1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1408 sglq->state != SGL_XRI_ABORTED) { 1409 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1410 iflag); 1411 1412 /* Check if we can get a reference on ndlp */ 1413 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1414 sglq->ndlp = NULL; 1415 1416 list_add(&sglq->list, 1417 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1418 spin_unlock_irqrestore( 1419 &phba->sli4_hba.sgl_list_lock, iflag); 1420 } else { 1421 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1422 iflag); 1423 sglq->state = SGL_FREED; 1424 sglq->ndlp = NULL; 1425 list_add_tail(&sglq->list, 1426 &phba->sli4_hba.lpfc_els_sgl_list); 1427 spin_unlock_irqrestore( 1428 &phba->sli4_hba.sgl_list_lock, iflag); 1429 pring = lpfc_phba_elsring(phba); 1430 /* Check if TXQ queue needs to be serviced */ 1431 if (pring && (!list_empty(&pring->txq))) 1432 lpfc_worker_wake_up(phba); 1433 } 1434 } 1435 1436 out: 1437 /* 1438 * Clean all volatile data fields, preserve iotag and node struct. 1439 */ 1440 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1441 iocbq->sli4_lxritag = NO_XRI; 1442 iocbq->sli4_xritag = NO_XRI; 1443 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1444 LPFC_IO_NVME_LS); 1445 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1446 } 1447 1448 1449 /** 1450 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1451 * @phba: Pointer to HBA context object. 1452 * @iocbq: Pointer to driver iocb object. 1453 * 1454 * This function is called to release the driver iocb object to the 1455 * iocb pool. The iotag in the iocb object does not change for each 1456 * use of the iocb object. This function clears all other fields of 1457 * the iocb object when it is freed. The hbalock is asserted held in 1458 * the code path calling this routine. 1459 **/ 1460 static void 1461 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1462 { 1463 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1464 1465 /* 1466 * Clean all volatile data fields, preserve iotag and node struct. 1467 */ 1468 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1469 iocbq->sli4_xritag = NO_XRI; 1470 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1471 } 1472 1473 /** 1474 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1475 * @phba: Pointer to HBA context object. 1476 * @iocbq: Pointer to driver iocb object. 1477 * 1478 * This function is called with hbalock held to release driver 1479 * iocb object to the iocb pool. The iotag in the iocb object 1480 * does not change for each use of the iocb object. This function 1481 * clears all other fields of the iocb object when it is freed. 1482 **/ 1483 static void 1484 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1485 { 1486 lockdep_assert_held(&phba->hbalock); 1487 1488 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1489 phba->iocb_cnt--; 1490 } 1491 1492 /** 1493 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1494 * @phba: Pointer to HBA context object. 1495 * @iocbq: Pointer to driver iocb object. 1496 * 1497 * This function is called with no lock held to release the iocb to 1498 * iocb pool. 1499 **/ 1500 void 1501 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1502 { 1503 unsigned long iflags; 1504 1505 /* 1506 * Clean all volatile data fields, preserve iotag and node struct. 1507 */ 1508 spin_lock_irqsave(&phba->hbalock, iflags); 1509 __lpfc_sli_release_iocbq(phba, iocbq); 1510 spin_unlock_irqrestore(&phba->hbalock, iflags); 1511 } 1512 1513 /** 1514 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1515 * @phba: Pointer to HBA context object. 1516 * @iocblist: List of IOCBs. 1517 * @ulpstatus: ULP status in IOCB command field. 1518 * @ulpWord4: ULP word-4 in IOCB command field. 1519 * 1520 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1521 * on the list by invoking the complete callback function associated with the 1522 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1523 * fields. 1524 **/ 1525 void 1526 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1527 uint32_t ulpstatus, uint32_t ulpWord4) 1528 { 1529 struct lpfc_iocbq *piocb; 1530 1531 while (!list_empty(iocblist)) { 1532 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1533 if (piocb->wqe_cmpl) { 1534 if (piocb->iocb_flag & LPFC_IO_NVME) 1535 lpfc_nvme_cancel_iocb(phba, piocb, 1536 ulpstatus, ulpWord4); 1537 else 1538 lpfc_sli_release_iocbq(phba, piocb); 1539 1540 } else if (piocb->iocb_cmpl) { 1541 piocb->iocb.ulpStatus = ulpstatus; 1542 piocb->iocb.un.ulpWord[4] = ulpWord4; 1543 (piocb->iocb_cmpl) (phba, piocb, piocb); 1544 } else { 1545 lpfc_sli_release_iocbq(phba, piocb); 1546 } 1547 } 1548 return; 1549 } 1550 1551 /** 1552 * lpfc_sli_iocb_cmd_type - Get the iocb type 1553 * @iocb_cmnd: iocb command code. 1554 * 1555 * This function is called by ring event handler function to get the iocb type. 1556 * This function translates the iocb command to an iocb command type used to 1557 * decide the final disposition of each completed IOCB. 1558 * The function returns 1559 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1560 * LPFC_SOL_IOCB if it is a solicited iocb completion 1561 * LPFC_ABORT_IOCB if it is an abort iocb 1562 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1563 * 1564 * The caller is not required to hold any lock. 1565 **/ 1566 static lpfc_iocb_type 1567 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1568 { 1569 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1570 1571 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1572 return 0; 1573 1574 switch (iocb_cmnd) { 1575 case CMD_XMIT_SEQUENCE_CR: 1576 case CMD_XMIT_SEQUENCE_CX: 1577 case CMD_XMIT_BCAST_CN: 1578 case CMD_XMIT_BCAST_CX: 1579 case CMD_ELS_REQUEST_CR: 1580 case CMD_ELS_REQUEST_CX: 1581 case CMD_CREATE_XRI_CR: 1582 case CMD_CREATE_XRI_CX: 1583 case CMD_GET_RPI_CN: 1584 case CMD_XMIT_ELS_RSP_CX: 1585 case CMD_GET_RPI_CR: 1586 case CMD_FCP_IWRITE_CR: 1587 case CMD_FCP_IWRITE_CX: 1588 case CMD_FCP_IREAD_CR: 1589 case CMD_FCP_IREAD_CX: 1590 case CMD_FCP_ICMND_CR: 1591 case CMD_FCP_ICMND_CX: 1592 case CMD_FCP_TSEND_CX: 1593 case CMD_FCP_TRSP_CX: 1594 case CMD_FCP_TRECEIVE_CX: 1595 case CMD_FCP_AUTO_TRSP_CX: 1596 case CMD_ADAPTER_MSG: 1597 case CMD_ADAPTER_DUMP: 1598 case CMD_XMIT_SEQUENCE64_CR: 1599 case CMD_XMIT_SEQUENCE64_CX: 1600 case CMD_XMIT_BCAST64_CN: 1601 case CMD_XMIT_BCAST64_CX: 1602 case CMD_ELS_REQUEST64_CR: 1603 case CMD_ELS_REQUEST64_CX: 1604 case CMD_FCP_IWRITE64_CR: 1605 case CMD_FCP_IWRITE64_CX: 1606 case CMD_FCP_IREAD64_CR: 1607 case CMD_FCP_IREAD64_CX: 1608 case CMD_FCP_ICMND64_CR: 1609 case CMD_FCP_ICMND64_CX: 1610 case CMD_FCP_TSEND64_CX: 1611 case CMD_FCP_TRSP64_CX: 1612 case CMD_FCP_TRECEIVE64_CX: 1613 case CMD_GEN_REQUEST64_CR: 1614 case CMD_GEN_REQUEST64_CX: 1615 case CMD_XMIT_ELS_RSP64_CX: 1616 case DSSCMD_IWRITE64_CR: 1617 case DSSCMD_IWRITE64_CX: 1618 case DSSCMD_IREAD64_CR: 1619 case DSSCMD_IREAD64_CX: 1620 case CMD_SEND_FRAME: 1621 type = LPFC_SOL_IOCB; 1622 break; 1623 case CMD_ABORT_XRI_CN: 1624 case CMD_ABORT_XRI_CX: 1625 case CMD_CLOSE_XRI_CN: 1626 case CMD_CLOSE_XRI_CX: 1627 case CMD_XRI_ABORTED_CX: 1628 case CMD_ABORT_MXRI64_CN: 1629 case CMD_XMIT_BLS_RSP64_CX: 1630 type = LPFC_ABORT_IOCB; 1631 break; 1632 case CMD_RCV_SEQUENCE_CX: 1633 case CMD_RCV_ELS_REQ_CX: 1634 case CMD_RCV_SEQUENCE64_CX: 1635 case CMD_RCV_ELS_REQ64_CX: 1636 case CMD_ASYNC_STATUS: 1637 case CMD_IOCB_RCV_SEQ64_CX: 1638 case CMD_IOCB_RCV_ELS64_CX: 1639 case CMD_IOCB_RCV_CONT64_CX: 1640 case CMD_IOCB_RET_XRI64_CX: 1641 type = LPFC_UNSOL_IOCB; 1642 break; 1643 case CMD_IOCB_XMIT_MSEQ64_CR: 1644 case CMD_IOCB_XMIT_MSEQ64_CX: 1645 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1646 case CMD_IOCB_RCV_ELS_LIST64_CX: 1647 case CMD_IOCB_CLOSE_EXTENDED_CN: 1648 case CMD_IOCB_ABORT_EXTENDED_CN: 1649 case CMD_IOCB_RET_HBQE64_CN: 1650 case CMD_IOCB_FCP_IBIDIR64_CR: 1651 case CMD_IOCB_FCP_IBIDIR64_CX: 1652 case CMD_IOCB_FCP_ITASKMGT64_CX: 1653 case CMD_IOCB_LOGENTRY_CN: 1654 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1655 printk("%s - Unhandled SLI-3 Command x%x\n", 1656 __func__, iocb_cmnd); 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 default: 1660 type = LPFC_UNKNOWN_IOCB; 1661 break; 1662 } 1663 1664 return type; 1665 } 1666 1667 /** 1668 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1669 * @phba: Pointer to HBA context object. 1670 * 1671 * This function is called from SLI initialization code 1672 * to configure every ring of the HBA's SLI interface. The 1673 * caller is not required to hold any lock. This function issues 1674 * a config_ring mailbox command for each ring. 1675 * This function returns zero if successful else returns a negative 1676 * error code. 1677 **/ 1678 static int 1679 lpfc_sli_ring_map(struct lpfc_hba *phba) 1680 { 1681 struct lpfc_sli *psli = &phba->sli; 1682 LPFC_MBOXQ_t *pmb; 1683 MAILBOX_t *pmbox; 1684 int i, rc, ret = 0; 1685 1686 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1687 if (!pmb) 1688 return -ENOMEM; 1689 pmbox = &pmb->u.mb; 1690 phba->link_state = LPFC_INIT_MBX_CMDS; 1691 for (i = 0; i < psli->num_rings; i++) { 1692 lpfc_config_ring(phba, i, pmb); 1693 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1694 if (rc != MBX_SUCCESS) { 1695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1696 "0446 Adapter failed to init (%d), " 1697 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1698 "ring %d\n", 1699 rc, pmbox->mbxCommand, 1700 pmbox->mbxStatus, i); 1701 phba->link_state = LPFC_HBA_ERROR; 1702 ret = -ENXIO; 1703 break; 1704 } 1705 } 1706 mempool_free(pmb, phba->mbox_mem_pool); 1707 return ret; 1708 } 1709 1710 /** 1711 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1712 * @phba: Pointer to HBA context object. 1713 * @pring: Pointer to driver SLI ring object. 1714 * @piocb: Pointer to the driver iocb object. 1715 * 1716 * The driver calls this function with the hbalock held for SLI3 ports or 1717 * the ring lock held for SLI4 ports. The function adds the 1718 * new iocb to txcmplq of the given ring. This function always returns 1719 * 0. If this function is called for ELS ring, this function checks if 1720 * there is a vport associated with the ELS command. This function also 1721 * starts els_tmofunc timer if this is an ELS command. 1722 **/ 1723 static int 1724 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1725 struct lpfc_iocbq *piocb) 1726 { 1727 if (phba->sli_rev == LPFC_SLI_REV4) 1728 lockdep_assert_held(&pring->ring_lock); 1729 else 1730 lockdep_assert_held(&phba->hbalock); 1731 1732 BUG_ON(!piocb); 1733 1734 list_add_tail(&piocb->list, &pring->txcmplq); 1735 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1736 pring->txcmplq_cnt++; 1737 1738 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1739 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1740 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1741 BUG_ON(!piocb->vport); 1742 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1743 mod_timer(&piocb->vport->els_tmofunc, 1744 jiffies + 1745 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1746 } 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * lpfc_sli_ringtx_get - Get first element of the txq 1753 * @phba: Pointer to HBA context object. 1754 * @pring: Pointer to driver SLI ring object. 1755 * 1756 * This function is called with hbalock held to get next 1757 * iocb in txq of the given ring. If there is any iocb in 1758 * the txq, the function returns first iocb in the list after 1759 * removing the iocb from the list, else it returns NULL. 1760 **/ 1761 struct lpfc_iocbq * 1762 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1763 { 1764 struct lpfc_iocbq *cmd_iocb; 1765 1766 lockdep_assert_held(&phba->hbalock); 1767 1768 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1769 return cmd_iocb; 1770 } 1771 1772 /** 1773 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1774 * @phba: Pointer to HBA context object. 1775 * @cmdiocb: Pointer to driver command iocb object. 1776 * @cmf_cmpl: Pointer to completed WCQE. 1777 * 1778 * This routine will inform the driver of any BW adjustments we need 1779 * to make. These changes will be picked up during the next CMF 1780 * timer interrupt. In addition, any BW changes will be logged 1781 * with LOG_CGN_MGMT. 1782 **/ 1783 static void 1784 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1785 struct lpfc_wcqe_complete *cmf_cmpl) 1786 { 1787 union lpfc_wqe128 *wqe; 1788 uint32_t status, info; 1789 uint64_t bw, bwdif, slop; 1790 uint64_t pcent, bwpcent; 1791 int asig, afpin, sigcnt, fpincnt; 1792 int wsigmax, wfpinmax, cg, tdp; 1793 char *s; 1794 1795 /* First check for error */ 1796 status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); 1797 if (status) { 1798 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1799 "6211 CMF_SYNC_WQE Error " 1800 "req_tag x%x status x%x hwstatus x%x " 1801 "tdatap x%x parm x%x\n", 1802 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), 1803 bf_get(lpfc_wcqe_c_status, cmf_cmpl), 1804 bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), 1805 cmf_cmpl->total_data_placed, 1806 cmf_cmpl->parameter); 1807 goto out; 1808 } 1809 1810 /* Gather congestion information on a successful cmpl */ 1811 info = cmf_cmpl->parameter; 1812 phba->cmf_active_info = info; 1813 1814 /* See if firmware info count is valid or has changed */ 1815 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1816 info = 0; 1817 else 1818 phba->cmf_info_per_interval = info; 1819 1820 tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); 1821 cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); 1822 1823 /* Get BW requirement from firmware */ 1824 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1825 if (!bw) { 1826 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1827 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1828 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); 1829 goto out; 1830 } 1831 1832 /* Gather information needed for logging if a BW change is required */ 1833 wqe = &cmdiocb->wqe; 1834 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1835 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1836 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1837 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1838 if (phba->cmf_max_bytes_per_interval != bw || 1839 (asig || afpin || sigcnt || fpincnt)) { 1840 /* Are we increasing or decreasing BW */ 1841 if (phba->cmf_max_bytes_per_interval < bw) { 1842 bwdif = bw - phba->cmf_max_bytes_per_interval; 1843 s = "Increase"; 1844 } else { 1845 bwdif = phba->cmf_max_bytes_per_interval - bw; 1846 s = "Decrease"; 1847 } 1848 1849 /* What is the change percentage */ 1850 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1851 pcent = div64_u64(bwdif * 100 + slop, 1852 phba->cmf_link_byte_count); 1853 bwpcent = div64_u64(bw * 100 + slop, 1854 phba->cmf_link_byte_count); 1855 if (asig) { 1856 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1857 "6237 BW Threshold %lld%% (%lld): " 1858 "%lld%% %s: Signal Alarm: cg:%d " 1859 "Info:%u\n", 1860 bwpcent, bw, pcent, s, cg, 1861 phba->cmf_active_info); 1862 } else if (afpin) { 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6238 BW Threshold %lld%% (%lld): " 1865 "%lld%% %s: FPIN Alarm: cg:%d " 1866 "Info:%u\n", 1867 bwpcent, bw, pcent, s, cg, 1868 phba->cmf_active_info); 1869 } else if (sigcnt) { 1870 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1871 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1872 "6239 BW Threshold %lld%% (%lld): " 1873 "%lld%% %s: Signal Warning: " 1874 "Cnt %d Max %d: cg:%d Info:%u\n", 1875 bwpcent, bw, pcent, s, sigcnt, 1876 wsigmax, cg, phba->cmf_active_info); 1877 } else if (fpincnt) { 1878 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1879 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1880 "6240 BW Threshold %lld%% (%lld): " 1881 "%lld%% %s: FPIN Warning: " 1882 "Cnt %d Max %d: cg:%d Info:%u\n", 1883 bwpcent, bw, pcent, s, fpincnt, 1884 wfpinmax, cg, phba->cmf_active_info); 1885 } else { 1886 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1887 "6241 BW Threshold %lld%% (%lld): " 1888 "CMF %lld%% %s: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, cg, 1890 phba->cmf_active_info); 1891 } 1892 } else if (info) { 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6246 Info Threshold %u\n", info); 1895 } 1896 1897 /* Save BW change to be picked up during next timer interrupt */ 1898 phba->cmf_last_sync_bw = bw; 1899 out: 1900 lpfc_sli_release_iocbq(phba, cmdiocb); 1901 } 1902 1903 /** 1904 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1905 * @phba: Pointer to HBA context object. 1906 * @ms: ms to set in WQE interval, 0 means use init op 1907 * @total: Total rcv bytes for this interval 1908 * 1909 * This routine is called every CMF timer interrupt. Its purpose is 1910 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1911 * that may indicate we have congestion (FPINs or Signals). Upon 1912 * completion, the firmware will indicate any BW restrictions the 1913 * driver may need to take. 1914 **/ 1915 int 1916 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1917 { 1918 union lpfc_wqe128 *wqe; 1919 struct lpfc_iocbq *sync_buf; 1920 unsigned long iflags; 1921 u32 ret_val; 1922 u32 atot, wtot, max; 1923 1924 /* First address any alarm / warning activity */ 1925 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1926 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1927 1928 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1929 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1930 phba->link_state == LPFC_LINK_DOWN) 1931 return 0; 1932 1933 spin_lock_irqsave(&phba->hbalock, iflags); 1934 sync_buf = __lpfc_sli_get_iocbq(phba); 1935 if (!sync_buf) { 1936 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1937 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1938 ret_val = ENOMEM; 1939 goto out_unlock; 1940 } 1941 1942 wqe = &sync_buf->wqe; 1943 1944 /* WQEs are reused. Clear stale data and set key fields to zero */ 1945 memset(wqe, 0, sizeof(*wqe)); 1946 1947 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1948 if (!ms) { 1949 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1950 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1951 phba->fc_eventTag); 1952 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1953 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1954 goto initpath; 1955 } 1956 1957 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1958 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1959 1960 /* Check for alarms / warnings */ 1961 if (atot) { 1962 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1963 /* We hit an Signal alarm condition */ 1964 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1965 } else { 1966 /* We hit a FPIN alarm condition */ 1967 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1968 } 1969 } else if (wtot) { 1970 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1971 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1972 /* We hit an Signal warning condition */ 1973 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1974 lpfc_acqe_cgn_frequency; 1975 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1976 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1977 } else { 1978 /* We hit a FPIN warning condition */ 1979 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1980 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1981 } 1982 } 1983 1984 /* Update total read blocks during previous timer interval */ 1985 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1986 1987 initpath: 1988 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1989 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1990 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1991 1992 /* Setup reqtag to match the wqe completion. */ 1993 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1994 1995 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1996 1997 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1998 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2000 2001 sync_buf->vport = phba->pport; 2002 sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; 2003 sync_buf->iocb_cmpl = NULL; 2004 sync_buf->context1 = NULL; 2005 sync_buf->context2 = NULL; 2006 sync_buf->context3 = NULL; 2007 sync_buf->sli4_xritag = NO_XRI; 2008 2009 sync_buf->iocb_flag |= LPFC_IO_CMF; 2010 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2011 if (ret_val) 2012 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2013 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2014 ret_val); 2015 out_unlock: 2016 spin_unlock_irqrestore(&phba->hbalock, iflags); 2017 return ret_val; 2018 } 2019 2020 /** 2021 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2022 * @phba: Pointer to HBA context object. 2023 * @pring: Pointer to driver SLI ring object. 2024 * 2025 * This function is called with hbalock held and the caller must post the 2026 * iocb without releasing the lock. If the caller releases the lock, 2027 * iocb slot returned by the function is not guaranteed to be available. 2028 * The function returns pointer to the next available iocb slot if there 2029 * is available slot in the ring, else it returns NULL. 2030 * If the get index of the ring is ahead of the put index, the function 2031 * will post an error attention event to the worker thread to take the 2032 * HBA to offline state. 2033 **/ 2034 static IOCB_t * 2035 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2036 { 2037 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2038 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2039 2040 lockdep_assert_held(&phba->hbalock); 2041 2042 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2043 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2044 pring->sli.sli3.next_cmdidx = 0; 2045 2046 if (unlikely(pring->sli.sli3.local_getidx == 2047 pring->sli.sli3.next_cmdidx)) { 2048 2049 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2050 2051 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2053 "0315 Ring %d issue: portCmdGet %d " 2054 "is bigger than cmd ring %d\n", 2055 pring->ringno, 2056 pring->sli.sli3.local_getidx, 2057 max_cmd_idx); 2058 2059 phba->link_state = LPFC_HBA_ERROR; 2060 /* 2061 * All error attention handlers are posted to 2062 * worker thread 2063 */ 2064 phba->work_ha |= HA_ERATT; 2065 phba->work_hs = HS_FFER3; 2066 2067 lpfc_worker_wake_up(phba); 2068 2069 return NULL; 2070 } 2071 2072 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2073 return NULL; 2074 } 2075 2076 return lpfc_cmd_iocb(phba, pring); 2077 } 2078 2079 /** 2080 * lpfc_sli_next_iotag - Get an iotag for the iocb 2081 * @phba: Pointer to HBA context object. 2082 * @iocbq: Pointer to driver iocb object. 2083 * 2084 * This function gets an iotag for the iocb. If there is no unused iotag and 2085 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2086 * array and assigns a new iotag. 2087 * The function returns the allocated iotag if successful, else returns zero. 2088 * Zero is not a valid iotag. 2089 * The caller is not required to hold any lock. 2090 **/ 2091 uint16_t 2092 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2093 { 2094 struct lpfc_iocbq **new_arr; 2095 struct lpfc_iocbq **old_arr; 2096 size_t new_len; 2097 struct lpfc_sli *psli = &phba->sli; 2098 uint16_t iotag; 2099 2100 spin_lock_irq(&phba->hbalock); 2101 iotag = psli->last_iotag; 2102 if(++iotag < psli->iocbq_lookup_len) { 2103 psli->last_iotag = iotag; 2104 psli->iocbq_lookup[iotag] = iocbq; 2105 spin_unlock_irq(&phba->hbalock); 2106 iocbq->iotag = iotag; 2107 return iotag; 2108 } else if (psli->iocbq_lookup_len < (0xffff 2109 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2110 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2111 spin_unlock_irq(&phba->hbalock); 2112 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2113 GFP_KERNEL); 2114 if (new_arr) { 2115 spin_lock_irq(&phba->hbalock); 2116 old_arr = psli->iocbq_lookup; 2117 if (new_len <= psli->iocbq_lookup_len) { 2118 /* highly unprobable case */ 2119 kfree(new_arr); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } 2128 spin_unlock_irq(&phba->hbalock); 2129 return 0; 2130 } 2131 if (psli->iocbq_lookup) 2132 memcpy(new_arr, old_arr, 2133 ((psli->last_iotag + 1) * 2134 sizeof (struct lpfc_iocbq *))); 2135 psli->iocbq_lookup = new_arr; 2136 psli->iocbq_lookup_len = new_len; 2137 psli->last_iotag = iotag; 2138 psli->iocbq_lookup[iotag] = iocbq; 2139 spin_unlock_irq(&phba->hbalock); 2140 iocbq->iotag = iotag; 2141 kfree(old_arr); 2142 return iotag; 2143 } 2144 } else 2145 spin_unlock_irq(&phba->hbalock); 2146 2147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2148 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2149 psli->last_iotag); 2150 2151 return 0; 2152 } 2153 2154 /** 2155 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2156 * @phba: Pointer to HBA context object. 2157 * @pring: Pointer to driver SLI ring object. 2158 * @iocb: Pointer to iocb slot in the ring. 2159 * @nextiocb: Pointer to driver iocb object which need to be 2160 * posted to firmware. 2161 * 2162 * This function is called to post a new iocb to the firmware. This 2163 * function copies the new iocb to ring iocb slot and updates the 2164 * ring pointers. It adds the new iocb to txcmplq if there is 2165 * a completion call back for this iocb else the function will free the 2166 * iocb object. The hbalock is asserted held in the code path calling 2167 * this routine. 2168 **/ 2169 static void 2170 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2171 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2172 { 2173 /* 2174 * Set up an iotag 2175 */ 2176 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 2177 2178 2179 if (pring->ringno == LPFC_ELS_RING) { 2180 lpfc_debugfs_slow_ring_trc(phba, 2181 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2182 *(((uint32_t *) &nextiocb->iocb) + 4), 2183 *(((uint32_t *) &nextiocb->iocb) + 6), 2184 *(((uint32_t *) &nextiocb->iocb) + 7)); 2185 } 2186 2187 /* 2188 * Issue iocb command to adapter 2189 */ 2190 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2191 wmb(); 2192 pring->stats.iocb_cmd++; 2193 2194 /* 2195 * If there is no completion routine to call, we can release the 2196 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2197 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 2198 */ 2199 if (nextiocb->iocb_cmpl) 2200 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2201 else 2202 __lpfc_sli_release_iocbq(phba, nextiocb); 2203 2204 /* 2205 * Let the HBA know what IOCB slot will be the next one the 2206 * driver will put a command into. 2207 */ 2208 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2209 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2210 } 2211 2212 /** 2213 * lpfc_sli_update_full_ring - Update the chip attention register 2214 * @phba: Pointer to HBA context object. 2215 * @pring: Pointer to driver SLI ring object. 2216 * 2217 * The caller is not required to hold any lock for calling this function. 2218 * This function updates the chip attention bits for the ring to inform firmware 2219 * that there are pending work to be done for this ring and requests an 2220 * interrupt when there is space available in the ring. This function is 2221 * called when the driver is unable to post more iocbs to the ring due 2222 * to unavailability of space in the ring. 2223 **/ 2224 static void 2225 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2226 { 2227 int ringno = pring->ringno; 2228 2229 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2230 2231 wmb(); 2232 2233 /* 2234 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2235 * The HBA will tell us when an IOCB entry is available. 2236 */ 2237 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2238 readl(phba->CAregaddr); /* flush */ 2239 2240 pring->stats.iocb_cmd_full++; 2241 } 2242 2243 /** 2244 * lpfc_sli_update_ring - Update chip attention register 2245 * @phba: Pointer to HBA context object. 2246 * @pring: Pointer to driver SLI ring object. 2247 * 2248 * This function updates the chip attention register bit for the 2249 * given ring to inform HBA that there is more work to be done 2250 * in this ring. The caller is not required to hold any lock. 2251 **/ 2252 static void 2253 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2254 { 2255 int ringno = pring->ringno; 2256 2257 /* 2258 * Tell the HBA that there is work to do in this ring. 2259 */ 2260 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2261 wmb(); 2262 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2263 readl(phba->CAregaddr); /* flush */ 2264 } 2265 } 2266 2267 /** 2268 * lpfc_sli_resume_iocb - Process iocbs in the txq 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function is called with hbalock held to post pending iocbs 2273 * in the txq to the firmware. This function is called when driver 2274 * detects space available in the ring. 2275 **/ 2276 static void 2277 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 IOCB_t *iocb; 2280 struct lpfc_iocbq *nextiocb; 2281 2282 lockdep_assert_held(&phba->hbalock); 2283 2284 /* 2285 * Check to see if: 2286 * (a) there is anything on the txq to send 2287 * (b) link is up 2288 * (c) link attention events can be processed (fcp ring only) 2289 * (d) IOCB processing is not blocked by the outstanding mbox command. 2290 */ 2291 2292 if (lpfc_is_link_up(phba) && 2293 (!list_empty(&pring->txq)) && 2294 (pring->ringno != LPFC_FCP_RING || 2295 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2296 2297 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2298 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2299 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2300 2301 if (iocb) 2302 lpfc_sli_update_ring(phba, pring); 2303 else 2304 lpfc_sli_update_full_ring(phba, pring); 2305 } 2306 2307 return; 2308 } 2309 2310 /** 2311 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2312 * @phba: Pointer to HBA context object. 2313 * @hbqno: HBQ number. 2314 * 2315 * This function is called with hbalock held to get the next 2316 * available slot for the given HBQ. If there is free slot 2317 * available for the HBQ it will return pointer to the next available 2318 * HBQ entry else it will return NULL. 2319 **/ 2320 static struct lpfc_hbq_entry * 2321 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2322 { 2323 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2324 2325 lockdep_assert_held(&phba->hbalock); 2326 2327 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2328 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2329 hbqp->next_hbqPutIdx = 0; 2330 2331 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2332 uint32_t raw_index = phba->hbq_get[hbqno]; 2333 uint32_t getidx = le32_to_cpu(raw_index); 2334 2335 hbqp->local_hbqGetIdx = getidx; 2336 2337 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2339 "1802 HBQ %d: local_hbqGetIdx " 2340 "%u is > than hbqp->entry_count %u\n", 2341 hbqno, hbqp->local_hbqGetIdx, 2342 hbqp->entry_count); 2343 2344 phba->link_state = LPFC_HBA_ERROR; 2345 return NULL; 2346 } 2347 2348 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2349 return NULL; 2350 } 2351 2352 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2353 hbqp->hbqPutIdx; 2354 } 2355 2356 /** 2357 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2358 * @phba: Pointer to HBA context object. 2359 * 2360 * This function is called with no lock held to free all the 2361 * hbq buffers while uninitializing the SLI interface. It also 2362 * frees the HBQ buffers returned by the firmware but not yet 2363 * processed by the upper layers. 2364 **/ 2365 void 2366 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2367 { 2368 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2369 struct hbq_dmabuf *hbq_buf; 2370 unsigned long flags; 2371 int i, hbq_count; 2372 2373 hbq_count = lpfc_sli_hbq_count(); 2374 /* Return all memory used by all HBQs */ 2375 spin_lock_irqsave(&phba->hbalock, flags); 2376 for (i = 0; i < hbq_count; ++i) { 2377 list_for_each_entry_safe(dmabuf, next_dmabuf, 2378 &phba->hbqs[i].hbq_buffer_list, list) { 2379 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2380 list_del(&hbq_buf->dbuf.list); 2381 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2382 } 2383 phba->hbqs[i].buffer_count = 0; 2384 } 2385 2386 /* Mark the HBQs not in use */ 2387 phba->hbq_in_use = 0; 2388 spin_unlock_irqrestore(&phba->hbalock, flags); 2389 } 2390 2391 /** 2392 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2393 * @phba: Pointer to HBA context object. 2394 * @hbqno: HBQ number. 2395 * @hbq_buf: Pointer to HBQ buffer. 2396 * 2397 * This function is called with the hbalock held to post a 2398 * hbq buffer to the firmware. If the function finds an empty 2399 * slot in the HBQ, it will post the buffer. The function will return 2400 * pointer to the hbq entry if it successfully post the buffer 2401 * else it will return NULL. 2402 **/ 2403 static int 2404 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2405 struct hbq_dmabuf *hbq_buf) 2406 { 2407 lockdep_assert_held(&phba->hbalock); 2408 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2409 } 2410 2411 /** 2412 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2413 * @phba: Pointer to HBA context object. 2414 * @hbqno: HBQ number. 2415 * @hbq_buf: Pointer to HBQ buffer. 2416 * 2417 * This function is called with the hbalock held to post a hbq buffer to the 2418 * firmware. If the function finds an empty slot in the HBQ, it will post the 2419 * buffer and place it on the hbq_buffer_list. The function will return zero if 2420 * it successfully post the buffer else it will return an error. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 struct lpfc_hbq_entry *hbqe; 2427 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2428 2429 lockdep_assert_held(&phba->hbalock); 2430 /* Get next HBQ entry slot to use */ 2431 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2432 if (hbqe) { 2433 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2434 2435 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2436 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2437 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2438 hbqe->bde.tus.f.bdeFlags = 0; 2439 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2440 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2441 /* Sync SLIM */ 2442 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2443 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2444 /* flush */ 2445 readl(phba->hbq_put + hbqno); 2446 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2447 return 0; 2448 } else 2449 return -ENOMEM; 2450 } 2451 2452 /** 2453 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2454 * @phba: Pointer to HBA context object. 2455 * @hbqno: HBQ number. 2456 * @hbq_buf: Pointer to HBQ buffer. 2457 * 2458 * This function is called with the hbalock held to post an RQE to the SLI4 2459 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2460 * the hbq_buffer_list and return zero, otherwise it will return an error. 2461 **/ 2462 static int 2463 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2464 struct hbq_dmabuf *hbq_buf) 2465 { 2466 int rc; 2467 struct lpfc_rqe hrqe; 2468 struct lpfc_rqe drqe; 2469 struct lpfc_queue *hrq; 2470 struct lpfc_queue *drq; 2471 2472 if (hbqno != LPFC_ELS_HBQ) 2473 return 1; 2474 hrq = phba->sli4_hba.hdr_rq; 2475 drq = phba->sli4_hba.dat_rq; 2476 2477 lockdep_assert_held(&phba->hbalock); 2478 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2479 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2480 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2481 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2482 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2483 if (rc < 0) 2484 return rc; 2485 hbq_buf->tag = (rc | (hbqno << 16)); 2486 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2487 return 0; 2488 } 2489 2490 /* HBQ for ELS and CT traffic. */ 2491 static struct lpfc_hbq_init lpfc_els_hbq = { 2492 .rn = 1, 2493 .entry_count = 256, 2494 .mask_count = 0, 2495 .profile = 0, 2496 .ring_mask = (1 << LPFC_ELS_RING), 2497 .buffer_count = 0, 2498 .init_count = 40, 2499 .add_count = 40, 2500 }; 2501 2502 /* Array of HBQs */ 2503 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2504 &lpfc_els_hbq, 2505 }; 2506 2507 /** 2508 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2509 * @phba: Pointer to HBA context object. 2510 * @hbqno: HBQ number. 2511 * @count: Number of HBQ buffers to be posted. 2512 * 2513 * This function is called with no lock held to post more hbq buffers to the 2514 * given HBQ. The function returns the number of HBQ buffers successfully 2515 * posted. 2516 **/ 2517 static int 2518 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2519 { 2520 uint32_t i, posted = 0; 2521 unsigned long flags; 2522 struct hbq_dmabuf *hbq_buffer; 2523 LIST_HEAD(hbq_buf_list); 2524 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2525 return 0; 2526 2527 if ((phba->hbqs[hbqno].buffer_count + count) > 2528 lpfc_hbq_defs[hbqno]->entry_count) 2529 count = lpfc_hbq_defs[hbqno]->entry_count - 2530 phba->hbqs[hbqno].buffer_count; 2531 if (!count) 2532 return 0; 2533 /* Allocate HBQ entries */ 2534 for (i = 0; i < count; i++) { 2535 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2536 if (!hbq_buffer) 2537 break; 2538 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2539 } 2540 /* Check whether HBQ is still in use */ 2541 spin_lock_irqsave(&phba->hbalock, flags); 2542 if (!phba->hbq_in_use) 2543 goto err; 2544 while (!list_empty(&hbq_buf_list)) { 2545 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2546 dbuf.list); 2547 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2548 (hbqno << 16)); 2549 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2550 phba->hbqs[hbqno].buffer_count++; 2551 posted++; 2552 } else 2553 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2554 } 2555 spin_unlock_irqrestore(&phba->hbalock, flags); 2556 return posted; 2557 err: 2558 spin_unlock_irqrestore(&phba->hbalock, flags); 2559 while (!list_empty(&hbq_buf_list)) { 2560 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2561 dbuf.list); 2562 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2563 } 2564 return 0; 2565 } 2566 2567 /** 2568 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2569 * @phba: Pointer to HBA context object. 2570 * @qno: HBQ number. 2571 * 2572 * This function posts more buffers to the HBQ. This function 2573 * is called with no lock held. The function returns the number of HBQ entries 2574 * successfully allocated. 2575 **/ 2576 int 2577 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2578 { 2579 if (phba->sli_rev == LPFC_SLI_REV4) 2580 return 0; 2581 else 2582 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2583 lpfc_hbq_defs[qno]->add_count); 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ queue number. 2590 * 2591 * This function is called from SLI initialization code path with 2592 * no lock held to post initial HBQ buffers to firmware. The 2593 * function returns the number of HBQ entries successfully allocated. 2594 **/ 2595 static int 2596 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2600 lpfc_hbq_defs[qno]->entry_count); 2601 else 2602 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2603 lpfc_hbq_defs[qno]->init_count); 2604 } 2605 2606 /* 2607 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2608 * 2609 * This function removes the first hbq buffer on an hbq list and returns a 2610 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2611 **/ 2612 static struct hbq_dmabuf * 2613 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2614 { 2615 struct lpfc_dmabuf *d_buf; 2616 2617 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2618 if (!d_buf) 2619 return NULL; 2620 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2621 } 2622 2623 /** 2624 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2625 * @phba: Pointer to HBA context object. 2626 * @hrq: HBQ number. 2627 * 2628 * This function removes the first RQ buffer on an RQ buffer list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct rqb_dmabuf * 2632 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2633 { 2634 struct lpfc_dmabuf *h_buf; 2635 struct lpfc_rqb *rqbp; 2636 2637 rqbp = hrq->rqbp; 2638 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2639 struct lpfc_dmabuf, list); 2640 if (!h_buf) 2641 return NULL; 2642 rqbp->buffer_count--; 2643 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2644 } 2645 2646 /** 2647 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2648 * @phba: Pointer to HBA context object. 2649 * @tag: Tag of the hbq buffer. 2650 * 2651 * This function searches for the hbq buffer associated with the given tag in 2652 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2653 * otherwise it returns NULL. 2654 **/ 2655 static struct hbq_dmabuf * 2656 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2657 { 2658 struct lpfc_dmabuf *d_buf; 2659 struct hbq_dmabuf *hbq_buf; 2660 uint32_t hbqno; 2661 2662 hbqno = tag >> 16; 2663 if (hbqno >= LPFC_MAX_HBQS) 2664 return NULL; 2665 2666 spin_lock_irq(&phba->hbalock); 2667 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2668 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2669 if (hbq_buf->tag == tag) { 2670 spin_unlock_irq(&phba->hbalock); 2671 return hbq_buf; 2672 } 2673 } 2674 spin_unlock_irq(&phba->hbalock); 2675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2676 "1803 Bad hbq tag. Data: x%x x%x\n", 2677 tag, phba->hbqs[tag >> 16].buffer_count); 2678 return NULL; 2679 } 2680 2681 /** 2682 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2683 * @phba: Pointer to HBA context object. 2684 * @hbq_buffer: Pointer to HBQ buffer. 2685 * 2686 * This function is called with hbalock. This function gives back 2687 * the hbq buffer to firmware. If the HBQ does not have space to 2688 * post the buffer, it will free the buffer. 2689 **/ 2690 void 2691 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2692 { 2693 uint32_t hbqno; 2694 2695 if (hbq_buffer) { 2696 hbqno = hbq_buffer->tag >> 16; 2697 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2698 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2699 } 2700 } 2701 2702 /** 2703 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2704 * @mbxCommand: mailbox command code. 2705 * 2706 * This function is called by the mailbox event handler function to verify 2707 * that the completed mailbox command is a legitimate mailbox command. If the 2708 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2709 * and the mailbox event handler will take the HBA offline. 2710 **/ 2711 static int 2712 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2713 { 2714 uint8_t ret; 2715 2716 switch (mbxCommand) { 2717 case MBX_LOAD_SM: 2718 case MBX_READ_NV: 2719 case MBX_WRITE_NV: 2720 case MBX_WRITE_VPARMS: 2721 case MBX_RUN_BIU_DIAG: 2722 case MBX_INIT_LINK: 2723 case MBX_DOWN_LINK: 2724 case MBX_CONFIG_LINK: 2725 case MBX_CONFIG_RING: 2726 case MBX_RESET_RING: 2727 case MBX_READ_CONFIG: 2728 case MBX_READ_RCONFIG: 2729 case MBX_READ_SPARM: 2730 case MBX_READ_STATUS: 2731 case MBX_READ_RPI: 2732 case MBX_READ_XRI: 2733 case MBX_READ_REV: 2734 case MBX_READ_LNK_STAT: 2735 case MBX_REG_LOGIN: 2736 case MBX_UNREG_LOGIN: 2737 case MBX_CLEAR_LA: 2738 case MBX_DUMP_MEMORY: 2739 case MBX_DUMP_CONTEXT: 2740 case MBX_RUN_DIAGS: 2741 case MBX_RESTART: 2742 case MBX_UPDATE_CFG: 2743 case MBX_DOWN_LOAD: 2744 case MBX_DEL_LD_ENTRY: 2745 case MBX_RUN_PROGRAM: 2746 case MBX_SET_MASK: 2747 case MBX_SET_VARIABLE: 2748 case MBX_UNREG_D_ID: 2749 case MBX_KILL_BOARD: 2750 case MBX_CONFIG_FARP: 2751 case MBX_BEACON: 2752 case MBX_LOAD_AREA: 2753 case MBX_RUN_BIU_DIAG64: 2754 case MBX_CONFIG_PORT: 2755 case MBX_READ_SPARM64: 2756 case MBX_READ_RPI64: 2757 case MBX_REG_LOGIN64: 2758 case MBX_READ_TOPOLOGY: 2759 case MBX_WRITE_WWN: 2760 case MBX_SET_DEBUG: 2761 case MBX_LOAD_EXP_ROM: 2762 case MBX_ASYNCEVT_ENABLE: 2763 case MBX_REG_VPI: 2764 case MBX_UNREG_VPI: 2765 case MBX_HEARTBEAT: 2766 case MBX_PORT_CAPABILITIES: 2767 case MBX_PORT_IOV_CONTROL: 2768 case MBX_SLI4_CONFIG: 2769 case MBX_SLI4_REQ_FTRS: 2770 case MBX_REG_FCFI: 2771 case MBX_UNREG_FCFI: 2772 case MBX_REG_VFI: 2773 case MBX_UNREG_VFI: 2774 case MBX_INIT_VPI: 2775 case MBX_INIT_VFI: 2776 case MBX_RESUME_RPI: 2777 case MBX_READ_EVENT_LOG_STATUS: 2778 case MBX_READ_EVENT_LOG: 2779 case MBX_SECURITY_MGMT: 2780 case MBX_AUTH_PORT: 2781 case MBX_ACCESS_VDATA: 2782 ret = mbxCommand; 2783 break; 2784 default: 2785 ret = MBX_SHUTDOWN; 2786 break; 2787 } 2788 return ret; 2789 } 2790 2791 /** 2792 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2793 * @phba: Pointer to HBA context object. 2794 * @pmboxq: Pointer to mailbox command. 2795 * 2796 * This is completion handler function for mailbox commands issued from 2797 * lpfc_sli_issue_mbox_wait function. This function is called by the 2798 * mailbox event handler function with no lock held. This function 2799 * will wake up thread waiting on the wait queue pointed by context1 2800 * of the mailbox. 2801 **/ 2802 void 2803 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2804 { 2805 unsigned long drvr_flag; 2806 struct completion *pmbox_done; 2807 2808 /* 2809 * If pmbox_done is empty, the driver thread gave up waiting and 2810 * continued running. 2811 */ 2812 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2813 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2814 pmbox_done = (struct completion *)pmboxq->context3; 2815 if (pmbox_done) 2816 complete(pmbox_done); 2817 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2818 return; 2819 } 2820 2821 static void 2822 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2823 { 2824 unsigned long iflags; 2825 2826 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2827 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2828 spin_lock_irqsave(&ndlp->lock, iflags); 2829 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2830 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2831 spin_unlock_irqrestore(&ndlp->lock, iflags); 2832 } 2833 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2834 } 2835 2836 /** 2837 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2838 * @phba: Pointer to HBA context object. 2839 * @pmb: Pointer to mailbox object. 2840 * 2841 * This function is the default mailbox completion handler. It 2842 * frees the memory resources associated with the completed mailbox 2843 * command. If the completed command is a REG_LOGIN mailbox command, 2844 * this function will issue a UREG_LOGIN to re-claim the RPI. 2845 **/ 2846 void 2847 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2848 { 2849 struct lpfc_vport *vport = pmb->vport; 2850 struct lpfc_dmabuf *mp; 2851 struct lpfc_nodelist *ndlp; 2852 struct Scsi_Host *shost; 2853 uint16_t rpi, vpi; 2854 int rc; 2855 2856 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2857 2858 if (mp) { 2859 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2860 kfree(mp); 2861 } 2862 2863 /* 2864 * If a REG_LOGIN succeeded after node is destroyed or node 2865 * is in re-discovery driver need to cleanup the RPI. 2866 */ 2867 if (!(phba->pport->load_flag & FC_UNLOADING) && 2868 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2869 !pmb->u.mb.mbxStatus) { 2870 rpi = pmb->u.mb.un.varWords[0]; 2871 vpi = pmb->u.mb.un.varRegLogin.vpi; 2872 if (phba->sli_rev == LPFC_SLI_REV4) 2873 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2874 lpfc_unreg_login(phba, vpi, rpi, pmb); 2875 pmb->vport = vport; 2876 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2877 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2878 if (rc != MBX_NOT_FINISHED) 2879 return; 2880 } 2881 2882 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2883 !(phba->pport->load_flag & FC_UNLOADING) && 2884 !pmb->u.mb.mbxStatus) { 2885 shost = lpfc_shost_from_vport(vport); 2886 spin_lock_irq(shost->host_lock); 2887 vport->vpi_state |= LPFC_VPI_REGISTERED; 2888 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2889 spin_unlock_irq(shost->host_lock); 2890 } 2891 2892 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2893 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2894 lpfc_nlp_put(ndlp); 2895 pmb->ctx_buf = NULL; 2896 pmb->ctx_ndlp = NULL; 2897 } 2898 2899 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2900 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2901 2902 /* Check to see if there are any deferred events to process */ 2903 if (ndlp) { 2904 lpfc_printf_vlog( 2905 vport, 2906 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2907 "1438 UNREG cmpl deferred mbox x%x " 2908 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2909 ndlp->nlp_rpi, ndlp->nlp_DID, 2910 ndlp->nlp_flag, ndlp->nlp_defer_did, 2911 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2912 2913 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2914 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2915 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2916 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2917 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2918 } else { 2919 __lpfc_sli_rpi_release(vport, ndlp); 2920 } 2921 2922 /* The unreg_login mailbox is complete and had a 2923 * reference that has to be released. The PLOGI 2924 * got its own ref. 2925 */ 2926 lpfc_nlp_put(ndlp); 2927 pmb->ctx_ndlp = NULL; 2928 } 2929 } 2930 2931 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2932 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2933 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2934 lpfc_nlp_put(ndlp); 2935 } 2936 2937 /* Check security permission status on INIT_LINK mailbox command */ 2938 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2939 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2941 "2860 SLI authentication is required " 2942 "for INIT_LINK but has not done yet\n"); 2943 2944 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2945 lpfc_sli4_mbox_cmd_free(phba, pmb); 2946 else 2947 mempool_free(pmb, phba->mbox_mem_pool); 2948 } 2949 /** 2950 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2951 * @phba: Pointer to HBA context object. 2952 * @pmb: Pointer to mailbox object. 2953 * 2954 * This function is the unreg rpi mailbox completion handler. It 2955 * frees the memory resources associated with the completed mailbox 2956 * command. An additional reference is put on the ndlp to prevent 2957 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2958 * the unreg mailbox command completes, this routine puts the 2959 * reference back. 2960 * 2961 **/ 2962 void 2963 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2964 { 2965 struct lpfc_vport *vport = pmb->vport; 2966 struct lpfc_nodelist *ndlp; 2967 2968 ndlp = pmb->ctx_ndlp; 2969 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2970 if (phba->sli_rev == LPFC_SLI_REV4 && 2971 (bf_get(lpfc_sli_intf_if_type, 2972 &phba->sli4_hba.sli_intf) >= 2973 LPFC_SLI_INTF_IF_TYPE_2)) { 2974 if (ndlp) { 2975 lpfc_printf_vlog( 2976 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2977 "0010 UNREG_LOGIN vpi:%x " 2978 "rpi:%x DID:%x defer x%x flg x%x " 2979 "x%px\n", 2980 vport->vpi, ndlp->nlp_rpi, 2981 ndlp->nlp_DID, ndlp->nlp_defer_did, 2982 ndlp->nlp_flag, 2983 ndlp); 2984 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2985 2986 /* Check to see if there are any deferred 2987 * events to process 2988 */ 2989 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2990 (ndlp->nlp_defer_did != 2991 NLP_EVT_NOTHING_PENDING)) { 2992 lpfc_printf_vlog( 2993 vport, KERN_INFO, LOG_DISCOVERY, 2994 "4111 UNREG cmpl deferred " 2995 "clr x%x on " 2996 "NPort x%x Data: x%x x%px\n", 2997 ndlp->nlp_rpi, ndlp->nlp_DID, 2998 ndlp->nlp_defer_did, ndlp); 2999 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3000 ndlp->nlp_defer_did = 3001 NLP_EVT_NOTHING_PENDING; 3002 lpfc_issue_els_plogi( 3003 vport, ndlp->nlp_DID, 0); 3004 } else { 3005 __lpfc_sli_rpi_release(vport, ndlp); 3006 } 3007 lpfc_nlp_put(ndlp); 3008 } 3009 } 3010 } 3011 3012 mempool_free(pmb, phba->mbox_mem_pool); 3013 } 3014 3015 /** 3016 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3017 * @phba: Pointer to HBA context object. 3018 * 3019 * This function is called with no lock held. This function processes all 3020 * the completed mailbox commands and gives it to upper layers. The interrupt 3021 * service routine processes mailbox completion interrupt and adds completed 3022 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3023 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3024 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3025 * function returns the mailbox commands to the upper layer by calling the 3026 * completion handler function of each mailbox. 3027 **/ 3028 int 3029 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3030 { 3031 MAILBOX_t *pmbox; 3032 LPFC_MBOXQ_t *pmb; 3033 int rc; 3034 LIST_HEAD(cmplq); 3035 3036 phba->sli.slistat.mbox_event++; 3037 3038 /* Get all completed mailboxe buffers into the cmplq */ 3039 spin_lock_irq(&phba->hbalock); 3040 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3041 spin_unlock_irq(&phba->hbalock); 3042 3043 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3044 do { 3045 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3046 if (pmb == NULL) 3047 break; 3048 3049 pmbox = &pmb->u.mb; 3050 3051 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3052 if (pmb->vport) { 3053 lpfc_debugfs_disc_trc(pmb->vport, 3054 LPFC_DISC_TRC_MBOX_VPORT, 3055 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3056 (uint32_t)pmbox->mbxCommand, 3057 pmbox->un.varWords[0], 3058 pmbox->un.varWords[1]); 3059 } 3060 else { 3061 lpfc_debugfs_disc_trc(phba->pport, 3062 LPFC_DISC_TRC_MBOX, 3063 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3064 (uint32_t)pmbox->mbxCommand, 3065 pmbox->un.varWords[0], 3066 pmbox->un.varWords[1]); 3067 } 3068 } 3069 3070 /* 3071 * It is a fatal error if unknown mbox command completion. 3072 */ 3073 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3074 MBX_SHUTDOWN) { 3075 /* Unknown mailbox command compl */ 3076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3077 "(%d):0323 Unknown Mailbox command " 3078 "x%x (x%x/x%x) Cmpl\n", 3079 pmb->vport ? pmb->vport->vpi : 3080 LPFC_VPORT_UNKNOWN, 3081 pmbox->mbxCommand, 3082 lpfc_sli_config_mbox_subsys_get(phba, 3083 pmb), 3084 lpfc_sli_config_mbox_opcode_get(phba, 3085 pmb)); 3086 phba->link_state = LPFC_HBA_ERROR; 3087 phba->work_hs = HS_FFER3; 3088 lpfc_handle_eratt(phba); 3089 continue; 3090 } 3091 3092 if (pmbox->mbxStatus) { 3093 phba->sli.slistat.mbox_stat_err++; 3094 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3095 /* Mbox cmd cmpl error - RETRYing */ 3096 lpfc_printf_log(phba, KERN_INFO, 3097 LOG_MBOX | LOG_SLI, 3098 "(%d):0305 Mbox cmd cmpl " 3099 "error - RETRYing Data: x%x " 3100 "(x%x/x%x) x%x x%x x%x\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb), 3108 pmbox->mbxStatus, 3109 pmbox->un.varWords[0], 3110 pmb->vport ? pmb->vport->port_state : 3111 LPFC_VPORT_UNKNOWN); 3112 pmbox->mbxStatus = 0; 3113 pmbox->mbxOwner = OWN_HOST; 3114 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3115 if (rc != MBX_NOT_FINISHED) 3116 continue; 3117 } 3118 } 3119 3120 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3121 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3122 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3123 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3124 "x%x x%x x%x\n", 3125 pmb->vport ? pmb->vport->vpi : 0, 3126 pmbox->mbxCommand, 3127 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3129 pmb->mbox_cmpl, 3130 *((uint32_t *) pmbox), 3131 pmbox->un.varWords[0], 3132 pmbox->un.varWords[1], 3133 pmbox->un.varWords[2], 3134 pmbox->un.varWords[3], 3135 pmbox->un.varWords[4], 3136 pmbox->un.varWords[5], 3137 pmbox->un.varWords[6], 3138 pmbox->un.varWords[7], 3139 pmbox->un.varWords[8], 3140 pmbox->un.varWords[9], 3141 pmbox->un.varWords[10]); 3142 3143 if (pmb->mbox_cmpl) 3144 pmb->mbox_cmpl(phba,pmb); 3145 } while (1); 3146 return 0; 3147 } 3148 3149 /** 3150 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3151 * @phba: Pointer to HBA context object. 3152 * @pring: Pointer to driver SLI ring object. 3153 * @tag: buffer tag. 3154 * 3155 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3156 * is set in the tag the buffer is posted for a particular exchange, 3157 * the function will return the buffer without replacing the buffer. 3158 * If the buffer is for unsolicited ELS or CT traffic, this function 3159 * returns the buffer and also posts another buffer to the firmware. 3160 **/ 3161 static struct lpfc_dmabuf * 3162 lpfc_sli_get_buff(struct lpfc_hba *phba, 3163 struct lpfc_sli_ring *pring, 3164 uint32_t tag) 3165 { 3166 struct hbq_dmabuf *hbq_entry; 3167 3168 if (tag & QUE_BUFTAG_BIT) 3169 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3170 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3171 if (!hbq_entry) 3172 return NULL; 3173 return &hbq_entry->dbuf; 3174 } 3175 3176 /** 3177 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3178 * containing a NVME LS request. 3179 * @phba: pointer to lpfc hba data structure. 3180 * @piocb: pointer to the iocbq struct representing the sequence starting 3181 * frame. 3182 * 3183 * This routine initially validates the NVME LS, validates there is a login 3184 * with the port that sent the LS, and then calls the appropriate nvme host 3185 * or target LS request handler. 3186 **/ 3187 static void 3188 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3189 { 3190 struct lpfc_nodelist *ndlp; 3191 struct lpfc_dmabuf *d_buf; 3192 struct hbq_dmabuf *nvmebuf; 3193 struct fc_frame_header *fc_hdr; 3194 struct lpfc_async_xchg_ctx *axchg = NULL; 3195 char *failwhy = NULL; 3196 uint32_t oxid, sid, did, fctl, size; 3197 int ret = 1; 3198 3199 d_buf = piocb->context2; 3200 3201 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3202 fc_hdr = nvmebuf->hbuf.virt; 3203 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3204 sid = sli4_sid_from_fc_hdr(fc_hdr); 3205 did = sli4_did_from_fc_hdr(fc_hdr); 3206 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3207 fc_hdr->fh_f_ctl[1] << 8 | 3208 fc_hdr->fh_f_ctl[2]); 3209 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3210 3211 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3212 oxid, size, sid); 3213 3214 if (phba->pport->load_flag & FC_UNLOADING) { 3215 failwhy = "Driver Unloading"; 3216 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3217 failwhy = "NVME FC4 Disabled"; 3218 } else if (!phba->nvmet_support && !phba->pport->localport) { 3219 failwhy = "No Localport"; 3220 } else if (phba->nvmet_support && !phba->targetport) { 3221 failwhy = "No Targetport"; 3222 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3223 failwhy = "Bad NVME LS R_CTL"; 3224 } else if (unlikely((fctl & 0x00FF0000) != 3225 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3226 failwhy = "Bad NVME LS F_CTL"; 3227 } else { 3228 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3229 if (!axchg) 3230 failwhy = "No CTX memory"; 3231 } 3232 3233 if (unlikely(failwhy)) { 3234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3235 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3236 sid, oxid, failwhy); 3237 goto out_fail; 3238 } 3239 3240 /* validate the source of the LS is logged in */ 3241 ndlp = lpfc_findnode_did(phba->pport, sid); 3242 if (!ndlp || 3243 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3244 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3245 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3246 "6216 NVME Unsol rcv: No ndlp: " 3247 "NPort_ID x%x oxid x%x\n", 3248 sid, oxid); 3249 goto out_fail; 3250 } 3251 3252 axchg->phba = phba; 3253 axchg->ndlp = ndlp; 3254 axchg->size = size; 3255 axchg->oxid = oxid; 3256 axchg->sid = sid; 3257 axchg->wqeq = NULL; 3258 axchg->state = LPFC_NVME_STE_LS_RCV; 3259 axchg->entry_cnt = 1; 3260 axchg->rqb_buffer = (void *)nvmebuf; 3261 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3262 axchg->payload = nvmebuf->dbuf.virt; 3263 INIT_LIST_HEAD(&axchg->list); 3264 3265 if (phba->nvmet_support) { 3266 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3267 spin_lock_irq(&ndlp->lock); 3268 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3269 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3270 spin_unlock_irq(&ndlp->lock); 3271 3272 /* This reference is a single occurrence to hold the 3273 * node valid until the nvmet transport calls 3274 * host_release. 3275 */ 3276 if (!lpfc_nlp_get(ndlp)) 3277 goto out_fail; 3278 3279 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3280 "6206 NVMET unsol ls_req ndlp x%px " 3281 "DID x%x xflags x%x refcnt %d\n", 3282 ndlp, ndlp->nlp_DID, 3283 ndlp->fc4_xpt_flags, 3284 kref_read(&ndlp->kref)); 3285 } else { 3286 spin_unlock_irq(&ndlp->lock); 3287 } 3288 } else { 3289 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3290 } 3291 3292 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3293 if (!ret) 3294 return; 3295 3296 out_fail: 3297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3298 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3299 "NVMe%s handler failed %d\n", 3300 did, sid, oxid, 3301 (phba->nvmet_support) ? "T" : "I", ret); 3302 3303 /* recycle receive buffer */ 3304 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3305 3306 /* If start of new exchange, abort it */ 3307 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3308 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3309 3310 if (ret) 3311 kfree(axchg); 3312 } 3313 3314 /** 3315 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3316 * @phba: Pointer to HBA context object. 3317 * @pring: Pointer to driver SLI ring object. 3318 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3319 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3320 * @fch_type: the type for the first frame of the sequence. 3321 * 3322 * This function is called with no lock held. This function uses the r_ctl and 3323 * type of the received sequence to find the correct callback function to call 3324 * to process the sequence. 3325 **/ 3326 static int 3327 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3328 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3329 uint32_t fch_type) 3330 { 3331 int i; 3332 3333 switch (fch_type) { 3334 case FC_TYPE_NVME: 3335 lpfc_nvme_unsol_ls_handler(phba, saveq); 3336 return 1; 3337 default: 3338 break; 3339 } 3340 3341 /* unSolicited Responses */ 3342 if (pring->prt[0].profile) { 3343 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3344 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3345 saveq); 3346 return 1; 3347 } 3348 /* We must search, based on rctl / type 3349 for the right routine */ 3350 for (i = 0; i < pring->num_mask; i++) { 3351 if ((pring->prt[i].rctl == fch_r_ctl) && 3352 (pring->prt[i].type == fch_type)) { 3353 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3354 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3355 (phba, pring, saveq); 3356 return 1; 3357 } 3358 } 3359 return 0; 3360 } 3361 3362 /** 3363 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3364 * @phba: Pointer to HBA context object. 3365 * @pring: Pointer to driver SLI ring object. 3366 * @saveq: Pointer to the unsolicited iocb. 3367 * 3368 * This function is called with no lock held by the ring event handler 3369 * when there is an unsolicited iocb posted to the response ring by the 3370 * firmware. This function gets the buffer associated with the iocbs 3371 * and calls the event handler for the ring. This function handles both 3372 * qring buffers and hbq buffers. 3373 * When the function returns 1 the caller can free the iocb object otherwise 3374 * upper layer functions will free the iocb objects. 3375 **/ 3376 static int 3377 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3378 struct lpfc_iocbq *saveq) 3379 { 3380 IOCB_t * irsp; 3381 WORD5 * w5p; 3382 uint32_t Rctl, Type; 3383 struct lpfc_iocbq *iocbq; 3384 struct lpfc_dmabuf *dmzbuf; 3385 3386 irsp = &(saveq->iocb); 3387 3388 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3389 if (pring->lpfc_sli_rcv_async_status) 3390 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3391 else 3392 lpfc_printf_log(phba, 3393 KERN_WARNING, 3394 LOG_SLI, 3395 "0316 Ring %d handler: unexpected " 3396 "ASYNC_STATUS iocb received evt_code " 3397 "0x%x\n", 3398 pring->ringno, 3399 irsp->un.asyncstat.evt_code); 3400 return 1; 3401 } 3402 3403 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3404 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3405 if (irsp->ulpBdeCount > 0) { 3406 dmzbuf = lpfc_sli_get_buff(phba, pring, 3407 irsp->un.ulpWord[3]); 3408 lpfc_in_buf_free(phba, dmzbuf); 3409 } 3410 3411 if (irsp->ulpBdeCount > 1) { 3412 dmzbuf = lpfc_sli_get_buff(phba, pring, 3413 irsp->unsli3.sli3Words[3]); 3414 lpfc_in_buf_free(phba, dmzbuf); 3415 } 3416 3417 if (irsp->ulpBdeCount > 2) { 3418 dmzbuf = lpfc_sli_get_buff(phba, pring, 3419 irsp->unsli3.sli3Words[7]); 3420 lpfc_in_buf_free(phba, dmzbuf); 3421 } 3422 3423 return 1; 3424 } 3425 3426 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3427 if (irsp->ulpBdeCount != 0) { 3428 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3429 irsp->un.ulpWord[3]); 3430 if (!saveq->context2) 3431 lpfc_printf_log(phba, 3432 KERN_ERR, 3433 LOG_SLI, 3434 "0341 Ring %d Cannot find buffer for " 3435 "an unsolicited iocb. tag 0x%x\n", 3436 pring->ringno, 3437 irsp->un.ulpWord[3]); 3438 } 3439 if (irsp->ulpBdeCount == 2) { 3440 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3441 irsp->unsli3.sli3Words[7]); 3442 if (!saveq->context3) 3443 lpfc_printf_log(phba, 3444 KERN_ERR, 3445 LOG_SLI, 3446 "0342 Ring %d Cannot find buffer for an" 3447 " unsolicited iocb. tag 0x%x\n", 3448 pring->ringno, 3449 irsp->unsli3.sli3Words[7]); 3450 } 3451 list_for_each_entry(iocbq, &saveq->list, list) { 3452 irsp = &(iocbq->iocb); 3453 if (irsp->ulpBdeCount != 0) { 3454 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3455 irsp->un.ulpWord[3]); 3456 if (!iocbq->context2) 3457 lpfc_printf_log(phba, 3458 KERN_ERR, 3459 LOG_SLI, 3460 "0343 Ring %d Cannot find " 3461 "buffer for an unsolicited iocb" 3462 ". tag 0x%x\n", pring->ringno, 3463 irsp->un.ulpWord[3]); 3464 } 3465 if (irsp->ulpBdeCount == 2) { 3466 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3467 irsp->unsli3.sli3Words[7]); 3468 if (!iocbq->context3) 3469 lpfc_printf_log(phba, 3470 KERN_ERR, 3471 LOG_SLI, 3472 "0344 Ring %d Cannot find " 3473 "buffer for an unsolicited " 3474 "iocb. tag 0x%x\n", 3475 pring->ringno, 3476 irsp->unsli3.sli3Words[7]); 3477 } 3478 } 3479 } 3480 if (irsp->ulpBdeCount != 0 && 3481 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3482 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3483 int found = 0; 3484 3485 /* search continue save q for same XRI */ 3486 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3487 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3488 saveq->iocb.unsli3.rcvsli3.ox_id) { 3489 list_add_tail(&saveq->list, &iocbq->list); 3490 found = 1; 3491 break; 3492 } 3493 } 3494 if (!found) 3495 list_add_tail(&saveq->clist, 3496 &pring->iocb_continue_saveq); 3497 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3498 list_del_init(&iocbq->clist); 3499 saveq = iocbq; 3500 irsp = &(saveq->iocb); 3501 } else 3502 return 0; 3503 } 3504 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3505 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3506 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3507 Rctl = FC_RCTL_ELS_REQ; 3508 Type = FC_TYPE_ELS; 3509 } else { 3510 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3511 Rctl = w5p->hcsw.Rctl; 3512 Type = w5p->hcsw.Type; 3513 3514 /* Firmware Workaround */ 3515 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3516 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3517 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3518 Rctl = FC_RCTL_ELS_REQ; 3519 Type = FC_TYPE_ELS; 3520 w5p->hcsw.Rctl = Rctl; 3521 w5p->hcsw.Type = Type; 3522 } 3523 } 3524 3525 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3527 "0313 Ring %d handler: unexpected Rctl x%x " 3528 "Type x%x received\n", 3529 pring->ringno, Rctl, Type); 3530 3531 return 1; 3532 } 3533 3534 /** 3535 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * @prspiocb: Pointer to response iocb object. 3539 * 3540 * This function looks up the iocb_lookup table to get the command iocb 3541 * corresponding to the given response iocb using the iotag of the 3542 * response iocb. The driver calls this function with the hbalock held 3543 * for SLI3 ports or the ring lock held for SLI4 ports. 3544 * This function returns the command iocb object if it finds the command 3545 * iocb else returns NULL. 3546 **/ 3547 static struct lpfc_iocbq * 3548 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3549 struct lpfc_sli_ring *pring, 3550 struct lpfc_iocbq *prspiocb) 3551 { 3552 struct lpfc_iocbq *cmd_iocb = NULL; 3553 uint16_t iotag; 3554 spinlock_t *temp_lock = NULL; 3555 unsigned long iflag = 0; 3556 3557 if (phba->sli_rev == LPFC_SLI_REV4) 3558 temp_lock = &pring->ring_lock; 3559 else 3560 temp_lock = &phba->hbalock; 3561 3562 spin_lock_irqsave(temp_lock, iflag); 3563 iotag = prspiocb->iocb.ulpIoTag; 3564 3565 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3566 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3567 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3568 /* remove from txcmpl queue list */ 3569 list_del_init(&cmd_iocb->list); 3570 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3571 pring->txcmplq_cnt--; 3572 spin_unlock_irqrestore(temp_lock, iflag); 3573 return cmd_iocb; 3574 } 3575 } 3576 3577 spin_unlock_irqrestore(temp_lock, iflag); 3578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3579 "0317 iotag x%x is out of " 3580 "range: max iotag x%x wd0 x%x\n", 3581 iotag, phba->sli.last_iotag, 3582 *(((uint32_t *) &prspiocb->iocb) + 7)); 3583 return NULL; 3584 } 3585 3586 /** 3587 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3588 * @phba: Pointer to HBA context object. 3589 * @pring: Pointer to driver SLI ring object. 3590 * @iotag: IOCB tag. 3591 * 3592 * This function looks up the iocb_lookup table to get the command iocb 3593 * corresponding to the given iotag. The driver calls this function with 3594 * the ring lock held because this function is an SLI4 port only helper. 3595 * This function returns the command iocb object if it finds the command 3596 * iocb else returns NULL. 3597 **/ 3598 static struct lpfc_iocbq * 3599 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3600 struct lpfc_sli_ring *pring, uint16_t iotag) 3601 { 3602 struct lpfc_iocbq *cmd_iocb = NULL; 3603 spinlock_t *temp_lock = NULL; 3604 unsigned long iflag = 0; 3605 3606 if (phba->sli_rev == LPFC_SLI_REV4) 3607 temp_lock = &pring->ring_lock; 3608 else 3609 temp_lock = &phba->hbalock; 3610 3611 spin_lock_irqsave(temp_lock, iflag); 3612 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3613 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3614 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3615 /* remove from txcmpl queue list */ 3616 list_del_init(&cmd_iocb->list); 3617 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3618 pring->txcmplq_cnt--; 3619 spin_unlock_irqrestore(temp_lock, iflag); 3620 return cmd_iocb; 3621 } 3622 } 3623 3624 spin_unlock_irqrestore(temp_lock, iflag); 3625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3626 "0372 iotag x%x lookup error: max iotag (x%x) " 3627 "iocb_flag x%x\n", 3628 iotag, phba->sli.last_iotag, 3629 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3630 return NULL; 3631 } 3632 3633 /** 3634 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3635 * @phba: Pointer to HBA context object. 3636 * @pring: Pointer to driver SLI ring object. 3637 * @saveq: Pointer to the response iocb to be processed. 3638 * 3639 * This function is called by the ring event handler for non-fcp 3640 * rings when there is a new response iocb in the response ring. 3641 * The caller is not required to hold any locks. This function 3642 * gets the command iocb associated with the response iocb and 3643 * calls the completion handler for the command iocb. If there 3644 * is no completion handler, the function will free the resources 3645 * associated with command iocb. If the response iocb is for 3646 * an already aborted command iocb, the status of the completion 3647 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3648 * This function always returns 1. 3649 **/ 3650 static int 3651 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3652 struct lpfc_iocbq *saveq) 3653 { 3654 struct lpfc_iocbq *cmdiocbp; 3655 int rc = 1; 3656 unsigned long iflag; 3657 3658 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3659 if (cmdiocbp) { 3660 if (cmdiocbp->iocb_cmpl) { 3661 /* 3662 * If an ELS command failed send an event to mgmt 3663 * application. 3664 */ 3665 if (saveq->iocb.ulpStatus && 3666 (pring->ringno == LPFC_ELS_RING) && 3667 (cmdiocbp->iocb.ulpCommand == 3668 CMD_ELS_REQUEST64_CR)) 3669 lpfc_send_els_failure_event(phba, 3670 cmdiocbp, saveq); 3671 3672 /* 3673 * Post all ELS completions to the worker thread. 3674 * All other are passed to the completion callback. 3675 */ 3676 if (pring->ringno == LPFC_ELS_RING) { 3677 if ((phba->sli_rev < LPFC_SLI_REV4) && 3678 (cmdiocbp->iocb_flag & 3679 LPFC_DRIVER_ABORTED)) { 3680 spin_lock_irqsave(&phba->hbalock, 3681 iflag); 3682 cmdiocbp->iocb_flag &= 3683 ~LPFC_DRIVER_ABORTED; 3684 spin_unlock_irqrestore(&phba->hbalock, 3685 iflag); 3686 saveq->iocb.ulpStatus = 3687 IOSTAT_LOCAL_REJECT; 3688 saveq->iocb.un.ulpWord[4] = 3689 IOERR_SLI_ABORTED; 3690 3691 /* Firmware could still be in progress 3692 * of DMAing payload, so don't free data 3693 * buffer till after a hbeat. 3694 */ 3695 spin_lock_irqsave(&phba->hbalock, 3696 iflag); 3697 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3698 spin_unlock_irqrestore(&phba->hbalock, 3699 iflag); 3700 } 3701 if (phba->sli_rev == LPFC_SLI_REV4) { 3702 if (saveq->iocb_flag & 3703 LPFC_EXCHANGE_BUSY) { 3704 /* Set cmdiocb flag for the 3705 * exchange busy so sgl (xri) 3706 * will not be released until 3707 * the abort xri is received 3708 * from hba. 3709 */ 3710 spin_lock_irqsave( 3711 &phba->hbalock, iflag); 3712 cmdiocbp->iocb_flag |= 3713 LPFC_EXCHANGE_BUSY; 3714 spin_unlock_irqrestore( 3715 &phba->hbalock, iflag); 3716 } 3717 if (cmdiocbp->iocb_flag & 3718 LPFC_DRIVER_ABORTED) { 3719 /* 3720 * Clear LPFC_DRIVER_ABORTED 3721 * bit in case it was driver 3722 * initiated abort. 3723 */ 3724 spin_lock_irqsave( 3725 &phba->hbalock, iflag); 3726 cmdiocbp->iocb_flag &= 3727 ~LPFC_DRIVER_ABORTED; 3728 spin_unlock_irqrestore( 3729 &phba->hbalock, iflag); 3730 cmdiocbp->iocb.ulpStatus = 3731 IOSTAT_LOCAL_REJECT; 3732 cmdiocbp->iocb.un.ulpWord[4] = 3733 IOERR_ABORT_REQUESTED; 3734 /* 3735 * For SLI4, irsiocb contains 3736 * NO_XRI in sli_xritag, it 3737 * shall not affect releasing 3738 * sgl (xri) process. 3739 */ 3740 saveq->iocb.ulpStatus = 3741 IOSTAT_LOCAL_REJECT; 3742 saveq->iocb.un.ulpWord[4] = 3743 IOERR_SLI_ABORTED; 3744 spin_lock_irqsave( 3745 &phba->hbalock, iflag); 3746 saveq->iocb_flag |= 3747 LPFC_DELAY_MEM_FREE; 3748 spin_unlock_irqrestore( 3749 &phba->hbalock, iflag); 3750 } 3751 } 3752 } 3753 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3754 } else 3755 lpfc_sli_release_iocbq(phba, cmdiocbp); 3756 } else { 3757 /* 3758 * Unknown initiating command based on the response iotag. 3759 * This could be the case on the ELS ring because of 3760 * lpfc_els_abort(). 3761 */ 3762 if (pring->ringno != LPFC_ELS_RING) { 3763 /* 3764 * Ring <ringno> handler: unexpected completion IoTag 3765 * <IoTag> 3766 */ 3767 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3768 "0322 Ring %d handler: " 3769 "unexpected completion IoTag x%x " 3770 "Data: x%x x%x x%x x%x\n", 3771 pring->ringno, 3772 saveq->iocb.ulpIoTag, 3773 saveq->iocb.ulpStatus, 3774 saveq->iocb.un.ulpWord[4], 3775 saveq->iocb.ulpCommand, 3776 saveq->iocb.ulpContext); 3777 } 3778 } 3779 3780 return rc; 3781 } 3782 3783 /** 3784 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3785 * @phba: Pointer to HBA context object. 3786 * @pring: Pointer to driver SLI ring object. 3787 * 3788 * This function is called from the iocb ring event handlers when 3789 * put pointer is ahead of the get pointer for a ring. This function signal 3790 * an error attention condition to the worker thread and the worker 3791 * thread will transition the HBA to offline state. 3792 **/ 3793 static void 3794 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3795 { 3796 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3797 /* 3798 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3799 * rsp ring <portRspMax> 3800 */ 3801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3802 "0312 Ring %d handler: portRspPut %d " 3803 "is bigger than rsp ring %d\n", 3804 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3805 pring->sli.sli3.numRiocb); 3806 3807 phba->link_state = LPFC_HBA_ERROR; 3808 3809 /* 3810 * All error attention handlers are posted to 3811 * worker thread 3812 */ 3813 phba->work_ha |= HA_ERATT; 3814 phba->work_hs = HS_FFER3; 3815 3816 lpfc_worker_wake_up(phba); 3817 3818 return; 3819 } 3820 3821 /** 3822 * lpfc_poll_eratt - Error attention polling timer timeout handler 3823 * @t: Context to fetch pointer to address of HBA context object from. 3824 * 3825 * This function is invoked by the Error Attention polling timer when the 3826 * timer times out. It will check the SLI Error Attention register for 3827 * possible attention events. If so, it will post an Error Attention event 3828 * and wake up worker thread to process it. Otherwise, it will set up the 3829 * Error Attention polling timer for the next poll. 3830 **/ 3831 void lpfc_poll_eratt(struct timer_list *t) 3832 { 3833 struct lpfc_hba *phba; 3834 uint32_t eratt = 0; 3835 uint64_t sli_intr, cnt; 3836 3837 phba = from_timer(phba, t, eratt_poll); 3838 3839 /* Here we will also keep track of interrupts per sec of the hba */ 3840 sli_intr = phba->sli.slistat.sli_intr; 3841 3842 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3843 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3844 sli_intr); 3845 else 3846 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3847 3848 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3849 do_div(cnt, phba->eratt_poll_interval); 3850 phba->sli.slistat.sli_ips = cnt; 3851 3852 phba->sli.slistat.sli_prev_intr = sli_intr; 3853 3854 /* Check chip HA register for error event */ 3855 eratt = lpfc_sli_check_eratt(phba); 3856 3857 if (eratt) 3858 /* Tell the worker thread there is work to do */ 3859 lpfc_worker_wake_up(phba); 3860 else 3861 /* Restart the timer for next eratt poll */ 3862 mod_timer(&phba->eratt_poll, 3863 jiffies + 3864 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3865 return; 3866 } 3867 3868 3869 /** 3870 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3871 * @phba: Pointer to HBA context object. 3872 * @pring: Pointer to driver SLI ring object. 3873 * @mask: Host attention register mask for this ring. 3874 * 3875 * This function is called from the interrupt context when there is a ring 3876 * event for the fcp ring. The caller does not hold any lock. 3877 * The function processes each response iocb in the response ring until it 3878 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3879 * LE bit set. The function will call the completion handler of the command iocb 3880 * if the response iocb indicates a completion for a command iocb or it is 3881 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3882 * function if this is an unsolicited iocb. 3883 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3884 * to check it explicitly. 3885 */ 3886 int 3887 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3888 struct lpfc_sli_ring *pring, uint32_t mask) 3889 { 3890 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3891 IOCB_t *irsp = NULL; 3892 IOCB_t *entry = NULL; 3893 struct lpfc_iocbq *cmdiocbq = NULL; 3894 struct lpfc_iocbq rspiocbq; 3895 uint32_t status; 3896 uint32_t portRspPut, portRspMax; 3897 int rc = 1; 3898 lpfc_iocb_type type; 3899 unsigned long iflag; 3900 uint32_t rsp_cmpl = 0; 3901 3902 spin_lock_irqsave(&phba->hbalock, iflag); 3903 pring->stats.iocb_event++; 3904 3905 /* 3906 * The next available response entry should never exceed the maximum 3907 * entries. If it does, treat it as an adapter hardware error. 3908 */ 3909 portRspMax = pring->sli.sli3.numRiocb; 3910 portRspPut = le32_to_cpu(pgp->rspPutInx); 3911 if (unlikely(portRspPut >= portRspMax)) { 3912 lpfc_sli_rsp_pointers_error(phba, pring); 3913 spin_unlock_irqrestore(&phba->hbalock, iflag); 3914 return 1; 3915 } 3916 if (phba->fcp_ring_in_use) { 3917 spin_unlock_irqrestore(&phba->hbalock, iflag); 3918 return 1; 3919 } else 3920 phba->fcp_ring_in_use = 1; 3921 3922 rmb(); 3923 while (pring->sli.sli3.rspidx != portRspPut) { 3924 /* 3925 * Fetch an entry off the ring and copy it into a local data 3926 * structure. The copy involves a byte-swap since the 3927 * network byte order and pci byte orders are different. 3928 */ 3929 entry = lpfc_resp_iocb(phba, pring); 3930 phba->last_completion_time = jiffies; 3931 3932 if (++pring->sli.sli3.rspidx >= portRspMax) 3933 pring->sli.sli3.rspidx = 0; 3934 3935 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3936 (uint32_t *) &rspiocbq.iocb, 3937 phba->iocb_rsp_size); 3938 INIT_LIST_HEAD(&(rspiocbq.list)); 3939 irsp = &rspiocbq.iocb; 3940 3941 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3942 pring->stats.iocb_rsp++; 3943 rsp_cmpl++; 3944 3945 if (unlikely(irsp->ulpStatus)) { 3946 /* 3947 * If resource errors reported from HBA, reduce 3948 * queuedepths of the SCSI device. 3949 */ 3950 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3951 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3952 IOERR_NO_RESOURCES)) { 3953 spin_unlock_irqrestore(&phba->hbalock, iflag); 3954 phba->lpfc_rampdown_queue_depth(phba); 3955 spin_lock_irqsave(&phba->hbalock, iflag); 3956 } 3957 3958 /* Rsp ring <ringno> error: IOCB */ 3959 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3960 "0336 Rsp Ring %d error: IOCB Data: " 3961 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3962 pring->ringno, 3963 irsp->un.ulpWord[0], 3964 irsp->un.ulpWord[1], 3965 irsp->un.ulpWord[2], 3966 irsp->un.ulpWord[3], 3967 irsp->un.ulpWord[4], 3968 irsp->un.ulpWord[5], 3969 *(uint32_t *)&irsp->un1, 3970 *((uint32_t *)&irsp->un1 + 1)); 3971 } 3972 3973 switch (type) { 3974 case LPFC_ABORT_IOCB: 3975 case LPFC_SOL_IOCB: 3976 /* 3977 * Idle exchange closed via ABTS from port. No iocb 3978 * resources need to be recovered. 3979 */ 3980 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3981 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3982 "0333 IOCB cmd 0x%x" 3983 " processed. Skipping" 3984 " completion\n", 3985 irsp->ulpCommand); 3986 break; 3987 } 3988 3989 spin_unlock_irqrestore(&phba->hbalock, iflag); 3990 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3991 &rspiocbq); 3992 spin_lock_irqsave(&phba->hbalock, iflag); 3993 if (unlikely(!cmdiocbq)) 3994 break; 3995 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3996 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3997 if (cmdiocbq->iocb_cmpl) { 3998 spin_unlock_irqrestore(&phba->hbalock, iflag); 3999 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 4000 &rspiocbq); 4001 spin_lock_irqsave(&phba->hbalock, iflag); 4002 } 4003 break; 4004 case LPFC_UNSOL_IOCB: 4005 spin_unlock_irqrestore(&phba->hbalock, iflag); 4006 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4007 spin_lock_irqsave(&phba->hbalock, iflag); 4008 break; 4009 default: 4010 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4011 char adaptermsg[LPFC_MAX_ADPTMSG]; 4012 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4013 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4014 MAX_MSG_DATA); 4015 dev_warn(&((phba->pcidev)->dev), 4016 "lpfc%d: %s\n", 4017 phba->brd_no, adaptermsg); 4018 } else { 4019 /* Unknown IOCB command */ 4020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4021 "0334 Unknown IOCB command " 4022 "Data: x%x, x%x x%x x%x x%x\n", 4023 type, irsp->ulpCommand, 4024 irsp->ulpStatus, 4025 irsp->ulpIoTag, 4026 irsp->ulpContext); 4027 } 4028 break; 4029 } 4030 4031 /* 4032 * The response IOCB has been processed. Update the ring 4033 * pointer in SLIM. If the port response put pointer has not 4034 * been updated, sync the pgp->rspPutInx and fetch the new port 4035 * response put pointer. 4036 */ 4037 writel(pring->sli.sli3.rspidx, 4038 &phba->host_gp[pring->ringno].rspGetInx); 4039 4040 if (pring->sli.sli3.rspidx == portRspPut) 4041 portRspPut = le32_to_cpu(pgp->rspPutInx); 4042 } 4043 4044 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4045 pring->stats.iocb_rsp_full++; 4046 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4047 writel(status, phba->CAregaddr); 4048 readl(phba->CAregaddr); 4049 } 4050 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4051 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4052 pring->stats.iocb_cmd_empty++; 4053 4054 /* Force update of the local copy of cmdGetInx */ 4055 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4056 lpfc_sli_resume_iocb(phba, pring); 4057 4058 if ((pring->lpfc_sli_cmd_available)) 4059 (pring->lpfc_sli_cmd_available) (phba, pring); 4060 4061 } 4062 4063 phba->fcp_ring_in_use = 0; 4064 spin_unlock_irqrestore(&phba->hbalock, iflag); 4065 return rc; 4066 } 4067 4068 /** 4069 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4070 * @phba: Pointer to HBA context object. 4071 * @pring: Pointer to driver SLI ring object. 4072 * @rspiocbp: Pointer to driver response IOCB object. 4073 * 4074 * This function is called from the worker thread when there is a slow-path 4075 * response IOCB to process. This function chains all the response iocbs until 4076 * seeing the iocb with the LE bit set. The function will call 4077 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4078 * completion of a command iocb. The function will call the 4079 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4080 * The function frees the resources or calls the completion handler if this 4081 * iocb is an abort completion. The function returns NULL when the response 4082 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4083 * this function shall chain the iocb on to the iocb_continueq and return the 4084 * response iocb passed in. 4085 **/ 4086 static struct lpfc_iocbq * 4087 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4088 struct lpfc_iocbq *rspiocbp) 4089 { 4090 struct lpfc_iocbq *saveq; 4091 struct lpfc_iocbq *cmdiocbp; 4092 struct lpfc_iocbq *next_iocb; 4093 IOCB_t *irsp = NULL; 4094 uint32_t free_saveq; 4095 uint8_t iocb_cmd_type; 4096 lpfc_iocb_type type; 4097 unsigned long iflag; 4098 int rc; 4099 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 /* First add the response iocb to the countinueq list */ 4102 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 4103 pring->iocb_continueq_cnt++; 4104 4105 /* Now, determine whether the list is completed for processing */ 4106 irsp = &rspiocbp->iocb; 4107 if (irsp->ulpLe) { 4108 /* 4109 * By default, the driver expects to free all resources 4110 * associated with this iocb completion. 4111 */ 4112 free_saveq = 1; 4113 saveq = list_get_first(&pring->iocb_continueq, 4114 struct lpfc_iocbq, list); 4115 irsp = &(saveq->iocb); 4116 list_del_init(&pring->iocb_continueq); 4117 pring->iocb_continueq_cnt = 0; 4118 4119 pring->stats.iocb_rsp++; 4120 4121 /* 4122 * If resource errors reported from HBA, reduce 4123 * queuedepths of the SCSI device. 4124 */ 4125 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4126 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4127 IOERR_NO_RESOURCES)) { 4128 spin_unlock_irqrestore(&phba->hbalock, iflag); 4129 phba->lpfc_rampdown_queue_depth(phba); 4130 spin_lock_irqsave(&phba->hbalock, iflag); 4131 } 4132 4133 if (irsp->ulpStatus) { 4134 /* Rsp ring <ringno> error: IOCB */ 4135 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4136 "0328 Rsp Ring %d error: " 4137 "IOCB Data: " 4138 "x%x x%x x%x x%x " 4139 "x%x x%x x%x x%x " 4140 "x%x x%x x%x x%x " 4141 "x%x x%x x%x x%x\n", 4142 pring->ringno, 4143 irsp->un.ulpWord[0], 4144 irsp->un.ulpWord[1], 4145 irsp->un.ulpWord[2], 4146 irsp->un.ulpWord[3], 4147 irsp->un.ulpWord[4], 4148 irsp->un.ulpWord[5], 4149 *(((uint32_t *) irsp) + 6), 4150 *(((uint32_t *) irsp) + 7), 4151 *(((uint32_t *) irsp) + 8), 4152 *(((uint32_t *) irsp) + 9), 4153 *(((uint32_t *) irsp) + 10), 4154 *(((uint32_t *) irsp) + 11), 4155 *(((uint32_t *) irsp) + 12), 4156 *(((uint32_t *) irsp) + 13), 4157 *(((uint32_t *) irsp) + 14), 4158 *(((uint32_t *) irsp) + 15)); 4159 } 4160 4161 /* 4162 * Fetch the IOCB command type and call the correct completion 4163 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4164 * get freed back to the lpfc_iocb_list by the discovery 4165 * kernel thread. 4166 */ 4167 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 4168 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 4169 switch (type) { 4170 case LPFC_SOL_IOCB: 4171 spin_unlock_irqrestore(&phba->hbalock, iflag); 4172 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 break; 4175 4176 case LPFC_UNSOL_IOCB: 4177 spin_unlock_irqrestore(&phba->hbalock, iflag); 4178 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4179 spin_lock_irqsave(&phba->hbalock, iflag); 4180 if (!rc) 4181 free_saveq = 0; 4182 break; 4183 4184 case LPFC_ABORT_IOCB: 4185 cmdiocbp = NULL; 4186 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 4187 spin_unlock_irqrestore(&phba->hbalock, iflag); 4188 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 4189 saveq); 4190 spin_lock_irqsave(&phba->hbalock, iflag); 4191 } 4192 if (cmdiocbp) { 4193 /* Call the specified completion routine */ 4194 if (cmdiocbp->iocb_cmpl) { 4195 spin_unlock_irqrestore(&phba->hbalock, 4196 iflag); 4197 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 4198 saveq); 4199 spin_lock_irqsave(&phba->hbalock, 4200 iflag); 4201 } else 4202 __lpfc_sli_release_iocbq(phba, 4203 cmdiocbp); 4204 } 4205 break; 4206 4207 case LPFC_UNKNOWN_IOCB: 4208 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4209 char adaptermsg[LPFC_MAX_ADPTMSG]; 4210 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4211 memcpy(&adaptermsg[0], (uint8_t *)irsp, 4212 MAX_MSG_DATA); 4213 dev_warn(&((phba->pcidev)->dev), 4214 "lpfc%d: %s\n", 4215 phba->brd_no, adaptermsg); 4216 } else { 4217 /* Unknown IOCB command */ 4218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4219 "0335 Unknown IOCB " 4220 "command Data: x%x " 4221 "x%x x%x x%x\n", 4222 irsp->ulpCommand, 4223 irsp->ulpStatus, 4224 irsp->ulpIoTag, 4225 irsp->ulpContext); 4226 } 4227 break; 4228 } 4229 4230 if (free_saveq) { 4231 list_for_each_entry_safe(rspiocbp, next_iocb, 4232 &saveq->list, list) { 4233 list_del_init(&rspiocbp->list); 4234 __lpfc_sli_release_iocbq(phba, rspiocbp); 4235 } 4236 __lpfc_sli_release_iocbq(phba, saveq); 4237 } 4238 rspiocbp = NULL; 4239 } 4240 spin_unlock_irqrestore(&phba->hbalock, iflag); 4241 return rspiocbp; 4242 } 4243 4244 /** 4245 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4246 * @phba: Pointer to HBA context object. 4247 * @pring: Pointer to driver SLI ring object. 4248 * @mask: Host attention register mask for this ring. 4249 * 4250 * This routine wraps the actual slow_ring event process routine from the 4251 * API jump table function pointer from the lpfc_hba struct. 4252 **/ 4253 void 4254 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4255 struct lpfc_sli_ring *pring, uint32_t mask) 4256 { 4257 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4258 } 4259 4260 /** 4261 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4262 * @phba: Pointer to HBA context object. 4263 * @pring: Pointer to driver SLI ring object. 4264 * @mask: Host attention register mask for this ring. 4265 * 4266 * This function is called from the worker thread when there is a ring event 4267 * for non-fcp rings. The caller does not hold any lock. The function will 4268 * remove each response iocb in the response ring and calls the handle 4269 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4270 **/ 4271 static void 4272 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4273 struct lpfc_sli_ring *pring, uint32_t mask) 4274 { 4275 struct lpfc_pgp *pgp; 4276 IOCB_t *entry; 4277 IOCB_t *irsp = NULL; 4278 struct lpfc_iocbq *rspiocbp = NULL; 4279 uint32_t portRspPut, portRspMax; 4280 unsigned long iflag; 4281 uint32_t status; 4282 4283 pgp = &phba->port_gp[pring->ringno]; 4284 spin_lock_irqsave(&phba->hbalock, iflag); 4285 pring->stats.iocb_event++; 4286 4287 /* 4288 * The next available response entry should never exceed the maximum 4289 * entries. If it does, treat it as an adapter hardware error. 4290 */ 4291 portRspMax = pring->sli.sli3.numRiocb; 4292 portRspPut = le32_to_cpu(pgp->rspPutInx); 4293 if (portRspPut >= portRspMax) { 4294 /* 4295 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4296 * rsp ring <portRspMax> 4297 */ 4298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4299 "0303 Ring %d handler: portRspPut %d " 4300 "is bigger than rsp ring %d\n", 4301 pring->ringno, portRspPut, portRspMax); 4302 4303 phba->link_state = LPFC_HBA_ERROR; 4304 spin_unlock_irqrestore(&phba->hbalock, iflag); 4305 4306 phba->work_hs = HS_FFER3; 4307 lpfc_handle_eratt(phba); 4308 4309 return; 4310 } 4311 4312 rmb(); 4313 while (pring->sli.sli3.rspidx != portRspPut) { 4314 /* 4315 * Build a completion list and call the appropriate handler. 4316 * The process is to get the next available response iocb, get 4317 * a free iocb from the list, copy the response data into the 4318 * free iocb, insert to the continuation list, and update the 4319 * next response index to slim. This process makes response 4320 * iocb's in the ring available to DMA as fast as possible but 4321 * pays a penalty for a copy operation. Since the iocb is 4322 * only 32 bytes, this penalty is considered small relative to 4323 * the PCI reads for register values and a slim write. When 4324 * the ulpLe field is set, the entire Command has been 4325 * received. 4326 */ 4327 entry = lpfc_resp_iocb(phba, pring); 4328 4329 phba->last_completion_time = jiffies; 4330 rspiocbp = __lpfc_sli_get_iocbq(phba); 4331 if (rspiocbp == NULL) { 4332 printk(KERN_ERR "%s: out of buffers! Failing " 4333 "completion.\n", __func__); 4334 break; 4335 } 4336 4337 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4338 phba->iocb_rsp_size); 4339 irsp = &rspiocbp->iocb; 4340 4341 if (++pring->sli.sli3.rspidx >= portRspMax) 4342 pring->sli.sli3.rspidx = 0; 4343 4344 if (pring->ringno == LPFC_ELS_RING) { 4345 lpfc_debugfs_slow_ring_trc(phba, 4346 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4347 *(((uint32_t *) irsp) + 4), 4348 *(((uint32_t *) irsp) + 6), 4349 *(((uint32_t *) irsp) + 7)); 4350 } 4351 4352 writel(pring->sli.sli3.rspidx, 4353 &phba->host_gp[pring->ringno].rspGetInx); 4354 4355 spin_unlock_irqrestore(&phba->hbalock, iflag); 4356 /* Handle the response IOCB */ 4357 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4358 spin_lock_irqsave(&phba->hbalock, iflag); 4359 4360 /* 4361 * If the port response put pointer has not been updated, sync 4362 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4363 * response put pointer. 4364 */ 4365 if (pring->sli.sli3.rspidx == portRspPut) { 4366 portRspPut = le32_to_cpu(pgp->rspPutInx); 4367 } 4368 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4369 4370 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4371 /* At least one response entry has been freed */ 4372 pring->stats.iocb_rsp_full++; 4373 /* SET RxRE_RSP in Chip Att register */ 4374 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4375 writel(status, phba->CAregaddr); 4376 readl(phba->CAregaddr); /* flush */ 4377 } 4378 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4379 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4380 pring->stats.iocb_cmd_empty++; 4381 4382 /* Force update of the local copy of cmdGetInx */ 4383 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4384 lpfc_sli_resume_iocb(phba, pring); 4385 4386 if ((pring->lpfc_sli_cmd_available)) 4387 (pring->lpfc_sli_cmd_available) (phba, pring); 4388 4389 } 4390 4391 spin_unlock_irqrestore(&phba->hbalock, iflag); 4392 return; 4393 } 4394 4395 /** 4396 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4397 * @phba: Pointer to HBA context object. 4398 * @pring: Pointer to driver SLI ring object. 4399 * @mask: Host attention register mask for this ring. 4400 * 4401 * This function is called from the worker thread when there is a pending 4402 * ELS response iocb on the driver internal slow-path response iocb worker 4403 * queue. The caller does not hold any lock. The function will remove each 4404 * response iocb from the response worker queue and calls the handle 4405 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4406 **/ 4407 static void 4408 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4409 struct lpfc_sli_ring *pring, uint32_t mask) 4410 { 4411 struct lpfc_iocbq *irspiocbq; 4412 struct hbq_dmabuf *dmabuf; 4413 struct lpfc_cq_event *cq_event; 4414 unsigned long iflag; 4415 int count = 0; 4416 4417 spin_lock_irqsave(&phba->hbalock, iflag); 4418 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4419 spin_unlock_irqrestore(&phba->hbalock, iflag); 4420 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4421 /* Get the response iocb from the head of work queue */ 4422 spin_lock_irqsave(&phba->hbalock, iflag); 4423 list_remove_head(&phba->sli4_hba.sp_queue_event, 4424 cq_event, struct lpfc_cq_event, list); 4425 spin_unlock_irqrestore(&phba->hbalock, iflag); 4426 4427 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4428 case CQE_CODE_COMPL_WQE: 4429 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4430 cq_event); 4431 /* Translate ELS WCQE to response IOCBQ */ 4432 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4433 irspiocbq); 4434 if (irspiocbq) 4435 lpfc_sli_sp_handle_rspiocb(phba, pring, 4436 irspiocbq); 4437 count++; 4438 break; 4439 case CQE_CODE_RECEIVE: 4440 case CQE_CODE_RECEIVE_V1: 4441 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4442 cq_event); 4443 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4444 count++; 4445 break; 4446 default: 4447 break; 4448 } 4449 4450 /* Limit the number of events to 64 to avoid soft lockups */ 4451 if (count == 64) 4452 break; 4453 } 4454 } 4455 4456 /** 4457 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4458 * @phba: Pointer to HBA context object. 4459 * @pring: Pointer to driver SLI ring object. 4460 * 4461 * This function aborts all iocbs in the given ring and frees all the iocb 4462 * objects in txq. This function issues an abort iocb for all the iocb commands 4463 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4464 * the return of this function. The caller is not required to hold any locks. 4465 **/ 4466 void 4467 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4468 { 4469 LIST_HEAD(completions); 4470 struct lpfc_iocbq *iocb, *next_iocb; 4471 4472 if (pring->ringno == LPFC_ELS_RING) { 4473 lpfc_fabric_abort_hba(phba); 4474 } 4475 4476 /* Error everything on txq and txcmplq 4477 * First do the txq. 4478 */ 4479 if (phba->sli_rev >= LPFC_SLI_REV4) { 4480 spin_lock_irq(&pring->ring_lock); 4481 list_splice_init(&pring->txq, &completions); 4482 pring->txq_cnt = 0; 4483 spin_unlock_irq(&pring->ring_lock); 4484 4485 spin_lock_irq(&phba->hbalock); 4486 /* Next issue ABTS for everything on the txcmplq */ 4487 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4488 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4489 spin_unlock_irq(&phba->hbalock); 4490 } else { 4491 spin_lock_irq(&phba->hbalock); 4492 list_splice_init(&pring->txq, &completions); 4493 pring->txq_cnt = 0; 4494 4495 /* Next issue ABTS for everything on the txcmplq */ 4496 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4497 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4498 spin_unlock_irq(&phba->hbalock); 4499 } 4500 /* Make sure HBA is alive */ 4501 lpfc_issue_hb_tmo(phba); 4502 4503 /* Cancel all the IOCBs from the completions list */ 4504 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4505 IOERR_SLI_ABORTED); 4506 } 4507 4508 /** 4509 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4510 * @phba: Pointer to HBA context object. 4511 * 4512 * This function aborts all iocbs in FCP rings and frees all the iocb 4513 * objects in txq. This function issues an abort iocb for all the iocb commands 4514 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4515 * the return of this function. The caller is not required to hold any locks. 4516 **/ 4517 void 4518 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4519 { 4520 struct lpfc_sli *psli = &phba->sli; 4521 struct lpfc_sli_ring *pring; 4522 uint32_t i; 4523 4524 /* Look on all the FCP Rings for the iotag */ 4525 if (phba->sli_rev >= LPFC_SLI_REV4) { 4526 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4527 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4528 lpfc_sli_abort_iocb_ring(phba, pring); 4529 } 4530 } else { 4531 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4532 lpfc_sli_abort_iocb_ring(phba, pring); 4533 } 4534 } 4535 4536 /** 4537 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4538 * @phba: Pointer to HBA context object. 4539 * 4540 * This function flushes all iocbs in the IO ring and frees all the iocb 4541 * objects in txq and txcmplq. This function will not issue abort iocbs 4542 * for all the iocb commands in txcmplq, they will just be returned with 4543 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4544 * slot has been permanently disabled. 4545 **/ 4546 void 4547 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4548 { 4549 LIST_HEAD(txq); 4550 LIST_HEAD(txcmplq); 4551 struct lpfc_sli *psli = &phba->sli; 4552 struct lpfc_sli_ring *pring; 4553 uint32_t i; 4554 struct lpfc_iocbq *piocb, *next_iocb; 4555 4556 spin_lock_irq(&phba->hbalock); 4557 if (phba->hba_flag & HBA_IOQ_FLUSH || 4558 !phba->sli4_hba.hdwq) { 4559 spin_unlock_irq(&phba->hbalock); 4560 return; 4561 } 4562 /* Indicate the I/O queues are flushed */ 4563 phba->hba_flag |= HBA_IOQ_FLUSH; 4564 spin_unlock_irq(&phba->hbalock); 4565 4566 /* Look on all the FCP Rings for the iotag */ 4567 if (phba->sli_rev >= LPFC_SLI_REV4) { 4568 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4569 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4570 4571 spin_lock_irq(&pring->ring_lock); 4572 /* Retrieve everything on txq */ 4573 list_splice_init(&pring->txq, &txq); 4574 list_for_each_entry_safe(piocb, next_iocb, 4575 &pring->txcmplq, list) 4576 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4577 /* Retrieve everything on the txcmplq */ 4578 list_splice_init(&pring->txcmplq, &txcmplq); 4579 pring->txq_cnt = 0; 4580 pring->txcmplq_cnt = 0; 4581 spin_unlock_irq(&pring->ring_lock); 4582 4583 /* Flush the txq */ 4584 lpfc_sli_cancel_iocbs(phba, &txq, 4585 IOSTAT_LOCAL_REJECT, 4586 IOERR_SLI_DOWN); 4587 /* Flush the txcmplq */ 4588 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4589 IOSTAT_LOCAL_REJECT, 4590 IOERR_SLI_DOWN); 4591 if (unlikely(pci_channel_offline(phba->pcidev))) 4592 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4593 } 4594 } else { 4595 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4596 4597 spin_lock_irq(&phba->hbalock); 4598 /* Retrieve everything on txq */ 4599 list_splice_init(&pring->txq, &txq); 4600 list_for_each_entry_safe(piocb, next_iocb, 4601 &pring->txcmplq, list) 4602 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4603 /* Retrieve everything on the txcmplq */ 4604 list_splice_init(&pring->txcmplq, &txcmplq); 4605 pring->txq_cnt = 0; 4606 pring->txcmplq_cnt = 0; 4607 spin_unlock_irq(&phba->hbalock); 4608 4609 /* Flush the txq */ 4610 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4611 IOERR_SLI_DOWN); 4612 /* Flush the txcmpq */ 4613 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4614 IOERR_SLI_DOWN); 4615 } 4616 } 4617 4618 /** 4619 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4620 * @phba: Pointer to HBA context object. 4621 * @mask: Bit mask to be checked. 4622 * 4623 * This function reads the host status register and compares 4624 * with the provided bit mask to check if HBA completed 4625 * the restart. This function will wait in a loop for the 4626 * HBA to complete restart. If the HBA does not restart within 4627 * 15 iterations, the function will reset the HBA again. The 4628 * function returns 1 when HBA fail to restart otherwise returns 4629 * zero. 4630 **/ 4631 static int 4632 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4633 { 4634 uint32_t status; 4635 int i = 0; 4636 int retval = 0; 4637 4638 /* Read the HBA Host Status Register */ 4639 if (lpfc_readl(phba->HSregaddr, &status)) 4640 return 1; 4641 4642 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4643 4644 /* 4645 * Check status register every 100ms for 5 retries, then every 4646 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4647 * every 2.5 sec for 4. 4648 * Break our of the loop if errors occurred during init. 4649 */ 4650 while (((status & mask) != mask) && 4651 !(status & HS_FFERM) && 4652 i++ < 20) { 4653 4654 if (i <= 5) 4655 msleep(10); 4656 else if (i <= 10) 4657 msleep(500); 4658 else 4659 msleep(2500); 4660 4661 if (i == 15) { 4662 /* Do post */ 4663 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4664 lpfc_sli_brdrestart(phba); 4665 } 4666 /* Read the HBA Host Status Register */ 4667 if (lpfc_readl(phba->HSregaddr, &status)) { 4668 retval = 1; 4669 break; 4670 } 4671 } 4672 4673 /* Check to see if any errors occurred during init */ 4674 if ((status & HS_FFERM) || (i >= 20)) { 4675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4676 "2751 Adapter failed to restart, " 4677 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4678 status, 4679 readl(phba->MBslimaddr + 0xa8), 4680 readl(phba->MBslimaddr + 0xac)); 4681 phba->link_state = LPFC_HBA_ERROR; 4682 retval = 1; 4683 } 4684 4685 return retval; 4686 } 4687 4688 /** 4689 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4690 * @phba: Pointer to HBA context object. 4691 * @mask: Bit mask to be checked. 4692 * 4693 * This function checks the host status register to check if HBA is 4694 * ready. This function will wait in a loop for the HBA to be ready 4695 * If the HBA is not ready , the function will will reset the HBA PCI 4696 * function again. The function returns 1 when HBA fail to be ready 4697 * otherwise returns zero. 4698 **/ 4699 static int 4700 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4701 { 4702 uint32_t status; 4703 int retval = 0; 4704 4705 /* Read the HBA Host Status Register */ 4706 status = lpfc_sli4_post_status_check(phba); 4707 4708 if (status) { 4709 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4710 lpfc_sli_brdrestart(phba); 4711 status = lpfc_sli4_post_status_check(phba); 4712 } 4713 4714 /* Check to see if any errors occurred during init */ 4715 if (status) { 4716 phba->link_state = LPFC_HBA_ERROR; 4717 retval = 1; 4718 } else 4719 phba->sli4_hba.intr_enable = 0; 4720 4721 phba->hba_flag &= ~HBA_SETUP; 4722 return retval; 4723 } 4724 4725 /** 4726 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4727 * @phba: Pointer to HBA context object. 4728 * @mask: Bit mask to be checked. 4729 * 4730 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4731 * from the API jump table function pointer from the lpfc_hba struct. 4732 **/ 4733 int 4734 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4735 { 4736 return phba->lpfc_sli_brdready(phba, mask); 4737 } 4738 4739 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4740 4741 /** 4742 * lpfc_reset_barrier - Make HBA ready for HBA reset 4743 * @phba: Pointer to HBA context object. 4744 * 4745 * This function is called before resetting an HBA. This function is called 4746 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4747 **/ 4748 void lpfc_reset_barrier(struct lpfc_hba *phba) 4749 { 4750 uint32_t __iomem *resp_buf; 4751 uint32_t __iomem *mbox_buf; 4752 volatile uint32_t mbox; 4753 uint32_t hc_copy, ha_copy, resp_data; 4754 int i; 4755 uint8_t hdrtype; 4756 4757 lockdep_assert_held(&phba->hbalock); 4758 4759 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4760 if (hdrtype != 0x80 || 4761 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4762 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4763 return; 4764 4765 /* 4766 * Tell the other part of the chip to suspend temporarily all 4767 * its DMA activity. 4768 */ 4769 resp_buf = phba->MBslimaddr; 4770 4771 /* Disable the error attention */ 4772 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4773 return; 4774 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4775 readl(phba->HCregaddr); /* flush */ 4776 phba->link_flag |= LS_IGNORE_ERATT; 4777 4778 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4779 return; 4780 if (ha_copy & HA_ERATT) { 4781 /* Clear Chip error bit */ 4782 writel(HA_ERATT, phba->HAregaddr); 4783 phba->pport->stopped = 1; 4784 } 4785 4786 mbox = 0; 4787 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4788 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4789 4790 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4791 mbox_buf = phba->MBslimaddr; 4792 writel(mbox, mbox_buf); 4793 4794 for (i = 0; i < 50; i++) { 4795 if (lpfc_readl((resp_buf + 1), &resp_data)) 4796 return; 4797 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4798 mdelay(1); 4799 else 4800 break; 4801 } 4802 resp_data = 0; 4803 if (lpfc_readl((resp_buf + 1), &resp_data)) 4804 return; 4805 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4806 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4807 phba->pport->stopped) 4808 goto restore_hc; 4809 else 4810 goto clear_errat; 4811 } 4812 4813 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4814 resp_data = 0; 4815 for (i = 0; i < 500; i++) { 4816 if (lpfc_readl(resp_buf, &resp_data)) 4817 return; 4818 if (resp_data != mbox) 4819 mdelay(1); 4820 else 4821 break; 4822 } 4823 4824 clear_errat: 4825 4826 while (++i < 500) { 4827 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4828 return; 4829 if (!(ha_copy & HA_ERATT)) 4830 mdelay(1); 4831 else 4832 break; 4833 } 4834 4835 if (readl(phba->HAregaddr) & HA_ERATT) { 4836 writel(HA_ERATT, phba->HAregaddr); 4837 phba->pport->stopped = 1; 4838 } 4839 4840 restore_hc: 4841 phba->link_flag &= ~LS_IGNORE_ERATT; 4842 writel(hc_copy, phba->HCregaddr); 4843 readl(phba->HCregaddr); /* flush */ 4844 } 4845 4846 /** 4847 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4848 * @phba: Pointer to HBA context object. 4849 * 4850 * This function issues a kill_board mailbox command and waits for 4851 * the error attention interrupt. This function is called for stopping 4852 * the firmware processing. The caller is not required to hold any 4853 * locks. This function calls lpfc_hba_down_post function to free 4854 * any pending commands after the kill. The function will return 1 when it 4855 * fails to kill the board else will return 0. 4856 **/ 4857 int 4858 lpfc_sli_brdkill(struct lpfc_hba *phba) 4859 { 4860 struct lpfc_sli *psli; 4861 LPFC_MBOXQ_t *pmb; 4862 uint32_t status; 4863 uint32_t ha_copy; 4864 int retval; 4865 int i = 0; 4866 4867 psli = &phba->sli; 4868 4869 /* Kill HBA */ 4870 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4871 "0329 Kill HBA Data: x%x x%x\n", 4872 phba->pport->port_state, psli->sli_flag); 4873 4874 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4875 if (!pmb) 4876 return 1; 4877 4878 /* Disable the error attention */ 4879 spin_lock_irq(&phba->hbalock); 4880 if (lpfc_readl(phba->HCregaddr, &status)) { 4881 spin_unlock_irq(&phba->hbalock); 4882 mempool_free(pmb, phba->mbox_mem_pool); 4883 return 1; 4884 } 4885 status &= ~HC_ERINT_ENA; 4886 writel(status, phba->HCregaddr); 4887 readl(phba->HCregaddr); /* flush */ 4888 phba->link_flag |= LS_IGNORE_ERATT; 4889 spin_unlock_irq(&phba->hbalock); 4890 4891 lpfc_kill_board(phba, pmb); 4892 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4893 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4894 4895 if (retval != MBX_SUCCESS) { 4896 if (retval != MBX_BUSY) 4897 mempool_free(pmb, phba->mbox_mem_pool); 4898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4899 "2752 KILL_BOARD command failed retval %d\n", 4900 retval); 4901 spin_lock_irq(&phba->hbalock); 4902 phba->link_flag &= ~LS_IGNORE_ERATT; 4903 spin_unlock_irq(&phba->hbalock); 4904 return 1; 4905 } 4906 4907 spin_lock_irq(&phba->hbalock); 4908 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4909 spin_unlock_irq(&phba->hbalock); 4910 4911 mempool_free(pmb, phba->mbox_mem_pool); 4912 4913 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4914 * attention every 100ms for 3 seconds. If we don't get ERATT after 4915 * 3 seconds we still set HBA_ERROR state because the status of the 4916 * board is now undefined. 4917 */ 4918 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4919 return 1; 4920 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4921 mdelay(100); 4922 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4923 return 1; 4924 } 4925 4926 del_timer_sync(&psli->mbox_tmo); 4927 if (ha_copy & HA_ERATT) { 4928 writel(HA_ERATT, phba->HAregaddr); 4929 phba->pport->stopped = 1; 4930 } 4931 spin_lock_irq(&phba->hbalock); 4932 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4933 psli->mbox_active = NULL; 4934 phba->link_flag &= ~LS_IGNORE_ERATT; 4935 spin_unlock_irq(&phba->hbalock); 4936 4937 lpfc_hba_down_post(phba); 4938 phba->link_state = LPFC_HBA_ERROR; 4939 4940 return ha_copy & HA_ERATT ? 0 : 1; 4941 } 4942 4943 /** 4944 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4945 * @phba: Pointer to HBA context object. 4946 * 4947 * This function resets the HBA by writing HC_INITFF to the control 4948 * register. After the HBA resets, this function resets all the iocb ring 4949 * indices. This function disables PCI layer parity checking during 4950 * the reset. 4951 * This function returns 0 always. 4952 * The caller is not required to hold any locks. 4953 **/ 4954 int 4955 lpfc_sli_brdreset(struct lpfc_hba *phba) 4956 { 4957 struct lpfc_sli *psli; 4958 struct lpfc_sli_ring *pring; 4959 uint16_t cfg_value; 4960 int i; 4961 4962 psli = &phba->sli; 4963 4964 /* Reset HBA */ 4965 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4966 "0325 Reset HBA Data: x%x x%x\n", 4967 (phba->pport) ? phba->pport->port_state : 0, 4968 psli->sli_flag); 4969 4970 /* perform board reset */ 4971 phba->fc_eventTag = 0; 4972 phba->link_events = 0; 4973 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4974 if (phba->pport) { 4975 phba->pport->fc_myDID = 0; 4976 phba->pport->fc_prevDID = 0; 4977 } 4978 4979 /* Turn off parity checking and serr during the physical reset */ 4980 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4981 return -EIO; 4982 4983 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4984 (cfg_value & 4985 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4986 4987 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4988 4989 /* Now toggle INITFF bit in the Host Control Register */ 4990 writel(HC_INITFF, phba->HCregaddr); 4991 mdelay(1); 4992 readl(phba->HCregaddr); /* flush */ 4993 writel(0, phba->HCregaddr); 4994 readl(phba->HCregaddr); /* flush */ 4995 4996 /* Restore PCI cmd register */ 4997 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4998 4999 /* Initialize relevant SLI info */ 5000 for (i = 0; i < psli->num_rings; i++) { 5001 pring = &psli->sli3_ring[i]; 5002 pring->flag = 0; 5003 pring->sli.sli3.rspidx = 0; 5004 pring->sli.sli3.next_cmdidx = 0; 5005 pring->sli.sli3.local_getidx = 0; 5006 pring->sli.sli3.cmdidx = 0; 5007 pring->missbufcnt = 0; 5008 } 5009 5010 phba->link_state = LPFC_WARM_START; 5011 return 0; 5012 } 5013 5014 /** 5015 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5016 * @phba: Pointer to HBA context object. 5017 * 5018 * This function resets a SLI4 HBA. This function disables PCI layer parity 5019 * checking during resets the device. The caller is not required to hold 5020 * any locks. 5021 * 5022 * This function returns 0 on success else returns negative error code. 5023 **/ 5024 int 5025 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5026 { 5027 struct lpfc_sli *psli = &phba->sli; 5028 uint16_t cfg_value; 5029 int rc = 0; 5030 5031 /* Reset HBA */ 5032 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5033 "0295 Reset HBA Data: x%x x%x x%x\n", 5034 phba->pport->port_state, psli->sli_flag, 5035 phba->hba_flag); 5036 5037 /* perform board reset */ 5038 phba->fc_eventTag = 0; 5039 phba->link_events = 0; 5040 phba->pport->fc_myDID = 0; 5041 phba->pport->fc_prevDID = 0; 5042 phba->hba_flag &= ~HBA_SETUP; 5043 5044 spin_lock_irq(&phba->hbalock); 5045 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5046 phba->fcf.fcf_flag = 0; 5047 spin_unlock_irq(&phba->hbalock); 5048 5049 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 5050 if (phba->hba_flag & HBA_FW_DUMP_OP) { 5051 phba->hba_flag &= ~HBA_FW_DUMP_OP; 5052 return rc; 5053 } 5054 5055 /* Now physically reset the device */ 5056 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5057 "0389 Performing PCI function reset!\n"); 5058 5059 /* Turn off parity checking and serr during the physical reset */ 5060 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5061 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5062 "3205 PCI read Config failed\n"); 5063 return -EIO; 5064 } 5065 5066 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5067 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5068 5069 /* Perform FCoE PCI function reset before freeing queue memory */ 5070 rc = lpfc_pci_function_reset(phba); 5071 5072 /* Restore PCI cmd register */ 5073 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5074 5075 return rc; 5076 } 5077 5078 /** 5079 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5080 * @phba: Pointer to HBA context object. 5081 * 5082 * This function is called in the SLI initialization code path to 5083 * restart the HBA. The caller is not required to hold any lock. 5084 * This function writes MBX_RESTART mailbox command to the SLIM and 5085 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5086 * function to free any pending commands. The function enables 5087 * POST only during the first initialization. The function returns zero. 5088 * The function does not guarantee completion of MBX_RESTART mailbox 5089 * command before the return of this function. 5090 **/ 5091 static int 5092 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5093 { 5094 MAILBOX_t *mb; 5095 struct lpfc_sli *psli; 5096 volatile uint32_t word0; 5097 void __iomem *to_slim; 5098 uint32_t hba_aer_enabled; 5099 5100 spin_lock_irq(&phba->hbalock); 5101 5102 /* Take PCIe device Advanced Error Reporting (AER) state */ 5103 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5104 5105 psli = &phba->sli; 5106 5107 /* Restart HBA */ 5108 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5109 "0337 Restart HBA Data: x%x x%x\n", 5110 (phba->pport) ? phba->pport->port_state : 0, 5111 psli->sli_flag); 5112 5113 word0 = 0; 5114 mb = (MAILBOX_t *) &word0; 5115 mb->mbxCommand = MBX_RESTART; 5116 mb->mbxHc = 1; 5117 5118 lpfc_reset_barrier(phba); 5119 5120 to_slim = phba->MBslimaddr; 5121 writel(*(uint32_t *) mb, to_slim); 5122 readl(to_slim); /* flush */ 5123 5124 /* Only skip post after fc_ffinit is completed */ 5125 if (phba->pport && phba->pport->port_state) 5126 word0 = 1; /* This is really setting up word1 */ 5127 else 5128 word0 = 0; /* This is really setting up word1 */ 5129 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5130 writel(*(uint32_t *) mb, to_slim); 5131 readl(to_slim); /* flush */ 5132 5133 lpfc_sli_brdreset(phba); 5134 if (phba->pport) 5135 phba->pport->stopped = 0; 5136 phba->link_state = LPFC_INIT_START; 5137 phba->hba_flag = 0; 5138 spin_unlock_irq(&phba->hbalock); 5139 5140 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5141 psli->stats_start = ktime_get_seconds(); 5142 5143 /* Give the INITFF and Post time to settle. */ 5144 mdelay(100); 5145 5146 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5147 if (hba_aer_enabled) 5148 pci_disable_pcie_error_reporting(phba->pcidev); 5149 5150 lpfc_hba_down_post(phba); 5151 5152 return 0; 5153 } 5154 5155 /** 5156 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5157 * @phba: Pointer to HBA context object. 5158 * 5159 * This function is called in the SLI initialization code path to restart 5160 * a SLI4 HBA. The caller is not required to hold any lock. 5161 * At the end of the function, it calls lpfc_hba_down_post function to 5162 * free any pending commands. 5163 **/ 5164 static int 5165 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5166 { 5167 struct lpfc_sli *psli = &phba->sli; 5168 uint32_t hba_aer_enabled; 5169 int rc; 5170 5171 /* Restart HBA */ 5172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5173 "0296 Restart HBA Data: x%x x%x\n", 5174 phba->pport->port_state, psli->sli_flag); 5175 5176 /* Take PCIe device Advanced Error Reporting (AER) state */ 5177 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5178 5179 rc = lpfc_sli4_brdreset(phba); 5180 if (rc) { 5181 phba->link_state = LPFC_HBA_ERROR; 5182 goto hba_down_queue; 5183 } 5184 5185 spin_lock_irq(&phba->hbalock); 5186 phba->pport->stopped = 0; 5187 phba->link_state = LPFC_INIT_START; 5188 phba->hba_flag = 0; 5189 spin_unlock_irq(&phba->hbalock); 5190 5191 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5192 psli->stats_start = ktime_get_seconds(); 5193 5194 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5195 if (hba_aer_enabled) 5196 pci_disable_pcie_error_reporting(phba->pcidev); 5197 5198 hba_down_queue: 5199 lpfc_hba_down_post(phba); 5200 lpfc_sli4_queue_destroy(phba); 5201 5202 return rc; 5203 } 5204 5205 /** 5206 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5207 * @phba: Pointer to HBA context object. 5208 * 5209 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5210 * API jump table function pointer from the lpfc_hba struct. 5211 **/ 5212 int 5213 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5214 { 5215 return phba->lpfc_sli_brdrestart(phba); 5216 } 5217 5218 /** 5219 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5220 * @phba: Pointer to HBA context object. 5221 * 5222 * This function is called after a HBA restart to wait for successful 5223 * restart of the HBA. Successful restart of the HBA is indicated by 5224 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5225 * iteration, the function will restart the HBA again. The function returns 5226 * zero if HBA successfully restarted else returns negative error code. 5227 **/ 5228 int 5229 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5230 { 5231 uint32_t status, i = 0; 5232 5233 /* Read the HBA Host Status Register */ 5234 if (lpfc_readl(phba->HSregaddr, &status)) 5235 return -EIO; 5236 5237 /* Check status register to see what current state is */ 5238 i = 0; 5239 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5240 5241 /* Check every 10ms for 10 retries, then every 100ms for 90 5242 * retries, then every 1 sec for 50 retires for a total of 5243 * ~60 seconds before reset the board again and check every 5244 * 1 sec for 50 retries. The up to 60 seconds before the 5245 * board ready is required by the Falcon FIPS zeroization 5246 * complete, and any reset the board in between shall cause 5247 * restart of zeroization, further delay the board ready. 5248 */ 5249 if (i++ >= 200) { 5250 /* Adapter failed to init, timeout, status reg 5251 <status> */ 5252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5253 "0436 Adapter failed to init, " 5254 "timeout, status reg x%x, " 5255 "FW Data: A8 x%x AC x%x\n", status, 5256 readl(phba->MBslimaddr + 0xa8), 5257 readl(phba->MBslimaddr + 0xac)); 5258 phba->link_state = LPFC_HBA_ERROR; 5259 return -ETIMEDOUT; 5260 } 5261 5262 /* Check to see if any errors occurred during init */ 5263 if (status & HS_FFERM) { 5264 /* ERROR: During chipset initialization */ 5265 /* Adapter failed to init, chipset, status reg 5266 <status> */ 5267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5268 "0437 Adapter failed to init, " 5269 "chipset, status reg x%x, " 5270 "FW Data: A8 x%x AC x%x\n", status, 5271 readl(phba->MBslimaddr + 0xa8), 5272 readl(phba->MBslimaddr + 0xac)); 5273 phba->link_state = LPFC_HBA_ERROR; 5274 return -EIO; 5275 } 5276 5277 if (i <= 10) 5278 msleep(10); 5279 else if (i <= 100) 5280 msleep(100); 5281 else 5282 msleep(1000); 5283 5284 if (i == 150) { 5285 /* Do post */ 5286 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5287 lpfc_sli_brdrestart(phba); 5288 } 5289 /* Read the HBA Host Status Register */ 5290 if (lpfc_readl(phba->HSregaddr, &status)) 5291 return -EIO; 5292 } 5293 5294 /* Check to see if any errors occurred during init */ 5295 if (status & HS_FFERM) { 5296 /* ERROR: During chipset initialization */ 5297 /* Adapter failed to init, chipset, status reg <status> */ 5298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5299 "0438 Adapter failed to init, chipset, " 5300 "status reg x%x, " 5301 "FW Data: A8 x%x AC x%x\n", status, 5302 readl(phba->MBslimaddr + 0xa8), 5303 readl(phba->MBslimaddr + 0xac)); 5304 phba->link_state = LPFC_HBA_ERROR; 5305 return -EIO; 5306 } 5307 5308 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5309 5310 /* Clear all interrupt enable conditions */ 5311 writel(0, phba->HCregaddr); 5312 readl(phba->HCregaddr); /* flush */ 5313 5314 /* setup host attn register */ 5315 writel(0xffffffff, phba->HAregaddr); 5316 readl(phba->HAregaddr); /* flush */ 5317 return 0; 5318 } 5319 5320 /** 5321 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5322 * 5323 * This function calculates and returns the number of HBQs required to be 5324 * configured. 5325 **/ 5326 int 5327 lpfc_sli_hbq_count(void) 5328 { 5329 return ARRAY_SIZE(lpfc_hbq_defs); 5330 } 5331 5332 /** 5333 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5334 * 5335 * This function adds the number of hbq entries in every HBQ to get 5336 * the total number of hbq entries required for the HBA and returns 5337 * the total count. 5338 **/ 5339 static int 5340 lpfc_sli_hbq_entry_count(void) 5341 { 5342 int hbq_count = lpfc_sli_hbq_count(); 5343 int count = 0; 5344 int i; 5345 5346 for (i = 0; i < hbq_count; ++i) 5347 count += lpfc_hbq_defs[i]->entry_count; 5348 return count; 5349 } 5350 5351 /** 5352 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5353 * 5354 * This function calculates amount of memory required for all hbq entries 5355 * to be configured and returns the total memory required. 5356 **/ 5357 int 5358 lpfc_sli_hbq_size(void) 5359 { 5360 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5361 } 5362 5363 /** 5364 * lpfc_sli_hbq_setup - configure and initialize HBQs 5365 * @phba: Pointer to HBA context object. 5366 * 5367 * This function is called during the SLI initialization to configure 5368 * all the HBQs and post buffers to the HBQ. The caller is not 5369 * required to hold any locks. This function will return zero if successful 5370 * else it will return negative error code. 5371 **/ 5372 static int 5373 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5374 { 5375 int hbq_count = lpfc_sli_hbq_count(); 5376 LPFC_MBOXQ_t *pmb; 5377 MAILBOX_t *pmbox; 5378 uint32_t hbqno; 5379 uint32_t hbq_entry_index; 5380 5381 /* Get a Mailbox buffer to setup mailbox 5382 * commands for HBA initialization 5383 */ 5384 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5385 5386 if (!pmb) 5387 return -ENOMEM; 5388 5389 pmbox = &pmb->u.mb; 5390 5391 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5392 phba->link_state = LPFC_INIT_MBX_CMDS; 5393 phba->hbq_in_use = 1; 5394 5395 hbq_entry_index = 0; 5396 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5397 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5398 phba->hbqs[hbqno].hbqPutIdx = 0; 5399 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5400 phba->hbqs[hbqno].entry_count = 5401 lpfc_hbq_defs[hbqno]->entry_count; 5402 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5403 hbq_entry_index, pmb); 5404 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5405 5406 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5407 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5408 mbxStatus <status>, ring <num> */ 5409 5410 lpfc_printf_log(phba, KERN_ERR, 5411 LOG_SLI | LOG_VPORT, 5412 "1805 Adapter failed to init. " 5413 "Data: x%x x%x x%x\n", 5414 pmbox->mbxCommand, 5415 pmbox->mbxStatus, hbqno); 5416 5417 phba->link_state = LPFC_HBA_ERROR; 5418 mempool_free(pmb, phba->mbox_mem_pool); 5419 return -ENXIO; 5420 } 5421 } 5422 phba->hbq_count = hbq_count; 5423 5424 mempool_free(pmb, phba->mbox_mem_pool); 5425 5426 /* Initially populate or replenish the HBQs */ 5427 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5428 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5429 return 0; 5430 } 5431 5432 /** 5433 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5434 * @phba: Pointer to HBA context object. 5435 * 5436 * This function is called during the SLI initialization to configure 5437 * all the HBQs and post buffers to the HBQ. The caller is not 5438 * required to hold any locks. This function will return zero if successful 5439 * else it will return negative error code. 5440 **/ 5441 static int 5442 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5443 { 5444 phba->hbq_in_use = 1; 5445 /** 5446 * Specific case when the MDS diagnostics is enabled and supported. 5447 * The receive buffer count is truncated to manage the incoming 5448 * traffic. 5449 **/ 5450 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5451 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5452 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5453 else 5454 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5455 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5456 phba->hbq_count = 1; 5457 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5458 /* Initially populate or replenish the HBQs */ 5459 return 0; 5460 } 5461 5462 /** 5463 * lpfc_sli_config_port - Issue config port mailbox command 5464 * @phba: Pointer to HBA context object. 5465 * @sli_mode: sli mode - 2/3 5466 * 5467 * This function is called by the sli initialization code path 5468 * to issue config_port mailbox command. This function restarts the 5469 * HBA firmware and issues a config_port mailbox command to configure 5470 * the SLI interface in the sli mode specified by sli_mode 5471 * variable. The caller is not required to hold any locks. 5472 * The function returns 0 if successful, else returns negative error 5473 * code. 5474 **/ 5475 int 5476 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5477 { 5478 LPFC_MBOXQ_t *pmb; 5479 uint32_t resetcount = 0, rc = 0, done = 0; 5480 5481 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5482 if (!pmb) { 5483 phba->link_state = LPFC_HBA_ERROR; 5484 return -ENOMEM; 5485 } 5486 5487 phba->sli_rev = sli_mode; 5488 while (resetcount < 2 && !done) { 5489 spin_lock_irq(&phba->hbalock); 5490 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5491 spin_unlock_irq(&phba->hbalock); 5492 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5493 lpfc_sli_brdrestart(phba); 5494 rc = lpfc_sli_chipset_init(phba); 5495 if (rc) 5496 break; 5497 5498 spin_lock_irq(&phba->hbalock); 5499 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5500 spin_unlock_irq(&phba->hbalock); 5501 resetcount++; 5502 5503 /* Call pre CONFIG_PORT mailbox command initialization. A 5504 * value of 0 means the call was successful. Any other 5505 * nonzero value is a failure, but if ERESTART is returned, 5506 * the driver may reset the HBA and try again. 5507 */ 5508 rc = lpfc_config_port_prep(phba); 5509 if (rc == -ERESTART) { 5510 phba->link_state = LPFC_LINK_UNKNOWN; 5511 continue; 5512 } else if (rc) 5513 break; 5514 5515 phba->link_state = LPFC_INIT_MBX_CMDS; 5516 lpfc_config_port(phba, pmb); 5517 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5518 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5519 LPFC_SLI3_HBQ_ENABLED | 5520 LPFC_SLI3_CRP_ENABLED | 5521 LPFC_SLI3_DSS_ENABLED); 5522 if (rc != MBX_SUCCESS) { 5523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5524 "0442 Adapter failed to init, mbxCmd x%x " 5525 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5526 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5527 spin_lock_irq(&phba->hbalock); 5528 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5529 spin_unlock_irq(&phba->hbalock); 5530 rc = -ENXIO; 5531 } else { 5532 /* Allow asynchronous mailbox command to go through */ 5533 spin_lock_irq(&phba->hbalock); 5534 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5535 spin_unlock_irq(&phba->hbalock); 5536 done = 1; 5537 5538 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5539 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5540 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5541 "3110 Port did not grant ASABT\n"); 5542 } 5543 } 5544 if (!done) { 5545 rc = -EINVAL; 5546 goto do_prep_failed; 5547 } 5548 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5549 if (!pmb->u.mb.un.varCfgPort.cMA) { 5550 rc = -ENXIO; 5551 goto do_prep_failed; 5552 } 5553 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5554 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5555 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5556 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5557 phba->max_vpi : phba->max_vports; 5558 5559 } else 5560 phba->max_vpi = 0; 5561 if (pmb->u.mb.un.varCfgPort.gerbm) 5562 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5563 if (pmb->u.mb.un.varCfgPort.gcrp) 5564 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5565 5566 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5567 phba->port_gp = phba->mbox->us.s3_pgp.port; 5568 5569 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5570 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5571 phba->cfg_enable_bg = 0; 5572 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5574 "0443 Adapter did not grant " 5575 "BlockGuard\n"); 5576 } 5577 } 5578 } else { 5579 phba->hbq_get = NULL; 5580 phba->port_gp = phba->mbox->us.s2.port; 5581 phba->max_vpi = 0; 5582 } 5583 do_prep_failed: 5584 mempool_free(pmb, phba->mbox_mem_pool); 5585 return rc; 5586 } 5587 5588 5589 /** 5590 * lpfc_sli_hba_setup - SLI initialization function 5591 * @phba: Pointer to HBA context object. 5592 * 5593 * This function is the main SLI initialization function. This function 5594 * is called by the HBA initialization code, HBA reset code and HBA 5595 * error attention handler code. Caller is not required to hold any 5596 * locks. This function issues config_port mailbox command to configure 5597 * the SLI, setup iocb rings and HBQ rings. In the end the function 5598 * calls the config_port_post function to issue init_link mailbox 5599 * command and to start the discovery. The function will return zero 5600 * if successful, else it will return negative error code. 5601 **/ 5602 int 5603 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5604 { 5605 uint32_t rc; 5606 int i; 5607 int longs; 5608 5609 /* Enable ISR already does config_port because of config_msi mbx */ 5610 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5611 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5612 if (rc) 5613 return -EIO; 5614 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5615 } 5616 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5617 5618 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5619 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5620 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5621 if (!rc) { 5622 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5623 "2709 This device supports " 5624 "Advanced Error Reporting (AER)\n"); 5625 spin_lock_irq(&phba->hbalock); 5626 phba->hba_flag |= HBA_AER_ENABLED; 5627 spin_unlock_irq(&phba->hbalock); 5628 } else { 5629 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5630 "2708 This device does not support " 5631 "Advanced Error Reporting (AER): %d\n", 5632 rc); 5633 phba->cfg_aer_support = 0; 5634 } 5635 } 5636 5637 if (phba->sli_rev == 3) { 5638 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5639 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5640 } else { 5641 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5642 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5643 phba->sli3_options = 0; 5644 } 5645 5646 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5647 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5648 phba->sli_rev, phba->max_vpi); 5649 rc = lpfc_sli_ring_map(phba); 5650 5651 if (rc) 5652 goto lpfc_sli_hba_setup_error; 5653 5654 /* Initialize VPIs. */ 5655 if (phba->sli_rev == LPFC_SLI_REV3) { 5656 /* 5657 * The VPI bitmask and physical ID array are allocated 5658 * and initialized once only - at driver load. A port 5659 * reset doesn't need to reinitialize this memory. 5660 */ 5661 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5662 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5663 phba->vpi_bmask = kcalloc(longs, 5664 sizeof(unsigned long), 5665 GFP_KERNEL); 5666 if (!phba->vpi_bmask) { 5667 rc = -ENOMEM; 5668 goto lpfc_sli_hba_setup_error; 5669 } 5670 5671 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5672 sizeof(uint16_t), 5673 GFP_KERNEL); 5674 if (!phba->vpi_ids) { 5675 kfree(phba->vpi_bmask); 5676 rc = -ENOMEM; 5677 goto lpfc_sli_hba_setup_error; 5678 } 5679 for (i = 0; i < phba->max_vpi; i++) 5680 phba->vpi_ids[i] = i; 5681 } 5682 } 5683 5684 /* Init HBQs */ 5685 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5686 rc = lpfc_sli_hbq_setup(phba); 5687 if (rc) 5688 goto lpfc_sli_hba_setup_error; 5689 } 5690 spin_lock_irq(&phba->hbalock); 5691 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5692 spin_unlock_irq(&phba->hbalock); 5693 5694 rc = lpfc_config_port_post(phba); 5695 if (rc) 5696 goto lpfc_sli_hba_setup_error; 5697 5698 return rc; 5699 5700 lpfc_sli_hba_setup_error: 5701 phba->link_state = LPFC_HBA_ERROR; 5702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5703 "0445 Firmware initialization failed\n"); 5704 return rc; 5705 } 5706 5707 /** 5708 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5709 * @phba: Pointer to HBA context object. 5710 * 5711 * This function issue a dump mailbox command to read config region 5712 * 23 and parse the records in the region and populate driver 5713 * data structure. 5714 **/ 5715 static int 5716 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5717 { 5718 LPFC_MBOXQ_t *mboxq; 5719 struct lpfc_dmabuf *mp; 5720 struct lpfc_mqe *mqe; 5721 uint32_t data_length; 5722 int rc; 5723 5724 /* Program the default value of vlan_id and fc_map */ 5725 phba->valid_vlan = 0; 5726 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5727 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5728 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5729 5730 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5731 if (!mboxq) 5732 return -ENOMEM; 5733 5734 mqe = &mboxq->u.mqe; 5735 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5736 rc = -ENOMEM; 5737 goto out_free_mboxq; 5738 } 5739 5740 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5741 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5742 5743 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5744 "(%d):2571 Mailbox cmd x%x Status x%x " 5745 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5746 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5747 "CQ: x%x x%x x%x x%x\n", 5748 mboxq->vport ? mboxq->vport->vpi : 0, 5749 bf_get(lpfc_mqe_command, mqe), 5750 bf_get(lpfc_mqe_status, mqe), 5751 mqe->un.mb_words[0], mqe->un.mb_words[1], 5752 mqe->un.mb_words[2], mqe->un.mb_words[3], 5753 mqe->un.mb_words[4], mqe->un.mb_words[5], 5754 mqe->un.mb_words[6], mqe->un.mb_words[7], 5755 mqe->un.mb_words[8], mqe->un.mb_words[9], 5756 mqe->un.mb_words[10], mqe->un.mb_words[11], 5757 mqe->un.mb_words[12], mqe->un.mb_words[13], 5758 mqe->un.mb_words[14], mqe->un.mb_words[15], 5759 mqe->un.mb_words[16], mqe->un.mb_words[50], 5760 mboxq->mcqe.word0, 5761 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5762 mboxq->mcqe.trailer); 5763 5764 if (rc) { 5765 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5766 kfree(mp); 5767 rc = -EIO; 5768 goto out_free_mboxq; 5769 } 5770 data_length = mqe->un.mb_words[5]; 5771 if (data_length > DMP_RGN23_SIZE) { 5772 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5773 kfree(mp); 5774 rc = -EIO; 5775 goto out_free_mboxq; 5776 } 5777 5778 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5779 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5780 kfree(mp); 5781 rc = 0; 5782 5783 out_free_mboxq: 5784 mempool_free(mboxq, phba->mbox_mem_pool); 5785 return rc; 5786 } 5787 5788 /** 5789 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5790 * @phba: pointer to lpfc hba data structure. 5791 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5792 * @vpd: pointer to the memory to hold resulting port vpd data. 5793 * @vpd_size: On input, the number of bytes allocated to @vpd. 5794 * On output, the number of data bytes in @vpd. 5795 * 5796 * This routine executes a READ_REV SLI4 mailbox command. In 5797 * addition, this routine gets the port vpd data. 5798 * 5799 * Return codes 5800 * 0 - successful 5801 * -ENOMEM - could not allocated memory. 5802 **/ 5803 static int 5804 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5805 uint8_t *vpd, uint32_t *vpd_size) 5806 { 5807 int rc = 0; 5808 uint32_t dma_size; 5809 struct lpfc_dmabuf *dmabuf; 5810 struct lpfc_mqe *mqe; 5811 5812 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5813 if (!dmabuf) 5814 return -ENOMEM; 5815 5816 /* 5817 * Get a DMA buffer for the vpd data resulting from the READ_REV 5818 * mailbox command. 5819 */ 5820 dma_size = *vpd_size; 5821 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5822 &dmabuf->phys, GFP_KERNEL); 5823 if (!dmabuf->virt) { 5824 kfree(dmabuf); 5825 return -ENOMEM; 5826 } 5827 5828 /* 5829 * The SLI4 implementation of READ_REV conflicts at word1, 5830 * bits 31:16 and SLI4 adds vpd functionality not present 5831 * in SLI3. This code corrects the conflicts. 5832 */ 5833 lpfc_read_rev(phba, mboxq); 5834 mqe = &mboxq->u.mqe; 5835 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5836 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5837 mqe->un.read_rev.word1 &= 0x0000FFFF; 5838 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5839 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5840 5841 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5842 if (rc) { 5843 dma_free_coherent(&phba->pcidev->dev, dma_size, 5844 dmabuf->virt, dmabuf->phys); 5845 kfree(dmabuf); 5846 return -EIO; 5847 } 5848 5849 /* 5850 * The available vpd length cannot be bigger than the 5851 * DMA buffer passed to the port. Catch the less than 5852 * case and update the caller's size. 5853 */ 5854 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5855 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5856 5857 memcpy(vpd, dmabuf->virt, *vpd_size); 5858 5859 dma_free_coherent(&phba->pcidev->dev, dma_size, 5860 dmabuf->virt, dmabuf->phys); 5861 kfree(dmabuf); 5862 return 0; 5863 } 5864 5865 /** 5866 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5867 * @phba: pointer to lpfc hba data structure. 5868 * 5869 * This routine retrieves SLI4 device physical port name this PCI function 5870 * is attached to. 5871 * 5872 * Return codes 5873 * 0 - successful 5874 * otherwise - failed to retrieve controller attributes 5875 **/ 5876 static int 5877 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5878 { 5879 LPFC_MBOXQ_t *mboxq; 5880 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5881 struct lpfc_controller_attribute *cntl_attr; 5882 void *virtaddr = NULL; 5883 uint32_t alloclen, reqlen; 5884 uint32_t shdr_status, shdr_add_status; 5885 union lpfc_sli4_cfg_shdr *shdr; 5886 int rc; 5887 5888 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5889 if (!mboxq) 5890 return -ENOMEM; 5891 5892 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5893 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5894 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5895 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5896 LPFC_SLI4_MBX_NEMBED); 5897 5898 if (alloclen < reqlen) { 5899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5900 "3084 Allocated DMA memory size (%d) is " 5901 "less than the requested DMA memory size " 5902 "(%d)\n", alloclen, reqlen); 5903 rc = -ENOMEM; 5904 goto out_free_mboxq; 5905 } 5906 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5907 virtaddr = mboxq->sge_array->addr[0]; 5908 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5909 shdr = &mbx_cntl_attr->cfg_shdr; 5910 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5911 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5912 if (shdr_status || shdr_add_status || rc) { 5913 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5914 "3085 Mailbox x%x (x%x/x%x) failed, " 5915 "rc:x%x, status:x%x, add_status:x%x\n", 5916 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5917 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5918 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5919 rc, shdr_status, shdr_add_status); 5920 rc = -ENXIO; 5921 goto out_free_mboxq; 5922 } 5923 5924 cntl_attr = &mbx_cntl_attr->cntl_attr; 5925 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5926 phba->sli4_hba.lnk_info.lnk_tp = 5927 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5928 phba->sli4_hba.lnk_info.lnk_no = 5929 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5930 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5931 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5932 5933 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5934 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5935 sizeof(phba->BIOSVersion)); 5936 5937 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5938 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5939 "flash_id: x%02x, asic_rev: x%02x\n", 5940 phba->sli4_hba.lnk_info.lnk_tp, 5941 phba->sli4_hba.lnk_info.lnk_no, 5942 phba->BIOSVersion, phba->sli4_hba.flash_id, 5943 phba->sli4_hba.asic_rev); 5944 out_free_mboxq: 5945 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5946 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5947 else 5948 mempool_free(mboxq, phba->mbox_mem_pool); 5949 return rc; 5950 } 5951 5952 /** 5953 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5954 * @phba: pointer to lpfc hba data structure. 5955 * 5956 * This routine retrieves SLI4 device physical port name this PCI function 5957 * is attached to. 5958 * 5959 * Return codes 5960 * 0 - successful 5961 * otherwise - failed to retrieve physical port name 5962 **/ 5963 static int 5964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5965 { 5966 LPFC_MBOXQ_t *mboxq; 5967 struct lpfc_mbx_get_port_name *get_port_name; 5968 uint32_t shdr_status, shdr_add_status; 5969 union lpfc_sli4_cfg_shdr *shdr; 5970 char cport_name = 0; 5971 int rc; 5972 5973 /* We assume nothing at this point */ 5974 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5975 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5976 5977 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5978 if (!mboxq) 5979 return -ENOMEM; 5980 /* obtain link type and link number via READ_CONFIG */ 5981 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5982 lpfc_sli4_read_config(phba); 5983 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5984 goto retrieve_ppname; 5985 5986 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5987 rc = lpfc_sli4_get_ctl_attr(phba); 5988 if (rc) 5989 goto out_free_mboxq; 5990 5991 retrieve_ppname: 5992 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5993 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5994 sizeof(struct lpfc_mbx_get_port_name) - 5995 sizeof(struct lpfc_sli4_cfg_mhdr), 5996 LPFC_SLI4_MBX_EMBED); 5997 get_port_name = &mboxq->u.mqe.un.get_port_name; 5998 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5999 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6000 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6001 phba->sli4_hba.lnk_info.lnk_tp); 6002 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6003 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6004 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6005 if (shdr_status || shdr_add_status || rc) { 6006 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6007 "3087 Mailbox x%x (x%x/x%x) failed: " 6008 "rc:x%x, status:x%x, add_status:x%x\n", 6009 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6010 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6011 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6012 rc, shdr_status, shdr_add_status); 6013 rc = -ENXIO; 6014 goto out_free_mboxq; 6015 } 6016 switch (phba->sli4_hba.lnk_info.lnk_no) { 6017 case LPFC_LINK_NUMBER_0: 6018 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6019 &get_port_name->u.response); 6020 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6021 break; 6022 case LPFC_LINK_NUMBER_1: 6023 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6024 &get_port_name->u.response); 6025 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6026 break; 6027 case LPFC_LINK_NUMBER_2: 6028 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6029 &get_port_name->u.response); 6030 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6031 break; 6032 case LPFC_LINK_NUMBER_3: 6033 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6034 &get_port_name->u.response); 6035 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6036 break; 6037 default: 6038 break; 6039 } 6040 6041 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6042 phba->Port[0] = cport_name; 6043 phba->Port[1] = '\0'; 6044 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6045 "3091 SLI get port name: %s\n", phba->Port); 6046 } 6047 6048 out_free_mboxq: 6049 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6050 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6051 else 6052 mempool_free(mboxq, phba->mbox_mem_pool); 6053 return rc; 6054 } 6055 6056 /** 6057 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6058 * @phba: pointer to lpfc hba data structure. 6059 * 6060 * This routine is called to explicitly arm the SLI4 device's completion and 6061 * event queues 6062 **/ 6063 static void 6064 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6065 { 6066 int qidx; 6067 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6068 struct lpfc_sli4_hdw_queue *qp; 6069 struct lpfc_queue *eq; 6070 6071 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6072 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6073 if (sli4_hba->nvmels_cq) 6074 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6075 LPFC_QUEUE_REARM); 6076 6077 if (sli4_hba->hdwq) { 6078 /* Loop thru all Hardware Queues */ 6079 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6080 qp = &sli4_hba->hdwq[qidx]; 6081 /* ARM the corresponding CQ */ 6082 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6083 LPFC_QUEUE_REARM); 6084 } 6085 6086 /* Loop thru all IRQ vectors */ 6087 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6088 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6089 /* ARM the corresponding EQ */ 6090 sli4_hba->sli4_write_eq_db(phba, eq, 6091 0, LPFC_QUEUE_REARM); 6092 } 6093 } 6094 6095 if (phba->nvmet_support) { 6096 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6097 sli4_hba->sli4_write_cq_db(phba, 6098 sli4_hba->nvmet_cqset[qidx], 0, 6099 LPFC_QUEUE_REARM); 6100 } 6101 } 6102 } 6103 6104 /** 6105 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6106 * @phba: Pointer to HBA context object. 6107 * @type: The resource extent type. 6108 * @extnt_count: buffer to hold port available extent count. 6109 * @extnt_size: buffer to hold element count per extent. 6110 * 6111 * This function calls the port and retrievs the number of available 6112 * extents and their size for a particular extent type. 6113 * 6114 * Returns: 0 if successful. Nonzero otherwise. 6115 **/ 6116 int 6117 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6118 uint16_t *extnt_count, uint16_t *extnt_size) 6119 { 6120 int rc = 0; 6121 uint32_t length; 6122 uint32_t mbox_tmo; 6123 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6124 LPFC_MBOXQ_t *mbox; 6125 6126 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6127 if (!mbox) 6128 return -ENOMEM; 6129 6130 /* Find out how many extents are available for this resource type */ 6131 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6132 sizeof(struct lpfc_sli4_cfg_mhdr)); 6133 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6134 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6135 length, LPFC_SLI4_MBX_EMBED); 6136 6137 /* Send an extents count of 0 - the GET doesn't use it. */ 6138 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6139 LPFC_SLI4_MBX_EMBED); 6140 if (unlikely(rc)) { 6141 rc = -EIO; 6142 goto err_exit; 6143 } 6144 6145 if (!phba->sli4_hba.intr_enable) 6146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6147 else { 6148 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6149 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6150 } 6151 if (unlikely(rc)) { 6152 rc = -EIO; 6153 goto err_exit; 6154 } 6155 6156 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6157 if (bf_get(lpfc_mbox_hdr_status, 6158 &rsrc_info->header.cfg_shdr.response)) { 6159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6160 "2930 Failed to get resource extents " 6161 "Status 0x%x Add'l Status 0x%x\n", 6162 bf_get(lpfc_mbox_hdr_status, 6163 &rsrc_info->header.cfg_shdr.response), 6164 bf_get(lpfc_mbox_hdr_add_status, 6165 &rsrc_info->header.cfg_shdr.response)); 6166 rc = -EIO; 6167 goto err_exit; 6168 } 6169 6170 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6171 &rsrc_info->u.rsp); 6172 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6173 &rsrc_info->u.rsp); 6174 6175 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6176 "3162 Retrieved extents type-%d from port: count:%d, " 6177 "size:%d\n", type, *extnt_count, *extnt_size); 6178 6179 err_exit: 6180 mempool_free(mbox, phba->mbox_mem_pool); 6181 return rc; 6182 } 6183 6184 /** 6185 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6186 * @phba: Pointer to HBA context object. 6187 * @type: The extent type to check. 6188 * 6189 * This function reads the current available extents from the port and checks 6190 * if the extent count or extent size has changed since the last access. 6191 * Callers use this routine post port reset to understand if there is a 6192 * extent reprovisioning requirement. 6193 * 6194 * Returns: 6195 * -Error: error indicates problem. 6196 * 1: Extent count or size has changed. 6197 * 0: No changes. 6198 **/ 6199 static int 6200 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6201 { 6202 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6203 uint16_t size_diff, rsrc_ext_size; 6204 int rc = 0; 6205 struct lpfc_rsrc_blks *rsrc_entry; 6206 struct list_head *rsrc_blk_list = NULL; 6207 6208 size_diff = 0; 6209 curr_ext_cnt = 0; 6210 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6211 &rsrc_ext_cnt, 6212 &rsrc_ext_size); 6213 if (unlikely(rc)) 6214 return -EIO; 6215 6216 switch (type) { 6217 case LPFC_RSC_TYPE_FCOE_RPI: 6218 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6219 break; 6220 case LPFC_RSC_TYPE_FCOE_VPI: 6221 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6222 break; 6223 case LPFC_RSC_TYPE_FCOE_XRI: 6224 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6225 break; 6226 case LPFC_RSC_TYPE_FCOE_VFI: 6227 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6228 break; 6229 default: 6230 break; 6231 } 6232 6233 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6234 curr_ext_cnt++; 6235 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6236 size_diff++; 6237 } 6238 6239 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6240 rc = 1; 6241 6242 return rc; 6243 } 6244 6245 /** 6246 * lpfc_sli4_cfg_post_extnts - 6247 * @phba: Pointer to HBA context object. 6248 * @extnt_cnt: number of available extents. 6249 * @type: the extent type (rpi, xri, vfi, vpi). 6250 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6251 * @mbox: pointer to the caller's allocated mailbox structure. 6252 * 6253 * This function executes the extents allocation request. It also 6254 * takes care of the amount of memory needed to allocate or get the 6255 * allocated extents. It is the caller's responsibility to evaluate 6256 * the response. 6257 * 6258 * Returns: 6259 * -Error: Error value describes the condition found. 6260 * 0: if successful 6261 **/ 6262 static int 6263 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6264 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6265 { 6266 int rc = 0; 6267 uint32_t req_len; 6268 uint32_t emb_len; 6269 uint32_t alloc_len, mbox_tmo; 6270 6271 /* Calculate the total requested length of the dma memory */ 6272 req_len = extnt_cnt * sizeof(uint16_t); 6273 6274 /* 6275 * Calculate the size of an embedded mailbox. The uint32_t 6276 * accounts for extents-specific word. 6277 */ 6278 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6279 sizeof(uint32_t); 6280 6281 /* 6282 * Presume the allocation and response will fit into an embedded 6283 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6284 */ 6285 *emb = LPFC_SLI4_MBX_EMBED; 6286 if (req_len > emb_len) { 6287 req_len = extnt_cnt * sizeof(uint16_t) + 6288 sizeof(union lpfc_sli4_cfg_shdr) + 6289 sizeof(uint32_t); 6290 *emb = LPFC_SLI4_MBX_NEMBED; 6291 } 6292 6293 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6294 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6295 req_len, *emb); 6296 if (alloc_len < req_len) { 6297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6298 "2982 Allocated DMA memory size (x%x) is " 6299 "less than the requested DMA memory " 6300 "size (x%x)\n", alloc_len, req_len); 6301 return -ENOMEM; 6302 } 6303 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6304 if (unlikely(rc)) 6305 return -EIO; 6306 6307 if (!phba->sli4_hba.intr_enable) 6308 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6309 else { 6310 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6311 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6312 } 6313 6314 if (unlikely(rc)) 6315 rc = -EIO; 6316 return rc; 6317 } 6318 6319 /** 6320 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6321 * @phba: Pointer to HBA context object. 6322 * @type: The resource extent type to allocate. 6323 * 6324 * This function allocates the number of elements for the specified 6325 * resource type. 6326 **/ 6327 static int 6328 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6329 { 6330 bool emb = false; 6331 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6332 uint16_t rsrc_id, rsrc_start, j, k; 6333 uint16_t *ids; 6334 int i, rc; 6335 unsigned long longs; 6336 unsigned long *bmask; 6337 struct lpfc_rsrc_blks *rsrc_blks; 6338 LPFC_MBOXQ_t *mbox; 6339 uint32_t length; 6340 struct lpfc_id_range *id_array = NULL; 6341 void *virtaddr = NULL; 6342 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6343 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6344 struct list_head *ext_blk_list; 6345 6346 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6347 &rsrc_cnt, 6348 &rsrc_size); 6349 if (unlikely(rc)) 6350 return -EIO; 6351 6352 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6354 "3009 No available Resource Extents " 6355 "for resource type 0x%x: Count: 0x%x, " 6356 "Size 0x%x\n", type, rsrc_cnt, 6357 rsrc_size); 6358 return -ENOMEM; 6359 } 6360 6361 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6362 "2903 Post resource extents type-0x%x: " 6363 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6364 6365 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6366 if (!mbox) 6367 return -ENOMEM; 6368 6369 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6370 if (unlikely(rc)) { 6371 rc = -EIO; 6372 goto err_exit; 6373 } 6374 6375 /* 6376 * Figure out where the response is located. Then get local pointers 6377 * to the response data. The port does not guarantee to respond to 6378 * all extents counts request so update the local variable with the 6379 * allocated count from the port. 6380 */ 6381 if (emb == LPFC_SLI4_MBX_EMBED) { 6382 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6383 id_array = &rsrc_ext->u.rsp.id[0]; 6384 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6385 } else { 6386 virtaddr = mbox->sge_array->addr[0]; 6387 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6388 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6389 id_array = &n_rsrc->id; 6390 } 6391 6392 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6393 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6394 6395 /* 6396 * Based on the resource size and count, correct the base and max 6397 * resource values. 6398 */ 6399 length = sizeof(struct lpfc_rsrc_blks); 6400 switch (type) { 6401 case LPFC_RSC_TYPE_FCOE_RPI: 6402 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6403 sizeof(unsigned long), 6404 GFP_KERNEL); 6405 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6406 rc = -ENOMEM; 6407 goto err_exit; 6408 } 6409 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6410 sizeof(uint16_t), 6411 GFP_KERNEL); 6412 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6413 kfree(phba->sli4_hba.rpi_bmask); 6414 rc = -ENOMEM; 6415 goto err_exit; 6416 } 6417 6418 /* 6419 * The next_rpi was initialized with the maximum available 6420 * count but the port may allocate a smaller number. Catch 6421 * that case and update the next_rpi. 6422 */ 6423 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6424 6425 /* Initialize local ptrs for common extent processing later. */ 6426 bmask = phba->sli4_hba.rpi_bmask; 6427 ids = phba->sli4_hba.rpi_ids; 6428 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6429 break; 6430 case LPFC_RSC_TYPE_FCOE_VPI: 6431 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6432 GFP_KERNEL); 6433 if (unlikely(!phba->vpi_bmask)) { 6434 rc = -ENOMEM; 6435 goto err_exit; 6436 } 6437 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6438 GFP_KERNEL); 6439 if (unlikely(!phba->vpi_ids)) { 6440 kfree(phba->vpi_bmask); 6441 rc = -ENOMEM; 6442 goto err_exit; 6443 } 6444 6445 /* Initialize local ptrs for common extent processing later. */ 6446 bmask = phba->vpi_bmask; 6447 ids = phba->vpi_ids; 6448 ext_blk_list = &phba->lpfc_vpi_blk_list; 6449 break; 6450 case LPFC_RSC_TYPE_FCOE_XRI: 6451 phba->sli4_hba.xri_bmask = kcalloc(longs, 6452 sizeof(unsigned long), 6453 GFP_KERNEL); 6454 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6455 rc = -ENOMEM; 6456 goto err_exit; 6457 } 6458 phba->sli4_hba.max_cfg_param.xri_used = 0; 6459 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6460 sizeof(uint16_t), 6461 GFP_KERNEL); 6462 if (unlikely(!phba->sli4_hba.xri_ids)) { 6463 kfree(phba->sli4_hba.xri_bmask); 6464 rc = -ENOMEM; 6465 goto err_exit; 6466 } 6467 6468 /* Initialize local ptrs for common extent processing later. */ 6469 bmask = phba->sli4_hba.xri_bmask; 6470 ids = phba->sli4_hba.xri_ids; 6471 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6472 break; 6473 case LPFC_RSC_TYPE_FCOE_VFI: 6474 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6475 sizeof(unsigned long), 6476 GFP_KERNEL); 6477 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6478 rc = -ENOMEM; 6479 goto err_exit; 6480 } 6481 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6482 sizeof(uint16_t), 6483 GFP_KERNEL); 6484 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6485 kfree(phba->sli4_hba.vfi_bmask); 6486 rc = -ENOMEM; 6487 goto err_exit; 6488 } 6489 6490 /* Initialize local ptrs for common extent processing later. */ 6491 bmask = phba->sli4_hba.vfi_bmask; 6492 ids = phba->sli4_hba.vfi_ids; 6493 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6494 break; 6495 default: 6496 /* Unsupported Opcode. Fail call. */ 6497 id_array = NULL; 6498 bmask = NULL; 6499 ids = NULL; 6500 ext_blk_list = NULL; 6501 goto err_exit; 6502 } 6503 6504 /* 6505 * Complete initializing the extent configuration with the 6506 * allocated ids assigned to this function. The bitmask serves 6507 * as an index into the array and manages the available ids. The 6508 * array just stores the ids communicated to the port via the wqes. 6509 */ 6510 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6511 if ((i % 2) == 0) 6512 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6513 &id_array[k]); 6514 else 6515 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6516 &id_array[k]); 6517 6518 rsrc_blks = kzalloc(length, GFP_KERNEL); 6519 if (unlikely(!rsrc_blks)) { 6520 rc = -ENOMEM; 6521 kfree(bmask); 6522 kfree(ids); 6523 goto err_exit; 6524 } 6525 rsrc_blks->rsrc_start = rsrc_id; 6526 rsrc_blks->rsrc_size = rsrc_size; 6527 list_add_tail(&rsrc_blks->list, ext_blk_list); 6528 rsrc_start = rsrc_id; 6529 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6530 phba->sli4_hba.io_xri_start = rsrc_start + 6531 lpfc_sli4_get_iocb_cnt(phba); 6532 } 6533 6534 while (rsrc_id < (rsrc_start + rsrc_size)) { 6535 ids[j] = rsrc_id; 6536 rsrc_id++; 6537 j++; 6538 } 6539 /* Entire word processed. Get next word.*/ 6540 if ((i % 2) == 1) 6541 k++; 6542 } 6543 err_exit: 6544 lpfc_sli4_mbox_cmd_free(phba, mbox); 6545 return rc; 6546 } 6547 6548 6549 6550 /** 6551 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6552 * @phba: Pointer to HBA context object. 6553 * @type: the extent's type. 6554 * 6555 * This function deallocates all extents of a particular resource type. 6556 * SLI4 does not allow for deallocating a particular extent range. It 6557 * is the caller's responsibility to release all kernel memory resources. 6558 **/ 6559 static int 6560 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6561 { 6562 int rc; 6563 uint32_t length, mbox_tmo = 0; 6564 LPFC_MBOXQ_t *mbox; 6565 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6566 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6567 6568 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6569 if (!mbox) 6570 return -ENOMEM; 6571 6572 /* 6573 * This function sends an embedded mailbox because it only sends the 6574 * the resource type. All extents of this type are released by the 6575 * port. 6576 */ 6577 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6578 sizeof(struct lpfc_sli4_cfg_mhdr)); 6579 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6580 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6581 length, LPFC_SLI4_MBX_EMBED); 6582 6583 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6584 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6585 LPFC_SLI4_MBX_EMBED); 6586 if (unlikely(rc)) { 6587 rc = -EIO; 6588 goto out_free_mbox; 6589 } 6590 if (!phba->sli4_hba.intr_enable) 6591 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6592 else { 6593 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6594 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6595 } 6596 if (unlikely(rc)) { 6597 rc = -EIO; 6598 goto out_free_mbox; 6599 } 6600 6601 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6602 if (bf_get(lpfc_mbox_hdr_status, 6603 &dealloc_rsrc->header.cfg_shdr.response)) { 6604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6605 "2919 Failed to release resource extents " 6606 "for type %d - Status 0x%x Add'l Status 0x%x. " 6607 "Resource memory not released.\n", 6608 type, 6609 bf_get(lpfc_mbox_hdr_status, 6610 &dealloc_rsrc->header.cfg_shdr.response), 6611 bf_get(lpfc_mbox_hdr_add_status, 6612 &dealloc_rsrc->header.cfg_shdr.response)); 6613 rc = -EIO; 6614 goto out_free_mbox; 6615 } 6616 6617 /* Release kernel memory resources for the specific type. */ 6618 switch (type) { 6619 case LPFC_RSC_TYPE_FCOE_VPI: 6620 kfree(phba->vpi_bmask); 6621 kfree(phba->vpi_ids); 6622 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6623 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6624 &phba->lpfc_vpi_blk_list, list) { 6625 list_del_init(&rsrc_blk->list); 6626 kfree(rsrc_blk); 6627 } 6628 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6629 break; 6630 case LPFC_RSC_TYPE_FCOE_XRI: 6631 kfree(phba->sli4_hba.xri_bmask); 6632 kfree(phba->sli4_hba.xri_ids); 6633 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6634 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6635 list_del_init(&rsrc_blk->list); 6636 kfree(rsrc_blk); 6637 } 6638 break; 6639 case LPFC_RSC_TYPE_FCOE_VFI: 6640 kfree(phba->sli4_hba.vfi_bmask); 6641 kfree(phba->sli4_hba.vfi_ids); 6642 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6643 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6644 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6645 list_del_init(&rsrc_blk->list); 6646 kfree(rsrc_blk); 6647 } 6648 break; 6649 case LPFC_RSC_TYPE_FCOE_RPI: 6650 /* RPI bitmask and physical id array are cleaned up earlier. */ 6651 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6652 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6653 list_del_init(&rsrc_blk->list); 6654 kfree(rsrc_blk); 6655 } 6656 break; 6657 default: 6658 break; 6659 } 6660 6661 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6662 6663 out_free_mbox: 6664 mempool_free(mbox, phba->mbox_mem_pool); 6665 return rc; 6666 } 6667 6668 static void 6669 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6670 uint32_t feature) 6671 { 6672 uint32_t len; 6673 u32 sig_freq = 0; 6674 6675 len = sizeof(struct lpfc_mbx_set_feature) - 6676 sizeof(struct lpfc_sli4_cfg_mhdr); 6677 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6678 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6679 LPFC_SLI4_MBX_EMBED); 6680 6681 switch (feature) { 6682 case LPFC_SET_UE_RECOVERY: 6683 bf_set(lpfc_mbx_set_feature_UER, 6684 &mbox->u.mqe.un.set_feature, 1); 6685 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6686 mbox->u.mqe.un.set_feature.param_len = 8; 6687 break; 6688 case LPFC_SET_MDS_DIAGS: 6689 bf_set(lpfc_mbx_set_feature_mds, 6690 &mbox->u.mqe.un.set_feature, 1); 6691 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6692 &mbox->u.mqe.un.set_feature, 1); 6693 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6694 mbox->u.mqe.un.set_feature.param_len = 8; 6695 break; 6696 case LPFC_SET_CGN_SIGNAL: 6697 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6698 sig_freq = 0; 6699 else 6700 sig_freq = phba->cgn_sig_freq; 6701 6702 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6703 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6704 &mbox->u.mqe.un.set_feature, sig_freq); 6705 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6706 &mbox->u.mqe.un.set_feature, sig_freq); 6707 } 6708 6709 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6710 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6711 &mbox->u.mqe.un.set_feature, sig_freq); 6712 6713 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6714 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6715 sig_freq = 0; 6716 else 6717 sig_freq = lpfc_acqe_cgn_frequency; 6718 6719 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6720 &mbox->u.mqe.un.set_feature, sig_freq); 6721 6722 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6723 mbox->u.mqe.un.set_feature.param_len = 12; 6724 break; 6725 case LPFC_SET_DUAL_DUMP: 6726 bf_set(lpfc_mbx_set_feature_dd, 6727 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6728 bf_set(lpfc_mbx_set_feature_ddquery, 6729 &mbox->u.mqe.un.set_feature, 0); 6730 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6731 mbox->u.mqe.un.set_feature.param_len = 4; 6732 break; 6733 case LPFC_SET_ENABLE_MI: 6734 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6735 mbox->u.mqe.un.set_feature.param_len = 4; 6736 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6737 phba->pport->cfg_lun_queue_depth); 6738 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6739 phba->sli4_hba.pc_sli4_params.mi_ver); 6740 break; 6741 case LPFC_SET_ENABLE_CMF: 6742 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6743 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6744 mbox->u.mqe.un.set_feature.param_len = 4; 6745 bf_set(lpfc_mbx_set_feature_cmf, 6746 &mbox->u.mqe.un.set_feature, 1); 6747 break; 6748 } 6749 return; 6750 } 6751 6752 /** 6753 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6754 * @phba: Pointer to HBA context object. 6755 * 6756 * Disable FW logging into host memory on the adapter. To 6757 * be done before reading logs from the host memory. 6758 **/ 6759 void 6760 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6761 { 6762 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6763 6764 spin_lock_irq(&phba->hbalock); 6765 ras_fwlog->state = INACTIVE; 6766 spin_unlock_irq(&phba->hbalock); 6767 6768 /* Disable FW logging to host memory */ 6769 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6770 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6771 6772 /* Wait 10ms for firmware to stop using DMA buffer */ 6773 usleep_range(10 * 1000, 20 * 1000); 6774 } 6775 6776 /** 6777 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6778 * @phba: Pointer to HBA context object. 6779 * 6780 * This function is called to free memory allocated for RAS FW logging 6781 * support in the driver. 6782 **/ 6783 void 6784 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6785 { 6786 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6787 struct lpfc_dmabuf *dmabuf, *next; 6788 6789 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6790 list_for_each_entry_safe(dmabuf, next, 6791 &ras_fwlog->fwlog_buff_list, 6792 list) { 6793 list_del(&dmabuf->list); 6794 dma_free_coherent(&phba->pcidev->dev, 6795 LPFC_RAS_MAX_ENTRY_SIZE, 6796 dmabuf->virt, dmabuf->phys); 6797 kfree(dmabuf); 6798 } 6799 } 6800 6801 if (ras_fwlog->lwpd.virt) { 6802 dma_free_coherent(&phba->pcidev->dev, 6803 sizeof(uint32_t) * 2, 6804 ras_fwlog->lwpd.virt, 6805 ras_fwlog->lwpd.phys); 6806 ras_fwlog->lwpd.virt = NULL; 6807 } 6808 6809 spin_lock_irq(&phba->hbalock); 6810 ras_fwlog->state = INACTIVE; 6811 spin_unlock_irq(&phba->hbalock); 6812 } 6813 6814 /** 6815 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6816 * @phba: Pointer to HBA context object. 6817 * @fwlog_buff_count: Count of buffers to be created. 6818 * 6819 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6820 * to update FW log is posted to the adapter. 6821 * Buffer count is calculated based on module param ras_fwlog_buffsize 6822 * Size of each buffer posted to FW is 64K. 6823 **/ 6824 6825 static int 6826 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6827 uint32_t fwlog_buff_count) 6828 { 6829 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6830 struct lpfc_dmabuf *dmabuf; 6831 int rc = 0, i = 0; 6832 6833 /* Initialize List */ 6834 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6835 6836 /* Allocate memory for the LWPD */ 6837 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6838 sizeof(uint32_t) * 2, 6839 &ras_fwlog->lwpd.phys, 6840 GFP_KERNEL); 6841 if (!ras_fwlog->lwpd.virt) { 6842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6843 "6185 LWPD Memory Alloc Failed\n"); 6844 6845 return -ENOMEM; 6846 } 6847 6848 ras_fwlog->fw_buffcount = fwlog_buff_count; 6849 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6850 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6851 GFP_KERNEL); 6852 if (!dmabuf) { 6853 rc = -ENOMEM; 6854 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6855 "6186 Memory Alloc failed FW logging"); 6856 goto free_mem; 6857 } 6858 6859 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6860 LPFC_RAS_MAX_ENTRY_SIZE, 6861 &dmabuf->phys, GFP_KERNEL); 6862 if (!dmabuf->virt) { 6863 kfree(dmabuf); 6864 rc = -ENOMEM; 6865 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6866 "6187 DMA Alloc Failed FW logging"); 6867 goto free_mem; 6868 } 6869 dmabuf->buffer_tag = i; 6870 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6871 } 6872 6873 free_mem: 6874 if (rc) 6875 lpfc_sli4_ras_dma_free(phba); 6876 6877 return rc; 6878 } 6879 6880 /** 6881 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6882 * @phba: pointer to lpfc hba data structure. 6883 * @pmb: pointer to the driver internal queue element for mailbox command. 6884 * 6885 * Completion handler for driver's RAS MBX command to the device. 6886 **/ 6887 static void 6888 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6889 { 6890 MAILBOX_t *mb; 6891 union lpfc_sli4_cfg_shdr *shdr; 6892 uint32_t shdr_status, shdr_add_status; 6893 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6894 6895 mb = &pmb->u.mb; 6896 6897 shdr = (union lpfc_sli4_cfg_shdr *) 6898 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6899 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6900 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6901 6902 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6904 "6188 FW LOG mailbox " 6905 "completed with status x%x add_status x%x," 6906 " mbx status x%x\n", 6907 shdr_status, shdr_add_status, mb->mbxStatus); 6908 6909 ras_fwlog->ras_hwsupport = false; 6910 goto disable_ras; 6911 } 6912 6913 spin_lock_irq(&phba->hbalock); 6914 ras_fwlog->state = ACTIVE; 6915 spin_unlock_irq(&phba->hbalock); 6916 mempool_free(pmb, phba->mbox_mem_pool); 6917 6918 return; 6919 6920 disable_ras: 6921 /* Free RAS DMA memory */ 6922 lpfc_sli4_ras_dma_free(phba); 6923 mempool_free(pmb, phba->mbox_mem_pool); 6924 } 6925 6926 /** 6927 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6928 * @phba: pointer to lpfc hba data structure. 6929 * @fwlog_level: Logging verbosity level. 6930 * @fwlog_enable: Enable/Disable logging. 6931 * 6932 * Initialize memory and post mailbox command to enable FW logging in host 6933 * memory. 6934 **/ 6935 int 6936 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6937 uint32_t fwlog_level, 6938 uint32_t fwlog_enable) 6939 { 6940 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6941 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6942 struct lpfc_dmabuf *dmabuf; 6943 LPFC_MBOXQ_t *mbox; 6944 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6945 int rc = 0; 6946 6947 spin_lock_irq(&phba->hbalock); 6948 ras_fwlog->state = INACTIVE; 6949 spin_unlock_irq(&phba->hbalock); 6950 6951 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6952 phba->cfg_ras_fwlog_buffsize); 6953 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6954 6955 /* 6956 * If re-enabling FW logging support use earlier allocated 6957 * DMA buffers while posting MBX command. 6958 **/ 6959 if (!ras_fwlog->lwpd.virt) { 6960 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6961 if (rc) { 6962 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6963 "6189 FW Log Memory Allocation Failed"); 6964 return rc; 6965 } 6966 } 6967 6968 /* Setup Mailbox command */ 6969 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6970 if (!mbox) { 6971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6972 "6190 RAS MBX Alloc Failed"); 6973 rc = -ENOMEM; 6974 goto mem_free; 6975 } 6976 6977 ras_fwlog->fw_loglevel = fwlog_level; 6978 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6979 sizeof(struct lpfc_sli4_cfg_mhdr)); 6980 6981 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6982 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6983 len, LPFC_SLI4_MBX_EMBED); 6984 6985 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6986 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6987 fwlog_enable); 6988 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6989 ras_fwlog->fw_loglevel); 6990 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6991 ras_fwlog->fw_buffcount); 6992 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6993 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6994 6995 /* Update DMA buffer address */ 6996 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6997 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6998 6999 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7000 putPaddrLow(dmabuf->phys); 7001 7002 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7003 putPaddrHigh(dmabuf->phys); 7004 } 7005 7006 /* Update LPWD address */ 7007 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7008 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7009 7010 spin_lock_irq(&phba->hbalock); 7011 ras_fwlog->state = REG_INPROGRESS; 7012 spin_unlock_irq(&phba->hbalock); 7013 mbox->vport = phba->pport; 7014 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7015 7016 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7017 7018 if (rc == MBX_NOT_FINISHED) { 7019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7020 "6191 FW-Log Mailbox failed. " 7021 "status %d mbxStatus : x%x", rc, 7022 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7023 mempool_free(mbox, phba->mbox_mem_pool); 7024 rc = -EIO; 7025 goto mem_free; 7026 } else 7027 rc = 0; 7028 mem_free: 7029 if (rc) 7030 lpfc_sli4_ras_dma_free(phba); 7031 7032 return rc; 7033 } 7034 7035 /** 7036 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7037 * @phba: Pointer to HBA context object. 7038 * 7039 * Check if RAS is supported on the adapter and initialize it. 7040 **/ 7041 void 7042 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7043 { 7044 /* Check RAS FW Log needs to be enabled or not */ 7045 if (lpfc_check_fwlog_support(phba)) 7046 return; 7047 7048 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7049 LPFC_RAS_ENABLE_LOGGING); 7050 } 7051 7052 /** 7053 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7054 * @phba: Pointer to HBA context object. 7055 * 7056 * This function allocates all SLI4 resource identifiers. 7057 **/ 7058 int 7059 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7060 { 7061 int i, rc, error = 0; 7062 uint16_t count, base; 7063 unsigned long longs; 7064 7065 if (!phba->sli4_hba.rpi_hdrs_in_use) 7066 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7067 if (phba->sli4_hba.extents_in_use) { 7068 /* 7069 * The port supports resource extents. The XRI, VPI, VFI, RPI 7070 * resource extent count must be read and allocated before 7071 * provisioning the resource id arrays. 7072 */ 7073 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7074 LPFC_IDX_RSRC_RDY) { 7075 /* 7076 * Extent-based resources are set - the driver could 7077 * be in a port reset. Figure out if any corrective 7078 * actions need to be taken. 7079 */ 7080 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7081 LPFC_RSC_TYPE_FCOE_VFI); 7082 if (rc != 0) 7083 error++; 7084 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7085 LPFC_RSC_TYPE_FCOE_VPI); 7086 if (rc != 0) 7087 error++; 7088 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7089 LPFC_RSC_TYPE_FCOE_XRI); 7090 if (rc != 0) 7091 error++; 7092 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7093 LPFC_RSC_TYPE_FCOE_RPI); 7094 if (rc != 0) 7095 error++; 7096 7097 /* 7098 * It's possible that the number of resources 7099 * provided to this port instance changed between 7100 * resets. Detect this condition and reallocate 7101 * resources. Otherwise, there is no action. 7102 */ 7103 if (error) { 7104 lpfc_printf_log(phba, KERN_INFO, 7105 LOG_MBOX | LOG_INIT, 7106 "2931 Detected extent resource " 7107 "change. Reallocating all " 7108 "extents.\n"); 7109 rc = lpfc_sli4_dealloc_extent(phba, 7110 LPFC_RSC_TYPE_FCOE_VFI); 7111 rc = lpfc_sli4_dealloc_extent(phba, 7112 LPFC_RSC_TYPE_FCOE_VPI); 7113 rc = lpfc_sli4_dealloc_extent(phba, 7114 LPFC_RSC_TYPE_FCOE_XRI); 7115 rc = lpfc_sli4_dealloc_extent(phba, 7116 LPFC_RSC_TYPE_FCOE_RPI); 7117 } else 7118 return 0; 7119 } 7120 7121 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7122 if (unlikely(rc)) 7123 goto err_exit; 7124 7125 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7126 if (unlikely(rc)) 7127 goto err_exit; 7128 7129 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7130 if (unlikely(rc)) 7131 goto err_exit; 7132 7133 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7134 if (unlikely(rc)) 7135 goto err_exit; 7136 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7137 LPFC_IDX_RSRC_RDY); 7138 return rc; 7139 } else { 7140 /* 7141 * The port does not support resource extents. The XRI, VPI, 7142 * VFI, RPI resource ids were determined from READ_CONFIG. 7143 * Just allocate the bitmasks and provision the resource id 7144 * arrays. If a port reset is active, the resources don't 7145 * need any action - just exit. 7146 */ 7147 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7148 LPFC_IDX_RSRC_RDY) { 7149 lpfc_sli4_dealloc_resource_identifiers(phba); 7150 lpfc_sli4_remove_rpis(phba); 7151 } 7152 /* RPIs. */ 7153 count = phba->sli4_hba.max_cfg_param.max_rpi; 7154 if (count <= 0) { 7155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7156 "3279 Invalid provisioning of " 7157 "rpi:%d\n", count); 7158 rc = -EINVAL; 7159 goto err_exit; 7160 } 7161 base = phba->sli4_hba.max_cfg_param.rpi_base; 7162 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7163 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7164 sizeof(unsigned long), 7165 GFP_KERNEL); 7166 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7167 rc = -ENOMEM; 7168 goto err_exit; 7169 } 7170 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7171 GFP_KERNEL); 7172 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7173 rc = -ENOMEM; 7174 goto free_rpi_bmask; 7175 } 7176 7177 for (i = 0; i < count; i++) 7178 phba->sli4_hba.rpi_ids[i] = base + i; 7179 7180 /* VPIs. */ 7181 count = phba->sli4_hba.max_cfg_param.max_vpi; 7182 if (count <= 0) { 7183 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7184 "3280 Invalid provisioning of " 7185 "vpi:%d\n", count); 7186 rc = -EINVAL; 7187 goto free_rpi_ids; 7188 } 7189 base = phba->sli4_hba.max_cfg_param.vpi_base; 7190 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7191 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7192 GFP_KERNEL); 7193 if (unlikely(!phba->vpi_bmask)) { 7194 rc = -ENOMEM; 7195 goto free_rpi_ids; 7196 } 7197 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7198 GFP_KERNEL); 7199 if (unlikely(!phba->vpi_ids)) { 7200 rc = -ENOMEM; 7201 goto free_vpi_bmask; 7202 } 7203 7204 for (i = 0; i < count; i++) 7205 phba->vpi_ids[i] = base + i; 7206 7207 /* XRIs. */ 7208 count = phba->sli4_hba.max_cfg_param.max_xri; 7209 if (count <= 0) { 7210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7211 "3281 Invalid provisioning of " 7212 "xri:%d\n", count); 7213 rc = -EINVAL; 7214 goto free_vpi_ids; 7215 } 7216 base = phba->sli4_hba.max_cfg_param.xri_base; 7217 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7218 phba->sli4_hba.xri_bmask = kcalloc(longs, 7219 sizeof(unsigned long), 7220 GFP_KERNEL); 7221 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7222 rc = -ENOMEM; 7223 goto free_vpi_ids; 7224 } 7225 phba->sli4_hba.max_cfg_param.xri_used = 0; 7226 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7227 GFP_KERNEL); 7228 if (unlikely(!phba->sli4_hba.xri_ids)) { 7229 rc = -ENOMEM; 7230 goto free_xri_bmask; 7231 } 7232 7233 for (i = 0; i < count; i++) 7234 phba->sli4_hba.xri_ids[i] = base + i; 7235 7236 /* VFIs. */ 7237 count = phba->sli4_hba.max_cfg_param.max_vfi; 7238 if (count <= 0) { 7239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7240 "3282 Invalid provisioning of " 7241 "vfi:%d\n", count); 7242 rc = -EINVAL; 7243 goto free_xri_ids; 7244 } 7245 base = phba->sli4_hba.max_cfg_param.vfi_base; 7246 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7247 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7248 sizeof(unsigned long), 7249 GFP_KERNEL); 7250 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7251 rc = -ENOMEM; 7252 goto free_xri_ids; 7253 } 7254 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7255 GFP_KERNEL); 7256 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7257 rc = -ENOMEM; 7258 goto free_vfi_bmask; 7259 } 7260 7261 for (i = 0; i < count; i++) 7262 phba->sli4_hba.vfi_ids[i] = base + i; 7263 7264 /* 7265 * Mark all resources ready. An HBA reset doesn't need 7266 * to reset the initialization. 7267 */ 7268 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7269 LPFC_IDX_RSRC_RDY); 7270 return 0; 7271 } 7272 7273 free_vfi_bmask: 7274 kfree(phba->sli4_hba.vfi_bmask); 7275 phba->sli4_hba.vfi_bmask = NULL; 7276 free_xri_ids: 7277 kfree(phba->sli4_hba.xri_ids); 7278 phba->sli4_hba.xri_ids = NULL; 7279 free_xri_bmask: 7280 kfree(phba->sli4_hba.xri_bmask); 7281 phba->sli4_hba.xri_bmask = NULL; 7282 free_vpi_ids: 7283 kfree(phba->vpi_ids); 7284 phba->vpi_ids = NULL; 7285 free_vpi_bmask: 7286 kfree(phba->vpi_bmask); 7287 phba->vpi_bmask = NULL; 7288 free_rpi_ids: 7289 kfree(phba->sli4_hba.rpi_ids); 7290 phba->sli4_hba.rpi_ids = NULL; 7291 free_rpi_bmask: 7292 kfree(phba->sli4_hba.rpi_bmask); 7293 phba->sli4_hba.rpi_bmask = NULL; 7294 err_exit: 7295 return rc; 7296 } 7297 7298 /** 7299 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7300 * @phba: Pointer to HBA context object. 7301 * 7302 * This function allocates the number of elements for the specified 7303 * resource type. 7304 **/ 7305 int 7306 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7307 { 7308 if (phba->sli4_hba.extents_in_use) { 7309 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7310 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7311 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7312 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7313 } else { 7314 kfree(phba->vpi_bmask); 7315 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7316 kfree(phba->vpi_ids); 7317 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7318 kfree(phba->sli4_hba.xri_bmask); 7319 kfree(phba->sli4_hba.xri_ids); 7320 kfree(phba->sli4_hba.vfi_bmask); 7321 kfree(phba->sli4_hba.vfi_ids); 7322 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7323 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7324 } 7325 7326 return 0; 7327 } 7328 7329 /** 7330 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7331 * @phba: Pointer to HBA context object. 7332 * @type: The resource extent type. 7333 * @extnt_cnt: buffer to hold port extent count response 7334 * @extnt_size: buffer to hold port extent size response. 7335 * 7336 * This function calls the port to read the host allocated extents 7337 * for a particular type. 7338 **/ 7339 int 7340 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7341 uint16_t *extnt_cnt, uint16_t *extnt_size) 7342 { 7343 bool emb; 7344 int rc = 0; 7345 uint16_t curr_blks = 0; 7346 uint32_t req_len, emb_len; 7347 uint32_t alloc_len, mbox_tmo; 7348 struct list_head *blk_list_head; 7349 struct lpfc_rsrc_blks *rsrc_blk; 7350 LPFC_MBOXQ_t *mbox; 7351 void *virtaddr = NULL; 7352 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7353 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7354 union lpfc_sli4_cfg_shdr *shdr; 7355 7356 switch (type) { 7357 case LPFC_RSC_TYPE_FCOE_VPI: 7358 blk_list_head = &phba->lpfc_vpi_blk_list; 7359 break; 7360 case LPFC_RSC_TYPE_FCOE_XRI: 7361 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7362 break; 7363 case LPFC_RSC_TYPE_FCOE_VFI: 7364 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7365 break; 7366 case LPFC_RSC_TYPE_FCOE_RPI: 7367 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7368 break; 7369 default: 7370 return -EIO; 7371 } 7372 7373 /* Count the number of extents currently allocatd for this type. */ 7374 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7375 if (curr_blks == 0) { 7376 /* 7377 * The GET_ALLOCATED mailbox does not return the size, 7378 * just the count. The size should be just the size 7379 * stored in the current allocated block and all sizes 7380 * for an extent type are the same so set the return 7381 * value now. 7382 */ 7383 *extnt_size = rsrc_blk->rsrc_size; 7384 } 7385 curr_blks++; 7386 } 7387 7388 /* 7389 * Calculate the size of an embedded mailbox. The uint32_t 7390 * accounts for extents-specific word. 7391 */ 7392 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7393 sizeof(uint32_t); 7394 7395 /* 7396 * Presume the allocation and response will fit into an embedded 7397 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7398 */ 7399 emb = LPFC_SLI4_MBX_EMBED; 7400 req_len = emb_len; 7401 if (req_len > emb_len) { 7402 req_len = curr_blks * sizeof(uint16_t) + 7403 sizeof(union lpfc_sli4_cfg_shdr) + 7404 sizeof(uint32_t); 7405 emb = LPFC_SLI4_MBX_NEMBED; 7406 } 7407 7408 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7409 if (!mbox) 7410 return -ENOMEM; 7411 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7412 7413 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7414 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7415 req_len, emb); 7416 if (alloc_len < req_len) { 7417 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7418 "2983 Allocated DMA memory size (x%x) is " 7419 "less than the requested DMA memory " 7420 "size (x%x)\n", alloc_len, req_len); 7421 rc = -ENOMEM; 7422 goto err_exit; 7423 } 7424 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7425 if (unlikely(rc)) { 7426 rc = -EIO; 7427 goto err_exit; 7428 } 7429 7430 if (!phba->sli4_hba.intr_enable) 7431 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7432 else { 7433 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7434 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7435 } 7436 7437 if (unlikely(rc)) { 7438 rc = -EIO; 7439 goto err_exit; 7440 } 7441 7442 /* 7443 * Figure out where the response is located. Then get local pointers 7444 * to the response data. The port does not guarantee to respond to 7445 * all extents counts request so update the local variable with the 7446 * allocated count from the port. 7447 */ 7448 if (emb == LPFC_SLI4_MBX_EMBED) { 7449 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7450 shdr = &rsrc_ext->header.cfg_shdr; 7451 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7452 } else { 7453 virtaddr = mbox->sge_array->addr[0]; 7454 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7455 shdr = &n_rsrc->cfg_shdr; 7456 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7457 } 7458 7459 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7460 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7461 "2984 Failed to read allocated resources " 7462 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7463 type, 7464 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7465 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7466 rc = -EIO; 7467 goto err_exit; 7468 } 7469 err_exit: 7470 lpfc_sli4_mbox_cmd_free(phba, mbox); 7471 return rc; 7472 } 7473 7474 /** 7475 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7476 * @phba: pointer to lpfc hba data structure. 7477 * @sgl_list: linked link of sgl buffers to post 7478 * @cnt: number of linked list buffers 7479 * 7480 * This routine walks the list of buffers that have been allocated and 7481 * repost them to the port by using SGL block post. This is needed after a 7482 * pci_function_reset/warm_start or start. It attempts to construct blocks 7483 * of buffer sgls which contains contiguous xris and uses the non-embedded 7484 * SGL block post mailbox commands to post them to the port. For single 7485 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7486 * mailbox command for posting. 7487 * 7488 * Returns: 0 = success, non-zero failure. 7489 **/ 7490 static int 7491 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7492 struct list_head *sgl_list, int cnt) 7493 { 7494 struct lpfc_sglq *sglq_entry = NULL; 7495 struct lpfc_sglq *sglq_entry_next = NULL; 7496 struct lpfc_sglq *sglq_entry_first = NULL; 7497 int status, total_cnt; 7498 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7499 int last_xritag = NO_XRI; 7500 LIST_HEAD(prep_sgl_list); 7501 LIST_HEAD(blck_sgl_list); 7502 LIST_HEAD(allc_sgl_list); 7503 LIST_HEAD(post_sgl_list); 7504 LIST_HEAD(free_sgl_list); 7505 7506 spin_lock_irq(&phba->hbalock); 7507 spin_lock(&phba->sli4_hba.sgl_list_lock); 7508 list_splice_init(sgl_list, &allc_sgl_list); 7509 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7510 spin_unlock_irq(&phba->hbalock); 7511 7512 total_cnt = cnt; 7513 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7514 &allc_sgl_list, list) { 7515 list_del_init(&sglq_entry->list); 7516 block_cnt++; 7517 if ((last_xritag != NO_XRI) && 7518 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7519 /* a hole in xri block, form a sgl posting block */ 7520 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7521 post_cnt = block_cnt - 1; 7522 /* prepare list for next posting block */ 7523 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7524 block_cnt = 1; 7525 } else { 7526 /* prepare list for next posting block */ 7527 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7528 /* enough sgls for non-embed sgl mbox command */ 7529 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7530 list_splice_init(&prep_sgl_list, 7531 &blck_sgl_list); 7532 post_cnt = block_cnt; 7533 block_cnt = 0; 7534 } 7535 } 7536 num_posted++; 7537 7538 /* keep track of last sgl's xritag */ 7539 last_xritag = sglq_entry->sli4_xritag; 7540 7541 /* end of repost sgl list condition for buffers */ 7542 if (num_posted == total_cnt) { 7543 if (post_cnt == 0) { 7544 list_splice_init(&prep_sgl_list, 7545 &blck_sgl_list); 7546 post_cnt = block_cnt; 7547 } else if (block_cnt == 1) { 7548 status = lpfc_sli4_post_sgl(phba, 7549 sglq_entry->phys, 0, 7550 sglq_entry->sli4_xritag); 7551 if (!status) { 7552 /* successful, put sgl to posted list */ 7553 list_add_tail(&sglq_entry->list, 7554 &post_sgl_list); 7555 } else { 7556 /* Failure, put sgl to free list */ 7557 lpfc_printf_log(phba, KERN_WARNING, 7558 LOG_SLI, 7559 "3159 Failed to post " 7560 "sgl, xritag:x%x\n", 7561 sglq_entry->sli4_xritag); 7562 list_add_tail(&sglq_entry->list, 7563 &free_sgl_list); 7564 total_cnt--; 7565 } 7566 } 7567 } 7568 7569 /* continue until a nembed page worth of sgls */ 7570 if (post_cnt == 0) 7571 continue; 7572 7573 /* post the buffer list sgls as a block */ 7574 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7575 post_cnt); 7576 7577 if (!status) { 7578 /* success, put sgl list to posted sgl list */ 7579 list_splice_init(&blck_sgl_list, &post_sgl_list); 7580 } else { 7581 /* Failure, put sgl list to free sgl list */ 7582 sglq_entry_first = list_first_entry(&blck_sgl_list, 7583 struct lpfc_sglq, 7584 list); 7585 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7586 "3160 Failed to post sgl-list, " 7587 "xritag:x%x-x%x\n", 7588 sglq_entry_first->sli4_xritag, 7589 (sglq_entry_first->sli4_xritag + 7590 post_cnt - 1)); 7591 list_splice_init(&blck_sgl_list, &free_sgl_list); 7592 total_cnt -= post_cnt; 7593 } 7594 7595 /* don't reset xirtag due to hole in xri block */ 7596 if (block_cnt == 0) 7597 last_xritag = NO_XRI; 7598 7599 /* reset sgl post count for next round of posting */ 7600 post_cnt = 0; 7601 } 7602 7603 /* free the sgls failed to post */ 7604 lpfc_free_sgl_list(phba, &free_sgl_list); 7605 7606 /* push sgls posted to the available list */ 7607 if (!list_empty(&post_sgl_list)) { 7608 spin_lock_irq(&phba->hbalock); 7609 spin_lock(&phba->sli4_hba.sgl_list_lock); 7610 list_splice_init(&post_sgl_list, sgl_list); 7611 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7612 spin_unlock_irq(&phba->hbalock); 7613 } else { 7614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7615 "3161 Failure to post sgl to port.\n"); 7616 return -EIO; 7617 } 7618 7619 /* return the number of XRIs actually posted */ 7620 return total_cnt; 7621 } 7622 7623 /** 7624 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7625 * @phba: pointer to lpfc hba data structure. 7626 * 7627 * This routine walks the list of nvme buffers that have been allocated and 7628 * repost them to the port by using SGL block post. This is needed after a 7629 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7630 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7631 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7632 * 7633 * Returns: 0 = success, non-zero failure. 7634 **/ 7635 static int 7636 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7637 { 7638 LIST_HEAD(post_nblist); 7639 int num_posted, rc = 0; 7640 7641 /* get all NVME buffers need to repost to a local list */ 7642 lpfc_io_buf_flush(phba, &post_nblist); 7643 7644 /* post the list of nvme buffer sgls to port if available */ 7645 if (!list_empty(&post_nblist)) { 7646 num_posted = lpfc_sli4_post_io_sgl_list( 7647 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7648 /* failed to post any nvme buffer, return error */ 7649 if (num_posted == 0) 7650 rc = -EIO; 7651 } 7652 return rc; 7653 } 7654 7655 static void 7656 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7657 { 7658 uint32_t len; 7659 7660 len = sizeof(struct lpfc_mbx_set_host_data) - 7661 sizeof(struct lpfc_sli4_cfg_mhdr); 7662 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7663 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7664 LPFC_SLI4_MBX_EMBED); 7665 7666 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7667 mbox->u.mqe.un.set_host_data.param_len = 7668 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7669 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7670 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7671 "Linux %s v"LPFC_DRIVER_VERSION, 7672 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7673 } 7674 7675 int 7676 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7677 struct lpfc_queue *drq, int count, int idx) 7678 { 7679 int rc, i; 7680 struct lpfc_rqe hrqe; 7681 struct lpfc_rqe drqe; 7682 struct lpfc_rqb *rqbp; 7683 unsigned long flags; 7684 struct rqb_dmabuf *rqb_buffer; 7685 LIST_HEAD(rqb_buf_list); 7686 7687 rqbp = hrq->rqbp; 7688 for (i = 0; i < count; i++) { 7689 spin_lock_irqsave(&phba->hbalock, flags); 7690 /* IF RQ is already full, don't bother */ 7691 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7692 spin_unlock_irqrestore(&phba->hbalock, flags); 7693 break; 7694 } 7695 spin_unlock_irqrestore(&phba->hbalock, flags); 7696 7697 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7698 if (!rqb_buffer) 7699 break; 7700 rqb_buffer->hrq = hrq; 7701 rqb_buffer->drq = drq; 7702 rqb_buffer->idx = idx; 7703 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7704 } 7705 7706 spin_lock_irqsave(&phba->hbalock, flags); 7707 while (!list_empty(&rqb_buf_list)) { 7708 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7709 hbuf.list); 7710 7711 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7712 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7713 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7714 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7715 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7716 if (rc < 0) { 7717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7718 "6421 Cannot post to HRQ %d: %x %x %x " 7719 "DRQ %x %x\n", 7720 hrq->queue_id, 7721 hrq->host_index, 7722 hrq->hba_index, 7723 hrq->entry_count, 7724 drq->host_index, 7725 drq->hba_index); 7726 rqbp->rqb_free_buffer(phba, rqb_buffer); 7727 } else { 7728 list_add_tail(&rqb_buffer->hbuf.list, 7729 &rqbp->rqb_buffer_list); 7730 rqbp->buffer_count++; 7731 } 7732 } 7733 spin_unlock_irqrestore(&phba->hbalock, flags); 7734 return 1; 7735 } 7736 7737 static void 7738 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7739 { 7740 struct lpfc_vport *vport = pmb->vport; 7741 union lpfc_sli4_cfg_shdr *shdr; 7742 u32 shdr_status, shdr_add_status; 7743 u32 sig, acqe; 7744 7745 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7746 * is done. (2) Mailbox failed and send FPIN support only. 7747 */ 7748 shdr = (union lpfc_sli4_cfg_shdr *) 7749 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7752 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7754 "2516 CGN SET_FEATURE mbox failed with " 7755 "status x%x add_status x%x, mbx status x%x " 7756 "Reset Congestion to FPINs only\n", 7757 shdr_status, shdr_add_status, 7758 pmb->u.mb.mbxStatus); 7759 /* If there is a mbox error, move on to RDF */ 7760 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7761 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7762 goto out; 7763 } 7764 7765 /* Zero out Congestion Signal ACQE counter */ 7766 phba->cgn_acqe_cnt = 0; 7767 7768 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7769 &pmb->u.mqe.un.set_feature); 7770 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7771 &pmb->u.mqe.un.set_feature); 7772 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7773 "4620 SET_FEATURES Success: Freq: %ds %dms " 7774 " Reg: x%x x%x\n", acqe, sig, 7775 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7776 out: 7777 mempool_free(pmb, phba->mbox_mem_pool); 7778 7779 /* Register for FPIN events from the fabric now that the 7780 * EDC common_set_features has completed. 7781 */ 7782 lpfc_issue_els_rdf(vport, 0); 7783 } 7784 7785 int 7786 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7787 { 7788 LPFC_MBOXQ_t *mboxq; 7789 u32 rc; 7790 7791 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7792 if (!mboxq) 7793 goto out_rdf; 7794 7795 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7796 mboxq->vport = phba->pport; 7797 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7798 7799 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7800 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7801 "Reg: x%x x%x\n", 7802 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7803 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7804 7805 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7806 if (rc == MBX_NOT_FINISHED) 7807 goto out; 7808 return 0; 7809 7810 out: 7811 mempool_free(mboxq, phba->mbox_mem_pool); 7812 out_rdf: 7813 /* If there is a mbox error, move on to RDF */ 7814 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7815 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7816 lpfc_issue_els_rdf(phba->pport, 0); 7817 return -EIO; 7818 } 7819 7820 /** 7821 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7822 * @phba: pointer to lpfc hba data structure. 7823 * 7824 * This routine initializes the per-cq idle_stat to dynamically dictate 7825 * polling decisions. 7826 * 7827 * Return codes: 7828 * None 7829 **/ 7830 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7831 { 7832 int i; 7833 struct lpfc_sli4_hdw_queue *hdwq; 7834 struct lpfc_queue *cq; 7835 struct lpfc_idle_stat *idle_stat; 7836 u64 wall; 7837 7838 for_each_present_cpu(i) { 7839 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7840 cq = hdwq->io_cq; 7841 7842 /* Skip if we've already handled this cq's primary CPU */ 7843 if (cq->chann != i) 7844 continue; 7845 7846 idle_stat = &phba->sli4_hba.idle_stat[i]; 7847 7848 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7849 idle_stat->prev_wall = wall; 7850 7851 if (phba->nvmet_support || 7852 phba->cmf_active_mode != LPFC_CFG_OFF) 7853 cq->poll_mode = LPFC_QUEUE_WORK; 7854 else 7855 cq->poll_mode = LPFC_IRQ_POLL; 7856 } 7857 7858 if (!phba->nvmet_support) 7859 schedule_delayed_work(&phba->idle_stat_delay_work, 7860 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7861 } 7862 7863 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7864 { 7865 uint32_t if_type; 7866 7867 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7868 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7869 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7870 struct lpfc_register reg_data; 7871 7872 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7873 ®_data.word0)) 7874 return; 7875 7876 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7877 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7878 "2904 Firmware Dump Image Present" 7879 " on Adapter"); 7880 } 7881 } 7882 7883 /** 7884 * lpfc_cmf_setup - Initialize idle_stat tracking 7885 * @phba: Pointer to HBA context object. 7886 * 7887 * This is called from HBA setup during driver load or when the HBA 7888 * comes online. this does all the initialization to support CMF and MI. 7889 **/ 7890 static int 7891 lpfc_cmf_setup(struct lpfc_hba *phba) 7892 { 7893 LPFC_MBOXQ_t *mboxq; 7894 struct lpfc_dmabuf *mp; 7895 struct lpfc_pc_sli4_params *sli4_params; 7896 int rc, cmf, mi_ver; 7897 7898 rc = lpfc_sli4_refresh_params(phba); 7899 if (unlikely(rc)) 7900 return rc; 7901 7902 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7903 if (!mboxq) 7904 return -ENOMEM; 7905 7906 sli4_params = &phba->sli4_hba.pc_sli4_params; 7907 7908 /* Are we forcing MI off via module parameter? */ 7909 if (!phba->cfg_enable_mi) 7910 sli4_params->mi_ver = 0; 7911 7912 /* Always try to enable MI feature if we can */ 7913 if (sli4_params->mi_ver) { 7914 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7916 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7917 &mboxq->u.mqe.un.set_feature); 7918 7919 if (rc == MBX_SUCCESS) { 7920 if (mi_ver) { 7921 lpfc_printf_log(phba, 7922 KERN_WARNING, LOG_CGN_MGMT, 7923 "6215 MI is enabled\n"); 7924 sli4_params->mi_ver = mi_ver; 7925 } else { 7926 lpfc_printf_log(phba, 7927 KERN_WARNING, LOG_CGN_MGMT, 7928 "6338 MI is disabled\n"); 7929 sli4_params->mi_ver = 0; 7930 } 7931 } else { 7932 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7933 lpfc_printf_log(phba, KERN_INFO, 7934 LOG_CGN_MGMT | LOG_INIT, 7935 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7936 "failed, rc:x%x mi:x%x\n", 7937 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7938 lpfc_sli_config_mbox_subsys_get 7939 (phba, mboxq), 7940 lpfc_sli_config_mbox_opcode_get 7941 (phba, mboxq), 7942 rc, sli4_params->mi_ver); 7943 } 7944 } else { 7945 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7946 "6217 MI is disabled\n"); 7947 } 7948 7949 /* Ensure FDMI is enabled for MI if enable_mi is set */ 7950 if (sli4_params->mi_ver) 7951 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 7952 7953 /* Always try to enable CMF feature if we can */ 7954 if (sli4_params->cmf) { 7955 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 7956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7957 cmf = bf_get(lpfc_mbx_set_feature_cmf, 7958 &mboxq->u.mqe.un.set_feature); 7959 if (rc == MBX_SUCCESS && cmf) { 7960 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7961 "6218 CMF is enabled: mode %d\n", 7962 phba->cmf_active_mode); 7963 } else { 7964 lpfc_printf_log(phba, KERN_WARNING, 7965 LOG_CGN_MGMT | LOG_INIT, 7966 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 7967 "failed, rc:x%x dd:x%x\n", 7968 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7969 lpfc_sli_config_mbox_subsys_get 7970 (phba, mboxq), 7971 lpfc_sli_config_mbox_opcode_get 7972 (phba, mboxq), 7973 rc, cmf); 7974 sli4_params->cmf = 0; 7975 phba->cmf_active_mode = LPFC_CFG_OFF; 7976 goto no_cmf; 7977 } 7978 7979 /* Allocate Congestion Information Buffer */ 7980 if (!phba->cgn_i) { 7981 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 7982 if (mp) 7983 mp->virt = dma_alloc_coherent 7984 (&phba->pcidev->dev, 7985 sizeof(struct lpfc_cgn_info), 7986 &mp->phys, GFP_KERNEL); 7987 if (!mp || !mp->virt) { 7988 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7989 "2640 Failed to alloc memory " 7990 "for Congestion Info\n"); 7991 kfree(mp); 7992 sli4_params->cmf = 0; 7993 phba->cmf_active_mode = LPFC_CFG_OFF; 7994 goto no_cmf; 7995 } 7996 phba->cgn_i = mp; 7997 7998 /* initialize congestion buffer info */ 7999 lpfc_init_congestion_buf(phba); 8000 lpfc_init_congestion_stat(phba); 8001 8002 /* Zero out Congestion Signal counters */ 8003 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8004 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8005 } 8006 8007 rc = lpfc_sli4_cgn_params_read(phba); 8008 if (rc < 0) { 8009 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8010 "6242 Error reading Cgn Params (%d)\n", 8011 rc); 8012 /* Ensure CGN Mode is off */ 8013 sli4_params->cmf = 0; 8014 } else if (!rc) { 8015 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8016 "6243 CGN Event empty object.\n"); 8017 /* Ensure CGN Mode is off */ 8018 sli4_params->cmf = 0; 8019 } 8020 } else { 8021 no_cmf: 8022 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8023 "6220 CMF is disabled\n"); 8024 } 8025 8026 /* Only register congestion buffer with firmware if BOTH 8027 * CMF and E2E are enabled. 8028 */ 8029 if (sli4_params->cmf && sli4_params->mi_ver) { 8030 rc = lpfc_reg_congestion_buf(phba); 8031 if (rc) { 8032 dma_free_coherent(&phba->pcidev->dev, 8033 sizeof(struct lpfc_cgn_info), 8034 phba->cgn_i->virt, phba->cgn_i->phys); 8035 kfree(phba->cgn_i); 8036 phba->cgn_i = NULL; 8037 /* Ensure CGN Mode is off */ 8038 phba->cmf_active_mode = LPFC_CFG_OFF; 8039 return 0; 8040 } 8041 } 8042 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8043 "6470 Setup MI version %d CMF %d mode %d\n", 8044 sli4_params->mi_ver, sli4_params->cmf, 8045 phba->cmf_active_mode); 8046 8047 mempool_free(mboxq, phba->mbox_mem_pool); 8048 8049 /* Initialize atomic counters */ 8050 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8051 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8052 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8053 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8054 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8055 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8056 atomic64_set(&phba->cgn_latency_evt, 0); 8057 8058 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8059 8060 /* Allocate RX Monitor Buffer */ 8061 if (!phba->rxtable) { 8062 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8063 sizeof(struct rxtable_entry), 8064 GFP_KERNEL); 8065 if (!phba->rxtable) { 8066 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8067 "2644 Failed to alloc memory " 8068 "for RX Monitor Buffer\n"); 8069 return -ENOMEM; 8070 } 8071 } 8072 atomic_set(&phba->rxtable_idx_head, 0); 8073 atomic_set(&phba->rxtable_idx_tail, 0); 8074 return 0; 8075 } 8076 8077 static int 8078 lpfc_set_host_tm(struct lpfc_hba *phba) 8079 { 8080 LPFC_MBOXQ_t *mboxq; 8081 uint32_t len, rc; 8082 struct timespec64 cur_time; 8083 struct tm broken; 8084 uint32_t month, day, year; 8085 uint32_t hour, minute, second; 8086 struct lpfc_mbx_set_host_date_time *tm; 8087 8088 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8089 if (!mboxq) 8090 return -ENOMEM; 8091 8092 len = sizeof(struct lpfc_mbx_set_host_data) - 8093 sizeof(struct lpfc_sli4_cfg_mhdr); 8094 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8095 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8096 LPFC_SLI4_MBX_EMBED); 8097 8098 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8099 mboxq->u.mqe.un.set_host_data.param_len = 8100 sizeof(struct lpfc_mbx_set_host_date_time); 8101 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8102 ktime_get_real_ts64(&cur_time); 8103 time64_to_tm(cur_time.tv_sec, 0, &broken); 8104 month = broken.tm_mon + 1; 8105 day = broken.tm_mday; 8106 year = broken.tm_year - 100; 8107 hour = broken.tm_hour; 8108 minute = broken.tm_min; 8109 second = broken.tm_sec; 8110 bf_set(lpfc_mbx_set_host_month, tm, month); 8111 bf_set(lpfc_mbx_set_host_day, tm, day); 8112 bf_set(lpfc_mbx_set_host_year, tm, year); 8113 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8114 bf_set(lpfc_mbx_set_host_min, tm, minute); 8115 bf_set(lpfc_mbx_set_host_sec, tm, second); 8116 8117 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8118 mempool_free(mboxq, phba->mbox_mem_pool); 8119 return rc; 8120 } 8121 8122 /** 8123 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8124 * @phba: Pointer to HBA context object. 8125 * 8126 * This function is the main SLI4 device initialization PCI function. This 8127 * function is called by the HBA initialization code, HBA reset code and 8128 * HBA error attention handler code. Caller is not required to hold any 8129 * locks. 8130 **/ 8131 int 8132 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8133 { 8134 int rc, i, cnt, len, dd; 8135 LPFC_MBOXQ_t *mboxq; 8136 struct lpfc_mqe *mqe; 8137 uint8_t *vpd; 8138 uint32_t vpd_size; 8139 uint32_t ftr_rsp = 0; 8140 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8141 struct lpfc_vport *vport = phba->pport; 8142 struct lpfc_dmabuf *mp; 8143 struct lpfc_rqb *rqbp; 8144 u32 flg; 8145 8146 /* Perform a PCI function reset to start from clean */ 8147 rc = lpfc_pci_function_reset(phba); 8148 if (unlikely(rc)) 8149 return -ENODEV; 8150 8151 /* Check the HBA Host Status Register for readyness */ 8152 rc = lpfc_sli4_post_status_check(phba); 8153 if (unlikely(rc)) 8154 return -ENODEV; 8155 else { 8156 spin_lock_irq(&phba->hbalock); 8157 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8158 flg = phba->sli.sli_flag; 8159 spin_unlock_irq(&phba->hbalock); 8160 /* Allow a little time after setting SLI_ACTIVE for any polled 8161 * MBX commands to complete via BSG. 8162 */ 8163 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8164 msleep(20); 8165 spin_lock_irq(&phba->hbalock); 8166 flg = phba->sli.sli_flag; 8167 spin_unlock_irq(&phba->hbalock); 8168 } 8169 } 8170 8171 lpfc_sli4_dip(phba); 8172 8173 /* 8174 * Allocate a single mailbox container for initializing the 8175 * port. 8176 */ 8177 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8178 if (!mboxq) 8179 return -ENOMEM; 8180 8181 /* Issue READ_REV to collect vpd and FW information. */ 8182 vpd_size = SLI4_PAGE_SIZE; 8183 vpd = kzalloc(vpd_size, GFP_KERNEL); 8184 if (!vpd) { 8185 rc = -ENOMEM; 8186 goto out_free_mbox; 8187 } 8188 8189 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8190 if (unlikely(rc)) { 8191 kfree(vpd); 8192 goto out_free_mbox; 8193 } 8194 8195 mqe = &mboxq->u.mqe; 8196 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8197 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8198 phba->hba_flag |= HBA_FCOE_MODE; 8199 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8200 } else { 8201 phba->hba_flag &= ~HBA_FCOE_MODE; 8202 } 8203 8204 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8205 LPFC_DCBX_CEE_MODE) 8206 phba->hba_flag |= HBA_FIP_SUPPORT; 8207 else 8208 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8209 8210 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8211 8212 if (phba->sli_rev != LPFC_SLI_REV4) { 8213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8214 "0376 READ_REV Error. SLI Level %d " 8215 "FCoE enabled %d\n", 8216 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8217 rc = -EIO; 8218 kfree(vpd); 8219 goto out_free_mbox; 8220 } 8221 8222 rc = lpfc_set_host_tm(phba); 8223 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8224 "6468 Set host date / time: Status x%x:\n", rc); 8225 8226 /* 8227 * Continue initialization with default values even if driver failed 8228 * to read FCoE param config regions, only read parameters if the 8229 * board is FCoE 8230 */ 8231 if (phba->hba_flag & HBA_FCOE_MODE && 8232 lpfc_sli4_read_fcoe_params(phba)) 8233 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8234 "2570 Failed to read FCoE parameters\n"); 8235 8236 /* 8237 * Retrieve sli4 device physical port name, failure of doing it 8238 * is considered as non-fatal. 8239 */ 8240 rc = lpfc_sli4_retrieve_pport_name(phba); 8241 if (!rc) 8242 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8243 "3080 Successful retrieving SLI4 device " 8244 "physical port name: %s.\n", phba->Port); 8245 8246 rc = lpfc_sli4_get_ctl_attr(phba); 8247 if (!rc) 8248 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8249 "8351 Successful retrieving SLI4 device " 8250 "CTL ATTR\n"); 8251 8252 /* 8253 * Evaluate the read rev and vpd data. Populate the driver 8254 * state with the results. If this routine fails, the failure 8255 * is not fatal as the driver will use generic values. 8256 */ 8257 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8258 if (unlikely(!rc)) { 8259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8260 "0377 Error %d parsing vpd. " 8261 "Using defaults.\n", rc); 8262 rc = 0; 8263 } 8264 kfree(vpd); 8265 8266 /* Save information as VPD data */ 8267 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8268 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8269 8270 /* 8271 * This is because first G7 ASIC doesn't support the standard 8272 * 0x5a NVME cmd descriptor type/subtype 8273 */ 8274 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8275 LPFC_SLI_INTF_IF_TYPE_6) && 8276 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8277 (phba->vpd.rev.smRev == 0) && 8278 (phba->cfg_nvme_embed_cmd == 1)) 8279 phba->cfg_nvme_embed_cmd = 0; 8280 8281 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8282 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8283 &mqe->un.read_rev); 8284 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8285 &mqe->un.read_rev); 8286 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8287 &mqe->un.read_rev); 8288 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8289 &mqe->un.read_rev); 8290 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8291 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8292 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8293 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8294 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8295 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8296 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8297 "(%d):0380 READ_REV Status x%x " 8298 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8299 mboxq->vport ? mboxq->vport->vpi : 0, 8300 bf_get(lpfc_mqe_status, mqe), 8301 phba->vpd.rev.opFwName, 8302 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8303 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8304 8305 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8306 LPFC_SLI_INTF_IF_TYPE_0) { 8307 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8308 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8309 if (rc == MBX_SUCCESS) { 8310 phba->hba_flag |= HBA_RECOVERABLE_UE; 8311 /* Set 1Sec interval to detect UE */ 8312 phba->eratt_poll_interval = 1; 8313 phba->sli4_hba.ue_to_sr = bf_get( 8314 lpfc_mbx_set_feature_UESR, 8315 &mboxq->u.mqe.un.set_feature); 8316 phba->sli4_hba.ue_to_rp = bf_get( 8317 lpfc_mbx_set_feature_UERP, 8318 &mboxq->u.mqe.un.set_feature); 8319 } 8320 } 8321 8322 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8323 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8324 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8325 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8326 if (rc != MBX_SUCCESS) 8327 phba->mds_diags_support = 0; 8328 } 8329 8330 /* 8331 * Discover the port's supported feature set and match it against the 8332 * hosts requests. 8333 */ 8334 lpfc_request_features(phba, mboxq); 8335 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8336 if (unlikely(rc)) { 8337 rc = -EIO; 8338 goto out_free_mbox; 8339 } 8340 8341 /* Disable VMID if app header is not supported */ 8342 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8343 &mqe->un.req_ftrs))) { 8344 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8345 phba->cfg_vmid_app_header = 0; 8346 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8347 "1242 vmid feature not supported\n"); 8348 } 8349 8350 /* 8351 * The port must support FCP initiator mode as this is the 8352 * only mode running in the host. 8353 */ 8354 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8355 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8356 "0378 No support for fcpi mode.\n"); 8357 ftr_rsp++; 8358 } 8359 8360 /* Performance Hints are ONLY for FCoE */ 8361 if (phba->hba_flag & HBA_FCOE_MODE) { 8362 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8363 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8364 else 8365 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8366 } 8367 8368 /* 8369 * If the port cannot support the host's requested features 8370 * then turn off the global config parameters to disable the 8371 * feature in the driver. This is not a fatal error. 8372 */ 8373 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8374 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8375 phba->cfg_enable_bg = 0; 8376 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8377 ftr_rsp++; 8378 } 8379 } 8380 8381 if (phba->max_vpi && phba->cfg_enable_npiv && 8382 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8383 ftr_rsp++; 8384 8385 if (ftr_rsp) { 8386 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8387 "0379 Feature Mismatch Data: x%08x %08x " 8388 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8389 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8390 phba->cfg_enable_npiv, phba->max_vpi); 8391 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8392 phba->cfg_enable_bg = 0; 8393 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8394 phba->cfg_enable_npiv = 0; 8395 } 8396 8397 /* These SLI3 features are assumed in SLI4 */ 8398 spin_lock_irq(&phba->hbalock); 8399 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8400 spin_unlock_irq(&phba->hbalock); 8401 8402 /* Always try to enable dual dump feature if we can */ 8403 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8404 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8405 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8406 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8407 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8408 "6448 Dual Dump is enabled\n"); 8409 else 8410 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8411 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8412 "rc:x%x dd:x%x\n", 8413 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8414 lpfc_sli_config_mbox_subsys_get( 8415 phba, mboxq), 8416 lpfc_sli_config_mbox_opcode_get( 8417 phba, mboxq), 8418 rc, dd); 8419 /* 8420 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8421 * calls depends on these resources to complete port setup. 8422 */ 8423 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8424 if (rc) { 8425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8426 "2920 Failed to alloc Resource IDs " 8427 "rc = x%x\n", rc); 8428 goto out_free_mbox; 8429 } 8430 8431 lpfc_set_host_data(phba, mboxq); 8432 8433 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8434 if (rc) { 8435 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8436 "2134 Failed to set host os driver version %x", 8437 rc); 8438 } 8439 8440 /* Read the port's service parameters. */ 8441 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8442 if (rc) { 8443 phba->link_state = LPFC_HBA_ERROR; 8444 rc = -ENOMEM; 8445 goto out_free_mbox; 8446 } 8447 8448 mboxq->vport = vport; 8449 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8450 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8451 if (rc == MBX_SUCCESS) { 8452 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8453 rc = 0; 8454 } 8455 8456 /* 8457 * This memory was allocated by the lpfc_read_sparam routine. Release 8458 * it to the mbuf pool. 8459 */ 8460 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8461 kfree(mp); 8462 mboxq->ctx_buf = NULL; 8463 if (unlikely(rc)) { 8464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8465 "0382 READ_SPARAM command failed " 8466 "status %d, mbxStatus x%x\n", 8467 rc, bf_get(lpfc_mqe_status, mqe)); 8468 phba->link_state = LPFC_HBA_ERROR; 8469 rc = -EIO; 8470 goto out_free_mbox; 8471 } 8472 8473 lpfc_update_vport_wwn(vport); 8474 8475 /* Update the fc_host data structures with new wwn. */ 8476 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8477 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8478 8479 /* Create all the SLI4 queues */ 8480 rc = lpfc_sli4_queue_create(phba); 8481 if (rc) { 8482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8483 "3089 Failed to allocate queues\n"); 8484 rc = -ENODEV; 8485 goto out_free_mbox; 8486 } 8487 /* Set up all the queues to the device */ 8488 rc = lpfc_sli4_queue_setup(phba); 8489 if (unlikely(rc)) { 8490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8491 "0381 Error %d during queue setup.\n ", rc); 8492 goto out_stop_timers; 8493 } 8494 /* Initialize the driver internal SLI layer lists. */ 8495 lpfc_sli4_setup(phba); 8496 lpfc_sli4_queue_init(phba); 8497 8498 /* update host els xri-sgl sizes and mappings */ 8499 rc = lpfc_sli4_els_sgl_update(phba); 8500 if (unlikely(rc)) { 8501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8502 "1400 Failed to update xri-sgl size and " 8503 "mapping: %d\n", rc); 8504 goto out_destroy_queue; 8505 } 8506 8507 /* register the els sgl pool to the port */ 8508 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8509 phba->sli4_hba.els_xri_cnt); 8510 if (unlikely(rc < 0)) { 8511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8512 "0582 Error %d during els sgl post " 8513 "operation\n", rc); 8514 rc = -ENODEV; 8515 goto out_destroy_queue; 8516 } 8517 phba->sli4_hba.els_xri_cnt = rc; 8518 8519 if (phba->nvmet_support) { 8520 /* update host nvmet xri-sgl sizes and mappings */ 8521 rc = lpfc_sli4_nvmet_sgl_update(phba); 8522 if (unlikely(rc)) { 8523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8524 "6308 Failed to update nvmet-sgl size " 8525 "and mapping: %d\n", rc); 8526 goto out_destroy_queue; 8527 } 8528 8529 /* register the nvmet sgl pool to the port */ 8530 rc = lpfc_sli4_repost_sgl_list( 8531 phba, 8532 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8533 phba->sli4_hba.nvmet_xri_cnt); 8534 if (unlikely(rc < 0)) { 8535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8536 "3117 Error %d during nvmet " 8537 "sgl post\n", rc); 8538 rc = -ENODEV; 8539 goto out_destroy_queue; 8540 } 8541 phba->sli4_hba.nvmet_xri_cnt = rc; 8542 8543 /* We allocate an iocbq for every receive context SGL. 8544 * The additional allocation is for abort and ls handling. 8545 */ 8546 cnt = phba->sli4_hba.nvmet_xri_cnt + 8547 phba->sli4_hba.max_cfg_param.max_xri; 8548 } else { 8549 /* update host common xri-sgl sizes and mappings */ 8550 rc = lpfc_sli4_io_sgl_update(phba); 8551 if (unlikely(rc)) { 8552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8553 "6082 Failed to update nvme-sgl size " 8554 "and mapping: %d\n", rc); 8555 goto out_destroy_queue; 8556 } 8557 8558 /* register the allocated common sgl pool to the port */ 8559 rc = lpfc_sli4_repost_io_sgl_list(phba); 8560 if (unlikely(rc)) { 8561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8562 "6116 Error %d during nvme sgl post " 8563 "operation\n", rc); 8564 /* Some NVME buffers were moved to abort nvme list */ 8565 /* A pci function reset will repost them */ 8566 rc = -ENODEV; 8567 goto out_destroy_queue; 8568 } 8569 /* Each lpfc_io_buf job structure has an iocbq element. 8570 * This cnt provides for abort, els, ct and ls requests. 8571 */ 8572 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8573 } 8574 8575 if (!phba->sli.iocbq_lookup) { 8576 /* Initialize and populate the iocb list per host */ 8577 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8578 "2821 initialize iocb list with %d entries\n", 8579 cnt); 8580 rc = lpfc_init_iocb_list(phba, cnt); 8581 if (rc) { 8582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8583 "1413 Failed to init iocb list.\n"); 8584 goto out_destroy_queue; 8585 } 8586 } 8587 8588 if (phba->nvmet_support) 8589 lpfc_nvmet_create_targetport(phba); 8590 8591 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8592 /* Post initial buffers to all RQs created */ 8593 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8594 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8595 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8596 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8597 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8598 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8599 rqbp->buffer_count = 0; 8600 8601 lpfc_post_rq_buffer( 8602 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8603 phba->sli4_hba.nvmet_mrq_data[i], 8604 phba->cfg_nvmet_mrq_post, i); 8605 } 8606 } 8607 8608 /* Post the rpi header region to the device. */ 8609 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8610 if (unlikely(rc)) { 8611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8612 "0393 Error %d during rpi post operation\n", 8613 rc); 8614 rc = -ENODEV; 8615 goto out_free_iocblist; 8616 } 8617 lpfc_sli4_node_prep(phba); 8618 8619 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8620 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8621 /* 8622 * The FC Port needs to register FCFI (index 0) 8623 */ 8624 lpfc_reg_fcfi(phba, mboxq); 8625 mboxq->vport = phba->pport; 8626 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8627 if (rc != MBX_SUCCESS) 8628 goto out_unset_queue; 8629 rc = 0; 8630 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8631 &mboxq->u.mqe.un.reg_fcfi); 8632 } else { 8633 /* We are a NVME Target mode with MRQ > 1 */ 8634 8635 /* First register the FCFI */ 8636 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8637 mboxq->vport = phba->pport; 8638 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8639 if (rc != MBX_SUCCESS) 8640 goto out_unset_queue; 8641 rc = 0; 8642 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8643 &mboxq->u.mqe.un.reg_fcfi_mrq); 8644 8645 /* Next register the MRQs */ 8646 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8647 mboxq->vport = phba->pport; 8648 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8649 if (rc != MBX_SUCCESS) 8650 goto out_unset_queue; 8651 rc = 0; 8652 } 8653 /* Check if the port is configured to be disabled */ 8654 lpfc_sli_read_link_ste(phba); 8655 } 8656 8657 /* Don't post more new bufs if repost already recovered 8658 * the nvme sgls. 8659 */ 8660 if (phba->nvmet_support == 0) { 8661 if (phba->sli4_hba.io_xri_cnt == 0) { 8662 len = lpfc_new_io_buf( 8663 phba, phba->sli4_hba.io_xri_max); 8664 if (len == 0) { 8665 rc = -ENOMEM; 8666 goto out_unset_queue; 8667 } 8668 8669 if (phba->cfg_xri_rebalancing) 8670 lpfc_create_multixri_pools(phba); 8671 } 8672 } else { 8673 phba->cfg_xri_rebalancing = 0; 8674 } 8675 8676 /* Allow asynchronous mailbox command to go through */ 8677 spin_lock_irq(&phba->hbalock); 8678 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8679 spin_unlock_irq(&phba->hbalock); 8680 8681 /* Post receive buffers to the device */ 8682 lpfc_sli4_rb_setup(phba); 8683 8684 /* Reset HBA FCF states after HBA reset */ 8685 phba->fcf.fcf_flag = 0; 8686 phba->fcf.current_rec.flag = 0; 8687 8688 /* Start the ELS watchdog timer */ 8689 mod_timer(&vport->els_tmofunc, 8690 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8691 8692 /* Start heart beat timer */ 8693 mod_timer(&phba->hb_tmofunc, 8694 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8695 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8696 phba->last_completion_time = jiffies; 8697 8698 /* start eq_delay heartbeat */ 8699 if (phba->cfg_auto_imax) 8700 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8701 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8702 8703 /* start per phba idle_stat_delay heartbeat */ 8704 lpfc_init_idle_stat_hb(phba); 8705 8706 /* Start error attention (ERATT) polling timer */ 8707 mod_timer(&phba->eratt_poll, 8708 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8709 8710 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8711 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8712 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8713 if (!rc) { 8714 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8715 "2829 This device supports " 8716 "Advanced Error Reporting (AER)\n"); 8717 spin_lock_irq(&phba->hbalock); 8718 phba->hba_flag |= HBA_AER_ENABLED; 8719 spin_unlock_irq(&phba->hbalock); 8720 } else { 8721 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8722 "2830 This device does not support " 8723 "Advanced Error Reporting (AER)\n"); 8724 phba->cfg_aer_support = 0; 8725 } 8726 rc = 0; 8727 } 8728 8729 /* 8730 * The port is ready, set the host's link state to LINK_DOWN 8731 * in preparation for link interrupts. 8732 */ 8733 spin_lock_irq(&phba->hbalock); 8734 phba->link_state = LPFC_LINK_DOWN; 8735 8736 /* Check if physical ports are trunked */ 8737 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8738 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8739 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8740 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8741 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8742 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8743 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8744 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8745 spin_unlock_irq(&phba->hbalock); 8746 8747 /* Arm the CQs and then EQs on device */ 8748 lpfc_sli4_arm_cqeq_intr(phba); 8749 8750 /* Indicate device interrupt mode */ 8751 phba->sli4_hba.intr_enable = 1; 8752 8753 /* Setup CMF after HBA is initialized */ 8754 lpfc_cmf_setup(phba); 8755 8756 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8757 (phba->hba_flag & LINK_DISABLED)) { 8758 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8759 "3103 Adapter Link is disabled.\n"); 8760 lpfc_down_link(phba, mboxq); 8761 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8762 if (rc != MBX_SUCCESS) { 8763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8764 "3104 Adapter failed to issue " 8765 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8766 goto out_io_buff_free; 8767 } 8768 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8769 /* don't perform init_link on SLI4 FC port loopback test */ 8770 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8771 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8772 if (rc) 8773 goto out_io_buff_free; 8774 } 8775 } 8776 mempool_free(mboxq, phba->mbox_mem_pool); 8777 8778 phba->hba_flag |= HBA_SETUP; 8779 return rc; 8780 8781 out_io_buff_free: 8782 /* Free allocated IO Buffers */ 8783 lpfc_io_free(phba); 8784 out_unset_queue: 8785 /* Unset all the queues set up in this routine when error out */ 8786 lpfc_sli4_queue_unset(phba); 8787 out_free_iocblist: 8788 lpfc_free_iocb_list(phba); 8789 out_destroy_queue: 8790 lpfc_sli4_queue_destroy(phba); 8791 out_stop_timers: 8792 lpfc_stop_hba_timers(phba); 8793 out_free_mbox: 8794 mempool_free(mboxq, phba->mbox_mem_pool); 8795 return rc; 8796 } 8797 8798 /** 8799 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8800 * @t: Context to fetch pointer to hba structure from. 8801 * 8802 * This is the callback function for mailbox timer. The mailbox 8803 * timer is armed when a new mailbox command is issued and the timer 8804 * is deleted when the mailbox complete. The function is called by 8805 * the kernel timer code when a mailbox does not complete within 8806 * expected time. This function wakes up the worker thread to 8807 * process the mailbox timeout and returns. All the processing is 8808 * done by the worker thread function lpfc_mbox_timeout_handler. 8809 **/ 8810 void 8811 lpfc_mbox_timeout(struct timer_list *t) 8812 { 8813 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8814 unsigned long iflag; 8815 uint32_t tmo_posted; 8816 8817 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8818 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8819 if (!tmo_posted) 8820 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8821 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8822 8823 if (!tmo_posted) 8824 lpfc_worker_wake_up(phba); 8825 return; 8826 } 8827 8828 /** 8829 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8830 * are pending 8831 * @phba: Pointer to HBA context object. 8832 * 8833 * This function checks if any mailbox completions are present on the mailbox 8834 * completion queue. 8835 **/ 8836 static bool 8837 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8838 { 8839 8840 uint32_t idx; 8841 struct lpfc_queue *mcq; 8842 struct lpfc_mcqe *mcqe; 8843 bool pending_completions = false; 8844 uint8_t qe_valid; 8845 8846 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8847 return false; 8848 8849 /* Check for completions on mailbox completion queue */ 8850 8851 mcq = phba->sli4_hba.mbx_cq; 8852 idx = mcq->hba_index; 8853 qe_valid = mcq->qe_valid; 8854 while (bf_get_le32(lpfc_cqe_valid, 8855 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8856 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8857 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8858 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8859 pending_completions = true; 8860 break; 8861 } 8862 idx = (idx + 1) % mcq->entry_count; 8863 if (mcq->hba_index == idx) 8864 break; 8865 8866 /* if the index wrapped around, toggle the valid bit */ 8867 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8868 qe_valid = (qe_valid) ? 0 : 1; 8869 } 8870 return pending_completions; 8871 8872 } 8873 8874 /** 8875 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8876 * that were missed. 8877 * @phba: Pointer to HBA context object. 8878 * 8879 * For sli4, it is possible to miss an interrupt. As such mbox completions 8880 * maybe missed causing erroneous mailbox timeouts to occur. This function 8881 * checks to see if mbox completions are on the mailbox completion queue 8882 * and will process all the completions associated with the eq for the 8883 * mailbox completion queue. 8884 **/ 8885 static bool 8886 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8887 { 8888 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8889 uint32_t eqidx; 8890 struct lpfc_queue *fpeq = NULL; 8891 struct lpfc_queue *eq; 8892 bool mbox_pending; 8893 8894 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8895 return false; 8896 8897 /* Find the EQ associated with the mbox CQ */ 8898 if (sli4_hba->hdwq) { 8899 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8900 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8901 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8902 fpeq = eq; 8903 break; 8904 } 8905 } 8906 } 8907 if (!fpeq) 8908 return false; 8909 8910 /* Turn off interrupts from this EQ */ 8911 8912 sli4_hba->sli4_eq_clr_intr(fpeq); 8913 8914 /* Check to see if a mbox completion is pending */ 8915 8916 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8917 8918 /* 8919 * If a mbox completion is pending, process all the events on EQ 8920 * associated with the mbox completion queue (this could include 8921 * mailbox commands, async events, els commands, receive queue data 8922 * and fcp commands) 8923 */ 8924 8925 if (mbox_pending) 8926 /* process and rearm the EQ */ 8927 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8928 else 8929 /* Always clear and re-arm the EQ */ 8930 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8931 8932 return mbox_pending; 8933 8934 } 8935 8936 /** 8937 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8938 * @phba: Pointer to HBA context object. 8939 * 8940 * This function is called from worker thread when a mailbox command times out. 8941 * The caller is not required to hold any locks. This function will reset the 8942 * HBA and recover all the pending commands. 8943 **/ 8944 void 8945 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8946 { 8947 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8948 MAILBOX_t *mb = NULL; 8949 8950 struct lpfc_sli *psli = &phba->sli; 8951 8952 /* If the mailbox completed, process the completion */ 8953 lpfc_sli4_process_missed_mbox_completions(phba); 8954 8955 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8956 return; 8957 8958 if (pmbox != NULL) 8959 mb = &pmbox->u.mb; 8960 /* Check the pmbox pointer first. There is a race condition 8961 * between the mbox timeout handler getting executed in the 8962 * worklist and the mailbox actually completing. When this 8963 * race condition occurs, the mbox_active will be NULL. 8964 */ 8965 spin_lock_irq(&phba->hbalock); 8966 if (pmbox == NULL) { 8967 lpfc_printf_log(phba, KERN_WARNING, 8968 LOG_MBOX | LOG_SLI, 8969 "0353 Active Mailbox cleared - mailbox timeout " 8970 "exiting\n"); 8971 spin_unlock_irq(&phba->hbalock); 8972 return; 8973 } 8974 8975 /* Mbox cmd <mbxCommand> timeout */ 8976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8977 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8978 mb->mbxCommand, 8979 phba->pport->port_state, 8980 phba->sli.sli_flag, 8981 phba->sli.mbox_active); 8982 spin_unlock_irq(&phba->hbalock); 8983 8984 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8985 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8986 * it to fail all outstanding SCSI IO. 8987 */ 8988 spin_lock_irq(&phba->pport->work_port_lock); 8989 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8990 spin_unlock_irq(&phba->pport->work_port_lock); 8991 spin_lock_irq(&phba->hbalock); 8992 phba->link_state = LPFC_LINK_UNKNOWN; 8993 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8994 spin_unlock_irq(&phba->hbalock); 8995 8996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8997 "0345 Resetting board due to mailbox timeout\n"); 8998 8999 /* Reset the HBA device */ 9000 lpfc_reset_hba(phba); 9001 } 9002 9003 /** 9004 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9005 * @phba: Pointer to HBA context object. 9006 * @pmbox: Pointer to mailbox object. 9007 * @flag: Flag indicating how the mailbox need to be processed. 9008 * 9009 * This function is called by discovery code and HBA management code 9010 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9011 * function gets the hbalock to protect the data structures. 9012 * The mailbox command can be submitted in polling mode, in which case 9013 * this function will wait in a polling loop for the completion of the 9014 * mailbox. 9015 * If the mailbox is submitted in no_wait mode (not polling) the 9016 * function will submit the command and returns immediately without waiting 9017 * for the mailbox completion. The no_wait is supported only when HBA 9018 * is in SLI2/SLI3 mode - interrupts are enabled. 9019 * The SLI interface allows only one mailbox pending at a time. If the 9020 * mailbox is issued in polling mode and there is already a mailbox 9021 * pending, then the function will return an error. If the mailbox is issued 9022 * in NO_WAIT mode and there is a mailbox pending already, the function 9023 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9024 * The sli layer owns the mailbox object until the completion of mailbox 9025 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9026 * return codes the caller owns the mailbox command after the return of 9027 * the function. 9028 **/ 9029 static int 9030 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9031 uint32_t flag) 9032 { 9033 MAILBOX_t *mbx; 9034 struct lpfc_sli *psli = &phba->sli; 9035 uint32_t status, evtctr; 9036 uint32_t ha_copy, hc_copy; 9037 int i; 9038 unsigned long timeout; 9039 unsigned long drvr_flag = 0; 9040 uint32_t word0, ldata; 9041 void __iomem *to_slim; 9042 int processing_queue = 0; 9043 9044 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9045 if (!pmbox) { 9046 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9047 /* processing mbox queue from intr_handler */ 9048 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9049 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9050 return MBX_SUCCESS; 9051 } 9052 processing_queue = 1; 9053 pmbox = lpfc_mbox_get(phba); 9054 if (!pmbox) { 9055 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9056 return MBX_SUCCESS; 9057 } 9058 } 9059 9060 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9061 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9062 if(!pmbox->vport) { 9063 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9064 lpfc_printf_log(phba, KERN_ERR, 9065 LOG_MBOX | LOG_VPORT, 9066 "1806 Mbox x%x failed. No vport\n", 9067 pmbox->u.mb.mbxCommand); 9068 dump_stack(); 9069 goto out_not_finished; 9070 } 9071 } 9072 9073 /* If the PCI channel is in offline state, do not post mbox. */ 9074 if (unlikely(pci_channel_offline(phba->pcidev))) { 9075 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9076 goto out_not_finished; 9077 } 9078 9079 /* If HBA has a deferred error attention, fail the iocb. */ 9080 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9081 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9082 goto out_not_finished; 9083 } 9084 9085 psli = &phba->sli; 9086 9087 mbx = &pmbox->u.mb; 9088 status = MBX_SUCCESS; 9089 9090 if (phba->link_state == LPFC_HBA_ERROR) { 9091 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9092 9093 /* Mbox command <mbxCommand> cannot issue */ 9094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9095 "(%d):0311 Mailbox command x%x cannot " 9096 "issue Data: x%x x%x\n", 9097 pmbox->vport ? pmbox->vport->vpi : 0, 9098 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9099 goto out_not_finished; 9100 } 9101 9102 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9103 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9104 !(hc_copy & HC_MBINT_ENA)) { 9105 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9107 "(%d):2528 Mailbox command x%x cannot " 9108 "issue Data: x%x x%x\n", 9109 pmbox->vport ? pmbox->vport->vpi : 0, 9110 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9111 goto out_not_finished; 9112 } 9113 } 9114 9115 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9116 /* Polling for a mbox command when another one is already active 9117 * is not allowed in SLI. Also, the driver must have established 9118 * SLI2 mode to queue and process multiple mbox commands. 9119 */ 9120 9121 if (flag & MBX_POLL) { 9122 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9123 9124 /* Mbox command <mbxCommand> cannot issue */ 9125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9126 "(%d):2529 Mailbox command x%x " 9127 "cannot issue Data: x%x x%x\n", 9128 pmbox->vport ? pmbox->vport->vpi : 0, 9129 pmbox->u.mb.mbxCommand, 9130 psli->sli_flag, flag); 9131 goto out_not_finished; 9132 } 9133 9134 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9135 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9136 /* Mbox command <mbxCommand> cannot issue */ 9137 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9138 "(%d):2530 Mailbox command x%x " 9139 "cannot issue Data: x%x x%x\n", 9140 pmbox->vport ? pmbox->vport->vpi : 0, 9141 pmbox->u.mb.mbxCommand, 9142 psli->sli_flag, flag); 9143 goto out_not_finished; 9144 } 9145 9146 /* Another mailbox command is still being processed, queue this 9147 * command to be processed later. 9148 */ 9149 lpfc_mbox_put(phba, pmbox); 9150 9151 /* Mbox cmd issue - BUSY */ 9152 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9153 "(%d):0308 Mbox cmd issue - BUSY Data: " 9154 "x%x x%x x%x x%x\n", 9155 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9156 mbx->mbxCommand, 9157 phba->pport ? phba->pport->port_state : 0xff, 9158 psli->sli_flag, flag); 9159 9160 psli->slistat.mbox_busy++; 9161 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9162 9163 if (pmbox->vport) { 9164 lpfc_debugfs_disc_trc(pmbox->vport, 9165 LPFC_DISC_TRC_MBOX_VPORT, 9166 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9167 (uint32_t)mbx->mbxCommand, 9168 mbx->un.varWords[0], mbx->un.varWords[1]); 9169 } 9170 else { 9171 lpfc_debugfs_disc_trc(phba->pport, 9172 LPFC_DISC_TRC_MBOX, 9173 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9174 (uint32_t)mbx->mbxCommand, 9175 mbx->un.varWords[0], mbx->un.varWords[1]); 9176 } 9177 9178 return MBX_BUSY; 9179 } 9180 9181 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9182 9183 /* If we are not polling, we MUST be in SLI2 mode */ 9184 if (flag != MBX_POLL) { 9185 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9186 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9187 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9188 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9189 /* Mbox command <mbxCommand> cannot issue */ 9190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9191 "(%d):2531 Mailbox command x%x " 9192 "cannot issue Data: x%x x%x\n", 9193 pmbox->vport ? pmbox->vport->vpi : 0, 9194 pmbox->u.mb.mbxCommand, 9195 psli->sli_flag, flag); 9196 goto out_not_finished; 9197 } 9198 /* timeout active mbox command */ 9199 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9200 1000); 9201 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9202 } 9203 9204 /* Mailbox cmd <cmd> issue */ 9205 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9206 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9207 "x%x\n", 9208 pmbox->vport ? pmbox->vport->vpi : 0, 9209 mbx->mbxCommand, 9210 phba->pport ? phba->pport->port_state : 0xff, 9211 psli->sli_flag, flag); 9212 9213 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9214 if (pmbox->vport) { 9215 lpfc_debugfs_disc_trc(pmbox->vport, 9216 LPFC_DISC_TRC_MBOX_VPORT, 9217 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9218 (uint32_t)mbx->mbxCommand, 9219 mbx->un.varWords[0], mbx->un.varWords[1]); 9220 } 9221 else { 9222 lpfc_debugfs_disc_trc(phba->pport, 9223 LPFC_DISC_TRC_MBOX, 9224 "MBOX Send: cmd:x%x mb:x%x x%x", 9225 (uint32_t)mbx->mbxCommand, 9226 mbx->un.varWords[0], mbx->un.varWords[1]); 9227 } 9228 } 9229 9230 psli->slistat.mbox_cmd++; 9231 evtctr = psli->slistat.mbox_event; 9232 9233 /* next set own bit for the adapter and copy over command word */ 9234 mbx->mbxOwner = OWN_CHIP; 9235 9236 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9237 /* Populate mbox extension offset word. */ 9238 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9239 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9240 = (uint8_t *)phba->mbox_ext 9241 - (uint8_t *)phba->mbox; 9242 } 9243 9244 /* Copy the mailbox extension data */ 9245 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9246 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9247 (uint8_t *)phba->mbox_ext, 9248 pmbox->in_ext_byte_len); 9249 } 9250 /* Copy command data to host SLIM area */ 9251 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9252 } else { 9253 /* Populate mbox extension offset word. */ 9254 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9255 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9256 = MAILBOX_HBA_EXT_OFFSET; 9257 9258 /* Copy the mailbox extension data */ 9259 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9260 lpfc_memcpy_to_slim(phba->MBslimaddr + 9261 MAILBOX_HBA_EXT_OFFSET, 9262 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9263 9264 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9265 /* copy command data into host mbox for cmpl */ 9266 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9267 MAILBOX_CMD_SIZE); 9268 9269 /* First copy mbox command data to HBA SLIM, skip past first 9270 word */ 9271 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9272 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9273 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9274 9275 /* Next copy over first word, with mbxOwner set */ 9276 ldata = *((uint32_t *)mbx); 9277 to_slim = phba->MBslimaddr; 9278 writel(ldata, to_slim); 9279 readl(to_slim); /* flush */ 9280 9281 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9282 /* switch over to host mailbox */ 9283 psli->sli_flag |= LPFC_SLI_ACTIVE; 9284 } 9285 9286 wmb(); 9287 9288 switch (flag) { 9289 case MBX_NOWAIT: 9290 /* Set up reference to mailbox command */ 9291 psli->mbox_active = pmbox; 9292 /* Interrupt board to do it */ 9293 writel(CA_MBATT, phba->CAregaddr); 9294 readl(phba->CAregaddr); /* flush */ 9295 /* Don't wait for it to finish, just return */ 9296 break; 9297 9298 case MBX_POLL: 9299 /* Set up null reference to mailbox command */ 9300 psli->mbox_active = NULL; 9301 /* Interrupt board to do it */ 9302 writel(CA_MBATT, phba->CAregaddr); 9303 readl(phba->CAregaddr); /* flush */ 9304 9305 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9306 /* First read mbox status word */ 9307 word0 = *((uint32_t *)phba->mbox); 9308 word0 = le32_to_cpu(word0); 9309 } else { 9310 /* First read mbox status word */ 9311 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9312 spin_unlock_irqrestore(&phba->hbalock, 9313 drvr_flag); 9314 goto out_not_finished; 9315 } 9316 } 9317 9318 /* Read the HBA Host Attention Register */ 9319 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9320 spin_unlock_irqrestore(&phba->hbalock, 9321 drvr_flag); 9322 goto out_not_finished; 9323 } 9324 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9325 1000) + jiffies; 9326 i = 0; 9327 /* Wait for command to complete */ 9328 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9329 (!(ha_copy & HA_MBATT) && 9330 (phba->link_state > LPFC_WARM_START))) { 9331 if (time_after(jiffies, timeout)) { 9332 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9333 spin_unlock_irqrestore(&phba->hbalock, 9334 drvr_flag); 9335 goto out_not_finished; 9336 } 9337 9338 /* Check if we took a mbox interrupt while we were 9339 polling */ 9340 if (((word0 & OWN_CHIP) != OWN_CHIP) 9341 && (evtctr != psli->slistat.mbox_event)) 9342 break; 9343 9344 if (i++ > 10) { 9345 spin_unlock_irqrestore(&phba->hbalock, 9346 drvr_flag); 9347 msleep(1); 9348 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9349 } 9350 9351 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9352 /* First copy command data */ 9353 word0 = *((uint32_t *)phba->mbox); 9354 word0 = le32_to_cpu(word0); 9355 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9356 MAILBOX_t *slimmb; 9357 uint32_t slimword0; 9358 /* Check real SLIM for any errors */ 9359 slimword0 = readl(phba->MBslimaddr); 9360 slimmb = (MAILBOX_t *) & slimword0; 9361 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9362 && slimmb->mbxStatus) { 9363 psli->sli_flag &= 9364 ~LPFC_SLI_ACTIVE; 9365 word0 = slimword0; 9366 } 9367 } 9368 } else { 9369 /* First copy command data */ 9370 word0 = readl(phba->MBslimaddr); 9371 } 9372 /* Read the HBA Host Attention Register */ 9373 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9374 spin_unlock_irqrestore(&phba->hbalock, 9375 drvr_flag); 9376 goto out_not_finished; 9377 } 9378 } 9379 9380 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9381 /* copy results back to user */ 9382 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9383 MAILBOX_CMD_SIZE); 9384 /* Copy the mailbox extension data */ 9385 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9386 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9387 pmbox->ctx_buf, 9388 pmbox->out_ext_byte_len); 9389 } 9390 } else { 9391 /* First copy command data */ 9392 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9393 MAILBOX_CMD_SIZE); 9394 /* Copy the mailbox extension data */ 9395 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9396 lpfc_memcpy_from_slim( 9397 pmbox->ctx_buf, 9398 phba->MBslimaddr + 9399 MAILBOX_HBA_EXT_OFFSET, 9400 pmbox->out_ext_byte_len); 9401 } 9402 } 9403 9404 writel(HA_MBATT, phba->HAregaddr); 9405 readl(phba->HAregaddr); /* flush */ 9406 9407 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9408 status = mbx->mbxStatus; 9409 } 9410 9411 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9412 return status; 9413 9414 out_not_finished: 9415 if (processing_queue) { 9416 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9417 lpfc_mbox_cmpl_put(phba, pmbox); 9418 } 9419 return MBX_NOT_FINISHED; 9420 } 9421 9422 /** 9423 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9424 * @phba: Pointer to HBA context object. 9425 * 9426 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9427 * the driver internal pending mailbox queue. It will then try to wait out the 9428 * possible outstanding mailbox command before return. 9429 * 9430 * Returns: 9431 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9432 * the outstanding mailbox command timed out. 9433 **/ 9434 static int 9435 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9436 { 9437 struct lpfc_sli *psli = &phba->sli; 9438 LPFC_MBOXQ_t *mboxq; 9439 int rc = 0; 9440 unsigned long timeout = 0; 9441 u32 sli_flag; 9442 u8 cmd, subsys, opcode; 9443 9444 /* Mark the asynchronous mailbox command posting as blocked */ 9445 spin_lock_irq(&phba->hbalock); 9446 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9447 /* Determine how long we might wait for the active mailbox 9448 * command to be gracefully completed by firmware. 9449 */ 9450 if (phba->sli.mbox_active) 9451 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9452 phba->sli.mbox_active) * 9453 1000) + jiffies; 9454 spin_unlock_irq(&phba->hbalock); 9455 9456 /* Make sure the mailbox is really active */ 9457 if (timeout) 9458 lpfc_sli4_process_missed_mbox_completions(phba); 9459 9460 /* Wait for the outstanding mailbox command to complete */ 9461 while (phba->sli.mbox_active) { 9462 /* Check active mailbox complete status every 2ms */ 9463 msleep(2); 9464 if (time_after(jiffies, timeout)) { 9465 /* Timeout, mark the outstanding cmd not complete */ 9466 9467 /* Sanity check sli.mbox_active has not completed or 9468 * cancelled from another context during last 2ms sleep, 9469 * so take hbalock to be sure before logging. 9470 */ 9471 spin_lock_irq(&phba->hbalock); 9472 if (phba->sli.mbox_active) { 9473 mboxq = phba->sli.mbox_active; 9474 cmd = mboxq->u.mb.mbxCommand; 9475 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9476 mboxq); 9477 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9478 mboxq); 9479 sli_flag = psli->sli_flag; 9480 spin_unlock_irq(&phba->hbalock); 9481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9482 "2352 Mailbox command x%x " 9483 "(x%x/x%x) sli_flag x%x could " 9484 "not complete\n", 9485 cmd, subsys, opcode, 9486 sli_flag); 9487 } else { 9488 spin_unlock_irq(&phba->hbalock); 9489 } 9490 9491 rc = 1; 9492 break; 9493 } 9494 } 9495 9496 /* Can not cleanly block async mailbox command, fails it */ 9497 if (rc) { 9498 spin_lock_irq(&phba->hbalock); 9499 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9500 spin_unlock_irq(&phba->hbalock); 9501 } 9502 return rc; 9503 } 9504 9505 /** 9506 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9507 * @phba: Pointer to HBA context object. 9508 * 9509 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9510 * commands from the driver internal pending mailbox queue. It makes sure 9511 * that there is no outstanding mailbox command before resuming posting 9512 * asynchronous mailbox commands. If, for any reason, there is outstanding 9513 * mailbox command, it will try to wait it out before resuming asynchronous 9514 * mailbox command posting. 9515 **/ 9516 static void 9517 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9518 { 9519 struct lpfc_sli *psli = &phba->sli; 9520 9521 spin_lock_irq(&phba->hbalock); 9522 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9523 /* Asynchronous mailbox posting is not blocked, do nothing */ 9524 spin_unlock_irq(&phba->hbalock); 9525 return; 9526 } 9527 9528 /* Outstanding synchronous mailbox command is guaranteed to be done, 9529 * successful or timeout, after timing-out the outstanding mailbox 9530 * command shall always be removed, so just unblock posting async 9531 * mailbox command and resume 9532 */ 9533 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9534 spin_unlock_irq(&phba->hbalock); 9535 9536 /* wake up worker thread to post asynchronous mailbox command */ 9537 lpfc_worker_wake_up(phba); 9538 } 9539 9540 /** 9541 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9542 * @phba: Pointer to HBA context object. 9543 * @mboxq: Pointer to mailbox object. 9544 * 9545 * The function waits for the bootstrap mailbox register ready bit from 9546 * port for twice the regular mailbox command timeout value. 9547 * 9548 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9549 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9550 **/ 9551 static int 9552 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9553 { 9554 uint32_t db_ready; 9555 unsigned long timeout; 9556 struct lpfc_register bmbx_reg; 9557 9558 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9559 * 1000) + jiffies; 9560 9561 do { 9562 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9563 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9564 if (!db_ready) 9565 mdelay(2); 9566 9567 if (time_after(jiffies, timeout)) 9568 return MBXERR_ERROR; 9569 } while (!db_ready); 9570 9571 return 0; 9572 } 9573 9574 /** 9575 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9576 * @phba: Pointer to HBA context object. 9577 * @mboxq: Pointer to mailbox object. 9578 * 9579 * The function posts a mailbox to the port. The mailbox is expected 9580 * to be comletely filled in and ready for the port to operate on it. 9581 * This routine executes a synchronous completion operation on the 9582 * mailbox by polling for its completion. 9583 * 9584 * The caller must not be holding any locks when calling this routine. 9585 * 9586 * Returns: 9587 * MBX_SUCCESS - mailbox posted successfully 9588 * Any of the MBX error values. 9589 **/ 9590 static int 9591 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9592 { 9593 int rc = MBX_SUCCESS; 9594 unsigned long iflag; 9595 uint32_t mcqe_status; 9596 uint32_t mbx_cmnd; 9597 struct lpfc_sli *psli = &phba->sli; 9598 struct lpfc_mqe *mb = &mboxq->u.mqe; 9599 struct lpfc_bmbx_create *mbox_rgn; 9600 struct dma_address *dma_address; 9601 9602 /* 9603 * Only one mailbox can be active to the bootstrap mailbox region 9604 * at a time and there is no queueing provided. 9605 */ 9606 spin_lock_irqsave(&phba->hbalock, iflag); 9607 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9608 spin_unlock_irqrestore(&phba->hbalock, iflag); 9609 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9610 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9611 "cannot issue Data: x%x x%x\n", 9612 mboxq->vport ? mboxq->vport->vpi : 0, 9613 mboxq->u.mb.mbxCommand, 9614 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9615 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9616 psli->sli_flag, MBX_POLL); 9617 return MBXERR_ERROR; 9618 } 9619 /* The server grabs the token and owns it until release */ 9620 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9621 phba->sli.mbox_active = mboxq; 9622 spin_unlock_irqrestore(&phba->hbalock, iflag); 9623 9624 /* wait for bootstrap mbox register for readyness */ 9625 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9626 if (rc) 9627 goto exit; 9628 /* 9629 * Initialize the bootstrap memory region to avoid stale data areas 9630 * in the mailbox post. Then copy the caller's mailbox contents to 9631 * the bmbx mailbox region. 9632 */ 9633 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9634 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9635 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9636 sizeof(struct lpfc_mqe)); 9637 9638 /* Post the high mailbox dma address to the port and wait for ready. */ 9639 dma_address = &phba->sli4_hba.bmbx.dma_address; 9640 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9641 9642 /* wait for bootstrap mbox register for hi-address write done */ 9643 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9644 if (rc) 9645 goto exit; 9646 9647 /* Post the low mailbox dma address to the port. */ 9648 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9649 9650 /* wait for bootstrap mbox register for low address write done */ 9651 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9652 if (rc) 9653 goto exit; 9654 9655 /* 9656 * Read the CQ to ensure the mailbox has completed. 9657 * If so, update the mailbox status so that the upper layers 9658 * can complete the request normally. 9659 */ 9660 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9661 sizeof(struct lpfc_mqe)); 9662 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9663 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9664 sizeof(struct lpfc_mcqe)); 9665 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9666 /* 9667 * When the CQE status indicates a failure and the mailbox status 9668 * indicates success then copy the CQE status into the mailbox status 9669 * (and prefix it with x4000). 9670 */ 9671 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9672 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9673 bf_set(lpfc_mqe_status, mb, 9674 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9675 rc = MBXERR_ERROR; 9676 } else 9677 lpfc_sli4_swap_str(phba, mboxq); 9678 9679 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9680 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9681 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9682 " x%x x%x CQ: x%x x%x x%x x%x\n", 9683 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9684 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9685 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9686 bf_get(lpfc_mqe_status, mb), 9687 mb->un.mb_words[0], mb->un.mb_words[1], 9688 mb->un.mb_words[2], mb->un.mb_words[3], 9689 mb->un.mb_words[4], mb->un.mb_words[5], 9690 mb->un.mb_words[6], mb->un.mb_words[7], 9691 mb->un.mb_words[8], mb->un.mb_words[9], 9692 mb->un.mb_words[10], mb->un.mb_words[11], 9693 mb->un.mb_words[12], mboxq->mcqe.word0, 9694 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9695 mboxq->mcqe.trailer); 9696 exit: 9697 /* We are holding the token, no needed for lock when release */ 9698 spin_lock_irqsave(&phba->hbalock, iflag); 9699 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9700 phba->sli.mbox_active = NULL; 9701 spin_unlock_irqrestore(&phba->hbalock, iflag); 9702 return rc; 9703 } 9704 9705 /** 9706 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9707 * @phba: Pointer to HBA context object. 9708 * @mboxq: Pointer to mailbox object. 9709 * @flag: Flag indicating how the mailbox need to be processed. 9710 * 9711 * This function is called by discovery code and HBA management code to submit 9712 * a mailbox command to firmware with SLI-4 interface spec. 9713 * 9714 * Return codes the caller owns the mailbox command after the return of the 9715 * function. 9716 **/ 9717 static int 9718 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9719 uint32_t flag) 9720 { 9721 struct lpfc_sli *psli = &phba->sli; 9722 unsigned long iflags; 9723 int rc; 9724 9725 /* dump from issue mailbox command if setup */ 9726 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9727 9728 rc = lpfc_mbox_dev_check(phba); 9729 if (unlikely(rc)) { 9730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9731 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9732 "cannot issue Data: x%x x%x\n", 9733 mboxq->vport ? mboxq->vport->vpi : 0, 9734 mboxq->u.mb.mbxCommand, 9735 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9736 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9737 psli->sli_flag, flag); 9738 goto out_not_finished; 9739 } 9740 9741 /* Detect polling mode and jump to a handler */ 9742 if (!phba->sli4_hba.intr_enable) { 9743 if (flag == MBX_POLL) 9744 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9745 else 9746 rc = -EIO; 9747 if (rc != MBX_SUCCESS) 9748 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9749 "(%d):2541 Mailbox command x%x " 9750 "(x%x/x%x) failure: " 9751 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9752 "Data: x%x x%x\n", 9753 mboxq->vport ? mboxq->vport->vpi : 0, 9754 mboxq->u.mb.mbxCommand, 9755 lpfc_sli_config_mbox_subsys_get(phba, 9756 mboxq), 9757 lpfc_sli_config_mbox_opcode_get(phba, 9758 mboxq), 9759 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9760 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9761 bf_get(lpfc_mcqe_ext_status, 9762 &mboxq->mcqe), 9763 psli->sli_flag, flag); 9764 return rc; 9765 } else if (flag == MBX_POLL) { 9766 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9767 "(%d):2542 Try to issue mailbox command " 9768 "x%x (x%x/x%x) synchronously ahead of async " 9769 "mailbox command queue: x%x x%x\n", 9770 mboxq->vport ? mboxq->vport->vpi : 0, 9771 mboxq->u.mb.mbxCommand, 9772 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9773 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9774 psli->sli_flag, flag); 9775 /* Try to block the asynchronous mailbox posting */ 9776 rc = lpfc_sli4_async_mbox_block(phba); 9777 if (!rc) { 9778 /* Successfully blocked, now issue sync mbox cmd */ 9779 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9780 if (rc != MBX_SUCCESS) 9781 lpfc_printf_log(phba, KERN_WARNING, 9782 LOG_MBOX | LOG_SLI, 9783 "(%d):2597 Sync Mailbox command " 9784 "x%x (x%x/x%x) failure: " 9785 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9786 "Data: x%x x%x\n", 9787 mboxq->vport ? mboxq->vport->vpi : 0, 9788 mboxq->u.mb.mbxCommand, 9789 lpfc_sli_config_mbox_subsys_get(phba, 9790 mboxq), 9791 lpfc_sli_config_mbox_opcode_get(phba, 9792 mboxq), 9793 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9794 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9795 bf_get(lpfc_mcqe_ext_status, 9796 &mboxq->mcqe), 9797 psli->sli_flag, flag); 9798 /* Unblock the async mailbox posting afterward */ 9799 lpfc_sli4_async_mbox_unblock(phba); 9800 } 9801 return rc; 9802 } 9803 9804 /* Now, interrupt mode asynchronous mailbox command */ 9805 rc = lpfc_mbox_cmd_check(phba, mboxq); 9806 if (rc) { 9807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9808 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9809 "cannot issue Data: x%x x%x\n", 9810 mboxq->vport ? mboxq->vport->vpi : 0, 9811 mboxq->u.mb.mbxCommand, 9812 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9813 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9814 psli->sli_flag, flag); 9815 goto out_not_finished; 9816 } 9817 9818 /* Put the mailbox command to the driver internal FIFO */ 9819 psli->slistat.mbox_busy++; 9820 spin_lock_irqsave(&phba->hbalock, iflags); 9821 lpfc_mbox_put(phba, mboxq); 9822 spin_unlock_irqrestore(&phba->hbalock, iflags); 9823 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9824 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9825 "x%x (x%x/x%x) x%x x%x x%x\n", 9826 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9827 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9828 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9829 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9830 phba->pport->port_state, 9831 psli->sli_flag, MBX_NOWAIT); 9832 /* Wake up worker thread to transport mailbox command from head */ 9833 lpfc_worker_wake_up(phba); 9834 9835 return MBX_BUSY; 9836 9837 out_not_finished: 9838 return MBX_NOT_FINISHED; 9839 } 9840 9841 /** 9842 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9843 * @phba: Pointer to HBA context object. 9844 * 9845 * This function is called by worker thread to send a mailbox command to 9846 * SLI4 HBA firmware. 9847 * 9848 **/ 9849 int 9850 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9851 { 9852 struct lpfc_sli *psli = &phba->sli; 9853 LPFC_MBOXQ_t *mboxq; 9854 int rc = MBX_SUCCESS; 9855 unsigned long iflags; 9856 struct lpfc_mqe *mqe; 9857 uint32_t mbx_cmnd; 9858 9859 /* Check interrupt mode before post async mailbox command */ 9860 if (unlikely(!phba->sli4_hba.intr_enable)) 9861 return MBX_NOT_FINISHED; 9862 9863 /* Check for mailbox command service token */ 9864 spin_lock_irqsave(&phba->hbalock, iflags); 9865 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9866 spin_unlock_irqrestore(&phba->hbalock, iflags); 9867 return MBX_NOT_FINISHED; 9868 } 9869 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9870 spin_unlock_irqrestore(&phba->hbalock, iflags); 9871 return MBX_NOT_FINISHED; 9872 } 9873 if (unlikely(phba->sli.mbox_active)) { 9874 spin_unlock_irqrestore(&phba->hbalock, iflags); 9875 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9876 "0384 There is pending active mailbox cmd\n"); 9877 return MBX_NOT_FINISHED; 9878 } 9879 /* Take the mailbox command service token */ 9880 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9881 9882 /* Get the next mailbox command from head of queue */ 9883 mboxq = lpfc_mbox_get(phba); 9884 9885 /* If no more mailbox command waiting for post, we're done */ 9886 if (!mboxq) { 9887 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9888 spin_unlock_irqrestore(&phba->hbalock, iflags); 9889 return MBX_SUCCESS; 9890 } 9891 phba->sli.mbox_active = mboxq; 9892 spin_unlock_irqrestore(&phba->hbalock, iflags); 9893 9894 /* Check device readiness for posting mailbox command */ 9895 rc = lpfc_mbox_dev_check(phba); 9896 if (unlikely(rc)) 9897 /* Driver clean routine will clean up pending mailbox */ 9898 goto out_not_finished; 9899 9900 /* Prepare the mbox command to be posted */ 9901 mqe = &mboxq->u.mqe; 9902 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9903 9904 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9905 mod_timer(&psli->mbox_tmo, (jiffies + 9906 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9907 9908 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9909 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9910 "x%x x%x\n", 9911 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9912 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9913 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9914 phba->pport->port_state, psli->sli_flag); 9915 9916 if (mbx_cmnd != MBX_HEARTBEAT) { 9917 if (mboxq->vport) { 9918 lpfc_debugfs_disc_trc(mboxq->vport, 9919 LPFC_DISC_TRC_MBOX_VPORT, 9920 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9921 mbx_cmnd, mqe->un.mb_words[0], 9922 mqe->un.mb_words[1]); 9923 } else { 9924 lpfc_debugfs_disc_trc(phba->pport, 9925 LPFC_DISC_TRC_MBOX, 9926 "MBOX Send: cmd:x%x mb:x%x x%x", 9927 mbx_cmnd, mqe->un.mb_words[0], 9928 mqe->un.mb_words[1]); 9929 } 9930 } 9931 psli->slistat.mbox_cmd++; 9932 9933 /* Post the mailbox command to the port */ 9934 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9935 if (rc != MBX_SUCCESS) { 9936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9937 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9938 "cannot issue Data: x%x x%x\n", 9939 mboxq->vport ? mboxq->vport->vpi : 0, 9940 mboxq->u.mb.mbxCommand, 9941 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9942 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9943 psli->sli_flag, MBX_NOWAIT); 9944 goto out_not_finished; 9945 } 9946 9947 return rc; 9948 9949 out_not_finished: 9950 spin_lock_irqsave(&phba->hbalock, iflags); 9951 if (phba->sli.mbox_active) { 9952 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9953 __lpfc_mbox_cmpl_put(phba, mboxq); 9954 /* Release the token */ 9955 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9956 phba->sli.mbox_active = NULL; 9957 } 9958 spin_unlock_irqrestore(&phba->hbalock, iflags); 9959 9960 return MBX_NOT_FINISHED; 9961 } 9962 9963 /** 9964 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9965 * @phba: Pointer to HBA context object. 9966 * @pmbox: Pointer to mailbox object. 9967 * @flag: Flag indicating how the mailbox need to be processed. 9968 * 9969 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9970 * the API jump table function pointer from the lpfc_hba struct. 9971 * 9972 * Return codes the caller owns the mailbox command after the return of the 9973 * function. 9974 **/ 9975 int 9976 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9977 { 9978 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9979 } 9980 9981 /** 9982 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9983 * @phba: The hba struct for which this call is being executed. 9984 * @dev_grp: The HBA PCI-Device group number. 9985 * 9986 * This routine sets up the mbox interface API function jump table in @phba 9987 * struct. 9988 * Returns: 0 - success, -ENODEV - failure. 9989 **/ 9990 int 9991 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9992 { 9993 9994 switch (dev_grp) { 9995 case LPFC_PCI_DEV_LP: 9996 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9997 phba->lpfc_sli_handle_slow_ring_event = 9998 lpfc_sli_handle_slow_ring_event_s3; 9999 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10000 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10001 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10002 break; 10003 case LPFC_PCI_DEV_OC: 10004 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10005 phba->lpfc_sli_handle_slow_ring_event = 10006 lpfc_sli_handle_slow_ring_event_s4; 10007 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10008 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10009 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10010 break; 10011 default: 10012 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10013 "1420 Invalid HBA PCI-device group: 0x%x\n", 10014 dev_grp); 10015 return -ENODEV; 10016 } 10017 return 0; 10018 } 10019 10020 /** 10021 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10022 * @phba: Pointer to HBA context object. 10023 * @pring: Pointer to driver SLI ring object. 10024 * @piocb: Pointer to address of newly added command iocb. 10025 * 10026 * This function is called with hbalock held for SLI3 ports or 10027 * the ring lock held for SLI4 ports to add a command 10028 * iocb to the txq when SLI layer cannot submit the command iocb 10029 * to the ring. 10030 **/ 10031 void 10032 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10033 struct lpfc_iocbq *piocb) 10034 { 10035 if (phba->sli_rev == LPFC_SLI_REV4) 10036 lockdep_assert_held(&pring->ring_lock); 10037 else 10038 lockdep_assert_held(&phba->hbalock); 10039 /* Insert the caller's iocb in the txq tail for later processing. */ 10040 list_add_tail(&piocb->list, &pring->txq); 10041 } 10042 10043 /** 10044 * lpfc_sli_next_iocb - Get the next iocb in the txq 10045 * @phba: Pointer to HBA context object. 10046 * @pring: Pointer to driver SLI ring object. 10047 * @piocb: Pointer to address of newly added command iocb. 10048 * 10049 * This function is called with hbalock held before a new 10050 * iocb is submitted to the firmware. This function checks 10051 * txq to flush the iocbs in txq to Firmware before 10052 * submitting new iocbs to the Firmware. 10053 * If there are iocbs in the txq which need to be submitted 10054 * to firmware, lpfc_sli_next_iocb returns the first element 10055 * of the txq after dequeuing it from txq. 10056 * If there is no iocb in the txq then the function will return 10057 * *piocb and *piocb is set to NULL. Caller needs to check 10058 * *piocb to find if there are more commands in the txq. 10059 **/ 10060 static struct lpfc_iocbq * 10061 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10062 struct lpfc_iocbq **piocb) 10063 { 10064 struct lpfc_iocbq * nextiocb; 10065 10066 lockdep_assert_held(&phba->hbalock); 10067 10068 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10069 if (!nextiocb) { 10070 nextiocb = *piocb; 10071 *piocb = NULL; 10072 } 10073 10074 return nextiocb; 10075 } 10076 10077 /** 10078 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10079 * @phba: Pointer to HBA context object. 10080 * @ring_number: SLI ring number to issue iocb on. 10081 * @piocb: Pointer to command iocb. 10082 * @flag: Flag indicating if this command can be put into txq. 10083 * 10084 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10085 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10086 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10087 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10088 * this function allows only iocbs for posting buffers. This function finds 10089 * next available slot in the command ring and posts the command to the 10090 * available slot and writes the port attention register to request HBA start 10091 * processing new iocb. If there is no slot available in the ring and 10092 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10093 * the function returns IOCB_BUSY. 10094 * 10095 * This function is called with hbalock held. The function will return success 10096 * after it successfully submit the iocb to firmware or after adding to the 10097 * txq. 10098 **/ 10099 static int 10100 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10101 struct lpfc_iocbq *piocb, uint32_t flag) 10102 { 10103 struct lpfc_iocbq *nextiocb; 10104 IOCB_t *iocb; 10105 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10106 10107 lockdep_assert_held(&phba->hbalock); 10108 10109 if (piocb->iocb_cmpl && (!piocb->vport) && 10110 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10111 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10113 "1807 IOCB x%x failed. No vport\n", 10114 piocb->iocb.ulpCommand); 10115 dump_stack(); 10116 return IOCB_ERROR; 10117 } 10118 10119 10120 /* If the PCI channel is in offline state, do not post iocbs. */ 10121 if (unlikely(pci_channel_offline(phba->pcidev))) 10122 return IOCB_ERROR; 10123 10124 /* If HBA has a deferred error attention, fail the iocb. */ 10125 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10126 return IOCB_ERROR; 10127 10128 /* 10129 * We should never get an IOCB if we are in a < LINK_DOWN state 10130 */ 10131 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10132 return IOCB_ERROR; 10133 10134 /* 10135 * Check to see if we are blocking IOCB processing because of a 10136 * outstanding event. 10137 */ 10138 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10139 goto iocb_busy; 10140 10141 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10142 /* 10143 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10144 * can be issued if the link is not up. 10145 */ 10146 switch (piocb->iocb.ulpCommand) { 10147 case CMD_GEN_REQUEST64_CR: 10148 case CMD_GEN_REQUEST64_CX: 10149 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10150 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10151 FC_RCTL_DD_UNSOL_CMD) || 10152 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10153 MENLO_TRANSPORT_TYPE)) 10154 10155 goto iocb_busy; 10156 break; 10157 case CMD_QUE_RING_BUF_CN: 10158 case CMD_QUE_RING_BUF64_CN: 10159 /* 10160 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10161 * completion, iocb_cmpl MUST be 0. 10162 */ 10163 if (piocb->iocb_cmpl) 10164 piocb->iocb_cmpl = NULL; 10165 fallthrough; 10166 case CMD_CREATE_XRI_CR: 10167 case CMD_CLOSE_XRI_CN: 10168 case CMD_CLOSE_XRI_CX: 10169 break; 10170 default: 10171 goto iocb_busy; 10172 } 10173 10174 /* 10175 * For FCP commands, we must be in a state where we can process link 10176 * attention events. 10177 */ 10178 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10179 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10180 goto iocb_busy; 10181 } 10182 10183 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10184 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10185 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10186 10187 if (iocb) 10188 lpfc_sli_update_ring(phba, pring); 10189 else 10190 lpfc_sli_update_full_ring(phba, pring); 10191 10192 if (!piocb) 10193 return IOCB_SUCCESS; 10194 10195 goto out_busy; 10196 10197 iocb_busy: 10198 pring->stats.iocb_cmd_delay++; 10199 10200 out_busy: 10201 10202 if (!(flag & SLI_IOCB_RET_IOCB)) { 10203 __lpfc_sli_ringtx_put(phba, pring, piocb); 10204 return IOCB_SUCCESS; 10205 } 10206 10207 return IOCB_BUSY; 10208 } 10209 10210 /** 10211 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 10212 * @phba: Pointer to HBA context object. 10213 * @piocbq: Pointer to command iocb. 10214 * @sglq: Pointer to the scatter gather queue object. 10215 * 10216 * This routine converts the bpl or bde that is in the IOCB 10217 * to a sgl list for the sli4 hardware. The physical address 10218 * of the bpl/bde is converted back to a virtual address. 10219 * If the IOCB contains a BPL then the list of BDE's is 10220 * converted to sli4_sge's. If the IOCB contains a single 10221 * BDE then it is converted to a single sli_sge. 10222 * The IOCB is still in cpu endianess so the contents of 10223 * the bpl can be used without byte swapping. 10224 * 10225 * Returns valid XRI = Success, NO_XRI = Failure. 10226 **/ 10227 static uint16_t 10228 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 10229 struct lpfc_sglq *sglq) 10230 { 10231 uint16_t xritag = NO_XRI; 10232 struct ulp_bde64 *bpl = NULL; 10233 struct ulp_bde64 bde; 10234 struct sli4_sge *sgl = NULL; 10235 struct lpfc_dmabuf *dmabuf; 10236 IOCB_t *icmd; 10237 int numBdes = 0; 10238 int i = 0; 10239 uint32_t offset = 0; /* accumulated offset in the sg request list */ 10240 int inbound = 0; /* number of sg reply entries inbound from firmware */ 10241 10242 if (!piocbq || !sglq) 10243 return xritag; 10244 10245 sgl = (struct sli4_sge *)sglq->sgl; 10246 icmd = &piocbq->iocb; 10247 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 10248 return sglq->sli4_xritag; 10249 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10250 numBdes = icmd->un.genreq64.bdl.bdeSize / 10251 sizeof(struct ulp_bde64); 10252 /* The addrHigh and addrLow fields within the IOCB 10253 * have not been byteswapped yet so there is no 10254 * need to swap them back. 10255 */ 10256 if (piocbq->context3) 10257 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 10258 else 10259 return xritag; 10260 10261 bpl = (struct ulp_bde64 *)dmabuf->virt; 10262 if (!bpl) 10263 return xritag; 10264 10265 for (i = 0; i < numBdes; i++) { 10266 /* Should already be byte swapped. */ 10267 sgl->addr_hi = bpl->addrHigh; 10268 sgl->addr_lo = bpl->addrLow; 10269 10270 sgl->word2 = le32_to_cpu(sgl->word2); 10271 if ((i+1) == numBdes) 10272 bf_set(lpfc_sli4_sge_last, sgl, 1); 10273 else 10274 bf_set(lpfc_sli4_sge_last, sgl, 0); 10275 /* swap the size field back to the cpu so we 10276 * can assign it to the sgl. 10277 */ 10278 bde.tus.w = le32_to_cpu(bpl->tus.w); 10279 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 10280 /* The offsets in the sgl need to be accumulated 10281 * separately for the request and reply lists. 10282 * The request is always first, the reply follows. 10283 */ 10284 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 10285 /* add up the reply sg entries */ 10286 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 10287 inbound++; 10288 /* first inbound? reset the offset */ 10289 if (inbound == 1) 10290 offset = 0; 10291 bf_set(lpfc_sli4_sge_offset, sgl, offset); 10292 bf_set(lpfc_sli4_sge_type, sgl, 10293 LPFC_SGE_TYPE_DATA); 10294 offset += bde.tus.f.bdeSize; 10295 } 10296 sgl->word2 = cpu_to_le32(sgl->word2); 10297 bpl++; 10298 sgl++; 10299 } 10300 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 10301 /* The addrHigh and addrLow fields of the BDE have not 10302 * been byteswapped yet so they need to be swapped 10303 * before putting them in the sgl. 10304 */ 10305 sgl->addr_hi = 10306 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 10307 sgl->addr_lo = 10308 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 10309 sgl->word2 = le32_to_cpu(sgl->word2); 10310 bf_set(lpfc_sli4_sge_last, sgl, 1); 10311 sgl->word2 = cpu_to_le32(sgl->word2); 10312 sgl->sge_len = 10313 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 10314 } 10315 return sglq->sli4_xritag; 10316 } 10317 10318 /** 10319 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 10320 * @phba: Pointer to HBA context object. 10321 * @iocbq: Pointer to command iocb. 10322 * @wqe: Pointer to the work queue entry. 10323 * 10324 * This routine converts the iocb command to its Work Queue Entry 10325 * equivalent. The wqe pointer should not have any fields set when 10326 * this routine is called because it will memcpy over them. 10327 * This routine does not set the CQ_ID or the WQEC bits in the 10328 * wqe. 10329 * 10330 * Returns: 0 = Success, IOCB_ERROR = Failure. 10331 **/ 10332 static int 10333 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 10334 union lpfc_wqe128 *wqe) 10335 { 10336 uint32_t xmit_len = 0, total_len = 0; 10337 uint8_t ct = 0; 10338 uint32_t fip; 10339 uint32_t abort_tag; 10340 uint8_t command_type = ELS_COMMAND_NON_FIP; 10341 uint8_t cmnd; 10342 uint16_t xritag; 10343 uint16_t abrt_iotag; 10344 struct lpfc_iocbq *abrtiocbq; 10345 struct ulp_bde64 *bpl = NULL; 10346 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 10347 int numBdes, i; 10348 struct ulp_bde64 bde; 10349 struct lpfc_nodelist *ndlp; 10350 uint32_t *pcmd; 10351 uint32_t if_type; 10352 10353 fip = phba->hba_flag & HBA_FIP_SUPPORT; 10354 /* The fcp commands will set command type */ 10355 if (iocbq->iocb_flag & LPFC_IO_FCP) 10356 command_type = FCP_COMMAND; 10357 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 10358 command_type = ELS_COMMAND_FIP; 10359 else 10360 command_type = ELS_COMMAND_NON_FIP; 10361 10362 if (phba->fcp_embed_io) 10363 memset(wqe, 0, sizeof(union lpfc_wqe128)); 10364 /* Some of the fields are in the right position already */ 10365 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 10366 /* The ct field has moved so reset */ 10367 wqe->generic.wqe_com.word7 = 0; 10368 wqe->generic.wqe_com.word10 = 0; 10369 10370 abort_tag = (uint32_t) iocbq->iotag; 10371 xritag = iocbq->sli4_xritag; 10372 /* words0-2 bpl convert bde */ 10373 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10374 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10375 sizeof(struct ulp_bde64); 10376 bpl = (struct ulp_bde64 *) 10377 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 10378 if (!bpl) 10379 return IOCB_ERROR; 10380 10381 /* Should already be byte swapped. */ 10382 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 10383 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 10384 /* swap the size field back to the cpu so we 10385 * can assign it to the sgl. 10386 */ 10387 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 10388 xmit_len = wqe->generic.bde.tus.f.bdeSize; 10389 total_len = 0; 10390 for (i = 0; i < numBdes; i++) { 10391 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10392 total_len += bde.tus.f.bdeSize; 10393 } 10394 } else 10395 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 10396 10397 iocbq->iocb.ulpIoTag = iocbq->iotag; 10398 cmnd = iocbq->iocb.ulpCommand; 10399 10400 switch (iocbq->iocb.ulpCommand) { 10401 case CMD_ELS_REQUEST64_CR: 10402 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 10403 ndlp = iocbq->context_un.ndlp; 10404 else 10405 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10406 if (!iocbq->iocb.ulpLe) { 10407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10408 "2007 Only Limited Edition cmd Format" 10409 " supported 0x%x\n", 10410 iocbq->iocb.ulpCommand); 10411 return IOCB_ERROR; 10412 } 10413 10414 wqe->els_req.payload_len = xmit_len; 10415 /* Els_reguest64 has a TMO */ 10416 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 10417 iocbq->iocb.ulpTimeout); 10418 /* Need a VF for word 4 set the vf bit*/ 10419 bf_set(els_req64_vf, &wqe->els_req, 0); 10420 /* And a VFID for word 12 */ 10421 bf_set(els_req64_vfid, &wqe->els_req, 0); 10422 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10423 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10424 iocbq->iocb.ulpContext); 10425 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 10426 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 10427 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 10428 if (command_type == ELS_COMMAND_FIP) 10429 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 10430 >> LPFC_FIP_ELS_ID_SHIFT); 10431 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10432 iocbq->context2)->virt); 10433 if_type = bf_get(lpfc_sli_intf_if_type, 10434 &phba->sli4_hba.sli_intf); 10435 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10436 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 10437 *pcmd == ELS_CMD_SCR || 10438 *pcmd == ELS_CMD_RDF || 10439 *pcmd == ELS_CMD_EDC || 10440 *pcmd == ELS_CMD_RSCN_XMT || 10441 *pcmd == ELS_CMD_FDISC || 10442 *pcmd == ELS_CMD_LOGO || 10443 *pcmd == ELS_CMD_QFPA || 10444 *pcmd == ELS_CMD_UVEM || 10445 *pcmd == ELS_CMD_PLOGI)) { 10446 bf_set(els_req64_sp, &wqe->els_req, 1); 10447 bf_set(els_req64_sid, &wqe->els_req, 10448 iocbq->vport->fc_myDID); 10449 if ((*pcmd == ELS_CMD_FLOGI) && 10450 !(phba->fc_topology == 10451 LPFC_TOPOLOGY_LOOP)) 10452 bf_set(els_req64_sid, &wqe->els_req, 0); 10453 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 10454 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10455 phba->vpi_ids[iocbq->vport->vpi]); 10456 } else if (pcmd && iocbq->context1) { 10457 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 10458 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10459 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10460 } 10461 } 10462 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 10463 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10464 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10465 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 10466 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 10467 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 10468 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10469 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 10470 wqe->els_req.max_response_payload_len = total_len - xmit_len; 10471 break; 10472 case CMD_XMIT_SEQUENCE64_CX: 10473 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 10474 iocbq->iocb.un.ulpWord[3]); 10475 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 10476 iocbq->iocb.unsli3.rcvsli3.ox_id); 10477 /* The entire sequence is transmitted for this IOCB */ 10478 xmit_len = total_len; 10479 cmnd = CMD_XMIT_SEQUENCE64_CR; 10480 if (phba->link_flag & LS_LOOPBACK_MODE) 10481 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 10482 fallthrough; 10483 case CMD_XMIT_SEQUENCE64_CR: 10484 /* word3 iocb=io_tag32 wqe=reserved */ 10485 wqe->xmit_sequence.rsvd3 = 0; 10486 /* word4 relative_offset memcpy */ 10487 /* word5 r_ctl/df_ctl memcpy */ 10488 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 10489 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 10490 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 10491 LPFC_WQE_IOD_WRITE); 10492 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 10493 LPFC_WQE_LENLOC_WORD12); 10494 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 10495 wqe->xmit_sequence.xmit_len = xmit_len; 10496 command_type = OTHER_COMMAND; 10497 break; 10498 case CMD_XMIT_BCAST64_CN: 10499 /* word3 iocb=iotag32 wqe=seq_payload_len */ 10500 wqe->xmit_bcast64.seq_payload_len = xmit_len; 10501 /* word4 iocb=rsvd wqe=rsvd */ 10502 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 10503 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 10504 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 10505 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10506 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 10507 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 10508 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 10509 LPFC_WQE_LENLOC_WORD3); 10510 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 10511 break; 10512 case CMD_FCP_IWRITE64_CR: 10513 command_type = FCP_COMMAND_DATA_OUT; 10514 /* word3 iocb=iotag wqe=payload_offset_len */ 10515 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10516 bf_set(payload_offset_len, &wqe->fcp_iwrite, 10517 xmit_len + sizeof(struct fcp_rsp)); 10518 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 10519 0); 10520 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10521 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10522 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 10523 iocbq->iocb.ulpFCP2Rcvy); 10524 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 10525 /* Always open the exchange */ 10526 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 10527 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 10528 LPFC_WQE_LENLOC_WORD4); 10529 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 10530 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 10531 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10532 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 10533 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10534 if (iocbq->priority) { 10535 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10536 (iocbq->priority << 1)); 10537 } else { 10538 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10539 (phba->cfg_XLanePriority << 1)); 10540 } 10541 } 10542 /* Note, word 10 is already initialized to 0 */ 10543 10544 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10545 if (phba->cfg_enable_pbde) 10546 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 10547 else 10548 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 10549 10550 if (phba->fcp_embed_io) { 10551 struct lpfc_io_buf *lpfc_cmd; 10552 struct sli4_sge *sgl; 10553 struct fcp_cmnd *fcp_cmnd; 10554 uint32_t *ptr; 10555 10556 /* 128 byte wqe support here */ 10557 10558 lpfc_cmd = iocbq->context1; 10559 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10560 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10561 10562 /* Word 0-2 - FCP_CMND */ 10563 wqe->generic.bde.tus.f.bdeFlags = 10564 BUFF_TYPE_BDE_IMMED; 10565 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10566 wqe->generic.bde.addrHigh = 0; 10567 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10568 10569 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10570 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10571 10572 /* Word 22-29 FCP CMND Payload */ 10573 ptr = &wqe->words[22]; 10574 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10575 } 10576 break; 10577 case CMD_FCP_IREAD64_CR: 10578 /* word3 iocb=iotag wqe=payload_offset_len */ 10579 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10580 bf_set(payload_offset_len, &wqe->fcp_iread, 10581 xmit_len + sizeof(struct fcp_rsp)); 10582 bf_set(cmd_buff_len, &wqe->fcp_iread, 10583 0); 10584 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10585 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10586 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 10587 iocbq->iocb.ulpFCP2Rcvy); 10588 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 10589 /* Always open the exchange */ 10590 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 10591 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 10592 LPFC_WQE_LENLOC_WORD4); 10593 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 10594 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 10595 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10596 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 10597 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 10598 if (iocbq->priority) { 10599 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10600 (iocbq->priority << 1)); 10601 } else { 10602 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10603 (phba->cfg_XLanePriority << 1)); 10604 } 10605 } 10606 /* Note, word 10 is already initialized to 0 */ 10607 10608 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10609 if (phba->cfg_enable_pbde) 10610 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 10611 else 10612 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 10613 10614 if (phba->fcp_embed_io) { 10615 struct lpfc_io_buf *lpfc_cmd; 10616 struct sli4_sge *sgl; 10617 struct fcp_cmnd *fcp_cmnd; 10618 uint32_t *ptr; 10619 10620 /* 128 byte wqe support here */ 10621 10622 lpfc_cmd = iocbq->context1; 10623 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10624 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10625 10626 /* Word 0-2 - FCP_CMND */ 10627 wqe->generic.bde.tus.f.bdeFlags = 10628 BUFF_TYPE_BDE_IMMED; 10629 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10630 wqe->generic.bde.addrHigh = 0; 10631 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10632 10633 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 10634 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 10635 10636 /* Word 22-29 FCP CMND Payload */ 10637 ptr = &wqe->words[22]; 10638 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10639 } 10640 break; 10641 case CMD_FCP_ICMND64_CR: 10642 /* word3 iocb=iotag wqe=payload_offset_len */ 10643 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10644 bf_set(payload_offset_len, &wqe->fcp_icmd, 10645 xmit_len + sizeof(struct fcp_rsp)); 10646 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10647 0); 10648 /* word3 iocb=IO_TAG wqe=reserved */ 10649 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10650 /* Always open the exchange */ 10651 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10652 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10653 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10654 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10655 LPFC_WQE_LENLOC_NONE); 10656 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10657 iocbq->iocb.ulpFCP2Rcvy); 10658 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10659 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10660 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10661 if (iocbq->priority) { 10662 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10663 (iocbq->priority << 1)); 10664 } else { 10665 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10666 (phba->cfg_XLanePriority << 1)); 10667 } 10668 } 10669 /* Note, word 10 is already initialized to 0 */ 10670 10671 if (phba->fcp_embed_io) { 10672 struct lpfc_io_buf *lpfc_cmd; 10673 struct sli4_sge *sgl; 10674 struct fcp_cmnd *fcp_cmnd; 10675 uint32_t *ptr; 10676 10677 /* 128 byte wqe support here */ 10678 10679 lpfc_cmd = iocbq->context1; 10680 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10681 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10682 10683 /* Word 0-2 - FCP_CMND */ 10684 wqe->generic.bde.tus.f.bdeFlags = 10685 BUFF_TYPE_BDE_IMMED; 10686 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10687 wqe->generic.bde.addrHigh = 0; 10688 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10689 10690 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10691 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10692 10693 /* Word 22-29 FCP CMND Payload */ 10694 ptr = &wqe->words[22]; 10695 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10696 } 10697 break; 10698 case CMD_GEN_REQUEST64_CR: 10699 /* For this command calculate the xmit length of the 10700 * request bde. 10701 */ 10702 xmit_len = 0; 10703 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10704 sizeof(struct ulp_bde64); 10705 for (i = 0; i < numBdes; i++) { 10706 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10707 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10708 break; 10709 xmit_len += bde.tus.f.bdeSize; 10710 } 10711 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10712 wqe->gen_req.request_payload_len = xmit_len; 10713 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10714 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10715 /* word6 context tag copied in memcpy */ 10716 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10717 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10719 "2015 Invalid CT %x command 0x%x\n", 10720 ct, iocbq->iocb.ulpCommand); 10721 return IOCB_ERROR; 10722 } 10723 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10724 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10725 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10726 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10727 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10728 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10729 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10730 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10731 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10732 command_type = OTHER_COMMAND; 10733 break; 10734 case CMD_XMIT_ELS_RSP64_CX: 10735 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10736 /* words0-2 BDE memcpy */ 10737 /* word3 iocb=iotag32 wqe=response_payload_len */ 10738 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10739 /* word4 */ 10740 wqe->xmit_els_rsp.word4 = 0; 10741 /* word5 iocb=rsvd wge=did */ 10742 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10743 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10744 10745 if_type = bf_get(lpfc_sli_intf_if_type, 10746 &phba->sli4_hba.sli_intf); 10747 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10748 if (iocbq->vport->fc_flag & FC_PT2PT) { 10749 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10750 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10751 iocbq->vport->fc_myDID); 10752 if (iocbq->vport->fc_myDID == Fabric_DID) { 10753 bf_set(wqe_els_did, 10754 &wqe->xmit_els_rsp.wqe_dest, 0); 10755 } 10756 } 10757 } 10758 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10759 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10760 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10761 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10762 iocbq->iocb.unsli3.rcvsli3.ox_id); 10763 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10764 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10765 phba->vpi_ids[iocbq->vport->vpi]); 10766 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10767 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10768 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10769 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10770 LPFC_WQE_LENLOC_WORD3); 10771 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10772 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10773 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10774 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10775 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10776 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10777 iocbq->vport->fc_myDID); 10778 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10779 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10780 phba->vpi_ids[phba->pport->vpi]); 10781 } 10782 command_type = OTHER_COMMAND; 10783 break; 10784 case CMD_CLOSE_XRI_CN: 10785 case CMD_ABORT_XRI_CN: 10786 case CMD_ABORT_XRI_CX: 10787 /* words 0-2 memcpy should be 0 rserved */ 10788 /* port will send abts */ 10789 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10790 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10791 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10792 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10793 } else 10794 fip = 0; 10795 10796 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10797 /* 10798 * The link is down, or the command was ELS_FIP 10799 * so the fw does not need to send abts 10800 * on the wire. 10801 */ 10802 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10803 else 10804 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10805 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10806 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10807 wqe->abort_cmd.rsrvd5 = 0; 10808 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10809 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10810 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10811 /* 10812 * The abort handler will send us CMD_ABORT_XRI_CN or 10813 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10814 */ 10815 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10816 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10817 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10818 LPFC_WQE_LENLOC_NONE); 10819 cmnd = CMD_ABORT_XRI_CX; 10820 command_type = OTHER_COMMAND; 10821 xritag = 0; 10822 break; 10823 case CMD_XMIT_BLS_RSP64_CX: 10824 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10825 /* As BLS ABTS RSP WQE is very different from other WQEs, 10826 * we re-construct this WQE here based on information in 10827 * iocbq from scratch. 10828 */ 10829 memset(wqe, 0, sizeof(*wqe)); 10830 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10831 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10832 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10833 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10834 LPFC_ABTS_UNSOL_INT) { 10835 /* ABTS sent by initiator to CT exchange, the 10836 * RX_ID field will be filled with the newly 10837 * allocated responder XRI. 10838 */ 10839 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10840 iocbq->sli4_xritag); 10841 } else { 10842 /* ABTS sent by responder to CT exchange, the 10843 * RX_ID field will be filled with the responder 10844 * RX_ID from ABTS. 10845 */ 10846 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10847 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10848 } 10849 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10850 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10851 10852 /* Use CT=VPI */ 10853 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10854 ndlp->nlp_DID); 10855 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10856 iocbq->iocb.ulpContext); 10857 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10858 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10859 phba->vpi_ids[phba->pport->vpi]); 10860 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10861 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10862 LPFC_WQE_LENLOC_NONE); 10863 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10864 command_type = OTHER_COMMAND; 10865 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10866 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10867 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10868 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10869 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10870 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10871 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10872 } 10873 10874 break; 10875 case CMD_SEND_FRAME: 10876 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10877 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10878 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10879 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10880 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10881 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10882 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10883 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10884 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10885 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10886 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10887 return 0; 10888 case CMD_XRI_ABORTED_CX: 10889 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10890 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10891 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10892 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10893 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10894 default: 10895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10896 "2014 Invalid command 0x%x\n", 10897 iocbq->iocb.ulpCommand); 10898 return IOCB_ERROR; 10899 } 10900 10901 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10902 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10903 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10904 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10905 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10906 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10907 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10908 LPFC_IO_DIF_INSERT); 10909 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10910 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10911 wqe->generic.wqe_com.abort_tag = abort_tag; 10912 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10913 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10914 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10915 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10916 return 0; 10917 } 10918 10919 /** 10920 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10921 * @phba: Pointer to HBA context object. 10922 * @ring_number: SLI ring number to issue wqe on. 10923 * @piocb: Pointer to command iocb. 10924 * @flag: Flag indicating if this command can be put into txq. 10925 * 10926 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10927 * send an iocb command to an HBA with SLI-4 interface spec. 10928 * 10929 * This function takes the hbalock before invoking the lockless version. 10930 * The function will return success after it successfully submit the wqe to 10931 * firmware or after adding to the txq. 10932 **/ 10933 static int 10934 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10935 struct lpfc_iocbq *piocb, uint32_t flag) 10936 { 10937 unsigned long iflags; 10938 int rc; 10939 10940 spin_lock_irqsave(&phba->hbalock, iflags); 10941 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10942 spin_unlock_irqrestore(&phba->hbalock, iflags); 10943 10944 return rc; 10945 } 10946 10947 /** 10948 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10949 * @phba: Pointer to HBA context object. 10950 * @ring_number: SLI ring number to issue wqe on. 10951 * @piocb: Pointer to command iocb. 10952 * @flag: Flag indicating if this command can be put into txq. 10953 * 10954 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10955 * an wqe command to an HBA with SLI-4 interface spec. 10956 * 10957 * This function is a lockless version. The function will return success 10958 * after it successfully submit the wqe to firmware or after adding to the 10959 * txq. 10960 **/ 10961 static int 10962 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10963 struct lpfc_iocbq *piocb, uint32_t flag) 10964 { 10965 int rc; 10966 struct lpfc_io_buf *lpfc_cmd = 10967 (struct lpfc_io_buf *)piocb->context1; 10968 union lpfc_wqe128 *wqe = &piocb->wqe; 10969 struct sli4_sge *sgl; 10970 10971 /* 128 byte wqe support here */ 10972 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10973 10974 if (phba->fcp_embed_io) { 10975 struct fcp_cmnd *fcp_cmnd; 10976 u32 *ptr; 10977 10978 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10979 10980 /* Word 0-2 - FCP_CMND */ 10981 wqe->generic.bde.tus.f.bdeFlags = 10982 BUFF_TYPE_BDE_IMMED; 10983 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10984 wqe->generic.bde.addrHigh = 0; 10985 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10986 10987 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10988 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10989 10990 /* Word 22-29 FCP CMND Payload */ 10991 ptr = &wqe->words[22]; 10992 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10993 } else { 10994 /* Word 0-2 - Inline BDE */ 10995 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10996 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10997 wqe->generic.bde.addrHigh = sgl->addr_hi; 10998 wqe->generic.bde.addrLow = sgl->addr_lo; 10999 11000 /* Word 10 */ 11001 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 11002 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 11003 } 11004 11005 /* add the VMID tags as per switch response */ 11006 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 11007 if (phba->pport->vmid_priority_tagging) { 11008 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 11009 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 11010 (piocb->vmid_tag.cs_ctl_vmid)); 11011 } else { 11012 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 11013 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11014 wqe->words[31] = piocb->vmid_tag.app_id; 11015 } 11016 } 11017 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 11018 return rc; 11019 } 11020 11021 /** 11022 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 11023 * @phba: Pointer to HBA context object. 11024 * @ring_number: SLI ring number to issue iocb on. 11025 * @piocb: Pointer to command iocb. 11026 * @flag: Flag indicating if this command can be put into txq. 11027 * 11028 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 11029 * an iocb command to an HBA with SLI-4 interface spec. 11030 * 11031 * This function is called with ringlock held. The function will return success 11032 * after it successfully submit the iocb to firmware or after adding to the 11033 * txq. 11034 **/ 11035 static int 11036 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 11037 struct lpfc_iocbq *piocb, uint32_t flag) 11038 { 11039 struct lpfc_sglq *sglq; 11040 union lpfc_wqe128 wqe; 11041 struct lpfc_queue *wq; 11042 struct lpfc_sli_ring *pring; 11043 11044 /* Get the WQ */ 11045 if ((piocb->iocb_flag & LPFC_IO_FCP) || 11046 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11047 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 11048 } else { 11049 wq = phba->sli4_hba.els_wq; 11050 } 11051 11052 /* Get corresponding ring */ 11053 pring = wq->pring; 11054 11055 /* 11056 * The WQE can be either 64 or 128 bytes, 11057 */ 11058 11059 lockdep_assert_held(&pring->ring_lock); 11060 11061 if (piocb->sli4_xritag == NO_XRI) { 11062 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11063 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 11064 sglq = NULL; 11065 else { 11066 if (!list_empty(&pring->txq)) { 11067 if (!(flag & SLI_IOCB_RET_IOCB)) { 11068 __lpfc_sli_ringtx_put(phba, 11069 pring, piocb); 11070 return IOCB_SUCCESS; 11071 } else { 11072 return IOCB_BUSY; 11073 } 11074 } else { 11075 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 11076 if (!sglq) { 11077 if (!(flag & SLI_IOCB_RET_IOCB)) { 11078 __lpfc_sli_ringtx_put(phba, 11079 pring, 11080 piocb); 11081 return IOCB_SUCCESS; 11082 } else 11083 return IOCB_BUSY; 11084 } 11085 } 11086 } 11087 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 11088 /* These IO's already have an XRI and a mapped sgl. */ 11089 sglq = NULL; 11090 } 11091 else { 11092 /* 11093 * This is a continuation of a commandi,(CX) so this 11094 * sglq is on the active list 11095 */ 11096 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 11097 if (!sglq) 11098 return IOCB_ERROR; 11099 } 11100 11101 if (sglq) { 11102 piocb->sli4_lxritag = sglq->sli4_lxritag; 11103 piocb->sli4_xritag = sglq->sli4_xritag; 11104 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 11105 return IOCB_ERROR; 11106 } 11107 11108 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 11109 return IOCB_ERROR; 11110 11111 if (lpfc_sli4_wq_put(wq, &wqe)) 11112 return IOCB_ERROR; 11113 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 11114 11115 return 0; 11116 } 11117 11118 /* 11119 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 11120 * 11121 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 11122 * or IOCB for sli-3 function. 11123 * pointer from the lpfc_hba struct. 11124 * 11125 * Return codes: 11126 * IOCB_ERROR - Error 11127 * IOCB_SUCCESS - Success 11128 * IOCB_BUSY - Busy 11129 **/ 11130 int 11131 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 11132 struct lpfc_iocbq *piocb, uint32_t flag) 11133 { 11134 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 11135 } 11136 11137 /* 11138 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 11139 * 11140 * This routine wraps the actual lockless version for issusing IOCB function 11141 * pointer from the lpfc_hba struct. 11142 * 11143 * Return codes: 11144 * IOCB_ERROR - Error 11145 * IOCB_SUCCESS - Success 11146 * IOCB_BUSY - Busy 11147 **/ 11148 int 11149 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11150 struct lpfc_iocbq *piocb, uint32_t flag) 11151 { 11152 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11153 } 11154 11155 /** 11156 * lpfc_sli_api_table_setup - Set up sli api function jump table 11157 * @phba: The hba struct for which this call is being executed. 11158 * @dev_grp: The HBA PCI-Device group number. 11159 * 11160 * This routine sets up the SLI interface API function jump table in @phba 11161 * struct. 11162 * Returns: 0 - success, -ENODEV - failure. 11163 **/ 11164 int 11165 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11166 { 11167 11168 switch (dev_grp) { 11169 case LPFC_PCI_DEV_LP: 11170 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11171 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11172 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11173 break; 11174 case LPFC_PCI_DEV_OC: 11175 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11176 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11177 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11178 break; 11179 default: 11180 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11181 "1419 Invalid HBA PCI-device group: 0x%x\n", 11182 dev_grp); 11183 return -ENODEV; 11184 } 11185 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 11186 return 0; 11187 } 11188 11189 /** 11190 * lpfc_sli4_calc_ring - Calculates which ring to use 11191 * @phba: Pointer to HBA context object. 11192 * @piocb: Pointer to command iocb. 11193 * 11194 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11195 * hba_wqidx, thus we need to calculate the corresponding ring. 11196 * Since ABORTS must go on the same WQ of the command they are 11197 * aborting, we use command's hba_wqidx. 11198 */ 11199 struct lpfc_sli_ring * 11200 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11201 { 11202 struct lpfc_io_buf *lpfc_cmd; 11203 11204 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11205 if (unlikely(!phba->sli4_hba.hdwq)) 11206 return NULL; 11207 /* 11208 * for abort iocb hba_wqidx should already 11209 * be setup based on what work queue we used. 11210 */ 11211 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11212 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 11213 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11214 } 11215 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11216 } else { 11217 if (unlikely(!phba->sli4_hba.els_wq)) 11218 return NULL; 11219 piocb->hba_wqidx = 0; 11220 return phba->sli4_hba.els_wq->pring; 11221 } 11222 } 11223 11224 /** 11225 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11226 * @phba: Pointer to HBA context object. 11227 * @ring_number: Ring number 11228 * @piocb: Pointer to command iocb. 11229 * @flag: Flag indicating if this command can be put into txq. 11230 * 11231 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11232 * function. This function gets the hbalock and calls 11233 * __lpfc_sli_issue_iocb function and will return the error returned 11234 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11235 * functions which do not hold hbalock. 11236 **/ 11237 int 11238 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11239 struct lpfc_iocbq *piocb, uint32_t flag) 11240 { 11241 struct lpfc_sli_ring *pring; 11242 struct lpfc_queue *eq; 11243 unsigned long iflags; 11244 int rc; 11245 11246 if (phba->sli_rev == LPFC_SLI_REV4) { 11247 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11248 11249 pring = lpfc_sli4_calc_ring(phba, piocb); 11250 if (unlikely(pring == NULL)) 11251 return IOCB_ERROR; 11252 11253 spin_lock_irqsave(&pring->ring_lock, iflags); 11254 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11255 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11256 11257 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11258 } else { 11259 /* For now, SLI2/3 will still use hbalock */ 11260 spin_lock_irqsave(&phba->hbalock, iflags); 11261 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11262 spin_unlock_irqrestore(&phba->hbalock, iflags); 11263 } 11264 return rc; 11265 } 11266 11267 /** 11268 * lpfc_extra_ring_setup - Extra ring setup function 11269 * @phba: Pointer to HBA context object. 11270 * 11271 * This function is called while driver attaches with the 11272 * HBA to setup the extra ring. The extra ring is used 11273 * only when driver needs to support target mode functionality 11274 * or IP over FC functionalities. 11275 * 11276 * This function is called with no lock held. SLI3 only. 11277 **/ 11278 static int 11279 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11280 { 11281 struct lpfc_sli *psli; 11282 struct lpfc_sli_ring *pring; 11283 11284 psli = &phba->sli; 11285 11286 /* Adjust cmd/rsp ring iocb entries more evenly */ 11287 11288 /* Take some away from the FCP ring */ 11289 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11290 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11291 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11292 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11293 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11294 11295 /* and give them to the extra ring */ 11296 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11297 11298 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11299 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11300 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11301 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11302 11303 /* Setup default profile for this ring */ 11304 pring->iotag_max = 4096; 11305 pring->num_mask = 1; 11306 pring->prt[0].profile = 0; /* Mask 0 */ 11307 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11308 pring->prt[0].type = phba->cfg_multi_ring_type; 11309 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11310 return 0; 11311 } 11312 11313 static void 11314 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11315 struct lpfc_nodelist *ndlp) 11316 { 11317 unsigned long iflags; 11318 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11319 11320 spin_lock_irqsave(&phba->hbalock, iflags); 11321 if (!list_empty(&evtp->evt_listp)) { 11322 spin_unlock_irqrestore(&phba->hbalock, iflags); 11323 return; 11324 } 11325 11326 /* Incrementing the reference count until the queued work is done. */ 11327 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11328 if (!evtp->evt_arg1) { 11329 spin_unlock_irqrestore(&phba->hbalock, iflags); 11330 return; 11331 } 11332 evtp->evt = LPFC_EVT_RECOVER_PORT; 11333 list_add_tail(&evtp->evt_listp, &phba->work_list); 11334 spin_unlock_irqrestore(&phba->hbalock, iflags); 11335 11336 lpfc_worker_wake_up(phba); 11337 } 11338 11339 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11340 * @phba: Pointer to HBA context object. 11341 * @iocbq: Pointer to iocb object. 11342 * 11343 * The async_event handler calls this routine when it receives 11344 * an ASYNC_STATUS_CN event from the port. The port generates 11345 * this event when an Abort Sequence request to an rport fails 11346 * twice in succession. The abort could be originated by the 11347 * driver or by the port. The ABTS could have been for an ELS 11348 * or FCP IO. The port only generates this event when an ABTS 11349 * fails to complete after one retry. 11350 */ 11351 static void 11352 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11353 struct lpfc_iocbq *iocbq) 11354 { 11355 struct lpfc_nodelist *ndlp = NULL; 11356 uint16_t rpi = 0, vpi = 0; 11357 struct lpfc_vport *vport = NULL; 11358 11359 /* The rpi in the ulpContext is vport-sensitive. */ 11360 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11361 rpi = iocbq->iocb.ulpContext; 11362 11363 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11364 "3092 Port generated ABTS async event " 11365 "on vpi %d rpi %d status 0x%x\n", 11366 vpi, rpi, iocbq->iocb.ulpStatus); 11367 11368 vport = lpfc_find_vport_by_vpid(phba, vpi); 11369 if (!vport) 11370 goto err_exit; 11371 ndlp = lpfc_findnode_rpi(vport, rpi); 11372 if (!ndlp) 11373 goto err_exit; 11374 11375 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11376 lpfc_sli_abts_recover_port(vport, ndlp); 11377 return; 11378 11379 err_exit: 11380 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11381 "3095 Event Context not found, no " 11382 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11383 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 11384 vpi, rpi); 11385 } 11386 11387 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11388 * @phba: pointer to HBA context object. 11389 * @ndlp: nodelist pointer for the impacted rport. 11390 * @axri: pointer to the wcqe containing the failed exchange. 11391 * 11392 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11393 * port. The port generates this event when an abort exchange request to an 11394 * rport fails twice in succession with no reply. The abort could be originated 11395 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11396 */ 11397 void 11398 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11399 struct lpfc_nodelist *ndlp, 11400 struct sli4_wcqe_xri_aborted *axri) 11401 { 11402 uint32_t ext_status = 0; 11403 11404 if (!ndlp) { 11405 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11406 "3115 Node Context not found, driver " 11407 "ignoring abts err event\n"); 11408 return; 11409 } 11410 11411 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11412 "3116 Port generated FCP XRI ABORT event on " 11413 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11414 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11415 bf_get(lpfc_wcqe_xa_xri, axri), 11416 bf_get(lpfc_wcqe_xa_status, axri), 11417 axri->parameter); 11418 11419 /* 11420 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11421 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11422 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11423 */ 11424 ext_status = axri->parameter & IOERR_PARAM_MASK; 11425 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11426 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11427 lpfc_sli_post_recovery_event(phba, ndlp); 11428 } 11429 11430 /** 11431 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11432 * @phba: Pointer to HBA context object. 11433 * @pring: Pointer to driver SLI ring object. 11434 * @iocbq: Pointer to iocb object. 11435 * 11436 * This function is called by the slow ring event handler 11437 * function when there is an ASYNC event iocb in the ring. 11438 * This function is called with no lock held. 11439 * Currently this function handles only temperature related 11440 * ASYNC events. The function decodes the temperature sensor 11441 * event message and posts events for the management applications. 11442 **/ 11443 static void 11444 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11445 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11446 { 11447 IOCB_t *icmd; 11448 uint16_t evt_code; 11449 struct temp_event temp_event_data; 11450 struct Scsi_Host *shost; 11451 uint32_t *iocb_w; 11452 11453 icmd = &iocbq->iocb; 11454 evt_code = icmd->un.asyncstat.evt_code; 11455 11456 switch (evt_code) { 11457 case ASYNC_TEMP_WARN: 11458 case ASYNC_TEMP_SAFE: 11459 temp_event_data.data = (uint32_t) icmd->ulpContext; 11460 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11461 if (evt_code == ASYNC_TEMP_WARN) { 11462 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11464 "0347 Adapter is very hot, please take " 11465 "corrective action. temperature : %d Celsius\n", 11466 (uint32_t) icmd->ulpContext); 11467 } else { 11468 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11469 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11470 "0340 Adapter temperature is OK now. " 11471 "temperature : %d Celsius\n", 11472 (uint32_t) icmd->ulpContext); 11473 } 11474 11475 /* Send temperature change event to applications */ 11476 shost = lpfc_shost_from_vport(phba->pport); 11477 fc_host_post_vendor_event(shost, fc_get_event_number(), 11478 sizeof(temp_event_data), (char *) &temp_event_data, 11479 LPFC_NL_VENDOR_ID); 11480 break; 11481 case ASYNC_STATUS_CN: 11482 lpfc_sli_abts_err_handler(phba, iocbq); 11483 break; 11484 default: 11485 iocb_w = (uint32_t *) icmd; 11486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11487 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11488 " evt_code 0x%x\n" 11489 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11490 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11491 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11492 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11493 pring->ringno, icmd->un.asyncstat.evt_code, 11494 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11495 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11496 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11497 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11498 11499 break; 11500 } 11501 } 11502 11503 11504 /** 11505 * lpfc_sli4_setup - SLI ring setup function 11506 * @phba: Pointer to HBA context object. 11507 * 11508 * lpfc_sli_setup sets up rings of the SLI interface with 11509 * number of iocbs per ring and iotags. This function is 11510 * called while driver attach to the HBA and before the 11511 * interrupts are enabled. So there is no need for locking. 11512 * 11513 * This function always returns 0. 11514 **/ 11515 int 11516 lpfc_sli4_setup(struct lpfc_hba *phba) 11517 { 11518 struct lpfc_sli_ring *pring; 11519 11520 pring = phba->sli4_hba.els_wq->pring; 11521 pring->num_mask = LPFC_MAX_RING_MASK; 11522 pring->prt[0].profile = 0; /* Mask 0 */ 11523 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11524 pring->prt[0].type = FC_TYPE_ELS; 11525 pring->prt[0].lpfc_sli_rcv_unsol_event = 11526 lpfc_els_unsol_event; 11527 pring->prt[1].profile = 0; /* Mask 1 */ 11528 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11529 pring->prt[1].type = FC_TYPE_ELS; 11530 pring->prt[1].lpfc_sli_rcv_unsol_event = 11531 lpfc_els_unsol_event; 11532 pring->prt[2].profile = 0; /* Mask 2 */ 11533 /* NameServer Inquiry */ 11534 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11535 /* NameServer */ 11536 pring->prt[2].type = FC_TYPE_CT; 11537 pring->prt[2].lpfc_sli_rcv_unsol_event = 11538 lpfc_ct_unsol_event; 11539 pring->prt[3].profile = 0; /* Mask 3 */ 11540 /* NameServer response */ 11541 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11542 /* NameServer */ 11543 pring->prt[3].type = FC_TYPE_CT; 11544 pring->prt[3].lpfc_sli_rcv_unsol_event = 11545 lpfc_ct_unsol_event; 11546 return 0; 11547 } 11548 11549 /** 11550 * lpfc_sli_setup - SLI ring setup function 11551 * @phba: Pointer to HBA context object. 11552 * 11553 * lpfc_sli_setup sets up rings of the SLI interface with 11554 * number of iocbs per ring and iotags. This function is 11555 * called while driver attach to the HBA and before the 11556 * interrupts are enabled. So there is no need for locking. 11557 * 11558 * This function always returns 0. SLI3 only. 11559 **/ 11560 int 11561 lpfc_sli_setup(struct lpfc_hba *phba) 11562 { 11563 int i, totiocbsize = 0; 11564 struct lpfc_sli *psli = &phba->sli; 11565 struct lpfc_sli_ring *pring; 11566 11567 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11568 psli->sli_flag = 0; 11569 11570 psli->iocbq_lookup = NULL; 11571 psli->iocbq_lookup_len = 0; 11572 psli->last_iotag = 0; 11573 11574 for (i = 0; i < psli->num_rings; i++) { 11575 pring = &psli->sli3_ring[i]; 11576 switch (i) { 11577 case LPFC_FCP_RING: /* ring 0 - FCP */ 11578 /* numCiocb and numRiocb are used in config_port */ 11579 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11580 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11581 pring->sli.sli3.numCiocb += 11582 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11583 pring->sli.sli3.numRiocb += 11584 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11585 pring->sli.sli3.numCiocb += 11586 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11587 pring->sli.sli3.numRiocb += 11588 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11589 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11590 SLI3_IOCB_CMD_SIZE : 11591 SLI2_IOCB_CMD_SIZE; 11592 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11593 SLI3_IOCB_RSP_SIZE : 11594 SLI2_IOCB_RSP_SIZE; 11595 pring->iotag_ctr = 0; 11596 pring->iotag_max = 11597 (phba->cfg_hba_queue_depth * 2); 11598 pring->fast_iotag = pring->iotag_max; 11599 pring->num_mask = 0; 11600 break; 11601 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11602 /* numCiocb and numRiocb are used in config_port */ 11603 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11604 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11605 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11606 SLI3_IOCB_CMD_SIZE : 11607 SLI2_IOCB_CMD_SIZE; 11608 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11609 SLI3_IOCB_RSP_SIZE : 11610 SLI2_IOCB_RSP_SIZE; 11611 pring->iotag_max = phba->cfg_hba_queue_depth; 11612 pring->num_mask = 0; 11613 break; 11614 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11615 /* numCiocb and numRiocb are used in config_port */ 11616 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11617 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11618 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11619 SLI3_IOCB_CMD_SIZE : 11620 SLI2_IOCB_CMD_SIZE; 11621 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11622 SLI3_IOCB_RSP_SIZE : 11623 SLI2_IOCB_RSP_SIZE; 11624 pring->fast_iotag = 0; 11625 pring->iotag_ctr = 0; 11626 pring->iotag_max = 4096; 11627 pring->lpfc_sli_rcv_async_status = 11628 lpfc_sli_async_event_handler; 11629 pring->num_mask = LPFC_MAX_RING_MASK; 11630 pring->prt[0].profile = 0; /* Mask 0 */ 11631 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11632 pring->prt[0].type = FC_TYPE_ELS; 11633 pring->prt[0].lpfc_sli_rcv_unsol_event = 11634 lpfc_els_unsol_event; 11635 pring->prt[1].profile = 0; /* Mask 1 */ 11636 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11637 pring->prt[1].type = FC_TYPE_ELS; 11638 pring->prt[1].lpfc_sli_rcv_unsol_event = 11639 lpfc_els_unsol_event; 11640 pring->prt[2].profile = 0; /* Mask 2 */ 11641 /* NameServer Inquiry */ 11642 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11643 /* NameServer */ 11644 pring->prt[2].type = FC_TYPE_CT; 11645 pring->prt[2].lpfc_sli_rcv_unsol_event = 11646 lpfc_ct_unsol_event; 11647 pring->prt[3].profile = 0; /* Mask 3 */ 11648 /* NameServer response */ 11649 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11650 /* NameServer */ 11651 pring->prt[3].type = FC_TYPE_CT; 11652 pring->prt[3].lpfc_sli_rcv_unsol_event = 11653 lpfc_ct_unsol_event; 11654 break; 11655 } 11656 totiocbsize += (pring->sli.sli3.numCiocb * 11657 pring->sli.sli3.sizeCiocb) + 11658 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11659 } 11660 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11661 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11662 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11663 "SLI2 SLIM Data: x%x x%lx\n", 11664 phba->brd_no, totiocbsize, 11665 (unsigned long) MAX_SLIM_IOCB_SIZE); 11666 } 11667 if (phba->cfg_multi_ring_support == 2) 11668 lpfc_extra_ring_setup(phba); 11669 11670 return 0; 11671 } 11672 11673 /** 11674 * lpfc_sli4_queue_init - Queue initialization function 11675 * @phba: Pointer to HBA context object. 11676 * 11677 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11678 * ring. This function also initializes ring indices of each ring. 11679 * This function is called during the initialization of the SLI 11680 * interface of an HBA. 11681 * This function is called with no lock held and always returns 11682 * 1. 11683 **/ 11684 void 11685 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11686 { 11687 struct lpfc_sli *psli; 11688 struct lpfc_sli_ring *pring; 11689 int i; 11690 11691 psli = &phba->sli; 11692 spin_lock_irq(&phba->hbalock); 11693 INIT_LIST_HEAD(&psli->mboxq); 11694 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11695 /* Initialize list headers for txq and txcmplq as double linked lists */ 11696 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11697 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11698 pring->flag = 0; 11699 pring->ringno = LPFC_FCP_RING; 11700 pring->txcmplq_cnt = 0; 11701 INIT_LIST_HEAD(&pring->txq); 11702 INIT_LIST_HEAD(&pring->txcmplq); 11703 INIT_LIST_HEAD(&pring->iocb_continueq); 11704 spin_lock_init(&pring->ring_lock); 11705 } 11706 pring = phba->sli4_hba.els_wq->pring; 11707 pring->flag = 0; 11708 pring->ringno = LPFC_ELS_RING; 11709 pring->txcmplq_cnt = 0; 11710 INIT_LIST_HEAD(&pring->txq); 11711 INIT_LIST_HEAD(&pring->txcmplq); 11712 INIT_LIST_HEAD(&pring->iocb_continueq); 11713 spin_lock_init(&pring->ring_lock); 11714 11715 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11716 pring = phba->sli4_hba.nvmels_wq->pring; 11717 pring->flag = 0; 11718 pring->ringno = LPFC_ELS_RING; 11719 pring->txcmplq_cnt = 0; 11720 INIT_LIST_HEAD(&pring->txq); 11721 INIT_LIST_HEAD(&pring->txcmplq); 11722 INIT_LIST_HEAD(&pring->iocb_continueq); 11723 spin_lock_init(&pring->ring_lock); 11724 } 11725 11726 spin_unlock_irq(&phba->hbalock); 11727 } 11728 11729 /** 11730 * lpfc_sli_queue_init - Queue initialization function 11731 * @phba: Pointer to HBA context object. 11732 * 11733 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11734 * ring. This function also initializes ring indices of each ring. 11735 * This function is called during the initialization of the SLI 11736 * interface of an HBA. 11737 * This function is called with no lock held and always returns 11738 * 1. 11739 **/ 11740 void 11741 lpfc_sli_queue_init(struct lpfc_hba *phba) 11742 { 11743 struct lpfc_sli *psli; 11744 struct lpfc_sli_ring *pring; 11745 int i; 11746 11747 psli = &phba->sli; 11748 spin_lock_irq(&phba->hbalock); 11749 INIT_LIST_HEAD(&psli->mboxq); 11750 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11751 /* Initialize list headers for txq and txcmplq as double linked lists */ 11752 for (i = 0; i < psli->num_rings; i++) { 11753 pring = &psli->sli3_ring[i]; 11754 pring->ringno = i; 11755 pring->sli.sli3.next_cmdidx = 0; 11756 pring->sli.sli3.local_getidx = 0; 11757 pring->sli.sli3.cmdidx = 0; 11758 INIT_LIST_HEAD(&pring->iocb_continueq); 11759 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11760 INIT_LIST_HEAD(&pring->postbufq); 11761 pring->flag = 0; 11762 INIT_LIST_HEAD(&pring->txq); 11763 INIT_LIST_HEAD(&pring->txcmplq); 11764 spin_lock_init(&pring->ring_lock); 11765 } 11766 spin_unlock_irq(&phba->hbalock); 11767 } 11768 11769 /** 11770 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11771 * @phba: Pointer to HBA context object. 11772 * 11773 * This routine flushes the mailbox command subsystem. It will unconditionally 11774 * flush all the mailbox commands in the three possible stages in the mailbox 11775 * command sub-system: pending mailbox command queue; the outstanding mailbox 11776 * command; and completed mailbox command queue. It is caller's responsibility 11777 * to make sure that the driver is in the proper state to flush the mailbox 11778 * command sub-system. Namely, the posting of mailbox commands into the 11779 * pending mailbox command queue from the various clients must be stopped; 11780 * either the HBA is in a state that it will never works on the outstanding 11781 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11782 * mailbox command has been completed. 11783 **/ 11784 static void 11785 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11786 { 11787 LIST_HEAD(completions); 11788 struct lpfc_sli *psli = &phba->sli; 11789 LPFC_MBOXQ_t *pmb; 11790 unsigned long iflag; 11791 11792 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11793 local_bh_disable(); 11794 11795 /* Flush all the mailbox commands in the mbox system */ 11796 spin_lock_irqsave(&phba->hbalock, iflag); 11797 11798 /* The pending mailbox command queue */ 11799 list_splice_init(&phba->sli.mboxq, &completions); 11800 /* The outstanding active mailbox command */ 11801 if (psli->mbox_active) { 11802 list_add_tail(&psli->mbox_active->list, &completions); 11803 psli->mbox_active = NULL; 11804 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11805 } 11806 /* The completed mailbox command queue */ 11807 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11808 spin_unlock_irqrestore(&phba->hbalock, iflag); 11809 11810 /* Enable softirqs again, done with phba->hbalock */ 11811 local_bh_enable(); 11812 11813 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11814 while (!list_empty(&completions)) { 11815 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11816 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11817 if (pmb->mbox_cmpl) 11818 pmb->mbox_cmpl(phba, pmb); 11819 } 11820 } 11821 11822 /** 11823 * lpfc_sli_host_down - Vport cleanup function 11824 * @vport: Pointer to virtual port object. 11825 * 11826 * lpfc_sli_host_down is called to clean up the resources 11827 * associated with a vport before destroying virtual 11828 * port data structures. 11829 * This function does following operations: 11830 * - Free discovery resources associated with this virtual 11831 * port. 11832 * - Free iocbs associated with this virtual port in 11833 * the txq. 11834 * - Send abort for all iocb commands associated with this 11835 * vport in txcmplq. 11836 * 11837 * This function is called with no lock held and always returns 1. 11838 **/ 11839 int 11840 lpfc_sli_host_down(struct lpfc_vport *vport) 11841 { 11842 LIST_HEAD(completions); 11843 struct lpfc_hba *phba = vport->phba; 11844 struct lpfc_sli *psli = &phba->sli; 11845 struct lpfc_queue *qp = NULL; 11846 struct lpfc_sli_ring *pring; 11847 struct lpfc_iocbq *iocb, *next_iocb; 11848 int i; 11849 unsigned long flags = 0; 11850 uint16_t prev_pring_flag; 11851 11852 lpfc_cleanup_discovery_resources(vport); 11853 11854 spin_lock_irqsave(&phba->hbalock, flags); 11855 11856 /* 11857 * Error everything on the txq since these iocbs 11858 * have not been given to the FW yet. 11859 * Also issue ABTS for everything on the txcmplq 11860 */ 11861 if (phba->sli_rev != LPFC_SLI_REV4) { 11862 for (i = 0; i < psli->num_rings; i++) { 11863 pring = &psli->sli3_ring[i]; 11864 prev_pring_flag = pring->flag; 11865 /* Only slow rings */ 11866 if (pring->ringno == LPFC_ELS_RING) { 11867 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11868 /* Set the lpfc data pending flag */ 11869 set_bit(LPFC_DATA_READY, &phba->data_flags); 11870 } 11871 list_for_each_entry_safe(iocb, next_iocb, 11872 &pring->txq, list) { 11873 if (iocb->vport != vport) 11874 continue; 11875 list_move_tail(&iocb->list, &completions); 11876 } 11877 list_for_each_entry_safe(iocb, next_iocb, 11878 &pring->txcmplq, list) { 11879 if (iocb->vport != vport) 11880 continue; 11881 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11882 NULL); 11883 } 11884 pring->flag = prev_pring_flag; 11885 } 11886 } else { 11887 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11888 pring = qp->pring; 11889 if (!pring) 11890 continue; 11891 if (pring == phba->sli4_hba.els_wq->pring) { 11892 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11893 /* Set the lpfc data pending flag */ 11894 set_bit(LPFC_DATA_READY, &phba->data_flags); 11895 } 11896 prev_pring_flag = pring->flag; 11897 spin_lock(&pring->ring_lock); 11898 list_for_each_entry_safe(iocb, next_iocb, 11899 &pring->txq, list) { 11900 if (iocb->vport != vport) 11901 continue; 11902 list_move_tail(&iocb->list, &completions); 11903 } 11904 spin_unlock(&pring->ring_lock); 11905 list_for_each_entry_safe(iocb, next_iocb, 11906 &pring->txcmplq, list) { 11907 if (iocb->vport != vport) 11908 continue; 11909 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11910 NULL); 11911 } 11912 pring->flag = prev_pring_flag; 11913 } 11914 } 11915 spin_unlock_irqrestore(&phba->hbalock, flags); 11916 11917 /* Make sure HBA is alive */ 11918 lpfc_issue_hb_tmo(phba); 11919 11920 /* Cancel all the IOCBs from the completions list */ 11921 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11922 IOERR_SLI_DOWN); 11923 return 1; 11924 } 11925 11926 /** 11927 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11928 * @phba: Pointer to HBA context object. 11929 * 11930 * This function cleans up all iocb, buffers, mailbox commands 11931 * while shutting down the HBA. This function is called with no 11932 * lock held and always returns 1. 11933 * This function does the following to cleanup driver resources: 11934 * - Free discovery resources for each virtual port 11935 * - Cleanup any pending fabric iocbs 11936 * - Iterate through the iocb txq and free each entry 11937 * in the list. 11938 * - Free up any buffer posted to the HBA 11939 * - Free mailbox commands in the mailbox queue. 11940 **/ 11941 int 11942 lpfc_sli_hba_down(struct lpfc_hba *phba) 11943 { 11944 LIST_HEAD(completions); 11945 struct lpfc_sli *psli = &phba->sli; 11946 struct lpfc_queue *qp = NULL; 11947 struct lpfc_sli_ring *pring; 11948 struct lpfc_dmabuf *buf_ptr; 11949 unsigned long flags = 0; 11950 int i; 11951 11952 /* Shutdown the mailbox command sub-system */ 11953 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11954 11955 lpfc_hba_down_prep(phba); 11956 11957 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11958 local_bh_disable(); 11959 11960 lpfc_fabric_abort_hba(phba); 11961 11962 spin_lock_irqsave(&phba->hbalock, flags); 11963 11964 /* 11965 * Error everything on the txq since these iocbs 11966 * have not been given to the FW yet. 11967 */ 11968 if (phba->sli_rev != LPFC_SLI_REV4) { 11969 for (i = 0; i < psli->num_rings; i++) { 11970 pring = &psli->sli3_ring[i]; 11971 /* Only slow rings */ 11972 if (pring->ringno == LPFC_ELS_RING) { 11973 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11974 /* Set the lpfc data pending flag */ 11975 set_bit(LPFC_DATA_READY, &phba->data_flags); 11976 } 11977 list_splice_init(&pring->txq, &completions); 11978 } 11979 } else { 11980 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11981 pring = qp->pring; 11982 if (!pring) 11983 continue; 11984 spin_lock(&pring->ring_lock); 11985 list_splice_init(&pring->txq, &completions); 11986 spin_unlock(&pring->ring_lock); 11987 if (pring == phba->sli4_hba.els_wq->pring) { 11988 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11989 /* Set the lpfc data pending flag */ 11990 set_bit(LPFC_DATA_READY, &phba->data_flags); 11991 } 11992 } 11993 } 11994 spin_unlock_irqrestore(&phba->hbalock, flags); 11995 11996 /* Cancel all the IOCBs from the completions list */ 11997 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11998 IOERR_SLI_DOWN); 11999 12000 spin_lock_irqsave(&phba->hbalock, flags); 12001 list_splice_init(&phba->elsbuf, &completions); 12002 phba->elsbuf_cnt = 0; 12003 phba->elsbuf_prev_cnt = 0; 12004 spin_unlock_irqrestore(&phba->hbalock, flags); 12005 12006 while (!list_empty(&completions)) { 12007 list_remove_head(&completions, buf_ptr, 12008 struct lpfc_dmabuf, list); 12009 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12010 kfree(buf_ptr); 12011 } 12012 12013 /* Enable softirqs again, done with phba->hbalock */ 12014 local_bh_enable(); 12015 12016 /* Return any active mbox cmds */ 12017 del_timer_sync(&psli->mbox_tmo); 12018 12019 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12020 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12021 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12022 12023 return 1; 12024 } 12025 12026 /** 12027 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12028 * @srcp: Source memory pointer. 12029 * @destp: Destination memory pointer. 12030 * @cnt: Number of words required to be copied. 12031 * 12032 * This function is used for copying data between driver memory 12033 * and the SLI memory. This function also changes the endianness 12034 * of each word if native endianness is different from SLI 12035 * endianness. This function can be called with or without 12036 * lock. 12037 **/ 12038 void 12039 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12040 { 12041 uint32_t *src = srcp; 12042 uint32_t *dest = destp; 12043 uint32_t ldata; 12044 int i; 12045 12046 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12047 ldata = *src; 12048 ldata = le32_to_cpu(ldata); 12049 *dest = ldata; 12050 src++; 12051 dest++; 12052 } 12053 } 12054 12055 12056 /** 12057 * lpfc_sli_bemem_bcopy - SLI memory copy function 12058 * @srcp: Source memory pointer. 12059 * @destp: Destination memory pointer. 12060 * @cnt: Number of words required to be copied. 12061 * 12062 * This function is used for copying data between a data structure 12063 * with big endian representation to local endianness. 12064 * This function can be called with or without lock. 12065 **/ 12066 void 12067 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12068 { 12069 uint32_t *src = srcp; 12070 uint32_t *dest = destp; 12071 uint32_t ldata; 12072 int i; 12073 12074 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12075 ldata = *src; 12076 ldata = be32_to_cpu(ldata); 12077 *dest = ldata; 12078 src++; 12079 dest++; 12080 } 12081 } 12082 12083 /** 12084 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12085 * @phba: Pointer to HBA context object. 12086 * @pring: Pointer to driver SLI ring object. 12087 * @mp: Pointer to driver buffer object. 12088 * 12089 * This function is called with no lock held. 12090 * It always return zero after adding the buffer to the postbufq 12091 * buffer list. 12092 **/ 12093 int 12094 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12095 struct lpfc_dmabuf *mp) 12096 { 12097 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12098 later */ 12099 spin_lock_irq(&phba->hbalock); 12100 list_add_tail(&mp->list, &pring->postbufq); 12101 pring->postbufq_cnt++; 12102 spin_unlock_irq(&phba->hbalock); 12103 return 0; 12104 } 12105 12106 /** 12107 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12108 * @phba: Pointer to HBA context object. 12109 * 12110 * When HBQ is enabled, buffers are searched based on tags. This function 12111 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12112 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12113 * does not conflict with tags of buffer posted for unsolicited events. 12114 * The function returns the allocated tag. The function is called with 12115 * no locks held. 12116 **/ 12117 uint32_t 12118 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12119 { 12120 spin_lock_irq(&phba->hbalock); 12121 phba->buffer_tag_count++; 12122 /* 12123 * Always set the QUE_BUFTAG_BIT to distiguish between 12124 * a tag assigned by HBQ. 12125 */ 12126 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12127 spin_unlock_irq(&phba->hbalock); 12128 return phba->buffer_tag_count; 12129 } 12130 12131 /** 12132 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12133 * @phba: Pointer to HBA context object. 12134 * @pring: Pointer to driver SLI ring object. 12135 * @tag: Buffer tag. 12136 * 12137 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12138 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12139 * iocb is posted to the response ring with the tag of the buffer. 12140 * This function searches the pring->postbufq list using the tag 12141 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12142 * iocb. If the buffer is found then lpfc_dmabuf object of the 12143 * buffer is returned to the caller else NULL is returned. 12144 * This function is called with no lock held. 12145 **/ 12146 struct lpfc_dmabuf * 12147 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12148 uint32_t tag) 12149 { 12150 struct lpfc_dmabuf *mp, *next_mp; 12151 struct list_head *slp = &pring->postbufq; 12152 12153 /* Search postbufq, from the beginning, looking for a match on tag */ 12154 spin_lock_irq(&phba->hbalock); 12155 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12156 if (mp->buffer_tag == tag) { 12157 list_del_init(&mp->list); 12158 pring->postbufq_cnt--; 12159 spin_unlock_irq(&phba->hbalock); 12160 return mp; 12161 } 12162 } 12163 12164 spin_unlock_irq(&phba->hbalock); 12165 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12166 "0402 Cannot find virtual addr for buffer tag on " 12167 "ring %d Data x%lx x%px x%px x%x\n", 12168 pring->ringno, (unsigned long) tag, 12169 slp->next, slp->prev, pring->postbufq_cnt); 12170 12171 return NULL; 12172 } 12173 12174 /** 12175 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12176 * @phba: Pointer to HBA context object. 12177 * @pring: Pointer to driver SLI ring object. 12178 * @phys: DMA address of the buffer. 12179 * 12180 * This function searches the buffer list using the dma_address 12181 * of unsolicited event to find the driver's lpfc_dmabuf object 12182 * corresponding to the dma_address. The function returns the 12183 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12184 * This function is called by the ct and els unsolicited event 12185 * handlers to get the buffer associated with the unsolicited 12186 * event. 12187 * 12188 * This function is called with no lock held. 12189 **/ 12190 struct lpfc_dmabuf * 12191 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12192 dma_addr_t phys) 12193 { 12194 struct lpfc_dmabuf *mp, *next_mp; 12195 struct list_head *slp = &pring->postbufq; 12196 12197 /* Search postbufq, from the beginning, looking for a match on phys */ 12198 spin_lock_irq(&phba->hbalock); 12199 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12200 if (mp->phys == phys) { 12201 list_del_init(&mp->list); 12202 pring->postbufq_cnt--; 12203 spin_unlock_irq(&phba->hbalock); 12204 return mp; 12205 } 12206 } 12207 12208 spin_unlock_irq(&phba->hbalock); 12209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12210 "0410 Cannot find virtual addr for mapped buf on " 12211 "ring %d Data x%llx x%px x%px x%x\n", 12212 pring->ringno, (unsigned long long)phys, 12213 slp->next, slp->prev, pring->postbufq_cnt); 12214 return NULL; 12215 } 12216 12217 /** 12218 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12219 * @phba: Pointer to HBA context object. 12220 * @cmdiocb: Pointer to driver command iocb object. 12221 * @rspiocb: Pointer to driver response iocb object. 12222 * 12223 * This function is the completion handler for the abort iocbs for 12224 * ELS commands. This function is called from the ELS ring event 12225 * handler with no lock held. This function frees memory resources 12226 * associated with the abort iocb. 12227 **/ 12228 static void 12229 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12230 struct lpfc_iocbq *rspiocb) 12231 { 12232 IOCB_t *irsp = &rspiocb->iocb; 12233 uint16_t abort_iotag, abort_context; 12234 struct lpfc_iocbq *abort_iocb = NULL; 12235 12236 if (irsp->ulpStatus) { 12237 12238 /* 12239 * Assume that the port already completed and returned, or 12240 * will return the iocb. Just Log the message. 12241 */ 12242 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 12243 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 12244 12245 spin_lock_irq(&phba->hbalock); 12246 if (phba->sli_rev < LPFC_SLI_REV4) { 12247 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 12248 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 12249 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 12250 spin_unlock_irq(&phba->hbalock); 12251 goto release_iocb; 12252 } 12253 if (abort_iotag != 0 && 12254 abort_iotag <= phba->sli.last_iotag) 12255 abort_iocb = 12256 phba->sli.iocbq_lookup[abort_iotag]; 12257 } else 12258 /* For sli4 the abort_tag is the XRI, 12259 * so the abort routine puts the iotag of the iocb 12260 * being aborted in the context field of the abort 12261 * IOCB. 12262 */ 12263 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 12264 12265 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12266 "0327 Cannot abort els iocb x%px " 12267 "with tag %x context %x, abort status %x, " 12268 "abort code %x\n", 12269 abort_iocb, abort_iotag, abort_context, 12270 irsp->ulpStatus, irsp->un.ulpWord[4]); 12271 12272 spin_unlock_irq(&phba->hbalock); 12273 } 12274 release_iocb: 12275 lpfc_sli_release_iocbq(phba, cmdiocb); 12276 return; 12277 } 12278 12279 /** 12280 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12281 * @phba: Pointer to HBA context object. 12282 * @cmdiocb: Pointer to driver command iocb object. 12283 * @rspiocb: Pointer to driver response iocb object. 12284 * 12285 * The function is called from SLI ring event handler with no 12286 * lock held. This function is the completion handler for ELS commands 12287 * which are aborted. The function frees memory resources used for 12288 * the aborted ELS commands. 12289 **/ 12290 void 12291 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12292 struct lpfc_iocbq *rspiocb) 12293 { 12294 struct lpfc_nodelist *ndlp = NULL; 12295 IOCB_t *irsp = &rspiocb->iocb; 12296 12297 /* ELS cmd tag <ulpIoTag> completes */ 12298 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12299 "0139 Ignoring ELS cmd code x%x completion Data: " 12300 "x%x x%x x%x\n", 12301 irsp->ulpIoTag, irsp->ulpStatus, 12302 irsp->un.ulpWord[4], irsp->ulpTimeout); 12303 /* 12304 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12305 * if exchange is busy. 12306 */ 12307 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 12308 ndlp = cmdiocb->context_un.ndlp; 12309 lpfc_ct_free_iocb(phba, cmdiocb); 12310 } else { 12311 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12312 lpfc_els_free_iocb(phba, cmdiocb); 12313 } 12314 12315 lpfc_nlp_put(ndlp); 12316 } 12317 12318 /** 12319 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12320 * @phba: Pointer to HBA context object. 12321 * @pring: Pointer to driver SLI ring object. 12322 * @cmdiocb: Pointer to driver command iocb object. 12323 * @cmpl: completion function. 12324 * 12325 * This function issues an abort iocb for the provided command iocb. In case 12326 * of unloading, the abort iocb will not be issued to commands on the ELS 12327 * ring. Instead, the callback function shall be changed to those commands 12328 * so that nothing happens when them finishes. This function is called with 12329 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12330 * when the command iocb is an abort request. 12331 * 12332 **/ 12333 int 12334 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12335 struct lpfc_iocbq *cmdiocb, void *cmpl) 12336 { 12337 struct lpfc_vport *vport = cmdiocb->vport; 12338 struct lpfc_iocbq *abtsiocbp; 12339 IOCB_t *icmd = NULL; 12340 IOCB_t *iabt = NULL; 12341 int retval = IOCB_ERROR; 12342 unsigned long iflags; 12343 struct lpfc_nodelist *ndlp; 12344 12345 /* 12346 * There are certain command types we don't want to abort. And we 12347 * don't want to abort commands that are already in the process of 12348 * being aborted. 12349 */ 12350 icmd = &cmdiocb->iocb; 12351 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12352 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 12353 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 12354 return IOCB_ABORTING; 12355 12356 if (!pring) { 12357 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12358 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12359 else 12360 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12361 return retval; 12362 } 12363 12364 /* 12365 * If we're unloading, don't abort iocb on the ELS ring, but change 12366 * the callback so that nothing happens when it finishes. 12367 */ 12368 if ((vport->load_flag & FC_UNLOADING) && 12369 pring->ringno == LPFC_ELS_RING) { 12370 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12371 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12372 else 12373 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12374 return retval; 12375 } 12376 12377 /* issue ABTS for this IOCB based on iotag */ 12378 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12379 if (abtsiocbp == NULL) 12380 return IOCB_NORESOURCE; 12381 12382 /* This signals the response to set the correct status 12383 * before calling the completion handler 12384 */ 12385 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 12386 12387 iabt = &abtsiocbp->iocb; 12388 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 12389 iabt->un.acxri.abortContextTag = icmd->ulpContext; 12390 if (phba->sli_rev == LPFC_SLI_REV4) { 12391 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 12392 if (pring->ringno == LPFC_ELS_RING) 12393 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 12394 } else { 12395 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 12396 if (pring->ringno == LPFC_ELS_RING) { 12397 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12398 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 12399 } 12400 } 12401 iabt->ulpLe = 1; 12402 iabt->ulpClass = icmd->ulpClass; 12403 12404 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12405 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12406 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 12407 abtsiocbp->iocb_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12408 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 12409 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 12410 12411 if (phba->link_state < LPFC_LINK_UP || 12412 (phba->sli_rev == LPFC_SLI_REV4 && 12413 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN)) 12414 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 12415 else 12416 iabt->ulpCommand = CMD_ABORT_XRI_CN; 12417 12418 if (cmpl) 12419 abtsiocbp->iocb_cmpl = cmpl; 12420 else 12421 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 12422 abtsiocbp->vport = vport; 12423 12424 if (phba->sli_rev == LPFC_SLI_REV4) { 12425 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12426 if (unlikely(pring == NULL)) 12427 goto abort_iotag_exit; 12428 /* Note: both hbalock and ring_lock need to be set here */ 12429 spin_lock_irqsave(&pring->ring_lock, iflags); 12430 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12431 abtsiocbp, 0); 12432 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12433 } else { 12434 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12435 abtsiocbp, 0); 12436 } 12437 12438 abort_iotag_exit: 12439 12440 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12441 "0339 Abort xri x%x, original iotag x%x, " 12442 "abort cmd iotag x%x retval x%x\n", 12443 iabt->un.acxri.abortIoTag, 12444 iabt->un.acxri.abortContextTag, 12445 abtsiocbp->iotag, retval); 12446 12447 if (retval) { 12448 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12449 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12450 } 12451 12452 /* 12453 * Caller to this routine should check for IOCB_ERROR 12454 * and handle it properly. This routine no longer removes 12455 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12456 */ 12457 return retval; 12458 } 12459 12460 /** 12461 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12462 * @phba: pointer to lpfc HBA data structure. 12463 * 12464 * This routine will abort all pending and outstanding iocbs to an HBA. 12465 **/ 12466 void 12467 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12468 { 12469 struct lpfc_sli *psli = &phba->sli; 12470 struct lpfc_sli_ring *pring; 12471 struct lpfc_queue *qp = NULL; 12472 int i; 12473 12474 if (phba->sli_rev != LPFC_SLI_REV4) { 12475 for (i = 0; i < psli->num_rings; i++) { 12476 pring = &psli->sli3_ring[i]; 12477 lpfc_sli_abort_iocb_ring(phba, pring); 12478 } 12479 return; 12480 } 12481 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12482 pring = qp->pring; 12483 if (!pring) 12484 continue; 12485 lpfc_sli_abort_iocb_ring(phba, pring); 12486 } 12487 } 12488 12489 /** 12490 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12491 * @iocbq: Pointer to iocb object. 12492 * @vport: Pointer to driver virtual port object. 12493 * 12494 * This function acts as an iocb filter for functions which abort FCP iocbs. 12495 * 12496 * Return values 12497 * -ENODEV, if a null iocb or vport ptr is encountered 12498 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12499 * driver already started the abort process, or is an abort iocb itself 12500 * 0, passes criteria for aborting the FCP I/O iocb 12501 **/ 12502 static int 12503 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12504 struct lpfc_vport *vport) 12505 { 12506 IOCB_t *icmd = NULL; 12507 12508 /* No null ptr vports */ 12509 if (!iocbq || iocbq->vport != vport) 12510 return -ENODEV; 12511 12512 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12513 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12514 */ 12515 icmd = &iocbq->iocb; 12516 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12517 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 12518 (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12519 (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12520 icmd->ulpCommand == CMD_CLOSE_XRI_CN)) 12521 return -EINVAL; 12522 12523 return 0; 12524 } 12525 12526 /** 12527 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12528 * @iocbq: Pointer to driver iocb object. 12529 * @vport: Pointer to driver virtual port object. 12530 * @tgt_id: SCSI ID of the target. 12531 * @lun_id: LUN ID of the scsi device. 12532 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12533 * 12534 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12535 * host. 12536 * 12537 * It will return 12538 * 0 if the filtering criteria is met for the given iocb and will return 12539 * 1 if the filtering criteria is not met. 12540 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12541 * given iocb is for the SCSI device specified by vport, tgt_id and 12542 * lun_id parameter. 12543 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12544 * given iocb is for the SCSI target specified by vport and tgt_id 12545 * parameters. 12546 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12547 * given iocb is for the SCSI host associated with the given vport. 12548 * This function is called with no locks held. 12549 **/ 12550 static int 12551 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12552 uint16_t tgt_id, uint64_t lun_id, 12553 lpfc_ctx_cmd ctx_cmd) 12554 { 12555 struct lpfc_io_buf *lpfc_cmd; 12556 int rc = 1; 12557 12558 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12559 12560 if (lpfc_cmd->pCmd == NULL) 12561 return rc; 12562 12563 switch (ctx_cmd) { 12564 case LPFC_CTX_LUN: 12565 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12566 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12567 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12568 rc = 0; 12569 break; 12570 case LPFC_CTX_TGT: 12571 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12572 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12573 rc = 0; 12574 break; 12575 case LPFC_CTX_HOST: 12576 rc = 0; 12577 break; 12578 default: 12579 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12580 __func__, ctx_cmd); 12581 break; 12582 } 12583 12584 return rc; 12585 } 12586 12587 /** 12588 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12589 * @vport: Pointer to virtual port. 12590 * @tgt_id: SCSI ID of the target. 12591 * @lun_id: LUN ID of the scsi device. 12592 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12593 * 12594 * This function returns number of FCP commands pending for the vport. 12595 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12596 * commands pending on the vport associated with SCSI device specified 12597 * by tgt_id and lun_id parameters. 12598 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12599 * commands pending on the vport associated with SCSI target specified 12600 * by tgt_id parameter. 12601 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12602 * commands pending on the vport. 12603 * This function returns the number of iocbs which satisfy the filter. 12604 * This function is called without any lock held. 12605 **/ 12606 int 12607 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12608 lpfc_ctx_cmd ctx_cmd) 12609 { 12610 struct lpfc_hba *phba = vport->phba; 12611 struct lpfc_iocbq *iocbq; 12612 IOCB_t *icmd = NULL; 12613 int sum, i; 12614 unsigned long iflags; 12615 12616 spin_lock_irqsave(&phba->hbalock, iflags); 12617 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12618 iocbq = phba->sli.iocbq_lookup[i]; 12619 12620 if (!iocbq || iocbq->vport != vport) 12621 continue; 12622 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12623 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 12624 continue; 12625 12626 /* Include counting outstanding aborts */ 12627 icmd = &iocbq->iocb; 12628 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12629 icmd->ulpCommand == CMD_CLOSE_XRI_CN) { 12630 sum++; 12631 continue; 12632 } 12633 12634 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12635 ctx_cmd) == 0) 12636 sum++; 12637 } 12638 spin_unlock_irqrestore(&phba->hbalock, iflags); 12639 12640 return sum; 12641 } 12642 12643 /** 12644 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12645 * @phba: Pointer to HBA context object 12646 * @cmdiocb: Pointer to command iocb object. 12647 * @wcqe: pointer to the complete wcqe 12648 * 12649 * This function is called when an aborted FCP iocb completes. This 12650 * function is called by the ring event handler with no lock held. 12651 * This function frees the iocb. It is called for sli-4 adapters. 12652 **/ 12653 void 12654 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12655 struct lpfc_wcqe_complete *wcqe) 12656 { 12657 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12658 "3017 ABORT_XRI_CN completing on rpi x%x " 12659 "original iotag x%x, abort cmd iotag x%x " 12660 "status 0x%x, reason 0x%x\n", 12661 cmdiocb->iocb.un.acxri.abortContextTag, 12662 cmdiocb->iocb.un.acxri.abortIoTag, 12663 cmdiocb->iotag, 12664 (bf_get(lpfc_wcqe_c_status, wcqe) 12665 & LPFC_IOCB_STATUS_MASK), 12666 wcqe->parameter); 12667 lpfc_sli_release_iocbq(phba, cmdiocb); 12668 } 12669 12670 /** 12671 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12672 * @phba: Pointer to HBA context object 12673 * @cmdiocb: Pointer to command iocb object. 12674 * @rspiocb: Pointer to response iocb object. 12675 * 12676 * This function is called when an aborted FCP iocb completes. This 12677 * function is called by the ring event handler with no lock held. 12678 * This function frees the iocb. 12679 **/ 12680 void 12681 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12682 struct lpfc_iocbq *rspiocb) 12683 { 12684 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12685 "3096 ABORT_XRI_CN completing on rpi x%x " 12686 "original iotag x%x, abort cmd iotag x%x " 12687 "status 0x%x, reason 0x%x\n", 12688 cmdiocb->iocb.un.acxri.abortContextTag, 12689 cmdiocb->iocb.un.acxri.abortIoTag, 12690 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12691 rspiocb->iocb.un.ulpWord[4]); 12692 lpfc_sli_release_iocbq(phba, cmdiocb); 12693 return; 12694 } 12695 12696 /** 12697 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12698 * @vport: Pointer to virtual port. 12699 * @tgt_id: SCSI ID of the target. 12700 * @lun_id: LUN ID of the scsi device. 12701 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12702 * 12703 * This function sends an abort command for every SCSI command 12704 * associated with the given virtual port pending on the ring 12705 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12706 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12707 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12708 * followed by lpfc_sli_validate_fcp_iocb. 12709 * 12710 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12711 * FCP iocbs associated with lun specified by tgt_id and lun_id 12712 * parameters 12713 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12714 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12715 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12716 * FCP iocbs associated with virtual port. 12717 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12718 * lpfc_sli4_calc_ring is used. 12719 * This function returns number of iocbs it failed to abort. 12720 * This function is called with no locks held. 12721 **/ 12722 int 12723 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12724 lpfc_ctx_cmd abort_cmd) 12725 { 12726 struct lpfc_hba *phba = vport->phba; 12727 struct lpfc_sli_ring *pring = NULL; 12728 struct lpfc_iocbq *iocbq; 12729 int errcnt = 0, ret_val = 0; 12730 unsigned long iflags; 12731 int i; 12732 void *fcp_cmpl = NULL; 12733 12734 /* all I/Os are in process of being flushed */ 12735 if (phba->hba_flag & HBA_IOQ_FLUSH) 12736 return errcnt; 12737 12738 for (i = 1; i <= phba->sli.last_iotag; i++) { 12739 iocbq = phba->sli.iocbq_lookup[i]; 12740 12741 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12742 continue; 12743 12744 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12745 abort_cmd) != 0) 12746 continue; 12747 12748 spin_lock_irqsave(&phba->hbalock, iflags); 12749 if (phba->sli_rev == LPFC_SLI_REV3) { 12750 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12751 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12752 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12753 pring = lpfc_sli4_calc_ring(phba, iocbq); 12754 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12755 } 12756 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12757 fcp_cmpl); 12758 spin_unlock_irqrestore(&phba->hbalock, iflags); 12759 if (ret_val != IOCB_SUCCESS) 12760 errcnt++; 12761 } 12762 12763 return errcnt; 12764 } 12765 12766 /** 12767 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12768 * @vport: Pointer to virtual port. 12769 * @pring: Pointer to driver SLI ring object. 12770 * @tgt_id: SCSI ID of the target. 12771 * @lun_id: LUN ID of the scsi device. 12772 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12773 * 12774 * This function sends an abort command for every SCSI command 12775 * associated with the given virtual port pending on the ring 12776 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12777 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12778 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12779 * followed by lpfc_sli_validate_fcp_iocb. 12780 * 12781 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12782 * FCP iocbs associated with lun specified by tgt_id and lun_id 12783 * parameters 12784 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12785 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12786 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12787 * FCP iocbs associated with virtual port. 12788 * This function returns number of iocbs it aborted . 12789 * This function is called with no locks held right after a taskmgmt 12790 * command is sent. 12791 **/ 12792 int 12793 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12794 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12795 { 12796 struct lpfc_hba *phba = vport->phba; 12797 struct lpfc_io_buf *lpfc_cmd; 12798 struct lpfc_iocbq *abtsiocbq; 12799 struct lpfc_nodelist *ndlp; 12800 struct lpfc_iocbq *iocbq; 12801 IOCB_t *icmd; 12802 int sum, i, ret_val; 12803 unsigned long iflags; 12804 struct lpfc_sli_ring *pring_s4 = NULL; 12805 12806 spin_lock_irqsave(&phba->hbalock, iflags); 12807 12808 /* all I/Os are in process of being flushed */ 12809 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12810 spin_unlock_irqrestore(&phba->hbalock, iflags); 12811 return 0; 12812 } 12813 sum = 0; 12814 12815 for (i = 1; i <= phba->sli.last_iotag; i++) { 12816 iocbq = phba->sli.iocbq_lookup[i]; 12817 12818 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12819 continue; 12820 12821 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12822 cmd) != 0) 12823 continue; 12824 12825 /* Guard against IO completion being called at same time */ 12826 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12827 spin_lock(&lpfc_cmd->buf_lock); 12828 12829 if (!lpfc_cmd->pCmd) { 12830 spin_unlock(&lpfc_cmd->buf_lock); 12831 continue; 12832 } 12833 12834 if (phba->sli_rev == LPFC_SLI_REV4) { 12835 pring_s4 = 12836 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12837 if (!pring_s4) { 12838 spin_unlock(&lpfc_cmd->buf_lock); 12839 continue; 12840 } 12841 /* Note: both hbalock and ring_lock must be set here */ 12842 spin_lock(&pring_s4->ring_lock); 12843 } 12844 12845 /* 12846 * If the iocbq is already being aborted, don't take a second 12847 * action, but do count it. 12848 */ 12849 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12850 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12851 if (phba->sli_rev == LPFC_SLI_REV4) 12852 spin_unlock(&pring_s4->ring_lock); 12853 spin_unlock(&lpfc_cmd->buf_lock); 12854 continue; 12855 } 12856 12857 /* issue ABTS for this IOCB based on iotag */ 12858 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12859 if (!abtsiocbq) { 12860 if (phba->sli_rev == LPFC_SLI_REV4) 12861 spin_unlock(&pring_s4->ring_lock); 12862 spin_unlock(&lpfc_cmd->buf_lock); 12863 continue; 12864 } 12865 12866 icmd = &iocbq->iocb; 12867 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12868 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12869 if (phba->sli_rev == LPFC_SLI_REV4) 12870 abtsiocbq->iocb.un.acxri.abortIoTag = 12871 iocbq->sli4_xritag; 12872 else 12873 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12874 abtsiocbq->iocb.ulpLe = 1; 12875 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12876 abtsiocbq->vport = vport; 12877 12878 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12879 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12880 if (iocbq->iocb_flag & LPFC_IO_FCP) 12881 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12882 if (iocbq->iocb_flag & LPFC_IO_FOF) 12883 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12884 12885 ndlp = lpfc_cmd->rdata->pnode; 12886 12887 if (lpfc_is_link_up(phba) && 12888 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12889 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12890 else 12891 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12892 12893 /* Setup callback routine and issue the command. */ 12894 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12895 12896 /* 12897 * Indicate the IO is being aborted by the driver and set 12898 * the caller's flag into the aborted IO. 12899 */ 12900 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12901 12902 if (phba->sli_rev == LPFC_SLI_REV4) { 12903 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12904 abtsiocbq, 0); 12905 spin_unlock(&pring_s4->ring_lock); 12906 } else { 12907 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12908 abtsiocbq, 0); 12909 } 12910 12911 spin_unlock(&lpfc_cmd->buf_lock); 12912 12913 if (ret_val == IOCB_ERROR) 12914 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12915 else 12916 sum++; 12917 } 12918 spin_unlock_irqrestore(&phba->hbalock, iflags); 12919 return sum; 12920 } 12921 12922 /** 12923 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12924 * @phba: Pointer to HBA context object. 12925 * @cmdiocbq: Pointer to command iocb. 12926 * @rspiocbq: Pointer to response iocb. 12927 * 12928 * This function is the completion handler for iocbs issued using 12929 * lpfc_sli_issue_iocb_wait function. This function is called by the 12930 * ring event handler function without any lock held. This function 12931 * can be called from both worker thread context and interrupt 12932 * context. This function also can be called from other thread which 12933 * cleans up the SLI layer objects. 12934 * This function copy the contents of the response iocb to the 12935 * response iocb memory object provided by the caller of 12936 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12937 * sleeps for the iocb completion. 12938 **/ 12939 static void 12940 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12941 struct lpfc_iocbq *cmdiocbq, 12942 struct lpfc_iocbq *rspiocbq) 12943 { 12944 wait_queue_head_t *pdone_q; 12945 unsigned long iflags; 12946 struct lpfc_io_buf *lpfc_cmd; 12947 12948 spin_lock_irqsave(&phba->hbalock, iflags); 12949 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12950 12951 /* 12952 * A time out has occurred for the iocb. If a time out 12953 * completion handler has been supplied, call it. Otherwise, 12954 * just free the iocbq. 12955 */ 12956 12957 spin_unlock_irqrestore(&phba->hbalock, iflags); 12958 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12959 cmdiocbq->wait_iocb_cmpl = NULL; 12960 if (cmdiocbq->iocb_cmpl) 12961 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12962 else 12963 lpfc_sli_release_iocbq(phba, cmdiocbq); 12964 return; 12965 } 12966 12967 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12968 if (cmdiocbq->context2 && rspiocbq) 12969 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12970 &rspiocbq->iocb, sizeof(IOCB_t)); 12971 12972 /* Set the exchange busy flag for task management commands */ 12973 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12974 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12975 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12976 cur_iocbq); 12977 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12978 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12979 else 12980 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12981 } 12982 12983 pdone_q = cmdiocbq->context_un.wait_queue; 12984 if (pdone_q) 12985 wake_up(pdone_q); 12986 spin_unlock_irqrestore(&phba->hbalock, iflags); 12987 return; 12988 } 12989 12990 /** 12991 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12992 * @phba: Pointer to HBA context object.. 12993 * @piocbq: Pointer to command iocb. 12994 * @flag: Flag to test. 12995 * 12996 * This routine grabs the hbalock and then test the iocb_flag to 12997 * see if the passed in flag is set. 12998 * Returns: 12999 * 1 if flag is set. 13000 * 0 if flag is not set. 13001 **/ 13002 static int 13003 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13004 struct lpfc_iocbq *piocbq, uint32_t flag) 13005 { 13006 unsigned long iflags; 13007 int ret; 13008 13009 spin_lock_irqsave(&phba->hbalock, iflags); 13010 ret = piocbq->iocb_flag & flag; 13011 spin_unlock_irqrestore(&phba->hbalock, iflags); 13012 return ret; 13013 13014 } 13015 13016 /** 13017 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13018 * @phba: Pointer to HBA context object.. 13019 * @ring_number: Ring number 13020 * @piocb: Pointer to command iocb. 13021 * @prspiocbq: Pointer to response iocb. 13022 * @timeout: Timeout in number of seconds. 13023 * 13024 * This function issues the iocb to firmware and waits for the 13025 * iocb to complete. The iocb_cmpl field of the shall be used 13026 * to handle iocbs which time out. If the field is NULL, the 13027 * function shall free the iocbq structure. If more clean up is 13028 * needed, the caller is expected to provide a completion function 13029 * that will provide the needed clean up. If the iocb command is 13030 * not completed within timeout seconds, the function will either 13031 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 13032 * completion function set in the iocb_cmpl field and then return 13033 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13034 * resources if this function returns IOCB_TIMEDOUT. 13035 * The function waits for the iocb completion using an 13036 * non-interruptible wait. 13037 * This function will sleep while waiting for iocb completion. 13038 * So, this function should not be called from any context which 13039 * does not allow sleeping. Due to the same reason, this function 13040 * cannot be called with interrupt disabled. 13041 * This function assumes that the iocb completions occur while 13042 * this function sleep. So, this function cannot be called from 13043 * the thread which process iocb completion for this ring. 13044 * This function clears the iocb_flag of the iocb object before 13045 * issuing the iocb and the iocb completion handler sets this 13046 * flag and wakes this thread when the iocb completes. 13047 * The contents of the response iocb will be copied to prspiocbq 13048 * by the completion handler when the command completes. 13049 * This function returns IOCB_SUCCESS when success. 13050 * This function is called with no lock held. 13051 **/ 13052 int 13053 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13054 uint32_t ring_number, 13055 struct lpfc_iocbq *piocb, 13056 struct lpfc_iocbq *prspiocbq, 13057 uint32_t timeout) 13058 { 13059 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13060 long timeleft, timeout_req = 0; 13061 int retval = IOCB_SUCCESS; 13062 uint32_t creg_val; 13063 struct lpfc_iocbq *iocb; 13064 int txq_cnt = 0; 13065 int txcmplq_cnt = 0; 13066 struct lpfc_sli_ring *pring; 13067 unsigned long iflags; 13068 bool iocb_completed = true; 13069 13070 if (phba->sli_rev >= LPFC_SLI_REV4) 13071 pring = lpfc_sli4_calc_ring(phba, piocb); 13072 else 13073 pring = &phba->sli.sli3_ring[ring_number]; 13074 /* 13075 * If the caller has provided a response iocbq buffer, then context2 13076 * is NULL or its an error. 13077 */ 13078 if (prspiocbq) { 13079 if (piocb->context2) 13080 return IOCB_ERROR; 13081 piocb->context2 = prspiocbq; 13082 } 13083 13084 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 13085 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 13086 piocb->context_un.wait_queue = &done_q; 13087 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13088 13089 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13090 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13091 return IOCB_ERROR; 13092 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13093 writel(creg_val, phba->HCregaddr); 13094 readl(phba->HCregaddr); /* flush */ 13095 } 13096 13097 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13098 SLI_IOCB_RET_IOCB); 13099 if (retval == IOCB_SUCCESS) { 13100 timeout_req = msecs_to_jiffies(timeout * 1000); 13101 timeleft = wait_event_timeout(done_q, 13102 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13103 timeout_req); 13104 spin_lock_irqsave(&phba->hbalock, iflags); 13105 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 13106 13107 /* 13108 * IOCB timed out. Inform the wake iocb wait 13109 * completion function and set local status 13110 */ 13111 13112 iocb_completed = false; 13113 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 13114 } 13115 spin_unlock_irqrestore(&phba->hbalock, iflags); 13116 if (iocb_completed) { 13117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13118 "0331 IOCB wake signaled\n"); 13119 /* Note: we are not indicating if the IOCB has a success 13120 * status or not - that's for the caller to check. 13121 * IOCB_SUCCESS means just that the command was sent and 13122 * completed. Not that it completed successfully. 13123 * */ 13124 } else if (timeleft == 0) { 13125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13126 "0338 IOCB wait timeout error - no " 13127 "wake response Data x%x\n", timeout); 13128 retval = IOCB_TIMEDOUT; 13129 } else { 13130 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13131 "0330 IOCB wake NOT set, " 13132 "Data x%x x%lx\n", 13133 timeout, (timeleft / jiffies)); 13134 retval = IOCB_TIMEDOUT; 13135 } 13136 } else if (retval == IOCB_BUSY) { 13137 if (phba->cfg_log_verbose & LOG_SLI) { 13138 list_for_each_entry(iocb, &pring->txq, list) { 13139 txq_cnt++; 13140 } 13141 list_for_each_entry(iocb, &pring->txcmplq, list) { 13142 txcmplq_cnt++; 13143 } 13144 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13145 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13146 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13147 } 13148 return retval; 13149 } else { 13150 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13151 "0332 IOCB wait issue failed, Data x%x\n", 13152 retval); 13153 retval = IOCB_ERROR; 13154 } 13155 13156 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13157 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13158 return IOCB_ERROR; 13159 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13160 writel(creg_val, phba->HCregaddr); 13161 readl(phba->HCregaddr); /* flush */ 13162 } 13163 13164 if (prspiocbq) 13165 piocb->context2 = NULL; 13166 13167 piocb->context_un.wait_queue = NULL; 13168 piocb->iocb_cmpl = NULL; 13169 return retval; 13170 } 13171 13172 /** 13173 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13174 * @phba: Pointer to HBA context object. 13175 * @pmboxq: Pointer to driver mailbox object. 13176 * @timeout: Timeout in number of seconds. 13177 * 13178 * This function issues the mailbox to firmware and waits for the 13179 * mailbox command to complete. If the mailbox command is not 13180 * completed within timeout seconds, it returns MBX_TIMEOUT. 13181 * The function waits for the mailbox completion using an 13182 * interruptible wait. If the thread is woken up due to a 13183 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13184 * should not free the mailbox resources, if this function returns 13185 * MBX_TIMEOUT. 13186 * This function will sleep while waiting for mailbox completion. 13187 * So, this function should not be called from any context which 13188 * does not allow sleeping. Due to the same reason, this function 13189 * cannot be called with interrupt disabled. 13190 * This function assumes that the mailbox completion occurs while 13191 * this function sleep. So, this function cannot be called from 13192 * the worker thread which processes mailbox completion. 13193 * This function is called in the context of HBA management 13194 * applications. 13195 * This function returns MBX_SUCCESS when successful. 13196 * This function is called with no lock held. 13197 **/ 13198 int 13199 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13200 uint32_t timeout) 13201 { 13202 struct completion mbox_done; 13203 int retval; 13204 unsigned long flag; 13205 13206 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13207 /* setup wake call as IOCB callback */ 13208 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13209 13210 /* setup context3 field to pass wait_queue pointer to wake function */ 13211 init_completion(&mbox_done); 13212 pmboxq->context3 = &mbox_done; 13213 /* now issue the command */ 13214 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13215 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13216 wait_for_completion_timeout(&mbox_done, 13217 msecs_to_jiffies(timeout * 1000)); 13218 13219 spin_lock_irqsave(&phba->hbalock, flag); 13220 pmboxq->context3 = NULL; 13221 /* 13222 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13223 * else do not free the resources. 13224 */ 13225 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13226 retval = MBX_SUCCESS; 13227 } else { 13228 retval = MBX_TIMEOUT; 13229 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13230 } 13231 spin_unlock_irqrestore(&phba->hbalock, flag); 13232 } 13233 return retval; 13234 } 13235 13236 /** 13237 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13238 * @phba: Pointer to HBA context. 13239 * @mbx_action: Mailbox shutdown options. 13240 * 13241 * This function is called to shutdown the driver's mailbox sub-system. 13242 * It first marks the mailbox sub-system is in a block state to prevent 13243 * the asynchronous mailbox command from issued off the pending mailbox 13244 * command queue. If the mailbox command sub-system shutdown is due to 13245 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13246 * the mailbox sub-system flush routine to forcefully bring down the 13247 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13248 * as with offline or HBA function reset), this routine will wait for the 13249 * outstanding mailbox command to complete before invoking the mailbox 13250 * sub-system flush routine to gracefully bring down mailbox sub-system. 13251 **/ 13252 void 13253 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13254 { 13255 struct lpfc_sli *psli = &phba->sli; 13256 unsigned long timeout; 13257 13258 if (mbx_action == LPFC_MBX_NO_WAIT) { 13259 /* delay 100ms for port state */ 13260 msleep(100); 13261 lpfc_sli_mbox_sys_flush(phba); 13262 return; 13263 } 13264 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13265 13266 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13267 local_bh_disable(); 13268 13269 spin_lock_irq(&phba->hbalock); 13270 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13271 13272 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13273 /* Determine how long we might wait for the active mailbox 13274 * command to be gracefully completed by firmware. 13275 */ 13276 if (phba->sli.mbox_active) 13277 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13278 phba->sli.mbox_active) * 13279 1000) + jiffies; 13280 spin_unlock_irq(&phba->hbalock); 13281 13282 /* Enable softirqs again, done with phba->hbalock */ 13283 local_bh_enable(); 13284 13285 while (phba->sli.mbox_active) { 13286 /* Check active mailbox complete status every 2ms */ 13287 msleep(2); 13288 if (time_after(jiffies, timeout)) 13289 /* Timeout, let the mailbox flush routine to 13290 * forcefully release active mailbox command 13291 */ 13292 break; 13293 } 13294 } else { 13295 spin_unlock_irq(&phba->hbalock); 13296 13297 /* Enable softirqs again, done with phba->hbalock */ 13298 local_bh_enable(); 13299 } 13300 13301 lpfc_sli_mbox_sys_flush(phba); 13302 } 13303 13304 /** 13305 * lpfc_sli_eratt_read - read sli-3 error attention events 13306 * @phba: Pointer to HBA context. 13307 * 13308 * This function is called to read the SLI3 device error attention registers 13309 * for possible error attention events. The caller must hold the hostlock 13310 * with spin_lock_irq(). 13311 * 13312 * This function returns 1 when there is Error Attention in the Host Attention 13313 * Register and returns 0 otherwise. 13314 **/ 13315 static int 13316 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13317 { 13318 uint32_t ha_copy; 13319 13320 /* Read chip Host Attention (HA) register */ 13321 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13322 goto unplug_err; 13323 13324 if (ha_copy & HA_ERATT) { 13325 /* Read host status register to retrieve error event */ 13326 if (lpfc_sli_read_hs(phba)) 13327 goto unplug_err; 13328 13329 /* Check if there is a deferred error condition is active */ 13330 if ((HS_FFER1 & phba->work_hs) && 13331 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13332 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13333 phba->hba_flag |= DEFER_ERATT; 13334 /* Clear all interrupt enable conditions */ 13335 writel(0, phba->HCregaddr); 13336 readl(phba->HCregaddr); 13337 } 13338 13339 /* Set the driver HA work bitmap */ 13340 phba->work_ha |= HA_ERATT; 13341 /* Indicate polling handles this ERATT */ 13342 phba->hba_flag |= HBA_ERATT_HANDLED; 13343 return 1; 13344 } 13345 return 0; 13346 13347 unplug_err: 13348 /* Set the driver HS work bitmap */ 13349 phba->work_hs |= UNPLUG_ERR; 13350 /* Set the driver HA work bitmap */ 13351 phba->work_ha |= HA_ERATT; 13352 /* Indicate polling handles this ERATT */ 13353 phba->hba_flag |= HBA_ERATT_HANDLED; 13354 return 1; 13355 } 13356 13357 /** 13358 * lpfc_sli4_eratt_read - read sli-4 error attention events 13359 * @phba: Pointer to HBA context. 13360 * 13361 * This function is called to read the SLI4 device error attention registers 13362 * for possible error attention events. The caller must hold the hostlock 13363 * with spin_lock_irq(). 13364 * 13365 * This function returns 1 when there is Error Attention in the Host Attention 13366 * Register and returns 0 otherwise. 13367 **/ 13368 static int 13369 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13370 { 13371 uint32_t uerr_sta_hi, uerr_sta_lo; 13372 uint32_t if_type, portsmphr; 13373 struct lpfc_register portstat_reg; 13374 13375 /* 13376 * For now, use the SLI4 device internal unrecoverable error 13377 * registers for error attention. This can be changed later. 13378 */ 13379 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13380 switch (if_type) { 13381 case LPFC_SLI_INTF_IF_TYPE_0: 13382 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13383 &uerr_sta_lo) || 13384 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13385 &uerr_sta_hi)) { 13386 phba->work_hs |= UNPLUG_ERR; 13387 phba->work_ha |= HA_ERATT; 13388 phba->hba_flag |= HBA_ERATT_HANDLED; 13389 return 1; 13390 } 13391 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13392 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13394 "1423 HBA Unrecoverable error: " 13395 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13396 "ue_mask_lo_reg=0x%x, " 13397 "ue_mask_hi_reg=0x%x\n", 13398 uerr_sta_lo, uerr_sta_hi, 13399 phba->sli4_hba.ue_mask_lo, 13400 phba->sli4_hba.ue_mask_hi); 13401 phba->work_status[0] = uerr_sta_lo; 13402 phba->work_status[1] = uerr_sta_hi; 13403 phba->work_ha |= HA_ERATT; 13404 phba->hba_flag |= HBA_ERATT_HANDLED; 13405 return 1; 13406 } 13407 break; 13408 case LPFC_SLI_INTF_IF_TYPE_2: 13409 case LPFC_SLI_INTF_IF_TYPE_6: 13410 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13411 &portstat_reg.word0) || 13412 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13413 &portsmphr)){ 13414 phba->work_hs |= UNPLUG_ERR; 13415 phba->work_ha |= HA_ERATT; 13416 phba->hba_flag |= HBA_ERATT_HANDLED; 13417 return 1; 13418 } 13419 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13420 phba->work_status[0] = 13421 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13422 phba->work_status[1] = 13423 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13425 "2885 Port Status Event: " 13426 "port status reg 0x%x, " 13427 "port smphr reg 0x%x, " 13428 "error 1=0x%x, error 2=0x%x\n", 13429 portstat_reg.word0, 13430 portsmphr, 13431 phba->work_status[0], 13432 phba->work_status[1]); 13433 phba->work_ha |= HA_ERATT; 13434 phba->hba_flag |= HBA_ERATT_HANDLED; 13435 return 1; 13436 } 13437 break; 13438 case LPFC_SLI_INTF_IF_TYPE_1: 13439 default: 13440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13441 "2886 HBA Error Attention on unsupported " 13442 "if type %d.", if_type); 13443 return 1; 13444 } 13445 13446 return 0; 13447 } 13448 13449 /** 13450 * lpfc_sli_check_eratt - check error attention events 13451 * @phba: Pointer to HBA context. 13452 * 13453 * This function is called from timer soft interrupt context to check HBA's 13454 * error attention register bit for error attention events. 13455 * 13456 * This function returns 1 when there is Error Attention in the Host Attention 13457 * Register and returns 0 otherwise. 13458 **/ 13459 int 13460 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13461 { 13462 uint32_t ha_copy; 13463 13464 /* If somebody is waiting to handle an eratt, don't process it 13465 * here. The brdkill function will do this. 13466 */ 13467 if (phba->link_flag & LS_IGNORE_ERATT) 13468 return 0; 13469 13470 /* Check if interrupt handler handles this ERATT */ 13471 spin_lock_irq(&phba->hbalock); 13472 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13473 /* Interrupt handler has handled ERATT */ 13474 spin_unlock_irq(&phba->hbalock); 13475 return 0; 13476 } 13477 13478 /* 13479 * If there is deferred error attention, do not check for error 13480 * attention 13481 */ 13482 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13483 spin_unlock_irq(&phba->hbalock); 13484 return 0; 13485 } 13486 13487 /* If PCI channel is offline, don't process it */ 13488 if (unlikely(pci_channel_offline(phba->pcidev))) { 13489 spin_unlock_irq(&phba->hbalock); 13490 return 0; 13491 } 13492 13493 switch (phba->sli_rev) { 13494 case LPFC_SLI_REV2: 13495 case LPFC_SLI_REV3: 13496 /* Read chip Host Attention (HA) register */ 13497 ha_copy = lpfc_sli_eratt_read(phba); 13498 break; 13499 case LPFC_SLI_REV4: 13500 /* Read device Uncoverable Error (UERR) registers */ 13501 ha_copy = lpfc_sli4_eratt_read(phba); 13502 break; 13503 default: 13504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13505 "0299 Invalid SLI revision (%d)\n", 13506 phba->sli_rev); 13507 ha_copy = 0; 13508 break; 13509 } 13510 spin_unlock_irq(&phba->hbalock); 13511 13512 return ha_copy; 13513 } 13514 13515 /** 13516 * lpfc_intr_state_check - Check device state for interrupt handling 13517 * @phba: Pointer to HBA context. 13518 * 13519 * This inline routine checks whether a device or its PCI slot is in a state 13520 * that the interrupt should be handled. 13521 * 13522 * This function returns 0 if the device or the PCI slot is in a state that 13523 * interrupt should be handled, otherwise -EIO. 13524 */ 13525 static inline int 13526 lpfc_intr_state_check(struct lpfc_hba *phba) 13527 { 13528 /* If the pci channel is offline, ignore all the interrupts */ 13529 if (unlikely(pci_channel_offline(phba->pcidev))) 13530 return -EIO; 13531 13532 /* Update device level interrupt statistics */ 13533 phba->sli.slistat.sli_intr++; 13534 13535 /* Ignore all interrupts during initialization. */ 13536 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13537 return -EIO; 13538 13539 return 0; 13540 } 13541 13542 /** 13543 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13544 * @irq: Interrupt number. 13545 * @dev_id: The device context pointer. 13546 * 13547 * This function is directly called from the PCI layer as an interrupt 13548 * service routine when device with SLI-3 interface spec is enabled with 13549 * MSI-X multi-message interrupt mode and there are slow-path events in 13550 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13551 * interrupt mode, this function is called as part of the device-level 13552 * interrupt handler. When the PCI slot is in error recovery or the HBA 13553 * is undergoing initialization, the interrupt handler will not process 13554 * the interrupt. The link attention and ELS ring attention events are 13555 * handled by the worker thread. The interrupt handler signals the worker 13556 * thread and returns for these events. This function is called without 13557 * any lock held. It gets the hbalock to access and update SLI data 13558 * structures. 13559 * 13560 * This function returns IRQ_HANDLED when interrupt is handled else it 13561 * returns IRQ_NONE. 13562 **/ 13563 irqreturn_t 13564 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13565 { 13566 struct lpfc_hba *phba; 13567 uint32_t ha_copy, hc_copy; 13568 uint32_t work_ha_copy; 13569 unsigned long status; 13570 unsigned long iflag; 13571 uint32_t control; 13572 13573 MAILBOX_t *mbox, *pmbox; 13574 struct lpfc_vport *vport; 13575 struct lpfc_nodelist *ndlp; 13576 struct lpfc_dmabuf *mp; 13577 LPFC_MBOXQ_t *pmb; 13578 int rc; 13579 13580 /* 13581 * Get the driver's phba structure from the dev_id and 13582 * assume the HBA is not interrupting. 13583 */ 13584 phba = (struct lpfc_hba *)dev_id; 13585 13586 if (unlikely(!phba)) 13587 return IRQ_NONE; 13588 13589 /* 13590 * Stuff needs to be attented to when this function is invoked as an 13591 * individual interrupt handler in MSI-X multi-message interrupt mode 13592 */ 13593 if (phba->intr_type == MSIX) { 13594 /* Check device state for handling interrupt */ 13595 if (lpfc_intr_state_check(phba)) 13596 return IRQ_NONE; 13597 /* Need to read HA REG for slow-path events */ 13598 spin_lock_irqsave(&phba->hbalock, iflag); 13599 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13600 goto unplug_error; 13601 /* If somebody is waiting to handle an eratt don't process it 13602 * here. The brdkill function will do this. 13603 */ 13604 if (phba->link_flag & LS_IGNORE_ERATT) 13605 ha_copy &= ~HA_ERATT; 13606 /* Check the need for handling ERATT in interrupt handler */ 13607 if (ha_copy & HA_ERATT) { 13608 if (phba->hba_flag & HBA_ERATT_HANDLED) 13609 /* ERATT polling has handled ERATT */ 13610 ha_copy &= ~HA_ERATT; 13611 else 13612 /* Indicate interrupt handler handles ERATT */ 13613 phba->hba_flag |= HBA_ERATT_HANDLED; 13614 } 13615 13616 /* 13617 * If there is deferred error attention, do not check for any 13618 * interrupt. 13619 */ 13620 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13621 spin_unlock_irqrestore(&phba->hbalock, iflag); 13622 return IRQ_NONE; 13623 } 13624 13625 /* Clear up only attention source related to slow-path */ 13626 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13627 goto unplug_error; 13628 13629 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13630 HC_LAINT_ENA | HC_ERINT_ENA), 13631 phba->HCregaddr); 13632 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13633 phba->HAregaddr); 13634 writel(hc_copy, phba->HCregaddr); 13635 readl(phba->HAregaddr); /* flush */ 13636 spin_unlock_irqrestore(&phba->hbalock, iflag); 13637 } else 13638 ha_copy = phba->ha_copy; 13639 13640 work_ha_copy = ha_copy & phba->work_ha_mask; 13641 13642 if (work_ha_copy) { 13643 if (work_ha_copy & HA_LATT) { 13644 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13645 /* 13646 * Turn off Link Attention interrupts 13647 * until CLEAR_LA done 13648 */ 13649 spin_lock_irqsave(&phba->hbalock, iflag); 13650 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13651 if (lpfc_readl(phba->HCregaddr, &control)) 13652 goto unplug_error; 13653 control &= ~HC_LAINT_ENA; 13654 writel(control, phba->HCregaddr); 13655 readl(phba->HCregaddr); /* flush */ 13656 spin_unlock_irqrestore(&phba->hbalock, iflag); 13657 } 13658 else 13659 work_ha_copy &= ~HA_LATT; 13660 } 13661 13662 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13663 /* 13664 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13665 * the only slow ring. 13666 */ 13667 status = (work_ha_copy & 13668 (HA_RXMASK << (4*LPFC_ELS_RING))); 13669 status >>= (4*LPFC_ELS_RING); 13670 if (status & HA_RXMASK) { 13671 spin_lock_irqsave(&phba->hbalock, iflag); 13672 if (lpfc_readl(phba->HCregaddr, &control)) 13673 goto unplug_error; 13674 13675 lpfc_debugfs_slow_ring_trc(phba, 13676 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13677 control, status, 13678 (uint32_t)phba->sli.slistat.sli_intr); 13679 13680 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13681 lpfc_debugfs_slow_ring_trc(phba, 13682 "ISR Disable ring:" 13683 "pwork:x%x hawork:x%x wait:x%x", 13684 phba->work_ha, work_ha_copy, 13685 (uint32_t)((unsigned long) 13686 &phba->work_waitq)); 13687 13688 control &= 13689 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13690 writel(control, phba->HCregaddr); 13691 readl(phba->HCregaddr); /* flush */ 13692 } 13693 else { 13694 lpfc_debugfs_slow_ring_trc(phba, 13695 "ISR slow ring: pwork:" 13696 "x%x hawork:x%x wait:x%x", 13697 phba->work_ha, work_ha_copy, 13698 (uint32_t)((unsigned long) 13699 &phba->work_waitq)); 13700 } 13701 spin_unlock_irqrestore(&phba->hbalock, iflag); 13702 } 13703 } 13704 spin_lock_irqsave(&phba->hbalock, iflag); 13705 if (work_ha_copy & HA_ERATT) { 13706 if (lpfc_sli_read_hs(phba)) 13707 goto unplug_error; 13708 /* 13709 * Check if there is a deferred error condition 13710 * is active 13711 */ 13712 if ((HS_FFER1 & phba->work_hs) && 13713 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13714 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13715 phba->work_hs)) { 13716 phba->hba_flag |= DEFER_ERATT; 13717 /* Clear all interrupt enable conditions */ 13718 writel(0, phba->HCregaddr); 13719 readl(phba->HCregaddr); 13720 } 13721 } 13722 13723 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13724 pmb = phba->sli.mbox_active; 13725 pmbox = &pmb->u.mb; 13726 mbox = phba->mbox; 13727 vport = pmb->vport; 13728 13729 /* First check out the status word */ 13730 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13731 if (pmbox->mbxOwner != OWN_HOST) { 13732 spin_unlock_irqrestore(&phba->hbalock, iflag); 13733 /* 13734 * Stray Mailbox Interrupt, mbxCommand <cmd> 13735 * mbxStatus <status> 13736 */ 13737 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13738 "(%d):0304 Stray Mailbox " 13739 "Interrupt mbxCommand x%x " 13740 "mbxStatus x%x\n", 13741 (vport ? vport->vpi : 0), 13742 pmbox->mbxCommand, 13743 pmbox->mbxStatus); 13744 /* clear mailbox attention bit */ 13745 work_ha_copy &= ~HA_MBATT; 13746 } else { 13747 phba->sli.mbox_active = NULL; 13748 spin_unlock_irqrestore(&phba->hbalock, iflag); 13749 phba->last_completion_time = jiffies; 13750 del_timer(&phba->sli.mbox_tmo); 13751 if (pmb->mbox_cmpl) { 13752 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13753 MAILBOX_CMD_SIZE); 13754 if (pmb->out_ext_byte_len && 13755 pmb->ctx_buf) 13756 lpfc_sli_pcimem_bcopy( 13757 phba->mbox_ext, 13758 pmb->ctx_buf, 13759 pmb->out_ext_byte_len); 13760 } 13761 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13762 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13763 13764 lpfc_debugfs_disc_trc(vport, 13765 LPFC_DISC_TRC_MBOX_VPORT, 13766 "MBOX dflt rpi: : " 13767 "status:x%x rpi:x%x", 13768 (uint32_t)pmbox->mbxStatus, 13769 pmbox->un.varWords[0], 0); 13770 13771 if (!pmbox->mbxStatus) { 13772 mp = (struct lpfc_dmabuf *) 13773 (pmb->ctx_buf); 13774 ndlp = (struct lpfc_nodelist *) 13775 pmb->ctx_ndlp; 13776 13777 /* Reg_LOGIN of dflt RPI was 13778 * successful. new lets get 13779 * rid of the RPI using the 13780 * same mbox buffer. 13781 */ 13782 lpfc_unreg_login(phba, 13783 vport->vpi, 13784 pmbox->un.varWords[0], 13785 pmb); 13786 pmb->mbox_cmpl = 13787 lpfc_mbx_cmpl_dflt_rpi; 13788 pmb->ctx_buf = mp; 13789 pmb->ctx_ndlp = ndlp; 13790 pmb->vport = vport; 13791 rc = lpfc_sli_issue_mbox(phba, 13792 pmb, 13793 MBX_NOWAIT); 13794 if (rc != MBX_BUSY) 13795 lpfc_printf_log(phba, 13796 KERN_ERR, 13797 LOG_TRACE_EVENT, 13798 "0350 rc should have" 13799 "been MBX_BUSY\n"); 13800 if (rc != MBX_NOT_FINISHED) 13801 goto send_current_mbox; 13802 } 13803 } 13804 spin_lock_irqsave( 13805 &phba->pport->work_port_lock, 13806 iflag); 13807 phba->pport->work_port_events &= 13808 ~WORKER_MBOX_TMO; 13809 spin_unlock_irqrestore( 13810 &phba->pport->work_port_lock, 13811 iflag); 13812 13813 /* Do NOT queue MBX_HEARTBEAT to the worker 13814 * thread for processing. 13815 */ 13816 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13817 /* Process mbox now */ 13818 phba->sli.mbox_active = NULL; 13819 phba->sli.sli_flag &= 13820 ~LPFC_SLI_MBOX_ACTIVE; 13821 if (pmb->mbox_cmpl) 13822 pmb->mbox_cmpl(phba, pmb); 13823 } else { 13824 /* Queue to worker thread to process */ 13825 lpfc_mbox_cmpl_put(phba, pmb); 13826 } 13827 } 13828 } else 13829 spin_unlock_irqrestore(&phba->hbalock, iflag); 13830 13831 if ((work_ha_copy & HA_MBATT) && 13832 (phba->sli.mbox_active == NULL)) { 13833 send_current_mbox: 13834 /* Process next mailbox command if there is one */ 13835 do { 13836 rc = lpfc_sli_issue_mbox(phba, NULL, 13837 MBX_NOWAIT); 13838 } while (rc == MBX_NOT_FINISHED); 13839 if (rc != MBX_SUCCESS) 13840 lpfc_printf_log(phba, KERN_ERR, 13841 LOG_TRACE_EVENT, 13842 "0349 rc should be " 13843 "MBX_SUCCESS\n"); 13844 } 13845 13846 spin_lock_irqsave(&phba->hbalock, iflag); 13847 phba->work_ha |= work_ha_copy; 13848 spin_unlock_irqrestore(&phba->hbalock, iflag); 13849 lpfc_worker_wake_up(phba); 13850 } 13851 return IRQ_HANDLED; 13852 unplug_error: 13853 spin_unlock_irqrestore(&phba->hbalock, iflag); 13854 return IRQ_HANDLED; 13855 13856 } /* lpfc_sli_sp_intr_handler */ 13857 13858 /** 13859 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13860 * @irq: Interrupt number. 13861 * @dev_id: The device context pointer. 13862 * 13863 * This function is directly called from the PCI layer as an interrupt 13864 * service routine when device with SLI-3 interface spec is enabled with 13865 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13866 * ring event in the HBA. However, when the device is enabled with either 13867 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13868 * device-level interrupt handler. When the PCI slot is in error recovery 13869 * or the HBA is undergoing initialization, the interrupt handler will not 13870 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13871 * the intrrupt context. This function is called without any lock held. 13872 * It gets the hbalock to access and update SLI data structures. 13873 * 13874 * This function returns IRQ_HANDLED when interrupt is handled else it 13875 * returns IRQ_NONE. 13876 **/ 13877 irqreturn_t 13878 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13879 { 13880 struct lpfc_hba *phba; 13881 uint32_t ha_copy; 13882 unsigned long status; 13883 unsigned long iflag; 13884 struct lpfc_sli_ring *pring; 13885 13886 /* Get the driver's phba structure from the dev_id and 13887 * assume the HBA is not interrupting. 13888 */ 13889 phba = (struct lpfc_hba *) dev_id; 13890 13891 if (unlikely(!phba)) 13892 return IRQ_NONE; 13893 13894 /* 13895 * Stuff needs to be attented to when this function is invoked as an 13896 * individual interrupt handler in MSI-X multi-message interrupt mode 13897 */ 13898 if (phba->intr_type == MSIX) { 13899 /* Check device state for handling interrupt */ 13900 if (lpfc_intr_state_check(phba)) 13901 return IRQ_NONE; 13902 /* Need to read HA REG for FCP ring and other ring events */ 13903 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13904 return IRQ_HANDLED; 13905 /* Clear up only attention source related to fast-path */ 13906 spin_lock_irqsave(&phba->hbalock, iflag); 13907 /* 13908 * If there is deferred error attention, do not check for 13909 * any interrupt. 13910 */ 13911 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13912 spin_unlock_irqrestore(&phba->hbalock, iflag); 13913 return IRQ_NONE; 13914 } 13915 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13916 phba->HAregaddr); 13917 readl(phba->HAregaddr); /* flush */ 13918 spin_unlock_irqrestore(&phba->hbalock, iflag); 13919 } else 13920 ha_copy = phba->ha_copy; 13921 13922 /* 13923 * Process all events on FCP ring. Take the optimized path for FCP IO. 13924 */ 13925 ha_copy &= ~(phba->work_ha_mask); 13926 13927 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13928 status >>= (4*LPFC_FCP_RING); 13929 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13930 if (status & HA_RXMASK) 13931 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13932 13933 if (phba->cfg_multi_ring_support == 2) { 13934 /* 13935 * Process all events on extra ring. Take the optimized path 13936 * for extra ring IO. 13937 */ 13938 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13939 status >>= (4*LPFC_EXTRA_RING); 13940 if (status & HA_RXMASK) { 13941 lpfc_sli_handle_fast_ring_event(phba, 13942 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13943 status); 13944 } 13945 } 13946 return IRQ_HANDLED; 13947 } /* lpfc_sli_fp_intr_handler */ 13948 13949 /** 13950 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13951 * @irq: Interrupt number. 13952 * @dev_id: The device context pointer. 13953 * 13954 * This function is the HBA device-level interrupt handler to device with 13955 * SLI-3 interface spec, called from the PCI layer when either MSI or 13956 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13957 * requires driver attention. This function invokes the slow-path interrupt 13958 * attention handling function and fast-path interrupt attention handling 13959 * function in turn to process the relevant HBA attention events. This 13960 * function is called without any lock held. It gets the hbalock to access 13961 * and update SLI data structures. 13962 * 13963 * This function returns IRQ_HANDLED when interrupt is handled, else it 13964 * returns IRQ_NONE. 13965 **/ 13966 irqreturn_t 13967 lpfc_sli_intr_handler(int irq, void *dev_id) 13968 { 13969 struct lpfc_hba *phba; 13970 irqreturn_t sp_irq_rc, fp_irq_rc; 13971 unsigned long status1, status2; 13972 uint32_t hc_copy; 13973 13974 /* 13975 * Get the driver's phba structure from the dev_id and 13976 * assume the HBA is not interrupting. 13977 */ 13978 phba = (struct lpfc_hba *) dev_id; 13979 13980 if (unlikely(!phba)) 13981 return IRQ_NONE; 13982 13983 /* Check device state for handling interrupt */ 13984 if (lpfc_intr_state_check(phba)) 13985 return IRQ_NONE; 13986 13987 spin_lock(&phba->hbalock); 13988 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13989 spin_unlock(&phba->hbalock); 13990 return IRQ_HANDLED; 13991 } 13992 13993 if (unlikely(!phba->ha_copy)) { 13994 spin_unlock(&phba->hbalock); 13995 return IRQ_NONE; 13996 } else if (phba->ha_copy & HA_ERATT) { 13997 if (phba->hba_flag & HBA_ERATT_HANDLED) 13998 /* ERATT polling has handled ERATT */ 13999 phba->ha_copy &= ~HA_ERATT; 14000 else 14001 /* Indicate interrupt handler handles ERATT */ 14002 phba->hba_flag |= HBA_ERATT_HANDLED; 14003 } 14004 14005 /* 14006 * If there is deferred error attention, do not check for any interrupt. 14007 */ 14008 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14009 spin_unlock(&phba->hbalock); 14010 return IRQ_NONE; 14011 } 14012 14013 /* Clear attention sources except link and error attentions */ 14014 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14015 spin_unlock(&phba->hbalock); 14016 return IRQ_HANDLED; 14017 } 14018 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14019 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14020 phba->HCregaddr); 14021 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14022 writel(hc_copy, phba->HCregaddr); 14023 readl(phba->HAregaddr); /* flush */ 14024 spin_unlock(&phba->hbalock); 14025 14026 /* 14027 * Invokes slow-path host attention interrupt handling as appropriate. 14028 */ 14029 14030 /* status of events with mailbox and link attention */ 14031 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14032 14033 /* status of events with ELS ring */ 14034 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14035 status2 >>= (4*LPFC_ELS_RING); 14036 14037 if (status1 || (status2 & HA_RXMASK)) 14038 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14039 else 14040 sp_irq_rc = IRQ_NONE; 14041 14042 /* 14043 * Invoke fast-path host attention interrupt handling as appropriate. 14044 */ 14045 14046 /* status of events with FCP ring */ 14047 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14048 status1 >>= (4*LPFC_FCP_RING); 14049 14050 /* status of events with extra ring */ 14051 if (phba->cfg_multi_ring_support == 2) { 14052 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14053 status2 >>= (4*LPFC_EXTRA_RING); 14054 } else 14055 status2 = 0; 14056 14057 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14058 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14059 else 14060 fp_irq_rc = IRQ_NONE; 14061 14062 /* Return device-level interrupt handling status */ 14063 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14064 } /* lpfc_sli_intr_handler */ 14065 14066 /** 14067 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14068 * @phba: pointer to lpfc hba data structure. 14069 * 14070 * This routine is invoked by the worker thread to process all the pending 14071 * SLI4 els abort xri events. 14072 **/ 14073 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14074 { 14075 struct lpfc_cq_event *cq_event; 14076 unsigned long iflags; 14077 14078 /* First, declare the els xri abort event has been handled */ 14079 spin_lock_irqsave(&phba->hbalock, iflags); 14080 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14081 spin_unlock_irqrestore(&phba->hbalock, iflags); 14082 14083 /* Now, handle all the els xri abort events */ 14084 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14085 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14086 /* Get the first event from the head of the event queue */ 14087 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14088 cq_event, struct lpfc_cq_event, list); 14089 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14090 iflags); 14091 /* Notify aborted XRI for ELS work queue */ 14092 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14093 14094 /* Free the event processed back to the free pool */ 14095 lpfc_sli4_cq_event_release(phba, cq_event); 14096 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14097 iflags); 14098 } 14099 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14100 } 14101 14102 /** 14103 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 14104 * @phba: pointer to lpfc hba data structure 14105 * @pIocbIn: pointer to the rspiocbq 14106 * @pIocbOut: pointer to the cmdiocbq 14107 * @wcqe: pointer to the complete wcqe 14108 * 14109 * This routine transfers the fields of a command iocbq to a response iocbq 14110 * by copying all the IOCB fields from command iocbq and transferring the 14111 * completion status information from the complete wcqe. 14112 **/ 14113 static void 14114 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 14115 struct lpfc_iocbq *pIocbIn, 14116 struct lpfc_iocbq *pIocbOut, 14117 struct lpfc_wcqe_complete *wcqe) 14118 { 14119 int numBdes, i; 14120 unsigned long iflags; 14121 uint32_t status, max_response; 14122 struct lpfc_dmabuf *dmabuf; 14123 struct ulp_bde64 *bpl, bde; 14124 size_t offset = offsetof(struct lpfc_iocbq, iocb); 14125 14126 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 14127 sizeof(struct lpfc_iocbq) - offset); 14128 /* Map WCQE parameters into irspiocb parameters */ 14129 status = bf_get(lpfc_wcqe_c_status, wcqe); 14130 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 14131 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 14132 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 14133 pIocbIn->iocb.un.fcpi.fcpi_parm = 14134 pIocbOut->iocb.un.fcpi.fcpi_parm - 14135 wcqe->total_data_placed; 14136 else 14137 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14138 else { 14139 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14140 switch (pIocbOut->iocb.ulpCommand) { 14141 case CMD_ELS_REQUEST64_CR: 14142 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14143 bpl = (struct ulp_bde64 *)dmabuf->virt; 14144 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 14145 max_response = bde.tus.f.bdeSize; 14146 break; 14147 case CMD_GEN_REQUEST64_CR: 14148 max_response = 0; 14149 if (!pIocbOut->context3) 14150 break; 14151 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 14152 sizeof(struct ulp_bde64); 14153 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14154 bpl = (struct ulp_bde64 *)dmabuf->virt; 14155 for (i = 0; i < numBdes; i++) { 14156 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 14157 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 14158 max_response += bde.tus.f.bdeSize; 14159 } 14160 break; 14161 default: 14162 max_response = wcqe->total_data_placed; 14163 break; 14164 } 14165 if (max_response < wcqe->total_data_placed) 14166 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 14167 else 14168 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 14169 wcqe->total_data_placed; 14170 } 14171 14172 /* Convert BG errors for completion status */ 14173 if (status == CQE_STATUS_DI_ERROR) { 14174 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 14175 14176 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 14177 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 14178 else 14179 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 14180 14181 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 14182 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 14183 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14184 BGS_GUARD_ERR_MASK; 14185 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 14186 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14187 BGS_APPTAG_ERR_MASK; 14188 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 14189 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14190 BGS_REFTAG_ERR_MASK; 14191 14192 /* Check to see if there was any good data before the error */ 14193 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 14194 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14195 BGS_HI_WATER_MARK_PRESENT_MASK; 14196 pIocbIn->iocb.unsli3.sli3_bg.bghm = 14197 wcqe->total_data_placed; 14198 } 14199 14200 /* 14201 * Set ALL the error bits to indicate we don't know what 14202 * type of error it is. 14203 */ 14204 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 14205 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14206 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 14207 BGS_GUARD_ERR_MASK); 14208 } 14209 14210 /* Pick up HBA exchange busy condition */ 14211 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14212 spin_lock_irqsave(&phba->hbalock, iflags); 14213 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 14214 spin_unlock_irqrestore(&phba->hbalock, iflags); 14215 } 14216 } 14217 14218 /** 14219 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 14220 * @phba: Pointer to HBA context object. 14221 * @irspiocbq: Pointer to work-queue completion queue entry. 14222 * 14223 * This routine handles an ELS work-queue completion event and construct 14224 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 14225 * discovery engine to handle. 14226 * 14227 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14228 **/ 14229 static struct lpfc_iocbq * 14230 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 14231 struct lpfc_iocbq *irspiocbq) 14232 { 14233 struct lpfc_sli_ring *pring; 14234 struct lpfc_iocbq *cmdiocbq; 14235 struct lpfc_wcqe_complete *wcqe; 14236 unsigned long iflags; 14237 14238 pring = lpfc_phba_elsring(phba); 14239 if (unlikely(!pring)) 14240 return NULL; 14241 14242 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14243 pring->stats.iocb_event++; 14244 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14245 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14246 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14247 if (unlikely(!cmdiocbq)) { 14248 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14249 "0386 ELS complete with no corresponding " 14250 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14251 wcqe->word0, wcqe->total_data_placed, 14252 wcqe->parameter, wcqe->word3); 14253 lpfc_sli_release_iocbq(phba, irspiocbq); 14254 return NULL; 14255 } 14256 14257 spin_lock_irqsave(&pring->ring_lock, iflags); 14258 /* Put the iocb back on the txcmplq */ 14259 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14260 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14261 14262 /* Fake the irspiocbq and copy necessary response information */ 14263 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 14264 14265 return irspiocbq; 14266 } 14267 14268 inline struct lpfc_cq_event * 14269 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14270 { 14271 struct lpfc_cq_event *cq_event; 14272 14273 /* Allocate a new internal CQ_EVENT entry */ 14274 cq_event = lpfc_sli4_cq_event_alloc(phba); 14275 if (!cq_event) { 14276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14277 "0602 Failed to alloc CQ_EVENT entry\n"); 14278 return NULL; 14279 } 14280 14281 /* Move the CQE into the event */ 14282 memcpy(&cq_event->cqe, entry, size); 14283 return cq_event; 14284 } 14285 14286 /** 14287 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14288 * @phba: Pointer to HBA context object. 14289 * @mcqe: Pointer to mailbox completion queue entry. 14290 * 14291 * This routine process a mailbox completion queue entry with asynchronous 14292 * event. 14293 * 14294 * Return: true if work posted to worker thread, otherwise false. 14295 **/ 14296 static bool 14297 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14298 { 14299 struct lpfc_cq_event *cq_event; 14300 unsigned long iflags; 14301 14302 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14303 "0392 Async Event: word0:x%x, word1:x%x, " 14304 "word2:x%x, word3:x%x\n", mcqe->word0, 14305 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14306 14307 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14308 if (!cq_event) 14309 return false; 14310 14311 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14312 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14313 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14314 14315 /* Set the async event flag */ 14316 spin_lock_irqsave(&phba->hbalock, iflags); 14317 phba->hba_flag |= ASYNC_EVENT; 14318 spin_unlock_irqrestore(&phba->hbalock, iflags); 14319 14320 return true; 14321 } 14322 14323 /** 14324 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14325 * @phba: Pointer to HBA context object. 14326 * @mcqe: Pointer to mailbox completion queue entry. 14327 * 14328 * This routine process a mailbox completion queue entry with mailbox 14329 * completion event. 14330 * 14331 * Return: true if work posted to worker thread, otherwise false. 14332 **/ 14333 static bool 14334 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14335 { 14336 uint32_t mcqe_status; 14337 MAILBOX_t *mbox, *pmbox; 14338 struct lpfc_mqe *mqe; 14339 struct lpfc_vport *vport; 14340 struct lpfc_nodelist *ndlp; 14341 struct lpfc_dmabuf *mp; 14342 unsigned long iflags; 14343 LPFC_MBOXQ_t *pmb; 14344 bool workposted = false; 14345 int rc; 14346 14347 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14348 if (!bf_get(lpfc_trailer_completed, mcqe)) 14349 goto out_no_mqe_complete; 14350 14351 /* Get the reference to the active mbox command */ 14352 spin_lock_irqsave(&phba->hbalock, iflags); 14353 pmb = phba->sli.mbox_active; 14354 if (unlikely(!pmb)) { 14355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14356 "1832 No pending MBOX command to handle\n"); 14357 spin_unlock_irqrestore(&phba->hbalock, iflags); 14358 goto out_no_mqe_complete; 14359 } 14360 spin_unlock_irqrestore(&phba->hbalock, iflags); 14361 mqe = &pmb->u.mqe; 14362 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14363 mbox = phba->mbox; 14364 vport = pmb->vport; 14365 14366 /* Reset heartbeat timer */ 14367 phba->last_completion_time = jiffies; 14368 del_timer(&phba->sli.mbox_tmo); 14369 14370 /* Move mbox data to caller's mailbox region, do endian swapping */ 14371 if (pmb->mbox_cmpl && mbox) 14372 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14373 14374 /* 14375 * For mcqe errors, conditionally move a modified error code to 14376 * the mbox so that the error will not be missed. 14377 */ 14378 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14379 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14380 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14381 bf_set(lpfc_mqe_status, mqe, 14382 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14383 } 14384 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14385 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14386 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14387 "MBOX dflt rpi: status:x%x rpi:x%x", 14388 mcqe_status, 14389 pmbox->un.varWords[0], 0); 14390 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14391 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14392 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14393 14394 /* Reg_LOGIN of dflt RPI was successful. Mark the 14395 * node as having an UNREG_LOGIN in progress to stop 14396 * an unsolicited PLOGI from the same NPortId from 14397 * starting another mailbox transaction. 14398 */ 14399 spin_lock_irqsave(&ndlp->lock, iflags); 14400 ndlp->nlp_flag |= NLP_UNREG_INP; 14401 spin_unlock_irqrestore(&ndlp->lock, iflags); 14402 lpfc_unreg_login(phba, vport->vpi, 14403 pmbox->un.varWords[0], pmb); 14404 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14405 pmb->ctx_buf = mp; 14406 14407 /* No reference taken here. This is a default 14408 * RPI reg/immediate unreg cycle. The reference was 14409 * taken in the reg rpi path and is released when 14410 * this mailbox completes. 14411 */ 14412 pmb->ctx_ndlp = ndlp; 14413 pmb->vport = vport; 14414 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14415 if (rc != MBX_BUSY) 14416 lpfc_printf_log(phba, KERN_ERR, 14417 LOG_TRACE_EVENT, 14418 "0385 rc should " 14419 "have been MBX_BUSY\n"); 14420 if (rc != MBX_NOT_FINISHED) 14421 goto send_current_mbox; 14422 } 14423 } 14424 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14425 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14426 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14427 14428 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14429 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14430 spin_lock_irqsave(&phba->hbalock, iflags); 14431 /* Release the mailbox command posting token */ 14432 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14433 phba->sli.mbox_active = NULL; 14434 if (bf_get(lpfc_trailer_consumed, mcqe)) 14435 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14436 spin_unlock_irqrestore(&phba->hbalock, iflags); 14437 14438 /* Post the next mbox command, if there is one */ 14439 lpfc_sli4_post_async_mbox(phba); 14440 14441 /* Process cmpl now */ 14442 if (pmb->mbox_cmpl) 14443 pmb->mbox_cmpl(phba, pmb); 14444 return false; 14445 } 14446 14447 /* There is mailbox completion work to queue to the worker thread */ 14448 spin_lock_irqsave(&phba->hbalock, iflags); 14449 __lpfc_mbox_cmpl_put(phba, pmb); 14450 phba->work_ha |= HA_MBATT; 14451 spin_unlock_irqrestore(&phba->hbalock, iflags); 14452 workposted = true; 14453 14454 send_current_mbox: 14455 spin_lock_irqsave(&phba->hbalock, iflags); 14456 /* Release the mailbox command posting token */ 14457 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14458 /* Setting active mailbox pointer need to be in sync to flag clear */ 14459 phba->sli.mbox_active = NULL; 14460 if (bf_get(lpfc_trailer_consumed, mcqe)) 14461 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14462 spin_unlock_irqrestore(&phba->hbalock, iflags); 14463 /* Wake up worker thread to post the next pending mailbox command */ 14464 lpfc_worker_wake_up(phba); 14465 return workposted; 14466 14467 out_no_mqe_complete: 14468 spin_lock_irqsave(&phba->hbalock, iflags); 14469 if (bf_get(lpfc_trailer_consumed, mcqe)) 14470 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14471 spin_unlock_irqrestore(&phba->hbalock, iflags); 14472 return false; 14473 } 14474 14475 /** 14476 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14477 * @phba: Pointer to HBA context object. 14478 * @cq: Pointer to associated CQ 14479 * @cqe: Pointer to mailbox completion queue entry. 14480 * 14481 * This routine process a mailbox completion queue entry, it invokes the 14482 * proper mailbox complete handling or asynchronous event handling routine 14483 * according to the MCQE's async bit. 14484 * 14485 * Return: true if work posted to worker thread, otherwise false. 14486 **/ 14487 static bool 14488 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14489 struct lpfc_cqe *cqe) 14490 { 14491 struct lpfc_mcqe mcqe; 14492 bool workposted; 14493 14494 cq->CQ_mbox++; 14495 14496 /* Copy the mailbox MCQE and convert endian order as needed */ 14497 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14498 14499 /* Invoke the proper event handling routine */ 14500 if (!bf_get(lpfc_trailer_async, &mcqe)) 14501 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14502 else 14503 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14504 return workposted; 14505 } 14506 14507 /** 14508 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14509 * @phba: Pointer to HBA context object. 14510 * @cq: Pointer to associated CQ 14511 * @wcqe: Pointer to work-queue completion queue entry. 14512 * 14513 * This routine handles an ELS work-queue completion event. 14514 * 14515 * Return: true if work posted to worker thread, otherwise false. 14516 **/ 14517 static bool 14518 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14519 struct lpfc_wcqe_complete *wcqe) 14520 { 14521 struct lpfc_iocbq *irspiocbq; 14522 unsigned long iflags; 14523 struct lpfc_sli_ring *pring = cq->pring; 14524 int txq_cnt = 0; 14525 int txcmplq_cnt = 0; 14526 14527 /* Check for response status */ 14528 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14529 /* Log the error status */ 14530 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14531 "0357 ELS CQE error: status=x%x: " 14532 "CQE: %08x %08x %08x %08x\n", 14533 bf_get(lpfc_wcqe_c_status, wcqe), 14534 wcqe->word0, wcqe->total_data_placed, 14535 wcqe->parameter, wcqe->word3); 14536 } 14537 14538 /* Get an irspiocbq for later ELS response processing use */ 14539 irspiocbq = lpfc_sli_get_iocbq(phba); 14540 if (!irspiocbq) { 14541 if (!list_empty(&pring->txq)) 14542 txq_cnt++; 14543 if (!list_empty(&pring->txcmplq)) 14544 txcmplq_cnt++; 14545 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14546 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14547 "els_txcmplq_cnt=%d\n", 14548 txq_cnt, phba->iocb_cnt, 14549 txcmplq_cnt); 14550 return false; 14551 } 14552 14553 /* Save off the slow-path queue event for work thread to process */ 14554 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14555 spin_lock_irqsave(&phba->hbalock, iflags); 14556 list_add_tail(&irspiocbq->cq_event.list, 14557 &phba->sli4_hba.sp_queue_event); 14558 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14559 spin_unlock_irqrestore(&phba->hbalock, iflags); 14560 14561 return true; 14562 } 14563 14564 /** 14565 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14566 * @phba: Pointer to HBA context object. 14567 * @wcqe: Pointer to work-queue completion queue entry. 14568 * 14569 * This routine handles slow-path WQ entry consumed event by invoking the 14570 * proper WQ release routine to the slow-path WQ. 14571 **/ 14572 static void 14573 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14574 struct lpfc_wcqe_release *wcqe) 14575 { 14576 /* sanity check on queue memory */ 14577 if (unlikely(!phba->sli4_hba.els_wq)) 14578 return; 14579 /* Check for the slow-path ELS work queue */ 14580 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14581 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14582 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14583 else 14584 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14585 "2579 Slow-path wqe consume event carries " 14586 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14587 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14588 phba->sli4_hba.els_wq->queue_id); 14589 } 14590 14591 /** 14592 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14593 * @phba: Pointer to HBA context object. 14594 * @cq: Pointer to a WQ completion queue. 14595 * @wcqe: Pointer to work-queue completion queue entry. 14596 * 14597 * This routine handles an XRI abort event. 14598 * 14599 * Return: true if work posted to worker thread, otherwise false. 14600 **/ 14601 static bool 14602 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14603 struct lpfc_queue *cq, 14604 struct sli4_wcqe_xri_aborted *wcqe) 14605 { 14606 bool workposted = false; 14607 struct lpfc_cq_event *cq_event; 14608 unsigned long iflags; 14609 14610 switch (cq->subtype) { 14611 case LPFC_IO: 14612 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14613 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14614 /* Notify aborted XRI for NVME work queue */ 14615 if (phba->nvmet_support) 14616 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14617 } 14618 workposted = false; 14619 break; 14620 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14621 case LPFC_ELS: 14622 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14623 if (!cq_event) { 14624 workposted = false; 14625 break; 14626 } 14627 cq_event->hdwq = cq->hdwq; 14628 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14629 iflags); 14630 list_add_tail(&cq_event->list, 14631 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14632 /* Set the els xri abort event flag */ 14633 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14634 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14635 iflags); 14636 workposted = true; 14637 break; 14638 default: 14639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14640 "0603 Invalid CQ subtype %d: " 14641 "%08x %08x %08x %08x\n", 14642 cq->subtype, wcqe->word0, wcqe->parameter, 14643 wcqe->word2, wcqe->word3); 14644 workposted = false; 14645 break; 14646 } 14647 return workposted; 14648 } 14649 14650 #define FC_RCTL_MDS_DIAGS 0xF4 14651 14652 /** 14653 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14654 * @phba: Pointer to HBA context object. 14655 * @rcqe: Pointer to receive-queue completion queue entry. 14656 * 14657 * This routine process a receive-queue completion queue entry. 14658 * 14659 * Return: true if work posted to worker thread, otherwise false. 14660 **/ 14661 static bool 14662 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14663 { 14664 bool workposted = false; 14665 struct fc_frame_header *fc_hdr; 14666 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14667 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14668 struct lpfc_nvmet_tgtport *tgtp; 14669 struct hbq_dmabuf *dma_buf; 14670 uint32_t status, rq_id; 14671 unsigned long iflags; 14672 14673 /* sanity check on queue memory */ 14674 if (unlikely(!hrq) || unlikely(!drq)) 14675 return workposted; 14676 14677 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14678 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14679 else 14680 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14681 if (rq_id != hrq->queue_id) 14682 goto out; 14683 14684 status = bf_get(lpfc_rcqe_status, rcqe); 14685 switch (status) { 14686 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14688 "2537 Receive Frame Truncated!!\n"); 14689 fallthrough; 14690 case FC_STATUS_RQ_SUCCESS: 14691 spin_lock_irqsave(&phba->hbalock, iflags); 14692 lpfc_sli4_rq_release(hrq, drq); 14693 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14694 if (!dma_buf) { 14695 hrq->RQ_no_buf_found++; 14696 spin_unlock_irqrestore(&phba->hbalock, iflags); 14697 goto out; 14698 } 14699 hrq->RQ_rcv_buf++; 14700 hrq->RQ_buf_posted--; 14701 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14702 14703 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14704 14705 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14706 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14707 spin_unlock_irqrestore(&phba->hbalock, iflags); 14708 /* Handle MDS Loopback frames */ 14709 if (!(phba->pport->load_flag & FC_UNLOADING)) 14710 lpfc_sli4_handle_mds_loopback(phba->pport, 14711 dma_buf); 14712 else 14713 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14714 break; 14715 } 14716 14717 /* save off the frame for the work thread to process */ 14718 list_add_tail(&dma_buf->cq_event.list, 14719 &phba->sli4_hba.sp_queue_event); 14720 /* Frame received */ 14721 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14722 spin_unlock_irqrestore(&phba->hbalock, iflags); 14723 workposted = true; 14724 break; 14725 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14726 if (phba->nvmet_support) { 14727 tgtp = phba->targetport->private; 14728 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14729 "6402 RQE Error x%x, posted %d err_cnt " 14730 "%d: %x %x %x\n", 14731 status, hrq->RQ_buf_posted, 14732 hrq->RQ_no_posted_buf, 14733 atomic_read(&tgtp->rcv_fcp_cmd_in), 14734 atomic_read(&tgtp->rcv_fcp_cmd_out), 14735 atomic_read(&tgtp->xmt_fcp_release)); 14736 } 14737 fallthrough; 14738 14739 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14740 hrq->RQ_no_posted_buf++; 14741 /* Post more buffers if possible */ 14742 spin_lock_irqsave(&phba->hbalock, iflags); 14743 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14744 spin_unlock_irqrestore(&phba->hbalock, iflags); 14745 workposted = true; 14746 break; 14747 } 14748 out: 14749 return workposted; 14750 } 14751 14752 /** 14753 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14754 * @phba: Pointer to HBA context object. 14755 * @cq: Pointer to the completion queue. 14756 * @cqe: Pointer to a completion queue entry. 14757 * 14758 * This routine process a slow-path work-queue or receive queue completion queue 14759 * entry. 14760 * 14761 * Return: true if work posted to worker thread, otherwise false. 14762 **/ 14763 static bool 14764 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14765 struct lpfc_cqe *cqe) 14766 { 14767 struct lpfc_cqe cqevt; 14768 bool workposted = false; 14769 14770 /* Copy the work queue CQE and convert endian order if needed */ 14771 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14772 14773 /* Check and process for different type of WCQE and dispatch */ 14774 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14775 case CQE_CODE_COMPL_WQE: 14776 /* Process the WQ/RQ complete event */ 14777 phba->last_completion_time = jiffies; 14778 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14779 (struct lpfc_wcqe_complete *)&cqevt); 14780 break; 14781 case CQE_CODE_RELEASE_WQE: 14782 /* Process the WQ release event */ 14783 lpfc_sli4_sp_handle_rel_wcqe(phba, 14784 (struct lpfc_wcqe_release *)&cqevt); 14785 break; 14786 case CQE_CODE_XRI_ABORTED: 14787 /* Process the WQ XRI abort event */ 14788 phba->last_completion_time = jiffies; 14789 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14790 (struct sli4_wcqe_xri_aborted *)&cqevt); 14791 break; 14792 case CQE_CODE_RECEIVE: 14793 case CQE_CODE_RECEIVE_V1: 14794 /* Process the RQ event */ 14795 phba->last_completion_time = jiffies; 14796 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14797 (struct lpfc_rcqe *)&cqevt); 14798 break; 14799 default: 14800 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14801 "0388 Not a valid WCQE code: x%x\n", 14802 bf_get(lpfc_cqe_code, &cqevt)); 14803 break; 14804 } 14805 return workposted; 14806 } 14807 14808 /** 14809 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14810 * @phba: Pointer to HBA context object. 14811 * @eqe: Pointer to fast-path event queue entry. 14812 * @speq: Pointer to slow-path event queue. 14813 * 14814 * This routine process a event queue entry from the slow-path event queue. 14815 * It will check the MajorCode and MinorCode to determine this is for a 14816 * completion event on a completion queue, if not, an error shall be logged 14817 * and just return. Otherwise, it will get to the corresponding completion 14818 * queue and process all the entries on that completion queue, rearm the 14819 * completion queue, and then return. 14820 * 14821 **/ 14822 static void 14823 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14824 struct lpfc_queue *speq) 14825 { 14826 struct lpfc_queue *cq = NULL, *childq; 14827 uint16_t cqid; 14828 int ret = 0; 14829 14830 /* Get the reference to the corresponding CQ */ 14831 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14832 14833 list_for_each_entry(childq, &speq->child_list, list) { 14834 if (childq->queue_id == cqid) { 14835 cq = childq; 14836 break; 14837 } 14838 } 14839 if (unlikely(!cq)) { 14840 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14842 "0365 Slow-path CQ identifier " 14843 "(%d) does not exist\n", cqid); 14844 return; 14845 } 14846 14847 /* Save EQ associated with this CQ */ 14848 cq->assoc_qp = speq; 14849 14850 if (is_kdump_kernel()) 14851 ret = queue_work(phba->wq, &cq->spwork); 14852 else 14853 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14854 14855 if (!ret) 14856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14857 "0390 Cannot schedule queue work " 14858 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14859 cqid, cq->queue_id, raw_smp_processor_id()); 14860 } 14861 14862 /** 14863 * __lpfc_sli4_process_cq - Process elements of a CQ 14864 * @phba: Pointer to HBA context object. 14865 * @cq: Pointer to CQ to be processed 14866 * @handler: Routine to process each cqe 14867 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14868 * @poll_mode: Polling mode we were called from 14869 * 14870 * This routine processes completion queue entries in a CQ. While a valid 14871 * queue element is found, the handler is called. During processing checks 14872 * are made for periodic doorbell writes to let the hardware know of 14873 * element consumption. 14874 * 14875 * If the max limit on cqes to process is hit, or there are no more valid 14876 * entries, the loop stops. If we processed a sufficient number of elements, 14877 * meaning there is sufficient load, rather than rearming and generating 14878 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14879 * indicates no rescheduling. 14880 * 14881 * Returns True if work scheduled, False otherwise. 14882 **/ 14883 static bool 14884 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14885 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14886 struct lpfc_cqe *), unsigned long *delay, 14887 enum lpfc_poll_mode poll_mode) 14888 { 14889 struct lpfc_cqe *cqe; 14890 bool workposted = false; 14891 int count = 0, consumed = 0; 14892 bool arm = true; 14893 14894 /* default - no reschedule */ 14895 *delay = 0; 14896 14897 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14898 goto rearm_and_exit; 14899 14900 /* Process all the entries to the CQ */ 14901 cq->q_flag = 0; 14902 cqe = lpfc_sli4_cq_get(cq); 14903 while (cqe) { 14904 workposted |= handler(phba, cq, cqe); 14905 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14906 14907 consumed++; 14908 if (!(++count % cq->max_proc_limit)) 14909 break; 14910 14911 if (!(count % cq->notify_interval)) { 14912 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14913 LPFC_QUEUE_NOARM); 14914 consumed = 0; 14915 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14916 } 14917 14918 if (count == LPFC_NVMET_CQ_NOTIFY) 14919 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14920 14921 cqe = lpfc_sli4_cq_get(cq); 14922 } 14923 if (count >= phba->cfg_cq_poll_threshold) { 14924 *delay = 1; 14925 arm = false; 14926 } 14927 14928 /* Note: complete the irq_poll softirq before rearming CQ */ 14929 if (poll_mode == LPFC_IRQ_POLL) 14930 irq_poll_complete(&cq->iop); 14931 14932 /* Track the max number of CQEs processed in 1 EQ */ 14933 if (count > cq->CQ_max_cqe) 14934 cq->CQ_max_cqe = count; 14935 14936 cq->assoc_qp->EQ_cqe_cnt += count; 14937 14938 /* Catch the no cq entry condition */ 14939 if (unlikely(count == 0)) 14940 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14941 "0369 No entry from completion queue " 14942 "qid=%d\n", cq->queue_id); 14943 14944 xchg(&cq->queue_claimed, 0); 14945 14946 rearm_and_exit: 14947 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14948 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14949 14950 return workposted; 14951 } 14952 14953 /** 14954 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14955 * @cq: pointer to CQ to process 14956 * 14957 * This routine calls the cq processing routine with a handler specific 14958 * to the type of queue bound to it. 14959 * 14960 * The CQ routine returns two values: the first is the calling status, 14961 * which indicates whether work was queued to the background discovery 14962 * thread. If true, the routine should wakeup the discovery thread; 14963 * the second is the delay parameter. If non-zero, rather than rearming 14964 * the CQ and yet another interrupt, the CQ handler should be queued so 14965 * that it is processed in a subsequent polling action. The value of 14966 * the delay indicates when to reschedule it. 14967 **/ 14968 static void 14969 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14970 { 14971 struct lpfc_hba *phba = cq->phba; 14972 unsigned long delay; 14973 bool workposted = false; 14974 int ret = 0; 14975 14976 /* Process and rearm the CQ */ 14977 switch (cq->type) { 14978 case LPFC_MCQ: 14979 workposted |= __lpfc_sli4_process_cq(phba, cq, 14980 lpfc_sli4_sp_handle_mcqe, 14981 &delay, LPFC_QUEUE_WORK); 14982 break; 14983 case LPFC_WCQ: 14984 if (cq->subtype == LPFC_IO) 14985 workposted |= __lpfc_sli4_process_cq(phba, cq, 14986 lpfc_sli4_fp_handle_cqe, 14987 &delay, LPFC_QUEUE_WORK); 14988 else 14989 workposted |= __lpfc_sli4_process_cq(phba, cq, 14990 lpfc_sli4_sp_handle_cqe, 14991 &delay, LPFC_QUEUE_WORK); 14992 break; 14993 default: 14994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14995 "0370 Invalid completion queue type (%d)\n", 14996 cq->type); 14997 return; 14998 } 14999 15000 if (delay) { 15001 if (is_kdump_kernel()) 15002 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 15003 delay); 15004 else 15005 ret = queue_delayed_work_on(cq->chann, phba->wq, 15006 &cq->sched_spwork, delay); 15007 if (!ret) 15008 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15009 "0394 Cannot schedule queue work " 15010 "for cqid=%d on CPU %d\n", 15011 cq->queue_id, cq->chann); 15012 } 15013 15014 /* wake up worker thread if there are works to be done */ 15015 if (workposted) 15016 lpfc_worker_wake_up(phba); 15017 } 15018 15019 /** 15020 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15021 * interrupt 15022 * @work: pointer to work element 15023 * 15024 * translates from the work handler and calls the slow-path handler. 15025 **/ 15026 static void 15027 lpfc_sli4_sp_process_cq(struct work_struct *work) 15028 { 15029 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15030 15031 __lpfc_sli4_sp_process_cq(cq); 15032 } 15033 15034 /** 15035 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15036 * @work: pointer to work element 15037 * 15038 * translates from the work handler and calls the slow-path handler. 15039 **/ 15040 static void 15041 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15042 { 15043 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15044 struct lpfc_queue, sched_spwork); 15045 15046 __lpfc_sli4_sp_process_cq(cq); 15047 } 15048 15049 /** 15050 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15051 * @phba: Pointer to HBA context object. 15052 * @cq: Pointer to associated CQ 15053 * @wcqe: Pointer to work-queue completion queue entry. 15054 * 15055 * This routine process a fast-path work queue completion entry from fast-path 15056 * event queue for FCP command response completion. 15057 **/ 15058 static void 15059 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15060 struct lpfc_wcqe_complete *wcqe) 15061 { 15062 struct lpfc_sli_ring *pring = cq->pring; 15063 struct lpfc_iocbq *cmdiocbq; 15064 struct lpfc_iocbq irspiocbq; 15065 unsigned long iflags; 15066 15067 /* Check for response status */ 15068 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15069 /* If resource errors reported from HBA, reduce queue 15070 * depth of the SCSI device. 15071 */ 15072 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15073 IOSTAT_LOCAL_REJECT)) && 15074 ((wcqe->parameter & IOERR_PARAM_MASK) == 15075 IOERR_NO_RESOURCES)) 15076 phba->lpfc_rampdown_queue_depth(phba); 15077 15078 /* Log the cmpl status */ 15079 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15080 "0373 FCP CQE cmpl: status=x%x: " 15081 "CQE: %08x %08x %08x %08x\n", 15082 bf_get(lpfc_wcqe_c_status, wcqe), 15083 wcqe->word0, wcqe->total_data_placed, 15084 wcqe->parameter, wcqe->word3); 15085 } 15086 15087 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15088 spin_lock_irqsave(&pring->ring_lock, iflags); 15089 pring->stats.iocb_event++; 15090 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15091 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15092 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15093 if (unlikely(!cmdiocbq)) { 15094 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15095 "0374 FCP complete with no corresponding " 15096 "cmdiocb: iotag (%d)\n", 15097 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15098 return; 15099 } 15100 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15101 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15102 #endif 15103 if (cmdiocbq->iocb_cmpl == NULL) { 15104 if (cmdiocbq->wqe_cmpl) { 15105 /* For FCP the flag is cleared in wqe_cmpl */ 15106 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 15107 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15108 spin_lock_irqsave(&phba->hbalock, iflags); 15109 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15110 spin_unlock_irqrestore(&phba->hbalock, iflags); 15111 } 15112 15113 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15114 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 15115 return; 15116 } 15117 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15118 "0375 FCP cmdiocb not callback function " 15119 "iotag: (%d)\n", 15120 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15121 return; 15122 } 15123 15124 /* Only SLI4 non-IO commands stil use IOCB */ 15125 /* Fake the irspiocb and copy necessary response information */ 15126 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 15127 15128 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15129 spin_lock_irqsave(&phba->hbalock, iflags); 15130 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15131 spin_unlock_irqrestore(&phba->hbalock, iflags); 15132 } 15133 15134 /* Pass the cmd_iocb and the rsp state to the upper layer */ 15135 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 15136 } 15137 15138 /** 15139 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15140 * @phba: Pointer to HBA context object. 15141 * @cq: Pointer to completion queue. 15142 * @wcqe: Pointer to work-queue completion queue entry. 15143 * 15144 * This routine handles an fast-path WQ entry consumed event by invoking the 15145 * proper WQ release routine to the slow-path WQ. 15146 **/ 15147 static void 15148 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15149 struct lpfc_wcqe_release *wcqe) 15150 { 15151 struct lpfc_queue *childwq; 15152 bool wqid_matched = false; 15153 uint16_t hba_wqid; 15154 15155 /* Check for fast-path FCP work queue release */ 15156 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15157 list_for_each_entry(childwq, &cq->child_list, list) { 15158 if (childwq->queue_id == hba_wqid) { 15159 lpfc_sli4_wq_release(childwq, 15160 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15161 if (childwq->q_flag & HBA_NVMET_WQFULL) 15162 lpfc_nvmet_wqfull_process(phba, childwq); 15163 wqid_matched = true; 15164 break; 15165 } 15166 } 15167 /* Report warning log message if no match found */ 15168 if (wqid_matched != true) 15169 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15170 "2580 Fast-path wqe consume event carries " 15171 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15172 } 15173 15174 /** 15175 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15176 * @phba: Pointer to HBA context object. 15177 * @cq: Pointer to completion queue. 15178 * @rcqe: Pointer to receive-queue completion queue entry. 15179 * 15180 * This routine process a receive-queue completion queue entry. 15181 * 15182 * Return: true if work posted to worker thread, otherwise false. 15183 **/ 15184 static bool 15185 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15186 struct lpfc_rcqe *rcqe) 15187 { 15188 bool workposted = false; 15189 struct lpfc_queue *hrq; 15190 struct lpfc_queue *drq; 15191 struct rqb_dmabuf *dma_buf; 15192 struct fc_frame_header *fc_hdr; 15193 struct lpfc_nvmet_tgtport *tgtp; 15194 uint32_t status, rq_id; 15195 unsigned long iflags; 15196 uint32_t fctl, idx; 15197 15198 if ((phba->nvmet_support == 0) || 15199 (phba->sli4_hba.nvmet_cqset == NULL)) 15200 return workposted; 15201 15202 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15203 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15204 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15205 15206 /* sanity check on queue memory */ 15207 if (unlikely(!hrq) || unlikely(!drq)) 15208 return workposted; 15209 15210 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15211 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15212 else 15213 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15214 15215 if ((phba->nvmet_support == 0) || 15216 (rq_id != hrq->queue_id)) 15217 return workposted; 15218 15219 status = bf_get(lpfc_rcqe_status, rcqe); 15220 switch (status) { 15221 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15223 "6126 Receive Frame Truncated!!\n"); 15224 fallthrough; 15225 case FC_STATUS_RQ_SUCCESS: 15226 spin_lock_irqsave(&phba->hbalock, iflags); 15227 lpfc_sli4_rq_release(hrq, drq); 15228 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15229 if (!dma_buf) { 15230 hrq->RQ_no_buf_found++; 15231 spin_unlock_irqrestore(&phba->hbalock, iflags); 15232 goto out; 15233 } 15234 spin_unlock_irqrestore(&phba->hbalock, iflags); 15235 hrq->RQ_rcv_buf++; 15236 hrq->RQ_buf_posted--; 15237 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15238 15239 /* Just some basic sanity checks on FCP Command frame */ 15240 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15241 fc_hdr->fh_f_ctl[1] << 8 | 15242 fc_hdr->fh_f_ctl[2]); 15243 if (((fctl & 15244 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15245 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15246 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15247 goto drop; 15248 15249 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15250 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15251 lpfc_nvmet_unsol_fcp_event( 15252 phba, idx, dma_buf, cq->isr_timestamp, 15253 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15254 return false; 15255 } 15256 drop: 15257 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15258 break; 15259 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15260 if (phba->nvmet_support) { 15261 tgtp = phba->targetport->private; 15262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15263 "6401 RQE Error x%x, posted %d err_cnt " 15264 "%d: %x %x %x\n", 15265 status, hrq->RQ_buf_posted, 15266 hrq->RQ_no_posted_buf, 15267 atomic_read(&tgtp->rcv_fcp_cmd_in), 15268 atomic_read(&tgtp->rcv_fcp_cmd_out), 15269 atomic_read(&tgtp->xmt_fcp_release)); 15270 } 15271 fallthrough; 15272 15273 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15274 hrq->RQ_no_posted_buf++; 15275 /* Post more buffers if possible */ 15276 break; 15277 } 15278 out: 15279 return workposted; 15280 } 15281 15282 /** 15283 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15284 * @phba: adapter with cq 15285 * @cq: Pointer to the completion queue. 15286 * @cqe: Pointer to fast-path completion queue entry. 15287 * 15288 * This routine process a fast-path work queue completion entry from fast-path 15289 * event queue for FCP command response completion. 15290 * 15291 * Return: true if work posted to worker thread, otherwise false. 15292 **/ 15293 static bool 15294 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15295 struct lpfc_cqe *cqe) 15296 { 15297 struct lpfc_wcqe_release wcqe; 15298 bool workposted = false; 15299 15300 /* Copy the work queue CQE and convert endian order if needed */ 15301 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15302 15303 /* Check and process for different type of WCQE and dispatch */ 15304 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15305 case CQE_CODE_COMPL_WQE: 15306 case CQE_CODE_NVME_ERSP: 15307 cq->CQ_wq++; 15308 /* Process the WQ complete event */ 15309 phba->last_completion_time = jiffies; 15310 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15311 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15312 (struct lpfc_wcqe_complete *)&wcqe); 15313 break; 15314 case CQE_CODE_RELEASE_WQE: 15315 cq->CQ_release_wqe++; 15316 /* Process the WQ release event */ 15317 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15318 (struct lpfc_wcqe_release *)&wcqe); 15319 break; 15320 case CQE_CODE_XRI_ABORTED: 15321 cq->CQ_xri_aborted++; 15322 /* Process the WQ XRI abort event */ 15323 phba->last_completion_time = jiffies; 15324 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15325 (struct sli4_wcqe_xri_aborted *)&wcqe); 15326 break; 15327 case CQE_CODE_RECEIVE_V1: 15328 case CQE_CODE_RECEIVE: 15329 phba->last_completion_time = jiffies; 15330 if (cq->subtype == LPFC_NVMET) { 15331 workposted = lpfc_sli4_nvmet_handle_rcqe( 15332 phba, cq, (struct lpfc_rcqe *)&wcqe); 15333 } 15334 break; 15335 default: 15336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15337 "0144 Not a valid CQE code: x%x\n", 15338 bf_get(lpfc_wcqe_c_code, &wcqe)); 15339 break; 15340 } 15341 return workposted; 15342 } 15343 15344 /** 15345 * lpfc_sli4_sched_cq_work - Schedules cq work 15346 * @phba: Pointer to HBA context object. 15347 * @cq: Pointer to CQ 15348 * @cqid: CQ ID 15349 * 15350 * This routine checks the poll mode of the CQ corresponding to 15351 * cq->chann, then either schedules a softirq or queue_work to complete 15352 * cq work. 15353 * 15354 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15355 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15356 * 15357 **/ 15358 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15359 struct lpfc_queue *cq, uint16_t cqid) 15360 { 15361 int ret = 0; 15362 15363 switch (cq->poll_mode) { 15364 case LPFC_IRQ_POLL: 15365 /* CGN mgmt is mutually exclusive from softirq processing */ 15366 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15367 irq_poll_sched(&cq->iop); 15368 break; 15369 } 15370 fallthrough; 15371 case LPFC_QUEUE_WORK: 15372 default: 15373 if (is_kdump_kernel()) 15374 ret = queue_work(phba->wq, &cq->irqwork); 15375 else 15376 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15377 if (!ret) 15378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15379 "0383 Cannot schedule queue work " 15380 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15381 cqid, cq->queue_id, 15382 raw_smp_processor_id()); 15383 } 15384 } 15385 15386 /** 15387 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15388 * @phba: Pointer to HBA context object. 15389 * @eq: Pointer to the queue structure. 15390 * @eqe: Pointer to fast-path event queue entry. 15391 * 15392 * This routine process a event queue entry from the fast-path event queue. 15393 * It will check the MajorCode and MinorCode to determine this is for a 15394 * completion event on a completion queue, if not, an error shall be logged 15395 * and just return. Otherwise, it will get to the corresponding completion 15396 * queue and process all the entries on the completion queue, rearm the 15397 * completion queue, and then return. 15398 **/ 15399 static void 15400 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15401 struct lpfc_eqe *eqe) 15402 { 15403 struct lpfc_queue *cq = NULL; 15404 uint32_t qidx = eq->hdwq; 15405 uint16_t cqid, id; 15406 15407 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15409 "0366 Not a valid completion " 15410 "event: majorcode=x%x, minorcode=x%x\n", 15411 bf_get_le32(lpfc_eqe_major_code, eqe), 15412 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15413 return; 15414 } 15415 15416 /* Get the reference to the corresponding CQ */ 15417 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15418 15419 /* Use the fast lookup method first */ 15420 if (cqid <= phba->sli4_hba.cq_max) { 15421 cq = phba->sli4_hba.cq_lookup[cqid]; 15422 if (cq) 15423 goto work_cq; 15424 } 15425 15426 /* Next check for NVMET completion */ 15427 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15428 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15429 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15430 /* Process NVMET unsol rcv */ 15431 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15432 goto process_cq; 15433 } 15434 } 15435 15436 if (phba->sli4_hba.nvmels_cq && 15437 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15438 /* Process NVME unsol rcv */ 15439 cq = phba->sli4_hba.nvmels_cq; 15440 } 15441 15442 /* Otherwise this is a Slow path event */ 15443 if (cq == NULL) { 15444 lpfc_sli4_sp_handle_eqe(phba, eqe, 15445 phba->sli4_hba.hdwq[qidx].hba_eq); 15446 return; 15447 } 15448 15449 process_cq: 15450 if (unlikely(cqid != cq->queue_id)) { 15451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15452 "0368 Miss-matched fast-path completion " 15453 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15454 cqid, cq->queue_id); 15455 return; 15456 } 15457 15458 work_cq: 15459 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15460 if (phba->ktime_on) 15461 cq->isr_timestamp = ktime_get_ns(); 15462 else 15463 cq->isr_timestamp = 0; 15464 #endif 15465 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15466 } 15467 15468 /** 15469 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15470 * @cq: Pointer to CQ to be processed 15471 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15472 * 15473 * This routine calls the cq processing routine with the handler for 15474 * fast path CQEs. 15475 * 15476 * The CQ routine returns two values: the first is the calling status, 15477 * which indicates whether work was queued to the background discovery 15478 * thread. If true, the routine should wakeup the discovery thread; 15479 * the second is the delay parameter. If non-zero, rather than rearming 15480 * the CQ and yet another interrupt, the CQ handler should be queued so 15481 * that it is processed in a subsequent polling action. The value of 15482 * the delay indicates when to reschedule it. 15483 **/ 15484 static void 15485 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15486 enum lpfc_poll_mode poll_mode) 15487 { 15488 struct lpfc_hba *phba = cq->phba; 15489 unsigned long delay; 15490 bool workposted = false; 15491 int ret = 0; 15492 15493 /* process and rearm the CQ */ 15494 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15495 &delay, poll_mode); 15496 15497 if (delay) { 15498 if (is_kdump_kernel()) 15499 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15500 delay); 15501 else 15502 ret = queue_delayed_work_on(cq->chann, phba->wq, 15503 &cq->sched_irqwork, delay); 15504 if (!ret) 15505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15506 "0367 Cannot schedule queue work " 15507 "for cqid=%d on CPU %d\n", 15508 cq->queue_id, cq->chann); 15509 } 15510 15511 /* wake up worker thread if there are works to be done */ 15512 if (workposted) 15513 lpfc_worker_wake_up(phba); 15514 } 15515 15516 /** 15517 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15518 * interrupt 15519 * @work: pointer to work element 15520 * 15521 * translates from the work handler and calls the fast-path handler. 15522 **/ 15523 static void 15524 lpfc_sli4_hba_process_cq(struct work_struct *work) 15525 { 15526 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15527 15528 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15529 } 15530 15531 /** 15532 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15533 * @work: pointer to work element 15534 * 15535 * translates from the work handler and calls the fast-path handler. 15536 **/ 15537 static void 15538 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15539 { 15540 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15541 struct lpfc_queue, sched_irqwork); 15542 15543 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15544 } 15545 15546 /** 15547 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15548 * @irq: Interrupt number. 15549 * @dev_id: The device context pointer. 15550 * 15551 * This function is directly called from the PCI layer as an interrupt 15552 * service routine when device with SLI-4 interface spec is enabled with 15553 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15554 * ring event in the HBA. However, when the device is enabled with either 15555 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15556 * device-level interrupt handler. When the PCI slot is in error recovery 15557 * or the HBA is undergoing initialization, the interrupt handler will not 15558 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15559 * the intrrupt context. This function is called without any lock held. 15560 * It gets the hbalock to access and update SLI data structures. Note that, 15561 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15562 * equal to that of FCP CQ index. 15563 * 15564 * The link attention and ELS ring attention events are handled 15565 * by the worker thread. The interrupt handler signals the worker thread 15566 * and returns for these events. This function is called without any lock 15567 * held. It gets the hbalock to access and update SLI data structures. 15568 * 15569 * This function returns IRQ_HANDLED when interrupt is handled else it 15570 * returns IRQ_NONE. 15571 **/ 15572 irqreturn_t 15573 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15574 { 15575 struct lpfc_hba *phba; 15576 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15577 struct lpfc_queue *fpeq; 15578 unsigned long iflag; 15579 int ecount = 0; 15580 int hba_eqidx; 15581 struct lpfc_eq_intr_info *eqi; 15582 15583 /* Get the driver's phba structure from the dev_id */ 15584 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15585 phba = hba_eq_hdl->phba; 15586 hba_eqidx = hba_eq_hdl->idx; 15587 15588 if (unlikely(!phba)) 15589 return IRQ_NONE; 15590 if (unlikely(!phba->sli4_hba.hdwq)) 15591 return IRQ_NONE; 15592 15593 /* Get to the EQ struct associated with this vector */ 15594 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15595 if (unlikely(!fpeq)) 15596 return IRQ_NONE; 15597 15598 /* Check device state for handling interrupt */ 15599 if (unlikely(lpfc_intr_state_check(phba))) { 15600 /* Check again for link_state with lock held */ 15601 spin_lock_irqsave(&phba->hbalock, iflag); 15602 if (phba->link_state < LPFC_LINK_DOWN) 15603 /* Flush, clear interrupt, and rearm the EQ */ 15604 lpfc_sli4_eqcq_flush(phba, fpeq); 15605 spin_unlock_irqrestore(&phba->hbalock, iflag); 15606 return IRQ_NONE; 15607 } 15608 15609 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15610 eqi->icnt++; 15611 15612 fpeq->last_cpu = raw_smp_processor_id(); 15613 15614 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15615 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15616 phba->cfg_auto_imax && 15617 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15618 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15619 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15620 15621 /* process and rearm the EQ */ 15622 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15623 15624 if (unlikely(ecount == 0)) { 15625 fpeq->EQ_no_entry++; 15626 if (phba->intr_type == MSIX) 15627 /* MSI-X treated interrupt served as no EQ share INT */ 15628 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15629 "0358 MSI-X interrupt with no EQE\n"); 15630 else 15631 /* Non MSI-X treated on interrupt as EQ share INT */ 15632 return IRQ_NONE; 15633 } 15634 15635 return IRQ_HANDLED; 15636 } /* lpfc_sli4_hba_intr_handler */ 15637 15638 /** 15639 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15640 * @irq: Interrupt number. 15641 * @dev_id: The device context pointer. 15642 * 15643 * This function is the device-level interrupt handler to device with SLI-4 15644 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15645 * interrupt mode is enabled and there is an event in the HBA which requires 15646 * driver attention. This function invokes the slow-path interrupt attention 15647 * handling function and fast-path interrupt attention handling function in 15648 * turn to process the relevant HBA attention events. This function is called 15649 * without any lock held. It gets the hbalock to access and update SLI data 15650 * structures. 15651 * 15652 * This function returns IRQ_HANDLED when interrupt is handled, else it 15653 * returns IRQ_NONE. 15654 **/ 15655 irqreturn_t 15656 lpfc_sli4_intr_handler(int irq, void *dev_id) 15657 { 15658 struct lpfc_hba *phba; 15659 irqreturn_t hba_irq_rc; 15660 bool hba_handled = false; 15661 int qidx; 15662 15663 /* Get the driver's phba structure from the dev_id */ 15664 phba = (struct lpfc_hba *)dev_id; 15665 15666 if (unlikely(!phba)) 15667 return IRQ_NONE; 15668 15669 /* 15670 * Invoke fast-path host attention interrupt handling as appropriate. 15671 */ 15672 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15673 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15674 &phba->sli4_hba.hba_eq_hdl[qidx]); 15675 if (hba_irq_rc == IRQ_HANDLED) 15676 hba_handled |= true; 15677 } 15678 15679 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15680 } /* lpfc_sli4_intr_handler */ 15681 15682 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15683 { 15684 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15685 struct lpfc_queue *eq; 15686 int i = 0; 15687 15688 rcu_read_lock(); 15689 15690 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15691 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15692 if (!list_empty(&phba->poll_list)) 15693 mod_timer(&phba->cpuhp_poll_timer, 15694 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15695 15696 rcu_read_unlock(); 15697 } 15698 15699 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15700 { 15701 struct lpfc_hba *phba = eq->phba; 15702 int i = 0; 15703 15704 /* 15705 * Unlocking an irq is one of the entry point to check 15706 * for re-schedule, but we are good for io submission 15707 * path as midlayer does a get_cpu to glue us in. Flush 15708 * out the invalidate queue so we can see the updated 15709 * value for flag. 15710 */ 15711 smp_rmb(); 15712 15713 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15714 /* We will not likely get the completion for the caller 15715 * during this iteration but i guess that's fine. 15716 * Future io's coming on this eq should be able to 15717 * pick it up. As for the case of single io's, they 15718 * will be handled through a sched from polling timer 15719 * function which is currently triggered every 1msec. 15720 */ 15721 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15722 15723 return i; 15724 } 15725 15726 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15727 { 15728 struct lpfc_hba *phba = eq->phba; 15729 15730 /* kickstart slowpath processing if needed */ 15731 if (list_empty(&phba->poll_list)) 15732 mod_timer(&phba->cpuhp_poll_timer, 15733 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15734 15735 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15736 synchronize_rcu(); 15737 } 15738 15739 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15740 { 15741 struct lpfc_hba *phba = eq->phba; 15742 15743 /* Disable slowpath processing for this eq. Kick start the eq 15744 * by RE-ARMING the eq's ASAP 15745 */ 15746 list_del_rcu(&eq->_poll_list); 15747 synchronize_rcu(); 15748 15749 if (list_empty(&phba->poll_list)) 15750 del_timer_sync(&phba->cpuhp_poll_timer); 15751 } 15752 15753 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15754 { 15755 struct lpfc_queue *eq, *next; 15756 15757 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15758 list_del(&eq->_poll_list); 15759 15760 INIT_LIST_HEAD(&phba->poll_list); 15761 synchronize_rcu(); 15762 } 15763 15764 static inline void 15765 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15766 { 15767 if (mode == eq->mode) 15768 return; 15769 /* 15770 * currently this function is only called during a hotplug 15771 * event and the cpu on which this function is executing 15772 * is going offline. By now the hotplug has instructed 15773 * the scheduler to remove this cpu from cpu active mask. 15774 * So we don't need to work about being put aside by the 15775 * scheduler for a high priority process. Yes, the inte- 15776 * rrupts could come but they are known to retire ASAP. 15777 */ 15778 15779 /* Disable polling in the fastpath */ 15780 WRITE_ONCE(eq->mode, mode); 15781 /* flush out the store buffer */ 15782 smp_wmb(); 15783 15784 /* 15785 * Add this eq to the polling list and start polling. For 15786 * a grace period both interrupt handler and poller will 15787 * try to process the eq _but_ that's fine. We have a 15788 * synchronization mechanism in place (queue_claimed) to 15789 * deal with it. This is just a draining phase for int- 15790 * errupt handler (not eq's) as we have guranteed through 15791 * barrier that all the CPUs have seen the new CQ_POLLED 15792 * state. which will effectively disable the REARMING of 15793 * the EQ. The whole idea is eq's die off eventually as 15794 * we are not rearming EQ's anymore. 15795 */ 15796 mode ? lpfc_sli4_add_to_poll_list(eq) : 15797 lpfc_sli4_remove_from_poll_list(eq); 15798 } 15799 15800 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15801 { 15802 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15803 } 15804 15805 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15806 { 15807 struct lpfc_hba *phba = eq->phba; 15808 15809 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15810 15811 /* Kick start for the pending io's in h/w. 15812 * Once we switch back to interrupt processing on a eq 15813 * the io path completion will only arm eq's when it 15814 * receives a completion. But since eq's are in disa- 15815 * rmed state it doesn't receive a completion. This 15816 * creates a deadlock scenaro. 15817 */ 15818 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15819 } 15820 15821 /** 15822 * lpfc_sli4_queue_free - free a queue structure and associated memory 15823 * @queue: The queue structure to free. 15824 * 15825 * This function frees a queue structure and the DMAable memory used for 15826 * the host resident queue. This function must be called after destroying the 15827 * queue on the HBA. 15828 **/ 15829 void 15830 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15831 { 15832 struct lpfc_dmabuf *dmabuf; 15833 15834 if (!queue) 15835 return; 15836 15837 if (!list_empty(&queue->wq_list)) 15838 list_del(&queue->wq_list); 15839 15840 while (!list_empty(&queue->page_list)) { 15841 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15842 list); 15843 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15844 dmabuf->virt, dmabuf->phys); 15845 kfree(dmabuf); 15846 } 15847 if (queue->rqbp) { 15848 lpfc_free_rq_buffer(queue->phba, queue); 15849 kfree(queue->rqbp); 15850 } 15851 15852 if (!list_empty(&queue->cpu_list)) 15853 list_del(&queue->cpu_list); 15854 15855 kfree(queue); 15856 return; 15857 } 15858 15859 /** 15860 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15861 * @phba: The HBA that this queue is being created on. 15862 * @page_size: The size of a queue page 15863 * @entry_size: The size of each queue entry for this queue. 15864 * @entry_count: The number of entries that this queue will handle. 15865 * @cpu: The cpu that will primarily utilize this queue. 15866 * 15867 * This function allocates a queue structure and the DMAable memory used for 15868 * the host resident queue. This function must be called before creating the 15869 * queue on the HBA. 15870 **/ 15871 struct lpfc_queue * 15872 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15873 uint32_t entry_size, uint32_t entry_count, int cpu) 15874 { 15875 struct lpfc_queue *queue; 15876 struct lpfc_dmabuf *dmabuf; 15877 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15878 uint16_t x, pgcnt; 15879 15880 if (!phba->sli4_hba.pc_sli4_params.supported) 15881 hw_page_size = page_size; 15882 15883 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15884 15885 /* If needed, Adjust page count to match the max the adapter supports */ 15886 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15887 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15888 15889 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15890 GFP_KERNEL, cpu_to_node(cpu)); 15891 if (!queue) 15892 return NULL; 15893 15894 INIT_LIST_HEAD(&queue->list); 15895 INIT_LIST_HEAD(&queue->_poll_list); 15896 INIT_LIST_HEAD(&queue->wq_list); 15897 INIT_LIST_HEAD(&queue->wqfull_list); 15898 INIT_LIST_HEAD(&queue->page_list); 15899 INIT_LIST_HEAD(&queue->child_list); 15900 INIT_LIST_HEAD(&queue->cpu_list); 15901 15902 /* Set queue parameters now. If the system cannot provide memory 15903 * resources, the free routine needs to know what was allocated. 15904 */ 15905 queue->page_count = pgcnt; 15906 queue->q_pgs = (void **)&queue[1]; 15907 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15908 queue->entry_size = entry_size; 15909 queue->entry_count = entry_count; 15910 queue->page_size = hw_page_size; 15911 queue->phba = phba; 15912 15913 for (x = 0; x < queue->page_count; x++) { 15914 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15915 dev_to_node(&phba->pcidev->dev)); 15916 if (!dmabuf) 15917 goto out_fail; 15918 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15919 hw_page_size, &dmabuf->phys, 15920 GFP_KERNEL); 15921 if (!dmabuf->virt) { 15922 kfree(dmabuf); 15923 goto out_fail; 15924 } 15925 dmabuf->buffer_tag = x; 15926 list_add_tail(&dmabuf->list, &queue->page_list); 15927 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15928 queue->q_pgs[x] = dmabuf->virt; 15929 } 15930 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15931 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15932 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15933 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15934 15935 /* notify_interval will be set during q creation */ 15936 15937 return queue; 15938 out_fail: 15939 lpfc_sli4_queue_free(queue); 15940 return NULL; 15941 } 15942 15943 /** 15944 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15945 * @phba: HBA structure that indicates port to create a queue on. 15946 * @pci_barset: PCI BAR set flag. 15947 * 15948 * This function shall perform iomap of the specified PCI BAR address to host 15949 * memory address if not already done so and return it. The returned host 15950 * memory address can be NULL. 15951 */ 15952 static void __iomem * 15953 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15954 { 15955 if (!phba->pcidev) 15956 return NULL; 15957 15958 switch (pci_barset) { 15959 case WQ_PCI_BAR_0_AND_1: 15960 return phba->pci_bar0_memmap_p; 15961 case WQ_PCI_BAR_2_AND_3: 15962 return phba->pci_bar2_memmap_p; 15963 case WQ_PCI_BAR_4_AND_5: 15964 return phba->pci_bar4_memmap_p; 15965 default: 15966 break; 15967 } 15968 return NULL; 15969 } 15970 15971 /** 15972 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15973 * @phba: HBA structure that EQs are on. 15974 * @startq: The starting EQ index to modify 15975 * @numq: The number of EQs (consecutive indexes) to modify 15976 * @usdelay: amount of delay 15977 * 15978 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15979 * is set either by writing to a register (if supported by the SLI Port) 15980 * or by mailbox command. The mailbox command allows several EQs to be 15981 * updated at once. 15982 * 15983 * The @phba struct is used to send a mailbox command to HBA. The @startq 15984 * is used to get the starting EQ index to change. The @numq value is 15985 * used to specify how many consecutive EQ indexes, starting at EQ index, 15986 * are to be changed. This function is asynchronous and will wait for any 15987 * mailbox commands to finish before returning. 15988 * 15989 * On success this function will return a zero. If unable to allocate 15990 * enough memory this function will return -ENOMEM. If a mailbox command 15991 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15992 * have had their delay multipler changed. 15993 **/ 15994 void 15995 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15996 uint32_t numq, uint32_t usdelay) 15997 { 15998 struct lpfc_mbx_modify_eq_delay *eq_delay; 15999 LPFC_MBOXQ_t *mbox; 16000 struct lpfc_queue *eq; 16001 int cnt = 0, rc, length; 16002 uint32_t shdr_status, shdr_add_status; 16003 uint32_t dmult; 16004 int qidx; 16005 union lpfc_sli4_cfg_shdr *shdr; 16006 16007 if (startq >= phba->cfg_irq_chann) 16008 return; 16009 16010 if (usdelay > 0xFFFF) { 16011 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 16012 "6429 usdelay %d too large. Scaled down to " 16013 "0xFFFF.\n", usdelay); 16014 usdelay = 0xFFFF; 16015 } 16016 16017 /* set values by EQ_DELAY register if supported */ 16018 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 16019 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16020 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16021 if (!eq) 16022 continue; 16023 16024 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 16025 16026 if (++cnt >= numq) 16027 break; 16028 } 16029 return; 16030 } 16031 16032 /* Otherwise, set values by mailbox cmd */ 16033 16034 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16035 if (!mbox) { 16036 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16037 "6428 Failed allocating mailbox cmd buffer." 16038 " EQ delay was not set.\n"); 16039 return; 16040 } 16041 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16042 sizeof(struct lpfc_sli4_cfg_mhdr)); 16043 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16044 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16045 length, LPFC_SLI4_MBX_EMBED); 16046 eq_delay = &mbox->u.mqe.un.eq_delay; 16047 16048 /* Calculate delay multiper from maximum interrupt per second */ 16049 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16050 if (dmult) 16051 dmult--; 16052 if (dmult > LPFC_DMULT_MAX) 16053 dmult = LPFC_DMULT_MAX; 16054 16055 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16056 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16057 if (!eq) 16058 continue; 16059 eq->q_mode = usdelay; 16060 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16061 eq_delay->u.request.eq[cnt].phase = 0; 16062 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16063 16064 if (++cnt >= numq) 16065 break; 16066 } 16067 eq_delay->u.request.num_eq = cnt; 16068 16069 mbox->vport = phba->pport; 16070 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16071 mbox->ctx_buf = NULL; 16072 mbox->ctx_ndlp = NULL; 16073 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16074 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16075 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16076 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16077 if (shdr_status || shdr_add_status || rc) { 16078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16079 "2512 MODIFY_EQ_DELAY mailbox failed with " 16080 "status x%x add_status x%x, mbx status x%x\n", 16081 shdr_status, shdr_add_status, rc); 16082 } 16083 mempool_free(mbox, phba->mbox_mem_pool); 16084 return; 16085 } 16086 16087 /** 16088 * lpfc_eq_create - Create an Event Queue on the HBA 16089 * @phba: HBA structure that indicates port to create a queue on. 16090 * @eq: The queue structure to use to create the event queue. 16091 * @imax: The maximum interrupt per second limit. 16092 * 16093 * This function creates an event queue, as detailed in @eq, on a port, 16094 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16095 * 16096 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16097 * is used to get the entry count and entry size that are necessary to 16098 * determine the number of pages to allocate and use for this queue. This 16099 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16100 * event queue. This function is asynchronous and will wait for the mailbox 16101 * command to finish before continuing. 16102 * 16103 * On success this function will return a zero. If unable to allocate enough 16104 * memory this function will return -ENOMEM. If the queue create mailbox command 16105 * fails this function will return -ENXIO. 16106 **/ 16107 int 16108 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16109 { 16110 struct lpfc_mbx_eq_create *eq_create; 16111 LPFC_MBOXQ_t *mbox; 16112 int rc, length, status = 0; 16113 struct lpfc_dmabuf *dmabuf; 16114 uint32_t shdr_status, shdr_add_status; 16115 union lpfc_sli4_cfg_shdr *shdr; 16116 uint16_t dmult; 16117 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16118 16119 /* sanity check on queue memory */ 16120 if (!eq) 16121 return -ENODEV; 16122 if (!phba->sli4_hba.pc_sli4_params.supported) 16123 hw_page_size = SLI4_PAGE_SIZE; 16124 16125 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16126 if (!mbox) 16127 return -ENOMEM; 16128 length = (sizeof(struct lpfc_mbx_eq_create) - 16129 sizeof(struct lpfc_sli4_cfg_mhdr)); 16130 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16131 LPFC_MBOX_OPCODE_EQ_CREATE, 16132 length, LPFC_SLI4_MBX_EMBED); 16133 eq_create = &mbox->u.mqe.un.eq_create; 16134 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16135 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16136 eq->page_count); 16137 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16138 LPFC_EQE_SIZE); 16139 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16140 16141 /* Use version 2 of CREATE_EQ if eqav is set */ 16142 if (phba->sli4_hba.pc_sli4_params.eqav) { 16143 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16144 LPFC_Q_CREATE_VERSION_2); 16145 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16146 phba->sli4_hba.pc_sli4_params.eqav); 16147 } 16148 16149 /* don't setup delay multiplier using EQ_CREATE */ 16150 dmult = 0; 16151 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16152 dmult); 16153 switch (eq->entry_count) { 16154 default: 16155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16156 "0360 Unsupported EQ count. (%d)\n", 16157 eq->entry_count); 16158 if (eq->entry_count < 256) { 16159 status = -EINVAL; 16160 goto out; 16161 } 16162 fallthrough; /* otherwise default to smallest count */ 16163 case 256: 16164 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16165 LPFC_EQ_CNT_256); 16166 break; 16167 case 512: 16168 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16169 LPFC_EQ_CNT_512); 16170 break; 16171 case 1024: 16172 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16173 LPFC_EQ_CNT_1024); 16174 break; 16175 case 2048: 16176 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16177 LPFC_EQ_CNT_2048); 16178 break; 16179 case 4096: 16180 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16181 LPFC_EQ_CNT_4096); 16182 break; 16183 } 16184 list_for_each_entry(dmabuf, &eq->page_list, list) { 16185 memset(dmabuf->virt, 0, hw_page_size); 16186 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16187 putPaddrLow(dmabuf->phys); 16188 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16189 putPaddrHigh(dmabuf->phys); 16190 } 16191 mbox->vport = phba->pport; 16192 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16193 mbox->ctx_buf = NULL; 16194 mbox->ctx_ndlp = NULL; 16195 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16196 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16197 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16198 if (shdr_status || shdr_add_status || rc) { 16199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16200 "2500 EQ_CREATE mailbox failed with " 16201 "status x%x add_status x%x, mbx status x%x\n", 16202 shdr_status, shdr_add_status, rc); 16203 status = -ENXIO; 16204 } 16205 eq->type = LPFC_EQ; 16206 eq->subtype = LPFC_NONE; 16207 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16208 if (eq->queue_id == 0xFFFF) 16209 status = -ENXIO; 16210 eq->host_index = 0; 16211 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16212 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16213 out: 16214 mempool_free(mbox, phba->mbox_mem_pool); 16215 return status; 16216 } 16217 16218 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16219 { 16220 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16221 16222 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16223 16224 return 1; 16225 } 16226 16227 /** 16228 * lpfc_cq_create - Create a Completion Queue on the HBA 16229 * @phba: HBA structure that indicates port to create a queue on. 16230 * @cq: The queue structure to use to create the completion queue. 16231 * @eq: The event queue to bind this completion queue to. 16232 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16233 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16234 * 16235 * This function creates a completion queue, as detailed in @wq, on a port, 16236 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16237 * 16238 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16239 * is used to get the entry count and entry size that are necessary to 16240 * determine the number of pages to allocate and use for this queue. The @eq 16241 * is used to indicate which event queue to bind this completion queue to. This 16242 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16243 * completion queue. This function is asynchronous and will wait for the mailbox 16244 * command to finish before continuing. 16245 * 16246 * On success this function will return a zero. If unable to allocate enough 16247 * memory this function will return -ENOMEM. If the queue create mailbox command 16248 * fails this function will return -ENXIO. 16249 **/ 16250 int 16251 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16252 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16253 { 16254 struct lpfc_mbx_cq_create *cq_create; 16255 struct lpfc_dmabuf *dmabuf; 16256 LPFC_MBOXQ_t *mbox; 16257 int rc, length, status = 0; 16258 uint32_t shdr_status, shdr_add_status; 16259 union lpfc_sli4_cfg_shdr *shdr; 16260 16261 /* sanity check on queue memory */ 16262 if (!cq || !eq) 16263 return -ENODEV; 16264 16265 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16266 if (!mbox) 16267 return -ENOMEM; 16268 length = (sizeof(struct lpfc_mbx_cq_create) - 16269 sizeof(struct lpfc_sli4_cfg_mhdr)); 16270 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16271 LPFC_MBOX_OPCODE_CQ_CREATE, 16272 length, LPFC_SLI4_MBX_EMBED); 16273 cq_create = &mbox->u.mqe.un.cq_create; 16274 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16275 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16276 cq->page_count); 16277 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16278 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16279 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16280 phba->sli4_hba.pc_sli4_params.cqv); 16281 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16282 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16283 (cq->page_size / SLI4_PAGE_SIZE)); 16284 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16285 eq->queue_id); 16286 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16287 phba->sli4_hba.pc_sli4_params.cqav); 16288 } else { 16289 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16290 eq->queue_id); 16291 } 16292 switch (cq->entry_count) { 16293 case 2048: 16294 case 4096: 16295 if (phba->sli4_hba.pc_sli4_params.cqv == 16296 LPFC_Q_CREATE_VERSION_2) { 16297 cq_create->u.request.context.lpfc_cq_context_count = 16298 cq->entry_count; 16299 bf_set(lpfc_cq_context_count, 16300 &cq_create->u.request.context, 16301 LPFC_CQ_CNT_WORD7); 16302 break; 16303 } 16304 fallthrough; 16305 default: 16306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16307 "0361 Unsupported CQ count: " 16308 "entry cnt %d sz %d pg cnt %d\n", 16309 cq->entry_count, cq->entry_size, 16310 cq->page_count); 16311 if (cq->entry_count < 256) { 16312 status = -EINVAL; 16313 goto out; 16314 } 16315 fallthrough; /* otherwise default to smallest count */ 16316 case 256: 16317 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16318 LPFC_CQ_CNT_256); 16319 break; 16320 case 512: 16321 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16322 LPFC_CQ_CNT_512); 16323 break; 16324 case 1024: 16325 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16326 LPFC_CQ_CNT_1024); 16327 break; 16328 } 16329 list_for_each_entry(dmabuf, &cq->page_list, list) { 16330 memset(dmabuf->virt, 0, cq->page_size); 16331 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16332 putPaddrLow(dmabuf->phys); 16333 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16334 putPaddrHigh(dmabuf->phys); 16335 } 16336 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16337 16338 /* The IOCTL status is embedded in the mailbox subheader. */ 16339 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16340 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16341 if (shdr_status || shdr_add_status || rc) { 16342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16343 "2501 CQ_CREATE mailbox failed with " 16344 "status x%x add_status x%x, mbx status x%x\n", 16345 shdr_status, shdr_add_status, rc); 16346 status = -ENXIO; 16347 goto out; 16348 } 16349 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16350 if (cq->queue_id == 0xFFFF) { 16351 status = -ENXIO; 16352 goto out; 16353 } 16354 /* link the cq onto the parent eq child list */ 16355 list_add_tail(&cq->list, &eq->child_list); 16356 /* Set up completion queue's type and subtype */ 16357 cq->type = type; 16358 cq->subtype = subtype; 16359 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16360 cq->assoc_qid = eq->queue_id; 16361 cq->assoc_qp = eq; 16362 cq->host_index = 0; 16363 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16364 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16365 16366 if (cq->queue_id > phba->sli4_hba.cq_max) 16367 phba->sli4_hba.cq_max = cq->queue_id; 16368 16369 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16370 out: 16371 mempool_free(mbox, phba->mbox_mem_pool); 16372 return status; 16373 } 16374 16375 /** 16376 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16377 * @phba: HBA structure that indicates port to create a queue on. 16378 * @cqp: The queue structure array to use to create the completion queues. 16379 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16380 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16381 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16382 * 16383 * This function creates a set of completion queue, s to support MRQ 16384 * as detailed in @cqp, on a port, 16385 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16386 * 16387 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16388 * is used to get the entry count and entry size that are necessary to 16389 * determine the number of pages to allocate and use for this queue. The @eq 16390 * is used to indicate which event queue to bind this completion queue to. This 16391 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16392 * completion queue. This function is asynchronous and will wait for the mailbox 16393 * command to finish before continuing. 16394 * 16395 * On success this function will return a zero. If unable to allocate enough 16396 * memory this function will return -ENOMEM. If the queue create mailbox command 16397 * fails this function will return -ENXIO. 16398 **/ 16399 int 16400 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16401 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16402 uint32_t subtype) 16403 { 16404 struct lpfc_queue *cq; 16405 struct lpfc_queue *eq; 16406 struct lpfc_mbx_cq_create_set *cq_set; 16407 struct lpfc_dmabuf *dmabuf; 16408 LPFC_MBOXQ_t *mbox; 16409 int rc, length, alloclen, status = 0; 16410 int cnt, idx, numcq, page_idx = 0; 16411 uint32_t shdr_status, shdr_add_status; 16412 union lpfc_sli4_cfg_shdr *shdr; 16413 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16414 16415 /* sanity check on queue memory */ 16416 numcq = phba->cfg_nvmet_mrq; 16417 if (!cqp || !hdwq || !numcq) 16418 return -ENODEV; 16419 16420 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16421 if (!mbox) 16422 return -ENOMEM; 16423 16424 length = sizeof(struct lpfc_mbx_cq_create_set); 16425 length += ((numcq * cqp[0]->page_count) * 16426 sizeof(struct dma_address)); 16427 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16428 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16429 LPFC_SLI4_MBX_NEMBED); 16430 if (alloclen < length) { 16431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16432 "3098 Allocated DMA memory size (%d) is " 16433 "less than the requested DMA memory size " 16434 "(%d)\n", alloclen, length); 16435 status = -ENOMEM; 16436 goto out; 16437 } 16438 cq_set = mbox->sge_array->addr[0]; 16439 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16440 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16441 16442 for (idx = 0; idx < numcq; idx++) { 16443 cq = cqp[idx]; 16444 eq = hdwq[idx].hba_eq; 16445 if (!cq || !eq) { 16446 status = -ENOMEM; 16447 goto out; 16448 } 16449 if (!phba->sli4_hba.pc_sli4_params.supported) 16450 hw_page_size = cq->page_size; 16451 16452 switch (idx) { 16453 case 0: 16454 bf_set(lpfc_mbx_cq_create_set_page_size, 16455 &cq_set->u.request, 16456 (hw_page_size / SLI4_PAGE_SIZE)); 16457 bf_set(lpfc_mbx_cq_create_set_num_pages, 16458 &cq_set->u.request, cq->page_count); 16459 bf_set(lpfc_mbx_cq_create_set_evt, 16460 &cq_set->u.request, 1); 16461 bf_set(lpfc_mbx_cq_create_set_valid, 16462 &cq_set->u.request, 1); 16463 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16464 &cq_set->u.request, 0); 16465 bf_set(lpfc_mbx_cq_create_set_num_cq, 16466 &cq_set->u.request, numcq); 16467 bf_set(lpfc_mbx_cq_create_set_autovalid, 16468 &cq_set->u.request, 16469 phba->sli4_hba.pc_sli4_params.cqav); 16470 switch (cq->entry_count) { 16471 case 2048: 16472 case 4096: 16473 if (phba->sli4_hba.pc_sli4_params.cqv == 16474 LPFC_Q_CREATE_VERSION_2) { 16475 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16476 &cq_set->u.request, 16477 cq->entry_count); 16478 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16479 &cq_set->u.request, 16480 LPFC_CQ_CNT_WORD7); 16481 break; 16482 } 16483 fallthrough; 16484 default: 16485 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16486 "3118 Bad CQ count. (%d)\n", 16487 cq->entry_count); 16488 if (cq->entry_count < 256) { 16489 status = -EINVAL; 16490 goto out; 16491 } 16492 fallthrough; /* otherwise default to smallest */ 16493 case 256: 16494 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16495 &cq_set->u.request, LPFC_CQ_CNT_256); 16496 break; 16497 case 512: 16498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16499 &cq_set->u.request, LPFC_CQ_CNT_512); 16500 break; 16501 case 1024: 16502 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16503 &cq_set->u.request, LPFC_CQ_CNT_1024); 16504 break; 16505 } 16506 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16507 &cq_set->u.request, eq->queue_id); 16508 break; 16509 case 1: 16510 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16511 &cq_set->u.request, eq->queue_id); 16512 break; 16513 case 2: 16514 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16515 &cq_set->u.request, eq->queue_id); 16516 break; 16517 case 3: 16518 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16519 &cq_set->u.request, eq->queue_id); 16520 break; 16521 case 4: 16522 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 5: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 6: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 7: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 8: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 9: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 10: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 11: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 12: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 13: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 case 14: 16562 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16563 &cq_set->u.request, eq->queue_id); 16564 break; 16565 case 15: 16566 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16567 &cq_set->u.request, eq->queue_id); 16568 break; 16569 } 16570 16571 /* link the cq onto the parent eq child list */ 16572 list_add_tail(&cq->list, &eq->child_list); 16573 /* Set up completion queue's type and subtype */ 16574 cq->type = type; 16575 cq->subtype = subtype; 16576 cq->assoc_qid = eq->queue_id; 16577 cq->assoc_qp = eq; 16578 cq->host_index = 0; 16579 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16580 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16581 cq->entry_count); 16582 cq->chann = idx; 16583 16584 rc = 0; 16585 list_for_each_entry(dmabuf, &cq->page_list, list) { 16586 memset(dmabuf->virt, 0, hw_page_size); 16587 cnt = page_idx + dmabuf->buffer_tag; 16588 cq_set->u.request.page[cnt].addr_lo = 16589 putPaddrLow(dmabuf->phys); 16590 cq_set->u.request.page[cnt].addr_hi = 16591 putPaddrHigh(dmabuf->phys); 16592 rc++; 16593 } 16594 page_idx += rc; 16595 } 16596 16597 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16598 16599 /* The IOCTL status is embedded in the mailbox subheader. */ 16600 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16601 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16602 if (shdr_status || shdr_add_status || rc) { 16603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16604 "3119 CQ_CREATE_SET mailbox failed with " 16605 "status x%x add_status x%x, mbx status x%x\n", 16606 shdr_status, shdr_add_status, rc); 16607 status = -ENXIO; 16608 goto out; 16609 } 16610 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16611 if (rc == 0xFFFF) { 16612 status = -ENXIO; 16613 goto out; 16614 } 16615 16616 for (idx = 0; idx < numcq; idx++) { 16617 cq = cqp[idx]; 16618 cq->queue_id = rc + idx; 16619 if (cq->queue_id > phba->sli4_hba.cq_max) 16620 phba->sli4_hba.cq_max = cq->queue_id; 16621 } 16622 16623 out: 16624 lpfc_sli4_mbox_cmd_free(phba, mbox); 16625 return status; 16626 } 16627 16628 /** 16629 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16630 * @phba: HBA structure that indicates port to create a queue on. 16631 * @mq: The queue structure to use to create the mailbox queue. 16632 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16633 * @cq: The completion queue to associate with this cq. 16634 * 16635 * This function provides failback (fb) functionality when the 16636 * mq_create_ext fails on older FW generations. It's purpose is identical 16637 * to mq_create_ext otherwise. 16638 * 16639 * This routine cannot fail as all attributes were previously accessed and 16640 * initialized in mq_create_ext. 16641 **/ 16642 static void 16643 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16644 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16645 { 16646 struct lpfc_mbx_mq_create *mq_create; 16647 struct lpfc_dmabuf *dmabuf; 16648 int length; 16649 16650 length = (sizeof(struct lpfc_mbx_mq_create) - 16651 sizeof(struct lpfc_sli4_cfg_mhdr)); 16652 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16653 LPFC_MBOX_OPCODE_MQ_CREATE, 16654 length, LPFC_SLI4_MBX_EMBED); 16655 mq_create = &mbox->u.mqe.un.mq_create; 16656 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16657 mq->page_count); 16658 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16659 cq->queue_id); 16660 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16661 switch (mq->entry_count) { 16662 case 16: 16663 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16664 LPFC_MQ_RING_SIZE_16); 16665 break; 16666 case 32: 16667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16668 LPFC_MQ_RING_SIZE_32); 16669 break; 16670 case 64: 16671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16672 LPFC_MQ_RING_SIZE_64); 16673 break; 16674 case 128: 16675 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16676 LPFC_MQ_RING_SIZE_128); 16677 break; 16678 } 16679 list_for_each_entry(dmabuf, &mq->page_list, list) { 16680 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16681 putPaddrLow(dmabuf->phys); 16682 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16683 putPaddrHigh(dmabuf->phys); 16684 } 16685 } 16686 16687 /** 16688 * lpfc_mq_create - Create a mailbox Queue on the HBA 16689 * @phba: HBA structure that indicates port to create a queue on. 16690 * @mq: The queue structure to use to create the mailbox queue. 16691 * @cq: The completion queue to associate with this cq. 16692 * @subtype: The queue's subtype. 16693 * 16694 * This function creates a mailbox queue, as detailed in @mq, on a port, 16695 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16696 * 16697 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16698 * is used to get the entry count and entry size that are necessary to 16699 * determine the number of pages to allocate and use for this queue. This 16700 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16701 * mailbox queue. This function is asynchronous and will wait for the mailbox 16702 * command to finish before continuing. 16703 * 16704 * On success this function will return a zero. If unable to allocate enough 16705 * memory this function will return -ENOMEM. If the queue create mailbox command 16706 * fails this function will return -ENXIO. 16707 **/ 16708 int32_t 16709 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16710 struct lpfc_queue *cq, uint32_t subtype) 16711 { 16712 struct lpfc_mbx_mq_create *mq_create; 16713 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16714 struct lpfc_dmabuf *dmabuf; 16715 LPFC_MBOXQ_t *mbox; 16716 int rc, length, status = 0; 16717 uint32_t shdr_status, shdr_add_status; 16718 union lpfc_sli4_cfg_shdr *shdr; 16719 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16720 16721 /* sanity check on queue memory */ 16722 if (!mq || !cq) 16723 return -ENODEV; 16724 if (!phba->sli4_hba.pc_sli4_params.supported) 16725 hw_page_size = SLI4_PAGE_SIZE; 16726 16727 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16728 if (!mbox) 16729 return -ENOMEM; 16730 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16731 sizeof(struct lpfc_sli4_cfg_mhdr)); 16732 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16733 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16734 length, LPFC_SLI4_MBX_EMBED); 16735 16736 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16737 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16738 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16739 &mq_create_ext->u.request, mq->page_count); 16740 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16741 &mq_create_ext->u.request, 1); 16742 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16743 &mq_create_ext->u.request, 1); 16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16745 &mq_create_ext->u.request, 1); 16746 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16747 &mq_create_ext->u.request, 1); 16748 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16749 &mq_create_ext->u.request, 1); 16750 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16751 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16752 phba->sli4_hba.pc_sli4_params.mqv); 16753 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16754 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16755 cq->queue_id); 16756 else 16757 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16758 cq->queue_id); 16759 switch (mq->entry_count) { 16760 default: 16761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16762 "0362 Unsupported MQ count. (%d)\n", 16763 mq->entry_count); 16764 if (mq->entry_count < 16) { 16765 status = -EINVAL; 16766 goto out; 16767 } 16768 fallthrough; /* otherwise default to smallest count */ 16769 case 16: 16770 bf_set(lpfc_mq_context_ring_size, 16771 &mq_create_ext->u.request.context, 16772 LPFC_MQ_RING_SIZE_16); 16773 break; 16774 case 32: 16775 bf_set(lpfc_mq_context_ring_size, 16776 &mq_create_ext->u.request.context, 16777 LPFC_MQ_RING_SIZE_32); 16778 break; 16779 case 64: 16780 bf_set(lpfc_mq_context_ring_size, 16781 &mq_create_ext->u.request.context, 16782 LPFC_MQ_RING_SIZE_64); 16783 break; 16784 case 128: 16785 bf_set(lpfc_mq_context_ring_size, 16786 &mq_create_ext->u.request.context, 16787 LPFC_MQ_RING_SIZE_128); 16788 break; 16789 } 16790 list_for_each_entry(dmabuf, &mq->page_list, list) { 16791 memset(dmabuf->virt, 0, hw_page_size); 16792 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16793 putPaddrLow(dmabuf->phys); 16794 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16795 putPaddrHigh(dmabuf->phys); 16796 } 16797 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16798 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16799 &mq_create_ext->u.response); 16800 if (rc != MBX_SUCCESS) { 16801 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16802 "2795 MQ_CREATE_EXT failed with " 16803 "status x%x. Failback to MQ_CREATE.\n", 16804 rc); 16805 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16806 mq_create = &mbox->u.mqe.un.mq_create; 16807 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16808 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16809 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16810 &mq_create->u.response); 16811 } 16812 16813 /* The IOCTL status is embedded in the mailbox subheader. */ 16814 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16815 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16816 if (shdr_status || shdr_add_status || rc) { 16817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16818 "2502 MQ_CREATE mailbox failed with " 16819 "status x%x add_status x%x, mbx status x%x\n", 16820 shdr_status, shdr_add_status, rc); 16821 status = -ENXIO; 16822 goto out; 16823 } 16824 if (mq->queue_id == 0xFFFF) { 16825 status = -ENXIO; 16826 goto out; 16827 } 16828 mq->type = LPFC_MQ; 16829 mq->assoc_qid = cq->queue_id; 16830 mq->subtype = subtype; 16831 mq->host_index = 0; 16832 mq->hba_index = 0; 16833 16834 /* link the mq onto the parent cq child list */ 16835 list_add_tail(&mq->list, &cq->child_list); 16836 out: 16837 mempool_free(mbox, phba->mbox_mem_pool); 16838 return status; 16839 } 16840 16841 /** 16842 * lpfc_wq_create - Create a Work Queue on the HBA 16843 * @phba: HBA structure that indicates port to create a queue on. 16844 * @wq: The queue structure to use to create the work queue. 16845 * @cq: The completion queue to bind this work queue to. 16846 * @subtype: The subtype of the work queue indicating its functionality. 16847 * 16848 * This function creates a work queue, as detailed in @wq, on a port, described 16849 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16850 * 16851 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16852 * is used to get the entry count and entry size that are necessary to 16853 * determine the number of pages to allocate and use for this queue. The @cq 16854 * is used to indicate which completion queue to bind this work queue to. This 16855 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16856 * work queue. This function is asynchronous and will wait for the mailbox 16857 * command to finish before continuing. 16858 * 16859 * On success this function will return a zero. If unable to allocate enough 16860 * memory this function will return -ENOMEM. If the queue create mailbox command 16861 * fails this function will return -ENXIO. 16862 **/ 16863 int 16864 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16865 struct lpfc_queue *cq, uint32_t subtype) 16866 { 16867 struct lpfc_mbx_wq_create *wq_create; 16868 struct lpfc_dmabuf *dmabuf; 16869 LPFC_MBOXQ_t *mbox; 16870 int rc, length, status = 0; 16871 uint32_t shdr_status, shdr_add_status; 16872 union lpfc_sli4_cfg_shdr *shdr; 16873 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16874 struct dma_address *page; 16875 void __iomem *bar_memmap_p; 16876 uint32_t db_offset; 16877 uint16_t pci_barset; 16878 uint8_t dpp_barset; 16879 uint32_t dpp_offset; 16880 uint8_t wq_create_version; 16881 #ifdef CONFIG_X86 16882 unsigned long pg_addr; 16883 #endif 16884 16885 /* sanity check on queue memory */ 16886 if (!wq || !cq) 16887 return -ENODEV; 16888 if (!phba->sli4_hba.pc_sli4_params.supported) 16889 hw_page_size = wq->page_size; 16890 16891 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16892 if (!mbox) 16893 return -ENOMEM; 16894 length = (sizeof(struct lpfc_mbx_wq_create) - 16895 sizeof(struct lpfc_sli4_cfg_mhdr)); 16896 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16897 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16898 length, LPFC_SLI4_MBX_EMBED); 16899 wq_create = &mbox->u.mqe.un.wq_create; 16900 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16901 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16902 wq->page_count); 16903 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16904 cq->queue_id); 16905 16906 /* wqv is the earliest version supported, NOT the latest */ 16907 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16908 phba->sli4_hba.pc_sli4_params.wqv); 16909 16910 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16911 (wq->page_size > SLI4_PAGE_SIZE)) 16912 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16913 else 16914 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16915 16916 switch (wq_create_version) { 16917 case LPFC_Q_CREATE_VERSION_1: 16918 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16919 wq->entry_count); 16920 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16921 LPFC_Q_CREATE_VERSION_1); 16922 16923 switch (wq->entry_size) { 16924 default: 16925 case 64: 16926 bf_set(lpfc_mbx_wq_create_wqe_size, 16927 &wq_create->u.request_1, 16928 LPFC_WQ_WQE_SIZE_64); 16929 break; 16930 case 128: 16931 bf_set(lpfc_mbx_wq_create_wqe_size, 16932 &wq_create->u.request_1, 16933 LPFC_WQ_WQE_SIZE_128); 16934 break; 16935 } 16936 /* Request DPP by default */ 16937 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16938 bf_set(lpfc_mbx_wq_create_page_size, 16939 &wq_create->u.request_1, 16940 (wq->page_size / SLI4_PAGE_SIZE)); 16941 page = wq_create->u.request_1.page; 16942 break; 16943 default: 16944 page = wq_create->u.request.page; 16945 break; 16946 } 16947 16948 list_for_each_entry(dmabuf, &wq->page_list, list) { 16949 memset(dmabuf->virt, 0, hw_page_size); 16950 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16951 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16952 } 16953 16954 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16955 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16956 16957 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16958 /* The IOCTL status is embedded in the mailbox subheader. */ 16959 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16960 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16961 if (shdr_status || shdr_add_status || rc) { 16962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16963 "2503 WQ_CREATE mailbox failed with " 16964 "status x%x add_status x%x, mbx status x%x\n", 16965 shdr_status, shdr_add_status, rc); 16966 status = -ENXIO; 16967 goto out; 16968 } 16969 16970 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16971 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16972 &wq_create->u.response); 16973 else 16974 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16975 &wq_create->u.response_1); 16976 16977 if (wq->queue_id == 0xFFFF) { 16978 status = -ENXIO; 16979 goto out; 16980 } 16981 16982 wq->db_format = LPFC_DB_LIST_FORMAT; 16983 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16984 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16985 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16986 &wq_create->u.response); 16987 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16988 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16990 "3265 WQ[%d] doorbell format " 16991 "not supported: x%x\n", 16992 wq->queue_id, wq->db_format); 16993 status = -EINVAL; 16994 goto out; 16995 } 16996 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16997 &wq_create->u.response); 16998 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16999 pci_barset); 17000 if (!bar_memmap_p) { 17001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17002 "3263 WQ[%d] failed to memmap " 17003 "pci barset:x%x\n", 17004 wq->queue_id, pci_barset); 17005 status = -ENOMEM; 17006 goto out; 17007 } 17008 db_offset = wq_create->u.response.doorbell_offset; 17009 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17010 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17012 "3252 WQ[%d] doorbell offset " 17013 "not supported: x%x\n", 17014 wq->queue_id, db_offset); 17015 status = -EINVAL; 17016 goto out; 17017 } 17018 wq->db_regaddr = bar_memmap_p + db_offset; 17019 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17020 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17021 "format:x%x\n", wq->queue_id, 17022 pci_barset, db_offset, wq->db_format); 17023 } else 17024 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17025 } else { 17026 /* Check if DPP was honored by the firmware */ 17027 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17028 &wq_create->u.response_1); 17029 if (wq->dpp_enable) { 17030 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17031 &wq_create->u.response_1); 17032 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17033 pci_barset); 17034 if (!bar_memmap_p) { 17035 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17036 "3267 WQ[%d] failed to memmap " 17037 "pci barset:x%x\n", 17038 wq->queue_id, pci_barset); 17039 status = -ENOMEM; 17040 goto out; 17041 } 17042 db_offset = wq_create->u.response_1.doorbell_offset; 17043 wq->db_regaddr = bar_memmap_p + db_offset; 17044 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17045 &wq_create->u.response_1); 17046 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17047 &wq_create->u.response_1); 17048 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17049 dpp_barset); 17050 if (!bar_memmap_p) { 17051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17052 "3268 WQ[%d] failed to memmap " 17053 "pci barset:x%x\n", 17054 wq->queue_id, dpp_barset); 17055 status = -ENOMEM; 17056 goto out; 17057 } 17058 dpp_offset = wq_create->u.response_1.dpp_offset; 17059 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17060 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17061 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17062 "dpp_id:x%x dpp_barset:x%x " 17063 "dpp_offset:x%x\n", 17064 wq->queue_id, pci_barset, db_offset, 17065 wq->dpp_id, dpp_barset, dpp_offset); 17066 17067 #ifdef CONFIG_X86 17068 /* Enable combined writes for DPP aperture */ 17069 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17070 rc = set_memory_wc(pg_addr, 1); 17071 if (rc) { 17072 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17073 "3272 Cannot setup Combined " 17074 "Write on WQ[%d] - disable DPP\n", 17075 wq->queue_id); 17076 phba->cfg_enable_dpp = 0; 17077 } 17078 #else 17079 phba->cfg_enable_dpp = 0; 17080 #endif 17081 } else 17082 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17083 } 17084 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17085 if (wq->pring == NULL) { 17086 status = -ENOMEM; 17087 goto out; 17088 } 17089 wq->type = LPFC_WQ; 17090 wq->assoc_qid = cq->queue_id; 17091 wq->subtype = subtype; 17092 wq->host_index = 0; 17093 wq->hba_index = 0; 17094 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17095 17096 /* link the wq onto the parent cq child list */ 17097 list_add_tail(&wq->list, &cq->child_list); 17098 out: 17099 mempool_free(mbox, phba->mbox_mem_pool); 17100 return status; 17101 } 17102 17103 /** 17104 * lpfc_rq_create - Create a Receive Queue on the HBA 17105 * @phba: HBA structure that indicates port to create a queue on. 17106 * @hrq: The queue structure to use to create the header receive queue. 17107 * @drq: The queue structure to use to create the data receive queue. 17108 * @cq: The completion queue to bind this work queue to. 17109 * @subtype: The subtype of the work queue indicating its functionality. 17110 * 17111 * This function creates a receive buffer queue pair , as detailed in @hrq and 17112 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17113 * to the HBA. 17114 * 17115 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17116 * struct is used to get the entry count that is necessary to determine the 17117 * number of pages to use for this queue. The @cq is used to indicate which 17118 * completion queue to bind received buffers that are posted to these queues to. 17119 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17120 * receive queue pair. This function is asynchronous and will wait for the 17121 * mailbox command to finish before continuing. 17122 * 17123 * On success this function will return a zero. If unable to allocate enough 17124 * memory this function will return -ENOMEM. If the queue create mailbox command 17125 * fails this function will return -ENXIO. 17126 **/ 17127 int 17128 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17129 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17130 { 17131 struct lpfc_mbx_rq_create *rq_create; 17132 struct lpfc_dmabuf *dmabuf; 17133 LPFC_MBOXQ_t *mbox; 17134 int rc, length, status = 0; 17135 uint32_t shdr_status, shdr_add_status; 17136 union lpfc_sli4_cfg_shdr *shdr; 17137 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17138 void __iomem *bar_memmap_p; 17139 uint32_t db_offset; 17140 uint16_t pci_barset; 17141 17142 /* sanity check on queue memory */ 17143 if (!hrq || !drq || !cq) 17144 return -ENODEV; 17145 if (!phba->sli4_hba.pc_sli4_params.supported) 17146 hw_page_size = SLI4_PAGE_SIZE; 17147 17148 if (hrq->entry_count != drq->entry_count) 17149 return -EINVAL; 17150 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17151 if (!mbox) 17152 return -ENOMEM; 17153 length = (sizeof(struct lpfc_mbx_rq_create) - 17154 sizeof(struct lpfc_sli4_cfg_mhdr)); 17155 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17156 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17157 length, LPFC_SLI4_MBX_EMBED); 17158 rq_create = &mbox->u.mqe.un.rq_create; 17159 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17160 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17161 phba->sli4_hba.pc_sli4_params.rqv); 17162 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17163 bf_set(lpfc_rq_context_rqe_count_1, 17164 &rq_create->u.request.context, 17165 hrq->entry_count); 17166 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17167 bf_set(lpfc_rq_context_rqe_size, 17168 &rq_create->u.request.context, 17169 LPFC_RQE_SIZE_8); 17170 bf_set(lpfc_rq_context_page_size, 17171 &rq_create->u.request.context, 17172 LPFC_RQ_PAGE_SIZE_4096); 17173 } else { 17174 switch (hrq->entry_count) { 17175 default: 17176 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17177 "2535 Unsupported RQ count. (%d)\n", 17178 hrq->entry_count); 17179 if (hrq->entry_count < 512) { 17180 status = -EINVAL; 17181 goto out; 17182 } 17183 fallthrough; /* otherwise default to smallest count */ 17184 case 512: 17185 bf_set(lpfc_rq_context_rqe_count, 17186 &rq_create->u.request.context, 17187 LPFC_RQ_RING_SIZE_512); 17188 break; 17189 case 1024: 17190 bf_set(lpfc_rq_context_rqe_count, 17191 &rq_create->u.request.context, 17192 LPFC_RQ_RING_SIZE_1024); 17193 break; 17194 case 2048: 17195 bf_set(lpfc_rq_context_rqe_count, 17196 &rq_create->u.request.context, 17197 LPFC_RQ_RING_SIZE_2048); 17198 break; 17199 case 4096: 17200 bf_set(lpfc_rq_context_rqe_count, 17201 &rq_create->u.request.context, 17202 LPFC_RQ_RING_SIZE_4096); 17203 break; 17204 } 17205 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17206 LPFC_HDR_BUF_SIZE); 17207 } 17208 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17209 cq->queue_id); 17210 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17211 hrq->page_count); 17212 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17213 memset(dmabuf->virt, 0, hw_page_size); 17214 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17215 putPaddrLow(dmabuf->phys); 17216 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17217 putPaddrHigh(dmabuf->phys); 17218 } 17219 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17220 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17221 17222 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17223 /* The IOCTL status is embedded in the mailbox subheader. */ 17224 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17225 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17226 if (shdr_status || shdr_add_status || rc) { 17227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17228 "2504 RQ_CREATE mailbox failed with " 17229 "status x%x add_status x%x, mbx status x%x\n", 17230 shdr_status, shdr_add_status, rc); 17231 status = -ENXIO; 17232 goto out; 17233 } 17234 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17235 if (hrq->queue_id == 0xFFFF) { 17236 status = -ENXIO; 17237 goto out; 17238 } 17239 17240 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17241 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17242 &rq_create->u.response); 17243 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17244 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17246 "3262 RQ [%d] doorbell format not " 17247 "supported: x%x\n", hrq->queue_id, 17248 hrq->db_format); 17249 status = -EINVAL; 17250 goto out; 17251 } 17252 17253 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17254 &rq_create->u.response); 17255 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17256 if (!bar_memmap_p) { 17257 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17258 "3269 RQ[%d] failed to memmap pci " 17259 "barset:x%x\n", hrq->queue_id, 17260 pci_barset); 17261 status = -ENOMEM; 17262 goto out; 17263 } 17264 17265 db_offset = rq_create->u.response.doorbell_offset; 17266 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17267 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17269 "3270 RQ[%d] doorbell offset not " 17270 "supported: x%x\n", hrq->queue_id, 17271 db_offset); 17272 status = -EINVAL; 17273 goto out; 17274 } 17275 hrq->db_regaddr = bar_memmap_p + db_offset; 17276 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17277 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17278 "format:x%x\n", hrq->queue_id, pci_barset, 17279 db_offset, hrq->db_format); 17280 } else { 17281 hrq->db_format = LPFC_DB_RING_FORMAT; 17282 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17283 } 17284 hrq->type = LPFC_HRQ; 17285 hrq->assoc_qid = cq->queue_id; 17286 hrq->subtype = subtype; 17287 hrq->host_index = 0; 17288 hrq->hba_index = 0; 17289 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17290 17291 /* now create the data queue */ 17292 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17293 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17294 length, LPFC_SLI4_MBX_EMBED); 17295 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17296 phba->sli4_hba.pc_sli4_params.rqv); 17297 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17298 bf_set(lpfc_rq_context_rqe_count_1, 17299 &rq_create->u.request.context, hrq->entry_count); 17300 if (subtype == LPFC_NVMET) 17301 rq_create->u.request.context.buffer_size = 17302 LPFC_NVMET_DATA_BUF_SIZE; 17303 else 17304 rq_create->u.request.context.buffer_size = 17305 LPFC_DATA_BUF_SIZE; 17306 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17307 LPFC_RQE_SIZE_8); 17308 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17309 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17310 } else { 17311 switch (drq->entry_count) { 17312 default: 17313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17314 "2536 Unsupported RQ count. (%d)\n", 17315 drq->entry_count); 17316 if (drq->entry_count < 512) { 17317 status = -EINVAL; 17318 goto out; 17319 } 17320 fallthrough; /* otherwise default to smallest count */ 17321 case 512: 17322 bf_set(lpfc_rq_context_rqe_count, 17323 &rq_create->u.request.context, 17324 LPFC_RQ_RING_SIZE_512); 17325 break; 17326 case 1024: 17327 bf_set(lpfc_rq_context_rqe_count, 17328 &rq_create->u.request.context, 17329 LPFC_RQ_RING_SIZE_1024); 17330 break; 17331 case 2048: 17332 bf_set(lpfc_rq_context_rqe_count, 17333 &rq_create->u.request.context, 17334 LPFC_RQ_RING_SIZE_2048); 17335 break; 17336 case 4096: 17337 bf_set(lpfc_rq_context_rqe_count, 17338 &rq_create->u.request.context, 17339 LPFC_RQ_RING_SIZE_4096); 17340 break; 17341 } 17342 if (subtype == LPFC_NVMET) 17343 bf_set(lpfc_rq_context_buf_size, 17344 &rq_create->u.request.context, 17345 LPFC_NVMET_DATA_BUF_SIZE); 17346 else 17347 bf_set(lpfc_rq_context_buf_size, 17348 &rq_create->u.request.context, 17349 LPFC_DATA_BUF_SIZE); 17350 } 17351 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17352 cq->queue_id); 17353 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17354 drq->page_count); 17355 list_for_each_entry(dmabuf, &drq->page_list, list) { 17356 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17357 putPaddrLow(dmabuf->phys); 17358 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17359 putPaddrHigh(dmabuf->phys); 17360 } 17361 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17362 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17363 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17364 /* The IOCTL status is embedded in the mailbox subheader. */ 17365 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17366 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17367 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17368 if (shdr_status || shdr_add_status || rc) { 17369 status = -ENXIO; 17370 goto out; 17371 } 17372 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17373 if (drq->queue_id == 0xFFFF) { 17374 status = -ENXIO; 17375 goto out; 17376 } 17377 drq->type = LPFC_DRQ; 17378 drq->assoc_qid = cq->queue_id; 17379 drq->subtype = subtype; 17380 drq->host_index = 0; 17381 drq->hba_index = 0; 17382 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17383 17384 /* link the header and data RQs onto the parent cq child list */ 17385 list_add_tail(&hrq->list, &cq->child_list); 17386 list_add_tail(&drq->list, &cq->child_list); 17387 17388 out: 17389 mempool_free(mbox, phba->mbox_mem_pool); 17390 return status; 17391 } 17392 17393 /** 17394 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17395 * @phba: HBA structure that indicates port to create a queue on. 17396 * @hrqp: The queue structure array to use to create the header receive queues. 17397 * @drqp: The queue structure array to use to create the data receive queues. 17398 * @cqp: The completion queue array to bind these receive queues to. 17399 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17400 * 17401 * This function creates a receive buffer queue pair , as detailed in @hrq and 17402 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17403 * to the HBA. 17404 * 17405 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17406 * struct is used to get the entry count that is necessary to determine the 17407 * number of pages to use for this queue. The @cq is used to indicate which 17408 * completion queue to bind received buffers that are posted to these queues to. 17409 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17410 * receive queue pair. This function is asynchronous and will wait for the 17411 * mailbox command to finish before continuing. 17412 * 17413 * On success this function will return a zero. If unable to allocate enough 17414 * memory this function will return -ENOMEM. If the queue create mailbox command 17415 * fails this function will return -ENXIO. 17416 **/ 17417 int 17418 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17419 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17420 uint32_t subtype) 17421 { 17422 struct lpfc_queue *hrq, *drq, *cq; 17423 struct lpfc_mbx_rq_create_v2 *rq_create; 17424 struct lpfc_dmabuf *dmabuf; 17425 LPFC_MBOXQ_t *mbox; 17426 int rc, length, alloclen, status = 0; 17427 int cnt, idx, numrq, page_idx = 0; 17428 uint32_t shdr_status, shdr_add_status; 17429 union lpfc_sli4_cfg_shdr *shdr; 17430 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17431 17432 numrq = phba->cfg_nvmet_mrq; 17433 /* sanity check on array memory */ 17434 if (!hrqp || !drqp || !cqp || !numrq) 17435 return -ENODEV; 17436 if (!phba->sli4_hba.pc_sli4_params.supported) 17437 hw_page_size = SLI4_PAGE_SIZE; 17438 17439 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17440 if (!mbox) 17441 return -ENOMEM; 17442 17443 length = sizeof(struct lpfc_mbx_rq_create_v2); 17444 length += ((2 * numrq * hrqp[0]->page_count) * 17445 sizeof(struct dma_address)); 17446 17447 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17448 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17449 LPFC_SLI4_MBX_NEMBED); 17450 if (alloclen < length) { 17451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17452 "3099 Allocated DMA memory size (%d) is " 17453 "less than the requested DMA memory size " 17454 "(%d)\n", alloclen, length); 17455 status = -ENOMEM; 17456 goto out; 17457 } 17458 17459 17460 17461 rq_create = mbox->sge_array->addr[0]; 17462 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17463 17464 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17465 cnt = 0; 17466 17467 for (idx = 0; idx < numrq; idx++) { 17468 hrq = hrqp[idx]; 17469 drq = drqp[idx]; 17470 cq = cqp[idx]; 17471 17472 /* sanity check on queue memory */ 17473 if (!hrq || !drq || !cq) { 17474 status = -ENODEV; 17475 goto out; 17476 } 17477 17478 if (hrq->entry_count != drq->entry_count) { 17479 status = -EINVAL; 17480 goto out; 17481 } 17482 17483 if (idx == 0) { 17484 bf_set(lpfc_mbx_rq_create_num_pages, 17485 &rq_create->u.request, 17486 hrq->page_count); 17487 bf_set(lpfc_mbx_rq_create_rq_cnt, 17488 &rq_create->u.request, (numrq * 2)); 17489 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17490 1); 17491 bf_set(lpfc_rq_context_base_cq, 17492 &rq_create->u.request.context, 17493 cq->queue_id); 17494 bf_set(lpfc_rq_context_data_size, 17495 &rq_create->u.request.context, 17496 LPFC_NVMET_DATA_BUF_SIZE); 17497 bf_set(lpfc_rq_context_hdr_size, 17498 &rq_create->u.request.context, 17499 LPFC_HDR_BUF_SIZE); 17500 bf_set(lpfc_rq_context_rqe_count_1, 17501 &rq_create->u.request.context, 17502 hrq->entry_count); 17503 bf_set(lpfc_rq_context_rqe_size, 17504 &rq_create->u.request.context, 17505 LPFC_RQE_SIZE_8); 17506 bf_set(lpfc_rq_context_page_size, 17507 &rq_create->u.request.context, 17508 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17509 } 17510 rc = 0; 17511 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17512 memset(dmabuf->virt, 0, hw_page_size); 17513 cnt = page_idx + dmabuf->buffer_tag; 17514 rq_create->u.request.page[cnt].addr_lo = 17515 putPaddrLow(dmabuf->phys); 17516 rq_create->u.request.page[cnt].addr_hi = 17517 putPaddrHigh(dmabuf->phys); 17518 rc++; 17519 } 17520 page_idx += rc; 17521 17522 rc = 0; 17523 list_for_each_entry(dmabuf, &drq->page_list, list) { 17524 memset(dmabuf->virt, 0, hw_page_size); 17525 cnt = page_idx + dmabuf->buffer_tag; 17526 rq_create->u.request.page[cnt].addr_lo = 17527 putPaddrLow(dmabuf->phys); 17528 rq_create->u.request.page[cnt].addr_hi = 17529 putPaddrHigh(dmabuf->phys); 17530 rc++; 17531 } 17532 page_idx += rc; 17533 17534 hrq->db_format = LPFC_DB_RING_FORMAT; 17535 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17536 hrq->type = LPFC_HRQ; 17537 hrq->assoc_qid = cq->queue_id; 17538 hrq->subtype = subtype; 17539 hrq->host_index = 0; 17540 hrq->hba_index = 0; 17541 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17542 17543 drq->db_format = LPFC_DB_RING_FORMAT; 17544 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17545 drq->type = LPFC_DRQ; 17546 drq->assoc_qid = cq->queue_id; 17547 drq->subtype = subtype; 17548 drq->host_index = 0; 17549 drq->hba_index = 0; 17550 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17551 17552 list_add_tail(&hrq->list, &cq->child_list); 17553 list_add_tail(&drq->list, &cq->child_list); 17554 } 17555 17556 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17557 /* The IOCTL status is embedded in the mailbox subheader. */ 17558 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17559 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17560 if (shdr_status || shdr_add_status || rc) { 17561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17562 "3120 RQ_CREATE mailbox failed with " 17563 "status x%x add_status x%x, mbx status x%x\n", 17564 shdr_status, shdr_add_status, rc); 17565 status = -ENXIO; 17566 goto out; 17567 } 17568 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17569 if (rc == 0xFFFF) { 17570 status = -ENXIO; 17571 goto out; 17572 } 17573 17574 /* Initialize all RQs with associated queue id */ 17575 for (idx = 0; idx < numrq; idx++) { 17576 hrq = hrqp[idx]; 17577 hrq->queue_id = rc + (2 * idx); 17578 drq = drqp[idx]; 17579 drq->queue_id = rc + (2 * idx) + 1; 17580 } 17581 17582 out: 17583 lpfc_sli4_mbox_cmd_free(phba, mbox); 17584 return status; 17585 } 17586 17587 /** 17588 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17589 * @phba: HBA structure that indicates port to destroy a queue on. 17590 * @eq: The queue structure associated with the queue to destroy. 17591 * 17592 * This function destroys a queue, as detailed in @eq by sending an mailbox 17593 * command, specific to the type of queue, to the HBA. 17594 * 17595 * The @eq struct is used to get the queue ID of the queue to destroy. 17596 * 17597 * On success this function will return a zero. If the queue destroy mailbox 17598 * command fails this function will return -ENXIO. 17599 **/ 17600 int 17601 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17602 { 17603 LPFC_MBOXQ_t *mbox; 17604 int rc, length, status = 0; 17605 uint32_t shdr_status, shdr_add_status; 17606 union lpfc_sli4_cfg_shdr *shdr; 17607 17608 /* sanity check on queue memory */ 17609 if (!eq) 17610 return -ENODEV; 17611 17612 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17613 if (!mbox) 17614 return -ENOMEM; 17615 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17616 sizeof(struct lpfc_sli4_cfg_mhdr)); 17617 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17618 LPFC_MBOX_OPCODE_EQ_DESTROY, 17619 length, LPFC_SLI4_MBX_EMBED); 17620 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17621 eq->queue_id); 17622 mbox->vport = eq->phba->pport; 17623 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17624 17625 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17626 /* The IOCTL status is embedded in the mailbox subheader. */ 17627 shdr = (union lpfc_sli4_cfg_shdr *) 17628 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17629 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17630 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17631 if (shdr_status || shdr_add_status || rc) { 17632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17633 "2505 EQ_DESTROY mailbox failed with " 17634 "status x%x add_status x%x, mbx status x%x\n", 17635 shdr_status, shdr_add_status, rc); 17636 status = -ENXIO; 17637 } 17638 17639 /* Remove eq from any list */ 17640 list_del_init(&eq->list); 17641 mempool_free(mbox, eq->phba->mbox_mem_pool); 17642 return status; 17643 } 17644 17645 /** 17646 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17647 * @phba: HBA structure that indicates port to destroy a queue on. 17648 * @cq: The queue structure associated with the queue to destroy. 17649 * 17650 * This function destroys a queue, as detailed in @cq by sending an mailbox 17651 * command, specific to the type of queue, to the HBA. 17652 * 17653 * The @cq struct is used to get the queue ID of the queue to destroy. 17654 * 17655 * On success this function will return a zero. If the queue destroy mailbox 17656 * command fails this function will return -ENXIO. 17657 **/ 17658 int 17659 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17660 { 17661 LPFC_MBOXQ_t *mbox; 17662 int rc, length, status = 0; 17663 uint32_t shdr_status, shdr_add_status; 17664 union lpfc_sli4_cfg_shdr *shdr; 17665 17666 /* sanity check on queue memory */ 17667 if (!cq) 17668 return -ENODEV; 17669 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17670 if (!mbox) 17671 return -ENOMEM; 17672 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17673 sizeof(struct lpfc_sli4_cfg_mhdr)); 17674 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17675 LPFC_MBOX_OPCODE_CQ_DESTROY, 17676 length, LPFC_SLI4_MBX_EMBED); 17677 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17678 cq->queue_id); 17679 mbox->vport = cq->phba->pport; 17680 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17681 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17682 /* The IOCTL status is embedded in the mailbox subheader. */ 17683 shdr = (union lpfc_sli4_cfg_shdr *) 17684 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17685 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17686 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17687 if (shdr_status || shdr_add_status || rc) { 17688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17689 "2506 CQ_DESTROY mailbox failed with " 17690 "status x%x add_status x%x, mbx status x%x\n", 17691 shdr_status, shdr_add_status, rc); 17692 status = -ENXIO; 17693 } 17694 /* Remove cq from any list */ 17695 list_del_init(&cq->list); 17696 mempool_free(mbox, cq->phba->mbox_mem_pool); 17697 return status; 17698 } 17699 17700 /** 17701 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17702 * @phba: HBA structure that indicates port to destroy a queue on. 17703 * @mq: The queue structure associated with the queue to destroy. 17704 * 17705 * This function destroys a queue, as detailed in @mq by sending an mailbox 17706 * command, specific to the type of queue, to the HBA. 17707 * 17708 * The @mq struct is used to get the queue ID of the queue to destroy. 17709 * 17710 * On success this function will return a zero. If the queue destroy mailbox 17711 * command fails this function will return -ENXIO. 17712 **/ 17713 int 17714 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17715 { 17716 LPFC_MBOXQ_t *mbox; 17717 int rc, length, status = 0; 17718 uint32_t shdr_status, shdr_add_status; 17719 union lpfc_sli4_cfg_shdr *shdr; 17720 17721 /* sanity check on queue memory */ 17722 if (!mq) 17723 return -ENODEV; 17724 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17725 if (!mbox) 17726 return -ENOMEM; 17727 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17728 sizeof(struct lpfc_sli4_cfg_mhdr)); 17729 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17730 LPFC_MBOX_OPCODE_MQ_DESTROY, 17731 length, LPFC_SLI4_MBX_EMBED); 17732 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17733 mq->queue_id); 17734 mbox->vport = mq->phba->pport; 17735 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17736 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17737 /* The IOCTL status is embedded in the mailbox subheader. */ 17738 shdr = (union lpfc_sli4_cfg_shdr *) 17739 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17740 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17741 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17742 if (shdr_status || shdr_add_status || rc) { 17743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17744 "2507 MQ_DESTROY mailbox failed with " 17745 "status x%x add_status x%x, mbx status x%x\n", 17746 shdr_status, shdr_add_status, rc); 17747 status = -ENXIO; 17748 } 17749 /* Remove mq from any list */ 17750 list_del_init(&mq->list); 17751 mempool_free(mbox, mq->phba->mbox_mem_pool); 17752 return status; 17753 } 17754 17755 /** 17756 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17757 * @phba: HBA structure that indicates port to destroy a queue on. 17758 * @wq: The queue structure associated with the queue to destroy. 17759 * 17760 * This function destroys a queue, as detailed in @wq by sending an mailbox 17761 * command, specific to the type of queue, to the HBA. 17762 * 17763 * The @wq struct is used to get the queue ID of the queue to destroy. 17764 * 17765 * On success this function will return a zero. If the queue destroy mailbox 17766 * command fails this function will return -ENXIO. 17767 **/ 17768 int 17769 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17770 { 17771 LPFC_MBOXQ_t *mbox; 17772 int rc, length, status = 0; 17773 uint32_t shdr_status, shdr_add_status; 17774 union lpfc_sli4_cfg_shdr *shdr; 17775 17776 /* sanity check on queue memory */ 17777 if (!wq) 17778 return -ENODEV; 17779 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17780 if (!mbox) 17781 return -ENOMEM; 17782 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17783 sizeof(struct lpfc_sli4_cfg_mhdr)); 17784 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17785 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17786 length, LPFC_SLI4_MBX_EMBED); 17787 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17788 wq->queue_id); 17789 mbox->vport = wq->phba->pport; 17790 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17791 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17792 shdr = (union lpfc_sli4_cfg_shdr *) 17793 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17794 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17795 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17796 if (shdr_status || shdr_add_status || rc) { 17797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17798 "2508 WQ_DESTROY mailbox failed with " 17799 "status x%x add_status x%x, mbx status x%x\n", 17800 shdr_status, shdr_add_status, rc); 17801 status = -ENXIO; 17802 } 17803 /* Remove wq from any list */ 17804 list_del_init(&wq->list); 17805 kfree(wq->pring); 17806 wq->pring = NULL; 17807 mempool_free(mbox, wq->phba->mbox_mem_pool); 17808 return status; 17809 } 17810 17811 /** 17812 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17813 * @phba: HBA structure that indicates port to destroy a queue on. 17814 * @hrq: The queue structure associated with the queue to destroy. 17815 * @drq: The queue structure associated with the queue to destroy. 17816 * 17817 * This function destroys a queue, as detailed in @rq by sending an mailbox 17818 * command, specific to the type of queue, to the HBA. 17819 * 17820 * The @rq struct is used to get the queue ID of the queue to destroy. 17821 * 17822 * On success this function will return a zero. If the queue destroy mailbox 17823 * command fails this function will return -ENXIO. 17824 **/ 17825 int 17826 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17827 struct lpfc_queue *drq) 17828 { 17829 LPFC_MBOXQ_t *mbox; 17830 int rc, length, status = 0; 17831 uint32_t shdr_status, shdr_add_status; 17832 union lpfc_sli4_cfg_shdr *shdr; 17833 17834 /* sanity check on queue memory */ 17835 if (!hrq || !drq) 17836 return -ENODEV; 17837 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17838 if (!mbox) 17839 return -ENOMEM; 17840 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17841 sizeof(struct lpfc_sli4_cfg_mhdr)); 17842 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17843 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17844 length, LPFC_SLI4_MBX_EMBED); 17845 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17846 hrq->queue_id); 17847 mbox->vport = hrq->phba->pport; 17848 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17849 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17850 /* The IOCTL status is embedded in the mailbox subheader. */ 17851 shdr = (union lpfc_sli4_cfg_shdr *) 17852 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17853 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17854 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17855 if (shdr_status || shdr_add_status || rc) { 17856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17857 "2509 RQ_DESTROY mailbox failed with " 17858 "status x%x add_status x%x, mbx status x%x\n", 17859 shdr_status, shdr_add_status, rc); 17860 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17861 return -ENXIO; 17862 } 17863 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17864 drq->queue_id); 17865 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17866 shdr = (union lpfc_sli4_cfg_shdr *) 17867 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17868 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17869 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17870 if (shdr_status || shdr_add_status || rc) { 17871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17872 "2510 RQ_DESTROY mailbox failed with " 17873 "status x%x add_status x%x, mbx status x%x\n", 17874 shdr_status, shdr_add_status, rc); 17875 status = -ENXIO; 17876 } 17877 list_del_init(&hrq->list); 17878 list_del_init(&drq->list); 17879 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17880 return status; 17881 } 17882 17883 /** 17884 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17885 * @phba: The virtual port for which this call being executed. 17886 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17887 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17888 * @xritag: the xritag that ties this io to the SGL pages. 17889 * 17890 * This routine will post the sgl pages for the IO that has the xritag 17891 * that is in the iocbq structure. The xritag is assigned during iocbq 17892 * creation and persists for as long as the driver is loaded. 17893 * if the caller has fewer than 256 scatter gather segments to map then 17894 * pdma_phys_addr1 should be 0. 17895 * If the caller needs to map more than 256 scatter gather segment then 17896 * pdma_phys_addr1 should be a valid physical address. 17897 * physical address for SGLs must be 64 byte aligned. 17898 * If you are going to map 2 SGL's then the first one must have 256 entries 17899 * the second sgl can have between 1 and 256 entries. 17900 * 17901 * Return codes: 17902 * 0 - Success 17903 * -ENXIO, -ENOMEM - Failure 17904 **/ 17905 int 17906 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17907 dma_addr_t pdma_phys_addr0, 17908 dma_addr_t pdma_phys_addr1, 17909 uint16_t xritag) 17910 { 17911 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17912 LPFC_MBOXQ_t *mbox; 17913 int rc; 17914 uint32_t shdr_status, shdr_add_status; 17915 uint32_t mbox_tmo; 17916 union lpfc_sli4_cfg_shdr *shdr; 17917 17918 if (xritag == NO_XRI) { 17919 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17920 "0364 Invalid param:\n"); 17921 return -EINVAL; 17922 } 17923 17924 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17925 if (!mbox) 17926 return -ENOMEM; 17927 17928 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17929 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17930 sizeof(struct lpfc_mbx_post_sgl_pages) - 17931 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17932 17933 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17934 &mbox->u.mqe.un.post_sgl_pages; 17935 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17936 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17937 17938 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17939 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17940 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17941 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17942 17943 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17944 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17945 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17946 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17947 if (!phba->sli4_hba.intr_enable) 17948 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17949 else { 17950 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17951 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17952 } 17953 /* The IOCTL status is embedded in the mailbox subheader. */ 17954 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17955 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17956 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17957 if (!phba->sli4_hba.intr_enable) 17958 mempool_free(mbox, phba->mbox_mem_pool); 17959 else if (rc != MBX_TIMEOUT) 17960 mempool_free(mbox, phba->mbox_mem_pool); 17961 if (shdr_status || shdr_add_status || rc) { 17962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17963 "2511 POST_SGL mailbox failed with " 17964 "status x%x add_status x%x, mbx status x%x\n", 17965 shdr_status, shdr_add_status, rc); 17966 } 17967 return 0; 17968 } 17969 17970 /** 17971 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17972 * @phba: pointer to lpfc hba data structure. 17973 * 17974 * This routine is invoked to post rpi header templates to the 17975 * HBA consistent with the SLI-4 interface spec. This routine 17976 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17977 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17978 * 17979 * Returns 17980 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17981 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17982 **/ 17983 static uint16_t 17984 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17985 { 17986 unsigned long xri; 17987 17988 /* 17989 * Fetch the next logical xri. Because this index is logical, 17990 * the driver starts at 0 each time. 17991 */ 17992 spin_lock_irq(&phba->hbalock); 17993 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17994 phba->sli4_hba.max_cfg_param.max_xri, 0); 17995 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17996 spin_unlock_irq(&phba->hbalock); 17997 return NO_XRI; 17998 } else { 17999 set_bit(xri, phba->sli4_hba.xri_bmask); 18000 phba->sli4_hba.max_cfg_param.xri_used++; 18001 } 18002 spin_unlock_irq(&phba->hbalock); 18003 return xri; 18004 } 18005 18006 /** 18007 * __lpfc_sli4_free_xri - Release an xri for reuse. 18008 * @phba: pointer to lpfc hba data structure. 18009 * @xri: xri to release. 18010 * 18011 * This routine is invoked to release an xri to the pool of 18012 * available rpis maintained by the driver. 18013 **/ 18014 static void 18015 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18016 { 18017 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18018 phba->sli4_hba.max_cfg_param.xri_used--; 18019 } 18020 } 18021 18022 /** 18023 * lpfc_sli4_free_xri - Release an xri for reuse. 18024 * @phba: pointer to lpfc hba data structure. 18025 * @xri: xri to release. 18026 * 18027 * This routine is invoked to release an xri to the pool of 18028 * available rpis maintained by the driver. 18029 **/ 18030 void 18031 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18032 { 18033 spin_lock_irq(&phba->hbalock); 18034 __lpfc_sli4_free_xri(phba, xri); 18035 spin_unlock_irq(&phba->hbalock); 18036 } 18037 18038 /** 18039 * lpfc_sli4_next_xritag - Get an xritag for the io 18040 * @phba: Pointer to HBA context object. 18041 * 18042 * This function gets an xritag for the iocb. If there is no unused xritag 18043 * it will return 0xffff. 18044 * The function returns the allocated xritag if successful, else returns zero. 18045 * Zero is not a valid xritag. 18046 * The caller is not required to hold any lock. 18047 **/ 18048 uint16_t 18049 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18050 { 18051 uint16_t xri_index; 18052 18053 xri_index = lpfc_sli4_alloc_xri(phba); 18054 if (xri_index == NO_XRI) 18055 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18056 "2004 Failed to allocate XRI.last XRITAG is %d" 18057 " Max XRI is %d, Used XRI is %d\n", 18058 xri_index, 18059 phba->sli4_hba.max_cfg_param.max_xri, 18060 phba->sli4_hba.max_cfg_param.xri_used); 18061 return xri_index; 18062 } 18063 18064 /** 18065 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18066 * @phba: pointer to lpfc hba data structure. 18067 * @post_sgl_list: pointer to els sgl entry list. 18068 * @post_cnt: number of els sgl entries on the list. 18069 * 18070 * This routine is invoked to post a block of driver's sgl pages to the 18071 * HBA using non-embedded mailbox command. No Lock is held. This routine 18072 * is only called when the driver is loading and after all IO has been 18073 * stopped. 18074 **/ 18075 static int 18076 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18077 struct list_head *post_sgl_list, 18078 int post_cnt) 18079 { 18080 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18081 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18082 struct sgl_page_pairs *sgl_pg_pairs; 18083 void *viraddr; 18084 LPFC_MBOXQ_t *mbox; 18085 uint32_t reqlen, alloclen, pg_pairs; 18086 uint32_t mbox_tmo; 18087 uint16_t xritag_start = 0; 18088 int rc = 0; 18089 uint32_t shdr_status, shdr_add_status; 18090 union lpfc_sli4_cfg_shdr *shdr; 18091 18092 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18093 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18094 if (reqlen > SLI4_PAGE_SIZE) { 18095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18096 "2559 Block sgl registration required DMA " 18097 "size (%d) great than a page\n", reqlen); 18098 return -ENOMEM; 18099 } 18100 18101 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18102 if (!mbox) 18103 return -ENOMEM; 18104 18105 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18106 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18107 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18108 LPFC_SLI4_MBX_NEMBED); 18109 18110 if (alloclen < reqlen) { 18111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18112 "0285 Allocated DMA memory size (%d) is " 18113 "less than the requested DMA memory " 18114 "size (%d)\n", alloclen, reqlen); 18115 lpfc_sli4_mbox_cmd_free(phba, mbox); 18116 return -ENOMEM; 18117 } 18118 /* Set up the SGL pages in the non-embedded DMA pages */ 18119 viraddr = mbox->sge_array->addr[0]; 18120 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18121 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18122 18123 pg_pairs = 0; 18124 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18125 /* Set up the sge entry */ 18126 sgl_pg_pairs->sgl_pg0_addr_lo = 18127 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18128 sgl_pg_pairs->sgl_pg0_addr_hi = 18129 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18130 sgl_pg_pairs->sgl_pg1_addr_lo = 18131 cpu_to_le32(putPaddrLow(0)); 18132 sgl_pg_pairs->sgl_pg1_addr_hi = 18133 cpu_to_le32(putPaddrHigh(0)); 18134 18135 /* Keep the first xritag on the list */ 18136 if (pg_pairs == 0) 18137 xritag_start = sglq_entry->sli4_xritag; 18138 sgl_pg_pairs++; 18139 pg_pairs++; 18140 } 18141 18142 /* Complete initialization and perform endian conversion. */ 18143 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18144 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18145 sgl->word0 = cpu_to_le32(sgl->word0); 18146 18147 if (!phba->sli4_hba.intr_enable) 18148 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18149 else { 18150 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18151 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18152 } 18153 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18154 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18155 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18156 if (!phba->sli4_hba.intr_enable) 18157 lpfc_sli4_mbox_cmd_free(phba, mbox); 18158 else if (rc != MBX_TIMEOUT) 18159 lpfc_sli4_mbox_cmd_free(phba, mbox); 18160 if (shdr_status || shdr_add_status || rc) { 18161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18162 "2513 POST_SGL_BLOCK mailbox command failed " 18163 "status x%x add_status x%x mbx status x%x\n", 18164 shdr_status, shdr_add_status, rc); 18165 rc = -ENXIO; 18166 } 18167 return rc; 18168 } 18169 18170 /** 18171 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18172 * @phba: pointer to lpfc hba data structure. 18173 * @nblist: pointer to nvme buffer list. 18174 * @count: number of scsi buffers on the list. 18175 * 18176 * This routine is invoked to post a block of @count scsi sgl pages from a 18177 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18178 * No Lock is held. 18179 * 18180 **/ 18181 static int 18182 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18183 int count) 18184 { 18185 struct lpfc_io_buf *lpfc_ncmd; 18186 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18187 struct sgl_page_pairs *sgl_pg_pairs; 18188 void *viraddr; 18189 LPFC_MBOXQ_t *mbox; 18190 uint32_t reqlen, alloclen, pg_pairs; 18191 uint32_t mbox_tmo; 18192 uint16_t xritag_start = 0; 18193 int rc = 0; 18194 uint32_t shdr_status, shdr_add_status; 18195 dma_addr_t pdma_phys_bpl1; 18196 union lpfc_sli4_cfg_shdr *shdr; 18197 18198 /* Calculate the requested length of the dma memory */ 18199 reqlen = count * sizeof(struct sgl_page_pairs) + 18200 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18201 if (reqlen > SLI4_PAGE_SIZE) { 18202 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18203 "6118 Block sgl registration required DMA " 18204 "size (%d) great than a page\n", reqlen); 18205 return -ENOMEM; 18206 } 18207 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18208 if (!mbox) { 18209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18210 "6119 Failed to allocate mbox cmd memory\n"); 18211 return -ENOMEM; 18212 } 18213 18214 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18215 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18216 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18217 reqlen, LPFC_SLI4_MBX_NEMBED); 18218 18219 if (alloclen < reqlen) { 18220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18221 "6120 Allocated DMA memory size (%d) is " 18222 "less than the requested DMA memory " 18223 "size (%d)\n", alloclen, reqlen); 18224 lpfc_sli4_mbox_cmd_free(phba, mbox); 18225 return -ENOMEM; 18226 } 18227 18228 /* Get the first SGE entry from the non-embedded DMA memory */ 18229 viraddr = mbox->sge_array->addr[0]; 18230 18231 /* Set up the SGL pages in the non-embedded DMA pages */ 18232 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18233 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18234 18235 pg_pairs = 0; 18236 list_for_each_entry(lpfc_ncmd, nblist, list) { 18237 /* Set up the sge entry */ 18238 sgl_pg_pairs->sgl_pg0_addr_lo = 18239 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18240 sgl_pg_pairs->sgl_pg0_addr_hi = 18241 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18242 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18243 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18244 SGL_PAGE_SIZE; 18245 else 18246 pdma_phys_bpl1 = 0; 18247 sgl_pg_pairs->sgl_pg1_addr_lo = 18248 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18249 sgl_pg_pairs->sgl_pg1_addr_hi = 18250 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18251 /* Keep the first xritag on the list */ 18252 if (pg_pairs == 0) 18253 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18254 sgl_pg_pairs++; 18255 pg_pairs++; 18256 } 18257 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18258 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18259 /* Perform endian conversion if necessary */ 18260 sgl->word0 = cpu_to_le32(sgl->word0); 18261 18262 if (!phba->sli4_hba.intr_enable) { 18263 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18264 } else { 18265 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18266 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18267 } 18268 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18269 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18270 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18271 if (!phba->sli4_hba.intr_enable) 18272 lpfc_sli4_mbox_cmd_free(phba, mbox); 18273 else if (rc != MBX_TIMEOUT) 18274 lpfc_sli4_mbox_cmd_free(phba, mbox); 18275 if (shdr_status || shdr_add_status || rc) { 18276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18277 "6125 POST_SGL_BLOCK mailbox command failed " 18278 "status x%x add_status x%x mbx status x%x\n", 18279 shdr_status, shdr_add_status, rc); 18280 rc = -ENXIO; 18281 } 18282 return rc; 18283 } 18284 18285 /** 18286 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18287 * @phba: pointer to lpfc hba data structure. 18288 * @post_nblist: pointer to the nvme buffer list. 18289 * @sb_count: number of nvme buffers. 18290 * 18291 * This routine walks a list of nvme buffers that was passed in. It attempts 18292 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18293 * uses the non-embedded SGL block post mailbox commands to post to the port. 18294 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18295 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18296 * must be local list, thus no lock is needed when manipulate the list. 18297 * 18298 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18299 **/ 18300 int 18301 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18302 struct list_head *post_nblist, int sb_count) 18303 { 18304 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18305 int status, sgl_size; 18306 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18307 dma_addr_t pdma_phys_sgl1; 18308 int last_xritag = NO_XRI; 18309 int cur_xritag; 18310 LIST_HEAD(prep_nblist); 18311 LIST_HEAD(blck_nblist); 18312 LIST_HEAD(nvme_nblist); 18313 18314 /* sanity check */ 18315 if (sb_count <= 0) 18316 return -EINVAL; 18317 18318 sgl_size = phba->cfg_sg_dma_buf_size; 18319 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18320 list_del_init(&lpfc_ncmd->list); 18321 block_cnt++; 18322 if ((last_xritag != NO_XRI) && 18323 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18324 /* a hole in xri block, form a sgl posting block */ 18325 list_splice_init(&prep_nblist, &blck_nblist); 18326 post_cnt = block_cnt - 1; 18327 /* prepare list for next posting block */ 18328 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18329 block_cnt = 1; 18330 } else { 18331 /* prepare list for next posting block */ 18332 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18333 /* enough sgls for non-embed sgl mbox command */ 18334 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18335 list_splice_init(&prep_nblist, &blck_nblist); 18336 post_cnt = block_cnt; 18337 block_cnt = 0; 18338 } 18339 } 18340 num_posting++; 18341 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18342 18343 /* end of repost sgl list condition for NVME buffers */ 18344 if (num_posting == sb_count) { 18345 if (post_cnt == 0) { 18346 /* last sgl posting block */ 18347 list_splice_init(&prep_nblist, &blck_nblist); 18348 post_cnt = block_cnt; 18349 } else if (block_cnt == 1) { 18350 /* last single sgl with non-contiguous xri */ 18351 if (sgl_size > SGL_PAGE_SIZE) 18352 pdma_phys_sgl1 = 18353 lpfc_ncmd->dma_phys_sgl + 18354 SGL_PAGE_SIZE; 18355 else 18356 pdma_phys_sgl1 = 0; 18357 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18358 status = lpfc_sli4_post_sgl( 18359 phba, lpfc_ncmd->dma_phys_sgl, 18360 pdma_phys_sgl1, cur_xritag); 18361 if (status) { 18362 /* Post error. Buffer unavailable. */ 18363 lpfc_ncmd->flags |= 18364 LPFC_SBUF_NOT_POSTED; 18365 } else { 18366 /* Post success. Bffer available. */ 18367 lpfc_ncmd->flags &= 18368 ~LPFC_SBUF_NOT_POSTED; 18369 lpfc_ncmd->status = IOSTAT_SUCCESS; 18370 num_posted++; 18371 } 18372 /* success, put on NVME buffer sgl list */ 18373 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18374 } 18375 } 18376 18377 /* continue until a nembed page worth of sgls */ 18378 if (post_cnt == 0) 18379 continue; 18380 18381 /* post block of NVME buffer list sgls */ 18382 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18383 post_cnt); 18384 18385 /* don't reset xirtag due to hole in xri block */ 18386 if (block_cnt == 0) 18387 last_xritag = NO_XRI; 18388 18389 /* reset NVME buffer post count for next round of posting */ 18390 post_cnt = 0; 18391 18392 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18393 while (!list_empty(&blck_nblist)) { 18394 list_remove_head(&blck_nblist, lpfc_ncmd, 18395 struct lpfc_io_buf, list); 18396 if (status) { 18397 /* Post error. Mark buffer unavailable. */ 18398 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18399 } else { 18400 /* Post success, Mark buffer available. */ 18401 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18402 lpfc_ncmd->status = IOSTAT_SUCCESS; 18403 num_posted++; 18404 } 18405 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18406 } 18407 } 18408 /* Push NVME buffers with sgl posted to the available list */ 18409 lpfc_io_buf_replenish(phba, &nvme_nblist); 18410 18411 return num_posted; 18412 } 18413 18414 /** 18415 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18416 * @phba: pointer to lpfc_hba struct that the frame was received on 18417 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18418 * 18419 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18420 * valid type of frame that the LPFC driver will handle. This function will 18421 * return a zero if the frame is a valid frame or a non zero value when the 18422 * frame does not pass the check. 18423 **/ 18424 static int 18425 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18426 { 18427 /* make rctl_names static to save stack space */ 18428 struct fc_vft_header *fc_vft_hdr; 18429 uint32_t *header = (uint32_t *) fc_hdr; 18430 18431 #define FC_RCTL_MDS_DIAGS 0xF4 18432 18433 switch (fc_hdr->fh_r_ctl) { 18434 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18435 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18436 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18437 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18438 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18439 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18440 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18441 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18442 case FC_RCTL_ELS_REQ: /* extended link services request */ 18443 case FC_RCTL_ELS_REP: /* extended link services reply */ 18444 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18445 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18446 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18447 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18448 case FC_RCTL_BA_RMC: /* remove connection */ 18449 case FC_RCTL_BA_ACC: /* basic accept */ 18450 case FC_RCTL_BA_RJT: /* basic reject */ 18451 case FC_RCTL_BA_PRMT: 18452 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18453 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18454 case FC_RCTL_P_RJT: /* port reject */ 18455 case FC_RCTL_F_RJT: /* fabric reject */ 18456 case FC_RCTL_P_BSY: /* port busy */ 18457 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18458 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18459 case FC_RCTL_LCR: /* link credit reset */ 18460 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18461 case FC_RCTL_END: /* end */ 18462 break; 18463 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18464 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18465 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18466 return lpfc_fc_frame_check(phba, fc_hdr); 18467 default: 18468 goto drop; 18469 } 18470 18471 switch (fc_hdr->fh_type) { 18472 case FC_TYPE_BLS: 18473 case FC_TYPE_ELS: 18474 case FC_TYPE_FCP: 18475 case FC_TYPE_CT: 18476 case FC_TYPE_NVME: 18477 break; 18478 case FC_TYPE_IP: 18479 case FC_TYPE_ILS: 18480 default: 18481 goto drop; 18482 } 18483 18484 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18485 "2538 Received frame rctl:x%x, type:x%x, " 18486 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18487 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18488 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18489 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18490 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18491 be32_to_cpu(header[6])); 18492 return 0; 18493 drop: 18494 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18495 "2539 Dropped frame rctl:x%x type:x%x\n", 18496 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18497 return 1; 18498 } 18499 18500 /** 18501 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18502 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18503 * 18504 * This function processes the FC header to retrieve the VFI from the VF 18505 * header, if one exists. This function will return the VFI if one exists 18506 * or 0 if no VSAN Header exists. 18507 **/ 18508 static uint32_t 18509 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18510 { 18511 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18512 18513 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18514 return 0; 18515 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18516 } 18517 18518 /** 18519 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18520 * @phba: Pointer to the HBA structure to search for the vport on 18521 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18522 * @fcfi: The FC Fabric ID that the frame came from 18523 * @did: Destination ID to match against 18524 * 18525 * This function searches the @phba for a vport that matches the content of the 18526 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18527 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18528 * returns the matching vport pointer or NULL if unable to match frame to a 18529 * vport. 18530 **/ 18531 static struct lpfc_vport * 18532 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18533 uint16_t fcfi, uint32_t did) 18534 { 18535 struct lpfc_vport **vports; 18536 struct lpfc_vport *vport = NULL; 18537 int i; 18538 18539 if (did == Fabric_DID) 18540 return phba->pport; 18541 if ((phba->pport->fc_flag & FC_PT2PT) && 18542 !(phba->link_state == LPFC_HBA_READY)) 18543 return phba->pport; 18544 18545 vports = lpfc_create_vport_work_array(phba); 18546 if (vports != NULL) { 18547 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18548 if (phba->fcf.fcfi == fcfi && 18549 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18550 vports[i]->fc_myDID == did) { 18551 vport = vports[i]; 18552 break; 18553 } 18554 } 18555 } 18556 lpfc_destroy_vport_work_array(phba, vports); 18557 return vport; 18558 } 18559 18560 /** 18561 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18562 * @vport: The vport to work on. 18563 * 18564 * This function updates the receive sequence time stamp for this vport. The 18565 * receive sequence time stamp indicates the time that the last frame of the 18566 * the sequence that has been idle for the longest amount of time was received. 18567 * the driver uses this time stamp to indicate if any received sequences have 18568 * timed out. 18569 **/ 18570 static void 18571 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18572 { 18573 struct lpfc_dmabuf *h_buf; 18574 struct hbq_dmabuf *dmabuf = NULL; 18575 18576 /* get the oldest sequence on the rcv list */ 18577 h_buf = list_get_first(&vport->rcv_buffer_list, 18578 struct lpfc_dmabuf, list); 18579 if (!h_buf) 18580 return; 18581 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18582 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18583 } 18584 18585 /** 18586 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18587 * @vport: The vport that the received sequences were sent to. 18588 * 18589 * This function cleans up all outstanding received sequences. This is called 18590 * by the driver when a link event or user action invalidates all the received 18591 * sequences. 18592 **/ 18593 void 18594 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18595 { 18596 struct lpfc_dmabuf *h_buf, *hnext; 18597 struct lpfc_dmabuf *d_buf, *dnext; 18598 struct hbq_dmabuf *dmabuf = NULL; 18599 18600 /* start with the oldest sequence on the rcv list */ 18601 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18602 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18603 list_del_init(&dmabuf->hbuf.list); 18604 list_for_each_entry_safe(d_buf, dnext, 18605 &dmabuf->dbuf.list, list) { 18606 list_del_init(&d_buf->list); 18607 lpfc_in_buf_free(vport->phba, d_buf); 18608 } 18609 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18610 } 18611 } 18612 18613 /** 18614 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18615 * @vport: The vport that the received sequences were sent to. 18616 * 18617 * This function determines whether any received sequences have timed out by 18618 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18619 * indicates that there is at least one timed out sequence this routine will 18620 * go through the received sequences one at a time from most inactive to most 18621 * active to determine which ones need to be cleaned up. Once it has determined 18622 * that a sequence needs to be cleaned up it will simply free up the resources 18623 * without sending an abort. 18624 **/ 18625 void 18626 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18627 { 18628 struct lpfc_dmabuf *h_buf, *hnext; 18629 struct lpfc_dmabuf *d_buf, *dnext; 18630 struct hbq_dmabuf *dmabuf = NULL; 18631 unsigned long timeout; 18632 int abort_count = 0; 18633 18634 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18635 vport->rcv_buffer_time_stamp); 18636 if (list_empty(&vport->rcv_buffer_list) || 18637 time_before(jiffies, timeout)) 18638 return; 18639 /* start with the oldest sequence on the rcv list */ 18640 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18641 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18642 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18643 dmabuf->time_stamp); 18644 if (time_before(jiffies, timeout)) 18645 break; 18646 abort_count++; 18647 list_del_init(&dmabuf->hbuf.list); 18648 list_for_each_entry_safe(d_buf, dnext, 18649 &dmabuf->dbuf.list, list) { 18650 list_del_init(&d_buf->list); 18651 lpfc_in_buf_free(vport->phba, d_buf); 18652 } 18653 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18654 } 18655 if (abort_count) 18656 lpfc_update_rcv_time_stamp(vport); 18657 } 18658 18659 /** 18660 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18661 * @vport: pointer to a vitural port 18662 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18663 * 18664 * This function searches through the existing incomplete sequences that have 18665 * been sent to this @vport. If the frame matches one of the incomplete 18666 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18667 * make up that sequence. If no sequence is found that matches this frame then 18668 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18669 * This function returns a pointer to the first dmabuf in the sequence list that 18670 * the frame was linked to. 18671 **/ 18672 static struct hbq_dmabuf * 18673 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18674 { 18675 struct fc_frame_header *new_hdr; 18676 struct fc_frame_header *temp_hdr; 18677 struct lpfc_dmabuf *d_buf; 18678 struct lpfc_dmabuf *h_buf; 18679 struct hbq_dmabuf *seq_dmabuf = NULL; 18680 struct hbq_dmabuf *temp_dmabuf = NULL; 18681 uint8_t found = 0; 18682 18683 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18684 dmabuf->time_stamp = jiffies; 18685 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18686 18687 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18688 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18689 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18690 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18691 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18692 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18693 continue; 18694 /* found a pending sequence that matches this frame */ 18695 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18696 break; 18697 } 18698 if (!seq_dmabuf) { 18699 /* 18700 * This indicates first frame received for this sequence. 18701 * Queue the buffer on the vport's rcv_buffer_list. 18702 */ 18703 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18704 lpfc_update_rcv_time_stamp(vport); 18705 return dmabuf; 18706 } 18707 temp_hdr = seq_dmabuf->hbuf.virt; 18708 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18709 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18710 list_del_init(&seq_dmabuf->hbuf.list); 18711 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18712 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18713 lpfc_update_rcv_time_stamp(vport); 18714 return dmabuf; 18715 } 18716 /* move this sequence to the tail to indicate a young sequence */ 18717 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18718 seq_dmabuf->time_stamp = jiffies; 18719 lpfc_update_rcv_time_stamp(vport); 18720 if (list_empty(&seq_dmabuf->dbuf.list)) { 18721 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18722 return seq_dmabuf; 18723 } 18724 /* find the correct place in the sequence to insert this frame */ 18725 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18726 while (!found) { 18727 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18728 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18729 /* 18730 * If the frame's sequence count is greater than the frame on 18731 * the list then insert the frame right after this frame 18732 */ 18733 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18734 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18735 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18736 found = 1; 18737 break; 18738 } 18739 18740 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18741 break; 18742 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18743 } 18744 18745 if (found) 18746 return seq_dmabuf; 18747 return NULL; 18748 } 18749 18750 /** 18751 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18752 * @vport: pointer to a vitural port 18753 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18754 * 18755 * This function tries to abort from the partially assembed sequence, described 18756 * by the information from basic abbort @dmabuf. It checks to see whether such 18757 * partially assembled sequence held by the driver. If so, it shall free up all 18758 * the frames from the partially assembled sequence. 18759 * 18760 * Return 18761 * true -- if there is matching partially assembled sequence present and all 18762 * the frames freed with the sequence; 18763 * false -- if there is no matching partially assembled sequence present so 18764 * nothing got aborted in the lower layer driver 18765 **/ 18766 static bool 18767 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18768 struct hbq_dmabuf *dmabuf) 18769 { 18770 struct fc_frame_header *new_hdr; 18771 struct fc_frame_header *temp_hdr; 18772 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18773 struct hbq_dmabuf *seq_dmabuf = NULL; 18774 18775 /* Use the hdr_buf to find the sequence that matches this frame */ 18776 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18777 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18778 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18779 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18780 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18781 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18782 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18783 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18784 continue; 18785 /* found a pending sequence that matches this frame */ 18786 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18787 break; 18788 } 18789 18790 /* Free up all the frames from the partially assembled sequence */ 18791 if (seq_dmabuf) { 18792 list_for_each_entry_safe(d_buf, n_buf, 18793 &seq_dmabuf->dbuf.list, list) { 18794 list_del_init(&d_buf->list); 18795 lpfc_in_buf_free(vport->phba, d_buf); 18796 } 18797 return true; 18798 } 18799 return false; 18800 } 18801 18802 /** 18803 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18804 * @vport: pointer to a vitural port 18805 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18806 * 18807 * This function tries to abort from the assembed sequence from upper level 18808 * protocol, described by the information from basic abbort @dmabuf. It 18809 * checks to see whether such pending context exists at upper level protocol. 18810 * If so, it shall clean up the pending context. 18811 * 18812 * Return 18813 * true -- if there is matching pending context of the sequence cleaned 18814 * at ulp; 18815 * false -- if there is no matching pending context of the sequence present 18816 * at ulp. 18817 **/ 18818 static bool 18819 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18820 { 18821 struct lpfc_hba *phba = vport->phba; 18822 int handled; 18823 18824 /* Accepting abort at ulp with SLI4 only */ 18825 if (phba->sli_rev < LPFC_SLI_REV4) 18826 return false; 18827 18828 /* Register all caring upper level protocols to attend abort */ 18829 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18830 if (handled) 18831 return true; 18832 18833 return false; 18834 } 18835 18836 /** 18837 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18838 * @phba: Pointer to HBA context object. 18839 * @cmd_iocbq: pointer to the command iocbq structure. 18840 * @rsp_iocbq: pointer to the response iocbq structure. 18841 * 18842 * This function handles the sequence abort response iocb command complete 18843 * event. It properly releases the memory allocated to the sequence abort 18844 * accept iocb. 18845 **/ 18846 static void 18847 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18848 struct lpfc_iocbq *cmd_iocbq, 18849 struct lpfc_iocbq *rsp_iocbq) 18850 { 18851 struct lpfc_nodelist *ndlp; 18852 18853 if (cmd_iocbq) { 18854 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18855 lpfc_nlp_put(ndlp); 18856 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18857 } 18858 18859 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18860 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18861 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18862 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18863 rsp_iocbq->iocb.ulpStatus, 18864 rsp_iocbq->iocb.un.ulpWord[4]); 18865 } 18866 18867 /** 18868 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18869 * @phba: Pointer to HBA context object. 18870 * @xri: xri id in transaction. 18871 * 18872 * This function validates the xri maps to the known range of XRIs allocated an 18873 * used by the driver. 18874 **/ 18875 uint16_t 18876 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18877 uint16_t xri) 18878 { 18879 uint16_t i; 18880 18881 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18882 if (xri == phba->sli4_hba.xri_ids[i]) 18883 return i; 18884 } 18885 return NO_XRI; 18886 } 18887 18888 /** 18889 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18890 * @vport: pointer to a virtual port. 18891 * @fc_hdr: pointer to a FC frame header. 18892 * @aborted: was the partially assembled receive sequence successfully aborted 18893 * 18894 * This function sends a basic response to a previous unsol sequence abort 18895 * event after aborting the sequence handling. 18896 **/ 18897 void 18898 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18899 struct fc_frame_header *fc_hdr, bool aborted) 18900 { 18901 struct lpfc_hba *phba = vport->phba; 18902 struct lpfc_iocbq *ctiocb = NULL; 18903 struct lpfc_nodelist *ndlp; 18904 uint16_t oxid, rxid, xri, lxri; 18905 uint32_t sid, fctl; 18906 IOCB_t *icmd; 18907 int rc; 18908 18909 if (!lpfc_is_link_up(phba)) 18910 return; 18911 18912 sid = sli4_sid_from_fc_hdr(fc_hdr); 18913 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18914 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18915 18916 ndlp = lpfc_findnode_did(vport, sid); 18917 if (!ndlp) { 18918 ndlp = lpfc_nlp_init(vport, sid); 18919 if (!ndlp) { 18920 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18921 "1268 Failed to allocate ndlp for " 18922 "oxid:x%x SID:x%x\n", oxid, sid); 18923 return; 18924 } 18925 /* Put ndlp onto pport node list */ 18926 lpfc_enqueue_node(vport, ndlp); 18927 } 18928 18929 /* Allocate buffer for rsp iocb */ 18930 ctiocb = lpfc_sli_get_iocbq(phba); 18931 if (!ctiocb) 18932 return; 18933 18934 /* Extract the F_CTL field from FC_HDR */ 18935 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18936 18937 icmd = &ctiocb->iocb; 18938 icmd->un.xseq64.bdl.bdeSize = 0; 18939 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18940 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18941 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18942 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18943 18944 /* Fill in the rest of iocb fields */ 18945 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18946 icmd->ulpBdeCount = 0; 18947 icmd->ulpLe = 1; 18948 icmd->ulpClass = CLASS3; 18949 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18950 ctiocb->context1 = lpfc_nlp_get(ndlp); 18951 if (!ctiocb->context1) { 18952 lpfc_sli_release_iocbq(phba, ctiocb); 18953 return; 18954 } 18955 18956 ctiocb->vport = phba->pport; 18957 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18958 ctiocb->sli4_lxritag = NO_XRI; 18959 ctiocb->sli4_xritag = NO_XRI; 18960 18961 if (fctl & FC_FC_EX_CTX) 18962 /* Exchange responder sent the abort so we 18963 * own the oxid. 18964 */ 18965 xri = oxid; 18966 else 18967 xri = rxid; 18968 lxri = lpfc_sli4_xri_inrange(phba, xri); 18969 if (lxri != NO_XRI) 18970 lpfc_set_rrq_active(phba, ndlp, lxri, 18971 (xri == oxid) ? rxid : oxid, 0); 18972 /* For BA_ABTS from exchange responder, if the logical xri with 18973 * the oxid maps to the FCP XRI range, the port no longer has 18974 * that exchange context, send a BLS_RJT. Override the IOCB for 18975 * a BA_RJT. 18976 */ 18977 if ((fctl & FC_FC_EX_CTX) && 18978 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18979 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18980 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18981 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18982 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18983 } 18984 18985 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18986 * the driver no longer has that exchange, send a BLS_RJT. Override 18987 * the IOCB for a BA_RJT. 18988 */ 18989 if (aborted == false) { 18990 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18991 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18992 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18993 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18994 } 18995 18996 if (fctl & FC_FC_EX_CTX) { 18997 /* ABTS sent by responder to CT exchange, construction 18998 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18999 * field and RX_ID from ABTS for RX_ID field. 19000 */ 19001 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 19002 } else { 19003 /* ABTS sent by initiator to CT exchange, construction 19004 * of BA_ACC will need to allocate a new XRI as for the 19005 * XRI_TAG field. 19006 */ 19007 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 19008 } 19009 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 19010 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 19011 19012 /* Xmit CT abts response on exchange <xid> */ 19013 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19014 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19015 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 19016 19017 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19018 if (rc == IOCB_ERROR) { 19019 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19020 "2925 Failed to issue CT ABTS RSP x%x on " 19021 "xri x%x, Data x%x\n", 19022 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 19023 phba->link_state); 19024 lpfc_nlp_put(ndlp); 19025 ctiocb->context1 = NULL; 19026 lpfc_sli_release_iocbq(phba, ctiocb); 19027 } 19028 } 19029 19030 /** 19031 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19032 * @vport: Pointer to the vport on which this sequence was received 19033 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19034 * 19035 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19036 * receive sequence is only partially assembed by the driver, it shall abort 19037 * the partially assembled frames for the sequence. Otherwise, if the 19038 * unsolicited receive sequence has been completely assembled and passed to 19039 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19040 * unsolicited sequence has been aborted. After that, it will issue a basic 19041 * accept to accept the abort. 19042 **/ 19043 static void 19044 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19045 struct hbq_dmabuf *dmabuf) 19046 { 19047 struct lpfc_hba *phba = vport->phba; 19048 struct fc_frame_header fc_hdr; 19049 uint32_t fctl; 19050 bool aborted; 19051 19052 /* Make a copy of fc_hdr before the dmabuf being released */ 19053 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19054 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19055 19056 if (fctl & FC_FC_EX_CTX) { 19057 /* ABTS by responder to exchange, no cleanup needed */ 19058 aborted = true; 19059 } else { 19060 /* ABTS by initiator to exchange, need to do cleanup */ 19061 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19062 if (aborted == false) 19063 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19064 } 19065 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19066 19067 if (phba->nvmet_support) { 19068 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19069 return; 19070 } 19071 19072 /* Respond with BA_ACC or BA_RJT accordingly */ 19073 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19074 } 19075 19076 /** 19077 * lpfc_seq_complete - Indicates if a sequence is complete 19078 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19079 * 19080 * This function checks the sequence, starting with the frame described by 19081 * @dmabuf, to see if all the frames associated with this sequence are present. 19082 * the frames associated with this sequence are linked to the @dmabuf using the 19083 * dbuf list. This function looks for two major things. 1) That the first frame 19084 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19085 * set. 3) That there are no holes in the sequence count. The function will 19086 * return 1 when the sequence is complete, otherwise it will return 0. 19087 **/ 19088 static int 19089 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19090 { 19091 struct fc_frame_header *hdr; 19092 struct lpfc_dmabuf *d_buf; 19093 struct hbq_dmabuf *seq_dmabuf; 19094 uint32_t fctl; 19095 int seq_count = 0; 19096 19097 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19098 /* make sure first fame of sequence has a sequence count of zero */ 19099 if (hdr->fh_seq_cnt != seq_count) 19100 return 0; 19101 fctl = (hdr->fh_f_ctl[0] << 16 | 19102 hdr->fh_f_ctl[1] << 8 | 19103 hdr->fh_f_ctl[2]); 19104 /* If last frame of sequence we can return success. */ 19105 if (fctl & FC_FC_END_SEQ) 19106 return 1; 19107 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19108 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19109 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19110 /* If there is a hole in the sequence count then fail. */ 19111 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19112 return 0; 19113 fctl = (hdr->fh_f_ctl[0] << 16 | 19114 hdr->fh_f_ctl[1] << 8 | 19115 hdr->fh_f_ctl[2]); 19116 /* If last frame of sequence we can return success. */ 19117 if (fctl & FC_FC_END_SEQ) 19118 return 1; 19119 } 19120 return 0; 19121 } 19122 19123 /** 19124 * lpfc_prep_seq - Prep sequence for ULP processing 19125 * @vport: Pointer to the vport on which this sequence was received 19126 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19127 * 19128 * This function takes a sequence, described by a list of frames, and creates 19129 * a list of iocbq structures to describe the sequence. This iocbq list will be 19130 * used to issue to the generic unsolicited sequence handler. This routine 19131 * returns a pointer to the first iocbq in the list. If the function is unable 19132 * to allocate an iocbq then it throw out the received frames that were not 19133 * able to be described and return a pointer to the first iocbq. If unable to 19134 * allocate any iocbqs (including the first) this function will return NULL. 19135 **/ 19136 static struct lpfc_iocbq * 19137 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19138 { 19139 struct hbq_dmabuf *hbq_buf; 19140 struct lpfc_dmabuf *d_buf, *n_buf; 19141 struct lpfc_iocbq *first_iocbq, *iocbq; 19142 struct fc_frame_header *fc_hdr; 19143 uint32_t sid; 19144 uint32_t len, tot_len; 19145 struct ulp_bde64 *pbde; 19146 19147 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19148 /* remove from receive buffer list */ 19149 list_del_init(&seq_dmabuf->hbuf.list); 19150 lpfc_update_rcv_time_stamp(vport); 19151 /* get the Remote Port's SID */ 19152 sid = sli4_sid_from_fc_hdr(fc_hdr); 19153 tot_len = 0; 19154 /* Get an iocbq struct to fill in. */ 19155 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19156 if (first_iocbq) { 19157 /* Initialize the first IOCB. */ 19158 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 19159 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 19160 first_iocbq->vport = vport; 19161 19162 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19163 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19164 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 19165 first_iocbq->iocb.un.rcvels.parmRo = 19166 sli4_did_from_fc_hdr(fc_hdr); 19167 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 19168 } else 19169 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 19170 first_iocbq->iocb.ulpContext = NO_XRI; 19171 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 19172 be16_to_cpu(fc_hdr->fh_ox_id); 19173 /* iocbq is prepped for internal consumption. Physical vpi. */ 19174 first_iocbq->iocb.unsli3.rcvsli3.vpi = 19175 vport->phba->vpi_ids[vport->vpi]; 19176 /* put the first buffer into the first IOCBq */ 19177 tot_len = bf_get(lpfc_rcqe_length, 19178 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19179 19180 first_iocbq->context2 = &seq_dmabuf->dbuf; 19181 first_iocbq->context3 = NULL; 19182 first_iocbq->iocb.ulpBdeCount = 1; 19183 if (tot_len > LPFC_DATA_BUF_SIZE) 19184 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19185 LPFC_DATA_BUF_SIZE; 19186 else 19187 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 19188 19189 first_iocbq->iocb.un.rcvels.remoteID = sid; 19190 19191 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19192 } 19193 iocbq = first_iocbq; 19194 /* 19195 * Each IOCBq can have two Buffers assigned, so go through the list 19196 * of buffers for this sequence and save two buffers in each IOCBq 19197 */ 19198 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19199 if (!iocbq) { 19200 lpfc_in_buf_free(vport->phba, d_buf); 19201 continue; 19202 } 19203 if (!iocbq->context3) { 19204 iocbq->context3 = d_buf; 19205 iocbq->iocb.ulpBdeCount++; 19206 /* We need to get the size out of the right CQE */ 19207 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19208 len = bf_get(lpfc_rcqe_length, 19209 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19210 pbde = (struct ulp_bde64 *) 19211 &iocbq->iocb.unsli3.sli3Words[4]; 19212 if (len > LPFC_DATA_BUF_SIZE) 19213 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 19214 else 19215 pbde->tus.f.bdeSize = len; 19216 19217 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 19218 tot_len += len; 19219 } else { 19220 iocbq = lpfc_sli_get_iocbq(vport->phba); 19221 if (!iocbq) { 19222 if (first_iocbq) { 19223 first_iocbq->iocb.ulpStatus = 19224 IOSTAT_FCP_RSP_ERROR; 19225 first_iocbq->iocb.un.ulpWord[4] = 19226 IOERR_NO_RESOURCES; 19227 } 19228 lpfc_in_buf_free(vport->phba, d_buf); 19229 continue; 19230 } 19231 /* We need to get the size out of the right CQE */ 19232 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19233 len = bf_get(lpfc_rcqe_length, 19234 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19235 iocbq->context2 = d_buf; 19236 iocbq->context3 = NULL; 19237 iocbq->iocb.ulpBdeCount = 1; 19238 if (len > LPFC_DATA_BUF_SIZE) 19239 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19240 LPFC_DATA_BUF_SIZE; 19241 else 19242 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 19243 19244 tot_len += len; 19245 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19246 19247 iocbq->iocb.un.rcvels.remoteID = sid; 19248 list_add_tail(&iocbq->list, &first_iocbq->list); 19249 } 19250 } 19251 /* Free the sequence's header buffer */ 19252 if (!first_iocbq) 19253 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19254 19255 return first_iocbq; 19256 } 19257 19258 static void 19259 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19260 struct hbq_dmabuf *seq_dmabuf) 19261 { 19262 struct fc_frame_header *fc_hdr; 19263 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19264 struct lpfc_hba *phba = vport->phba; 19265 19266 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19267 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19268 if (!iocbq) { 19269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19270 "2707 Ring %d handler: Failed to allocate " 19271 "iocb Rctl x%x Type x%x received\n", 19272 LPFC_ELS_RING, 19273 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19274 return; 19275 } 19276 if (!lpfc_complete_unsol_iocb(phba, 19277 phba->sli4_hba.els_wq->pring, 19278 iocbq, fc_hdr->fh_r_ctl, 19279 fc_hdr->fh_type)) 19280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19281 "2540 Ring %d handler: unexpected Rctl " 19282 "x%x Type x%x received\n", 19283 LPFC_ELS_RING, 19284 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19285 19286 /* Free iocb created in lpfc_prep_seq */ 19287 list_for_each_entry_safe(curr_iocb, next_iocb, 19288 &iocbq->list, list) { 19289 list_del_init(&curr_iocb->list); 19290 lpfc_sli_release_iocbq(phba, curr_iocb); 19291 } 19292 lpfc_sli_release_iocbq(phba, iocbq); 19293 } 19294 19295 static void 19296 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19297 struct lpfc_iocbq *rspiocb) 19298 { 19299 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 19300 19301 if (pcmd && pcmd->virt) 19302 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19303 kfree(pcmd); 19304 lpfc_sli_release_iocbq(phba, cmdiocb); 19305 lpfc_drain_txq(phba); 19306 } 19307 19308 static void 19309 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19310 struct hbq_dmabuf *dmabuf) 19311 { 19312 struct fc_frame_header *fc_hdr; 19313 struct lpfc_hba *phba = vport->phba; 19314 struct lpfc_iocbq *iocbq = NULL; 19315 union lpfc_wqe *wqe; 19316 struct lpfc_dmabuf *pcmd = NULL; 19317 uint32_t frame_len; 19318 int rc; 19319 unsigned long iflags; 19320 19321 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19322 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19323 19324 /* Send the received frame back */ 19325 iocbq = lpfc_sli_get_iocbq(phba); 19326 if (!iocbq) { 19327 /* Queue cq event and wakeup worker thread to process it */ 19328 spin_lock_irqsave(&phba->hbalock, iflags); 19329 list_add_tail(&dmabuf->cq_event.list, 19330 &phba->sli4_hba.sp_queue_event); 19331 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19332 spin_unlock_irqrestore(&phba->hbalock, iflags); 19333 lpfc_worker_wake_up(phba); 19334 return; 19335 } 19336 19337 /* Allocate buffer for command payload */ 19338 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19339 if (pcmd) 19340 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19341 &pcmd->phys); 19342 if (!pcmd || !pcmd->virt) 19343 goto exit; 19344 19345 INIT_LIST_HEAD(&pcmd->list); 19346 19347 /* copyin the payload */ 19348 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19349 19350 /* fill in BDE's for command */ 19351 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 19352 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 19353 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 19354 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 19355 19356 iocbq->context2 = pcmd; 19357 iocbq->vport = vport; 19358 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 19359 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 19360 19361 /* 19362 * Setup rest of the iocb as though it were a WQE 19363 * Build the SEND_FRAME WQE 19364 */ 19365 wqe = (union lpfc_wqe *)&iocbq->iocb; 19366 19367 wqe->send_frame.frame_len = frame_len; 19368 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 19369 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 19370 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 19371 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 19372 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 19373 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 19374 19375 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 19376 iocbq->iocb.ulpLe = 1; 19377 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 19378 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19379 if (rc == IOCB_ERROR) 19380 goto exit; 19381 19382 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19383 return; 19384 19385 exit: 19386 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19387 "2023 Unable to process MDS loopback frame\n"); 19388 if (pcmd && pcmd->virt) 19389 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19390 kfree(pcmd); 19391 if (iocbq) 19392 lpfc_sli_release_iocbq(phba, iocbq); 19393 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19394 } 19395 19396 /** 19397 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19398 * @phba: Pointer to HBA context object. 19399 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19400 * 19401 * This function is called with no lock held. This function processes all 19402 * the received buffers and gives it to upper layers when a received buffer 19403 * indicates that it is the final frame in the sequence. The interrupt 19404 * service routine processes received buffers at interrupt contexts. 19405 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19406 * appropriate receive function when the final frame in a sequence is received. 19407 **/ 19408 void 19409 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19410 struct hbq_dmabuf *dmabuf) 19411 { 19412 struct hbq_dmabuf *seq_dmabuf; 19413 struct fc_frame_header *fc_hdr; 19414 struct lpfc_vport *vport; 19415 uint32_t fcfi; 19416 uint32_t did; 19417 19418 /* Process each received buffer */ 19419 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19420 19421 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19422 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19423 vport = phba->pport; 19424 /* Handle MDS Loopback frames */ 19425 if (!(phba->pport->load_flag & FC_UNLOADING)) 19426 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19427 else 19428 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19429 return; 19430 } 19431 19432 /* check to see if this a valid type of frame */ 19433 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19434 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19435 return; 19436 } 19437 19438 if ((bf_get(lpfc_cqe_code, 19439 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19440 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19441 &dmabuf->cq_event.cqe.rcqe_cmpl); 19442 else 19443 fcfi = bf_get(lpfc_rcqe_fcf_id, 19444 &dmabuf->cq_event.cqe.rcqe_cmpl); 19445 19446 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19447 vport = phba->pport; 19448 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19449 "2023 MDS Loopback %d bytes\n", 19450 bf_get(lpfc_rcqe_length, 19451 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19452 /* Handle MDS Loopback frames */ 19453 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19454 return; 19455 } 19456 19457 /* d_id this frame is directed to */ 19458 did = sli4_did_from_fc_hdr(fc_hdr); 19459 19460 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19461 if (!vport) { 19462 /* throw out the frame */ 19463 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19464 return; 19465 } 19466 19467 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19468 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19469 (did != Fabric_DID)) { 19470 /* 19471 * Throw out the frame if we are not pt2pt. 19472 * The pt2pt protocol allows for discovery frames 19473 * to be received without a registered VPI. 19474 */ 19475 if (!(vport->fc_flag & FC_PT2PT) || 19476 (phba->link_state == LPFC_HBA_READY)) { 19477 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19478 return; 19479 } 19480 } 19481 19482 /* Handle the basic abort sequence (BA_ABTS) event */ 19483 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19484 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19485 return; 19486 } 19487 19488 /* Link this frame */ 19489 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19490 if (!seq_dmabuf) { 19491 /* unable to add frame to vport - throw it out */ 19492 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19493 return; 19494 } 19495 /* If not last frame in sequence continue processing frames. */ 19496 if (!lpfc_seq_complete(seq_dmabuf)) 19497 return; 19498 19499 /* Send the complete sequence to the upper layer protocol */ 19500 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19501 } 19502 19503 /** 19504 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19505 * @phba: pointer to lpfc hba data structure. 19506 * 19507 * This routine is invoked to post rpi header templates to the 19508 * HBA consistent with the SLI-4 interface spec. This routine 19509 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19510 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19511 * 19512 * This routine does not require any locks. It's usage is expected 19513 * to be driver load or reset recovery when the driver is 19514 * sequential. 19515 * 19516 * Return codes 19517 * 0 - successful 19518 * -EIO - The mailbox failed to complete successfully. 19519 * When this error occurs, the driver is not guaranteed 19520 * to have any rpi regions posted to the device and 19521 * must either attempt to repost the regions or take a 19522 * fatal error. 19523 **/ 19524 int 19525 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19526 { 19527 struct lpfc_rpi_hdr *rpi_page; 19528 uint32_t rc = 0; 19529 uint16_t lrpi = 0; 19530 19531 /* SLI4 ports that support extents do not require RPI headers. */ 19532 if (!phba->sli4_hba.rpi_hdrs_in_use) 19533 goto exit; 19534 if (phba->sli4_hba.extents_in_use) 19535 return -EIO; 19536 19537 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19538 /* 19539 * Assign the rpi headers a physical rpi only if the driver 19540 * has not initialized those resources. A port reset only 19541 * needs the headers posted. 19542 */ 19543 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19544 LPFC_RPI_RSRC_RDY) 19545 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19546 19547 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19548 if (rc != MBX_SUCCESS) { 19549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19550 "2008 Error %d posting all rpi " 19551 "headers\n", rc); 19552 rc = -EIO; 19553 break; 19554 } 19555 } 19556 19557 exit: 19558 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19559 LPFC_RPI_RSRC_RDY); 19560 return rc; 19561 } 19562 19563 /** 19564 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19565 * @phba: pointer to lpfc hba data structure. 19566 * @rpi_page: pointer to the rpi memory region. 19567 * 19568 * This routine is invoked to post a single rpi header to the 19569 * HBA consistent with the SLI-4 interface spec. This memory region 19570 * maps up to 64 rpi context regions. 19571 * 19572 * Return codes 19573 * 0 - successful 19574 * -ENOMEM - No available memory 19575 * -EIO - The mailbox failed to complete successfully. 19576 **/ 19577 int 19578 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19579 { 19580 LPFC_MBOXQ_t *mboxq; 19581 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19582 uint32_t rc = 0; 19583 uint32_t shdr_status, shdr_add_status; 19584 union lpfc_sli4_cfg_shdr *shdr; 19585 19586 /* SLI4 ports that support extents do not require RPI headers. */ 19587 if (!phba->sli4_hba.rpi_hdrs_in_use) 19588 return rc; 19589 if (phba->sli4_hba.extents_in_use) 19590 return -EIO; 19591 19592 /* The port is notified of the header region via a mailbox command. */ 19593 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19594 if (!mboxq) { 19595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19596 "2001 Unable to allocate memory for issuing " 19597 "SLI_CONFIG_SPECIAL mailbox command\n"); 19598 return -ENOMEM; 19599 } 19600 19601 /* Post all rpi memory regions to the port. */ 19602 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19603 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19604 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19605 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19606 sizeof(struct lpfc_sli4_cfg_mhdr), 19607 LPFC_SLI4_MBX_EMBED); 19608 19609 19610 /* Post the physical rpi to the port for this rpi header. */ 19611 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19612 rpi_page->start_rpi); 19613 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19614 hdr_tmpl, rpi_page->page_count); 19615 19616 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19617 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19618 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19619 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19620 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19621 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19622 mempool_free(mboxq, phba->mbox_mem_pool); 19623 if (shdr_status || shdr_add_status || rc) { 19624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19625 "2514 POST_RPI_HDR mailbox failed with " 19626 "status x%x add_status x%x, mbx status x%x\n", 19627 shdr_status, shdr_add_status, rc); 19628 rc = -ENXIO; 19629 } else { 19630 /* 19631 * The next_rpi stores the next logical module-64 rpi value used 19632 * to post physical rpis in subsequent rpi postings. 19633 */ 19634 spin_lock_irq(&phba->hbalock); 19635 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19636 spin_unlock_irq(&phba->hbalock); 19637 } 19638 return rc; 19639 } 19640 19641 /** 19642 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19643 * @phba: pointer to lpfc hba data structure. 19644 * 19645 * This routine is invoked to post rpi header templates to the 19646 * HBA consistent with the SLI-4 interface spec. This routine 19647 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19648 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19649 * 19650 * Returns 19651 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19652 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19653 **/ 19654 int 19655 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19656 { 19657 unsigned long rpi; 19658 uint16_t max_rpi, rpi_limit; 19659 uint16_t rpi_remaining, lrpi = 0; 19660 struct lpfc_rpi_hdr *rpi_hdr; 19661 unsigned long iflag; 19662 19663 /* 19664 * Fetch the next logical rpi. Because this index is logical, 19665 * the driver starts at 0 each time. 19666 */ 19667 spin_lock_irqsave(&phba->hbalock, iflag); 19668 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19669 rpi_limit = phba->sli4_hba.next_rpi; 19670 19671 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 19672 if (rpi >= rpi_limit) 19673 rpi = LPFC_RPI_ALLOC_ERROR; 19674 else { 19675 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19676 phba->sli4_hba.max_cfg_param.rpi_used++; 19677 phba->sli4_hba.rpi_count++; 19678 } 19679 lpfc_printf_log(phba, KERN_INFO, 19680 LOG_NODE | LOG_DISCOVERY, 19681 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19682 (int) rpi, max_rpi, rpi_limit); 19683 19684 /* 19685 * Don't try to allocate more rpi header regions if the device limit 19686 * has been exhausted. 19687 */ 19688 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19689 (phba->sli4_hba.rpi_count >= max_rpi)) { 19690 spin_unlock_irqrestore(&phba->hbalock, iflag); 19691 return rpi; 19692 } 19693 19694 /* 19695 * RPI header postings are not required for SLI4 ports capable of 19696 * extents. 19697 */ 19698 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19699 spin_unlock_irqrestore(&phba->hbalock, iflag); 19700 return rpi; 19701 } 19702 19703 /* 19704 * If the driver is running low on rpi resources, allocate another 19705 * page now. Note that the next_rpi value is used because 19706 * it represents how many are actually in use whereas max_rpi notes 19707 * how many are supported max by the device. 19708 */ 19709 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19710 spin_unlock_irqrestore(&phba->hbalock, iflag); 19711 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19712 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19713 if (!rpi_hdr) { 19714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19715 "2002 Error Could not grow rpi " 19716 "count\n"); 19717 } else { 19718 lrpi = rpi_hdr->start_rpi; 19719 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19720 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19721 } 19722 } 19723 19724 return rpi; 19725 } 19726 19727 /** 19728 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19729 * @phba: pointer to lpfc hba data structure. 19730 * @rpi: rpi to free 19731 * 19732 * This routine is invoked to release an rpi to the pool of 19733 * available rpis maintained by the driver. 19734 **/ 19735 static void 19736 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19737 { 19738 /* 19739 * if the rpi value indicates a prior unreg has already 19740 * been done, skip the unreg. 19741 */ 19742 if (rpi == LPFC_RPI_ALLOC_ERROR) 19743 return; 19744 19745 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19746 phba->sli4_hba.rpi_count--; 19747 phba->sli4_hba.max_cfg_param.rpi_used--; 19748 } else { 19749 lpfc_printf_log(phba, KERN_INFO, 19750 LOG_NODE | LOG_DISCOVERY, 19751 "2016 rpi %x not inuse\n", 19752 rpi); 19753 } 19754 } 19755 19756 /** 19757 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19758 * @phba: pointer to lpfc hba data structure. 19759 * @rpi: rpi to free 19760 * 19761 * This routine is invoked to release an rpi to the pool of 19762 * available rpis maintained by the driver. 19763 **/ 19764 void 19765 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19766 { 19767 spin_lock_irq(&phba->hbalock); 19768 __lpfc_sli4_free_rpi(phba, rpi); 19769 spin_unlock_irq(&phba->hbalock); 19770 } 19771 19772 /** 19773 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19774 * @phba: pointer to lpfc hba data structure. 19775 * 19776 * This routine is invoked to remove the memory region that 19777 * provided rpi via a bitmask. 19778 **/ 19779 void 19780 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19781 { 19782 kfree(phba->sli4_hba.rpi_bmask); 19783 kfree(phba->sli4_hba.rpi_ids); 19784 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19785 } 19786 19787 /** 19788 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19789 * @ndlp: pointer to lpfc nodelist data structure. 19790 * @cmpl: completion call-back. 19791 * @arg: data to load as MBox 'caller buffer information' 19792 * 19793 * This routine is invoked to remove the memory region that 19794 * provided rpi via a bitmask. 19795 **/ 19796 int 19797 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19798 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19799 { 19800 LPFC_MBOXQ_t *mboxq; 19801 struct lpfc_hba *phba = ndlp->phba; 19802 int rc; 19803 19804 /* The port is notified of the header region via a mailbox command. */ 19805 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19806 if (!mboxq) 19807 return -ENOMEM; 19808 19809 /* If cmpl assigned, then this nlp_get pairs with 19810 * lpfc_mbx_cmpl_resume_rpi. 19811 * 19812 * Else cmpl is NULL, then this nlp_get pairs with 19813 * lpfc_sli_def_mbox_cmpl. 19814 */ 19815 if (!lpfc_nlp_get(ndlp)) { 19816 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19817 "2122 %s: Failed to get nlp ref\n", 19818 __func__); 19819 mempool_free(mboxq, phba->mbox_mem_pool); 19820 return -EIO; 19821 } 19822 19823 /* Post all rpi memory regions to the port. */ 19824 lpfc_resume_rpi(mboxq, ndlp); 19825 if (cmpl) { 19826 mboxq->mbox_cmpl = cmpl; 19827 mboxq->ctx_buf = arg; 19828 } else 19829 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19830 mboxq->ctx_ndlp = ndlp; 19831 mboxq->vport = ndlp->vport; 19832 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19833 if (rc == MBX_NOT_FINISHED) { 19834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19835 "2010 Resume RPI Mailbox failed " 19836 "status %d, mbxStatus x%x\n", rc, 19837 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19838 lpfc_nlp_put(ndlp); 19839 mempool_free(mboxq, phba->mbox_mem_pool); 19840 return -EIO; 19841 } 19842 return 0; 19843 } 19844 19845 /** 19846 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19847 * @vport: Pointer to the vport for which the vpi is being initialized 19848 * 19849 * This routine is invoked to activate a vpi with the port. 19850 * 19851 * Returns: 19852 * 0 success 19853 * -Evalue otherwise 19854 **/ 19855 int 19856 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19857 { 19858 LPFC_MBOXQ_t *mboxq; 19859 int rc = 0; 19860 int retval = MBX_SUCCESS; 19861 uint32_t mbox_tmo; 19862 struct lpfc_hba *phba = vport->phba; 19863 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19864 if (!mboxq) 19865 return -ENOMEM; 19866 lpfc_init_vpi(phba, mboxq, vport->vpi); 19867 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19868 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19869 if (rc != MBX_SUCCESS) { 19870 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19871 "2022 INIT VPI Mailbox failed " 19872 "status %d, mbxStatus x%x\n", rc, 19873 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19874 retval = -EIO; 19875 } 19876 if (rc != MBX_TIMEOUT) 19877 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19878 19879 return retval; 19880 } 19881 19882 /** 19883 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19884 * @phba: pointer to lpfc hba data structure. 19885 * @mboxq: Pointer to mailbox object. 19886 * 19887 * This routine is invoked to manually add a single FCF record. The caller 19888 * must pass a completely initialized FCF_Record. This routine takes 19889 * care of the nonembedded mailbox operations. 19890 **/ 19891 static void 19892 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19893 { 19894 void *virt_addr; 19895 union lpfc_sli4_cfg_shdr *shdr; 19896 uint32_t shdr_status, shdr_add_status; 19897 19898 virt_addr = mboxq->sge_array->addr[0]; 19899 /* The IOCTL status is embedded in the mailbox subheader. */ 19900 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19901 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19902 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19903 19904 if ((shdr_status || shdr_add_status) && 19905 (shdr_status != STATUS_FCF_IN_USE)) 19906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19907 "2558 ADD_FCF_RECORD mailbox failed with " 19908 "status x%x add_status x%x\n", 19909 shdr_status, shdr_add_status); 19910 19911 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19912 } 19913 19914 /** 19915 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19916 * @phba: pointer to lpfc hba data structure. 19917 * @fcf_record: pointer to the initialized fcf record to add. 19918 * 19919 * This routine is invoked to manually add a single FCF record. The caller 19920 * must pass a completely initialized FCF_Record. This routine takes 19921 * care of the nonembedded mailbox operations. 19922 **/ 19923 int 19924 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19925 { 19926 int rc = 0; 19927 LPFC_MBOXQ_t *mboxq; 19928 uint8_t *bytep; 19929 void *virt_addr; 19930 struct lpfc_mbx_sge sge; 19931 uint32_t alloc_len, req_len; 19932 uint32_t fcfindex; 19933 19934 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19935 if (!mboxq) { 19936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19937 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19938 return -ENOMEM; 19939 } 19940 19941 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19942 sizeof(uint32_t); 19943 19944 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19945 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19946 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19947 req_len, LPFC_SLI4_MBX_NEMBED); 19948 if (alloc_len < req_len) { 19949 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19950 "2523 Allocated DMA memory size (x%x) is " 19951 "less than the requested DMA memory " 19952 "size (x%x)\n", alloc_len, req_len); 19953 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19954 return -ENOMEM; 19955 } 19956 19957 /* 19958 * Get the first SGE entry from the non-embedded DMA memory. This 19959 * routine only uses a single SGE. 19960 */ 19961 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19962 virt_addr = mboxq->sge_array->addr[0]; 19963 /* 19964 * Configure the FCF record for FCFI 0. This is the driver's 19965 * hardcoded default and gets used in nonFIP mode. 19966 */ 19967 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19968 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19969 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19970 19971 /* 19972 * Copy the fcf_index and the FCF Record Data. The data starts after 19973 * the FCoE header plus word10. The data copy needs to be endian 19974 * correct. 19975 */ 19976 bytep += sizeof(uint32_t); 19977 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19978 mboxq->vport = phba->pport; 19979 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19980 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19981 if (rc == MBX_NOT_FINISHED) { 19982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19983 "2515 ADD_FCF_RECORD mailbox failed with " 19984 "status 0x%x\n", rc); 19985 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19986 rc = -EIO; 19987 } else 19988 rc = 0; 19989 19990 return rc; 19991 } 19992 19993 /** 19994 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19995 * @phba: pointer to lpfc hba data structure. 19996 * @fcf_record: pointer to the fcf record to write the default data. 19997 * @fcf_index: FCF table entry index. 19998 * 19999 * This routine is invoked to build the driver's default FCF record. The 20000 * values used are hardcoded. This routine handles memory initialization. 20001 * 20002 **/ 20003 void 20004 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20005 struct fcf_record *fcf_record, 20006 uint16_t fcf_index) 20007 { 20008 memset(fcf_record, 0, sizeof(struct fcf_record)); 20009 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20010 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20011 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20012 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20013 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20014 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20015 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20016 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20017 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20018 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20019 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20020 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20021 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20022 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20023 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20024 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20025 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20026 /* Set the VLAN bit map */ 20027 if (phba->valid_vlan) { 20028 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20029 = 1 << (phba->vlan_id % 8); 20030 } 20031 } 20032 20033 /** 20034 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20035 * @phba: pointer to lpfc hba data structure. 20036 * @fcf_index: FCF table entry offset. 20037 * 20038 * This routine is invoked to scan the entire FCF table by reading FCF 20039 * record and processing it one at a time starting from the @fcf_index 20040 * for initial FCF discovery or fast FCF failover rediscovery. 20041 * 20042 * Return 0 if the mailbox command is submitted successfully, none 0 20043 * otherwise. 20044 **/ 20045 int 20046 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20047 { 20048 int rc = 0, error; 20049 LPFC_MBOXQ_t *mboxq; 20050 20051 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20052 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20053 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20054 if (!mboxq) { 20055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20056 "2000 Failed to allocate mbox for " 20057 "READ_FCF cmd\n"); 20058 error = -ENOMEM; 20059 goto fail_fcf_scan; 20060 } 20061 /* Construct the read FCF record mailbox command */ 20062 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20063 if (rc) { 20064 error = -EINVAL; 20065 goto fail_fcf_scan; 20066 } 20067 /* Issue the mailbox command asynchronously */ 20068 mboxq->vport = phba->pport; 20069 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20070 20071 spin_lock_irq(&phba->hbalock); 20072 phba->hba_flag |= FCF_TS_INPROG; 20073 spin_unlock_irq(&phba->hbalock); 20074 20075 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20076 if (rc == MBX_NOT_FINISHED) 20077 error = -EIO; 20078 else { 20079 /* Reset eligible FCF count for new scan */ 20080 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20081 phba->fcf.eligible_fcf_cnt = 0; 20082 error = 0; 20083 } 20084 fail_fcf_scan: 20085 if (error) { 20086 if (mboxq) 20087 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20088 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20089 spin_lock_irq(&phba->hbalock); 20090 phba->hba_flag &= ~FCF_TS_INPROG; 20091 spin_unlock_irq(&phba->hbalock); 20092 } 20093 return error; 20094 } 20095 20096 /** 20097 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20098 * @phba: pointer to lpfc hba data structure. 20099 * @fcf_index: FCF table entry offset. 20100 * 20101 * This routine is invoked to read an FCF record indicated by @fcf_index 20102 * and to use it for FLOGI roundrobin FCF failover. 20103 * 20104 * Return 0 if the mailbox command is submitted successfully, none 0 20105 * otherwise. 20106 **/ 20107 int 20108 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20109 { 20110 int rc = 0, error; 20111 LPFC_MBOXQ_t *mboxq; 20112 20113 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20114 if (!mboxq) { 20115 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20116 "2763 Failed to allocate mbox for " 20117 "READ_FCF cmd\n"); 20118 error = -ENOMEM; 20119 goto fail_fcf_read; 20120 } 20121 /* Construct the read FCF record mailbox command */ 20122 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20123 if (rc) { 20124 error = -EINVAL; 20125 goto fail_fcf_read; 20126 } 20127 /* Issue the mailbox command asynchronously */ 20128 mboxq->vport = phba->pport; 20129 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20130 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20131 if (rc == MBX_NOT_FINISHED) 20132 error = -EIO; 20133 else 20134 error = 0; 20135 20136 fail_fcf_read: 20137 if (error && mboxq) 20138 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20139 return error; 20140 } 20141 20142 /** 20143 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20144 * @phba: pointer to lpfc hba data structure. 20145 * @fcf_index: FCF table entry offset. 20146 * 20147 * This routine is invoked to read an FCF record indicated by @fcf_index to 20148 * determine whether it's eligible for FLOGI roundrobin failover list. 20149 * 20150 * Return 0 if the mailbox command is submitted successfully, none 0 20151 * otherwise. 20152 **/ 20153 int 20154 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20155 { 20156 int rc = 0, error; 20157 LPFC_MBOXQ_t *mboxq; 20158 20159 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20160 if (!mboxq) { 20161 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20162 "2758 Failed to allocate mbox for " 20163 "READ_FCF cmd\n"); 20164 error = -ENOMEM; 20165 goto fail_fcf_read; 20166 } 20167 /* Construct the read FCF record mailbox command */ 20168 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20169 if (rc) { 20170 error = -EINVAL; 20171 goto fail_fcf_read; 20172 } 20173 /* Issue the mailbox command asynchronously */ 20174 mboxq->vport = phba->pport; 20175 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20176 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20177 if (rc == MBX_NOT_FINISHED) 20178 error = -EIO; 20179 else 20180 error = 0; 20181 20182 fail_fcf_read: 20183 if (error && mboxq) 20184 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20185 return error; 20186 } 20187 20188 /** 20189 * lpfc_check_next_fcf_pri_level 20190 * @phba: pointer to the lpfc_hba struct for this port. 20191 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20192 * routine when the rr_bmask is empty. The FCF indecies are put into the 20193 * rr_bmask based on their priority level. Starting from the highest priority 20194 * to the lowest. The most likely FCF candidate will be in the highest 20195 * priority group. When this routine is called it searches the fcf_pri list for 20196 * next lowest priority group and repopulates the rr_bmask with only those 20197 * fcf_indexes. 20198 * returns: 20199 * 1=success 0=failure 20200 **/ 20201 static int 20202 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20203 { 20204 uint16_t next_fcf_pri; 20205 uint16_t last_index; 20206 struct lpfc_fcf_pri *fcf_pri; 20207 int rc; 20208 int ret = 0; 20209 20210 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20211 LPFC_SLI4_FCF_TBL_INDX_MAX); 20212 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20213 "3060 Last IDX %d\n", last_index); 20214 20215 /* Verify the priority list has 2 or more entries */ 20216 spin_lock_irq(&phba->hbalock); 20217 if (list_empty(&phba->fcf.fcf_pri_list) || 20218 list_is_singular(&phba->fcf.fcf_pri_list)) { 20219 spin_unlock_irq(&phba->hbalock); 20220 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20221 "3061 Last IDX %d\n", last_index); 20222 return 0; /* Empty rr list */ 20223 } 20224 spin_unlock_irq(&phba->hbalock); 20225 20226 next_fcf_pri = 0; 20227 /* 20228 * Clear the rr_bmask and set all of the bits that are at this 20229 * priority. 20230 */ 20231 memset(phba->fcf.fcf_rr_bmask, 0, 20232 sizeof(*phba->fcf.fcf_rr_bmask)); 20233 spin_lock_irq(&phba->hbalock); 20234 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20235 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20236 continue; 20237 /* 20238 * the 1st priority that has not FLOGI failed 20239 * will be the highest. 20240 */ 20241 if (!next_fcf_pri) 20242 next_fcf_pri = fcf_pri->fcf_rec.priority; 20243 spin_unlock_irq(&phba->hbalock); 20244 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20245 rc = lpfc_sli4_fcf_rr_index_set(phba, 20246 fcf_pri->fcf_rec.fcf_index); 20247 if (rc) 20248 return 0; 20249 } 20250 spin_lock_irq(&phba->hbalock); 20251 } 20252 /* 20253 * if next_fcf_pri was not set above and the list is not empty then 20254 * we have failed flogis on all of them. So reset flogi failed 20255 * and start at the beginning. 20256 */ 20257 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20258 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20259 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20260 /* 20261 * the 1st priority that has not FLOGI failed 20262 * will be the highest. 20263 */ 20264 if (!next_fcf_pri) 20265 next_fcf_pri = fcf_pri->fcf_rec.priority; 20266 spin_unlock_irq(&phba->hbalock); 20267 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20268 rc = lpfc_sli4_fcf_rr_index_set(phba, 20269 fcf_pri->fcf_rec.fcf_index); 20270 if (rc) 20271 return 0; 20272 } 20273 spin_lock_irq(&phba->hbalock); 20274 } 20275 } else 20276 ret = 1; 20277 spin_unlock_irq(&phba->hbalock); 20278 20279 return ret; 20280 } 20281 /** 20282 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20283 * @phba: pointer to lpfc hba data structure. 20284 * 20285 * This routine is to get the next eligible FCF record index in a round 20286 * robin fashion. If the next eligible FCF record index equals to the 20287 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20288 * shall be returned, otherwise, the next eligible FCF record's index 20289 * shall be returned. 20290 **/ 20291 uint16_t 20292 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20293 { 20294 uint16_t next_fcf_index; 20295 20296 initial_priority: 20297 /* Search start from next bit of currently registered FCF index */ 20298 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20299 20300 next_priority: 20301 /* Determine the next fcf index to check */ 20302 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20303 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20304 LPFC_SLI4_FCF_TBL_INDX_MAX, 20305 next_fcf_index); 20306 20307 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20308 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20309 /* 20310 * If we have wrapped then we need to clear the bits that 20311 * have been tested so that we can detect when we should 20312 * change the priority level. 20313 */ 20314 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20315 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 20316 } 20317 20318 20319 /* Check roundrobin failover list empty condition */ 20320 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20321 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20322 /* 20323 * If next fcf index is not found check if there are lower 20324 * Priority level fcf's in the fcf_priority list. 20325 * Set up the rr_bmask with all of the avaiable fcf bits 20326 * at that level and continue the selection process. 20327 */ 20328 if (lpfc_check_next_fcf_pri_level(phba)) 20329 goto initial_priority; 20330 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20331 "2844 No roundrobin failover FCF available\n"); 20332 20333 return LPFC_FCOE_FCF_NEXT_NONE; 20334 } 20335 20336 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20337 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20338 LPFC_FCF_FLOGI_FAILED) { 20339 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20340 return LPFC_FCOE_FCF_NEXT_NONE; 20341 20342 goto next_priority; 20343 } 20344 20345 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20346 "2845 Get next roundrobin failover FCF (x%x)\n", 20347 next_fcf_index); 20348 20349 return next_fcf_index; 20350 } 20351 20352 /** 20353 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20354 * @phba: pointer to lpfc hba data structure. 20355 * @fcf_index: index into the FCF table to 'set' 20356 * 20357 * This routine sets the FCF record index in to the eligible bmask for 20358 * roundrobin failover search. It checks to make sure that the index 20359 * does not go beyond the range of the driver allocated bmask dimension 20360 * before setting the bit. 20361 * 20362 * Returns 0 if the index bit successfully set, otherwise, it returns 20363 * -EINVAL. 20364 **/ 20365 int 20366 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20367 { 20368 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20369 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20370 "2610 FCF (x%x) reached driver's book " 20371 "keeping dimension:x%x\n", 20372 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20373 return -EINVAL; 20374 } 20375 /* Set the eligible FCF record index bmask */ 20376 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20377 20378 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20379 "2790 Set FCF (x%x) to roundrobin FCF failover " 20380 "bmask\n", fcf_index); 20381 20382 return 0; 20383 } 20384 20385 /** 20386 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20387 * @phba: pointer to lpfc hba data structure. 20388 * @fcf_index: index into the FCF table to 'clear' 20389 * 20390 * This routine clears the FCF record index from the eligible bmask for 20391 * roundrobin failover search. It checks to make sure that the index 20392 * does not go beyond the range of the driver allocated bmask dimension 20393 * before clearing the bit. 20394 **/ 20395 void 20396 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20397 { 20398 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20399 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20400 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20401 "2762 FCF (x%x) reached driver's book " 20402 "keeping dimension:x%x\n", 20403 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20404 return; 20405 } 20406 /* Clear the eligible FCF record index bmask */ 20407 spin_lock_irq(&phba->hbalock); 20408 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20409 list) { 20410 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20411 list_del_init(&fcf_pri->list); 20412 break; 20413 } 20414 } 20415 spin_unlock_irq(&phba->hbalock); 20416 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20417 20418 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20419 "2791 Clear FCF (x%x) from roundrobin failover " 20420 "bmask\n", fcf_index); 20421 } 20422 20423 /** 20424 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20425 * @phba: pointer to lpfc hba data structure. 20426 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20427 * 20428 * This routine is the completion routine for the rediscover FCF table mailbox 20429 * command. If the mailbox command returned failure, it will try to stop the 20430 * FCF rediscover wait timer. 20431 **/ 20432 static void 20433 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20434 { 20435 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20436 uint32_t shdr_status, shdr_add_status; 20437 20438 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20439 20440 shdr_status = bf_get(lpfc_mbox_hdr_status, 20441 &redisc_fcf->header.cfg_shdr.response); 20442 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20443 &redisc_fcf->header.cfg_shdr.response); 20444 if (shdr_status || shdr_add_status) { 20445 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20446 "2746 Requesting for FCF rediscovery failed " 20447 "status x%x add_status x%x\n", 20448 shdr_status, shdr_add_status); 20449 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20450 spin_lock_irq(&phba->hbalock); 20451 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20452 spin_unlock_irq(&phba->hbalock); 20453 /* 20454 * CVL event triggered FCF rediscover request failed, 20455 * last resort to re-try current registered FCF entry. 20456 */ 20457 lpfc_retry_pport_discovery(phba); 20458 } else { 20459 spin_lock_irq(&phba->hbalock); 20460 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20461 spin_unlock_irq(&phba->hbalock); 20462 /* 20463 * DEAD FCF event triggered FCF rediscover request 20464 * failed, last resort to fail over as a link down 20465 * to FCF registration. 20466 */ 20467 lpfc_sli4_fcf_dead_failthrough(phba); 20468 } 20469 } else { 20470 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20471 "2775 Start FCF rediscover quiescent timer\n"); 20472 /* 20473 * Start FCF rediscovery wait timer for pending FCF 20474 * before rescan FCF record table. 20475 */ 20476 lpfc_fcf_redisc_wait_start_timer(phba); 20477 } 20478 20479 mempool_free(mbox, phba->mbox_mem_pool); 20480 } 20481 20482 /** 20483 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20484 * @phba: pointer to lpfc hba data structure. 20485 * 20486 * This routine is invoked to request for rediscovery of the entire FCF table 20487 * by the port. 20488 **/ 20489 int 20490 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20491 { 20492 LPFC_MBOXQ_t *mbox; 20493 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20494 int rc, length; 20495 20496 /* Cancel retry delay timers to all vports before FCF rediscover */ 20497 lpfc_cancel_all_vport_retry_delay_timer(phba); 20498 20499 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20500 if (!mbox) { 20501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20502 "2745 Failed to allocate mbox for " 20503 "requesting FCF rediscover.\n"); 20504 return -ENOMEM; 20505 } 20506 20507 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20508 sizeof(struct lpfc_sli4_cfg_mhdr)); 20509 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20510 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20511 length, LPFC_SLI4_MBX_EMBED); 20512 20513 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20514 /* Set count to 0 for invalidating the entire FCF database */ 20515 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20516 20517 /* Issue the mailbox command asynchronously */ 20518 mbox->vport = phba->pport; 20519 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20520 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20521 20522 if (rc == MBX_NOT_FINISHED) { 20523 mempool_free(mbox, phba->mbox_mem_pool); 20524 return -EIO; 20525 } 20526 return 0; 20527 } 20528 20529 /** 20530 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20531 * @phba: pointer to lpfc hba data structure. 20532 * 20533 * This function is the failover routine as a last resort to the FCF DEAD 20534 * event when driver failed to perform fast FCF failover. 20535 **/ 20536 void 20537 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20538 { 20539 uint32_t link_state; 20540 20541 /* 20542 * Last resort as FCF DEAD event failover will treat this as 20543 * a link down, but save the link state because we don't want 20544 * it to be changed to Link Down unless it is already down. 20545 */ 20546 link_state = phba->link_state; 20547 lpfc_linkdown(phba); 20548 phba->link_state = link_state; 20549 20550 /* Unregister FCF if no devices connected to it */ 20551 lpfc_unregister_unused_fcf(phba); 20552 } 20553 20554 /** 20555 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20556 * @phba: pointer to lpfc hba data structure. 20557 * @rgn23_data: pointer to configure region 23 data. 20558 * 20559 * This function gets SLI3 port configure region 23 data through memory dump 20560 * mailbox command. When it successfully retrieves data, the size of the data 20561 * will be returned, otherwise, 0 will be returned. 20562 **/ 20563 static uint32_t 20564 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20565 { 20566 LPFC_MBOXQ_t *pmb = NULL; 20567 MAILBOX_t *mb; 20568 uint32_t offset = 0; 20569 int rc; 20570 20571 if (!rgn23_data) 20572 return 0; 20573 20574 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20575 if (!pmb) { 20576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20577 "2600 failed to allocate mailbox memory\n"); 20578 return 0; 20579 } 20580 mb = &pmb->u.mb; 20581 20582 do { 20583 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20584 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20585 20586 if (rc != MBX_SUCCESS) { 20587 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20588 "2601 failed to read config " 20589 "region 23, rc 0x%x Status 0x%x\n", 20590 rc, mb->mbxStatus); 20591 mb->un.varDmp.word_cnt = 0; 20592 } 20593 /* 20594 * dump mem may return a zero when finished or we got a 20595 * mailbox error, either way we are done. 20596 */ 20597 if (mb->un.varDmp.word_cnt == 0) 20598 break; 20599 20600 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20601 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20602 20603 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20604 rgn23_data + offset, 20605 mb->un.varDmp.word_cnt); 20606 offset += mb->un.varDmp.word_cnt; 20607 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20608 20609 mempool_free(pmb, phba->mbox_mem_pool); 20610 return offset; 20611 } 20612 20613 /** 20614 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20615 * @phba: pointer to lpfc hba data structure. 20616 * @rgn23_data: pointer to configure region 23 data. 20617 * 20618 * This function gets SLI4 port configure region 23 data through memory dump 20619 * mailbox command. When it successfully retrieves data, the size of the data 20620 * will be returned, otherwise, 0 will be returned. 20621 **/ 20622 static uint32_t 20623 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20624 { 20625 LPFC_MBOXQ_t *mboxq = NULL; 20626 struct lpfc_dmabuf *mp = NULL; 20627 struct lpfc_mqe *mqe; 20628 uint32_t data_length = 0; 20629 int rc; 20630 20631 if (!rgn23_data) 20632 return 0; 20633 20634 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20635 if (!mboxq) { 20636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20637 "3105 failed to allocate mailbox memory\n"); 20638 return 0; 20639 } 20640 20641 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20642 goto out; 20643 mqe = &mboxq->u.mqe; 20644 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20645 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20646 if (rc) 20647 goto out; 20648 data_length = mqe->un.mb_words[5]; 20649 if (data_length == 0) 20650 goto out; 20651 if (data_length > DMP_RGN23_SIZE) { 20652 data_length = 0; 20653 goto out; 20654 } 20655 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20656 out: 20657 mempool_free(mboxq, phba->mbox_mem_pool); 20658 if (mp) { 20659 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20660 kfree(mp); 20661 } 20662 return data_length; 20663 } 20664 20665 /** 20666 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20667 * @phba: pointer to lpfc hba data structure. 20668 * 20669 * This function read region 23 and parse TLV for port status to 20670 * decide if the user disaled the port. If the TLV indicates the 20671 * port is disabled, the hba_flag is set accordingly. 20672 **/ 20673 void 20674 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20675 { 20676 uint8_t *rgn23_data = NULL; 20677 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20678 uint32_t offset = 0; 20679 20680 /* Get adapter Region 23 data */ 20681 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20682 if (!rgn23_data) 20683 goto out; 20684 20685 if (phba->sli_rev < LPFC_SLI_REV4) 20686 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20687 else { 20688 if_type = bf_get(lpfc_sli_intf_if_type, 20689 &phba->sli4_hba.sli_intf); 20690 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20691 goto out; 20692 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20693 } 20694 20695 if (!data_size) 20696 goto out; 20697 20698 /* Check the region signature first */ 20699 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20701 "2619 Config region 23 has bad signature\n"); 20702 goto out; 20703 } 20704 offset += 4; 20705 20706 /* Check the data structure version */ 20707 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20708 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20709 "2620 Config region 23 has bad version\n"); 20710 goto out; 20711 } 20712 offset += 4; 20713 20714 /* Parse TLV entries in the region */ 20715 while (offset < data_size) { 20716 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20717 break; 20718 /* 20719 * If the TLV is not driver specific TLV or driver id is 20720 * not linux driver id, skip the record. 20721 */ 20722 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20723 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20724 (rgn23_data[offset + 3] != 0)) { 20725 offset += rgn23_data[offset + 1] * 4 + 4; 20726 continue; 20727 } 20728 20729 /* Driver found a driver specific TLV in the config region */ 20730 sub_tlv_len = rgn23_data[offset + 1] * 4; 20731 offset += 4; 20732 tlv_offset = 0; 20733 20734 /* 20735 * Search for configured port state sub-TLV. 20736 */ 20737 while ((offset < data_size) && 20738 (tlv_offset < sub_tlv_len)) { 20739 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20740 offset += 4; 20741 tlv_offset += 4; 20742 break; 20743 } 20744 if (rgn23_data[offset] != PORT_STE_TYPE) { 20745 offset += rgn23_data[offset + 1] * 4 + 4; 20746 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20747 continue; 20748 } 20749 20750 /* This HBA contains PORT_STE configured */ 20751 if (!rgn23_data[offset + 2]) 20752 phba->hba_flag |= LINK_DISABLED; 20753 20754 goto out; 20755 } 20756 } 20757 20758 out: 20759 kfree(rgn23_data); 20760 return; 20761 } 20762 20763 /** 20764 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20765 * @phba: pointer to lpfc hba data structure 20766 * @shdr_status: wr_object rsp's status field 20767 * @shdr_add_status: wr_object rsp's add_status field 20768 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20769 * @shdr_change_status: wr_object rsp's change_status field 20770 * @shdr_csf: wr_object rsp's csf bit 20771 * 20772 * This routine is intended to be called after a firmware write completes. 20773 * It will log next action items to be performed by the user to instantiate 20774 * the newly downloaded firmware or reason for incompatibility. 20775 **/ 20776 static void 20777 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20778 u32 shdr_add_status, u32 shdr_add_status_2, 20779 u32 shdr_change_status, u32 shdr_csf) 20780 { 20781 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20782 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20783 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20784 "change_status x%02x, csf %01x\n", __func__, 20785 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20786 shdr_status, shdr_add_status, shdr_add_status_2, 20787 shdr_change_status, shdr_csf); 20788 20789 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20790 switch (shdr_add_status_2) { 20791 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20792 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20793 "4199 Firmware write failed: " 20794 "image incompatible with flash x%02x\n", 20795 phba->sli4_hba.flash_id); 20796 break; 20797 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20798 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20799 "4200 Firmware write failed: " 20800 "image incompatible with ASIC " 20801 "architecture x%02x\n", 20802 phba->sli4_hba.asic_rev); 20803 break; 20804 default: 20805 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20806 "4210 Firmware write failed: " 20807 "add_status_2 x%02x\n", 20808 shdr_add_status_2); 20809 break; 20810 } 20811 } else if (!shdr_status && !shdr_add_status) { 20812 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20813 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20814 if (shdr_csf) 20815 shdr_change_status = 20816 LPFC_CHANGE_STATUS_PCI_RESET; 20817 } 20818 20819 switch (shdr_change_status) { 20820 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20821 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20822 "3198 Firmware write complete: System " 20823 "reboot required to instantiate\n"); 20824 break; 20825 case (LPFC_CHANGE_STATUS_FW_RESET): 20826 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20827 "3199 Firmware write complete: " 20828 "Firmware reset required to " 20829 "instantiate\n"); 20830 break; 20831 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20833 "3200 Firmware write complete: Port " 20834 "Migration or PCI Reset required to " 20835 "instantiate\n"); 20836 break; 20837 case (LPFC_CHANGE_STATUS_PCI_RESET): 20838 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20839 "3201 Firmware write complete: PCI " 20840 "Reset required to instantiate\n"); 20841 break; 20842 default: 20843 break; 20844 } 20845 } 20846 } 20847 20848 /** 20849 * lpfc_wr_object - write an object to the firmware 20850 * @phba: HBA structure that indicates port to create a queue on. 20851 * @dmabuf_list: list of dmabufs to write to the port. 20852 * @size: the total byte value of the objects to write to the port. 20853 * @offset: the current offset to be used to start the transfer. 20854 * 20855 * This routine will create a wr_object mailbox command to send to the port. 20856 * the mailbox command will be constructed using the dma buffers described in 20857 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20858 * BDEs that the imbedded mailbox can support. The @offset variable will be 20859 * used to indicate the starting offset of the transfer and will also return 20860 * the offset after the write object mailbox has completed. @size is used to 20861 * determine the end of the object and whether the eof bit should be set. 20862 * 20863 * Return 0 is successful and offset will contain the the new offset to use 20864 * for the next write. 20865 * Return negative value for error cases. 20866 **/ 20867 int 20868 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20869 uint32_t size, uint32_t *offset) 20870 { 20871 struct lpfc_mbx_wr_object *wr_object; 20872 LPFC_MBOXQ_t *mbox; 20873 int rc = 0, i = 0; 20874 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20875 uint32_t shdr_change_status = 0, shdr_csf = 0; 20876 uint32_t mbox_tmo; 20877 struct lpfc_dmabuf *dmabuf; 20878 uint32_t written = 0; 20879 bool check_change_status = false; 20880 20881 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20882 if (!mbox) 20883 return -ENOMEM; 20884 20885 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20886 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20887 sizeof(struct lpfc_mbx_wr_object) - 20888 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20889 20890 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20891 wr_object->u.request.write_offset = *offset; 20892 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20893 wr_object->u.request.object_name[0] = 20894 cpu_to_le32(wr_object->u.request.object_name[0]); 20895 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20896 list_for_each_entry(dmabuf, dmabuf_list, list) { 20897 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20898 break; 20899 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20900 wr_object->u.request.bde[i].addrHigh = 20901 putPaddrHigh(dmabuf->phys); 20902 if (written + SLI4_PAGE_SIZE >= size) { 20903 wr_object->u.request.bde[i].tus.f.bdeSize = 20904 (size - written); 20905 written += (size - written); 20906 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20907 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20908 check_change_status = true; 20909 } else { 20910 wr_object->u.request.bde[i].tus.f.bdeSize = 20911 SLI4_PAGE_SIZE; 20912 written += SLI4_PAGE_SIZE; 20913 } 20914 i++; 20915 } 20916 wr_object->u.request.bde_count = i; 20917 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20918 if (!phba->sli4_hba.intr_enable) 20919 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20920 else { 20921 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20922 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20923 } 20924 /* The IOCTL status is embedded in the mailbox subheader. */ 20925 shdr_status = bf_get(lpfc_mbox_hdr_status, 20926 &wr_object->header.cfg_shdr.response); 20927 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20928 &wr_object->header.cfg_shdr.response); 20929 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20930 &wr_object->header.cfg_shdr.response); 20931 if (check_change_status) { 20932 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20933 &wr_object->u.response); 20934 shdr_csf = bf_get(lpfc_wr_object_csf, 20935 &wr_object->u.response); 20936 } 20937 20938 if (!phba->sli4_hba.intr_enable) 20939 mempool_free(mbox, phba->mbox_mem_pool); 20940 else if (rc != MBX_TIMEOUT) 20941 mempool_free(mbox, phba->mbox_mem_pool); 20942 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20943 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20944 "3025 Write Object mailbox failed with " 20945 "status x%x add_status x%x, add_status_2 x%x, " 20946 "mbx status x%x\n", 20947 shdr_status, shdr_add_status, shdr_add_status_2, 20948 rc); 20949 rc = -ENXIO; 20950 *offset = shdr_add_status; 20951 } else { 20952 *offset += wr_object->u.response.actual_write_length; 20953 } 20954 20955 if (rc || check_change_status) 20956 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20957 shdr_add_status_2, shdr_change_status, 20958 shdr_csf); 20959 return rc; 20960 } 20961 20962 /** 20963 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20964 * @vport: pointer to vport data structure. 20965 * 20966 * This function iterate through the mailboxq and clean up all REG_LOGIN 20967 * and REG_VPI mailbox commands associated with the vport. This function 20968 * is called when driver want to restart discovery of the vport due to 20969 * a Clear Virtual Link event. 20970 **/ 20971 void 20972 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20973 { 20974 struct lpfc_hba *phba = vport->phba; 20975 LPFC_MBOXQ_t *mb, *nextmb; 20976 struct lpfc_dmabuf *mp; 20977 struct lpfc_nodelist *ndlp; 20978 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20979 LIST_HEAD(mbox_cmd_list); 20980 uint8_t restart_loop; 20981 20982 /* Clean up internally queued mailbox commands with the vport */ 20983 spin_lock_irq(&phba->hbalock); 20984 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20985 if (mb->vport != vport) 20986 continue; 20987 20988 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20989 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20990 continue; 20991 20992 list_move_tail(&mb->list, &mbox_cmd_list); 20993 } 20994 /* Clean up active mailbox command with the vport */ 20995 mb = phba->sli.mbox_active; 20996 if (mb && (mb->vport == vport)) { 20997 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20998 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20999 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21000 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21001 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21002 /* Put reference count for delayed processing */ 21003 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21004 /* Unregister the RPI when mailbox complete */ 21005 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21006 } 21007 } 21008 /* Cleanup any mailbox completions which are not yet processed */ 21009 do { 21010 restart_loop = 0; 21011 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21012 /* 21013 * If this mailox is already processed or it is 21014 * for another vport ignore it. 21015 */ 21016 if ((mb->vport != vport) || 21017 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21018 continue; 21019 21020 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21021 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21022 continue; 21023 21024 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21025 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21026 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21027 /* Unregister the RPI when mailbox complete */ 21028 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21029 restart_loop = 1; 21030 spin_unlock_irq(&phba->hbalock); 21031 spin_lock(&ndlp->lock); 21032 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21033 spin_unlock(&ndlp->lock); 21034 spin_lock_irq(&phba->hbalock); 21035 break; 21036 } 21037 } 21038 } while (restart_loop); 21039 21040 spin_unlock_irq(&phba->hbalock); 21041 21042 /* Release the cleaned-up mailbox commands */ 21043 while (!list_empty(&mbox_cmd_list)) { 21044 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21045 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21046 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 21047 if (mp) { 21048 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 21049 kfree(mp); 21050 } 21051 mb->ctx_buf = NULL; 21052 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21053 mb->ctx_ndlp = NULL; 21054 if (ndlp) { 21055 spin_lock(&ndlp->lock); 21056 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21057 spin_unlock(&ndlp->lock); 21058 lpfc_nlp_put(ndlp); 21059 } 21060 } 21061 mempool_free(mb, phba->mbox_mem_pool); 21062 } 21063 21064 /* Release the ndlp with the cleaned-up active mailbox command */ 21065 if (act_mbx_ndlp) { 21066 spin_lock(&act_mbx_ndlp->lock); 21067 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21068 spin_unlock(&act_mbx_ndlp->lock); 21069 lpfc_nlp_put(act_mbx_ndlp); 21070 } 21071 } 21072 21073 /** 21074 * lpfc_drain_txq - Drain the txq 21075 * @phba: Pointer to HBA context object. 21076 * 21077 * This function attempt to submit IOCBs on the txq 21078 * to the adapter. For SLI4 adapters, the txq contains 21079 * ELS IOCBs that have been deferred because the there 21080 * are no SGLs. This congestion can occur with large 21081 * vport counts during node discovery. 21082 **/ 21083 21084 uint32_t 21085 lpfc_drain_txq(struct lpfc_hba *phba) 21086 { 21087 LIST_HEAD(completions); 21088 struct lpfc_sli_ring *pring; 21089 struct lpfc_iocbq *piocbq = NULL; 21090 unsigned long iflags = 0; 21091 char *fail_msg = NULL; 21092 struct lpfc_sglq *sglq; 21093 union lpfc_wqe128 wqe; 21094 uint32_t txq_cnt = 0; 21095 struct lpfc_queue *wq; 21096 21097 if (phba->link_flag & LS_MDS_LOOPBACK) { 21098 /* MDS WQE are posted only to first WQ*/ 21099 wq = phba->sli4_hba.hdwq[0].io_wq; 21100 if (unlikely(!wq)) 21101 return 0; 21102 pring = wq->pring; 21103 } else { 21104 wq = phba->sli4_hba.els_wq; 21105 if (unlikely(!wq)) 21106 return 0; 21107 pring = lpfc_phba_elsring(phba); 21108 } 21109 21110 if (unlikely(!pring) || list_empty(&pring->txq)) 21111 return 0; 21112 21113 spin_lock_irqsave(&pring->ring_lock, iflags); 21114 list_for_each_entry(piocbq, &pring->txq, list) { 21115 txq_cnt++; 21116 } 21117 21118 if (txq_cnt > pring->txq_max) 21119 pring->txq_max = txq_cnt; 21120 21121 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21122 21123 while (!list_empty(&pring->txq)) { 21124 spin_lock_irqsave(&pring->ring_lock, iflags); 21125 21126 piocbq = lpfc_sli_ringtx_get(phba, pring); 21127 if (!piocbq) { 21128 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21130 "2823 txq empty and txq_cnt is %d\n ", 21131 txq_cnt); 21132 break; 21133 } 21134 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 21135 if (!sglq) { 21136 __lpfc_sli_ringtx_put(phba, pring, piocbq); 21137 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21138 break; 21139 } 21140 txq_cnt--; 21141 21142 /* The xri and iocb resources secured, 21143 * attempt to issue request 21144 */ 21145 piocbq->sli4_lxritag = sglq->sli4_lxritag; 21146 piocbq->sli4_xritag = sglq->sli4_xritag; 21147 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 21148 fail_msg = "to convert bpl to sgl"; 21149 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 21150 fail_msg = "to convert iocb to wqe"; 21151 else if (lpfc_sli4_wq_put(wq, &wqe)) 21152 fail_msg = " - Wq is full"; 21153 else 21154 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 21155 21156 if (fail_msg) { 21157 /* Failed means we can't issue and need to cancel */ 21158 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21159 "2822 IOCB failed %s iotag 0x%x " 21160 "xri 0x%x\n", 21161 fail_msg, 21162 piocbq->iotag, piocbq->sli4_xritag); 21163 list_add_tail(&piocbq->list, &completions); 21164 fail_msg = NULL; 21165 } 21166 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21167 } 21168 21169 /* Cancel all the IOCBs that cannot be issued */ 21170 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21171 IOERR_SLI_ABORTED); 21172 21173 return txq_cnt; 21174 } 21175 21176 /** 21177 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21178 * @phba: Pointer to HBA context object. 21179 * @pwqeq: Pointer to command WQE. 21180 * @sglq: Pointer to the scatter gather queue object. 21181 * 21182 * This routine converts the bpl or bde that is in the WQE 21183 * to a sgl list for the sli4 hardware. The physical address 21184 * of the bpl/bde is converted back to a virtual address. 21185 * If the WQE contains a BPL then the list of BDE's is 21186 * converted to sli4_sge's. If the WQE contains a single 21187 * BDE then it is converted to a single sli_sge. 21188 * The WQE is still in cpu endianness so the contents of 21189 * the bpl can be used without byte swapping. 21190 * 21191 * Returns valid XRI = Success, NO_XRI = Failure. 21192 */ 21193 static uint16_t 21194 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21195 struct lpfc_sglq *sglq) 21196 { 21197 uint16_t xritag = NO_XRI; 21198 struct ulp_bde64 *bpl = NULL; 21199 struct ulp_bde64 bde; 21200 struct sli4_sge *sgl = NULL; 21201 struct lpfc_dmabuf *dmabuf; 21202 union lpfc_wqe128 *wqe; 21203 int numBdes = 0; 21204 int i = 0; 21205 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21206 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21207 uint32_t cmd; 21208 21209 if (!pwqeq || !sglq) 21210 return xritag; 21211 21212 sgl = (struct sli4_sge *)sglq->sgl; 21213 wqe = &pwqeq->wqe; 21214 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21215 21216 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21217 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21218 return sglq->sli4_xritag; 21219 numBdes = pwqeq->rsvd2; 21220 if (numBdes) { 21221 /* The addrHigh and addrLow fields within the WQE 21222 * have not been byteswapped yet so there is no 21223 * need to swap them back. 21224 */ 21225 if (pwqeq->context3) 21226 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 21227 else 21228 return xritag; 21229 21230 bpl = (struct ulp_bde64 *)dmabuf->virt; 21231 if (!bpl) 21232 return xritag; 21233 21234 for (i = 0; i < numBdes; i++) { 21235 /* Should already be byte swapped. */ 21236 sgl->addr_hi = bpl->addrHigh; 21237 sgl->addr_lo = bpl->addrLow; 21238 21239 sgl->word2 = le32_to_cpu(sgl->word2); 21240 if ((i+1) == numBdes) 21241 bf_set(lpfc_sli4_sge_last, sgl, 1); 21242 else 21243 bf_set(lpfc_sli4_sge_last, sgl, 0); 21244 /* swap the size field back to the cpu so we 21245 * can assign it to the sgl. 21246 */ 21247 bde.tus.w = le32_to_cpu(bpl->tus.w); 21248 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21249 /* The offsets in the sgl need to be accumulated 21250 * separately for the request and reply lists. 21251 * The request is always first, the reply follows. 21252 */ 21253 switch (cmd) { 21254 case CMD_GEN_REQUEST64_WQE: 21255 /* add up the reply sg entries */ 21256 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21257 inbound++; 21258 /* first inbound? reset the offset */ 21259 if (inbound == 1) 21260 offset = 0; 21261 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21262 bf_set(lpfc_sli4_sge_type, sgl, 21263 LPFC_SGE_TYPE_DATA); 21264 offset += bde.tus.f.bdeSize; 21265 break; 21266 case CMD_FCP_TRSP64_WQE: 21267 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21268 bf_set(lpfc_sli4_sge_type, sgl, 21269 LPFC_SGE_TYPE_DATA); 21270 break; 21271 case CMD_FCP_TSEND64_WQE: 21272 case CMD_FCP_TRECEIVE64_WQE: 21273 bf_set(lpfc_sli4_sge_type, sgl, 21274 bpl->tus.f.bdeFlags); 21275 if (i < 3) 21276 offset = 0; 21277 else 21278 offset += bde.tus.f.bdeSize; 21279 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21280 break; 21281 } 21282 sgl->word2 = cpu_to_le32(sgl->word2); 21283 bpl++; 21284 sgl++; 21285 } 21286 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21287 /* The addrHigh and addrLow fields of the BDE have not 21288 * been byteswapped yet so they need to be swapped 21289 * before putting them in the sgl. 21290 */ 21291 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21292 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21293 sgl->word2 = le32_to_cpu(sgl->word2); 21294 bf_set(lpfc_sli4_sge_last, sgl, 1); 21295 sgl->word2 = cpu_to_le32(sgl->word2); 21296 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21297 } 21298 return sglq->sli4_xritag; 21299 } 21300 21301 /** 21302 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21303 * @phba: Pointer to HBA context object. 21304 * @qp: Pointer to HDW queue. 21305 * @pwqe: Pointer to command WQE. 21306 **/ 21307 int 21308 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21309 struct lpfc_iocbq *pwqe) 21310 { 21311 union lpfc_wqe128 *wqe = &pwqe->wqe; 21312 struct lpfc_async_xchg_ctx *ctxp; 21313 struct lpfc_queue *wq; 21314 struct lpfc_sglq *sglq; 21315 struct lpfc_sli_ring *pring; 21316 unsigned long iflags; 21317 uint32_t ret = 0; 21318 21319 /* NVME_LS and NVME_LS ABTS requests. */ 21320 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 21321 pring = phba->sli4_hba.nvmels_wq->pring; 21322 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21323 qp, wq_access); 21324 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21325 if (!sglq) { 21326 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21327 return WQE_BUSY; 21328 } 21329 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21330 pwqe->sli4_xritag = sglq->sli4_xritag; 21331 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21332 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21333 return WQE_ERROR; 21334 } 21335 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21336 pwqe->sli4_xritag); 21337 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21338 if (ret) { 21339 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21340 return ret; 21341 } 21342 21343 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21344 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21345 21346 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21347 return 0; 21348 } 21349 21350 /* NVME_FCREQ and NVME_ABTS requests */ 21351 if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21352 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21353 wq = qp->io_wq; 21354 pring = wq->pring; 21355 21356 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21357 21358 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21359 qp, wq_access); 21360 ret = lpfc_sli4_wq_put(wq, wqe); 21361 if (ret) { 21362 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21363 return ret; 21364 } 21365 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21366 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21367 21368 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21369 return 0; 21370 } 21371 21372 /* NVMET requests */ 21373 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 21374 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21375 wq = qp->io_wq; 21376 pring = wq->pring; 21377 21378 ctxp = pwqe->context2; 21379 sglq = ctxp->ctxbuf->sglq; 21380 if (pwqe->sli4_xritag == NO_XRI) { 21381 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21382 pwqe->sli4_xritag = sglq->sli4_xritag; 21383 } 21384 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21385 pwqe->sli4_xritag); 21386 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21387 21388 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21389 qp, wq_access); 21390 ret = lpfc_sli4_wq_put(wq, wqe); 21391 if (ret) { 21392 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21393 return ret; 21394 } 21395 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21396 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21397 21398 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21399 return 0; 21400 } 21401 return WQE_ERROR; 21402 } 21403 21404 /** 21405 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21406 * @phba: Pointer to HBA context object. 21407 * @cmdiocb: Pointer to driver command iocb object. 21408 * @cmpl: completion function. 21409 * 21410 * Fill the appropriate fields for the abort WQE and call 21411 * internal routine lpfc_sli4_issue_wqe to send the WQE 21412 * This function is called with hbalock held and no ring_lock held. 21413 * 21414 * RETURNS 0 - SUCCESS 21415 **/ 21416 21417 int 21418 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21419 void *cmpl) 21420 { 21421 struct lpfc_vport *vport = cmdiocb->vport; 21422 struct lpfc_iocbq *abtsiocb = NULL; 21423 union lpfc_wqe128 *abtswqe; 21424 struct lpfc_io_buf *lpfc_cmd; 21425 int retval = IOCB_ERROR; 21426 u16 xritag = cmdiocb->sli4_xritag; 21427 21428 /* 21429 * The scsi command can not be in txq and it is in flight because the 21430 * pCmd is still pointing at the SCSI command we have to abort. There 21431 * is no need to search the txcmplq. Just send an abort to the FW. 21432 */ 21433 21434 abtsiocb = __lpfc_sli_get_iocbq(phba); 21435 if (!abtsiocb) 21436 return WQE_NORESOURCE; 21437 21438 /* Indicate the IO is being aborted by the driver. */ 21439 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 21440 21441 abtswqe = &abtsiocb->wqe; 21442 memset(abtswqe, 0, sizeof(*abtswqe)); 21443 21444 if (!lpfc_is_link_up(phba)) 21445 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21446 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21447 abtswqe->abort_cmd.rsrvd5 = 0; 21448 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21449 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21450 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21451 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21452 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21453 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21454 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21455 21456 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21457 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21458 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 21459 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 21460 abtsiocb->iocb_flag |= LPFC_IO_FCP; 21461 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 21462 abtsiocb->iocb_flag |= LPFC_IO_NVME; 21463 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 21464 abtsiocb->iocb_flag |= LPFC_IO_FOF; 21465 abtsiocb->vport = vport; 21466 abtsiocb->wqe_cmpl = cmpl; 21467 21468 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21469 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21470 21471 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21472 "0359 Abort xri x%x, original iotag x%x, " 21473 "abort cmd iotag x%x retval x%x\n", 21474 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21475 21476 if (retval) { 21477 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 21478 __lpfc_sli_release_iocbq(phba, abtsiocb); 21479 } 21480 21481 return retval; 21482 } 21483 21484 #ifdef LPFC_MXP_STAT 21485 /** 21486 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21487 * @phba: pointer to lpfc hba data structure. 21488 * @hwqid: belong to which HWQ. 21489 * 21490 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21491 * 15 seconds after a test case is running. 21492 * 21493 * The user should call lpfc_debugfs_multixripools_write before running a test 21494 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21495 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21496 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21497 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21498 **/ 21499 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21500 { 21501 struct lpfc_sli4_hdw_queue *qp; 21502 struct lpfc_multixri_pool *multixri_pool; 21503 struct lpfc_pvt_pool *pvt_pool; 21504 struct lpfc_pbl_pool *pbl_pool; 21505 u32 txcmplq_cnt; 21506 21507 qp = &phba->sli4_hba.hdwq[hwqid]; 21508 multixri_pool = qp->p_multixri_pool; 21509 if (!multixri_pool) 21510 return; 21511 21512 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21513 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21514 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21515 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21516 21517 multixri_pool->stat_pbl_count = pbl_pool->count; 21518 multixri_pool->stat_pvt_count = pvt_pool->count; 21519 multixri_pool->stat_busy_count = txcmplq_cnt; 21520 } 21521 21522 multixri_pool->stat_snapshot_taken++; 21523 } 21524 #endif 21525 21526 /** 21527 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21528 * @phba: pointer to lpfc hba data structure. 21529 * @hwqid: belong to which HWQ. 21530 * 21531 * This routine moves some XRIs from private to public pool when private pool 21532 * is not busy. 21533 **/ 21534 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21535 { 21536 struct lpfc_multixri_pool *multixri_pool; 21537 u32 io_req_count; 21538 u32 prev_io_req_count; 21539 21540 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21541 if (!multixri_pool) 21542 return; 21543 io_req_count = multixri_pool->io_req_count; 21544 prev_io_req_count = multixri_pool->prev_io_req_count; 21545 21546 if (prev_io_req_count != io_req_count) { 21547 /* Private pool is busy */ 21548 multixri_pool->prev_io_req_count = io_req_count; 21549 } else { 21550 /* Private pool is not busy. 21551 * Move XRIs from private to public pool. 21552 */ 21553 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21554 } 21555 } 21556 21557 /** 21558 * lpfc_adjust_high_watermark - Adjust high watermark 21559 * @phba: pointer to lpfc hba data structure. 21560 * @hwqid: belong to which HWQ. 21561 * 21562 * This routine sets high watermark as number of outstanding XRIs, 21563 * but make sure the new value is between xri_limit/2 and xri_limit. 21564 **/ 21565 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21566 { 21567 u32 new_watermark; 21568 u32 watermark_max; 21569 u32 watermark_min; 21570 u32 xri_limit; 21571 u32 txcmplq_cnt; 21572 u32 abts_io_bufs; 21573 struct lpfc_multixri_pool *multixri_pool; 21574 struct lpfc_sli4_hdw_queue *qp; 21575 21576 qp = &phba->sli4_hba.hdwq[hwqid]; 21577 multixri_pool = qp->p_multixri_pool; 21578 if (!multixri_pool) 21579 return; 21580 xri_limit = multixri_pool->xri_limit; 21581 21582 watermark_max = xri_limit; 21583 watermark_min = xri_limit / 2; 21584 21585 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21586 abts_io_bufs = qp->abts_scsi_io_bufs; 21587 abts_io_bufs += qp->abts_nvme_io_bufs; 21588 21589 new_watermark = txcmplq_cnt + abts_io_bufs; 21590 new_watermark = min(watermark_max, new_watermark); 21591 new_watermark = max(watermark_min, new_watermark); 21592 multixri_pool->pvt_pool.high_watermark = new_watermark; 21593 21594 #ifdef LPFC_MXP_STAT 21595 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21596 new_watermark); 21597 #endif 21598 } 21599 21600 /** 21601 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21602 * @phba: pointer to lpfc hba data structure. 21603 * @hwqid: belong to which HWQ. 21604 * 21605 * This routine is called from hearbeat timer when pvt_pool is idle. 21606 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21607 * The first step moves (all - low_watermark) amount of XRIs. 21608 * The second step moves the rest of XRIs. 21609 **/ 21610 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21611 { 21612 struct lpfc_pbl_pool *pbl_pool; 21613 struct lpfc_pvt_pool *pvt_pool; 21614 struct lpfc_sli4_hdw_queue *qp; 21615 struct lpfc_io_buf *lpfc_ncmd; 21616 struct lpfc_io_buf *lpfc_ncmd_next; 21617 unsigned long iflag; 21618 struct list_head tmp_list; 21619 u32 tmp_count; 21620 21621 qp = &phba->sli4_hba.hdwq[hwqid]; 21622 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21623 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21624 tmp_count = 0; 21625 21626 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21627 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21628 21629 if (pvt_pool->count > pvt_pool->low_watermark) { 21630 /* Step 1: move (all - low_watermark) from pvt_pool 21631 * to pbl_pool 21632 */ 21633 21634 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21635 INIT_LIST_HEAD(&tmp_list); 21636 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21637 &pvt_pool->list, list) { 21638 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21639 tmp_count++; 21640 if (tmp_count >= pvt_pool->low_watermark) 21641 break; 21642 } 21643 21644 /* Move all bufs from pvt_pool to pbl_pool */ 21645 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21646 21647 /* Move all bufs from tmp_list to pvt_pool */ 21648 list_splice(&tmp_list, &pvt_pool->list); 21649 21650 pbl_pool->count += (pvt_pool->count - tmp_count); 21651 pvt_pool->count = tmp_count; 21652 } else { 21653 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21654 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21655 pbl_pool->count += pvt_pool->count; 21656 pvt_pool->count = 0; 21657 } 21658 21659 spin_unlock(&pvt_pool->lock); 21660 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21661 } 21662 21663 /** 21664 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21665 * @phba: pointer to lpfc hba data structure 21666 * @qp: pointer to HDW queue 21667 * @pbl_pool: specified public free XRI pool 21668 * @pvt_pool: specified private free XRI pool 21669 * @count: number of XRIs to move 21670 * 21671 * This routine tries to move some free common bufs from the specified pbl_pool 21672 * to the specified pvt_pool. It might move less than count XRIs if there's not 21673 * enough in public pool. 21674 * 21675 * Return: 21676 * true - if XRIs are successfully moved from the specified pbl_pool to the 21677 * specified pvt_pool 21678 * false - if the specified pbl_pool is empty or locked by someone else 21679 **/ 21680 static bool 21681 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21682 struct lpfc_pbl_pool *pbl_pool, 21683 struct lpfc_pvt_pool *pvt_pool, u32 count) 21684 { 21685 struct lpfc_io_buf *lpfc_ncmd; 21686 struct lpfc_io_buf *lpfc_ncmd_next; 21687 unsigned long iflag; 21688 int ret; 21689 21690 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21691 if (ret) { 21692 if (pbl_pool->count) { 21693 /* Move a batch of XRIs from public to private pool */ 21694 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21695 list_for_each_entry_safe(lpfc_ncmd, 21696 lpfc_ncmd_next, 21697 &pbl_pool->list, 21698 list) { 21699 list_move_tail(&lpfc_ncmd->list, 21700 &pvt_pool->list); 21701 pvt_pool->count++; 21702 pbl_pool->count--; 21703 count--; 21704 if (count == 0) 21705 break; 21706 } 21707 21708 spin_unlock(&pvt_pool->lock); 21709 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21710 return true; 21711 } 21712 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21713 } 21714 21715 return false; 21716 } 21717 21718 /** 21719 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21720 * @phba: pointer to lpfc hba data structure. 21721 * @hwqid: belong to which HWQ. 21722 * @count: number of XRIs to move 21723 * 21724 * This routine tries to find some free common bufs in one of public pools with 21725 * Round Robin method. The search always starts from local hwqid, then the next 21726 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21727 * a batch of free common bufs are moved to private pool on hwqid. 21728 * It might move less than count XRIs if there's not enough in public pool. 21729 **/ 21730 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21731 { 21732 struct lpfc_multixri_pool *multixri_pool; 21733 struct lpfc_multixri_pool *next_multixri_pool; 21734 struct lpfc_pvt_pool *pvt_pool; 21735 struct lpfc_pbl_pool *pbl_pool; 21736 struct lpfc_sli4_hdw_queue *qp; 21737 u32 next_hwqid; 21738 u32 hwq_count; 21739 int ret; 21740 21741 qp = &phba->sli4_hba.hdwq[hwqid]; 21742 multixri_pool = qp->p_multixri_pool; 21743 pvt_pool = &multixri_pool->pvt_pool; 21744 pbl_pool = &multixri_pool->pbl_pool; 21745 21746 /* Check if local pbl_pool is available */ 21747 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21748 if (ret) { 21749 #ifdef LPFC_MXP_STAT 21750 multixri_pool->local_pbl_hit_count++; 21751 #endif 21752 return; 21753 } 21754 21755 hwq_count = phba->cfg_hdw_queue; 21756 21757 /* Get the next hwqid which was found last time */ 21758 next_hwqid = multixri_pool->rrb_next_hwqid; 21759 21760 do { 21761 /* Go to next hwq */ 21762 next_hwqid = (next_hwqid + 1) % hwq_count; 21763 21764 next_multixri_pool = 21765 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21766 pbl_pool = &next_multixri_pool->pbl_pool; 21767 21768 /* Check if the public free xri pool is available */ 21769 ret = _lpfc_move_xri_pbl_to_pvt( 21770 phba, qp, pbl_pool, pvt_pool, count); 21771 21772 /* Exit while-loop if success or all hwqid are checked */ 21773 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21774 21775 /* Starting point for the next time */ 21776 multixri_pool->rrb_next_hwqid = next_hwqid; 21777 21778 if (!ret) { 21779 /* stats: all public pools are empty*/ 21780 multixri_pool->pbl_empty_count++; 21781 } 21782 21783 #ifdef LPFC_MXP_STAT 21784 if (ret) { 21785 if (next_hwqid == hwqid) 21786 multixri_pool->local_pbl_hit_count++; 21787 else 21788 multixri_pool->other_pbl_hit_count++; 21789 } 21790 #endif 21791 } 21792 21793 /** 21794 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21795 * @phba: pointer to lpfc hba data structure. 21796 * @hwqid: belong to which HWQ. 21797 * 21798 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21799 * low watermark. 21800 **/ 21801 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21802 { 21803 struct lpfc_multixri_pool *multixri_pool; 21804 struct lpfc_pvt_pool *pvt_pool; 21805 21806 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21807 pvt_pool = &multixri_pool->pvt_pool; 21808 21809 if (pvt_pool->count < pvt_pool->low_watermark) 21810 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21811 } 21812 21813 /** 21814 * lpfc_release_io_buf - Return one IO buf back to free pool 21815 * @phba: pointer to lpfc hba data structure. 21816 * @lpfc_ncmd: IO buf to be returned. 21817 * @qp: belong to which HWQ. 21818 * 21819 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21820 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21821 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21822 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21823 * lpfc_io_buf_list_put. 21824 **/ 21825 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21826 struct lpfc_sli4_hdw_queue *qp) 21827 { 21828 unsigned long iflag; 21829 struct lpfc_pbl_pool *pbl_pool; 21830 struct lpfc_pvt_pool *pvt_pool; 21831 struct lpfc_epd_pool *epd_pool; 21832 u32 txcmplq_cnt; 21833 u32 xri_owned; 21834 u32 xri_limit; 21835 u32 abts_io_bufs; 21836 21837 /* MUST zero fields if buffer is reused by another protocol */ 21838 lpfc_ncmd->nvmeCmd = NULL; 21839 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21840 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21841 21842 if (phba->cfg_xpsgl && !phba->nvmet_support && 21843 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21844 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21845 21846 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21847 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21848 21849 if (phba->cfg_xri_rebalancing) { 21850 if (lpfc_ncmd->expedite) { 21851 /* Return to expedite pool */ 21852 epd_pool = &phba->epd_pool; 21853 spin_lock_irqsave(&epd_pool->lock, iflag); 21854 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21855 epd_pool->count++; 21856 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21857 return; 21858 } 21859 21860 /* Avoid invalid access if an IO sneaks in and is being rejected 21861 * just _after_ xri pools are destroyed in lpfc_offline. 21862 * Nothing much can be done at this point. 21863 */ 21864 if (!qp->p_multixri_pool) 21865 return; 21866 21867 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21868 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21869 21870 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21871 abts_io_bufs = qp->abts_scsi_io_bufs; 21872 abts_io_bufs += qp->abts_nvme_io_bufs; 21873 21874 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21875 xri_limit = qp->p_multixri_pool->xri_limit; 21876 21877 #ifdef LPFC_MXP_STAT 21878 if (xri_owned <= xri_limit) 21879 qp->p_multixri_pool->below_limit_count++; 21880 else 21881 qp->p_multixri_pool->above_limit_count++; 21882 #endif 21883 21884 /* XRI goes to either public or private free xri pool 21885 * based on watermark and xri_limit 21886 */ 21887 if ((pvt_pool->count < pvt_pool->low_watermark) || 21888 (xri_owned < xri_limit && 21889 pvt_pool->count < pvt_pool->high_watermark)) { 21890 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21891 qp, free_pvt_pool); 21892 list_add_tail(&lpfc_ncmd->list, 21893 &pvt_pool->list); 21894 pvt_pool->count++; 21895 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21896 } else { 21897 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21898 qp, free_pub_pool); 21899 list_add_tail(&lpfc_ncmd->list, 21900 &pbl_pool->list); 21901 pbl_pool->count++; 21902 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21903 } 21904 } else { 21905 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21906 qp, free_xri); 21907 list_add_tail(&lpfc_ncmd->list, 21908 &qp->lpfc_io_buf_list_put); 21909 qp->put_io_bufs++; 21910 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21911 iflag); 21912 } 21913 } 21914 21915 /** 21916 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21917 * @phba: pointer to lpfc hba data structure. 21918 * @qp: pointer to HDW queue 21919 * @pvt_pool: pointer to private pool data structure. 21920 * @ndlp: pointer to lpfc nodelist data structure. 21921 * 21922 * This routine tries to get one free IO buf from private pool. 21923 * 21924 * Return: 21925 * pointer to one free IO buf - if private pool is not empty 21926 * NULL - if private pool is empty 21927 **/ 21928 static struct lpfc_io_buf * 21929 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21930 struct lpfc_sli4_hdw_queue *qp, 21931 struct lpfc_pvt_pool *pvt_pool, 21932 struct lpfc_nodelist *ndlp) 21933 { 21934 struct lpfc_io_buf *lpfc_ncmd; 21935 struct lpfc_io_buf *lpfc_ncmd_next; 21936 unsigned long iflag; 21937 21938 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21939 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21940 &pvt_pool->list, list) { 21941 if (lpfc_test_rrq_active( 21942 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21943 continue; 21944 list_del(&lpfc_ncmd->list); 21945 pvt_pool->count--; 21946 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21947 return lpfc_ncmd; 21948 } 21949 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21950 21951 return NULL; 21952 } 21953 21954 /** 21955 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21956 * @phba: pointer to lpfc hba data structure. 21957 * 21958 * This routine tries to get one free IO buf from expedite pool. 21959 * 21960 * Return: 21961 * pointer to one free IO buf - if expedite pool is not empty 21962 * NULL - if expedite pool is empty 21963 **/ 21964 static struct lpfc_io_buf * 21965 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21966 { 21967 struct lpfc_io_buf *lpfc_ncmd; 21968 struct lpfc_io_buf *lpfc_ncmd_next; 21969 unsigned long iflag; 21970 struct lpfc_epd_pool *epd_pool; 21971 21972 epd_pool = &phba->epd_pool; 21973 lpfc_ncmd = NULL; 21974 21975 spin_lock_irqsave(&epd_pool->lock, iflag); 21976 if (epd_pool->count > 0) { 21977 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21978 &epd_pool->list, list) { 21979 list_del(&lpfc_ncmd->list); 21980 epd_pool->count--; 21981 break; 21982 } 21983 } 21984 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21985 21986 return lpfc_ncmd; 21987 } 21988 21989 /** 21990 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21991 * @phba: pointer to lpfc hba data structure. 21992 * @ndlp: pointer to lpfc nodelist data structure. 21993 * @hwqid: belong to which HWQ 21994 * @expedite: 1 means this request is urgent. 21995 * 21996 * This routine will do the following actions and then return a pointer to 21997 * one free IO buf. 21998 * 21999 * 1. If private free xri count is empty, move some XRIs from public to 22000 * private pool. 22001 * 2. Get one XRI from private free xri pool. 22002 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22003 * get one free xri from expedite pool. 22004 * 22005 * Note: ndlp is only used on SCSI side for RRQ testing. 22006 * The caller should pass NULL for ndlp on NVME side. 22007 * 22008 * Return: 22009 * pointer to one free IO buf - if private pool is not empty 22010 * NULL - if private pool is empty 22011 **/ 22012 static struct lpfc_io_buf * 22013 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22014 struct lpfc_nodelist *ndlp, 22015 int hwqid, int expedite) 22016 { 22017 struct lpfc_sli4_hdw_queue *qp; 22018 struct lpfc_multixri_pool *multixri_pool; 22019 struct lpfc_pvt_pool *pvt_pool; 22020 struct lpfc_io_buf *lpfc_ncmd; 22021 22022 qp = &phba->sli4_hba.hdwq[hwqid]; 22023 lpfc_ncmd = NULL; 22024 if (!qp) { 22025 lpfc_printf_log(phba, KERN_INFO, 22026 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22027 "5556 NULL qp for hwqid x%x\n", hwqid); 22028 return lpfc_ncmd; 22029 } 22030 multixri_pool = qp->p_multixri_pool; 22031 if (!multixri_pool) { 22032 lpfc_printf_log(phba, KERN_INFO, 22033 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22034 "5557 NULL multixri for hwqid x%x\n", hwqid); 22035 return lpfc_ncmd; 22036 } 22037 pvt_pool = &multixri_pool->pvt_pool; 22038 if (!pvt_pool) { 22039 lpfc_printf_log(phba, KERN_INFO, 22040 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22041 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22042 return lpfc_ncmd; 22043 } 22044 multixri_pool->io_req_count++; 22045 22046 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22047 if (pvt_pool->count == 0) 22048 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22049 22050 /* Get one XRI from private free xri pool */ 22051 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22052 22053 if (lpfc_ncmd) { 22054 lpfc_ncmd->hdwq = qp; 22055 lpfc_ncmd->hdwq_no = hwqid; 22056 } else if (expedite) { 22057 /* If we fail to get one from pvt_pool and this is an expedite 22058 * request, get one free xri from expedite pool. 22059 */ 22060 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22061 } 22062 22063 return lpfc_ncmd; 22064 } 22065 22066 static inline struct lpfc_io_buf * 22067 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22068 { 22069 struct lpfc_sli4_hdw_queue *qp; 22070 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22071 22072 qp = &phba->sli4_hba.hdwq[idx]; 22073 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22074 &qp->lpfc_io_buf_list_get, list) { 22075 if (lpfc_test_rrq_active(phba, ndlp, 22076 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22077 continue; 22078 22079 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22080 continue; 22081 22082 list_del_init(&lpfc_cmd->list); 22083 qp->get_io_bufs--; 22084 lpfc_cmd->hdwq = qp; 22085 lpfc_cmd->hdwq_no = idx; 22086 return lpfc_cmd; 22087 } 22088 return NULL; 22089 } 22090 22091 /** 22092 * lpfc_get_io_buf - Get one IO buffer from free pool 22093 * @phba: The HBA for which this call is being executed. 22094 * @ndlp: pointer to lpfc nodelist data structure. 22095 * @hwqid: belong to which HWQ 22096 * @expedite: 1 means this request is urgent. 22097 * 22098 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22099 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22100 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22101 * 22102 * Note: ndlp is only used on SCSI side for RRQ testing. 22103 * The caller should pass NULL for ndlp on NVME side. 22104 * 22105 * Return codes: 22106 * NULL - Error 22107 * Pointer to lpfc_io_buf - Success 22108 **/ 22109 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22110 struct lpfc_nodelist *ndlp, 22111 u32 hwqid, int expedite) 22112 { 22113 struct lpfc_sli4_hdw_queue *qp; 22114 unsigned long iflag; 22115 struct lpfc_io_buf *lpfc_cmd; 22116 22117 qp = &phba->sli4_hba.hdwq[hwqid]; 22118 lpfc_cmd = NULL; 22119 if (!qp) { 22120 lpfc_printf_log(phba, KERN_WARNING, 22121 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22122 "5555 NULL qp for hwqid x%x\n", hwqid); 22123 return lpfc_cmd; 22124 } 22125 22126 if (phba->cfg_xri_rebalancing) 22127 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22128 phba, ndlp, hwqid, expedite); 22129 else { 22130 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22131 qp, alloc_xri_get); 22132 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22133 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22134 if (!lpfc_cmd) { 22135 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22136 qp, alloc_xri_put); 22137 list_splice(&qp->lpfc_io_buf_list_put, 22138 &qp->lpfc_io_buf_list_get); 22139 qp->get_io_bufs += qp->put_io_bufs; 22140 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22141 qp->put_io_bufs = 0; 22142 spin_unlock(&qp->io_buf_list_put_lock); 22143 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22144 expedite) 22145 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22146 } 22147 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22148 } 22149 22150 return lpfc_cmd; 22151 } 22152 22153 /** 22154 * lpfc_read_object - Retrieve object data from HBA 22155 * @phba: The HBA for which this call is being executed. 22156 * @rdobject: Pathname of object data we want to read. 22157 * @datap: Pointer to where data will be copied to. 22158 * @datasz: size of data area 22159 * 22160 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22161 * The data will be truncated if datasz is not large enough. 22162 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22163 * Returns the actual bytes read from the object. 22164 */ 22165 int 22166 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22167 uint32_t datasz) 22168 { 22169 struct lpfc_mbx_read_object *read_object; 22170 LPFC_MBOXQ_t *mbox; 22171 int rc, length, eof, j, byte_cnt = 0; 22172 uint32_t shdr_status, shdr_add_status; 22173 union lpfc_sli4_cfg_shdr *shdr; 22174 struct lpfc_dmabuf *pcmd; 22175 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22176 22177 /* sanity check on queue memory */ 22178 if (!datap) 22179 return -ENODEV; 22180 22181 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22182 if (!mbox) 22183 return -ENOMEM; 22184 length = (sizeof(struct lpfc_mbx_read_object) - 22185 sizeof(struct lpfc_sli4_cfg_mhdr)); 22186 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22187 LPFC_MBOX_OPCODE_READ_OBJECT, 22188 length, LPFC_SLI4_MBX_EMBED); 22189 read_object = &mbox->u.mqe.un.read_object; 22190 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22191 22192 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22193 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22194 read_object->u.request.rd_object_offset = 0; 22195 read_object->u.request.rd_object_cnt = 1; 22196 22197 memset((void *)read_object->u.request.rd_object_name, 0, 22198 LPFC_OBJ_NAME_SZ); 22199 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22200 for (j = 0; j < strlen(rdobject); j++) 22201 read_object->u.request.rd_object_name[j] = 22202 cpu_to_le32(rd_object_name[j]); 22203 22204 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22205 if (pcmd) 22206 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22207 if (!pcmd || !pcmd->virt) { 22208 kfree(pcmd); 22209 mempool_free(mbox, phba->mbox_mem_pool); 22210 return -ENOMEM; 22211 } 22212 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22213 read_object->u.request.rd_object_hbuf[0].pa_lo = 22214 putPaddrLow(pcmd->phys); 22215 read_object->u.request.rd_object_hbuf[0].pa_hi = 22216 putPaddrHigh(pcmd->phys); 22217 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22218 22219 mbox->vport = phba->pport; 22220 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22221 mbox->ctx_buf = NULL; 22222 mbox->ctx_ndlp = NULL; 22223 22224 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22225 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22226 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22227 22228 if (shdr_status == STATUS_FAILED && 22229 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22230 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22231 "4674 No port cfg file in FW.\n"); 22232 byte_cnt = -ENOENT; 22233 } else if (shdr_status || shdr_add_status || rc) { 22234 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22235 "2625 READ_OBJECT mailbox failed with " 22236 "status x%x add_status x%x, mbx status x%x\n", 22237 shdr_status, shdr_add_status, rc); 22238 byte_cnt = -ENXIO; 22239 } else { 22240 /* Success */ 22241 length = read_object->u.response.rd_object_actual_rlen; 22242 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22243 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22244 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22245 length, datasz, eof); 22246 22247 /* Detect the port config file exists but is empty */ 22248 if (!length && eof) { 22249 byte_cnt = 0; 22250 goto exit; 22251 } 22252 22253 byte_cnt = length; 22254 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22255 } 22256 22257 exit: 22258 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22259 kfree(pcmd); 22260 mempool_free(mbox, phba->mbox_mem_pool); 22261 return byte_cnt; 22262 } 22263 22264 /** 22265 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22266 * @phba: The HBA for which this call is being executed. 22267 * @lpfc_buf: IO buf structure to append the SGL chunk 22268 * 22269 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22270 * and will allocate an SGL chunk if the pool is empty. 22271 * 22272 * Return codes: 22273 * NULL - Error 22274 * Pointer to sli4_hybrid_sgl - Success 22275 **/ 22276 struct sli4_hybrid_sgl * 22277 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22278 { 22279 struct sli4_hybrid_sgl *list_entry = NULL; 22280 struct sli4_hybrid_sgl *tmp = NULL; 22281 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22282 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22283 struct list_head *buf_list = &hdwq->sgl_list; 22284 unsigned long iflags; 22285 22286 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22287 22288 if (likely(!list_empty(buf_list))) { 22289 /* break off 1 chunk from the sgl_list */ 22290 list_for_each_entry_safe(list_entry, tmp, 22291 buf_list, list_node) { 22292 list_move_tail(&list_entry->list_node, 22293 &lpfc_buf->dma_sgl_xtra_list); 22294 break; 22295 } 22296 } else { 22297 /* allocate more */ 22298 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22299 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22300 cpu_to_node(hdwq->io_wq->chann)); 22301 if (!tmp) { 22302 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22303 "8353 error kmalloc memory for HDWQ " 22304 "%d %s\n", 22305 lpfc_buf->hdwq_no, __func__); 22306 return NULL; 22307 } 22308 22309 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22310 GFP_ATOMIC, &tmp->dma_phys_sgl); 22311 if (!tmp->dma_sgl) { 22312 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22313 "8354 error pool_alloc memory for HDWQ " 22314 "%d %s\n", 22315 lpfc_buf->hdwq_no, __func__); 22316 kfree(tmp); 22317 return NULL; 22318 } 22319 22320 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22321 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22322 } 22323 22324 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22325 struct sli4_hybrid_sgl, 22326 list_node); 22327 22328 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22329 22330 return allocated_sgl; 22331 } 22332 22333 /** 22334 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22335 * @phba: The HBA for which this call is being executed. 22336 * @lpfc_buf: IO buf structure with the SGL chunk 22337 * 22338 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22339 * 22340 * Return codes: 22341 * 0 - Success 22342 * -EINVAL - Error 22343 **/ 22344 int 22345 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22346 { 22347 int rc = 0; 22348 struct sli4_hybrid_sgl *list_entry = NULL; 22349 struct sli4_hybrid_sgl *tmp = NULL; 22350 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22351 struct list_head *buf_list = &hdwq->sgl_list; 22352 unsigned long iflags; 22353 22354 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22355 22356 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22357 list_for_each_entry_safe(list_entry, tmp, 22358 &lpfc_buf->dma_sgl_xtra_list, 22359 list_node) { 22360 list_move_tail(&list_entry->list_node, 22361 buf_list); 22362 } 22363 } else { 22364 rc = -EINVAL; 22365 } 22366 22367 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22368 return rc; 22369 } 22370 22371 /** 22372 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22373 * @phba: phba object 22374 * @hdwq: hdwq to cleanup sgl buff resources on 22375 * 22376 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22377 * 22378 * Return codes: 22379 * None 22380 **/ 22381 void 22382 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22383 struct lpfc_sli4_hdw_queue *hdwq) 22384 { 22385 struct list_head *buf_list = &hdwq->sgl_list; 22386 struct sli4_hybrid_sgl *list_entry = NULL; 22387 struct sli4_hybrid_sgl *tmp = NULL; 22388 unsigned long iflags; 22389 22390 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22391 22392 /* Free sgl pool */ 22393 list_for_each_entry_safe(list_entry, tmp, 22394 buf_list, list_node) { 22395 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22396 list_entry->dma_sgl, 22397 list_entry->dma_phys_sgl); 22398 list_del(&list_entry->list_node); 22399 kfree(list_entry); 22400 } 22401 22402 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22403 } 22404 22405 /** 22406 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22407 * @phba: The HBA for which this call is being executed. 22408 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22409 * 22410 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22411 * and will allocate an CMD/RSP buffer if the pool is empty. 22412 * 22413 * Return codes: 22414 * NULL - Error 22415 * Pointer to fcp_cmd_rsp_buf - Success 22416 **/ 22417 struct fcp_cmd_rsp_buf * 22418 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22419 struct lpfc_io_buf *lpfc_buf) 22420 { 22421 struct fcp_cmd_rsp_buf *list_entry = NULL; 22422 struct fcp_cmd_rsp_buf *tmp = NULL; 22423 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22424 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22425 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22426 unsigned long iflags; 22427 22428 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22429 22430 if (likely(!list_empty(buf_list))) { 22431 /* break off 1 chunk from the list */ 22432 list_for_each_entry_safe(list_entry, tmp, 22433 buf_list, 22434 list_node) { 22435 list_move_tail(&list_entry->list_node, 22436 &lpfc_buf->dma_cmd_rsp_list); 22437 break; 22438 } 22439 } else { 22440 /* allocate more */ 22441 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22442 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22443 cpu_to_node(hdwq->io_wq->chann)); 22444 if (!tmp) { 22445 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22446 "8355 error kmalloc memory for HDWQ " 22447 "%d %s\n", 22448 lpfc_buf->hdwq_no, __func__); 22449 return NULL; 22450 } 22451 22452 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22453 GFP_ATOMIC, 22454 &tmp->fcp_cmd_rsp_dma_handle); 22455 22456 if (!tmp->fcp_cmnd) { 22457 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22458 "8356 error pool_alloc memory for HDWQ " 22459 "%d %s\n", 22460 lpfc_buf->hdwq_no, __func__); 22461 kfree(tmp); 22462 return NULL; 22463 } 22464 22465 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22466 sizeof(struct fcp_cmnd)); 22467 22468 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22469 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22470 } 22471 22472 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22473 struct fcp_cmd_rsp_buf, 22474 list_node); 22475 22476 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22477 22478 return allocated_buf; 22479 } 22480 22481 /** 22482 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22483 * @phba: The HBA for which this call is being executed. 22484 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22485 * 22486 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22487 * 22488 * Return codes: 22489 * 0 - Success 22490 * -EINVAL - Error 22491 **/ 22492 int 22493 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22494 struct lpfc_io_buf *lpfc_buf) 22495 { 22496 int rc = 0; 22497 struct fcp_cmd_rsp_buf *list_entry = NULL; 22498 struct fcp_cmd_rsp_buf *tmp = NULL; 22499 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22500 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22501 unsigned long iflags; 22502 22503 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22504 22505 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22506 list_for_each_entry_safe(list_entry, tmp, 22507 &lpfc_buf->dma_cmd_rsp_list, 22508 list_node) { 22509 list_move_tail(&list_entry->list_node, 22510 buf_list); 22511 } 22512 } else { 22513 rc = -EINVAL; 22514 } 22515 22516 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22517 return rc; 22518 } 22519 22520 /** 22521 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22522 * @phba: phba object 22523 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22524 * 22525 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22526 * 22527 * Return codes: 22528 * None 22529 **/ 22530 void 22531 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22532 struct lpfc_sli4_hdw_queue *hdwq) 22533 { 22534 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22535 struct fcp_cmd_rsp_buf *list_entry = NULL; 22536 struct fcp_cmd_rsp_buf *tmp = NULL; 22537 unsigned long iflags; 22538 22539 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22540 22541 /* Free cmd_rsp buf pool */ 22542 list_for_each_entry_safe(list_entry, tmp, 22543 buf_list, 22544 list_node) { 22545 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22546 list_entry->fcp_cmnd, 22547 list_entry->fcp_cmd_rsp_dma_handle); 22548 list_del(&list_entry->list_node); 22549 kfree(list_entry); 22550 } 22551 22552 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22553 } 22554