924 
19925 /**
19926  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19927  * @phba: pointer to lpfc hba data structure.
19928  *
19929  * This function read region 23 and parse TLV for port status to
19930  * decide if the user disaled the port. If the TLV indicates the
19931  * port is disabled, the hba_flag is set accordingly.
19932  **/
19933 void
19934 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19935 {
19936 	uint8_t *rgn23_data = NULL;
19937 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19938 	uint32_t offset = 0;
19939 
19940 	/* Get adapter Region 23 data */
19941 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19942 	if (!rgn23_data)
19943 		goto out;
19944 
19945 	if (phba->sli_rev < LPFC_SLI_REV4)
19946 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19947 	else {
19948 		if_type = bf_get(lpfc_sli_intf_if_type,
19949 				 &phba->sli4_hba.sli_intf);
19950 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19951 			goto out;
19952 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19953 	}
19954 
19955 	if (!data_size)
19956 		goto out;
19957 
19958 	/* Check the region signature first */
19959 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19960 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19961 			"2619 Config region 23 has bad signature\n");
19962 			goto out;
19963 	}
19964 	offset += 4;
19965 
19966 	/* Check the data structure version */
19967 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19969 			"2620 Config region 23 has bad version\n");
19970 		goto out;
19971 	}
19972 	offset += 4;
19973 
19974 	/* Parse TLV entries in the region */
19975 	while (offset < data_size) {
19976 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19977 			break;
19978 		/*
19979 		 * If the TLV is not driver specific TLV or driver id is
19980 		 * not linux driver id, skip the record.
19981 		 */
19982 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19983 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19984 		    (rgn23_data[offset + 3] != 0)) {
19985 			offset += rgn23_data[offset + 1] * 4 + 4;
19986 			continue;
19987 		}
19988 
19989 		/* Driver found a driver specific TLV in the config region */
19990 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19991 		offset += 4;
19992 		tlv_offset = 0;
19993 
19994 		/*
19995 		 * Search for configured port state sub-TLV.
19996 		 */
19997 		while ((offset < data_size) &&
19998 			(tlv_offset < sub_tlv_len)) {
19999 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20000 				offset += 4;
20001 				tlv_offset += 4;
20002 				break;
20003 			}
20004 			if (rgn23_data[offset] != PORT_STE_TYPE) {
20005 				offset += rgn23_data[offset + 1] * 4 + 4;
20006 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20007 				continue;
20008 			}
20009 
20010 			/* This HBA contains PORT_STE configured */
20011 			if (!rgn23_data[offset + 2])
20012 				phba->hba_flag |= LINK_DISABLED;
20013 
20014 			goto out;
20015 		}
20016 	}
20017 
20018 out:
20019 	kfree(rgn23_data);
20020 	return;
20021 }
20022 
20023 /**
20024  * lpfc_wr_object - write an object to the firmware
20025  * @phba: HBA structure that indicates port to create a queue on.
20026  * @dmabuf_list: list of dmabufs to write to the port.
20027  * @size: the total byte value of the objects to write to the port.
20028  * @offset: the current offset to be used to start the transfer.
20029  *
20030  * This routine will create a wr_object mailbox command to send to the port.
20031  * the mailbox command will be constructed using the dma buffers described in
20032  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20033  * BDEs that the imbedded mailbox can support. The @offset variable will be
20034  * used to indicate the starting offset of the transfer and will also return
20035  * the offset after the write object mailbox has completed. @size is used to
20036  * determine the end of the object and whether the eof bit should be set.
20037  *
20038  * Return 0 is successful and offset will contain the the new offset to use
20039  * for the next write.
20040  * Return negative value for error cases.
20041  **/
20042 int
20043 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20044 	       uint32_t size, uint32_t *offset)
20045 {
20046 	struct lpfc_mbx_wr_object *wr_object;
20047 	LPFC_MBOXQ_t *mbox;
20048 	int rc = 0, i = 0;
20049 	uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
20050 	uint32_t mbox_tmo;
20051 	struct lpfc_dmabuf *dmabuf;
20052 	uint32_t written = 0;
20053 	bool check_change_status = false;
20054 
20055 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20056 	if (!mbox)
20057 		return -ENOMEM;
20058 
20059 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20060 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
20061 			sizeof(struct lpfc_mbx_wr_object) -
20062 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20063 
20064 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20065 	wr_object->u.request.write_offset = *offset;
20066 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20067 	wr_object->u.request.object_name[0] =
20068 		cpu_to_le32(wr_object->u.request.object_name[0]);
20069 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20070 	list_for_each_entry(dmabuf, dmabuf_list, list) {
20071 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20072 			break;
20073 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20074 		wr_object->u.request.bde[i].addrHigh =
20075 			putPaddrHigh(dmabuf->phys);
20076 		if (written + SLI4_PAGE_SIZE >= size) {
20077 			wr_object->u.request.bde[i].tus.f.bdeSize =
20078 				(size - written);
20079 			written += (size - written);
20080 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20081 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20082 			check_change_status = true;
20083 		} else {
20084 			wr_object->u.request.bde[i].tus.f.bdeSize =
20085 				SLI4_PAGE_SIZE;
20086 			written += SLI4_PAGE_SIZE;
20087 		}
20088 		i++;
20089 	}
20090 	wr_object->u.request.bde_count = i;
20091 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20092 	if (!phba->sli4_hba.intr_enable)
20093 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20094 	else {
20095 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20096 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20097 	}
20098 	/* The IOCTL status is embedded in the mailbox subheader. */
20099 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20100 			     &wr_object->header.cfg_shdr.response);
20101 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20102 				 &wr_object->header.cfg_shdr.response);
20103 	if (check_change_status) {
20104 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
20105 					    &wr_object->u.response);
20106 
20107 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20108 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20109 			shdr_csf = bf_get(lpfc_wr_object_csf,
20110 					  &wr_object->u.response);
20111 			if (shdr_csf)
20112 				shdr_change_status =
20113 						   LPFC_CHANGE_STATUS_PCI_RESET;
20114 		}
20115 
20116 		switch (shdr_change_status) {
20117 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20118 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20119 					"3198 Firmware write complete: System "
20120 					"reboot required to instantiate\n");
20121 			break;
20122 		case (LPFC_CHANGE_STATUS_FW_RESET):
20123 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20124 					"3199 Firmware write complete: Firmware"
20125 					" reset required to instantiate\n");
20126 			break;
20127 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20128 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20129 					"3200 Firmware write complete: Port "
20130 					"Migration or PCI Reset required to "
20131 					"instantiate\n");
20132 			break;
20133 		case (LPFC_CHANGE_STATUS_PCI_RESET):
20134 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20135 					"3201 Firmware write complete: PCI "
20136 					"Reset required to instantiate\n");
20137 			break;
20138 		default:
20139 			break;
20140 		}
20141 	}
20142 	if (!phba->sli4_hba.intr_enable)
20143 		mempool_free(mbox, phba->mbox_mem_pool);
20144 	else if (rc != MBX_TIMEOUT)
20145 		mempool_free(mbox, phba->mbox_mem_pool);
20146 	if (shdr_status || shdr_add_status || rc) {
20147 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20148 				"3025 Write Object mailbox failed with "
20149 				"status x%x add_status x%x, mbx status x%x\n",
20150 				shdr_status, shdr_add_status, rc);
20151 		rc = -ENXIO;
20152 		*offset = shdr_add_status;
20153 	} else
20154 		*offset += wr_object->u.response.actual_write_length;
20155 	return rc;
20156 }
20157 
20158 /**
20159  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20160  * @vport: pointer to vport data structure.
20161  *
20162  * This function iterate through the mailboxq and clean up all REG_LOGIN
20163  * and REG_VPI mailbox commands associated with the vport. This function
20164  * is called when driver want to restart discovery of the vport due to
20165  * a Clear Virtual Link event.
20166  **/
20167 void
20168 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20169 {
20170 	struct lpfc_hba *phba = vport->phba;
20171 	LPFC_MBOXQ_t *mb, *nextmb;
20172 	struct lpfc_dmabuf *mp;
20173 	struct lpfc_nodelist *ndlp;
20174 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
20175 	LIST_HEAD(mbox_cmd_list);
20176 	uint8_t restart_loop;
20177 
20178 	/* Clean up internally queued mailbox commands with the vport */
20179 	spin_lock_irq(&phba->hbalock);
20180 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20181 		if (mb->vport != vport)
20182 			continue;
20183 
20184 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20185 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
20186 			continue;
20187 
20188 		list_move_tail(&mb->list, &mbox_cmd_list);
20189 	}
20190 	/* Clean up active mailbox command with the vport */
20191 	mb = phba->sli.mbox_active;
20192 	if (mb && (mb->vport == vport)) {
20193 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20194 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
20195 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20196 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20197 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20198 			/* Put reference count for delayed processing */
20199 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
20200 			/* Unregister the RPI when mailbox complete */
20201 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20202 		}
20203 	}
20204 	/* Cleanup any mailbox completions which are not yet processed */
20205 	do {
20206 		restart_loop = 0;
20207 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
20208 			/*
20209 			 * If this mailox is already processed or it is
20210 			 * for another vport ignore it.
20211 			 */
20212 			if ((mb->vport != vport) ||
20213 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
20214 				continue;
20215 
20216 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20217 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
20218 				continue;
20219 
20220 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20221 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20222 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20223 				/* Unregister the RPI when mailbox complete */
20224 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20225 				restart_loop = 1;
20226 				spin_unlock_irq(&phba->hbalock);
20227 				spin_lock(&ndlp->lock);
20228 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20229 				spin_unlock(&ndlp->lock);
20230 				spin_lock_irq(&phba->hbalock);
20231 				break;
20232 			}
20233 		}
20234 	} while (restart_loop);
20235 
20236 	spin_unlock_irq(&phba->hbalock);
20237 
20238 	/* Release the cleaned-up mailbox commands */
20239 	while (!list_empty(&mbox_cmd_list)) {
20240 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
20241 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20242 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
20243 			if (mp) {
20244 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
20245 				kfree(mp);
20246 			}
20247 			mb->ctx_buf = NULL;
20248 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20249 			mb->ctx_ndlp = NULL;
20250 			if (ndlp) {
20251 				spin_lock(&ndlp->lock);
20252 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20253 				spin_unlock(&ndlp->lock);
20254 				lpfc_nlp_put(ndlp);
20255 			}
20256 		}
20257 		mempool_free(mb, phba->mbox_mem_pool);
20258 	}
20259 
20260 	/* Release the ndlp with the cleaned-up active mailbox command */
20261 	if (act_mbx_ndlp) {
20262 		spin_lock(&act_mbx_ndlp->lock);
20263 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20264 		spin_unlock(&act_mbx_ndlp->lock);
20265 		lpfc_nlp_put(act_mbx_ndlp);
20266 	}
20267 }
20268 
20269 /**
20270  * lpfc_drain_txq - Drain the txq
20271  * @phba: Pointer to HBA context object.
20272  *
20273  * This function attempt to submit IOCBs on the txq
20274  * to the adapter.  For SLI4 adapters, the txq contains
20275  * ELS IOCBs that have been deferred because the there
20276  * are no SGLs.  This congestion can occur with large
20277  * vport counts during node discovery.
20278  **/
20279 
20280 uint32_t
20281 lpfc_drain_txq(struct lpfc_hba *phba)
20282 {
20283 	LIST_HEAD(completions);
20284 	struct lpfc_sli_ring *pring;
20285 	struct lpfc_iocbq *piocbq = NULL;
20286 	unsigned long iflags = 0;
20287 	char *fail_msg = NULL;
20288 	struct lpfc_sglq *sglq;
20289 	union lpfc_wqe128 wqe;
20290 	uint32_t txq_cnt = 0;
20291 	struct lpfc_queue *wq;
20292 
20293 	if (phba->link_flag & LS_MDS_LOOPBACK) {
20294 		/* MDS WQE are posted only to first WQ*/
20295 		wq = phba->sli4_hba.hdwq[0].io_wq;
20296 		if (unlikely(!wq))
20297 			return 0;
20298 		pring = wq->pring;
20299 	} else {
20300 		wq = phba->sli4_hba.els_wq;
20301 		if (unlikely(!wq))
20302 			return 0;
20303 		pring = lpfc_phba_elsring(phba);
20304 	}
20305 
20306 	if (unlikely(!pring) || list_empty(&pring->txq))
20307 		return 0;
20308 
20309 	spin_lock_irqsave(&pring->ring_lock, iflags);
20310 	list_for_each_entry(piocbq, &pring->txq, list) {
20311 		txq_cnt++;
20312 	}
20313 
20314 	if (txq_cnt > pring->txq_max)
20315 		pring->txq_max = txq_cnt;
20316 
20317 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
20318 
20319 	while (!list_empty(&pring->txq)) {
20320 		spin_lock_irqsave(&pring->ring_lock, iflags);
20321 
20322 		piocbq = lpfc_sli_ringtx_get(phba, pring);
20323 		if (!piocbq) {
20324 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20325 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20326 				"2823 txq empty and txq_cnt is %d\n ",
20327 				txq_cnt);
20328 			break;
20329 		}
20330 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
20331 		if (!sglq) {
20332 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
20333 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20334 			break;
20335 		}
20336 		txq_cnt--;
20337 
20338 		/* The xri and iocb resources secured,
20339 		 * attempt to issue request
20340 		 */
20341 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
20342 		piocbq->sli4_xritag = sglq->sli4_xritag;
20343 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
20344 			fail_msg = "to convert bpl to sgl";
20345 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
20346 			fail_msg = "to convert iocb to wqe";
20347 		else if (lpfc_sli4_wq_put(wq, &wqe))
20348 			fail_msg = " - Wq is full";
20349 		else
20350 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
20351 
20352 		if (fail_msg) {
20353 			/* Failed means we can't issue and need to cancel */
20354 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20355 					"2822 IOCB failed %s iotag 0x%x "
20356 					"xri 0x%x\n",
20357 					fail_msg,
20358 					piocbq->iotag, piocbq->sli4_xritag);
20359 			list_add_tail(&piocbq->list, &completions);
20360 		}
20361 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20362 	}
20363 
20364 	/* Cancel all the IOCBs that cannot be issued */
20365 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
20366 				IOERR_SLI_ABORTED);
20367 
20368 	return txq_cnt;
20369 }
20370 
20371 /**
20372  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
20373  * @phba: Pointer to HBA context object.
20374  * @pwqeq: Pointer to command WQE.
20375  * @sglq: Pointer to the scatter gather queue object.
20376  *
20377  * This routine converts the bpl or bde that is in the WQE
20378  * to a sgl list for the sli4 hardware. The physical address
20379  * of the bpl/bde is converted back to a virtual address.
20380  * If the WQE contains a BPL then the list of BDE's is
20381  * converted to sli4_sge's. If the WQE contains a single
20382  * BDE then it is converted to a single sli_sge.
20383  * The WQE is still in cpu endianness so the contents of
20384  * the bpl can be used without byte swapping.
20385  *
20386  * Returns valid XRI = Success, NO_XRI = Failure.
20387  */
20388 static uint16_t
20389 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
20390 		 struct lpfc_sglq *sglq)
20391 {
20392 	uint16_t xritag = NO_XRI;
20393 	struct ulp_bde64 *bpl = NULL;
20394 	struct ulp_bde64 bde;
20395 	struct sli4_sge *sgl  = NULL;
20396 	struct lpfc_dmabuf *dmabuf;
20397 	union lpfc_wqe128 *wqe;
20398 	int numBdes = 0;
20399 	int i = 0;
20400 	uint32_t offset = 0; /* accumulated offset in the sg request list */
20401 	int inbound = 0; /* number of sg reply entries inbound from firmware */
20402 	uint32_t cmd;
20403 
20404 	if (!pwqeq || !sglq)
20405 		return xritag;
20406 
20407 	sgl  = (struct sli4_sge *)sglq->sgl;
20408 	wqe = &pwqeq->wqe;
20409 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
20410 
20411 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
20412 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
20413 		return sglq->sli4_xritag;
20414 	numBdes = pwqeq->rsvd2;
20415 	if (numBdes) {
20416 		/* The addrHigh and addrLow fields within the WQE
20417 		 * have not been byteswapped yet so there is no
20418 		 * need to swap them back.
20419 		 */
20420 		if (pwqeq->context3)
20421 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
20422 		else
20423 			return xritag;
20424 
20425 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
20426 		if (!bpl)
20427 			return xritag;
20428 
20429 		for (i = 0; i < numBdes; i++) {
20430 			/* Should already be byte swapped. */
20431 			sgl->addr_hi = bpl->addrHigh;
20432 			sgl->addr_lo = bpl->addrLow;
20433 
20434 			sgl->word2 = le32_to_cpu(sgl->word2);
20435 			if ((i+1) == numBdes)
20436 				bf_set(lpfc_sli4_sge_last, sgl, 1);
20437 			else
20438 				bf_set(lpfc_sli4_sge_last, sgl, 0);
20439 			/* swap the size field back to the cpu so we
20440 			 * can assign it to the sgl.
20441 			 */
20442 			bde.tus.w = le32_to_cpu(bpl->tus.w);
20443 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
20444 			/* The offsets in the sgl need to be accumulated
20445 			 * separately for the request and reply lists.
20446 			 * The request is always first, the reply follows.
20447 			 */
20448 			switch (cmd) {
20449 			case CMD_GEN_REQUEST64_WQE:
20450 				/* add up the reply sg entries */
20451 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
20452 					inbound++;
20453 				/* first inbound? reset the offset */
20454 				if (inbound == 1)
20455 					offset = 0;
20456 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20457 				bf_set(lpfc_sli4_sge_type, sgl,
20458 					LPFC_SGE_TYPE_DATA);
20459 				offset += bde.tus.f.bdeSize;
20460 				break;
20461 			case CMD_FCP_TRSP64_WQE:
20462 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
20463 				bf_set(lpfc_sli4_sge_type, sgl,
20464 					LPFC_SGE_TYPE_DATA);
20465 				break;
20466 			case CMD_FCP_TSEND64_WQE:
20467 			case CMD_FCP_TRECEIVE64_WQE:
20468 				bf_set(lpfc_sli4_sge_type, sgl,
20469 					bpl->tus.f.bdeFlags);
20470 				if (i < 3)
20471 					offset = 0;
20472 				else
20473 					offset += bde.tus.f.bdeSize;
20474 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20475 				break;
20476 			}
20477 			sgl->word2 = cpu_to_le32(sgl->word2);
20478 			bpl++;
20479 			sgl++;
20480 		}
20481 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
20482 		/* The addrHigh and addrLow fields of the BDE have not
20483 		 * been byteswapped yet so they need to be swapped
20484 		 * before putting them in the sgl.
20485 		 */
20486 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
20487 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
20488 		sgl->word2 = le32_to_cpu(sgl->word2);
20489 		bf_set(lpfc_sli4_sge_last, sgl, 1);
20490 		sgl->word2 = cpu_to_le32(sgl->word2);
20491 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
20492 	}
20493 	return sglq->sli4_xritag;
20494 }
20495 
20496 /**
20497  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
20498  * @phba: Pointer to HBA context object.
20499  * @qp: Pointer to HDW queue.
20500  * @pwqe: Pointer to command WQE.
20501  **/
20502 int
20503 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20504 		    struct lpfc_iocbq *pwqe)
20505 {
20506 	union lpfc_wqe128 *wqe = &pwqe->wqe;
20507 	struct lpfc_async_xchg_ctx *ctxp;
20508 	struct lpfc_queue *wq;
20509 	struct lpfc_sglq *sglq;
20510 	struct lpfc_sli_ring *pring;
20511 	unsigned long iflags;
20512 	uint32_t ret = 0;
20513 
20514 	/* NVME_LS and NVME_LS ABTS requests. */
20515 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
20516 		pring =  phba->sli4_hba.nvmels_wq->pring;
20517 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20518 					  qp, wq_access);
20519 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20520 		if (!sglq) {
20521 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20522 			return WQE_BUSY;
20523 		}
20524 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
20525 		pwqe->sli4_xritag = sglq->sli4_xritag;
20526 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20527 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20528 			return WQE_ERROR;
20529 		}
20530 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20531 		       pwqe->sli4_xritag);
20532 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20533 		if (ret) {
20534 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20535 			return ret;
20536 		}
20537 
20538 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20539 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20540 
20541 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20542 		return 0;
20543 	}
20544 
20545 	/* NVME_FCREQ and NVME_ABTS requests */
20546 	if (pwqe->iocb_flag & LPFC_IO_NVME ||
20547 	    pwqe->iocb_flag & LPFC_IO_FCP) {
20548 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20549 		wq = qp->io_wq;
20550 		pring = wq->pring;
20551 
20552 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20553 
20554 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20555 					  qp, wq_access);
20556 		ret = lpfc_sli4_wq_put(wq, wqe);
20557 		if (ret) {
20558 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20559 			return ret;
20560 		}
20561 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20562 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20563 
20564 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20565 		return 0;
20566 	}
20567 
20568 	/* NVMET requests */
20569 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
20570 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20571 		wq = qp->io_wq;
20572 		pring = wq->pring;
20573 
20574 		ctxp = pwqe->context2;
20575 		sglq = ctxp->ctxbuf->sglq;
20576 		if (pwqe->sli4_xritag ==  NO_XRI) {
20577 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
20578 			pwqe->sli4_xritag = sglq->sli4_xritag;
20579 		}
20580 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20581 		       pwqe->sli4_xritag);
20582 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20583 
20584 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20585 					  qp, wq_access);
20586 		ret = lpfc_sli4_wq_put(wq, wqe);
20587 		if (ret) {
20588 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20589 			return ret;
20590 		}
20591 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20592 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20593 
20594 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20595 		return 0;
20596 	}
20597 	return WQE_ERROR;
20598 }
20599 
20600 /**
20601  * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
20602  * @phba: Pointer to HBA context object.
20603  * @cmdiocb: Pointer to driver command iocb object.
20604  * @cmpl: completion function.
20605  *
20606  * Fill the appropriate fields for the abort WQE and call
20607  * internal routine lpfc_sli4_issue_wqe to send the WQE
20608  * This function is called with hbalock held and no ring_lock held.
20609  *
20610  * RETURNS 0 - SUCCESS
20611  **/
20612 
20613 int
20614 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
20615 			    void *cmpl)
20616 {
20617 	struct lpfc_vport *vport = cmdiocb->vport;
20618 	struct lpfc_iocbq *abtsiocb = NULL;
20619 	union lpfc_wqe128 *abtswqe;
20620 	struct lpfc_io_buf *lpfc_cmd;
20621 	int retval = IOCB_ERROR;
20622 	u16 xritag = cmdiocb->sli4_xritag;
20623 
20624 	/*
20625 	 * The scsi command can not be in txq and it is in flight because the
20626 	 * pCmd is still pointing at the SCSI command we have to abort. There
20627 	 * is no need to search the txcmplq. Just send an abort to the FW.
20628 	 */
20629 
20630 	abtsiocb = __lpfc_sli_get_iocbq(phba);
20631 	if (!abtsiocb)
20632 		return WQE_NORESOURCE;
20633 
20634 	/* Indicate the IO is being aborted by the driver. */
20635 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
20636 
20637 	abtswqe = &abtsiocb->wqe;
20638 	memset(abtswqe, 0, sizeof(*abtswqe));
20639 
20640 	if (!lpfc_is_link_up(phba))
20641 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
20642 	bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
20643 	abtswqe->abort_cmd.rsrvd5 = 0;
20644 	abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
20645 	bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
20646 	bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
20647 	bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
20648 	bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
20649 	bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
20650 	bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
20651 
20652 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
20653 	abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
20654 	abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
20655 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
20656 		abtsiocb->iocb_flag |= LPFC_IO_FCP;
20657 	if (cmdiocb->iocb_flag & LPFC_IO_NVME)
20658 		abtsiocb->iocb_flag |= LPFC_IO_NVME;
20659 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
20660 		abtsiocb->iocb_flag |= LPFC_IO_FOF;
20661 	abtsiocb->vport = vport;
20662 	abtsiocb->wqe_cmpl = cmpl;
20663 
20664 	lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
20665 	retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
20666 
20667 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
20668 			 "0359 Abort xri x%x, original iotag x%x, "
20669 			 "abort cmd iotag x%x retval x%x\n",
20670 			 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
20671 
20672 	if (retval) {
20673 		cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
20674 		__lpfc_sli_release_iocbq(phba, abtsiocb);
20675 	}
20676 
20677 	return retval;
20678 }
20679 
20680 #ifdef LPFC_MXP_STAT
20681 /**
20682  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20683  * @phba: pointer to lpfc hba data structure.
20684  * @hwqid: belong to which HWQ.
20685  *
20686  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20687  * 15 seconds after a test case is running.
20688  *
20689  * The user should call lpfc_debugfs_multixripools_write before running a test
20690  * case to clear stat_snapshot_taken. Then the user starts a test case. During
20691  * test case is running, stat_snapshot_taken is incremented by 1 every time when
20692  * this routine is called from heartbeat timer. When stat_snapshot_taken is
20693  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20694  **/
20695 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20696 {
20697 	struct lpfc_sli4_hdw_queue *qp;
20698 	struct lpfc_multixri_pool *multixri_pool;
20699 	struct lpfc_pvt_pool *pvt_pool;
20700 	struct lpfc_pbl_pool *pbl_pool;
20701 	u32 txcmplq_cnt;
20702 
20703 	qp = &phba->sli4_hba.hdwq[hwqid];
20704 	multixri_pool = qp->p_multixri_pool;
20705 	if (!multixri_pool)
20706 		return;
20707 
20708 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20709 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20710 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20711 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20712 
20713 		multixri_pool->stat_pbl_count = pbl_pool->count;
20714 		multixri_pool->stat_pvt_count = pvt_pool->count;
20715 		multixri_pool->stat_busy_count = txcmplq_cnt;
20716 	}
20717 
20718 	multixri_pool->stat_snapshot_taken++;
20719 }
20720 #endif
20721 
20722 /**
20723  * lpfc_adjust_pvt_pool_count - Adjust private pool count
20724  * @phba: pointer to lpfc hba data structure.
20725  * @hwqid: belong to which HWQ.
20726  *
20727  * This routine moves some XRIs from private to public pool when private pool
20728  * is not busy.
20729  **/
20730 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20731 {
20732 	struct lpfc_multixri_pool *multixri_pool;
20733 	u32 io_req_count;
20734 	u32 prev_io_req_count;
20735 
20736 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20737 	if (!multixri_pool)
20738 		return;
20739 	io_req_count = multixri_pool->io_req_count;
20740 	prev_io_req_count = multixri_pool->prev_io_req_count;
20741 
20742 	if (prev_io_req_count != io_req_count) {
20743 		/* Private pool is busy */
20744 		multixri_pool->prev_io_req_count = io_req_count;
20745 	} else {
20746 		/* Private pool is not busy.
20747 		 * Move XRIs from private to public pool.
20748 		 */
20749 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20750 	}
20751 }
20752 
20753 /**
20754  * lpfc_adjust_high_watermark - Adjust high watermark
20755  * @phba: pointer to lpfc hba data structure.
20756  * @hwqid: belong to which HWQ.
20757  *
20758  * This routine sets high watermark as number of outstanding XRIs,
20759  * but make sure the new value is between xri_limit/2 and xri_limit.
20760  **/
20761 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20762 {
20763 	u32 new_watermark;
20764 	u32 watermark_max;
20765 	u32 watermark_min;
20766 	u32 xri_limit;
20767 	u32 txcmplq_cnt;
20768 	u32 abts_io_bufs;
20769 	struct lpfc_multixri_pool *multixri_pool;
20770 	struct lpfc_sli4_hdw_queue *qp;
20771 
20772 	qp = &phba->sli4_hba.hdwq[hwqid];
20773 	multixri_pool = qp->p_multixri_pool;
20774 	if (!multixri_pool)
20775 		return;
20776 	xri_limit = multixri_pool->xri_limit;
20777 
20778 	watermark_max = xri_limit;
20779 	watermark_min = xri_limit / 2;
20780 
20781 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20782 	abts_io_bufs = qp->abts_scsi_io_bufs;
20783 	abts_io_bufs += qp->abts_nvme_io_bufs;
20784 
20785 	new_watermark = txcmplq_cnt + abts_io_bufs;
20786 	new_watermark = min(watermark_max, new_watermark);
20787 	new_watermark = max(watermark_min, new_watermark);
20788 	multixri_pool->pvt_pool.high_watermark = new_watermark;
20789 
20790 #ifdef LPFC_MXP_STAT
20791 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20792 					  new_watermark);
20793 #endif
20794 }
20795 
20796 /**
20797  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20798  * @phba: pointer to lpfc hba data structure.
20799  * @hwqid: belong to which HWQ.
20800  *
20801  * This routine is called from hearbeat timer when pvt_pool is idle.
20802  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20803  * The first step moves (all - low_watermark) amount of XRIs.
20804  * The second step moves the rest of XRIs.
20805  **/
20806 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20807 {
20808 	struct lpfc_pbl_pool *pbl_pool;
20809 	struct lpfc_pvt_pool *pvt_pool;
20810 	struct lpfc_sli4_hdw_queue *qp;
20811 	struct lpfc_io_buf *lpfc_ncmd;
20812 	struct lpfc_io_buf *lpfc_ncmd_next;
20813 	unsigned long iflag;
20814 	struct list_head tmp_list;
20815 	u32 tmp_count;
20816 
20817 	qp = &phba->sli4_hba.hdwq[hwqid];
20818 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
20819 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
20820 	tmp_count = 0;
20821 
20822 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20823 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20824 
20825 	if (pvt_pool->count > pvt_pool->low_watermark) {
20826 		/* Step 1: move (all - low_watermark) from pvt_pool
20827 		 * to pbl_pool
20828 		 */
20829 
20830 		/* Move low watermark of bufs from pvt_pool to tmp_list */
20831 		INIT_LIST_HEAD(&tmp_list);
20832 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20833 					 &pvt_pool->list, list) {
20834 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
20835 			tmp_count++;
20836 			if (tmp_count >= pvt_pool->low_watermark)
20837 				break;
20838 		}
20839 
20840 		/* Move all bufs from pvt_pool to pbl_pool */
20841 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20842 
20843 		/* Move all bufs from tmp_list to pvt_pool */
20844 		list_splice(&tmp_list, &pvt_pool->list);
20845 
20846 		pbl_pool->count += (pvt_pool->count - tmp_count);
20847 		pvt_pool->count = tmp_count;
20848 	} else {
20849 		/* Step 2: move the rest from pvt_pool to pbl_pool */
20850 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20851 		pbl_pool->count += pvt_pool->count;
20852 		pvt_pool->count = 0;
20853 	}
20854 
20855 	spin_unlock(&pvt_pool->lock);
20856 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20857 }
20858 
20859 /**
20860  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20861  * @phba: pointer to lpfc hba data structure
20862  * @qp: pointer to HDW queue
20863  * @pbl_pool: specified public free XRI pool
20864  * @pvt_pool: specified private free XRI pool
20865  * @count: number of XRIs to move
20866  *
20867  * This routine tries to move some free common bufs from the specified pbl_pool
20868  * to the specified pvt_pool. It might move less than count XRIs if there's not
20869  * enough in public pool.
20870  *
20871  * Return:
20872  *   true - if XRIs are successfully moved from the specified pbl_pool to the
20873  *          specified pvt_pool
20874  *   false - if the specified pbl_pool is empty or locked by someone else
20875  **/
20876 static bool
20877 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20878 			  struct lpfc_pbl_pool *pbl_pool,
20879 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20880 {
20881 	struct lpfc_io_buf *lpfc_ncmd;
20882 	struct lpfc_io_buf *lpfc_ncmd_next;
20883 	unsigned long iflag;
20884 	int ret;
20885 
20886 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20887 	if (ret) {
20888 		if (pbl_pool->count) {
20889 			/* Move a batch of XRIs from public to private pool */
20890 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20891 			list_for_each_entry_safe(lpfc_ncmd,
20892 						 lpfc_ncmd_next,
20893 						 &pbl_pool->list,
20894 						 list) {
20895 				list_move_tail(&lpfc_ncmd->list,
20896 					       &pvt_pool->list);
20897 				pvt_pool->count++;
20898 				pbl_pool->count--;
20899 				count--;
20900 				if (count == 0)
20901 					break;
20902 			}
20903 
20904 			spin_unlock(&pvt_pool->lock);
20905 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20906 			return true;
20907 		}
20908 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20909 	}
20910 
20911 	return false;
20912 }
20913 
20914 /**
20915  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20916  * @phba: pointer to lpfc hba data structure.
20917  * @hwqid: belong to which HWQ.
20918  * @count: number of XRIs to move
20919  *
20920  * This routine tries to find some free common bufs in one of public pools with
20921  * Round Robin method. The search always starts from local hwqid, then the next
20922  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20923  * a batch of free common bufs are moved to private pool on hwqid.
20924  * It might move less than count XRIs if there's not enough in public pool.
20925  **/
20926 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20927 {
20928 	struct lpfc_multixri_pool *multixri_pool;
20929 	struct lpfc_multixri_pool *next_multixri_pool;
20930 	struct lpfc_pvt_pool *pvt_pool;
20931 	struct lpfc_pbl_pool *pbl_pool;
20932 	struct lpfc_sli4_hdw_queue *qp;
20933 	u32 next_hwqid;
20934 	u32 hwq_count;
20935 	int ret;
20936 
20937 	qp = &phba->sli4_hba.hdwq[hwqid];
20938 	multixri_pool = qp->p_multixri_pool;
20939 	pvt_pool = &multixri_pool->pvt_pool;
20940 	pbl_pool = &multixri_pool->pbl_pool;
20941 
20942 	/* Check if local pbl_pool is available */
20943 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20944 	if (ret) {
20945 #ifdef LPFC_MXP_STAT
20946 		multixri_pool->local_pbl_hit_count++;
20947 #endif
20948 		return;
20949 	}
20950 
20951 	hwq_count = phba->cfg_hdw_queue;
20952 
20953 	/* Get the next hwqid which was found last time */
20954 	next_hwqid = multixri_pool->rrb_next_hwqid;
20955 
20956 	do {
20957 		/* Go to next hwq */
20958 		next_hwqid = (next_hwqid + 1) % hwq_count;
20959 
20960 		next_multixri_pool =
20961 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20962 		pbl_pool = &next_multixri_pool->pbl_pool;
20963 
20964 		/* Check if the public free xri pool is available */
20965 		ret = _lpfc_move_xri_pbl_to_pvt(
20966 			phba, qp, pbl_pool, pvt_pool, count);
20967 
20968 		/* Exit while-loop if success or all hwqid are checked */
20969 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20970 
20971 	/* Starting point for the next time */
20972 	multixri_pool->rrb_next_hwqid = next_hwqid;
20973 
20974 	if (!ret) {
20975 		/* stats: all public pools are empty*/
20976 		multixri_pool->pbl_empty_count++;
20977 	}
20978 
20979 #ifdef LPFC_MXP_STAT
20980 	if (ret) {
20981 		if (next_hwqid == hwqid)
20982 			multixri_pool->local_pbl_hit_count++;
20983 		else
20984 			multixri_pool->other_pbl_hit_count++;
20985 	}
20986 #endif
20987 }
20988 
20989 /**
20990  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20991  * @phba: pointer to lpfc hba data structure.
20992  * @hwqid: belong to which HWQ.
20993  *
20994  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20995  * low watermark.
20996  **/
20997 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20998 {
20999 	struct lpfc_multixri_pool *multixri_pool;
21000 	struct lpfc_pvt_pool *pvt_pool;
21001 
21002 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21003 	pvt_pool = &multixri_pool->pvt_pool;
21004 
21005 	if (pvt_pool->count < pvt_pool->low_watermark)
21006 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21007 }
21008 
21009 /**
21010  * lpfc_release_io_buf - Return one IO buf back to free pool
21011  * @phba: pointer to lpfc hba data structure.
21012  * @lpfc_ncmd: IO buf to be returned.
21013  * @qp: belong to which HWQ.
21014  *
21015  * This routine returns one IO buf back to free pool. If this is an urgent IO,
21016  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21017  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21018  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
21019  * lpfc_io_buf_list_put.
21020  **/
21021 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21022 			 struct lpfc_sli4_hdw_queue *qp)
21023 {
21024 	unsigned long iflag;
21025 	struct lpfc_pbl_pool *pbl_pool;
21026 	struct lpfc_pvt_pool *pvt_pool;
21027 	struct lpfc_epd_pool *epd_pool;
21028 	u32 txcmplq_cnt;
21029 	u32 xri_owned;
21030 	u32 xri_limit;
21031 	u32 abts_io_bufs;
21032 
21033 	/* MUST zero fields if buffer is reused by another protocol */
21034 	lpfc_ncmd->nvmeCmd = NULL;
21035 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
21036 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
21037 
21038 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
21039 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21040 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21041 
21042 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21043 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21044 
21045 	if (phba->cfg_xri_rebalancing) {
21046 		if (lpfc_ncmd->expedite) {
21047 			/* Return to expedite pool */
21048 			epd_pool = &phba->epd_pool;
21049 			spin_lock_irqsave(&epd_pool->lock, iflag);
21050 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21051 			epd_pool->count++;
21052 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
21053 			return;
21054 		}
21055 
21056 		/* Avoid invalid access if an IO sneaks in and is being rejected
21057 		 * just _after_ xri pools are destroyed in lpfc_offline.
21058 		 * Nothing much can be done at this point.
21059 		 */
21060 		if (!qp->p_multixri_pool)
21061 			return;
21062 
21063 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21064 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21065 
21066 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21067 		abts_io_bufs = qp->abts_scsi_io_bufs;
21068 		abts_io_bufs += qp->abts_nvme_io_bufs;
21069 
21070 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21071 		xri_limit = qp->p_multixri_pool->xri_limit;
21072 
21073 #ifdef LPFC_MXP_STAT
21074 		if (xri_owned <= xri_limit)
21075 			qp->p_multixri_pool->below_limit_count++;
21076 		else
21077 			qp->p_multixri_pool->above_limit_count++;
21078 #endif
21079 
21080 		/* XRI goes to either public or private free xri pool
21081 		 *     based on watermark and xri_limit
21082 		 */
21083 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
21084 		    (xri_owned < xri_limit &&
21085 		     pvt_pool->count < pvt_pool->high_watermark)) {
21086 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21087 						  qp, free_pvt_pool);
21088 			list_add_tail(&lpfc_ncmd->list,
21089 				      &pvt_pool->list);
21090 			pvt_pool->count++;
21091 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21092 		} else {
21093 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21094 						  qp, free_pub_pool);
21095 			list_add_tail(&lpfc_ncmd->list,
21096 				      &pbl_pool->list);
21097 			pbl_pool->count++;
21098 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21099 		}
21100 	} else {
21101 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21102 					  qp, free_xri);
21103 		list_add_tail(&lpfc_ncmd->list,
21104 			      &qp->lpfc_io_buf_list_put);
21105 		qp->put_io_bufs++;
21106 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21107 				       iflag);
21108 	}
21109 }
21110 
21111 /**
21112  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21113  * @phba: pointer to lpfc hba data structure.
21114  * @qp: pointer to HDW queue
21115  * @pvt_pool: pointer to private pool data structure.
21116  * @ndlp: pointer to lpfc nodelist data structure.
21117  *
21118  * This routine tries to get one free IO buf from private pool.
21119  *
21120  * Return:
21121  *   pointer to one free IO buf - if private pool is not empty
21122  *   NULL - if private pool is empty
21123  **/
21124 static struct lpfc_io_buf *
21125 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21126 				  struct lpfc_sli4_hdw_queue *qp,
21127 				  struct lpfc_pvt_pool *pvt_pool,
21128 				  struct lpfc_nodelist *ndlp)
21129 {
21130 	struct lpfc_io_buf *lpfc_ncmd;
21131 	struct lpfc_io_buf *lpfc_ncmd_next;
21132 	unsigned long iflag;
21133 
21134 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21135 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21136 				 &pvt_pool->list, list) {
21137 		if (lpfc_test_rrq_active(
21138 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21139 			continue;
21140 		list_del(&lpfc_ncmd->list);
21141 		pvt_pool->count--;
21142 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21143 		return lpfc_ncmd;
21144 	}
21145 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21146 
21147 	return NULL;
21148 }
21149 
21150 /**
21151  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21152  * @phba: pointer to lpfc hba data structure.
21153  *
21154  * This routine tries to get one free IO buf from expedite pool.
21155  *
21156  * Return:
21157  *   pointer to one free IO buf - if expedite pool is not empty
21158  *   NULL - if expedite pool is empty
21159  **/
21160 static struct lpfc_io_buf *
21161 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21162 {
21163 	struct lpfc_io_buf *lpfc_ncmd;
21164 	struct lpfc_io_buf *lpfc_ncmd_next;
21165 	unsigned long iflag;
21166 	struct lpfc_epd_pool *epd_pool;
21167 
21168 	epd_pool = &phba->epd_pool;
21169 	lpfc_ncmd = NULL;
21170 
21171 	spin_lock_irqsave(&epd_pool->lock, iflag);
21172 	if (epd_pool->count > 0) {
21173 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21174 					 &epd_pool->list, list) {
21175 			list_del(&lpfc_ncmd->list);
21176 			epd_pool->count--;
21177 			break;
21178 		}
21179 	}
21180 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
21181 
21182 	return lpfc_ncmd;
21183 }
21184 
21185 /**
21186  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21187  * @phba: pointer to lpfc hba data structure.
21188  * @ndlp: pointer to lpfc nodelist data structure.
21189  * @hwqid: belong to which HWQ
21190  * @expedite: 1 means this request is urgent.
21191  *
21192  * This routine will do the following actions and then return a pointer to
21193  * one free IO buf.
21194  *
21195  * 1. If private free xri count is empty, move some XRIs from public to
21196  *    private pool.
21197  * 2. Get one XRI from private free xri pool.
21198  * 3. If we fail to get one from pvt_pool and this is an expedite request,
21199  *    get one free xri from expedite pool.
21200  *
21201  * Note: ndlp is only used on SCSI side for RRQ testing.
21202  *       The caller should pass NULL for ndlp on NVME side.
21203  *
21204  * Return:
21205  *   pointer to one free IO buf - if private pool is not empty
21206  *   NULL - if private pool is empty
21207  **/
21208 static struct lpfc_io_buf *
21209 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
21210 				    struct lpfc_nodelist *ndlp,
21211 				    int hwqid, int expedite)
21212 {
21213 	struct lpfc_sli4_hdw_queue *qp;
21214 	struct lpfc_multixri_pool *multixri_pool;
21215 	struct lpfc_pvt_pool *pvt_pool;
21216 	struct lpfc_io_buf *lpfc_ncmd;
21217 
21218 	qp = &phba->sli4_hba.hdwq[hwqid];
21219 	lpfc_ncmd = NULL;
21220 	multixri_pool = qp->p_multixri_pool;
21221 	pvt_pool = &multixri_pool->pvt_pool;
21222 	multixri_pool->io_req_count++;
21223 
21224 	/* If pvt_pool is empty, move some XRIs from public to private pool */
21225 	if (pvt_pool->count == 0)
21226 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21227 
21228 	/* Get one XRI from private free xri pool */
21229 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
21230 
21231 	if (lpfc_ncmd) {
21232 		lpfc_ncmd->hdwq = qp;
21233 		lpfc_ncmd->hdwq_no = hwqid;
21234 	} else if (expedite) {
21235 		/* If we fail to get one from pvt_pool and this is an expedite
21236 		 * request, get one free xri from expedite pool.
21237 		 */
21238 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
21239 	}
21240 
21241 	return lpfc_ncmd;
21242 }
21243 
21244 static inline struct lpfc_io_buf *
21245 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
21246 {
21247 	struct lpfc_sli4_hdw_queue *qp;
21248 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
21249 
21250 	qp = &phba->sli4_hba.hdwq[idx];
21251 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
21252 				 &qp->lpfc_io_buf_list_get, list) {
21253 		if (lpfc_test_rrq_active(phba, ndlp,
21254 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
21255 			continue;
21256 
21257 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
21258 			continue;
21259 
21260 		list_del_init(&lpfc_cmd->list);
21261 		qp->get_io_bufs--;
21262 		lpfc_cmd->hdwq = qp;
21263 		lpfc_cmd->hdwq_no = idx;
21264 		return lpfc_cmd;
21265 	}
21266 	return NULL;
21267 }
21268 
21269 /**
21270  * lpfc_get_io_buf - Get one IO buffer from free pool
21271  * @phba: The HBA for which this call is being executed.
21272  * @ndlp: pointer to lpfc nodelist data structure.
21273  * @hwqid: belong to which HWQ
21274  * @expedite: 1 means this request is urgent.
21275  *
21276  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
21277  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
21278  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
21279  *
21280  * Note: ndlp is only used on SCSI side for RRQ testing.
21281  *       The caller should pass NULL for ndlp on NVME side.
21282  *
21283  * Return codes:
21284  *   NULL - Error
21285  *   Pointer to lpfc_io_buf - Success
21286  **/
21287 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
21288 				    struct lpfc_nodelist *ndlp,
21289 				    u32 hwqid, int expedite)
21290 {
21291 	struct lpfc_sli4_hdw_queue *qp;
21292 	unsigned long iflag;
21293 	struct lpfc_io_buf *lpfc_cmd;
21294 
21295 	qp = &phba->sli4_hba.hdwq[hwqid];
21296 	lpfc_cmd = NULL;
21297 
21298 	if (phba->cfg_xri_rebalancing)
21299 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
21300 			phba, ndlp, hwqid, expedite);
21301 	else {
21302 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
21303 					  qp, alloc_xri_get);
21304 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
21305 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21306 		if (!lpfc_cmd) {
21307 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
21308 					  qp, alloc_xri_put);
21309 			list_splice(&qp->lpfc_io_buf_list_put,
21310 				    &qp->lpfc_io_buf_list_get);
21311 			qp->get_io_bufs += qp->put_io_bufs;
21312 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
21313 			qp->put_io_bufs = 0;
21314 			spin_unlock(&qp->io_buf_list_put_lock);
21315 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
21316 			    expedite)
21317 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21318 		}
21319 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
21320 	}
21321 
21322 	return lpfc_cmd;
21323 }
21324 
21325 /**
21326  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
21327  * @phba: The HBA for which this call is being executed.
21328  * @lpfc_buf: IO buf structure to append the SGL chunk
21329  *
21330  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
21331  * and will allocate an SGL chunk if the pool is empty.
21332  *
21333  * Return codes:
21334  *   NULL - Error
21335  *   Pointer to sli4_hybrid_sgl - Success
21336  **/
21337 struct sli4_hybrid_sgl *
21338 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21339 {
21340 	struct sli4_hybrid_sgl *list_entry = NULL;
21341 	struct sli4_hybrid_sgl *tmp = NULL;
21342 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
21343 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21344 	struct list_head *buf_list = &hdwq->sgl_list;
21345 	unsigned long iflags;
21346 
21347 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21348 
21349 	if (likely(!list_empty(buf_list))) {
21350 		/* break off 1 chunk from the sgl_list */
21351 		list_for_each_entry_safe(list_entry, tmp,
21352 					 buf_list, list_node) {
21353 			list_move_tail(&list_entry->list_node,
21354 				       &lpfc_buf->dma_sgl_xtra_list);
21355 			break;
21356 		}
21357 	} else {
21358 		/* allocate more */
21359 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21360 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21361 				   cpu_to_node(hdwq->io_wq->chann));
21362 		if (!tmp) {
21363 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21364 					"8353 error kmalloc memory for HDWQ "
21365 					"%d %s\n",
21366 					lpfc_buf->hdwq_no, __func__);
21367 			return NULL;
21368 		}
21369 
21370 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
21371 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
21372 		if (!tmp->dma_sgl) {
21373 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21374 					"8354 error pool_alloc memory for HDWQ "
21375 					"%d %s\n",
21376 					lpfc_buf->hdwq_no, __func__);
21377 			kfree(tmp);
21378 			return NULL;
21379 		}
21380 
21381 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21382 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
21383 	}
21384 
21385 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
21386 					struct sli4_hybrid_sgl,
21387 					list_node);
21388 
21389 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21390 
21391 	return allocated_sgl;
21392 }
21393 
21394 /**
21395  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
21396  * @phba: The HBA for which this call is being executed.
21397  * @lpfc_buf: IO buf structure with the SGL chunk
21398  *
21399  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
21400  *
21401  * Return codes:
21402  *   0 - Success
21403  *   -EINVAL - Error
21404  **/
21405 int
21406 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21407 {
21408 	int rc = 0;
21409 	struct sli4_hybrid_sgl *list_entry = NULL;
21410 	struct sli4_hybrid_sgl *tmp = NULL;
21411 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21412 	struct list_head *buf_list = &hdwq->sgl_list;
21413 	unsigned long iflags;
21414 
21415 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21416 
21417 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
21418 		list_for_each_entry_safe(list_entry, tmp,
21419 					 &lpfc_buf->dma_sgl_xtra_list,
21420 					 list_node) {
21421 			list_move_tail(&list_entry->list_node,
21422 				       buf_list);
21423 		}
21424 	} else {
21425 		rc = -EINVAL;
21426 	}
21427 
21428 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21429 	return rc;
21430 }
21431 
21432 /**
21433  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
21434  * @phba: phba object
21435  * @hdwq: hdwq to cleanup sgl buff resources on
21436  *
21437  * This routine frees all SGL chunks of hdwq SGL chunk pool.
21438  *
21439  * Return codes:
21440  *   None
21441  **/
21442 void
21443 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
21444 		       struct lpfc_sli4_hdw_queue *hdwq)
21445 {
21446 	struct list_head *buf_list = &hdwq->sgl_list;
21447 	struct sli4_hybrid_sgl *list_entry = NULL;
21448 	struct sli4_hybrid_sgl *tmp = NULL;
21449 	unsigned long iflags;
21450 
21451 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21452 
21453 	/* Free sgl pool */
21454 	list_for_each_entry_safe(list_entry, tmp,
21455 				 buf_list, list_node) {
21456 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
21457 			      list_entry->dma_sgl,
21458 			      list_entry->dma_phys_sgl);
21459 		list_del(&list_entry->list_node);
21460 		kfree(list_entry);
21461 	}
21462 
21463 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21464 }
21465 
21466 /**
21467  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
21468  * @phba: The HBA for which this call is being executed.
21469  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
21470  *
21471  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
21472  * and will allocate an CMD/RSP buffer if the pool is empty.
21473  *
21474  * Return codes:
21475  *   NULL - Error
21476  *   Pointer to fcp_cmd_rsp_buf - Success
21477  **/
21478 struct fcp_cmd_rsp_buf *
21479 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21480 			      struct lpfc_io_buf *lpfc_buf)
21481 {
21482 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21483 	struct fcp_cmd_rsp_buf *tmp = NULL;
21484 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
21485 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21486 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21487 	unsigned long iflags;
21488 
21489 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21490 
21491 	if (likely(!list_empty(buf_list))) {
21492 		/* break off 1 chunk from the list */
21493 		list_for_each_entry_safe(list_entry, tmp,
21494 					 buf_list,
21495 					 list_node) {
21496 			list_move_tail(&list_entry->list_node,
21497 				       &lpfc_buf->dma_cmd_rsp_list);
21498 			break;
21499 		}
21500 	} else {
21501 		/* allocate more */
21502 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21503 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21504 				   cpu_to_node(hdwq->io_wq->chann));
21505 		if (!tmp) {
21506 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21507 					"8355 error kmalloc memory for HDWQ "
21508 					"%d %s\n",
21509 					lpfc_buf->hdwq_no, __func__);
21510 			return NULL;
21511 		}
21512 
21513 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
21514 						GFP_ATOMIC,
21515 						&tmp->fcp_cmd_rsp_dma_handle);
21516 
21517 		if (!tmp->fcp_cmnd) {
21518 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21519 					"8356 error pool_alloc memory for HDWQ "
21520 					"%d %s\n",
21521 					lpfc_buf->hdwq_no, __func__);
21522 			kfree(tmp);
21523 			return NULL;
21524 		}
21525 
21526 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
21527 				sizeof(struct fcp_cmnd));
21528 
21529 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21530 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
21531 	}
21532 
21533 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
21534 					struct fcp_cmd_rsp_buf,
21535 					list_node);
21536 
21537 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21538 
21539 	return allocated_buf;
21540 }
21541 
21542 /**
21543  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
21544  * @phba: The HBA for which this call is being executed.
21545  * @lpfc_buf: IO buf structure with the CMD/RSP buf
21546  *
21547  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
21548  *
21549  * Return codes:
21550  *   0 - Success
21551  *   -EINVAL - Error
21552  **/
21553 int
21554 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21555 			      struct lpfc_io_buf *lpfc_buf)
21556 {
21557 	int rc = 0;
21558 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21559 	struct fcp_cmd_rsp_buf *tmp = NULL;
21560 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21561 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21562 	unsigned long iflags;
21563 
21564 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21565 
21566 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
21567 		list_for_each_entry_safe(list_entry, tmp,
21568 					 &lpfc_buf->dma_cmd_rsp_list,
21569 					 list_node) {
21570 			list_move_tail(&list_entry->list_node,
21571 				       buf_list);
21572 		}
21573 	} else {
21574 		rc = -EINVAL;
21575 	}
21576 
21577 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21578 	return rc;
21579 }
21580 
21581 /**
21582  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
21583  * @phba: phba object
21584  * @hdwq: hdwq to cleanup cmd rsp buff resources on
21585  *
21586  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
21587  *
21588  * Return codes:
21589  *   None
21590  **/
21591 void
21592 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21593 			       struct lpfc_sli4_hdw_queue *hdwq)
21594 {
21595 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21596 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21597 	struct fcp_cmd_rsp_buf *tmp = NULL;
21598 	unsigned long iflags;
21599 
21600 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21601 
21602 	/* Free cmd_rsp buf pool */
21603 	list_for_each_entry_safe(list_entry, tmp,
21604 				 buf_list,
21605 				 list_node) {
21606 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
21607 			      list_entry->fcp_cmnd,
21608 			      list_entry->fcp_cmd_rsp_dma_handle);
21609 		list_del(&list_entry->list_node);
21610 		kfree(list_entry);
21611 	}
21612 
21613 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21614 }
21615